]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/xtensa/xtensa.h
function.h (incomming_args): Break out of struct function.
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.h
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Get Xtensa configuration settings */
23 #include "xtensa-config.h"
24
25 /* Standard GCC variables that we reference. */
26 extern int current_function_calls_alloca;
27 extern int optimize;
28
29 /* External variables defined in xtensa.c. */
30
31 /* comparison type */
32 enum cmp_type {
33 CMP_SI, /* four byte integers */
34 CMP_DI, /* eight byte integers */
35 CMP_SF, /* single precision floats */
36 CMP_DF, /* double precision floats */
37 CMP_MAX /* max comparison type */
38 };
39
40 extern struct rtx_def * branch_cmp[2]; /* operands for compare */
41 extern enum cmp_type branch_type; /* what type of branch to use */
42 extern unsigned xtensa_current_frame_size;
43
44 /* Macros used in the machine description to select various Xtensa
45 configuration options. */
46 #ifndef XCHAL_HAVE_MUL32_HIGH
47 #define XCHAL_HAVE_MUL32_HIGH 0
48 #endif
49 #ifndef XCHAL_HAVE_RELEASE_SYNC
50 #define XCHAL_HAVE_RELEASE_SYNC 0
51 #endif
52 #ifndef XCHAL_HAVE_S32C1I
53 #define XCHAL_HAVE_S32C1I 0
54 #endif
55 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
56 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
57 #define TARGET_MAC16 XCHAL_HAVE_MAC16
58 #define TARGET_MUL16 XCHAL_HAVE_MUL16
59 #define TARGET_MUL32 XCHAL_HAVE_MUL32
60 #define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
61 #define TARGET_DIV32 XCHAL_HAVE_DIV32
62 #define TARGET_NSA XCHAL_HAVE_NSA
63 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
64 #define TARGET_SEXT XCHAL_HAVE_SEXT
65 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
66 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
67 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
68 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
69 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
70 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
71 #define TARGET_ABS XCHAL_HAVE_ABS
72 #define TARGET_ADDX XCHAL_HAVE_ADDX
73 #define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
74 #define TARGET_S32C1I XCHAL_HAVE_S32C1I
75 #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
76
77 #define TARGET_DEFAULT \
78 ((XCHAL_HAVE_L32R ? 0 : MASK_CONST16) | \
79 MASK_SERIALIZE_VOLATILE)
80
81 #define OVERRIDE_OPTIONS override_options ()
82
83 /* Reordering blocks for Xtensa is not a good idea unless the compiler
84 understands the range of conditional branches. Currently all branch
85 relaxation for Xtensa is handled in the assembler, so GCC cannot do a
86 good job of reordering blocks. Do not enable reordering unless it is
87 explicitly requested. */
88 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
89 do \
90 { \
91 flag_reorder_blocks = 0; \
92 } \
93 while (0)
94
95 \f
96 /* Target CPU builtins. */
97 #define TARGET_CPU_CPP_BUILTINS() \
98 do { \
99 builtin_assert ("cpu=xtensa"); \
100 builtin_assert ("machine=xtensa"); \
101 builtin_define ("__xtensa__"); \
102 builtin_define ("__XTENSA__"); \
103 builtin_define ("__XTENSA_WINDOWED_ABI__"); \
104 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
105 if (!TARGET_HARD_FLOAT) \
106 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
107 } while (0)
108
109 #define CPP_SPEC " %(subtarget_cpp_spec) "
110
111 #ifndef SUBTARGET_CPP_SPEC
112 #define SUBTARGET_CPP_SPEC ""
113 #endif
114
115 #define EXTRA_SPECS \
116 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
117
118 #ifdef __XTENSA_EB__
119 #define LIBGCC2_WORDS_BIG_ENDIAN 1
120 #else
121 #define LIBGCC2_WORDS_BIG_ENDIAN 0
122 #endif
123
124 /* Show we can debug even without a frame pointer. */
125 #define CAN_DEBUG_WITHOUT_FP
126
127
128 /* Target machine storage layout */
129
130 /* Define this if most significant bit is lowest numbered
131 in instructions that operate on numbered bit-fields. */
132 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
133
134 /* Define this if most significant byte of a word is the lowest numbered. */
135 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
136
137 /* Define this if most significant word of a multiword number is the lowest. */
138 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
139
140 #define MAX_BITS_PER_WORD 32
