]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/call.c
[multiple changes]
[thirdparty/gcc.git] / gcc / cp / call.c
1 /* Functions related to invoking methods and overloaded functions.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) and
6 modified by Brendan Kehoe (brendan@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25
26 /* High-level class interface. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "tree.h"
33 #include "cp-tree.h"
34 #include "output.h"
35 #include "flags.h"
36 #include "rtl.h"
37 #include "toplev.h"
38 #include "expr.h"
39 #include "diagnostic.h"
40 #include "intl.h"
41 #include "target.h"
42 #include "convert.h"
43 #include "langhooks.h"
44
45 /* The various kinds of conversion. */
46
47 typedef enum conversion_kind {
48 ck_identity,
49 ck_lvalue,
50 ck_qual,
51 ck_std,
52 ck_ptr,
53 ck_pmem,
54 ck_base,
55 ck_ref_bind,
56 ck_user,
57 ck_ambig,
58 ck_rvalue
59 } conversion_kind;
60
61 /* The rank of the conversion. Order of the enumerals matters; better
62 conversions should come earlier in the list. */
63
64 typedef enum conversion_rank {
65 cr_identity,
66 cr_exact,
67 cr_promotion,
68 cr_std,
69 cr_pbool,
70 cr_user,
71 cr_ellipsis,
72 cr_bad
73 } conversion_rank;
74
75 /* An implicit conversion sequence, in the sense of [over.best.ics].
76 The first conversion to be performed is at the end of the chain.
77 That conversion is always a cr_identity conversion. */
78
79 typedef struct conversion conversion;
80 struct conversion {
81 /* The kind of conversion represented by this step. */
82 conversion_kind kind;
83 /* The rank of this conversion. */
84 conversion_rank rank;
85 BOOL_BITFIELD user_conv_p : 1;
86 BOOL_BITFIELD ellipsis_p : 1;
87 BOOL_BITFIELD this_p : 1;
88 BOOL_BITFIELD bad_p : 1;
89 /* If KIND is ck_ref_bind ck_base_conv, true to indicate that a
90 temporary should be created to hold the result of the
91 conversion. */
92 BOOL_BITFIELD need_temporary_p : 1;
93 /* If KIND is ck_identity or ck_base_conv, true to indicate that the
94 copy constructor must be accessible, even though it is not being
95 used. */
96 BOOL_BITFIELD check_copy_constructor_p : 1;
97 /* If KIND is ck_ptr or ck_pmem, true to indicate that a conversion
98 from a pointer-to-derived to pointer-to-base is being performed. */
99 BOOL_BITFIELD base_p : 1;
100 /* If KIND is ck_ref_bind, true when either an lvalue reference is
101 being bound to an lvalue expression or an rvalue reference is
102 being bound to an rvalue expression. */
103 BOOL_BITFIELD rvaluedness_matches_p: 1;
104 /* The type of the expression resulting from the conversion. */
105 tree type;
106 union {
107 /* The next conversion in the chain. Since the conversions are
108 arranged from outermost to innermost, the NEXT conversion will
109 actually be performed before this conversion. This variant is
110 used only when KIND is neither ck_identity nor ck_ambig. */
111 conversion *next;
112 /* The expression at the beginning of the conversion chain. This
113 variant is used only if KIND is ck_identity or ck_ambig. */
114 tree expr;
115 } u;
116 /* The function candidate corresponding to this conversion
117 sequence. This field is only used if KIND is ck_user. */
118 struct z_candidate *cand;
119 };
120
121 #define CONVERSION_RANK(NODE) \
122 ((NODE)->bad_p ? cr_bad \
123 : (NODE)->ellipsis_p ? cr_ellipsis \
124 : (NODE)->user_conv_p ? cr_user \
125 : (NODE)->rank)
126
127 static struct obstack conversion_obstack;
128 static bool conversion_obstack_initialized;
129
130 static struct z_candidate * tourney (struct z_candidate *);
131 static int equal_functions (tree, tree);
132 static int joust (struct z_candidate *, struct z_candidate *, bool);
133 static int compare_ics (conversion *, conversion *);
134 static tree build_over_call (struct z_candidate *, int);
135 static tree build_java_interface_fn_ref (tree, tree);
136 #define convert_like(CONV, EXPR) \
137 convert_like_real ((CONV), (EXPR), NULL_TREE, 0, 0, \
138 /*issue_conversion_warnings=*/true, \
139 /*c_cast_p=*/false)
140 #define convert_like_with_context(CONV, EXPR, FN, ARGNO) \
141 convert_like_real ((CONV), (EXPR), (FN), (ARGNO), 0, \
142 /*issue_conversion_warnings=*/true, \
143 /*c_cast_p=*/false)
144 static tree convert_like_real (conversion *, tree, tree, int, int, bool,
145 bool);
146 static void op_error (enum tree_code, enum tree_code, tree, tree,
147 tree, const char *);
148 static tree build_object_call (tree, tree);
149 static tree resolve_args (tree);
150 static struct z_candidate *build_user_type_conversion_1 (tree, tree, int);
151 static void print_z_candidate (const char *, struct z_candidate *);
152 static void print_z_candidates (struct z_candidate *);
153 static tree build_this (tree);
154 static struct z_candidate *splice_viable (struct z_candidate *, bool, bool *);
155 static bool any_strictly_viable (struct z_candidate *);
156 static struct z_candidate *add_template_candidate
157 (struct z_candidate **, tree, tree, tree, tree, tree,
158 tree, tree, int, unification_kind_t);
159 static struct z_candidate *add_template_candidate_real
160 (struct z_candidate **, tree, tree, tree, tree, tree,
161 tree, tree, int, tree, unification_kind_t);
162 static struct z_candidate *add_template_conv_candidate
163 (struct z_candidate **, tree, tree, tree, tree, tree, tree);
164 static void add_builtin_candidates
165 (struct z_candidate **, enum tree_code, enum tree_code,
166 tree, tree *, int);
167 static void add_builtin_candidate
168 (struct z_candidate **, enum tree_code, enum tree_code,
169 tree, tree, tree, tree *, tree *, int);
170 static bool is_complete (tree);
171 static void build_builtin_candidate
172 (struct z_candidate **, tree, tree, tree, tree *, tree *,
173 int);
174 static struct z_candidate *add_conv_candidate
175 (struct z_candidate **, tree, tree, tree, tree, tree);
176 static struct z_candidate *add_function_candidate
177 (struct z_candidate **, tree, tree, tree, tree, tree, int);
178 static conversion *implicit_conversion (tree, tree, tree, bool, int);
179 static conversion *standard_conversion (tree, tree, tree, bool, int);
180 static conversion *reference_binding (tree, tree, tree, bool, int);
181 static conversion *build_conv (conversion_kind, tree, conversion *);
182 static bool is_subseq (conversion *, conversion *);
183 static conversion *maybe_handle_ref_bind (conversion **);
184 static void maybe_handle_implicit_object (conversion **);
185 static struct z_candidate *add_candidate
186 (struct z_candidate **, tree, tree, size_t,
187 conversion **, tree, tree, int);
188 static tree source_type (conversion *);
189 static void add_warning (struct z_candidate *, struct z_candidate *);
190 static bool reference_related_p (tree, tree);
191 static bool reference_compatible_p (tree, tree);
192 static conversion *convert_class_to_reference (tree, tree, tree);
193 static conversion *direct_reference_binding (tree, conversion *);
194 static bool promoted_arithmetic_type_p (tree);
195 static conversion *conditional_conversion (tree, tree);
196 static char *name_as_c_string (tree, tree, bool *);
197 static tree call_builtin_trap (void);
198 static tree prep_operand (tree);
199 static void add_candidates (tree, tree, tree, bool, tree, tree,
200 int, struct z_candidate **);
201 static conversion *merge_conversion_sequences (conversion *, conversion *);
202 static bool magic_varargs_p (tree);
203 typedef void (*diagnostic_fn_t) (const char *, ...) ATTRIBUTE_GCC_CXXDIAG(1,2);
204 static tree build_temp (tree, tree, int, diagnostic_fn_t *);
205 static void check_constructor_callable (tree, tree);
206
207 /* Returns nonzero iff the destructor name specified in NAME matches BASETYPE.
