]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/vax/vax.h
real.c (real_to_decimal): Accept BUF_SIZE and CROP_TRAILING_ZEROS as arguments.
[thirdparty/gcc.git] / gcc / config / vax / vax.h
1 /* Definitions of target machine for GNU compiler. VAX version.
2 Copyright (C) 1987, 1988, 1991, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22
23 /* Target CPU builtins. */
24 #define TARGET_CPU_CPP_BUILTINS() \
25 do \
26 { \
27 builtin_define ("__vax__"); \
28 builtin_assert ("cpu=vax"); \
29 builtin_assert ("machine=vax"); \
30 if (TARGET_G_FLOAT) \
31 { \
32 builtin_define ("__GFLOAT"); \
33 builtin_define ("__GFLOAT__"); \
34 } \
35 } \
36 while (0)
37
38 #define VMS_TARGET 0
39
40 /* Use -J option for long branch support with Unix assembler. */
41
42 #define ASM_SPEC "-J"
43
44 /* Choose proper libraries depending on float format.
45 Note that there are no profiling libraries for g-format.
46 Also use -lg for the sake of dbx. */
47
48 #define LIB_SPEC "%{g:-lg}\
49 %{mg:%{lm:-lmg} -lcg \
50 %{p:%eprofiling not supported with -mg\n}\
51 %{pg:%eprofiling not supported with -mg\n}}\
52 %{!mg:%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}}"
53
54 /* Print subsidiary information on the compiler version in use. */
55
56 #ifndef TARGET_NAME /* A more specific value might be supplied via -D. */
57 #define TARGET_NAME "vax"
58 #endif
59 #define TARGET_VERSION fprintf (stderr, " (%s)", TARGET_NAME)
60
61 /* Run-time compilation parameters selecting different hardware subsets. */
62
63 extern int target_flags;
64
65 #define MASK_UNIX_ASM 1
66 #define MASK_VAXC_ALIGNMENT 2
67 #define MASK_G_FLOAT 4
68
69
70 /* Macros used in the machine description to test the flags. */
71
72 /* Nonzero if compiling code that Unix assembler can assemble. */
73 #define TARGET_UNIX_ASM (target_flags & MASK_UNIX_ASM)
74
75 /* Nonzero if compiling with VAX-11 "C" style structure alignment */
76 #define TARGET_VAXC_ALIGNMENT (target_flags & MASK_VAXC_ALIGNMENT)
77
78 /* Nonzero if compiling with `G'-format floating point */
79 #define TARGET_G_FLOAT (target_flags & MASK_G_FLOAT)
80
81 /* Macro to define tables used to set the flags.
82 This is a list in braces of pairs in braces,
83 each pair being { "NAME", VALUE }
84 where VALUE is the bits to set or minus the bits to clear.
85 An empty string NAME is used to identify the default VALUE. */
86
87 #define TARGET_SWITCHES \
88 { {"unix", MASK_UNIX_ASM, \
89 "Generate code for UNIX assembler"}, \
90 {"gnu", -MASK_UNIX_ASM, \
91 "Generate code for GNU assembler (gas)"}, \
92 {"vaxc-alignment", MASK_VAXC_ALIGNMENT, \
93 "Use VAXC structure conventions"}, \
94 {"g", MASK_G_FLOAT, \
95 "Generate GFLOAT double precision code"}, \
96 {"g-float", MASK_G_FLOAT, \
97 "Generate GFLOAT double precision code"}, \
98 {"d", -MASK_G_FLOAT, \
99 "Generate DFLOAT double precision code"}, \
100 {"d-float", -MASK_G_FLOAT, \
101 "Generate DFLOAT double precision code"}, \
102 { "", TARGET_DEFAULT, 0}}
103
104 /* Default target_flags if no switches specified. */
105
106 #ifndef TARGET_DEFAULT
107 #define TARGET_DEFAULT (MASK_UNIX_ASM)
108 #endif
109
110 #define OVERRIDE_OPTIONS override_options ()
111
112 \f
113 /* Target machine storage layout */
114
115 /* Define this if most significant bit is lowest numbered
116 in instructions that operate on numbered bit-fields.
117 This is not true on the VAX. */
118 #define BITS_BIG_ENDIAN 0
119
120 /* Define this if most significant byte of a word is the lowest numbered. */
121 /* That is not true on the VAX. */
122 #define BYTES_BIG_ENDIAN 0
123
124 /* Define this if most significant word of a multiword number is the lowest
125 numbered. */
126 /* This is not true on the VAX. */
127 #define WORDS_BIG_ENDIAN 0
128
129 /* Width of a word, in units (bytes). */
130 #define UNITS_PER_WORD 4
131
132 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
133 #define PARM_BOUNDARY 32
134
135 /* Allocation boundary (in *bits*) for the code of a function. */
136 #define FUNCTION_BOUNDARY 16
137
138 /* Alignment of field after `int : 0' in a structure. */
139 #define EMPTY_FIELD_BOUNDARY (TARGET_VAXC_ALIGNMENT ? 8 : 32)
140
141 /* Every structure's size must be a multiple of this. */
142 #define STRUCTURE_SIZE_BOUNDARY 8
143
144 /* A bit-field declared as `int' forces `int' alignment for the struct. */
145 #define PCC_BITFIELD_TYPE_MATTERS (! TARGET_VAXC_ALIGNMENT)
146
147 /* No data type wants to be aligned rounder than this. */
148 #define BIGGEST_ALIGNMENT 32
149
150 /* No structure field wants to be aligned rounder than this. */
151 #define BIGGEST_FIELD_ALIGNMENT (TARGET_VAXC_ALIGNMENT ? 8 : 32)
152
153 /* Set this nonzero if move instructions will actually fail to work
154 when given unaligned data. */
155 #define STRICT_ALIGNMENT 0
156
157 /* Let's keep the stack somewhat aligned. */
158 #define STACK_BOUNDARY 32
159
160 /* The table of an ADDR_DIFF_VEC must be contiguous with the case
161 opcode, it is part of the case instruction. */
162 #define ADDR_VEC_ALIGN(ADDR_VEC) 0
163 \f
164 /* Standard register usage. */
165
166 /* Number of actual hardware registers.
167 The hardware registers are assigned numbers for the compiler
168 from 0 to just below FIRST_PSEUDO_REGISTER.
169 All registers that the compiler knows about must be given numbers,
170 even those that are not normally considered general registers. */
171 #define FIRST_PSEUDO_REGISTER 16
172
173 /* 1 for registers that have pervasive standard uses
174 and are not available for the register allocator.
175 On the VAX, these are the AP, FP, SP and PC. */
176 #define FIXED_REGISTERS {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
177
178 /* 1 for registers not available across function calls.
