]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/xtensa/xtensa.h
arm.c (arm_unwind_emit): Use crtl->all_throwers_are_sibcalls instead of cfun->all_thr...
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.h
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Get Xtensa configuration settings */
23 #include "xtensa-config.h"
24
25 /* Standard GCC variables that we reference. */
26 extern int optimize;
27
28 /* External variables defined in xtensa.c. */
29
30 /* comparison type */
31 enum cmp_type {
32 CMP_SI, /* four byte integers */
33 CMP_DI, /* eight byte integers */
34 CMP_SF, /* single precision floats */
35 CMP_DF, /* double precision floats */
36 CMP_MAX /* max comparison type */
37 };
38
39 extern struct rtx_def * branch_cmp[2]; /* operands for compare */
40 extern enum cmp_type branch_type; /* what type of branch to use */
41 extern unsigned xtensa_current_frame_size;
42
43 /* Macros used in the machine description to select various Xtensa
44 configuration options. */
45 #ifndef XCHAL_HAVE_MUL32_HIGH
46 #define XCHAL_HAVE_MUL32_HIGH 0
47 #endif
48 #ifndef XCHAL_HAVE_RELEASE_SYNC
49 #define XCHAL_HAVE_RELEASE_SYNC 0
50 #endif
51 #ifndef XCHAL_HAVE_S32C1I
52 #define XCHAL_HAVE_S32C1I 0
53 #endif
54 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
55 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
56 #define TARGET_MAC16 XCHAL_HAVE_MAC16
57 #define TARGET_MUL16 XCHAL_HAVE_MUL16
58 #define TARGET_MUL32 XCHAL_HAVE_MUL32
59 #define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
60 #define TARGET_DIV32 XCHAL_HAVE_DIV32
61 #define TARGET_NSA XCHAL_HAVE_NSA
62 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
63 #define TARGET_SEXT XCHAL_HAVE_SEXT
64 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
65 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
66 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
67 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
68 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
69 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
70 #define TARGET_ABS XCHAL_HAVE_ABS
71 #define TARGET_ADDX XCHAL_HAVE_ADDX
72 #define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
73 #define TARGET_S32C1I XCHAL_HAVE_S32C1I
74 #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
75
76 #define TARGET_DEFAULT \
77 ((XCHAL_HAVE_L32R ? 0 : MASK_CONST16) | \
78 MASK_SERIALIZE_VOLATILE)
79
80 #define OVERRIDE_OPTIONS override_options ()
81
82 /* Reordering blocks for Xtensa is not a good idea unless the compiler
83 understands the range of conditional branches. Currently all branch
84 relaxation for Xtensa is handled in the assembler, so GCC cannot do a
85 good job of reordering blocks. Do not enable reordering unless it is
86 explicitly requested. */
87 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
88 do \
89 { \
90 flag_reorder_blocks = 0; \
91 } \
92 while (0)
93
94 \f
95 /* Target CPU builtins. */
96 #define TARGET_CPU_CPP_BUILTINS() \
97 do { \
98 builtin_assert ("cpu=xtensa"); \
99 builtin_assert ("machine=xtensa"); \
100 builtin_define ("__xtensa__"); \
101 builtin_define ("__XTENSA__"); \
102 builtin_define ("__XTENSA_WINDOWED_ABI__"); \
103 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
104 if (!TARGET_HARD_FLOAT) \
105 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
106 } while (0)
107
108 #define CPP_SPEC " %(subtarget_cpp_spec) "
109
110 #ifndef SUBTARGET_CPP_SPEC
111 #define SUBTARGET_CPP_SPEC ""
112 #endif
113
114 #define EXTRA_SPECS \
115 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
116
117 #ifdef __XTENSA_EB__
118 #define LIBGCC2_WORDS_BIG_ENDIAN 1
119 #else
120 #define LIBGCC2_WORDS_BIG_ENDIAN 0
121 #endif
122
123 /* Show we can debug even without a frame pointer. */
124 #define CAN_DEBUG_WITHOUT_FP
125
126
127 /* Target machine storage layout */
128
129 /* Define this if most significant bit is lowest numbered
130 in instructions that operate on numbered bit-fields. */
131 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
132
133 /* Define this if most significant byte of a word is the lowest numbered. */
134 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
135
136 /* Define this if most significant word of a multiword number is the lowest. */
137 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
138
139 #define MAX_BITS_PER_WORD 32
140
