]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/vax/vax.h
target.h (asm_out.byte_op, [...]): New fields.
[thirdparty/gcc.git] / gcc / config / vax / vax.h
1 /* Definitions of target machine for GNU compiler. VAX version.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #define VMS_TARGET 0
23
24 /* Names to predefine in the preprocessor for this target machine. */
25
26 #define CPP_PREDEFINES "-Dvax -D__vax__ -Dunix -Asystem=unix -Asystem=bsd -Acpu=vax -Amachine=vax"
27
28 /* Use -J option for long branch support with Unix assembler. */
29
30 #define ASM_SPEC "-J"
31
32 /* If using g-format floating point, alter math.h. */
33
34 #define CPP_SPEC "%{mg:%{!ansi:-DGFLOAT} -D__GFLOAT}"
35
36 /* Choose proper libraries depending on float format.
37 Note that there are no profiling libraries for g-format.
38 Also use -lg for the sake of dbx. */
39
40 #define LIB_SPEC "%{g:-lg}\
41 %{mg:%{lm:-lmg} -lcg \
42 %{p:%eprofiling not supported with -mg\n}\
43 %{pg:%eprofiling not supported with -mg\n}}\
44 %{!mg:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}}"
45
46 /* Print subsidiary information on the compiler version in use. */
47
48 #ifndef TARGET_NAME /* A more specific value might be supplied via -D. */
49 #define TARGET_NAME "vax"
50 #endif
51 #define TARGET_VERSION fprintf (stderr, " (%s)", TARGET_NAME)
52
53 /* Run-time compilation parameters selecting different hardware subsets. */
54
55 extern int target_flags;
56
57 /* Macros used in the machine description to test the flags. */
58
59 /* Nonzero if compiling code that Unix assembler can assemble. */
60 #define TARGET_UNIX_ASM (target_flags & 1)
61
62 /* Nonzero if compiling with VAX-11 "C" style structure alignment */
63 #define TARGET_VAXC_ALIGNMENT (target_flags & 2)
64
65 /* Nonzero if compiling with `G'-format floating point */
66 #define TARGET_G_FLOAT (target_flags & 4)
67
68 /* Macro to define tables used to set the flags.
69 This is a list in braces of pairs in braces,
70 each pair being { "NAME", VALUE }
71 where VALUE is the bits to set or minus the bits to clear.
72 An empty string NAME is used to identify the default VALUE. */
73
74 #define TARGET_SWITCHES \
75 { {"unix", 1, "Generate code for UNIX assembler"}, \
76 {"gnu", -1, "Generate code for GNU assembler (gas)"}, \
77 {"vaxc-alignment", 2, "Use VAXC structure conventions"}, \
78 {"g", 4, "Generate GFLOAT double precision code"}, \
79 {"g-float", 4, "Generate GFLOAT double precision code"}, \
80 {"d", -4, "Generate DFLOAT double precision code"}, \
81 {"d-float", -4, "Generate DFLOAT double precision code"}, \
82 { "", TARGET_DEFAULT, 0}}
83
84 /* Default target_flags if no switches specified. */
85
86 #ifndef TARGET_DEFAULT
87 #define TARGET_DEFAULT 1
88 #endif
89 \f
90 /* Target machine storage layout */
91
92 /* Define for software floating point emulation of VAX format
93 when cross compiling from a non-VAX host. */
94 /* #define REAL_ARITHMETIC */
95
96 /* Define this if most significant bit is lowest numbered
97 in instructions that operate on numbered bit-fields.
98 This is not true on the VAX. */
99 #define BITS_BIG_ENDIAN 0
100
101 /* Define this if most significant byte of a word is the lowest numbered. */
102 /* That is not true on the VAX. */
103 #define BYTES_BIG_ENDIAN 0
104
105 /* Define this if most significant word of a multiword number is the lowest
106 numbered. */
107 /* This is not true on the VAX. */
108 #define WORDS_BIG_ENDIAN 0
109
110 /* Number of bits in an addressable storage unit */
111 #define BITS_PER_UNIT 8
112
113 /* Width in bits of a "word", which is the contents of a machine register.
114 Note that this is not necessarily the width of data type `int';
115 if using 16-bit ints on a 68000, this would still be 32.
116 But on a machine with 16-bit registers, this would be 16. */
117 #define BITS_PER_WORD 32
118
119 /* Width of a word, in units (bytes). */
120 #define UNITS_PER_WORD 4
121
122 /* Width in bits of a pointer.
123 See also the macro `Pmode' defined below. */
124 #define POINTER_SIZE 32
125
126 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
127 #define PARM_BOUNDARY 32
128
129 /* Allocation boundary (in *bits*) for the code of a function. */
130 #define FUNCTION_BOUNDARY 16
131
132 /* Alignment of field after `int : 0' in a structure. */
133 #define EMPTY_FIELD_BOUNDARY (TARGET_VAXC_ALIGNMENT ? 8 : 32)
134
135 /* Every structure's size must be a multiple of this. */
136 #define STRUCTURE_SIZE_BOUNDARY 8
137
138 /* A bitfield declared as `int' forces `int' alignment for the struct. */
139 #define PCC_BITFIELD_TYPE_MATTERS (! TARGET_VAXC_ALIGNMENT)
140
141 /* No data type wants to be aligned rounder than this. */
142 #define BIGGEST_ALIGNMENT 32
143
144 /* No structure field wants to be aligned rounder than this. */
145 #define BIGGEST_FIELD_ALIGNMENT (TARGET_VAXC_ALIGNMENT ? 8 : 32)
146
147 /* Set this nonzero if move instructions will actually fail to work
148 when given unaligned data. */
149 #define STRICT_ALIGNMENT 0
150
151 /* Let's keep the stack somewhat aligned. */
152 #define STACK_BOUNDARY 32
153
154 /* The table of an ADDR_DIFF_VEC must be contiguous with the case
155 opcode, it is part of the case instruction. */
156 #define ADDR_VEC_ALIGN(ADDR_VEC) 0
157 \f
158 /* Standard register usage. */
159
160 /* Number of actual hardware registers.
161 The hardware registers are assigned numbers for the compiler
162 from 0 to just below FIRST_PSEUDO_REGISTER.
163 All registers that the compiler knows about must be given numbers,
164 even those that are not normally considered general registers. */
165 #define FIRST_PSEUDO_REGISTER 16
166
167 /* 1 for registers that have pervasive standard uses
168 and are not available for the register allocator.
