]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/xtensa/xtensa.h
Merge basic-improvements-branch to trunk
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.h
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright 2001,2002 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* Get Xtensa configuration settings */
23 #include "xtensa/xtensa-config.h"
24
25 /* Standard GCC variables that we reference. */
26 extern int current_function_calls_alloca;
27 extern int target_flags;
28 extern int optimize;
29
30 /* External variables defined in xtensa.c. */
31
32 /* comparison type */
33 enum cmp_type {
34 CMP_SI, /* four byte integers */
35 CMP_DI, /* eight byte integers */
36 CMP_SF, /* single precision floats */
37 CMP_DF, /* double precision floats */
38 CMP_MAX /* max comparison type */
39 };
40
41 extern struct rtx_def * branch_cmp[2]; /* operands for compare */
42 extern enum cmp_type branch_type; /* what type of branch to use */
43 extern unsigned xtensa_current_frame_size;
44
45 /* Run-time compilation parameters selecting different hardware subsets. */
46
47 #define MASK_BIG_ENDIAN 0x00000001 /* big or little endian */
48 #define MASK_DENSITY 0x00000002 /* code density option */
49 #define MASK_MAC16 0x00000004 /* MAC16 option */
50 #define MASK_MUL16 0x00000008 /* 16-bit integer multiply */
51 #define MASK_MUL32 0x00000010 /* integer multiply/divide */
52 #define MASK_DIV32 0x00000020 /* integer multiply/divide */
53 #define MASK_NSA 0x00000040 /* nsa instruction option */
54 #define MASK_MINMAX 0x00000080 /* min/max instructions */
55 #define MASK_SEXT 0x00000100 /* sign extend insn option */
56 #define MASK_BOOLEANS 0x00000200 /* boolean register option */
57 #define MASK_HARD_FLOAT 0x00000400 /* floating-point option */
58 #define MASK_HARD_FLOAT_DIV 0x00000800 /* floating-point divide */
59 #define MASK_HARD_FLOAT_RECIP 0x00001000 /* floating-point reciprocal */
60 #define MASK_HARD_FLOAT_SQRT 0x00002000 /* floating-point sqrt */
61 #define MASK_HARD_FLOAT_RSQRT 0x00004000 /* floating-point recip sqrt */
62 #define MASK_NO_FUSED_MADD 0x00008000 /* avoid f-p mul/add */
63 #define MASK_SERIALIZE_VOLATILE 0x00010000 /* serialize volatile refs */
64
65 /* Macros used in the machine description to test the flags. */
66
67 #define TARGET_BIG_ENDIAN (target_flags & MASK_BIG_ENDIAN)
68 #define TARGET_DENSITY (target_flags & MASK_DENSITY)
69 #define TARGET_MAC16 (target_flags & MASK_MAC16)
70 #define TARGET_MUL16 (target_flags & MASK_MUL16)
71 #define TARGET_MUL32 (target_flags & MASK_MUL32)
72 #define TARGET_DIV32 (target_flags & MASK_DIV32)
73 #define TARGET_NSA (target_flags & MASK_NSA)
74 #define TARGET_MINMAX (target_flags & MASK_MINMAX)
75 #define TARGET_SEXT (target_flags & MASK_SEXT)
76 #define TARGET_BOOLEANS (target_flags & MASK_BOOLEANS)
77 #define TARGET_HARD_FLOAT (target_flags & MASK_HARD_FLOAT)
78 #define TARGET_HARD_FLOAT_DIV (target_flags & MASK_HARD_FLOAT_DIV)
79 #define TARGET_HARD_FLOAT_RECIP (target_flags & MASK_HARD_FLOAT_RECIP)
80 #define TARGET_HARD_FLOAT_SQRT (target_flags & MASK_HARD_FLOAT_SQRT)
81 #define TARGET_HARD_FLOAT_RSQRT (target_flags & MASK_HARD_FLOAT_RSQRT)
82 #define TARGET_NO_FUSED_MADD (target_flags & MASK_NO_FUSED_MADD)
83 #define TARGET_SERIALIZE_VOLATILE (target_flags & MASK_SERIALIZE_VOLATILE)
84
85 /* Default target_flags if no switches are specified */
86
87 #define TARGET_DEFAULT ( \
88 (XCHAL_HAVE_BE ? MASK_BIG_ENDIAN : 0) | \
89 (XCHAL_HAVE_DENSITY ? MASK_DENSITY : 0) | \
90 (XCHAL_HAVE_MAC16 ? MASK_MAC16 : 0) | \
91 (XCHAL_HAVE_MUL16 ? MASK_MUL16 : 0) | \
92 (XCHAL_HAVE_MUL32 ? MASK_MUL32 : 0) | \
93 (XCHAL_HAVE_DIV32 ? MASK_DIV32 : 0) | \
94 (XCHAL_HAVE_NSA ? MASK_NSA : 0) | \
95 (XCHAL_HAVE_MINMAX ? MASK_MINMAX : 0) | \
96 (XCHAL_HAVE_SEXT ? MASK_SEXT : 0) | \
97 (XCHAL_HAVE_BOOLEANS ? MASK_BOOLEANS : 0) | \
98 (XCHAL_HAVE_FP ? MASK_HARD_FLOAT : 0) | \
99 (XCHAL_HAVE_FP_DIV ? MASK_HARD_FLOAT_DIV : 0) | \
100 (XCHAL_HAVE_FP_RECIP ? MASK_HARD_FLOAT_RECIP : 0) | \
101 (XCHAL_HAVE_FP_SQRT ? MASK_HARD_FLOAT_SQRT : 0) | \
102 (XCHAL_HAVE_FP_RSQRT ? MASK_HARD_FLOAT_RSQRT : 0) | \
103 MASK_SERIALIZE_VOLATILE)
104
105 /* Macro to define tables used to set the flags. */
106
107 #define TARGET_SWITCHES \
108 { \
109 {"big-endian", MASK_BIG_ENDIAN, \
110 N_("Use big-endian byte order")}, \
111 {"little-endian", -MASK_BIG_ENDIAN, \
112 N_("Use little-endian byte order")}, \
113 {"density", MASK_DENSITY, \
114 N_("Use the Xtensa code density option")}, \
115 {"no-density", -MASK_DENSITY, \
116 N_("Do not use the Xtensa code density option")}, \
117 {"mac16", MASK_MAC16, \
118 N_("Use the Xtensa MAC16 option")}, \
119 {"no-mac16", -MASK_MAC16, \
120 N_("Do not use the Xtensa MAC16 option")}, \
121 {"mul16", MASK_MUL16, \
122 N_("Use the Xtensa MUL16 option")}, \
123 {"no-mul16", -MASK_MUL16, \
124 N_("Do not use the Xtensa MUL16 option")}, \
125 {"mul32", MASK_MUL32, \
126 N_("Use the Xtensa MUL32 option")}, \
127 {"no-mul32", -MASK_MUL32, \
128 N_("Do not use the Xtensa MUL32 option")}, \
129 {"div32", MASK_DIV32, \
130 0 /* undocumented */}, \
131 {"no-div32", -MASK_DIV32, \
132 0 /* undocumented */}, \
133 {"nsa", MASK_NSA, \
134 N_("Use the Xtensa NSA option")}, \
135 {"no-nsa", -MASK_NSA, \
136 N_("Do not use the Xtensa NSA option")}, \
137 {"minmax", MASK_MINMAX, \
138 N_("Use the Xtensa MIN/MAX option")}, \
139 {"no-minmax", -MASK_MINMAX, \
140 N_("Do not use the Xtensa MIN/MAX option")}, \
141 {"sext", MASK_SEXT, \
142 N_("Use the Xtensa SEXT option")}, \
143 {"no-sext", -MASK_SEXT, \
144 N_("Do not use the Xtensa SEXT option")}, \
145 {"booleans", MASK_BOOLEANS, \
146 N_("Use the Xtensa boolean register option")}, \
147 {"no-booleans", -MASK_BOOLEANS, \
148 N_("Do not use the Xtensa boolean register option")}, \
149 {"hard-float", MASK_HARD_FLOAT, \
150 N_("Use the Xtensa floating-point unit")}, \
151 {"soft-float", -MASK_HARD_FLOAT, \
152 N_("Do not use the Xtensa floating-point unit")}, \
153 {"hard-float-div", MASK_HARD_FLOAT_DIV, \
154 0 /* undocumented */}, \
155 {"no-hard-float-div", -MASK_HARD_FLOAT_DIV, \
156 0 /* undocumented */}, \
157 {"hard-float-recip", MASK_HARD_FLOAT_RECIP, \
158 0 /* undocumented */}, \
159 {"no-hard-float-recip", -MASK_HARD_FLOAT_RECIP, \
160 0 /* undocumented */}, \
161 {"hard-float-sqrt", MASK_HARD_FLOAT_SQRT, \
162 0 /* undocumented */}, \
163 {"no-hard-float-sqrt", -MASK_HARD_FLOAT_SQRT, \
164 0 /* undocumented */}, \
165 {"hard-float-rsqrt", MASK_HARD_FLOAT_RSQRT, \
166 0 /* undocumented */}, \
167 {"no-hard-float-rsqrt", -MASK_HARD_FLOAT_RSQRT, \
168 0 /* undocumented */}, \
169 {"no-fused-madd", MASK_NO_FUSED_MADD, \
170 N_("Disable fused multiply/add and multiply/subtract FP instructions")}, \
171 {"fused-madd", -MASK_NO_FUSED_MADD, \
172 N_("Enable fused multiply/add and multiply/subtract FP instructions")}, \
173 {"serialize-volatile", MASK_SERIALIZE_VOLATILE, \
174 N_("Serialize volatile memory references with MEMW instructions")}, \
175 {"no-serialize-volatile", -MASK_SERIALIZE_VOLATILE, \
176 N_("Do not serialize volatile memory references with MEMW instructions")},\
177 {"text-section-literals", 0, \