141 /* Width of a word, in units (bytes). */
142 #define UNITS_PER_WORD 4
143 #define MIN_UNITS_PER_WORD 4
144
145 /* Width of a floating point register. */
146 #define UNITS_PER_FPREG 4
147
148 /* Size in bits of various types on the target machine. */
149 #define INT_TYPE_SIZE 32
150 #define SHORT_TYPE_SIZE 16
151 #define LONG_TYPE_SIZE 32
152 #define LONG_LONG_TYPE_SIZE 64
153 #define FLOAT_TYPE_SIZE 32
154 #define DOUBLE_TYPE_SIZE 64
155 #define LONG_DOUBLE_TYPE_SIZE 64
156
157 /* Allocation boundary (in *bits*) for storing pointers in memory. */
158 #define POINTER_BOUNDARY 32
159
160 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
161 #define PARM_BOUNDARY 32
162
163 /* Allocation boundary (in *bits*) for the code of a function. */
164 #define FUNCTION_BOUNDARY 32
165
166 /* Alignment of field after 'int : 0' in a structure. */
167 #define EMPTY_FIELD_BOUNDARY 32
168
169 /* Every structure's size must be a multiple of this. */
170 #define STRUCTURE_SIZE_BOUNDARY 8
171
172 /* There is no point aligning anything to a rounder boundary than this. */
173 #define BIGGEST_ALIGNMENT 128
174
175 /* Set this nonzero if move instructions will actually fail to work
176 when given unaligned data. */
177 #define STRICT_ALIGNMENT 1
178
179 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
180 for QImode, because there is no 8-bit load from memory with sign
181 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
182 loads both with and without sign extension. */
183 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
184 do { \
185 if (GET_MODE_CLASS (MODE) == MODE_INT \
186 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
187 { \
188 if ((MODE) == QImode) \
189 (UNSIGNEDP) = 1; \
190 (MODE) = SImode; \
191 } \
192 } while (0)
193
194 /* Imitate the way many other C compilers handle alignment of
195 bitfields and the structures that contain them. */
196 #define PCC_BITFIELD_TYPE_MATTERS 1
197
198 /* Disable the use of word-sized or smaller complex modes for structures,
199 and for function arguments in particular, where they cause problems with
200 register a7. The xtensa_copy_incoming_a7 function assumes that there is
201 a single reference to an argument in a7, but with small complex modes the
202 real and imaginary components may be extracted separately, leading to two
203 uses of the register, only one of which would be replaced. */
204 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
205 ((MODE) == CQImode || (MODE) == CHImode)
206
207 /* Align string constants and constructors to at least a word boundary.
208 The typical use of this macro is to increase alignment for string
209 constants to be word aligned so that 'strcpy' calls that copy
210 constants can be done inline. */
211 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
212 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
213 && (ALIGN) < BITS_PER_WORD \
214 ? BITS_PER_WORD \
215 : (ALIGN))
216
217 /* Align arrays, unions and records to at least a word boundary.
218 One use of this macro is to increase alignment of medium-size
219 data to make it all fit in fewer cache lines. Another is to
220 cause character arrays to be word-aligned so that 'strcpy' calls
221 that copy constants to character arrays can be done inline. */
222 #undef DATA_ALIGNMENT
223 #define DATA_ALIGNMENT(TYPE, ALIGN) \
224 ((((ALIGN) < BITS_PER_WORD) \
225 && (TREE_CODE (TYPE) == ARRAY_TYPE \
226 || TREE_CODE (TYPE) == UNION_TYPE \
227 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
228
229 /* Operations between registers always perform the operation
230 on the full register even if a narrower mode is specified. */
231 #define WORD_REGISTER_OPERATIONS
232
233 /* Xtensa loads are zero-extended by default. */
234 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
235
236 /* Standard register usage. */
237
238 /* Number of actual hardware registers.
239 The hardware registers are assigned numbers for the compiler
240 from 0 to just below FIRST_PSEUDO_REGISTER.
241 All registers that the compiler knows about must be given numbers,
242 even those that are not normally considered general registers.
243
244 The fake frame pointer and argument pointer will never appear in
245 the generated code, since they will always be eliminated and replaced
246 by either the stack pointer or the hard frame pointer.