169 On the VAX, these are the AP, FP, SP and PC. */
170 #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
171
172 /* 1 for registers not available across function calls.
173 These must include the FIXED_REGISTERS and also any
174 registers that can be used without being saved.
175 The latter must include the registers where values are returned
176 and the register where structure-value addresses are passed.
177 Aside from that, you can include as many other registers as you like. */
178 #define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
179
180 /* Return number of consecutive hard regs needed starting at reg REGNO
181 to hold something of mode MODE.
182 This is ordinarily the length in words of a value of mode MODE
183 but can be less for certain modes in special long registers.
184 On the VAX, all registers are one word long. */
185 #define HARD_REGNO_NREGS(REGNO, MODE) \
186 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
187
188 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
189 On the VAX, all registers can hold all modes. */
190 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
191
192 /* Value is 1 if it is a good idea to tie two pseudo registers
193 when one has mode MODE1 and one has mode MODE2.
194 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
195 for any hard reg, then this must be 0 for correct output. */
196 #define MODES_TIEABLE_P(MODE1, MODE2) 1
197
198 /* Specify the registers used for certain standard purposes.
199 The values of these macros are register numbers. */
200
201 /* VAX pc is overloaded on a register. */
202 #define PC_REGNUM 15
203
204 /* Register to use for pushing function arguments. */
205 #define STACK_POINTER_REGNUM 14
206
207 /* Base register for access to local variables of the function. */
208 #define FRAME_POINTER_REGNUM 13
209
210 /* Value should be nonzero if functions must have frame pointers.
211 Zero means the frame pointer need not be set up (and parms
212 may be accessed via the stack pointer) in functions that seem suitable.
213 This is computed in `reload', in reload1.c. */
214 #define FRAME_POINTER_REQUIRED 1
215
216 /* Base register for access to arguments of the function. */
217 #define ARG_POINTER_REGNUM 12
218
219 /* Register in which static-chain is passed to a function. */
220 #define STATIC_CHAIN_REGNUM 0
221
222 /* Register in which address to store a structure value
223 is passed to a function. */
224 #define STRUCT_VALUE_REGNUM 1
225 \f
226 /* Define the classes of registers for register constraints in the
227 machine description. Also define ranges of constants.
228
229 One of the classes must always be named ALL_REGS and include all hard regs.
230 If there is more than one class, another class must be named NO_REGS
231 and contain no registers.
232
233 The name GENERAL_REGS must be the name of a class (or an alias for
234 another name such as ALL_REGS). This is the class of registers
235 that is allowed by "g" or "r" in a register constraint.
236 Also, registers outside this class are allocated only when
237 instructions express preferences for them.
238
239 The classes must be numbered in nondecreasing order; that is,
240 a larger-numbered class must never be contained completely
241 in a smaller-numbered class.
242
243 For any two classes, it is very desirable that there be another
244 class that represents their union. */
245
246 /* The VAX has only one kind of registers, so NO_REGS and ALL_REGS
247 are the only classes. */
248
249 enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
250
251 #define N_REG_CLASSES (int) LIM_REG_CLASSES
252
253 /* Since GENERAL_REGS is the same class as ALL_REGS,
254 don't give it a different class number; just make it an alias. */
255
256 #define GENERAL_REGS ALL_REGS
257
258 /* Give names of register classes as strings for dump file. */
259
260 #define REG_CLASS_NAMES \
261 {"NO_REGS", "ALL_REGS" }
262
263 /* Define which registers fit in which classes.
264 This is an initializer for a vector of HARD_REG_SET
265 of length N_REG_CLASSES. */
266
267 #define REG_CLASS_CONTENTS {{0}, {0xffff}}
268
269 /* The same information, inverted:
270 Return the class number of the smallest class containing
271 reg number REGNO. This could be a conditional expression
272 or could index an array. */
273
274 #define REGNO_REG_CLASS(REGNO) ALL_REGS
275
276 /* The class value for index registers, and the one for base regs. */
277
278 #define INDEX_REG_CLASS ALL_REGS
279 #define BASE_REG_CLASS ALL_REGS
280
281 /* Get reg_class from a letter such as appears in the machine description. */
282
283 #define REG_CLASS_FROM_LETTER(C) NO_REGS
284
285 /* The letters I, J, K, L and M in a register constraint string
286 can be used to stand for particular ranges of immediate operands.
287 This macro defines what the ranges are.
288 C is the letter, and VALUE is a constant value.
289 Return 1 if VALUE is in the range specified by C.
290
291 `I' is the constant zero. */
292
293 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
294 ((C) == 'I' ? (VALUE) == 0 \
295 : 0)
296
297 /* Similar, but for floating constants, and defining letters G and H.
298 Here VALUE is the CONST_DOUBLE rtx itself.
299
300 `G' is a floating-point zero. */
301
302 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
303 ((C) == 'G' ? ((VALUE) == CONST0_RTX (DFmode) \
304 || (VALUE) == CONST0_RTX (SFmode)) \
305 : 0)
306
307 /* Optional extra constraints for this machine.
308
309 For the VAX, `Q' means that OP is a MEM that does not have a mode-dependent
310 address. */
311
312 #define EXTRA_CONSTRAINT(OP, C) \
313 ((C) == 'Q' \
314 ? GET_CODE (OP) == MEM && ! mode_dependent_address_p (XEXP (OP, 0)) \
315 : 0)
316
317 /* Given an rtx X being reloaded into a reg required to be
318 in class CLASS, return the class of reg to actually use.
319 In general this is just CLASS; but on some machines
320 in some cases it is preferable to use a more restrictive class. */
321
322 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
323
324 /* Return the maximum number of consecutive registers
325 needed to represent mode MODE in a register of class CLASS. */
326 /* On the VAX, this is always the size of MODE in words,
327 since all registers are the same size. */
328 #define CLASS_MAX_NREGS(CLASS, MODE) \
329 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
330 \f
331 /* Stack layout; function entry, exit and calling. */
332
333 /* Define this if pushing a word on the stack
334 makes the stack pointer a smaller address. */
335 #define STACK_GROWS_DOWNWARD
336
337 /* Define this if longjmp restores from saved registers
338 rather than from what setjmp saved. */
339 #define LONGJMP_RESTORE_FROM_STACK
340
341 /* Define this if the nominal address of the stack frame
342 is at the high-address end of the local variables;
343 that is, each additional local variable allocated
344 goes at a more negative offset in the frame. */
345 #define FRAME_GROWS_DOWNWARD
346
347 /* Offset within stack frame to start allocating local variables at.
