]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/vax/vax.h
alpha.h, [...] (ASM_OUTPUT_LABEL): Delete definition.
[thirdparty/gcc.git] / gcc / config / vax / vax.h
1 /* Definitions of target machine for GNU compiler. VAX version.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* Target CPU builtins. */
24 #define TARGET_CPU_CPP_BUILTINS() \
25 do \
26 { \
27 builtin_define ("__vax__"); \
28 builtin_assert ("cpu=vax"); \
29 builtin_assert ("machine=vax"); \
30 if (TARGET_G_FLOAT) \
31 { \
32 builtin_define ("__GFLOAT"); \
33 builtin_define ("__GFLOAT__"); \
34 } \
35 } \
36 while (0)
37
38 #define VMS_TARGET 0
39
40 /* Use -J option for long branch support with Unix assembler. */
41
42 #define ASM_SPEC "-J"
43
44 /* Choose proper libraries depending on float format.
45 Note that there are no profiling libraries for g-format.
46 Also use -lg for the sake of dbx. */
47
48 #define LIB_SPEC "%{g:-lg}\
49 %{mg:%{lm:-lmg} -lcg \
50 %{p:%eprofiling not supported with -mg\n}\
51 %{pg:%eprofiling not supported with -mg\n}}\
52 %{!mg:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}}"
53
54 /* Print subsidiary information on the compiler version in use. */
55
56 #ifndef TARGET_NAME /* A more specific value might be supplied via -D. */
57 #define TARGET_NAME "vax"
58 #endif
59 #define TARGET_VERSION fprintf (stderr, " (%s)", TARGET_NAME)
60
61 /* Run-time compilation parameters selecting different hardware subsets. */
62
63 extern int target_flags;
64
65 #define MASK_UNIX_ASM 1
66 #define MASK_VAXC_ALIGNMENT 2
67 #define MASK_G_FLOAT 4
68
69
70 /* Macros used in the machine description to test the flags. */
71
72 /* Nonzero if compiling code that Unix assembler can assemble. */
73 #define TARGET_UNIX_ASM (target_flags & MASK_UNIX_ASM)
74
75 /* Nonzero if compiling with VAX-11 "C" style structure alignment */
76 #define TARGET_VAXC_ALIGNMENT (target_flags & MASK_VAXC_ALIGNMENT)
77
78 /* Nonzero if compiling with `G'-format floating point */
79 #define TARGET_G_FLOAT (target_flags & MASK_G_FLOAT)
80
81 /* Macro to define tables used to set the flags.
82 This is a list in braces of pairs in braces,
83 each pair being { "NAME", VALUE }
84 where VALUE is the bits to set or minus the bits to clear.
85 An empty string NAME is used to identify the default VALUE. */
86
87 #define TARGET_SWITCHES \
88 { {"unix", MASK_UNIX_ASM, \
89 "Generate code for UNIX assembler"}, \
90 {"gnu", -MASK_UNIX_ASM, \
91 "Generate code for GNU assembler (gas)"}, \
92 {"vaxc-alignment", MASK_VAXC_ALIGNMENT, \
93 "Use VAXC structure conventions"}, \
94 {"g", MASK_G_FLOAT, \
95 "Generate GFLOAT double precision code"}, \
96 {"g-float", MASK_G_FLOAT, \
97 "Generate GFLOAT double precision code"}, \
98 {"d", -MASK_G_FLOAT, \
99 "Generate DFLOAT double precision code"}, \
100 {"d-float", -MASK_G_FLOAT, \
101 "Generate DFLOAT double precision code"}, \
102 { "", TARGET_DEFAULT, 0}}
103
104 /* Default target_flags if no switches specified. */
105
106 #ifndef TARGET_DEFAULT
107 #define TARGET_DEFAULT (MASK_UNIX_ASM)
108 #endif
109 \f
110 /* Target machine storage layout */
111
112 /* Define this if most significant bit is lowest numbered
113 in instructions that operate on numbered bit-fields.
114 This is not true on the VAX. */
115 #define BITS_BIG_ENDIAN 0
116
117 /* Define this if most significant byte of a word is the lowest numbered. */
118 /* That is not true on the VAX. */
119 #define BYTES_BIG_ENDIAN 0
120
121 /* Define this if most significant word of a multiword number is the lowest
122 numbered. */
123 /* This is not true on the VAX. */
124 #define WORDS_BIG_ENDIAN 0
125
126 /* Width of a word, in units (bytes). */
127 #define UNITS_PER_WORD 4
128
129 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
130 #define PARM_BOUNDARY 32
131
132 /* Allocation boundary (in *bits*) for the code of a function. */
133 #define FUNCTION_BOUNDARY 16
134
135 /* Alignment of field after `int : 0' in a structure. */
136 #define EMPTY_FIELD_BOUNDARY (TARGET_VAXC_ALIGNMENT ? 8 : 32)
137
138 /* Every structure's size must be a multiple of this. */
139 #define STRUCTURE_SIZE_BOUNDARY 8
140
141 /* A bitfield declared as `int' forces `int' alignment for the struct. */
142 #define PCC_BITFIELD_TYPE_MATTERS (! TARGET_VAXC_ALIGNMENT)
143
144 /* No data type wants to be aligned rounder than this. */
145 #define BIGGEST_ALIGNMENT 32
146
147 /* No structure field wants to be aligned rounder than this. */
148 #define BIGGEST_FIELD_ALIGNMENT (TARGET_VAXC_ALIGNMENT ? 8 : 32)
149
150 /* Set this nonzero if move instructions will actually fail to work
151 when given unaligned data. */
152 #define STRICT_ALIGNMENT 0
153
154 /* Let's keep the stack somewhat aligned. */
155 #define STACK_BOUNDARY 32
156
157 /* The table of an ADDR_DIFF_VEC must be contiguous with the case
158 opcode, it is part of the case instruction. */
159 #define ADDR_VEC_ALIGN(ADDR_VEC) 0
160 \f
161 /* Standard register usage. */
162
163 /* Number of actual hardware registers.
