]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/convert.c
re PR testsuite/27476 (ACATS: Ada testsuite Bourne shell compatibility problem on...
[thirdparty/gcc.git] / gcc / convert.c
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1997, 1998,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22
23 /* These routines are somewhat language-independent utility function
24 intended to be called by the language-specific convert () functions. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "convert.h"
33 #include "toplev.h"
34 #include "langhooks.h"
35 #include "real.h"
36
37 /* Convert EXPR to some pointer or reference type TYPE.
38 EXPR must be pointer, reference, integer, enumeral, or literal zero;
39 in other cases error is called. */
40
41 tree
42 convert_to_pointer (tree type, tree expr)
43 {
44 if (TREE_TYPE (expr) == type)
45 return expr;
46
47 if (integer_zerop (expr))
48 {
49 tree t = build_int_cst (type, 0);
50 if (TREE_OVERFLOW (expr) || TREE_CONSTANT_OVERFLOW (expr))
51 t = force_fit_type (t, 0, TREE_OVERFLOW (expr),
52 TREE_CONSTANT_OVERFLOW (expr));
53 return t;
54 }
55
56 switch (TREE_CODE (TREE_TYPE (expr)))
57 {
58 case POINTER_TYPE:
59 case REFERENCE_TYPE:
60 return fold_build1 (NOP_EXPR, type, expr);
61
62 case INTEGER_TYPE:
63 case ENUMERAL_TYPE:
64 case BOOLEAN_TYPE:
65 if (TYPE_PRECISION (TREE_TYPE (expr)) != POINTER_SIZE)
66 expr = fold_build1 (NOP_EXPR,
67 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
68 expr);
69 return fold_build1 (CONVERT_EXPR, type, expr);
70
71
72 default:
73 error ("cannot convert to a pointer type");
74 return convert_to_pointer (type, integer_zero_node);
75 }
76 }
77
78 /* Avoid any floating point extensions from EXP. */
79 tree
80 strip_float_extensions (tree exp)
81 {
82 tree sub, expt, subt;
83
84 /* For floating point constant look up the narrowest type that can hold
85 it properly and handle it like (type)(narrowest_type)constant.
86 This way we can optimize for instance a=a*2.0 where "a" is float
87 but 2.0 is double constant. */
88 if (TREE_CODE (exp) == REAL_CST)
89 {
90 REAL_VALUE_TYPE orig;
91 tree type = NULL;
92
93 orig = TREE_REAL_CST (exp);
94 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
95 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
96 type = float_type_node;
97 else if (TYPE_PRECISION (TREE_TYPE (exp))
98 > TYPE_PRECISION (double_type_node)
99 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
100 type = double_type_node;
101 if (type)
102 return build_real (type, real_value_truncate (TYPE_MODE (type), orig));
103 }
104
105 if (TREE_CODE (exp) != NOP_EXPR
106 && TREE_CODE (exp) != CONVERT_EXPR)
107 return exp;
108
109 sub = TREE_OPERAND (exp, 0);
110 subt = TREE_TYPE (sub);
111 expt = TREE_TYPE (exp);
112
113 if (!FLOAT_TYPE_P (subt))
114 return exp;
115
116 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
117 return exp;
118
119 return strip_float_extensions (sub);
120 }
121
122
123 /* Convert EXPR to some floating-point type TYPE.