208 NAME can take many forms... */
209
210 bool
211 check_dtor_name (tree basetype, tree name)
212 {
213 /* Just accept something we've already complained about. */
214 if (name == error_mark_node)
215 return true;
216
217 if (TREE_CODE (name) == TYPE_DECL)
218 name = TREE_TYPE (name);
219 else if (TYPE_P (name))
220 /* OK */;
221 else if (TREE_CODE (name) == IDENTIFIER_NODE)
222 {
223 if ((IS_AGGR_TYPE (basetype) && name == constructor_name (basetype))
224 || (TREE_CODE (basetype) == ENUMERAL_TYPE
225 && name == TYPE_IDENTIFIER (basetype)))
226 return true;
227 else
228 name = get_type_value (name);
229 }
230 else
231 {
232 /* In the case of:
233
234 template <class T> struct S { ~S(); };
235 int i;
236 i.~S();
237
238 NAME will be a class template. */
239 gcc_assert (DECL_CLASS_TEMPLATE_P (name));
240 return false;
241 }
242
243 if (!name)
244 return false;
245 return same_type_p (TYPE_MAIN_VARIANT (basetype), TYPE_MAIN_VARIANT (name));
246 }
247
248 /* We want the address of a function or method. We avoid creating a
249 pointer-to-member function. */
250
251 tree
252 build_addr_func (tree function)
253 {
254 tree type = TREE_TYPE (function);
255
256 /* We have to do these by hand to avoid real pointer to member
257 functions. */
258 if (TREE_CODE (type) == METHOD_TYPE)
259 {
260 if (TREE_CODE (function) == OFFSET_REF)
261 {
262 tree object = build_address (TREE_OPERAND (function, 0));
263 return get_member_function_from_ptrfunc (&object,
264 TREE_OPERAND (function, 1));
265 }
266 function = build_address (function);
267 }
268 else
269 function = decay_conversion (function);
270
271 return function;
272 }
273
274 /* Build a CALL_EXPR, we can handle FUNCTION_TYPEs, METHOD_TYPEs, or
275 POINTER_TYPE to those. Note, pointer to member function types
276 (TYPE_PTRMEMFUNC_P) must be handled by our callers. There are
277 two variants. build_call_a is the primitive taking an array of
278 arguments, while build_call_n is a wrapper that handles varargs. */
279
280 tree
281 build_call_n (tree function, int n, ...)
282 {
283 if (n == 0)
284 return build_call_a (function, 0, NULL);
285 else
286 {
287 tree *argarray = (tree *) alloca (n * sizeof (tree));
288 va_list ap;
289 int i;
290
291 va_start (ap, n);
292 for (i = 0; i < n; i++)
293 argarray[i] = va_arg (ap, tree);
294 va_end (ap);
295 return build_call_a (function, n, argarray);
296 }
297 }
298
299 tree
300 build_call_a (tree function, int n, tree *argarray)
301 {
302 int is_constructor = 0;
303 int nothrow;
304 tree decl;
305 tree result_type;
306 tree fntype;
307 int i;
308
309 function = build_addr_func (function);
310
311 gcc_assert (TYPE_PTR_P (TREE_TYPE (function)));
312 fntype = TREE_TYPE (TREE_TYPE (function));
313 gcc_assert (TREE_CODE (fntype) == FUNCTION_TYPE
314 || TREE_CODE (fntype) == METHOD_TYPE);
315 result_type = TREE_TYPE (fntype);
316
317 if (TREE_CODE (function) == ADDR_EXPR
318 && TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL)
319 {
320 decl = TREE_OPERAND (function, 0);
321 if (!TREE_USED (decl))
322 {
323 /* We invoke build_call directly for several library
324 functions. These may have been declared normally if
325 we're building libgcc, so we can't just check
326 DECL_ARTIFICIAL. */
327 gcc_assert (DECL_ARTIFICIAL (decl)
328 || !strncmp (IDENTIFIER_POINTER (DECL_NAME (decl)),
329 "__", 2));
330 mark_used (decl);
331 }
332 }
333 else
334 decl = NULL_TREE;
335
336 /* We check both the decl and the type; a function may be known not to
337 throw without being declared throw(). */
338 nothrow = ((decl && TREE_NOTHROW (decl))
339 || TYPE_NOTHROW_P (TREE_TYPE (TREE_TYPE (function))));
340
341 if (decl && TREE_THIS_VOLATILE (decl) && cfun)
342 current_function_returns_abnormally = 1;
343
344 if (decl && TREE_DEPRECATED (decl))
345 warn_deprecated_use (decl);
346 require_complete_eh_spec_types (fntype, decl);
347
348 if (decl && DECL_CONSTRUCTOR_P (decl))
349 is_constructor = 1;
350
351 /* Don't pass empty class objects by value. This is useful
352 for tags in STL, which are used to control overload resolution.
353 We don't need to handle other cases of copying empty classes. */
354 if (! decl || ! DECL_BUILT_IN (decl))
355 for (i = 0; i < n; i++)
356 if (is_empty_class (TREE_TYPE (argarray[i]))
357 && ! TREE_ADDRESSABLE (TREE_TYPE (argarray[i])))
358 {
359 tree t = build0 (EMPTY_CLASS_EXPR, TREE_TYPE (argarray[i]));
360 argarray[i] = build2 (COMPOUND_EXPR, TREE_TYPE (t),
361 argarray[i], t);
362 }
363
364 function = build_call_array (result_type, function, n, argarray);
365 TREE_HAS_CONSTRUCTOR (function) = is_constructor;
366 TREE_NOTHROW (function) = nothrow;
367
368 return function;
369 }
370
371 /* Build something of the form ptr->method (args)
372 or object.method (args). This can also build
373 calls to constructors, and find friends.
374
375 Member functions always take their class variable
376 as a pointer.
377
378 INSTANCE is a class instance.
379
380 NAME is the name of the method desired, usually an IDENTIFIER_NODE.
381
382 PARMS help to figure out what that NAME really refers to.
383
384 BASETYPE_PATH, if non-NULL, contains a chain from the type of INSTANCE
385 down to the real instance type to use for access checking. We need this
386 information to get protected accesses correct.
387
388 FLAGS is the logical disjunction of zero or more LOOKUP_
389 flags. See cp-tree.h for more info.
390
391 If this is all OK, calls build_function_call with the resolved
392 member function.
393
394 This function must also handle being called to perform
395 initialization, promotion/coercion of arguments, and
396 instantiation of default parameters.
