]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/vax/vax.h
config.gcc (vax-*-bsd*): Add vax/bsd.h to ${tm_file}.
[thirdparty/gcc.git] / gcc / config / vax / vax.h
1 /* Definitions of target machine for GNU compiler. VAX version.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* Target CPU builtins. */
24 #define TARGET_CPU_CPP_BUILTINS() \
25 do \
26 { \
27 builtin_define ("__vax__"); \
28 builtin_assert ("cpu=vax"); \
29 builtin_assert ("machine=vax"); \
30 if (TARGET_G_FLOAT) \
31 { \
32 builtin_define ("__GFLOAT"); \
33 builtin_define ("__GFLOAT__"); \
34 } \
35 } \
36 while (0)
37
38 #define VMS_TARGET 0
39
40 /* Use -J option for long branch support with Unix assembler. */
41
42 #define ASM_SPEC "-J"
43
44 /* Choose proper libraries depending on float format.
45 Note that there are no profiling libraries for g-format.
46 Also use -lg for the sake of dbx. */
47
48 #define LIB_SPEC "%{g:-lg}\
49 %{mg:%{lm:-lmg} -lcg \
50 %{p:%eprofiling not supported with -mg\n}\
51 %{pg:%eprofiling not supported with -mg\n}}\
52 %{!mg:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}}"
53
54 /* Print subsidiary information on the compiler version in use. */
55
56 #ifndef TARGET_NAME /* A more specific value might be supplied via -D. */
57 #define TARGET_NAME "vax"
58 #endif
59 #define TARGET_VERSION fprintf (stderr, " (%s)", TARGET_NAME)
60
61 /* Run-time compilation parameters selecting different hardware subsets. */
62
63 extern int target_flags;
64
65 /* Macros used in the machine description to test the flags. */
66
67 /* Nonzero if compiling code that Unix assembler can assemble. */
68 #define TARGET_UNIX_ASM (target_flags & 1)
69
70 /* Nonzero if compiling with VAX-11 "C" style structure alignment */
71 #define TARGET_VAXC_ALIGNMENT (target_flags & 2)
72
73 /* Nonzero if compiling with `G'-format floating point */
74 #define TARGET_G_FLOAT (target_flags & 4)
75
76 /* Macro to define tables used to set the flags.
77 This is a list in braces of pairs in braces,
78 each pair being { "NAME", VALUE }
79 where VALUE is the bits to set or minus the bits to clear.
80 An empty string NAME is used to identify the default VALUE. */
81
82 #define TARGET_SWITCHES \
83 { {"unix", 1, "Generate code for UNIX assembler"}, \
84 {"gnu", -1, "Generate code for GNU assembler (gas)"}, \
85 {"vaxc-alignment", 2, "Use VAXC structure conventions"}, \
86 {"g", 4, "Generate GFLOAT double precision code"}, \
87 {"g-float", 4, "Generate GFLOAT double precision code"}, \
88 {"d", -4, "Generate DFLOAT double precision code"}, \
89 {"d-float", -4, "Generate DFLOAT double precision code"}, \
90 { "", TARGET_DEFAULT, 0}}
91
92 /* Default target_flags if no switches specified. */
93
94 #ifndef TARGET_DEFAULT
95 #define TARGET_DEFAULT 1
96 #endif
97 \f
98 /* Target machine storage layout */
99
100 /* Define this if most significant bit is lowest numbered
101 in instructions that operate on numbered bit-fields.
102 This is not true on the VAX. */
103 #define BITS_BIG_ENDIAN 0
104
105 /* Define this if most significant byte of a word is the lowest numbered. */
106 /* That is not true on the VAX. */
107 #define BYTES_BIG_ENDIAN 0
108
109 /* Define this if most significant word of a multiword number is the lowest
110 numbered. */
111 /* This is not true on the VAX. */
112 #define WORDS_BIG_ENDIAN 0
113
114 /* Width of a word, in units (bytes). */
115 #define UNITS_PER_WORD 4
116
117 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
118 #define PARM_BOUNDARY 32
119
120 /* Allocation boundary (in *bits*) for the code of a function. */
121 #define FUNCTION_BOUNDARY 16
122
123 /* Alignment of field after `int : 0' in a structure. */
124 #define EMPTY_FIELD_BOUNDARY (TARGET_VAXC_ALIGNMENT ? 8 : 32)
125
126 /* Every structure's size must be a multiple of this. */
127 #define STRUCTURE_SIZE_BOUNDARY 8
128
129 /* A bitfield declared as `int' forces `int' alignment for the struct. */
130 #define PCC_BITFIELD_TYPE_MATTERS (! TARGET_VAXC_ALIGNMENT)
131
132 /* No data type wants to be aligned rounder than this. */
133 #define BIGGEST_ALIGNMENT 32
134
135 /* No structure field wants to be aligned rounder than this. */
136 #define BIGGEST_FIELD_ALIGNMENT (TARGET_VAXC_ALIGNMENT ? 8 : 32)
137
138 /* Set this nonzero if move instructions will actually fail to work
139 when given unaligned data. */
140 #define STRICT_ALIGNMENT 0
141
142 /* Let's keep the stack somewhat aligned. */
143 #define STACK_BOUNDARY 32
144
145 /* The table of an ADDR_DIFF_VEC must be contiguous with the case
146 opcode, it is part of the case instruction. */
147 #define ADDR_VEC_ALIGN(ADDR_VEC) 0
148 \f
149 /* Standard register usage. */
150
151 /* Number of actual hardware registers.
152 The hardware registers are assigned numbers for the compiler
153 from 0 to just below FIRST_PSEUDO_REGISTER.
154 All registers that the compiler knows about must be given numbers,
155 even those that are not normally considered general registers. */
156 #define FIRST_PSEUDO_REGISTER 16
157
158 /* 1 for registers that have pervasive standard uses
159 and are not available for the register allocator.
