]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/convert.c
trans.c (check_inlining_for_nested_subprog): Quote reserved names.
[thirdparty/gcc.git] / gcc / convert.c
1 /* Utility routines for data type conversion for GCC.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* These routines are somewhat language-independent utility function
22 intended to be called by the language-specific convert () functions. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "target.h"
28 #include "tree.h"
29 #include "diagnostic-core.h"
30 #include "fold-const.h"
31 #include "stor-layout.h"
32 #include "convert.h"
33 #include "langhooks.h"
34 #include "builtins.h"
35 #include "ubsan.h"
36 #include "stringpool.h"
37 #include "attribs.h"
38 #include "asan.h"
39 #include "selftest.h"
40
41 #define maybe_fold_build1_loc(FOLD_P, LOC, CODE, TYPE, EXPR) \
42 ((FOLD_P) ? fold_build1_loc (LOC, CODE, TYPE, EXPR) \
43 : build1_loc (LOC, CODE, TYPE, EXPR))
44 #define maybe_fold_build2_loc(FOLD_P, LOC, CODE, TYPE, EXPR1, EXPR2) \
45 ((FOLD_P) ? fold_build2_loc (LOC, CODE, TYPE, EXPR1, EXPR2) \
46 : build2_loc (LOC, CODE, TYPE, EXPR1, EXPR2))
47
48 /* Convert EXPR to some pointer or reference type TYPE.
49 EXPR must be pointer, reference, integer, enumeral, or literal zero;
50 in other cases error is called. If FOLD_P is true, try to fold the
51 expression. */
52
53 static tree
54 convert_to_pointer_1 (tree type, tree expr, bool fold_p)
55 {
56 location_t loc = EXPR_LOCATION (expr);
57 if (TREE_TYPE (expr) == type)
58 return expr;
59
60 switch (TREE_CODE (TREE_TYPE (expr)))
61 {
62 case POINTER_TYPE:
63 case REFERENCE_TYPE:
64 {
65 /* If the pointers point to different address spaces, conversion needs
66 to be done via a ADDR_SPACE_CONVERT_EXPR instead of a NOP_EXPR. */
67 addr_space_t to_as = TYPE_ADDR_SPACE (TREE_TYPE (type));
68 addr_space_t from_as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (expr)));
69
70 if (to_as == from_as)
71 return maybe_fold_build1_loc (fold_p, loc, NOP_EXPR, type, expr);
72 else
73 return maybe_fold_build1_loc (fold_p, loc, ADDR_SPACE_CONVERT_EXPR,
74 type, expr);
75 }
76
77 case INTEGER_TYPE:
78 case ENUMERAL_TYPE:
79 case BOOLEAN_TYPE:
80 {
81 /* If the input precision differs from the target pointer type
82 precision, first convert the input expression to an integer type of
83 the target precision. Some targets, e.g. VMS, need several pointer
84 sizes to coexist so the latter isn't necessarily POINTER_SIZE. */
85 unsigned int pprec = TYPE_PRECISION (type);
86 unsigned int eprec = TYPE_PRECISION (TREE_TYPE (expr));
87
88 if (eprec != pprec)
89 expr
90 = maybe_fold_build1_loc (fold_p, loc, NOP_EXPR,
91 lang_hooks.types.type_for_size (pprec, 0),
92 expr);
93 }
94 return maybe_fold_build1_loc (fold_p, loc, CONVERT_EXPR, type, expr);
95
96 default:
97 error ("cannot convert to a pointer type");
98 return convert_to_pointer_1 (type, integer_zero_node, fold_p);
99 }
100 }
101
102 /* Subroutine of the various convert_to_*_maybe_fold routines.
103
104 If a location wrapper has been folded to a constant (presumably of
105 a different type), re-wrap the new constant with a location wrapper. */
106
107 tree
108 preserve_any_location_wrapper (tree result, tree orig_expr)
109 {
110 if (CONSTANT_CLASS_P (result) && location_wrapper_p (orig_expr))
111 {
112 if (result == TREE_OPERAND (orig_expr, 0))
113 return orig_expr;
114 else
115 return maybe_wrap_with_location (result, EXPR_LOCATION (orig_expr));
116 }
117
118 return result;
119 }
120
121 /* A wrapper around convert_to_pointer_1 that always folds the
122 expression. */
123
124 tree
125 convert_to_pointer (tree type, tree expr)
126 {
127 return convert_to_pointer_1 (type, expr, true);
128 }
129
130 /* A wrapper around convert_to_pointer_1 that only folds the
131 expression if DOFOLD, or if it is CONSTANT_CLASS_OR_WRAPPER_P. */
132
133 tree
134 convert_to_pointer_maybe_fold (tree type, tree expr, bool dofold)
135 {
136 tree result
137 = convert_to_pointer_1 (type, expr,
138 dofold || CONSTANT_CLASS_OR_WRAPPER_P (expr));
139 return preserve_any_location_wrapper (result, expr);
140 }
141
142 /* Convert EXPR to some floating-point type TYPE.