247
248 0 - 15 AR[0] - AR[15]
249 16 FRAME_POINTER (fake = initial sp)
250 17 ARG_POINTER (fake = initial sp + framesize)
251 18 BR[0] for floating-point CC
252 19 - 34 FR[0] - FR[15]
253 35 MAC16 accumulator */
254
255 #define FIRST_PSEUDO_REGISTER 36
256
257 /* Return the stabs register number to use for REGNO. */
258 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
259
260 /* 1 for registers that have pervasive standard uses
261 and are not available for the register allocator. */
262 #define FIXED_REGISTERS \
263 { \
264 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
265 1, 1, 0, \
266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
267 0, \
268 }
269
270 /* 1 for registers not available across function calls.
271 These must include the FIXED_REGISTERS and also any
272 registers that can be used without being saved.
273 The latter must include the registers where values are returned
274 and the register where structure-value addresses are passed.
275 Aside from that, you can include as many other registers as you like. */
276 #define CALL_USED_REGISTERS \
277 { \
278 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
279 1, 1, 1, \
280 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
281 1, \
282 }
283
284 /* For non-leaf procedures on Xtensa processors, the allocation order
285 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
286 want to use the lowest numbered registers first to minimize
287 register window overflows. However, local-alloc is not smart
288 enough to consider conflicts with incoming arguments. If an
289 incoming argument in a2 is live throughout the function and
290 local-alloc decides to use a2, then the incoming argument must
291 either be spilled or copied to another register. To get around
292 this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
293 reg_alloc_order for leaf functions such that lowest numbered
294 registers are used first with the exception that the incoming
295 argument registers are not used until after other register choices
296 have been exhausted. */
297
298 #define REG_ALLOC_ORDER \
299 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
300 18, \
301 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
302 0, 1, 16, 17, \
303 35, \
304 }
305
306 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
307
308 /* For Xtensa, the only point of this is to prevent GCC from otherwise
309 giving preference to call-used registers. To minimize window
310 overflows for the AR registers, we want to give preference to the
311 lower-numbered AR registers. For other register files, which are
312 not windowed, we still prefer call-used registers, if there are any. */
313 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
314 #define LEAF_REGISTERS xtensa_leaf_regs
315
316 /* For Xtensa, no remapping is necessary, but this macro must be
317 defined if LEAF_REGISTERS is defined. */
318 #define LEAF_REG_REMAP(REGNO) (REGNO)
319
320 /* This must be declared if LEAF_REGISTERS is set. */
321 extern int leaf_function;
322
323 /* Internal macros to classify a register number. */
324
325 /* 16 address registers + fake registers */
326 #define GP_REG_FIRST 0
327 #define GP_REG_LAST 17
328 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
329
330 /* Coprocessor registers */
331 #define BR_REG_FIRST 18
332 #define BR_REG_LAST 18
333 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
334
335 /* 16 floating-point registers */
336 #define FP_REG_FIRST 19
337 #define FP_REG_LAST 34
338 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
339
340 /* MAC16 accumulator */
341 #define ACC_REG_FIRST 35
342 #define ACC_REG_LAST 35
343 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
344
345 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
346 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
347 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
348 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
349
350 /* Return number of consecutive hard regs needed starting at reg REGNO
351 to hold something of mode MODE. */
352 #define HARD_REGNO_NREGS(REGNO, MODE) \
353 (FP_REG_P (REGNO) ? \
354 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
355 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
356
357 /* Value is 1 if hard register REGNO can hold a value of machine-mode
358 MODE. */
359 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
360
361 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
362 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
363
364 /* Value is 1 if it is a good idea to tie two pseudo registers
365 when one has mode MODE1 and one has mode MODE2.
366 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
367 for any hard reg, then this must be 0 for correct output. */
368 #define MODES_TIEABLE_P(MODE1, MODE2) \
369 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
370 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
371 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
372 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
373
374 /* Register to use for pushing function arguments. */
375 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
376
377 /* Base register for access to local variables of the function. */
378 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
379
380 /* The register number of the frame pointer register, which is used to
381 access automatic variables in the stack frame. For Xtensa, this
382 register never appears in the output. It is always eliminated to
383 either the stack pointer or the hard frame pointer. */
384 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
385
386 /* Value should be nonzero if functions must have frame pointers.
387 Zero means the frame pointer need not be set up (and parms
388 may be accessed via the stack pointer) in functions that seem suitable.
389 This is computed in 'reload', in reload1.c. */
390 #define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
391
392 /* Base register for access to arguments of the function. */
393 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
394
395 /* If the static chain is passed in memory, these macros provide rtx
396 giving 'mem' expressions that denote where they are stored.
