]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/xtensa/xtensa.h
Turn HARD_REGNO_NREGS into a target hook
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.h
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Get Xtensa configuration settings */
22 #include "xtensa-config.h"
23
24 /* External variables defined in xtensa.c. */
25
26 /* Macros used in the machine description to select various Xtensa
27 configuration options. */
28 #ifndef XCHAL_HAVE_MUL32_HIGH
29 #define XCHAL_HAVE_MUL32_HIGH 0
30 #endif
31 #ifndef XCHAL_HAVE_RELEASE_SYNC
32 #define XCHAL_HAVE_RELEASE_SYNC 0
33 #endif
34 #ifndef XCHAL_HAVE_S32C1I
35 #define XCHAL_HAVE_S32C1I 0
36 #endif
37 #ifndef XCHAL_HAVE_THREADPTR
38 #define XCHAL_HAVE_THREADPTR 0
39 #endif
40 #ifndef XCHAL_HAVE_FP_POSTINC
41 #define XCHAL_HAVE_FP_POSTINC 0
42 #endif
43 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
44 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
45 #define TARGET_MAC16 XCHAL_HAVE_MAC16
46 #define TARGET_MUL16 XCHAL_HAVE_MUL16
47 #define TARGET_MUL32 XCHAL_HAVE_MUL32
48 #define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
49 #define TARGET_DIV32 XCHAL_HAVE_DIV32
50 #define TARGET_NSA XCHAL_HAVE_NSA
51 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
52 #define TARGET_SEXT XCHAL_HAVE_SEXT
53 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
54 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
55 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
56 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
57 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
58 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
59 #define TARGET_HARD_FLOAT_POSTINC XCHAL_HAVE_FP_POSTINC
60 #define TARGET_ABS XCHAL_HAVE_ABS
61 #define TARGET_ADDX XCHAL_HAVE_ADDX
62 #define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
63 #define TARGET_S32C1I XCHAL_HAVE_S32C1I
64 #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
65 #define TARGET_THREADPTR XCHAL_HAVE_THREADPTR
66 #define TARGET_LOOPS XCHAL_HAVE_LOOPS
67 #define TARGET_WINDOWED_ABI (XSHAL_ABI == XTHAL_ABI_WINDOWED)
68 #define TARGET_DEBUG XCHAL_HAVE_DEBUG
69 #define TARGET_L32R XCHAL_HAVE_L32R
70
71 #define TARGET_DEFAULT (MASK_SERIALIZE_VOLATILE)
72
73 #ifndef HAVE_AS_TLS
74 #define HAVE_AS_TLS 0
75 #endif
76
77 \f
78 /* Target CPU builtins. */
79 #define TARGET_CPU_CPP_BUILTINS() \
80 do { \
81 builtin_assert ("cpu=xtensa"); \
82 builtin_assert ("machine=xtensa"); \
83 builtin_define ("__xtensa__"); \
84 builtin_define ("__XTENSA__"); \
85 builtin_define (TARGET_WINDOWED_ABI ? \
86 "__XTENSA_WINDOWED_ABI__" : "__XTENSA_CALL0_ABI__");\
87 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
88 if (!TARGET_HARD_FLOAT) \
89 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
90 } while (0)
91
92 #define CPP_SPEC " %(subtarget_cpp_spec) "
93
94 #ifndef SUBTARGET_CPP_SPEC
95 #define SUBTARGET_CPP_SPEC ""
96 #endif
97
98 #define EXTRA_SPECS \
99 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
100
101 /* Target machine storage layout */
102
103 /* Define this if most significant bit is lowest numbered
104 in instructions that operate on numbered bit-fields. */
105 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
106
107 /* Define this if most significant byte of a word is the lowest numbered. */
108 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
109
110 /* Define this if most significant word of a multiword number is the lowest. */
111 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
112
113 #define MAX_BITS_PER_WORD 32
114
115 /* Width of a word, in units (bytes). */
116 #define UNITS_PER_WORD 4
117 #define MIN_UNITS_PER_WORD 4
118
119 /* Width of a floating point register. */
120 #define UNITS_PER_FPREG 4
121
122 /* Size in bits of various types on the target machine. */
123 #define INT_TYPE_SIZE 32
124 #define SHORT_TYPE_SIZE 16
125 #define LONG_TYPE_SIZE 32
126 #define LONG_LONG_TYPE_SIZE 64
127 #define FLOAT_TYPE_SIZE 32
128 #define DOUBLE_TYPE_SIZE 64
129 #define LONG_DOUBLE_TYPE_SIZE 64
130
