]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/xtensa/xtensa.c
target.def (legitimate_constant_p): New hook.
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.c
1 /* Subroutines for insn-output.c for Tensilica's Xtensa architecture.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "insn-config.h"
31 #include "conditions.h"
32 #include "insn-flags.h"
33 #include "insn-attr.h"
34 #include "insn-codes.h"
35 #include "recog.h"
36 #include "output.h"
37 #include "tree.h"
38 #include "expr.h"
39 #include "flags.h"
40 #include "reload.h"
41 #include "tm_p.h"
42 #include "function.h"
43 #include "diagnostic-core.h"
44 #include "optabs.h"
45 #include "libfuncs.h"
46 #include "ggc.h"
47 #include "target.h"
48 #include "target-def.h"
49 #include "langhooks.h"
50 #include "gimple.h"
51 #include "df.h"
52
53
54 /* Enumeration for all of the relational tests, so that we can build
55 arrays indexed by the test type, and not worry about the order
56 of EQ, NE, etc. */
57
58 enum internal_test
59 {
60 ITEST_EQ,
61 ITEST_NE,
62 ITEST_GT,
63 ITEST_GE,
64 ITEST_LT,
65 ITEST_LE,
66 ITEST_GTU,
67 ITEST_GEU,
68 ITEST_LTU,
69 ITEST_LEU,
70 ITEST_MAX
71 };
72
73 /* Array giving truth value on whether or not a given hard register
74 can support a given mode. */
75 char xtensa_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
76
77 /* Current frame size calculated by compute_frame_size. */
78 unsigned xtensa_current_frame_size;
79
80 /* Largest block move to handle in-line. */
81 #define LARGEST_MOVE_RATIO 15
82
83 /* Define the structure for the machine field in struct function. */
84 struct GTY(()) machine_function
85 {
86 int accesses_prev_frame;
87 bool need_a7_copy;
88 bool vararg_a7;
89 rtx vararg_a7_copy;
90 rtx set_frame_ptr_insn;
91 };
92
93 /* Vector, indexed by hard register number, which contains 1 for a
94 register that is allowable in a candidate for leaf function
95 treatment. */
96
97 const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER] =
98 {
99 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
100 1, 1, 1,
101 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
102 1
103 };
104
105 /* Map hard register number to register class */
106 const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER] =
107 {
108 RL_REGS, SP_REG, RL_REGS, RL_REGS,
109 RL_REGS, RL_REGS, RL_REGS, GR_REGS,
110 RL_REGS, RL_REGS, RL_REGS, RL_REGS,
111 RL_REGS, RL_REGS, RL_REGS, RL_REGS,
112 AR_REGS, AR_REGS, BR_REGS,
113 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
114 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
115 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
116 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
117 ACC_REG,
118 };
119
120 static void xtensa_option_override (void);
121 static enum internal_test map_test_to_internal_test (enum rtx_code);
122 static rtx gen_int_relational (enum rtx_code, rtx, rtx, int *);
123 static rtx gen_float_relational (enum rtx_code, rtx, rtx);
124 static rtx gen_conditional_move (enum rtx_code, enum machine_mode, rtx, rtx);
125 static rtx fixup_subreg_mem (rtx);
126 static struct machine_function * xtensa_init_machine_status (void);
127 static rtx xtensa_legitimize_tls_address (rtx);
128 static rtx xtensa_legitimize_address (rtx, rtx, enum machine_mode);
129 static bool xtensa_mode_dependent_address_p (const_rtx);
130 static bool xtensa_return_in_msb (const_tree);
131 static void printx (FILE *, signed int);
132 static void xtensa_function_epilogue (FILE *, HOST_WIDE_INT);
133 static rtx xtensa_builtin_saveregs (void);
134 static bool xtensa_legitimate_address_p (enum machine_mode, rtx, bool);
135 static unsigned int xtensa_multibss_section_type_flags (tree, const char *,
136 int) ATTRIBUTE_UNUSED;
137 static section *xtensa_select_rtx_section (enum machine_mode, rtx,
138 unsigned HOST_WIDE_INT);
139 static bool xtensa_rtx_costs (rtx, int, int, int *, bool);
140 static int xtensa_register_move_cost (enum machine_mode, reg_class_t,
141 reg_class_t);
142 static int xtensa_memory_move_cost (enum machine_mode, reg_class_t, bool);
143 static tree xtensa_build_builtin_va_list (void);
144 static bool xtensa_return_in_memory (const_tree, const_tree);
145 static tree xtensa_gimplify_va_arg_expr (tree, tree, gimple_seq *,
146 gimple_seq *);
147 static void xtensa_function_arg_advance (CUMULATIVE_ARGS *, enum machine_mode,
148 const_tree, bool);
149 static rtx xtensa_function_arg (CUMULATIVE_ARGS *, enum machine_mode,
150 const_tree, bool);
151 static rtx xtensa_function_incoming_arg (CUMULATIVE_ARGS *,
152 enum machine_mode, const_tree, bool);
153 static rtx xtensa_function_value (const_tree, const_tree, bool);
154 static rtx xtensa_libcall_value (enum machine_mode, const_rtx);
155 static bool xtensa_function_value_regno_p (const unsigned int);
156 static unsigned int xtensa_function_arg_boundary (enum machine_mode,
157 const_tree);
158 static void xtensa_init_builtins (void);
159 static tree xtensa_fold_builtin (tree, int, tree *, bool);
160 static rtx xtensa_expand_builtin (tree, rtx, rtx, enum machine_mode, int);
161 static void xtensa_va_start (tree, rtx);
162 static bool xtensa_frame_pointer_required (void);
163 static rtx xtensa_static_chain (const_tree, bool);
164 static void xtensa_asm_trampoline_template (FILE *);
165 static void xtensa_trampoline_init (rtx, tree, rtx);
166 static bool xtensa_output_addr_const_extra (FILE *, rtx);
167 static bool xtensa_cannot_force_const_mem (enum machine_mode, rtx);
168
169 static reg_class_t xtensa_preferred_reload_class (rtx, reg_class_t);
170 static reg_class_t xtensa_preferred_output_reload_class (rtx, reg_class_t);
171 static reg_class_t xtensa_secondary_reload (bool, rtx, reg_class_t,
172 enum machine_mode,
173 struct secondary_reload_info *);
174
175 static bool constantpool_address_p (const_rtx addr);
176 static bool xtensa_legitimate_constant_p (enum machine_mode, rtx);
177
178 static const int reg_nonleaf_alloc_order[FIRST_PSEUDO_REGISTER] =
179 REG_ALLOC_ORDER;
180
181 /* Implement TARGET_OPTION_OPTIMIZATION_TABLE. */
182
183 static const struct default_options xtensa_option_optimization_table[] =
184 {
185 { OPT_LEVELS_1_PLUS, OPT_fomit_frame_pointer, NULL, 1 },
186 /* Reordering blocks for Xtensa is not a good idea unless the
187 compiler understands the range of conditional branches.
188 Currently all branch relaxation for Xtensa is handled in the
189 assembler, so GCC cannot do a good job of reordering blocks.
190 Do not enable reordering unless it is explicitly requested. */
191 { OPT_LEVELS_ALL, OPT_freorder_blocks, NULL, 0 },
192 { OPT_LEVELS_NONE, 0, NULL, 0 }
193 };
194 \f
195
196 /* This macro generates the assembly code for function exit,
197 on machines that need it. If FUNCTION_EPILOGUE is not defined
198 then individual return instructions are generated for each
199 return statement. Args are same as for FUNCTION_PROLOGUE. */
200
201 #undef TARGET_ASM_FUNCTION_EPILOGUE
202 #define TARGET_ASM_FUNCTION_EPILOGUE xtensa_function_epilogue
203
204 /* These hooks specify assembly directives for creating certain kinds
205 of integer object. */
206
207 #undef TARGET_ASM_ALIGNED_SI_OP
208 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
209
210 #undef TARGET_ASM_SELECT_RTX_SECTION
211 #define TARGET_ASM_SELECT_RTX_SECTION xtensa_select_rtx_section
212
213 #undef TARGET_DEFAULT_TARGET_FLAGS
214 #define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT)
215
216 #undef TARGET_LEGITIMIZE_ADDRESS
217 #define TARGET_LEGITIMIZE_ADDRESS xtensa_legitimize_address
218 #undef TARGET_MODE_DEPENDENT_ADDRESS_P
219 #define TARGET_MODE_DEPENDENT_ADDRESS_P xtensa_mode_dependent_address_p
220
221 #undef TARGET_REGISTER_MOVE_COST
222 #define TARGET_REGISTER_MOVE_COST xtensa_register_move_cost
223 #undef TARGET_MEMORY_MOVE_COST
224 #define TARGET_MEMORY_MOVE_COST xtensa_memory_move_cost
225 #undef TARGET_RTX_COSTS
226 #define TARGET_RTX_COSTS xtensa_rtx_costs
227 #undef TARGET_ADDRESS_COST
228 #define TARGET_ADDRESS_COST hook_int_rtx_bool_0
229
230 #undef TARGET_BUILD_BUILTIN_VA_LIST
231 #define TARGET_BUILD_BUILTIN_VA_LIST xtensa_build_builtin_va_list
232
233 #undef TARGET_EXPAND_BUILTIN_VA_START
234 #define TARGET_EXPAND_BUILTIN_VA_START xtensa_va_start
235
236 #undef TARGET_PROMOTE_FUNCTION_MODE
237 #define TARGET_PROMOTE_FUNCTION_MODE default_promote_function_mode_always_promote
238 #undef TARGET_PROMOTE_PROTOTYPES
239 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
240
241 #undef TARGET_RETURN_IN_MEMORY
242 #define TARGET_RETURN_IN_MEMORY xtensa_return_in_memory
243 #undef TARGET_FUNCTION_VALUE
244 #define TARGET_FUNCTION_VALUE xtensa_function_value
245 #undef TARGET_LIBCALL_VALUE
246 #define TARGET_LIBCALL_VALUE xtensa_libcall_value
247 #undef TARGET_FUNCTION_VALUE_REGNO_P
248 #define TARGET_FUNCTION_VALUE_REGNO_P xtensa_function_value_regno_p
249
250 #undef TARGET_SPLIT_COMPLEX_ARG
251 #define TARGET_SPLIT_COMPLEX_ARG hook_bool_const_tree_true
252 #undef TARGET_MUST_PASS_IN_STACK
253 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
254 #undef TARGET_FUNCTION_ARG_ADVANCE
255 #define TARGET_FUNCTION_ARG_ADVANCE xtensa_function_arg_advance
256 #undef TARGET_FUNCTION_ARG
257 #define TARGET_FUNCTION_ARG xtensa_function_arg
258 #undef TARGET_FUNCTION_INCOMING_ARG
259 #define TARGET_FUNCTION_INCOMING_ARG xtensa_function_incoming_arg
260 #undef TARGET_FUNCTION_ARG_BOUNDARY
261 #define TARGET_FUNCTION_ARG_BOUNDARY xtensa_function_arg_boundary
262
263 #undef TARGET_EXPAND_BUILTIN_SAVEREGS
264 #define TARGET_EXPAND_BUILTIN_SAVEREGS xtensa_builtin_saveregs
265 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
266 #define TARGET_GIMPLIFY_VA_ARG_EXPR xtensa_gimplify_va_arg_expr
267
268 #undef TARGET_RETURN_IN_MSB
269 #define TARGET_RETURN_IN_MSB xtensa_return_in_msb
270
271 #undef TARGET_INIT_BUILTINS
272 #define TARGET_INIT_BUILTINS xtensa_init_builtins
273 #undef TARGET_FOLD_BUILTIN
274 #define TARGET_FOLD_BUILTIN xtensa_fold_builtin
275 #undef TARGET_EXPAND_BUILTIN
276 #define TARGET_EXPAND_BUILTIN xtensa_expand_builtin
277
278 #undef TARGET_PREFERRED_RELOAD_CLASS
279 #define TARGET_PREFERRED_RELOAD_CLASS xtensa_preferred_reload_class
280 #undef TARGET_PREFERRED_OUTPUT_RELOAD_CLASS
281 #define TARGET_PREFERRED_OUTPUT_RELOAD_CLASS xtensa_preferred_output_reload_class
282
283 #undef TARGET_SECONDARY_RELOAD
284 #define TARGET_SECONDARY_RELOAD xtensa_secondary_reload
285
286 #undef TARGET_HAVE_TLS
287 #define TARGET_HAVE_TLS (TARGET_THREADPTR && HAVE_AS_TLS)
288
289 #undef TARGET_CANNOT_FORCE_CONST_MEM
290 #define TARGET_CANNOT_FORCE_CONST_MEM xtensa_cannot_force_const_mem
291
292 #undef TARGET_LEGITIMATE_ADDRESS_P
293 #define TARGET_LEGITIMATE_ADDRESS_P xtensa_legitimate_address_p
294
295 #undef TARGET_FRAME_POINTER_REQUIRED
296 #define TARGET_FRAME_POINTER_REQUIRED xtensa_frame_pointer_required
297
298 #undef TARGET_STATIC_CHAIN
299 #define TARGET_STATIC_CHAIN xtensa_static_chain
300 #undef TARGET_ASM_TRAMPOLINE_TEMPLATE
301 #define TARGET_ASM_TRAMPOLINE_TEMPLATE xtensa_asm_trampoline_template
302 #undef TARGET_TRAMPOLINE_INIT
303 #define TARGET_TRAMPOLINE_INIT xtensa_trampoline_init
304
305 #undef TARGET_OPTION_OVERRIDE
306 #define TARGET_OPTION_OVERRIDE xtensa_option_override
307 #undef TARGET_OPTION_OPTIMIZATION_TABLE
308 #define TARGET_OPTION_OPTIMIZATION_TABLE xtensa_option_optimization_table
309
310 #undef TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA
311 #define TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA xtensa_output_addr_const_extra
312
313 #undef TARGET_LEGITIMATE_CONSTANT_P
314 #define TARGET_LEGITIMATE_CONSTANT_P xtensa_legitimate_constant_p
315
316 struct gcc_target targetm = TARGET_INITIALIZER;
317
318 \f
319 /* Functions to test Xtensa immediate operand validity. */
320
321 bool
322 xtensa_simm8 (HOST_WIDE_INT v)
323 {
324 return v >= -128 && v <= 127;
325 }
326
327
328 bool
329 xtensa_simm8x256 (HOST_WIDE_INT v)
330 {
331 return (v & 255) == 0 && (v >= -32768 && v <= 32512);
332 }
333
334
335 bool
336 xtensa_simm12b (HOST_WIDE_INT v)
337 {
338 return v >= -2048 && v <= 2047;
339 }
340
341
342 static bool
343 xtensa_uimm8 (HOST_WIDE_INT v)
344 {
345 return v >= 0 && v <= 255;
346 }
347
348
349 static bool
350 xtensa_uimm8x2 (HOST_WIDE_INT v)
351 {
352 return (v & 1) == 0 && (v >= 0 && v <= 510);
353 }
354
355
356 static bool
357 xtensa_uimm8x4 (HOST_WIDE_INT v)
358 {
359 return (v & 3) == 0 && (v >= 0 && v <= 1020);
360 }
361
362
363 static bool
364 xtensa_b4const (HOST_WIDE_INT v)
365 {
366 switch (v)
367 {
368 case -1:
369 case 1:
370 case 2:
371 case 3:
372 case 4:
373 case 5:
374 case 6:
375 case 7:
376 case 8:
377 case 10:
378 case 12:
379 case 16:
380 case 32:
381 case 64:
382 case 128:
383 case 256:
384 return true;
385 }
386 return false;
387 }
388
389
390 bool
391 xtensa_b4const_or_zero (HOST_WIDE_INT v)
392 {
393 if (v == 0)
394 return true;
395 return xtensa_b4const (v);
396 }
397
398
399 bool
400 xtensa_b4constu (HOST_WIDE_INT v)
401 {
402 switch (v)
403 {
404 case 32768:
405 case 65536:
406 case 2:
407 case 3:
408 case 4:
409 case 5:
410 case 6:
411 case 7:
412 case 8:
413 case 10:
414 case 12:
415 case 16:
416 case 32:
417 case 64:
418 case 128:
419 case 256:
420 return true;
421 }
422 return false;
423 }
424
425
426 bool
427 xtensa_mask_immediate (HOST_WIDE_INT v)
428 {
429 #define MAX_MASK_SIZE 16
430 int mask_size;
431
432 for (mask_size = 1; mask_size <= MAX_MASK_SIZE; mask_size++)
433 {
434 if ((v & 1) == 0)
435 return false;
436 v = v >> 1;
437 if (v == 0)
438 return true;
439 }
440
441 return false;
442 }
443
444
445 /* This is just like the standard true_regnum() function except that it
446 works even when reg_renumber is not initialized. */
447
448 int
449 xt_true_regnum (rtx x)
450 {
451 if (GET_CODE (x) == REG)
452 {
453 if (reg_renumber
454 && REGNO (x) >= FIRST_PSEUDO_REGISTER
455 && reg_renumber[REGNO (x)] >= 0)
456 return reg_renumber[REGNO (x)];
457 return REGNO (x);
458 }
459 if (GET_CODE (x) == SUBREG)
460 {
461 int base = xt_true_regnum (SUBREG_REG (x));
462 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
463 return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
464 GET_MODE (SUBREG_REG (x)),
465 SUBREG_BYTE (x), GET_MODE (x));
466 }
467 return -1;
468 }
469
470
471 int
472 xtensa_valid_move (enum machine_mode mode, rtx *operands)
473 {
474 /* Either the destination or source must be a register, and the
475 MAC16 accumulator doesn't count. */
476
477 if (register_operand (operands[0], mode))
478 {
479 int dst_regnum = xt_true_regnum (operands[0]);
480
481 /* The stack pointer can only be assigned with a MOVSP opcode. */