397 'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
398 seen by the calling and called functions, respectively. */
399
400 #define STATIC_CHAIN \
401 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
402
403 #define STATIC_CHAIN_INCOMING \
404 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
405
406 /* For now we don't try to use the full set of boolean registers. Without
407 software pipelining of FP operations, there's not much to gain and it's
408 a real pain to get them reloaded. */
409 #define FPCC_REGNUM (BR_REG_FIRST + 0)
410
411 /* It is as good or better to call a constant function address than to
412 call an address kept in a register. */
413 #define NO_FUNCTION_CSE 1
414
415 /* Xtensa processors have "register windows". GCC does not currently
416 take advantage of the possibility for variable-sized windows; instead,
417 we use a fixed window size of 8. */
418
419 #define INCOMING_REGNO(OUT) \
420 ((GP_REG_P (OUT) && \
421 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
422 (OUT) - WINDOW_SIZE : (OUT))
423
424 #define OUTGOING_REGNO(IN) \
425 ((GP_REG_P (IN) && \
426 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
427 (IN) + WINDOW_SIZE : (IN))
428
429
430 /* Define the classes of registers for register constraints in the
431 machine description. */
432 enum reg_class
433 {
434 NO_REGS, /* no registers in set */
435 BR_REGS, /* coprocessor boolean registers */
436 FP_REGS, /* floating point registers */
437 ACC_REG, /* MAC16 accumulator */
438 SP_REG, /* sp register (aka a1) */
439 RL_REGS, /* preferred reload regs (not sp or fp) */
440 GR_REGS, /* integer registers except sp */
441 AR_REGS, /* all integer registers */
442 ALL_REGS, /* all registers */
443 LIM_REG_CLASSES /* max value + 1 */
444 };
445
446 #define N_REG_CLASSES (int) LIM_REG_CLASSES
447
448 #define GENERAL_REGS AR_REGS
449
450 /* An initializer containing the names of the register classes as C
451 string constants. These names are used in writing some of the
452 debugging dumps. */
453 #define REG_CLASS_NAMES \
454 { \
455 "NO_REGS", \
456 "BR_REGS", \
457 "FP_REGS", \
458 "ACC_REG", \
459 "SP_REG", \
460 "RL_REGS", \
461 "GR_REGS", \
462 "AR_REGS", \
463 "ALL_REGS" \
464 }
465
466 /* Contents of the register classes. The Nth integer specifies the
467 contents of class N. The way the integer MASK is interpreted is
468 that register R is in the class if 'MASK & (1 << R)' is 1. */
469 #define REG_CLASS_CONTENTS \
470 { \
471 { 0x00000000, 0x00000000 }, /* no registers */ \
472 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
473 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
474 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
475 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
476 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
477 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
478 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
479 { 0xffffffff, 0x0000000f } /* all registers */ \
480 }
481
482 /* A C expression whose value is a register class containing hard
483 register REGNO. In general there is more that one such class;
484 choose a class which is "minimal", meaning that no smaller class
485 also contains the register. */
486 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
487
488 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
489
490 /* Use the Xtensa AR register file for base registers.
491 No index registers. */
492 #define BASE_REG_CLASS AR_REGS
493 #define INDEX_REG_CLASS NO_REGS
494
495 /* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
496 16 AR registers may be explicitly used in the RTL, as either
497 incoming or outgoing arguments. */
498 #define SMALL_REGISTER_CLASSES 1
499
500 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
501 xtensa_preferred_reload_class (X, CLASS, 0)
502
503 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
504 xtensa_preferred_reload_class (X, CLASS, 1)
505
506 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
507 xtensa_secondary_reload_class (CLASS, MODE, X, 0)
508
509 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
510 xtensa_secondary_reload_class (CLASS, MODE, X, 1)
511
512 /* Return the maximum number of consecutive registers
513 needed to represent mode MODE in a register of class CLASS. */
514 #define CLASS_UNITS(mode, size) \
515 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
516
517 #define CLASS_MAX_NREGS(CLASS, MODE) \
518 (CLASS_UNITS (MODE, UNITS_PER_WORD))
519
520
521 /* Stack layout; function entry, exit and calling. */
522
523 #define STACK_GROWS_DOWNWARD
524
525 /* Offset within stack frame to start allocating local variables at. */
526 #define STARTING_FRAME_OFFSET \
527 crtl->outgoing_args_size
528
529 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
530 they are eliminated to either the stack pointer or hard frame pointer. */
531 #define ELIMINABLE_REGS \
532 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
533 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
534 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
535 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
536
537 #define CAN_ELIMINATE(FROM, TO) 1
538