131 /* Allocation boundary (in *bits*) for storing pointers in memory. */
132 #define POINTER_BOUNDARY 32
133
134 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
135 #define PARM_BOUNDARY 32
136
137 /* Allocation boundary (in *bits*) for the code of a function. */
138 #define FUNCTION_BOUNDARY 32
139
140 /* Alignment of field after 'int : 0' in a structure. */
141 #define EMPTY_FIELD_BOUNDARY 32
142
143 /* Every structure's size must be a multiple of this. */
144 #define STRUCTURE_SIZE_BOUNDARY 8
145
146 /* There is no point aligning anything to a rounder boundary than this. */
147 #define BIGGEST_ALIGNMENT 128
148
149 /* Set this nonzero if move instructions will actually fail to work
150 when given unaligned data. */
151 #define STRICT_ALIGNMENT 1
152
153 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
154 for QImode, because there is no 8-bit load from memory with sign
155 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
156 loads both with and without sign extension. */
157 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
158 do { \
159 if (GET_MODE_CLASS (MODE) == MODE_INT \
160 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
161 { \
162 if ((MODE) == QImode) \
163 (UNSIGNEDP) = 1; \
164 (MODE) = SImode; \
165 } \
166 } while (0)
167
168 /* Imitate the way many other C compilers handle alignment of
169 bitfields and the structures that contain them. */
170 #define PCC_BITFIELD_TYPE_MATTERS 1
171
172 /* Align string constants and constructors to at least a word boundary.
173 The typical use of this macro is to increase alignment for string
174 constants to be word aligned so that 'strcpy' calls that copy
175 constants can be done inline. */
176 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
177 (!optimize_size && \
178 (TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
179 && (ALIGN) < BITS_PER_WORD \
180 ? BITS_PER_WORD \
181 : (ALIGN))
182
183 /* Align arrays, unions and records to at least a word boundary.
184 One use of this macro is to increase alignment of medium-size
185 data to make it all fit in fewer cache lines. Another is to
186 cause character arrays to be word-aligned so that 'strcpy' calls
187 that copy constants to character arrays can be done inline. */
188 #undef DATA_ALIGNMENT
189 #define DATA_ALIGNMENT(TYPE, ALIGN) \
190 (!optimize_size && (((ALIGN) < BITS_PER_WORD) \
191 && (TREE_CODE (TYPE) == ARRAY_TYPE \
192 || TREE_CODE (TYPE) == UNION_TYPE \
193 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
194
195 /* Operations between registers always perform the operation
196 on the full register even if a narrower mode is specified. */
197 #define WORD_REGISTER_OPERATIONS 1
198
199 /* Xtensa loads are zero-extended by default. */
200 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
201
202 /* Standard register usage. */
203
204 /* Number of actual hardware registers.
205 The hardware registers are assigned numbers for the compiler
206 from 0 to just below FIRST_PSEUDO_REGISTER.
207 All registers that the compiler knows about must be given numbers,
208 even those that are not normally considered general registers.
209
210 The fake frame pointer and argument pointer will never appear in
211 the generated code, since they will always be eliminated and replaced
212 by either the stack pointer or the hard frame pointer.
213
214 0 - 15 AR[0] - AR[15]
215 16 FRAME_POINTER (fake = initial sp)
216 17 ARG_POINTER (fake = initial sp + framesize)
217 18 BR[0] for floating-point CC
218 19 - 34 FR[0] - FR[15]
219 35 MAC16 accumulator */
220
221 #define FIRST_PSEUDO_REGISTER 36
222
223 /* Return the stabs register number to use for REGNO. */
224 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
225
226 /* 1 for registers that have pervasive standard uses
227 and are not available for the register allocator. */
228 #define FIXED_REGISTERS \
229 { \
230 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
231 1, 1, 0, \
232 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
233 0, \
234 }
235
236 /* 1 for registers not available across function calls.