178 N_("Intersperse literal pools with code in the text section")}, \
179 {"no-text-section-literals", 0, \
180 N_("Put literal pools in a separate literal section")}, \
181 {"target-align", 0, \
182 N_("Automatically align branch targets to reduce branch penalties")}, \
183 {"no-target-align", 0, \
184 N_("Do not automatically align branch targets")}, \
185 {"longcalls", 0, \
186 N_("Use indirect CALLXn instructions for large programs")}, \
187 {"no-longcalls", 0, \
188 N_("Use direct CALLn instructions for fast calls")}, \
189 {"", TARGET_DEFAULT, 0} \
190 }
191
192
193 #define OVERRIDE_OPTIONS override_options ()
194 \f
195 /* Target CPU builtins. */
196 #define TARGET_CPU_CPP_BUILTINS() \
197 do { \
198 builtin_assert ("cpu=xtensa"); \
199 builtin_assert ("machine=xtensa"); \
200 builtin_define ("__XTENSA__"); \
201 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
202 if (!TARGET_HARD_FLOAT) \
203 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
204 if (flag_pic) \
205 { \
206 builtin_define ("__PIC__"); \
207 builtin_define ("__pic__"); \
208 } \
209 } while (0)
210
211 /* Define this to set the endianness to use in libgcc2.c, which can
212 not depend on target_flags. */
213 #define LIBGCC2_WORDS_BIG_ENDIAN XCHAL_HAVE_BE
214
215 /* Show we can debug even without a frame pointer. */
216 #define CAN_DEBUG_WITHOUT_FP
217
218
219 /* Target machine storage layout */
220
221 /* Define this if most significant bit is lowest numbered
222 in instructions that operate on numbered bit-fields. */
223 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
224
225 /* Define this if most significant byte of a word is the lowest numbered. */
226 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
227
228 /* Define this if most significant word of a multiword number is the lowest. */
229 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
230
231 #define MAX_BITS_PER_WORD 32
232
233 /* Width of a word, in units (bytes). */
234 #define UNITS_PER_WORD 4
235 #define MIN_UNITS_PER_WORD 4
236
237 /* Width of a floating point register. */
238 #define UNITS_PER_FPREG 4
239
240 /* Size in bits of various types on the target machine. */
241 #define INT_TYPE_SIZE 32
242 #define SHORT_TYPE_SIZE 16
243 #define LONG_TYPE_SIZE 32
244 #define MAX_LONG_TYPE_SIZE 32
245 #define LONG_LONG_TYPE_SIZE 64
246 #define FLOAT_TYPE_SIZE 32
247 #define DOUBLE_TYPE_SIZE 64
248 #define LONG_DOUBLE_TYPE_SIZE 64
249
250 /* Allocation boundary (in *bits*) for storing pointers in memory. */
251 #define POINTER_BOUNDARY 32
252
253 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
254 #define PARM_BOUNDARY 32
255
256 /* Allocation boundary (in *bits*) for the code of a function. */
257 #define FUNCTION_BOUNDARY 32
258
259 /* Alignment of field after 'int : 0' in a structure. */
260 #define EMPTY_FIELD_BOUNDARY 32
261
262 /* Every structure's size must be a multiple of this. */
263 #define STRUCTURE_SIZE_BOUNDARY 8
264
265 /* There is no point aligning anything to a rounder boundary than this. */
266 #define BIGGEST_ALIGNMENT 128
267
268 /* Set this nonzero if move instructions will actually fail to work
269 when given unaligned data. */
270 #define STRICT_ALIGNMENT 1
271
272 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
273 for QImode, because there is no 8-bit load from memory with sign
274 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
275 loads both with and without sign extension. */
276 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
277 do { \
278 if (GET_MODE_CLASS (MODE) == MODE_INT \
279 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
280 { \
281 if ((MODE) == QImode) \
282 (UNSIGNEDP) = 1; \
283 (MODE) = SImode; \
284 } \
285 } while (0)
286
287 /* The promotion described by `PROMOTE_MODE' should also be done for
288 outgoing function arguments. */
289 #define PROMOTE_FUNCTION_ARGS
290
291 /* The promotion described by `PROMOTE_MODE' should also be done for
292 the return value of functions. Note: `FUNCTION_VALUE' must perform
293 the same promotions done by `PROMOTE_MODE'. */
294 #define PROMOTE_FUNCTION_RETURN
295
296 /* Imitate the way many other C compilers handle alignment of
297 bitfields and the structures that contain them. */
298 #define PCC_BITFIELD_TYPE_MATTERS 1
299
300 /* Align string constants and constructors to at least a word boundary.
301 The typical use of this macro is to increase alignment for string
302 constants to be word aligned so that 'strcpy' calls that copy
303 constants can be done inline. */
304 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
305 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
306 && (ALIGN) < BITS_PER_WORD \
307 ? BITS_PER_WORD \
308 : (ALIGN))
309
310 /* Align arrays, unions and records to at least a word boundary.
311 One use of this macro is to increase alignment of medium-size
312 data to make it all fit in fewer cache lines. Another is to
313 cause character arrays to be word-aligned so that 'strcpy' calls
314 that copy constants to character arrays can be done inline. */
315 #undef DATA_ALIGNMENT
316 #define DATA_ALIGNMENT(TYPE, ALIGN) \
317 ((((ALIGN) < BITS_PER_WORD) \
318 && (TREE_CODE (TYPE) == ARRAY_TYPE \
319 || TREE_CODE (TYPE) == UNION_TYPE \
320 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
321
322 /* An argument declared as 'char' or 'short' in a prototype should
323 actually be passed as an 'int'. */
324 #define PROMOTE_PROTOTYPES 1
325
326 /* Operations between registers always perform the operation
327 on the full register even if a narrower mode is specified. */
328 #define WORD_REGISTER_OPERATIONS
329
330 /* Xtensa loads are zero-extended by default. */
331 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
332
333 /* Standard register usage. */
334
335 /* Number of actual hardware registers.
336 The hardware registers are assigned numbers for the compiler
337 from 0 to just below FIRST_PSEUDO_REGISTER.
338 All registers that the compiler knows about must be given numbers,
339 even those that are not normally considered general registers.
340
341 The fake frame pointer and argument pointer will never appear in
342 the generated code, since they will always be eliminated and replaced
343 by either the stack pointer or the hard frame pointer.
344
345 0 - 15 AR[0] - AR[15]
346 16 FRAME_POINTER (fake = initial sp)
347 17 ARG_POINTER (fake = initial sp + framesize)
348 18 LOOP_COUNT (loop count special register)
349 18 BR[0] for floating-point CC
350 19 - 34 FR[0] - FR[15]
351 35 MAC16 accumulator */
352
353 #define FIRST_PSEUDO_REGISTER 36
354
355 /* Return the stabs register number to use for REGNO. */
356 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
357
358 /* 1 for registers that have pervasive standard uses
359 and are not available for the register allocator. */
360 #define FIXED_REGISTERS \
361 { \
362 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
363 1, 1, 0, \
364 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
365 0, \
366 }
367
368 /* 1 for registers not available across function calls.
369 These must include the FIXED_REGISTERS and also any
370 registers that can be used without being saved.