482 if (dst_regnum == STACK_POINTER_REGNUM)
483 return (mode == SImode
484 && register_operand (operands[1], mode)
485 && !ACC_REG_P (xt_true_regnum (operands[1])));
486
487 if (!ACC_REG_P (dst_regnum))
488 return true;
489 }
490 if (register_operand (operands[1], mode))
491 {
492 int src_regnum = xt_true_regnum (operands[1]);
493 if (!ACC_REG_P (src_regnum))
494 return true;
495 }
496 return FALSE;
497 }
498
499
500 int
501 smalloffset_mem_p (rtx op)
502 {
503 if (GET_CODE (op) == MEM)
504 {
505 rtx addr = XEXP (op, 0);
506 if (GET_CODE (addr) == REG)
507 return BASE_REG_P (addr, 0);
508 if (GET_CODE (addr) == PLUS)
509 {
510 rtx offset = XEXP (addr, 0);
511 HOST_WIDE_INT val;
512 if (GET_CODE (offset) != CONST_INT)
513 offset = XEXP (addr, 1);
514 if (GET_CODE (offset) != CONST_INT)
515 return FALSE;
516
517 val = INTVAL (offset);
518 return (val & 3) == 0 && (val >= 0 && val <= 60);
519 }
520 }
521 return FALSE;
522 }
523
524
525 static bool
526 constantpool_address_p (const_rtx addr)
527 {
528 const_rtx sym = addr;
529
530 if (GET_CODE (addr) == CONST)
531 {
532 rtx offset;
533
534 /* Only handle (PLUS (SYM, OFFSET)) form. */
535 addr = XEXP (addr, 0);
536 if (GET_CODE (addr) != PLUS)
537 return false;
538
539 /* Make sure the address is word aligned. */
540 offset = XEXP (addr, 1);
541 if ((!CONST_INT_P (offset))
542 || ((INTVAL (offset) & 3) != 0))
543 return false;
544
545 sym = XEXP (addr, 0);
546 }
547
548 if ((GET_CODE (sym) == SYMBOL_REF)
549 && CONSTANT_POOL_ADDRESS_P (sym))
550 return true;
551 return false;
552 }
553
554
555 int
556 constantpool_mem_p (rtx op)
557 {
558 if (GET_CODE (op) == SUBREG)
559 op = SUBREG_REG (op);
560 if (GET_CODE (op) == MEM)
561 return constantpool_address_p (XEXP (op, 0));
562 return FALSE;
563 }
564
565
566 /* Return TRUE if X is a thread-local symbol. */
567
568 static bool
569 xtensa_tls_symbol_p (rtx x)
570 {
571 if (! TARGET_HAVE_TLS)
572 return false;
573
574 return GET_CODE (x) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (x) != 0;
575 }
576
577
578 void
579 xtensa_extend_reg (rtx dst, rtx src)
580 {
581 rtx temp = gen_reg_rtx (SImode);
582 rtx shift = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (GET_MODE (src)));
583
584 /* Generate paradoxical subregs as needed so that the modes match. */
585 src = simplify_gen_subreg (SImode, src, GET_MODE (src), 0);
586 dst = simplify_gen_subreg (SImode, dst, GET_MODE (dst), 0);
587
588 emit_insn (gen_ashlsi3 (temp, src, shift));
589 emit_insn (gen_ashrsi3 (dst, temp, shift));
590 }
591
592
593 bool
594 xtensa_mem_offset (unsigned v, enum machine_mode mode)
595 {
596 switch (mode)
597 {
598 case BLKmode:
599 /* Handle the worst case for block moves. See xtensa_expand_block_move
600 where we emit an optimized block move operation if the block can be
601 moved in < "move_ratio" pieces. The worst case is when the block is
602 aligned but has a size of (3 mod 4) (does this happen?) so that the
603 last piece requires a byte load/store. */
604 return (xtensa_uimm8 (v)
605 && xtensa_uimm8 (v + MOVE_MAX * LARGEST_MOVE_RATIO));
606
607 case QImode:
608 return xtensa_uimm8 (v);
609
610 case HImode:
611 return xtensa_uimm8x2 (v);
612
613 case DFmode:
614 return (xtensa_uimm8x4 (v) && xtensa_uimm8x4 (v + 4));
615
616 default:
617 break;
618 }
619
620 return xtensa_uimm8x4 (v);
621 }
622
623
624 /* Make normal rtx_code into something we can index from an array. */
625
626 static enum internal_test
627 map_test_to_internal_test (enum rtx_code test_code)
628 {
629 enum internal_test test = ITEST_MAX;
630
631 switch (test_code)
632 {
633 default: break;
634 case EQ: test = ITEST_EQ; break;
635 case NE: test = ITEST_NE; break;
636 case GT: test = ITEST_GT; break;
637 case GE: test = ITEST_GE; break;
638 case LT: test = ITEST_LT; break;
639 case LE: test = ITEST_LE; break;
640 case GTU: test = ITEST_GTU; break;
641 case GEU: test = ITEST_GEU; break;
642 case LTU: test = ITEST_LTU; break;
643 case LEU: test = ITEST_LEU; break;
644 }
645
646 return test;
647 }
648
649
650 /* Generate the code to compare two integer values. The return value is
651 the comparison expression. */
652
653 static rtx
654 gen_int_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
655 rtx cmp0, /* first operand to compare */
656 rtx cmp1, /* second operand to compare */
657 int *p_invert /* whether branch needs to reverse test */)
658 {
659 struct cmp_info
660 {
661 enum rtx_code test_code; /* test code to use in insn */
662 bool (*const_range_p) (HOST_WIDE_INT); /* range check function */
663 int const_add; /* constant to add (convert LE -> LT) */
664 int reverse_regs; /* reverse registers in test */
665 int invert_const; /* != 0 if invert value if cmp1 is constant */
666 int invert_reg; /* != 0 if invert value if cmp1 is register */
667 int unsignedp; /* != 0 for unsigned comparisons. */
668 };
669
670 static struct cmp_info info[ (int)ITEST_MAX ] = {
671
672 { EQ, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* EQ */
673 { NE, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* NE */
674
675 { LT, xtensa_b4const_or_zero, 1, 1, 1, 0, 0 }, /* GT */
676 { GE, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* GE */
677 { LT, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* LT */
678 { GE, xtensa_b4const_or_zero, 1, 1, 1, 0, 0 }, /* LE */
679
680 { LTU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* GTU */
681 { GEU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* GEU */
682 { LTU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* LTU */
683 { GEU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* LEU */
684 };
685
686 enum internal_test test;
687 enum machine_mode mode;
688 struct cmp_info *p_info;
689
690 test = map_test_to_internal_test (test_code);
691 gcc_assert (test != ITEST_MAX);
692
693 p_info = &info[ (int)test ];
694
695 mode = GET_MODE (cmp0);
696 if (mode == VOIDmode)
697 mode = GET_MODE (cmp1);
698
699 /* Make sure we can handle any constants given to us. */
700 if (GET_CODE (cmp1) == CONST_INT)
701 {
702 HOST_WIDE_INT value = INTVAL (cmp1);
703 unsigned HOST_WIDE_INT uvalue = (unsigned HOST_WIDE_INT)value;
704
705 /* if the immediate overflows or does not fit in the immediate field,
706 spill it to a register */
707
708 if ((p_info->unsignedp ?
709 (uvalue + p_info->const_add > uvalue) :
710 (value + p_info->const_add > value)) != (p_info->const_add > 0))
711 {
712 cmp1 = force_reg (mode, cmp1);
713 }
714 else if (!(p_info->const_range_p) (value + p_info->const_add))
715 {
716 cmp1 = force_reg (mode, cmp1);
717 }
718 }
719 else if ((GET_CODE (cmp1) != REG) && (GET_CODE (cmp1) != SUBREG))
720 {
721 cmp1 = force_reg (mode, cmp1);
722 }
723
724 /* See if we need to invert the result. */
725 *p_invert = ((GET_CODE (cmp1) == CONST_INT)
726 ? p_info->invert_const
727 : p_info->invert_reg);
728
729 /* Comparison to constants, may involve adding 1 to change a LT into LE.
730 Comparison between two registers, may involve switching operands. */
731 if (GET_CODE (cmp1) == CONST_INT)
732 {
733 if (p_info->const_add != 0)
734 cmp1 = GEN_INT (INTVAL (cmp1) + p_info->const_add);
735
736 }
737 else if (p_info->reverse_regs)
738 {
739 rtx temp = cmp0;
740 cmp0 = cmp1;
741 cmp1 = temp;
742 }
743
744 return gen_rtx_fmt_ee (p_info->test_code, VOIDmode, cmp0, cmp1);
745 }
746
747
748 /* Generate the code to compare two float values. The return value is
749 the comparison expression. */
750
751 static rtx
752 gen_float_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
753 rtx cmp0, /* first operand to compare */
754 rtx cmp1 /* second operand to compare */)
755 {
756 rtx (*gen_fn) (rtx, rtx, rtx);
757 rtx brtmp;
758 int reverse_regs, invert;
759
760 switch (test_code)
761 {
762 case EQ: reverse_regs = 0; invert = 0; gen_fn = gen_seq_sf; break;
763 case NE: reverse_regs = 0; invert = 1; gen_fn = gen_seq_sf; break;
764 case LE: reverse_regs = 0; invert = 0; gen_fn = gen_sle_sf; break;
765 case GT: reverse_regs = 1; invert = 0; gen_fn = gen_slt_sf; break;
766 case LT: reverse_regs = 0; invert = 0; gen_fn = gen_slt_sf; break;
767 case GE: reverse_regs = 1; invert = 0; gen_fn = gen_sle_sf; break;
768 case UNEQ: reverse_regs = 0; invert = 0; gen_fn = gen_suneq_sf; break;
769 case LTGT: reverse_regs = 0; invert = 1; gen_fn = gen_suneq_sf; break;
770 case UNLE: reverse_regs = 0; invert = 0; gen_fn = gen_sunle_sf; break;
771 case UNGT: reverse_regs = 1; invert = 0; gen_fn = gen_sunlt_sf; break;
772 case UNLT: reverse_regs = 0; invert = 0; gen_fn = gen_sunlt_sf; break;
773 case UNGE: reverse_regs = 1; invert = 0; gen_fn = gen_sunle_sf; break;
774 case UNORDERED:
775 reverse_regs = 0; invert = 0; gen_fn = gen_sunordered_sf; break;
776 case ORDERED:
777 reverse_regs = 0; invert = 1; gen_fn = gen_sunordered_sf; break;
778 default:
779 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
780 reverse_regs = 0; invert = 0; gen_fn = 0; /* avoid compiler warnings */
781 }
782
783 if (reverse_regs)
784 {
785 rtx temp = cmp0;
786 cmp0 = cmp1;
787 cmp1 = temp;
788 }
789
790 brtmp = gen_rtx_REG (CCmode, FPCC_REGNUM);
791 emit_insn (gen_fn (brtmp, cmp0, cmp1));
792
793 return gen_rtx_fmt_ee (invert ? EQ : NE, VOIDmode, brtmp, const0_rtx);
794 }
795
796
797 void
798 xtensa_expand_conditional_branch (rtx *operands, enum machine_mode mode)
799 {
800 enum rtx_code test_code = GET_CODE (operands[0]);
801 rtx cmp0 = operands[1];
802 rtx cmp1 = operands[2];
803 rtx cmp;
804 int invert;
805 rtx label1, label2;
806
807 switch (mode)
808 {
809 case DFmode:
810 default:
811 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
812
813 case SImode:
814 invert = FALSE;
815 cmp = gen_int_relational (test_code, cmp0, cmp1, &invert);
816 break;
817
818 case SFmode:
819 if (!TARGET_HARD_FLOAT)
820 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode,
821 cmp0, cmp1));
822 invert = FALSE;
823 cmp = gen_float_relational (test_code, cmp0, cmp1);
824 break;
825 }
826
827 /* Generate the branch. */
828
829 label1 = gen_rtx_LABEL_REF (VOIDmode, operands[3]);
830 label2 = pc_rtx;
831
832 if (invert)
833 {
834 label2 = label1;
835 label1 = pc_rtx;
836 }
837
838 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
839 gen_rtx_IF_THEN_ELSE (VOIDmode, cmp,
840 label1,
841 label2)));
842 }
843
844
845 static rtx
846 gen_conditional_move (enum rtx_code code, enum machine_mode mode,
847 rtx op0, rtx op1)
848 {
849 if (mode == SImode)
850 {
851 rtx cmp;
852
853 /* Jump optimization calls get_condition() which canonicalizes
854 comparisons like (GE x <const>) to (GT x <const-1>).
855 Transform those comparisons back to GE, since that is the
856 comparison supported in Xtensa. We shouldn't have to
857 transform <LE x const> comparisons, because neither
858 xtensa_expand_conditional_branch() nor get_condition() will
859 produce them. */
860
861 if ((code == GT) && (op1 == constm1_rtx))
862 {
863 code = GE;
864 op1 = const0_rtx;
865 }
866 cmp = gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
867
868 if (boolean_operator (cmp, VOIDmode))
869 {
870 /* Swap the operands to make const0 second. */
871 if (op0 == const0_rtx)
872 {
873 op0 = op1;
874 op1 = const0_rtx;
875 }
876
877 /* If not comparing against zero, emit a comparison (subtract). */
878 if (op1 != const0_rtx)
879 {
880 op0 = expand_binop (SImode, sub_optab, op0, op1,
881 0, 0, OPTAB_LIB_WIDEN);
882 op1 = const0_rtx;
883 }
884 }
885 else if (branch_operator (cmp, VOIDmode))
886 {
887 /* Swap the operands to make const0 second. */
888 if (op0 == const0_rtx)
889 {
890 op0 = op1;
891 op1 = const0_rtx;
892
893 switch (code)
894 {
895 case LT: code = GE; break;
896 case GE: code = LT; break;
897 default: gcc_unreachable ();
898 }
899 }
900
901 if (op1 != const0_rtx)
902 return 0;
903 }
904 else
905 return 0;
906
907 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
908 }
909
910 if (TARGET_HARD_FLOAT && mode == SFmode)
911 return gen_float_relational (code, op0, op1);
912
913 return 0;
914 }
915
916
917 int
918 xtensa_expand_conditional_move (rtx *operands, int isflt)
919 {
920 rtx dest = operands[0];
921 rtx cmp = operands[1];
922 enum machine_mode cmp_mode = GET_MODE (XEXP (cmp, 0));
923 rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);
924
925 if (!(cmp = gen_conditional_move (GET_CODE (cmp), cmp_mode,
926 XEXP (cmp, 0), XEXP (cmp, 1))))
927 return 0;
928
929 if (isflt)
930 gen_fn = (cmp_mode == SImode
931 ? gen_movsfcc_internal0
932 : gen_movsfcc_internal1);
933 else
934 gen_fn = (cmp_mode == SImode
935 ? gen_movsicc_internal0
936 : gen_movsicc_internal1);
937
938 emit_insn (gen_fn (dest, XEXP (cmp, 0), operands[2], operands[3], cmp));
939 return 1;
940 }
941
942
943 int
944 xtensa_expand_scc (rtx operands[4], enum machine_mode cmp_mode)
945 {
946 rtx dest = operands[0];
947 rtx cmp;
948 rtx one_tmp, zero_tmp;
949 rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);
950
951 if (!(cmp = gen_conditional_move (GET_CODE (operands[1]), cmp_mode,
952 operands[2], operands[3])))
953 return 0;
954
955 one_tmp = gen_reg_rtx (SImode);
956 zero_tmp = gen_reg_rtx (SImode);
957 emit_insn (gen_movsi (one_tmp, const_true_rtx));
958 emit_insn (gen_movsi (zero_tmp, const0_rtx));
959
960 gen_fn = (cmp_mode == SImode
961 ? gen_movsicc_internal0
962 : gen_movsicc_internal1);
963 emit_insn (gen_fn (dest, XEXP (cmp, 0), one_tmp, zero_tmp, cmp));
964 return 1;
965 }
966
967
968 /* Split OP[1] into OP[2,3] and likewise for OP[0] into OP[0,1]. MODE is
969 for the output, i.e., the input operands are twice as big as MODE. */
970
971 void
972 xtensa_split_operand_pair (rtx operands[4], enum machine_mode mode)
973 {
974 switch (GET_CODE (operands[1]))
975 {
976 case REG:
977 operands[3] = gen_rtx_REG (mode, REGNO (operands[1]) + 1);
978 operands[2] = gen_rtx_REG (mode, REGNO (operands[1]));
979 break;
980
981 case MEM:
982 operands[3] = adjust_address (operands[1], mode, GET_MODE_SIZE (mode));
983 operands[2] = adjust_address (operands[1], mode, 0);
984 break;
985
986 case CONST_INT:
987 case CONST_DOUBLE:
988 split_double (operands[1], &operands[2], &operands[3]);
989 break;
990
991 default:
992 gcc_unreachable ();
993 }
994
995 switch (GET_CODE (operands[0]))
996 {
997 case REG:
998 operands[1] = gen_rtx_REG (mode, REGNO (operands[0]) + 1);
999 operands[0] = gen_rtx_REG (mode, REGNO (operands[0]));
1000 break;
1001
1002 case MEM:
1003 operands[1] = adjust_address (operands[0], mode, GET_MODE_SIZE (mode));
1004 operands[0] = adjust_address (operands[0], mode, 0);
1005 break;
1006
1007 default:
1008 gcc_unreachable ();
1009 }
1010 }
1011
1012
1013 /* Emit insns to move operands[1] into operands[0].
