]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/xtensa/xtensa.h
tm.texi (TARGET_LEGITIMATE_ADDRESS_P): Refer mainly to this in the former documentati...
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.h
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Get Xtensa configuration settings */
23 #include "xtensa-config.h"
24
25 /* Standard GCC variables that we reference. */
26 extern int optimize;
27
28 /* External variables defined in xtensa.c. */
29
30 extern unsigned xtensa_current_frame_size;
31
32 /* Macros used in the machine description to select various Xtensa
33 configuration options. */
34 #ifndef XCHAL_HAVE_MUL32_HIGH
35 #define XCHAL_HAVE_MUL32_HIGH 0
36 #endif
37 #ifndef XCHAL_HAVE_RELEASE_SYNC
38 #define XCHAL_HAVE_RELEASE_SYNC 0
39 #endif
40 #ifndef XCHAL_HAVE_S32C1I
41 #define XCHAL_HAVE_S32C1I 0
42 #endif
43 #ifndef XCHAL_HAVE_THREADPTR
44 #define XCHAL_HAVE_THREADPTR 0
45 #endif
46 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
47 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
48 #define TARGET_MAC16 XCHAL_HAVE_MAC16
49 #define TARGET_MUL16 XCHAL_HAVE_MUL16
50 #define TARGET_MUL32 XCHAL_HAVE_MUL32
51 #define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
52 #define TARGET_DIV32 XCHAL_HAVE_DIV32
53 #define TARGET_NSA XCHAL_HAVE_NSA
54 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
55 #define TARGET_SEXT XCHAL_HAVE_SEXT
56 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
57 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
58 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
59 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
60 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
61 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
62 #define TARGET_ABS XCHAL_HAVE_ABS
63 #define TARGET_ADDX XCHAL_HAVE_ADDX
64 #define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
65 #define TARGET_S32C1I XCHAL_HAVE_S32C1I
66 #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
67 #define TARGET_THREADPTR XCHAL_HAVE_THREADPTR
68
69 #define TARGET_DEFAULT \
70 ((XCHAL_HAVE_L32R ? 0 : MASK_CONST16) | \
71 MASK_SERIALIZE_VOLATILE)
72
73 #ifndef HAVE_AS_TLS
74 #define HAVE_AS_TLS 0
75 #endif
76
77 #define OVERRIDE_OPTIONS override_options ()
78
79 /* Reordering blocks for Xtensa is not a good idea unless the compiler
80 understands the range of conditional branches. Currently all branch
81 relaxation for Xtensa is handled in the assembler, so GCC cannot do a
82 good job of reordering blocks. Do not enable reordering unless it is
83 explicitly requested. */
84 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
85 do \
86 { \
87 flag_reorder_blocks = 0; \
88 } \
89 while (0)
90
91 \f
92 /* Target CPU builtins. */
93 #define TARGET_CPU_CPP_BUILTINS() \
94 do { \
95 builtin_assert ("cpu=xtensa"); \
96 builtin_assert ("machine=xtensa"); \
97 builtin_define ("__xtensa__"); \
98 builtin_define ("__XTENSA__"); \
99 builtin_define ("__XTENSA_WINDOWED_ABI__"); \
100 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
101 if (!TARGET_HARD_FLOAT) \
102 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
103 } while (0)
104
105 #define CPP_SPEC " %(subtarget_cpp_spec) "
106
107 #ifndef SUBTARGET_CPP_SPEC
108 #define SUBTARGET_CPP_SPEC ""
109 #endif
110
111 #define EXTRA_SPECS \
112 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
113
114 #ifdef __XTENSA_EB__
115 #define LIBGCC2_WORDS_BIG_ENDIAN 1
116 #else
117 #define LIBGCC2_WORDS_BIG_ENDIAN 0
118 #endif
119
120 /* Show we can debug even without a frame pointer. */
121 #define CAN_DEBUG_WITHOUT_FP
122
123
124 /* Target machine storage layout */
125
126 /* Define this if most significant bit is lowest numbered
127 in instructions that operate on numbered bit-fields. */
128 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
129
130 /* Define this if most significant byte of a word is the lowest numbered. */
131 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
132
133 /* Define this if most significant word of a multiword number is the lowest. */
134 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
135
136 #define MAX_BITS_PER_WORD 32
137
138 /* Width of a word, in units (bytes). */
139 #define UNITS_PER_WORD 4
140 #define MIN_UNITS_PER_WORD 4
