]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/xtensa/xtensa.c
trans.c (gnat_gimplify_expr): Use buildN instead of build.
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.c
1 /* Subroutines for insn-output.c for Tensilica's Xtensa architecture.
2 Copyright 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "real.h"
31 #include "insn-config.h"
32 #include "conditions.h"
33 #include "insn-flags.h"
34 #include "insn-attr.h"
35 #include "insn-codes.h"
36 #include "recog.h"
37 #include "output.h"
38 #include "tree.h"
39 #include "expr.h"
40 #include "flags.h"
41 #include "reload.h"
42 #include "tm_p.h"
43 #include "function.h"
44 #include "toplev.h"
45 #include "optabs.h"
46 #include "libfuncs.h"
47 #include "ggc.h"
48 #include "target.h"
49 #include "target-def.h"
50 #include "langhooks.h"
51 #include "tree-gimple.h"
52
53
54 /* Enumeration for all of the relational tests, so that we can build
55 arrays indexed by the test type, and not worry about the order
56 of EQ, NE, etc. */
57
58 enum internal_test
59 {
60 ITEST_EQ,
61 ITEST_NE,
62 ITEST_GT,
63 ITEST_GE,
64 ITEST_LT,
65 ITEST_LE,
66 ITEST_GTU,
67 ITEST_GEU,
68 ITEST_LTU,
69 ITEST_LEU,
70 ITEST_MAX
71 };
72
73 /* Cached operands, and operator to compare for use in set/branch on
74 condition codes. */
75 rtx branch_cmp[2];
76
77 /* what type of branch to use */
78 enum cmp_type branch_type;
79
80 /* Array giving truth value on whether or not a given hard register
81 can support a given mode. */
82 char xtensa_hard_regno_mode_ok[(int) MAX_MACHINE_MODE][FIRST_PSEUDO_REGISTER];
83
84 /* Current frame size calculated by compute_frame_size. */
85 unsigned xtensa_current_frame_size;
86
87 /* Largest block move to handle in-line. */
88 #define LARGEST_MOVE_RATIO 15
89
90 /* Define the structure for the machine field in struct function. */
91 struct machine_function GTY(())
92 {
93 int accesses_prev_frame;
94 bool need_a7_copy;
95 bool vararg_a7;
96 rtx set_frame_ptr_insn;
97 };
98
99 /* Vector, indexed by hard register number, which contains 1 for a
100 register that is allowable in a candidate for leaf function
101 treatment. */
102
103 const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER] =
104 {
105 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
106 1, 1, 1,
107 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
108 1
109 };
110
111 /* Map hard register number to register class */
112 const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER] =
113 {
114 RL_REGS, SP_REG, RL_REGS, RL_REGS,
115 RL_REGS, RL_REGS, RL_REGS, GR_REGS,
116 RL_REGS, RL_REGS, RL_REGS, RL_REGS,
117 RL_REGS, RL_REGS, RL_REGS, RL_REGS,
118 AR_REGS, AR_REGS, BR_REGS,
119 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
120 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
121 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
122 FP_REGS, FP_REGS, FP_REGS, FP_REGS,
123 ACC_REG,
124 };
125
126 /* Map register constraint character to register class. */
127 enum reg_class xtensa_char_to_class[256] =
128 {
129 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
130 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
131 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
132 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
133 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
134 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
135 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
136 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
137 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
138 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
139 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
140 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
141 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
142 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
143 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
144 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
145 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
146 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
147 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
148 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
149 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
150 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
151 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
152 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
153 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
154 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
155 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
156 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
157 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
158 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
159 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
160 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
161 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
162 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
163 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
164 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
165 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
166 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
167 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
168 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
169 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
170 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
171 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
172 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
173 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
174 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
175 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
176 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
177 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
178 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
179 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
180 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
181 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
182 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
183 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
184 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
185 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
186 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
187 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
188 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
189 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
190 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
191 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
192 NO_REGS, NO_REGS, NO_REGS, NO_REGS,
193 };
194
195 static enum internal_test map_test_to_internal_test (enum rtx_code);
196 static rtx gen_int_relational (enum rtx_code, rtx, rtx, int *);
197 static rtx gen_float_relational (enum rtx_code, rtx, rtx);
198 static rtx gen_conditional_move (rtx);
199 static rtx fixup_subreg_mem (rtx);
200 static struct machine_function * xtensa_init_machine_status (void);
201 static bool xtensa_return_in_msb (tree);
202 static void printx (FILE *, signed int);
203 static void xtensa_function_epilogue (FILE *, HOST_WIDE_INT);
204 static rtx xtensa_builtin_saveregs (void);
205 static unsigned int xtensa_multibss_section_type_flags (tree, const char *,
206 int) ATTRIBUTE_UNUSED;
207 static void xtensa_select_rtx_section (enum machine_mode, rtx,
208 unsigned HOST_WIDE_INT);
209 static bool xtensa_rtx_costs (rtx, int, int, int *);
210 static tree xtensa_build_builtin_va_list (void);
211 static bool xtensa_return_in_memory (tree, tree);
212 static tree xtensa_gimplify_va_arg_expr (tree, tree, tree *, tree *);
213
214 static const int reg_nonleaf_alloc_order[FIRST_PSEUDO_REGISTER] =
215 REG_ALLOC_ORDER;
216 \f
217
218 /* This macro generates the assembly code for function exit,
219 on machines that need it. If FUNCTION_EPILOGUE is not defined
220 then individual return instructions are generated for each
221 return statement. Args are same as for FUNCTION_PROLOGUE. */
222
223 #undef TARGET_ASM_FUNCTION_EPILOGUE
224 #define TARGET_ASM_FUNCTION_EPILOGUE xtensa_function_epilogue
225
226 /* These hooks specify assembly directives for creating certain kinds
227 of integer object. */
228
229 #undef TARGET_ASM_ALIGNED_SI_OP
230 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
231
232 #undef TARGET_ASM_SELECT_RTX_SECTION
233 #define TARGET_ASM_SELECT_RTX_SECTION xtensa_select_rtx_section
234
235 #undef TARGET_DEFAULT_TARGET_FLAGS
236 #define TARGET_DEFAULT_TARGET_FLAGS (TARGET_DEFAULT | MASK_FUSED_MADD)
237
238 #undef TARGET_RTX_COSTS
239 #define TARGET_RTX_COSTS xtensa_rtx_costs
240 #undef TARGET_ADDRESS_COST
241 #define TARGET_ADDRESS_COST hook_int_rtx_0
242
243 #undef TARGET_BUILD_BUILTIN_VA_LIST
244 #define TARGET_BUILD_BUILTIN_VA_LIST xtensa_build_builtin_va_list
245
246 #undef TARGET_PROMOTE_FUNCTION_ARGS
247 #define TARGET_PROMOTE_FUNCTION_ARGS hook_bool_tree_true
248 #undef TARGET_PROMOTE_FUNCTION_RETURN
249 #define TARGET_PROMOTE_FUNCTION_RETURN hook_bool_tree_true
250 #undef TARGET_PROMOTE_PROTOTYPES
251 #define TARGET_PROMOTE_PROTOTYPES hook_bool_tree_true
252
253 #undef TARGET_RETURN_IN_MEMORY
254 #define TARGET_RETURN_IN_MEMORY xtensa_return_in_memory
255 #undef TARGET_SPLIT_COMPLEX_ARG
256 #define TARGET_SPLIT_COMPLEX_ARG hook_bool_tree_true
257 #undef TARGET_MUST_PASS_IN_STACK
258 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
259
260 #undef TARGET_EXPAND_BUILTIN_SAVEREGS
261 #define TARGET_EXPAND_BUILTIN_SAVEREGS xtensa_builtin_saveregs
262 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
263 #define TARGET_GIMPLIFY_VA_ARG_EXPR xtensa_gimplify_va_arg_expr
264
265 #undef TARGET_RETURN_IN_MSB
266 #define TARGET_RETURN_IN_MSB xtensa_return_in_msb
267
268 struct gcc_target targetm = TARGET_INITIALIZER;
269 \f
270
271 /*
272 * Functions to test Xtensa immediate operand validity.