124
125 EXPR must be float, integer, or enumeral;
126 in other cases error is called. */
127
128 tree
129 convert_to_real (tree type, tree expr)
130 {
131 enum built_in_function fcode = builtin_mathfn_code (expr);
132 tree itype = TREE_TYPE (expr);
133
134 /* Disable until we figure out how to decide whether the functions are
135 present in runtime. */
136 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
137 if (optimize
138 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
139 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
140 {
141 switch (fcode)
142 {
143 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
144 CASE_MATHFN (ACOS)
145 CASE_MATHFN (ACOSH)
146 CASE_MATHFN (ASIN)
147 CASE_MATHFN (ASINH)
148 CASE_MATHFN (ATAN)
149 CASE_MATHFN (ATANH)
150 CASE_MATHFN (CBRT)
151 CASE_MATHFN (COS)
152 CASE_MATHFN (COSH)
153 CASE_MATHFN (ERF)
154 CASE_MATHFN (ERFC)
155 CASE_MATHFN (EXP)
156 CASE_MATHFN (EXP10)
157 CASE_MATHFN (EXP2)
158 CASE_MATHFN (EXPM1)
159 CASE_MATHFN (FABS)
160 CASE_MATHFN (GAMMA)
161 CASE_MATHFN (J0)
162 CASE_MATHFN (J1)
163 CASE_MATHFN (LGAMMA)
164 CASE_MATHFN (LOG)
165 CASE_MATHFN (LOG10)
166 CASE_MATHFN (LOG1P)
167 CASE_MATHFN (LOG2)
168 CASE_MATHFN (LOGB)
169 CASE_MATHFN (POW10)
170 CASE_MATHFN (SIN)
171 CASE_MATHFN (SINH)
172 CASE_MATHFN (SQRT)
173 CASE_MATHFN (TAN)
174 CASE_MATHFN (TANH)
175 CASE_MATHFN (TGAMMA)
176 CASE_MATHFN (Y0)
177 CASE_MATHFN (Y1)
178 #undef CASE_MATHFN
179 {
180 tree arg0 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
181 tree newtype = type;
182
183 /* We have (outertype)sqrt((innertype)x). Choose the wider mode from
184 the both as the safe type for operation. */
185 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
186 newtype = TREE_TYPE (arg0);
187
188 /* Be careful about integer to fp conversions.
189 These may overflow still. */
190 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
191 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
192 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
193 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
194 {
195 tree arglist;
196 tree fn = mathfn_built_in (newtype, fcode);
197
198 if (fn)
199 {
200 arglist = build_tree_list (NULL_TREE, fold (convert_to_real (newtype, arg0)));
201 expr = build_function_call_expr (fn, arglist);
202 if (newtype == type)
203 return expr;
204 }
205 }
206 }
207 default:
208 break;
209 }
210 }
211 if (optimize
212 && (((fcode == BUILT_IN_FLOORL
213 || fcode == BUILT_IN_CEILL
214 || fcode == BUILT_IN_ROUNDL
215 || fcode == BUILT_IN_RINTL
216 || fcode == BUILT_IN_TRUNCL
217 || fcode == BUILT_IN_NEARBYINTL)
218 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
219 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
220 || ((fcode == BUILT_IN_FLOOR
221 || fcode == BUILT_IN_CEIL
222 || fcode == BUILT_IN_ROUND
223 || fcode == BUILT_IN_RINT
224 || fcode == BUILT_IN_TRUNC
225 || fcode == BUILT_IN_NEARBYINT)
226 && (TYPE_MODE (type) == TYPE_MODE (float_type_node)))))
227 {
228 tree fn = mathfn_built_in (type, fcode);
229
230 if (fn)
231 {
232 tree arg
233 = strip_float_extensions (TREE_VALUE (TREE_OPERAND (expr, 1)));
234
235 /* Make sure (type)arg0 is an extension, otherwise we could end up
236 changing (float)floor(double d) into floorf((float)d), which is
237 incorrect because (float)d uses round-to-nearest and can round
238 up to the next integer. */
239 if (TYPE_PRECISION (type) >= TYPE_PRECISION (TREE_TYPE (arg)))
240 return
241 build_function_call_expr (fn,
242 build_tree_list (NULL_TREE,
243 fold (convert_to_real (type, arg))));
244 }
245 }
246
247 /* Propagate the cast into the operation. */
248 if (itype != type && FLOAT_TYPE_P (type))
249 switch (TREE_CODE (expr))
250 {
