]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/xtensa/xtensa.h
Implement call0 ABI for xtensa
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.h
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright (C) 2001-2015 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Get Xtensa configuration settings */
22 #include "xtensa-config.h"
23
24 /* External variables defined in xtensa.c. */
25
26 extern unsigned xtensa_current_frame_size;
27
28 /* Macros used in the machine description to select various Xtensa
29 configuration options. */
30 #ifndef XCHAL_HAVE_MUL32_HIGH
31 #define XCHAL_HAVE_MUL32_HIGH 0
32 #endif
33 #ifndef XCHAL_HAVE_RELEASE_SYNC
34 #define XCHAL_HAVE_RELEASE_SYNC 0
35 #endif
36 #ifndef XCHAL_HAVE_S32C1I
37 #define XCHAL_HAVE_S32C1I 0
38 #endif
39 #ifndef XCHAL_HAVE_THREADPTR
40 #define XCHAL_HAVE_THREADPTR 0
41 #endif
42 #ifndef XCHAL_HAVE_FP_POSTINC
43 #define XCHAL_HAVE_FP_POSTINC 0
44 #endif
45 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
46 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
47 #define TARGET_MAC16 XCHAL_HAVE_MAC16
48 #define TARGET_MUL16 XCHAL_HAVE_MUL16
49 #define TARGET_MUL32 XCHAL_HAVE_MUL32
50 #define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
51 #define TARGET_DIV32 XCHAL_HAVE_DIV32
52 #define TARGET_NSA XCHAL_HAVE_NSA
53 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
54 #define TARGET_SEXT XCHAL_HAVE_SEXT
55 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
56 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
57 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
58 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
59 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
60 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
61 #define TARGET_HARD_FLOAT_POSTINC XCHAL_HAVE_FP_POSTINC
62 #define TARGET_ABS XCHAL_HAVE_ABS
63 #define TARGET_ADDX XCHAL_HAVE_ADDX
64 #define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
65 #define TARGET_S32C1I XCHAL_HAVE_S32C1I
66 #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
67 #define TARGET_THREADPTR XCHAL_HAVE_THREADPTR
68 #define TARGET_LOOPS XCHAL_HAVE_LOOPS
69 #define TARGET_WINDOWED_ABI (XSHAL_ABI == XTHAL_ABI_WINDOWED)
70
71 #define TARGET_DEFAULT \
72 ((XCHAL_HAVE_L32R ? 0 : MASK_CONST16) | \
73 MASK_SERIALIZE_VOLATILE)
74
75 #ifndef HAVE_AS_TLS
76 #define HAVE_AS_TLS 0
77 #endif
78
79 \f
80 /* Target CPU builtins. */
81 #define TARGET_CPU_CPP_BUILTINS() \
82 do { \
83 builtin_assert ("cpu=xtensa"); \
84 builtin_assert ("machine=xtensa"); \
85 builtin_define ("__xtensa__"); \
86 builtin_define ("__XTENSA__"); \
87 builtin_define (TARGET_WINDOWED_ABI ? \
88 "__XTENSA_WINDOWED_ABI__" : "__XTENSA_CALL0_ABI__");\
89 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
90 if (!TARGET_HARD_FLOAT) \
91 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
92 } while (0)
93
94 #define CPP_SPEC " %(subtarget_cpp_spec) "
95
96 #ifndef SUBTARGET_CPP_SPEC
97 #define SUBTARGET_CPP_SPEC ""
98 #endif
99
100 #define EXTRA_SPECS \
101 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
102
103 /* Target machine storage layout */
104
105 /* Define this if most significant bit is lowest numbered
106 in instructions that operate on numbered bit-fields. */
107 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
108
109 /* Define this if most significant byte of a word is the lowest numbered. */
110 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
111
112 /* Define this if most significant word of a multiword number is the lowest. */
113 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
114
115 #define MAX_BITS_PER_WORD 32
116
117 /* Width of a word, in units (bytes). */
118 #define UNITS_PER_WORD 4
119 #define MIN_UNITS_PER_WORD 4
120
121 /* Width of a floating point register. */
122 #define UNITS_PER_FPREG 4
123
124 /* Size in bits of various types on the target machine. */
125 #define INT_TYPE_SIZE 32
126 #define SHORT_TYPE_SIZE 16
127 #define LONG_TYPE_SIZE 32
128 #define LONG_LONG_TYPE_SIZE 64
129 #define FLOAT_TYPE_SIZE 32
130 #define DOUBLE_TYPE_SIZE 64
131 #define LONG_DOUBLE_TYPE_SIZE 64
132