237 These must include the FIXED_REGISTERS and also any
238 registers that can be used without being saved.
239 The latter must include the registers where values are returned
240 and the register where structure-value addresses are passed.
241 Aside from that, you can include as many other registers as you like.
242
243 The value encoding is the following:
244 1: register is used by all ABIs;
245 bit 1 is set: register is used by windowed ABI;
246 bit 2 is set: register is used by call0 ABI.
247
248 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
249
250 #define CALL_USED_REGISTERS \
251 { \
252 1, 1, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 2, 2, \
253 1, 1, 1, \
254 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
255 1, \
256 }
257
258 /* For non-leaf procedures on Xtensa processors, the allocation order
259 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
260 want to use the lowest numbered registers first to minimize
261 register window overflows. However, local-alloc is not smart
262 enough to consider conflicts with incoming arguments. If an
263 incoming argument in a2 is live throughout the function and
264 local-alloc decides to use a2, then the incoming argument must
265 either be spilled or copied to another register. To get around
266 this, we define ADJUST_REG_ALLOC_ORDER to redefine
267 reg_alloc_order for leaf functions such that lowest numbered
268 registers are used first with the exception that the incoming
269 argument registers are not used until after other register choices
270 have been exhausted. */
271
272 #define REG_ALLOC_ORDER \
273 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
274 18, \
275 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
276 0, 1, 16, 17, \
277 35, \
278 }
279
280 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
281
282 /* For Xtensa, the only point of this is to prevent GCC from otherwise
283 giving preference to call-used registers. To minimize window
284 overflows for the AR registers, we want to give preference to the
285 lower-numbered AR registers. For other register files, which are
286 not windowed, we still prefer call-used registers, if there are any. */
287 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
288 #define LEAF_REGISTERS xtensa_leaf_regs
289
290 /* For Xtensa, no remapping is necessary, but this macro must be
291 defined if LEAF_REGISTERS is defined. */
292 #define LEAF_REG_REMAP(REGNO) (REGNO)
293
294 /* This must be declared if LEAF_REGISTERS is set. */
295 extern int leaf_function;
296
297 /* Internal macros to classify a register number. */
298
299 /* 16 address registers + fake registers */
300 #define GP_REG_FIRST 0
301 #define GP_REG_LAST 17
302 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
303
304 /* Coprocessor registers */
305 #define BR_REG_FIRST 18
306 #define BR_REG_LAST 18
307 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
308
309 /* 16 floating-point registers */
310 #define FP_REG_FIRST 19
311 #define FP_REG_LAST 34
312 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
313
314 /* MAC16 accumulator */
315 #define ACC_REG_FIRST 35
316 #define ACC_REG_LAST 35
317 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
318
319 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
320 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
321 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
322 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
323
324 /* Register to use for pushing function arguments. */
325 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
326
327 /* Base register for access to local variables of the function. */
328 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + \
329 (TARGET_WINDOWED_ABI ? 7 : 15))
330
331 /* The register number of the frame pointer register, which is used to
332 access automatic variables in the stack frame. For Xtensa, this
333 register never appears in the output. It is always eliminated to
334 either the stack pointer or the hard frame pointer. */
335 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
336
337 /* Base register for access to arguments of the function. */
338 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
339
340 /* Hard frame pointer is neither frame nor arg pointer.