273 */
274
275 bool
276 xtensa_simm8 (HOST_WIDE_INT v)
277 {
278 return v >= -128 && v <= 127;
279 }
280
281
282 bool
283 xtensa_simm8x256 (HOST_WIDE_INT v)
284 {
285 return (v & 255) == 0 && (v >= -32768 && v <= 32512);
286 }
287
288
289 bool
290 xtensa_simm12b (HOST_WIDE_INT v)
291 {
292 return v >= -2048 && v <= 2047;
293 }
294
295
296 static bool
297 xtensa_uimm8 (HOST_WIDE_INT v)
298 {
299 return v >= 0 && v <= 255;
300 }
301
302
303 static bool
304 xtensa_uimm8x2 (HOST_WIDE_INT v)
305 {
306 return (v & 1) == 0 && (v >= 0 && v <= 510);
307 }
308
309
310 static bool
311 xtensa_uimm8x4 (HOST_WIDE_INT v)
312 {
313 return (v & 3) == 0 && (v >= 0 && v <= 1020);
314 }
315
316
317 static bool
318 xtensa_b4const (HOST_WIDE_INT v)
319 {
320 switch (v)
321 {
322 case -1:
323 case 1:
324 case 2:
325 case 3:
326 case 4:
327 case 5:
328 case 6:
329 case 7:
330 case 8:
331 case 10:
332 case 12:
333 case 16:
334 case 32:
335 case 64:
336 case 128:
337 case 256:
338 return true;
339 }
340 return false;
341 }
342
343
344 bool
345 xtensa_b4const_or_zero (HOST_WIDE_INT v)
346 {
347 if (v == 0)
348 return true;
349 return xtensa_b4const (v);
350 }
351
352
353 bool
354 xtensa_b4constu (HOST_WIDE_INT v)
355 {
356 switch (v)
357 {
358 case 32768:
359 case 65536:
360 case 2:
361 case 3:
362 case 4:
363 case 5:
364 case 6:
365 case 7:
366 case 8:
367 case 10:
368 case 12:
369 case 16:
370 case 32:
371 case 64:
372 case 128:
373 case 256:
374 return true;
375 }
376 return false;
377 }
378
379
380 bool
381 xtensa_mask_immediate (HOST_WIDE_INT v)
382 {
383 #define MAX_MASK_SIZE 16
384 int mask_size;
385
386 for (mask_size = 1; mask_size <= MAX_MASK_SIZE; mask_size++)
387 {
388 if ((v & 1) == 0)
389 return false;
390 v = v >> 1;
391 if (v == 0)
392 return true;
393 }
394
395 return false;
396 }
397
398
399 bool
400 xtensa_const_ok_for_letter_p (HOST_WIDE_INT v, int c)
401 {
402 switch (c)
403 {
404 case 'I': return xtensa_simm12b (v);
405 case 'J': return xtensa_simm8 (v);
406 case 'K': return (v == 0 || xtensa_b4const (v));
407 case 'L': return xtensa_b4constu (v);
408 case 'M': return (v >= -32 && v <= 95);
409 case 'N': return xtensa_simm8x256 (v);
410 case 'O': return (v == -1 || (v >= 1 && v <= 15));
411 case 'P': return xtensa_mask_immediate (v);
412 default: break;
413 }
414 return false;
415 }
416
417
418 /* This is just like the standard true_regnum() function except that it
419 works even when reg_renumber is not initialized. */
420
421 int
422 xt_true_regnum (rtx x)
423 {
424 if (GET_CODE (x) == REG)
425 {
426 if (reg_renumber
427 && REGNO (x) >= FIRST_PSEUDO_REGISTER
428 && reg_renumber[REGNO (x)] >= 0)
429 return reg_renumber[REGNO (x)];
430 return REGNO (x);
431 }
432 if (GET_CODE (x) == SUBREG)
433 {
434 int base = xt_true_regnum (SUBREG_REG (x));
435 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
436 return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
437 GET_MODE (SUBREG_REG (x)),
438 SUBREG_BYTE (x), GET_MODE (x));
439 }
440 return -1;
441 }
442
443
444 int
445 xtensa_valid_move (enum machine_mode mode, rtx *operands)
446 {
447 /* Either the destination or source must be a register, and the
448 MAC16 accumulator doesn't count. */
449
450 if (register_operand (operands[0], mode))
451 {
452 int dst_regnum = xt_true_regnum (operands[0]);
453
454 /* The stack pointer can only be assigned with a MOVSP opcode. */
455 if (dst_regnum == STACK_POINTER_REGNUM)
456 return (mode == SImode
457 && register_operand (operands[1], mode)
458 && !ACC_REG_P (xt_true_regnum (operands[1])));
459
460 if (!ACC_REG_P (dst_regnum))
461 return true;
462 }
463 if (register_operand (operands[1], mode))
464 {
465 int src_regnum = xt_true_regnum (operands[1]);
466 if (!ACC_REG_P (src_regnum))
467 return true;
468 }
469 return FALSE;
470 }
471
472
473 int
474 smalloffset_mem_p (rtx op)
475 {
476 if (GET_CODE (op) == MEM)
477 {
478 rtx addr = XEXP (op, 0);
479 if (GET_CODE (addr) == REG)
480 return REG_OK_FOR_BASE_P (addr);
481 if (GET_CODE (addr) == PLUS)
482 {
483 rtx offset = XEXP (addr, 0);
484 HOST_WIDE_INT val;
485 if (GET_CODE (offset) != CONST_INT)
486 offset = XEXP (addr, 1);
487 if (GET_CODE (offset) != CONST_INT)
488 return FALSE;
489
490 val = INTVAL (offset);
491 return (val & 3) == 0 && (val >= 0 && val <= 60);
492 }
493 }
494 return FALSE;
495 }
496
497
498 int
499 constantpool_address_p (rtx addr)
500 {
501 rtx sym = addr;
502
503 if (GET_CODE (addr) == CONST)
504 {
505 rtx offset;
506
507 /* Only handle (PLUS (SYM, OFFSET)) form. */
508 addr = XEXP (addr, 0);
509 if (GET_CODE (addr) != PLUS)
510 return FALSE;
511
512 /* Make sure the address is word aligned. */
513 offset = XEXP (addr, 1);
514 if ((GET_CODE (offset) != CONST_INT)
515 || ((INTVAL (offset) & 3) != 0))
516 return FALSE;
517
518 sym = XEXP (addr, 0);
519 }
520
521 if ((GET_CODE (sym) == SYMBOL_REF)
522 && CONSTANT_POOL_ADDRESS_P (sym))
523 return TRUE;
524 return FALSE;
525 }
526
527
528 int
529 constantpool_mem_p (rtx op)
530 {
531 if (GET_CODE (op) == MEM)
532 return constantpool_address_p (XEXP (op, 0));
533 return FALSE;
534 }
535
536
537 void
538 xtensa_extend_reg (rtx dst, rtx src)
539 {
540 rtx temp = gen_reg_rtx (SImode);
541 rtx shift = GEN_INT (BITS_PER_WORD - GET_MODE_BITSIZE (GET_MODE (src)));
542
543 /* Generate paradoxical subregs as needed so that the modes match. */
544 src = simplify_gen_subreg (SImode, src, GET_MODE (src), 0);
545 dst = simplify_gen_subreg (SImode, dst, GET_MODE (dst), 0);
546
547 emit_insn (gen_ashlsi3 (temp, src, shift));
548 emit_insn (gen_ashrsi3 (dst, temp, shift));
549 }
550
551
552 bool
553 xtensa_mem_offset (unsigned v, enum machine_mode mode)
554 {
555 switch (mode)
556 {
557 case BLKmode:
558 /* Handle the worst case for block moves. See xtensa_expand_block_move
559 where we emit an optimized block move operation if the block can be
560 moved in < "move_ratio" pieces. The worst case is when the block is
561 aligned but has a size of (3 mod 4) (does this happen?) so that the
562 last piece requires a byte load/store. */
563 return (xtensa_uimm8 (v)
564 && xtensa_uimm8 (v + MOVE_MAX * LARGEST_MOVE_RATIO));
565
566 case QImode:
567 return xtensa_uimm8 (v);
568
569 case HImode:
570 return xtensa_uimm8x2 (v);
571
572 case DFmode:
573 return (xtensa_uimm8x4 (v) && xtensa_uimm8x4 (v + 4));
574
575 default:
576 break;
577 }
578
579 return xtensa_uimm8x4 (v);
580 }
581
582
583 bool
584 xtensa_extra_constraint (rtx op, int c)
585 {
586 /* Allow pseudo registers during reload. */
587 if (GET_CODE (op) != MEM)
588 return (c >= 'R' && c <= 'U'
589 && reload_in_progress && GET_CODE (op) == REG
590 && REGNO (op) >= FIRST_PSEUDO_REGISTER);
591
592 switch (c)
593 {
594 case 'R': return smalloffset_mem_p (op);
595 case 'T': return !TARGET_CONST16 && constantpool_mem_p (op);
596 case 'U': return !constantpool_mem_p (op);
597 default: break;
598 }
599 return false;
600 }
601
602
603 /* Make normal rtx_code into something we can index from an array. */
604
605 static enum internal_test
606 map_test_to_internal_test (enum rtx_code test_code)
607 {
608 enum internal_test test = ITEST_MAX;
609
610 switch (test_code)
611 {
612 default: break;
613 case EQ: test = ITEST_EQ; break;
614 case NE: test = ITEST_NE; break;
615 case GT: test = ITEST_GT; break;
616 case GE: test = ITEST_GE; break;
617 case LT: test = ITEST_LT; break;
618 case LE: test = ITEST_LE; break;
619 case GTU: test = ITEST_GTU; break;
620 case GEU: test = ITEST_GEU; break;
621 case LTU: test = ITEST_LTU; break;
622 case LEU: test = ITEST_LEU; break;
623 }
624
625 return test;
626 }
627
628
629 /* Generate the code to compare two integer values. The return value is
630 the comparison expression. */
631
632 static rtx
633 gen_int_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
634 rtx cmp0, /* first operand to compare */
635 rtx cmp1, /* second operand to compare */
636 int *p_invert /* whether branch needs to reverse test */)
637 {
638 struct cmp_info
639 {
640 enum rtx_code test_code; /* test code to use in insn */
641 bool (*const_range_p) (HOST_WIDE_INT); /* range check function */
642 int const_add; /* constant to add (convert LE -> LT) */
643 int reverse_regs; /* reverse registers in test */
644 int invert_const; /* != 0 if invert value if cmp1 is constant */
645 int invert_reg; /* != 0 if invert value if cmp1 is register */
646 int unsignedp; /* != 0 for unsigned comparisons. */
647 };
648
649 static struct cmp_info info[ (int)ITEST_MAX ] = {
650
651 { EQ, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* EQ */
652 { NE, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* NE */
653
654 { LT, xtensa_b4const_or_zero, 1, 1, 1, 0, 0 }, /* GT */
655 { GE, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* GE */
656 { LT, xtensa_b4const_or_zero, 0, 0, 0, 0, 0 }, /* LT */
657 { GE, xtensa_b4const_or_zero, 1, 1, 1, 0, 0 }, /* LE */
658
659 { LTU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* GTU */
660 { GEU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* GEU */
661 { LTU, xtensa_b4constu, 0, 0, 0, 0, 1 }, /* LTU */
662 { GEU, xtensa_b4constu, 1, 1, 1, 0, 1 }, /* LEU */
663 };
664
665 enum internal_test test;
666 enum machine_mode mode;
667 struct cmp_info *p_info;
668
669 test = map_test_to_internal_test (test_code);
670 gcc_assert (test != ITEST_MAX);
671
672 p_info = &info[ (int)test ];
673
674 mode = GET_MODE (cmp0);
675 if (mode == VOIDmode)
676 mode = GET_MODE (cmp1);
677
678 /* Make sure we can handle any constants given to us. */
679 if (GET_CODE (cmp1) == CONST_INT)
680 {
681 HOST_WIDE_INT value = INTVAL (cmp1);
682 unsigned HOST_WIDE_INT uvalue = (unsigned HOST_WIDE_INT)value;
683
684 /* if the immediate overflows or does not fit in the immediate field,
685 spill it to a register */
686
687 if ((p_info->unsignedp ?
688 (uvalue + p_info->const_add > uvalue) :
689 (value + p_info->const_add > value)) != (p_info->const_add > 0))
690 {
691 cmp1 = force_reg (mode, cmp1);
692 }
693 else if (!(p_info->const_range_p) (value + p_info->const_add))
694 {
695 cmp1 = force_reg (mode, cmp1);
696 }
697 }
698 else if ((GET_CODE (cmp1) != REG) && (GET_CODE (cmp1) != SUBREG))
699 {
700 cmp1 = force_reg (mode, cmp1);
701 }
702
703 /* See if we need to invert the result. */
704 *p_invert = ((GET_CODE (cmp1) == CONST_INT)
705 ? p_info->invert_const
706 : p_info->invert_reg);
707
708 /* Comparison to constants, may involve adding 1 to change a LT into LE.