371 The latter must include the registers where values are returned
372 and the register where structure-value addresses are passed.
373 Aside from that, you can include as many other registers as you like. */
374 #define CALL_USED_REGISTERS \
375 { \
376 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
377 1, 1, 1, \
378 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
379 1, \
380 }
381
382 /* For non-leaf procedures on Xtensa processors, the allocation order
383 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
384 want to use the lowest numbered registers first to minimize
385 register window overflows. However, local-alloc is not smart
386 enough to consider conflicts with incoming arguments. If an
387 incoming argument in a2 is live throughout the function and
388 local-alloc decides to use a2, then the incoming argument must
389 either be spilled or copied to another register. To get around
390 this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
391 reg_alloc_order for leaf functions such that lowest numbered
392 registers are used first with the exception that the incoming
393 argument registers are not used until after other register choices
394 have been exhausted. */
395
396 #define REG_ALLOC_ORDER \
397 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, 19, \
398 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, \
399 0, 1, 16, 17, \
400 36, \
401 }
402
403 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
404
405 /* For Xtensa, the only point of this is to prevent GCC from otherwise
406 giving preference to call-used registers. To minimize window
407 overflows for the AR registers, we want to give preference to the
408 lower-numbered AR registers. For other register files, which are
409 not windowed, we still prefer call-used registers, if there are any. */
410 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
411 #define LEAF_REGISTERS xtensa_leaf_regs
412
413 /* For Xtensa, no remapping is necessary, but this macro must be
414 defined if LEAF_REGISTERS is defined. */
415 #define LEAF_REG_REMAP(REGNO) (REGNO)
416
417 /* this must be declared if LEAF_REGISTERS is set */
418 extern int leaf_function;
419
420 /* Internal macros to classify a register number. */
421
422 /* 16 address registers + fake registers */
423 #define GP_REG_FIRST 0
424 #define GP_REG_LAST 17
425 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
426
427 /* Special registers */
428 #define SPEC_REG_FIRST 18
429 #define SPEC_REG_LAST 18
430 #define SPEC_REG_NUM (SPEC_REG_LAST - SPEC_REG_FIRST + 1)
431
432 /* Coprocessor registers */
433 #define BR_REG_FIRST 18
434 #define BR_REG_LAST 18
435 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
436
437 /* 16 floating-point registers */
438 #define FP_REG_FIRST 19
439 #define FP_REG_LAST 34
440 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
441
442 /* MAC16 accumulator */
443 #define ACC_REG_FIRST 35
444 #define ACC_REG_LAST 35
445 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
446
447 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
448 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
449 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
450 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
451
452 /* Return number of consecutive hard regs needed starting at reg REGNO
453 to hold something of mode MODE. */
454 #define HARD_REGNO_NREGS(REGNO, MODE) \
455 (FP_REG_P (REGNO) ? \
456 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
457 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
458
459 /* Value is 1 if hard register REGNO can hold a value of machine-mode
460 MODE. */
461 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
462
463 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
464 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
465
466 /* Value is 1 if it is a good idea to tie two pseudo registers
467 when one has mode MODE1 and one has mode MODE2.
468 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
469 for any hard reg, then this must be 0 for correct output. */
470 #define MODES_TIEABLE_P(MODE1, MODE2) \
471 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
472 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
473 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
474 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
475
476 /* Register to use for LCOUNT special register. */
477 #define COUNT_REGISTER_REGNUM (SPEC_REG_FIRST + 0)
478
479 /* Register to use for pushing function arguments. */
480 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
481
482 /* Base register for access to local variables of the function. */
483 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
484
485 /* The register number of the frame pointer register, which is used to
486 access automatic variables in the stack frame. For Xtensa, this
487 register never appears in the output. It is always eliminated to
488 either the stack pointer or the hard frame pointer. */
489 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
490
491 /* Value should be nonzero if functions must have frame pointers.
492 Zero means the frame pointer need not be set up (and parms
493 may be accessed via the stack pointer) in functions that seem suitable.
494 This is computed in 'reload', in reload1.c. */
495 #define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
496
497 /* Base register for access to arguments of the function. */
498 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
499
500 /* If the static chain is passed in memory, these macros provide rtx
501 giving 'mem' expressions that denote where they are stored.
502 'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
503 seen by the calling and called functions, respectively. */
504
505 #define STATIC_CHAIN \
506 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
507
508 #define STATIC_CHAIN_INCOMING \
509 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
510
511 /* For now we don't try to use the full set of boolean registers. Without
512 software pipelining of FP operations, there's not much to gain and it's
513 a real pain to get them reloaded. */
514 #define FPCC_REGNUM (BR_REG_FIRST + 0)
515
516 /* Pass structure value address as an "invisible" first argument. */
517 #define STRUCT_VALUE 0
518
519 /* It is as good or better to call a constant function address than to
520 call an address kept in a register. */
521 #define NO_FUNCTION_CSE 1
522
523 /* It is as good or better for a function to call itself with an
524 explicit address than to call an address kept in a register. */
525 #define NO_RECURSIVE_FUNCTION_CSE 1
526
527 /* Xtensa processors have "register windows". GCC does not currently
528 take advantage of the possibility for variable-sized windows; instead,
529 we use a fixed window size of 8. */
530
531 #define INCOMING_REGNO(OUT) \
532 ((GP_REG_P (OUT) && \
533 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
534 (OUT) - WINDOW_SIZE : (OUT))
535
536 #define OUTGOING_REGNO(IN) \
537 ((GP_REG_P (IN) && \
538 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
539 (IN) + WINDOW_SIZE : (IN))
540
541
542 /* Define the classes of registers for register constraints in the
543 machine description. */
544 enum reg_class
545 {
546 NO_REGS, /* no registers in set */
547 BR_REGS, /* coprocessor boolean registers */
548 FP_REGS, /* floating point registers */
549 ACC_REG, /* MAC16 accumulator */
550 SP_REG, /* sp register (aka a1) */
551 RL_REGS, /* preferred reload regs (not sp or fp) */
552 GR_REGS, /* integer registers except sp */
553 AR_REGS, /* all integer registers */
554 ALL_REGS, /* all registers */
555 LIM_REG_CLASSES /* max value + 1 */
556 };
557
558 #define N_REG_CLASSES (int) LIM_REG_CLASSES
559
560 #define GENERAL_REGS AR_REGS
561
562 /* An initializer containing the names of the register classes as C
563 string constants. These names are used in writing some of the
564 debugging dumps. */
565 #define REG_CLASS_NAMES \
566 { \
567 "NO_REGS", \
568 "BR_REGS", \
569 "FP_REGS", \
570 "ACC_REG", \
571 "SP_REG", \
572 "RL_REGS", \
573 "GR_REGS", \
574 "AR_REGS", \
575 "ALL_REGS" \
576 }
577
578 /* Contents of the register classes. The Nth integer specifies the
579 contents of class N. The way the integer MASK is interpreted is
580 that register R is in the class if 'MASK & (1 << R)' is 1. */
581 #define REG_CLASS_CONTENTS \
582 { \
583 { 0x00000000, 0x00000000 }, /* no registers */ \
584 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
585 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
586 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
587 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
588 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
589 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
590 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
591 { 0xffffffff, 0x0000000f } /* all registers */ \
592 }
593
594 /* A C expression whose value is a register class containing hard
595 register REGNO. In general there is more that one such class;
596 choose a class which is "minimal", meaning that no smaller class
597 also contains the register. */
598 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
599
600 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
601
602 /* Use the Xtensa AR register file for base registers.
603 No index registers. */
604 #define BASE_REG_CLASS AR_REGS
605 #define INDEX_REG_CLASS NO_REGS
606
607 /* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
608 16 AR registers may be explicitly used in the RTL, as either
609 incoming or outgoing arguments. */
610 #define SMALL_REGISTER_CLASSES 1
611
612
613 /* REGISTER AND CONSTANT CLASSES */
614
615 /* Get reg_class from a letter such as appears in the machine
616 description.
617
618 Available letters: a-f,h,j-l,q,t-z,A-D,W,Y-Z
619
620 DEFINED REGISTER CLASSES:
621
622 'a' general-purpose registers except sp
623 'q' sp (aka a1)
624 'D' general-purpose registers (only if density option enabled)
625 'd' general-purpose registers, including sp (only if density enabled)
626 'A' MAC16 accumulator (only if MAC16 option enabled)
627 'B' general-purpose registers (only if sext instruction enabled)
628 'C' general-purpose registers (only if mul16 option enabled)
629 'b' coprocessor boolean registers
630 'f' floating-point registers
631 */
632
633 extern enum reg_class xtensa_char_to_class[256];
634
635 #define REG_CLASS_FROM_LETTER(C) xtensa_char_to_class[ (int) (C) ]
636
637 /* The letters I, J, K, L, M, N, O, and P in a register constraint
638 string can be used to stand for particular ranges of immediate
639 operands. This macro defines what the ranges are. C is the
640 letter, and VALUE is a constant value. Return 1 if VALUE is
641 in the range specified by C.
