]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/xtensa/xtensa.h
xtensa.h (FUNCTION_OUTGOING_VALUE, [...]): Remove.
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.h
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Get Xtensa configuration settings */
23 #include "xtensa-config.h"
24
25 /* Standard GCC variables that we reference. */
26 extern int optimize;
27
28 /* External variables defined in xtensa.c. */
29
30 /* comparison type */
31 enum cmp_type {
32 CMP_SI, /* four byte integers */
33 CMP_DI, /* eight byte integers */
34 CMP_SF, /* single precision floats */
35 CMP_DF, /* double precision floats */
36 CMP_MAX /* max comparison type */
37 };
38
39 extern struct rtx_def * branch_cmp[2]; /* operands for compare */
40 extern enum cmp_type branch_type; /* what type of branch to use */
41 extern unsigned xtensa_current_frame_size;
42
43 /* Macros used in the machine description to select various Xtensa
44 configuration options. */
45 #ifndef XCHAL_HAVE_MUL32_HIGH
46 #define XCHAL_HAVE_MUL32_HIGH 0
47 #endif
48 #ifndef XCHAL_HAVE_RELEASE_SYNC
49 #define XCHAL_HAVE_RELEASE_SYNC 0
50 #endif
51 #ifndef XCHAL_HAVE_S32C1I
52 #define XCHAL_HAVE_S32C1I 0
53 #endif
54 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
55 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
56 #define TARGET_MAC16 XCHAL_HAVE_MAC16
57 #define TARGET_MUL16 XCHAL_HAVE_MUL16
58 #define TARGET_MUL32 XCHAL_HAVE_MUL32
59 #define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
60 #define TARGET_DIV32 XCHAL_HAVE_DIV32
61 #define TARGET_NSA XCHAL_HAVE_NSA
62 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
63 #define TARGET_SEXT XCHAL_HAVE_SEXT
64 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
65 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
66 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
67 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
68 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
69 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
70 #define TARGET_ABS XCHAL_HAVE_ABS
71 #define TARGET_ADDX XCHAL_HAVE_ADDX
72 #define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
73 #define TARGET_S32C1I XCHAL_HAVE_S32C1I
74 #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
75
76 #define TARGET_DEFAULT \
77 ((XCHAL_HAVE_L32R ? 0 : MASK_CONST16) | \
78 MASK_SERIALIZE_VOLATILE)
79
80 #define OVERRIDE_OPTIONS override_options ()
81
82 /* Reordering blocks for Xtensa is not a good idea unless the compiler
83 understands the range of conditional branches. Currently all branch
84 relaxation for Xtensa is handled in the assembler, so GCC cannot do a
85 good job of reordering blocks. Do not enable reordering unless it is
86 explicitly requested. */
87 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
88 do \
89 { \
90 flag_reorder_blocks = 0; \
91 } \
92 while (0)
93
94 \f
95 /* Target CPU builtins. */
96 #define TARGET_CPU_CPP_BUILTINS() \
97 do { \
98 builtin_assert ("cpu=xtensa"); \
99 builtin_assert ("machine=xtensa"); \
100 builtin_define ("__xtensa__"); \
101 builtin_define ("__XTENSA__"); \
102 builtin_define ("__XTENSA_WINDOWED_ABI__"); \
103 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
104 if (!TARGET_HARD_FLOAT) \
105 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
106 } while (0)
107
108 #define CPP_SPEC " %(subtarget_cpp_spec) "
109
110 #ifndef SUBTARGET_CPP_SPEC
111 #define SUBTARGET_CPP_SPEC ""
112 #endif
113
114 #define EXTRA_SPECS \
115 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
116
117 #ifdef __XTENSA_EB__
118 #define LIBGCC2_WORDS_BIG_ENDIAN 1
119 #else
120 #define LIBGCC2_WORDS_BIG_ENDIAN 0
121 #endif
122
123 /* Show we can debug even without a frame pointer. */
124 #define CAN_DEBUG_WITHOUT_FP
125
126
127 /* Target machine storage layout */
128
129 /* Define this if most significant bit is lowest numbered
130 in instructions that operate on numbered bit-fields. */
131 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
132
133 /* Define this if most significant byte of a word is the lowest numbered. */
134 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
135
136 /* Define this if most significant word of a multiword number is the lowest. */
137 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
138
139 #define MAX_BITS_PER_WORD 32
140