164 The hardware registers are assigned numbers for the compiler
165 from 0 to just below FIRST_PSEUDO_REGISTER.
166 All registers that the compiler knows about must be given numbers,
167 even those that are not normally considered general registers. */
168 #define FIRST_PSEUDO_REGISTER 16
169
170 /* 1 for registers that have pervasive standard uses
171 and are not available for the register allocator.
172 On the VAX, these are the AP, FP, SP and PC. */
173 #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
174
175 /* 1 for registers not available across function calls.
176 These must include the FIXED_REGISTERS and also any
177 registers that can be used without being saved.
178 The latter must include the registers where values are returned
179 and the register where structure-value addresses are passed.
180 Aside from that, you can include as many other registers as you like. */
181 #define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
182
183 /* Return number of consecutive hard regs needed starting at reg REGNO
184 to hold something of mode MODE.
185 This is ordinarily the length in words of a value of mode MODE
186 but can be less for certain modes in special long registers.
187 On the VAX, all registers are one word long. */
188 #define HARD_REGNO_NREGS(REGNO, MODE) \
189 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
190
191 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
192 On the VAX, all registers can hold all modes. */
193 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
194
195 /* Value is 1 if it is a good idea to tie two pseudo registers
196 when one has mode MODE1 and one has mode MODE2.
197 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
198 for any hard reg, then this must be 0 for correct output. */
199 #define MODES_TIEABLE_P(MODE1, MODE2) 1
200
201 /* Specify the registers used for certain standard purposes.
202 The values of these macros are register numbers. */
203
204 /* VAX pc is overloaded on a register. */
205 #define PC_REGNUM 15
206
207 /* Register to use for pushing function arguments. */
208 #define STACK_POINTER_REGNUM 14
209
210 /* Base register for access to local variables of the function. */
211 #define FRAME_POINTER_REGNUM 13
212
213 /* Value should be nonzero if functions must have frame pointers.
214 Zero means the frame pointer need not be set up (and parms
215 may be accessed via the stack pointer) in functions that seem suitable.
216 This is computed in `reload', in reload1.c. */
217 #define FRAME_POINTER_REQUIRED 1
218
219 /* Base register for access to arguments of the function. */
220 #define ARG_POINTER_REGNUM 12
221
222 /* Register in which static-chain is passed to a function. */
223 #define STATIC_CHAIN_REGNUM 0
224
225 /* Register in which address to store a structure value
226 is passed to a function. */
227 #define STRUCT_VALUE_REGNUM 1
228 \f
229 /* Define the classes of registers for register constraints in the
230 machine description. Also define ranges of constants.
231
232 One of the classes must always be named ALL_REGS and include all hard regs.
233 If there is more than one class, another class must be named NO_REGS
234 and contain no registers.
235
236 The name GENERAL_REGS must be the name of a class (or an alias for
237 another name such as ALL_REGS). This is the class of registers
238 that is allowed by "g" or "r" in a register constraint.
239 Also, registers outside this class are allocated only when
240 instructions express preferences for them.
241
242 The classes must be numbered in nondecreasing order; that is,
243 a larger-numbered class must never be contained completely
244 in a smaller-numbered class.
245
246 For any two classes, it is very desirable that there be another
247 class that represents their union. */
248
249 /* The VAX has only one kind of registers, so NO_REGS and ALL_REGS
250 are the only classes. */
251
252 enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
253
254 #define N_REG_CLASSES (int) LIM_REG_CLASSES
255
256 /* Since GENERAL_REGS is the same class as ALL_REGS,
257 don't give it a different class number; just make it an alias. */
258
259 #define GENERAL_REGS ALL_REGS
260
261 /* Give names of register classes as strings for dump file. */
262
263 #define REG_CLASS_NAMES \
264 {"NO_REGS", "ALL_REGS" }
265
266 /* Define which registers fit in which classes.
267 This is an initializer for a vector of HARD_REG_SET
268 of length N_REG_CLASSES. */
269
270 #define REG_CLASS_CONTENTS {{0}, {0xffff}}
271
272 /* The same information, inverted:
273 Return the class number of the smallest class containing
274 reg number REGNO. This could be a conditional expression
275 or could index an array. */
276
277 #define REGNO_REG_CLASS(REGNO) ALL_REGS
278
279 /* The class value for index registers, and the one for base regs. */
280
281 #define INDEX_REG_CLASS ALL_REGS
282 #define BASE_REG_CLASS ALL_REGS
283
284 /* Get reg_class from a letter such as appears in the machine description. */
285
286 #define REG_CLASS_FROM_LETTER(C) NO_REGS
287
288 /* The letters I, J, K, L and M in a register constraint string
289 can be used to stand for particular ranges of immediate operands.
290 This macro defines what the ranges are.
291 C is the letter, and VALUE is a constant value.
292 Return 1 if VALUE is in the range specified by C.
293
294 `I' is the constant zero. */
295
296 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
297 ((C) == 'I' ? (VALUE) == 0 \
298 : 0)
299
300 /* Similar, but for floating constants, and defining letters G and H.
301 Here VALUE is the CONST_DOUBLE rtx itself.
302
303 `G' is a floating-point zero. */
304
305 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
306 ((C) == 'G' ? ((VALUE) == CONST0_RTX (DFmode) \
307 || (VALUE) == CONST0_RTX (SFmode)) \
308 : 0)
309
310 /* Optional extra constraints for this machine.
311
312 For the VAX, `Q' means that OP is a MEM that does not have a mode-dependent
313 address. */
314
315 #define EXTRA_CONSTRAINT(OP, C) \
316 ((C) == 'Q' \
317 ? GET_CODE (OP) == MEM && ! mode_dependent_address_p (XEXP (OP, 0)) \
318 : 0)
319
320 /* Given an rtx X being reloaded into a reg required to be
321 in class CLASS, return the class of reg to actually use.