143
144 EXPR must be float, fixed-point, integer, or enumeral;
145 in other cases error is called. If FOLD_P is true, try to fold
146 the expression. */
147
148 static tree
149 convert_to_real_1 (tree type, tree expr, bool fold_p)
150 {
151 enum built_in_function fcode = builtin_mathfn_code (expr);
152 tree itype = TREE_TYPE (expr);
153 location_t loc = EXPR_LOCATION (expr);
154
155 if (TREE_CODE (expr) == COMPOUND_EXPR)
156 {
157 tree t = convert_to_real_1 (type, TREE_OPERAND (expr, 1), fold_p);
158 if (t == TREE_OPERAND (expr, 1))
159 return expr;
160 return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR, TREE_TYPE (t),
161 TREE_OPERAND (expr, 0), t);
162 }
163
164 /* Disable until we figure out how to decide whether the functions are
165 present in runtime. */
166 /* Convert (float)sqrt((double)x) where x is float into sqrtf(x) */
167 if (optimize
168 && (TYPE_MODE (type) == TYPE_MODE (double_type_node)
169 || TYPE_MODE (type) == TYPE_MODE (float_type_node)))
170 {
171 switch (fcode)
172 {
173 #define CASE_MATHFN(FN) case BUILT_IN_##FN: case BUILT_IN_##FN##L:
174 CASE_MATHFN (COSH)
175 CASE_MATHFN (EXP)
176 CASE_MATHFN (EXP10)
177 CASE_MATHFN (EXP2)
178 CASE_MATHFN (EXPM1)
179 CASE_MATHFN (GAMMA)
180 CASE_MATHFN (J0)
181 CASE_MATHFN (J1)
182 CASE_MATHFN (LGAMMA)
183 CASE_MATHFN (POW10)
184 CASE_MATHFN (SINH)
185 CASE_MATHFN (TGAMMA)
186 CASE_MATHFN (Y0)
187 CASE_MATHFN (Y1)
188 /* The above functions may set errno differently with float
189 input or output so this transformation is not safe with
190 -fmath-errno. */
191 if (flag_errno_math)
192 break;
193 gcc_fallthrough ();
194 CASE_MATHFN (ACOS)
195 CASE_MATHFN (ACOSH)
196 CASE_MATHFN (ASIN)
197 CASE_MATHFN (ASINH)
198 CASE_MATHFN (ATAN)
199 CASE_MATHFN (ATANH)
200 CASE_MATHFN (CBRT)
201 CASE_MATHFN (COS)
202 CASE_MATHFN (ERF)
203 CASE_MATHFN (ERFC)
204 CASE_MATHFN (LOG)
205 CASE_MATHFN (LOG10)
206 CASE_MATHFN (LOG2)
207 CASE_MATHFN (LOG1P)
208 CASE_MATHFN (SIN)
209 CASE_MATHFN (TAN)
210 CASE_MATHFN (TANH)
211 /* The above functions are not safe to do this conversion. */
212 if (!flag_unsafe_math_optimizations)
213 break;
214 gcc_fallthrough ();
215 CASE_MATHFN (SQRT)
216 CASE_MATHFN (FABS)
217 CASE_MATHFN (LOGB)
218 #undef CASE_MATHFN
219 if (call_expr_nargs (expr) != 1
220 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (CALL_EXPR_ARG (expr, 0))))
221 break;
222 {
223 tree arg0 = strip_float_extensions (CALL_EXPR_ARG (expr, 0));
224 tree newtype = type;
225
226 /* We have (outertype)sqrt((innertype)x). Choose the wider mode
227 from the both as the safe type for operation. */
228 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (type))
229 newtype = TREE_TYPE (arg0);
230
231 /* We consider to convert
232
233 (T1) sqrtT2 ((T2) exprT3)
234 to
235 (T1) sqrtT4 ((T4) exprT3)
236
237 , where T1 is TYPE, T2 is ITYPE, T3 is TREE_TYPE (ARG0),
238 and T4 is NEWTYPE. All those types are of floating point types.
239 T4 (NEWTYPE) should be narrower than T2 (ITYPE). This conversion
240 is safe only if P1 >= P2*2+2, where P1 and P2 are precisions of
241 T2 and T4. See the following URL for a reference:
242 http://stackoverflow.com/questions/9235456/determining-
243 floating-point-square-root
244 */
245 if ((fcode == BUILT_IN_SQRT || fcode == BUILT_IN_SQRTL)
246 && !flag_unsafe_math_optimizations)
247 {
248 /* The following conversion is unsafe even the precision condition
249 below is satisfied:
250
251 (float) sqrtl ((long double) double_val) -> (float) sqrt (double_val)
252 */
253 if (TYPE_MODE (type) != TYPE_MODE (newtype))
254 break;
255
256 int p1 = REAL_MODE_FORMAT (TYPE_MODE (itype))->p;
257 int p2 = REAL_MODE_FORMAT (TYPE_MODE (newtype))->p;
258 if (p1 < p2 * 2 + 2)
259 break;
260 }
261
262 /* Be careful about integer to fp conversions.
263 These may overflow still. */
264 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
265 && TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
266 && (TYPE_MODE (newtype) == TYPE_MODE (double_type_node)
267 || TYPE_MODE (newtype) == TYPE_MODE (float_type_node)))
268 {
269 tree fn = mathfn_built_in (newtype, fcode);
270 if (fn)
271 {
272 tree arg = convert_to_real_1 (newtype, arg0, fold_p);
273 expr = build_call_expr (fn, 1, arg);
274 if (newtype == type)
275 return expr;
276 }
277 }
278 }
279 default:
280 break;
281 }
282 }
283
284 /* Propagate the cast into the operation. */
285 if (itype != type && FLOAT_TYPE_P (type))
286 switch (TREE_CODE (expr))
287 {
288 /* Convert (float)-x into -(float)x. This is safe for
289 round-to-nearest rounding mode when the inner type is float. */
290 case ABS_EXPR:
291 case NEGATE_EXPR:
292 if (!flag_rounding_math
293 && FLOAT_TYPE_P (itype)
294 && TYPE_PRECISION (type) < TYPE_PRECISION (itype))
295 {
296 tree arg = convert_to_real_1 (type, TREE_OPERAND (expr, 0),
297 fold_p);
298 return build1 (TREE_CODE (expr), type, arg);
299 }
300 break;
301 /* Convert (outertype)((innertype0)a+(innertype1)b)
302 into ((newtype)a+(newtype)b) where newtype
303 is the widest mode from all of these. */
304 case PLUS_EXPR:
305 case MINUS_EXPR:
306 case MULT_EXPR:
307 case RDIV_EXPR:
308 {
309 tree arg0 = strip_float_extensions (TREE_OPERAND (expr, 0));
310 tree arg1 = strip_float_extensions (TREE_OPERAND (expr, 1));
311
312 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
313 && FLOAT_TYPE_P (TREE_TYPE (arg1))
314 && DECIMAL_FLOAT_TYPE_P (itype) == DECIMAL_FLOAT_TYPE_P (type))
315 {
316 tree newtype = type;
317
318 if (TYPE_MODE (TREE_TYPE (arg0)) == SDmode
319 || TYPE_MODE (TREE_TYPE (arg1)) == SDmode
320 || TYPE_MODE (type) == SDmode)
321 newtype = dfloat32_type_node;