133 /* Allocation boundary (in *bits*) for storing pointers in memory. */
134 #define POINTER_BOUNDARY 32
135
136 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
137 #define PARM_BOUNDARY 32
138
139 /* Allocation boundary (in *bits*) for the code of a function. */
140 #define FUNCTION_BOUNDARY 32
141
142 /* Alignment of field after 'int : 0' in a structure. */
143 #define EMPTY_FIELD_BOUNDARY 32
144
145 /* Every structure's size must be a multiple of this. */
146 #define STRUCTURE_SIZE_BOUNDARY 8
147
148 /* There is no point aligning anything to a rounder boundary than this. */
149 #define BIGGEST_ALIGNMENT 128
150
151 /* Set this nonzero if move instructions will actually fail to work
152 when given unaligned data. */
153 #define STRICT_ALIGNMENT 1
154
155 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
156 for QImode, because there is no 8-bit load from memory with sign
157 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
158 loads both with and without sign extension. */
159 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
160 do { \
161 if (GET_MODE_CLASS (MODE) == MODE_INT \
162 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
163 { \
164 if ((MODE) == QImode) \
165 (UNSIGNEDP) = 1; \
166 (MODE) = SImode; \
167 } \
168 } while (0)
169
170 /* Imitate the way many other C compilers handle alignment of
171 bitfields and the structures that contain them. */
172 #define PCC_BITFIELD_TYPE_MATTERS 1
173
174 /* Align string constants and constructors to at least a word boundary.
175 The typical use of this macro is to increase alignment for string
176 constants to be word aligned so that 'strcpy' calls that copy
177 constants can be done inline. */
178 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
179 (!optimize_size && \
180 (TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
181 && (ALIGN) < BITS_PER_WORD \
182 ? BITS_PER_WORD \
183 : (ALIGN))
184
185 /* Align arrays, unions and records to at least a word boundary.
186 One use of this macro is to increase alignment of medium-size
187 data to make it all fit in fewer cache lines. Another is to
188 cause character arrays to be word-aligned so that 'strcpy' calls
189 that copy constants to character arrays can be done inline. */
190 #undef DATA_ALIGNMENT
191 #define DATA_ALIGNMENT(TYPE, ALIGN) \
192 (!optimize_size && (((ALIGN) < BITS_PER_WORD) \
193 && (TREE_CODE (TYPE) == ARRAY_TYPE \
194 || TREE_CODE (TYPE) == UNION_TYPE \
195 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
196
197 /* Operations between registers always perform the operation
198 on the full register even if a narrower mode is specified. */
199 #define WORD_REGISTER_OPERATIONS
200
201 /* Xtensa loads are zero-extended by default. */
202 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
203
204 /* Standard register usage. */
205
206 /* Number of actual hardware registers.
207 The hardware registers are assigned numbers for the compiler
208 from 0 to just below FIRST_PSEUDO_REGISTER.
209 All registers that the compiler knows about must be given numbers,
210 even those that are not normally considered general registers.
211
212 The fake frame pointer and argument pointer will never appear in
213 the generated code, since they will always be eliminated and replaced
214 by either the stack pointer or the hard frame pointer.
215
216 0 - 15 AR[0] - AR[15]
217 16 FRAME_POINTER (fake = initial sp)
218 17 ARG_POINTER (fake = initial sp + framesize)
219 18 BR[0] for floating-point CC
220 19 - 34 FR[0] - FR[15]
221 35 MAC16 accumulator */
222
223 #define FIRST_PSEUDO_REGISTER 36
224
225 /* Return the stabs register number to use for REGNO. */
226 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
227
228 /* 1 for registers that have pervasive standard uses
229 and are not available for the register allocator. */
230 #define FIXED_REGISTERS \
231 { \
232 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
233 1, 1, 0, \
234 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
235 0, \
236 }
237
238 /* 1 for registers not available across function calls.
239 These must include the FIXED_REGISTERS and also any
240 registers that can be used without being saved.