141
142 /* Width of a floating point register. */
143 #define UNITS_PER_FPREG 4
144
145 /* Size in bits of various types on the target machine. */
146 #define INT_TYPE_SIZE 32
147 #define SHORT_TYPE_SIZE 16
148 #define LONG_TYPE_SIZE 32
149 #define LONG_LONG_TYPE_SIZE 64
150 #define FLOAT_TYPE_SIZE 32
151 #define DOUBLE_TYPE_SIZE 64
152 #define LONG_DOUBLE_TYPE_SIZE 64
153
154 /* Allocation boundary (in *bits*) for storing pointers in memory. */
155 #define POINTER_BOUNDARY 32
156
157 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
158 #define PARM_BOUNDARY 32
159
160 /* Allocation boundary (in *bits*) for the code of a function. */
161 #define FUNCTION_BOUNDARY 32
162
163 /* Alignment of field after 'int : 0' in a structure. */
164 #define EMPTY_FIELD_BOUNDARY 32
165
166 /* Every structure's size must be a multiple of this. */
167 #define STRUCTURE_SIZE_BOUNDARY 8
168
169 /* There is no point aligning anything to a rounder boundary than this. */
170 #define BIGGEST_ALIGNMENT 128
171
172 /* Set this nonzero if move instructions will actually fail to work
173 when given unaligned data. */
174 #define STRICT_ALIGNMENT 1
175
176 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
177 for QImode, because there is no 8-bit load from memory with sign
178 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
179 loads both with and without sign extension. */
180 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
181 do { \
182 if (GET_MODE_CLASS (MODE) == MODE_INT \
183 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
184 { \
185 if ((MODE) == QImode) \
186 (UNSIGNEDP) = 1; \
187 (MODE) = SImode; \
188 } \
189 } while (0)
190
191 /* Imitate the way many other C compilers handle alignment of
192 bitfields and the structures that contain them. */
193 #define PCC_BITFIELD_TYPE_MATTERS 1
194
195 /* Disable the use of word-sized or smaller complex modes for structures,
196 and for function arguments in particular, where they cause problems with
197 register a7. The xtensa_copy_incoming_a7 function assumes that there is
198 a single reference to an argument in a7, but with small complex modes the
199 real and imaginary components may be extracted separately, leading to two
200 uses of the register, only one of which would be replaced. */
201 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
202 ((MODE) == CQImode || (MODE) == CHImode)
203
204 /* Align string constants and constructors to at least a word boundary.
205 The typical use of this macro is to increase alignment for string
206 constants to be word aligned so that 'strcpy' calls that copy
207 constants can be done inline. */
208 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
209 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
210 && (ALIGN) < BITS_PER_WORD \
211 ? BITS_PER_WORD \
212 : (ALIGN))
213
214 /* Align arrays, unions and records to at least a word boundary.
215 One use of this macro is to increase alignment of medium-size
216 data to make it all fit in fewer cache lines. Another is to
217 cause character arrays to be word-aligned so that 'strcpy' calls
218 that copy constants to character arrays can be done inline. */
219 #undef DATA_ALIGNMENT
220 #define DATA_ALIGNMENT(TYPE, ALIGN) \
221 ((((ALIGN) < BITS_PER_WORD) \
222 && (TREE_CODE (TYPE) == ARRAY_TYPE \
223 || TREE_CODE (TYPE) == UNION_TYPE \
224 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
225
226 /* Operations between registers always perform the operation
227 on the full register even if a narrower mode is specified. */
228 #define WORD_REGISTER_OPERATIONS
229
230 /* Xtensa loads are zero-extended by default. */
231 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
232
233 /* Standard register usage. */
234
235 /* Number of actual hardware registers.
236 The hardware registers are assigned numbers for the compiler
237 from 0 to just below FIRST_PSEUDO_REGISTER.
238 All registers that the compiler knows about must be given numbers,
239 even those that are not normally considered general registers.
240
241 The fake frame pointer and argument pointer will never appear in
242 the generated code, since they will always be eliminated and replaced
243 by either the stack pointer or the hard frame pointer.