141
142 /* Width of a word, in units (bytes). */
143 #define UNITS_PER_WORD 4
144 #define MIN_UNITS_PER_WORD 4
145
146 /* Width of a floating point register. */
147 #define UNITS_PER_FPREG 4
148
149 /* Size in bits of various types on the target machine. */
150 #define INT_TYPE_SIZE 32
151 #define SHORT_TYPE_SIZE 16
152 #define LONG_TYPE_SIZE 32
153 #define LONG_LONG_TYPE_SIZE 64
154 #define FLOAT_TYPE_SIZE 32
155 #define DOUBLE_TYPE_SIZE 64
156 #define LONG_DOUBLE_TYPE_SIZE 64
157
158 /* Allocation boundary (in *bits*) for storing pointers in memory. */
159 #define POINTER_BOUNDARY 32
160
161 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
162 #define PARM_BOUNDARY 32
163
164 /* Allocation boundary (in *bits*) for the code of a function. */
165 #define FUNCTION_BOUNDARY 32
166
167 /* Alignment of field after 'int : 0' in a structure. */
168 #define EMPTY_FIELD_BOUNDARY 32
169
170 /* Every structure's size must be a multiple of this. */
171 #define STRUCTURE_SIZE_BOUNDARY 8
172
173 /* There is no point aligning anything to a rounder boundary than this. */
174 #define BIGGEST_ALIGNMENT 128
175
176 /* Set this nonzero if move instructions will actually fail to work
177 when given unaligned data. */
178 #define STRICT_ALIGNMENT 1
179
180 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
181 for QImode, because there is no 8-bit load from memory with sign
182 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
183 loads both with and without sign extension. */
184 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
185 do { \
186 if (GET_MODE_CLASS (MODE) == MODE_INT \
187 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
188 { \
189 if ((MODE) == QImode) \
190 (UNSIGNEDP) = 1; \
191 (MODE) = SImode; \
192 } \
193 } while (0)
194
195 /* Imitate the way many other C compilers handle alignment of
196 bitfields and the structures that contain them. */
197 #define PCC_BITFIELD_TYPE_MATTERS 1
198
199 /* Disable the use of word-sized or smaller complex modes for structures,
200 and for function arguments in particular, where they cause problems with
201 register a7. The xtensa_copy_incoming_a7 function assumes that there is
202 a single reference to an argument in a7, but with small complex modes the
203 real and imaginary components may be extracted separately, leading to two
204 uses of the register, only one of which would be replaced. */
205 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
206 ((MODE) == CQImode || (MODE) == CHImode)
207
208 /* Align string constants and constructors to at least a word boundary.
209 The typical use of this macro is to increase alignment for string
210 constants to be word aligned so that 'strcpy' calls that copy
211 constants can be done inline. */
212 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
213 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
214 && (ALIGN) < BITS_PER_WORD \
215 ? BITS_PER_WORD \
216 : (ALIGN))
217
218 /* Align arrays, unions and records to at least a word boundary.
219 One use of this macro is to increase alignment of medium-size
220 data to make it all fit in fewer cache lines. Another is to
221 cause character arrays to be word-aligned so that 'strcpy' calls
222 that copy constants to character arrays can be done inline. */
223 #undef DATA_ALIGNMENT
224 #define DATA_ALIGNMENT(TYPE, ALIGN) \
225 ((((ALIGN) < BITS_PER_WORD) \
226 && (TREE_CODE (TYPE) == ARRAY_TYPE \
227 || TREE_CODE (TYPE) == UNION_TYPE \
228 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
229
230 /* Operations between registers always perform the operation
231 on the full register even if a narrower mode is specified. */
232 #define WORD_REGISTER_OPERATIONS
233
234 /* Xtensa loads are zero-extended by default. */
235 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
236
237 /* Standard register usage. */
238
239 /* Number of actual hardware registers.
240 The hardware registers are assigned numbers for the compiler
241 from 0 to just below FIRST_PSEUDO_REGISTER.
242 All registers that the compiler knows about must be given numbers,
243 even those that are not normally considered general registers.
244
245 The fake frame pointer and argument pointer will never appear in
246 the generated code, since they will always be eliminated and replaced
247 by either the stack pointer or the hard frame pointer.
