]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/config/xtensa/xtensa.h
xtensa: Remove old broken tweak for leaf function
[thirdparty/gcc.git] / gcc / config / xtensa / xtensa.h
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright (C) 2001-2022 Free Software Foundation, Inc.
3 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* Get Xtensa configuration settings */
22 #include "xtensa-dynconfig.h"
23
24 /* External variables defined in xtensa.cc. */
25
26 /* Macros used in the machine description to select various Xtensa
27 configuration options. */
28 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
29 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
30 #define TARGET_MAC16 XCHAL_HAVE_MAC16
31 #define TARGET_MUL16 XCHAL_HAVE_MUL16
32 #define TARGET_MUL32 XCHAL_HAVE_MUL32
33 #define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
34 #define TARGET_DIV32 XCHAL_HAVE_DIV32
35 #define TARGET_NSA XCHAL_HAVE_NSA
36 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
37 #define TARGET_SEXT XCHAL_HAVE_SEXT
38 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
39 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
40 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
41 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
42 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
43 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
44 #define TARGET_HARD_FLOAT_POSTINC XCHAL_HAVE_FP_POSTINC
45 #define TARGET_ABS XCHAL_HAVE_ABS
46 #define TARGET_ADDX XCHAL_HAVE_ADDX
47 #define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
48 #define TARGET_S32C1I XCHAL_HAVE_S32C1I
49 #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
50 #define TARGET_THREADPTR XCHAL_HAVE_THREADPTR
51 #define TARGET_LOOPS XCHAL_HAVE_LOOPS
52 #define TARGET_WINDOWED_ABI_DEFAULT (XSHAL_ABI == XTHAL_ABI_WINDOWED)
53 #define TARGET_WINDOWED_ABI xtensa_windowed_abi
54 #define TARGET_DEBUG XCHAL_HAVE_DEBUG
55 #define TARGET_L32R XCHAL_HAVE_L32R
56
57 #define TARGET_DEFAULT (MASK_SERIALIZE_VOLATILE)
58
59 #ifndef HAVE_AS_TLS
60 #define HAVE_AS_TLS 0
61 #endif
62
63 /* Define this if the target has no hardware divide instructions. */
64 #if !__XCHAL_HAVE_DIV32
65 #define TARGET_HAS_NO_HW_DIVIDE
66 #endif
67
68 \f
69 /* Target CPU builtins. */
70 #define TARGET_CPU_CPP_BUILTINS() \
71 do { \
72 const char **builtin; \
73 builtin_assert ("cpu=xtensa"); \
74 builtin_assert ("machine=xtensa"); \
75 builtin_define ("__xtensa__"); \
76 builtin_define ("__XTENSA__"); \
77 builtin_define (TARGET_WINDOWED_ABI ? \
78 "__XTENSA_WINDOWED_ABI__" : "__XTENSA_CALL0_ABI__");\
79 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
80 if (!TARGET_HARD_FLOAT) \
81 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
82 for (builtin = xtensa_get_config_strings (); *builtin; ++builtin) \
83 builtin_define (*builtin); \
84 } while (0)
85
86 #define CPP_SPEC " %(subtarget_cpp_spec) "
87
88 #ifndef SUBTARGET_CPP_SPEC
89 #define SUBTARGET_CPP_SPEC ""
90 #endif
91
92 #define EXTRA_SPECS \
93 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
94
95 /* Target machine storage layout */
96
97 /* Define this if most significant bit is lowest numbered
98 in instructions that operate on numbered bit-fields. */
99 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
100
101 /* Define this if most significant byte of a word is the lowest numbered. */
102 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
103
104 /* Define this if most significant word of a multiword number is the lowest. */
105 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
106
107 #define MAX_BITS_PER_WORD 32
108
109 /* Width of a word, in units (bytes). */
110 #define UNITS_PER_WORD 4
111 #define MIN_UNITS_PER_WORD 4
112
113 /* Width of a floating point register. */
114 #define UNITS_PER_FPREG 4
115
116 /* Size in bits of various types on the target machine. */
117 #define INT_TYPE_SIZE 32
118 #define SHORT_TYPE_SIZE 16
119 #define LONG_TYPE_SIZE 32
120 #define LONG_LONG_TYPE_SIZE 64
121 #define FLOAT_TYPE_SIZE 32
122 #define DOUBLE_TYPE_SIZE 64
123 #define LONG_DOUBLE_TYPE_SIZE 64
124