244
245 0 - 15 AR[0] - AR[15]
246 16 FRAME_POINTER (fake = initial sp)
247 17 ARG_POINTER (fake = initial sp + framesize)
248 18 BR[0] for floating-point CC
249 19 - 34 FR[0] - FR[15]
250 35 MAC16 accumulator */
251
252 #define FIRST_PSEUDO_REGISTER 36
253
254 /* Return the stabs register number to use for REGNO. */
255 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
256
257 /* 1 for registers that have pervasive standard uses
258 and are not available for the register allocator. */
259 #define FIXED_REGISTERS \
260 { \
261 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
262 1, 1, 0, \
263 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
264 0, \
265 }
266
267 /* 1 for registers not available across function calls.
268 These must include the FIXED_REGISTERS and also any
269 registers that can be used without being saved.
270 The latter must include the registers where values are returned
271 and the register where structure-value addresses are passed.
272 Aside from that, you can include as many other registers as you like. */
273 #define CALL_USED_REGISTERS \
274 { \
275 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
276 1, 1, 1, \
277 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
278 1, \
279 }
280
281 /* For non-leaf procedures on Xtensa processors, the allocation order
282 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
283 want to use the lowest numbered registers first to minimize
284 register window overflows. However, local-alloc is not smart
285 enough to consider conflicts with incoming arguments. If an
286 incoming argument in a2 is live throughout the function and
287 local-alloc decides to use a2, then the incoming argument must
288 either be spilled or copied to another register. To get around
289 this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
290 reg_alloc_order for leaf functions such that lowest numbered
291 registers are used first with the exception that the incoming
292 argument registers are not used until after other register choices
293 have been exhausted. */
294
295 #define REG_ALLOC_ORDER \
296 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
297 18, \
298 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
299 0, 1, 16, 17, \
300 35, \
301 }
302
303 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
304
305 /* For Xtensa, the only point of this is to prevent GCC from otherwise
306 giving preference to call-used registers. To minimize window
307 overflows for the AR registers, we want to give preference to the
308 lower-numbered AR registers. For other register files, which are
309 not windowed, we still prefer call-used registers, if there are any. */
310 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
311 #define LEAF_REGISTERS xtensa_leaf_regs
312
313 /* For Xtensa, no remapping is necessary, but this macro must be
314 defined if LEAF_REGISTERS is defined. */
315 #define LEAF_REG_REMAP(REGNO) (REGNO)
316
317 /* This must be declared if LEAF_REGISTERS is set. */
318 extern int leaf_function;
319
320 /* Internal macros to classify a register number. */
321
322 /* 16 address registers + fake registers */
323 #define GP_REG_FIRST 0
324 #define GP_REG_LAST 17
325 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
326
327 /* Coprocessor registers */
328 #define BR_REG_FIRST 18
329 #define BR_REG_LAST 18
330 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
331
332 /* 16 floating-point registers */
333 #define FP_REG_FIRST 19
334 #define FP_REG_LAST 34
335 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
336
337 /* MAC16 accumulator */
338 #define ACC_REG_FIRST 35
339 #define ACC_REG_LAST 35
340 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
341
342 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
343 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
344 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
345 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
346
347 /* Return number of consecutive hard regs needed starting at reg REGNO
348 to hold something of mode MODE. */
349 #define HARD_REGNO_NREGS(REGNO, MODE) \
350 (FP_REG_P (REGNO) ? \
351 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
352 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
353
354 /* Value is 1 if hard register REGNO can hold a value of machine-mode
355 MODE. */
356 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
357
358 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
359 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
360
361 /* Value is 1 if it is a good idea to tie two pseudo registers
362 when one has mode MODE1 and one has mode MODE2.
363 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
364 for any hard reg, then this must be 0 for correct output. */
365 #define MODES_TIEABLE_P(MODE1, MODE2) \
366 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
367 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
368 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
369 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
370
371 /* Register to use for pushing function arguments. */
372 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
373
374 /* Base register for access to local variables of the function. */
375 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
376
377 /* The register number of the frame pointer register, which is used to
378 access automatic variables in the stack frame. For Xtensa, this
379 register never appears in the output. It is always eliminated to
380 either the stack pointer or the hard frame pointer. */
381 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
382
383 /* Value should be nonzero if functions must have frame pointers.