251 /* Convert (float)-x into -(float)x. This is always safe. */
252 case ABS_EXPR:
253 case NEGATE_EXPR:
254 if (TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (expr)))
255 return build1 (TREE_CODE (expr), type,
256 fold (convert_to_real (type,
257 TREE_OPERAND (expr, 0))));
258 break;
259 /* Convert (outertype)((innertype0)a+(innertype1)b)
260 into ((newtype)a+(newtype)b) where newtype
261 is the widest mode from all of these. */
262 case PLUS_EXPR:
263 case MINUS_EXPR:
264 case MULT_EXPR:
265 case RDIV_EXPR:
266 {
267 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
268 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
269
270 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
271 && FLOAT_TYPE_P (TREE_TYPE (arg1)))
272 {
273 tree newtype = type;
274
275 if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
276 || TYPE_MODE (TREE_TYPE (arg1)) == SDmode)
277 newtype = dfloat32_type_node;
278 if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
279 || TYPE_MODE (TREE_TYPE (arg1)) == DDmode)
280 newtype = dfloat64_type_node;
281 if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
282 || TYPE_MODE (TREE_TYPE (arg1)) == TDmode)
283 newtype = dfloat128_type_node;
284 if (newtype == dfloat32_type_node
285 || newtype == dfloat64_type_node
286 || newtype == dfloat128_type_node)
287 {
288 expr = build2 (TREE_CODE (expr), newtype,
289 fold (convert_to_real (newtype, arg0)),
290 fold (convert_to_real (newtype, arg1)));
291 if (newtype == type)
292 return expr;
293 break;
294 }
295
296 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
297 newtype = TREE_TYPE (arg0);
298 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
299 newtype = TREE_TYPE (arg1);
300 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype))
301 {
302 expr = build2 (TREE_CODE (expr), newtype,
303 fold (convert_to_real (newtype, arg0)),
304 fold (convert_to_real (newtype, arg1)));
305 if (newtype == type)
306 return expr;
307 }
308 }
309 }
310 break;
311 default:
312 break;
313 }
314
315 switch (TREE_CODE (TREE_TYPE (expr)))
316 {
317 case REAL_TYPE:
318 return build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
319 type, expr);
320
321 case INTEGER_TYPE:
322 case ENUMERAL_TYPE:
323 case BOOLEAN_TYPE:
324 return build1 (FLOAT_EXPR, type, expr);
325
326 case COMPLEX_TYPE:
327 return convert (type,
328 fold_build1 (REALPART_EXPR,
329 TREE_TYPE (TREE_TYPE (expr)), expr));
330
331 case POINTER_TYPE:
332 case REFERENCE_TYPE:
333 error ("pointer value used where a floating point value was expected");
334 return convert_to_real (type, integer_zero_node);
335
336 default:
337 error ("aggregate value used where a float was expected");
338 return convert_to_real (type, integer_zero_node);
339 }
340 }
341
342 /* Convert EXPR to some integer (or enum) type TYPE.
343
344 EXPR must be pointer, integer, discrete (enum, char, or bool), float, or
345 vector; in other cases error is called.
346
347 The result of this is always supposed to be a newly created tree node
348 not in use in any existing structure. */
349
350 tree
351 convert_to_integer (tree type, tree expr)
352 {
353 enum tree_code ex_form = TREE_CODE (expr);
354 tree intype = TREE_TYPE (expr);
355 unsigned int inprec = TYPE_PRECISION (intype);
356 unsigned int outprec = TYPE_PRECISION (type);
357
358 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
359 be. Consider `enum E = { a, b = (enum E) 3 };'. */
360 if (!COMPLETE_TYPE_P (type))
361 {
362 error ("conversion to incomplete type");
363 return error_mark_node;
364 }
365
366 /* Convert e.g. (long)round(d) -> lround(d). */
367 /* If we're converting to char, we may encounter differing behavior
368 between converting from double->char vs double->long->char.