125 /* Allocation boundary (in *bits*) for storing pointers in memory. */
126 #define POINTER_BOUNDARY 32
127
128 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
129 #define PARM_BOUNDARY 32
130
131 /* Allocation boundary (in *bits*) for the code of a function. */
132 #define FUNCTION_BOUNDARY 32
133
134 /* Alignment of field after 'int : 0' in a structure. */
135 #define EMPTY_FIELD_BOUNDARY 32
136
137 /* Every structure's size must be a multiple of this. */
138 #define STRUCTURE_SIZE_BOUNDARY 8
139
140 /* There is no point aligning anything to a rounder boundary than this. */
141 #define BIGGEST_ALIGNMENT 128
142
143 /* Set this nonzero if move instructions will actually fail to work
144 when given unaligned data. */
145 #define STRICT_ALIGNMENT 1
146
147 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
148 for QImode, because there is no 8-bit load from memory with sign
149 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
150 loads both with and without sign extension. */
151 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
152 do { \
153 if (GET_MODE_CLASS (MODE) == MODE_INT \
154 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
155 { \
156 if ((MODE) == QImode) \
157 (UNSIGNEDP) = 1; \
158 (MODE) = SImode; \
159 } \
160 } while (0)
161
162 /* Imitate the way many other C compilers handle alignment of
163 bitfields and the structures that contain them. */
164 #define PCC_BITFIELD_TYPE_MATTERS 1
165
166 /* Align arrays, unions and records to at least a word boundary.
167 One use of this macro is to increase alignment of medium-size
168 data to make it all fit in fewer cache lines. Another is to
169 cause character arrays to be word-aligned so that 'strcpy' calls
170 that copy constants to character arrays can be done inline. */
171 #undef DATA_ALIGNMENT
172 #define DATA_ALIGNMENT(TYPE, ALIGN) \
173 (!optimize_size && (((ALIGN) < BITS_PER_WORD) \
174 && (TREE_CODE (TYPE) == ARRAY_TYPE \
175 || TREE_CODE (TYPE) == UNION_TYPE \
176 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
177
178 /* Operations between registers always perform the operation
179 on the full register even if a narrower mode is specified. */
180 #define WORD_REGISTER_OPERATIONS 1
181
182 /* Xtensa loads are zero-extended by default. */
183 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
184
185 /* Standard register usage. */
186
187 /* Number of actual hardware registers.
188 The hardware registers are assigned numbers for the compiler
189 from 0 to just below FIRST_PSEUDO_REGISTER.
190 All registers that the compiler knows about must be given numbers,
191 even those that are not normally considered general registers.
192
193 The fake frame pointer and argument pointer will never appear in
194 the generated code, since they will always be eliminated and replaced
195 by either the stack pointer or the hard frame pointer.
196
197 0 - 15 AR[0] - AR[15]
198 16 FRAME_POINTER (fake = initial sp)
199 17 ARG_POINTER (fake = initial sp + framesize)
200 18 BR[0] for floating-point CC
201 19 - 34 FR[0] - FR[15]
202 35 MAC16 accumulator */
203
204 #define FIRST_PSEUDO_REGISTER 36
205
206 /* Return the stabs register number to use for REGNO. */
207 #define DEBUGGER_REGNO(REGNO) xtensa_debugger_regno (REGNO)
208
209 /* 1 for registers that have pervasive standard uses
210 and are not available for the register allocator. */
211 #define FIXED_REGISTERS \
212 { \
213 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
214 1, 1, 0, \
215 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
216 0, \
217 }
218
219 /* 1 for registers not available across function calls.
220 These need not include the FIXED_REGISTERS but must any
221 registers that can be used without being saved.
222 The latter must include the registers where values are returned
223 and the register where structure-value addresses are passed.
224 Aside from that, you can include as many other registers as you like.
225
226 The value encoding is the following:
227 1: register is used by all ABIs;
228 bit 1 is set: register is used by windowed ABI;
229 bit 2 is set: register is used by call0 ABI.