1014 Return 1 if we have written out everything that needs to be done to
1015 do the move. Otherwise, return 0 and the caller will emit the move
1016 normally. */
1017
1018 int
1019 xtensa_emit_move_sequence (rtx *operands, enum machine_mode mode)
1020 {
1021 rtx src = operands[1];
1022
1023 if (CONSTANT_P (src)
1024 && (GET_CODE (src) != CONST_INT || ! xtensa_simm12b (INTVAL (src))))
1025 {
1026 rtx dst = operands[0];
1027
1028 if (xtensa_tls_referenced_p (src))
1029 {
1030 rtx addend = NULL;
1031
1032 if (GET_CODE (src) == CONST && GET_CODE (XEXP (src, 0)) == PLUS)
1033 {
1034 addend = XEXP (XEXP (src, 0), 1);
1035 src = XEXP (XEXP (src, 0), 0);
1036 }
1037
1038 src = xtensa_legitimize_tls_address (src);
1039 if (addend)
1040 {
1041 src = gen_rtx_PLUS (mode, src, addend);
1042 src = force_operand (src, dst);
1043 }
1044 emit_move_insn (dst, src);
1045 return 1;
1046 }
1047
1048 if (! TARGET_CONST16)
1049 {
1050 src = force_const_mem (SImode, src);
1051 operands[1] = src;
1052 }
1053
1054 /* PC-relative loads are always SImode, and CONST16 is only
1055 supported in the movsi pattern, so add a SUBREG for any other
1056 (smaller) mode. */
1057
1058 if (mode != SImode)
1059 {
1060 if (register_operand (dst, mode))
1061 {
1062 emit_move_insn (simplify_gen_subreg (SImode, dst, mode, 0), src);
1063 return 1;
1064 }
1065 else
1066 {
1067 src = force_reg (SImode, src);
1068 src = gen_lowpart_SUBREG (mode, src);
1069 operands[1] = src;
1070 }
1071 }
1072 }
1073
1074 if (!(reload_in_progress | reload_completed)
1075 && !xtensa_valid_move (mode, operands))
1076 operands[1] = force_reg (mode, operands[1]);
1077
1078 operands[1] = xtensa_copy_incoming_a7 (operands[1]);
1079
1080 /* During reload we don't want to emit (subreg:X (mem:Y)) since that
1081 instruction won't be recognized after reload, so we remove the
1082 subreg and adjust mem accordingly. */
1083 if (reload_in_progress)
1084 {
1085 operands[0] = fixup_subreg_mem (operands[0]);
1086 operands[1] = fixup_subreg_mem (operands[1]);
1087 }
1088 return 0;
1089 }
1090
1091
1092 static rtx
1093 fixup_subreg_mem (rtx x)
1094 {
1095 if (GET_CODE (x) == SUBREG
1096 && GET_CODE (SUBREG_REG (x)) == REG
1097 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1098 {
1099 rtx temp =
1100 gen_rtx_SUBREG (GET_MODE (x),
1101 reg_equiv_mem (REGNO (SUBREG_REG (x))),
1102 SUBREG_BYTE (x));
1103 x = alter_subreg (&temp);
1104 }
1105 return x;
1106 }
1107
1108
1109 /* Check if an incoming argument in a7 is expected to be used soon and
1110 if OPND is a register or register pair that includes a7. If so,
1111 create a new pseudo and copy a7 into that pseudo at the very
1112 beginning of the function, followed by the special "set_frame_ptr"
1113 unspec_volatile insn. The return value is either the original
1114 operand, if it is not a7, or the new pseudo containing a copy of
1115 the incoming argument. This is necessary because the register
1116 allocator will ignore conflicts with a7 and may either assign some
1117 other pseudo to a7 or use a7 as the hard_frame_pointer, clobbering
1118 the incoming argument in a7. By copying the argument out of a7 as
1119 the very first thing, and then immediately following that with an
1120 unspec_volatile to keep the scheduler away, we should avoid any
1121 problems. Putting the set_frame_ptr insn at the beginning, with
1122 only the a7 copy before it, also makes it easier for the prologue
1123 expander to initialize the frame pointer after the a7 copy and to
1124 fix up the a7 copy to use the stack pointer instead of the frame
1125 pointer. */
1126
1127 rtx
1128 xtensa_copy_incoming_a7 (rtx opnd)
1129 {
1130 rtx entry_insns = 0;
1131 rtx reg, tmp;
1132 enum machine_mode mode;
1133
1134 if (!cfun->machine->need_a7_copy)
1135 return opnd;
1136
1137 /* This function should never be called again once a7 has been copied. */
1138 gcc_assert (!cfun->machine->set_frame_ptr_insn);
1139
1140 mode = GET_MODE (opnd);
1141
1142 /* The operand using a7 may come in a later instruction, so just return
1143 the original operand if it doesn't use a7. */
1144 reg = opnd;
1145 if (GET_CODE (reg) == SUBREG)
1146 {
1147 gcc_assert (SUBREG_BYTE (reg) == 0);
1148 reg = SUBREG_REG (reg);
1149 }
1150 if (GET_CODE (reg) != REG
1151 || REGNO (reg) > A7_REG
1152 || REGNO (reg) + HARD_REGNO_NREGS (A7_REG, mode) <= A7_REG)
1153 return opnd;
1154
1155 /* 1-word args will always be in a7; 2-word args in a6/a7. */
1156 gcc_assert (REGNO (reg) + HARD_REGNO_NREGS (A7_REG, mode) - 1 == A7_REG);
1157
1158 cfun->machine->need_a7_copy = false;
1159
1160 /* Copy a7 to a new pseudo at the function entry. Use gen_raw_REG to
1161 create the REG for a7 so that hard_frame_pointer_rtx is not used. */
1162
1163 start_sequence ();
1164 tmp = gen_reg_rtx (mode);
1165
1166 switch (mode)
1167 {
1168 case DFmode:
1169 case DImode:
1170 /* Copy the value out of A7 here but keep the first word in A6 until
1171 after the set_frame_ptr insn. Otherwise, the register allocator
1172 may decide to put "subreg (tmp, 0)" in A7 and clobber the incoming
1173 value. */
1174 emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 4),
1175 gen_raw_REG (SImode, A7_REG)));
1176 break;
1177 case SFmode:
1178 emit_insn (gen_movsf_internal (tmp, gen_raw_REG (mode, A7_REG)));
1179 break;
1180 case SImode:
1181 emit_insn (gen_movsi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1182 break;
1183 case HImode:
1184 emit_insn (gen_movhi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1185 break;
1186 case QImode:
1187 emit_insn (gen_movqi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1188 break;
1189 default:
1190 gcc_unreachable ();
1191 }
1192
1193 cfun->machine->set_frame_ptr_insn = emit_insn (gen_set_frame_ptr ());
1194
1195 /* For DF and DI mode arguments, copy the incoming value in A6 now. */
1196 if (mode == DFmode || mode == DImode)
1197 emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 0),
1198 gen_rtx_REG (SImode, A7_REG - 1)));
1199 entry_insns = get_insns ();
1200 end_sequence ();
1201
1202 if (cfun->machine->vararg_a7)
1203 {
1204 /* This is called from within builtin_saveregs, which will insert the
1205 saveregs code at the function entry, ahead of anything placed at
1206 the function entry now. Instead, save the sequence to be inserted
1207 at the beginning of the saveregs code. */
1208 cfun->machine->vararg_a7_copy = entry_insns;
1209 }
1210 else
1211 {
1212 /* Put entry_insns after the NOTE that starts the function. If
1213 this is inside a start_sequence, make the outer-level insn
1214 chain current, so the code is placed at the start of the
1215 function. */
1216 push_topmost_sequence ();
1217 /* Do not use entry_of_function() here. This is called from within
1218 expand_function_start, when the CFG still holds GIMPLE. */
1219 emit_insn_after (entry_insns, get_insns ());
1220 pop_topmost_sequence ();
1221 }
1222
1223 return tmp;
1224 }
1225
1226
1227 /* Try to expand a block move operation to a sequence of RTL move
1228 instructions. If not optimizing, or if the block size is not a
1229 constant, or if the block is too large, the expansion fails and GCC
1230 falls back to calling memcpy().
1231
1232 operands[0] is the destination
1233 operands[1] is the source
1234 operands[2] is the length
1235 operands[3] is the alignment */
1236
1237 int
1238 xtensa_expand_block_move (rtx *operands)
1239 {
1240 static const enum machine_mode mode_from_align[] =
1241 {
1242 VOIDmode, QImode, HImode, VOIDmode, SImode,
1243 };
1244
1245 rtx dst_mem = operands[0];
1246 rtx src_mem = operands[1];
1247 HOST_WIDE_INT bytes, align;
1248 int num_pieces, move_ratio;
1249 rtx temp[2];
1250 enum machine_mode mode[2];
1251 int amount[2];
1252 bool active[2];
1253 int phase = 0;
1254 int next;
1255 int offset_ld = 0;
1256 int offset_st = 0;
1257 rtx x;
1258
1259 /* If this is not a fixed size move, just call memcpy. */
1260 if (!optimize || (GET_CODE (operands[2]) != CONST_INT))
1261 return 0;
1262
1263 bytes = INTVAL (operands[2]);
1264 align = INTVAL (operands[3]);
1265
1266 /* Anything to move? */
1267 if (bytes <= 0)
1268 return 0;
1269
1270 if (align > MOVE_MAX)
1271 align = MOVE_MAX;
1272
1273 /* Decide whether to expand inline based on the optimization level. */
1274 move_ratio = 4;
1275 if (optimize > 2)
1276 move_ratio = LARGEST_MOVE_RATIO;
1277 num_pieces = (bytes / align) + (bytes % align); /* Close enough anyway. */
1278 if (num_pieces > move_ratio)
1279 return 0;
1280
1281 x = XEXP (dst_mem, 0);
1282 if (!REG_P (x))
1283 {
1284 x = force_reg (Pmode, x);
1285 dst_mem = replace_equiv_address (dst_mem, x);
1286 }
1287
1288 x = XEXP (src_mem, 0);
1289 if (!REG_P (x))
1290 {
1291 x = force_reg (Pmode, x);
1292 src_mem = replace_equiv_address (src_mem, x);
1293 }
1294
1295 active[0] = active[1] = false;
1296
1297 do
1298 {
1299 next = phase;
1300 phase ^= 1;
1301
1302 if (bytes > 0)
1303 {
1304 int next_amount;
1305
1306 next_amount = (bytes >= 4 ? 4 : (bytes >= 2 ? 2 : 1));
1307 next_amount = MIN (next_amount, align);
1308
1309 amount[next] = next_amount;
1310 mode[next] = mode_from_align[next_amount];
1311 temp[next] = gen_reg_rtx (mode[next]);
1312
1313 x = adjust_address (src_mem, mode[next], offset_ld);
1314 emit_insn (gen_rtx_SET (VOIDmode, temp[next], x));
1315
1316 offset_ld += next_amount;
1317 bytes -= next_amount;
1318 active[next] = true;
1319 }
1320
1321 if (active[phase])
1322 {
1323 active[phase] = false;
1324
1325 x = adjust_address (dst_mem, mode[phase], offset_st);
1326 emit_insn (gen_rtx_SET (VOIDmode, x, temp[phase]));
1327
1328 offset_st += amount[phase];
1329 }
1330 }
1331 while (active[next]);
1332
1333 return 1;
1334 }
1335
1336
1337 void
1338 xtensa_expand_nonlocal_goto (rtx *operands)
1339 {
1340 rtx goto_handler = operands[1];
1341 rtx containing_fp = operands[3];
1342
1343 /* Generate a call to "__xtensa_nonlocal_goto" (in libgcc); the code
1344 is too big to generate in-line. */
1345
1346 if (GET_CODE (containing_fp) != REG)
1347 containing_fp = force_reg (Pmode, containing_fp);
1348
1349 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_nonlocal_goto"),
1350 LCT_NORMAL, VOIDmode, 2,
1351 containing_fp, Pmode,
1352 goto_handler, Pmode);
1353 }
1354
1355
1356 static struct machine_function *
1357 xtensa_init_machine_status (void)
1358 {
1359 return ggc_alloc_cleared_machine_function ();
1360 }
1361
1362
1363 /* Shift VAL of mode MODE left by COUNT bits. */
1364
1365 static inline rtx
1366 xtensa_expand_mask_and_shift (rtx val, enum machine_mode mode, rtx count)
1367 {
1368 val = expand_simple_binop (SImode, AND, val, GEN_INT (GET_MODE_MASK (mode)),
1369 NULL_RTX, 1, OPTAB_DIRECT);
1370 return expand_simple_binop (SImode, ASHIFT, val, count,
1371 NULL_RTX, 1, OPTAB_DIRECT);
1372 }
1373
1374
1375 /* Structure to hold the initial parameters for a compare_and_swap operation
1376 in HImode and QImode. */
1377
1378 struct alignment_context
1379 {
1380 rtx memsi; /* SI aligned memory location. */
1381 rtx shift; /* Bit offset with regard to lsb. */
1382 rtx modemask; /* Mask of the HQImode shifted by SHIFT bits. */
1383 rtx modemaski; /* ~modemask */
1384 };
1385
1386
1387 /* Initialize structure AC for word access to HI and QI mode memory. */
1388
1389 static void
1390 init_alignment_context (struct alignment_context *ac, rtx mem)
1391 {
1392 enum machine_mode mode = GET_MODE (mem);
1393 rtx byteoffset = NULL_RTX;
1394 bool aligned = (MEM_ALIGN (mem) >= GET_MODE_BITSIZE (SImode));
1395
1396 if (aligned)
1397 ac->memsi = adjust_address (mem, SImode, 0); /* Memory is aligned. */
1398 else
1399 {
1400 /* Alignment is unknown. */
1401 rtx addr, align;
1402
1403 /* Force the address into a register. */
1404 addr = force_reg (Pmode, XEXP (mem, 0));
1405
1406 /* Align it to SImode. */
1407 align = expand_simple_binop (Pmode, AND, addr,
1408 GEN_INT (-GET_MODE_SIZE (SImode)),
1409 NULL_RTX, 1, OPTAB_DIRECT);
1410 /* Generate MEM. */
1411 ac->memsi = gen_rtx_MEM (SImode, align);
1412 MEM_VOLATILE_P (ac->memsi) = MEM_VOLATILE_P (mem);
1413 set_mem_alias_set (ac->memsi, ALIAS_SET_MEMORY_BARRIER);
1414 set_mem_align (ac->memsi, GET_MODE_BITSIZE (SImode));
1415
1416 byteoffset = expand_simple_binop (Pmode, AND, addr,
1417 GEN_INT (GET_MODE_SIZE (SImode) - 1),
1418 NULL_RTX, 1, OPTAB_DIRECT);
1419 }
1420
1421 /* Calculate shiftcount. */
1422 if (TARGET_BIG_ENDIAN)
1423 {
1424 ac->shift = GEN_INT (GET_MODE_SIZE (SImode) - GET_MODE_SIZE (mode));
1425 if (!aligned)
1426 ac->shift = expand_simple_binop (SImode, MINUS, ac->shift, byteoffset,
1427 NULL_RTX, 1, OPTAB_DIRECT);
1428 }
1429 else
1430 {
1431 if (aligned)
1432 ac->shift = NULL_RTX;
1433 else
1434 ac->shift = byteoffset;
1435 }
1436
1437 if (ac->shift != NULL_RTX)
1438 {
1439 /* Shift is the byte count, but we need the bitcount. */
1440 ac->shift = expand_simple_binop (SImode, MULT, ac->shift,
1441 GEN_INT (BITS_PER_UNIT),
1442 NULL_RTX, 1, OPTAB_DIRECT);
1443 ac->modemask = expand_simple_binop (SImode, ASHIFT,
1444 GEN_INT (GET_MODE_MASK (mode)),
1445 ac->shift,
1446 NULL_RTX, 1, OPTAB_DIRECT);
1447 }
1448 else
1449 ac->modemask = GEN_INT (GET_MODE_MASK (mode));
1450
1451 ac->modemaski = expand_simple_unop (SImode, NOT, ac->modemask, NULL_RTX, 1);
1452 }
1453
1454
1455 /* Expand an atomic compare and swap operation for HImode and QImode.