539 /* Specify the initial difference between the specified pair of registers. */
540 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
541 do { \
542 compute_frame_size (get_frame_size ()); \
543 switch (FROM) \
544 { \
545 case FRAME_POINTER_REGNUM: \
546 (OFFSET) = 0; \
547 break; \
548 case ARG_POINTER_REGNUM: \
549 (OFFSET) = xtensa_current_frame_size; \
550 break; \
551 default: \
552 gcc_unreachable (); \
553 } \
554 } while (0)
555
556 /* If defined, the maximum amount of space required for outgoing
557 arguments will be computed and placed into the variable
558 'crtl->outgoing_args_size'. No space will be pushed
559 onto the stack for each call; instead, the function prologue
560 should increase the stack frame size by this amount. */
561 #define ACCUMULATE_OUTGOING_ARGS 1
562
563 /* Offset from the argument pointer register to the first argument's
564 address. On some machines it may depend on the data type of the
565 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
566 location above the first argument's address. */
567 #define FIRST_PARM_OFFSET(FNDECL) 0
568
569 /* Align stack frames on 128 bits for Xtensa. This is necessary for
570 128-bit datatypes defined in TIE (e.g., for Vectra). */
571 #define STACK_BOUNDARY 128
572
573 /* Functions do not pop arguments off the stack. */
574 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
575
576 /* Use a fixed register window size of 8. */
577 #define WINDOW_SIZE 8
578
579 /* Symbolic macros for the registers used to return integer, floating
580 point, and values of coprocessor and user-defined modes. */
581 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
582 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
583
584 /* Symbolic macros for the first/last argument registers. */
585 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
586 #define GP_ARG_LAST (GP_REG_FIRST + 7)
587 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
588 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
589
590 #define MAX_ARGS_IN_REGISTERS 6
591
592 /* Don't worry about compatibility with PCC. */
593 #define DEFAULT_PCC_STRUCT_RETURN 0
594
595 /* Define how to find the value returned by a library function
596 assuming the value has mode MODE. Because we have defined
597 TARGET_PROMOTE_FUNCTION_RETURN that returns true, we have to
598 perform the same promotions as PROMOTE_MODE. */
599 #define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
600 gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
601 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
602 ? SImode : (MODE), \
603 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
604
605 #define LIBCALL_VALUE(MODE) \
606 XTENSA_LIBCALL_VALUE ((MODE), 0)
607
608 #define LIBCALL_OUTGOING_VALUE(MODE) \
609 XTENSA_LIBCALL_VALUE ((MODE), 1)
610
611 /* Define how to find the value returned by a function.
612 VALTYPE is the data type of the value (as a tree).
613 If the precise function being called is known, FUNC is its FUNCTION_DECL;
614 otherwise, FUNC is 0. */
615 #define XTENSA_FUNCTION_VALUE(VALTYPE, FUNC, OUTGOINGP) \
616 gen_rtx_REG ((INTEGRAL_TYPE_P (VALTYPE) \
617 && TYPE_PRECISION (VALTYPE) < BITS_PER_WORD) \
618 ? SImode: TYPE_MODE (VALTYPE), \
619 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
620
621 #define FUNCTION_VALUE(VALTYPE, FUNC) \
622 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 0)
623
624 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
625 XTENSA_FUNCTION_VALUE (VALTYPE, FUNC, 1)
626
627 /* A C expression that is nonzero if REGNO is the number of a hard
628 register in which the values of called function may come back. A
629 register whose use for returning values is limited to serving as
630 the second of a pair (for a value of type 'double', say) need not
631 be recognized by this macro. If the machine has register windows,
632 so that the caller and the called function use different registers
633 for the return value, this macro should recognize only the caller's
634 register numbers. */
635 #define FUNCTION_VALUE_REGNO_P(N) \
636 ((N) == GP_RETURN)
637
638 /* A C expression that is nonzero if REGNO is the number of a hard
639 register in which function arguments are sometimes passed. This
640 does *not* include implicit arguments such as the static chain and
641 the structure-value address. On many machines, no registers can be
642 used for this purpose since all function arguments are pushed on
643 the stack. */
644 #define FUNCTION_ARG_REGNO_P(N) \
645 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
646
647 /* Record the number of argument words seen so far, along with a flag to
648 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
649 is used for both incoming and outgoing args, so a separate flag is
650 needed. */
651 typedef struct xtensa_args
652 {
653 int arg_words;
654 int incoming;
655 } CUMULATIVE_ARGS;
656
657 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
658 init_cumulative_args (&CUM, 0)
659
660 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
661 init_cumulative_args (&CUM, 1)
662
663 /* Update the data in CUM to advance over an argument
664 of mode MODE and data type TYPE.