322 if (TYPE_MODE (TREE_TYPE (arg0)) == DDmode
323 || TYPE_MODE (TREE_TYPE (arg1)) == DDmode
324 || TYPE_MODE (type) == DDmode)
325 newtype = dfloat64_type_node;
326 if (TYPE_MODE (TREE_TYPE (arg0)) == TDmode
327 || TYPE_MODE (TREE_TYPE (arg1)) == TDmode
328 || TYPE_MODE (type) == TDmode)
329 newtype = dfloat128_type_node;
330 if (newtype == dfloat32_type_node
331 || newtype == dfloat64_type_node
332 || newtype == dfloat128_type_node)
333 {
334 expr = build2 (TREE_CODE (expr), newtype,
335 convert_to_real_1 (newtype, arg0,
336 fold_p),
337 convert_to_real_1 (newtype, arg1,
338 fold_p));
339 if (newtype == type)
340 return expr;
341 break;
342 }
343
344 if (TYPE_PRECISION (TREE_TYPE (arg0)) > TYPE_PRECISION (newtype))
345 newtype = TREE_TYPE (arg0);
346 if (TYPE_PRECISION (TREE_TYPE (arg1)) > TYPE_PRECISION (newtype))
347 newtype = TREE_TYPE (arg1);
348 /* Sometimes this transformation is safe (cannot
349 change results through affecting double rounding
350 cases) and sometimes it is not. If NEWTYPE is
351 wider than TYPE, e.g. (float)((long double)double
352 + (long double)double) converted to
353 (float)(double + double), the transformation is
354 unsafe regardless of the details of the types
355 involved; double rounding can arise if the result
356 of NEWTYPE arithmetic is a NEWTYPE value half way
357 between two representable TYPE values but the
358 exact value is sufficiently different (in the
359 right direction) for this difference to be
360 visible in ITYPE arithmetic. If NEWTYPE is the
361 same as TYPE, however, the transformation may be
362 safe depending on the types involved: it is safe
363 if the ITYPE has strictly more than twice as many
364 mantissa bits as TYPE, can represent infinities
365 and NaNs if the TYPE can, and has sufficient
366 exponent range for the product or ratio of two
367 values representable in the TYPE to be within the
368 range of normal values of ITYPE. */
369 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (itype)
370 && (flag_unsafe_math_optimizations
371 || (TYPE_PRECISION (newtype) == TYPE_PRECISION (type)
372 && real_can_shorten_arithmetic (TYPE_MODE (itype),
373 TYPE_MODE (type))
374 && !excess_precision_type (newtype))))
375 {
376 expr = build2 (TREE_CODE (expr), newtype,
377 convert_to_real_1 (newtype, arg0,
378 fold_p),
379 convert_to_real_1 (newtype, arg1,
380 fold_p));
381 if (newtype == type)
382 return expr;
383 }
384 }
385 }
386 break;
387 default:
388 break;
389 }
390
391 switch (TREE_CODE (TREE_TYPE (expr)))
392 {
393 case REAL_TYPE:
394 /* Ignore the conversion if we don't need to store intermediate
395 results and neither type is a decimal float. */
396 return build1_loc (loc,
397 (flag_float_store
398 || DECIMAL_FLOAT_TYPE_P (type)
399 || DECIMAL_FLOAT_TYPE_P (itype))
400 ? CONVERT_EXPR : NOP_EXPR, type, expr);
401
402 case INTEGER_TYPE:
403 case ENUMERAL_TYPE:
404 case BOOLEAN_TYPE:
405 return build1 (FLOAT_EXPR, type, expr);
406
407 case FIXED_POINT_TYPE:
408 return build1 (FIXED_CONVERT_EXPR, type, expr);
409
410 case COMPLEX_TYPE:
411 return convert (type,
412 maybe_fold_build1_loc (fold_p, loc, REALPART_EXPR,
413 TREE_TYPE (TREE_TYPE (expr)),
414 expr));
415
416 case POINTER_TYPE:
417 case REFERENCE_TYPE:
418 error ("pointer value used where a floating point was expected");
419 return convert_to_real_1 (type, integer_zero_node, fold_p);
420
421 default:
422 error ("aggregate value used where a floating point was expected");
423 return convert_to_real_1 (type, integer_zero_node, fold_p);
424 }
425 }
426
427 /* A wrapper around convert_to_real_1 that always folds the
428 expression. */
429
430 tree
431 convert_to_real (tree type, tree expr)
432 {
433 return convert_to_real_1 (type, expr, true);
434 }
435
436 /* A wrapper around convert_to_real_1 that only folds the
437 expression if DOFOLD, or if it is CONSTANT_CLASS_OR_WRAPPER_P. */
438
439 tree
440 convert_to_real_maybe_fold (tree type, tree expr, bool dofold)
441 {
442 tree result
443 = convert_to_real_1 (type, expr,
444 dofold || CONSTANT_CLASS_OR_WRAPPER_P (expr));
445 return preserve_any_location_wrapper (result, expr);
446 }
447
448 /* Try to narrow EX_FORM ARG0 ARG1 in narrowed arg types producing a
449 result in TYPE. */
450
451 static tree
452 do_narrow (location_t loc,
453 enum tree_code ex_form, tree type, tree arg0, tree arg1,
454 tree expr, unsigned inprec, unsigned outprec, bool dofold)
455 {
456 /* Do the arithmetic in type TYPEX,
457 then convert result to TYPE. */
458 tree typex = type;
459
460 /* Can't do arithmetic in enumeral types
461 so use an integer type that will hold the values. */
462 if (TREE_CODE (typex) == ENUMERAL_TYPE)
463 typex = lang_hooks.types.type_for_size (TYPE_PRECISION (typex),
464 TYPE_UNSIGNED (typex));
465
466 /* The type demotion below might cause doing unsigned arithmetic
467 instead of signed, and thus hide overflow bugs. */
468 if ((ex_form == PLUS_EXPR || ex_form == MINUS_EXPR)
469 && !TYPE_UNSIGNED (typex)
470 && sanitize_flags_p (SANITIZE_SI_OVERFLOW))
471 return NULL_TREE;
472
473 /* But now perhaps TYPEX is as wide as INPREC.
474 In that case, do nothing special here.
475 (Otherwise would recurse infinitely in convert. */
476 if (TYPE_PRECISION (typex) != inprec)
477 {
478 /* Don't do unsigned arithmetic where signed was wanted,
479 or vice versa.
480 Exception: if both of the original operands were
481 unsigned then we can safely do the work as unsigned.
482 Exception: shift operations take their type solely
483 from the first argument.
484 Exception: the LSHIFT_EXPR case above requires that
485 we perform this operation unsigned lest we produce
486 signed-overflow undefinedness.