141 /* Width of a word, in units (bytes). */
142 #define UNITS_PER_WORD 4
143 #define MIN_UNITS_PER_WORD 4
144
145 /* Width of a floating point register. */
146 #define UNITS_PER_FPREG 4
147
148 /* Size in bits of various types on the target machine. */
149 #define INT_TYPE_SIZE 32
150 #define SHORT_TYPE_SIZE 16
151 #define LONG_TYPE_SIZE 32
152 #define LONG_LONG_TYPE_SIZE 64
153 #define FLOAT_TYPE_SIZE 32
154 #define DOUBLE_TYPE_SIZE 64
155 #define LONG_DOUBLE_TYPE_SIZE 64
156
157 /* Allocation boundary (in *bits*) for storing pointers in memory. */
158 #define POINTER_BOUNDARY 32
159
160 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
161 #define PARM_BOUNDARY 32
162
163 /* Allocation boundary (in *bits*) for the code of a function. */
164 #define FUNCTION_BOUNDARY 32
165
166 /* Alignment of field after 'int : 0' in a structure. */
167 #define EMPTY_FIELD_BOUNDARY 32
168
169 /* Every structure's size must be a multiple of this. */
170 #define STRUCTURE_SIZE_BOUNDARY 8
171
172 /* There is no point aligning anything to a rounder boundary than this. */
173 #define BIGGEST_ALIGNMENT 128
174
175 /* Set this nonzero if move instructions will actually fail to work
176 when given unaligned data. */
177 #define STRICT_ALIGNMENT 1
178
179 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
180 for QImode, because there is no 8-bit load from memory with sign
181 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
182 loads both with and without sign extension. */
183 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
184 do { \
185 if (GET_MODE_CLASS (MODE) == MODE_INT \
186 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
187 { \
188 if ((MODE) == QImode) \
189 (UNSIGNEDP) = 1; \
190 (MODE) = SImode; \
191 } \
192 } while (0)
193
194 /* Imitate the way many other C compilers handle alignment of
195 bitfields and the structures that contain them. */
196 #define PCC_BITFIELD_TYPE_MATTERS 1
197
198 /* Disable the use of word-sized or smaller complex modes for structures,
199 and for function arguments in particular, where they cause problems with
200 register a7. The xtensa_copy_incoming_a7 function assumes that there is
201 a single reference to an argument in a7, but with small complex modes the
202 real and imaginary components may be extracted separately, leading to two
203 uses of the register, only one of which would be replaced. */
204 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
205 ((MODE) == CQImode || (MODE) == CHImode)
206
207 /* Align string constants and constructors to at least a word boundary.
208 The typical use of this macro is to increase alignment for string
209 constants to be word aligned so that 'strcpy' calls that copy
210 constants can be done inline. */
211 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
212 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
213 && (ALIGN) < BITS_PER_WORD \
214 ? BITS_PER_WORD \
215 : (ALIGN))
216
217 /* Align arrays, unions and records to at least a word boundary.
218 One use of this macro is to increase alignment of medium-size
219 data to make it all fit in fewer cache lines. Another is to
220 cause character arrays to be word-aligned so that 'strcpy' calls
221 that copy constants to character arrays can be done inline. */
222 #undef DATA_ALIGNMENT
223 #define DATA_ALIGNMENT(TYPE, ALIGN) \
224 ((((ALIGN) < BITS_PER_WORD) \
225 && (TREE_CODE (TYPE) == ARRAY_TYPE \
226 || TREE_CODE (TYPE) == UNION_TYPE \
227 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
228
229 /* Operations between registers always perform the operation
230 on the full register even if a narrower mode is specified. */
231 #define WORD_REGISTER_OPERATIONS
232
233 /* Xtensa loads are zero-extended by default. */
234 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
235
236 /* Standard register usage. */
237
238 /* Number of actual hardware registers.
239 The hardware registers are assigned numbers for the compiler
240 from 0 to just below FIRST_PSEUDO_REGISTER.
241 All registers that the compiler knows about must be given numbers,
242 even those that are not normally considered general registers.
243
244 The fake frame pointer and argument pointer will never appear in
245 the generated code, since they will always be eliminated and replaced
246 by either the stack pointer or the hard frame pointer.