322 In general this is just CLASS; but on some machines
323 in some cases it is preferable to use a more restrictive class. */
324
325 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
326
327 /* Return the maximum number of consecutive registers
328 needed to represent mode MODE in a register of class CLASS. */
329 /* On the VAX, this is always the size of MODE in words,
330 since all registers are the same size. */
331 #define CLASS_MAX_NREGS(CLASS, MODE) \
332 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
333 \f
334 /* Stack layout; function entry, exit and calling. */
335
336 /* Define this if pushing a word on the stack
337 makes the stack pointer a smaller address. */
338 #define STACK_GROWS_DOWNWARD
339
340 /* Define this if the nominal address of the stack frame
341 is at the high-address end of the local variables;
342 that is, each additional local variable allocated
343 goes at a more negative offset in the frame. */
344 #define FRAME_GROWS_DOWNWARD
345
346 /* Offset within stack frame to start allocating local variables at.
347 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
348 first local allocated. Otherwise, it is the offset to the BEGINNING
349 of the first local allocated. */
350 #define STARTING_FRAME_OFFSET 0
351
352 /* Given an rtx for the address of a frame,
353 return an rtx for the address of the word in the frame
354 that holds the dynamic chain--the previous frame's address. */
355 #define DYNAMIC_CHAIN_ADDRESS(FRAME) plus_constant ((FRAME), 12)
356
357 /* If we generate an insn to push BYTES bytes,
358 this says how many the stack pointer really advances by.
359 On the VAX, -(sp) pushes only the bytes of the operands. */
360 #define PUSH_ROUNDING(BYTES) (BYTES)
361
362 /* Offset of first parameter from the argument pointer register value. */
363 #define FIRST_PARM_OFFSET(FNDECL) 4
364
365 /* Value is the number of bytes of arguments automatically
366 popped when returning from a subroutine call.
367 FUNDECL is the declaration node of the function (as a tree),
368 FUNTYPE is the data type of the function (as a tree),
369 or for a library call it is an identifier node for the subroutine name.
370 SIZE is the number of bytes of arguments passed on the stack.
371
372 On the VAX, the RET insn pops a maximum of 255 args for any function. */
373
374 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
375 ((SIZE) > 255*4 ? 0 : (SIZE))
376
377 /* Define how to find the value returned by a function.
378 VALTYPE is the data type of the value (as a tree).
379 If the precise function being called is known, FUNC is its FUNCTION_DECL;
380 otherwise, FUNC is 0. */
381
382 /* On the VAX the return value is in R0 regardless. */
383
384 #define FUNCTION_VALUE(VALTYPE, FUNC) \
385 gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
386
387 /* Define how to find the value returned by a library function
388 assuming the value has mode MODE. */
389
390 /* On the VAX the return value is in R0 regardless. */
391
392 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
393
394 /* Define this if PCC uses the nonreentrant convention for returning
395 structure and union values. */
396
397 #define PCC_STATIC_STRUCT_RETURN
398
399 /* 1 if N is a possible register number for a function value.
400 On the VAX, R0 is the only register thus used. */
401
402 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
403
404 /* 1 if N is a possible register number for function argument passing.
405 On the VAX, no registers are used in this way. */
406
407 #define FUNCTION_ARG_REGNO_P(N) 0
408 \f
409 /* Define a data type for recording info about an argument list
410 during the scan of that argument list. This data type should
411 hold all necessary information about the function itself
412 and about the args processed so far, enough to enable macros
413 such as FUNCTION_ARG to determine where the next arg should go.
414
415 On the VAX, this is a single integer, which is a number of bytes
416 of arguments scanned so far. */
417
418 #define CUMULATIVE_ARGS int
419
420 /* Initialize a variable CUM of type CUMULATIVE_ARGS
421 for a call to a function whose data type is FNTYPE.
422 For a library call, FNTYPE is 0.
423
424 On the VAX, the offset starts at 0. */
425
426 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
427 ((CUM) = 0)
428
429 /* Update the data in CUM to advance over an argument
430 of mode MODE and data type TYPE.
431 (TYPE is null for libcalls where that information may not be available.) */
432
433 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
434 ((CUM) += ((MODE) != BLKmode \
435 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
436 : (int_size_in_bytes (TYPE) + 3) & ~3))
437
438 /* Define where to put the arguments to a function.
439 Value is zero to push the argument on the stack,
440 or a hard register in which to store the argument.
441
442 MODE is the argument's machine mode.
443 TYPE is the data type of the argument (as a tree).
444 This is null for libcalls where that information may
445 not be available.
446 CUM is a variable of type CUMULATIVE_ARGS which gives info about
447 the preceding args and about the function being called.
448 NAMED is nonzero if this argument is a named parameter
449 (otherwise it is an extra parameter matching an ellipsis). */
450
451 /* On the VAX all args are pushed. */
452
453 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
454
455 /* Output assembler code to FILE to increment profiler label # LABELNO
456 for profiling a function entry. */
457
458 #define FUNCTION_PROFILER(FILE, LABELNO) \
459 fprintf (FILE, "\tmovab LP%d,%s\n\tjsb mcount\n", (LABELNO), \
460 reg_names[0]);
461
462 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
463 the stack pointer does not matter. The value is tested only in
464 functions that have frame pointers.
465 No definition is equivalent to always zero. */
466
467 #define EXIT_IGNORE_STACK 1
468
469 /* Store in the variable DEPTH the initial difference between the
470 frame pointer reg contents and the stack pointer reg contents,
471 as of the start of the function body. This depends on the layout
472 of the fixed parts of the stack frame and on how registers are saved.
473
474 On the VAX, FRAME_POINTER_REQUIRED is always 1, so the definition of this
475 macro doesn't matter. But it must be defined. */
476
477 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
478
479 /* Output assembler code for a block containing the constant parts
480 of a trampoline, leaving space for the variable parts. */
481
482 /* On the VAX, the trampoline contains an entry mask and two instructions:
483 .word NN
484 movl $STATIC,r0 (store the functions static chain)
485 jmp *$FUNCTION (jump to function code at address FUNCTION) */
486
487 #define TRAMPOLINE_TEMPLATE(FILE) \
488 { \
489 assemble_aligned_integer (2, const0_rtx); \
490 assemble_aligned_integer (2, GEN_INT (0x8fd0)); \
491 assemble_aligned_integer (4, const0_rtx); \
492 assemble_aligned_integer (1, GEN_INT (0x50 + STATIC_CHAIN_REGNUM)); \
493 assemble_aligned_integer (2, GEN_INT (0x9f17)); \
494 assemble_aligned_integer (4, const0_rtx); \
495 }
496
497 /* Length in units of the trampoline for entering a nested function. */
498
499 #define TRAMPOLINE_SIZE 15
500
501 /* Emit RTL insns to initialize the variable parts of a trampoline.