341 The definitions are here because actual hard frame pointer register
342 definition is not a preprocessor constant. */
343 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
344 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
345
346 /* For now we don't try to use the full set of boolean registers. Without
347 software pipelining of FP operations, there's not much to gain and it's
348 a real pain to get them reloaded. */
349 #define FPCC_REGNUM (BR_REG_FIRST + 0)
350
351 /* It is as good or better to call a constant function address than to
352 call an address kept in a register. */
353 #define NO_FUNCTION_CSE 1
354
355 /* Xtensa processors have "register windows". GCC does not currently
356 take advantage of the possibility for variable-sized windows; instead,
357 we use a fixed window size of 8. */
358
359 #define INCOMING_REGNO(OUT) \
360 (TARGET_WINDOWED_ABI ? \
361 ((GP_REG_P (OUT) && \
362 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
363 (OUT) - WINDOW_SIZE : (OUT)) : (OUT))
364
365 #define OUTGOING_REGNO(IN) \
366 (TARGET_WINDOWED_ABI ? \
367 ((GP_REG_P (IN) && \
368 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
369 (IN) + WINDOW_SIZE : (IN)) : (IN))
370
371
372 /* Define the classes of registers for register constraints in the
373 machine description. */
374 enum reg_class
375 {
376 NO_REGS, /* no registers in set */
377 BR_REGS, /* coprocessor boolean registers */
378 FP_REGS, /* floating point registers */
379 ACC_REG, /* MAC16 accumulator */
380 SP_REG, /* sp register (aka a1) */
381 RL_REGS, /* preferred reload regs (not sp or fp) */
382 GR_REGS, /* integer registers except sp */
383 AR_REGS, /* all integer registers */
384 ALL_REGS, /* all registers */
385 LIM_REG_CLASSES /* max value + 1 */
386 };
387
388 #define N_REG_CLASSES (int) LIM_REG_CLASSES
389
390 #define GENERAL_REGS AR_REGS
391
392 /* An initializer containing the names of the register classes as C
393 string constants. These names are used in writing some of the
394 debugging dumps. */
395 #define REG_CLASS_NAMES \
396 { \
397 "NO_REGS", \
398 "BR_REGS", \
399 "FP_REGS", \
400 "ACC_REG", \
401 "SP_REG", \
402 "RL_REGS", \
403 "GR_REGS", \
404 "AR_REGS", \
405 "ALL_REGS" \
406 }
407
408 /* Contents of the register classes. The Nth integer specifies the
409 contents of class N. The way the integer MASK is interpreted is
410 that register R is in the class if 'MASK & (1 << R)' is 1. */
411 #define REG_CLASS_CONTENTS \
412 { \
413 { 0x00000000, 0x00000000 }, /* no registers */ \
414 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
415 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
416 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
417 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
418 { 0x0000fffd, 0x00000000 }, /* preferred reload registers */ \
419 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
420 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
421 { 0xffffffff, 0x0000000f } /* all registers */ \
422 }
423
424 /* A C expression whose value is a register class containing hard
425 register REGNO. In general there is more that one such class;
426 choose a class which is "minimal", meaning that no smaller class
427 also contains the register. */
428 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class (REGNO)
429
430 /* Use the Xtensa AR register file for base registers.
431 No index registers. */
432 #define BASE_REG_CLASS AR_REGS
433 #define INDEX_REG_CLASS NO_REGS
434
435 /* The small_register_classes_for_mode_p hook must always return true for
436 Xtrnase, because all of the 16 AR registers may be explicitly used in
437 the RTL, as either incoming or outgoing arguments. */
438 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
439
440 /* Stack layout; function entry, exit and calling. */
441
442 #define STACK_GROWS_DOWNWARD 1
443
444 #define FRAME_GROWS_DOWNWARD flag_stack_protect
445
446 /* Offset within stack frame to start allocating local variables at. */
447 #define STARTING_FRAME_OFFSET \
448 (FRAME_GROWS_DOWNWARD ? 0 : crtl->outgoing_args_size)
449
450 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
451 they are eliminated to either the stack pointer or hard frame pointer. */
452 #define ELIMINABLE_REGS \
453 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
454 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
455 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
456 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
457
458 /* Specify the initial difference between the specified pair of registers. */
459 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
460 (OFFSET) = xtensa_initial_elimination_offset ((FROM), (TO))
461
462 /* If defined, the maximum amount of space required for outgoing
463 arguments will be computed and placed into the variable
464 'crtl->outgoing_args_size'. No space will be pushed