160 On the VAX, these are the AP, FP, SP and PC. */
161 #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
162
163 /* 1 for registers not available across function calls.
164 These must include the FIXED_REGISTERS and also any
165 registers that can be used without being saved.
166 The latter must include the registers where values are returned
167 and the register where structure-value addresses are passed.
168 Aside from that, you can include as many other registers as you like. */
169 #define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
170
171 /* Return number of consecutive hard regs needed starting at reg REGNO
172 to hold something of mode MODE.
173 This is ordinarily the length in words of a value of mode MODE
174 but can be less for certain modes in special long registers.
175 On the VAX, all registers are one word long. */
176 #define HARD_REGNO_NREGS(REGNO, MODE) \
177 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
178
179 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
180 On the VAX, all registers can hold all modes. */
181 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
182
183 /* Value is 1 if it is a good idea to tie two pseudo registers
184 when one has mode MODE1 and one has mode MODE2.
185 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
186 for any hard reg, then this must be 0 for correct output. */
187 #define MODES_TIEABLE_P(MODE1, MODE2) 1
188
189 /* Specify the registers used for certain standard purposes.
190 The values of these macros are register numbers. */
191
192 /* VAX pc is overloaded on a register. */
193 #define PC_REGNUM 15
194
195 /* Register to use for pushing function arguments. */
196 #define STACK_POINTER_REGNUM 14
197
198 /* Base register for access to local variables of the function. */
199 #define FRAME_POINTER_REGNUM 13
200
201 /* Value should be nonzero if functions must have frame pointers.
202 Zero means the frame pointer need not be set up (and parms
203 may be accessed via the stack pointer) in functions that seem suitable.
204 This is computed in `reload', in reload1.c. */
205 #define FRAME_POINTER_REQUIRED 1
206
207 /* Base register for access to arguments of the function. */
208 #define ARG_POINTER_REGNUM 12
209
210 /* Register in which static-chain is passed to a function. */
211 #define STATIC_CHAIN_REGNUM 0
212
213 /* Register in which address to store a structure value
214 is passed to a function. */
215 #define STRUCT_VALUE_REGNUM 1
216 \f
217 /* Define the classes of registers for register constraints in the
218 machine description. Also define ranges of constants.
219
220 One of the classes must always be named ALL_REGS and include all hard regs.
221 If there is more than one class, another class must be named NO_REGS
222 and contain no registers.
223
224 The name GENERAL_REGS must be the name of a class (or an alias for
225 another name such as ALL_REGS). This is the class of registers
226 that is allowed by "g" or "r" in a register constraint.
227 Also, registers outside this class are allocated only when
228 instructions express preferences for them.
229
230 The classes must be numbered in nondecreasing order; that is,
231 a larger-numbered class must never be contained completely
232 in a smaller-numbered class.
233
234 For any two classes, it is very desirable that there be another
235 class that represents their union. */
236
237 /* The VAX has only one kind of registers, so NO_REGS and ALL_REGS
238 are the only classes. */
239
240 enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
241
242 #define N_REG_CLASSES (int) LIM_REG_CLASSES
243
244 /* Since GENERAL_REGS is the same class as ALL_REGS,
245 don't give it a different class number; just make it an alias. */
246
247 #define GENERAL_REGS ALL_REGS
248
249 /* Give names of register classes as strings for dump file. */
250
251 #define REG_CLASS_NAMES \
252 {"NO_REGS", "ALL_REGS" }
253
254 /* Define which registers fit in which classes.
255 This is an initializer for a vector of HARD_REG_SET
256 of length N_REG_CLASSES. */
257
258 #define REG_CLASS_CONTENTS {{0}, {0xffff}}
259
260 /* The same information, inverted:
261 Return the class number of the smallest class containing
262 reg number REGNO. This could be a conditional expression
263 or could index an array. */
264
265 #define REGNO_REG_CLASS(REGNO) ALL_REGS
266
267 /* The class value for index registers, and the one for base regs. */
268
269 #define INDEX_REG_CLASS ALL_REGS
270 #define BASE_REG_CLASS ALL_REGS
271
272 /* Get reg_class from a letter such as appears in the machine description. */
273
274 #define REG_CLASS_FROM_LETTER(C) NO_REGS
275
276 /* The letters I, J, K, L and M in a register constraint string
277 can be used to stand for particular ranges of immediate operands.
278 This macro defines what the ranges are.
279 C is the letter, and VALUE is a constant value.
280 Return 1 if VALUE is in the range specified by C.
281
282 `I' is the constant zero. */
283
284 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
285 ((C) == 'I' ? (VALUE) == 0 \
286 : 0)
287
288 /* Similar, but for floating constants, and defining letters G and H.
289 Here VALUE is the CONST_DOUBLE rtx itself.
290
291 `G' is a floating-point zero. */
292
293 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
294 ((C) == 'G' ? ((VALUE) == CONST0_RTX (DFmode) \
295 || (VALUE) == CONST0_RTX (SFmode)) \
296 : 0)
297
298 /* Optional extra constraints for this machine.
299
300 For the VAX, `Q' means that OP is a MEM that does not have a mode-dependent
301 address. */
302
303 #define EXTRA_CONSTRAINT(OP, C) \
304 ((C) == 'Q' \
305 ? GET_CODE (OP) == MEM && ! mode_dependent_address_p (XEXP (OP, 0)) \
306 : 0)
307
308 /* Given an rtx X being reloaded into a reg required to be
309 in class CLASS, return the class of reg to actually use.
310 In general this is just CLASS; but on some machines
311 in some cases it is preferable to use a more restrictive class. */
312
313 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
314
315 /* Return the maximum number of consecutive registers
316 needed to represent mode MODE in a register of class CLASS. */
317 /* On the VAX, this is always the size of MODE in words,
318 since all registers are the same size. */
319 #define CLASS_MAX_NREGS(CLASS, MODE) \
320 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
321 \f
322 /* Stack layout; function entry, exit and calling. */
323
324 /* Define this if pushing a word on the stack
325 makes the stack pointer a smaller address. */
326 #define STACK_GROWS_DOWNWARD
327
328 /* Define this if the nominal address of the stack frame
329 is at the high-address end of the local variables;
330 that is, each additional local variable allocated
331 goes at a more negative offset in the frame. */
332 #define FRAME_GROWS_DOWNWARD
333
334 /* Offset within stack frame to start allocating local variables at.