642
643 For Xtensa:
644
645 I = 12-bit signed immediate for movi
646 J = 8-bit signed immediate for addi
647 K = 4-bit value in (b4const U {0})
648 L = 4-bit value in b4constu
649 M = 7-bit value in simm7
650 N = 8-bit unsigned immediate shifted left by 8 bits for addmi
651 O = 4-bit value in ai4const
652 P = valid immediate mask value for extui */
653
654 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
655 ((C) == 'I' ? (xtensa_simm12b (VALUE)) \
656 : (C) == 'J' ? (xtensa_simm8 (VALUE)) \
657 : (C) == 'K' ? (((VALUE) == 0) || xtensa_b4const (VALUE)) \
658 : (C) == 'L' ? (xtensa_b4constu (VALUE)) \
659 : (C) == 'M' ? (xtensa_simm7 (VALUE)) \
660 : (C) == 'N' ? (xtensa_simm8x256 (VALUE)) \
661 : (C) == 'O' ? (xtensa_ai4const (VALUE)) \
662 : (C) == 'P' ? (xtensa_mask_immediate (VALUE)) \
663 : FALSE)
664
665
666 /* Similar, but for floating constants, and defining letters G and H.
667 Here VALUE is the CONST_DOUBLE rtx itself. */
668 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) (0)
669
670
671 /* Other letters can be defined in a machine-dependent fashion to
672 stand for particular classes of registers or other arbitrary
673 operand types.
674
675 R = memory that can be accessed with a 4-bit unsigned offset
676 S = memory where the second word can be addressed with a 4-bit offset
677 T = memory in a constant pool (addressable with a pc-relative load)
678 U = memory *NOT* in a constant pool
679
680 The offset range should not be checked here (except to distinguish
681 denser versions of the instructions for which more general versions
682 are available). Doing so leads to problems in reloading: an
683 argptr-relative address may become invalid when the phony argptr is
684 eliminated in favor of the stack pointer (the offset becomes too
685 large to fit in the instruction's immediate field); a reload is
686 generated to fix this but the RTL is not immediately updated; in
687 the meantime, the constraints are checked and none match. The
688 solution seems to be to simply skip the offset check here. The
689 address will be checked anyway because of the code in
690 GO_IF_LEGITIMATE_ADDRESS. */
691
692 #define EXTRA_CONSTRAINT(OP, CODE) \
693 ((GET_CODE (OP) != MEM) ? \
694 ((CODE) >= 'R' && (CODE) <= 'U' \
695 && reload_in_progress && GET_CODE (OP) == REG \
696 && REGNO (OP) >= FIRST_PSEUDO_REGISTER) \
697 : ((CODE) == 'R') ? smalloffset_mem_p (OP) \
698 : ((CODE) == 'S') ? smalloffset_double_mem_p (OP) \
699 : ((CODE) == 'T') ? constantpool_mem_p (OP) \
700 : ((CODE) == 'U') ? !constantpool_mem_p (OP) \
701 : FALSE)
702
703 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
704 xtensa_preferred_reload_class (X, CLASS, 0)
705
706 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
707 xtensa_preferred_reload_class (X, CLASS, 1)
708
709 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
710 xtensa_secondary_reload_class (CLASS, MODE, X, 0)
711
712 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
713 xtensa_secondary_reload_class (CLASS, MODE, X, 1)
714
715 /* Return the maximum number of consecutive registers
716 needed to represent mode MODE in a register of class CLASS. */
717 #define CLASS_UNITS(mode, size) \
718 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
719
720 #define CLASS_MAX_NREGS(CLASS, MODE) \
721 (CLASS_UNITS (MODE, UNITS_PER_WORD))
722
723
724 /* Stack layout; function entry, exit and calling. */
725
726 #define STACK_GROWS_DOWNWARD
727
728 /* Offset within stack frame to start allocating local variables at. */
729 #define STARTING_FRAME_OFFSET \
730 current_function_outgoing_args_size
731
732 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
733 they are eliminated to either the stack pointer or hard frame pointer. */
734 #define ELIMINABLE_REGS \
735 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
736 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
737 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
738 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
739
740 #define CAN_ELIMINATE(FROM, TO) 1
741
742 /* Specify the initial difference between the specified pair of registers. */
743 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
744 do { \
745 compute_frame_size (get_frame_size ()); \
746 if ((FROM) == FRAME_POINTER_REGNUM) \
747 (OFFSET) = 0; \
748 else if ((FROM) == ARG_POINTER_REGNUM) \
749 (OFFSET) = xtensa_current_frame_size; \
750 else \
751 abort (); \
752 } while (0)
753
754 /* If defined, the maximum amount of space required for outgoing
755 arguments will be computed and placed into the variable
756 'current_function_outgoing_args_size'. No space will be pushed
757 onto the stack for each call; instead, the function prologue
758 should increase the stack frame size by this amount. */
759 #define ACCUMULATE_OUTGOING_ARGS 1
760
761 /* Offset from the argument pointer register to the first argument's
762 address. On some machines it may depend on the data type of the
763 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
764 location above the first argument's address. */
765 #define FIRST_PARM_OFFSET(FNDECL) 0
766
767 /* Align stack frames on 128 bits for Xtensa. This is necessary for
768 128-bit datatypes defined in TIE (e.g., for Vectra). */
769 #define STACK_BOUNDARY 128
770
771 /* Functions do not pop arguments off the stack. */
772 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
773
774 /* Use a fixed register window size of 8. */
775 #define WINDOW_SIZE 8
776
777 /* Symbolic macros for the registers used to return integer, floating
778 point, and values of coprocessor and user-defined modes. */
779 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
780 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
781
782 /* Symbolic macros for the first/last argument registers. */
783 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
784 #define GP_ARG_LAST (GP_REG_FIRST + 7)
785 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
786 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
787
788 #define MAX_ARGS_IN_REGISTERS 6
789
790 /* Don't worry about compatibility with PCC. */
791 #define DEFAULT_PCC_STRUCT_RETURN 0
792
793 /* For Xtensa, up to 4 words can be returned in registers. (It would
794 have been nice to allow up to 6 words in registers but GCC cannot
795 support that. The return value must be given one of the standard
796 MODE_INT modes, and there is no 6 word mode. Instead, if we try to
797 return a 6 word structure, GCC selects the next biggest mode
798 (OImode, 8 words) and then the register allocator fails because
799 there is no 8-register group beginning with a10.) */
800 #define RETURN_IN_MEMORY(TYPE) \
801 ((unsigned HOST_WIDE_INT) int_size_in_bytes (TYPE) > 4 * UNITS_PER_WORD)
802
803 /* Define how to find the value returned by a library function
804 assuming the value has mode MODE. Because we have defined
805 PROMOTE_FUNCTION_RETURN, we have to perform the same promotions as
806 PROMOTE_MODE. */
807 #define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
808 gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
809 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
810 ? SImode : (MODE), \
811 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
812
813 #define LIBCALL_VALUE(MODE) \
814 XTENSA_LIBCALL_VALUE ((MODE), 0)
815
816 #define LIBCALL_OUTGOING_VALUE(MODE) \
817 XTENSA_LIBCALL_VALUE ((MODE), 1)
818
819 /* Define how to find the value returned by a function.