179 These must include the FIXED_REGISTERS and also any
180 registers that can be used without being saved.
181 The latter must include the registers where values are returned
182 and the register where structure-value addresses are passed.
183 Aside from that, you can include as many other registers as you like. */
184 #define CALL_USED_REGISTERS {1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1}
185
186 /* Return number of consecutive hard regs needed starting at reg REGNO
187 to hold something of mode MODE.
188 This is ordinarily the length in words of a value of mode MODE
189 but can be less for certain modes in special long registers.
190 On the VAX, all registers are one word long. */
191 #define HARD_REGNO_NREGS(REGNO, MODE) \
192 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
193
194 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
195 On the VAX, all registers can hold all modes. */
196 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
197
198 /* Value is 1 if it is a good idea to tie two pseudo registers
199 when one has mode MODE1 and one has mode MODE2.
200 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
201 for any hard reg, then this must be 0 for correct output. */
202 #define MODES_TIEABLE_P(MODE1, MODE2) 1
203
204 /* Specify the registers used for certain standard purposes.
205 The values of these macros are register numbers. */
206
207 /* VAX pc is overloaded on a register. */
208 #define PC_REGNUM 15
209
210 /* Register to use for pushing function arguments. */
211 #define STACK_POINTER_REGNUM 14
212
213 /* Base register for access to local variables of the function. */
214 #define FRAME_POINTER_REGNUM 13
215
216 /* Value should be nonzero if functions must have frame pointers.
217 Zero means the frame pointer need not be set up (and parms
218 may be accessed via the stack pointer) in functions that seem suitable.
219 This is computed in `reload', in reload1.c. */
220 #define FRAME_POINTER_REQUIRED 1
221
222 /* Base register for access to arguments of the function. */
223 #define ARG_POINTER_REGNUM 12
224
225 /* Register in which static-chain is passed to a function. */
226 #define STATIC_CHAIN_REGNUM 0
227
228 /* Register in which address to store a structure value
229 is passed to a function. */
230 #define STRUCT_VALUE_REGNUM 1
231 \f
232 /* Define the classes of registers for register constraints in the
233 machine description. Also define ranges of constants.
234
235 One of the classes must always be named ALL_REGS and include all hard regs.
236 If there is more than one class, another class must be named NO_REGS
237 and contain no registers.
238
239 The name GENERAL_REGS must be the name of a class (or an alias for
240 another name such as ALL_REGS). This is the class of registers
241 that is allowed by "g" or "r" in a register constraint.
242 Also, registers outside this class are allocated only when
243 instructions express preferences for them.
244
245 The classes must be numbered in nondecreasing order; that is,
246 a larger-numbered class must never be contained completely
247 in a smaller-numbered class.
248
249 For any two classes, it is very desirable that there be another
250 class that represents their union. */
251
252 /* The VAX has only one kind of registers, so NO_REGS and ALL_REGS
253 are the only classes. */
254
255 enum reg_class { NO_REGS, ALL_REGS, LIM_REG_CLASSES };
256
257 #define N_REG_CLASSES (int) LIM_REG_CLASSES
258
259 /* Since GENERAL_REGS is the same class as ALL_REGS,
260 don't give it a different class number; just make it an alias. */
261
262 #define GENERAL_REGS ALL_REGS
263
264 /* Give names of register classes as strings for dump file. */
265
266 #define REG_CLASS_NAMES \
267 {"NO_REGS", "ALL_REGS" }
268
269 /* Define which registers fit in which classes.
270 This is an initializer for a vector of HARD_REG_SET
271 of length N_REG_CLASSES. */
272
273 #define REG_CLASS_CONTENTS {{0}, {0xffff}}
274
275 /* The same information, inverted:
276 Return the class number of the smallest class containing
277 reg number REGNO. This could be a conditional expression
278 or could index an array. */
279
280 #define REGNO_REG_CLASS(REGNO) ALL_REGS
281
282 /* The class value for index registers, and the one for base regs. */
283
284 #define INDEX_REG_CLASS ALL_REGS
285 #define BASE_REG_CLASS ALL_REGS
286
287 /* Get reg_class from a letter such as appears in the machine description. */
288
289 #define REG_CLASS_FROM_LETTER(C) NO_REGS
290
291 /* The letters I, J, K, L, M, N, and O in a register constraint string
292 can be used to stand for particular ranges of immediate operands.
293 This macro defines what the ranges are.
294 C is the letter, and VALUE is a constant value.
295 Return 1 if VALUE is in the range specified by C.
296
297 `I' is the constant zero.
298 `J' is a value between 0 .. 63 (inclusive)
299 `K' is a value between -128 and 127 (inclusive)
300 'L' is a value between -32768 and 32767 (inclusive)
301 `M' is a value between 0 and 255 (inclusive)
302 'N' is a value between 0 and 65535 (inclusive)
303 `O' is a value between -63 and -1 (inclusive) */
304
305 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
306 ( (C) == 'I' ? (VALUE) == 0 \
307 : (C) == 'J' ? 0 <= (VALUE) && (VALUE) < 64 \
308 : (C) == 'O' ? -63 <= (VALUE) && (VALUE) < 0 \
309 : (C) == 'K' ? -128 <= (VALUE) && (VALUE) < 128 \
310 : (C) == 'M' ? 0 <= (VALUE) && (VALUE) < 256 \
311 : (C) == 'L' ? -32768 <= (VALUE) && (VALUE) < 32768 \
312 : (C) == 'N' ? 0 <= (VALUE) && (VALUE) < 65536 \
313 : 0)
314
315 /* Similar, but for floating constants, and defining letters G and H.
316 Here VALUE is the CONST_DOUBLE rtx itself.
317
318 `G' is a floating-point zero. */
319
320 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
321 ((C) == 'G' ? ((VALUE) == CONST0_RTX (DFmode) \
322 || (VALUE) == CONST0_RTX (SFmode)) \
323 : 0)
324
325 /* Optional extra constraints for this machine.
326
327 For the VAX, `Q' means that OP is a MEM that does not have a mode-dependent
328 address. */
329
330 #define EXTRA_CONSTRAINT(OP, C) \
331 ((C) == 'Q' \
332 ? GET_CODE (OP) == MEM && ! mode_dependent_address_p (XEXP (OP, 0)) \
333 : 0)
334
335 /* Given an rtx X being reloaded into a reg required to be
336 in class CLASS, return the class of reg to actually use.