248
249 0 - 15 AR[0] - AR[15]
250 16 FRAME_POINTER (fake = initial sp)
251 17 ARG_POINTER (fake = initial sp + framesize)
252 18 BR[0] for floating-point CC
253 19 - 34 FR[0] - FR[15]
254 35 MAC16 accumulator */
255
256 #define FIRST_PSEUDO_REGISTER 36
257
258 /* Return the stabs register number to use for REGNO. */
259 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
260
261 /* 1 for registers that have pervasive standard uses
262 and are not available for the register allocator. */
263 #define FIXED_REGISTERS \
264 { \
265 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
266 1, 1, 0, \
267 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
268 0, \
269 }
270
271 /* 1 for registers not available across function calls.
272 These must include the FIXED_REGISTERS and also any
273 registers that can be used without being saved.
274 The latter must include the registers where values are returned
275 and the register where structure-value addresses are passed.
276 Aside from that, you can include as many other registers as you like. */
277 #define CALL_USED_REGISTERS \
278 { \
279 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
280 1, 1, 1, \
281 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
282 1, \
283 }
284
285 /* For non-leaf procedures on Xtensa processors, the allocation order
286 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
287 want to use the lowest numbered registers first to minimize
288 register window overflows. However, local-alloc is not smart
289 enough to consider conflicts with incoming arguments. If an
290 incoming argument in a2 is live throughout the function and
291 local-alloc decides to use a2, then the incoming argument must
292 either be spilled or copied to another register. To get around
293 this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
294 reg_alloc_order for leaf functions such that lowest numbered
295 registers are used first with the exception that the incoming
296 argument registers are not used until after other register choices
297 have been exhausted. */
298
299 #define REG_ALLOC_ORDER \
300 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
301 18, \
302 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
303 0, 1, 16, 17, \
304 35, \
305 }
306
307 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
308
309 /* For Xtensa, the only point of this is to prevent GCC from otherwise
310 giving preference to call-used registers. To minimize window
311 overflows for the AR registers, we want to give preference to the
312 lower-numbered AR registers. For other register files, which are
313 not windowed, we still prefer call-used registers, if there are any. */
314 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
315 #define LEAF_REGISTERS xtensa_leaf_regs
316
317 /* For Xtensa, no remapping is necessary, but this macro must be
318 defined if LEAF_REGISTERS is defined. */
319 #define LEAF_REG_REMAP(REGNO) (REGNO)
320
321 /* This must be declared if LEAF_REGISTERS is set. */
322 extern int leaf_function;
323
324 /* Internal macros to classify a register number. */
325
326 /* 16 address registers + fake registers */
327 #define GP_REG_FIRST 0
328 #define GP_REG_LAST 17
329 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
330
331 /* Coprocessor registers */
332 #define BR_REG_FIRST 18
333 #define BR_REG_LAST 18
334 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
335
336 /* 16 floating-point registers */
337 #define FP_REG_FIRST 19
338 #define FP_REG_LAST 34
339 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
340
341 /* MAC16 accumulator */
342 #define ACC_REG_FIRST 35
343 #define ACC_REG_LAST 35
344 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
345
346 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
347 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
348 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
349 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
350
351 /* Return number of consecutive hard regs needed starting at reg REGNO
352 to hold something of mode MODE. */
353 #define HARD_REGNO_NREGS(REGNO, MODE) \
354 (FP_REG_P (REGNO) ? \
355 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
356 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
357
358 /* Value is 1 if hard register REGNO can hold a value of machine-mode
359 MODE. */
360 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
361
362 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
363 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
364
365 /* Value is 1 if it is a good idea to tie two pseudo registers
366 when one has mode MODE1 and one has mode MODE2.
367 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
368 for any hard reg, then this must be 0 for correct output. */
369 #define MODES_TIEABLE_P(MODE1, MODE2) \
370 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
371 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
372 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
373 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
374
375 /* Register to use for pushing function arguments. */
376 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
377
378 /* Base register for access to local variables of the function. */
379 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
380
381 /* The register number of the frame pointer register, which is used to
382 access automatic variables in the stack frame. For Xtensa, this
383 register never appears in the output. It is always eliminated to
384 either the stack pointer or the hard frame pointer. */
385 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
386
387 /* Value should be nonzero if functions must have frame pointers.
388 Zero means the frame pointer need not be set up (and parms
389 may be accessed via the stack pointer) in functions that seem suitable.
390 This is computed in 'reload', in reload1.c. */
391 #define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
392
393 /* Base register for access to arguments of the function. */
394 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
395
396 /* If the static chain is passed in memory, these macros provide rtx
397 giving 'mem' expressions that denote where they are stored.