348 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
349 first local allocated. Otherwise, it is the offset to the BEGINNING
350 of the first local allocated. */
351 #define STARTING_FRAME_OFFSET 0
352
353 /* Given an rtx for the address of a frame,
354 return an rtx for the address of the word in the frame
355 that holds the dynamic chain--the previous frame's address. */
356 #define DYNAMIC_CHAIN_ADDRESS(FRAME) plus_constant ((FRAME), 12)
357
358 /* If we generate an insn to push BYTES bytes,
359 this says how many the stack pointer really advances by.
360 On the VAX, -(sp) pushes only the bytes of the operands. */
361 #define PUSH_ROUNDING(BYTES) (BYTES)
362
363 /* Offset of first parameter from the argument pointer register value. */
364 #define FIRST_PARM_OFFSET(FNDECL) 4
365
366 /* Value is the number of bytes of arguments automatically
367 popped when returning from a subroutine call.
368 FUNDECL is the declaration node of the function (as a tree),
369 FUNTYPE is the data type of the function (as a tree),
370 or for a library call it is an identifier node for the subroutine name.
371 SIZE is the number of bytes of arguments passed on the stack.
372
373 On the VAX, the RET insn pops a maximum of 255 args for any function. */
374
375 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
376 ((SIZE) > 255*4 ? 0 : (SIZE))
377
378 /* Define how to find the value returned by a function.
379 VALTYPE is the data type of the value (as a tree).
380 If the precise function being called is known, FUNC is its FUNCTION_DECL;
381 otherwise, FUNC is 0. */
382
383 /* On the VAX the return value is in R0 regardless. */
384
385 #define FUNCTION_VALUE(VALTYPE, FUNC) \
386 gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
387
388 /* Define how to find the value returned by a library function
389 assuming the value has mode MODE. */
390
391 /* On the VAX the return value is in R0 regardless. */
392
393 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
394
395 /* Define this if PCC uses the nonreentrant convention for returning
396 structure and union values. */
397
398 #define PCC_STATIC_STRUCT_RETURN
399
400 /* 1 if N is a possible register number for a function value.
401 On the VAX, R0 is the only register thus used. */
402
403 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
404
405 /* 1 if N is a possible register number for function argument passing.
406 On the VAX, no registers are used in this way. */
407
408 #define FUNCTION_ARG_REGNO_P(N) 0
409 \f
410 /* Define a data type for recording info about an argument list
411 during the scan of that argument list. This data type should
412 hold all necessary information about the function itself
413 and about the args processed so far, enough to enable macros
414 such as FUNCTION_ARG to determine where the next arg should go.
415
416 On the VAX, this is a single integer, which is a number of bytes
417 of arguments scanned so far. */
418
419 #define CUMULATIVE_ARGS int
420
421 /* Initialize a variable CUM of type CUMULATIVE_ARGS
422 for a call to a function whose data type is FNTYPE.
423 For a library call, FNTYPE is 0.
424
425 On the VAX, the offset starts at 0. */
426
427 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
428 ((CUM) = 0)
429
430 /* Update the data in CUM to advance over an argument
431 of mode MODE and data type TYPE.
432 (TYPE is null for libcalls where that information may not be available.) */
433
434 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
435 ((CUM) += ((MODE) != BLKmode \
436 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
437 : (int_size_in_bytes (TYPE) + 3) & ~3))
438
439 /* Define where to put the arguments to a function.
440 Value is zero to push the argument on the stack,
441 or a hard register in which to store the argument.
442
443 MODE is the argument's machine mode.
444 TYPE is the data type of the argument (as a tree).
445 This is null for libcalls where that information may
446 not be available.
447 CUM is a variable of type CUMULATIVE_ARGS which gives info about
448 the preceding args and about the function being called.
449 NAMED is nonzero if this argument is a named parameter
450 (otherwise it is an extra parameter matching an ellipsis). */
451
452 /* On the VAX all args are pushed. */
453
454 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
455
456 /* Output assembler code to FILE to increment profiler label # LABELNO
457 for profiling a function entry. */
458
459 #define FUNCTION_PROFILER(FILE, LABELNO) \
460 fprintf (FILE, "\tmovab LP%d,r0\n\tjsb mcount\n", (LABELNO));
461
462 /* Output assembler code to FILE to initialize this source file's
463 basic block profiling info, if that has not already been done. */
464
465 #define FUNCTION_BLOCK_PROFILER(FILE, LABELNO) \
466 fprintf (FILE, "\ttstl LPBX0\n\tjneq LPI%d\n\tpushal LPBX0\n\tcalls $1,__bb_init_func\nLPI%d:\n", \
467 LABELNO, LABELNO);
468
469 /* Output assembler code to FILE to increment the entry-count for
470 the BLOCKNO'th basic block in this source file. This is a real pain in the
471 sphincter on a VAX, since we do not want to change any of the bits in the
472 processor status word. The way it is done here, it is pushed onto the stack
473 before any flags have changed, and then the stack is fixed up to account for
474 the fact that the instruction to restore the flags only reads a word.
475 It may seem a bit clumsy, but at least it works.
476 */
477
478 #define BLOCK_PROFILER(FILE, BLOCKNO) \
479 fprintf (FILE, "\tmovpsl -(sp)\n\tmovw (sp),2(sp)\n\taddl2 $2,sp\n\taddl2 $1,LPBX2+%d\n\tbicpsw $255\n\tbispsw (sp)+\n", \
480 4 * BLOCKNO)
481
482 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
483 the stack pointer does not matter. The value is tested only in
484 functions that have frame pointers.
485 No definition is equivalent to always zero. */
486
487 #define EXIT_IGNORE_STACK 1
488
489 /* Store in the variable DEPTH the initial difference between the
490 frame pointer reg contents and the stack pointer reg contents,
491 as of the start of the function body. This depends on the layout
492 of the fixed parts of the stack frame and on how registers are saved.