1456 MEM is the memory location, CMP the old value to compare MEM with
1457 and NEW_RTX the value to set if CMP == MEM. */
1458
1459 void
1460 xtensa_expand_compare_and_swap (rtx target, rtx mem, rtx cmp, rtx new_rtx)
1461 {
1462 enum machine_mode mode = GET_MODE (mem);
1463 struct alignment_context ac;
1464 rtx tmp, cmpv, newv, val;
1465 rtx oldval = gen_reg_rtx (SImode);
1466 rtx res = gen_reg_rtx (SImode);
1467 rtx csloop = gen_label_rtx ();
1468 rtx csend = gen_label_rtx ();
1469
1470 init_alignment_context (&ac, mem);
1471
1472 if (ac.shift != NULL_RTX)
1473 {
1474 cmp = xtensa_expand_mask_and_shift (cmp, mode, ac.shift);
1475 new_rtx = xtensa_expand_mask_and_shift (new_rtx, mode, ac.shift);
1476 }
1477
1478 /* Load the surrounding word into VAL with the MEM value masked out. */
1479 val = force_reg (SImode, expand_simple_binop (SImode, AND, ac.memsi,
1480 ac.modemaski, NULL_RTX, 1,
1481 OPTAB_DIRECT));
1482 emit_label (csloop);
1483
1484 /* Patch CMP and NEW_RTX into VAL at correct position. */
1485 cmpv = force_reg (SImode, expand_simple_binop (SImode, IOR, cmp, val,
1486 NULL_RTX, 1, OPTAB_DIRECT));
1487 newv = force_reg (SImode, expand_simple_binop (SImode, IOR, new_rtx, val,
1488 NULL_RTX, 1, OPTAB_DIRECT));
1489
1490 /* Jump to end if we're done. */
1491 emit_insn (gen_sync_compare_and_swapsi (res, ac.memsi, cmpv, newv));
1492 emit_cmp_and_jump_insns (res, cmpv, EQ, const0_rtx, SImode, true, csend);
1493
1494 /* Check for changes outside mode. */
1495 emit_move_insn (oldval, val);
1496 tmp = expand_simple_binop (SImode, AND, res, ac.modemaski,
1497 val, 1, OPTAB_DIRECT);
1498 if (tmp != val)
1499 emit_move_insn (val, tmp);
1500
1501 /* Loop internal if so. */
1502 emit_cmp_and_jump_insns (oldval, val, NE, const0_rtx, SImode, true, csloop);
1503
1504 emit_label (csend);
1505
1506 /* Return the correct part of the bitfield. */
1507 convert_move (target,
1508 (ac.shift == NULL_RTX ? res
1509 : expand_simple_binop (SImode, LSHIFTRT, res, ac.shift,
1510 NULL_RTX, 1, OPTAB_DIRECT)),
1511 1);
1512 }
1513
1514
1515 /* Expand an atomic operation CODE of mode MODE (either HImode or QImode --
1516 the default expansion works fine for SImode). MEM is the memory location
1517 and VAL the value to play with. If AFTER is true then store the value
1518 MEM holds after the operation, if AFTER is false then store the value MEM
1519 holds before the operation. If TARGET is zero then discard that value, else
1520 store it to TARGET. */
1521
1522 void
1523 xtensa_expand_atomic (enum rtx_code code, rtx target, rtx mem, rtx val,
1524 bool after)
1525 {
1526 enum machine_mode mode = GET_MODE (mem);
1527 struct alignment_context ac;
1528 rtx csloop = gen_label_rtx ();
1529 rtx cmp, tmp;
1530 rtx old = gen_reg_rtx (SImode);
1531 rtx new_rtx = gen_reg_rtx (SImode);
1532 rtx orig = NULL_RTX;
1533
1534 init_alignment_context (&ac, mem);
1535
1536 /* Prepare values before the compare-and-swap loop. */
1537 if (ac.shift != NULL_RTX)
1538 val = xtensa_expand_mask_and_shift (val, mode, ac.shift);
1539 switch (code)
1540 {
1541 case PLUS:
1542 case MINUS:
1543 orig = gen_reg_rtx (SImode);
1544 convert_move (orig, val, 1);
1545 break;
1546
1547 case SET:
1548 case IOR:
1549 case XOR:
1550 break;
1551
1552 case MULT: /* NAND */
1553 case AND:
1554 /* val = "11..1<val>11..1" */
1555 val = expand_simple_binop (SImode, XOR, val, ac.modemaski,
1556 NULL_RTX, 1, OPTAB_DIRECT);
1557 break;
1558
1559 default:
1560 gcc_unreachable ();
1561 }
1562
1563 /* Load full word. Subsequent loads are performed by S32C1I. */
1564 cmp = force_reg (SImode, ac.memsi);
1565
1566 emit_label (csloop);
1567 emit_move_insn (old, cmp);
1568
1569 switch (code)
1570 {
1571 case PLUS:
1572 case MINUS:
1573 val = expand_simple_binop (SImode, code, old, orig,
1574 NULL_RTX, 1, OPTAB_DIRECT);
1575 val = expand_simple_binop (SImode, AND, val, ac.modemask,
1576 NULL_RTX, 1, OPTAB_DIRECT);
1577 /* FALLTHRU */
1578 case SET:
1579 tmp = expand_simple_binop (SImode, AND, old, ac.modemaski,
1580 NULL_RTX, 1, OPTAB_DIRECT);
1581 tmp = expand_simple_binop (SImode, IOR, tmp, val,
1582 new_rtx, 1, OPTAB_DIRECT);
1583 break;
1584
1585 case AND:
1586 case IOR:
1587 case XOR:
1588 tmp = expand_simple_binop (SImode, code, old, val,
1589 new_rtx, 1, OPTAB_DIRECT);
1590 break;
1591
1592 case MULT: /* NAND */
1593 tmp = expand_simple_binop (SImode, XOR, old, ac.modemask,
1594 NULL_RTX, 1, OPTAB_DIRECT);
1595 tmp = expand_simple_binop (SImode, AND, tmp, val,
1596 new_rtx, 1, OPTAB_DIRECT);
1597 break;
1598
1599 default:
1600 gcc_unreachable ();
1601 }
1602
1603 if (tmp != new_rtx)
1604 emit_move_insn (new_rtx, tmp);
1605 emit_insn (gen_sync_compare_and_swapsi (cmp, ac.memsi, old, new_rtx));
1606 emit_cmp_and_jump_insns (cmp, old, NE, const0_rtx, SImode, true, csloop);
1607
1608 if (target)
1609 {
1610 tmp = (after ? new_rtx : cmp);
1611 convert_move (target,
1612 (ac.shift == NULL_RTX ? tmp
1613 : expand_simple_binop (SImode, LSHIFTRT, tmp, ac.shift,
1614 NULL_RTX, 1, OPTAB_DIRECT)),
1615 1);
1616 }
1617 }
1618
1619
1620 void
1621 xtensa_setup_frame_addresses (void)
1622 {
1623 /* Set flag to cause TARGET_FRAME_POINTER_REQUIRED to return true. */
1624 cfun->machine->accesses_prev_frame = 1;
1625
1626 emit_library_call
1627 (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_libgcc_window_spill"),
1628 LCT_NORMAL, VOIDmode, 0);
1629 }
1630
1631
1632 /* Emit the assembly for the end of a zero-cost loop. Normally we just emit
1633 a comment showing where the end of the loop is. However, if there is a
1634 label or a branch at the end of the loop then we need to place a nop
1635 there. If the loop ends with a label we need the nop so that branches
1636 targeting that label will target the nop (and thus remain in the loop),
1637 instead of targeting the instruction after the loop (and thus exiting
1638 the loop). If the loop ends with a branch, we need the nop in case the
1639 branch is targeting a location inside the loop. When the branch
1640 executes it will cause the loop count to be decremented even if it is
1641 taken (because it is the last instruction in the loop), so we need to
1642 nop after the branch to prevent the loop count from being decremented
1643 when the branch is taken. */
1644
1645 void
1646 xtensa_emit_loop_end (rtx insn, rtx *operands)
1647 {
1648 char done = 0;
1649
1650 for (insn = PREV_INSN (insn); insn && !done; insn = PREV_INSN (insn))
1651 {
1652 switch (GET_CODE (insn))
1653 {
1654 case NOTE:
1655 case BARRIER:
1656 break;
1657
1658 case CODE_LABEL:
1659 output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
1660 done = 1;
1661 break;
1662
1663 default:
1664 {
1665 rtx body = PATTERN (insn);
1666
1667 if (GET_CODE (body) == JUMP_INSN)
1668 {
1669 output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
1670 done = 1;
1671 }
1672 else if ((GET_CODE (body) != USE)
1673 && (GET_CODE (body) != CLOBBER))
1674 done = 1;
1675 }
1676 break;
1677 }
1678 }
1679
1680 output_asm_insn ("# loop end for %0", operands);
1681 }
1682
1683
1684 char *
1685 xtensa_emit_branch (bool inverted, bool immed, rtx *operands)
1686 {
1687 static char result[64];
1688 enum rtx_code code;
1689 const char *op;
1690
1691 code = GET_CODE (operands[3]);
1692 switch (code)
1693 {
1694 case EQ: op = inverted ? "ne" : "eq"; break;
1695 case NE: op = inverted ? "eq" : "ne"; break;
1696 case LT: op = inverted ? "ge" : "lt"; break;
1697 case GE: op = inverted ? "lt" : "ge"; break;
1698 case LTU: op = inverted ? "geu" : "ltu"; break;
1699 case GEU: op = inverted ? "ltu" : "geu"; break;
1700 default: gcc_unreachable ();
1701 }
1702
1703 if (immed)
1704 {
1705 if (INTVAL (operands[1]) == 0)
1706 sprintf (result, "b%sz%s\t%%0, %%2", op,
1707 (TARGET_DENSITY && (code == EQ || code == NE)) ? ".n" : "");
1708 else
1709 sprintf (result, "b%si\t%%0, %%d1, %%2", op);
1710 }
1711 else
1712 sprintf (result, "b%s\t%%0, %%1, %%2", op);
1713
1714 return result;
1715 }
1716
1717
1718 char *
1719 xtensa_emit_bit_branch (bool inverted, bool immed, rtx *operands)
1720 {
1721 static char result[64];
1722 const char *op;
1723
1724 switch (GET_CODE (operands[3]))
1725 {
1726 case EQ: op = inverted ? "bs" : "bc"; break;
1727 case NE: op = inverted ? "bc" : "bs"; break;
1728 default: gcc_unreachable ();
1729 }
1730
1731 if (immed)
1732 {
1733 unsigned bitnum = INTVAL (operands[1]) & 0x1f;
1734 operands[1] = GEN_INT (bitnum);
1735 sprintf (result, "b%si\t%%0, %%d1, %%2", op);
1736 }
1737 else
1738 sprintf (result, "b%s\t%%0, %%1, %%2", op);
1739
1740 return result;
1741 }
1742
1743
1744 char *
1745 xtensa_emit_movcc (bool inverted, bool isfp, bool isbool, rtx *operands)
1746 {
1747 static char result[64];
1748 enum rtx_code code;
1749 const char *op;
1750
1751 code = GET_CODE (operands[4]);
1752 if (isbool)
1753 {
1754 switch (code)
1755 {
1756 case EQ: op = inverted ? "t" : "f"; break;
1757 case NE: op = inverted ? "f" : "t"; break;
1758 default: gcc_unreachable ();
1759 }
1760 }
1761 else
1762 {
1763 switch (code)
1764 {
1765 case EQ: op = inverted ? "nez" : "eqz"; break;
1766 case NE: op = inverted ? "eqz" : "nez"; break;
1767 case LT: op = inverted ? "gez" : "ltz"; break;
1768 case GE: op = inverted ? "ltz" : "gez"; break;
1769 default: gcc_unreachable ();
1770 }
1771 }
1772
1773 sprintf (result, "mov%s%s\t%%0, %%%d, %%1",
1774 op, isfp ? ".s" : "", inverted ? 3 : 2);
1775 return result;
1776 }
1777
1778
1779 char *
1780 xtensa_emit_call (int callop, rtx *operands)
1781 {
1782 static char result[64];
1783 rtx tgt = operands[callop];
1784
1785 if (GET_CODE (tgt) == CONST_INT)
1786 sprintf (result, "call8\t0x%lx", INTVAL (tgt));
1787 else if (register_operand (tgt, VOIDmode))
1788 sprintf (result, "callx8\t%%%d", callop);
1789 else
1790 sprintf (result, "call8\t%%%d", callop);
1791
1792 return result;
1793 }
1794
1795
1796 bool
1797 xtensa_legitimate_address_p (enum machine_mode mode, rtx addr, bool strict)
1798 {
1799 /* Allow constant pool addresses. */
1800 if (mode != BLKmode && GET_MODE_SIZE (mode) >= UNITS_PER_WORD
1801 && ! TARGET_CONST16 && constantpool_address_p (addr)
1802 && ! xtensa_tls_referenced_p (addr))
1803 return true;
1804
1805 while (GET_CODE (addr) == SUBREG)
1806 addr = SUBREG_REG (addr);
1807
1808 /* Allow base registers. */
1809 if (GET_CODE (addr) == REG && BASE_REG_P (addr, strict))
1810 return true;
1811
1812 /* Check for "register + offset" addressing. */
1813 if (GET_CODE (addr) == PLUS)
1814 {
1815 rtx xplus0 = XEXP (addr, 0);
1816 rtx xplus1 = XEXP (addr, 1);
1817 enum rtx_code code0;
1818 enum rtx_code code1;
1819
1820 while (GET_CODE (xplus0) == SUBREG)
1821 xplus0 = SUBREG_REG (xplus0);
1822 code0 = GET_CODE (xplus0);
1823
1824 while (GET_CODE (xplus1) == SUBREG)
1825 xplus1 = SUBREG_REG (xplus1);
1826 code1 = GET_CODE (xplus1);
1827
1828 /* Swap operands if necessary so the register is first. */
1829 if (code0 != REG && code1 == REG)
1830 {
1831 xplus0 = XEXP (addr, 1);
1832 xplus1 = XEXP (addr, 0);
1833 code0 = GET_CODE (xplus0);
1834 code1 = GET_CODE (xplus1);
1835 }
1836
1837 if (code0 == REG && BASE_REG_P (xplus0, strict)
1838 && code1 == CONST_INT
1839 && xtensa_mem_offset (INTVAL (xplus1), mode))
1840 return true;
1841 }
1842
1843 return false;
1844 }
1845
1846
1847 /* Construct the SYMBOL_REF for the _TLS_MODULE_BASE_ symbol. */
1848
1849 static GTY(()) rtx xtensa_tls_module_base_symbol;
1850
1851 static rtx
1852 xtensa_tls_module_base (void)
1853 {
1854 if (! xtensa_tls_module_base_symbol)
1855 {
1856 xtensa_tls_module_base_symbol =
1857 gen_rtx_SYMBOL_REF (Pmode, "_TLS_MODULE_BASE_");
1858 SYMBOL_REF_FLAGS (xtensa_tls_module_base_symbol)
1859 |= TLS_MODEL_GLOBAL_DYNAMIC << SYMBOL_FLAG_TLS_SHIFT;
1860 }
1861
1862 return xtensa_tls_module_base_symbol;
1863 }
1864
1865
1866 static rtx
1867 xtensa_call_tls_desc (rtx sym, rtx *retp)
1868 {
1869 rtx fn, arg, a10, call_insn, insns;
1870
1871 start_sequence ();
1872 fn = gen_reg_rtx (Pmode);
1873 arg = gen_reg_rtx (Pmode);
1874 a10 = gen_rtx_REG (Pmode, 10);
1875
1876 emit_insn (gen_tls_func (fn, sym));
1877 emit_insn (gen_tls_arg (arg, sym));
1878 emit_move_insn (a10, arg);
1879 call_insn = emit_call_insn (gen_tls_call (a10, fn, sym, const1_rtx));
1880 use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), a10);
1881 insns = get_insns ();
1882 end_sequence ();
1883
1884 *retp = a10;
1885 return insns;
1886 }
1887
1888
1889 static rtx
1890 xtensa_legitimize_tls_address (rtx x)
1891 {
1892 unsigned int model = SYMBOL_REF_TLS_MODEL (x);
1893 rtx dest, tp, ret, modbase, base, addend, insns;
1894
1895 dest = gen_reg_rtx (Pmode);
1896 switch (model)
1897 {
1898 case TLS_MODEL_GLOBAL_DYNAMIC:
1899 insns = xtensa_call_tls_desc (x, &ret);
1900 emit_libcall_block (insns, dest, ret, x);
1901 break;
1902
1903 case TLS_MODEL_LOCAL_DYNAMIC:
1904 base = gen_reg_rtx (Pmode);
1905 modbase = xtensa_tls_module_base ();
1906 insns = xtensa_call_tls_desc (modbase, &ret);
1907 emit_libcall_block (insns, base, ret, modbase);
1908 addend = force_reg (SImode, gen_sym_DTPOFF (x));
1909 emit_insn (gen_addsi3 (dest, base, addend));
1910 break;
1911
1912 case TLS_MODEL_INITIAL_EXEC:
1913 case TLS_MODEL_LOCAL_EXEC:
1914 tp = gen_reg_rtx (SImode);
1915 emit_insn (gen_load_tp (tp));
1916 addend = force_reg (SImode, gen_sym_TPOFF (x));
1917 emit_insn (gen_addsi3 (dest, tp, addend));
1918 break;
1919
1920 default:
1921 gcc_unreachable ();
1922 }
1923
1924 return dest;
1925 }
1926
1927
1928 rtx
1929 xtensa_legitimize_address (rtx x,
1930 rtx oldx ATTRIBUTE_UNUSED,
1931 enum machine_mode mode)
1932 {
1933 if (xtensa_tls_symbol_p (x))
1934 return xtensa_legitimize_tls_address (x);
1935
1936 if (GET_CODE (x) == PLUS)
1937 {
1938 rtx plus0 = XEXP (x, 0);
1939 rtx plus1 = XEXP (x, 1);
1940
1941 if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG)
1942 {
1943 plus0 = XEXP (x, 1);
1944 plus1 = XEXP (x, 0);
1945 }
1946
1947 /* Try to split up the offset to use an ADDMI instruction. */
1948 if (GET_CODE (plus0) == REG
1949 && GET_CODE (plus1) == CONST_INT
1950 && !xtensa_mem_offset (INTVAL (plus1), mode)
1951 && !xtensa_simm8 (INTVAL (plus1))
1952 && xtensa_mem_offset (INTVAL (plus1) & 0xff, mode)
1953 && xtensa_simm8x256 (INTVAL (plus1) & ~0xff))
1954 {
1955 rtx temp = gen_reg_rtx (Pmode);
1956 rtx addmi_offset = GEN_INT (INTVAL (plus1) & ~0xff);
1957 emit_insn (gen_rtx_SET (Pmode, temp,
1958 gen_rtx_PLUS (Pmode, plus0, addmi_offset)));
1959 return gen_rtx_PLUS (Pmode, temp, GEN_INT (INTVAL (plus1) & 0xff));
1960 }
1961 }
1962
1963 return x;
1964 }
1965
1966 /* Worker function for TARGET_MODE_DEPENDENT_ADDRESS_P.