398 'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
399 seen by the calling and called functions, respectively. */
400
401 #define STATIC_CHAIN \
402 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
403
404 #define STATIC_CHAIN_INCOMING \
405 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
406
407 /* For now we don't try to use the full set of boolean registers. Without
408 software pipelining of FP operations, there's not much to gain and it's
409 a real pain to get them reloaded. */
410 #define FPCC_REGNUM (BR_REG_FIRST + 0)
411
412 /* It is as good or better to call a constant function address than to
413 call an address kept in a register. */
414 #define NO_FUNCTION_CSE 1
415
416 /* Xtensa processors have "register windows". GCC does not currently
417 take advantage of the possibility for variable-sized windows; instead,
418 we use a fixed window size of 8. */
419
420 #define INCOMING_REGNO(OUT) \
421 ((GP_REG_P (OUT) && \
422 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
423 (OUT) - WINDOW_SIZE : (OUT))
424
425 #define OUTGOING_REGNO(IN) \
426 ((GP_REG_P (IN) && \
427 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
428 (IN) + WINDOW_SIZE : (IN))
429
430
431 /* Define the classes of registers for register constraints in the
432 machine description. */
433 enum reg_class
434 {
435 NO_REGS, /* no registers in set */
436 BR_REGS, /* coprocessor boolean registers */
437 FP_REGS, /* floating point registers */
438 ACC_REG, /* MAC16 accumulator */
439 SP_REG, /* sp register (aka a1) */
440 RL_REGS, /* preferred reload regs (not sp or fp) */
441 GR_REGS, /* integer registers except sp */
442 AR_REGS, /* all integer registers */
443 ALL_REGS, /* all registers */
444 LIM_REG_CLASSES /* max value + 1 */
445 };
446
447 #define N_REG_CLASSES (int) LIM_REG_CLASSES
448
449 #define GENERAL_REGS AR_REGS
450
451 /* An initializer containing the names of the register classes as C
452 string constants. These names are used in writing some of the
453 debugging dumps. */
454 #define REG_CLASS_NAMES \
455 { \
456 "NO_REGS", \
457 "BR_REGS", \
458 "FP_REGS", \
459 "ACC_REG", \
460 "SP_REG", \
461 "RL_REGS", \
462 "GR_REGS", \
463 "AR_REGS", \
464 "ALL_REGS" \
465 }
466
467 /* Contents of the register classes. The Nth integer specifies the
468 contents of class N. The way the integer MASK is interpreted is
469 that register R is in the class if 'MASK & (1 << R)' is 1. */
470 #define REG_CLASS_CONTENTS \
471 { \
472 { 0x00000000, 0x00000000 }, /* no registers */ \
473 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
474 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
475 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
476 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
477 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
478 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
479 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
480 { 0xffffffff, 0x0000000f } /* all registers */ \
481 }
482
483 /* A C expression whose value is a register class containing hard
484 register REGNO. In general there is more that one such class;
485 choose a class which is "minimal", meaning that no smaller class
486 also contains the register. */
487 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
488
489 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
490
491 /* Use the Xtensa AR register file for base registers.