709 Comparison between two registers, may involve switching operands. */
710 if (GET_CODE (cmp1) == CONST_INT)
711 {
712 if (p_info->const_add != 0)
713 cmp1 = GEN_INT (INTVAL (cmp1) + p_info->const_add);
714
715 }
716 else if (p_info->reverse_regs)
717 {
718 rtx temp = cmp0;
719 cmp0 = cmp1;
720 cmp1 = temp;
721 }
722
723 return gen_rtx_fmt_ee (p_info->test_code, VOIDmode, cmp0, cmp1);
724 }
725
726
727 /* Generate the code to compare two float values. The return value is
728 the comparison expression. */
729
730 static rtx
731 gen_float_relational (enum rtx_code test_code, /* relational test (EQ, etc) */
732 rtx cmp0, /* first operand to compare */
733 rtx cmp1 /* second operand to compare */)
734 {
735 rtx (*gen_fn) (rtx, rtx, rtx);
736 rtx brtmp;
737 int reverse_regs, invert;
738
739 switch (test_code)
740 {
741 case EQ: reverse_regs = 0; invert = 0; gen_fn = gen_seq_sf; break;
742 case NE: reverse_regs = 0; invert = 1; gen_fn = gen_seq_sf; break;
743 case LE: reverse_regs = 0; invert = 0; gen_fn = gen_sle_sf; break;
744 case GT: reverse_regs = 1; invert = 0; gen_fn = gen_slt_sf; break;
745 case LT: reverse_regs = 0; invert = 0; gen_fn = gen_slt_sf; break;
746 case GE: reverse_regs = 1; invert = 0; gen_fn = gen_sle_sf; break;
747 default:
748 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
749 reverse_regs = 0; invert = 0; gen_fn = 0; /* avoid compiler warnings */
750 }
751
752 if (reverse_regs)
753 {
754 rtx temp = cmp0;
755 cmp0 = cmp1;
756 cmp1 = temp;
757 }
758
759 brtmp = gen_rtx_REG (CCmode, FPCC_REGNUM);
760 emit_insn (gen_fn (brtmp, cmp0, cmp1));
761
762 return gen_rtx_fmt_ee (invert ? EQ : NE, VOIDmode, brtmp, const0_rtx);
763 }
764
765
766 void
767 xtensa_expand_conditional_branch (rtx *operands, enum rtx_code test_code)
768 {
769 enum cmp_type type = branch_type;
770 rtx cmp0 = branch_cmp[0];
771 rtx cmp1 = branch_cmp[1];
772 rtx cmp;
773 int invert;
774 rtx label1, label2;
775
776 switch (type)
777 {
778 case CMP_DF:
779 default:
780 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
781
782 case CMP_SI:
783 invert = FALSE;
784 cmp = gen_int_relational (test_code, cmp0, cmp1, &invert);
785 break;
786
787 case CMP_SF:
788 if (!TARGET_HARD_FLOAT)
789 fatal_insn ("bad test", gen_rtx_fmt_ee (test_code, VOIDmode, cmp0, cmp1));
790 invert = FALSE;
791 cmp = gen_float_relational (test_code, cmp0, cmp1);
792 break;
793 }
794
795 /* Generate the branch. */
796
797 label1 = gen_rtx_LABEL_REF (VOIDmode, operands[0]);
798 label2 = pc_rtx;
799
800 if (invert)
801 {
802 label2 = label1;
803 label1 = pc_rtx;
804 }
805
806 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx,
807 gen_rtx_IF_THEN_ELSE (VOIDmode, cmp,
808 label1,
809 label2)));
810 }
811
812
813 static rtx
814 gen_conditional_move (rtx cmp)
815 {
816 enum rtx_code code = GET_CODE (cmp);
817 rtx op0 = branch_cmp[0];
818 rtx op1 = branch_cmp[1];
819
820 if (branch_type == CMP_SI)
821 {
822 /* Jump optimization calls get_condition() which canonicalizes
823 comparisons like (GE x <const>) to (GT x <const-1>).
824 Transform those comparisons back to GE, since that is the
825 comparison supported in Xtensa. We shouldn't have to
826 transform <LE x const> comparisons, because neither
827 xtensa_expand_conditional_branch() nor get_condition() will
828 produce them. */
829
830 if ((code == GT) && (op1 == constm1_rtx))
831 {
832 code = GE;
833 op1 = const0_rtx;
834 }
835 cmp = gen_rtx_fmt_ee (code, VOIDmode, cc0_rtx, const0_rtx);
836
837 if (boolean_operator (cmp, VOIDmode))
838 {
839 /* Swap the operands to make const0 second. */
840 if (op0 == const0_rtx)
841 {
842 op0 = op1;
843 op1 = const0_rtx;
844 }
845
846 /* If not comparing against zero, emit a comparison (subtract). */
847 if (op1 != const0_rtx)
848 {
849 op0 = expand_binop (SImode, sub_optab, op0, op1,
850 0, 0, OPTAB_LIB_WIDEN);
851 op1 = const0_rtx;
852 }
853 }
854 else if (branch_operator (cmp, VOIDmode))
855 {
856 /* Swap the operands to make const0 second. */
857 if (op0 == const0_rtx)
858 {
859 op0 = op1;
860 op1 = const0_rtx;
861
862 switch (code)
863 {
864 case LT: code = GE; break;
865 case GE: code = LT; break;
866 default: gcc_unreachable ();
867 }
868 }
869
870 if (op1 != const0_rtx)
871 return 0;
872 }
873 else
874 return 0;
875
876 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
877 }
878
879 if (TARGET_HARD_FLOAT && (branch_type == CMP_SF))
880 return gen_float_relational (code, op0, op1);
881
882 return 0;
883 }
884
885
886 int
887 xtensa_expand_conditional_move (rtx *operands, int isflt)
888 {
889 rtx cmp;
890 rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);
891
892 if (!(cmp = gen_conditional_move (operands[1])))
893 return 0;
894
895 if (isflt)
896 gen_fn = (branch_type == CMP_SI
897 ? gen_movsfcc_internal0
898 : gen_movsfcc_internal1);
899 else
900 gen_fn = (branch_type == CMP_SI
901 ? gen_movsicc_internal0
902 : gen_movsicc_internal1);
903
904 emit_insn (gen_fn (operands[0], XEXP (cmp, 0),
905 operands[2], operands[3], cmp));
906 return 1;
907 }
908
909
910 int
911 xtensa_expand_scc (rtx *operands)
912 {
913 rtx dest = operands[0];
914 rtx cmp = operands[1];
915 rtx one_tmp, zero_tmp;
916 rtx (*gen_fn) (rtx, rtx, rtx, rtx, rtx);
917
918 if (!(cmp = gen_conditional_move (cmp)))
919 return 0;
920
921 one_tmp = gen_reg_rtx (SImode);
922 zero_tmp = gen_reg_rtx (SImode);
923 emit_insn (gen_movsi (one_tmp, const_true_rtx));
924 emit_insn (gen_movsi (zero_tmp, const0_rtx));
925
926 gen_fn = (branch_type == CMP_SI
927 ? gen_movsicc_internal0
928 : gen_movsicc_internal1);
929 emit_insn (gen_fn (dest, XEXP (cmp, 0), one_tmp, zero_tmp, cmp));
930 return 1;
931 }
932
933
934 /* Split OP[1] into OP[2,3] and likewise for OP[0] into OP[0,1]. MODE is
935 for the output, i.e., the input operands are twice as big as MODE. */
936
937 void
938 xtensa_split_operand_pair (rtx operands[4], enum machine_mode mode)
939 {
940 switch (GET_CODE (operands[1]))
941 {
942 case REG:
943 operands[3] = gen_rtx_REG (mode, REGNO (operands[1]) + 1);
944 operands[2] = gen_rtx_REG (mode, REGNO (operands[1]));
945 break;
946
947 case MEM:
948 operands[3] = adjust_address (operands[1], mode, GET_MODE_SIZE (mode));
949 operands[2] = adjust_address (operands[1], mode, 0);
950 break;
951
952 case CONST_INT:
953 case CONST_DOUBLE:
954 split_double (operands[1], &operands[2], &operands[3]);
955 break;
956
957 default:
958 gcc_unreachable ();
959 }
960
961 switch (GET_CODE (operands[0]))
962 {
963 case REG:
964 operands[1] = gen_rtx_REG (mode, REGNO (operands[0]) + 1);
965 operands[0] = gen_rtx_REG (mode, REGNO (operands[0]));
966 break;
967
968 case MEM:
969 operands[1] = adjust_address (operands[0], mode, GET_MODE_SIZE (mode));
970 operands[0] = adjust_address (operands[0], mode, 0);
971 break;
972
973 default:
974 gcc_unreachable ();
975 }
976 }
977
978
979 /* Emit insns to move operands[1] into operands[0].
980 Return 1 if we have written out everything that needs to be done to
981 do the move. Otherwise, return 0 and the caller will emit the move
982 normally. */
983
984 int
985 xtensa_emit_move_sequence (rtx *operands, enum machine_mode mode)
986 {
987 if (CONSTANT_P (operands[1])
988 && (GET_CODE (operands[1]) != CONST_INT
989 || !xtensa_simm12b (INTVAL (operands[1]))))
990 {
991 if (!TARGET_CONST16)
992 operands[1] = force_const_mem (SImode, operands[1]);
993
994 /* PC-relative loads are always SImode, and CONST16 is only
995 supported in the movsi pattern, so add a SUBREG for any other
996 (smaller) mode. */
997
998 if (mode != SImode)
999 {
1000 if (register_operand (operands[0], mode))
1001 {
1002 operands[0] = simplify_gen_subreg (SImode, operands[0], mode, 0);
1003 emit_move_insn (operands[0], operands[1]);
1004 return 1;
1005 }
1006 else
1007 {
1008 operands[1] = force_reg (SImode, operands[1]);
1009 operands[1] = gen_lowpart_SUBREG (mode, operands[1]);
1010 }
1011 }
1012 }
1013
1014 if (!(reload_in_progress | reload_completed)
1015 && !xtensa_valid_move (mode, operands))
1016 operands[1] = force_reg (mode, operands[1]);
1017
1018 operands[1] = xtensa_copy_incoming_a7 (operands[1]);
1019
1020 /* During reload we don't want to emit (subreg:X (mem:Y)) since that
1021 instruction won't be recognized after reload, so we remove the
1022 subreg and adjust mem accordingly. */
1023 if (reload_in_progress)
1024 {
1025 operands[0] = fixup_subreg_mem (operands[0]);
1026 operands[1] = fixup_subreg_mem (operands[1]);
1027 }
1028 return 0;
1029 }
1030
1031
1032 static rtx
1033 fixup_subreg_mem (rtx x)
1034 {
1035 if (GET_CODE (x) == SUBREG
1036 && GET_CODE (SUBREG_REG (x)) == REG
1037 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1038 {
1039 rtx temp =
1040 gen_rtx_SUBREG (GET_MODE (x),
1041 reg_equiv_mem [REGNO (SUBREG_REG (x))],
1042 SUBREG_BYTE (x));
1043 x = alter_subreg (&temp);
1044 }
1045 return x;
1046 }
1047
1048
1049 /* Check if an incoming argument in a7 is expected to be used soon and
1050 if OPND is a register or register pair that includes a7. If so,
1051 create a new pseudo and copy a7 into that pseudo at the very
1052 beginning of the function, followed by the special "set_frame_ptr"
1053 unspec_volatile insn. The return value is either the original
1054 operand, if it is not a7, or the new pseudo containing a copy of
1055 the incoming argument. This is necessary because the register
1056 allocator will ignore conflicts with a7 and may either assign some
1057 other pseudo to a7 or use a7 as the hard_frame_pointer, clobbering
1058 the incoming argument in a7. By copying the argument out of a7 as
1059 the very first thing, and then immediately following that with an
1060 unspec_volatile to keep the scheduler away, we should avoid any
1061 problems. Putting the set_frame_ptr insn at the beginning, with
1062 only the a7 copy before it, also makes it easier for the prologue
1063 expander to initialize the frame pointer after the a7 copy and to
1064 fix up the a7 copy to use the stack pointer instead of the frame
1065 pointer. */
1066
1067 rtx
1068 xtensa_copy_incoming_a7 (rtx opnd)
1069 {
1070 rtx entry_insns = 0;
1071 rtx reg, tmp;
1072 enum machine_mode mode;
1073
1074 if (!cfun->machine->need_a7_copy)
1075 return opnd;
1076
1077 /* This function should never be called again once a7 has been copied. */
1078 gcc_assert (!cfun->machine->set_frame_ptr_insn);
1079
1080 mode = GET_MODE (opnd);
1081
1082 /* The operand using a7 may come in a later instruction, so just return
1083 the original operand if it doesn't use a7. */
1084 reg = opnd;
1085 if (GET_CODE (reg) == SUBREG)
1086 {
1087 gcc_assert (SUBREG_BYTE (reg) == 0);
1088 reg = SUBREG_REG (reg);
1089 }
1090 if (GET_CODE (reg) != REG
1091 || REGNO (reg) > A7_REG
1092 || REGNO (reg) + HARD_REGNO_NREGS (A7_REG, mode) <= A7_REG)
1093 return opnd;
1094
1095 /* 1-word args will always be in a7; 2-word args in a6/a7. */
1096 gcc_assert (REGNO (reg) + HARD_REGNO_NREGS (A7_REG, mode) - 1 == A7_REG);
1097
1098 cfun->machine->need_a7_copy = false;
1099
1100 /* Copy a7 to a new pseudo at the function entry. Use gen_raw_REG to
1101 create the REG for a7 so that hard_frame_pointer_rtx is not used. */
1102
1103 push_to_sequence (entry_insns);
1104 tmp = gen_reg_rtx (mode);
1105
1106 switch (mode)
1107 {
1108 case DFmode:
1109 case DImode:
1110 emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 0),
1111 gen_rtx_REG (SImode, A7_REG - 1)));
1112 emit_insn (gen_movsi_internal (gen_rtx_SUBREG (SImode, tmp, 4),
1113 gen_raw_REG (SImode, A7_REG)));
1114 break;
1115 case SFmode:
1116 emit_insn (gen_movsf_internal (tmp, gen_raw_REG (mode, A7_REG)));
1117 break;
1118 case SImode:
1119 emit_insn (gen_movsi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1120 break;
1121 case HImode:
1122 emit_insn (gen_movhi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1123 break;
1124 case QImode:
1125 emit_insn (gen_movqi_internal (tmp, gen_raw_REG (mode, A7_REG)));
1126 break;
1127 default:
1128 gcc_unreachable ();
1129 }
1130
1131 cfun->machine->set_frame_ptr_insn = emit_insn (gen_set_frame_ptr ());
1132 entry_insns = get_insns ();
1133 end_sequence ();
1134
1135 if (cfun->machine->vararg_a7)
1136 {
1137 /* This is called from within builtin_savereg, so we're already
1138 inside a start_sequence that will be placed at the start of
1139 the function. */
1140 emit_insn (entry_insns);
1141 }
1142 else
1143 {
1144 /* Put entry_insns after the NOTE that starts the function. If
1145 this is inside a start_sequence, make the outer-level insn
1146 chain current, so the code is placed at the start of the
1147 function. */
1148 push_topmost_sequence ();
1149 emit_insn_after (entry_insns, get_insns ());
1150 pop_topmost_sequence ();
1151 }
1152
1153 return tmp;
1154 }
1155
1156
1157 /* Try to expand a block move operation to a sequence of RTL move
1158 instructions. If not optimizing, or if the block size is not a
1159 constant, or if the block is too large, the expansion fails and GCC
1160 falls back to calling memcpy().