397
398 Note that NAME may refer to an instance variable name. If
399 `operator()()' is defined for the type of that field, then we return
400 that result. */
401
402 /* New overloading code. */
403
404 typedef struct z_candidate z_candidate;
405
406 typedef struct candidate_warning candidate_warning;
407 struct candidate_warning {
408 z_candidate *loser;
409 candidate_warning *next;
410 };
411
412 struct z_candidate {
413 /* The FUNCTION_DECL that will be called if this candidate is
414 selected by overload resolution. */
415 tree fn;
416 /* The arguments to use when calling this function. */
417 tree args;
418 /* The implicit conversion sequences for each of the arguments to
419 FN. */
420 conversion **convs;
421 /* The number of implicit conversion sequences. */
422 size_t num_convs;
423 /* If FN is a user-defined conversion, the standard conversion
424 sequence from the type returned by FN to the desired destination
425 type. */
426 conversion *second_conv;
427 int viable;
428 /* If FN is a member function, the binfo indicating the path used to
429 qualify the name of FN at the call site. This path is used to
430 determine whether or not FN is accessible if it is selected by
431 overload resolution. The DECL_CONTEXT of FN will always be a
432 (possibly improper) base of this binfo. */
433 tree access_path;
434 /* If FN is a non-static member function, the binfo indicating the
435 subobject to which the `this' pointer should be converted if FN
436 is selected by overload resolution. The type pointed to the by
437 the `this' pointer must correspond to the most derived class
438 indicated by the CONVERSION_PATH. */
439 tree conversion_path;
440 tree template_decl;
441 candidate_warning *warnings;
442 z_candidate *next;
443 };
444
445 /* Returns true iff T is a null pointer constant in the sense of
446 [conv.ptr]. */
447
448 bool
449 null_ptr_cst_p (tree t)
450 {
451 /* [conv.ptr]
452
453 A null pointer constant is an integral constant expression
454 (_expr.const_) rvalue of integer type that evaluates to zero. */
455 t = integral_constant_value (t);
456 if (t == null_node)
457 return true;
458 if (CP_INTEGRAL_TYPE_P (TREE_TYPE (t)) && integer_zerop (t))
459 {
460 STRIP_NOPS (t);
461 if (!TREE_OVERFLOW (t))
462 return true;
463 }
464 return false;
465 }
466
467 /* Returns nonzero if PARMLIST consists of only default parms and/or
468 ellipsis. */
469
470 bool
471 sufficient_parms_p (tree parmlist)
472 {
473 for (; parmlist && parmlist != void_list_node;
474 parmlist = TREE_CHAIN (parmlist))
475 if (!TREE_PURPOSE (parmlist))
476 return false;
477 return true;
478 }
479
480 /* Allocate N bytes of memory from the conversion obstack. The memory
481 is zeroed before being returned. */
482
483 static void *
484 conversion_obstack_alloc (size_t n)
485 {
486 void *p;
487 if (!conversion_obstack_initialized)
488 {
489 gcc_obstack_init (&conversion_obstack);
490 conversion_obstack_initialized = true;
491 }
492 p = obstack_alloc (&conversion_obstack, n);
493 memset (p, 0, n);
494 return p;
495 }
496
497 /* Dynamically allocate a conversion. */
498
499 static conversion *
500 alloc_conversion (conversion_kind kind)
501 {
502 conversion *c;
503 c = (conversion *) conversion_obstack_alloc (sizeof (conversion));
504 c->kind = kind;
505 return c;
506 }
507
508 #ifdef ENABLE_CHECKING
509
510 /* Make sure that all memory on the conversion obstack has been
511 freed. */
512
513 void
514 validate_conversion_obstack (void)
515 {
516 if (conversion_obstack_initialized)
517 gcc_assert ((obstack_next_free (&conversion_obstack)
518 == obstack_base (&conversion_obstack)));
519 }
520
521 #endif /* ENABLE_CHECKING */
522
523 /* Dynamically allocate an array of N conversions. */
524
525 static conversion **
526 alloc_conversions (size_t n)
527 {
528 return (conversion **) conversion_obstack_alloc (n * sizeof (conversion *));
529 }
530
531 static conversion *
532 build_conv (conversion_kind code, tree type, conversion *from)
533 {
534 conversion *t;
535 conversion_rank rank = CONVERSION_RANK (from);
536
537 /* We can't use buildl1 here because CODE could be USER_CONV, which
538 takes two arguments. In that case, the caller is responsible for
539 filling in the second argument. */
540 t = alloc_conversion (code);
541 t->type = type;
542 t->u.next = from;
543
544 switch (code)
545 {
546 case ck_ptr:
547 case ck_pmem:
548 case ck_base:
549 case ck_std:
550 if (rank < cr_std)
551 rank = cr_std;
552 break;
553
554 case ck_qual:
555 if (rank < cr_exact)
556 rank = cr_exact;
557 break;
558
559 default:
560 break;
561 }
562 t->rank = rank;
563 t->user_conv_p = (code == ck_user || from->user_conv_p);
564 t->bad_p = from->bad_p;
565 t->base_p = false;
566 return t;
567 }
568
569 /* Build a representation of the identity conversion from EXPR to
570 itself. The TYPE should match the type of EXPR, if EXPR is non-NULL. */
571
572 static conversion *
573 build_identity_conv (tree type, tree expr)
574 {
575 conversion *c;
576
577 c = alloc_conversion (ck_identity);
578 c->type = type;
579 c->u.expr = expr;
580
581 return c;
582 }
583
584 /* Converting from EXPR to TYPE was ambiguous in the sense that there
585 were multiple user-defined conversions to accomplish the job.