1967
1968 Treat constant-pool references as "mode dependent" since they can
1969 only be accessed with SImode loads. This works around a bug in the
1970 combiner where a constant pool reference is temporarily converted
1971 to an HImode load, which is then assumed to zero-extend based on
1972 our definition of LOAD_EXTEND_OP. This is wrong because the high
1973 bits of a 16-bit value in the constant pool are now sign-extended
1974 by default. */
1975
1976 static bool
1977 xtensa_mode_dependent_address_p (const_rtx addr)
1978 {
1979 return constantpool_address_p (addr);
1980 }
1981
1982 /* Helper for xtensa_tls_referenced_p. */
1983
1984 static int
1985 xtensa_tls_referenced_p_1 (rtx *x, void *data ATTRIBUTE_UNUSED)
1986 {
1987 if (GET_CODE (*x) == SYMBOL_REF)
1988 return SYMBOL_REF_TLS_MODEL (*x) != 0;
1989
1990 /* Ignore TLS references that have already been legitimized. */
1991 if (GET_CODE (*x) == UNSPEC)
1992 {
1993 switch (XINT (*x, 1))
1994 {
1995 case UNSPEC_TPOFF:
1996 case UNSPEC_DTPOFF:
1997 case UNSPEC_TLS_FUNC:
1998 case UNSPEC_TLS_ARG:
1999 case UNSPEC_TLS_CALL:
2000 return -1;
2001 default:
2002 break;
2003 }
2004 }
2005
2006 return 0;
2007 }
2008
2009
2010 /* Return TRUE if X contains any TLS symbol references. */
2011
2012 bool
2013 xtensa_tls_referenced_p (rtx x)
2014 {
2015 if (! TARGET_HAVE_TLS)
2016 return false;
2017
2018 return for_each_rtx (&x, xtensa_tls_referenced_p_1, NULL);
2019 }
2020
2021
2022 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
2023
2024 static bool
2025 xtensa_cannot_force_const_mem (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
2026 {
2027 return xtensa_tls_referenced_p (x);
2028 }
2029
2030
2031 /* Return the debugger register number to use for 'regno'. */
2032
2033 int
2034 xtensa_dbx_register_number (int regno)
2035 {
2036 int first = -1;
2037
2038 if (GP_REG_P (regno))
2039 {
2040 regno -= GP_REG_FIRST;
2041 first = 0;
2042 }
2043 else if (BR_REG_P (regno))
2044 {
2045 regno -= BR_REG_FIRST;
2046 first = 16;
2047 }
2048 else if (FP_REG_P (regno))
2049 {
2050 regno -= FP_REG_FIRST;
2051 first = 48;
2052 }
2053 else if (ACC_REG_P (regno))
2054 {
2055 first = 0x200; /* Start of Xtensa special registers. */
2056 regno = 16; /* ACCLO is special register 16. */
2057 }
2058
2059 /* When optimizing, we sometimes get asked about pseudo-registers
2060 that don't represent hard registers. Return 0 for these. */
2061 if (first == -1)
2062 return 0;
2063
2064 return first + regno;
2065 }
2066
2067
2068 /* Argument support functions. */
2069
2070 /* Initialize CUMULATIVE_ARGS for a function. */
2071
2072 void
2073 init_cumulative_args (CUMULATIVE_ARGS *cum, int incoming)
2074 {
2075 cum->arg_words = 0;
2076 cum->incoming = incoming;
2077 }
2078
2079
2080 /* Advance the argument to the next argument position. */
2081
2082 static void
2083 xtensa_function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode,
2084 const_tree type, bool named ATTRIBUTE_UNUSED)
2085 {
2086 int words, max;
2087 int *arg_words;
2088
2089 arg_words = &cum->arg_words;
2090 max = MAX_ARGS_IN_REGISTERS;
2091
2092 words = (((mode != BLKmode)
2093 ? (int) GET_MODE_SIZE (mode)
2094 : int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2095
2096 if (*arg_words < max
2097 && (targetm.calls.must_pass_in_stack (mode, type)
2098 || *arg_words + words > max))
2099 *arg_words = max;
2100
2101 *arg_words += words;
2102 }
2103
2104
2105 /* Return an RTL expression containing the register for the given mode,
2106 or 0 if the argument is to be passed on the stack. INCOMING_P is nonzero
2107 if this is an incoming argument to the current function. */
2108
2109 static rtx
2110 xtensa_function_arg_1 (CUMULATIVE_ARGS *cum, enum machine_mode mode,
2111 const_tree type, bool incoming_p)
2112 {
2113 int regbase, words, max;
2114 int *arg_words;
2115 int regno;
2116
2117 arg_words = &cum->arg_words;
2118 regbase = (incoming_p ? GP_ARG_FIRST : GP_OUTGOING_ARG_FIRST);
2119 max = MAX_ARGS_IN_REGISTERS;
2120
2121 words = (((mode != BLKmode)
2122 ? (int) GET_MODE_SIZE (mode)
2123 : int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2124
2125 if (type && (TYPE_ALIGN (type) > BITS_PER_WORD))
2126 {
2127 int align = MIN (TYPE_ALIGN (type), STACK_BOUNDARY) / BITS_PER_WORD;
2128 *arg_words = (*arg_words + align - 1) & -align;
2129 }
2130
2131 if (*arg_words + words > max)
2132 return (rtx)0;
2133
2134 regno = regbase + *arg_words;
2135
2136 if (cum->incoming && regno <= A7_REG && regno + words > A7_REG)
2137 cfun->machine->need_a7_copy = true;
2138
2139 return gen_rtx_REG (mode, regno);
2140 }
2141
2142 /* Implement TARGET_FUNCTION_ARG. */
2143
2144 static rtx
2145 xtensa_function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
2146 const_tree type, bool named ATTRIBUTE_UNUSED)
2147 {
2148 return xtensa_function_arg_1 (cum, mode, type, false);
2149 }
2150
2151 /* Implement TARGET_FUNCTION_INCOMING_ARG. */
2152
2153 static rtx
2154 xtensa_function_incoming_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode,
2155 const_tree type, bool named ATTRIBUTE_UNUSED)
2156 {
2157 return xtensa_function_arg_1 (cum, mode, type, true);
2158 }
2159
2160 static unsigned int
2161 xtensa_function_arg_boundary (enum machine_mode mode, const_tree type)
2162 {
2163 unsigned int alignment;
2164
2165 alignment = type ? TYPE_ALIGN (type) : GET_MODE_ALIGNMENT (mode);
2166 if (alignment < PARM_BOUNDARY)
2167 alignment = PARM_BOUNDARY;
2168 if (alignment > STACK_BOUNDARY)
2169 alignment = STACK_BOUNDARY;
2170 return alignment;
2171 }
2172
2173
2174 static bool
2175 xtensa_return_in_msb (const_tree valtype)
2176 {
2177 return (TARGET_BIG_ENDIAN
2178 && AGGREGATE_TYPE_P (valtype)
2179 && int_size_in_bytes (valtype) >= UNITS_PER_WORD);
2180 }
2181
2182
2183 static void
2184 xtensa_option_override (void)
2185 {
2186 int regno;
2187 enum machine_mode mode;
2188
2189 if (!TARGET_BOOLEANS && TARGET_HARD_FLOAT)
2190 error ("boolean registers required for the floating-point option");
2191
2192 /* Set up array giving whether a given register can hold a given mode. */
2193 for (mode = VOIDmode;
2194 mode != MAX_MACHINE_MODE;
2195 mode = (enum machine_mode) ((int) mode + 1))
2196 {
2197 int size = GET_MODE_SIZE (mode);
2198 enum mode_class mclass = GET_MODE_CLASS (mode);
2199
2200 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2201 {
2202 int temp;
2203
2204 if (ACC_REG_P (regno))
2205 temp = (TARGET_MAC16
2206 && (mclass == MODE_INT) && (size <= UNITS_PER_WORD));
2207 else if (GP_REG_P (regno))
2208 temp = ((regno & 1) == 0 || (size <= UNITS_PER_WORD));
2209 else if (FP_REG_P (regno))
2210 temp = (TARGET_HARD_FLOAT && (mode == SFmode));
2211 else if (BR_REG_P (regno))
2212 temp = (TARGET_BOOLEANS && (mode == CCmode));
2213 else
2214 temp = FALSE;
2215
2216 xtensa_hard_regno_mode_ok[(int) mode][regno] = temp;
2217 }
2218 }
2219
2220 init_machine_status = xtensa_init_machine_status;
2221
2222 /* Check PIC settings. PIC is only supported when using L32R
2223 instructions, and some targets need to always use PIC. */
2224 if (flag_pic && TARGET_CONST16)
2225 error ("-f%s is not supported with CONST16 instructions",
2226 (flag_pic > 1 ? "PIC" : "pic"));
2227 else if (TARGET_FORCE_NO_PIC)
2228 flag_pic = 0;
2229 else if (XTENSA_ALWAYS_PIC)
2230 {
2231 if (TARGET_CONST16)
2232 error ("PIC is required but not supported with CONST16 instructions");
2233 flag_pic = 1;
2234 }
2235 /* There's no need for -fPIC (as opposed to -fpic) on Xtensa. */
2236 if (flag_pic > 1)
2237 flag_pic = 1;
2238 if (flag_pic && !flag_pie)
2239 flag_shlib = 1;
2240
2241 /* Hot/cold partitioning does not work on this architecture, because of
2242 constant pools (the load instruction cannot necessarily reach that far).
2243 Therefore disable it on this architecture. */
2244 if (flag_reorder_blocks_and_partition)
2245 {
2246 flag_reorder_blocks_and_partition = 0;
2247 flag_reorder_blocks = 1;
2248 }
2249 }
2250
2251 /* A C compound statement to output to stdio stream STREAM the
2252 assembler syntax for an instruction operand X. X is an RTL
2253 expression.
2254
2255 CODE is a value that can be used to specify one of several ways
2256 of printing the operand. It is used when identical operands
2257 must be printed differently depending on the context. CODE
2258 comes from the '%' specification that was used to request
2259 printing of the operand. If the specification was just '%DIGIT'
2260 then CODE is 0; if the specification was '%LTR DIGIT' then CODE
2261 is the ASCII code for LTR.
2262
2263 If X is a register, this macro should print the register's name.
2264 The names can be found in an array 'reg_names' whose type is
2265 'char *[]'. 'reg_names' is initialized from 'REGISTER_NAMES'.
2266
2267 When the machine description has a specification '%PUNCT' (a '%'
2268 followed by a punctuation character), this macro is called with
2269 a null pointer for X and the punctuation character for CODE.
2270
2271 'a', 'c', 'l', and 'n' are reserved.