487 And we may need to do it as unsigned
488 if we truncate to the original size. */
489 if (TYPE_UNSIGNED (TREE_TYPE (expr))
490 || (TYPE_UNSIGNED (TREE_TYPE (arg0))
491 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
492 || ex_form == LSHIFT_EXPR
493 || ex_form == RSHIFT_EXPR
494 || ex_form == LROTATE_EXPR
495 || ex_form == RROTATE_EXPR))
496 || ex_form == LSHIFT_EXPR
497 /* If we have !flag_wrapv, and either ARG0 or
498 ARG1 is of a signed type, we have to do
499 PLUS_EXPR, MINUS_EXPR or MULT_EXPR in an unsigned
500 type in case the operation in outprec precision
501 could overflow. Otherwise, we would introduce
502 signed-overflow undefinedness. */
503 || ((!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
504 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
505 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
506 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))))
507 && ((TYPE_PRECISION (TREE_TYPE (arg0)) * 2u
508 > outprec)
509 || (TYPE_PRECISION (TREE_TYPE (arg1)) * 2u
510 > outprec))
511 && (ex_form == PLUS_EXPR
512 || ex_form == MINUS_EXPR
513 || ex_form == MULT_EXPR)))
514 {
515 if (!TYPE_UNSIGNED (typex))
516 typex = unsigned_type_for (typex);
517 }
518 else
519 {
520 if (TYPE_UNSIGNED (typex))
521 typex = signed_type_for (typex);
522 }
523 /* We should do away with all this once we have a proper
524 type promotion/demotion pass, see PR45397. */
525 expr = maybe_fold_build2_loc (dofold, loc, ex_form, typex,
526 convert (typex, arg0),
527 convert (typex, arg1));
528 return convert (type, expr);
529 }
530
531 return NULL_TREE;
532 }
533
534 /* Convert EXPR to some integer (or enum) type TYPE.
535
536 EXPR must be pointer, integer, discrete (enum, char, or bool), float,
537 fixed-point or vector; in other cases error is called.
538
539 If DOFOLD is TRUE, we try to simplify newly-created patterns by folding.
540
541 The result of this is always supposed to be a newly created tree node
542 not in use in any existing structure. */
543
544 static tree
545 convert_to_integer_1 (tree type, tree expr, bool dofold)
546 {
547 enum tree_code ex_form = TREE_CODE (expr);
548 tree intype = TREE_TYPE (expr);
549 unsigned int inprec = element_precision (intype);
550 unsigned int outprec = element_precision (type);
551 location_t loc = EXPR_LOCATION (expr);
552
553 /* An INTEGER_TYPE cannot be incomplete, but an ENUMERAL_TYPE can
554 be. Consider `enum E = { a, b = (enum E) 3 };'. */
555 if (!COMPLETE_TYPE_P (type))
556 {
557 error ("conversion to incomplete type");
558 return error_mark_node;
559 }
560
561 if (ex_form == COMPOUND_EXPR)
562 {
563 tree t = convert_to_integer_1 (type, TREE_OPERAND (expr, 1), dofold);
564 if (t == TREE_OPERAND (expr, 1))
565 return expr;
566 return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR, TREE_TYPE (t),
567 TREE_OPERAND (expr, 0), t);
568 }
569
570 /* Convert e.g. (long)round(d) -> lround(d). */
571 /* If we're converting to char, we may encounter differing behavior
572 between converting from double->char vs double->long->char.
573 We're in "undefined" territory but we prefer to be conservative,
574 so only proceed in "unsafe" math mode. */
575 if (optimize
576 && (flag_unsafe_math_optimizations
577 || (long_integer_type_node
578 && outprec >= TYPE_PRECISION (long_integer_type_node))))
579 {
580 tree s_expr = strip_float_extensions (expr);
581 tree s_intype = TREE_TYPE (s_expr);
582 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
583 tree fn = 0;
584
585 switch (fcode)
586 {
587 CASE_FLT_FN (BUILT_IN_CEIL):
588 CASE_FLT_FN_FLOATN_NX (BUILT_IN_CEIL):
589 /* Only convert in ISO C99 mode. */
590 if (!targetm.libc_has_function (function_c99_misc))
591 break;
592 if (outprec < TYPE_PRECISION (integer_type_node)
593 || (outprec == TYPE_PRECISION (integer_type_node)
594 && !TYPE_UNSIGNED (type)))
595 fn = mathfn_built_in (s_intype, BUILT_IN_ICEIL);
596 else if (outprec == TYPE_PRECISION (long_integer_type_node)
597 && !TYPE_UNSIGNED (type))
598 fn = mathfn_built_in (s_intype, BUILT_IN_LCEIL);
599 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
600 && !TYPE_UNSIGNED (type))
601 fn = mathfn_built_in (s_intype, BUILT_IN_LLCEIL);
602 break;
603
604 CASE_FLT_FN (BUILT_IN_FLOOR):
605 CASE_FLT_FN_FLOATN_NX (BUILT_IN_FLOOR):
606 /* Only convert in ISO C99 mode. */
607 if (!targetm.libc_has_function (function_c99_misc))
608 break;
609 if (outprec < TYPE_PRECISION (integer_type_node)
610 || (outprec == TYPE_PRECISION (integer_type_node)
611 && !TYPE_UNSIGNED (type)))
612 fn = mathfn_built_in (s_intype, BUILT_IN_IFLOOR);
613 else if (outprec == TYPE_PRECISION (long_integer_type_node)
614 && !TYPE_UNSIGNED (type))
615 fn = mathfn_built_in (s_intype, BUILT_IN_LFLOOR);
616 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
617 && !TYPE_UNSIGNED (type))
618 fn = mathfn_built_in (s_intype, BUILT_IN_LLFLOOR);
619 break;
620
621 CASE_FLT_FN (BUILT_IN_ROUND):
622 CASE_FLT_FN_FLOATN_NX (BUILT_IN_ROUND):
623 /* Only convert in ISO C99 mode and with -fno-math-errno. */
624 if (!targetm.libc_has_function (function_c99_misc)
625 || flag_errno_math)
626 break;
627 if (outprec < TYPE_PRECISION (integer_type_node)
628 || (outprec == TYPE_PRECISION (integer_type_node)
629 && !TYPE_UNSIGNED (type)))
630 fn = mathfn_built_in (s_intype, BUILT_IN_IROUND);
631 else if (outprec == TYPE_PRECISION (long_integer_type_node)
632 && !TYPE_UNSIGNED (type))
633 fn = mathfn_built_in (s_intype, BUILT_IN_LROUND);
634 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