586 Build a conversion that indicates that ambiguity. */
587
588 static conversion *
589 build_ambiguous_conv (tree type, tree expr)
590 {
591 conversion *c;
592
593 c = alloc_conversion (ck_ambig);
594 c->type = type;
595 c->u.expr = expr;
596
597 return c;
598 }
599
600 tree
601 strip_top_quals (tree t)
602 {
603 if (TREE_CODE (t) == ARRAY_TYPE)
604 return t;
605 return cp_build_qualified_type (t, 0);
606 }
607
608 /* Returns the standard conversion path (see [conv]) from type FROM to type
609 TO, if any. For proper handling of null pointer constants, you must
610 also pass the expression EXPR to convert from. If C_CAST_P is true,
611 this conversion is coming from a C-style cast. */
612
613 static conversion *
614 standard_conversion (tree to, tree from, tree expr, bool c_cast_p,
615 int flags)
616 {
617 enum tree_code fcode, tcode;
618 conversion *conv;
619 bool fromref = false;
620
621 to = non_reference (to);
622 if (TREE_CODE (from) == REFERENCE_TYPE)
623 {
624 fromref = true;
625 from = TREE_TYPE (from);
626 }
627 to = strip_top_quals (to);
628 from = strip_top_quals (from);
629
630 if ((TYPE_PTRFN_P (to) || TYPE_PTRMEMFUNC_P (to))
631 && expr && type_unknown_p (expr))
632 {
633 expr = instantiate_type (to, expr, tf_conv);
634 if (expr == error_mark_node)
635 return NULL;
636 from = TREE_TYPE (expr);
637 }
638
639 fcode = TREE_CODE (from);
640 tcode = TREE_CODE (to);
641
642 conv = build_identity_conv (from, expr);
643 if (fcode == FUNCTION_TYPE || fcode == ARRAY_TYPE)
644 {
645 from = type_decays_to (from);
646 fcode = TREE_CODE (from);
647 conv = build_conv (ck_lvalue, from, conv);
648 }
649 else if (fromref || (expr && lvalue_p (expr)))
650 {
651 if (expr)
652 {
653 tree bitfield_type;
654 bitfield_type = is_bitfield_expr_with_lowered_type (expr);
655 if (bitfield_type)
656 {
657 from = strip_top_quals (bitfield_type);
658 fcode = TREE_CODE (from);
659 }
660 }
661 conv = build_conv (ck_rvalue, from, conv);
662 }
663
664 /* Allow conversion between `__complex__' data types. */
665 if (tcode == COMPLEX_TYPE && fcode == COMPLEX_TYPE)
666 {
667 /* The standard conversion sequence to convert FROM to TO is
668 the standard conversion sequence to perform componentwise
669 conversion. */
670 conversion *part_conv = standard_conversion
671 (TREE_TYPE (to), TREE_TYPE (from), NULL_TREE, c_cast_p, flags);
672
673 if (part_conv)
674 {
675 conv = build_conv (part_conv->kind, to, conv);
676 conv->rank = part_conv->rank;
677 }
678 else
679 conv = NULL;
680
681 return conv;
682 }
683
684 if (same_type_p (from, to))
685 return conv;
686
687 if ((tcode == POINTER_TYPE || TYPE_PTR_TO_MEMBER_P (to))
688 && expr && null_ptr_cst_p (expr))
689 conv = build_conv (ck_std, to, conv);
690 else if ((tcode == INTEGER_TYPE && fcode == POINTER_TYPE)
691 || (tcode == POINTER_TYPE && fcode == INTEGER_TYPE))
692 {
693 /* For backwards brain damage compatibility, allow interconversion of
694 pointers and integers with a pedwarn. */
695 conv = build_conv (ck_std, to, conv);
696 conv->bad_p = true;
697 }
698 else if (tcode == ENUMERAL_TYPE && fcode == INTEGER_TYPE)
699 {
700 /* For backwards brain damage compatibility, allow interconversion of
701 enums and integers with a pedwarn. */
702 conv = build_conv (ck_std, to, conv);
703 conv->bad_p = true;
704 }
705 else if ((tcode == POINTER_TYPE && fcode == POINTER_TYPE)
706 || (TYPE_PTRMEM_P (to) && TYPE_PTRMEM_P (from)))
707 {
708 tree to_pointee;
709 tree from_pointee;
710
711 if (tcode == POINTER_TYPE
712 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (from),
713 TREE_TYPE (to)))
714 ;
715 else if (VOID_TYPE_P (TREE_TYPE (to))
716 && !TYPE_PTRMEM_P (from)
717 && TREE_CODE (TREE_TYPE (from)) != FUNCTION_TYPE)
718 {
719 from = build_pointer_type
720 (cp_build_qualified_type (void_type_node,
721 cp_type_quals (TREE_TYPE (from))));
722 conv = build_conv (ck_ptr, from, conv);
723 }
724 else if (TYPE_PTRMEM_P (from))
725 {
726 tree fbase = TYPE_PTRMEM_CLASS_TYPE (from);
727 tree tbase = TYPE_PTRMEM_CLASS_TYPE (to);
728
729 if (DERIVED_FROM_P (fbase, tbase)
730 && (same_type_ignoring_top_level_qualifiers_p
731 (TYPE_PTRMEM_POINTED_TO_TYPE (from),
732 TYPE_PTRMEM_POINTED_TO_TYPE (to))))
733 {
734 from = build_ptrmem_type (tbase,
735 TYPE_PTRMEM_POINTED_TO_TYPE (from));
736 conv = build_conv (ck_pmem, from, conv);
737 }
738 else if (!same_type_p (fbase, tbase))
739 return NULL;
740 }
741 else if (IS_AGGR_TYPE (TREE_TYPE (from))
742 && IS_AGGR_TYPE (TREE_TYPE (to))
743 /* [conv.ptr]
744
745 An rvalue of type "pointer to cv D," where D is a
746 class type, can be converted to an rvalue of type
747 "pointer to cv B," where B is a base class (clause
748 _class.derived_) of D. If B is an inaccessible
749 (clause _class.access_) or ambiguous
750 (_class.member.lookup_) base class of D, a program
751 that necessitates this conversion is ill-formed.
752 Therefore, we use DERIVED_FROM_P, and do not check
753 access or uniqueness. */
754 && DERIVED_FROM_P (TREE_TYPE (to), TREE_TYPE (from))
755 /* If FROM is not yet complete, then we must be parsing
756 the body of a class. We know what's derived from
757 what, but we can't actually perform a
758 derived-to-base conversion. For example, in:
759
760 struct D : public B {
761 static const int i = sizeof((B*)(D*)0);
762 };
763
764 the D*-to-B* conversion is a reinterpret_cast, not a
765 static_cast. */
766 && COMPLETE_TYPE_P (TREE_TYPE (from)))
767 {
768 from =
769 cp_build_qualified_type (TREE_TYPE (to),
770 cp_type_quals (TREE_TYPE (from)));
771 from = build_pointer_type (from);
772 conv = build_conv (ck_ptr, from, conv);
773 conv->base_p = true;
774 }
775
776 if (tcode == POINTER_TYPE)
777 {
778 to_pointee = TREE_TYPE (to);
779 from_pointee = TREE_TYPE (from);
780 }
781 else
782 {
783 to_pointee = TYPE_PTRMEM_POINTED_TO_TYPE (to);
784 from_pointee = TYPE_PTRMEM_POINTED_TO_TYPE (from);
785 }
786
787 if (same_type_p (from, to))
788 /* OK */;
789 else if (c_cast_p && comp_ptr_ttypes_const (to, from))
790 /* In a C-style cast, we ignore CV-qualification because we
791 are allowed to perform a static_cast followed by a
792 const_cast. */
793 conv = build_conv (ck_qual, to, conv);
794 else if (!c_cast_p && comp_ptr_ttypes (to_pointee, from_pointee))
795 conv = build_conv (ck_qual, to, conv);
796 else if (expr && string_conv_p (to, expr, 0))
797 /* converting from string constant to char *. */
798 conv = build_conv (ck_qual, to, conv);
799 else if (ptr_reasonably_similar (to_pointee, from_pointee))
800 {
801 conv = build_conv (ck_ptr, to, conv);
802 conv->bad_p = true;
803 }
804 else
805 return NULL;
806
807 from = to;
808 }
809 else if (TYPE_PTRMEMFUNC_P (to) && TYPE_PTRMEMFUNC_P (from))
810 {
811 tree fromfn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (from));
812 tree tofn = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (to));
813 tree fbase = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (fromfn)));
814 tree tbase = TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (tofn)));
815
816 if (!DERIVED_FROM_P (fbase, tbase)
817 || !same_type_p (TREE_TYPE (fromfn), TREE_TYPE (tofn))
818 || !compparms (TREE_CHAIN (TYPE_ARG_TYPES (fromfn)),
819 TREE_CHAIN (TYPE_ARG_TYPES (tofn)))
820 || cp_type_quals (fbase) != cp_type_quals (tbase))
821 return NULL;
822
823 from = cp_build_qualified_type (tbase, cp_type_quals (fbase));
824 from = build_method_type_directly (from,
825 TREE_TYPE (fromfn),
826 TREE_CHAIN (TYPE_ARG_TYPES (fromfn)));
827 from = build_ptrmemfunc_type (build_pointer_type (from));