665 (TYPE is null for libcalls where that information may not be available.) */
666 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
667 function_arg_advance (&CUM, MODE, TYPE)
668
669 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
670 function_arg (&CUM, MODE, TYPE, FALSE)
671
672 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
673 function_arg (&CUM, MODE, TYPE, TRUE)
674
675 #define FUNCTION_ARG_BOUNDARY function_arg_boundary
676
677 /* Profiling Xtensa code is typically done with the built-in profiling
678 feature of Tensilica's instruction set simulator, which does not
679 require any compiler support. Profiling code on a real (i.e.,
680 non-simulated) Xtensa processor is currently only supported by
681 GNU/Linux with glibc. The glibc version of _mcount doesn't require
682 counter variables. The _mcount function needs the current PC and
683 the current return address to identify an arc in the call graph.
684 Pass the current return address as the first argument; the current
685 PC is available as a0 in _mcount's register window. Both of these
686 values contain window size information in the two most significant
687 bits; we assume that _mcount will mask off those bits. The call to
688 _mcount uses a window size of 8 to make sure that it doesn't clobber
689 any incoming argument values. */
690
691 #define NO_PROFILE_COUNTERS 1
692
693 #define FUNCTION_PROFILER(FILE, LABELNO) \
694 do { \
695 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
696 if (flag_pic) \
697 { \
698 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
699 fprintf (FILE, "\tcallx8\ta8\n"); \
700 } \
701 else \
702 fprintf (FILE, "\tcall8\t_mcount\n"); \
703 } while (0)
704
705 /* Stack pointer value doesn't matter at exit. */
706 #define EXIT_IGNORE_STACK 1
707
708 #define TRAMPOLINE_TEMPLATE(STREAM) xtensa_trampoline_template (STREAM)
709
710 /* Size in bytes of the trampoline, as an integer. Make sure this is
711 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
712 #define TRAMPOLINE_SIZE (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? 60 : 52)
713
714 /* Alignment required for trampolines, in bits. */
715 #define TRAMPOLINE_ALIGNMENT 32
716
717 /* A C statement to initialize the variable parts of a trampoline. */
718 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
719 xtensa_initialize_trampoline (ADDR, FUNC, CHAIN)
720
721
722 /* If defined, a C expression that produces the machine-specific code
723 to setup the stack so that arbitrary frames can be accessed.
724
725 On Xtensa, a stack back-trace must always begin from the stack pointer,
726 so that the register overflow save area can be located. However, the
727 stack-walking code in GCC always begins from the hard_frame_pointer
728 register, not the stack pointer. The frame pointer is usually equal
729 to the stack pointer, but the __builtin_return_address and
730 __builtin_frame_address functions will not work if count > 0 and
731 they are called from a routine that uses alloca. These functions
732 are not guaranteed to work at all if count > 0 so maybe that is OK.
733
734 A nicer solution would be to allow the architecture-specific files to
735 specify whether to start from the stack pointer or frame pointer. That
736 would also allow us to skip the machine->accesses_prev_frame stuff that
737 we currently need to ensure that there is a frame pointer when these
738 builtin functions are used. */
739
740 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
741
742 /* A C expression whose value is RTL representing the address in a
743 stack frame where the pointer to the caller's frame is stored.
744 Assume that FRAMEADDR is an RTL expression for the address of the
745 stack frame itself.