2272
2273 The Xtensa specific codes are:
2274
2275 'd' CONST_INT, print as signed decimal
2276 'x' CONST_INT, print as signed hexadecimal
2277 'K' CONST_INT, print number of bits in mask for EXTUI
2278 'R' CONST_INT, print (X & 0x1f)
2279 'L' CONST_INT, print ((32 - X) & 0x1f)
2280 'D' REG, print second register of double-word register operand
2281 'N' MEM, print address of next word following a memory operand
2282 'v' MEM, if memory reference is volatile, output a MEMW before it
2283 't' any constant, add "@h" suffix for top 16 bits
2284 'b' any constant, add "@l" suffix for bottom 16 bits
2285 */
2286
2287 static void
2288 printx (FILE *file, signed int val)
2289 {
2290 /* Print a hexadecimal value in a nice way. */
2291 if ((val > -0xa) && (val < 0xa))
2292 fprintf (file, "%d", val);
2293 else if (val < 0)
2294 fprintf (file, "-0x%x", -val);
2295 else
2296 fprintf (file, "0x%x", val);
2297 }
2298
2299
2300 void
2301 print_operand (FILE *file, rtx x, int letter)
2302 {
2303 if (!x)
2304 error ("PRINT_OPERAND null pointer");
2305
2306 switch (letter)
2307 {
2308 case 'D':
2309 if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
2310 fprintf (file, "%s", reg_names[xt_true_regnum (x) + 1]);
2311 else
2312 output_operand_lossage ("invalid %%D value");
2313 break;
2314
2315 case 'v':
2316 if (GET_CODE (x) == MEM)
2317 {
2318 /* For a volatile memory reference, emit a MEMW before the
2319 load or store. */
2320 if (MEM_VOLATILE_P (x) && TARGET_SERIALIZE_VOLATILE)
2321 fprintf (file, "memw\n\t");
2322 }
2323 else
2324 output_operand_lossage ("invalid %%v value");
2325 break;
2326
2327 case 'N':
2328 if (GET_CODE (x) == MEM
2329 && (GET_MODE (x) == DFmode || GET_MODE (x) == DImode))
2330 {
2331 x = adjust_address (x, GET_MODE (x) == DFmode ? SFmode : SImode, 4);
2332 output_address (XEXP (x, 0));
2333 }
2334 else
2335 output_operand_lossage ("invalid %%N value");
2336 break;
2337
2338 case 'K':
2339 if (GET_CODE (x) == CONST_INT)
2340 {
2341 int num_bits = 0;
2342 unsigned val = INTVAL (x);
2343 while (val & 1)
2344 {
2345 num_bits += 1;
2346 val = val >> 1;
2347 }
2348 if ((val != 0) || (num_bits == 0) || (num_bits > 16))
2349 fatal_insn ("invalid mask", x);
2350
2351 fprintf (file, "%d", num_bits);
2352 }
2353 else
2354 output_operand_lossage ("invalid %%K value");
2355 break;
2356
2357 case 'L':
2358 if (GET_CODE (x) == CONST_INT)
2359 fprintf (file, "%ld", (32 - INTVAL (x)) & 0x1f);
2360 else
2361 output_operand_lossage ("invalid %%L value");
2362 break;
2363
2364 case 'R':
2365 if (GET_CODE (x) == CONST_INT)
2366 fprintf (file, "%ld", INTVAL (x) & 0x1f);
2367 else
2368 output_operand_lossage ("invalid %%R value");
2369 break;
2370
2371 case 'x':
2372 if (GET_CODE (x) == CONST_INT)
2373 printx (file, INTVAL (x));
2374 else
2375 output_operand_lossage ("invalid %%x value");
2376 break;
2377
2378 case 'd':
2379 if (GET_CODE (x) == CONST_INT)
2380 fprintf (file, "%ld", INTVAL (x));
2381 else
2382 output_operand_lossage ("invalid %%d value");
2383 break;
2384
2385 case 't':
2386 case 'b':
2387 if (GET_CODE (x) == CONST_INT)
2388 {
2389 printx (file, INTVAL (x));
2390 fputs (letter == 't' ? "@h" : "@l", file);
2391 }
2392 else if (GET_CODE (x) == CONST_DOUBLE)
2393 {
2394 REAL_VALUE_TYPE r;
2395 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2396 if (GET_MODE (x) == SFmode)
2397 {
2398 long l;
2399 REAL_VALUE_TO_TARGET_SINGLE (r, l);
2400 fprintf (file, "0x%08lx@%c", l, letter == 't' ? 'h' : 'l');
2401 }
2402 else
2403 output_operand_lossage ("invalid %%t/%%b value");
2404 }
2405 else if (GET_CODE (x) == CONST)
2406 {
2407 /* X must be a symbolic constant on ELF. Write an expression
2408 suitable for 'const16' that sets the high or low 16 bits. */
2409 if (GET_CODE (XEXP (x, 0)) != PLUS
2410 || (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF
2411 && GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
2412 || GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
2413 output_operand_lossage ("invalid %%t/%%b value");
2414 print_operand (file, XEXP (XEXP (x, 0), 0), 0);
2415 fputs (letter == 't' ? "@h" : "@l", file);
2416 /* There must be a non-alphanumeric character between 'h' or 'l'
2417 and the number. The '-' is added by print_operand() already. */
2418 if (INTVAL (XEXP (XEXP (x, 0), 1)) >= 0)
2419 fputs ("+", file);
2420 print_operand (file, XEXP (XEXP (x, 0), 1), 0);
2421 }
2422 else
2423 {
2424 output_addr_const (file, x);
2425 fputs (letter == 't' ? "@h" : "@l", file);
2426 }
2427 break;
2428
2429 default:
2430 if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
2431 fprintf (file, "%s", reg_names[xt_true_regnum (x)]);
2432 else if (GET_CODE (x) == MEM)
2433 output_address (XEXP (x, 0));
2434 else if (GET_CODE (x) == CONST_INT)
2435 fprintf (file, "%ld", INTVAL (x));
2436 else
2437 output_addr_const (file, x);
2438 }
2439 }
2440
2441
2442 /* A C compound statement to output to stdio stream STREAM the
2443 assembler syntax for an instruction operand that is a memory
2444 reference whose address is ADDR. ADDR is an RTL expression. */
2445
2446 void
2447 print_operand_address (FILE *file, rtx addr)
2448 {
2449 if (!addr)
2450 error ("PRINT_OPERAND_ADDRESS, null pointer");
2451
2452 switch (GET_CODE (addr))
2453 {
2454 default:
2455 fatal_insn ("invalid address", addr);
2456 break;
2457
2458 case REG:
2459 fprintf (file, "%s, 0", reg_names [REGNO (addr)]);
2460 break;
2461
2462 case PLUS:
2463 {
2464 rtx reg = (rtx)0;
2465 rtx offset = (rtx)0;
2466 rtx arg0 = XEXP (addr, 0);
2467 rtx arg1 = XEXP (addr, 1);
2468
2469 if (GET_CODE (arg0) == REG)
2470 {
2471 reg = arg0;
2472 offset = arg1;
2473 }
2474 else if (GET_CODE (arg1) == REG)
2475 {
2476 reg = arg1;
2477 offset = arg0;
2478 }
2479 else
2480 fatal_insn ("no register in address", addr);
2481
2482 if (CONSTANT_P (offset))
2483 {
2484 fprintf (file, "%s, ", reg_names [REGNO (reg)]);
2485 output_addr_const (file, offset);
2486 }
2487 else
2488 fatal_insn ("address offset not a constant", addr);
2489 }
2490 break;
2491
2492 case LABEL_REF:
2493 case SYMBOL_REF:
2494 case CONST_INT:
2495 case CONST:
2496 output_addr_const (file, addr);
2497 break;
2498 }
2499 }
2500
2501 /* Implement TARGET_ASM_OUTPUT_ADDR_CONST_EXTRA. */
2502
2503 static bool
2504 xtensa_output_addr_const_extra (FILE *fp, rtx x)
2505 {
2506 if (GET_CODE (x) == UNSPEC && XVECLEN (x, 0) == 1)
2507 {
2508 switch (XINT (x, 1))
2509 {
2510 case UNSPEC_TPOFF:
2511 output_addr_const (fp, XVECEXP (x, 0, 0));
2512 fputs ("@TPOFF", fp);
2513 return true;
2514 case UNSPEC_DTPOFF:
2515 output_addr_const (fp, XVECEXP (x, 0, 0));
2516 fputs ("@DTPOFF", fp);
2517 return true;
2518 case UNSPEC_PLT:
2519 if (flag_pic)
2520 {
2521 output_addr_const (fp, XVECEXP (x, 0, 0));
2522 fputs ("@PLT", fp);
2523 return true;
2524 }
2525 break;
2526 default:
2527 break;
2528 }
2529 }
2530 return false;
2531 }
2532
2533
2534 void
2535 xtensa_output_literal (FILE *file, rtx x, enum machine_mode mode, int labelno)
2536 {
2537 long value_long[2];
2538 REAL_VALUE_TYPE r;
2539 int size;
2540 rtx first, second;
2541
2542 fprintf (file, "\t.literal .LC%u, ", (unsigned) labelno);
2543
2544 switch (GET_MODE_CLASS (mode))
2545 {
2546 case MODE_FLOAT:
2547 gcc_assert (GET_CODE (x) == CONST_DOUBLE);
2548
2549 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
2550 switch (mode)
2551 {
2552 case SFmode:
2553 REAL_VALUE_TO_TARGET_SINGLE (r, value_long[0]);
2554 if (HOST_BITS_PER_LONG > 32)
2555 value_long[0] &= 0xffffffff;
2556 fprintf (file, "0x%08lx\n", value_long[0]);
2557 break;
2558
2559 case DFmode:
2560 REAL_VALUE_TO_TARGET_DOUBLE (r, value_long);
2561 if (HOST_BITS_PER_LONG > 32)
2562 {
2563 value_long[0] &= 0xffffffff;
2564 value_long[1] &= 0xffffffff;
2565 }
2566 fprintf (file, "0x%08lx, 0x%08lx\n",
2567 value_long[0], value_long[1]);
2568 break;
2569
2570 default:
2571 gcc_unreachable ();
2572 }
2573
2574 break;
2575
2576 case MODE_INT:
2577 case MODE_PARTIAL_INT:
2578 size = GET_MODE_SIZE (mode);
2579 switch (size)
2580 {
2581 case 4:
2582 output_addr_const (file, x);
2583 fputs ("\n", file);
2584 break;
2585
2586 case 8:
2587 split_double (x, &first, &second);
2588 output_addr_const (file, first);
2589 fputs (", ", file);
2590 output_addr_const (file, second);
2591 fputs ("\n", file);
2592 break;
2593
2594 default:
2595 gcc_unreachable ();
2596 }
2597 break;
2598
2599 default:
2600 gcc_unreachable ();
2601 }
2602 }
2603
2604
2605 /* Return the bytes needed to compute the frame pointer from the current
2606 stack pointer. */
2607
2608 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
2609 #define XTENSA_STACK_ALIGN(LOC) (((LOC) + STACK_BYTES-1) & ~(STACK_BYTES-1))
2610
2611 long
2612 compute_frame_size (int size)
2613 {
2614 /* Add space for the incoming static chain value. */
2615 if (cfun->static_chain_decl != NULL)
2616 size += (1 * UNITS_PER_WORD);
2617
2618 xtensa_current_frame_size =
2619 XTENSA_STACK_ALIGN (size
2620 + crtl->outgoing_args_size
2621 + (WINDOW_SIZE * UNITS_PER_WORD));
2622 return xtensa_current_frame_size;
2623 }
2624
2625
2626 bool
2627 xtensa_frame_pointer_required (void)
2628 {
2629 /* The code to expand builtin_frame_addr and builtin_return_addr
2630 currently uses the hard_frame_pointer instead of frame_pointer.
2631 This seems wrong but maybe it's necessary for other architectures.
2632 This function is derived from the i386 code. */
2633
2634 if (cfun->machine->accesses_prev_frame)
2635 return true;
2636
2637 return false;
2638 }
2639
2640
2641 /* minimum frame = reg save area (4 words) plus static chain (1 word)
2642 and the total number of words must be a multiple of 128 bits. */
2643 #define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)
2644
2645 void
2646 xtensa_expand_prologue (void)
2647 {
2648 HOST_WIDE_INT total_size;
2649 rtx size_rtx;
2650 rtx insn, note_rtx;
2651
2652 total_size = compute_frame_size (get_frame_size ());
2653 size_rtx = GEN_INT (total_size);
2654
2655 if (total_size < (1 << (12+3)))
2656 insn = emit_insn (gen_entry (size_rtx));
2657 else
2658 {
2659 /* Use a8 as a temporary since a0-a7 may be live. */
2660 rtx tmp_reg = gen_rtx_REG (Pmode, A8_REG);
2661 emit_insn (gen_entry (GEN_INT (MIN_FRAME_SIZE)));
2662 emit_move_insn (tmp_reg, GEN_INT (total_size - MIN_FRAME_SIZE));
2663 emit_insn (gen_subsi3 (tmp_reg, stack_pointer_rtx, tmp_reg));
2664 insn = emit_insn (gen_movsi (stack_pointer_rtx, tmp_reg));
2665 }
2666
2667 if (frame_pointer_needed)
2668 {
2669 if (cfun->machine->set_frame_ptr_insn)
2670 {
2671 rtx first;
2672
2673 push_topmost_sequence ();
2674 first = get_insns ();
2675 pop_topmost_sequence ();
2676
2677 /* For all instructions prior to set_frame_ptr_insn, replace
2678 hard_frame_pointer references with stack_pointer. */
2679 for (insn = first;
2680 insn != cfun->machine->set_frame_ptr_insn;
2681 insn = NEXT_INSN (insn))
2682 {
2683 if (INSN_P (insn))
2684 {
2685 PATTERN (insn) = replace_rtx (copy_rtx (PATTERN (insn)),
2686 hard_frame_pointer_rtx,
2687 stack_pointer_rtx);
2688 df_insn_rescan (insn);
2689 }
2690 }
2691 }
2692 else
2693 insn = emit_insn (gen_movsi (hard_frame_pointer_rtx,
2694 stack_pointer_rtx));
2695 }
2696
2697 /* Create a note to describe the CFA. Because this is only used to set
2698 DW_AT_frame_base for debug info, don't bother tracking changes through
2699 each instruction in the prologue. It just takes up space. */
2700 note_rtx = gen_rtx_SET (VOIDmode, (frame_pointer_needed
2701 ? hard_frame_pointer_rtx
2702 : stack_pointer_rtx),
2703 plus_constant (stack_pointer_rtx, -total_size));
2704 RTX_FRAME_RELATED_P (insn) = 1;
2705 add_reg_note (insn, REG_FRAME_RELATED_EXPR, note_rtx);
2706 }
2707
2708
2709 /* Clear variables at function end. */
2710
2711 void
2712 xtensa_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
2713 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
2714 {
2715 xtensa_current_frame_size = 0;
2716 }
2717
2718
2719 rtx
2720 xtensa_return_addr (int count, rtx frame)
2721 {
2722 rtx result, retaddr, curaddr, label;
2723
2724 if (count == -1)
2725 retaddr = gen_rtx_REG (Pmode, A0_REG);
2726 else
2727 {
2728 rtx addr = plus_constant (frame, -4 * UNITS_PER_WORD);
2729 addr = memory_address (Pmode, addr);
2730 retaddr = gen_reg_rtx (Pmode);
2731 emit_move_insn (retaddr, gen_rtx_MEM (Pmode, addr));
2732 }
2733
2734 /* The 2 most-significant bits of the return address on Xtensa hold
2735 the register window size. To get the real return address, these
2736 bits must be replaced with the high bits from some address in the
2737 code. */
2738
2739 /* Get the 2 high bits of a local label in the code. */
2740 curaddr = gen_reg_rtx (Pmode);
2741 label = gen_label_rtx ();
2742 emit_label (label);
2743 LABEL_PRESERVE_P (label) = 1;
2744 emit_move_insn (curaddr, gen_rtx_LABEL_REF (Pmode, label));
2745 emit_insn (gen_lshrsi3 (curaddr, curaddr, GEN_INT (30)));
2746 emit_insn (gen_ashlsi3 (curaddr, curaddr, GEN_INT (30)));
2747
2748 /* Clear the 2 high bits of the return address. */
2749 result = gen_reg_rtx (Pmode);
2750 emit_insn (gen_ashlsi3 (result, retaddr, GEN_INT (2)));
2751 emit_insn (gen_lshrsi3 (result, result, GEN_INT (2)));
2752
2753 /* Combine them to get the result. */
2754 emit_insn (gen_iorsi3 (result, result, curaddr));
2755 return result;
2756 }
2757
2758
2759 /* Create the va_list data type.