337 In general this is just CLASS; but on some machines
338 in some cases it is preferable to use a more restrictive class. */
339
340 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
341
342 /* Return the maximum number of consecutive registers
343 needed to represent mode MODE in a register of class CLASS. */
344 /* On the VAX, this is always the size of MODE in words,
345 since all registers are the same size. */
346 #define CLASS_MAX_NREGS(CLASS, MODE) \
347 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
348 \f
349 /* Stack layout; function entry, exit and calling. */
350
351 /* Define this if pushing a word on the stack
352 makes the stack pointer a smaller address. */
353 #define STACK_GROWS_DOWNWARD
354
355 /* Define this if the nominal address of the stack frame
356 is at the high-address end of the local variables;
357 that is, each additional local variable allocated
358 goes at a more negative offset in the frame. */
359 #define FRAME_GROWS_DOWNWARD
360
361 /* Offset within stack frame to start allocating local variables at.
362 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
363 first local allocated. Otherwise, it is the offset to the BEGINNING
364 of the first local allocated. */
365 #define STARTING_FRAME_OFFSET 0
366
367 /* Given an rtx for the address of a frame,
368 return an rtx for the address of the word in the frame
369 that holds the dynamic chain--the previous frame's address. */
370 #define DYNAMIC_CHAIN_ADDRESS(FRAME) plus_constant ((FRAME), 12)
371
372 /* If we generate an insn to push BYTES bytes,
373 this says how many the stack pointer really advances by.
374 On the VAX, -(sp) pushes only the bytes of the operands. */
375 #define PUSH_ROUNDING(BYTES) (BYTES)
376
377 /* Offset of first parameter from the argument pointer register value. */
378 #define FIRST_PARM_OFFSET(FNDECL) 4
379
380 /* Value is the number of bytes of arguments automatically
381 popped when returning from a subroutine call.
382 FUNDECL is the declaration node of the function (as a tree),
383 FUNTYPE is the data type of the function (as a tree),
384 or for a library call it is an identifier node for the subroutine name.
385 SIZE is the number of bytes of arguments passed on the stack.
386
387 On the VAX, the RET insn pops a maximum of 255 args for any function. */
388
389 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) \
390 ((SIZE) > 255*4 ? 0 : (SIZE))
391
392 /* Define how to find the value returned by a function.
393 VALTYPE is the data type of the value (as a tree).
394 If the precise function being called is known, FUNC is its FUNCTION_DECL;
395 otherwise, FUNC is 0. */
396
397 /* On the VAX the return value is in R0 regardless. */
398
399 #define FUNCTION_VALUE(VALTYPE, FUNC) \
400 gen_rtx_REG (TYPE_MODE (VALTYPE), 0)
401
402 /* Define how to find the value returned by a library function
403 assuming the value has mode MODE. */
404
405 /* On the VAX the return value is in R0 regardless. */
406
407 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, 0)
408
409 /* Define this if PCC uses the nonreentrant convention for returning
410 structure and union values. */
411
412 #define PCC_STATIC_STRUCT_RETURN
413
414 /* 1 if N is a possible register number for a function value.
415 On the VAX, R0 is the only register thus used. */
416
417 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 0)
418
419 /* 1 if N is a possible register number for function argument passing.
420 On the VAX, no registers are used in this way. */
421
422 #define FUNCTION_ARG_REGNO_P(N) 0
423 \f
424 /* Define a data type for recording info about an argument list
425 during the scan of that argument list. This data type should
426 hold all necessary information about the function itself
427 and about the args processed so far, enough to enable macros
428 such as FUNCTION_ARG to determine where the next arg should go.
429
430 On the VAX, this is a single integer, which is a number of bytes
431 of arguments scanned so far. */
432
433 #define CUMULATIVE_ARGS int
434
435 /* Initialize a variable CUM of type CUMULATIVE_ARGS
436 for a call to a function whose data type is FNTYPE.
437 For a library call, FNTYPE is 0.
438
439 On the VAX, the offset starts at 0. */
440
441 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
442 ((CUM) = 0)
443
444 /* Update the data in CUM to advance over an argument
445 of mode MODE and data type TYPE.
446 (TYPE is null for libcalls where that information may not be available.) */
447
448 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
449 ((CUM) += ((MODE) != BLKmode \
450 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
451 : (int_size_in_bytes (TYPE) + 3) & ~3))
452
453 /* Define where to put the arguments to a function.
454 Value is zero to push the argument on the stack,
455 or a hard register in which to store the argument.
456
457 MODE is the argument's machine mode.
458 TYPE is the data type of the argument (as a tree).
459 This is null for libcalls where that information may
460 not be available.
461 CUM is a variable of type CUMULATIVE_ARGS which gives info about
462 the preceding args and about the function being called.
463 NAMED is nonzero if this argument is a named parameter
464 (otherwise it is an extra parameter matching an ellipsis). */
465
466 /* On the VAX all args are pushed. */
467
468 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
469
470 /* Output assembler code to FILE to increment profiler label # LABELNO
471 for profiling a function entry. */
472
473 #define VAX_FUNCTION_PROFILER_NAME "mcount"
474 #define FUNCTION_PROFILER(FILE, LABELNO) \
475 do \
476 { \
477 char label[256]; \
478 ASM_GENERATE_INTERNAL_LABEL (label, "LP", (LABELNO)); \
479 fprintf (FILE, "\tmovab "); \
480 assemble_name (FILE, label); \
481 asm_fprintf (FILE, ",%Rr0\n\tjsb %s\n", \
482 VAX_FUNCTION_PROFILER_NAME); \
483 } \
484 while (0)
485
486 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
487 the stack pointer does not matter. The value is tested only in
488 functions that have frame pointers.
489 No definition is equivalent to always zero. */
490
491 #define EXIT_IGNORE_STACK 1
492
493 /* Store in the variable DEPTH the initial difference between the
494 frame pointer reg contents and the stack pointer reg contents,
495 as of the start of the function body. This depends on the layout
496 of the fixed parts of the stack frame and on how registers are saved.
497
498 On the VAX, FRAME_POINTER_REQUIRED is always 1, so the definition of this
499 macro doesn't matter. But it must be defined. */
500
501 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0;
502
503 /* Output assembler code for a block containing the constant parts
504 of a trampoline, leaving space for the variable parts. */
505
506 /* On the VAX, the trampoline contains an entry mask and two instructions:
507 .word NN
508 movl $STATIC,r0 (store the functions static chain)
509 jmp *$FUNCTION (jump to function code at address FUNCTION) */
510
511 #define TRAMPOLINE_TEMPLATE(FILE) \
512 { \
513 assemble_aligned_integer (2, const0_rtx); \
514 assemble_aligned_integer (2, GEN_INT (0x8fd0)); \
515 assemble_aligned_integer (4, const0_rtx); \
516 assemble_aligned_integer (1, GEN_INT (0x50 + STATIC_CHAIN_REGNUM)); \
517 assemble_aligned_integer (2, GEN_INT (0x9f17)); \
518 assemble_aligned_integer (4, const0_rtx); \
519 }
520
521 /* Length in units of the trampoline for entering a nested function. */
522
523 #define TRAMPOLINE_SIZE 15
524
525 /* Emit RTL insns to initialize the variable parts of a trampoline.