335 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
336 first local allocated. Otherwise, it is the offset to the BEGINNING
337 of the first local allocated. */
338 #define STARTING_FRAME_OFFSET 0
339
340 /* Given an rtx for the address of a frame,
341 return an rtx for the address of the word in the frame
342 that holds the dynamic chain--the previous frame's address. */
343 #define DYNAMIC_CHAIN_ADDRESS(FRAME) plus_constant ((FRAME), 12)
344
345 /* If we generate an insn to push BYTES bytes,
346 this says how many the stack pointer really advances by.
347 On the VAX, -(sp) pushes only the bytes of the operands. */
348 #define PUSH_ROUNDING(BYTES) (BYTES)
349
350 /* Offset of first parameter from the argument pointer register value. */
351 #define FIRST_PARM_OFFSET(FNDECL) 4
352
353 /* Value is the number of bytes of arguments automatically
354 popped when returning from a subroutine call.
355 FUNDECL is the declaration node of the function (as a tree),
356 FUNTYPE is the data type of the function (as a tree),
357 or for a library call it is an identifier node for the subroutine name.
358 SIZE is the number of bytes of arguments passed on the stack.
359
360 On the VAX, the RET insn pops a maximum of 255 args for any function. */
361
362 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
363 ((SIZE) > 255*4 ? 0 : (SIZE))
364
365 /* Define how to find the value returned by a function.
366 VALTYPE is the data type of the value (as a tree).
367 If the precise function being called is known, FUNC is its FUNCTION_DECL;
368 otherwise, FUNC is 0. */
369
370 /* On the VAX the return value is in R0 regardless. */
371
372 #define FUNCTION_VALUE(VALTYPE, FUNC) \
373 gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
374
375 /* Define how to find the value returned by a library function
376 assuming the value has mode MODE. */
377
378 /* On the VAX the return value is in R0 regardless. */
379
380 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
381
382 /* Define this if PCC uses the nonreentrant convention for returning
383 structure and union values. */
384
385 #define PCC_STATIC_STRUCT_RETURN
386
387 /* 1 if N is a possible register number for a function value.
388 On the VAX, R0 is the only register thus used. */
389
390 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
391
392 /* 1 if N is a possible register number for function argument passing.
393 On the VAX, no registers are used in this way. */
394
395 #define FUNCTION_ARG_REGNO_P(N) 0
396 \f
397 /* Define a data type for recording info about an argument list
398 during the scan of that argument list. This data type should
399 hold all necessary information about the function itself
400 and about the args processed so far, enough to enable macros
401 such as FUNCTION_ARG to determine where the next arg should go.
402
403 On the VAX, this is a single integer, which is a number of bytes
404 of arguments scanned so far. */
405
406 #define CUMULATIVE_ARGS int
407
408 /* Initialize a variable CUM of type CUMULATIVE_ARGS
409 for a call to a function whose data type is FNTYPE.
410 For a library call, FNTYPE is 0.
411
412 On the VAX, the offset starts at 0. */
413
414 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
415 ((CUM) = 0)
416
417 /* Update the data in CUM to advance over an argument
418 of mode MODE and data type TYPE.
419 (TYPE is null for libcalls where that information may not be available.) */
420
421 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
422 ((CUM) += ((MODE) != BLKmode \
423 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
424 : (int_size_in_bytes (TYPE) + 3) & ~3))
425
426 /* Define where to put the arguments to a function.
427 Value is zero to push the argument on the stack,
428 or a hard register in which to store the argument.
429
430 MODE is the argument's machine mode.
431 TYPE is the data type of the argument (as a tree).
432 This is null for libcalls where that information may
433 not be available.
434 CUM is a variable of type CUMULATIVE_ARGS which gives info about
435 the preceding args and about the function being called.
436 NAMED is nonzero if this argument is a named parameter
437 (otherwise it is an extra parameter matching an ellipsis). */
438
439 /* On the VAX all args are pushed. */
440
441 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
442
443 /* Output assembler code to FILE to increment profiler label # LABELNO
444 for profiling a function entry. */
445
446 #define FUNCTION_PROFILER(FILE, LABELNO) \
447 fprintf (FILE, "\tmovab LP%d,r0\n\tjsb mcount\n", (LABELNO));
448
449 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
450 the stack pointer does not matter. The value is tested only in
451 functions that have frame pointers.
452 No definition is equivalent to always zero. */
453
454 #define EXIT_IGNORE_STACK 1
455
456 /* Store in the variable DEPTH the initial difference between the
457 frame pointer reg contents and the stack pointer reg contents,
458 as of the start of the function body. This depends on the layout
459 of the fixed parts of the stack frame and on how registers are saved.
460
461 On the VAX, FRAME_POINTER_REQUIRED is always 1, so the definition of this
462 macro doesn't matter. But it must be defined. */
463
464 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
465
466 /* Output assembler code for a block containing the constant parts
467 of a trampoline, leaving space for the variable parts. */
468
469 /* On the VAX, the trampoline contains an entry mask and two instructions:
470 .word NN
471 movl $STATIC,r0 (store the functions static chain)
472 jmp *$FUNCTION (jump to function code at address FUNCTION) */
473
474 #define TRAMPOLINE_TEMPLATE(FILE) \
475 { \
476 assemble_aligned_integer (2, const0_rtx); \
477 assemble_aligned_integer (2, GEN_INT (0x8fd0)); \
478 assemble_aligned_integer (4, const0_rtx); \
479 assemble_aligned_integer (1, GEN_INT (0x50 + STATIC_CHAIN_REGNUM)); \
480 assemble_aligned_integer (2, GEN_INT (0x9f17)); \
481 assemble_aligned_integer (4, const0_rtx); \
482 }
483
484 /* Length in units of the trampoline for entering a nested function. */
485
486 #define TRAMPOLINE_SIZE 15
487
488 /* Emit RTL insns to initialize the variable parts of a trampoline.