502 FNADDR is an RTX for the address of the function's pure code.
503 CXT is an RTX for the static chain value for the function. */
504
505 /* Allow this be overriden with the correct register prefixes. */
506 #define VAX_ISTREAM_SYNC "movpsl -(sp)\n\tpushal 1(pc)\n\trei"
507
508 /* We copy the register-mask from the function's pure code
509 to the start of the trampoline. */
510 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
511 { \
512 emit_move_insn (gen_rtx_MEM (HImode, TRAMP), \
513 gen_rtx_MEM (HImode, FNADDR)); \
514 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), CXT); \
515 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 11)), \
516 plus_constant (FNADDR, 2)); \
517 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, VAX_ISTREAM_SYNC)); \
518 }
519
520 /* Byte offset of return address in a stack frame. The "saved PC" field
521 is in element [4] when treating the frame as an array of longwords. */
522
523 #define RETURN_ADDRESS_OFFSET (4 * UNITS_PER_WORD) /* 16 */
524
525 /* A C expression whose value is RTL representing the value of the return
526 address for the frame COUNT steps up from the current frame.
527 FRAMEADDR is already the frame pointer of the COUNT frame, so we
528 can ignore COUNT. */
529
530 #define RETURN_ADDR_RTX(COUNT, FRAME) \
531 ((COUNT == 0) \
532 ? gen_rtx_MEM (Pmode, plus_constant (FRAME, RETURN_ADDRESS_OFFSET)) \
533 : (rtx) 0)
534
535 \f
536 /* Addressing modes, and classification of registers for them. */
537
538 #define HAVE_POST_INCREMENT 1
539 /* #define HAVE_POST_DECREMENT 0 */
540
541 #define HAVE_PRE_DECREMENT 1
542 /* #define HAVE_PRE_INCREMENT 0 */
543
544 /* Macros to check register numbers against specific register classes. */
545
546 /* These assume that REGNO is a hard or pseudo reg number.
547 They give nonzero only if REGNO is a hard reg of the suitable class
548 or a pseudo reg currently allocated to a suitable hard reg.
549 Since they use reg_renumber, they are safe only once reg_renumber
550 has been allocated, which happens in local-alloc.c. */
551
552 #define REGNO_OK_FOR_INDEX_P(regno) \
553 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
554 #define REGNO_OK_FOR_BASE_P(regno) \
555 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
556 \f
557 /* Maximum number of registers that can appear in a valid memory address. */
558
559 #define MAX_REGS_PER_ADDRESS 2
560
561 /* 1 if X is an rtx for a constant that is a valid address. */
562
563 #define CONSTANT_ADDRESS_P(X) \
564 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
565 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
566 || GET_CODE (X) == HIGH)
567
568 /* Nonzero if the constant value X is a legitimate general operand.
569 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
570
571 #define LEGITIMATE_CONSTANT_P(X) 1
572
573 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
574 and check its validity for a certain class.
575 We have two alternate definitions for each of them.
576 The usual definition accepts all pseudo regs; the other rejects
577 them unless they have been allocated suitable hard regs.
578 The symbol REG_OK_STRICT causes the latter definition to be used.
579
580 Most source files want to accept pseudo regs in the hope that
581 they will get allocated to the class that the insn wants them to be in.
582 Source files for reload pass need to be strict.
583 After reload, it makes no difference, since pseudo regs have
584 been eliminated by then. */
585
586 #ifndef REG_OK_STRICT
587
588 /* Nonzero if X is a hard reg that can be used as an index
589 or if it is a pseudo reg. */
590 #define REG_OK_FOR_INDEX_P(X) 1
591 /* Nonzero if X is a hard reg that can be used as a base reg
592 or if it is a pseudo reg. */
593 #define REG_OK_FOR_BASE_P(X) 1
594
595 #else
596
597 /* Nonzero if X is a hard reg that can be used as an index. */
598 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
599 /* Nonzero if X is a hard reg that can be used as a base reg. */
600 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
601
602 #endif
603 \f
604 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
605 that is a valid memory address for an instruction.
606 The MODE argument is the machine mode for the MEM expression
607 that wants to use this address.
608
609 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
610 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
611
612 #ifdef NO_EXTERNAL_INDIRECT_ADDRESS
613
614 /* Zero if this contains a (CONST (PLUS (SYMBOL_REF) (...))) and the
615 symbol in the SYMBOL_REF is an external symbol. */
616
617 #define INDIRECTABLE_CONSTANT_P(X) \
618 (! (GET_CODE ((X)) == CONST \
619 && GET_CODE (XEXP ((X), 0)) == PLUS \
620 && GET_CODE (XEXP (XEXP ((X), 0), 0)) == SYMBOL_REF \
621 && SYMBOL_REF_FLAG (XEXP (XEXP ((X), 0), 0))))
622
623 /* Re-definition of CONSTANT_ADDRESS_P, which is true only when there
624 are no SYMBOL_REFs for external symbols present. */
625
626 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) \
627 (GET_CODE (X) == LABEL_REF \
628 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_FLAG (X)) \
629 || (GET_CODE (X) == CONST && INDIRECTABLE_CONSTANT_P(X)) \
630 || GET_CODE (X) == CONST_INT)
631
632
633 /* Non-zero if X is an address which can be indirected. External symbols
634 could be in a sharable image library, so we disallow those. */
635
636 #define INDIRECTABLE_ADDRESS_P(X) \
637 (INDIRECTABLE_CONSTANT_ADDRESS_P (X) \
638 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
639 || (GET_CODE (X) == PLUS \
640 && GET_CODE (XEXP (X, 0)) == REG \
641 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
642 && INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))))
643
644 #else /* not NO_EXTERNAL_INDIRECT_ADDRESS */
645
646 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) CONSTANT_ADDRESS_P(X)
647
648 /* Non-zero if X is an address which can be indirected. */
649 #define INDIRECTABLE_ADDRESS_P(X) \
650 (CONSTANT_ADDRESS_P (X) \
651 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
652 || (GET_CODE (X) == PLUS \
653 && GET_CODE (XEXP (X, 0)) == REG \
654 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
655 && CONSTANT_ADDRESS_P (XEXP (X, 1))))
656
657 #endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */
658
659 /* Go to ADDR if X is a valid address not using indexing.