526 FNADDR is an RTX for the address of the function's pure code.
527 CXT is an RTX for the static chain value for the function. */
528
529 /* We copy the register-mask from the function's pure code
530 to the start of the trampoline. */
531 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
532 { \
533 emit_move_insn (gen_rtx_MEM (HImode, TRAMP), \
534 gen_rtx_MEM (HImode, FNADDR)); \
535 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 4)), CXT); \
536 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (TRAMP, 11)), \
537 plus_constant (FNADDR, 2)); \
538 emit_insn (gen_sync_istream ()); \
539 }
540
541 /* Byte offset of return address in a stack frame. The "saved PC" field
542 is in element [4] when treating the frame as an array of longwords. */
543
544 #define RETURN_ADDRESS_OFFSET (4 * UNITS_PER_WORD) /* 16 */
545
546 /* A C expression whose value is RTL representing the value of the return
547 address for the frame COUNT steps up from the current frame.
548 FRAMEADDR is already the frame pointer of the COUNT frame, so we
549 can ignore COUNT. */
550
551 #define RETURN_ADDR_RTX(COUNT, FRAME) \
552 ((COUNT == 0) \
553 ? gen_rtx_MEM (Pmode, plus_constant (FRAME, RETURN_ADDRESS_OFFSET)) \
554 : (rtx) 0)
555
556 \f
557 /* Addressing modes, and classification of registers for them. */
558
559 #define HAVE_POST_INCREMENT 1
560 /* #define HAVE_POST_DECREMENT 0 */
561
562 #define HAVE_PRE_DECREMENT 1
563 /* #define HAVE_PRE_INCREMENT 0 */
564
565 /* Macros to check register numbers against specific register classes. */
566
567 /* These assume that REGNO is a hard or pseudo reg number.
568 They give nonzero only if REGNO is a hard reg of the suitable class
569 or a pseudo reg currently allocated to a suitable hard reg.
570 Since they use reg_renumber, they are safe only once reg_renumber
571 has been allocated, which happens in local-alloc.c. */
572
573 #define REGNO_OK_FOR_INDEX_P(regno) \
574 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
575 #define REGNO_OK_FOR_BASE_P(regno) \
576 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
577 \f
578 /* Maximum number of registers that can appear in a valid memory address. */
579
580 #define MAX_REGS_PER_ADDRESS 2
581
582 /* 1 if X is an rtx for a constant that is a valid address. */
583
584 #define CONSTANT_ADDRESS_P(X) \
585 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
586 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
587 || GET_CODE (X) == HIGH)
588
589 /* Nonzero if the constant value X is a legitimate general operand.
590 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
591
592 #define LEGITIMATE_CONSTANT_P(X) 1
593
594 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
595 and check its validity for a certain class.
596 We have two alternate definitions for each of them.
597 The usual definition accepts all pseudo regs; the other rejects
598 them unless they have been allocated suitable hard regs.
599 The symbol REG_OK_STRICT causes the latter definition to be used.
600
601 Most source files want to accept pseudo regs in the hope that
602 they will get allocated to the class that the insn wants them to be in.
603 Source files for reload pass need to be strict.
604 After reload, it makes no difference, since pseudo regs have
605 been eliminated by then. */
606
607 #ifndef REG_OK_STRICT
608
609 /* Nonzero if X is a hard reg that can be used as an index
610 or if it is a pseudo reg. */
611 #define REG_OK_FOR_INDEX_P(X) 1
612 /* Nonzero if X is a hard reg that can be used as a base reg
613 or if it is a pseudo reg. */
614 #define REG_OK_FOR_BASE_P(X) 1
615
616 #else
617
618 /* Nonzero if X is a hard reg that can be used as an index. */
619 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
620 /* Nonzero if X is a hard reg that can be used as a base reg. */
621 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
622
623 #endif
624 \f
625 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
626 that is a valid memory address for an instruction.
627 The MODE argument is the machine mode for the MEM expression
628 that wants to use this address.
629
630 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
631 except for CONSTANT_ADDRESS_P which is actually machine-independent. */
632
633 #ifdef NO_EXTERNAL_INDIRECT_ADDRESS
634
635 /* Zero if this contains a (CONST (PLUS (SYMBOL_REF) (...))) and the
636 symbol in the SYMBOL_REF is an external symbol. */
637
638 #define INDIRECTABLE_CONSTANT_P(X) \
639 (! (GET_CODE ((X)) == CONST \
640 && GET_CODE (XEXP ((X), 0)) == PLUS \
641 && GET_CODE (XEXP (XEXP ((X), 0), 0)) == SYMBOL_REF \
642 && SYMBOL_REF_FLAG (XEXP (XEXP ((X), 0), 0))))
643
644 /* Re-definition of CONSTANT_ADDRESS_P, which is true only when there
645 are no SYMBOL_REFs for external symbols present. */
646
647 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) \
648 (GET_CODE (X) == LABEL_REF \
649 || (GET_CODE (X) == SYMBOL_REF && !SYMBOL_REF_FLAG (X)) \
650 || (GET_CODE (X) == CONST && INDIRECTABLE_CONSTANT_P(X)) \
651 || GET_CODE (X) == CONST_INT)
652
653
654 /* Nonzero if X is an address which can be indirected. External symbols
655 could be in a sharable image library, so we disallow those. */
656
657 #define INDIRECTABLE_ADDRESS_P(X) \
658 (INDIRECTABLE_CONSTANT_ADDRESS_P (X) \
659 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
660 || (GET_CODE (X) == PLUS \
661 && GET_CODE (XEXP (X, 0)) == REG \
662 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
663 && INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))))
664
665 #else /* not NO_EXTERNAL_INDIRECT_ADDRESS */
666
667 #define INDIRECTABLE_CONSTANT_ADDRESS_P(X) CONSTANT_ADDRESS_P(X)
668
669 /* Nonzero if X is an address which can be indirected. */
670 #define INDIRECTABLE_ADDRESS_P(X) \
671 (CONSTANT_ADDRESS_P (X) \
672 || (GET_CODE (X) == REG && REG_OK_FOR_BASE_P (X)) \
673 || (GET_CODE (X) == PLUS \
674 && GET_CODE (XEXP (X, 0)) == REG \
675 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
676 && CONSTANT_ADDRESS_P (XEXP (X, 1))))
677
678 #endif /* not NO_EXTERNAL_INDIRECT_ADDRESS */
679
680 /* Go to ADDR if X is a valid address not using indexing.