247
248 0 - 15 AR[0] - AR[15]
249 16 FRAME_POINTER (fake = initial sp)
250 17 ARG_POINTER (fake = initial sp + framesize)
251 18 BR[0] for floating-point CC
252 19 - 34 FR[0] - FR[15]
253 35 MAC16 accumulator */
254
255 #define FIRST_PSEUDO_REGISTER 36
256
257 /* Return the stabs register number to use for REGNO. */
258 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
259
260 /* 1 for registers that have pervasive standard uses
261 and are not available for the register allocator. */
262 #define FIXED_REGISTERS \
263 { \
264 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
265 1, 1, 0, \
266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
267 0, \
268 }
269
270 /* 1 for registers not available across function calls.
271 These must include the FIXED_REGISTERS and also any
272 registers that can be used without being saved.
273 The latter must include the registers where values are returned
274 and the register where structure-value addresses are passed.
275 Aside from that, you can include as many other registers as you like. */
276 #define CALL_USED_REGISTERS \
277 { \
278 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
279 1, 1, 1, \
280 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
281 1, \
282 }
283
284 /* For non-leaf procedures on Xtensa processors, the allocation order
285 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
286 want to use the lowest numbered registers first to minimize
287 register window overflows. However, local-alloc is not smart
288 enough to consider conflicts with incoming arguments. If an
289 incoming argument in a2 is live throughout the function and
290 local-alloc decides to use a2, then the incoming argument must
291 either be spilled or copied to another register. To get around
292 this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
293 reg_alloc_order for leaf functions such that lowest numbered
294 registers are used first with the exception that the incoming
295 argument registers are not used until after other register choices
296 have been exhausted. */
297
298 #define REG_ALLOC_ORDER \
299 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
300 18, \
301 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
302 0, 1, 16, 17, \
303 35, \
304 }
305
306 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
307
308 /* For Xtensa, the only point of this is to prevent GCC from otherwise
309 giving preference to call-used registers. To minimize window
310 overflows for the AR registers, we want to give preference to the
311 lower-numbered AR registers. For other register files, which are
312 not windowed, we still prefer call-used registers, if there are any. */
313 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
314 #define LEAF_REGISTERS xtensa_leaf_regs
315
316 /* For Xtensa, no remapping is necessary, but this macro must be
317 defined if LEAF_REGISTERS is defined. */
318 #define LEAF_REG_REMAP(REGNO) (REGNO)
319
320 /* This must be declared if LEAF_REGISTERS is set. */
321 extern int leaf_function;
322
323 /* Internal macros to classify a register number. */
324
325 /* 16 address registers + fake registers */
326 #define GP_REG_FIRST 0
327 #define GP_REG_LAST 17
328 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
329
330 /* Coprocessor registers */
331 #define BR_REG_FIRST 18
332 #define BR_REG_LAST 18
333 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
334
335 /* 16 floating-point registers */
336 #define FP_REG_FIRST 19
337 #define FP_REG_LAST 34
338 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
339
340 /* MAC16 accumulator */
341 #define ACC_REG_FIRST 35
342 #define ACC_REG_LAST 35
343 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
344
345 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
346 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
347 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
348 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
349
350 /* Return number of consecutive hard regs needed starting at reg REGNO
351 to hold something of mode MODE. */
352 #define HARD_REGNO_NREGS(REGNO, MODE) \
353 (FP_REG_P (REGNO) ? \
354 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
355 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
356
357 /* Value is 1 if hard register REGNO can hold a value of machine-mode
358 MODE. */
359 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
360
361 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
362 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
363
364 /* Value is 1 if it is a good idea to tie two pseudo registers
365 when one has mode MODE1 and one has mode MODE2.
366 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
367 for any hard reg, then this must be 0 for correct output. */
368 #define MODES_TIEABLE_P(MODE1, MODE2) \
369 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
370 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
371 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
372 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
373
374 /* Register to use for pushing function arguments. */
375 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
376
377 /* Base register for access to local variables of the function. */
378 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
379
380 /* The register number of the frame pointer register, which is used to
381 access automatic variables in the stack frame. For Xtensa, this
382 register never appears in the output. It is always eliminated to
383 either the stack pointer or the hard frame pointer. */
384 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
385
386 /* Value should be nonzero if functions must have frame pointers.
387 Zero means the frame pointer need not be set up (and parms
388 may be accessed via the stack pointer) in functions that seem suitable.