635 && !TYPE_UNSIGNED (type))
636 fn = mathfn_built_in (s_intype, BUILT_IN_LLROUND);
637 break;
638
639 CASE_FLT_FN (BUILT_IN_NEARBYINT):
640 CASE_FLT_FN_FLOATN_NX (BUILT_IN_NEARBYINT):
641 /* Only convert nearbyint* if we can ignore math exceptions. */
642 if (flag_trapping_math)
643 break;
644 gcc_fallthrough ();
645 CASE_FLT_FN (BUILT_IN_RINT):
646 CASE_FLT_FN_FLOATN_NX (BUILT_IN_RINT):
647 /* Only convert in ISO C99 mode and with -fno-math-errno. */
648 if (!targetm.libc_has_function (function_c99_misc)
649 || flag_errno_math)
650 break;
651 if (outprec < TYPE_PRECISION (integer_type_node)
652 || (outprec == TYPE_PRECISION (integer_type_node)
653 && !TYPE_UNSIGNED (type)))
654 fn = mathfn_built_in (s_intype, BUILT_IN_IRINT);
655 else if (outprec == TYPE_PRECISION (long_integer_type_node)
656 && !TYPE_UNSIGNED (type))
657 fn = mathfn_built_in (s_intype, BUILT_IN_LRINT);
658 else if (outprec == TYPE_PRECISION (long_long_integer_type_node)
659 && !TYPE_UNSIGNED (type))
660 fn = mathfn_built_in (s_intype, BUILT_IN_LLRINT);
661 break;
662
663 CASE_FLT_FN (BUILT_IN_TRUNC):
664 CASE_FLT_FN_FLOATN_NX (BUILT_IN_TRUNC):
665 if (call_expr_nargs (s_expr) != 1
666 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE (CALL_EXPR_ARG (s_expr, 0))))
667 break;
668 return convert_to_integer_1 (type, CALL_EXPR_ARG (s_expr, 0),
669 dofold);
670
671 default:
672 break;
673 }
674
675 if (fn
676 && call_expr_nargs (s_expr) == 1
677 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (CALL_EXPR_ARG (s_expr, 0))))
678 {
679 tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
680 return convert_to_integer_1 (type, newexpr, dofold);
681 }
682 }
683
684 /* Convert (int)logb(d) -> ilogb(d). */
685 if (optimize
686 && flag_unsafe_math_optimizations
687 && !flag_trapping_math && !flag_errno_math && flag_finite_math_only
688 && integer_type_node
689 && (outprec > TYPE_PRECISION (integer_type_node)
690 || (outprec == TYPE_PRECISION (integer_type_node)
691 && !TYPE_UNSIGNED (type))))
692 {
693 tree s_expr = strip_float_extensions (expr);
694 tree s_intype = TREE_TYPE (s_expr);
695 const enum built_in_function fcode = builtin_mathfn_code (s_expr);
696 tree fn = 0;
697
698 switch (fcode)
699 {
700 CASE_FLT_FN (BUILT_IN_LOGB):
701 fn = mathfn_built_in (s_intype, BUILT_IN_ILOGB);
702 break;
703
704 default:
705 break;
706 }
707
708 if (fn
709 && call_expr_nargs (s_expr) == 1
710 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (CALL_EXPR_ARG (s_expr, 0))))
711 {
712 tree newexpr = build_call_expr (fn, 1, CALL_EXPR_ARG (s_expr, 0));
713 return convert_to_integer_1 (type, newexpr, dofold);
714 }
715 }
716
717 switch (TREE_CODE (intype))
718 {
719 case POINTER_TYPE:
720 case REFERENCE_TYPE:
721 if (integer_zerop (expr)
722 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (expr)))
723 return build_int_cst (type, 0);
724
725 /* Convert to an unsigned integer of the correct width first, and from
726 there widen/truncate to the required type. Some targets support the
727 coexistence of multiple valid pointer sizes, so fetch the one we need
728 from the type. */
729 if (!dofold)
730 return build1 (CONVERT_EXPR, type, expr);
731 expr = fold_build1 (CONVERT_EXPR,
732 lang_hooks.types.type_for_size
733 (TYPE_PRECISION (intype), 0),
734 expr);
735 return fold_convert (type, expr);
736
737 case INTEGER_TYPE:
738 case ENUMERAL_TYPE:
739 case BOOLEAN_TYPE:
740 case OFFSET_TYPE:
741 /* If this is a logical operation, which just returns 0 or 1, we can
742 change the type of the expression. */
743
744 if (TREE_CODE_CLASS (ex_form) == tcc_comparison)
745 {
746 expr = copy_node (expr);
747 TREE_TYPE (expr) = type;
748 return expr;
749 }
750
751 /* If we are widening the type, put in an explicit conversion.
752 Similarly if we are not changing the width. After this, we know
753 we are truncating EXPR. */
754
755 else if (outprec >= inprec)
756 {
757 enum tree_code code;
758
759 /* If the precision of the EXPR's type is K bits and the
760 destination mode has more bits, and the sign is changing,
761 it is not safe to use a NOP_EXPR. For example, suppose
762 that EXPR's type is a 3-bit unsigned integer type, the
763 TYPE is a 3-bit signed integer type, and the machine mode
764 for the types is 8-bit QImode. In that case, the
765 conversion necessitates an explicit sign-extension. In
766 the signed-to-unsigned case the high-order bits have to
767 be cleared. */
768 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (TREE_TYPE (expr))
769 && !type_has_mode_precision_p (TREE_TYPE (expr)))
770 code = CONVERT_EXPR;
771 else
772 code = NOP_EXPR;
773
774 return maybe_fold_build1_loc (dofold, loc, code, type, expr);
775 }
776
777 /* If TYPE is an enumeral type or a type with a precision less
778 than the number of bits in its mode, do the conversion to the
779 type corresponding to its mode, then do a nop conversion
780 to TYPE. */
781 else if (TREE_CODE (type) == ENUMERAL_TYPE
782 || maybe_ne (outprec, GET_MODE_PRECISION (TYPE_MODE (type))))
783 {
784 expr
785 = convert_to_integer_1 (lang_hooks.types.type_for_mode
786 (TYPE_MODE (type), TYPE_UNSIGNED (type)),
787 expr, dofold);
788 return maybe_fold_build1_loc (dofold, loc, NOP_EXPR, type, expr);
789 }
790
791 /* Here detect when we can distribute the truncation down past some
792 arithmetic. For example, if adding two longs and converting to an
793 int, we can equally well convert both to ints and then add.
794 For the operations handled here, such truncation distribution
795 is always safe.