681 (This much is the easy part.) */
682 #define GO_IF_NONINDEXED_ADDRESS(X, ADDR) \
683 { register rtx xfoob = (X); \
684 if (GET_CODE (xfoob) == REG) \
685 { \
686 extern rtx *reg_equiv_mem; \
687 if (! reload_in_progress \
688 || reg_equiv_mem[REGNO (xfoob)] == 0 \
689 || INDIRECTABLE_ADDRESS_P (reg_equiv_mem[REGNO (xfoob)])) \
690 goto ADDR; \
691 } \
692 if (CONSTANT_ADDRESS_P (xfoob)) goto ADDR; \
693 if (INDIRECTABLE_ADDRESS_P (xfoob)) goto ADDR; \
694 xfoob = XEXP (X, 0); \
695 if (GET_CODE (X) == MEM && INDIRECTABLE_ADDRESS_P (xfoob)) \
696 goto ADDR; \
697 if ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_INC) \
698 && GET_CODE (xfoob) == REG && REG_OK_FOR_BASE_P (xfoob)) \
699 goto ADDR; }
700
701 /* 1 if PROD is either a reg times size of mode MODE and MODE is less
702 than or equal 8 bytes, or just a reg if MODE is one byte.
703 This macro's expansion uses the temporary variables xfoo0 and xfoo1
704 that must be declared in the surrounding context. */
705 #define INDEX_TERM_P(PROD, MODE) \
706 (GET_MODE_SIZE (MODE) == 1 \
707 ? (GET_CODE (PROD) == REG && REG_OK_FOR_BASE_P (PROD)) \
708 : (GET_CODE (PROD) == MULT && GET_MODE_SIZE (MODE) <= 8 \
709 && \
710 (xfoo0 = XEXP (PROD, 0), xfoo1 = XEXP (PROD, 1), \
711 ((((GET_CODE (xfoo0) == CONST_INT \
712 && GET_CODE (xfoo1) == REG) \
713 && INTVAL (xfoo0) == (int)GET_MODE_SIZE (MODE)) \
714 && REG_OK_FOR_INDEX_P (xfoo1)) \
715 || \
716 (((GET_CODE (xfoo1) == CONST_INT \
717 && GET_CODE (xfoo0) == REG) \
718 && INTVAL (xfoo1) == (int)GET_MODE_SIZE (MODE)) \
719 && REG_OK_FOR_INDEX_P (xfoo0))))))
720
721 /* Go to ADDR if X is the sum of a register
722 and a valid index term for mode MODE. */
723 #define GO_IF_REG_PLUS_INDEX(X, MODE, ADDR) \
724 { register rtx xfooa; \
725 if (GET_CODE (X) == PLUS) \
726 { if (GET_CODE (XEXP (X, 0)) == REG \
727 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
728 && (xfooa = XEXP (X, 1), \
729 INDEX_TERM_P (xfooa, MODE))) \
730 goto ADDR; \
731 if (GET_CODE (XEXP (X, 1)) == REG \
732 && REG_OK_FOR_BASE_P (XEXP (X, 1)) \
733 && (xfooa = XEXP (X, 0), \
734 INDEX_TERM_P (xfooa, MODE))) \
735 goto ADDR; } }
736
737 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
738 { register rtx xfoo, xfoo0, xfoo1; \
739 GO_IF_NONINDEXED_ADDRESS (X, ADDR); \
740 if (GET_CODE (X) == PLUS) \
741 { /* Handle <address>[index] represented with index-sum outermost */\
742 xfoo = XEXP (X, 0); \
743 if (INDEX_TERM_P (xfoo, MODE)) \
744 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 1), ADDR); } \
745 xfoo = XEXP (X, 1); \
746 if (INDEX_TERM_P (xfoo, MODE)) \
747 { GO_IF_NONINDEXED_ADDRESS (XEXP (X, 0), ADDR); } \
748 /* Handle offset(reg)[index] with offset added outermost */ \
749 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 0))) \
750 { if (GET_CODE (XEXP (X, 1)) == REG \
751 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
752 goto ADDR; \
753 GO_IF_REG_PLUS_INDEX (XEXP (X, 1), MODE, ADDR); } \
754 if (INDIRECTABLE_CONSTANT_ADDRESS_P (XEXP (X, 1))) \
755 { if (GET_CODE (XEXP (X, 0)) == REG \
756 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
757 goto ADDR; \
758 GO_IF_REG_PLUS_INDEX (XEXP (X, 0), MODE, ADDR); } } }
759 \f
760 /* Try machine-dependent ways of modifying an illegitimate address
761 to be legitimate. If we find one, return the new, valid address.
762 This macro is used in only one place: `memory_address' in explow.c.
763
764 OLDX is the address as it was before break_out_memory_refs was called.
765 In some cases it is useful to look at this to decide what needs to be done.
766
767 MODE and WIN are passed so that this macro can use
768 GO_IF_LEGITIMATE_ADDRESS.
769
770 It is always safe for this macro to do nothing. It exists to recognize
771 opportunities to optimize the output.
772
773 For the VAX, nothing needs to be done. */
774
775 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) {}
776
777 /* Go to LABEL if ADDR (a legitimate address expression)
778 has an effect that depends on the machine mode it is used for.
779 On the VAX, the predecrement and postincrement address depend thus
780 (the amount of decrement or increment being the length of the operand)
781 and all indexed address depend thus (because the index scale factor
782 is the length of the operand). */
783 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
784 { if (GET_CODE (ADDR) == POST_INC || GET_CODE (ADDR) == PRE_DEC) \
785 goto LABEL; \
786 if (GET_CODE (ADDR) == PLUS) \
787 { if (CONSTANT_ADDRESS_P (XEXP (ADDR, 0)) \
788 && GET_CODE (XEXP (ADDR, 1)) == REG); \
789 else if (CONSTANT_ADDRESS_P (XEXP (ADDR, 1)) \
790 && GET_CODE (XEXP (ADDR, 0)) == REG); \
791 else goto LABEL; }}
792 \f
793 /* Specify the machine mode that this machine uses
794 for the index in the tablejump instruction. */
795 #define CASE_VECTOR_MODE HImode
796
797 /* Define as C expression which evaluates to nonzero if the tablejump
798 instruction expects the table to contain offsets from the address of the
799 table.