493
494 On the VAX, FRAME_POINTER_REQUIRED is always 1, so the definition of this
495 macro doesn't matter. But it must be defined. */
496
497 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
498
499 /* Output assembler code for a block containing the constant parts
500 of a trampoline, leaving space for the variable parts. */
501
502 /* On the VAX, the trampoline contains an entry mask and two instructions:
503 .word NN
504 movl $STATIC,r0 (store the functions static chain)
505 jmp *$FUNCTION (jump to function code at address FUNCTION) */
506
507 #define TRAMPOLINE_TEMPLATE(FILE) \
508 { \
509 assemble_aligned_integer (2, const0_rtx); \
510 assemble_aligned_integer (2, GEN_INT (0x8fd0)); \
511 assemble_aligned_integer (4, const0_rtx); \
512 assemble_aligned_integer (1, GEN_INT (0x50 + STATIC_CHAIN_REGNUM)); \
513 assemble_aligned_integer (2, GEN_INT (0x9f17)); \
514 assemble_aligned_integer (4, const0_rtx); \
515 }
516
517 /* Length in units of the trampoline for entering a nested function. */
518
519 #define TRAMPOLINE_SIZE 15
520
521 /* Emit RTL insns to initialize the variable parts of a trampoline.
522 FNADDR is an RTX for the address of the function's pure code.
523 CXT is an RTX for the static chain value for the function. */
524
525 /* We copy the register-mask from the function's pure code
526 to the start of the trampoline. */
527 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
528 { \
529 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, \
530 "movpsl -(sp)\n\tpushal 1(pc)\n\trei")); \
531 emit_move_insn (gen_rtx_MEM (HImode, TRAMP), \
532 gen_rtx_MEM (HImode, FNADDR)); \
533 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), CXT);\
534 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 11)), \
535 plus_constant (FNADDR, 2)); \
536 }
537
538 /* Byte offset of return address in a stack frame. The "saved PC" field
539 is in element [4] when treating the frame as an array of longwords. */
540
541 #define RETURN_ADDRESS_OFFSET (4 * UNITS_PER_WORD) /* 16 */
542
543 /* A C expression whose value is RTL representing the value of the return
544 address for the frame COUNT steps up from the current frame.
545 FRAMEADDR is already the frame pointer of the COUNT frame, so we
546 can ignore COUNT. */
547
548 #define RETURN_ADDR_RTX(COUNT, FRAME) \
549 ((COUNT == 0) \
550 ? gen_rtx_MEM (Pmode, plus_constant (FRAME, RETURN_ADDRESS_OFFSET)) \
551 : (rtx) 0)
552
553 \f
554 /* Addressing modes, and classification of registers for them. */
555
556 #define HAVE_POST_INCREMENT 1
557 /* #define HAVE_POST_DECREMENT 0 */
558
559 #define HAVE_PRE_DECREMENT 1
560 /* #define HAVE_PRE_INCREMENT 0 */
561
562 /* Macros to check register numbers against specific register classes. */
563
564 /* These assume that REGNO is a hard or pseudo reg number.
565 They give nonzero only if REGNO is a hard reg of the suitable class
566 or a pseudo reg currently allocated to a suitable hard reg.
567 Since they use reg_renumber, they are safe only once reg_renumber
568 has been allocated, which happens in local-alloc.c. */
569
570 #define REGNO_OK_FOR_INDEX_P(regno) \
571 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
572 #define REGNO_OK_FOR_BASE_P(regno) \
573 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
574 \f
575 /* Maximum number of registers that can appear in a valid memory address. */
576
577 #define MAX_REGS_PER_ADDRESS 2
578
579 /* 1 if X is an rtx for a constant that is a valid address. */
580
581 #define CONSTANT_ADDRESS_P(X) \
582 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
583 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
584 || GET_CODE (X) == HIGH)
585
586 /* Nonzero if the constant value X is a legitimate general operand.
587 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
588
589 #define LEGITIMATE_CONSTANT_P(X) 1
590
591 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
592 and check its validity for a certain class.
593 We have two alternate definitions for each of them.
594 The usual definition accepts all pseudo regs; the other rejects
595 them unless they have been allocated suitable hard regs.
596 The symbol REG_OK_STRICT causes the latter definition to be used.
597
598 Most source files want to accept pseudo regs in the hope that
599 they will get allocated to the class that the insn wants them to be in.
600 Source files for reload pass need to be strict.
601 After reload, it makes no difference, since pseudo regs have
602 been eliminated by then. */
603
604 #ifndef REG_OK_STRICT
605
606 /* Nonzero if X is a hard reg that can be used as an index
607 or if it is a pseudo reg. */
608 #define REG_OK_FOR_INDEX_P(X) 1
609 /* Nonzero if X is a hard reg that can be used as a base reg
610 or if it is a pseudo reg. */
611 #define REG_OK_FOR_BASE_P(X) 1
612
613 #else
614
615 /* Nonzero if X is a hard reg that can be used as an index. */
616 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
617 /* Nonzero if X is a hard reg that can be used as a base reg. */
618 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
619
620 #endif
621 \f
622 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
623 that is a valid memory address for an instruction.
624 The MODE argument is the machine mode for the MEM expression
625 that wants to use this address.
626
627 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
628 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
629
630 #ifdef NO_EXTERNAL_INDIRECT_ADDRESS
631
632 /* Zero if this contains a (CONST (PLUS (SYMBOL_REF) (...))) and the
633 symbol in the SYMBOL_REF is an external symbol. */
634
635 #define INDIRECTABLE_CONSTANT_P(X) \
636 (! (GET_CODE ((X)) == CONST \
637 && GET_CODE (XEXP ((X), 0)) == PLUS \
638 && GET_CODE (XEXP (XEXP ((X), 0), 0)) == SYMBOL_REF \
639 && SYMBOL_REF_FLAG (XEXP (XEXP ((X), 0), 0))))
640
641 /* Re-definition of CONSTANT_ADDRESS_P, which is true only when there
642 are no SYMBOL_REFs for external symbols present. */
643
644 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) \
645 (GET_CODE (X) == LABEL_REF \
646 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_FLAG (X)) \
647 || (GET_CODE (X) == CONST && INDIRECTABLE_CONSTANT_P(X)) \
648 || GET_CODE (X) == CONST_INT)
649
650
651 /* Non-zero if X is an address which can be indirected. External symbols
652 could be in a sharable image library, so we disallow those. */
653
654 #define INDIRECTABLE_ADDRESS_P(X) \
655 (INDIRECTABLE_CONSTANT_ADDRESS_P (X) \
656 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
657 || (GET_CODE (X) == PLUS \
658 && GET_CODE (XEXP (X, 0)) == REG \
659 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
660 && INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))))
661
662 #else /* not NO_EXTERNAL_INDIRECT_ADDRESS */
663
664 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) CONSTANT_ADDRESS_P(X)
665
666 /* Non-zero if X is an address which can be indirected. */
667 #define INDIRECTABLE_ADDRESS_P(X) \
668 (CONSTANT_ADDRESS_P (X) \
669 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
670 || (GET_CODE (X) == PLUS \
671 && GET_CODE (XEXP (X, 0)) == REG \
672 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
673 && CONSTANT_ADDRESS_P (XEXP (X, 1))))
674
675 #endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */
676
677 /* Go to ADDR if X is a valid address not using indexing.