1161
1162 operands[0] is the destination
1163 operands[1] is the source
1164 operands[2] is the length
1165 operands[3] is the alignment */
1166
1167 int
1168 xtensa_expand_block_move (rtx *operands)
1169 {
1170 static const enum machine_mode mode_from_align[] =
1171 {
1172 VOIDmode, QImode, HImode, VOIDmode, SImode,
1173 };
1174
1175 rtx dst_mem = operands[0];
1176 rtx src_mem = operands[1];
1177 HOST_WIDE_INT bytes, align;
1178 int num_pieces, move_ratio;
1179 rtx temp[2];
1180 enum machine_mode mode[2];
1181 int amount[2];
1182 bool active[2];
1183 int phase = 0;
1184 int next;
1185 int offset_ld = 0;
1186 int offset_st = 0;
1187 rtx x;
1188
1189 /* If this is not a fixed size move, just call memcpy. */
1190 if (!optimize || (GET_CODE (operands[2]) != CONST_INT))
1191 return 0;
1192
1193 bytes = INTVAL (operands[2]);
1194 align = INTVAL (operands[3]);
1195
1196 /* Anything to move? */
1197 if (bytes <= 0)
1198 return 0;
1199
1200 if (align > MOVE_MAX)
1201 align = MOVE_MAX;
1202
1203 /* Decide whether to expand inline based on the optimization level. */
1204 move_ratio = 4;
1205 if (optimize > 2)
1206 move_ratio = LARGEST_MOVE_RATIO;
1207 num_pieces = (bytes / align) + (bytes % align); /* Close enough anyway. */
1208 if (num_pieces > move_ratio)
1209 return 0;
1210
1211 x = XEXP (dst_mem, 0);
1212 if (!REG_P (x))
1213 {
1214 x = force_reg (Pmode, x);
1215 dst_mem = replace_equiv_address (dst_mem, x);
1216 }
1217
1218 x = XEXP (src_mem, 0);
1219 if (!REG_P (x))
1220 {
1221 x = force_reg (Pmode, x);
1222 src_mem = replace_equiv_address (src_mem, x);
1223 }
1224
1225 active[0] = active[1] = false;
1226
1227 do
1228 {
1229 next = phase;
1230 phase ^= 1;
1231
1232 if (bytes > 0)
1233 {
1234 int next_amount;
1235
1236 next_amount = (bytes >= 4 ? 4 : (bytes >= 2 ? 2 : 1));
1237 next_amount = MIN (next_amount, align);
1238
1239 amount[next] = next_amount;
1240 mode[next] = mode_from_align[next_amount];
1241 temp[next] = gen_reg_rtx (mode[next]);
1242
1243 x = adjust_address (src_mem, mode[next], offset_ld);
1244 emit_insn (gen_rtx_SET (VOIDmode, temp[next], x));
1245
1246 offset_ld += next_amount;
1247 bytes -= next_amount;
1248 active[next] = true;
1249 }
1250
1251 if (active[phase])
1252 {
1253 active[phase] = false;
1254
1255 x = adjust_address (dst_mem, mode[phase], offset_st);
1256 emit_insn (gen_rtx_SET (VOIDmode, x, temp[phase]));
1257
1258 offset_st += amount[phase];
1259 }
1260 }
1261 while (active[next]);
1262
1263 return 1;
1264 }
1265
1266
1267 void
1268 xtensa_expand_nonlocal_goto (rtx *operands)
1269 {
1270 rtx goto_handler = operands[1];
1271 rtx containing_fp = operands[3];
1272
1273 /* Generate a call to "__xtensa_nonlocal_goto" (in libgcc); the code
1274 is too big to generate in-line. */
1275
1276 if (GET_CODE (containing_fp) != REG)
1277 containing_fp = force_reg (Pmode, containing_fp);
1278
1279 goto_handler = replace_rtx (copy_rtx (goto_handler),
1280 virtual_stack_vars_rtx,
1281 containing_fp);
1282
1283 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_nonlocal_goto"),
1284 0, VOIDmode, 2,
1285 containing_fp, Pmode,
1286 goto_handler, Pmode);
1287 }
1288
1289
1290 static struct machine_function *
1291 xtensa_init_machine_status (void)
1292 {
1293 return ggc_alloc_cleared (sizeof (struct machine_function));
1294 }
1295
1296
1297 void
1298 xtensa_setup_frame_addresses (void)
1299 {
1300 /* Set flag to cause FRAME_POINTER_REQUIRED to be set. */
1301 cfun->machine->accesses_prev_frame = 1;
1302
1303 emit_library_call
1304 (gen_rtx_SYMBOL_REF (Pmode, "__xtensa_libgcc_window_spill"),
1305 0, VOIDmode, 0);
1306 }
1307
1308
1309 /* Emit the assembly for the end of a zero-cost loop. Normally we just emit
1310 a comment showing where the end of the loop is. However, if there is a
1311 label or a branch at the end of the loop then we need to place a nop
1312 there. If the loop ends with a label we need the nop so that branches
1313 targeting that label will target the nop (and thus remain in the loop),
1314 instead of targeting the instruction after the loop (and thus exiting
1315 the loop). If the loop ends with a branch, we need the nop in case the
1316 branch is targeting a location inside the loop. When the branch
1317 executes it will cause the loop count to be decremented even if it is
1318 taken (because it is the last instruction in the loop), so we need to
1319 nop after the branch to prevent the loop count from being decremented
1320 when the branch is taken. */
1321
1322 void
1323 xtensa_emit_loop_end (rtx insn, rtx *operands)
1324 {
1325 char done = 0;
1326
1327 for (insn = PREV_INSN (insn); insn && !done; insn = PREV_INSN (insn))
1328 {
1329 switch (GET_CODE (insn))
1330 {
1331 case NOTE:
1332 case BARRIER:
1333 break;
1334
1335 case CODE_LABEL:
1336 output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
1337 done = 1;
1338 break;
1339
1340 default:
1341 {
1342 rtx body = PATTERN (insn);
1343
1344 if (GET_CODE (body) == JUMP_INSN)
1345 {
1346 output_asm_insn (TARGET_DENSITY ? "nop.n" : "nop", operands);
1347 done = 1;
1348 }
1349 else if ((GET_CODE (body) != USE)
1350 && (GET_CODE (body) != CLOBBER))
1351 done = 1;
1352 }
1353 break;
1354 }
1355 }
1356
1357 output_asm_insn ("# loop end for %0", operands);
1358 }
1359
1360
1361 char *
1362 xtensa_emit_call (int callop, rtx *operands)
1363 {
1364 static char result[64];
1365 rtx tgt = operands[callop];
1366
1367 if (GET_CODE (tgt) == CONST_INT)
1368 sprintf (result, "call8\t0x%lx", INTVAL (tgt));
1369 else if (register_operand (tgt, VOIDmode))
1370 sprintf (result, "callx8\t%%%d", callop);
1371 else
1372 sprintf (result, "call8\t%%%d", callop);
1373
1374 return result;
1375 }
1376
1377
1378 /* Return the debugger register number to use for 'regno'. */
1379
1380 int
1381 xtensa_dbx_register_number (int regno)
1382 {
1383 int first = -1;
1384
1385 if (GP_REG_P (regno))
1386 {
1387 regno -= GP_REG_FIRST;
1388 first = 0;
1389 }
1390 else if (BR_REG_P (regno))
1391 {
1392 regno -= BR_REG_FIRST;
1393 first = 16;
1394 }
1395 else if (FP_REG_P (regno))
1396 {
1397 regno -= FP_REG_FIRST;
1398 first = 48;
1399 }
1400 else if (ACC_REG_P (regno))
1401 {
1402 first = 0x200; /* Start of Xtensa special registers. */
1403 regno = 16; /* ACCLO is special register 16. */
1404 }
1405
1406 /* When optimizing, we sometimes get asked about pseudo-registers
1407 that don't represent hard registers. Return 0 for these. */
1408 if (first == -1)
1409 return 0;
1410
1411 return first + regno;
1412 }
1413
1414
1415 /* Argument support functions. */
1416
1417 /* Initialize CUMULATIVE_ARGS for a function. */
1418
1419 void
1420 init_cumulative_args (CUMULATIVE_ARGS *cum, int incoming)
1421 {
1422 cum->arg_words = 0;
1423 cum->incoming = incoming;
1424 }
1425
1426
1427 /* Advance the argument to the next argument position. */
1428
1429 void
1430 function_arg_advance (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type)
1431 {
1432 int words, max;
1433 int *arg_words;
1434
1435 arg_words = &cum->arg_words;
1436 max = MAX_ARGS_IN_REGISTERS;
1437
1438 words = (((mode != BLKmode)
1439 ? (int) GET_MODE_SIZE (mode)
1440 : int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1441
1442 if (*arg_words < max
1443 && (targetm.calls.must_pass_in_stack (mode, type)
1444 || *arg_words + words > max))
1445 *arg_words = max;
1446
1447 *arg_words += words;
1448 }
1449
1450
1451 /* Return an RTL expression containing the register for the given mode,
1452 or 0 if the argument is to be passed on the stack. INCOMING_P is nonzero
1453 if this is an incoming argument to the current function. */
1454
1455 rtx
1456 function_arg (CUMULATIVE_ARGS *cum, enum machine_mode mode, tree type,
1457 int incoming_p)
1458 {
1459 int regbase, words, max;
1460 int *arg_words;
1461 int regno;
1462
1463 arg_words = &cum->arg_words;