230
231 Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */
232
233 #define CALL_REALLY_USED_REGISTERS \
234 { \
235 1, 0, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 2, 2, \
236 0, 0, 1, \
237 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
238 1, \
239 }
240
241 /* For the windowed register ABI on Xtensa processors, the allocation
242 order is as specified below by REG_ALLOC_ORDER.
243 For the call0 ABI, on the other hand, ADJUST_REG_ALLOC_ORDER hook
244 will be called once at the start of IRA, replacing it with the
245 appropriate one. */
246
247 #define REG_ALLOC_ORDER \
248 { \
249 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
250 18, \
251 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
252 0, 1, 16, 17, \
253 35, \
254 }
255 #define ADJUST_REG_ALLOC_ORDER xtensa_adjust_reg_alloc_order ()
256
257 /* Internal macros to classify a register number. */
258
259 /* 16 address registers + fake registers */
260 #define GP_REG_FIRST 0
261 #define GP_REG_LAST 17
262 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
263
264 /* Coprocessor registers */
265 #define BR_REG_FIRST 18
266 #define BR_REG_LAST 18
267 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
268
269 /* 16 floating-point registers */
270 #define FP_REG_FIRST 19
271 #define FP_REG_LAST 34
272 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
273
274 /* MAC16 accumulator */
275 #define ACC_REG_FIRST 35
276 #define ACC_REG_LAST 35
277 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
278
279 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
280 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
281 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
282 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
283
284 /* Register to use for pushing function arguments. */
285 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
286
287 /* Base register for access to local variables of the function. */
288 #define HARD_FRAME_POINTER_REGNUM \
289 (TARGET_WINDOWED_ABI \
290 ? XTENSA_WINDOWED_HARD_FRAME_POINTER_REGNUM \
291 : XTENSA_CALL0_HARD_FRAME_POINTER_REGNUM)
292
293 #define XTENSA_WINDOWED_HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
294 #define XTENSA_CALL0_HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 15)
295
296 /* The register number of the frame pointer register, which is used to
297 access automatic variables in the stack frame. For Xtensa, this
298 register never appears in the output. It is always eliminated to
299 either the stack pointer or the hard frame pointer. */
300 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
301
302 /* Base register for access to arguments of the function. */
303 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
304
305 /* Hard frame pointer is neither frame nor arg pointer.
306 The definitions are here because actual hard frame pointer register
307 definition is not a preprocessor constant. */
308 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
309 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
310
311 /* For now we don't try to use the full set of boolean registers. Without
312 software pipelining of FP operations, there's not much to gain and it's
313 a real pain to get them reloaded. */
314 #define FPCC_REGNUM (BR_REG_FIRST + 0)
315
316 /* It is as good or better to call a constant function address than to
317 call an address kept in a register. */
318 #define NO_FUNCTION_CSE 1
319
320 /* Xtensa processors have "register windows". GCC does not currently
321 take advantage of the possibility for variable-sized windows; instead,
322 we use a fixed window size of 8. */
323
324 #define INCOMING_REGNO(OUT) \
325 (TARGET_WINDOWED_ABI ? \
326 ((GP_REG_P (OUT) && \
327 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
328 (OUT) - WINDOW_SIZE : (OUT)) : (OUT))
329
330 #define OUTGOING_REGNO(IN) \
331 (TARGET_WINDOWED_ABI ? \
332 ((GP_REG_P (IN) && \
333 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
334 (IN) + WINDOW_SIZE : (IN)) : (IN))
335
336
337 /* Define the classes of registers for register constraints in the
338 machine description. */
339 enum reg_class
340 {
341 NO_REGS, /* no registers in set */
342 BR_REGS, /* coprocessor boolean registers */
343 FP_REGS, /* floating point registers */
344 ACC_REG, /* MAC16 accumulator */
345 SP_REG, /* sp register (aka a1) */