369 We're in "undefined" territory but we prefer to be conservative,
370 so only proceed in "unsafe" math mode. */
371 if (optimize
372 && (flag_unsafe_math_optimizations
373 || (long_integer_type_node
374 && outprec >= TYPE_PRECISION (long_integer_type_node))))
375 {
376 tree s_expr = strip_float_extensions (expr);
377 tree s_intype = TREE_TYPE (s_expr);
378 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
379 tree fn = 0;
380
381 switch (fcode)
382 {
383 CASE_FLT_FN (BUILT_IN_CEIL):
384 /* Only convert in ISO C99 mode. */
385 if (!TARGET_C99_FUNCTIONS)
386 break;
387 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
388 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
389 else
390 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
391 break;
392
393 CASE_FLT_FN (BUILT_IN_FLOOR):
394 /* Only convert in ISO C99 mode. */
395 if (!TARGET_C99_FUNCTIONS)
396 break;
397 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
398 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
399 else
400 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
401 break;
402
403 CASE_FLT_FN (BUILT_IN_ROUND):
404 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
405 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
406 else
407 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
408 break;
409
410 CASE_FLT_FN (BUILT_IN_RINT):
411 /* Only convert rint* if we can ignore math exceptions. */
412 if (flag_trapping_math)
413 break;
414 /* ... Fall through ... */
415 CASE_FLT_FN (BUILT_IN_NEARBYINT):
416 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (long_long_integer_type_node))
417 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
418 else
419 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
420 break;
421
422 CASE_FLT_FN (BUILT_IN_TRUNC):
423 {
424 tree arglist = TREE_OPERAND (s_expr, 1);
425 return convert_to_integer (type, TREE_VALUE (arglist));
426 }
427
428 default:
429 break;
430 }
431
432 if (fn)
433 {
434 tree arglist = TREE_OPERAND (s_expr, 1);
435 tree newexpr = build_function_call_expr (fn, arglist);
436 return convert_to_integer (type, newexpr);
437 }
438 }
439
440 switch (TREE_CODE (intype))
441 {
442 case POINTER_TYPE:
443 case REFERENCE_TYPE:
444 if (integer_zerop (expr))
445 return build_int_cst (type, 0);
446
447 /* Convert to an unsigned integer of the correct width first,
448 and from there widen/truncate to the required type. */
449 expr = fold_build1 (CONVERT_EXPR,
450 lang_hooks.types.type_for_size (POINTER_SIZE, 0),
451 expr);
452 return fold_convert (type, expr);
453
454 case INTEGER_TYPE:
455 case ENUMERAL_TYPE:
456 case BOOLEAN_TYPE:
457 /* If this is a logical operation, which just returns 0 or 1, we can
458 change the type of the expression. */
459
460 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
461 {
462 expr = copy_node (expr);
463 TREE_TYPE (expr) = type;
464 return expr;
465 }
466
467 /* If we are widening the type, put in an explicit conversion.
468 Similarly if we are not changing the width. After this, we know
469 we are truncating EXPR. */
470
471 else if (outprec >= inprec)
472 {
473 enum tree_code code;
474
475 /* If the precision of the EXPR's type is K bits and the
476 destination mode has more bits, and the sign is changing,
477 it is not safe to use a NOP_EXPR. For example, suppose
478 that EXPR's type is a 3-bit unsigned integer type, the
479 TYPE is a 3-bit signed integer type, and the machine mode
480 for the types is 8-bit QImode. In that case, the
481 conversion necessitates an explicit sign-extension. In
482 the signed-to-unsigned case the high-order bits have to
483 be cleared. */
484 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
485 && (TYPE_PRECISION (TREE_TYPE (expr))
486 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)))))
487 code = CONVERT_EXPR;
488 else
489 code = NOP_EXPR;
490
491 return fold_build1 (code, type, expr);
492 }
493
494 /* If TYPE is an enumeral type or a type with a precision less
495 than the number of bits in its mode, do the conversion to the
496 type corresponding to its mode, then do a nop conversion
497 to TYPE. */
498 else if (TREE_CODE (type) == ENUMERAL_TYPE
499 || outprec != GET_MODE_BITSIZE (TYPE_MODE (type)))
500 return build1 (NOP_EXPR, type,
501 convert (lang_hooks.types.type_for_mode
502 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
503 expr));
504
505 /* Here detect when we can distribute the truncation down past some
506 arithmetic. For example, if adding two longs and converting to an
507 int, we can equally well convert both to ints and then add.
508 For the operations handled here, such truncation distribution
509 is always safe.
510 It is desirable in these cases:
511 1) when truncating down to full-word from a larger size
512 2) when truncating takes no work.
513 3) when at least one operand of the arithmetic has been extended
514 (as by C's default conversions). In this case we need two conversions
515 if we do the arithmetic as already requested, so we might as well
516 truncate both and then combine. Perhaps that way we need only one.
517
518 Note that in general we cannot do the arithmetic in a type
519 shorter than the desired result of conversion, even if the operands
520 are both extended from a shorter type, because they might overflow
521 if combined in that type. The exceptions to this--the times when
522 two narrow values can be combined in their narrow type even to
523 make a wider result--are handled by "shorten" in build_binary_op. */
524
525 switch (ex_form)
526 {
527 case RSHIFT_EXPR:
528 /* We can pass truncation down through right shifting
529 when the shift count is a nonpositive constant. */
530 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
531 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
532 goto trunc1;
533 break;
534
535 case LSHIFT_EXPR:
536 /* We can pass truncation down through left shifting
537 when the shift count is a nonnegative constant and
538 the target type is unsigned. */
539 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
540 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
541 && TYPE_UNSIGNED (type)
542 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
543 {
544 /* If shift count is less than the width of the truncated type,
545 really shift. */
546 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
547 /* In this case, shifting is like multiplication. */
548 goto trunc1;
549 else
550 {
551 /* If it is >= that width, result is zero.