489 FNADDR is an RTX for the address of the function's pure code.
490 CXT is an RTX for the static chain value for the function. */
491
492 /* We copy the register-mask from the function's pure code
493 to the start of the trampoline. */
494 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
495 { \
496 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, \
497 "movpsl -(sp)\n\tpushal 1(pc)\n\trei")); \
498 emit_move_insn (gen_rtx_MEM (HImode, TRAMP), \
499 gen_rtx_MEM (HImode, FNADDR)); \
500 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), CXT);\
501 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 11)), \
502 plus_constant (FNADDR, 2)); \
503 }
504
505 /* Byte offset of return address in a stack frame. The "saved PC" field
506 is in element [4] when treating the frame as an array of longwords. */
507
508 #define RETURN_ADDRESS_OFFSET (4 * UNITS_PER_WORD) /* 16 */
509
510 /* A C expression whose value is RTL representing the value of the return
511 address for the frame COUNT steps up from the current frame.
512 FRAMEADDR is already the frame pointer of the COUNT frame, so we
513 can ignore COUNT. */
514
515 #define RETURN_ADDR_RTX(COUNT, FRAME) \
516 ((COUNT == 0) \
517 ? gen_rtx_MEM (Pmode, plus_constant (FRAME, RETURN_ADDRESS_OFFSET)) \
518 : (rtx) 0)
519
520 \f
521 /* Addressing modes, and classification of registers for them. */
522
523 #define HAVE_POST_INCREMENT 1
524 /* #define HAVE_POST_DECREMENT 0 */
525
526 #define HAVE_PRE_DECREMENT 1
527 /* #define HAVE_PRE_INCREMENT 0 */
528
529 /* Macros to check register numbers against specific register classes. */
530
531 /* These assume that REGNO is a hard or pseudo reg number.
532 They give nonzero only if REGNO is a hard reg of the suitable class
533 or a pseudo reg currently allocated to a suitable hard reg.
534 Since they use reg_renumber, they are safe only once reg_renumber
535 has been allocated, which happens in local-alloc.c. */
536
537 #define REGNO_OK_FOR_INDEX_P(regno) \
538 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
539 #define REGNO_OK_FOR_BASE_P(regno) \
540 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
541 \f
542 /* Maximum number of registers that can appear in a valid memory address. */
543
544 #define MAX_REGS_PER_ADDRESS 2
545
546 /* 1 if X is an rtx for a constant that is a valid address. */
547
548 #define CONSTANT_ADDRESS_P(X) \
549 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
550 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
551 || GET_CODE (X) == HIGH)
552
553 /* Nonzero if the constant value X is a legitimate general operand.
554 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
555
556 #define LEGITIMATE_CONSTANT_P(X) 1
557
558 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
559 and check its validity for a certain class.
560 We have two alternate definitions for each of them.
561 The usual definition accepts all pseudo regs; the other rejects
562 them unless they have been allocated suitable hard regs.
563 The symbol REG_OK_STRICT causes the latter definition to be used.
564
565 Most source files want to accept pseudo regs in the hope that
566 they will get allocated to the class that the insn wants them to be in.
567 Source files for reload pass need to be strict.
568 After reload, it makes no difference, since pseudo regs have
569 been eliminated by then. */
570
571 #ifndef REG_OK_STRICT
572
573 /* Nonzero if X is a hard reg that can be used as an index
574 or if it is a pseudo reg. */
575 #define REG_OK_FOR_INDEX_P(X) 1
576 /* Nonzero if X is a hard reg that can be used as a base reg
577 or if it is a pseudo reg. */
578 #define REG_OK_FOR_BASE_P(X) 1
579
580 #else
581
582 /* Nonzero if X is a hard reg that can be used as an index. */
583 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
584 /* Nonzero if X is a hard reg that can be used as a base reg. */
585 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
586
587 #endif
588 \f
589 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
590 that is a valid memory address for an instruction.
591 The MODE argument is the machine mode for the MEM expression
592 that wants to use this address.
593
594 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
595 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
596
597 #ifdef NO_EXTERNAL_INDIRECT_ADDRESS
598
599 /* Zero if this contains a (CONST (PLUS (SYMBOL_REF) (...))) and the
600 symbol in the SYMBOL_REF is an external symbol. */
601
602 #define INDIRECTABLE_CONSTANT_P(X) \
603 (! (GET_CODE ((X)) == CONST \
604 && GET_CODE (XEXP ((X), 0)) == PLUS \
605 && GET_CODE (XEXP (XEXP ((X), 0), 0)) == SYMBOL_REF \
606 && SYMBOL_REF_FLAG (XEXP (XEXP ((X), 0), 0))))
607
608 /* Re-definition of CONSTANT_ADDRESS_P, which is true only when there
609 are no SYMBOL_REFs for external symbols present. */
610
611 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) \
612 (GET_CODE (X) == LABEL_REF \
613 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_FLAG (X)) \
614 || (GET_CODE (X) == CONST && INDIRECTABLE_CONSTANT_P(X)) \
615 || GET_CODE (X) == CONST_INT)
616
617
618 /* Non-zero if X is an address which can be indirected. External symbols
619 could be in a sharable image library, so we disallow those. */
620
621 #define INDIRECTABLE_ADDRESS_P(X) \
622 (INDIRECTABLE_CONSTANT_ADDRESS_P (X) \
623 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
624 || (GET_CODE (X) == PLUS \
625 && GET_CODE (XEXP (X, 0)) == REG \
626 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
627 && INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))))
628
629 #else /* not NO_EXTERNAL_INDIRECT_ADDRESS */
630
631 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) CONSTANT_ADDRESS_P(X)
632
633 /* Non-zero if X is an address which can be indirected. */
634 #define INDIRECTABLE_ADDRESS_P(X) \
635 (CONSTANT_ADDRESS_P (X) \
636 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
637 || (GET_CODE (X) == PLUS \
638 && GET_CODE (XEXP (X, 0)) == REG \
639 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
640 && CONSTANT_ADDRESS_P (XEXP (X, 1))))
641
642 #endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */
643
644 /* Go to ADDR if X is a valid address not using indexing.