820 VALTYPE is the data type of the value (as a tree).
821 If the precise function being called is known, FUNC is its FUNCTION_DECL;
822 otherwise, FUNC is 0. */
823 #define XTENSA_FUNCTION_VALUE(VALTYPE, FUNC, OUTGOINGP) \
824 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
825 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
826 ? SImode: TYPE_MODE (VALTYPE), \
827 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
828
829 #define FUNCTION_VALUE(VALTYPE, FUNC) \
830 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 0)
831
832 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
833 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 1)
834
835 /* A C expression that is nonzero if REGNO is the number of a hard
836 register in which the values of called function may come back. A
837 register whose use for returning values is limited to serving as
838 the second of a pair (for a value of type 'double', say) need not
839 be recognized by this macro. If the machine has register windows,
840 so that the caller and the called function use different registers
841 for the return value, this macro should recognize only the caller's
842 register numbers. */
843 #define FUNCTION_VALUE_REGNO_P(N) \
844 ((N) == GP_RETURN)
845
846 /* A C expression that is nonzero if REGNO is the number of a hard
847 register in which function arguments are sometimes passed. This
848 does *not* include implicit arguments such as the static chain and
849 the structure-value address. On many machines, no registers can be
850 used for this purpose since all function arguments are pushed on
851 the stack. */
852 #define FUNCTION_ARG_REGNO_P(N) \
853 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
854
855 /* Define a data type for recording info about an argument list
856 during the scan of that argument list. This data type should
857 hold all necessary information about the function itself
858 and about the args processed so far, enough to enable macros
859 such as FUNCTION_ARG to determine where the next arg should go. */
860 typedef struct xtensa_args {
861 int arg_words; /* # total words the arguments take */
862 } CUMULATIVE_ARGS;
863
864 /* Initialize a variable CUM of type CUMULATIVE_ARGS
865 for a call to a function whose data type is FNTYPE.
866 For a library call, FNTYPE is 0. */
867 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT) \
868 init_cumulative_args (&CUM, FNTYPE, LIBNAME)
869
870 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
871 init_cumulative_args (&CUM, FNTYPE, LIBNAME)
872
873 /* Update the data in CUM to advance over an argument
874 of mode MODE and data type TYPE.
875 (TYPE is null for libcalls where that information may not be available.) */
876 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
877 function_arg_advance (&CUM, MODE, TYPE)
878
879 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
880 function_arg (&CUM, MODE, TYPE, FALSE)
881
882 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
883 function_arg (&CUM, MODE, TYPE, TRUE)
884
885 /* Arguments are never passed partly in memory and partly in registers. */
886 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) (0)
887
888 /* Specify function argument alignment. */
889 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
890 ((TYPE) != 0 \
891 ? (TYPE_ALIGN (TYPE) <= PARM_BOUNDARY \
892 ? PARM_BOUNDARY \
893 : TYPE_ALIGN (TYPE)) \
894 : (GET_MODE_ALIGNMENT (MODE) <= PARM_BOUNDARY \
895 ? PARM_BOUNDARY \
896 : GET_MODE_ALIGNMENT (MODE)))
897
898
899 /* Nonzero if we do not know how to pass TYPE solely in registers.
900 We cannot do so in the following cases:
901
902 - if the type has variable size
903 - if the type is marked as addressable (it is required to be constructed
904 into the stack)
905
906 This differs from the default in that it does not check if the padding
907 and mode of the type are such that a copy into a register would put it
908 into the wrong part of the register. */
909
910 #define MUST_PASS_IN_STACK(MODE, TYPE) \
911 ((TYPE) != 0 \
912 && (TREE_CODE (TYPE_SIZE (TYPE)) != INTEGER_CST \
913 || TREE_ADDRESSABLE (TYPE)))
914
915 /* Profiling Xtensa code is typically done with the built-in profiling
916 feature of Tensilica's instruction set simulator, which does not
917 require any compiler support. Profiling code on a real (i.e.,
918 non-simulated) Xtensa processor is currently only supported by
919 GNU/Linux with glibc. The glibc version of _mcount doesn't require
920 counter variables. The _mcount function needs the current PC and
921 the current return address to identify an arc in the call graph.
922 Pass the current return address as the first argument; the current
923 PC is available as a0 in _mcount's register window. Both of these
924 values contain window size information in the two most significant
925 bits; we assume that _mcount will mask off those bits. The call to
926 _mcount uses a window size of 8 to make sure that it doesn't clobber
927 any incoming argument values. */
928
929 #define NO_PROFILE_COUNTERS
930
931 #define FUNCTION_PROFILER(FILE, LABELNO) \
932 do { \
933 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
934 if (flag_pic) \
935 { \
936 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
937 fprintf (FILE, "\tcallx8\ta8\n"); \
938 } \
939 else \
940 fprintf (FILE, "\tcall8\t_mcount\n"); \
941 } while (0)
942
943 /* Stack pointer value doesn't matter at exit. */
944 #define EXIT_IGNORE_STACK 1
945
946 /* A C statement to output, on the stream FILE, assembler code for a
947 block of data that contains the constant parts of a trampoline.
948 This code should not include a label--the label is taken care of
949 automatically.
950
951 For Xtensa, the trampoline must perform an entry instruction with a
952 minimal stack frame in order to get some free registers. Once the
953 actual call target is known, the proper stack frame size is extracted
954 from the entry instruction at the target and the current frame is
955 adjusted to match. The trampoline then transfers control to the
956 instruction following the entry at the target. Note: this assumes
957 that the target begins with an entry instruction. */
958
959 /* minimum frame = reg save area (4 words) plus static chain (1 word)
960 and the total number of words must be a multiple of 128 bits */
961 #define MIN_FRAME_SIZE (8 * UNITS_PER_WORD)
962
963 #define TRAMPOLINE_TEMPLATE(STREAM) \
964 do { \
965 fprintf (STREAM, "\t.begin no-generics\n"); \
966 fprintf (STREAM, "\tentry\tsp, %d\n", MIN_FRAME_SIZE); \
967 \
968 /* GCC isn't prepared to deal with data at the beginning of the \
969 trampoline, and the Xtensa l32r instruction requires that the \
970 constant pool be located before the code. We put the constant \
971 pool in the middle of the trampoline and jump around it. */ \
972 \
973 fprintf (STREAM, "\tj\t.Lskipconsts\n"); \
974 fprintf (STREAM, "\t.align\t4\n"); \
975 fprintf (STREAM, ".Lfnaddr:%s0\n", integer_asm_op (4, TRUE)); \
976 fprintf (STREAM, ".Lchainval:%s0\n", integer_asm_op (4, TRUE)); \
977 fprintf (STREAM, ".Lskipconsts:\n"); \
978 \
979 /* store the static chain */ \
980 fprintf (STREAM, "\tl32r\ta8, .Lchainval\n"); \
981 fprintf (STREAM, "\ts32i\ta8, sp, %d\n", \
982 MIN_FRAME_SIZE - (5 * UNITS_PER_WORD)); \
983 \
984 /* set the proper stack pointer value */ \
985 fprintf (STREAM, "\tl32r\ta8, .Lfnaddr\n"); \
986 fprintf (STREAM, "\tl32i\ta9, a8, 0\n"); \
987 fprintf (STREAM, "\textui\ta9, a9, %d, 12\n", \
988 TARGET_BIG_ENDIAN ? 8 : 12); \
989 fprintf (STREAM, "\tslli\ta9, a9, 3\n"); \
990 fprintf (STREAM, "\taddi\ta9, a9, %d\n", -MIN_FRAME_SIZE); \
991 fprintf (STREAM, "\tsub\ta9, sp, a9\n"); \
992 fprintf (STREAM, "\tmovsp\tsp, a9\n"); \
993 \
994 /* jump to the instruction following the entry */ \
995 fprintf (STREAM, "\taddi\ta8, a8, 3\n"); \
996 fprintf (STREAM, "\tjx\ta8\n"); \
997 fprintf (STREAM, "\t.end no-generics\n"); \
998 } while (0)
999
1000 /* Size in bytes of the trampoline, as an integer. */
1001 #define TRAMPOLINE_SIZE 49
1002
1003 /* Alignment required for trampolines, in bits. */
1004 #define TRAMPOLINE_ALIGNMENT (32)
1005
1006 /* A C statement to initialize the variable parts of a trampoline. */
1007 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
1008 do { \
1009 rtx addr = ADDR; \
1010 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 8)), FUNC); \
1011 emit_move_insn (gen_rtx_MEM (SImode, plus_constant (addr, 12)), CHAIN); \
1012 emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__xtensa_sync_caches"), \
1013 0, VOIDmode, 1, addr, Pmode); \
1014 } while (0)
1015
1016 /* Define the `__builtin_va_list' type for the ABI. */
1017 #define BUILD_VA_LIST_TYPE(VALIST) \
1018 (VALIST) = xtensa_build_va_list ()
1019
1020 /* If defined, is a C expression that produces the machine-specific
1021 code for a call to '__builtin_saveregs'. This code will be moved
1022 to the very beginning of the function, before any parameter access
1023 are made. The return value of this function should be an RTX that
1024 contains the value to use as the return of '__builtin_saveregs'. */
1025 #define EXPAND_BUILTIN_SAVEREGS \
1026 xtensa_builtin_saveregs
1027
1028 /* Implement `va_start' for varargs and stdarg. */
1029 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1030 xtensa_va_start (valist, nextarg)
1031
1032 /* Implement `va_arg'. */
1033 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
1034 xtensa_va_arg (valist, type)
1035
1036 /* If defined, a C expression that produces the machine-specific code
1037 to setup the stack so that arbitrary frames can be accessed.