828 conv = build_conv (ck_pmem, from, conv);
829 conv->base_p = true;
830 }
831 else if (tcode == BOOLEAN_TYPE)
832 {
833 /* [conv.bool]
834
835 An rvalue of arithmetic, enumeration, pointer, or pointer to
836 member type can be converted to an rvalue of type bool. */
837 if (ARITHMETIC_TYPE_P (from)
838 || fcode == ENUMERAL_TYPE
839 || fcode == POINTER_TYPE
840 || TYPE_PTR_TO_MEMBER_P (from))
841 {
842 conv = build_conv (ck_std, to, conv);
843 if (fcode == POINTER_TYPE
844 || TYPE_PTRMEM_P (from)
845 || (TYPE_PTRMEMFUNC_P (from)
846 && conv->rank < cr_pbool))
847 conv->rank = cr_pbool;
848 return conv;
849 }
850
851 return NULL;
852 }
853 /* We don't check for ENUMERAL_TYPE here because there are no standard
854 conversions to enum type. */
855 else if (tcode == INTEGER_TYPE || tcode == BOOLEAN_TYPE
856 || tcode == REAL_TYPE)
857 {
858 if (! (INTEGRAL_CODE_P (fcode) || fcode == REAL_TYPE))
859 return NULL;
860 conv = build_conv (ck_std, to, conv);
861
862 /* Give this a better rank if it's a promotion. */
863 if (same_type_p (to, type_promotes_to (from))
864 && conv->u.next->rank <= cr_promotion)
865 conv->rank = cr_promotion;
866 }
867 else if (fcode == VECTOR_TYPE && tcode == VECTOR_TYPE
868 && vector_types_convertible_p (from, to, false))
869 return build_conv (ck_std, to, conv);
870 else if (!(flags & LOOKUP_CONSTRUCTOR_CALLABLE)
871 && IS_AGGR_TYPE (to) && IS_AGGR_TYPE (from)
872 && is_properly_derived_from (from, to))
873 {
874 if (conv->kind == ck_rvalue)
875 conv = conv->u.next;
876 conv = build_conv (ck_base, to, conv);
877 /* The derived-to-base conversion indicates the initialization
878 of a parameter with base type from an object of a derived
879 type. A temporary object is created to hold the result of
880 the conversion. */
881 conv->need_temporary_p = true;
882 }
883 else
884 return NULL;
885
886 return conv;
887 }
888
889 /* Returns nonzero if T1 is reference-related to T2. */
890
891 static bool
892 reference_related_p (tree t1, tree t2)
893 {
894 t1 = TYPE_MAIN_VARIANT (t1);
895 t2 = TYPE_MAIN_VARIANT (t2);
896
897 /* [dcl.init.ref]
898
899 Given types "cv1 T1" and "cv2 T2," "cv1 T1" is reference-related
900 to "cv2 T2" if T1 is the same type as T2, or T1 is a base class
901 of T2. */
902 return (same_type_p (t1, t2)
903 || (CLASS_TYPE_P (t1) && CLASS_TYPE_P (t2)
904 && DERIVED_FROM_P (t1, t2)));
905 }
906
907 /* Returns nonzero if T1 is reference-compatible with T2. */
908
909 static bool
910 reference_compatible_p (tree t1, tree t2)
911 {
912 /* [dcl.init.ref]
913
914 "cv1 T1" is reference compatible with "cv2 T2" if T1 is
915 reference-related to T2 and cv1 is the same cv-qualification as,
916 or greater cv-qualification than, cv2. */
917 return (reference_related_p (t1, t2)
918 && at_least_as_qualified_p (t1, t2));
919 }
920
921 /* Determine whether or not the EXPR (of class type S) can be
922 converted to T as in [over.match.ref]. */
923
924 static conversion *
925 convert_class_to_reference (tree reference_type, tree s, tree expr)
926 {
927 tree conversions;
928 tree arglist;
929 conversion *conv;
930 tree t;
931 struct z_candidate *candidates;
932 struct z_candidate *cand;
933 bool any_viable_p;
934
935 conversions = lookup_conversions (s);
936 if (!conversions)
937 return NULL;
938
939 /* [over.match.ref]
940
941 Assuming that "cv1 T" is the underlying type of the reference
942 being initialized, and "cv S" is the type of the initializer
943 expression, with S a class type, the candidate functions are
944 selected as follows:
945
946 --The conversion functions of S and its base classes are
947 considered. Those that are not hidden within S and yield type
948 "reference to cv2 T2", where "cv1 T" is reference-compatible
949 (_dcl.init.ref_) with "cv2 T2", are candidate functions.
950
951 The argument list has one argument, which is the initializer
952 expression. */
953
954 candidates = 0;
955
956 /* Conceptually, we should take the address of EXPR and put it in
957 the argument list. Unfortunately, however, that can result in
958 error messages, which we should not issue now because we are just
959 trying to find a conversion operator. Therefore, we use NULL,
960 cast to the appropriate type. */
961 arglist = build_int_cst (build_pointer_type (s), 0);
962 arglist = build_tree_list (NULL_TREE, arglist);
963
964 t = TREE_TYPE (reference_type);
965
966 while (conversions)
967 {
968 tree fns = TREE_VALUE (conversions);
969
970 for (; fns; fns = OVL_NEXT (fns))
971 {
972 tree f = OVL_CURRENT (fns);
973 tree t2 = TREE_TYPE (TREE_TYPE (f));
974
975 cand = NULL;
976
977 /* If this is a template function, try to get an exact
978 match. */
979 if (TREE_CODE (f) == TEMPLATE_DECL)
980 {
981 cand = add_template_candidate (&candidates,
982 f, s,
983 NULL_TREE,
984 arglist,
985 reference_type,
986 TYPE_BINFO (s),
987 TREE_PURPOSE (conversions),
988 LOOKUP_NORMAL,
989 DEDUCE_CONV);
990
991 if (cand)
992 {
993 /* Now, see if the conversion function really returns
994 an lvalue of the appropriate type. From the
995 point of view of unification, simply returning an
996 rvalue of the right type is good enough. */
997 f = cand->fn;
998 t2 = TREE_TYPE (TREE_TYPE (f));
999 if (TREE_CODE (t2) != REFERENCE_TYPE
1000 || !reference_compatible_p (t, TREE_TYPE (t2)))
1001 {
1002 candidates = candidates->next;
1003 cand = NULL;
1004 }
1005 }
1006 }
1007 else if (TREE_CODE (t2) == REFERENCE_TYPE
1008 && reference_compatible_p (t, TREE_TYPE (t2)))
1009 cand = add_function_candidate (&candidates, f, s, arglist,
1010 TYPE_BINFO (s),
1011 TREE_PURPOSE (conversions),
1012 LOOKUP_NORMAL);
1013
1014 if (cand)
1015 {
1016 conversion *identity_conv;
1017 /* Build a standard conversion sequence indicating the
1018 binding from the reference type returned by the
1019 function to the desired REFERENCE_TYPE. */
1020 identity_conv
1021 = build_identity_conv (TREE_TYPE (TREE_TYPE
1022 (TREE_TYPE (cand->fn))),
1023 NULL_TREE);
1024 cand->second_conv
1025 = (direct_reference_binding
1026 (reference_type, identity_conv));
1027 cand->second_conv->rvaluedness_matches_p
1028 = TYPE_REF_IS_RVALUE (TREE_TYPE (TREE_TYPE (cand->fn)))
1029 == TYPE_REF_IS_RVALUE (reference_type);
1030 cand->second_conv->bad_p |= cand->convs[0]->bad_p;
1031 }
1032 }
1033 conversions = TREE_CHAIN (conversions);
1034 }
1035
1036 candidates = splice_viable (candidates, pedantic, &any_viable_p);
1037 /* If none of the conversion functions worked out, let our caller
1038 know. */
1039 if (!any_viable_p)
1040 return NULL;
1041
1042 cand = tourney (candidates);
1043 if (!cand)
1044 return NULL;
1045
1046 /* Now that we know that this is the function we're going to use fix
1047 the dummy first argument. */
1048 cand->args = tree_cons (NULL_TREE,
1049 build_this (expr),
1050 TREE_CHAIN (cand->args));
1051
1052 /* Build a user-defined conversion sequence representing the
1053 conversion. */
1054 conv = build_conv (ck_user,
1055 TREE_TYPE (TREE_TYPE (cand->fn)),
1056 build_identity_conv (TREE_TYPE (expr), expr));
1057 conv->cand = cand;
1058
1059 /* Merge it with the standard conversion sequence from the
1060 conversion function's return type to the desired type. */
1061 cand->second_conv = merge_conversion_sequences (conv, cand->second_conv);
1062
1063 if (cand->viable == -1)
1064 conv->bad_p = true;
1065
1066 return cand->second_conv;
1067 }
1068
1069 /* A reference of the indicated TYPE is being bound directly to the
1070 expression represented by the implicit conversion sequence CONV.