346 ISC_REGS, /* registers for indirect sibling calls */
347 RL_REGS, /* preferred reload regs (not sp or fp) */
348 GR_REGS, /* integer registers except sp */
349 AR_REGS, /* all integer registers */
350 ALL_REGS, /* all registers */
351 LIM_REG_CLASSES /* max value + 1 */
352 };
353
354 #define N_REG_CLASSES (int) LIM_REG_CLASSES
355
356 #define GENERAL_REGS AR_REGS
357
358 /* An initializer containing the names of the register classes as C
359 string constants. These names are used in writing some of the
360 debugging dumps. */
361 #define REG_CLASS_NAMES \
362 { \
363 "NO_REGS", \
364 "BR_REGS", \
365 "FP_REGS", \
366 "ACC_REG", \
367 "SP_REG", \
368 "ISC_REGS", \
369 "RL_REGS", \
370 "GR_REGS", \
371 "AR_REGS", \
372 "ALL_REGS" \
373 }
374
375 /* Contents of the register classes. The Nth integer specifies the
376 contents of class N. The way the integer MASK is interpreted is
377 that register R is in the class if 'MASK & (1 << R)' is 1. */
378 #define REG_CLASS_CONTENTS \
379 { \
380 { 0x00000000, 0x00000000 }, /* no registers */ \
381 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
382 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
383 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
384 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
385 { 0x000001fc, 0x00000000 }, /* registers for indirect sibling calls */ \
386 { 0x0000fffd, 0x00000000 }, /* preferred reload registers */ \
387 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
388 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
389 { 0xffffffff, 0x0000000f } /* all registers */ \
390 }
391
392 /* A C expression whose value is a register class containing hard
393 register REGNO. In general there is more that one such class;
394 choose a class which is "minimal", meaning that no smaller class
395 also contains the register. */
396 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class (REGNO)
397
398 /* Use the Xtensa AR register file for base registers.
399 No index registers. */
400 #define BASE_REG_CLASS AR_REGS
401 #define INDEX_REG_CLASS NO_REGS
402
403 /* The small_register_classes_for_mode_p hook must always return true for
404 Xtrnase, because all of the 16 AR registers may be explicitly used in
405 the RTL, as either incoming or outgoing arguments. */
406 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true
407
408 /* Stack layout; function entry, exit and calling. */
409
410 #define STACK_GROWS_DOWNWARD 1
411
412 #define FRAME_GROWS_DOWNWARD (flag_stack_protect \
413 || (flag_sanitize & SANITIZE_ADDRESS) != 0)
414
415 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
416 they are eliminated to either the stack pointer or hard frame pointer.
417 Since hard frame pointer is different register in windowed and call0
418 ABIs list them both and only allow real HARD_FRAME_POINTER_REGNUM in
419 TARGET_CAN_ELIMINATE. */
420 #define ELIMINABLE_REGS \
421 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
422 { ARG_POINTER_REGNUM, XTENSA_WINDOWED_HARD_FRAME_POINTER_REGNUM}, \
423 { ARG_POINTER_REGNUM, XTENSA_CALL0_HARD_FRAME_POINTER_REGNUM}, \
424 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
425 { FRAME_POINTER_REGNUM, XTENSA_WINDOWED_HARD_FRAME_POINTER_REGNUM}, \
426 { FRAME_POINTER_REGNUM, XTENSA_CALL0_HARD_FRAME_POINTER_REGNUM}}
427
428 /* Specify the initial difference between the specified pair of registers. */
429 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
430 (OFFSET) = xtensa_initial_elimination_offset ((FROM), (TO))
431
432 /* If defined, the maximum amount of space required for outgoing
433 arguments will be computed and placed into the variable
434 'crtl->outgoing_args_size'. No space will be pushed
435 onto the stack for each call; instead, the function prologue
436 should increase the stack frame size by this amount. */
437 #define ACCUMULATE_OUTGOING_ARGS 1
438
439 /* Offset from the argument pointer register to the first argument's
440 address. On some machines it may depend on the data type of the
441 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
442 location above the first argument's address. */
443 #define FIRST_PARM_OFFSET(FNDECL) 0
444
445 /* Align stack frames on 128 bits for Xtensa. This is necessary for
446 128-bit datatypes defined in TIE (e.g., for Vectra). */
447 #define STACK_BOUNDARY 128
448