241 The latter must include the registers where values are returned
242 and the register where structure-value addresses are passed.
243 Aside from that, you can include as many other registers as you like.
244
245 The value encoding is the following:
246 1: register is used by all ABIs;
247 bit 1 is set: register is used by windowed ABI;
248 bit 2 is set: register is used by call0 ABI.
249
250 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
251
252 #define CALL_USED_REGISTERS \
253 { \
254 1, 1, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 2, 2, \
255 1, 1, 1, \
256 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
257 1, \
258 }
259
260 /* For non-leaf procedures on Xtensa processors, the allocation order
261 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
262 want to use the lowest numbered registers first to minimize
263 register window overflows. However, local-alloc is not smart
264 enough to consider conflicts with incoming arguments. If an
265 incoming argument in a2 is live throughout the function and
266 local-alloc decides to use a2, then the incoming argument must
267 either be spilled or copied to another register. To get around
268 this, we define ADJUST_REG_ALLOC_ORDER to redefine
269 reg_alloc_order for leaf functions such that lowest numbered
270 registers are used first with the exception that the incoming
271 argument registers are not used until after other register choices
272 have been exhausted. */
273
274 #define REG_ALLOC_ORDER \
275 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
276 18, \
277 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
278 0, 1, 16, 17, \
279 35, \
280 }
281
282 #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc ()
283
284 /* For Xtensa, the only point of this is to prevent GCC from otherwise
285 giving preference to call-used registers. To minimize window
286 overflows for the AR registers, we want to give preference to the
287 lower-numbered AR registers. For other register files, which are
288 not windowed, we still prefer call-used registers, if there are any. */
289 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
290 #define LEAF_REGISTERS xtensa_leaf_regs
291
292 /* For Xtensa, no remapping is necessary, but this macro must be
293 defined if LEAF_REGISTERS is defined. */
294 #define LEAF_REG_REMAP(REGNO) (REGNO)
295
296 /* This must be declared if LEAF_REGISTERS is set. */
297 extern int leaf_function;
298
299 /* Internal macros to classify a register number. */
300
301 /* 16 address registers + fake registers */
302 #define GP_REG_FIRST 0
303 #define GP_REG_LAST 17
304 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
305
306 /* Coprocessor registers */
307 #define BR_REG_FIRST 18
308 #define BR_REG_LAST 18
309 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
310
311 /* 16 floating-point registers */
312 #define FP_REG_FIRST 19
313 #define FP_REG_LAST 34
314 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
315
316 /* MAC16 accumulator */
317 #define ACC_REG_FIRST 35
318 #define ACC_REG_LAST 35
319 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
320
321 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
322 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
323 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
324 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
325
326 /* Return number of consecutive hard regs needed starting at reg REGNO
327 to hold something of mode MODE. */
328 #define HARD_REGNO_NREGS(REGNO, MODE) \
329 (FP_REG_P (REGNO) ? \
330 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
331 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
332
333 /* Value is 1 if hard register REGNO can hold a value of machine-mode
334 MODE. */
335 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
336
337 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
338 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
339
340 /* Value is 1 if it is a good idea to tie two pseudo registers
341 when one has mode MODE1 and one has mode MODE2.