389 This is computed in 'reload', in reload1.c. */
390 #define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
391
392 /* Base register for access to arguments of the function. */
393 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
394
395 /* If the static chain is passed in memory, these macros provide rtx
396 giving 'mem' expressions that denote where they are stored.
397 'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
398 seen by the calling and called functions, respectively. */
399
400 #define STATIC_CHAIN \
401 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
402
403 #define STATIC_CHAIN_INCOMING \
404 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
405
406 /* For now we don't try to use the full set of boolean registers. Without
407 software pipelining of FP operations, there's not much to gain and it's
408 a real pain to get them reloaded. */
409 #define FPCC_REGNUM (BR_REG_FIRST + 0)
410
411 /* It is as good or better to call a constant function address than to
412 call an address kept in a register. */
413 #define NO_FUNCTION_CSE 1
414
415 /* Xtensa processors have "register windows". GCC does not currently
416 take advantage of the possibility for variable-sized windows; instead,
417 we use a fixed window size of 8. */
418
419 #define INCOMING_REGNO(OUT) \
420 ((GP_REG_P (OUT) && \
421 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
422 (OUT) - WINDOW_SIZE : (OUT))
423
424 #define OUTGOING_REGNO(IN) \
425 ((GP_REG_P (IN) && \
426 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
427 (IN) + WINDOW_SIZE : (IN))
428
429
430 /* Define the classes of registers for register constraints in the
431 machine description. */
432 enum reg_class
433 {
434 NO_REGS, /* no registers in set */
435 BR_REGS, /* coprocessor boolean registers */
436 FP_REGS, /* floating point registers */
437 ACC_REG, /* MAC16 accumulator */
438 SP_REG, /* sp register (aka a1) */
439 RL_REGS, /* preferred reload regs (not sp or fp) */
440 GR_REGS, /* integer registers except sp */
441 AR_REGS, /* all integer registers */
442 ALL_REGS, /* all registers */
443 LIM_REG_CLASSES /* max value + 1 */
444 };
445
446 #define N_REG_CLASSES (int) LIM_REG_CLASSES
447
448 #define GENERAL_REGS AR_REGS
449
450 /* An initializer containing the names of the register classes as C
451 string constants. These names are used in writing some of the
452 debugging dumps. */
453 #define REG_CLASS_NAMES \
454 { \
455 "NO_REGS", \
456 "BR_REGS", \
457 "FP_REGS", \
458 "ACC_REG", \
459 "SP_REG", \
460 "RL_REGS", \
461 "GR_REGS", \
462 "AR_REGS", \
463 "ALL_REGS" \
464 }
465
466 /* Contents of the register classes. The Nth integer specifies the
467 contents of class N. The way the integer MASK is interpreted is
468 that register R is in the class if 'MASK & (1 << R)' is 1. */
469 #define REG_CLASS_CONTENTS \
470 { \
471 { 0x00000000, 0x00000000 }, /* no registers */ \
472 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
473 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
474 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
475 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
476 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
477 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
478 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
479 { 0xffffffff, 0x0000000f } /* all registers */ \
480 }
481
482 /* A C expression whose value is a register class containing hard
483 register REGNO. In general there is more that one such class;
484 choose a class which is "minimal", meaning that no smaller class
485 also contains the register. */
486 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
487
488 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
489
490 /* Use the Xtensa AR register file for base registers.