465 onto the stack for each call; instead, the function prologue
466 should increase the stack frame size by this amount. */
467 #define ACCUMULATE_OUTGOING_ARGS 1
468
469 /* Offset from the argument pointer register to the first argument's
470 address. On some machines it may depend on the data type of the
471 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
472 location above the first argument's address. */
473 #define FIRST_PARM_OFFSET(FNDECL) 0
474
475 /* Align stack frames on 128 bits for Xtensa. This is necessary for
476 128-bit datatypes defined in TIE (e.g., for Vectra). */
477 #define STACK_BOUNDARY 128
478
479 /* Use a fixed register window size of 8. */
480 #define WINDOW_SIZE (TARGET_WINDOWED_ABI ? 8 : 0)
481
482 /* Symbolic macros for the registers used to return integer, floating
483 point, and values of coprocessor and user-defined modes. */
484 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
485 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
486
487 /* Symbolic macros for the first/last argument registers. */
488 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
489 #define GP_ARG_LAST (GP_REG_FIRST + 7)
490 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
491 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
492
493 #define MAX_ARGS_IN_REGISTERS 6
494
495 /* Don't worry about compatibility with PCC. */
496 #define DEFAULT_PCC_STRUCT_RETURN 0
497
498 /* A C expression that is nonzero if REGNO is the number of a hard
499 register in which function arguments are sometimes passed. This
500 does *not* include implicit arguments such as the static chain and
501 the structure-value address. On many machines, no registers can be
502 used for this purpose since all function arguments are pushed on
503 the stack. */
504 #define FUNCTION_ARG_REGNO_P(N) \
505 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
506
507 /* Record the number of argument words seen so far, along with a flag to
508 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
509 is used for both incoming and outgoing args, so a separate flag is
510 needed. */
511 typedef struct xtensa_args
512 {
513 int arg_words;
514 int incoming;
515 } CUMULATIVE_ARGS;
516
517 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
518 init_cumulative_args (&CUM, 0)
519
520 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
521 init_cumulative_args (&CUM, 1)
522
523 /* Profiling Xtensa code is typically done with the built-in profiling
524 feature of Tensilica's instruction set simulator, which does not
525 require any compiler support. Profiling code on a real (i.e.,
526 non-simulated) Xtensa processor is currently only supported by
527 GNU/Linux with glibc. The glibc version of _mcount doesn't require
528 counter variables. The _mcount function needs the current PC and
529 the current return address to identify an arc in the call graph.
530 Pass the current return address as the first argument; the current
531 PC is available as a0 in _mcount's register window. Both of these
532 values contain window size information in the two most significant
533 bits; we assume that _mcount will mask off those bits. The call to
534 _mcount uses a window size of 8 to make sure that it doesn't clobber
535 any incoming argument values. */
536
537 #define NO_PROFILE_COUNTERS 1
538
539 #define FUNCTION_PROFILER(FILE, LABELNO) \
540 do { \
541 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
542 if (flag_pic) \
543 { \
544 fprintf (FILE, "\tmovi\ta%d, _mcount@PLT\n", WINDOW_SIZE); \
545 fprintf (FILE, "\tcallx%d\ta%d\n", WINDOW_SIZE, WINDOW_SIZE); \
546 } \
547 else \
548 fprintf (FILE, "\tcall%d\t_mcount\n", WINDOW_SIZE); \
549 } while (0)
550
551 /* Stack pointer value doesn't matter at exit. */
552 #define EXIT_IGNORE_STACK 1
553
554 /* Size in bytes of the trampoline, as an integer. Make sure this is
555 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
556 #define TRAMPOLINE_SIZE (TARGET_WINDOWED_ABI ? \
557 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
558 60 : 52) : \
559 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
560 32 : 24))
561
562 /* Alignment required for trampolines, in bits. */
563 #define TRAMPOLINE_ALIGNMENT 32
564
565 /* If defined, a C expression that produces the machine-specific code
566 to setup the stack so that arbitrary frames can be accessed.
567
568 On Xtensa, a stack back-trace must always begin from the stack pointer,
569 so that the register overflow save area can be located. However, the
570 stack-walking code in GCC always begins from the hard_frame_pointer
571 register, not the stack pointer. The frame pointer is usually equal
572 to the stack pointer, but the __builtin_return_address and
573 __builtin_frame_address functions will not work if count > 0 and
574 they are called from a routine that uses alloca. These functions
575 are not guaranteed to work at all if count > 0 so maybe that is OK.