342 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
343 for any hard reg, then this must be 0 for correct output. */
344 #define MODES_TIEABLE_P(MODE1, MODE2) \
345 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
346 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
347 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
348 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
349
350 /* Register to use for pushing function arguments. */
351 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
352
353 /* Base register for access to local variables of the function. */
354 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + \
355 (TARGET_WINDOWED_ABI ? 7 : 15))
356
357 /* The register number of the frame pointer register, which is used to
358 access automatic variables in the stack frame. For Xtensa, this
359 register never appears in the output. It is always eliminated to
360 either the stack pointer or the hard frame pointer. */
361 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
362
363 /* Base register for access to arguments of the function. */
364 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
365
366 /* For now we don't try to use the full set of boolean registers. Without
367 software pipelining of FP operations, there's not much to gain and it's
368 a real pain to get them reloaded. */
369 #define FPCC_REGNUM (BR_REG_FIRST + 0)
370
371 /* It is as good or better to call a constant function address than to
372 call an address kept in a register. */
373 #define NO_FUNCTION_CSE 1
374
375 /* Xtensa processors have "register windows". GCC does not currently
376 take advantage of the possibility for variable-sized windows; instead,
377 we use a fixed window size of 8. */
378
379 #define INCOMING_REGNO(OUT) \
380 (TARGET_WINDOWED_ABI ? \
381 ((GP_REG_P (OUT) && \
382 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
383 (OUT) - WINDOW_SIZE : (OUT)) : (OUT))
384
385 #define OUTGOING_REGNO(IN) \
386 (TARGET_WINDOWED_ABI ? \
387 ((GP_REG_P (IN) && \
388 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
389 (IN) + WINDOW_SIZE : (IN)) : (IN))
390
391
392 /* Define the classes of registers for register constraints in the
393 machine description. */
394 enum reg_class
395 {
396 NO_REGS, /* no registers in set */
397 BR_REGS, /* coprocessor boolean registers */
398 FP_REGS, /* floating point registers */
399 ACC_REG, /* MAC16 accumulator */
400 SP_REG, /* sp register (aka a1) */
401 RL_REGS, /* preferred reload regs (not sp or fp) */
402 GR_REGS, /* integer registers except sp */
403 AR_REGS, /* all integer registers */
404 ALL_REGS, /* all registers */
405 LIM_REG_CLASSES /* max value + 1 */
406 };
407
408 #define N_REG_CLASSES (int) LIM_REG_CLASSES
409
410 #define GENERAL_REGS AR_REGS
411
412 /* An initializer containing the names of the register classes as C
413 string constants. These names are used in writing some of the
414 debugging dumps. */
415 #define REG_CLASS_NAMES \
416 { \
417 "NO_REGS", \
418 "BR_REGS", \
419 "FP_REGS", \
420 "ACC_REG", \
421 "SP_REG", \
422 "RL_REGS", \
423 "GR_REGS", \
424 "AR_REGS", \
425 "ALL_REGS" \
426 }
427
428 /* Contents of the register classes. The Nth integer specifies the
429 contents of class N. The way the integer MASK is interpreted is
430 that register R is in the class if 'MASK & (1 << R)' is 1. */
431 #define REG_CLASS_CONTENTS \
432 { \
433 { 0x00000000, 0x00000000 }, /* no registers */ \
434 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
435 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
436 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
437 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
438 { 0x0000fffd, 0x00000000 }, /* preferred reload registers */ \
439 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
440 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
441 { 0xffffffff, 0x0000000f } /* all registers */ \
442 }
443
444 /* A C expression whose value is a register class containing hard
445 register REGNO. In general there is more that one such class;
446 choose a class which is "minimal", meaning that no smaller class
447 also contains the register. */
448 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class (REGNO)
449
450 /* Use the Xtensa AR register file for base registers.
451 No index registers. */
452 #define BASE_REG_CLASS AR_REGS
453 #define INDEX_REG_CLASS NO_REGS
454
455 /* The small_register_classes_for_mode_p hook must always return true for
456 Xtrnase, because all of the 16 AR registers may be explicitly used in
457 the RTL, as either incoming or outgoing arguments. */
458 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
459
460 /* Stack layout; function entry, exit and calling. */
461
462 #define STACK_GROWS_DOWNWARD
463
464 /* Offset within stack frame to start allocating local variables at. */
465 #define STARTING_FRAME_OFFSET \
466 crtl->outgoing_args_size
467
468 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
469 they are eliminated to either the stack pointer or hard frame pointer. */
470 #define ELIMINABLE_REGS \
471 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
472 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
473 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
474 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
475
476 /* Specify the initial difference between the specified pair of registers. */
477 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