796 It is desirable in these cases:
797 1) when truncating down to full-word from a larger size
798 2) when truncating takes no work.
799 3) when at least one operand of the arithmetic has been extended
800 (as by C's default conversions). In this case we need two conversions
801 if we do the arithmetic as already requested, so we might as well
802 truncate both and then combine. Perhaps that way we need only one.
803
804 Note that in general we cannot do the arithmetic in a type
805 shorter than the desired result of conversion, even if the operands
806 are both extended from a shorter type, because they might overflow
807 if combined in that type. The exceptions to this--the times when
808 two narrow values can be combined in their narrow type even to
809 make a wider result--are handled by "shorten" in build_binary_op. */
810
811 if (dofold)
812 switch (ex_form)
813 {
814 case RSHIFT_EXPR:
815 /* We can pass truncation down through right shifting
816 when the shift count is a nonpositive constant. */
817 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
818 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) <= 0)
819 goto trunc1;
820 break;
821
822 case LSHIFT_EXPR:
823 /* We can pass truncation down through left shifting
824 when the shift count is a nonnegative constant and
825 the target type is unsigned. */
826 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
827 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) >= 0
828 && TYPE_UNSIGNED (type)
829 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
830 {
831 /* If shift count is less than the width of the truncated type,
832 really shift. */
833 if (tree_int_cst_lt (TREE_OPERAND (expr, 1), TYPE_SIZE (type)))
834 /* In this case, shifting is like multiplication. */
835 goto trunc1;
836 else
837 {
838 /* If it is >= that width, result is zero.
839 Handling this with trunc1 would give the wrong result:
840 (int) ((long long) a << 32) is well defined (as 0)
841 but (int) a << 32 is undefined and would get a
842 warning. */
843
844 tree t = build_int_cst (type, 0);
845
846 /* If the original expression had side-effects, we must
847 preserve it. */
848 if (TREE_SIDE_EFFECTS (expr))
849 return build2 (COMPOUND_EXPR, type, expr, t);
850 else
851 return t;
852 }
853 }
854 break;
855
856 case TRUNC_DIV_EXPR:
857 {
858 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), NULL_TREE);
859 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), NULL_TREE);
860
861 /* Don't distribute unless the output precision is at least as
862 big as the actual inputs and it has the same signedness. */
863 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
864 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
865 /* If signedness of arg0 and arg1 don't match,
866 we can't necessarily find a type to compare them in. */
867 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
868 == TYPE_UNSIGNED (TREE_TYPE (arg1)))
869 /* Do not change the sign of the division. */
870 && (TYPE_UNSIGNED (TREE_TYPE (expr))
871 == TYPE_UNSIGNED (TREE_TYPE (arg0)))
872 /* Either require unsigned division or a division by
873 a constant that is not -1. */
874 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
875 || (TREE_CODE (arg1) == INTEGER_CST
876 && !integer_all_onesp (arg1))))
877 {
878 tree tem = do_narrow (loc, ex_form, type, arg0, arg1,
879 expr, inprec, outprec, dofold);
880 if (tem)
881 return tem;
882 }
883 break;
884 }
885
886 case MAX_EXPR:
887 case MIN_EXPR:
888 case MULT_EXPR:
889 {
890 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
891 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
892
893 /* Don't distribute unless the output precision is at least as
894 big as the actual inputs. Otherwise, the comparison of the
895 truncated values will be wrong. */
896 if (outprec >= TYPE_PRECISION (TREE_TYPE (arg0))
897 && outprec >= TYPE_PRECISION (TREE_TYPE (arg1))
898 /* If signedness of arg0 and arg1 don't match,
899 we can't necessarily find a type to compare them in. */
900 && (TYPE_UNSIGNED (TREE_TYPE (arg0))
901 == TYPE_UNSIGNED (TREE_TYPE (arg1))))
902 goto trunc1;
903 break;
904 }
905
906 case PLUS_EXPR:
907 case MINUS_EXPR:
908 case BIT_AND_EXPR:
909 case BIT_IOR_EXPR:
910 case BIT_XOR_EXPR:
911 trunc1:
912 {
913 tree arg0 = get_unwidened (TREE_OPERAND (expr, 0), type);
914 tree arg1 = get_unwidened (TREE_OPERAND (expr, 1), type);
915
916 /* Do not try to narrow operands of pointer subtraction;
917 that will interfere with other folding. */
918 if (ex_form == MINUS_EXPR
919 && CONVERT_EXPR_P (arg0)
920 && CONVERT_EXPR_P (arg1)
921 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0)))
922 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0))))
923 break;
924
925 if (outprec >= BITS_PER_WORD
926 || targetm.truly_noop_truncation (outprec, inprec)
927 || inprec > TYPE_PRECISION (TREE_TYPE (arg0))
928 || inprec > TYPE_PRECISION (TREE_TYPE (arg1)))
929 {
930 tree tem = do_narrow (loc, ex_form, type, arg0, arg1,
931 expr, inprec, outprec, dofold);
932 if (tem)
933 return tem;
934 }
935 }
936 break;
937
938 case NEGATE_EXPR:
939 /* Using unsigned arithmetic for signed types may hide overflow
940 bugs. */
941 if (!TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (expr, 0)))
942 && sanitize_flags_p (SANITIZE_SI_OVERFLOW))
943 break;
944 /* Fall through. */
945 case BIT_NOT_EXPR:
946 /* This is not correct for ABS_EXPR,
947 since we must test the sign before truncation. */
948 {
949 /* Do the arithmetic in type TYPEX,
950 then convert result to TYPE. */
951 tree typex = type;
952
953 /* Can't do arithmetic in enumeral types
954 so use an integer type that will hold the values. */
955 if (TREE_CODE (typex) == ENUMERAL_TYPE)
956 typex
957 = lang_hooks.types.type_for_size (TYPE_PRECISION (typex),
958 TYPE_UNSIGNED (typex));
959
960 if (!TYPE_UNSIGNED (typex))
961 typex = unsigned_type_for (typex);
962 return convert (type,
963 fold_build1 (ex_form, typex,
964 convert (typex,
965 TREE_OPERAND (expr, 0))));
966 }
967
968 CASE_CONVERT:
969 {
970 tree argtype = TREE_TYPE (TREE_OPERAND (expr, 0));
971 /* Don't introduce a "can't convert between vector values
972 of different size" error. */
973 if (TREE_CODE (argtype) == VECTOR_TYPE
974 && maybe_ne (GET_MODE_SIZE (TYPE_MODE (argtype)),
975 GET_MODE_SIZE (TYPE_MODE (type))))
976 break;
977 }
978 /* If truncating after truncating, might as well do all at once.