384 Zero means the frame pointer need not be set up (and parms
385 may be accessed via the stack pointer) in functions that seem suitable.
386 This is computed in 'reload', in reload1.c. */
387 #define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
388
389 /* Base register for access to arguments of the function. */
390 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
391
392 /* If the static chain is passed in memory, these macros provide rtx
393 giving 'mem' expressions that denote where they are stored.
394 'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
395 seen by the calling and called functions, respectively. */
396
397 #define STATIC_CHAIN \
398 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
399
400 #define STATIC_CHAIN_INCOMING \
401 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
402
403 /* For now we don't try to use the full set of boolean registers. Without
404 software pipelining of FP operations, there's not much to gain and it's
405 a real pain to get them reloaded. */
406 #define FPCC_REGNUM (BR_REG_FIRST + 0)
407
408 /* It is as good or better to call a constant function address than to
409 call an address kept in a register. */
410 #define NO_FUNCTION_CSE 1
411
412 /* Xtensa processors have "register windows". GCC does not currently
413 take advantage of the possibility for variable-sized windows; instead,
414 we use a fixed window size of 8. */
415
416 #define INCOMING_REGNO(OUT) \
417 ((GP_REG_P (OUT) && \
418 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
419 (OUT) - WINDOW_SIZE : (OUT))
420
421 #define OUTGOING_REGNO(IN) \
422 ((GP_REG_P (IN) && \
423 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
424 (IN) + WINDOW_SIZE : (IN))
425
426
427 /* Define the classes of registers for register constraints in the
428 machine description. */
429 enum reg_class
430 {
431 NO_REGS, /* no registers in set */
432 BR_REGS, /* coprocessor boolean registers */
433 FP_REGS, /* floating point registers */
434 ACC_REG, /* MAC16 accumulator */
435 SP_REG, /* sp register (aka a1) */
436 RL_REGS, /* preferred reload regs (not sp or fp) */
437 GR_REGS, /* integer registers except sp */
438 AR_REGS, /* all integer registers */
439 ALL_REGS, /* all registers */
440 LIM_REG_CLASSES /* max value + 1 */
441 };
442
443 #define N_REG_CLASSES (int) LIM_REG_CLASSES
444
445 #define GENERAL_REGS AR_REGS
446
447 /* An initializer containing the names of the register classes as C
448 string constants. These names are used in writing some of the
449 debugging dumps. */
450 #define REG_CLASS_NAMES \
451 { \
452 "NO_REGS", \
453 "BR_REGS", \
454 "FP_REGS", \
455 "ACC_REG", \
456 "SP_REG", \
457 "RL_REGS", \
458 "GR_REGS", \
459 "AR_REGS", \
460 "ALL_REGS" \
461 }
462
463 /* Contents of the register classes. The Nth integer specifies the
464 contents of class N. The way the integer MASK is interpreted is
465 that register R is in the class if 'MASK & (1 << R)' is 1. */
466 #define REG_CLASS_CONTENTS \
467 { \
468 { 0x00000000, 0x00000000 }, /* no registers */ \
469 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
470 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
471 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
472 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
473 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
474 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
475 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
476 { 0xffffffff, 0x0000000f } /* all registers */ \
477 }
478
479 #define IRA_COVER_CLASSES \
480 { \
481 BR_REGS, FP_REGS, ACC_REG, AR_REGS, LIM_REG_CLASSES \
482 }
483
484 /* A C expression whose value is a register class containing hard
485 register REGNO. In general there is more that one such class;
486 choose a class which is "minimal", meaning that no smaller class
487 also contains the register. */
488 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
489
490 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
491
492 /* Use the Xtensa AR register file for base registers.