1464 regbase = (incoming_p ? GP_ARG_FIRST : GP_OUTGOING_ARG_FIRST);
1465 max = MAX_ARGS_IN_REGISTERS;
1466
1467 words = (((mode != BLKmode)
1468 ? (int) GET_MODE_SIZE (mode)
1469 : int_size_in_bytes (type)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
1470
1471 if (type && (TYPE_ALIGN (type) > BITS_PER_WORD))
1472 {
1473 int align = TYPE_ALIGN (type) / BITS_PER_WORD;
1474 *arg_words = (*arg_words + align - 1) & -align;
1475 }
1476
1477 if (*arg_words + words > max)
1478 return (rtx)0;
1479
1480 regno = regbase + *arg_words;
1481
1482 if (cum->incoming && regno <= A7_REG && regno + words > A7_REG)
1483 cfun->machine->need_a7_copy = true;
1484
1485 return gen_rtx_REG (mode, regno);
1486 }
1487
1488
1489 static bool
1490 xtensa_return_in_msb (tree valtype)
1491 {
1492 return (TARGET_BIG_ENDIAN
1493 && AGGREGATE_TYPE_P (valtype)
1494 && int_size_in_bytes (valtype) >= UNITS_PER_WORD);
1495 }
1496
1497
1498 void
1499 override_options (void)
1500 {
1501 int regno;
1502 enum machine_mode mode;
1503
1504 if (!TARGET_BOOLEANS && TARGET_HARD_FLOAT)
1505 error ("boolean registers required for the floating-point option");
1506
1507 xtensa_char_to_class['q'] = SP_REG;
1508 xtensa_char_to_class['a'] = GR_REGS;
1509 xtensa_char_to_class['b'] = ((TARGET_BOOLEANS) ? BR_REGS : NO_REGS);
1510 xtensa_char_to_class['f'] = ((TARGET_HARD_FLOAT) ? FP_REGS : NO_REGS);
1511 xtensa_char_to_class['A'] = ((TARGET_MAC16) ? ACC_REG : NO_REGS);
1512 xtensa_char_to_class['B'] = ((TARGET_SEXT) ? GR_REGS : NO_REGS);
1513 xtensa_char_to_class['C'] = ((TARGET_MUL16) ? GR_REGS: NO_REGS);
1514 xtensa_char_to_class['D'] = ((TARGET_DENSITY) ? GR_REGS: NO_REGS);
1515 xtensa_char_to_class['d'] = ((TARGET_DENSITY) ? AR_REGS: NO_REGS);
1516 xtensa_char_to_class['W'] = ((TARGET_CONST16) ? GR_REGS: NO_REGS);
1517
1518 /* Set up array giving whether a given register can hold a given mode. */
1519 for (mode = VOIDmode;
1520 mode != MAX_MACHINE_MODE;
1521 mode = (enum machine_mode) ((int) mode + 1))
1522 {
1523 int size = GET_MODE_SIZE (mode);
1524 enum mode_class class = GET_MODE_CLASS (mode);
1525
1526 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1527 {
1528 int temp;
1529
1530 if (ACC_REG_P (regno))
1531 temp = (TARGET_MAC16
1532 && (class == MODE_INT) && (size <= UNITS_PER_WORD));
1533 else if (GP_REG_P (regno))
1534 temp = ((regno & 1) == 0 || (size <= UNITS_PER_WORD));
1535 else if (FP_REG_P (regno))
1536 temp = (TARGET_HARD_FLOAT && (mode == SFmode));
1537 else if (BR_REG_P (regno))
1538 temp = (TARGET_BOOLEANS && (mode == CCmode));
1539 else
1540 temp = FALSE;
1541
1542 xtensa_hard_regno_mode_ok[(int) mode][regno] = temp;
1543 }
1544 }
1545
1546 init_machine_status = xtensa_init_machine_status;
1547
1548 /* Check PIC settings. PIC is only supported when using L32R
1549 instructions, and some targets need to always use PIC. */
1550 if (flag_pic && TARGET_CONST16)
1551 error ("-f%s is not supported with CONST16 instructions",
1552 (flag_pic > 1 ? "PIC" : "pic"));
1553 else if (XTENSA_ALWAYS_PIC)
1554 {
1555 if (TARGET_CONST16)
1556 error ("PIC is required but not supported with CONST16 instructions");
1557 flag_pic = 1;
1558 }
1559 /* There's no need for -fPIC (as opposed to -fpic) on Xtensa. */
1560 if (flag_pic > 1)
1561 flag_pic = 1;
1562
1563 /* Hot/cold partitioning does not work on this architecture, because of
1564 constant pools (the load instruction cannot necessarily reach that far).
1565 Therefore disable it on this architecture. */
1566 if (flag_reorder_blocks_and_partition)
1567 {
1568 flag_reorder_blocks_and_partition = 0;
1569 flag_reorder_blocks = 1;
1570 }
1571 }
1572
1573
1574 /* A C compound statement to output to stdio stream STREAM the
1575 assembler syntax for an instruction operand X. X is an RTL
1576 expression.
1577
1578 CODE is a value that can be used to specify one of several ways
1579 of printing the operand. It is used when identical operands
1580 must be printed differently depending on the context. CODE
1581 comes from the '%' specification that was used to request
1582 printing of the operand. If the specification was just '%DIGIT'
1583 then CODE is 0; if the specification was '%LTR DIGIT' then CODE
1584 is the ASCII code for LTR.
1585
1586 If X is a register, this macro should print the register's name.
1587 The names can be found in an array 'reg_names' whose type is
1588 'char *[]'. 'reg_names' is initialized from 'REGISTER_NAMES'.
1589
1590 When the machine description has a specification '%PUNCT' (a '%'
1591 followed by a punctuation character), this macro is called with
1592 a null pointer for X and the punctuation character for CODE.
1593
1594 'a', 'c', 'l', and 'n' are reserved.
1595
1596 The Xtensa specific codes are:
1597
1598 'd' CONST_INT, print as signed decimal
1599 'x' CONST_INT, print as signed hexadecimal
1600 'K' CONST_INT, print number of bits in mask for EXTUI
1601 'R' CONST_INT, print (X & 0x1f)
1602 'L' CONST_INT, print ((32 - X) & 0x1f)
1603 'D' REG, print second register of double-word register operand
1604 'N' MEM, print address of next word following a memory operand
1605 'v' MEM, if memory reference is volatile, output a MEMW before it
1606 't' any constant, add "@h" suffix for top 16 bits
1607 'b' any constant, add "@l" suffix for bottom 16 bits
1608 */
1609
1610 static void
1611 printx (FILE *file, signed int val)
1612 {
1613 /* Print a hexadecimal value in a nice way. */
1614 if ((val > -0xa) && (val < 0xa))
1615 fprintf (file, "%d", val);
1616 else if (val < 0)
1617 fprintf (file, "-0x%x", -val);
1618 else
1619 fprintf (file, "0x%x", val);
1620 }
1621
1622
1623 void
1624 print_operand (FILE *file, rtx x, int letter)
1625 {
1626 if (!x)
1627 error ("PRINT_OPERAND null pointer");
1628
1629 switch (letter)
1630 {
1631 case 'D':
1632 if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
1633 fprintf (file, "%s", reg_names[xt_true_regnum (x) + 1]);
1634 else
1635 output_operand_lossage ("invalid %%D value");
1636 break;
1637
1638 case 'v':
1639 if (GET_CODE (x) == MEM)
1640 {
1641 /* For a volatile memory reference, emit a MEMW before the
1642 load or store. */
1643 if (MEM_VOLATILE_P (x))
1644 fprintf (file, "memw\n\t");
1645 }
1646 else
1647 output_operand_lossage ("invalid %%v value");
1648 break;
1649
1650 case 'N':
1651 if (GET_CODE (x) == MEM
1652 && (GET_MODE (x) == DFmode || GET_MODE (x) == DImode))
1653 {
1654 x = adjust_address (x, GET_MODE (x) == DFmode ? SFmode : SImode, 4);
1655 output_address (XEXP (x, 0));
1656 }
1657 else
1658 output_operand_lossage ("invalid %%N value");
1659 break;
1660
1661 case 'K':
1662 if (GET_CODE (x) == CONST_INT)
1663 {
1664 int num_bits = 0;
1665 unsigned val = INTVAL (x);
1666 while (val & 1)
1667 {
1668 num_bits += 1;
1669 val = val >> 1;
1670 }
1671 if ((val != 0) || (num_bits == 0) || (num_bits > 16))
1672 fatal_insn ("invalid mask", x);
1673
1674 fprintf (file, "%d", num_bits);
1675 }
1676 else
1677 output_operand_lossage ("invalid %%K value");
1678 break;
1679
1680 case 'L':
1681 if (GET_CODE (x) == CONST_INT)
1682 fprintf (file, "%ld", (32 - INTVAL (x)) & 0x1f);
1683 else
1684 output_operand_lossage ("invalid %%L value");
1685 break;
1686
1687 case 'R':
1688 if (GET_CODE (x) == CONST_INT)
1689 fprintf (file, "%ld", INTVAL (x) & 0x1f);
1690 else
1691 output_operand_lossage ("invalid %%R value");
1692 break;
1693
1694 case 'x':
1695 if (GET_CODE (x) == CONST_INT)
1696 printx (file, INTVAL (x));
1697 else
1698 output_operand_lossage ("invalid %%x value");
1699 break;
1700
1701 case 'd':
1702 if (GET_CODE (x) == CONST_INT)
1703 fprintf (file, "%ld", INTVAL (x));
1704 else
1705 output_operand_lossage ("invalid %%d value");
1706 break;
1707
1708 case 't':
1709 case 'b':
1710 if (GET_CODE (x) == CONST_INT)
1711 {
1712 printx (file, INTVAL (x));