1071 Return a conversion sequence for this binding. */
1072
1073 static conversion *
1074 direct_reference_binding (tree type, conversion *conv)
1075 {
1076 tree t;
1077
1078 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
1079 gcc_assert (TREE_CODE (conv->type) != REFERENCE_TYPE);
1080
1081 t = TREE_TYPE (type);
1082
1083 /* [over.ics.rank]
1084
1085 When a parameter of reference type binds directly
1086 (_dcl.init.ref_) to an argument expression, the implicit
1087 conversion sequence is the identity conversion, unless the
1088 argument expression has a type that is a derived class of the
1089 parameter type, in which case the implicit conversion sequence is
1090 a derived-to-base Conversion.
1091
1092 If the parameter binds directly to the result of applying a
1093 conversion function to the argument expression, the implicit
1094 conversion sequence is a user-defined conversion sequence
1095 (_over.ics.user_), with the second standard conversion sequence
1096 either an identity conversion or, if the conversion function
1097 returns an entity of a type that is a derived class of the
1098 parameter type, a derived-to-base conversion. */
1099 if (!same_type_ignoring_top_level_qualifiers_p (t, conv->type))
1100 {
1101 /* Represent the derived-to-base conversion. */
1102 conv = build_conv (ck_base, t, conv);
1103 /* We will actually be binding to the base-class subobject in
1104 the derived class, so we mark this conversion appropriately.
1105 That way, convert_like knows not to generate a temporary. */
1106 conv->need_temporary_p = false;
1107 }
1108 return build_conv (ck_ref_bind, type, conv);
1109 }
1110
1111 /* Returns the conversion path from type FROM to reference type TO for
1112 purposes of reference binding. For lvalue binding, either pass a
1113 reference type to FROM or an lvalue expression to EXPR. If the
1114 reference will be bound to a temporary, NEED_TEMPORARY_P is set for
1115 the conversion returned. If C_CAST_P is true, this
1116 conversion is coming from a C-style cast. */
1117
1118 static conversion *
1119 reference_binding (tree rto, tree rfrom, tree expr, bool c_cast_p, int flags)
1120 {
1121 conversion *conv = NULL;
1122 tree to = TREE_TYPE (rto);
1123 tree from = rfrom;
1124 bool related_p;
1125 bool compatible_p;
1126 cp_lvalue_kind lvalue_p = clk_none;
1127
1128 if (TREE_CODE (to) == FUNCTION_TYPE && expr && type_unknown_p (expr))
1129 {
1130 expr = instantiate_type (to, expr, tf_none);
1131 if (expr == error_mark_node)
1132 return NULL;
1133 from = TREE_TYPE (expr);
1134 }
1135
1136 if (TREE_CODE (from) == REFERENCE_TYPE)
1137 {
1138 /* Anything with reference type is an lvalue. */
1139 lvalue_p = clk_ordinary;
1140 from = TREE_TYPE (from);
1141 }
1142 else if (expr)
1143 lvalue_p = real_lvalue_p (expr);
1144
1145 /* Figure out whether or not the types are reference-related and
1146 reference compatible. We have do do this after stripping
1147 references from FROM. */
1148 related_p = reference_related_p (to, from);
1149 /* If this is a C cast, first convert to an appropriately qualified
1150 type, so that we can later do a const_cast to the desired type. */
1151 if (related_p && c_cast_p
1152 && !at_least_as_qualified_p (to, from))
1153 to = build_qualified_type (to, cp_type_quals (from));
1154 compatible_p = reference_compatible_p (to, from);
1155
1156 /* Directly bind reference when target expression's type is compatible with
1157 the reference and expression is an lvalue. In C++0x, the wording in
1158 [8.5.3/5 dcl.init.ref] is changed to also allow direct bindings for const
1159 and rvalue references to rvalues of compatible class type, as part of
1160 DR391. */
1161 if (compatible_p
1162 && (lvalue_p
1163 || ((cxx_dialect != cxx98)
1164 && (CP_TYPE_CONST_NON_VOLATILE_P(to) || TYPE_REF_IS_RVALUE (rto))
1165 && CLASS_TYPE_P (from))))
1166 {
1167 /* [dcl.init.ref]
1168
1169 If the initializer expression
1170
1171 -- is an lvalue (but not an lvalue for a bit-field), and "cv1 T1"
1172 is reference-compatible with "cv2 T2,"
1173
1174 the reference is bound directly to the initializer expression
1175 lvalue. */
1176 conv = build_identity_conv (from, expr);
1177 conv = direct_reference_binding (rto, conv);
1178
1179 if (flags & LOOKUP_PREFER_RVALUE)
1180 /* The top-level caller requested that we pretend that the lvalue
1181 be treated as an rvalue. */
1182 conv->rvaluedness_matches_p = TYPE_REF_IS_RVALUE (rto);
1183 else
1184 conv->rvaluedness_matches_p
1185 = (TYPE_REF_IS_RVALUE (rto) == !lvalue_p);
1186
1187 if ((lvalue_p & clk_bitfield) != 0
1188 || ((lvalue_p & clk_packed) != 0 && !TYPE_PACKED (to)))
1189 /* For the purposes of overload resolution, we ignore the fact
1190 this expression is a bitfield or packed field. (In particular,
1191 [over.ics.ref] says specifically that a function with a
1192 non-const reference parameter is viable even if the
1193 argument is a bitfield.)
1194
1195 However, when we actually call the function we must create
1196 a temporary to which to bind the reference. If the
1197 reference is volatile, or isn't const, then we cannot make
1198 a temporary, so we just issue an error when the conversion
1199 actually occurs. */
1200 conv->need_temporary_p = true;
1201
1202 return conv;
1203 }
1204 else if (CLASS_TYPE_P (from) && !(flags & LOOKUP_NO_CONVERSION))
1205 {
1206 /* [dcl.init.ref]
1207
1208 If the initializer expression
1209
1210 -- has a class type (i.e., T2 is a class type) can be
1211 implicitly converted to an lvalue of type "cv3 T3," where
1212 "cv1 T1" is reference-compatible with "cv3 T3". (this
1213 conversion is selected by enumerating the applicable
1214 conversion functions (_over.match.ref_) and choosing the
1215 best one through overload resolution. (_over.match_).