492 No index registers. */
493 #define BASE_REG_CLASS AR_REGS
494 #define INDEX_REG_CLASS NO_REGS
495
496 /* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
497 16 AR registers may be explicitly used in the RTL, as either
498 incoming or outgoing arguments. */
499 #define SMALL_REGISTER_CLASSES 1
500
501 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
502 xtensa_preferred_reload_class (X, CLASS, 0)
503
504 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
505 xtensa_preferred_reload_class (X, CLASS, 1)
506
507 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
508 xtensa_secondary_reload_class (CLASS, MODE, X, 0)
509
510 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
511 xtensa_secondary_reload_class (CLASS, MODE, X, 1)
512
513 /* Return the maximum number of consecutive registers
514 needed to represent mode MODE in a register of class CLASS. */
515 #define CLASS_UNITS(mode, size) \
516 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
517
518 #define CLASS_MAX_NREGS(CLASS, MODE) \
519 (CLASS_UNITS (MODE, UNITS_PER_WORD))
520
521
522 /* Stack layout; function entry, exit and calling. */
523
524 #define STACK_GROWS_DOWNWARD
525
526 /* Offset within stack frame to start allocating local variables at. */
527 #define STARTING_FRAME_OFFSET \
528 crtl->outgoing_args_size
529
530 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
531 they are eliminated to either the stack pointer or hard frame pointer. */
532 #define ELIMINABLE_REGS \
533 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
534 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
535 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
536 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
537
538 #define CAN_ELIMINATE(FROM, TO) 1
539
540 /* Specify the initial difference between the specified pair of registers. */
541 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
542 do { \
543 compute_frame_size (get_frame_size ()); \
544 switch (FROM) \
545 { \
546 case FRAME_POINTER_REGNUM: \
547 (OFFSET) = 0; \
548 break; \
549 case ARG_POINTER_REGNUM: \
550 (OFFSET) = xtensa_current_frame_size; \
551 break; \
552 default: \
553 gcc_unreachable (); \
554 } \
555 } while (0)
556
557 /* If defined, the maximum amount of space required for outgoing
558 arguments will be computed and placed into the variable
559 'crtl->outgoing_args_size'. No space will be pushed
560 onto the stack for each call; instead, the function prologue
561 should increase the stack frame size by this amount. */
562 #define ACCUMULATE_OUTGOING_ARGS 1
563
564 /* Offset from the argument pointer register to the first argument's
565 address. On some machines it may depend on the data type of the
566 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
567 location above the first argument's address. */
568 #define FIRST_PARM_OFFSET(FNDECL) 0
569
570 /* Align stack frames on 128 bits for Xtensa. This is necessary for
571 128-bit datatypes defined in TIE (e.g., for Vectra). */
572 #define STACK_BOUNDARY 128
573
574 /* Functions do not pop arguments off the stack. */
575 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
576
577 /* Use a fixed register window size of 8. */
578 #define WINDOW_SIZE 8
579
580 /* Symbolic macros for the registers used to return integer, floating
581 point, and values of coprocessor and user-defined modes. */
582 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
583 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
584
585 /* Symbolic macros for the first/last argument registers. */
586 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
587 #define GP_ARG_LAST (GP_REG_FIRST + 7)
588 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
589 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
590
591 #define MAX_ARGS_IN_REGISTERS 6
592
593 /* Don't worry about compatibility with PCC. */
594 #define DEFAULT_PCC_STRUCT_RETURN 0
595
596 /* Define how to find the value returned by a library function
597 assuming the value has mode MODE. Because we have defined
598 TARGET_PROMOTE_FUNCTION_RETURN that returns true, we have to
599 perform the same promotions as PROMOTE_MODE. */
600 #define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
601 gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
602 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
603 ? SImode : (MODE), \
604 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
605
606 #define LIBCALL_VALUE(MODE) \
607 XTENSA_LIBCALL_VALUE ((MODE), 0)
608
609 #define LIBCALL_OUTGOING_VALUE(MODE) \
610 XTENSA_LIBCALL_VALUE ((MODE), 1)
611
612 /* Define how to find the value returned by a function.
613 VALTYPE is the data type of the value (as a tree).
614 If the precise function being called is known, FUNC is its FUNCTION_DECL;
615 otherwise, FUNC is 0. */
616 #define XTENSA_FUNCTION_VALUE(VALTYPE, FUNC, OUTGOINGP) \
617 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
618 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
619 ? SImode: TYPE_MODE (VALTYPE), \
620 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
621
622 #define FUNCTION_VALUE(VALTYPE, FUNC) \
623 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 0)
624
625 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
626 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 1)
627
628 /* A C expression that is nonzero if REGNO is the number of a hard
629 register in which the values of called function may come back. A
630 register whose use for returning values is limited to serving as
631 the second of a pair (for a value of type 'double', say) need not
632 be recognized by this macro. If the machine has register windows,
633 so that the caller and the called function use different registers
634 for the return value, this macro should recognize only the caller's
635 register numbers. */
636 #define FUNCTION_VALUE_REGNO_P(N) \
637 ((N) == GP_RETURN)
638
639 /* A C expression that is nonzero if REGNO is the number of a hard
640 register in which function arguments are sometimes passed. This
641 does *not* include implicit arguments such as the static chain and
642 the structure-value address. On many machines, no registers can be
643 used for this purpose since all function arguments are pushed on
644 the stack. */
645 #define FUNCTION_ARG_REGNO_P(N) \
646 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
647
648 /* Record the number of argument words seen so far, along with a flag to
649 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
650 is used for both incoming and outgoing args, so a separate flag is
651 needed. */
652 typedef struct xtensa_args
653 {
654 int arg_words;
655 int incoming;
656 } CUMULATIVE_ARGS;
657
658 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
659 init_cumulative_args (&CUM, 0)
660
661 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
662 init_cumulative_args (&CUM, 1)
663
664 /* Update the data in CUM to advance over an argument
665 of mode MODE and data type TYPE.