660 (This much is the easy part.) */
661 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
662 { register rtx xfoob = (X); \
663 if (GET_CODE (xfoob) == REG) \
664 { \
665 extern rtx *reg_equiv_mem; \
666 if (! reload_in_progress \
667 || reg_equiv_mem[REGNO (xfoob)] == 0 \
668 || INDIRECTABLE_ADDRESS_P (reg_equiv_mem[REGNO (xfoob)])) \
669 goto ADDR; \
670 } \
671 if (CONSTANT_ADDRESS_P (xfoob)) goto ADDR; \
672 if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR; \
673 xfoob = XEXP (X, 0); \
674 if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \
675 goto ADDR; \
676 if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
677 && GET_CODE (xfoob) == REG && REG_OK_FOR_BASE_P (xfoob)) \
678 goto ADDR; }
679
680 /* 1 if PROD is either a reg times size of mode MODE and MODE is less
681 than or equal 8 bytes, or just a reg if MODE is one byte.
682 This macro's expansion uses the temporary variables xfoo0 and xfoo1
683 that must be declared in the surrounding context. */
684 #define INDEX_TERM_P(PROD, MODE) \
685 (GET_MODE_SIZE (MODE) == 1 \
686 ? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
687 : (GET_CODE (PROD) == MULT && GET_MODE_SIZE (MODE) <= 8 \
688 && \
689 (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
690 ((((GET_CODE (xfoo0) == CONST_INT \
691 && GET_CODE (xfoo1) == REG) \
692 && INTVAL (xfoo0) == (int)GET_MODE_SIZE (MODE)) \
693 && REG_OK_FOR_INDEX_P (xfoo1)) \
694 || \
695 (((GET_CODE (xfoo1) == CONST_INT \
696 && GET_CODE (xfoo0) == REG) \
697 && INTVAL (xfoo1) == (int)GET_MODE_SIZE (MODE)) \
698 && REG_OK_FOR_INDEX_P (xfoo0))))))
699
700 /* Go to ADDR if X is the sum of a register
701 and a valid index term for mode MODE. */
702 #define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \
703 { register rtx xfooa; \
704 if (GET_CODE (X) == PLUS) \
705 { if (GET_CODE (XEXP (X, 0)) == REG \
706 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
707 && (xfooa = XEXP (X, 1), \
708 INDEX_TERM_P (xfooa, MODE))) \
709 goto ADDR; \
710 if (GET_CODE (XEXP (X, 1)) == REG \
711 && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
712 && (xfooa = XEXP (X, 0), \
713 INDEX_TERM_P (xfooa, MODE))) \
714 goto ADDR; } }
715
716 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
717 { register rtx xfoo, xfoo0, xfoo1; \
718 GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
719 if (GET_CODE (X) == PLUS) \
720 { /* Handle <address>[index] represented with index-sum outermost */\
721 xfoo = XEXP (X, 0); \
722 if (INDEX_TERM_P (xfoo, MODE)) \
723 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \
724 xfoo = XEXP (X, 1); \
725 if (INDEX_TERM_P (xfoo, MODE)) \
726 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \
727 /* Handle offset(reg)[index] with offset added outermost */ \
728 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 0))) \
729 { if (GET_CODE (XEXP (X, 1)) == REG \
730 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
731 goto ADDR; \
732 GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \
733 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))) \
734 { if (GET_CODE (XEXP (X, 0)) == REG \
735 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
736 goto ADDR; \
737 GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
738 \f
739 /* Try machine-dependent ways of modifying an illegitimate address
740 to be legitimate. If we find one, return the new, valid address.
741 This macro is used in only one place: `memory_address' in explow.c.
742
743 OLDX is the address as it was before break_out_memory_refs was called.
744 In some cases it is useful to look at this to decide what needs to be done.
745
746 MODE and WIN are passed so that this macro can use
747 GO_IF_LEGITIMATE_ADDRESS.
748
749 It is always safe for this macro to do nothing. It exists to recognize
750 opportunities to optimize the output.
751
752 For the VAX, nothing needs to be done. */
753
754 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
755
756 /* Go to LABEL if ADDR (a legitimate address expression)
757 has an effect that depends on the machine mode it is used for.
758 On the VAX, the predecrement and postincrement address depend thus
759 (the amount of decrement or increment being the length of the operand)
760 and all indexed address depend thus (because the index scale factor
761 is the length of the operand). */
762 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
763 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
764 goto LABEL; \
765 if (GET_CODE (ADDR) == PLUS) \
766 { if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0)) \
767 && GET_CODE (XEXP (ADDR, 1)) == REG); \
768 else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1)) \
769 && GET_CODE (XEXP (ADDR, 0)) == REG); \
770 else goto LABEL; }}
771 \f
772 /* Specify the machine mode that this machine uses
773 for the index in the tablejump instruction. */
774 #define CASE_VECTOR_MODE HImode
775
776 /* Define as C expression which evaluates to nonzero if the tablejump
777 instruction expects the table to contain offsets from the address of the
778 table.