645 (This much is the easy part.) */
646 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
647 { register rtx xfoob = (X); \
648 if (GET_CODE (xfoob) == REG) \
649 { \
650 extern rtx *reg_equiv_mem; \
651 if (! reload_in_progress \
652 || reg_equiv_mem[REGNO (xfoob)] == 0 \
653 || INDIRECTABLE_ADDRESS_P (reg_equiv_mem[REGNO (xfoob)])) \
654 goto ADDR; \
655 } \
656 if (CONSTANT_ADDRESS_P (xfoob)) goto ADDR; \
657 if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR; \
658 xfoob = XEXP (X, 0); \
659 if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \
660 goto ADDR; \
661 if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
662 && GET_CODE (xfoob) == REG && REG_OK_FOR_BASE_P (xfoob)) \
663 goto ADDR; }
664
665 /* 1 if PROD is either a reg times size of mode MODE and MODE is less
666 than or equal 8 bytes, or just a reg if MODE is one byte.
667 This macro's expansion uses the temporary variables xfoo0 and xfoo1
668 that must be declared in the surrounding context. */
669 #define INDEX_TERM_P(PROD, MODE) \
670 (GET_MODE_SIZE (MODE) == 1 \
671 ? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
672 : (GET_CODE (PROD) == MULT && GET_MODE_SIZE (MODE) <= 8 \
673 && \
674 (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
675 ((((GET_CODE (xfoo0) == CONST_INT \
676 && GET_CODE (xfoo1) == REG) \
677 && INTVAL (xfoo0) == (int)GET_MODE_SIZE (MODE)) \
678 && REG_OK_FOR_INDEX_P (xfoo1)) \
679 || \
680 (((GET_CODE (xfoo1) == CONST_INT \
681 && GET_CODE (xfoo0) == REG) \
682 && INTVAL (xfoo1) == (int)GET_MODE_SIZE (MODE)) \
683 && REG_OK_FOR_INDEX_P (xfoo0))))))
684
685 /* Go to ADDR if X is the sum of a register
686 and a valid index term for mode MODE. */
687 #define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \
688 { register rtx xfooa; \
689 if (GET_CODE (X) == PLUS) \
690 { if (GET_CODE (XEXP (X, 0)) == REG \
691 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
692 && (xfooa = XEXP (X, 1), \
693 INDEX_TERM_P (xfooa, MODE))) \
694 goto ADDR; \
695 if (GET_CODE (XEXP (X, 1)) == REG \
696 && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
697 && (xfooa = XEXP (X, 0), \
698 INDEX_TERM_P (xfooa, MODE))) \
699 goto ADDR; } }
700
701 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
702 { register rtx xfoo, xfoo0, xfoo1; \
703 GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
704 if (GET_CODE (X) == PLUS) \
705 { /* Handle <address>[index] represented with index-sum outermost */\
706 xfoo = XEXP (X, 0); \
707 if (INDEX_TERM_P (xfoo, MODE)) \
708 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \
709 xfoo = XEXP (X, 1); \
710 if (INDEX_TERM_P (xfoo, MODE)) \
711 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \
712 /* Handle offset(reg)[index] with offset added outermost */ \
713 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 0))) \
714 { if (GET_CODE (XEXP (X, 1)) == REG \
715 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
716 goto ADDR; \
717 GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \
718 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))) \
719 { if (GET_CODE (XEXP (X, 0)) == REG \
720 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
721 goto ADDR; \
722 GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
723 \f
724 /* Try machine-dependent ways of modifying an illegitimate address
725 to be legitimate. If we find one, return the new, valid address.
726 This macro is used in only one place: `memory_address' in explow.c.
727
728 OLDX is the address as it was before break_out_memory_refs was called.
729 In some cases it is useful to look at this to decide what needs to be done.
730
731 MODE and WIN are passed so that this macro can use
732 GO_IF_LEGITIMATE_ADDRESS.
733
734 It is always safe for this macro to do nothing. It exists to recognize
735 opportunities to optimize the output.
736
737 For the VAX, nothing needs to be done. */
738
739 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
740
741 /* Go to LABEL if ADDR (a legitimate address expression)
742 has an effect that depends on the machine mode it is used for.
743 On the VAX, the predecrement and postincrement address depend thus
744 (the amount of decrement or increment being the length of the operand)
745 and all indexed address depend thus (because the index scale factor
746 is the length of the operand). */
747 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
748 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
749 goto LABEL; \
750 if (GET_CODE (ADDR) == PLUS) \
751 { if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0)) \
752 && GET_CODE (XEXP (ADDR, 1)) == REG); \
753 else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1)) \
754 && GET_CODE (XEXP (ADDR, 0)) == REG); \
755 else goto LABEL; }}
756 \f
757 /* Specify the machine mode that this machine uses
758 for the index in the tablejump instruction. */
759 #define CASE_VECTOR_MODE HImode
760
761 /* Define as C expression which evaluates to nonzero if the tablejump
762 instruction expects the table to contain offsets from the address of the
763 table.