800 Do not define this if the table should contain absolute addresses. */
801 #define CASE_VECTOR_PC_RELATIVE 1
802
803 /* Define this if the case instruction drops through after the table
804 when the index is out of range. Don't define it if the case insn
805 jumps to the default label instead. */
806 #define CASE_DROPS_THROUGH
807
808 /* Indicate that jump tables go in the text section. This is
809 necessary when compiling PIC code. */
810 #define JUMP_TABLES_IN_TEXT_SECTION 1
811
812 /* Define this as 1 if `char' should by default be signed; else as 0. */
813 #define DEFAULT_SIGNED_CHAR 1
814
815 /* This flag, if defined, says the same insns that convert to a signed fixnum
816 also convert validly to an unsigned one. */
817 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
818
819 /* Max number of bytes we can move from memory to memory
820 in one reasonably fast instruction. */
821 #define MOVE_MAX 8
822
823 /* Nonzero if access to memory by bytes is slow and undesirable. */
824 #define SLOW_BYTE_ACCESS 0
825
826 /* Define if shifts truncate the shift count
827 which implies one can omit a sign-extension or zero-extension
828 of a shift count. */
829 /* #define SHIFT_COUNT_TRUNCATED */
830
831 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
832 is done just by pretending it is already truncated. */
833 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
834
835 /* When a prototype says `char' or `short', really pass an `int'.
836 (On the VAX, this is required for system-library compatibility.) */
837 #define PROMOTE_PROTOTYPES 1
838
839 /* Specify the machine mode that pointers have.
840 After generation of rtl, the compiler makes no further distinction
841 between pointers and any other objects of this machine mode. */
842 #define Pmode SImode
843
844 /* A function address in a call instruction
845 is a byte address (for indexing purposes)
846 so give the MEM rtx a byte's mode. */
847 #define FUNCTION_MODE QImode
848
849 /* This machine doesn't use IEEE floats. */
850
851 #define TARGET_FLOAT_FORMAT VAX_FLOAT_FORMAT
852
853 /* Compute the cost of computing a constant rtl expression RTX
854 whose rtx-code is CODE. The body of this macro is a portion
855 of a switch statement. If the code is computed here,
856 return it with a return statement. Otherwise, break from the switch. */
857
858 /* On a VAX, constants from 0..63 are cheap because they can use the
859 1 byte literal constant format. compare to -1 should be made cheap
860 so that decrement-and-branch insns can be formed more easily (if
861 the value -1 is copied to a register some decrement-and-branch patterns
862 will not match). */
863
864 #define CONST_COSTS(RTX,CODE,OUTER_CODE) \
865 case CONST_INT: \
866 if (INTVAL (RTX) == 0) return 0; \
867 if ((OUTER_CODE) == AND) \
868 return ((unsigned) ~INTVAL (RTX) <= 077) ? 1 : 2; \
869 if ((unsigned) INTVAL (RTX) <= 077) return 1; \
870 if ((OUTER_CODE) == COMPARE && INTVAL (RTX) == -1) \
871 return 1; \
872 if ((OUTER_CODE) == PLUS && (unsigned) -INTVAL (RTX) <= 077)\
873 return 1; \
874 case CONST: \
875 case LABEL_REF: \
876 case SYMBOL_REF: \
877 return 3; \
878 case CONST_DOUBLE: \
879 if (GET_MODE_CLASS (GET_MODE (RTX)) == MODE_FLOAT) \
880 return vax_float_literal (RTX) ? 5 : 8; \
881 else \
882 return (((CONST_DOUBLE_HIGH (RTX) == 0 \
883 && (unsigned) CONST_DOUBLE_LOW (RTX) < 64) \
884 || ((OUTER_CODE) == PLUS \
885 && CONST_DOUBLE_HIGH (RTX) == -1 \
886 && (unsigned)-CONST_DOUBLE_LOW (RTX) < 64)) \
887 ? 2 : 5);
888
889 #define RTX_COSTS(RTX,CODE,OUTER_CODE) case FIX: case FLOAT: \
890 case MULT: case DIV: case UDIV: case MOD: case UMOD: \
891 case ASHIFT: case LSHIFTRT: case ASHIFTRT: \
892 case ROTATE: case ROTATERT: case PLUS: case MINUS: case IOR: \
893 case XOR: case AND: case NEG: case NOT: case ZERO_EXTRACT: \
894 case SIGN_EXTRACT: case MEM: return vax_rtx_cost(RTX)
895
896 #define ADDRESS_COST(RTX) (1 + (GET_CODE (RTX) == REG ? 0 : vax_address_cost(RTX)))
897
898 /* Specify the cost of a branch insn; roughly the number of extra insns that
899 should be added to avoid a branch.
900
901 Branches are extremely cheap on the VAX while the shift insns often
902 used to replace branches can be expensive. */
903
904 #define BRANCH_COST 0
905
906 /*
907 * We can use the BSD C library routines for the libgcc calls that are
908 * still generated, since that's what they boil down to anyways.
909 */
910
911 #define UDIVSI3_LIBCALL "*udiv"
912 #define UMODSI3_LIBCALL "*urem"
913 \f
914 /* Tell final.c how to eliminate redundant test instructions. */
915
916 /* Here we define machine-dependent flags and fields in cc_status
917 (see `conditions.h'). No extra ones are needed for the VAX. */
918
919 /* Store in cc_status the expressions
920 that the condition codes will describe
921 after execution of an instruction whose pattern is EXP.