552 Handling this with trunc1 would give the wrong result:
553 (int) ((long long) a << 32) is well defined (as 0)
554 but (int) a << 32 is undefined and would get a
555 warning. */
556
557 tree t = build_int_cst (type, 0);
558
559 /* If the original expression had side-effects, we must
560 preserve it. */
561 if (TREE_SIDE_EFFECTS (expr))
562 return build2 (COMPOUND_EXPR, type, expr, t);
563 else
564 return t;
565 }
566 }
567 break;
568
569 case MAX_EXPR:
570 case MIN_EXPR:
571 case MULT_EXPR:
572 {
573 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
574 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
575
576 /* Don't distribute unless the output precision is at least as big
577 as the actual inputs. Otherwise, the comparison of the
578 truncated values will be wrong. */
579 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
580 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
581 /* If signedness of arg0 and arg1 don't match,
582 we can't necessarily find a type to compare them in. */
583 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
584 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
585 goto trunc1;
586 break;
587 }
588
589 case PLUS_EXPR:
590 case MINUS_EXPR:
591 case BIT_AND_EXPR:
592 case BIT_IOR_EXPR:
593 case BIT_XOR_EXPR:
594 trunc1:
595 {
596 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
597 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
598
599 if (outprec >= BITS_PER_WORD
600 || TRULY_NOOP_TRUNCATION (outprec, inprec)
601 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
602 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
603 {
604 /* Do the arithmetic in type TYPEX,
605 then convert result to TYPE. */
606 tree typex = type;
607
608 /* Can't do arithmetic in enumeral types
609 so use an integer type that will hold the values. */
610 if (TREE_CODE (typex) == ENUMERAL_TYPE)
611 typex = lang_hooks.types.type_for_size
612 (TYPE_PRECISION (typex), TYPE_UNSIGNED (typex));
613
614 /* But now perhaps TYPEX is as wide as INPREC.
615 In that case, do nothing special here.
616 (Otherwise would recurse infinitely in convert. */
617 if (TYPE_PRECISION (typex) != inprec)
618 {
619 /* Don't do unsigned arithmetic where signed was wanted,
620 or vice versa.
621 Exception: if both of the original operands were
622 unsigned then we can safely do the work as unsigned.
623 Exception: shift operations take their type solely
624 from the first argument.
625 Exception: the LSHIFT_EXPR case above requires that
626 we perform this operation unsigned lest we produce
627 signed-overflow undefinedness.
628 And we may need to do it as unsigned
629 if we truncate to the original size. */
630 if (TYPE_UNSIGNED (TREE_TYPE (expr))
631 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
632 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
633 || ex_form == LSHIFT_EXPR
634 || ex_form == RSHIFT_EXPR
635 || ex_form == LROTATE_EXPR
636 || ex_form == RROTATE_EXPR))
637 || ex_form == LSHIFT_EXPR
638 /* If we have !flag_wrapv, and either ARG0 or
639 ARG1 is of a signed type, we have to do
640 PLUS_EXPR or MINUS_EXPR in an unsigned
641 type. Otherwise, we would introduce
642 signed-overflow undefinedness. */
643 || (!flag_wrapv
644 && (ex_form == PLUS_EXPR
645 || ex_form == MINUS_EXPR)
646 && (!TYPE_UNSIGNED (TREE_TYPE (arg0))
647 || !TYPE_UNSIGNED (TREE_TYPE (arg1)))))
648 typex = lang_hooks.types.unsigned_type (typex);
649 else
650 typex = lang_hooks.types.signed_type (typex);
651 return convert (type,
652 fold_build2 (ex_form, typex,
653 convert (typex, arg0),
654 convert (typex, arg1)));
655 }
656 }
657 }
658 break;
659
660 case NEGATE_EXPR:
661 case BIT_NOT_EXPR:
662 /* This is not correct for ABS_EXPR,
663 since we must test the sign before truncation. */
664 {
665 tree typex;
666
667 /* Don't do unsigned arithmetic where signed was wanted,
668 or vice versa. */
669 if (TYPE_UNSIGNED (TREE_TYPE (expr)))
670 typex = lang_hooks.types.unsigned_type (type);
671 else
672 typex = lang_hooks.types.signed_type (type);
673 return convert (type,
674 fold_build1 (ex_form, typex,
675 convert (typex,
676 TREE_OPERAND (expr, 0))));
677 }
678
679 case NOP_EXPR:
680 /* Don't introduce a
681 "can't convert between vector values of different size" error. */
682 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == VECTOR_TYPE
683 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (expr, 0))))
684 != GET_MODE_SIZE (TYPE_MODE (type))))
685 break;
686 /* If truncating after truncating, might as well do all at once.