491 No index registers. */
492 #define BASE_REG_CLASS AR_REGS
493 #define INDEX_REG_CLASS NO_REGS
494
495 /* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
496 16 AR registers may be explicitly used in the RTL, as either
497 incoming or outgoing arguments. */
498 #define SMALL_REGISTER_CLASSES 1
499
500 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
501 xtensa_preferred_reload_class (X, CLASS, 0)
502
503 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
504 xtensa_preferred_reload_class (X, CLASS, 1)
505
506 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
507 xtensa_secondary_reload_class (CLASS, MODE, X, 0)
508
509 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
510 xtensa_secondary_reload_class (CLASS, MODE, X, 1)
511
512 /* Return the maximum number of consecutive registers
513 needed to represent mode MODE in a register of class CLASS. */
514 #define CLASS_UNITS(mode, size) \
515 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
516
517 #define CLASS_MAX_NREGS(CLASS, MODE) \
518 (CLASS_UNITS (MODE, UNITS_PER_WORD))
519
520
521 /* Stack layout; function entry, exit and calling. */
522
523 #define STACK_GROWS_DOWNWARD
524
525 /* Offset within stack frame to start allocating local variables at. */
526 #define STARTING_FRAME_OFFSET \
527 crtl->outgoing_args_size
528
529 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
530 they are eliminated to either the stack pointer or hard frame pointer. */
531 #define ELIMINABLE_REGS \
532 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
533 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
534 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
535 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
536
537 #define CAN_ELIMINATE(FROM, TO) 1
538
539 /* Specify the initial difference between the specified pair of registers. */
540 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
541 do { \
542 compute_frame_size (get_frame_size ()); \
543 switch (FROM) \
544 { \
545 case FRAME_POINTER_REGNUM: \
546 (OFFSET) = 0; \
547 break; \
548 case ARG_POINTER_REGNUM: \
549 (OFFSET) = xtensa_current_frame_size; \
550 break; \
551 default: \
552 gcc_unreachable (); \
553 } \
554 } while (0)
555
556 /* If defined, the maximum amount of space required for outgoing
557 arguments will be computed and placed into the variable
558 'crtl->outgoing_args_size'. No space will be pushed
559 onto the stack for each call; instead, the function prologue
560 should increase the stack frame size by this amount. */
561 #define ACCUMULATE_OUTGOING_ARGS 1
562
563 /* Offset from the argument pointer register to the first argument's
564 address. On some machines it may depend on the data type of the
565 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
566 location above the first argument's address. */
567 #define FIRST_PARM_OFFSET(FNDECL) 0
568
569 /* Align stack frames on 128 bits for Xtensa. This is necessary for
570 128-bit datatypes defined in TIE (e.g., for Vectra). */
571 #define STACK_BOUNDARY 128
572
573 /* Functions do not pop arguments off the stack. */
574 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
575
576 /* Use a fixed register window size of 8. */
577 #define WINDOW_SIZE 8
578
579 /* Symbolic macros for the registers used to return integer, floating
580 point, and values of coprocessor and user-defined modes. */
581 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
582 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
583
584 /* Symbolic macros for the first/last argument registers. */
585 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
586 #define GP_ARG_LAST (GP_REG_FIRST + 7)
587 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
588 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
589
590 #define MAX_ARGS_IN_REGISTERS 6
591
592 /* Don't worry about compatibility with PCC. */
593 #define DEFAULT_PCC_STRUCT_RETURN 0
594
595 /* Define how to find the value returned by a library function
596 assuming the value has mode MODE. Because we have defined
597 TARGET_PROMOTE_FUNCTION_RETURN that returns true, we have to
598 perform the same promotions as PROMOTE_MODE. */
599 #define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
600 gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
601 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
602 ? SImode : (MODE), \
603 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
604
605 #define LIBCALL_VALUE(MODE) \
606 XTENSA_LIBCALL_VALUE ((MODE), 0)
607
608 #define LIBCALL_OUTGOING_VALUE(MODE) \
609 XTENSA_LIBCALL_VALUE ((MODE), 1)
610
611 /* A C expression that is nonzero if REGNO is the number of a hard
612 register in which the values of called function may come back. A
613 register whose use for returning values is limited to serving as
614 the second of a pair (for a value of type 'double', say) need not
615 be recognized by this macro. If the machine has register windows,
616 so that the caller and the called function use different registers
617 for the return value, this macro should recognize only the caller's
618 register numbers. */
619 #define FUNCTION_VALUE_REGNO_P(N) \
620 ((N) == GP_RETURN)
621
622 /* A C expression that is nonzero if REGNO is the number of a hard
623 register in which function arguments are sometimes passed. This
624 does *not* include implicit arguments such as the static chain and
625 the structure-value address. On many machines, no registers can be
626 used for this purpose since all function arguments are pushed on
627 the stack. */
628 #define FUNCTION_ARG_REGNO_P(N) \
629 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
630
631 /* Record the number of argument words seen so far, along with a flag to
632 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
633 is used for both incoming and outgoing args, so a separate flag is
634 needed. */
635 typedef struct xtensa_args
636 {
637 int arg_words;
638 int incoming;
639 } CUMULATIVE_ARGS;
640
641 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
642 init_cumulative_args (&CUM, 0)
643
644 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
645 init_cumulative_args (&CUM, 1)
646
647 /* Update the data in CUM to advance over an argument
648 of mode MODE and data type TYPE.