779 Do not define this if the table should contain absolute addresses. */
780 #define CASE_VECTOR_PC_RELATIVE 1
781
782 /* Define this if the case instruction drops through after the table
783 when the index is out of range. Don't define it if the case insn
784 jumps to the default label instead. */
785 #define CASE_DROPS_THROUGH
786
787 /* Define this as 1 if `char' should by default be signed; else as 0. */
788 #define DEFAULT_SIGNED_CHAR 1
789
790 /* This flag, if defined, says the same insns that convert to a signed fixnum
791 also convert validly to an unsigned one. */
792 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
793
794 /* Max number of bytes we can move from memory to memory
795 in one reasonably fast instruction. */
796 #define MOVE_MAX 8
797
798 /* Nonzero if access to memory by bytes is slow and undesirable. */
799 #define SLOW_BYTE_ACCESS 0
800
801 /* Define if shifts truncate the shift count
802 which implies one can omit a sign-extension or zero-extension
803 of a shift count. */
804 /* #define SHIFT_COUNT_TRUNCATED */
805
806 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
807 is done just by pretending it is already truncated. */
808 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
809
810 /* When a prototype says `char' or `short', really pass an `int'.
811 (On the VAX, this is required for system-library compatibility.) */
812 #define PROMOTE_PROTOTYPES 1
813
814 /* Specify the machine mode that pointers have.
815 After generation of rtl, the compiler makes no further distinction
816 between pointers and any other objects of this machine mode. */
817 #define Pmode SImode
818
819 /* A function address in a call instruction
820 is a byte address (for indexing purposes)
821 so give the MEM rtx a byte's mode. */
822 #define FUNCTION_MODE QImode
823
824 /* This machine doesn't use IEEE floats. */
825
826 #define TARGET_FLOAT_FORMAT VAX_FLOAT_FORMAT
827
828 /* Compute the cost of computing a constant rtl expression RTX
829 whose rtx-code is CODE. The body of this macro is a portion
830 of a switch statement. If the code is computed here,
831 return it with a return statement. Otherwise, break from the switch. */
832
833 /* On a VAX, constants from 0..63 are cheap because they can use the
834 1 byte literal constant format. compare to -1 should be made cheap
835 so that decrement-and-branch insns can be formed more easily (if
836 the value -1 is copied to a register some decrement-and-branch patterns
837 will not match). */
838
839 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
840 case CONST_INT: \
841 if (INTVAL (RTX) == 0) return 0; \
842 if ((OUTER_CODE) == AND) \
843 return ((unsigned) ~INTVAL (RTX) <= 077) ? 1 : 2; \
844 if ((unsigned) INTVAL (RTX) <= 077) return 1; \
845 if ((OUTER_CODE) == COMPARE && INTVAL (RTX) == -1) \
846 return 1; \
847 if ((OUTER_CODE) == PLUS && (unsigned) -INTVAL (RTX) <= 077)\
848 return 1; \
849 case CONST: \
850 case LABEL_REF: \
851 case SYMBOL_REF: \
852 return 3; \
853 case CONST_DOUBLE: \
854 if (GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
855 return vax_float_literal (RTX) ? 5 : 8; \
856 else \
857 return (((CONST_DOUBLE_HIGH (RTX) == 0 \
858 && (unsigned) CONST_DOUBLE_LOW (RTX) < 64) \
859 || ((OUTER_CODE) == PLUS \
860 && CONST_DOUBLE_HIGH (RTX) == -1 \
861 && (unsigned)-CONST_DOUBLE_LOW (RTX) < 64)) \
862 ? 2 : 5);
863
864 #define RTX_COSTS(RTX,CODE,OUTER_CODE) case FIX: case FLOAT: \
865 case MULT: case DIV: case UDIV: case MOD: case UMOD: \
866 case ASHIFT: case LSHIFTRT: case ASHIFTRT: \
867 case ROTATE: case ROTATERT: case PLUS: case MINUS: case IOR: \
868 case XOR: case AND: case NEG: case NOT: case ZERO_EXTRACT: \
869 case SIGN_EXTRACT: case MEM: return vax_rtx_cost(RTX)
870
871 #define ADDRESS_COST(RTX) (1 + (GET_CODE (RTX) == REG ? 0 : vax_address_cost(RTX)))
872
873 /* Specify the cost of a branch insn; roughly the number of extra insns that
874 should be added to avoid a branch.
875
876 Branches are extremely cheap on the VAX while the shift insns often
877 used to replace branches can be expensive. */
878
879 #define BRANCH_COST 0
880
881 /*
882 * We can use the BSD C library routines for the libgcc calls that are
883 * still generated, since that's what they boil down to anyways.
884 */
885
886 #define UDIVSI3_LIBCALL "*udiv"
887 #define UMODSI3_LIBCALL "*urem"
888
889 /* Check a `double' value for validity for a particular machine mode. */
890
891 /* note that it is very hard to accidentally create a number that fits in a
892 double but not in a float, since their ranges are almost the same */
893
894 #define CHECK_FLOAT_VALUE(MODE, D, OVERFLOW) \
895 ((OVERFLOW) = check_float_value (MODE, &D, OVERFLOW))
896
897 /* For future reference:
898 D Float: 9 bit, sign magnitude, excess 128 binary exponent
899 normalized 56 bit fraction, redundant bit not represented
900 approximately 16 decimal digits of precision
901
902 The values to use if we trust decimal to binary conversions:
903 #define MAX_D_FLOAT 1.7014118346046923e+38
904 #define MIN_D_FLOAT .29387358770557188e-38
905
906 G float: 12 bit, sign magnitude, excess 1024 binary exponent
907 normalized 53 bit fraction, redundant bit not represented
908 approximately 15 decimal digits precision
909
910 The values to use if we trust decimal to binary conversions:
911 #define MAX_G_FLOAT .898846567431157e+308
912 #define MIN_G_FLOAT .556268464626800e-308
913 */
914 \f
915 /* Tell final.c how to eliminate redundant test instructions. */
916
917 /* Here we define machine-dependent flags and fields in cc_status
918 (see `conditions.h'). No extra ones are needed for the VAX. */
919
920 /* Store in cc_status the expressions
921 that the condition codes will describe
922 after execution of an instruction whose pattern is EXP.