478 do { \
479 compute_frame_size (get_frame_size ()); \
480 switch (FROM) \
481 { \
482 case FRAME_POINTER_REGNUM: \
483 (OFFSET) = 0; \
484 break; \
485 case ARG_POINTER_REGNUM: \
486 (OFFSET) = xtensa_current_frame_size; \
487 break; \
488 default: \
489 gcc_unreachable (); \
490 } \
491 } while (0)
492
493 /* If defined, the maximum amount of space required for outgoing
494 arguments will be computed and placed into the variable
495 'crtl->outgoing_args_size'. No space will be pushed
496 onto the stack for each call; instead, the function prologue
497 should increase the stack frame size by this amount. */
498 #define ACCUMULATE_OUTGOING_ARGS 1
499
500 /* Offset from the argument pointer register to the first argument's
501 address. On some machines it may depend on the data type of the
502 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
503 location above the first argument's address. */
504 #define FIRST_PARM_OFFSET(FNDECL) 0
505
506 /* Align stack frames on 128 bits for Xtensa. This is necessary for
507 128-bit datatypes defined in TIE (e.g., for Vectra). */
508 #define STACK_BOUNDARY 128
509
510 /* Use a fixed register window size of 8. */
511 #define WINDOW_SIZE (TARGET_WINDOWED_ABI ? 8 : 0)
512
513 /* Symbolic macros for the registers used to return integer, floating
514 point, and values of coprocessor and user-defined modes. */
515 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
516 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
517
518 /* Symbolic macros for the first/last argument registers. */
519 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
520 #define GP_ARG_LAST (GP_REG_FIRST + 7)
521 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
522 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
523
524 #define MAX_ARGS_IN_REGISTERS 6
525
526 /* Don't worry about compatibility with PCC. */
527 #define DEFAULT_PCC_STRUCT_RETURN 0
528
529 /* A C expression that is nonzero if REGNO is the number of a hard
530 register in which function arguments are sometimes passed. This
531 does *not* include implicit arguments such as the static chain and
532 the structure-value address. On many machines, no registers can be
533 used for this purpose since all function arguments are pushed on
534 the stack. */
535 #define FUNCTION_ARG_REGNO_P(N) \
536 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
537
538 /* Record the number of argument words seen so far, along with a flag to
539 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
540 is used for both incoming and outgoing args, so a separate flag is
541 needed. */
542 typedef struct xtensa_args
543 {
544 int arg_words;
545 int incoming;
546 } CUMULATIVE_ARGS;
547
548 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
549 init_cumulative_args (&CUM, 0)
550
551 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
552 init_cumulative_args (&CUM, 1)
553
554 /* Profiling Xtensa code is typically done with the built-in profiling
555 feature of Tensilica's instruction set simulator, which does not
556 require any compiler support. Profiling code on a real (i.e.,
557 non-simulated) Xtensa processor is currently only supported by
558 GNU/Linux with glibc. The glibc version of _mcount doesn't require
559 counter variables. The _mcount function needs the current PC and
560 the current return address to identify an arc in the call graph.
561 Pass the current return address as the first argument; the current
562 PC is available as a0 in _mcount's register window. Both of these
563 values contain window size information in the two most significant
564 bits; we assume that _mcount will mask off those bits. The call to
565 _mcount uses a window size of 8 to make sure that it doesn't clobber
566 any incoming argument values. */
567
568 #define NO_PROFILE_COUNTERS 1
569
570 #define FUNCTION_PROFILER(FILE, LABELNO) \
571 do { \
572 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
573 if (flag_pic) \
574 { \
575 fprintf (FILE, "\tmovi\ta%d, _mcount@PLT\n", WINDOW_SIZE); \
576 fprintf (FILE, "\tcallx%d\ta%d\n", WINDOW_SIZE, WINDOW_SIZE); \
577 } \
578 else \
579 fprintf (FILE, "\tcall%d\t_mcount\n", WINDOW_SIZE); \
580 } while (0)
581
582 /* Stack pointer value doesn't matter at exit. */
583 #define EXIT_IGNORE_STACK 1
584
585 /* Size in bytes of the trampoline, as an integer. Make sure this is
586 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
587 #define TRAMPOLINE_SIZE (TARGET_WINDOWED_ABI ? \
588 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
589 60 : 52) : \
590 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
591 32 : 24))
592
593 /* Alignment required for trampolines, in bits. */
594 #define TRAMPOLINE_ALIGNMENT 32
595
596 /* If defined, a C expression that produces the machine-specific code
597 to setup the stack so that arbitrary frames can be accessed.
598
599 On Xtensa, a stack back-trace must always begin from the stack pointer,
600 so that the register overflow save area can be located. However, the
601 stack-walking code in GCC always begins from the hard_frame_pointer
602 register, not the stack pointer. The frame pointer is usually equal
603 to the stack pointer, but the __builtin_return_address and
604 __builtin_frame_address functions will not work if count > 0 and
605 they are called from a routine that uses alloca. These functions
606 are not guaranteed to work at all if count > 0 so maybe that is OK.