493 No index registers. */
494 #define BASE_REG_CLASS AR_REGS
495 #define INDEX_REG_CLASS NO_REGS
496
497 /* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
498 16 AR registers may be explicitly used in the RTL, as either
499 incoming or outgoing arguments. */
500 #define SMALL_REGISTER_CLASSES 1
501
502 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
503 xtensa_preferred_reload_class (X, CLASS, 0)
504
505 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
506 xtensa_preferred_reload_class (X, CLASS, 1)
507
508 /* Return the maximum number of consecutive registers
509 needed to represent mode MODE in a register of class CLASS. */
510 #define CLASS_UNITS(mode, size) \
511 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
512
513 #define CLASS_MAX_NREGS(CLASS, MODE) \
514 (CLASS_UNITS (MODE, UNITS_PER_WORD))
515
516
517 /* Stack layout; function entry, exit and calling. */
518
519 #define STACK_GROWS_DOWNWARD
520
521 /* Offset within stack frame to start allocating local variables at. */
522 #define STARTING_FRAME_OFFSET \
523 crtl->outgoing_args_size
524
525 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
526 they are eliminated to either the stack pointer or hard frame pointer. */
527 #define ELIMINABLE_REGS \
528 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
529 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
530 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
531 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
532
533 #define CAN_ELIMINATE(FROM, TO) 1
534
535 /* Specify the initial difference between the specified pair of registers. */
536 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
537 do { \
538 compute_frame_size (get_frame_size ()); \
539 switch (FROM) \
540 { \
541 case FRAME_POINTER_REGNUM: \
542 (OFFSET) = 0; \
543 break; \
544 case ARG_POINTER_REGNUM: \
545 (OFFSET) = xtensa_current_frame_size; \
546 break; \
547 default: \
548 gcc_unreachable (); \
549 } \
550 } while (0)
551
552 /* If defined, the maximum amount of space required for outgoing
553 arguments will be computed and placed into the variable
554 'crtl->outgoing_args_size'. No space will be pushed
555 onto the stack for each call; instead, the function prologue
556 should increase the stack frame size by this amount. */
557 #define ACCUMULATE_OUTGOING_ARGS 1
558
559 /* Offset from the argument pointer register to the first argument's
560 address. On some machines it may depend on the data type of the
561 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
562 location above the first argument's address. */
563 #define FIRST_PARM_OFFSET(FNDECL) 0
564
565 /* Align stack frames on 128 bits for Xtensa. This is necessary for
566 128-bit datatypes defined in TIE (e.g., for Vectra). */
567 #define STACK_BOUNDARY 128
568
569 /* Functions do not pop arguments off the stack. */
570 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
571
572 /* Use a fixed register window size of 8. */
573 #define WINDOW_SIZE 8
574
575 /* Symbolic macros for the registers used to return integer, floating
576 point, and values of coprocessor and user-defined modes. */
577 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
578 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
579
580 /* Symbolic macros for the first/last argument registers. */
581 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
582 #define GP_ARG_LAST (GP_REG_FIRST + 7)
583 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
584 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
585
586 #define MAX_ARGS_IN_REGISTERS 6
587
588 /* Don't worry about compatibility with PCC. */
589 #define DEFAULT_PCC_STRUCT_RETURN 0
590
591 /* Define how to find the value returned by a library function
592 assuming the value has mode MODE. Because we have defined
593 TARGET_PROMOTE_FUNCTION_RETURN that returns true, we have to
594 perform the same promotions as PROMOTE_MODE. */
595 #define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
596 gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
597 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
598 ? SImode : (MODE), \
599 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
600
601 #define LIBCALL_VALUE(MODE) \
602 XTENSA_LIBCALL_VALUE ((MODE), 0)
603
604 #define LIBCALL_OUTGOING_VALUE(MODE) \
605 XTENSA_LIBCALL_VALUE ((MODE), 1)
606
607 /* A C expression that is nonzero if REGNO is the number of a hard
608 register in which the values of called function may come back. A
609 register whose use for returning values is limited to serving as
610 the second of a pair (for a value of type 'double', say) need not
611 be recognized by this macro. If the machine has register windows,
612 so that the caller and the called function use different registers
613 for the return value, this macro should recognize only the caller's
614 register numbers. */
615 #define FUNCTION_VALUE_REGNO_P(N) \
616 ((N) == GP_RETURN)
617
618 /* A C expression that is nonzero if REGNO is the number of a hard
619 register in which function arguments are sometimes passed. This
620 does *not* include implicit arguments such as the static chain and
621 the structure-value address. On many machines, no registers can be
622 used for this purpose since all function arguments are pushed on
623 the stack. */
624 #define FUNCTION_ARG_REGNO_P(N) \
625 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
626
627 /* Record the number of argument words seen so far, along with a flag to
628 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
629 is used for both incoming and outgoing args, so a separate flag is
630 needed. */
631 typedef struct xtensa_args
632 {
633 int arg_words;
634 int incoming;
635 } CUMULATIVE_ARGS;
636
637 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
638 init_cumulative_args (&CUM, 0)
639
640 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
641 init_cumulative_args (&CUM, 1)
642
643 /* Update the data in CUM to advance over an argument
644 of mode MODE and data type TYPE.