923 Do not alter them if the instruction would not alter the cc's. */
924
925 #define NOTICE_UPDATE_CC(EXP, INSN) \
926 { if (GET_CODE (EXP) == SET) \
927 { if (GET_CODE (SET_SRC (EXP)) == CALL) \
928 CC_STATUS_INIT; \
929 else if (GET_CODE (SET_DEST (EXP)) != ZERO_EXTRACT \
930 && GET_CODE (SET_DEST (EXP)) != PC) \
931 { \
932 cc_status.flags = 0; \
933 /* The integer operations below don't set carry or \
934 set it in an incompatible way. That's ok though \
935 as the Z bit is all we need when doing unsigned \
936 comparisons on the result of these insns (since \
937 they're always with 0). Set CC_NO_OVERFLOW to \
938 generate the correct unsigned branches. */ \
939 switch (GET_CODE (SET_SRC (EXP))) \
940 { \
941 case NEG: \
942 if (GET_MODE_CLASS (GET_MODE (EXP)) == MODE_FLOAT)\
943 break; \
944 case AND: \
945 case IOR: \
946 case XOR: \
947 case NOT: \
948 case MEM: \
949 case REG: \
950 cc_status.flags = CC_NO_OVERFLOW; \
951 break; \
952 default: \
953 break; \
954 } \
955 cc_status.value1 = SET_DEST (EXP); \
956 cc_status.value2 = SET_SRC (EXP); } } \
957 else if (GET_CODE (EXP) == PARALLEL \
958 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
959 { \
960 if (GET_CODE (SET_SRC (XVECEXP (EXP, 0, 0))) == CALL) \
961 CC_STATUS_INIT; \
962 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
963 { cc_status.flags = 0; \
964 cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
965 cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } \
966 else \
967 /* PARALLELs whose first element sets the PC are aob, \
968 sob insns. They do change the cc's. */ \
969 CC_STATUS_INIT; } \
970 else CC_STATUS_INIT; \
971 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
972 && cc_status.value2 \
973 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
974 cc_status.value2 = 0; \
975 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
976 && cc_status.value2 \
977 && GET_CODE (cc_status.value2) == MEM) \
978 cc_status.value2 = 0; }
979 /* Actual condition, one line up, should be that value2's address
980 depends on value1, but that is too much of a pain. */
981
982 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
983 { if (cc_status.flags & CC_NO_OVERFLOW) \
984 return NO_OV; \
985 return NORMAL; }
986 \f
987 /* Control the assembler format that we output. */
988
989 /* Output at beginning of assembler file. */
990 /* When debugging, we want to output an extra dummy label so that gas
991 can distinguish between D_float and G_float prior to processing the
992 .stabs directive identifying type double. */
993
994 #define ASM_FILE_START(FILE) \
995 do { \
996 fputs (ASM_APP_OFF, FILE); \
997 if (write_symbols == DBX_DEBUG) \
998 fprintf (FILE, "___vax_%c_doubles:\n", ASM_DOUBLE_CHAR); \
999 } while (0)
1000
1001
1002 /* Output to assembler file text saying following lines
1003 may contain character constants, extra white space, comments, etc. */
1004
1005 #define ASM_APP_ON "#APP\n"
1006
1007 /* Output to assembler file text saying following lines
1008 no longer contain unusual constructs. */
1009
1010 #define ASM_APP_OFF "#NO_APP\n"
1011
1012 /* Output before read-only data. */
1013
1014 #define TEXT_SECTION_ASM_OP "\t.text"
1015
1016 /* Output before writable data. */
1017
1018 #define DATA_SECTION_ASM_OP "\t.data"
1019
1020 /* How to refer to registers in assembler output.
1021 This sequence is indexed by compiler's hard-register-number (see above).
1022 The register names will be prefixed by REGISTER_PREFIX, if any. */
1023
1024 #define REGISTER_PREFIX ""
1025 #define REGISTER_NAMES \
1026 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
1027 "r9", "r10", "r11", "ap", "fp", "sp", "pc"}
1028
1029 /* This is BSD, so it wants DBX format. */
1030
1031 #define DBX_DEBUGGING_INFO
1032
1033 /* Do not break .stabs pseudos into continuations. */
1034
1035 #define DBX_CONTIN_LENGTH 0
1036
1037 /* This is the char to use for continuation (in case we need to turn
1038 continuation back on). */
1039
1040 #define DBX_CONTIN_CHAR '?'
1041
1042 /* Don't use the `xsfoo;' construct in DBX output; this system
1043 doesn't support it. */
1044
1045 #define DBX_NO_XREFS
1046
1047 /* Output the .stabs for a C `static' variable in the data section. */
1048 #define DBX_STATIC_STAB_DATA_SECTION
1049
1050 /* VAX specific: which type character is used for type double? */
1051
1052 #define ASM_DOUBLE_CHAR (TARGET_G_FLOAT ? 'g' : 'd')
1053
1054 /* This is how to output a command to make the user-level label named NAME
1055 defined for reference from other files. */
1056
1057 #define ASM_GLOBALIZE_LABEL(FILE,NAME) \
1058 do { fputs (".globl ", FILE); assemble_name (FILE, NAME); fputs ("\n", FILE);} while (0)
1059
1060 /* The prefix to add to user-visible assembler symbols. */
1061
1062 #define USER_LABEL_PREFIX "_"
1063
1064 /* This is how to output an internal numbered label where
1065 PREFIX is the class of label and NUM is the number within the class. */
1066
1067 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1068 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1069
1070 /* This is how to store into the string LABEL
1071 the symbol_ref name of an internal numbered label where
1072 PREFIX is the class of label and NUM is the number within the class.
1073 This is suitable for output with `assemble_name'. */
1074
1075 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1076 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1077
1078 /* This is how to output an insn to push a register on the stack.
1079 It need not be very fast code. */
1080
1081 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1082 fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
1083
1084 /* This is how to output an insn to pop a register from the stack.
1085 It need not be very fast code. */
1086
1087 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1088 fprintf (FILE, "\tmovl (sp)+,%s\n", reg_names[REGNO])
1089
1090 /* This is how to output an element of a case-vector that is absolute.