607
608 A nicer solution would be to allow the architecture-specific files to
609 specify whether to start from the stack pointer or frame pointer. That
610 would also allow us to skip the machine->accesses_prev_frame stuff that
611 we currently need to ensure that there is a frame pointer when these
612 builtin functions are used. */
613
614 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
615
616 /* A C expression whose value is RTL representing the address in a
617 stack frame where the pointer to the caller's frame is stored.
618 Assume that FRAMEADDR is an RTL expression for the address of the
619 stack frame itself.
620
621 For Xtensa, there is no easy way to get the frame pointer if it is
622 not equivalent to the stack pointer. Moreover, the result of this
623 macro is used for continuing to walk back up the stack, so it must
624 return the stack pointer address. Thus, there is some inconsistency
625 here in that __builtin_frame_address will return the frame pointer
626 when count == 0 and the stack pointer when count > 0. */
627
628 #define DYNAMIC_CHAIN_ADDRESS(frame) \
629 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
630
631 /* Define this if the return address of a particular stack frame is
632 accessed from the frame pointer of the previous stack frame. */
633 #define RETURN_ADDR_IN_PREVIOUS_FRAME TARGET_WINDOWED_ABI
634
635 /* A C expression whose value is RTL representing the value of the
636 return address for the frame COUNT steps up from the current
637 frame, after the prologue. */
638 #define RETURN_ADDR_RTX xtensa_return_addr
639
640 /* Addressing modes, and classification of registers for them. */
641
642 /* C expressions which are nonzero if register number NUM is suitable
643 for use as a base or index register in operand addresses. */
644
645 #define REGNO_OK_FOR_INDEX_P(NUM) 0
646 #define REGNO_OK_FOR_BASE_P(NUM) \
647 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
648
649 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
650 valid for use as a base or index register. */
651
652 #ifdef REG_OK_STRICT
653 #define REG_OK_STRICT_FLAG 1
654 #else
655 #define REG_OK_STRICT_FLAG 0
656 #endif
657
658 #define BASE_REG_P(X, STRICT) \
659 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
660 || REGNO_OK_FOR_BASE_P (REGNO (X)))
661
662 #define REG_OK_FOR_INDEX_P(X) 0
663 #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
664
665 /* Maximum number of registers that can appear in a valid memory address. */
666 #define MAX_REGS_PER_ADDRESS 1
667
668 /* A C expression that is 1 if the RTX X is a constant which is a
669 valid address. This is defined to be the same as 'CONSTANT_P (X)',
670 but rejecting CONST_DOUBLE. */
671 #define CONSTANT_ADDRESS_P(X) \
672 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
673 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
674 || (GET_CODE (X) == CONST)))
675
676 /* A C expression that is nonzero if X is a legitimate immediate
677 operand on the target machine when generating position independent
678 code. */
679 #define LEGITIMATE_PIC_OPERAND_P(X) \
680 ((GET_CODE (X) != SYMBOL_REF \
681 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
682 && GET_CODE (X) != LABEL_REF \
683 && GET_CODE (X) != CONST)
684
685 /* Specify the machine mode that this machine uses
686 for the index in the tablejump instruction. */
687 #define CASE_VECTOR_MODE (SImode)
688
689 /* Define this as 1 if 'char' should by default be signed; else as 0. */
690 #define DEFAULT_SIGNED_CHAR 0
691
692 /* Max number of bytes we can move from memory to memory
693 in one reasonably fast instruction. */
694 #define MOVE_MAX 4
695 #define MAX_MOVE_MAX 4
696
697 /* Prefer word-sized loads. */
698 #define SLOW_BYTE_ACCESS 1
699
700 /* Shift instructions ignore all but the low-order few bits. */
701 #define SHIFT_COUNT_TRUNCATED 1
702
703 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
704 is done just by pretending it is already truncated. */
705 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
706
707 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
708 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
709
710 /* Specify the machine mode that pointers have.