2760
2761 This structure is set up by __builtin_saveregs. The __va_reg field
2762 points to a stack-allocated region holding the contents of the
2763 incoming argument registers. The __va_ndx field is an index
2764 initialized to the position of the first unnamed (variable)
2765 argument. This same index is also used to address the arguments
2766 passed in memory. Thus, the __va_stk field is initialized to point
2767 to the position of the first argument in memory offset to account
2768 for the arguments passed in registers and to account for the size
2769 of the argument registers not being 16-byte aligned. E.G., there
2770 are 6 argument registers of 4 bytes each, but we want the __va_ndx
2771 for the first stack argument to have the maximal alignment of 16
2772 bytes, so we offset the __va_stk address by 32 bytes so that
2773 __va_stk[32] references the first argument on the stack. */
2774
2775 static tree
2776 xtensa_build_builtin_va_list (void)
2777 {
2778 tree f_stk, f_reg, f_ndx, record, type_decl;
2779
2780 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
2781 type_decl = build_decl (BUILTINS_LOCATION,
2782 TYPE_DECL, get_identifier ("__va_list_tag"), record);
2783
2784 f_stk = build_decl (BUILTINS_LOCATION,
2785 FIELD_DECL, get_identifier ("__va_stk"),
2786 ptr_type_node);
2787 f_reg = build_decl (BUILTINS_LOCATION,
2788 FIELD_DECL, get_identifier ("__va_reg"),
2789 ptr_type_node);
2790 f_ndx = build_decl (BUILTINS_LOCATION,
2791 FIELD_DECL, get_identifier ("__va_ndx"),
2792 integer_type_node);
2793
2794 DECL_FIELD_CONTEXT (f_stk) = record;
2795 DECL_FIELD_CONTEXT (f_reg) = record;
2796 DECL_FIELD_CONTEXT (f_ndx) = record;
2797
2798 TYPE_STUB_DECL (record) = type_decl;
2799 TYPE_NAME (record) = type_decl;
2800 TYPE_FIELDS (record) = f_stk;
2801 DECL_CHAIN (f_stk) = f_reg;
2802 DECL_CHAIN (f_reg) = f_ndx;
2803
2804 layout_type (record);
2805 return record;
2806 }
2807
2808
2809 /* Save the incoming argument registers on the stack. Returns the
2810 address of the saved registers. */
2811
2812 static rtx
2813 xtensa_builtin_saveregs (void)
2814 {
2815 rtx gp_regs;
2816 int arg_words = crtl->args.info.arg_words;
2817 int gp_left = MAX_ARGS_IN_REGISTERS - arg_words;
2818
2819 if (gp_left <= 0)
2820 return const0_rtx;
2821
2822 /* Allocate the general-purpose register space. */
2823 gp_regs = assign_stack_local
2824 (BLKmode, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD, -1);
2825 set_mem_alias_set (gp_regs, get_varargs_alias_set ());
2826
2827 /* Now store the incoming registers. */
2828 cfun->machine->need_a7_copy = true;
2829 cfun->machine->vararg_a7 = true;
2830 move_block_from_reg (GP_ARG_FIRST + arg_words,
2831 adjust_address (gp_regs, BLKmode,
2832 arg_words * UNITS_PER_WORD),
2833 gp_left);
2834 gcc_assert (cfun->machine->vararg_a7_copy != 0);
2835 emit_insn_before (cfun->machine->vararg_a7_copy, get_insns ());
2836
2837 return XEXP (gp_regs, 0);
2838 }
2839
2840
2841 /* Implement `va_start' for varargs and stdarg. We look at the
2842 current function to fill in an initial va_list. */
2843
2844 static void
2845 xtensa_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
2846 {
2847 tree f_stk, stk;
2848 tree f_reg, reg;
2849 tree f_ndx, ndx;
2850 tree t, u;
2851 int arg_words;
2852
2853 arg_words = crtl->args.info.arg_words;
2854
2855 f_stk = TYPE_FIELDS (va_list_type_node);
2856 f_reg = DECL_CHAIN (f_stk);
2857 f_ndx = DECL_CHAIN (f_reg);
2858
2859 stk = build3 (COMPONENT_REF, TREE_TYPE (f_stk), valist, f_stk, NULL_TREE);
2860 reg = build3 (COMPONENT_REF, TREE_TYPE (f_reg), unshare_expr (valist),
2861 f_reg, NULL_TREE);
2862 ndx = build3 (COMPONENT_REF, TREE_TYPE (f_ndx), unshare_expr (valist),
2863 f_ndx, NULL_TREE);
2864
2865 /* Call __builtin_saveregs; save the result in __va_reg */
2866 u = make_tree (sizetype, expand_builtin_saveregs ());
2867 u = fold_convert (ptr_type_node, u);
2868 t = build2 (MODIFY_EXPR, ptr_type_node, reg, u);
2869 TREE_SIDE_EFFECTS (t) = 1;
2870 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2871
2872 /* Set the __va_stk member to ($arg_ptr - 32). */
2873 u = make_tree (ptr_type_node, virtual_incoming_args_rtx);
2874 u = fold_build2 (POINTER_PLUS_EXPR, ptr_type_node, u, size_int (-32));
2875 t = build2 (MODIFY_EXPR, ptr_type_node, stk, u);
2876 TREE_SIDE_EFFECTS (t) = 1;
2877 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2878
2879 /* Set the __va_ndx member. If the first variable argument is on
2880 the stack, adjust __va_ndx by 2 words to account for the extra
2881 alignment offset for __va_stk. */
2882 if (arg_words >= MAX_ARGS_IN_REGISTERS)
2883 arg_words += 2;
2884 t = build2 (MODIFY_EXPR, integer_type_node, ndx,
2885 build_int_cst (integer_type_node, arg_words * UNITS_PER_WORD));
2886 TREE_SIDE_EFFECTS (t) = 1;
2887 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2888 }
2889
2890
2891 /* Implement `va_arg'. */
2892
2893 static tree
2894 xtensa_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
2895 gimple_seq *post_p ATTRIBUTE_UNUSED)
2896 {
2897 tree f_stk, stk;
2898 tree f_reg, reg;
2899 tree f_ndx, ndx;
2900 tree type_size, array, orig_ndx, addr, size, va_size, t;
2901 tree lab_false, lab_over, lab_false2;
2902 bool indirect;
2903
2904 indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
2905 if (indirect)
2906 type = build_pointer_type (type);
2907
2908 /* Handle complex values as separate real and imaginary parts. */
2909 if (TREE_CODE (type) == COMPLEX_TYPE)
2910 {
2911 tree real_part, imag_part;
2912
2913 real_part = xtensa_gimplify_va_arg_expr (valist, TREE_TYPE (type),
2914 pre_p, NULL);
2915 real_part = get_initialized_tmp_var (real_part, pre_p, NULL);
2916
2917 imag_part = xtensa_gimplify_va_arg_expr (unshare_expr (valist),
2918 TREE_TYPE (type),
2919 pre_p, NULL);
2920 imag_part = get_initialized_tmp_var (imag_part, pre_p, NULL);
2921
2922 return build2 (COMPLEX_EXPR, type, real_part, imag_part);
2923 }
2924
2925 f_stk = TYPE_FIELDS (va_list_type_node);
2926 f_reg = DECL_CHAIN (f_stk);
2927 f_ndx = DECL_CHAIN (f_reg);
2928
2929 stk = build3 (COMPONENT_REF, TREE_TYPE (f_stk), valist,
2930 f_stk, NULL_TREE);
2931 reg = build3 (COMPONENT_REF, TREE_TYPE (f_reg), unshare_expr (valist),
2932 f_reg, NULL_TREE);
2933 ndx = build3 (COMPONENT_REF, TREE_TYPE (f_ndx), unshare_expr (valist),
2934 f_ndx, NULL_TREE);
2935
2936 type_size = size_in_bytes (type);
2937 va_size = round_up (type_size, UNITS_PER_WORD);
2938 gimplify_expr (&va_size, pre_p, NULL, is_gimple_val, fb_rvalue);
2939
2940
2941 /* First align __va_ndx if necessary for this arg:
2942
2943 orig_ndx = (AP).__va_ndx;
2944 if (__alignof__ (TYPE) > 4 )
2945 orig_ndx = ((orig_ndx + __alignof__ (TYPE) - 1)
2946 & -__alignof__ (TYPE)); */
2947
2948 orig_ndx = get_initialized_tmp_var (ndx, pre_p, NULL);
2949
2950 if (TYPE_ALIGN (type) > BITS_PER_WORD)
2951 {
2952 int align = MIN (TYPE_ALIGN (type), STACK_BOUNDARY) / BITS_PER_UNIT;
2953
2954 t = build2 (PLUS_EXPR, integer_type_node, unshare_expr (orig_ndx),
2955 build_int_cst (integer_type_node, align - 1));
2956 t = build2 (BIT_AND_EXPR, integer_type_node, t,
2957 build_int_cst (integer_type_node, -align));
2958 gimplify_assign (unshare_expr (orig_ndx), t, pre_p);
2959 }
2960
2961
2962 /* Increment __va_ndx to point past the argument:
2963
2964 (AP).__va_ndx = orig_ndx + __va_size (TYPE); */
2965
2966 t = fold_convert (integer_type_node, va_size);
2967 t = build2 (PLUS_EXPR, integer_type_node, orig_ndx, t);
2968 gimplify_assign (unshare_expr (ndx), t, pre_p);
2969
2970
2971 /* Check if the argument is in registers:
2972
2973 if ((AP).__va_ndx <= __MAX_ARGS_IN_REGISTERS * 4
2974 && !must_pass_in_stack (type))
2975 __array = (AP).__va_reg; */
2976
2977 array = create_tmp_var (ptr_type_node, NULL);
2978
2979 lab_over = NULL;
2980 if (!targetm.calls.must_pass_in_stack (TYPE_MODE (type), type))
2981 {
2982 lab_false = create_artificial_label (UNKNOWN_LOCATION);
2983 lab_over = create_artificial_label (UNKNOWN_LOCATION);
2984
2985 t = build2 (GT_EXPR, boolean_type_node, unshare_expr (ndx),
2986 build_int_cst (integer_type_node,
2987 MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD));
2988 t = build3 (COND_EXPR, void_type_node, t,
2989 build1 (GOTO_EXPR, void_type_node, lab_false),
2990 NULL_TREE);
2991 gimplify_and_add (t, pre_p);
2992
2993 gimplify_assign (unshare_expr (array), reg, pre_p);
2994
2995 t = build1 (GOTO_EXPR, void_type_node, lab_over);
2996 gimplify_and_add (t, pre_p);
2997
2998 t = build1 (LABEL_EXPR, void_type_node, lab_false);
2999 gimplify_and_add (t, pre_p);
3000 }
3001
3002
3003 /* ...otherwise, the argument is on the stack (never split between
3004 registers and the stack -- change __va_ndx if necessary):
3005
3006 else
3007 {
3008 if (orig_ndx <= __MAX_ARGS_IN_REGISTERS * 4)
3009 (AP).__va_ndx = 32 + __va_size (TYPE);
3010 __array = (AP).__va_stk;
3011 } */
3012
3013 lab_false2 = create_artificial_label (UNKNOWN_LOCATION);
3014
3015 t = build2 (GT_EXPR, boolean_type_node, unshare_expr (orig_ndx),
3016 build_int_cst (integer_type_node,
3017 MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD));
3018 t = build3 (COND_EXPR, void_type_node, t,
3019 build1 (GOTO_EXPR, void_type_node, lab_false2),
3020 NULL_TREE);
3021 gimplify_and_add (t, pre_p);
3022
3023 t = size_binop (PLUS_EXPR, unshare_expr (va_size), size_int (32));
3024 t = fold_convert (integer_type_node, t);
3025 gimplify_assign (unshare_expr (ndx), t, pre_p);
3026
3027 t = build1 (LABEL_EXPR, void_type_node, lab_false2);
3028 gimplify_and_add (t, pre_p);
3029
3030 gimplify_assign (array, stk, pre_p);
3031
3032 if (lab_over)
3033 {
3034 t = build1 (LABEL_EXPR, void_type_node, lab_over);
3035 gimplify_and_add (t, pre_p);
3036 }
3037
3038
3039 /* Given the base array pointer (__array) and index to the subsequent
3040 argument (__va_ndx), find the address:
3041
3042 __array + (AP).__va_ndx - (BYTES_BIG_ENDIAN && sizeof (TYPE) < 4
3043 ? sizeof (TYPE)
3044 : __va_size (TYPE))
3045
3046 The results are endian-dependent because values smaller than one word
3047 are aligned differently. */
3048
3049
3050 if (BYTES_BIG_ENDIAN && TREE_CODE (type_size) == INTEGER_CST)
3051 {
3052 t = fold_build2 (GE_EXPR, boolean_type_node, unshare_expr (type_size),
3053 size_int (PARM_BOUNDARY / BITS_PER_UNIT));
3054 t = fold_build3 (COND_EXPR, sizetype, t, unshare_expr (va_size),
3055 unshare_expr (type_size));
3056 size = t;
3057 }
3058 else
3059 size = unshare_expr (va_size);
3060
3061 t = fold_convert (sizetype, unshare_expr (ndx));
3062 t = build2 (MINUS_EXPR, sizetype, t, size);
3063 addr = build2 (POINTER_PLUS_EXPR, ptr_type_node, unshare_expr (array), t);
3064
3065 addr = fold_convert (build_pointer_type (type), addr);
3066 if (indirect)
3067 addr = build_va_arg_indirect_ref (addr);
3068 return build_va_arg_indirect_ref (addr);
3069 }
3070
3071
3072 /* Builtins. */
3073
3074 enum xtensa_builtin
3075 {
3076 XTENSA_BUILTIN_UMULSIDI3,
3077 XTENSA_BUILTIN_THREAD_POINTER,
3078 XTENSA_BUILTIN_SET_THREAD_POINTER,
3079 XTENSA_BUILTIN_max
3080 };
3081
3082
3083 static void
3084 xtensa_init_builtins (void)
3085 {
3086 tree ftype, decl;
3087
3088 ftype = build_function_type_list (unsigned_intDI_type_node,
3089 unsigned_intSI_type_node,
3090 unsigned_intSI_type_node, NULL_TREE);
3091
3092 decl = add_builtin_function ("__builtin_umulsidi3", ftype,
3093 XTENSA_BUILTIN_UMULSIDI3, BUILT_IN_MD,
3094 "__umulsidi3", NULL_TREE);
3095 TREE_NOTHROW (decl) = 1;
3096 TREE_READONLY (decl) = 1;
3097
3098 if (TARGET_THREADPTR)
3099 {
3100 ftype = build_function_type (ptr_type_node, void_list_node);
3101 decl = add_builtin_function ("__builtin_thread_pointer", ftype,
3102 XTENSA_BUILTIN_THREAD_POINTER, BUILT_IN_MD,
3103 NULL, NULL_TREE);
3104 TREE_READONLY (decl) = 1;
3105 TREE_NOTHROW (decl) = 1;
3106
3107 ftype = build_function_type_list (void_type_node, ptr_type_node,
3108 NULL_TREE);
3109 decl = add_builtin_function ("__builtin_set_thread_pointer", ftype,
3110 XTENSA_BUILTIN_SET_THREAD_POINTER,
3111 BUILT_IN_MD, NULL, NULL_TREE);
3112 TREE_NOTHROW (decl) = 1;
3113 }
3114 }
3115
3116
3117 static tree
3118 xtensa_fold_builtin (tree fndecl, int n_args ATTRIBUTE_UNUSED, tree *args,
3119 bool ignore ATTRIBUTE_UNUSED)
3120 {
3121 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
3122 tree arg0, arg1;
3123
3124 switch (fcode)
3125 {
3126 case XTENSA_BUILTIN_UMULSIDI3:
3127 arg0 = args[0];
3128 arg1 = args[1];
3129 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
3130 || TARGET_MUL32_HIGH)
3131 return fold_build2 (MULT_EXPR, unsigned_intDI_type_node,
3132 fold_convert (unsigned_intDI_type_node, arg0),
3133 fold_convert (unsigned_intDI_type_node, arg1));
3134 break;
3135
3136 case XTENSA_BUILTIN_THREAD_POINTER:
3137 case XTENSA_BUILTIN_SET_THREAD_POINTER:
3138 break;
3139
3140 default:
3141 internal_error ("bad builtin code");
3142 break;
3143 }
3144
3145 return NULL;
3146 }
3147
3148
3149 static rtx
3150 xtensa_expand_builtin (tree exp, rtx target,
3151 rtx subtarget ATTRIBUTE_UNUSED,
3152 enum machine_mode mode ATTRIBUTE_UNUSED,
3153 int ignore)
3154 {
3155 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
3156 unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
3157 rtx arg;
3158
3159 switch (fcode)
3160 {
3161 case XTENSA_BUILTIN_UMULSIDI3:
3162 /* The umulsidi3 builtin is just a mechanism to avoid calling the real
3163 __umulsidi3 function when the Xtensa configuration can directly
3164 implement it. If not, just call the function. */
3165 return expand_call (exp, target, ignore);
3166
3167 case XTENSA_BUILTIN_THREAD_POINTER:
3168 if (!target || !register_operand (target, Pmode))
3169 target = gen_reg_rtx (Pmode);
3170 emit_insn (gen_load_tp (target));
3171 return target;
3172
3173 case XTENSA_BUILTIN_SET_THREAD_POINTER:
3174 arg = expand_normal (CALL_EXPR_ARG (exp, 0));
3175 if (!register_operand (arg, Pmode))
3176 arg = copy_to_mode_reg (Pmode, arg);
3177 emit_insn (gen_set_tp (arg));
3178 return const0_rtx;
3179
3180 default:
3181 internal_error ("bad builtin code");
3182 }
3183 return NULL_RTX;
3184 }
3185
3186 /* Worker function for TARGET_PREFERRED_RELOAD_CLASS. */
3187
3188 static reg_class_t
3189 xtensa_preferred_reload_class (rtx x, reg_class_t rclass)
3190 {
3191 if (CONSTANT_P (x) && CONST_DOUBLE_P (x))
3192 return NO_REGS;
3193
3194 /* Don't use the stack pointer or hard frame pointer for reloads!
3195 The hard frame pointer would normally be OK except that it may
3196 briefly hold an incoming argument in the prologue, and reload
3197 won't know that it is live because the hard frame pointer is
3198 treated specially. */
3199
3200 if (rclass == AR_REGS || rclass == GR_REGS)
3201 return RL_REGS;
3202
3203 return rclass;
3204 }
3205
3206 /* Worker function for TARGET_PREFERRED_OUTPUT_RELOAD_CLASS. */
3207
3208 static reg_class_t
3209 xtensa_preferred_output_reload_class (rtx x ATTRIBUTE_UNUSED,
3210 reg_class_t rclass)
3211 {
3212 /* Don't use the stack pointer or hard frame pointer for reloads!