666 (TYPE is null for libcalls where that information may not be available.) */
667 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
668 function_arg_advance (&CUM, MODE, TYPE)
669
670 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
671 function_arg (&CUM, MODE, TYPE, FALSE)
672
673 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
674 function_arg (&CUM, MODE, TYPE, TRUE)
675
676 #define FUNCTION_ARG_BOUNDARY function_arg_boundary
677
678 /* Profiling Xtensa code is typically done with the built-in profiling
679 feature of Tensilica's instruction set simulator, which does not
680 require any compiler support. Profiling code on a real (i.e.,
681 non-simulated) Xtensa processor is currently only supported by
682 GNU/Linux with glibc. The glibc version of _mcount doesn't require
683 counter variables. The _mcount function needs the current PC and
684 the current return address to identify an arc in the call graph.
685 Pass the current return address as the first argument; the current
686 PC is available as a0 in _mcount's register window. Both of these
687 values contain window size information in the two most significant
688 bits; we assume that _mcount will mask off those bits. The call to
689 _mcount uses a window size of 8 to make sure that it doesn't clobber
690 any incoming argument values. */
691
692 #define NO_PROFILE_COUNTERS 1
693
694 #define FUNCTION_PROFILER(FILE, LABELNO) \
695 do { \
696 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
697 if (flag_pic) \
698 { \
699 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
700 fprintf (FILE, "\tcallx8\ta8\n"); \
701 } \
702 else \
703 fprintf (FILE, "\tcall8\t_mcount\n"); \
704 } while (0)
705
706 /* Stack pointer value doesn't matter at exit. */
707 #define EXIT_IGNORE_STACK 1
708
709 #define TRAMPOLINE_TEMPLATE(STREAM) xtensa_trampoline_template (STREAM)
710
711 /* Size in bytes of the trampoline, as an integer. Make sure this is
712 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
713 #define TRAMPOLINE_SIZE (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? 60 : 52)
714
715 /* Alignment required for trampolines, in bits. */
716 #define TRAMPOLINE_ALIGNMENT 32
717
718 /* A C statement to initialize the variable parts of a trampoline. */
719 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
720 xtensa_initialize_trampoline (ADDR, FUNC, CHAIN)
721
722
723 /* If defined, a C expression that produces the machine-specific code
724 to setup the stack so that arbitrary frames can be accessed.
725
726 On Xtensa, a stack back-trace must always begin from the stack pointer,
727 so that the register overflow save area can be located. However, the
728 stack-walking code in GCC always begins from the hard_frame_pointer
729 register, not the stack pointer. The frame pointer is usually equal
730 to the stack pointer, but the __builtin_return_address and
731 __builtin_frame_address functions will not work if count > 0 and
732 they are called from a routine that uses alloca. These functions
733 are not guaranteed to work at all if count > 0 so maybe that is OK.
734
735 A nicer solution would be to allow the architecture-specific files to
736 specify whether to start from the stack pointer or frame pointer. That
737 would also allow us to skip the machine->accesses_prev_frame stuff that
738 we currently need to ensure that there is a frame pointer when these
739 builtin functions are used. */
740
741 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
742
743 /* A C expression whose value is RTL representing the address in a
744 stack frame where the pointer to the caller's frame is stored.
745 Assume that FRAMEADDR is an RTL expression for the address of the
746 stack frame itself.