649 (TYPE is null for libcalls where that information may not be available.) */
650 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
651 function_arg_advance (&CUM, MODE, TYPE)
652
653 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
654 function_arg (&CUM, MODE, TYPE, FALSE)
655
656 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
657 function_arg (&CUM, MODE, TYPE, TRUE)
658
659 #define FUNCTION_ARG_BOUNDARY function_arg_boundary
660
661 /* Profiling Xtensa code is typically done with the built-in profiling
662 feature of Tensilica's instruction set simulator, which does not
663 require any compiler support. Profiling code on a real (i.e.,
664 non-simulated) Xtensa processor is currently only supported by
665 GNU/Linux with glibc. The glibc version of _mcount doesn't require
666 counter variables. The _mcount function needs the current PC and
667 the current return address to identify an arc in the call graph.
668 Pass the current return address as the first argument; the current
669 PC is available as a0 in _mcount's register window. Both of these
670 values contain window size information in the two most significant
671 bits; we assume that _mcount will mask off those bits. The call to
672 _mcount uses a window size of 8 to make sure that it doesn't clobber
673 any incoming argument values. */
674
675 #define NO_PROFILE_COUNTERS 1
676
677 #define FUNCTION_PROFILER(FILE, LABELNO) \
678 do { \
679 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
680 if (flag_pic) \
681 { \
682 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
683 fprintf (FILE, "\tcallx8\ta8\n"); \
684 } \
685 else \
686 fprintf (FILE, "\tcall8\t_mcount\n"); \
687 } while (0)
688
689 /* Stack pointer value doesn't matter at exit. */
690 #define EXIT_IGNORE_STACK 1
691
692 #define TRAMPOLINE_TEMPLATE(STREAM) xtensa_trampoline_template (STREAM)
693
694 /* Size in bytes of the trampoline, as an integer. Make sure this is
695 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
696 #define TRAMPOLINE_SIZE (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? 60 : 52)
697
698 /* Alignment required for trampolines, in bits. */
699 #define TRAMPOLINE_ALIGNMENT 32
700
701 /* A C statement to initialize the variable parts of a trampoline. */
702 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
703 xtensa_initialize_trampoline (ADDR, FUNC, CHAIN)
704
705
706 /* If defined, a C expression that produces the machine-specific code
707 to setup the stack so that arbitrary frames can be accessed.
708
709 On Xtensa, a stack back-trace must always begin from the stack pointer,
710 so that the register overflow save area can be located. However, the
711 stack-walking code in GCC always begins from the hard_frame_pointer
712 register, not the stack pointer. The frame pointer is usually equal
713 to the stack pointer, but the __builtin_return_address and
714 __builtin_frame_address functions will not work if count > 0 and
715 they are called from a routine that uses alloca. These functions
716 are not guaranteed to work at all if count > 0 so maybe that is OK.
717
718 A nicer solution would be to allow the architecture-specific files to
719 specify whether to start from the stack pointer or frame pointer. That
720 would also allow us to skip the machine->accesses_prev_frame stuff that
721 we currently need to ensure that there is a frame pointer when these
722 builtin functions are used. */
723
724 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
725
726 /* A C expression whose value is RTL representing the address in a
727 stack frame where the pointer to the caller's frame is stored.
728 Assume that FRAMEADDR is an RTL expression for the address of the
729 stack frame itself.