979 If truncating after extending, we may get rid of wasted work. */
980 return convert (type, get_unwidened (TREE_OPERAND (expr, 0), type));
981
982 case COND_EXPR:
983 /* It is sometimes worthwhile to push the narrowing down through
984 the conditional and never loses. A COND_EXPR may have a throw
985 as one operand, which then has void type. Just leave void
986 operands as they are. */
987 return
988 fold_build3 (COND_EXPR, type, TREE_OPERAND (expr, 0),
989 VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1)))
990 ? TREE_OPERAND (expr, 1)
991 : convert (type, TREE_OPERAND (expr, 1)),
992 VOID_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 2)))
993 ? TREE_OPERAND (expr, 2)
994 : convert (type, TREE_OPERAND (expr, 2)));
995
996 default:
997 break;
998 }
999
1000 /* When parsing long initializers, we might end up with a lot of casts.
1001 Shortcut this. */
1002 if (TREE_CODE (tree_strip_any_location_wrapper (expr)) == INTEGER_CST)
1003 return fold_convert (type, expr);
1004 return build1 (CONVERT_EXPR, type, expr);
1005
1006 case REAL_TYPE:
1007 if (sanitize_flags_p (SANITIZE_FLOAT_CAST)
1008 && current_function_decl != NULL_TREE)
1009 {
1010 expr = save_expr (expr);
1011 tree check = ubsan_instrument_float_cast (loc, type, expr);
1012 expr = build1 (FIX_TRUNC_EXPR, type, expr);
1013 if (check == NULL_TREE)
1014 return expr;
1015 return maybe_fold_build2_loc (dofold, loc, COMPOUND_EXPR,
1016 TREE_TYPE (expr), check, expr);
1017 }
1018 else
1019 return build1 (FIX_TRUNC_EXPR, type, expr);
1020
1021 case FIXED_POINT_TYPE:
1022 return build1 (FIXED_CONVERT_EXPR, type, expr);
1023
1024 case COMPLEX_TYPE:
1025 expr = maybe_fold_build1_loc (dofold, loc, REALPART_EXPR,
1026 TREE_TYPE (TREE_TYPE (expr)), expr);
1027 return convert (type, expr);
1028
1029 case VECTOR_TYPE:
1030 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
1031 {
1032 error ("cannot convert a vector of type %qT"
1033 " to type %qT which has different size",
1034 TREE_TYPE (expr), type);
1035 return error_mark_node;
1036 }
1037 return build1 (VIEW_CONVERT_EXPR, type, expr);
1038
1039 default:
1040 error ("aggregate value used where an integer was expected");
1041 return convert (type, integer_zero_node);
1042 }
1043 }
1044
1045 /* Convert EXPR to some integer (or enum) type TYPE.
1046
1047 EXPR must be pointer, integer, discrete (enum, char, or bool), float,
1048 fixed-point or vector; in other cases error is called.
1049
1050 The result of this is always supposed to be a newly created tree node
1051 not in use in any existing structure. */
1052
1053 tree
1054 convert_to_integer (tree type, tree expr)
1055 {
1056 return convert_to_integer_1 (type, expr, true);
1057 }
1058
1059 /* A wrapper around convert_to_complex_1 that only folds the
1060 expression if DOFOLD, or if it is CONSTANT_CLASS_OR_WRAPPER_P. */
1061
1062 tree
1063 convert_to_integer_maybe_fold (tree type, tree expr, bool dofold)
1064 {
1065 tree result
1066 = convert_to_integer_1 (type, expr,
1067 dofold || CONSTANT_CLASS_OR_WRAPPER_P (expr));
1068 return preserve_any_location_wrapper (result, expr);
1069 }
1070
1071 /* Convert EXPR to the complex type TYPE in the usual ways. If FOLD_P is
1072 true, try to fold the expression. */
1073
1074 static tree
1075 convert_to_complex_1 (tree type, tree expr, bool fold_p)
1076 {
1077 location_t loc = EXPR_LOCATION (expr);
1078 tree subtype = TREE_TYPE (type);
1079
1080 switch (TREE_CODE (TREE_TYPE (expr)))
1081 {
1082 case REAL_TYPE:
1083 case FIXED_POINT_TYPE:
1084 case INTEGER_TYPE:
1085 case ENUMERAL_TYPE:
1086 case BOOLEAN_TYPE:
1087 return build2 (COMPLEX_EXPR, type, convert (subtype, expr),
1088 convert (subtype, integer_zero_node));
1089
1090 case COMPLEX_TYPE:
1091 {
1092 tree elt_type = TREE_TYPE (TREE_TYPE (expr));
1093
1094 if (TYPE_MAIN_VARIANT (elt_type) == TYPE_MAIN_VARIANT (subtype))
1095 return expr;
1096 else if (TREE_CODE (expr) == COMPOUND_EXPR)
1097 {
1098 tree t = convert_to_complex_1 (type, TREE_OPERAND (expr, 1),
1099 fold_p);
1100 if (t == TREE_OPERAND (expr, 1))
1101 return expr;
1102 return build2_loc (EXPR_LOCATION (expr), COMPOUND_EXPR,
1103 TREE_TYPE (t), TREE_OPERAND (expr, 0), t);
1104 }
1105 else if (TREE_CODE (expr) == COMPLEX_EXPR)
1106 return maybe_fold_build2_loc (fold_p, loc, COMPLEX_EXPR, type,
1107 convert (subtype,
1108 TREE_OPERAND (expr, 0)),
1109 convert (subtype,
1110 TREE_OPERAND (expr, 1)));
1111 else
1112 {
1113 expr = save_expr (expr);
1114 tree realp = maybe_fold_build1_loc (fold_p, loc, REALPART_EXPR,
1115 TREE_TYPE (TREE_TYPE (expr)),
1116 expr);
1117 tree imagp = maybe_fold_build1_loc (fold_p, loc, IMAGPART_EXPR,
1118 TREE_TYPE (TREE_TYPE (expr)),
1119 expr);
1120 return maybe_fold_build2_loc (fold_p, loc, COMPLEX_EXPR, type,
1121 convert (subtype, realp),
1122 convert (subtype, imagp));
1123 }
1124 }
1125
1126 case POINTER_TYPE:
1127 case REFERENCE_TYPE:
1128 error ("pointer value used where a complex was expected");
1129 return convert_to_complex_1 (type, integer_zero_node, fold_p);
1130
1131 default:
1132 error ("aggregate value used where a complex was expected");