922 Do not alter them if the instruction would not alter the cc's. */
923
924 #define NOTICE_UPDATE_CC(EXP, INSN) \
925 { if (GET_CODE (EXP) == SET) \
926 { if (GET_CODE (SET_SRC (EXP)) == CALL) \
927 CC_STATUS_INIT; \
928 else if (GET_CODE (SET_DEST (EXP)) != ZERO_EXTRACT \
929 && GET_CODE (SET_DEST (EXP)) != PC) \
930 { \
931 cc_status.flags = 0; \
932 /* The integer operations below don't set carry or \
933 set it in an incompatible way. That's ok though \
934 as the Z bit is all we need when doing unsigned \
935 comparisons on the result of these insns (since \
936 they're always with 0). Set CC_NO_OVERFLOW to \
937 generate the correct unsigned branches. */ \
938 switch (GET_CODE (SET_SRC (EXP))) \
939 { \
940 case NEG: \
941 if (GET_MODE_CLASS (GET_MODE (EXP)) == MODE_FLOAT)\
942 break; \
943 case AND: \
944 case IOR: \
945 case XOR: \
946 case NOT: \
947 case MEM: \
948 case REG: \
949 cc_status.flags = CC_NO_OVERFLOW; \
950 break; \
951 default: \
952 break; \
953 } \
954 cc_status.value1 = SET_DEST (EXP); \
955 cc_status.value2 = SET_SRC (EXP); } } \
956 else if (GET_CODE (EXP) == PARALLEL \
957 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
958 { \
959 if (GET_CODE (SET_SRC (XVECEXP (EXP, 0, 0))) == CALL) \
960 CC_STATUS_INIT; \
961 else if (GET_CODE (SET_DEST (XVECEXP (EXP, 0, 0))) != PC) \
962 { cc_status.flags = 0; \
963 cc_status.value1 = SET_DEST (XVECEXP (EXP, 0, 0)); \
964 cc_status.value2 = SET_SRC (XVECEXP (EXP, 0, 0)); } \
965 else \
966 /* PARALLELs whose first element sets the PC are aob, \
967 sob insns. They do change the cc's. */ \
968 CC_STATUS_INIT; } \
969 else CC_STATUS_INIT; \
970 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
971 && cc_status.value2 \
972 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
973 cc_status.value2 = 0; \
974 if (cc_status.value1 && GET_CODE (cc_status.value1) == MEM \
975 && cc_status.value2 \
976 && GET_CODE (cc_status.value2) == MEM) \
977 cc_status.value2 = 0; }
978 /* Actual condition, one line up, should be that value2's address
979 depends on value1, but that is too much of a pain. */
980
981 #define OUTPUT_JUMP(NORMAL, FLOAT, NO_OV) \
982 { if (cc_status.flags & CC_NO_OVERFLOW) \
983 return NO_OV; \
984 return NORMAL; }
985 \f
986 /* Control the assembler format that we output. */
987
988 /* Output at beginning of assembler file. */
989 /* When debugging, we want to output an extra dummy label so that gas
990 can distinguish between D_float and G_float prior to processing the
991 .stabs directive identifying type double. */
992
993 #define ASM_FILE_START(FILE) \
994 do { \
995 fputs (ASM_APP_OFF, FILE); \
996 if (write_symbols == DBX_DEBUG) \
997 fprintf (FILE, "___vax_%c_doubles:\n", ASM_DOUBLE_CHAR); \
998 } while (0)
999
1000
1001 /* Output to assembler file text saying following lines
1002 may contain character constants, extra white space, comments, etc. */
1003
1004 #define ASM_APP_ON "#APP\n"
1005
1006 /* Output to assembler file text saying following lines
1007 no longer contain unusual constructs. */
1008
1009 #define ASM_APP_OFF "#NO_APP\n"
1010
1011 /* Output before read-only data. */
1012
1013 #define TEXT_SECTION_ASM_OP "\t.text"
1014
1015 /* Output before writable data. */
1016
1017 #define DATA_SECTION_ASM_OP "\t.data"
1018
1019 /* How to refer to registers in assembler output.
1020 This sequence is indexed by compiler's hard-register-number (see above).
1021 The register names will be prefixed by REGISTER_PREFIX, if any. */
1022
1023 #define REGISTER_PREFIX ""
1024 #define REGISTER_NAMES \
1025 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", \
1026 "r9", "r10", "r11", "ap", "fp", "sp", "pc"}
1027
1028 /* This is BSD, so it wants DBX format. */
1029
1030 #define DBX_DEBUGGING_INFO 1
1031
1032 /* Do not break .stabs pseudos into continuations. */
1033
1034 #define DBX_CONTIN_LENGTH 0
1035
1036 /* This is the char to use for continuation (in case we need to turn
1037 continuation back on). */
1038
1039 #define DBX_CONTIN_CHAR '?'
1040
1041 /* Don't use the `xsfoo;' construct in DBX output; this system
1042 doesn't support it. */
1043
1044 #define DBX_NO_XREFS
1045
1046 /* Output the .stabs for a C `static' variable in the data section. */
1047 #define DBX_STATIC_STAB_DATA_SECTION
1048
1049 /* VAX specific: which type character is used for type double? */
1050
1051 #define ASM_DOUBLE_CHAR (TARGET_G_FLOAT ? 'g' : 'd')
1052
1053 /* This is how to output a command to make the user-level label named NAME
1054 defined for reference from other files. */
1055
1056 /* Globalizing directive for a label. */
1057 #define GLOBAL_ASM_OP ".globl "
1058
1059 /* The prefix to add to user-visible assembler symbols. */
1060
1061 #define USER_LABEL_PREFIX "_"
1062
1063 /* This is how to output an internal numbered label where
1064 PREFIX is the class of label and NUM is the number within the class. */
1065
1066 #define ASM_OUTPUT_INTERNAL_LABEL(FILE,PREFIX,NUM) \
1067 fprintf (FILE, "%s%d:\n", PREFIX, NUM)
1068
1069 /* This is how to store into the string LABEL
1070 the symbol_ref name of an internal numbered label where
1071 PREFIX is the class of label and NUM is the number within the class.
1072 This is suitable for output with `assemble_name'. */
1073
1074 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1075 sprintf (LABEL, "*%s%d", PREFIX, NUM)
1076
1077 /* This is how to output an insn to push a register on the stack.
1078 It need not be very fast code. */
1079
1080 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
1081 fprintf (FILE, "\tpushl %s\n", reg_names[REGNO])
1082
1083 /* This is how to output an insn to pop a register from the stack.
1084 It need not be very fast code. */
1085
1086 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
1087 fprintf (FILE, "\tmovl (%s)+,%s\n", reg_names[STACK_POINTER_REGNUM], \
1088 reg_names[REGNO])
1089
1090 /* This is how to output an element of a case-vector that is absolute.
1091 (The VAX does not use such vectors,
1092 but we must define this macro anyway.) */
1093
1094 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1095 do \
1096 { \
1097 char label[256]; \
1098 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE));\
1099 fprintf (FILE, "\t.long "); \
1100 assemble_name (FILE, label); \
1101 fprintf (FILE, "\n"); \
1102 } \
1103 while (0)
1104
1105 /* This is how to output an element of a case-vector that is relative. */
1106
1107 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1108 do \
1109 { \
1110 char label[256]; \
1111 ASM_GENERATE_INTERNAL_LABEL (label, "L", (VALUE)); \
1112 fprintf (FILE, "\t.word "); \
1113 assemble_name (FILE, label); \
1114 ASM_GENERATE_INTERNAL_LABEL (label, "L", (REL)); \
1115 fprintf (FILE, "-"); \
1116 assemble_name (FILE, label); \
1117 fprintf (FILE, "\n"); \
1118 } \
1119 while (0)
1120
1121 /* This is how to output an assembler line
1122 that says to advance the location counter
1123 to a multiple of 2**LOG bytes. */
1124
1125 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
1126 fprintf (FILE, "\t.align %d\n", (LOG))
1127
1128 /* This is how to output an assembler line
1129 that says to advance the location counter by SIZE bytes. */
1130
1131 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
1132 fprintf (FILE, "\t.space %u\n", (SIZE))
1133
1134 /* This says how to output an assembler line
1135 to define a global common symbol. */
1136
1137 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
1138 ( fputs (".comm ", (FILE)), \
1139 assemble_name ((FILE), (NAME)), \
1140 fprintf ((FILE), ",%u\n", (ROUNDED)))
1141
1142 /* This says how to output an assembler line
1143 to define a local common symbol. */
1144
1145 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
1146 ( fputs (".lcomm ", (FILE)), \
1147 assemble_name ((FILE), (NAME)), \
1148 fprintf ((FILE), ",%u\n", (ROUNDED)))
1149
1150 /* Store in OUTPUT a string (made with alloca) containing
1151 an assembler-name for a local static variable named NAME.