1216
1217 the reference is bound to the lvalue result of the conversion
1218 in the second case. */
1219 conv = convert_class_to_reference (rto, from, expr);
1220 if (conv)
1221 return conv;
1222 }
1223
1224 /* From this point on, we conceptually need temporaries, even if we
1225 elide them. Only the cases above are "direct bindings". */
1226 if (flags & LOOKUP_NO_TEMP_BIND)
1227 return NULL;
1228
1229 /* [over.ics.rank]
1230
1231 When a parameter of reference type is not bound directly to an
1232 argument expression, the conversion sequence is the one required
1233 to convert the argument expression to the underlying type of the
1234 reference according to _over.best.ics_. Conceptually, this
1235 conversion sequence corresponds to copy-initializing a temporary
1236 of the underlying type with the argument expression. Any
1237 difference in top-level cv-qualification is subsumed by the
1238 initialization itself and does not constitute a conversion. */
1239
1240 /* [dcl.init.ref]
1241
1242 Otherwise, the reference shall be to a non-volatile const type.
1243
1244 Under C++0x, [8.5.3/5 dcl.init.ref] it may also be an rvalue reference */
1245 if (!CP_TYPE_CONST_NON_VOLATILE_P (to) && !TYPE_REF_IS_RVALUE (rto))
1246 return NULL;
1247
1248 /* [dcl.init.ref]
1249
1250 If the initializer expression is an rvalue, with T2 a class type,
1251 and "cv1 T1" is reference-compatible with "cv2 T2", the reference
1252 is bound in one of the following ways:
1253
1254 -- The reference is bound to the object represented by the rvalue
1255 or to a sub-object within that object.
1256
1257 -- ...
1258
1259 We use the first alternative. The implicit conversion sequence
1260 is supposed to be same as we would obtain by generating a
1261 temporary. Fortunately, if the types are reference compatible,
1262 then this is either an identity conversion or the derived-to-base
1263 conversion, just as for direct binding. */
1264 if (CLASS_TYPE_P (from) && compatible_p)
1265 {
1266 conv = build_identity_conv (from, expr);
1267 conv = direct_reference_binding (rto, conv);
1268 conv->rvaluedness_matches_p = TYPE_REF_IS_RVALUE (rto);
1269 if (!(flags & LOOKUP_CONSTRUCTOR_CALLABLE))
1270 conv->u.next->check_copy_constructor_p = true;
1271 return conv;
1272 }
1273
1274 /* [dcl.init.ref]
1275
1276 Otherwise, a temporary of type "cv1 T1" is created and
1277 initialized from the initializer expression using the rules for a
1278 non-reference copy initialization. If T1 is reference-related to
1279 T2, cv1 must be the same cv-qualification as, or greater
1280 cv-qualification than, cv2; otherwise, the program is ill-formed. */
1281 if (related_p && !at_least_as_qualified_p (to, from))
1282 return NULL;
1283
1284 conv = implicit_conversion (to, from, expr, c_cast_p,
1285 flags);
1286 if (!conv)
1287 return NULL;
1288
1289 conv = build_conv (ck_ref_bind, rto, conv);
1290 /* This reference binding, unlike those above, requires the
1291 creation of a temporary. */
1292 conv->need_temporary_p = true;
1293 conv->rvaluedness_matches_p = TYPE_REF_IS_RVALUE (rto);
1294
1295 return conv;
1296 }
1297
1298 /* Returns the implicit conversion sequence (see [over.ics]) from type
1299 FROM to type TO. The optional expression EXPR may affect the
1300 conversion. FLAGS are the usual overloading flags. Only
1301 LOOKUP_NO_CONVERSION is significant. If C_CAST_P is true, this
1302 conversion is coming from a C-style cast. */
1303
1304 static conversion *
1305 implicit_conversion (tree to, tree from, tree expr, bool c_cast_p,
1306 int flags)
1307 {
1308 conversion *conv;
1309
1310 if (from == error_mark_node || to == error_mark_node
1311 || expr == error_mark_node)
1312 return NULL;
1313
1314 if (TREE_CODE (to) == REFERENCE_TYPE)
1315 conv = reference_binding (to, from, expr, c_cast_p, flags);
1316 else
1317 conv = standard_conversion (to, from, expr, c_cast_p, flags);
1318
1319 if (conv)
1320 return conv;
1321
1322 if (expr != NULL_TREE
1323 && (IS_AGGR_TYPE (from)
1324 || IS_AGGR_TYPE (to))
1325 && (flags & LOOKUP_NO_CONVERSION) == 0)
1326 {
1327 struct z_candidate *cand;
1328
1329 cand = build_user_type_conversion_1
1330 (to, expr, LOOKUP_ONLYCONVERTING);
1331 if (cand)
1332 conv = cand->second_conv;
1333
1334 /* We used to try to bind a reference to a temporary here, but that
1335 is now handled after the recursive call to this function at the end
1336 of reference_binding. */
1337 return conv;
1338 }
1339
1340 return NULL;
1341 }
1342
1343 /* Add a new entry to the list of candidates. Used by the add_*_candidate
1344 functions. */
1345
1346 static struct z_candidate *
1347 add_candidate (struct z_candidate **candidates,
1348 tree fn, tree args,
1349 size_t num_convs, conversion **convs,
1350 tree access_path, tree conversion_path,
1351 int viable)
1352 {
1353 struct z_candidate *cand = (struct z_candidate *)
1354 conversion_obstack_alloc (sizeof (struct z_candidate));
1355
1356 cand->fn = fn;
1357 cand->args = args;
1358 cand->convs = convs;
1359 cand->num_convs = num_convs;
1360 cand->access_path = access_path;
1361 cand->conversion_path = conversion_path;
1362 cand->viable = viable;
1363 cand->next = *candidates;
1364 *candidates = cand;
1365
1366 return cand;
1367 }
1368
1369 /* Create an overload candidate for the function or method FN called with
1370 the argument list ARGLIST and add it to CANDIDATES. FLAGS is passed on
1371 to implicit_conversion.
1372
1373 CTYPE, if non-NULL, is the type we want to pretend this function
1374 comes from for purposes of overload resolution. */
1375
1376 static struct z_candidate *
1377 add_function_candidate (struct z_candidate **candidates,
1378 tree fn, tree ctype, tree arglist,
1379 tree access_path, tree conversion_path,
1380 int flags)
1381 {
1382 tree parmlist = TYPE_ARG_TYPES (TREE_TYPE (fn));
1383 int i, len;
1384 conversion **convs;
1385 tree parmnode, argnode;
1386 tree orig_arglist;
1387 int viable = 1;
1388
1389 /* At this point we should not see any functions which haven't been
1390 explicitly declared, except for friend functions which will have
1391 been found using argument dependent lookup. */
1392 gcc_assert (!DECL_ANTICIPATED (fn) || DECL_HIDDEN_FRIEND_P (fn));
1393
1394 /* The `this', `in_chrg' and VTT arguments to constructors are not
1395 considered in overload resolution. */
1396 if (DECL_CONSTRUCTOR_P (fn))
1397 {
1398 parmlist = skip_artificial_parms_for (fn, parmlist);
1399 orig_arglist = arglist;
1400 arglist = skip_artificial_parms_for (fn, arglist);
1401 }
1402 else
1403 orig_arglist = arglist;
1404
1405 len = list_length (arglist);
1406 convs = alloc_conversions (len);
1407
1408 /* 13.3.2 - Viable functions [over.match.viable]
1409 First, to be a viable function, a candidate function shall have enough
1410 parameters to agree in number with the arguments in the list.