747
748 For Xtensa, there is no easy way to get the frame pointer if it is
749 not equivalent to the stack pointer. Moreover, the result of this
750 macro is used for continuing to walk back up the stack, so it must
751 return the stack pointer address. Thus, there is some inconsistency
752 here in that __builtin_frame_address will return the frame pointer
753 when count == 0 and the stack pointer when count > 0. */
754
755 #define DYNAMIC_CHAIN_ADDRESS(frame) \
756 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
757
758 /* Define this if the return address of a particular stack frame is
759 accessed from the frame pointer of the previous stack frame. */
760 #define RETURN_ADDR_IN_PREVIOUS_FRAME
761
762 /* A C expression whose value is RTL representing the value of the
763 return address for the frame COUNT steps up from the current
764 frame, after the prologue. */
765 #define RETURN_ADDR_RTX xtensa_return_addr
766
767 /* Addressing modes, and classification of registers for them. */
768
769 /* C expressions which are nonzero if register number NUM is suitable
770 for use as a base or index register in operand addresses. */
771
772 #define REGNO_OK_FOR_INDEX_P(NUM) 0
773 #define REGNO_OK_FOR_BASE_P(NUM) \
774 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
775
776 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
777 valid for use as a base or index register. */
778
779 #ifdef REG_OK_STRICT
780 #define REG_OK_STRICT_FLAG 1
781 #else
782 #define REG_OK_STRICT_FLAG 0
783 #endif
784
785 #define BASE_REG_P(X, STRICT) \
786 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
787 || REGNO_OK_FOR_BASE_P (REGNO (X)))
788
789 #define REG_OK_FOR_INDEX_P(X) 0
790 #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
791
792 /* Maximum number of registers that can appear in a valid memory address. */
793 #define MAX_REGS_PER_ADDRESS 1
794
795 /* Identify valid Xtensa addresses. */
796 #define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL) \
797 do { \
798 if (xtensa_legitimate_address_p (MODE, ADDR, REG_OK_STRICT_FLAG)) \
799 goto LABEL; \
800 } while (0)
801
802 /* A C expression that is 1 if the RTX X is a constant which is a
803 valid address. This is defined to be the same as 'CONSTANT_P (X)',
804 but rejecting CONST_DOUBLE. */
805 #define CONSTANT_ADDRESS_P(X) \
806 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
807 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
808 || (GET_CODE (X) == CONST)))
809
810 /* Nonzero if the constant value X is a legitimate general operand.
811 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
812 #define LEGITIMATE_CONSTANT_P(X) 1
813
814 /* A C expression that is nonzero if X is a legitimate immediate
815 operand on the target machine when generating position independent
816 code. */
817 #define LEGITIMATE_PIC_OPERAND_P(X) \
818 ((GET_CODE (X) != SYMBOL_REF \
819 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
820 && GET_CODE (X) != LABEL_REF \
821 && GET_CODE (X) != CONST)
822
823 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
824 do { \
825 rtx new_x = xtensa_legitimize_address (X, OLDX, MODE); \
826 if (new_x) \
827 { \
828 X = new_x; \
829 goto WIN; \
830 } \
831 } while (0)
832
833
834 /* Treat constant-pool references as "mode dependent" since they can
835 only be accessed with SImode loads. This works around a bug in the
836 combiner where a constant pool reference is temporarily converted
837 to an HImode load, which is then assumed to zero-extend based on
838 our definition of LOAD_EXTEND_OP. This is wrong because the high
839 bits of a 16-bit value in the constant pool are now sign-extended
840 by default. */
841
842 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
843 do { \
844 if (constantpool_address_p (ADDR)) \
845 goto LABEL; \
846 } while (0)
847
848 /* Specify the machine mode that this machine uses
849 for the index in the tablejump instruction. */
850 #define CASE_VECTOR_MODE (SImode)
851
852 /* Define this as 1 if 'char' should by default be signed; else as 0. */
853 #define DEFAULT_SIGNED_CHAR 0
854
855 /* Max number of bytes we can move from memory to memory
856 in one reasonably fast instruction. */
857 #define MOVE_MAX 4
858 #define MAX_MOVE_MAX 4
859
860 /* Prefer word-sized loads. */
861 #define SLOW_BYTE_ACCESS 1
862
863 /* Shift instructions ignore all but the low-order few bits. */
864 #define SHIFT_COUNT_TRUNCATED 1
865
866 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
867 is done just by pretending it is already truncated. */
868 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
869
870 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
871 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
872
873 /* Specify the machine mode that pointers have.