746
747 For Xtensa, there is no easy way to get the frame pointer if it is
748 not equivalent to the stack pointer. Moreover, the result of this
749 macro is used for continuing to walk back up the stack, so it must
750 return the stack pointer address. Thus, there is some inconsistency
751 here in that __builtin_frame_address will return the frame pointer
752 when count == 0 and the stack pointer when count > 0. */
753
754 #define DYNAMIC_CHAIN_ADDRESS(frame) \
755 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
756
757 /* Define this if the return address of a particular stack frame is
758 accessed from the frame pointer of the previous stack frame. */
759 #define RETURN_ADDR_IN_PREVIOUS_FRAME
760
761 /* A C expression whose value is RTL representing the value of the
762 return address for the frame COUNT steps up from the current
763 frame, after the prologue. */
764 #define RETURN_ADDR_RTX xtensa_return_addr
765
766 /* Addressing modes, and classification of registers for them. */
767
768 /* C expressions which are nonzero if register number NUM is suitable
769 for use as a base or index register in operand addresses. */
770
771 #define REGNO_OK_FOR_INDEX_P(NUM) 0
772 #define REGNO_OK_FOR_BASE_P(NUM) \
773 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
774
775 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
776 valid for use as a base or index register. */
777
778 #ifdef REG_OK_STRICT
779 #define REG_OK_STRICT_FLAG 1
780 #else
781 #define REG_OK_STRICT_FLAG 0
782 #endif
783
784 #define BASE_REG_P(X, STRICT) \
785 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
786 || REGNO_OK_FOR_BASE_P (REGNO (X)))
787
788 #define REG_OK_FOR_INDEX_P(X) 0
789 #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
790
791 /* Maximum number of registers that can appear in a valid memory address. */
792 #define MAX_REGS_PER_ADDRESS 1
793
794 /* Identify valid Xtensa addresses. */
795 #define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL) \
796 do { \
797 if (xtensa_legitimate_address_p (MODE, ADDR, REG_OK_STRICT_FLAG)) \
798 goto LABEL; \
799 } while (0)
800
801 /* A C expression that is 1 if the RTX X is a constant which is a
802 valid address. This is defined to be the same as 'CONSTANT_P (X)',
803 but rejecting CONST_DOUBLE. */
804 #define CONSTANT_ADDRESS_P(X) \
805 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
806 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
807 || (GET_CODE (X) == CONST)))
808
809 /* Nonzero if the constant value X is a legitimate general operand.
810 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
811 #define LEGITIMATE_CONSTANT_P(X) 1
812
813 /* A C expression that is nonzero if X is a legitimate immediate
814 operand on the target machine when generating position independent
815 code. */
816 #define LEGITIMATE_PIC_OPERAND_P(X) \
817 ((GET_CODE (X) != SYMBOL_REF \
818 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
819 && GET_CODE (X) != LABEL_REF \
820 && GET_CODE (X) != CONST)
821
822 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
823 do { \
824 rtx new_x = xtensa_legitimize_address (X, OLDX, MODE); \
825 if (new_x) \
826 { \
827 X = new_x; \
828 goto WIN; \
829 } \
830 } while (0)
831
832
833 /* Treat constant-pool references as "mode dependent" since they can
834 only be accessed with SImode loads. This works around a bug in the
835 combiner where a constant pool reference is temporarily converted
836 to an HImode load, which is then assumed to zero-extend based on
837 our definition of LOAD_EXTEND_OP. This is wrong because the high
838 bits of a 16-bit value in the constant pool are now sign-extended
839 by default. */
840
841 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
842 do { \
843 if (constantpool_address_p (ADDR)) \
844 goto LABEL; \
845 } while (0)
846
847 /* Specify the machine mode that this machine uses
848 for the index in the tablejump instruction. */
849 #define CASE_VECTOR_MODE (SImode)
850
851 /* Define this as 1 if 'char' should by default be signed; else as 0. */
852 #define DEFAULT_SIGNED_CHAR 0
853
854 /* Max number of bytes we can move from memory to memory
855 in one reasonably fast instruction. */
856 #define MOVE_MAX 4
857 #define MAX_MOVE_MAX 4
858
859 /* Prefer word-sized loads. */
860 #define SLOW_BYTE_ACCESS 1
861
862 /* Shift instructions ignore all but the low-order few bits. */
863 #define SHIFT_COUNT_TRUNCATED 1
864
865 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
866 is done just by pretending it is already truncated. */
867 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
868
869 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
870 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
871
872 /* Specify the machine mode that pointers have.