576
577 A nicer solution would be to allow the architecture-specific files to
578 specify whether to start from the stack pointer or frame pointer. That
579 would also allow us to skip the machine->accesses_prev_frame stuff that
580 we currently need to ensure that there is a frame pointer when these
581 builtin functions are used. */
582
583 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
584
585 /* A C expression whose value is RTL representing the address in a
586 stack frame where the pointer to the caller's frame is stored.
587 Assume that FRAMEADDR is an RTL expression for the address of the
588 stack frame itself.
589
590 For Xtensa, there is no easy way to get the frame pointer if it is
591 not equivalent to the stack pointer. Moreover, the result of this
592 macro is used for continuing to walk back up the stack, so it must
593 return the stack pointer address. Thus, there is some inconsistency
594 here in that __builtin_frame_address will return the frame pointer
595 when count == 0 and the stack pointer when count > 0. */
596
597 #define DYNAMIC_CHAIN_ADDRESS(frame) \
598 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
599
600 /* Define this if the return address of a particular stack frame is
601 accessed from the frame pointer of the previous stack frame. */
602 #define RETURN_ADDR_IN_PREVIOUS_FRAME TARGET_WINDOWED_ABI
603
604 /* A C expression whose value is RTL representing the value of the
605 return address for the frame COUNT steps up from the current
606 frame, after the prologue. */
607 #define RETURN_ADDR_RTX xtensa_return_addr
608
609 /* Addressing modes, and classification of registers for them. */
610
611 /* C expressions which are nonzero if register number NUM is suitable
612 for use as a base or index register in operand addresses. */
613
614 #define REGNO_OK_FOR_INDEX_P(NUM) 0
615 #define REGNO_OK_FOR_BASE_P(NUM) \
616 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
617
618 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
619 valid for use as a base or index register. */
620
621 #ifdef REG_OK_STRICT
622 #define REG_OK_STRICT_FLAG 1
623 #else
624 #define REG_OK_STRICT_FLAG 0
625 #endif
626
627 #define BASE_REG_P(X, STRICT) \
628 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
629 || REGNO_OK_FOR_BASE_P (REGNO (X)))
630
631 #define REG_OK_FOR_INDEX_P(X) 0
632 #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
633
634 /* Maximum number of registers that can appear in a valid memory address. */
635 #define MAX_REGS_PER_ADDRESS 1
636
637 /* A C expression that is 1 if the RTX X is a constant which is a
638 valid address. This is defined to be the same as 'CONSTANT_P (X)',
639 but rejecting CONST_DOUBLE. */
640 #define CONSTANT_ADDRESS_P(X) \
641 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
642 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
643 || (GET_CODE (X) == CONST)))
644
645 /* A C expression that is nonzero if X is a legitimate immediate
646 operand on the target machine when generating position independent
647 code. */
648 #define LEGITIMATE_PIC_OPERAND_P(X) \
649 ((GET_CODE (X) != SYMBOL_REF \
650 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
651 && GET_CODE (X) != LABEL_REF \
652 && GET_CODE (X) != CONST)
653
654 /* Specify the machine mode that this machine uses
655 for the index in the tablejump instruction. */
656 #define CASE_VECTOR_MODE (SImode)
657
658 /* Define this as 1 if 'char' should by default be signed; else as 0. */
659 #define DEFAULT_SIGNED_CHAR 0
660
661 /* Max number of bytes we can move from memory to memory
662 in one reasonably fast instruction. */
663 #define MOVE_MAX 4
664 #define MAX_MOVE_MAX 4
665
666 /* Prefer word-sized loads. */
667 #define SLOW_BYTE_ACCESS 1
668
669 /* Shift instructions ignore all but the low-order few bits. */
670 #define SHIFT_COUNT_TRUNCATED 1
671
672 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
673 is done just by pretending it is already truncated. */
674 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
675
676 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
677 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
678
679 /* Specify the machine mode that pointers have.
680 After generation of rtl, the compiler makes no further distinction
681 between pointers and any other objects of this machine mode. */
682 #define Pmode SImode
683
684 /* A function address in a call instruction is a word address (for
685 indexing purposes) so give the MEM rtx a words's mode. */
686 #define FUNCTION_MODE SImode
687
688 #define BRANCH_COST(speed_p, predictable_p) 3
689
690 /* How to refer to registers in assembler output.