678 (This much is the easy part.) */
679 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
680 { register rtx xfoob = (X); \
681 if (GET_CODE (xfoob) == REG) \
682 { \
683 extern rtx *reg_equiv_mem; \
684 if (! reload_in_progress \
685 || reg_equiv_mem[REGNO (xfoob)] == 0 \
686 || INDIRECTABLE_ADDRESS_P (reg_equiv_mem[REGNO (xfoob)])) \
687 goto ADDR; \
688 } \
689 if (CONSTANT_ADDRESS_P (xfoob)) goto ADDR; \
690 if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR; \
691 xfoob = XEXP (X, 0); \
692 if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \
693 goto ADDR; \
694 if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
695 && GET_CODE (xfoob) == REG && REG_OK_FOR_BASE_P (xfoob)) \
696 goto ADDR; }
697
698 /* 1 if PROD is either a reg times size of mode MODE
699 or just a reg, if MODE is just one byte.
700 This macro's expansion uses the temporary variables xfoo0 and xfoo1
701 that must be declared in the surrounding context. */
702 #define INDEX_TERM_P(PROD, MODE) \
703 (GET_MODE_SIZE (MODE) == 1 \
704 ? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
705 : (GET_CODE (PROD) == MULT \
706 && \
707 (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
708 ((((GET_CODE (xfoo0) == CONST_INT \
709 && GET_CODE (xfoo1) == REG) \
710 && INTVAL (xfoo0) == (int)GET_MODE_SIZE (MODE)) \
711 && REG_OK_FOR_INDEX_P (xfoo1)) \
712 || \
713 (((GET_CODE (xfoo1) == CONST_INT \
714 && GET_CODE (xfoo0) == REG) \
715 && INTVAL (xfoo1) == (int)GET_MODE_SIZE (MODE)) \
716 && REG_OK_FOR_INDEX_P (xfoo0))))))
717
718 /* Go to ADDR if X is the sum of a register
719 and a valid index term for mode MODE. */
720 #define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \
721 { register rtx xfooa; \
722 if (GET_CODE (X) == PLUS) \
723 { if (GET_CODE (XEXP (X, 0)) == REG \
724 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
725 && (xfooa = XEXP (X, 1), \
726 INDEX_TERM_P (xfooa, MODE))) \
727 goto ADDR; \
728 if (GET_CODE (XEXP (X, 1)) == REG \
729 && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
730 && (xfooa = XEXP (X, 0), \
731 INDEX_TERM_P (xfooa, MODE))) \
732 goto ADDR; } }
733
734 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
735 { register rtx xfoo, xfoo0, xfoo1; \
736 GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
737 if (GET_CODE (X) == PLUS) \
738 { /* Handle <address>[index] represented with index-sum outermost */\
739 xfoo = XEXP (X, 0); \
740 if (INDEX_TERM_P (xfoo, MODE)) \
741 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \
742 xfoo = XEXP (X, 1); \
743 if (INDEX_TERM_P (xfoo, MODE)) \
744 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \
745 /* Handle offset(reg)[index] with offset added outermost */ \
746 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 0))) \
747 { if (GET_CODE (XEXP (X, 1)) == REG \
748 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
749 goto ADDR; \
750 GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \
751 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))) \
752 { if (GET_CODE (XEXP (X, 0)) == REG \
753 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
754 goto ADDR; \
755 GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
756 \f
757 /* Try machine-dependent ways of modifying an illegitimate address
758 to be legitimate. If we find one, return the new, valid address.
759 This macro is used in only one place: `memory_address' in explow.c.
760
761 OLDX is the address as it was before break_out_memory_refs was called.
762 In some cases it is useful to look at this to decide what needs to be done.
763
764 MODE and WIN are passed so that this macro can use
765 GO_IF_LEGITIMATE_ADDRESS.
766
767 It is always safe for this macro to do nothing. It exists to recognize
768 opportunities to optimize the output.
769
770 For the VAX, nothing needs to be done. */
771
772 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
773
774 /* Go to LABEL if ADDR (a legitimate address expression)
775 has an effect that depends on the machine mode it is used for.
776 On the VAX, the predecrement and postincrement address depend thus
777 (the amount of decrement or increment being the length of the operand)
778 and all indexed address depend thus (because the index scale factor
779 is the length of the operand). */
780 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
781 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
782 goto LABEL; \
783 if (GET_CODE (ADDR) == PLUS) \
784 { if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0)) \
785 && GET_CODE (XEXP (ADDR, 1)) == REG); \
786 else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1)) \
787 && GET_CODE (XEXP (ADDR, 0)) == REG); \
788 else goto LABEL; }}
789 \f
790 /* Specify the machine mode that this machine uses
791 for the index in the tablejump instruction. */
792 #define CASE_VECTOR_MODE HImode
793
794 /* Define as C expression which evaluates to nonzero if the tablejump
795 instruction expects the table to contain offsets from the address of the
796 table.