645 (TYPE is null for libcalls where that information may not be available.) */
646 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
647 function_arg_advance (&CUM, MODE, TYPE)
648
649 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
650 function_arg (&CUM, MODE, TYPE, FALSE)
651
652 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
653 function_arg (&CUM, MODE, TYPE, TRUE)
654
655 #define FUNCTION_ARG_BOUNDARY function_arg_boundary
656
657 /* Profiling Xtensa code is typically done with the built-in profiling
658 feature of Tensilica's instruction set simulator, which does not
659 require any compiler support. Profiling code on a real (i.e.,
660 non-simulated) Xtensa processor is currently only supported by
661 GNU/Linux with glibc. The glibc version of _mcount doesn't require
662 counter variables. The _mcount function needs the current PC and
663 the current return address to identify an arc in the call graph.
664 Pass the current return address as the first argument; the current
665 PC is available as a0 in _mcount's register window. Both of these
666 values contain window size information in the two most significant
667 bits; we assume that _mcount will mask off those bits. The call to
668 _mcount uses a window size of 8 to make sure that it doesn't clobber
669 any incoming argument values. */
670
671 #define NO_PROFILE_COUNTERS 1
672
673 #define FUNCTION_PROFILER(FILE, LABELNO) \
674 do { \
675 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
676 if (flag_pic) \
677 { \
678 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
679 fprintf (FILE, "\tcallx8\ta8\n"); \
680 } \
681 else \
682 fprintf (FILE, "\tcall8\t_mcount\n"); \
683 } while (0)
684
685 /* Stack pointer value doesn't matter at exit. */
686 #define EXIT_IGNORE_STACK 1
687
688 #define TRAMPOLINE_TEMPLATE(STREAM) xtensa_trampoline_template (STREAM)
689
690 /* Size in bytes of the trampoline, as an integer. Make sure this is
691 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
692 #define TRAMPOLINE_SIZE (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? 60 : 52)
693
694 /* Alignment required for trampolines, in bits. */
695 #define TRAMPOLINE_ALIGNMENT 32
696
697 /* A C statement to initialize the variable parts of a trampoline. */
698 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
699 xtensa_initialize_trampoline (ADDR, FUNC, CHAIN)
700
701
702 /* If defined, a C expression that produces the machine-specific code
703 to setup the stack so that arbitrary frames can be accessed.
704
705 On Xtensa, a stack back-trace must always begin from the stack pointer,
706 so that the register overflow save area can be located. However, the
707 stack-walking code in GCC always begins from the hard_frame_pointer
708 register, not the stack pointer. The frame pointer is usually equal
709 to the stack pointer, but the __builtin_return_address and
710 __builtin_frame_address functions will not work if count > 0 and
711 they are called from a routine that uses alloca. These functions
712 are not guaranteed to work at all if count > 0 so maybe that is OK.
713
714 A nicer solution would be to allow the architecture-specific files to
715 specify whether to start from the stack pointer or frame pointer. That
716 would also allow us to skip the machine->accesses_prev_frame stuff that
717 we currently need to ensure that there is a frame pointer when these
718 builtin functions are used. */
719
720 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
721
722 /* A C expression whose value is RTL representing the address in a
723 stack frame where the pointer to the caller's frame is stored.
724 Assume that FRAMEADDR is an RTL expression for the address of the
725 stack frame itself.