874 After generation of rtl, the compiler makes no further distinction
875 between pointers and any other objects of this machine mode. */
876 #define Pmode SImode
877
878 /* A function address in a call instruction is a word address (for
879 indexing purposes) so give the MEM rtx a words's mode. */
880 #define FUNCTION_MODE SImode
881
882 /* A C expression for the cost of moving data from a register in
883 class FROM to one in class TO. The classes are expressed using
884 the enumeration values such as 'GENERAL_REGS'. A value of 2 is
885 the default; other values are interpreted relative to that. */
886 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
887 (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
888 ? 2 \
889 : (reg_class_subset_p ((FROM), AR_REGS) \
890 && reg_class_subset_p ((TO), AR_REGS) \
891 ? 2 \
892 : (reg_class_subset_p ((FROM), AR_REGS) \
893 && (TO) == ACC_REG \
894 ? 3 \
895 : ((FROM) == ACC_REG \
896 && reg_class_subset_p ((TO), AR_REGS) \
897 ? 3 \
898 : 10))))
899
900 #define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
901
902 #define BRANCH_COST 3
903
904 /* How to refer to registers in assembler output.
905 This sequence is indexed by compiler's hard-register-number (see above). */
906 #define REGISTER_NAMES \
907 { \
908 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
909 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
910 "fp", "argp", "b0", \
911 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
912 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
913 "acc" \
914 }
915
916 /* If defined, a C initializer for an array of structures containing a
917 name and a register number. This macro defines additional names
918 for hard registers, thus allowing the 'asm' option in declarations
919 to refer to registers using alternate names. */
920 #define ADDITIONAL_REGISTER_NAMES \
921 { \
922 { "a1", 1 + GP_REG_FIRST } \
923 }
924
925 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
926 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
927
928 /* Recognize machine-specific patterns that may appear within
929 constants. Used for PIC-specific UNSPECs. */
930 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
931 do { \
932 if (xtensa_output_addr_const_extra (STREAM, X) == FALSE) \
933 goto FAIL; \
934 } while (0)
935
936 /* Globalizing directive for a label. */
937 #define GLOBAL_ASM_OP "\t.global\t"
938
939 /* Declare an uninitialized external linkage data object. */
940 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
941 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
942
943 /* This is how to output an element of a case-vector that is absolute. */
944 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
945 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
946 LOCAL_LABEL_PREFIX, VALUE)
947
948 /* This is how to output an element of a case-vector that is relative.
949 This is used for pc-relative code. */
950 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
951 do { \
952 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
953 LOCAL_LABEL_PREFIX, (VALUE), \
954 LOCAL_LABEL_PREFIX, (REL)); \
955 } while (0)
956
957 /* This is how to output an assembler line that says to advance the
958 location counter to a multiple of 2**LOG bytes. */
959 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
960 do { \
961 if ((LOG) != 0) \
962 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
963 } while (0)
964
965 /* Indicate that jump tables go in the text section. This is
966 necessary when compiling PIC code. */
967 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
968
969
970 /* Define the strings to put out for each section in the object file. */
971 #define TEXT_SECTION_ASM_OP "\t.text"
972 #define DATA_SECTION_ASM_OP "\t.data"
973 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
974
975
976 /* Define output to appear before the constant pool. */
977 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
978 do { \
979 if ((SIZE) > 0) \
980 { \
981 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
982 switch_to_section (function_section (FUNDECL)); \
983 fprintf (FILE, "\t.literal_position\n"); \
984 } \
985 } while (0)
986
987
988 /* A C statement (with or without semicolon) to output a constant in
989 the constant pool, if it needs special treatment. */
990 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
991 do { \
992 xtensa_output_literal (FILE, X, MODE, LABELNO); \
993 goto JUMPTO; \
994 } while (0)
995
996 /* How to start an assembler comment. */
997 #define ASM_COMMENT_START "#"
998
999 /* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
1000 machinery, but the variable size register window save areas are too
1001 complicated to efficiently describe with CFI entries. The CFA must
1002 still be specified in DWARF so that DW_AT_frame_base is set correctly
1003 for debugging. */
1004 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
1005 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
1006 #define DWARF_FRAME_REGISTERS 16
1007 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
1008 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1009 (flag_pic \
1010 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
1011 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1012 : DW_EH_PE_absptr)
1013
1014 /* Emit a PC-relative relocation. */
1015 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1016 do { \
1017 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1018 assemble_name (FILE, LABEL); \
1019 fputs ("@pcrel", FILE); \
1020 } while (0)
1021
1022 /* Xtensa constant pool breaks the devices in crtstuff.c to control
1023 section in where code resides. We have to write it as asm code. Use
1024 a MOVI and let the assembler relax it -- for the .init and .fini
1025 sections, the assembler knows to put the literal in the right
1026 place. */
1027 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1028 asm (SECTION_OP "\n\
1029 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
1030 callx8\ta8\n" \
1031 TEXT_SECTION_ASM_OP);