1713 fputs (letter == 't' ? "@h" : "@l", file);
1714 }
1715 else if (GET_CODE (x) == CONST_DOUBLE)
1716 {
1717 REAL_VALUE_TYPE r;
1718 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1719 if (GET_MODE (x) == SFmode)
1720 {
1721 long l;
1722 REAL_VALUE_TO_TARGET_SINGLE (r, l);
1723 fprintf (file, "0x%08lx@%c", l, letter == 't' ? 'h' : 'l');
1724 }
1725 else
1726 output_operand_lossage ("invalid %%t/%%b value");
1727 }
1728 else if (GET_CODE (x) == CONST)
1729 {
1730 /* X must be a symbolic constant on ELF. Write an expression
1731 suitable for 'const16' that sets the high or low 16 bits. */
1732 if (GET_CODE (XEXP (x, 0)) != PLUS
1733 || (GET_CODE (XEXP (XEXP (x, 0), 0)) != SYMBOL_REF
1734 && GET_CODE (XEXP (XEXP (x, 0), 0)) != LABEL_REF)
1735 || GET_CODE (XEXP (XEXP (x, 0), 1)) != CONST_INT)
1736 output_operand_lossage ("invalid %%t/%%b value");
1737 print_operand (file, XEXP (XEXP (x, 0), 0), 0);
1738 fputs (letter == 't' ? "@h" : "@l", file);
1739 /* There must be a non-alphanumeric character between 'h' or 'l'
1740 and the number. The '-' is added by print_operand() already. */
1741 if (INTVAL (XEXP (XEXP (x, 0), 1)) >= 0)
1742 fputs ("+", file);
1743 print_operand (file, XEXP (XEXP (x, 0), 1), 0);
1744 }
1745 else
1746 {
1747 output_addr_const (file, x);
1748 fputs (letter == 't' ? "@h" : "@l", file);
1749 }
1750 break;
1751
1752 default:
1753 if (GET_CODE (x) == REG || GET_CODE (x) == SUBREG)
1754 fprintf (file, "%s", reg_names[xt_true_regnum (x)]);
1755 else if (GET_CODE (x) == MEM)
1756 output_address (XEXP (x, 0));
1757 else if (GET_CODE (x) == CONST_INT)
1758 fprintf (file, "%ld", INTVAL (x));
1759 else
1760 output_addr_const (file, x);
1761 }
1762 }
1763
1764
1765 /* A C compound statement to output to stdio stream STREAM the
1766 assembler syntax for an instruction operand that is a memory
1767 reference whose address is ADDR. ADDR is an RTL expression. */
1768
1769 void
1770 print_operand_address (FILE *file, rtx addr)
1771 {
1772 if (!addr)
1773 error ("PRINT_OPERAND_ADDRESS, null pointer");
1774
1775 switch (GET_CODE (addr))
1776 {
1777 default:
1778 fatal_insn ("invalid address", addr);
1779 break;
1780
1781 case REG:
1782 fprintf (file, "%s, 0", reg_names [REGNO (addr)]);
1783 break;
1784
1785 case PLUS:
1786 {
1787 rtx reg = (rtx)0;
1788 rtx offset = (rtx)0;
1789 rtx arg0 = XEXP (addr, 0);
1790 rtx arg1 = XEXP (addr, 1);
1791
1792 if (GET_CODE (arg0) == REG)
1793 {
1794 reg = arg0;
1795 offset = arg1;
1796 }
1797 else if (GET_CODE (arg1) == REG)
1798 {
1799 reg = arg1;
1800 offset = arg0;
1801 }
1802 else
1803 fatal_insn ("no register in address", addr);
1804
1805 if (CONSTANT_P (offset))
1806 {
1807 fprintf (file, "%s, ", reg_names [REGNO (reg)]);
1808 output_addr_const (file, offset);
1809 }
1810 else
1811 fatal_insn ("address offset not a constant", addr);
1812 }
1813 break;
1814
1815 case LABEL_REF:
1816 case SYMBOL_REF:
1817 case CONST_INT:
1818 case CONST:
1819 output_addr_const (file, addr);
1820 break;
1821 }
1822 }
1823
1824
1825 void
1826 xtensa_output_literal (FILE *file, rtx x, enum machine_mode mode, int labelno)
1827 {
1828 long value_long[2];
1829 REAL_VALUE_TYPE r;
1830 int size;
1831
1832 fprintf (file, "\t.literal .LC%u, ", (unsigned) labelno);
1833
1834 switch (GET_MODE_CLASS (mode))
1835 {
1836 case MODE_FLOAT:
1837 gcc_assert (GET_CODE (x) == CONST_DOUBLE);
1838
1839 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1840 switch (mode)
1841 {
1842 case SFmode:
1843 REAL_VALUE_TO_TARGET_SINGLE (r, value_long[0]);
1844 fprintf (file, "0x%08lx\n", value_long[0]);
1845 break;
1846
1847 case DFmode:
1848 REAL_VALUE_TO_TARGET_DOUBLE (r, value_long);
1849 fprintf (file, "0x%08lx, 0x%08lx\n",
1850 value_long[0], value_long[1]);
1851 break;
1852
1853 default:
1854 gcc_unreachable ();
1855 }
1856
1857 break;
1858
1859 case MODE_INT:
1860 case MODE_PARTIAL_INT:
1861 size = GET_MODE_SIZE (mode);
1862 switch (size)
1863 {
1864 case 4:
1865 output_addr_const (file, x);
1866 fputs ("\n", file);
1867 break;
1868
1869 case 8:
1870 output_addr_const (file, operand_subword (x, 0, 0, DImode));
1871 fputs (", ", file);
1872 output_addr_const (file, operand_subword (x, 1, 0, DImode));
1873 fputs ("\n", file);
1874 break;
1875
1876 default:
1877 gcc_unreachable ();
1878 }
1879 break;
1880
1881 default:
1882 gcc_unreachable ();
1883 }
1884 }
1885
1886
1887 /* Return the bytes needed to compute the frame pointer from the current
1888 stack pointer. */
1889
1890 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
1891 #define XTENSA_STACK_ALIGN(LOC) (((LOC) + STACK_BYTES-1) & ~(STACK_BYTES-1))
1892
1893 long
1894 compute_frame_size (int size)
1895 {
1896 /* Add space for the incoming static chain value. */
1897 if (cfun->static_chain_decl != NULL)
1898 size += (1 * UNITS_PER_WORD);
1899
1900 xtensa_current_frame_size =
1901 XTENSA_STACK_ALIGN (size
1902 + current_function_outgoing_args_size
1903 + (WINDOW_SIZE * UNITS_PER_WORD));
1904 return xtensa_current_frame_size;
1905 }
1906
1907
1908 int
1909 xtensa_frame_pointer_required (void)
1910 {
1911 /* The code to expand builtin_frame_addr and builtin_return_addr
1912 currently uses the hard_frame_pointer instead of frame_pointer.
1913 This seems wrong but maybe it's necessary for other architectures.
1914 This function is derived from the i386 code. */
1915
1916 if (cfun->machine->accesses_prev_frame)
1917 return 1;
1918
1919 return 0;
1920 }
1921
1922
1923 void
1924 xtensa_expand_prologue (void)
1925 {
1926 HOST_WIDE_INT total_size;
1927 rtx size_rtx;
1928
1929 total_size = compute_frame_size (get_frame_size ());
1930 size_rtx = GEN_INT (total_size);
1931
1932 if (total_size < (1 << (12+3)))
1933 emit_insn (gen_entry (size_rtx, size_rtx));
1934 else
1935 {
1936 /* Use a8 as a temporary since a0-a7 may be live. */
1937 rtx tmp_reg = gen_rtx_REG (Pmode, A8_REG);
1938 emit_insn (gen_entry (size_rtx, GEN_INT (MIN_FRAME_SIZE)));
1939 emit_move_insn (tmp_reg, GEN_INT (total_size - MIN_FRAME_SIZE));
1940 emit_insn (gen_subsi3 (tmp_reg, stack_pointer_rtx, tmp_reg));
1941 emit_move_insn (stack_pointer_rtx, tmp_reg);
1942 }
1943
1944 if (frame_pointer_needed)
1945 {
1946 if (cfun->machine->set_frame_ptr_insn)
1947 {
1948 rtx first, insn;
1949
1950 push_topmost_sequence ();
1951 first = get_insns ();
1952 pop_topmost_sequence ();
1953
1954 /* For all instructions prior to set_frame_ptr_insn, replace
1955 hard_frame_pointer references with stack_pointer. */
1956 for (insn = first;
1957 insn != cfun->machine->set_frame_ptr_insn;
1958 insn = NEXT_INSN (insn))
1959 {
1960 if (INSN_P (insn))
1961 PATTERN (insn) = replace_rtx (copy_rtx (PATTERN (insn)),
1962 hard_frame_pointer_rtx,
1963 stack_pointer_rtx);
1964 }
1965 }
1966 else
1967 emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
1968 }
1969 }
1970
1971
1972 /* Clear variables at function end. */
1973
1974 void
1975 xtensa_function_epilogue (FILE *file ATTRIBUTE_UNUSED,
1976 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
1977 {
1978 xtensa_current_frame_size = 0;
1979 }
1980
1981
1982 rtx
1983 xtensa_return_addr (int count, rtx frame)
1984 {
1985 rtx result, retaddr;
1986
1987 if (count == -1)
1988 retaddr = gen_rtx_REG (Pmode, A0_REG);
1989 else
1990 {
1991 rtx addr = plus_constant (frame, -4 * UNITS_PER_WORD);
1992 addr = memory_address (Pmode, addr);
1993 retaddr = gen_reg_rtx (Pmode);
1994 emit_move_insn (retaddr, gen_rtx_MEM (Pmode, addr));
1995 }
1996
1997 /* The 2 most-significant bits of the return address on Xtensa hold
1998 the register window size. To get the real return address, these
1999 bits must be replaced with the high bits from the current PC. */
2000
2001 result = gen_reg_rtx (Pmode);
2002 emit_insn (gen_fix_return_addr (result, retaddr));
2003 return result;
2004 }
2005
2006
2007 /* Create the va_list data type.