3213 The hard frame pointer would normally be OK except that it may
3214 briefly hold an incoming argument in the prologue, and reload
3215 won't know that it is live because the hard frame pointer is
3216 treated specially. */
3217
3218 if (rclass == AR_REGS || rclass == GR_REGS)
3219 return RL_REGS;
3220
3221 return rclass;
3222 }
3223
3224 /* Worker function for TARGET_SECONDARY_RELOAD. */
3225
3226 static reg_class_t
3227 xtensa_secondary_reload (bool in_p, rtx x, reg_class_t rclass,
3228 enum machine_mode mode, secondary_reload_info *sri)
3229 {
3230 int regno;
3231
3232 if (in_p && constantpool_mem_p (x))
3233 {
3234 if (rclass == FP_REGS)
3235 return RL_REGS;
3236
3237 if (mode == QImode)
3238 sri->icode = CODE_FOR_reloadqi_literal;
3239 else if (mode == HImode)
3240 sri->icode = CODE_FOR_reloadhi_literal;
3241 }
3242
3243 regno = xt_true_regnum (x);
3244 if (ACC_REG_P (regno))
3245 return ((rclass == GR_REGS || rclass == RL_REGS) ? NO_REGS : RL_REGS);
3246 if (rclass == ACC_REG)
3247 return (GP_REG_P (regno) ? NO_REGS : RL_REGS);
3248
3249 return NO_REGS;
3250 }
3251
3252
3253 void
3254 order_regs_for_local_alloc (void)
3255 {
3256 if (!leaf_function_p ())
3257 {
3258 memcpy (reg_alloc_order, reg_nonleaf_alloc_order,
3259 FIRST_PSEUDO_REGISTER * sizeof (int));
3260 }
3261 else
3262 {
3263 int i, num_arg_regs;
3264 int nxt = 0;
3265
3266 /* Use the AR registers in increasing order (skipping a0 and a1)
3267 but save the incoming argument registers for a last resort. */
3268 num_arg_regs = crtl->args.info.arg_words;
3269 if (num_arg_regs > MAX_ARGS_IN_REGISTERS)
3270 num_arg_regs = MAX_ARGS_IN_REGISTERS;
3271 for (i = GP_ARG_FIRST; i < 16 - num_arg_regs; i++)
3272 reg_alloc_order[nxt++] = i + num_arg_regs;
3273 for (i = 0; i < num_arg_regs; i++)
3274 reg_alloc_order[nxt++] = GP_ARG_FIRST + i;
3275
3276 /* List the coprocessor registers in order. */
3277 for (i = 0; i < BR_REG_NUM; i++)
3278 reg_alloc_order[nxt++] = BR_REG_FIRST + i;
3279
3280 /* List the FP registers in order for now. */
3281 for (i = 0; i < 16; i++)
3282 reg_alloc_order[nxt++] = FP_REG_FIRST + i;
3283
3284 /* GCC requires that we list *all* the registers.... */
3285 reg_alloc_order[nxt++] = 0; /* a0 = return address */
3286 reg_alloc_order[nxt++] = 1; /* a1 = stack pointer */
3287 reg_alloc_order[nxt++] = 16; /* pseudo frame pointer */
3288 reg_alloc_order[nxt++] = 17; /* pseudo arg pointer */
3289
3290 reg_alloc_order[nxt++] = ACC_REG_FIRST; /* MAC16 accumulator */
3291 }
3292 }
3293
3294
3295 /* Some Xtensa targets support multiple bss sections. If the section
3296 name ends with ".bss", add SECTION_BSS to the flags. */
3297
3298 static unsigned int
3299 xtensa_multibss_section_type_flags (tree decl, const char *name, int reloc)
3300 {
3301 unsigned int flags = default_section_type_flags (decl, name, reloc);
3302 const char *suffix;
3303
3304 suffix = strrchr (name, '.');
3305 if (suffix && strcmp (suffix, ".bss") == 0)
3306 {
3307 if (!decl || (TREE_CODE (decl) == VAR_DECL
3308 && DECL_INITIAL (decl) == NULL_TREE))
3309 flags |= SECTION_BSS; /* @nobits */
3310 else
3311 warning (0, "only uninitialized variables can be placed in a "
3312 ".bss section");
3313 }
3314
3315 return flags;
3316 }
3317
3318
3319 /* The literal pool stays with the function. */
3320
3321 static section *
3322 xtensa_select_rtx_section (enum machine_mode mode ATTRIBUTE_UNUSED,
3323 rtx x ATTRIBUTE_UNUSED,
3324 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
3325 {
3326 return function_section (current_function_decl);
3327 }
3328
3329 /* Worker function for TARGET_REGISTER_MOVE_COST. */
3330
3331 static int
3332 xtensa_register_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
3333 reg_class_t from, reg_class_t to)
3334 {
3335 if (from == to && from != BR_REGS && to != BR_REGS)
3336 return 2;
3337 else if (reg_class_subset_p (from, AR_REGS)
3338 && reg_class_subset_p (to, AR_REGS))
3339 return 2;
3340 else if (reg_class_subset_p (from, AR_REGS) && to == ACC_REG)
3341 return 3;
3342 else if (from == ACC_REG && reg_class_subset_p (to, AR_REGS))
3343 return 3;
3344 else
3345 return 10;
3346 }
3347
3348 /* Worker function for TARGET_MEMORY_MOVE_COST. */
3349
3350 static int
3351 xtensa_memory_move_cost (enum machine_mode mode ATTRIBUTE_UNUSED,
3352 reg_class_t rclass ATTRIBUTE_UNUSED,
3353 bool in ATTRIBUTE_UNUSED)
3354 {
3355 return 4;
3356 }
3357
3358 /* Compute a (partial) cost for rtx X. Return true if the complete
3359 cost has been computed, and false if subexpressions should be
3360 scanned. In either case, *TOTAL contains the cost result. */
3361
3362 static bool
3363 xtensa_rtx_costs (rtx x, int code, int outer_code, int *total,
3364 bool speed ATTRIBUTE_UNUSED)
3365 {
3366 switch (code)
3367 {
3368 case CONST_INT:
3369 switch (outer_code)
3370 {
3371 case SET:
3372 if (xtensa_simm12b (INTVAL (x)))
3373 {
3374 *total = 4;
3375 return true;
3376 }
3377 break;
3378 case PLUS:
3379 if (xtensa_simm8 (INTVAL (x))
3380 || xtensa_simm8x256 (INTVAL (x)))
3381 {
3382 *total = 0;
3383 return true;
3384 }
3385 break;
3386 case AND:
3387 if (xtensa_mask_immediate (INTVAL (x)))
3388 {
3389 *total = 0;
3390 return true;
3391 }
3392 break;
3393 case COMPARE:
3394 if ((INTVAL (x) == 0) || xtensa_b4const (INTVAL (x)))
3395 {
3396 *total = 0;
3397 return true;
3398 }
3399 break;
3400 case ASHIFT:
3401 case ASHIFTRT:
3402 case LSHIFTRT:
3403 case ROTATE:
3404 case ROTATERT:
3405 /* No way to tell if X is the 2nd operand so be conservative. */
3406 default: break;
3407 }
3408 if (xtensa_simm12b (INTVAL (x)))
3409 *total = 5;
3410 else if (TARGET_CONST16)
3411 *total = COSTS_N_INSNS (2);
3412 else
3413 *total = 6;
3414 return true;
3415
3416 case CONST:
3417 case LABEL_REF:
3418 case SYMBOL_REF:
3419 if (TARGET_CONST16)
3420 *total = COSTS_N_INSNS (2);
3421 else
3422 *total = 5;
3423 return true;
3424
3425 case CONST_DOUBLE:
3426 if (TARGET_CONST16)
3427 *total = COSTS_N_INSNS (4);
3428 else
3429 *total = 7;
3430 return true;
3431
3432 case MEM:
3433 {
3434 int num_words =
3435 (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) ? 2 : 1;
3436
3437 if (memory_address_p (GET_MODE (x), XEXP ((x), 0)))
3438 *total = COSTS_N_INSNS (num_words);
3439 else
3440 *total = COSTS_N_INSNS (2*num_words);
3441 return true;
3442 }
3443
3444 case FFS:
3445 case CTZ:
3446 *total = COSTS_N_INSNS (TARGET_NSA ? 5 : 50);
3447 return true;
3448
3449 case CLZ:
3450 *total = COSTS_N_INSNS (TARGET_NSA ? 1 : 50);
3451 return true;
3452
3453 case NOT:
3454 *total = COSTS_N_INSNS ((GET_MODE (x) == DImode) ? 3 : 2);
3455 return true;
3456
3457 case AND:
3458 case IOR:
3459 case XOR:
3460 if (GET_MODE (x) == DImode)
3461 *total = COSTS_N_INSNS (2);
3462 else
3463 *total = COSTS_N_INSNS (1);
3464 return true;
3465
3466 case ASHIFT:
3467 case ASHIFTRT:
3468 case LSHIFTRT:
3469 if (GET_MODE (x) == DImode)
3470 *total = COSTS_N_INSNS (50);
3471 else
3472 *total = COSTS_N_INSNS (1);
3473 return true;
3474
3475 case ABS:
3476 {
3477 enum machine_mode xmode = GET_MODE (x);
3478 if (xmode == SFmode)
3479 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
3480 else if (xmode == DFmode)
3481 *total = COSTS_N_INSNS (50);
3482 else
3483 *total = COSTS_N_INSNS (4);
3484 return true;
3485 }
3486
3487 case PLUS:
3488 case MINUS:
3489 {
3490 enum machine_mode xmode = GET_MODE (x);
3491 if (xmode == SFmode)
3492 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
3493 else if (xmode == DFmode || xmode == DImode)
3494 *total = COSTS_N_INSNS (50);
3495 else
3496 *total = COSTS_N_INSNS (1);
3497 return true;
3498 }
3499
3500 case NEG:
3501 *total = COSTS_N_INSNS ((GET_MODE (x) == DImode) ? 4 : 2);
3502 return true;
3503
3504 case MULT:
3505 {
3506 enum machine_mode xmode = GET_MODE (x);
3507 if (xmode == SFmode)
3508 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 4 : 50);
3509 else if (xmode == DFmode)
3510 *total = COSTS_N_INSNS (50);
3511 else if (xmode == DImode)
3512 *total = COSTS_N_INSNS (TARGET_MUL32_HIGH ? 10 : 50);
3513 else if (TARGET_MUL32)
3514 *total = COSTS_N_INSNS (4);
3515 else if (TARGET_MAC16)
3516 *total = COSTS_N_INSNS (16);
3517 else if (TARGET_MUL16)
3518 *total = COSTS_N_INSNS (12);
3519 else
3520 *total = COSTS_N_INSNS (50);
3521 return true;
3522 }
3523
3524 case DIV:
3525 case MOD:
3526 {
3527 enum machine_mode xmode = GET_MODE (x);
3528 if (xmode == SFmode)
3529 {
3530 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT_DIV ? 8 : 50);
3531 return true;
3532 }
3533 else if (xmode == DFmode)
3534 {
3535 *total = COSTS_N_INSNS (50);
3536 return true;
3537 }
3538 }
3539 /* Fall through. */
3540
3541 case UDIV:
3542 case UMOD:
3543 {
3544 enum machine_mode xmode = GET_MODE (x);
3545 if (xmode == DImode)
3546 *total = COSTS_N_INSNS (50);
3547 else if (TARGET_DIV32)
3548 *total = COSTS_N_INSNS (32);
3549 else
3550 *total = COSTS_N_INSNS (50);
3551 return true;
3552 }
3553
3554 case SQRT:
3555 if (GET_MODE (x) == SFmode)
3556 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT_SQRT ? 8 : 50);
3557 else
3558 *total = COSTS_N_INSNS (50);
3559 return true;
3560
3561 case SMIN:
3562 case UMIN:
3563 case SMAX:
3564 case UMAX:
3565 *total = COSTS_N_INSNS (TARGET_MINMAX ? 1 : 50);
3566 return true;
3567
3568 case SIGN_EXTRACT:
3569 case SIGN_EXTEND:
3570 *total = COSTS_N_INSNS (TARGET_SEXT ? 1 : 2);
3571 return true;
3572
3573 case ZERO_EXTRACT:
3574 case ZERO_EXTEND:
3575 *total = COSTS_N_INSNS (1);
3576 return true;
3577
3578 default:
3579 return false;
3580 }
3581 }
3582
3583 /* Worker function for TARGET_RETURN_IN_MEMORY. */
3584
3585 static bool
3586 xtensa_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
3587 {
3588 return ((unsigned HOST_WIDE_INT) int_size_in_bytes (type)
3589 > 4 * UNITS_PER_WORD);
3590 }
3591
3592 /* Worker function for TARGET_FUNCTION_VALUE. */
3593
3594 rtx
3595 xtensa_function_value (const_tree valtype, const_tree func ATTRIBUTE_UNUSED,
3596 bool outgoing)
3597 {
3598 return gen_rtx_REG ((INTEGRAL_TYPE_P (valtype)
3599 && TYPE_PRECISION (valtype) < BITS_PER_WORD)
3600 ? SImode : TYPE_MODE (valtype),
3601 outgoing ? GP_OUTGOING_RETURN : GP_RETURN);
3602 }
3603
3604 /* Worker function for TARGET_LIBCALL_VALUE. */
3605
3606 static rtx
3607 xtensa_libcall_value (enum machine_mode mode, const_rtx fun ATTRIBUTE_UNUSED)
3608 {
3609 return gen_rtx_REG ((GET_MODE_CLASS (mode) == MODE_INT
3610 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
3611 ? SImode : mode, GP_RETURN);
3612 }
3613
3614 /* Worker function TARGET_FUNCTION_VALUE_REGNO_P. */
3615
3616 static bool
3617 xtensa_function_value_regno_p (const unsigned int regno)
3618 {
3619 return (regno == GP_RETURN);
3620 }
3621
3622 /* The static chain is passed in memory. Provide rtx giving 'mem'
3623 expressions that denote where they are stored. */
3624
3625 static rtx
3626 xtensa_static_chain (const_tree ARG_UNUSED (fndecl), bool incoming_p)
3627 {
3628 rtx base = incoming_p ? arg_pointer_rtx : stack_pointer_rtx;
3629 return gen_frame_mem (Pmode, plus_constant (base, -5 * UNITS_PER_WORD));
3630 }
3631
3632
3633 /* TRAMPOLINE_TEMPLATE: For Xtensa, the trampoline must perform an ENTRY
3634 instruction with a minimal stack frame in order to get some free
3635 registers. Once the actual call target is known, the proper stack frame
3636 size is extracted from the ENTRY instruction at the target and the
3637 current frame is adjusted to match. The trampoline then transfers
3638 control to the instruction following the ENTRY at the target. Note:
3639 this assumes that the target begins with an ENTRY instruction. */
3640
3641 static void
3642 xtensa_asm_trampoline_template (FILE *stream)
3643 {
3644 bool use_call0 = (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS);
3645
3646 fprintf (stream, "\t.begin no-transform\n");
3647 fprintf (stream, "\tentry\tsp, %d\n", MIN_FRAME_SIZE);
3648
3649 if (use_call0)
3650 {
3651 /* Save the return address. */
3652 fprintf (stream, "\tmov\ta10, a0\n");
3653
3654 /* Use a CALL0 instruction to skip past the constants and in the
3655 process get the PC into A0. This allows PC-relative access to
3656 the constants without relying on L32R. */
3657 fprintf (stream, "\tcall0\t.Lskipconsts\n");
3658 }
3659 else
3660 fprintf (stream, "\tj\t.Lskipconsts\n");
3661
3662 fprintf (stream, "\t.align\t4\n");
3663 fprintf (stream, ".Lchainval:%s0\n", integer_asm_op (4, TRUE));
3664 fprintf (stream, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE));
3665 fprintf (stream, ".Lskipconsts:\n");
3666
3667 /* Load the static chain and function address from the trampoline. */
3668 if (use_call0)
3669 {
3670 fprintf (stream, "\taddi\ta0, a0, 3\n");
3671 fprintf (stream, "\tl32i\ta9, a0, 0\n");
3672 fprintf (stream, "\tl32i\ta8, a0, 4\n");
3673 }
3674 else
3675 {
3676 fprintf (stream, "\tl32r\ta9, .Lchainval\n");
3677 fprintf (stream, "\tl32r\ta8, .Lfnaddr\n");
3678 }
3679
3680 /* Store the static chain. */
3681 fprintf (stream, "\ts32i\ta9, sp, %d\n", MIN_FRAME_SIZE - 20);
3682
3683 /* Set the proper stack pointer value. */
3684 fprintf (stream, "\tl32i\ta9, a8, 0\n");
3685 fprintf (stream, "\textui\ta9, a9, %d, 12\n",
3686 TARGET_BIG_ENDIAN ? 8 : 12);
3687 fprintf (stream, "\tslli\ta9, a9, 3\n");
3688 fprintf (stream, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE);
3689 fprintf (stream, "\tsub\ta9, sp, a9\n");
3690 fprintf (stream, "\tmovsp\tsp, a9\n");
3691
3692 if (use_call0)
3693 /* Restore the return address. */
3694 fprintf (stream, "\tmov\ta0, a10\n");
3695
3696 /* Jump to the instruction following the ENTRY. */
3697 fprintf (stream, "\taddi\ta8, a8, 3\n");
3698 fprintf (stream, "\tjx\ta8\n");
3699
3700 /* Pad size to a multiple of TRAMPOLINE_ALIGNMENT. */
3701 if (use_call0)
3702 fprintf (stream, "\t.byte\t0\n");
3703 else
3704 fprintf (stream, "\tnop\n");
3705
3706 fprintf (stream, "\t.end no-transform\n");
3707 }
3708
3709 static void
3710 xtensa_trampoline_init (rtx m_tramp, tree fndecl, rtx chain)
3711 {
3712 rtx func = XEXP (DECL_RTL (fndecl), 0);
3713 bool use_call0 = (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS);
3714 int chain_off = use_call0 ? 12 : 8;
3715 int func_off = use_call0 ? 16 : 12;
3716
3717 emit_block_move (m_tramp, assemble_trampoline_template (),
3718 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
3719
3720 emit_move_insn (adjust_address (m_tramp, SImode, chain_off), chain);
3721 emit_move_insn (adjust_address (m_tramp, SImode, func_off), func);
3722 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_sync_caches"),
3723 LCT_NORMAL, VOIDmode, 1, XEXP (m_tramp, 0), Pmode);
3724 }
3725
3726 /* Implement TARGET_LEGITIMATE_CONSTANT_P. */
3727
3728 static bool
3729 xtensa_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
3730 {
3731 return !xtensa_tls_referenced_p (x);
3732 }
3733
3734 #include "gt-xtensa.h"