691 This sequence is indexed by compiler's hard-register-number (see above). */
692 #define REGISTER_NAMES \
693 { \
694 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
695 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
696 "fp", "argp", "b0", \
697 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
698 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
699 "acc" \
700 }
701
702 /* If defined, a C initializer for an array of structures containing a
703 name and a register number. This macro defines additional names
704 for hard registers, thus allowing the 'asm' option in declarations
705 to refer to registers using alternate names. */
706 #define ADDITIONAL_REGISTER_NAMES \
707 { \
708 { "a1", 1 + GP_REG_FIRST } \
709 }
710
711 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
712 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
713
714 /* Globalizing directive for a label. */
715 #define GLOBAL_ASM_OP "\t.global\t"
716
717 /* Declare an uninitialized external linkage data object. */
718 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
719 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
720
721 /* This is how to output an element of a case-vector that is absolute. */
722 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
723 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
724 LOCAL_LABEL_PREFIX, VALUE)
725
726 /* This is how to output an element of a case-vector that is relative.
727 This is used for pc-relative code. */
728 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
729 do { \
730 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
731 LOCAL_LABEL_PREFIX, (VALUE), \
732 LOCAL_LABEL_PREFIX, (REL)); \
733 } while (0)
734
735 /* This is how to output an assembler line that says to advance the
736 location counter to a multiple of 2**LOG bytes. */
737 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
738 do { \
739 if ((LOG) != 0) \
740 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
741 } while (0)
742
743 /* Indicate that jump tables go in the text section. This is
744 necessary when compiling PIC code. */
745 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
746
747
748 /* Define the strings to put out for each section in the object file. */
749 #define TEXT_SECTION_ASM_OP "\t.text"
750 #define DATA_SECTION_ASM_OP "\t.data"
751 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
752
753
754 /* Define output to appear before the constant pool. */
755 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
756 do { \
757 if ((SIZE) > 0 || !TARGET_WINDOWED_ABI) \
758 { \
759 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
760 switch_to_section (function_section (FUNDECL)); \
761 fprintf (FILE, "\t.literal_position\n"); \
762 } \
763 } while (0)
764
765
766 /* A C statement (with or without semicolon) to output a constant in
767 the constant pool, if it needs special treatment. */
768 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
769 do { \
770 xtensa_output_literal (FILE, X, MODE, LABELNO); \
771 goto JUMPTO; \
772 } while (0)
773
774 /* How to start an assembler comment. */
775 #define ASM_COMMENT_START "#"
776
777 /* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
778 machinery, but the variable size register window save areas are too
779 complicated to efficiently describe with CFI entries. The CFA must
780 still be specified in DWARF so that DW_AT_frame_base is set correctly
781 for debugging. */
782 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
783 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
784 #define DWARF_ALT_FRAME_RETURN_COLUMN 16
785 #define DWARF_FRAME_REGISTERS (DWARF_ALT_FRAME_RETURN_COLUMN \
786 + (TARGET_WINDOWED_ABI ? 0 : 1))
787 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
788 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
789 (flag_pic \
790 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
791 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
792 : DW_EH_PE_absptr)
793
794 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 10)
795
796 /* Emit a PC-relative relocation. */
797 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
798 do { \
799 fputs (integer_asm_op (SIZE, FALSE), FILE); \
800 assemble_name (FILE, LABEL); \
801 fputs ("@pcrel", FILE); \
802 } while (0)
803
804 /* Xtensa constant pool breaks the devices in crtstuff.c to control
805 section in where code resides. We have to write it as asm code. Use
806 a MOVI and let the assembler relax it -- for the .init and .fini
807 sections, the assembler knows to put the literal in the right
808 place. */
809 #if defined(__XTENSA_WINDOWED_ABI__)
810 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
811 asm (SECTION_OP "\n\
812 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
813 callx8\ta8\n" \
814 TEXT_SECTION_ASM_OP);
815 #elif defined(__XTENSA_CALL0_ABI__)
816 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
817 asm (SECTION_OP "\n\
818 movi\ta0, " USER_LABEL_PREFIX #FUNC "\n\
819 callx0\ta0\n" \
820 TEXT_SECTION_ASM_OP);
821 #endif