1038
1039 On Xtensa, a stack back-trace must always begin from the stack pointer,
1040 so that the register overflow save area can be located. However, the
1041 stack-walking code in GCC always begins from the hard_frame_pointer
1042 register, not the stack pointer. The frame pointer is usually equal
1043 to the stack pointer, but the __builtin_return_address and
1044 __builtin_frame_address functions will not work if count > 0 and
1045 they are called from a routine that uses alloca. These functions
1046 are not guaranteed to work at all if count > 0 so maybe that is OK.
1047
1048 A nicer solution would be to allow the architecture-specific files to
1049 specify whether to start from the stack pointer or frame pointer. That
1050 would also allow us to skip the machine->accesses_prev_frame stuff that
1051 we currently need to ensure that there is a frame pointer when these
1052 builtin functions are used. */
1053
1054 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
1055
1056 /* A C expression whose value is RTL representing the address in a
1057 stack frame where the pointer to the caller's frame is stored.
1058 Assume that FRAMEADDR is an RTL expression for the address of the
1059 stack frame itself.
1060
1061 For Xtensa, there is no easy way to get the frame pointer if it is
1062 not equivalent to the stack pointer. Moreover, the result of this
1063 macro is used for continuing to walk back up the stack, so it must
1064 return the stack pointer address. Thus, there is some inconsistency
1065 here in that __builtin_frame_address will return the frame pointer
1066 when count == 0 and the stack pointer when count > 0. */
1067
1068 #define DYNAMIC_CHAIN_ADDRESS(frame) \
1069 gen_rtx (PLUS, Pmode, frame, \
1070 gen_rtx_CONST_INT (VOIDmode, -3 * UNITS_PER_WORD))
1071
1072 /* Define this if the return address of a particular stack frame is
1073 accessed from the frame pointer of the previous stack frame. */
1074 #define RETURN_ADDR_IN_PREVIOUS_FRAME
1075
1076 /* A C expression whose value is RTL representing the value of the
1077 return address for the frame COUNT steps up from the current
1078 frame, after the prologue. */
1079 #define RETURN_ADDR_RTX xtensa_return_addr
1080
1081 /* Addressing modes, and classification of registers for them. */
1082
1083 /* C expressions which are nonzero if register number NUM is suitable
1084 for use as a base or index register in operand addresses. It may
1085 be either a suitable hard register or a pseudo register that has
1086 been allocated such a hard register. The difference between an
1087 index register and a base register is that the index register may
1088 be scaled. */
1089
1090 #define REGNO_OK_FOR_BASE_P(NUM) \
1091 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
1092
1093 #define REGNO_OK_FOR_INDEX_P(NUM) 0
1094
1095 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
1096 valid for use as a base or index register. For hard registers, it
1097 should always accept those which the hardware permits and reject
1098 the others. Whether the macro accepts or rejects pseudo registers
1099 must be controlled by `REG_OK_STRICT'. This usually requires two
1100 variant definitions, of which `REG_OK_STRICT' controls the one
1101 actually used. The difference between an index register and a base
1102 register is that the index register may be scaled. */
1103
1104 #ifdef REG_OK_STRICT
1105
1106 #define REG_OK_FOR_INDEX_P(X) 0
1107 #define REG_OK_FOR_BASE_P(X) \
1108 REGNO_OK_FOR_BASE_P (REGNO (X))
1109
1110 #else /* !REG_OK_STRICT */
1111
1112 #define REG_OK_FOR_INDEX_P(X) 0
1113 #define REG_OK_FOR_BASE_P(X) \
1114 ((REGNO (X) >= FIRST_PSEUDO_REGISTER) || (GP_REG_P (REGNO (X))))
1115
1116 #endif /* !REG_OK_STRICT */
1117
1118 /* Maximum number of registers that can appear in a valid memory address. */
1119 #define MAX_REGS_PER_ADDRESS 1
1120
1121 /* Identify valid Xtensa addresses. */
1122 #define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL) \
1123 do { \
1124 rtx xinsn = (ADDR); \
1125 \
1126 /* allow constant pool addresses */ \
1127 if ((MODE) != BLKmode && GET_MODE_SIZE (MODE) >= UNITS_PER_WORD \
1128 && constantpool_address_p (xinsn)) \
1129 goto LABEL; \
1130 \
1131 while (GET_CODE (xinsn) == SUBREG) \
1132 xinsn = SUBREG_REG (xinsn); \
1133 \
1134 /* allow base registers */ \
1135 if (GET_CODE (xinsn) == REG && REG_OK_FOR_BASE_P (xinsn)) \
1136 goto LABEL; \
1137 \
1138 /* check for "register + offset" addressing */ \
1139 if (GET_CODE (xinsn) == PLUS) \
1140 { \
1141 rtx xplus0 = XEXP (xinsn, 0); \
1142 rtx xplus1 = XEXP (xinsn, 1); \
1143 enum rtx_code code0; \
1144 enum rtx_code code1; \
1145 \
1146 while (GET_CODE (xplus0) == SUBREG) \
1147 xplus0 = SUBREG_REG (xplus0); \
1148 code0 = GET_CODE (xplus0); \
1149 \
1150 while (GET_CODE (xplus1) == SUBREG) \
1151 xplus1 = SUBREG_REG (xplus1); \
1152 code1 = GET_CODE (xplus1); \
1153 \
1154 /* swap operands if necessary so the register is first */ \
1155 if (code0 != REG && code1 == REG) \
1156 { \
1157 xplus0 = XEXP (xinsn, 1); \
1158 xplus1 = XEXP (xinsn, 0); \
1159 code0 = GET_CODE (xplus0); \
1160 code1 = GET_CODE (xplus1); \
1161 } \
1162 \
1163 if (code0 == REG && REG_OK_FOR_BASE_P (xplus0) \
1164 && code1 == CONST_INT \
1165 && xtensa_mem_offset (INTVAL (xplus1), (MODE))) \
1166 { \
1167 goto LABEL; \
1168 } \
1169 } \
1170 } while (0)
1171
1172 /* A C expression that is 1 if the RTX X is a constant which is a
1173 valid address. This is defined to be the same as 'CONSTANT_P (X)',
1174 but rejecting CONST_DOUBLE. */
1175 #define CONSTANT_ADDRESS_P(X) \
1176 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1177 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
1178 || (GET_CODE (X) == CONST)))
1179
1180 /* Nonzero if the constant value X is a legitimate general operand.
1181 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
1182 #define LEGITIMATE_CONSTANT_P(X) 1
1183
1184 /* A C expression that is nonzero if X is a legitimate immediate
1185 operand on the target machine when generating position independent
1186 code. */
1187 #define LEGITIMATE_PIC_OPERAND_P(X) \
1188 ((GET_CODE (X) != SYMBOL_REF || SYMBOL_REF_FLAG (X)) \
1189 && GET_CODE (X) != LABEL_REF \
1190 && GET_CODE (X) != CONST)
1191
1192 /* Tell GCC how to use ADDMI to generate addresses. */
1193 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1194 do { \
1195 rtx xinsn = (X); \
1196 if (GET_CODE (xinsn) == PLUS) \
1197 { \
1198 rtx plus0 = XEXP (xinsn, 0); \
1199 rtx plus1 = XEXP (xinsn, 1); \
1200 \
1201 if (GET_CODE (plus0) != REG && GET_CODE (plus1) == REG) \
1202 { \
1203 plus0 = XEXP (xinsn, 1); \
1204 plus1 = XEXP (xinsn, 0); \
1205 } \
1206 \
1207 if (GET_CODE (plus0) == REG \
1208 && GET_CODE (plus1) == CONST_INT \
1209 && !xtensa_mem_offset (INTVAL (plus1), MODE) \
1210 && !xtensa_simm8 (INTVAL (plus1)) \
1211 && xtensa_mem_offset (INTVAL (plus1) & 0xff, MODE) \
1212 && xtensa_simm8x256 (INTVAL (plus1) & ~0xff)) \
1213 { \
1214 rtx temp = gen_reg_rtx (Pmode); \
1215 emit_insn (gen_rtx (SET, Pmode, temp, \
1216 gen_rtx (PLUS, Pmode, plus0, \
1217 GEN_INT (INTVAL (plus1) & ~0xff)))); \
1218 (X) = gen_rtx (PLUS, Pmode, temp, \
1219 GEN_INT (INTVAL (plus1) & 0xff)); \
1220 goto WIN; \
1221 } \
1222 } \
1223 } while (0)
1224
1225
1226 /* Treat constant-pool references as "mode dependent" since they can
1227 only be accessed with SImode loads. This works around a bug in the
1228 combiner where a constant pool reference is temporarily converted
1229 to an HImode load, which is then assumed to zero-extend based on
1230 our definition of LOAD_EXTEND_OP. This is wrong because the high
1231 bits of a 16-bit value in the constant pool are now sign-extended
1232 by default. */
1233
1234 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
1235 do { \
1236 if (constantpool_address_p (ADDR)) \
1237 goto LABEL; \
1238 } while (0)
1239
1240 /* Specify the machine mode that this machine uses
1241 for the index in the tablejump instruction. */
1242 #define CASE_VECTOR_MODE (SImode)
1243
1244 /* Define this if the tablejump instruction expects the table
1245 to contain offsets from the address of the table.