797 Do not define this if the table should contain absolute addresses. */
798 #define CASE_VECTOR_PC_RELATIVE 1
799
800 /* Define this if the case instruction drops through after the table
801 when the index is out of range. Don't define it if the case insn
802 jumps to the default label instead. */
803 #define CASE_DROPS_THROUGH
804
805 /* Specify the tree operation to be used to convert reals to integers. */
806 #define IMPLICIT_FIX_EXPR FIX_ROUND_EXPR
807
808 /* This is the kind of divide that is easiest to do in the general case. */
809 #define EASY_DIV_EXPR TRUNC_DIV_EXPR
810
811 /* Define this as 1 if `char' should by default be signed; else as 0. */
812 #define DEFAULT_SIGNED_CHAR 1
813
814 /* This flag, if defined, says the same insns that convert to a signed fixnum
815 also convert validly to an unsigned one. */
816 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
817
818 /* Max number of bytes we can move from memory to memory
819 in one reasonably fast instruction. */
820 #define MOVE_MAX 8
821
822 /* Define this if zero-extension is slow (more than one real instruction). */
823 /* #define SLOW_ZERO_EXTEND */
824
825 /* Nonzero if access to memory by bytes is slow and undesirable. */
826 #define SLOW_BYTE_ACCESS 0
827
828 /* Define if shifts truncate the shift count
829 which implies one can omit a sign-extension or zero-extension
830 of a shift count. */
831 /* #define SHIFT_COUNT_TRUNCATED */
832
833 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
834 is done just by pretending it is already truncated. */
835 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
836
837 /* When a prototype says `char' or `short', really pass an `int'.
838 (On the VAX, this is required for system-library compatibility.) */
839 #define PROMOTE_PROTOTYPES 1
840
841 /* Specify the machine mode that pointers have.
842 After generation of rtl, the compiler makes no further distinction
843 between pointers and any other objects of this machine mode. */
844 #define Pmode SImode
845
846 /* A function address in a call instruction
847 is a byte address (for indexing purposes)
848 so give the MEM rtx a byte's mode. */
849 #define FUNCTION_MODE QImode
850
851 /* This machine doesn't use IEEE floats. */
852
853 #define TARGET_FLOAT_FORMAT VAX_FLOAT_FORMAT
854
855 /* Compute the cost of computing a constant rtl expression RTX
856 whose rtx-code is CODE. The body of this macro is a portion
857 of a switch statement. If the code is computed here,
858 return it with a return statement. Otherwise, break from the switch. */
859
860 /* On a VAX, constants from 0..63 are cheap because they can use the
861 1 byte literal constant format. compare to -1 should be made cheap
862 so that decrement-and-branch insns can be formed more easily (if
863 the value -1 is copied to a register some decrement-and-branch patterns
864 will not match). */
865
866 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
867 case CONST_INT: \
868 if (INTVAL (RTX) == 0) return 0; \
869 if ((OUTER_CODE) == AND) \
870 return ((unsigned) ~INTVAL (RTX) <= 077) ? 1 : 2; \
871 if ((unsigned) INTVAL (RTX) <= 077) return 1; \
872 if ((OUTER_CODE) == COMPARE && INTVAL (RTX) == -1) \
873 return 1; \
874 if ((OUTER_CODE) == PLUS && (unsigned) -INTVAL (RTX) <= 077)\
875 return 1; \
876 case CONST: \
877 case LABEL_REF: \
878 case SYMBOL_REF: \
879 return 3; \
880 case CONST_DOUBLE: \
881 if (GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
882 return vax_float_literal (RTX) ? 5 : 8; \
883 else \
884 return (((CONST_DOUBLE_HIGH (RTX) == 0 \
885 && (unsigned) CONST_DOUBLE_LOW (RTX) < 64) \
886 || ((OUTER_CODE) == PLUS \
887 && CONST_DOUBLE_HIGH (RTX) == -1 \
888 && (unsigned)-CONST_DOUBLE_LOW (RTX) < 64)) \
889 ? 2 : 5);
890
891 #define RTX_COSTS(RTX,CODE,OUTER_CODE) case FIX: case FLOAT: \
892 case MULT: case DIV: case UDIV: case MOD: case UMOD: \
893 case ASHIFT: case LSHIFTRT: case ASHIFTRT: \
894 case ROTATE: case ROTATERT: case PLUS: case MINUS: case IOR: \
895 case XOR: case AND: case NEG: case NOT: case ZERO_EXTRACT: \
896 case SIGN_EXTRACT: case MEM: return vax_rtx_cost(RTX)
897
898 #define ADDRESS_COST(RTX) (1 + (GET_CODE (RTX) == REG ? 0 : vax_address_cost(RTX)))
899
900 /* Specify the cost of a branch insn; roughly the number of extra insns that
901 should be added to avoid a branch.
902
903 Branches are extremely cheap on the VAX while the shift insns often
904 used to replace branches can be expensive. */
905
906 #define BRANCH_COST 0
907
908 /*
909 * We can use the BSD C library routines for the libgcc calls that are
910 * still generated, since that's what they boil down to anyways.
911 */
912
913 #define UDIVSI3_LIBCALL "*udiv"
914 #define UMODSI3_LIBCALL "*urem"
915
916 /* Check a `double' value for validity for a particular machine mode. */
917
918 /* note that it is very hard to accidentally create a number that fits in a
919 double but not in a float, since their ranges are almost the same */
920
921 #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
922 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
923
924 /* For future reference:
925 D Float: 9 bit, sign magnitude, excess 128 binary exponent
926 normalized 56 bit fraction, redundant bit not represented
927 approximately 16 decimal digits of precision
928
929 The values to use if we trust decimal to binary conversions:
930 #define MAX_D_FLOAT 1.7014118346046923e+38
931 #define MIN_D_FLOAT .29387358770557188e-38
932
933 G float: 12 bit, sign magnitude, excess 1024 binary exponent
934 normalized 53 bit fraction, redundant bit not represented
935 approximately 15 decimal digits precision
936
937 The values to use if we trust decimal to binary conversions:
938 #define MAX_G_FLOAT .898846567431157e+308
939 #define MIN_G_FLOAT .556268464626800e-308
940 */
941 \f
942 /* Tell final.c how to eliminate redundant test instructions. */
943
944 /* Here we define machine-dependent flags and fields in cc_status
945 (see `conditions.h'). No extra ones are needed for the VAX. */
946
947 /* Store in cc_status the expressions
948 that the condition codes will describe
949 after execution of an instruction whose pattern is EXP.