764 Do not define this if the table should contain absolute addresses. */
765 #define CASE_VECTOR_PC_RELATIVE 1
766
767 /* Define this if the case instruction drops through after the table
768 when the index is out of range. Don't define it if the case insn
769 jumps to the default label instead. */
770 #define CASE_DROPS_THROUGH
771
772 /* Define this as 1 if `char' should by default be signed; else as 0. */
773 #define DEFAULT_SIGNED_CHAR 1
774
775 /* This flag, if defined, says the same insns that convert to a signed fixnum
776 also convert validly to an unsigned one. */
777 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
778
779 /* Max number of bytes we can move from memory to memory
780 in one reasonably fast instruction. */
781 #define MOVE_MAX 8
782
783 /* Nonzero if access to memory by bytes is slow and undesirable. */
784 #define SLOW_BYTE_ACCESS 0
785
786 /* Define if shifts truncate the shift count
787 which implies one can omit a sign-extension or zero-extension
788 of a shift count. */
789 /* #define SHIFT_COUNT_TRUNCATED */
790
791 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
792 is done just by pretending it is already truncated. */
793 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
794
795 /* When a prototype says `char' or `short', really pass an `int'.
796 (On the VAX, this is required for system-library compatibility.) */
797 #define PROMOTE_PROTOTYPES 1
798
799 /* Specify the machine mode that pointers have.
800 After generation of rtl, the compiler makes no further distinction
801 between pointers and any other objects of this machine mode. */
802 #define Pmode SImode
803
804 /* A function address in a call instruction
805 is a byte address (for indexing purposes)
806 so give the MEM rtx a byte's mode. */
807 #define FUNCTION_MODE QImode
808
809 /* This machine doesn't use IEEE floats. */
810
811 #define TARGET_FLOAT_FORMAT VAX_FLOAT_FORMAT
812
813 /* Compute the cost of computing a constant rtl expression RTX
814 whose rtx-code is CODE. The body of this macro is a portion
815 of a switch statement. If the code is computed here,
816 return it with a return statement. Otherwise, break from the switch. */
817
818 /* On a VAX, constants from 0..63 are cheap because they can use the
819 1 byte literal constant format. compare to -1 should be made cheap
820 so that decrement-and-branch insns can be formed more easily (if
821 the value -1 is copied to a register some decrement-and-branch patterns
822 will not match). */
823
824 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
825 case CONST_INT: \
826 if (INTVAL (RTX) == 0) return 0; \
827 if ((OUTER_CODE) == AND) \
828 return ((unsigned) ~INTVAL (RTX) <= 077) ? 1 : 2; \
829 if ((unsigned) INTVAL (RTX) <= 077) return 1; \
830 if ((OUTER_CODE) == COMPARE && INTVAL (RTX) == -1) \
831 return 1; \
832 if ((OUTER_CODE) == PLUS && (unsigned) -INTVAL (RTX) <= 077)\
833 return 1; \
834 case CONST: \
835 case LABEL_REF: \
836 case SYMBOL_REF: \
837 return 3; \
838 case CONST_DOUBLE: \
839 if (GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
840 return vax_float_literal (RTX) ? 5 : 8; \
841 else \
842 return (((CONST_DOUBLE_HIGH (RTX) == 0 \
843 && (unsigned) CONST_DOUBLE_LOW (RTX) < 64) \
844 || ((OUTER_CODE) == PLUS \
845 && CONST_DOUBLE_HIGH (RTX) == -1 \
846 && (unsigned)-CONST_DOUBLE_LOW (RTX) < 64)) \
847 ? 2 : 5);
848
849 #define RTX_COSTS(RTX,CODE,OUTER_CODE) case FIX: case FLOAT: \
850 case MULT: case DIV: case UDIV: case MOD: case UMOD: \
851 case ASHIFT: case LSHIFTRT: case ASHIFTRT: \
852 case ROTATE: case ROTATERT: case PLUS: case MINUS: case IOR: \
853 case XOR: case AND: case NEG: case NOT: case ZERO_EXTRACT: \
854 case SIGN_EXTRACT: case MEM: return vax_rtx_cost(RTX)
855
856 #define ADDRESS_COST(RTX) (1 + (GET_CODE (RTX) == REG ? 0 : vax_address_cost(RTX)))
857
858 /* Specify the cost of a branch insn; roughly the number of extra insns that
859 should be added to avoid a branch.
860
861 Branches are extremely cheap on the VAX while the shift insns often
862 used to replace branches can be expensive. */
863
864 #define BRANCH_COST 0
865
866 /*
867 * We can use the BSD C library routines for the libgcc calls that are
868 * still generated, since that's what they boil down to anyways.
869 */
870
871 #define UDIVSI3_LIBCALL "*udiv"
872 #define UMODSI3_LIBCALL "*urem"
873
874 /* Check a `double' value for validity for a particular machine mode. */
875
876 /* note that it is very hard to accidentally create a number that fits in a
877 double but not in a float, since their ranges are almost the same */
878
879 #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
880 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
881
882 /* For future reference:
883 D Float: 9 bit, sign magnitude, excess 128 binary exponent
884 normalized 56 bit fraction, redundant bit not represented
885 approximately 16 decimal digits of precision
886
887 The values to use if we trust decimal to binary conversions:
888 #define MAX_D_FLOAT 1.7014118346046923e+38
889 #define MIN_D_FLOAT .29387358770557188e-38
890
891 G float: 12 bit, sign magnitude, excess 1024 binary exponent
892 normalized 53 bit fraction, redundant bit not represented
893 approximately 15 decimal digits precision
894
895 The values to use if we trust decimal to binary conversions:
896 #define MAX_G_FLOAT .898846567431157e+308
897 #define MIN_G_FLOAT .556268464626800e-308
898 */
899 \f
900 /* Tell final.c how to eliminate redundant test instructions. */
901
902 /* Here we define machine-dependent flags and fields in cc_status
903 (see `conditions.h'). No extra ones are needed for the VAX. */
904
905 /* Store in cc_status the expressions
906 that the condition codes will describe
907 after execution of an instruction whose pattern is EXP.