1246 Do not define this if the table should contain absolute addresses. */
1247 /* #define CASE_VECTOR_PC_RELATIVE */
1248
1249 /* Define this as 1 if 'char' should by default be signed; else as 0. */
1250 #define DEFAULT_SIGNED_CHAR 0
1251
1252 /* Max number of bytes we can move from memory to memory
1253 in one reasonably fast instruction. */
1254 #define MOVE_MAX 4
1255 #define MAX_MOVE_MAX 4
1256
1257 /* Prefer word-sized loads. */
1258 #define SLOW_BYTE_ACCESS 1
1259
1260 /* Xtensa doesn't have any instructions that set integer values based on the
1261 results of comparisons, but the simplification code in the combiner also
1262 uses this macro. The value should be either 1 or -1 to enable some
1263 optimizations in the combiner; I'm not sure which is better for us.
1264 Since we've been using 1 for a while, it should probably stay that way for
1265 compatibility. */
1266 #define STORE_FLAG_VALUE 1
1267
1268 /* Shift instructions ignore all but the low-order few bits. */
1269 #define SHIFT_COUNT_TRUNCATED 1
1270
1271 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1272 is done just by pretending it is already truncated. */
1273 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1274
1275 /* Specify the machine mode that pointers have.
1276 After generation of rtl, the compiler makes no further distinction
1277 between pointers and any other objects of this machine mode. */
1278 #define Pmode SImode
1279
1280 /* A function address in a call instruction is a word address (for
1281 indexing purposes) so give the MEM rtx a words's mode. */
1282 #define FUNCTION_MODE SImode
1283
1284 /* Xtensa constant costs. */
1285 #define CONST_COSTS(X, CODE, OUTER_CODE) \
1286 case CONST_INT: \
1287 switch (OUTER_CODE) \
1288 { \
1289 case SET: \
1290 if (xtensa_simm12b (INTVAL (X))) return 4; \
1291 break; \
1292 case PLUS: \
1293 if (xtensa_simm8 (INTVAL (X))) return 0; \
1294 if (xtensa_simm8x256 (INTVAL (X))) return 0; \
1295 break; \
1296 case AND: \
1297 if (xtensa_mask_immediate (INTVAL (X))) return 0; \
1298 break; \
1299 case COMPARE: \
1300 if ((INTVAL (X) == 0) || xtensa_b4const (INTVAL (X))) return 0; \
1301 break; \
1302 case ASHIFT: \
1303 case ASHIFTRT: \
1304 case LSHIFTRT: \
1305 case ROTATE: \
1306 case ROTATERT: \
1307 /* no way to tell if X is the 2nd operand so be conservative */ \
1308 default: break; \
1309 } \
1310 if (xtensa_simm12b (INTVAL (X))) return 5; \
1311 return 6; \
1312 case CONST: \
1313 case LABEL_REF: \
1314 case SYMBOL_REF: \
1315 return 5; \
1316 case CONST_DOUBLE: \
1317 return 7;
1318
1319 /* Costs of various Xtensa operations. */
1320 #define RTX_COSTS(X, CODE, OUTER_CODE) \
1321 case MEM: \
1322 { \
1323 int num_words = \
1324 (GET_MODE_SIZE (GET_MODE (X)) > UNITS_PER_WORD) ? 2 : 1; \
1325 if (memory_address_p (GET_MODE (X), XEXP ((X), 0))) \
1326 return COSTS_N_INSNS (num_words); \
1327 \
1328 return COSTS_N_INSNS (2*num_words); \
1329 } \
1330 \
1331 case FFS: \
1332 return COSTS_N_INSNS (TARGET_NSA ? 5 : 50); \
1333 \
1334 case NOT: \
1335 return COSTS_N_INSNS ((GET_MODE (X) == DImode) ? 3 : 2); \
1336 \
1337 case AND: \
1338 case IOR: \
1339 case XOR: \
1340 if (GET_MODE (X) == DImode) return COSTS_N_INSNS (2); \
1341 return COSTS_N_INSNS (1); \
1342 \
1343 case ASHIFT: \
1344 case ASHIFTRT: \
1345 case LSHIFTRT: \
1346 if (GET_MODE (X) == DImode) return COSTS_N_INSNS (50); \
1347 return COSTS_N_INSNS (1); \
1348 \
1349 case ABS: \
1350 { \
1351 enum machine_mode xmode = GET_MODE (X); \
1352 if (xmode == SFmode) \
1353 return COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50); \
1354 if (xmode == DFmode) \
1355 return COSTS_N_INSNS (50); \
1356 return COSTS_N_INSNS (4); \
1357 } \
1358 \
1359 case PLUS: \
1360 case MINUS: \
1361 { \
1362 enum machine_mode xmode = GET_MODE (X); \
1363 if (xmode == SFmode) \
1364 return COSTS_N_INSNS (TARGET_HARD_FLOAT ? 1 : 50); \
1365 if (xmode == DFmode || xmode == DImode) \
1366 return COSTS_N_INSNS (50); \
1367 return COSTS_N_INSNS (1); \
1368 } \
1369 \
1370 case NEG: \
1371 return COSTS_N_INSNS ((GET_MODE (X) == DImode) ? 4 : 2); \
1372 \
1373 case MULT: \
1374 { \
1375 enum machine_mode xmode = GET_MODE (X); \
1376 if (xmode == SFmode) \
1377 return COSTS_N_INSNS (TARGET_HARD_FLOAT ? 4 : 50); \
1378 if (xmode == DFmode || xmode == DImode) \
1379 return COSTS_N_INSNS (50); \
1380 if (TARGET_MUL32) \
1381 return COSTS_N_INSNS (4); \
1382 if (TARGET_MAC16) \
1383 return COSTS_N_INSNS (16); \
1384 if (TARGET_MUL16) \
1385 return COSTS_N_INSNS (12); \
1386 return COSTS_N_INSNS (50); \
1387 } \
1388 \
1389 case DIV: \
1390 case MOD: \
1391 { \
1392 enum machine_mode xmode = GET_MODE (X); \
1393 if (xmode == SFmode) \
1394 return COSTS_N_INSNS (TARGET_HARD_FLOAT_DIV ? 8 : 50); \
1395 if (xmode == DFmode) \
1396 return COSTS_N_INSNS (50); \
1397 } \
1398 /* fall through */ \
1399 \
1400 case UDIV: \
1401 case UMOD: \
1402 { \
1403 enum machine_mode xmode = GET_MODE (X); \
1404 if (xmode == DImode) \
1405 return COSTS_N_INSNS (50); \
1406 if (TARGET_DIV32) \
1407 return COSTS_N_INSNS (32); \
1408 return COSTS_N_INSNS (50); \
1409 } \
1410 \
1411 case SQRT: \
1412 if (GET_MODE (X) == SFmode) \
1413 return COSTS_N_INSNS (TARGET_HARD_FLOAT_SQRT ? 8 : 50); \
1414 return COSTS_N_INSNS (50); \
1415 \
1416 case SMIN: \
1417 case UMIN: \
1418 case SMAX: \
1419 case UMAX: \
1420 return COSTS_N_INSNS (TARGET_MINMAX ? 1 : 50); \
1421 \
1422 case SIGN_EXTRACT: \
1423 case SIGN_EXTEND: \
1424 return COSTS_N_INSNS (TARGET_SEXT ? 1 : 2); \
1425 \
1426 case ZERO_EXTRACT: \
1427 case ZERO_EXTEND: \
1428 return COSTS_N_INSNS (1);
1429
1430
1431 /* An expression giving the cost of an addressing mode that
1432 contains ADDRESS. */
1433 #define ADDRESS_COST(ADDR) 1
1434
1435 /* A C expression for the cost of moving data from a register in
1436 class FROM to one in class TO. The classes are expressed using
1437 the enumeration values such as 'GENERAL_REGS'. A value of 2 is
1438 the default; other values are interpreted relative to that. */
1439 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
1440 (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
1441 ? 2 \
1442 : (reg_class_subset_p ((FROM), AR_REGS) \
1443 && reg_class_subset_p ((TO), AR_REGS) \
1444 ? 2 \
1445 : (reg_class_subset_p ((FROM), AR_REGS) \
1446 && (TO) == ACC_REG \
1447 ? 3 \
1448 : ((FROM) == ACC_REG \
1449 && reg_class_subset_p ((TO), AR_REGS) \
1450 ? 3 \
1451 : 10))))
1452
1453 #define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
1454
1455 #define BRANCH_COST 3
1456
1457 /* Optionally define this if you have added predicates to
1458 'MACHINE.c'. This macro is called within an initializer of an
1459 array of structures. The first field in the structure is the
1460 name of a predicate and the second field is an array of rtl
1461 codes. For each predicate, list all rtl codes that can be in