726
727 For Xtensa, there is no easy way to get the frame pointer if it is
728 not equivalent to the stack pointer. Moreover, the result of this
729 macro is used for continuing to walk back up the stack, so it must
730 return the stack pointer address. Thus, there is some inconsistency
731 here in that __builtin_frame_address will return the frame pointer
732 when count == 0 and the stack pointer when count > 0. */
733
734 #define DYNAMIC_CHAIN_ADDRESS(frame) \
735 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
736
737 /* Define this if the return address of a particular stack frame is
738 accessed from the frame pointer of the previous stack frame. */
739 #define RETURN_ADDR_IN_PREVIOUS_FRAME
740
741 /* A C expression whose value is RTL representing the value of the
742 return address for the frame COUNT steps up from the current
743 frame, after the prologue. */
744 #define RETURN_ADDR_RTX xtensa_return_addr
745
746 /* Addressing modes, and classification of registers for them. */
747
748 /* C expressions which are nonzero if register number NUM is suitable
749 for use as a base or index register in operand addresses. */
750
751 #define REGNO_OK_FOR_INDEX_P(NUM) 0
752 #define REGNO_OK_FOR_BASE_P(NUM) \
753 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
754
755 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
756 valid for use as a base or index register. */
757
758 #ifdef REG_OK_STRICT
759 #define REG_OK_STRICT_FLAG 1
760 #else
761 #define REG_OK_STRICT_FLAG 0
762 #endif
763
764 #define BASE_REG_P(X, STRICT) \
765 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
766 || REGNO_OK_FOR_BASE_P (REGNO (X)))
767
768 #define REG_OK_FOR_INDEX_P(X) 0
769 #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
770
771 /* Maximum number of registers that can appear in a valid memory address. */
772 #define MAX_REGS_PER_ADDRESS 1
773
774 /* A C expression that is 1 if the RTX X is a constant which is a
775 valid address. This is defined to be the same as 'CONSTANT_P (X)',
776 but rejecting CONST_DOUBLE. */
777 #define CONSTANT_ADDRESS_P(X) \
778 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
779 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
780 || (GET_CODE (X) == CONST)))
781
782 /* Nonzero if the constant value X is a legitimate general operand.
783 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
784 #define LEGITIMATE_CONSTANT_P(X) (! xtensa_tls_referenced_p (X))
785
786 /* A C expression that is nonzero if X is a legitimate immediate
787 operand on the target machine when generating position independent
788 code. */
789 #define LEGITIMATE_PIC_OPERAND_P(X) \
790 ((GET_CODE (X) != SYMBOL_REF \
791 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
792 && GET_CODE (X) != LABEL_REF \
793 && GET_CODE (X) != CONST)
794
795 /* Treat constant-pool references as "mode dependent" since they can
796 only be accessed with SImode loads. This works around a bug in the
797 combiner where a constant pool reference is temporarily converted
798 to an HImode load, which is then assumed to zero-extend based on
799 our definition of LOAD_EXTEND_OP. This is wrong because the high
800 bits of a 16-bit value in the constant pool are now sign-extended
801 by default. */
802
803 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
804 do { \
805 if (constantpool_address_p (ADDR)) \
806 goto LABEL; \
807 } while (0)
808
809 /* Specify the machine mode that this machine uses
810 for the index in the tablejump instruction. */
811 #define CASE_VECTOR_MODE (SImode)
812
813 /* Define this as 1 if 'char' should by default be signed; else as 0. */
814 #define DEFAULT_SIGNED_CHAR 0
815
816 /* Max number of bytes we can move from memory to memory
817 in one reasonably fast instruction. */
818 #define MOVE_MAX 4
819 #define MAX_MOVE_MAX 4
820
821 /* Prefer word-sized loads. */
822 #define SLOW_BYTE_ACCESS 1
823
824 /* Shift instructions ignore all but the low-order few bits. */
825 #define SHIFT_COUNT_TRUNCATED 1
826
827 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
828 is done just by pretending it is already truncated. */
829 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
830
831 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
832 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
833
834 /* Specify the machine mode that pointers have.
835 After generation of rtl, the compiler makes no further distinction
836 between pointers and any other objects of this machine mode. */
837 #define Pmode SImode
838
839 /* A function address in a call instruction is a word address (for
840 indexing purposes) so give the MEM rtx a words's mode. */
841 #define FUNCTION_MODE SImode
842
843 /* A C expression for the cost of moving data from a register in
844 class FROM to one in class TO. The classes are expressed using
845 the enumeration values such as 'GENERAL_REGS'. A value of 2 is
846 the default; other values are interpreted relative to that. */
847 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
848 (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
849 ? 2 \
850 : (reg_class_subset_p ((FROM), AR_REGS) \
851 && reg_class_subset_p ((TO), AR_REGS) \
852 ? 2 \
853 : (reg_class_subset_p ((FROM), AR_REGS) \
854 && (TO) == ACC_REG \
855 ? 3 \
856 : ((FROM) == ACC_REG \
857 && reg_class_subset_p ((TO), AR_REGS) \
858 ? 3 \
859 : 10))))
860
861 #define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
862
863 #define BRANCH_COST(speed_p, predictable_p) 3
864
865 /* How to refer to registers in assembler output.