449 /* Use a fixed register window size of 8. */
450 #define WINDOW_SIZE (TARGET_WINDOWED_ABI ? 8 : 0)
451
452 /* Symbolic macros for the registers used to return integer, floating
453 point, and values of coprocessor and user-defined modes. */
454 #define GP_RETURN_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
455 #define GP_RETURN_LAST (GP_RETURN_FIRST + 3)
456 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
457
458 /* Symbolic macros for the first/last argument registers. */
459 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
460 #define GP_ARG_LAST (GP_REG_FIRST + 7)
461 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
462 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
463
464 #define MAX_ARGS_IN_REGISTERS 6
465
466 /* Don't worry about compatibility with PCC. */
467 #define DEFAULT_PCC_STRUCT_RETURN 0
468
469 /* A C expression that is nonzero if REGNO is the number of a hard
470 register in which function arguments are sometimes passed. This
471 does *not* include implicit arguments such as the static chain and
472 the structure-value address. On many machines, no registers can be
473 used for this purpose since all function arguments are pushed on
474 the stack. */
475 #define FUNCTION_ARG_REGNO_P(N) \
476 IN_RANGE ((N), GP_OUTGOING_ARG_FIRST, GP_OUTGOING_ARG_LAST)
477
478 /* Record the number of argument words seen so far, along with a flag to
479 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
480 is used for both incoming and outgoing args, so a separate flag is
481 needed. */
482 typedef struct xtensa_args
483 {
484 int arg_words;
485 int incoming;
486 } CUMULATIVE_ARGS;
487
488 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
489 init_cumulative_args (&CUM, 0)
490
491 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
492 init_cumulative_args (&CUM, 1)
493
494 /* Profiling Xtensa code is typically done with the built-in profiling
495 feature of Tensilica's instruction set simulator, which does not
496 require any compiler support. Profiling code on a real (i.e.,
497 non-simulated) Xtensa processor is currently only supported by
498 GNU/Linux with glibc. The glibc version of _mcount doesn't require
499 counter variables. The _mcount function needs the current PC and
500 the current return address to identify an arc in the call graph.
501 Pass the current return address as the first argument; the current
502 PC is available as a0 in _mcount's register window. Both of these
503 values contain window size information in the two most significant
504 bits; we assume that _mcount will mask off those bits. The call to
505 _mcount uses a window size of 8 to make sure that it doesn't clobber
506 any incoming argument values. */
507
508 #define NO_PROFILE_COUNTERS 1
509
510 #define FUNCTION_PROFILER(FILE, LABELNO) \
511 do { \
512 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
513 if (flag_pic) \
514 { \
515 fprintf (FILE, "\tmovi\ta%d, _mcount@PLT\n", WINDOW_SIZE); \
516 fprintf (FILE, "\tcallx%d\ta%d\n", WINDOW_SIZE, WINDOW_SIZE); \
517 } \
518 else \
519 fprintf (FILE, "\tcall%d\t_mcount\n", WINDOW_SIZE); \
520 } while (0)
521
522 /* Stack pointer value doesn't matter at exit. */
523 #define EXIT_IGNORE_STACK 1
524
525 /* Size in bytes of the trampoline, as an integer. Make sure this is
526 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
527 #define TRAMPOLINE_SIZE (TARGET_WINDOWED_ABI ? \
528 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
529 60 : 52) : \
530 (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \
531 32 : 24))
532
533 /* Alignment required for trampolines, in bits. */
534 #define TRAMPOLINE_ALIGNMENT 32
535
536 /* If defined, a C expression that produces the machine-specific code
537 to setup the stack so that arbitrary frames can be accessed.
538
539 On Xtensa, a stack back-trace must always begin from the stack pointer,
540 so that the register overflow save area can be located. However, the
541 stack-walking code in GCC always begins from the hard_frame_pointer
542 register, not the stack pointer. The frame pointer is usually equal
543 to the stack pointer, but the __builtin_return_address and
544 __builtin_frame_address functions will not work if count > 0 and
545 they are called from a routine that uses alloca. These functions
546 are not guaranteed to work at all if count > 0 so maybe that is OK.