687 If truncating after extending, we may get rid of wasted work. */
688 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
689
690 case COND_EXPR:
691 /* It is sometimes worthwhile to push the narrowing down through
692 the conditional and never loses. */
693 return fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
694 convert (type, TREE_OPERAND (expr, 1)),
695 convert (type, TREE_OPERAND (expr, 2)));
696
697 default:
698 break;
699 }
700
701 return build1 (CONVERT_EXPR, type, expr);
702
703 case REAL_TYPE:
704 return build1 (FIX_TRUNC_EXPR, type, expr);
705
706 case COMPLEX_TYPE:
707 return convert (type,
708 fold_build1 (REALPART_EXPR,
709 TREE_TYPE (TREE_TYPE (expr)), expr));
710
711 case VECTOR_TYPE:
712 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
713 {
714 error ("can't convert between vector values of different size");
715 return error_mark_node;
716 }
717 return build1 (VIEW_CONVERT_EXPR, type, expr);
718
719 default:
720 error ("aggregate value used where an integer was expected");
721 return convert (type, integer_zero_node);
722 }
723 }
724
725 /* Convert EXPR to the complex type TYPE in the usual ways. */
726
727 tree
728 convert_to_complex (tree type, tree expr)
729 {
730 tree subtype = TREE_TYPE (type);
731
732 switch (TREE_CODE (TREE_TYPE (expr)))
733 {
734 case REAL_TYPE:
735 case INTEGER_TYPE:
736 case ENUMERAL_TYPE:
737 case BOOLEAN_TYPE:
738 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
739 convert (subtype, integer_zero_node));
740
741 case COMPLEX_TYPE:
742 {
743 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
744
745 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
746 return expr;
747 else if (TREE_CODE (expr) == COMPLEX_EXPR)
748 return fold_build2 (COMPLEX_EXPR, type,
749 convert (subtype, TREE_OPERAND (expr, 0)),
750 convert (subtype, TREE_OPERAND (expr, 1)));
751 else
752 {
753 expr = save_expr (expr);
754 return
755 fold_build2 (COMPLEX_EXPR, type,
756 convert (subtype,
757 fold_build1 (REALPART_EXPR,
758 TREE_TYPE (TREE_TYPE (expr)),
759 expr)),
760 convert (subtype,
761 fold_build1 (IMAGPART_EXPR,
762 TREE_TYPE (TREE_TYPE (expr)),
763 expr)));
764 }
765 }
766
767 case POINTER_TYPE:
768 case REFERENCE_TYPE:
769 error ("pointer value used where a complex was expected");
770 return convert_to_complex (type, integer_zero_node);
771
772 default:
773 error ("aggregate value used where a complex was expected");
774 return convert_to_complex (type, integer_zero_node);
775 }
776 }
777
778 /* Convert EXPR to the vector type TYPE in the usual ways. */
779
780 tree
781 convert_to_vector (tree type, tree expr)
782 {
783 switch (TREE_CODE (TREE_TYPE (expr)))
784 {
785 case INTEGER_TYPE:
786 case VECTOR_TYPE:
787 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
788 {
789 error ("can't convert between vector values of different size");
790 return error_mark_node;
791 }
792 return build1 (VIEW_CONVERT_EXPR, type, expr);
793
794 default:
795 error ("can't convert value to a vector");
796 return error_mark_node;
797 }
798 }