1091 (The VAX does not use such vectors,
1092 but we must define this macro anyway.) */
1093
1094 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1095 fprintf (FILE, "\t.long L%d\n", VALUE)
1096
1097 /* This is how to output an element of a case-vector that is relative. */
1098
1099 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1100 fprintf (FILE, "\t.word L%d-L%d\n", VALUE, REL)
1101
1102 /* This is how to output an assembler line
1103 that says to advance the location counter
1104 to a multiple of 2**LOG bytes. */
1105
1106 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1107 fprintf (FILE, "\t.align %d\n", (LOG))
1108
1109 /* This is how to output an assembler line
1110 that says to advance the location counter by SIZE bytes. */
1111
1112 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1113 fprintf (FILE, "\t.space %u\n", (SIZE))
1114
1115 /* This says how to output an assembler line
1116 to define a global common symbol. */
1117
1118 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1119 ( fputs (".comm ", (FILE)), \
1120 assemble_name ((FILE), (NAME)), \
1121 fprintf ((FILE), ",%u\n", (ROUNDED)))
1122
1123 /* This says how to output an assembler line
1124 to define a local common symbol. */
1125
1126 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1127 ( fputs (".lcomm ", (FILE)), \
1128 assemble_name ((FILE), (NAME)), \
1129 fprintf ((FILE), ",%u\n", (ROUNDED)))
1130
1131 /* Store in OUTPUT a string (made with alloca) containing
1132 an assembler-name for a local static variable named NAME.
1133 LABELNO is an integer which is different for each call. */
1134
1135 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1136 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1137 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1138
1139 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
1140 Used for C++ multiple inheritance.
1141 .mask ^m<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11> #conservative entry mask
1142 addl2 $DELTA, 4(ap) #adjust first argument
1143 jmp FUNCTION+2 #jump beyond FUNCTION's entry mask
1144 */
1145 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1146 do { \
1147 fprintf (FILE, "\t.word 0x0ffc\n"); \
1148 fprintf (FILE, "\taddl2 $%d,4(%sap)\n", DELTA, REGISTER_PREFIX); \
1149 fprintf (FILE, "\tjmp "); \
1150 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1151 fprintf (FILE, "+2\n"); \
1152 } while (0)
1153
1154 /* Print an instruction operand X on file FILE.
1155 CODE is the code from the %-spec that requested printing this operand;
1156 if `%z3' was used to print operand 3, then CODE is 'z'.
1157
1158 VAX operand formatting codes:
1159
1160 letter print
1161 C reverse branch condition
1162 D 64-bit immediate operand
1163 B the low 8 bits of the complement of a constant operand
1164 H the low 16 bits of the complement of a constant operand
1165 M a mask for the N highest bits of a word
1166 N the complement of a constant integer operand
1167 P constant operand plus 1
1168 R 32 - constant operand
1169 b the low 8 bits of a negated constant operand
1170 h the low 16 bits of a negated constant operand
1171 # 'd' or 'g' depending on whether dfloat or gfloat is used */
1172
1173 /* The purpose of D is to get around a quirk or bug in VAX assembler
1174 whereby -1 in a 64-bit immediate operand means 0x00000000ffffffff,
1175 which is not a 64-bit minus one. */
1176
1177 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1178 ((CODE) == '#')
1179
1180 #define PRINT_OPERAND(FILE, X, CODE) \
1181 { if (CODE == '#') fputc (ASM_DOUBLE_CHAR, FILE); \
1182 else if (CODE == 'C') \
1183 fputs (rev_cond_name (X), FILE); \
1184 else if (CODE == 'D' && GET_CODE (X) == CONST_INT && INTVAL (X) < 0) \
1185 fprintf (FILE, "$0xffffffff%08x", INTVAL (X)); \
1186 else if (CODE == 'P' && GET_CODE (X) == CONST_INT) \
1187 fprintf (FILE, "$%d", INTVAL (X) + 1); \
1188 else if (CODE == 'N' && GET_CODE (X) == CONST_INT) \
1189 fprintf (FILE, "$%d", ~ INTVAL (X)); \
1190 /* rotl instruction cannot deal with negative arguments. */ \
1191 else if (CODE == 'R' && GET_CODE (X) == CONST_INT) \
1192 fprintf (FILE, "$%d", 32 - INTVAL (X)); \
1193 else if (CODE == 'H' && GET_CODE (X) == CONST_INT) \
1194 fprintf (FILE, "$%d", 0xffff & ~ INTVAL (X)); \
1195 else if (CODE == 'h' && GET_CODE (X) == CONST_INT) \
1196 fprintf (FILE, "$%d", (short) - INTVAL (x)); \
1197 else if (CODE == 'B' && GET_CODE (X) == CONST_INT) \
1198 fprintf (FILE, "$%d", 0xff & ~ INTVAL (X)); \
1199 else if (CODE == 'b' && GET_CODE (X) == CONST_INT) \
1200 fprintf (FILE, "$%d", 0xff & - INTVAL (X)); \
1201 else if (CODE == 'M' && GET_CODE (X) == CONST_INT) \
1202 fprintf (FILE, "$%d", ~((1 << INTVAL (x)) - 1)); \
1203 else if (GET_CODE (X) == REG) \
1204 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
1205 else if (GET_CODE (X) == MEM) \
1206 output_address (XEXP (X, 0)); \
1207 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
1208 { REAL_VALUE_TYPE r; char dstr[30]; \
1209 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
1210 REAL_VALUE_TO_DECIMAL (r, "%.20e", dstr); \
1211 fprintf (FILE, "$0f%s", dstr); } \
1212 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == DFmode) \
1213 { REAL_VALUE_TYPE r; char dstr[30]; \
1214 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
1215 REAL_VALUE_TO_DECIMAL (r, "%.20e", dstr); \
1216 fprintf (FILE, "$0%c%s", ASM_DOUBLE_CHAR, dstr); } \
1217 else { putc ('$', FILE); output_addr_const (FILE, X); }}
1218
1219 /* Print a memory operand whose address is X, on file FILE.
1220 This uses a function in output-vax.c. */
1221
1222 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1223 print_operand_address (FILE, ADDR)