711 After generation of rtl, the compiler makes no further distinction
712 between pointers and any other objects of this machine mode. */
713 #define Pmode SImode
714
715 /* A function address in a call instruction is a word address (for
716 indexing purposes) so give the MEM rtx a words's mode. */
717 #define FUNCTION_MODE SImode
718
719 #define BRANCH_COST(speed_p, predictable_p) 3
720
721 /* How to refer to registers in assembler output.
722 This sequence is indexed by compiler's hard-register-number (see above). */
723 #define REGISTER_NAMES \
724 { \
725 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
726 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
727 "fp", "argp", "b0", \
728 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
729 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
730 "acc" \
731 }
732
733 /* If defined, a C initializer for an array of structures containing a
734 name and a register number. This macro defines additional names
735 for hard registers, thus allowing the 'asm' option in declarations
736 to refer to registers using alternate names. */
737 #define ADDITIONAL_REGISTER_NAMES \
738 { \
739 { "a1", 1 + GP_REG_FIRST } \
740 }
741
742 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
743 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
744
745 /* Globalizing directive for a label. */
746 #define GLOBAL_ASM_OP "\t.global\t"
747
748 /* Declare an uninitialized external linkage data object. */
749 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
750 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
751
752 /* This is how to output an element of a case-vector that is absolute. */
753 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
754 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
755 LOCAL_LABEL_PREFIX, VALUE)
756
757 /* This is how to output an element of a case-vector that is relative.
758 This is used for pc-relative code. */
759 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
760 do { \
761 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
762 LOCAL_LABEL_PREFIX, (VALUE), \
763 LOCAL_LABEL_PREFIX, (REL)); \
764 } while (0)
765
766 /* This is how to output an assembler line that says to advance the
767 location counter to a multiple of 2**LOG bytes. */
768 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
769 do { \
770 if ((LOG) != 0) \
771 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
772 } while (0)
773
774 /* Indicate that jump tables go in the text section. This is
775 necessary when compiling PIC code. */
776 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
777
778
779 /* Define the strings to put out for each section in the object file. */
780 #define TEXT_SECTION_ASM_OP "\t.text"
781 #define DATA_SECTION_ASM_OP "\t.data"
782 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
783
784
785 /* Define output to appear before the constant pool. */
786 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
787 do { \
788 if ((SIZE) > 0 || !TARGET_WINDOWED_ABI) \
789 { \
790 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
791 switch_to_section (function_section (FUNDECL)); \
792 fprintf (FILE, "\t.literal_position\n"); \
793 } \
794 } while (0)
795
796
797 /* A C statement (with or without semicolon) to output a constant in
798 the constant pool, if it needs special treatment. */
799 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
800 do { \
801 xtensa_output_literal (FILE, X, MODE, LABELNO); \
802 goto JUMPTO; \
803 } while (0)
804
805 /* How to start an assembler comment. */
806 #define ASM_COMMENT_START "#"
807
808 /* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
809 machinery, but the variable size register window save areas are too
810 complicated to efficiently describe with CFI entries. The CFA must
811 still be specified in DWARF so that DW_AT_frame_base is set correctly
812 for debugging. */
813 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
814 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
815 #define DWARF_FRAME_REGISTERS 16
816 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
817 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
818 (flag_pic \
819 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
820 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
821 : DW_EH_PE_absptr)
822
823 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 10)
824
825 /* Emit a PC-relative relocation. */
826 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
827 do { \
828 fputs (integer_asm_op (SIZE, FALSE), FILE); \
829 assemble_name (FILE, LABEL); \
830 fputs ("@pcrel", FILE); \
831 } while (0)
832
833 /* Xtensa constant pool breaks the devices in crtstuff.c to control
834 section in where code resides. We have to write it as asm code. Use
835 a MOVI and let the assembler relax it -- for the .init and .fini
836 sections, the assembler knows to put the literal in the right
837 place. */
838 #if defined(__XTENSA_WINDOWED_ABI__)
839 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
840 asm (SECTION_OP "\n\
841 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
842 callx8\ta8\n" \
843 TEXT_SECTION_ASM_OP);
844 #elif defined(__XTENSA_CALL0_ABI__)
845 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
846 asm (SECTION_OP "\n\
847 movi\ta0, " USER_LABEL_PREFIX #FUNC "\n\
848 callx0\ta0\n" \
849 TEXT_SECTION_ASM_OP);
850 #endif