950 Do not alter them if the instruction would not alter the cc's. */
951
952 #define NOTICE_UPDATE_CC(EXP, INSN) \
953 { if (GET_CODE (EXP) == SET) \
954 { if (GET_CODE (SET_SRC (EXP)) == CALL) \
955 CC_STATUS_INIT; \
956 else if (GET_CODE (SET_DEST (EXP)) != ZERO_EXTRACT \
957 && GET_CODE (SET_DEST (EXP)) != PC) \
958 { \
959 cc_status.flags = 0; \
960 /* The integer operations below don't set carry or \
961 set it in an incompatible way. That's ok though \
962 as the Z bit is all we need when doing unsigned \
963 comparisons on the result of these insns (since \
964 they're always with 0). Set CC_NO_OVERFLOW to \
965 generate the correct unsigned branches. */ \
966 switch (GET_CODE (SET_SRC (EXP))) \
967 { \
968 case NEG: \
969 if (GET_MODE_CLASS (GET_MODE (EXP)) == MODE_FLOAT)\
970 break; \
971 case AND: \
972 case IOR: \
973 case XOR: \
974 case NOT: \
975 case MEM: \
976 case REG: \
977 cc_status.flags = CC_NO_OVERFLOW; \
978 break; \
979 default: \
980 break; \
981 } \
982 cc_status.value1 = SET_DEST (EXP); \
983 cc_status.value2 = SET_SRC (EXP); } } \
984 else if (GET_CODE (EXP) == PARALLEL \
985 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
986 { \
987 if (GET_CODE (SET_SRC (XVECEXP (EXP, 0, 0))) == CALL) \
988 CC_STATUS_INIT; \
989 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
990 { cc_status.flags = 0; \
991 cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
992 cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } \
993 else \
994 /* PARALLELs whose first element sets the PC are aob, \
995 sob insns. They do change the cc's. */ \
996 CC_STATUS_INIT; } \
997 else CC_STATUS_INIT; \
998 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
999 && cc_status.value2 \
1000 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
1001 cc_status.value2 = 0; \
1002 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
1003 && cc_status.value2 \
1004 && GET_CODE (cc_status.value2) == MEM) \
1005 cc_status.value2 = 0; }
1006 /* Actual condition, one line up, should be that value2's address
1007 depends on value1, but that is too much of a pain. */
1008
1009 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
1010 { if (cc_status.flags & CC_NO_OVERFLOW) \
1011 return NO_OV; \
1012 return NORMAL; }
1013 \f
1014 /* Control the assembler format that we output. */
1015
1016 /* Output at beginning of assembler file. */
1017 /* When debugging, we want to output an extra dummy label so that gas
1018 can distinguish between D_float and G_float prior to processing the
1019 .stabs directive identifying type double. */
1020
1021 #define ASM_FILE_START(FILE) \
1022 do { \
1023 fputs (ASM_APP_OFF, FILE); \
1024 if (write_symbols == DBX_DEBUG) \
1025 fprintf (FILE, "___vax_%c_doubles:\n", ASM_DOUBLE_CHAR); \
1026 } while (0)
1027
1028
1029 /* Output to assembler file text saying following lines
1030 may contain character constants, extra white space, comments, etc. */
1031
1032 #define ASM_APP_ON "#APP\n"
1033
1034 /* Output to assembler file text saying following lines
1035 no longer contain unusual constructs. */
1036
1037 #define ASM_APP_OFF "#NO_APP\n"
1038
1039 /* Output before read-only data. */
1040
1041 #define TEXT_SECTION_ASM_OP "\t.text"
1042
1043 /* Output before writable data. */
1044
1045 #define DATA_SECTION_ASM_OP "\t.data"
1046
1047 /* How to refer to registers in assembler output.
1048 This sequence is indexed by compiler's hard-register-number (see above). */
1049
1050 #define REGISTER_NAMES \
1051 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
1052 "r9", "r10", "r11", "ap", "fp", "sp", "pc"}
1053
1054 /* This is BSD, so it wants DBX format. */
1055
1056 #define DBX_DEBUGGING_INFO
1057
1058 /* Do not break .stabs pseudos into continuations. */
1059
1060 #define DBX_CONTIN_LENGTH 0
1061
1062 /* This is the char to use for continuation (in case we need to turn
1063 continuation back on). */
1064
1065 #define DBX_CONTIN_CHAR '?'
1066
1067 /* Don't use the `xsfoo;' construct in DBX output; this system
1068 doesn't support it. */
1069
1070 #define DBX_NO_XREFS
1071
1072 /* Output the .stabs for a C `static' variable in the data section. */
1073 #define DBX_STATIC_STAB_DATA_SECTION
1074
1075 /* VAX specific: which type character is used for type double? */
1076
1077 #define ASM_DOUBLE_CHAR (TARGET_G_FLOAT ? 'g' : 'd')
1078
1079 /* This is how to output the definition of a user-level label named NAME,
1080 such as the label on a static function or variable NAME. */
1081
1082 #define ASM_OUTPUT_LABEL(FILE,NAME) \
1083 do { assemble_name (FILE, NAME); fputs (":\n", FILE); } while (0)
1084
1085 /* This is how to output a command to make the user-level label named NAME
1086 defined for reference from other files. */
1087
1088 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1089 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1090
1091 /* The prefix to add to user-visible assembler symbols. */
1092
1093 #define USER_LABEL_PREFIX "_"
1094
1095 /* This is how to output an internal numbered label where
1096 PREFIX is the class of label and NUM is the number within the class. */
1097
1098 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1099 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1100
1101 /* This is how to store into the string LABEL
1102 the symbol_ref name of an internal numbered label where
1103 PREFIX is the class of label and NUM is the number within the class.
1104 This is suitable for output with `assemble_name'. */
1105
1106 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1107 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1108
1109 /* This is how to output an assembler line defining a `double' constant.
1110 It is .dfloat or .gfloat, depending. */
1111
1112 #define ASM_OUTPUT_DOUBLE(FILE,VALUE) \
1113 do { char dstr[30]; \
1114 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", dstr); \
1115 fprintf (FILE, "\t.%cfloat 0%c%s\n", ASM_DOUBLE_CHAR, \
1116 ASM_DOUBLE_CHAR, dstr); \
1117 } while (0);
1118
1119 /* This is how to output an assembler line defining a `float' constant. */
1120
1121 #define ASM_OUTPUT_FLOAT(FILE,VALUE) \
1122 do { char dstr[30]; \
1123 REAL_VALUE_TO_DECIMAL (VALUE, "%.20e", dstr); \
1124 fprintf (FILE, "\t.float 0f%s\n", dstr); } while (0);
1125
1126 /* This is how to output an insn to push a register on the stack.