908 Do not alter them if the instruction would not alter the cc's. */
909
910 #define NOTICE_UPDATE_CC(EXP, INSN) \
911 { if (GET_CODE (EXP) == SET) \
912 { if (GET_CODE (SET_SRC (EXP)) == CALL) \
913 CC_STATUS_INIT; \
914 else if (GET_CODE (SET_DEST (EXP)) != ZERO_EXTRACT \
915 && GET_CODE (SET_DEST (EXP)) != PC) \
916 { \
917 cc_status.flags = 0; \
918 /* The integer operations below don't set carry or \
919 set it in an incompatible way. That's ok though \
920 as the Z bit is all we need when doing unsigned \
921 comparisons on the result of these insns (since \
922 they're always with 0). Set CC_NO_OVERFLOW to \
923 generate the correct unsigned branches. */ \
924 switch (GET_CODE (SET_SRC (EXP))) \
925 { \
926 case NEG: \
927 if (GET_MODE_CLASS (GET_MODE (EXP)) == MODE_FLOAT)\
928 break; \
929 case AND: \
930 case IOR: \
931 case XOR: \
932 case NOT: \
933 case MEM: \
934 case REG: \
935 cc_status.flags = CC_NO_OVERFLOW; \
936 break; \
937 default: \
938 break; \
939 } \
940 cc_status.value1 = SET_DEST (EXP); \
941 cc_status.value2 = SET_SRC (EXP); } } \
942 else if (GET_CODE (EXP) == PARALLEL \
943 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
944 { \
945 if (GET_CODE (SET_SRC (XVECEXP (EXP, 0, 0))) == CALL) \
946 CC_STATUS_INIT; \
947 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
948 { cc_status.flags = 0; \
949 cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
950 cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } \
951 else \
952 /* PARALLELs whose first element sets the PC are aob, \
953 sob insns. They do change the cc's. */ \
954 CC_STATUS_INIT; } \
955 else CC_STATUS_INIT; \
956 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
957 && cc_status.value2 \
958 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
959 cc_status.value2 = 0; \
960 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
961 && cc_status.value2 \
962 && GET_CODE (cc_status.value2) == MEM) \
963 cc_status.value2 = 0; }
964 /* Actual condition, one line up, should be that value2's address
965 depends on value1, but that is too much of a pain. */
966
967 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
968 { if (cc_status.flags & CC_NO_OVERFLOW) \
969 return NO_OV; \
970 return NORMAL; }
971 \f
972 /* Control the assembler format that we output. */
973
974 /* Output at beginning of assembler file. */
975 /* When debugging, we want to output an extra dummy label so that gas
976 can distinguish between D_float and G_float prior to processing the
977 .stabs directive identifying type double. */
978
979 #define ASM_FILE_START(FILE) \
980 do { \
981 fputs (ASM_APP_OFF, FILE); \
982 if (write_symbols == DBX_DEBUG) \
983 fprintf (FILE, "___vax_%c_doubles:\n", ASM_DOUBLE_CHAR); \
984 } while (0)
985
986
987 /* Output to assembler file text saying following lines
988 may contain character constants, extra white space, comments, etc. */
989
990 #define ASM_APP_ON "#APP\n"
991
992 /* Output to assembler file text saying following lines
993 no longer contain unusual constructs. */
994
995 #define ASM_APP_OFF "#NO_APP\n"
996
997 /* Output before read-only data. */
998
999 #define TEXT_SECTION_ASM_OP "\t.text"
1000
1001 /* Output before writable data. */
1002
1003 #define DATA_SECTION_ASM_OP "\t.data"
1004
1005 /* How to refer to registers in assembler output.
1006 This sequence is indexed by compiler's hard-register-number (see above). */
1007
1008 #define REGISTER_NAMES \
1009 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
1010 "r9", "r10", "r11", "ap", "fp", "sp", "pc"}
1011
1012 /* This is BSD, so it wants DBX format. */
1013
1014 #define DBX_DEBUGGING_INFO
1015
1016 /* Do not break .stabs pseudos into continuations. */
1017
1018 #define DBX_CONTIN_LENGTH 0
1019
1020 /* This is the char to use for continuation (in case we need to turn
1021 continuation back on). */
1022
1023 #define DBX_CONTIN_CHAR '?'
1024
1025 /* Don't use the `xsfoo;' construct in DBX output; this system
1026 doesn't support it. */
1027
1028 #define DBX_NO_XREFS
1029
1030 /* Output the .stabs for a C `static' variable in the data section. */
1031 #define DBX_STATIC_STAB_DATA_SECTION
1032
1033 /* VAX specific: which type character is used for type double? */
1034
1035 #define ASM_DOUBLE_CHAR (TARGET_G_FLOAT ? 'g' : 'd')
1036
1037 /* This is how to output the definition of a user-level label named NAME,
1038 such as the label on a static function or variable NAME. */
1039
1040 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1041 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1042
1043 /* This is how to output a command to make the user-level label named NAME
1044 defined for reference from other files. */
1045
1046 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1047 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1048
1049 /* The prefix to add to user-visible assembler symbols. */
1050
1051 #define USER_LABEL_PREFIX "_"
1052
1053 /* This is how to output an internal numbered label where
1054 PREFIX is the class of label and NUM is the number within the class. */
1055
1056 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1057 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1058
1059 /* This is how to store into the string LABEL
1060 the symbol_ref name of an internal numbered label where
1061 PREFIX is the class of label and NUM is the number within the class.
1062 This is suitable for output with `assemble_name'. */
1063
1064 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1065 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1066
1067 /* This is how to output an insn to push a register on the stack.
1068 It need not be very fast code. */
1069
1070 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1071 fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
1072
1073 /* This is how to output an insn to pop a register from the stack.
1074 It need not be very fast code. */
1075
1076 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1077 fprintf (FILE, "\tmovl (sp)+,%s\n", reg_names[REGNO])
1078
1079 /* This is how to output an element of a case-vector that is absolute.