2008
2009 This structure is set up by __builtin_saveregs. The __va_reg field
2010 points to a stack-allocated region holding the contents of the
2011 incoming argument registers. The __va_ndx field is an index
2012 initialized to the position of the first unnamed (variable)
2013 argument. This same index is also used to address the arguments
2014 passed in memory. Thus, the __va_stk field is initialized to point
2015 to the position of the first argument in memory offset to account
2016 for the arguments passed in registers and to account for the size
2017 of the argument registers not being 16-byte aligned. E.G., there
2018 are 6 argument registers of 4 bytes each, but we want the __va_ndx
2019 for the first stack argument to have the maximal alignment of 16
2020 bytes, so we offset the __va_stk address by 32 bytes so that
2021 __va_stk[32] references the first argument on the stack. */
2022
2023 static tree
2024 xtensa_build_builtin_va_list (void)
2025 {
2026 tree f_stk, f_reg, f_ndx, record, type_decl;
2027
2028 record = (*lang_hooks.types.make_type) (RECORD_TYPE);
2029 type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
2030
2031 f_stk = build_decl (FIELD_DECL, get_identifier ("__va_stk"),
2032 ptr_type_node);
2033 f_reg = build_decl (FIELD_DECL, get_identifier ("__va_reg"),
2034 ptr_type_node);
2035 f_ndx = build_decl (FIELD_DECL, get_identifier ("__va_ndx"),
2036 integer_type_node);
2037
2038 DECL_FIELD_CONTEXT (f_stk) = record;
2039 DECL_FIELD_CONTEXT (f_reg) = record;
2040 DECL_FIELD_CONTEXT (f_ndx) = record;
2041
2042 TREE_CHAIN (record) = type_decl;
2043 TYPE_NAME (record) = type_decl;
2044 TYPE_FIELDS (record) = f_stk;
2045 TREE_CHAIN (f_stk) = f_reg;
2046 TREE_CHAIN (f_reg) = f_ndx;
2047
2048 layout_type (record);
2049 return record;
2050 }
2051
2052
2053 /* Save the incoming argument registers on the stack. Returns the
2054 address of the saved registers. */
2055
2056 static rtx
2057 xtensa_builtin_saveregs (void)
2058 {
2059 rtx gp_regs, dest;
2060 int arg_words = current_function_args_info.arg_words;
2061 int gp_left = MAX_ARGS_IN_REGISTERS - arg_words;
2062
2063 if (gp_left <= 0)
2064 return const0_rtx;
2065
2066 /* Allocate the general-purpose register space. */
2067 gp_regs = assign_stack_local
2068 (BLKmode, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD, -1);
2069 set_mem_alias_set (gp_regs, get_varargs_alias_set ());
2070
2071 /* Now store the incoming registers. */
2072 dest = change_address (gp_regs, SImode,
2073 plus_constant (XEXP (gp_regs, 0),
2074 arg_words * UNITS_PER_WORD));
2075 cfun->machine->need_a7_copy = true;
2076 cfun->machine->vararg_a7 = true;
2077 move_block_from_reg (GP_ARG_FIRST + arg_words, dest, gp_left);
2078
2079 return XEXP (gp_regs, 0);
2080 }
2081
2082
2083 /* Implement `va_start' for varargs and stdarg. We look at the
2084 current function to fill in an initial va_list. */
2085
2086 void
2087 xtensa_va_start (tree valist, rtx nextarg ATTRIBUTE_UNUSED)
2088 {
2089 tree f_stk, stk;
2090 tree f_reg, reg;
2091 tree f_ndx, ndx;
2092 tree t, u;
2093 int arg_words;
2094
2095 arg_words = current_function_args_info.arg_words;
2096
2097 f_stk = TYPE_FIELDS (va_list_type_node);
2098 f_reg = TREE_CHAIN (f_stk);
2099 f_ndx = TREE_CHAIN (f_reg);
2100
2101 stk = build (COMPONENT_REF, TREE_TYPE (f_stk), valist, f_stk, NULL_TREE);
2102 reg = build (COMPONENT_REF, TREE_TYPE (f_reg), valist, f_reg, NULL_TREE);
2103 ndx = build (COMPONENT_REF, TREE_TYPE (f_ndx), valist, f_ndx, NULL_TREE);
2104
2105 /* Call __builtin_saveregs; save the result in __va_reg */
2106 u = make_tree (ptr_type_node, expand_builtin_saveregs ());
2107 t = build (MODIFY_EXPR, ptr_type_node, reg, u);
2108 TREE_SIDE_EFFECTS (t) = 1;
2109 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2110
2111 /* Set the __va_stk member to ($arg_ptr - 32). */
2112 u = make_tree (ptr_type_node, virtual_incoming_args_rtx);
2113 u = fold (build (PLUS_EXPR, ptr_type_node, u,
2114 build_int_cst (NULL_TREE, -32)));
2115 t = build (MODIFY_EXPR, ptr_type_node, stk, u);
2116 TREE_SIDE_EFFECTS (t) = 1;
2117 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2118
2119 /* Set the __va_ndx member. If the first variable argument is on
2120 the stack, adjust __va_ndx by 2 words to account for the extra
2121 alignment offset for __va_stk. */
2122 if (arg_words >= MAX_ARGS_IN_REGISTERS)
2123 arg_words += 2;
2124 u = build_int_cst (NULL_TREE, arg_words * UNITS_PER_WORD);
2125 t = build (MODIFY_EXPR, integer_type_node, ndx, u);
2126 TREE_SIDE_EFFECTS (t) = 1;
2127 expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
2128 }
2129
2130
2131 /* Implement `va_arg'. */
2132
2133 static tree
2134 xtensa_gimplify_va_arg_expr (tree valist, tree type, tree *pre_p,
2135 tree *post_p ATTRIBUTE_UNUSED)
2136 {
2137 tree f_stk, stk;
2138 tree f_reg, reg;
2139 tree f_ndx, ndx;
2140 tree type_size, array, orig_ndx, addr, size, va_size, t;
2141 tree lab_false, lab_over, lab_false2;
2142 bool indirect;
2143
2144 indirect = pass_by_reference (NULL, TYPE_MODE (type), type, false);
2145 if (indirect)
2146 type = build_pointer_type (type);
2147
2148 /* Handle complex values as separate real and imaginary parts. */
2149 if (TREE_CODE (type) == COMPLEX_TYPE)
2150 {
2151 tree real_part, imag_part;
2152
2153 real_part = xtensa_gimplify_va_arg_expr (valist, TREE_TYPE (type),
2154 pre_p, NULL);
2155 real_part = get_initialized_tmp_var (real_part, pre_p, NULL);
2156
2157 imag_part = xtensa_gimplify_va_arg_expr (valist, TREE_TYPE (type),
2158 pre_p, NULL);
2159 imag_part = get_initialized_tmp_var (imag_part, pre_p, NULL);
2160
2161 return build (COMPLEX_EXPR, type, real_part, imag_part);
2162 }
2163
2164 f_stk = TYPE_FIELDS (va_list_type_node);
2165 f_reg = TREE_CHAIN (f_stk);
2166 f_ndx = TREE_CHAIN (f_reg);
2167
2168 stk = build (COMPONENT_REF, TREE_TYPE (f_stk), valist, f_stk, NULL_TREE);
2169 reg = build (COMPONENT_REF, TREE_TYPE (f_reg), valist, f_reg, NULL_TREE);
2170 ndx = build (COMPONENT_REF, TREE_TYPE (f_ndx), valist, f_ndx, NULL_TREE);
2171
2172 type_size = size_in_bytes (type);
2173 va_size = round_up (type_size, UNITS_PER_WORD);
2174 gimplify_expr (&va_size, pre_p, NULL, is_gimple_val, fb_rvalue);
2175
2176
2177 /* First align __va_ndx if necessary for this arg:
2178
2179 orig_ndx = (AP).__va_ndx;
2180 if (__alignof__ (TYPE) > 4 )
2181 orig_ndx = ((orig_ndx + __alignof__ (TYPE) - 1)
2182 & -__alignof__ (TYPE)); */
2183
2184 orig_ndx = get_initialized_tmp_var (ndx, pre_p, NULL);
2185
2186 if (TYPE_ALIGN (type) > BITS_PER_WORD)
2187 {
2188 int align = TYPE_ALIGN (type) / BITS_PER_UNIT;
2189
2190 t = build (PLUS_EXPR, integer_type_node, orig_ndx,
2191 build_int_cst (NULL_TREE, align - 1));
2192 t = build (BIT_AND_EXPR, integer_type_node, t,
2193 build_int_cst (NULL_TREE, -align));
2194 t = build (MODIFY_EXPR, integer_type_node, orig_ndx, t);
2195 gimplify_and_add (t, pre_p);
2196 }
2197
2198
2199 /* Increment __va_ndx to point past the argument:
2200
2201 (AP).__va_ndx = orig_ndx + __va_size (TYPE); */
2202
2203 t = fold_convert (integer_type_node, va_size);
2204 t = build (PLUS_EXPR, integer_type_node, orig_ndx, t);
2205 t = build (MODIFY_EXPR, integer_type_node, ndx, t);
2206 gimplify_and_add (t, pre_p);
2207
2208
2209 /* Check if the argument is in registers:
2210
2211 if ((AP).__va_ndx <= __MAX_ARGS_IN_REGISTERS * 4
2212 && !must_pass_in_stack (type))
2213 __array = (AP).__va_reg; */
2214
2215 array = create_tmp_var (ptr_type_node, NULL);
2216
2217 lab_over = NULL;
2218 if (!targetm.calls.must_pass_in_stack (TYPE_MODE (type), type))
2219 {
2220 lab_false = create_artificial_label ();
2221 lab_over = create_artificial_label ();
2222
2223 t = build_int_cst (NULL_TREE, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD);
2224 t = build (GT_EXPR, boolean_type_node, ndx, t);
2225 t = build (COND_EXPR, void_type_node, t,
2226 build (GOTO_EXPR, void_type_node, lab_false),
2227 NULL);
2228 gimplify_and_add (t, pre_p);
2229
2230 t = build (MODIFY_EXPR, void_type_node, array, reg);
2231 gimplify_and_add (t, pre_p);
2232
2233 t = build (GOTO_EXPR, void_type_node, lab_over);
2234 gimplify_and_add (t, pre_p);
2235
2236 t = build (LABEL_EXPR, void_type_node, lab_false);
2237 gimplify_and_add (t, pre_p);
2238 }
2239
2240
2241 /* ...otherwise, the argument is on the stack (never split between
2242 registers and the stack -- change __va_ndx if necessary):
2243
2244 else
2245 {
2246 if (orig_ndx <= __MAX_ARGS_IN_REGISTERS * 4)
2247 (AP).__va_ndx = 32 + __va_size (TYPE);
2248 __array = (AP).__va_stk;
2249 } */
2250
2251 lab_false2 = create_artificial_label ();
2252
2253 t = build_int_cst (NULL_TREE, MAX_ARGS_IN_REGISTERS * UNITS_PER_WORD);
2254 t = build (GT_EXPR, boolean_type_node, orig_ndx, t);
2255 t = build (COND_EXPR, void_type_node, t,
2256 build (GOTO_EXPR, void_type_node, lab_false2),
2257 NULL);
2258 gimplify_and_add (t, pre_p);
2259
2260 t = size_binop (PLUS_EXPR, va_size, size_int (32));
2261 t = fold_convert (integer_type_node, t);
2262 t = build (MODIFY_EXPR, integer_type_node, ndx, t);
2263 gimplify_and_add (t, pre_p);
2264
2265 t = build (LABEL_EXPR, void_type_node, lab_false2);
2266 gimplify_and_add (t, pre_p);
2267
2268 t = build (MODIFY_EXPR, void_type_node, array, stk);
2269 gimplify_and_add (t, pre_p);
2270
2271 if (lab_over)
2272 {
2273 t = build (LABEL_EXPR, void_type_node, lab_over);
2274 gimplify_and_add (t, pre_p);
2275 }
2276
2277
2278 /* Given the base array pointer (__array) and index to the subsequent
2279 argument (__va_ndx), find the address:
2280
2281 __array + (AP).__va_ndx - (BYTES_BIG_ENDIAN && sizeof (TYPE) < 4
2282 ? sizeof (TYPE)
2283 : __va_size (TYPE))
2284
2285 The results are endian-dependent because values smaller than one word
2286 are aligned differently. */
2287
2288
2289 if (BYTES_BIG_ENDIAN && TREE_CODE (type_size) == INTEGER_CST)
2290 {
2291 t = size_int (PARM_BOUNDARY / BITS_PER_UNIT);
2292 t = fold (build (GE_EXPR, boolean_type_node, type_size, t));
2293 t = fold (build (COND_EXPR, sizetype, t, va_size, type_size));
2294 size = t;
2295 }
2296 else
2297 size = va_size;
2298
2299 t = fold_convert (ptr_type_node, ndx);
2300 addr = build (PLUS_EXPR, ptr_type_node, array, t);
2301 t = fold_convert (ptr_type_node, size);
2302 addr = build (MINUS_EXPR, ptr_type_node, addr, t);
2303
2304 addr = fold_convert (build_pointer_type (type), addr);
2305 if (indirect)
2306 addr = build_va_arg_indirect_ref (addr);
2307 return build_va_arg_indirect_ref (addr);
2308 }
2309
2310
2311 enum reg_class
2312 xtensa_preferred_reload_class (rtx x, enum reg_class class, int isoutput)
2313 {
2314 if (!isoutput && CONSTANT_P (x) && GET_CODE (x) == CONST_DOUBLE)
2315 return NO_REGS;
2316
2317 /* Don't use the stack pointer or hard frame pointer for reloads!