547
548 A nicer solution would be to allow the architecture-specific files to
549 specify whether to start from the stack pointer or frame pointer. That
550 would also allow us to skip the machine->accesses_prev_frame stuff that
551 we currently need to ensure that there is a frame pointer when these
552 builtin functions are used. */
553
554 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
555
556 /* A C expression whose value is RTL representing the address in a
557 stack frame where the pointer to the caller's frame is stored.
558 Assume that FRAMEADDR is an RTL expression for the address of the
559 stack frame itself.
560
561 For Xtensa, there is no easy way to get the frame pointer if it is
562 not equivalent to the stack pointer. Moreover, the result of this
563 macro is used for continuing to walk back up the stack, so it must
564 return the stack pointer address. Thus, there is some inconsistency
565 here in that __builtin_frame_address will return the frame pointer
566 when count == 0 and the stack pointer when count > 0. */
567
568 #define DYNAMIC_CHAIN_ADDRESS(frame) \
569 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
570
571 /* Define this if the return address of a particular stack frame is
572 accessed from the frame pointer of the previous stack frame. */
573 #define RETURN_ADDR_IN_PREVIOUS_FRAME TARGET_WINDOWED_ABI
574
575 /* A C expression whose value is RTL representing the value of the
576 return address for the frame COUNT steps up from the current
577 frame, after the prologue. */
578 #define RETURN_ADDR_RTX xtensa_return_addr
579
580 /* Addressing modes, and classification of registers for them. */
581
582 /* C expressions which are nonzero if register number NUM is suitable
583 for use as a base or index register in operand addresses. */
584
585 #define REGNO_OK_FOR_INDEX_P(NUM) 0
586 #define REGNO_OK_FOR_BASE_P(NUM) \
587 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
588
589 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
590 valid for use as a base or index register. */
591
592 #ifdef REG_OK_STRICT
593 #define REG_OK_STRICT_FLAG 1
594 #else
595 #define REG_OK_STRICT_FLAG 0
596 #endif
597
598 #define BASE_REG_P(X, STRICT) \
599 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
600 || REGNO_OK_FOR_BASE_P (REGNO (X)))
601
602 #define REG_OK_FOR_INDEX_P(X) 0
603 #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
604
605 /* Maximum number of registers that can appear in a valid memory address. */
606 #define MAX_REGS_PER_ADDRESS 1
607
608 /* A C expression that is 1 if the RTX X is a constant which is a
609 valid address. This is defined to be the same as 'CONSTANT_P (X)',
610 but rejecting CONST_DOUBLE. */
611 #define CONSTANT_ADDRESS_P(X) \
612 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
613 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
614 || (GET_CODE (X) == CONST)))
615
616 /* A C expression that is nonzero if X is a legitimate immediate
617 operand on the target machine when generating position independent
618 code. */
619 #define LEGITIMATE_PIC_OPERAND_P(X) \
620 ((GET_CODE (X) != SYMBOL_REF \
621 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
622 && GET_CODE (X) != LABEL_REF \
623 && GET_CODE (X) != CONST)
624
625 /* Specify the machine mode that this machine uses
626 for the index in the tablejump instruction. */
627 #define CASE_VECTOR_MODE (SImode)
628
629 /* Define this as 1 if 'char' should by default be signed; else as 0. */
630 #define DEFAULT_SIGNED_CHAR 0
631
632 /* Max number of bytes we can move from memory to memory
633 in one reasonably fast instruction. */
634 #define MOVE_MAX 4
635 #define MAX_MOVE_MAX 4
636
637 /* Prefer word-sized loads. */
638 #define SLOW_BYTE_ACCESS 1
639
640 /* Shift instructions ignore all but the low-order few bits. */
641 #define SHIFT_COUNT_TRUNCATED 1
642
643 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
644 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
645
646 /* Specify the machine mode that pointers have.
647 After generation of rtl, the compiler makes no further distinction
648 between pointers and any other objects of this machine mode. */
649 #define Pmode SImode
650
651 /* A function address in a call instruction is a word address (for
652 indexing purposes) so give the MEM rtx a words's mode. */
653 #define FUNCTION_MODE SImode
654
655 #define BRANCH_COST(speed_p, predictable_p) 3
656
657 /* How to refer to registers in assembler output.