1127 It need not be very fast code. */
1128
1129 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1130 fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
1131
1132 /* This is how to output an insn to pop a register from the stack.
1133 It need not be very fast code. */
1134
1135 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1136 fprintf (FILE, "\tmovl (sp)+,%s\n", reg_names[REGNO])
1137
1138 /* This is how to output an element of a case-vector that is absolute.
1139 (The VAX does not use such vectors,
1140 but we must define this macro anyway.) */
1141
1142 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1143 fprintf (FILE, "\t.long L%d\n", VALUE)
1144
1145 /* This is how to output an element of a case-vector that is relative. */
1146
1147 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1148 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1149
1150 /* This is how to output an assembler line
1151 that says to advance the location counter
1152 to a multiple of 2**LOG bytes. */
1153
1154 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1155 fprintf (FILE, "\t.align %d\n", (LOG))
1156
1157 /* This is how to output an assembler line
1158 that says to advance the location counter by SIZE bytes. */
1159
1160 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1161 fprintf (FILE, "\t.space %u\n", (SIZE))
1162
1163 /* This says how to output an assembler line
1164 to define a global common symbol. */
1165
1166 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1167 ( fputs (".comm ", (FILE)), \
1168 assemble_name ((FILE), (NAME)), \
1169 fprintf ((FILE), ",%u\n", (ROUNDED)))
1170
1171 /* This says how to output an assembler line
1172 to define a local common symbol. */
1173
1174 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1175 ( fputs (".lcomm ", (FILE)), \
1176 assemble_name ((FILE), (NAME)), \
1177 fprintf ((FILE), ",%u\n", (ROUNDED)))
1178
1179 /* Store in OUTPUT a string (made with alloca) containing
1180 an assembler-name for a local static variable named NAME.
1181 LABELNO is an integer which is different for each call. */
1182
1183 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1184 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1185 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1186
1187 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
1188 Used for C++ multiple inheritance.
1189 .mask ^m<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11> #conservative entry mask
1190 addl2 $DELTA, 4(ap) #adjust first argument
1191 jmp FUNCTION+2 #jump beyond FUNCTION's entry mask
1192 */
1193 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1194 do { \
1195 fprintf (FILE, "\t.word 0x0ffc\n"); \
1196 fprintf (FILE, "\taddl2 $%d,4(ap)\n", DELTA); \
1197 fprintf (FILE, "\tjmp "); \
1198 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1199 fprintf (FILE, "+2\n"); \
1200 } while (0)
1201
1202 /* Print an instruction operand X on file FILE.
1203 CODE is the code from the %-spec that requested printing this operand;
1204 if `%z3' was used to print operand 3, then CODE is 'z'.
1205
1206 VAX operand formatting codes:
1207
1208 letter print
1209 C reverse branch condition
1210 D 64-bit immediate operand
1211 B the low 8 bits of the complement of a constant operand
1212 H the low 16 bits of the complement of a constant operand
1213 M a mask for the N highest bits of a word
1214 N the complement of a constant integer operand
1215 P constant operand plus 1
1216 R 32 - constant operand
1217 b the low 8 bits of a negated constant operand
1218 h the low 16 bits of a negated constant operand
1219 # 'd' or 'g' depending on whether dfloat or gfloat is used */
1220
1221 /* The purpose of D is to get around a quirk or bug in VAX assembler
1222 whereby -1 in a 64-bit immediate operand means 0x00000000ffffffff,
1223 which is not a 64-bit minus one. */
1224
1225 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1226 ((CODE) == '#')
1227
1228 #define PRINT_OPERAND(FILE, X, CODE) \
1229 { if (CODE == '#') fputc (ASM_DOUBLE_CHAR, FILE); \
1230 else if (CODE == 'C') \
1231 fputs (rev_cond_name (X), FILE); \
1232 else if (CODE == 'D' && GET_CODE (X) == CONST_INT && INTVAL (X) < 0) \
1233 fprintf (FILE, "$0xffffffff%08x", INTVAL (X)); \
1234 else if (CODE == 'P' && GET_CODE (X) == CONST_INT) \
1235 fprintf (FILE, "$%d", INTVAL (X) + 1); \
1236 else if (CODE == 'N' && GET_CODE (X) == CONST_INT) \
1237 fprintf (FILE, "$%d", ~ INTVAL (X)); \
1238 /* rotl instruction cannot deal with negative arguments. */ \
1239 else if (CODE == 'R' && GET_CODE (X) == CONST_INT) \
1240 fprintf (FILE, "$%d", 32 - INTVAL (X)); \
1241 else if (CODE == 'H' && GET_CODE (X) == CONST_INT) \
1242 fprintf (FILE, "$%d", 0xffff & ~ INTVAL (X)); \
1243 else if (CODE == 'h' && GET_CODE (X) == CONST_INT) \
1244 fprintf (FILE, "$%d", (short) - INTVAL (x)); \
1245 else if (CODE == 'B' && GET_CODE (X) == CONST_INT) \
1246 fprintf (FILE, "$%d", 0xff & ~ INTVAL (X)); \
1247 else if (CODE == 'b' && GET_CODE (X) == CONST_INT) \
1248 fprintf (FILE, "$%d", 0xff & - INTVAL (X)); \
1249 else if (CODE == 'M' && GET_CODE (X) == CONST_INT) \
1250 fprintf (FILE, "$%d", ~((1 << INTVAL (x)) - 1)); \
1251 else if (GET_CODE (X) == REG) \
1252 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
1253 else if (GET_CODE (X) == MEM) \
1254 output_address (XEXP (X, 0)); \
1255 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
1256 { REAL_VALUE_TYPE r; char dstr[30]; \
1257 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
1258 REAL_VALUE_TO_DECIMAL (r, "%.20e", dstr); \
1259 fprintf (FILE, "$0f%s", dstr); } \
1260 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == DFmode) \
1261 { REAL_VALUE_TYPE r; char dstr[30]; \
1262 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
1263 REAL_VALUE_TO_DECIMAL (r, "%.20e", dstr); \
1264 fprintf (FILE, "$0%c%s", ASM_DOUBLE_CHAR, dstr); } \
1265 else { putc ('$', FILE); output_addr_const (FILE, X); }}
1266
1267 /* Print a memory operand whose address is X, on file FILE.
1268 This uses a function in output-vax.c. */
1269
1270 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1271 print_operand_address (FILE, ADDR)