866 This sequence is indexed by compiler's hard-register-number (see above). */
867 #define REGISTER_NAMES \
868 { \
869 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
870 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
871 "fp", "argp", "b0", \
872 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
873 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
874 "acc" \
875 }
876
877 /* If defined, a C initializer for an array of structures containing a
878 name and a register number. This macro defines additional names
879 for hard registers, thus allowing the 'asm' option in declarations
880 to refer to registers using alternate names. */
881 #define ADDITIONAL_REGISTER_NAMES \
882 { \
883 { "a1", 1 + GP_REG_FIRST } \
884 }
885
886 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
887 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
888
889 /* Recognize machine-specific patterns that may appear within
890 constants. Used for PIC-specific UNSPECs. */
891 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
892 do { \
893 if (xtensa_output_addr_const_extra (STREAM, X) == FALSE) \
894 goto FAIL; \
895 } while (0)
896
897 /* Globalizing directive for a label. */
898 #define GLOBAL_ASM_OP "\t.global\t"
899
900 /* Declare an uninitialized external linkage data object. */
901 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
902 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
903
904 /* This is how to output an element of a case-vector that is absolute. */
905 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
906 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
907 LOCAL_LABEL_PREFIX, VALUE)
908
909 /* This is how to output an element of a case-vector that is relative.
910 This is used for pc-relative code. */
911 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
912 do { \
913 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
914 LOCAL_LABEL_PREFIX, (VALUE), \
915 LOCAL_LABEL_PREFIX, (REL)); \
916 } while (0)
917
918 /* This is how to output an assembler line that says to advance the
919 location counter to a multiple of 2**LOG bytes. */
920 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
921 do { \
922 if ((LOG) != 0) \
923 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
924 } while (0)
925
926 /* Indicate that jump tables go in the text section. This is
927 necessary when compiling PIC code. */
928 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
929
930
931 /* Define the strings to put out for each section in the object file. */
932 #define TEXT_SECTION_ASM_OP "\t.text"
933 #define DATA_SECTION_ASM_OP "\t.data"
934 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
935
936
937 /* Define output to appear before the constant pool. */
938 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
939 do { \
940 if ((SIZE) > 0) \
941 { \
942 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
943 switch_to_section (function_section (FUNDECL)); \
944 fprintf (FILE, "\t.literal_position\n"); \
945 } \
946 } while (0)
947
948
949 /* A C statement (with or without semicolon) to output a constant in
950 the constant pool, if it needs special treatment. */
951 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
952 do { \
953 xtensa_output_literal (FILE, X, MODE, LABELNO); \
954 goto JUMPTO; \
955 } while (0)
956
957 /* How to start an assembler comment. */
958 #define ASM_COMMENT_START "#"
959
960 /* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
961 machinery, but the variable size register window save areas are too
962 complicated to efficiently describe with CFI entries. The CFA must
963 still be specified in DWARF so that DW_AT_frame_base is set correctly
964 for debugging. */
965 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
966 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
967 #define DWARF_FRAME_REGISTERS 16
968 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
969 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
970 (flag_pic \
971 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
972 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
973 : DW_EH_PE_absptr)
974
975 /* Emit a PC-relative relocation. */
976 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
977 do { \
978 fputs (integer_asm_op (SIZE, FALSE), FILE); \
979 assemble_name (FILE, LABEL); \
980 fputs ("@pcrel", FILE); \
981 } while (0)
982
983 /* Xtensa constant pool breaks the devices in crtstuff.c to control
984 section in where code resides. We have to write it as asm code. Use
985 a MOVI and let the assembler relax it -- for the .init and .fini
986 sections, the assembler knows to put the literal in the right
987 place. */
988 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
989 asm (SECTION_OP "\n\
990 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
991 callx8\ta8\n" \
992 TEXT_SECTION_ASM_OP);