1462 expressions matched by the predicate. The list should have a
1463 trailing comma. */
1464
1465 #define PREDICATE_CODES \
1466 {"add_operand", { REG, CONST_INT, SUBREG }}, \
1467 {"arith_operand", { REG, CONST_INT, SUBREG }}, \
1468 {"nonimmed_operand", { REG, SUBREG, MEM }}, \
1469 {"mem_operand", { MEM }}, \
1470 {"mask_operand", { REG, CONST_INT, SUBREG }}, \
1471 {"extui_fldsz_operand", { CONST_INT }}, \
1472 {"sext_fldsz_operand", { CONST_INT }}, \
1473 {"lsbitnum_operand", { CONST_INT }}, \
1474 {"fpmem_offset_operand", { CONST_INT }}, \
1475 {"sext_operand", { REG, SUBREG, MEM }}, \
1476 {"branch_operand", { REG, CONST_INT, SUBREG }}, \
1477 {"ubranch_operand", { REG, CONST_INT, SUBREG }}, \
1478 {"call_insn_operand", { CONST_INT, CONST, SYMBOL_REF, REG }}, \
1479 {"move_operand", { REG, SUBREG, MEM, CONST_INT, CONST_DOUBLE, \
1480 CONST, SYMBOL_REF, LABEL_REF }}, \
1481 {"non_const_move_operand", { REG, SUBREG, MEM }}, \
1482 {"const_float_1_operand", { CONST_DOUBLE }}, \
1483 {"branch_operator", { EQ, NE, LT, GE }}, \
1484 {"ubranch_operator", { LTU, GEU }}, \
1485 {"boolean_operator", { EQ, NE }},
1486
1487 /* Control the assembler format that we output. */
1488
1489 /* How to refer to registers in assembler output.
1490 This sequence is indexed by compiler's hard-register-number (see above). */
1491 #define REGISTER_NAMES \
1492 { \
1493 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
1494 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
1495 "fp", "argp", "b0", \
1496 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
1497 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
1498 "acc" \
1499 }
1500
1501 /* If defined, a C initializer for an array of structures containing a
1502 name and a register number. This macro defines additional names
1503 for hard registers, thus allowing the 'asm' option in declarations
1504 to refer to registers using alternate names. */
1505 #define ADDITIONAL_REGISTER_NAMES \
1506 { \
1507 { "a1", 1 + GP_REG_FIRST } \
1508 }
1509
1510 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
1511 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
1512
1513 /* Recognize machine-specific patterns that may appear within
1514 constants. Used for PIC-specific UNSPECs. */
1515 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
1516 do { \
1517 if (flag_pic && GET_CODE (X) == UNSPEC && XVECLEN ((X), 0) == 1) \
1518 { \
1519 switch (XINT ((X), 1)) \
1520 { \
1521 case UNSPEC_PLT: \
1522 output_addr_const ((STREAM), XVECEXP ((X), 0, 0)); \
1523 fputs ("@PLT", (STREAM)); \
1524 break; \
1525 default: \
1526 goto FAIL; \
1527 } \
1528 break; \
1529 } \
1530 else \
1531 goto FAIL; \
1532 } while (0)
1533
1534 /* Globalizing directive for a label. */
1535 #define GLOBAL_ASM_OP "\t.global\t"
1536
1537 /* This says how to define a global common symbol. */
1538 #define ASM_OUTPUT_COMMON(STREAM, NAME, SIZE, ROUNDED) \
1539 xtensa_declare_object (STREAM, NAME, "\n\t.comm\t", ",%u\n", (SIZE))
1540
1541 /* This says how to define a local common symbol (ie, not visible to
1542 linker). */
1543 #define ASM_OUTPUT_LOCAL(STREAM, NAME, SIZE, ROUNDED) \
1544 xtensa_declare_object (STREAM, NAME, "\n\t.lcomm\t", ",%u\n", (SIZE))
1545
1546 /* This is how to output an element of a case-vector that is absolute. */
1547 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
1548 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
1549 LOCAL_LABEL_PREFIX, VALUE)
1550
1551 /* This is how to output an element of a case-vector that is relative.
1552 This is used for pc-relative code. */
1553 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
1554 do { \
1555 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
1556 LOCAL_LABEL_PREFIX, (VALUE), \
1557 LOCAL_LABEL_PREFIX, (REL)); \
1558 } while (0)
1559
1560 /* This is how to output an assembler line that says to advance the
1561 location counter to a multiple of 2**LOG bytes. */
1562 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
1563 do { \
1564 if ((LOG) != 0) \
1565 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
1566 } while (0)
1567
1568 /* Indicate that jump tables go in the text section. This is
1569 necessary when compiling PIC code. */
1570 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
1571
1572
1573 /* Define this macro for the rare case where the RTL needs some sort of
1574 machine-dependent fixup immediately before register allocation is done.
1575
1576 If the stack frame size is too big to fit in the immediate field of
1577 the ENTRY instruction, we need to store the frame size in the
1578 constant pool. However, the code in xtensa_function_prologue runs too
1579 late to be able to add anything to the constant pool. Since the
1580 final frame size isn't known until reload is complete, this seems
1581 like the best place to do it.
1582
1583 There may also be some fixup required if there is an incoming argument
1584 in a7 and the function requires a frame pointer. */
1585
1586 #define MACHINE_DEPENDENT_REORG(INSN) xtensa_reorg (INSN)
1587
1588
1589 /* Define the strings to put out for each section in the object file. */
1590 #define TEXT_SECTION_ASM_OP "\t.text" /* instructions */
1591 #define DATA_SECTION_ASM_OP "\t.data" /* large data */
1592
1593
1594 /* Define output to appear before the constant pool. If the function
1595 has been assigned to a specific ELF section, or if it goes into a
1596 unique section, set the name of that section to be the literal
1597 prefix. */
1598 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
1599 do { \
1600 tree fnsection; \
1601 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
1602 fnsection = DECL_SECTION_NAME (FUNDECL); \
1603 if (fnsection != NULL_TREE) \
1604 { \
1605 const char *fnsectname = TREE_STRING_POINTER (fnsection); \
1606 fprintf (FILE, "\t.begin\tliteral_prefix %s\n", \
1607 strcmp (fnsectname, ".text") ? fnsectname : ""); \
1608 } \
1609 if ((SIZE) > 0) \
1610 { \
1611 function_section (FUNDECL); \
1612 fprintf (FILE, "\t.literal_position\n"); \
1613 } \
1614 } while (0)
1615
1616
1617 /* Define code to write out the ".end literal_prefix" directive for a
1618 function in a special section. This is appended to the standard ELF
1619 code for ASM_DECLARE_FUNCTION_SIZE. */
1620 #define XTENSA_DECLARE_FUNCTION_SIZE(FILE, FNAME, DECL) \
1621 if (DECL_SECTION_NAME (DECL) != NULL_TREE) \
1622 fprintf (FILE, "\t.end\tliteral_prefix\n")
1623
1624 /* A C statement (with or without semicolon) to output a constant in
1625 the constant pool, if it needs special treatment. */
1626 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
1627 do { \
1628 xtensa_output_literal (FILE, X, MODE, LABELNO); \
1629 goto JUMPTO; \
1630 } while (0)
1631
1632 /* How to start an assembler comment. */
1633 #define ASM_COMMENT_START "#"
1634
1635 /* Exception handling TODO!! */
1636 #define DWARF_UNWIND_INFO 0
1637