873 After generation of rtl, the compiler makes no further distinction
874 between pointers and any other objects of this machine mode. */
875 #define Pmode SImode
876
877 /* A function address in a call instruction is a word address (for
878 indexing purposes) so give the MEM rtx a words's mode. */
879 #define FUNCTION_MODE SImode
880
881 /* A C expression for the cost of moving data from a register in
882 class FROM to one in class TO. The classes are expressed using
883 the enumeration values such as 'GENERAL_REGS'. A value of 2 is
884 the default; other values are interpreted relative to that. */
885 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
886 (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
887 ? 2 \
888 : (reg_class_subset_p ((FROM), AR_REGS) \
889 && reg_class_subset_p ((TO), AR_REGS) \
890 ? 2 \
891 : (reg_class_subset_p ((FROM), AR_REGS) \
892 && (TO) == ACC_REG \
893 ? 3 \
894 : ((FROM) == ACC_REG \
895 && reg_class_subset_p ((TO), AR_REGS) \
896 ? 3 \
897 : 10))))
898
899 #define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
900
901 #define BRANCH_COST 3
902
903 /* How to refer to registers in assembler output.
904 This sequence is indexed by compiler's hard-register-number (see above). */
905 #define REGISTER_NAMES \
906 { \
907 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
908 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
909 "fp", "argp", "b0", \
910 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
911 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
912 "acc" \
913 }
914
915 /* If defined, a C initializer for an array of structures containing a
916 name and a register number. This macro defines additional names
917 for hard registers, thus allowing the 'asm' option in declarations
918 to refer to registers using alternate names. */
919 #define ADDITIONAL_REGISTER_NAMES \
920 { \
921 { "a1", 1 + GP_REG_FIRST } \
922 }
923
924 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
925 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
926
927 /* Recognize machine-specific patterns that may appear within
928 constants. Used for PIC-specific UNSPECs. */
929 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
930 do { \
931 if (xtensa_output_addr_const_extra (STREAM, X) == FALSE) \
932 goto FAIL; \
933 } while (0)
934
935 /* Globalizing directive for a label. */
936 #define GLOBAL_ASM_OP "\t.global\t"
937
938 /* Declare an uninitialized external linkage data object. */
939 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
940 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
941
942 /* This is how to output an element of a case-vector that is absolute. */
943 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
944 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
945 LOCAL_LABEL_PREFIX, VALUE)
946
947 /* This is how to output an element of a case-vector that is relative.
948 This is used for pc-relative code. */
949 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
950 do { \
951 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
952 LOCAL_LABEL_PREFIX, (VALUE), \
953 LOCAL_LABEL_PREFIX, (REL)); \
954 } while (0)
955
956 /* This is how to output an assembler line that says to advance the
957 location counter to a multiple of 2**LOG bytes. */
958 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
959 do { \
960 if ((LOG) != 0) \
961 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
962 } while (0)
963
964 /* Indicate that jump tables go in the text section. This is
965 necessary when compiling PIC code. */
966 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
967
968
969 /* Define the strings to put out for each section in the object file. */
970 #define TEXT_SECTION_ASM_OP "\t.text"
971 #define DATA_SECTION_ASM_OP "\t.data"
972 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
973
974
975 /* Define output to appear before the constant pool. */
976 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
977 do { \
978 if ((SIZE) > 0) \
979 { \
980 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
981 switch_to_section (function_section (FUNDECL)); \
982 fprintf (FILE, "\t.literal_position\n"); \
983 } \
984 } while (0)
985
986
987 /* A C statement (with or without semicolon) to output a constant in
988 the constant pool, if it needs special treatment. */
989 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
990 do { \
991 xtensa_output_literal (FILE, X, MODE, LABELNO); \
992 goto JUMPTO; \
993 } while (0)
994
995 /* How to start an assembler comment. */
996 #define ASM_COMMENT_START "#"
997
998 /* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
999 machinery, but the variable size register window save areas are too
1000 complicated to efficiently describe with CFI entries. The CFA must
1001 still be specified in DWARF so that DW_AT_frame_base is set correctly
1002 for debugging. */
1003 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
1004 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
1005 #define DWARF_FRAME_REGISTERS 16
1006 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
1007 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
1008 (flag_pic \
1009 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
1010 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1011 : DW_EH_PE_absptr)
1012
1013 /* Emit a PC-relative relocation. */
1014 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1015 do { \
1016 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1017 assemble_name (FILE, LABEL); \
1018 fputs ("@pcrel", FILE); \
1019 } while (0)
1020
1021 /* Xtensa constant pool breaks the devices in crtstuff.c to control
1022 section in where code resides. We have to write it as asm code. Use
1023 a MOVI and let the assembler relax it -- for the .init and .fini
1024 sections, the assembler knows to put the literal in the right
1025 place. */
1026 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1027 asm (SECTION_OP "\n\
1028 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
1029 callx8\ta8\n" \
1030 TEXT_SECTION_ASM_OP);