730
731 For Xtensa, there is no easy way to get the frame pointer if it is
732 not equivalent to the stack pointer. Moreover, the result of this
733 macro is used for continuing to walk back up the stack, so it must
734 return the stack pointer address. Thus, there is some inconsistency
735 here in that __builtin_frame_address will return the frame pointer
736 when count == 0 and the stack pointer when count > 0. */
737
738 #define DYNAMIC_CHAIN_ADDRESS(frame) \
739 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
740
741 /* Define this if the return address of a particular stack frame is
742 accessed from the frame pointer of the previous stack frame. */
743 #define RETURN_ADDR_IN_PREVIOUS_FRAME
744
745 /* A C expression whose value is RTL representing the value of the
746 return address for the frame COUNT steps up from the current
747 frame, after the prologue. */
748 #define RETURN_ADDR_RTX xtensa_return_addr
749
750 /* Addressing modes, and classification of registers for them. */
751
752 /* C expressions which are nonzero if register number NUM is suitable
753 for use as a base or index register in operand addresses. */
754
755 #define REGNO_OK_FOR_INDEX_P(NUM) 0
756 #define REGNO_OK_FOR_BASE_P(NUM) \
757 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
758
759 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
760 valid for use as a base or index register. */
761
762 #ifdef REG_OK_STRICT
763 #define REG_OK_STRICT_FLAG 1
764 #else
765 #define REG_OK_STRICT_FLAG 0
766 #endif
767
768 #define BASE_REG_P(X, STRICT) \
769 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
770 || REGNO_OK_FOR_BASE_P (REGNO (X)))
771
772 #define REG_OK_FOR_INDEX_P(X) 0
773 #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
774
775 /* Maximum number of registers that can appear in a valid memory address. */
776 #define MAX_REGS_PER_ADDRESS 1
777
778 /* Identify valid Xtensa addresses. */
779 #define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL) \
780 do { \
781 if (xtensa_legitimate_address_p (MODE, ADDR, REG_OK_STRICT_FLAG)) \
782 goto LABEL; \
783 } while (0)
784
785 /* A C expression that is 1 if the RTX X is a constant which is a
786 valid address. This is defined to be the same as 'CONSTANT_P (X)',
787 but rejecting CONST_DOUBLE. */
788 #define CONSTANT_ADDRESS_P(X) \
789 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
790 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
791 || (GET_CODE (X) == CONST)))
792
793 /* Nonzero if the constant value X is a legitimate general operand.
794 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
795 #define LEGITIMATE_CONSTANT_P(X) 1
796
797 /* A C expression that is nonzero if X is a legitimate immediate
798 operand on the target machine when generating position independent
799 code. */
800 #define LEGITIMATE_PIC_OPERAND_P(X) \
801 ((GET_CODE (X) != SYMBOL_REF \
802 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
803 && GET_CODE (X) != LABEL_REF \
804 && GET_CODE (X) != CONST)
805
806 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
807 do { \
808 rtx new_x = xtensa_legitimize_address (X, OLDX, MODE); \
809 if (new_x) \
810 { \
811 X = new_x; \
812 goto WIN; \
813 } \
814 } while (0)
815
816
817 /* Treat constant-pool references as "mode dependent" since they can
818 only be accessed with SImode loads. This works around a bug in the
819 combiner where a constant pool reference is temporarily converted
820 to an HImode load, which is then assumed to zero-extend based on
821 our definition of LOAD_EXTEND_OP. This is wrong because the high
822 bits of a 16-bit value in the constant pool are now sign-extended
823 by default. */
824
825 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
826 do { \
827 if (constantpool_address_p (ADDR)) \
828 goto LABEL; \
829 } while (0)
830
831 /* Specify the machine mode that this machine uses
832 for the index in the tablejump instruction. */
833 #define CASE_VECTOR_MODE (SImode)
834
835 /* Define this as 1 if 'char' should by default be signed; else as 0. */
836 #define DEFAULT_SIGNED_CHAR 0
837
838 /* Max number of bytes we can move from memory to memory
839 in one reasonably fast instruction. */
840 #define MOVE_MAX 4
841 #define MAX_MOVE_MAX 4
842
843 /* Prefer word-sized loads. */
844 #define SLOW_BYTE_ACCESS 1
845
846 /* Shift instructions ignore all but the low-order few bits. */
847 #define SHIFT_COUNT_TRUNCATED 1
848
849 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
850 is done just by pretending it is already truncated. */
851 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
852
853 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
854 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
855
856 /* Specify the machine mode that pointers have.
857 After generation of rtl, the compiler makes no further distinction
858 between pointers and any other objects of this machine mode. */
859 #define Pmode SImode
860
861 /* A function address in a call instruction is a word address (for
862 indexing purposes) so give the MEM rtx a words's mode. */
863 #define FUNCTION_MODE SImode
864
865 /* A C expression for the cost of moving data from a register in
866 class FROM to one in class TO. The classes are expressed using
867 the enumeration values such as 'GENERAL_REGS'. A value of 2 is
868 the default; other values are interpreted relative to that. */
869 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
870 (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
871 ? 2 \
872 : (reg_class_subset_p ((FROM), AR_REGS) \
873 && reg_class_subset_p ((TO), AR_REGS) \
874 ? 2 \
875 : (reg_class_subset_p ((FROM), AR_REGS) \
876 && (TO) == ACC_REG \
877 ? 3 \
878 : ((FROM) == ACC_REG \
879 && reg_class_subset_p ((TO), AR_REGS) \
880 ? 3 \
881 : 10))))
882
883 #define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
884
885 #define BRANCH_COST 3
886
887 /* How to refer to registers in assembler output.