658 This sequence is indexed by compiler's hard-register-number (see above). */
659 #define REGISTER_NAMES \
660 { \
661 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
662 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
663 "fp", "argp", "b0", \
664 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
665 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
666 "acc" \
667 }
668
669 /* If defined, a C initializer for an array of structures containing a
670 name and a register number. This macro defines additional names
671 for hard registers, thus allowing the 'asm' option in declarations
672 to refer to registers using alternate names. */
673 #define ADDITIONAL_REGISTER_NAMES \
674 { \
675 { "a1", 1 + GP_REG_FIRST } \
676 }
677
678 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
679 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
680
681 /* Globalizing directive for a label. */
682 #define GLOBAL_ASM_OP "\t.global\t"
683
684 /* Declare an uninitialized external linkage data object. */
685 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
686 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
687
688 /* This is how to output an element of a case-vector that is absolute. */
689 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
690 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
691 LOCAL_LABEL_PREFIX, VALUE)
692
693 /* This is how to output an element of a case-vector that is relative.
694 This is used for pc-relative code. */
695 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
696 do { \
697 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
698 LOCAL_LABEL_PREFIX, (VALUE), \
699 LOCAL_LABEL_PREFIX, (REL)); \
700 } while (0)
701
702 /* This is how to output an assembler line that says to advance the
703 location counter to a multiple of 2**LOG bytes. */
704 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
705 do { \
706 if ((LOG) != 0) \
707 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
708 } while (0)
709
710 /* Indicate that jump tables go in the text section. This is
711 necessary when compiling PIC code. */
712 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
713
714
715 /* Define the strings to put out for each section in the object file. */
716 #define TEXT_SECTION_ASM_OP "\t.text"
717 #define DATA_SECTION_ASM_OP "\t.data"
718 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
719
720
721 /* Define output to appear before the constant pool. */
722 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
723 do { \
724 if ((SIZE) > 0 || !TARGET_WINDOWED_ABI) \
725 { \
726 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
727 switch_to_section (function_section (FUNDECL)); \
728 fprintf (FILE, "\t.literal_position\n"); \
729 } \
730 } while (0)
731
732
733 /* A C statement (with or without semicolon) to output a constant in
734 the constant pool, if it needs special treatment. */
735 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
736 do { \
737 xtensa_output_literal (FILE, X, MODE, LABELNO); \
738 goto JUMPTO; \
739 } while (0)
740
741 /* How to start an assembler comment. */
742 #define ASM_COMMENT_START "#"
743
744 /* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
745 machinery, but the variable size register window save areas are too
746 complicated to efficiently describe with CFI entries. The CFA must
747 still be specified in DWARF so that DW_AT_frame_base is set correctly
748 for debugging. */
749 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
750 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
751 #define DWARF_ALT_FRAME_RETURN_COLUMN 16
752 #define DWARF_FRAME_REGISTERS (TARGET_WINDOWED_ABI \
753 ? DWARF_ALT_FRAME_RETURN_COLUMN \
754 : DWARF_ALT_FRAME_RETURN_COLUMN + 1)
755 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
756 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
757 (flag_pic \
758 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
759 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
760 : DW_EH_PE_absptr)
761
762 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 10)
763
764 /* Emit a PC-relative relocation. */
765 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
766 do { \
767 fputs (integer_asm_op (SIZE, FALSE), FILE); \
768 assemble_name (FILE, LABEL); \
769 fputs ("@pcrel", FILE); \
770 } while (0)
771
772 /* Xtensa constant pool breaks the devices in crtstuff.c to control
773 section in where code resides. We have to write it as asm code. Use
774 a MOVI and let the assembler relax it -- for the .init and .fini
775 sections, the assembler knows to put the literal in the right
776 place. */
777 #if defined(__XTENSA_WINDOWED_ABI__)
778 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
779 asm (SECTION_OP "\n\
780 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
781 callx8\ta8\n" \
782 TEXT_SECTION_ASM_OP);
783 #elif defined(__XTENSA_CALL0_ABI__)
784 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
785 asm (SECTION_OP "\n\
786 movi\ta0, " USER_LABEL_PREFIX #FUNC "\n\
787 callx0\ta0\n" \
788 TEXT_SECTION_ASM_OP);
789 #endif