1133 return convert_to_complex_1 (type, integer_zero_node, fold_p);
1134 }
1135 }
1136
1137 /* A wrapper around convert_to_complex_1 that always folds the
1138 expression. */
1139
1140 tree
1141 convert_to_complex (tree type, tree expr)
1142 {
1143 return convert_to_complex_1 (type, expr, true);
1144 }
1145
1146 /* A wrapper around convert_to_complex_1 that only folds the
1147 expression if DOFOLD, or if it is CONSTANT_CLASS_OR_WRAPPER_P. */
1148
1149 tree
1150 convert_to_complex_maybe_fold (tree type, tree expr, bool dofold)
1151 {
1152 tree result
1153 = convert_to_complex_1 (type, expr,
1154 dofold || CONSTANT_CLASS_OR_WRAPPER_P (expr));
1155 return preserve_any_location_wrapper (result, expr);
1156 }
1157
1158 /* Convert EXPR to the vector type TYPE in the usual ways. */
1159
1160 tree
1161 convert_to_vector (tree type, tree expr)
1162 {
1163 switch (TREE_CODE (TREE_TYPE (expr)))
1164 {
1165 case INTEGER_TYPE:
1166 case VECTOR_TYPE:
1167 if (!tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (expr))))
1168 {
1169 error ("cannot convert a value of type %qT"
1170 " to vector type %qT which has different size",
1171 TREE_TYPE (expr), type);
1172 return error_mark_node;
1173 }
1174 return build1 (VIEW_CONVERT_EXPR, type, expr);
1175
1176 default:
1177 error ("cannot convert value to a vector");
1178 return error_mark_node;
1179 }
1180 }
1181
1182 /* Convert EXPR to some fixed-point type TYPE.
1183
1184 EXPR must be fixed-point, float, integer, or enumeral;
1185 in other cases error is called. */
1186
1187 tree
1188 convert_to_fixed (tree type, tree expr)
1189 {
1190 if (integer_zerop (expr))
1191 {
1192 tree fixed_zero_node = build_fixed (type, FCONST0 (TYPE_MODE (type)));
1193 return fixed_zero_node;
1194 }
1195 else if (integer_onep (expr) && ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)))
1196 {
1197 tree fixed_one_node = build_fixed (type, FCONST1 (TYPE_MODE (type)));
1198 return fixed_one_node;
1199 }
1200
1201 switch (TREE_CODE (TREE_TYPE (expr)))
1202 {
1203 case FIXED_POINT_TYPE:
1204 case INTEGER_TYPE:
1205 case ENUMERAL_TYPE:
1206 case BOOLEAN_TYPE:
1207 case REAL_TYPE:
1208 return build1 (FIXED_CONVERT_EXPR, type, expr);
1209
1210 case COMPLEX_TYPE:
1211 return convert (type,
1212 fold_build1 (REALPART_EXPR,
1213 TREE_TYPE (TREE_TYPE (expr)), expr));
1214
1215 default:
1216 error ("aggregate value used where a fixed-point was expected");
1217 return error_mark_node;
1218 }
1219 }
1220
1221 #if CHECKING_P
1222
1223 namespace selftest {
1224
1225 /* Selftests for conversions. */
1226
1227 static void
1228 test_convert_to_integer_maybe_fold (tree orig_type, tree new_type)
1229 {
1230 /* Calling convert_to_integer_maybe_fold on an INTEGER_CST. */
1231
1232 tree orig_cst = build_int_cst (orig_type, 42);
1233
1234 /* Verify that convert_to_integer_maybe_fold on a constant returns a new
1235 constant of the new type, unless the types are the same, in which
1236 case verify it's a no-op. */
1237 {
1238 tree result = convert_to_integer_maybe_fold (new_type,
1239 orig_cst, false);
1240 if (orig_type != new_type)
1241 {
1242 ASSERT_EQ (TREE_TYPE (result), new_type);
1243 ASSERT_EQ (TREE_CODE (result), INTEGER_CST);
1244 }
1245 else
1246 ASSERT_EQ (result, orig_cst);
1247 }
1248
1249 /* Calling convert_to_integer_maybe_fold on a location wrapper around
1250 an INTEGER_CST.
1251
1252 Verify that convert_to_integer_maybe_fold on a location wrapper
1253 around a constant returns a new location wrapper around an equivalent
1254 constant, both of the new type, unless the types are the same,
1255 in which case the original wrapper should be returned. */
1256 {
1257 const location_t loc = BUILTINS_LOCATION;
1258 tree wrapped_orig_cst = maybe_wrap_with_location (orig_cst, loc);
1259 tree result
1260 = convert_to_integer_maybe_fold (new_type, wrapped_orig_cst, false);
1261 ASSERT_EQ (TREE_TYPE (result), new_type);
1262 ASSERT_EQ (EXPR_LOCATION (result), loc);
1263 ASSERT_TRUE (location_wrapper_p (result));
1264 ASSERT_EQ (TREE_TYPE (TREE_OPERAND (result, 0)), new_type);
1265 ASSERT_EQ (TREE_CODE (TREE_OPERAND (result, 0)), INTEGER_CST);
1266
1267 if (orig_type == new_type)
1268 ASSERT_EQ (result, wrapped_orig_cst);
1269 }
1270 }
1271
1272 /* Verify that convert_to_integer_maybe_fold preserves locations. */
1273
1274 static void
1275 test_convert_to_integer_maybe_fold ()
1276 {
1277 /* char -> long. */
1278 test_convert_to_integer_maybe_fold (char_type_node, long_integer_type_node);
1279
1280 /* char -> char. */
1281 test_convert_to_integer_maybe_fold (char_type_node, char_type_node);
1282
1283 /* long -> char. */
1284 test_convert_to_integer_maybe_fold (char_type_node, long_integer_type_node);
1285
1286 /* long -> long. */
1287 test_convert_to_integer_maybe_fold (long_integer_type_node,
1288 long_integer_type_node);
1289 }
1290
1291 /* Run all of the selftests within this file. */
1292
1293 void
1294 convert_c_tests ()
1295 {
1296 test_convert_to_integer_maybe_fold ();
1297 }
1298
1299 } // namespace selftest
1300
1301 #endif /* CHECKING_P */