1080 (The VAX does not use such vectors,
1081 but we must define this macro anyway.) */
1082
1083 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1084 fprintf (FILE, "\t.long L%d\n", VALUE)
1085
1086 /* This is how to output an element of a case-vector that is relative. */
1087
1088 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1089 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1090
1091 /* This is how to output an assembler line
1092 that says to advance the location counter
1093 to a multiple of 2**LOG bytes. */
1094
1095 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1096 fprintf (FILE, "\t.align %d\n", (LOG))
1097
1098 /* This is how to output an assembler line
1099 that says to advance the location counter by SIZE bytes. */
1100
1101 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1102 fprintf (FILE, "\t.space %u\n", (SIZE))
1103
1104 /* This says how to output an assembler line
1105 to define a global common symbol. */
1106
1107 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1108 ( fputs (".comm ", (FILE)), \
1109 assemble_name ((FILE), (NAME)), \
1110 fprintf ((FILE), ",%u\n", (ROUNDED)))
1111
1112 /* This says how to output an assembler line
1113 to define a local common symbol. */
1114
1115 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1116 ( fputs (".lcomm ", (FILE)), \
1117 assemble_name ((FILE), (NAME)), \
1118 fprintf ((FILE), ",%u\n", (ROUNDED)))
1119
1120 /* Store in OUTPUT a string (made with alloca) containing
1121 an assembler-name for a local static variable named NAME.
1122 LABELNO is an integer which is different for each call. */
1123
1124 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1125 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1126 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1127
1128 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
1129 Used for C++ multiple inheritance.
1130 .mask ^m<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11> #conservative entry mask
1131 addl2 $DELTA, 4(ap) #adjust first argument
1132 jmp FUNCTION+2 #jump beyond FUNCTION's entry mask
1133 */
1134 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1135 do { \
1136 fprintf (FILE, "\t.word 0x0ffc\n"); \
1137 fprintf (FILE, "\taddl2 $%d,4(ap)\n", DELTA); \
1138 fprintf (FILE, "\tjmp "); \
1139 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1140 fprintf (FILE, "+2\n"); \
1141 } while (0)
1142
1143 /* Print an instruction operand X on file FILE.
1144 CODE is the code from the %-spec that requested printing this operand;
1145 if `%z3' was used to print operand 3, then CODE is 'z'.
1146
1147 VAX operand formatting codes:
1148
1149 letter print
1150 C reverse branch condition
1151 D 64-bit immediate operand
1152 B the low 8 bits of the complement of a constant operand
1153 H the low 16 bits of the complement of a constant operand
1154 M a mask for the N highest bits of a word
1155 N the complement of a constant integer operand
1156 P constant operand plus 1
1157 R 32 - constant operand
1158 b the low 8 bits of a negated constant operand
1159 h the low 16 bits of a negated constant operand
1160 # 'd' or 'g' depending on whether dfloat or gfloat is used */
1161
1162 /* The purpose of D is to get around a quirk or bug in VAX assembler
1163 whereby -1 in a 64-bit immediate operand means 0x00000000ffffffff,
1164 which is not a 64-bit minus one. */
1165
1166 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1167 ((CODE) == '#')
1168
1169 #define PRINT_OPERAND(FILE, X, CODE) \
1170 { if (CODE == '#') fputc (ASM_DOUBLE_CHAR, FILE); \
1171 else if (CODE == 'C') \
1172 fputs (rev_cond_name (X), FILE); \
1173 else if (CODE == 'D' && GET_CODE (X) == CONST_INT && INTVAL (X) < 0) \
1174 fprintf (FILE, "$0xffffffff%08x", INTVAL (X)); \
1175 else if (CODE == 'P' && GET_CODE (X) == CONST_INT) \
1176 fprintf (FILE, "$%d", INTVAL (X) + 1); \
1177 else if (CODE == 'N' && GET_CODE (X) == CONST_INT) \
1178 fprintf (FILE, "$%d", ~ INTVAL (X)); \
1179 /* rotl instruction cannot deal with negative arguments. */ \
1180 else if (CODE == 'R' && GET_CODE (X) == CONST_INT) \
1181 fprintf (FILE, "$%d", 32 - INTVAL (X)); \
1182 else if (CODE == 'H' && GET_CODE (X) == CONST_INT) \
1183 fprintf (FILE, "$%d", 0xffff & ~ INTVAL (X)); \
1184 else if (CODE == 'h' && GET_CODE (X) == CONST_INT) \
1185 fprintf (FILE, "$%d", (short) - INTVAL (x)); \
1186 else if (CODE == 'B' && GET_CODE (X) == CONST_INT) \
1187 fprintf (FILE, "$%d", 0xff & ~ INTVAL (X)); \
1188 else if (CODE == 'b' && GET_CODE (X) == CONST_INT) \
1189 fprintf (FILE, "$%d", 0xff & - INTVAL (X)); \
1190 else if (CODE == 'M' && GET_CODE (X) == CONST_INT) \
1191 fprintf (FILE, "$%d", ~((1 << INTVAL (x)) - 1)); \
1192 else if (GET_CODE (X) == REG) \
1193 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
1194 else if (GET_CODE (X) == MEM) \
1195 output_address (XEXP (X, 0)); \
1196 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
1197 { REAL_VALUE_TYPE r; char dstr[30]; \
1198 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
1199 REAL_VALUE_TO_DECIMAL (r, "%.20e", dstr); \
1200 fprintf (FILE, "$0f%s", dstr); } \
1201 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == DFmode) \
1202 { REAL_VALUE_TYPE r; char dstr[30]; \
1203 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
1204 REAL_VALUE_TO_DECIMAL (r, "%.20e", dstr); \
1205 fprintf (FILE, "$0%c%s", ASM_DOUBLE_CHAR, dstr); } \
1206 else { putc ('$', FILE); output_addr_const (FILE, X); }}
1207
1208 /* Print a memory operand whose address is X, on file FILE.
1209 This uses a function in output-vax.c. */
1210
1211 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1212 print_operand_address (FILE, ADDR)