2318 The hard frame pointer would normally be OK except that it may
2319 briefly hold an incoming argument in the prologue, and reload
2320 won't know that it is live because the hard frame pointer is
2321 treated specially. */
2322
2323 if (class == AR_REGS || class == GR_REGS)
2324 return RL_REGS;
2325
2326 return class;
2327 }
2328
2329
2330 enum reg_class
2331 xtensa_secondary_reload_class (enum reg_class class,
2332 enum machine_mode mode ATTRIBUTE_UNUSED,
2333 rtx x, int isoutput)
2334 {
2335 int regno;
2336
2337 if (GET_CODE (x) == SIGN_EXTEND)
2338 x = XEXP (x, 0);
2339 regno = xt_true_regnum (x);
2340
2341 if (!isoutput)
2342 {
2343 if (class == FP_REGS && constantpool_mem_p (x))
2344 return RL_REGS;
2345 }
2346
2347 if (ACC_REG_P (regno))
2348 return ((class == GR_REGS || class == RL_REGS) ? NO_REGS : RL_REGS);
2349 if (class == ACC_REG)
2350 return (GP_REG_P (regno) ? NO_REGS : RL_REGS);
2351
2352 return NO_REGS;
2353 }
2354
2355
2356 void
2357 order_regs_for_local_alloc (void)
2358 {
2359 if (!leaf_function_p ())
2360 {
2361 memcpy (reg_alloc_order, reg_nonleaf_alloc_order,
2362 FIRST_PSEUDO_REGISTER * sizeof (int));
2363 }
2364 else
2365 {
2366 int i, num_arg_regs;
2367 int nxt = 0;
2368
2369 /* Use the AR registers in increasing order (skipping a0 and a1)
2370 but save the incoming argument registers for a last resort. */
2371 num_arg_regs = current_function_args_info.arg_words;
2372 if (num_arg_regs > MAX_ARGS_IN_REGISTERS)
2373 num_arg_regs = MAX_ARGS_IN_REGISTERS;
2374 for (i = GP_ARG_FIRST; i < 16 - num_arg_regs; i++)
2375 reg_alloc_order[nxt++] = i + num_arg_regs;
2376 for (i = 0; i < num_arg_regs; i++)
2377 reg_alloc_order[nxt++] = GP_ARG_FIRST + i;
2378
2379 /* List the coprocessor registers in order. */
2380 for (i = 0; i < BR_REG_NUM; i++)
2381 reg_alloc_order[nxt++] = BR_REG_FIRST + i;
2382
2383 /* List the FP registers in order for now. */
2384 for (i = 0; i < 16; i++)
2385 reg_alloc_order[nxt++] = FP_REG_FIRST + i;
2386
2387 /* GCC requires that we list *all* the registers.... */
2388 reg_alloc_order[nxt++] = 0; /* a0 = return address */
2389 reg_alloc_order[nxt++] = 1; /* a1 = stack pointer */
2390 reg_alloc_order[nxt++] = 16; /* pseudo frame pointer */
2391 reg_alloc_order[nxt++] = 17; /* pseudo arg pointer */
2392
2393 reg_alloc_order[nxt++] = ACC_REG_FIRST; /* MAC16 accumulator */
2394 }
2395 }
2396
2397
2398 /* Some Xtensa targets support multiple bss sections. If the section
2399 name ends with ".bss", add SECTION_BSS to the flags. */
2400
2401 static unsigned int
2402 xtensa_multibss_section_type_flags (tree decl, const char *name, int reloc)
2403 {
2404 unsigned int flags = default_section_type_flags (decl, name, reloc);
2405 const char *suffix;
2406
2407 suffix = strrchr (name, '.');
2408 if (suffix && strcmp (suffix, ".bss") == 0)
2409 {
2410 if (!decl || (TREE_CODE (decl) == VAR_DECL
2411 && DECL_INITIAL (decl) == NULL_TREE))
2412 flags |= SECTION_BSS; /* @nobits */
2413 else
2414 warning (0, "only uninitialized variables can be placed in a "
2415 ".bss section");
2416 }
2417
2418 return flags;
2419 }
2420
2421
2422 /* The literal pool stays with the function. */
2423
2424 static void
2425 xtensa_select_rtx_section (enum machine_mode mode ATTRIBUTE_UNUSED,
2426 rtx x ATTRIBUTE_UNUSED,
2427 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
2428 {
2429 function_section (current_function_decl);
2430 }
2431
2432
2433 /* Compute a (partial) cost for rtx X. Return true if the complete
2434 cost has been computed, and false if subexpressions should be
2435 scanned. In either case, *TOTAL contains the cost result. */
2436
2437 static bool
2438 xtensa_rtx_costs (rtx x, int code, int outer_code, int *total)
2439 {
2440 switch (code)
2441 {
2442 case CONST_INT:
2443 switch (outer_code)
2444 {
2445 case SET:
2446 if (xtensa_simm12b (INTVAL (x)))
2447 {
2448 *total = 4;
2449 return true;
2450 }
2451 break;
2452 case PLUS:
2453 if (xtensa_simm8 (INTVAL (x))
2454 || xtensa_simm8x256 (INTVAL (x)))
2455 {
2456 *total = 0;
2457 return true;
2458 }
2459 break;
2460 case AND:
2461 if (xtensa_mask_immediate (INTVAL (x)))
2462 {
2463 *total = 0;
2464 return true;
2465 }
2466 break;
2467 case COMPARE:
2468 if ((INTVAL (x) == 0) || xtensa_b4const (INTVAL (x)))
2469 {
2470 *total = 0;
2471 return true;
2472 }
2473 break;
2474 case ASHIFT:
2475 case ASHIFTRT:
2476 case LSHIFTRT:
2477 case ROTATE:
2478 case ROTATERT:
2479 /* No way to tell if X is the 2nd operand so be conservative. */
2480 default: break;
2481 }
2482 if (xtensa_simm12b (INTVAL (x)))
2483 *total = 5;
2484 else if (TARGET_CONST16)
2485 *total = COSTS_N_INSNS (2);
2486 else
2487 *total = 6;
2488 return true;
2489
2490 case CONST:
2491 case LABEL_REF:
2492 case SYMBOL_REF:
2493 if (TARGET_CONST16)
2494 *total = COSTS_N_INSNS (2);
2495 else
2496 *total = 5;
2497 return true;
2498
2499 case CONST_DOUBLE:
2500 if (TARGET_CONST16)
2501 *total = COSTS_N_INSNS (4);
2502 else
2503 *total = 7;
2504 return true;
2505
2506 case MEM:
2507 {
2508 int num_words =
2509 (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD) ? 2 : 1;
2510
2511 if (memory_address_p (GET_MODE (x), XEXP ((x), 0)))
2512 *total = COSTS_N_INSNS (num_words);
2513 else
2514 *total = COSTS_N_INSNS (2*num_words);
2515 return true;
2516 }
2517
2518 case FFS:
2519 *total = COSTS_N_INSNS (TARGET_NSA ? 5 : 50);
2520 return true;
2521
2522 case NOT:
2523 *total = COSTS_N_INSNS ((GET_MODE (x) == DImode) ? 3 : 2);
2524 return true;
2525
2526 case AND:
2527 case IOR:
2528 case XOR:
2529 if (GET_MODE (x) == DImode)
2530 *total = COSTS_N_INSNS (2);
2531 else
2532 *total = COSTS_N_INSNS (1);
2533 return true;
2534
2535 case ASHIFT:
2536 case ASHIFTRT:
2537 case LSHIFTRT:
2538 if (GET_MODE (x) == DImode)
2539 *total = COSTS_N_INSNS (50);
2540 else
2541 *total = COSTS_N_INSNS (1);
2542 return true;
2543
2544 case ABS:
2545 {
2546 enum machine_mode xmode = GET_MODE (x);
2547 if (xmode == SFmode)
2548 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
2549 else if (xmode == DFmode)
2550 *total = COSTS_N_INSNS (50);
2551 else
2552 *total = COSTS_N_INSNS (4);
2553 return true;
2554 }
2555
2556 case PLUS:
2557 case MINUS:
2558 {
2559 enum machine_mode xmode = GET_MODE (x);
2560 if (xmode == SFmode)
2561 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50);
2562 else if (xmode == DFmode || xmode == DImode)
2563 *total = COSTS_N_INSNS (50);
2564 else
2565 *total = COSTS_N_INSNS (1);
2566 return true;
2567 }
2568
2569 case NEG:
2570 *total = COSTS_N_INSNS ((GET_MODE (x) == DImode) ? 4 : 2);
2571 return true;
2572
2573 case MULT:
2574 {
2575 enum machine_mode xmode = GET_MODE (x);
2576 if (xmode == SFmode)
2577 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT ? 4 : 50);
2578 else if (xmode == DFmode || xmode == DImode)
2579 *total = COSTS_N_INSNS (50);
2580 else if (TARGET_MUL32)
2581 *total = COSTS_N_INSNS (4);
2582 else if (TARGET_MAC16)
2583 *total = COSTS_N_INSNS (16);
2584 else if (TARGET_MUL16)
2585 *total = COSTS_N_INSNS (12);
2586 else
2587 *total = COSTS_N_INSNS (50);
2588 return true;
2589 }
2590
2591 case DIV:
2592 case MOD:
2593 {
2594 enum machine_mode xmode = GET_MODE (x);
2595 if (xmode == SFmode)
2596 {
2597 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT_DIV ? 8 : 50);
2598 return true;
2599 }
2600 else if (xmode == DFmode)
2601 {
2602 *total = COSTS_N_INSNS (50);
2603 return true;
2604 }
2605 }
2606 /* Fall through. */
2607
2608 case UDIV:
2609 case UMOD:
2610 {
2611 enum machine_mode xmode = GET_MODE (x);
2612 if (xmode == DImode)
2613 *total = COSTS_N_INSNS (50);
2614 else if (TARGET_DIV32)
2615 *total = COSTS_N_INSNS (32);
2616 else
2617 *total = COSTS_N_INSNS (50);
2618 return true;
2619 }
2620
2621 case SQRT:
2622 if (GET_MODE (x) == SFmode)
2623 *total = COSTS_N_INSNS (TARGET_HARD_FLOAT_SQRT ? 8 : 50);
2624 else
2625 *total = COSTS_N_INSNS (50);
2626 return true;
2627
2628 case SMIN:
2629 case UMIN:
2630 case SMAX:
2631 case UMAX:
2632 *total = COSTS_N_INSNS (TARGET_MINMAX ? 1 : 50);
2633 return true;
2634
2635 case SIGN_EXTRACT:
2636 case SIGN_EXTEND:
2637 *total = COSTS_N_INSNS (TARGET_SEXT ? 1 : 2);
2638 return true;
2639
2640 case ZERO_EXTRACT:
2641 case ZERO_EXTEND:
2642 *total = COSTS_N_INSNS (1);
2643 return true;
2644
2645 default:
2646 return false;
2647 }
2648 }
2649
2650 /* Worker function for TARGET_RETURN_IN_MEMORY. */
2651
2652 static bool
2653 xtensa_return_in_memory (tree type, tree fntype ATTRIBUTE_UNUSED)
2654 {
2655 return ((unsigned HOST_WIDE_INT) int_size_in_bytes (type)
2656 > 4 * UNITS_PER_WORD);
2657 }
2658
2659 #include "gt-xtensa.h"