888 This sequence is indexed by compiler's hard-register-number (see above). */
889 #define REGISTER_NAMES \
890 { \
891 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
892 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
893 "fp", "argp", "b0", \
894 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
895 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
896 "acc" \
897 }
898
899 /* If defined, a C initializer for an array of structures containing a
900 name and a register number. This macro defines additional names
901 for hard registers, thus allowing the 'asm' option in declarations
902 to refer to registers using alternate names. */
903 #define ADDITIONAL_REGISTER_NAMES \
904 { \
905 { "a1", 1 + GP_REG_FIRST } \
906 }
907
908 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
909 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
910
911 /* Recognize machine-specific patterns that may appear within
912 constants. Used for PIC-specific UNSPECs. */
913 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
914 do { \
915 if (xtensa_output_addr_const_extra (STREAM, X) == FALSE) \
916 goto FAIL; \
917 } while (0)
918
919 /* Globalizing directive for a label. */
920 #define GLOBAL_ASM_OP "\t.global\t"
921
922 /* Declare an uninitialized external linkage data object. */
923 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
924 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
925
926 /* This is how to output an element of a case-vector that is absolute. */
927 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
928 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
929 LOCAL_LABEL_PREFIX, VALUE)
930
931 /* This is how to output an element of a case-vector that is relative.
932 This is used for pc-relative code. */
933 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
934 do { \
935 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
936 LOCAL_LABEL_PREFIX, (VALUE), \
937 LOCAL_LABEL_PREFIX, (REL)); \
938 } while (0)
939
940 /* This is how to output an assembler line that says to advance the
941 location counter to a multiple of 2**LOG bytes. */
942 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
943 do { \
944 if ((LOG) != 0) \
945 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
946 } while (0)
947
948 /* Indicate that jump tables go in the text section. This is
949 necessary when compiling PIC code. */
950 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
951
952
953 /* Define the strings to put out for each section in the object file. */
954 #define TEXT_SECTION_ASM_OP "\t.text"
955 #define DATA_SECTION_ASM_OP "\t.data"
956 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
957
958
959 /* Define output to appear before the constant pool. */
960 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
961 do { \
962 if ((SIZE) > 0) \
963 { \
964 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
965 switch_to_section (function_section (FUNDECL)); \
966 fprintf (FILE, "\t.literal_position\n"); \
967 } \
968 } while (0)
969
970
971 /* A C statement (with or without semicolon) to output a constant in
972 the constant pool, if it needs special treatment. */
973 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
974 do { \
975 xtensa_output_literal (FILE, X, MODE, LABELNO); \
976 goto JUMPTO; \
977 } while (0)
978
979 /* How to start an assembler comment. */
980 #define ASM_COMMENT_START "#"
981
982 /* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
983 machinery, but the variable size register window save areas are too
984 complicated to efficiently describe with CFI entries. The CFA must
985 still be specified in DWARF so that DW_AT_frame_base is set correctly
986 for debugging. */
987 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
988 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
989 #define DWARF_FRAME_REGISTERS 16
990 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
991 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
992 (flag_pic \
993 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
994 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
995 : DW_EH_PE_absptr)
996
997 /* Emit a PC-relative relocation. */
998 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
999 do { \
1000 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1001 assemble_name (FILE, LABEL); \
1002 fputs ("@pcrel", FILE); \
1003 } while (0)
1004
1005 /* Xtensa constant pool breaks the devices in crtstuff.c to control
1006 section in where code resides. We have to write it as asm code. Use
1007 a MOVI and let the assembler relax it -- for the .init and .fini
1008 sections, the assembler knows to put the literal in the right
1009 place. */
1010 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1011 asm (SECTION_OP "\n\
1012 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
1013 callx8\ta8\n" \
1014 TEXT_SECTION_ASM_OP);