1152 LABELNO is an integer which is different for each call. */
1153
1154 #define ASM_FORMAT_PRIVATE_NAME(OUTPUT, NAME, LABELNO) \
1155 ( (OUTPUT) = (char *) alloca (strlen ((NAME)) + 10), \
1156 sprintf ((OUTPUT), "%s.%d", (NAME), (LABELNO)))
1157
1158 /* Output code to add DELTA to the first argument, and then jump to FUNCTION.
1159 Used for C++ multiple inheritance.
1160 .mask ^m<r2,r3,r4,r5,r6,r7,r8,r9,r10,r11> #conservative entry mask
1161 addl2 $DELTA, 4(ap) #adjust first argument
1162 jmp FUNCTION+2 #jump beyond FUNCTION's entry mask
1163 */
1164 #define ASM_OUTPUT_MI_THUNK(FILE, THUNK_FNDECL, DELTA, FUNCTION) \
1165 do { \
1166 fprintf (FILE, "\t.word 0x0ffc\n"); \
1167 asm_fprintf (FILE, "\taddl2 $%d,4(%Rap)\n", DELTA); \
1168 fprintf (FILE, "\tjmp "); \
1169 assemble_name (FILE, XSTR (XEXP (DECL_RTL (FUNCTION), 0), 0)); \
1170 fprintf (FILE, "+2\n"); \
1171 } while (0)
1172
1173 /* Print an instruction operand X on file FILE.
1174 CODE is the code from the %-spec that requested printing this operand;
1175 if `%z3' was used to print operand 3, then CODE is 'z'.
1176
1177 VAX operand formatting codes:
1178
1179 letter print
1180 C reverse branch condition
1181 D 64-bit immediate operand
1182 B the low 8 bits of the complement of a constant operand
1183 H the low 16 bits of the complement of a constant operand
1184 M a mask for the N highest bits of a word
1185 N the complement of a constant integer operand
1186 P constant operand plus 1
1187 R 32 - constant operand
1188 b the low 8 bits of a negated constant operand
1189 h the low 16 bits of a negated constant operand
1190 # 'd' or 'g' depending on whether dfloat or gfloat is used
1191 | register prefix */
1192
1193 /* The purpose of D is to get around a quirk or bug in VAX assembler
1194 whereby -1 in a 64-bit immediate operand means 0x00000000ffffffff,
1195 which is not a 64-bit minus one. */
1196
1197 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
1198 ((CODE) == '#' || (CODE) == '|')
1199
1200 #define PRINT_OPERAND(FILE, X, CODE) \
1201 { if (CODE == '#') fputc (ASM_DOUBLE_CHAR, FILE); \
1202 else if (CODE == '|') \
1203 fputs (REGISTER_PREFIX, FILE); \
1204 else if (CODE == 'C') \
1205 fputs (rev_cond_name (X), FILE); \
1206 else if (CODE == 'D' && GET_CODE (X) == CONST_INT && INTVAL (X) < 0) \
1207 fprintf (FILE, "$0xffffffff%08x", INTVAL (X)); \
1208 else if (CODE == 'P' && GET_CODE (X) == CONST_INT) \
1209 fprintf (FILE, "$%d", INTVAL (X) + 1); \
1210 else if (CODE == 'N' && GET_CODE (X) == CONST_INT) \
1211 fprintf (FILE, "$%d", ~ INTVAL (X)); \
1212 /* rotl instruction cannot deal with negative arguments. */ \
1213 else if (CODE == 'R' && GET_CODE (X) == CONST_INT) \
1214 fprintf (FILE, "$%d", 32 - INTVAL (X)); \
1215 else if (CODE == 'H' && GET_CODE (X) == CONST_INT) \
1216 fprintf (FILE, "$%d", 0xffff & ~ INTVAL (X)); \
1217 else if (CODE == 'h' && GET_CODE (X) == CONST_INT) \
1218 fprintf (FILE, "$%d", (short) - INTVAL (x)); \
1219 else if (CODE == 'B' && GET_CODE (X) == CONST_INT) \
1220 fprintf (FILE, "$%d", 0xff & ~ INTVAL (X)); \
1221 else if (CODE == 'b' && GET_CODE (X) == CONST_INT) \
1222 fprintf (FILE, "$%d", 0xff & - INTVAL (X)); \
1223 else if (CODE == 'M' && GET_CODE (X) == CONST_INT) \
1224 fprintf (FILE, "$%d", ~((1 << INTVAL (x)) - 1)); \
1225 else if (GET_CODE (X) == REG) \
1226 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
1227 else if (GET_CODE (X) == MEM) \
1228 output_address (XEXP (X, 0)); \
1229 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == SFmode) \
1230 { char dstr[30]; \
1231 real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (X), \
1232 sizeof (dstr), 0, 1); \
1233 fprintf (FILE, "$0f%s", dstr); } \
1234 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == DFmode) \
1235 { char dstr[30]; \
1236 real_to_decimal (dstr, CONST_DOUBLE_REAL_VALUE (X), \
1237 sizeof (dstr), 0, 1); \
1238 fprintf (FILE, "$0%c%s", ASM_DOUBLE_CHAR, dstr); } \
1239 else { putc ('$', FILE); output_addr_const (FILE, X); }}
1240
1241 /* Print a memory operand whose address is X, on file FILE.
1242 This uses a function in output-vax.c. */
1243
1244 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
1245 print_operand_address (FILE, ADDR)
1246
1247 /* This is a blatent lie. However, it's good enough, since we don't
1248 actually have any code whatsoever for which this isn't overridden
1249 by the proper FDE definition. */
1250 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, PC_REGNUM)