1411
1412 We need to check this first; otherwise, checking the ICSes might cause
1413 us to produce an ill-formed template instantiation. */
1414
1415 parmnode = parmlist;
1416 for (i = 0; i < len; ++i)
1417 {
1418 if (parmnode == NULL_TREE || parmnode == void_list_node)
1419 break;
1420 parmnode = TREE_CHAIN (parmnode);
1421 }
1422
1423 if (i < len && parmnode)
1424 viable = 0;
1425
1426 /* Make sure there are default args for the rest of the parms. */
1427 else if (!sufficient_parms_p (parmnode))
1428 viable = 0;
1429
1430 if (! viable)
1431 goto out;
1432
1433 /* Second, for F to be a viable function, there shall exist for each
1434 argument an implicit conversion sequence that converts that argument
1435 to the corresponding parameter of F. */
1436
1437 parmnode = parmlist;
1438 argnode = arglist;
1439
1440 for (i = 0; i < len; ++i)
1441 {
1442 tree arg = TREE_VALUE (argnode);
1443 tree argtype = lvalue_type (arg);
1444 conversion *t;
1445 int is_this;
1446
1447 if (parmnode == void_list_node)
1448 break;
1449
1450 is_this = (i == 0 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
1451 && ! DECL_CONSTRUCTOR_P (fn));
1452
1453 if (parmnode)
1454 {
1455 tree parmtype = TREE_VALUE (parmnode);
1456
1457 /* The type of the implicit object parameter ('this') for
1458 overload resolution is not always the same as for the
1459 function itself; conversion functions are considered to
1460 be members of the class being converted, and functions
1461 introduced by a using-declaration are considered to be
1462 members of the class that uses them.
1463
1464 Since build_over_call ignores the ICS for the `this'
1465 parameter, we can just change the parm type. */
1466 if (ctype && is_this)
1467 {
1468 parmtype
1469 = build_qualified_type (ctype,
1470 TYPE_QUALS (TREE_TYPE (parmtype)));
1471 parmtype = build_pointer_type (parmtype);
1472 }
1473
1474 t = implicit_conversion (parmtype, argtype, arg,
1475 /*c_cast_p=*/false, flags);
1476 }
1477 else
1478 {
1479 t = build_identity_conv (argtype, arg);
1480 t->ellipsis_p = true;
1481 }
1482
1483 if (t && is_this)
1484 t->this_p = true;
1485
1486 convs[i] = t;
1487 if (! t)
1488 {
1489 viable = 0;
1490 break;
1491 }
1492
1493 if (t->bad_p)
1494 viable = -1;
1495
1496 if (parmnode)
1497 parmnode = TREE_CHAIN (parmnode);
1498 argnode = TREE_CHAIN (argnode);
1499 }
1500
1501 out:
1502 return add_candidate (candidates, fn, orig_arglist, len, convs,
1503 access_path, conversion_path, viable);
1504 }
1505
1506 /* Create an overload candidate for the conversion function FN which will
1507 be invoked for expression OBJ, producing a pointer-to-function which
1508 will in turn be called with the argument list ARGLIST, and add it to
1509 CANDIDATES. FLAGS is passed on to implicit_conversion.
1510
1511 Actually, we don't really care about FN; we care about the type it
1512 converts to. There may be multiple conversion functions that will
1513 convert to that type, and we rely on build_user_type_conversion_1 to
1514 choose the best one; so when we create our candidate, we record the type
1515 instead of the function. */
1516
1517 static struct z_candidate *
1518 add_conv_candidate (struct z_candidate **candidates, tree fn, tree obj,
1519 tree arglist, tree access_path, tree conversion_path)
1520 {
1521 tree totype = TREE_TYPE (TREE_TYPE (fn));
1522 int i, len, viable, flags;
1523 tree parmlist, parmnode, argnode;
1524 conversion **convs;
1525
1526 for (parmlist = totype; TREE_CODE (parmlist) != FUNCTION_TYPE; )
1527 parmlist = TREE_TYPE (parmlist);
1528 parmlist = TYPE_ARG_TYPES (parmlist);
1529
1530 len = list_length (arglist) + 1;
1531 convs = alloc_conversions (len);
1532 parmnode = parmlist;
1533 argnode = arglist;
1534 viable = 1;
1535 flags = LOOKUP_NORMAL;
1536
1537 /* Don't bother looking up the same type twice. */
1538 if (*candidates && (*candidates)->fn == totype)
1539 return NULL;
1540
1541 for (i = 0; i < len; ++i)
1542 {
1543 tree arg = i == 0 ? obj : TREE_VALUE (argnode);
1544 tree argtype = lvalue_type (arg);
1545 conversion *t;
1546
1547 if (i == 0)
1548 t = implicit_conversion (totype, argtype, arg, /*c_cast_p=*/false,
1549 flags);
1550 else if (parmnode == void_list_node)
1551 break;
1552 else if (parmnode)
1553 t = implicit_conversion (TREE_VALUE (parmnode), argtype, arg,
1554 /*c_cast_p=*/false, flags);
1555 else
1556 {
1557 t = build_identity_conv (argtype, arg);
1558 t->ellipsis_p = true;
1559 }
1560
1561 convs[i] = t;
1562 if (! t)
1563 break;
1564
1565 if (t->bad_p)
1566 viable = -1;
1567
1568 if (i == 0)
1569 continue;
1570
1571 if (parmnode)
1572 parmnode = TREE_CHAIN (parmnode);
1573 argnode = TREE_CHAIN (argnode);
1574 }
1575
1576 if (i < len)
1577 viable = 0;
1578
1579 if (!sufficient_parms_p (parmnode))
1580 viable = 0;
1581
1582 return add_candidate (candidates, totype, arglist, len, convs,
1583 access_path, conversion_path, viable);
1584 }
1585
1586 static void
1587 build_builtin_candidate (struct z_candidate **candidates, tree fnname,
1588 tree type1, tree type2, tree *args, tree *argtypes,
1589 int flags)
1590 {
1591 conversion *t;
1592 conversion **convs;
1593 size_t num_convs;
1594 int viable = 1, i;
1595 tree types[2];
1596
1597 types[0] = type1;
1598 types[1] = type2;
1599
1600 num_convs = args[2] ? 3 : (args[1] ? 2 : 1);
1601 convs = alloc_conversions (num_convs);
1602
1603 for (i = 0; i < 2; ++i)
1604 {
1605 if (! args[i])
1606 break;
1607
1608 t = implicit_conversion (types[i], argtypes[i], args[i],
1609 /*c_cast_p=*/false, flags);
1610 if (! t)
1611 {
1612 viable = 0;
1613 /* We need something for printing the candidate. */
1614 t = build_identity_conv (types[i], NULL_TREE);
1615 }
1616 else if (t->bad_p)
1617 viable = 0;
1618 convs[i] = t;
1619 }
1620
1621 /* For COND_EXPR we rearranged the arguments; undo that now. */
1622 if (args[2])
1623 {
1624 convs[2] = convs[1];
1625 convs[1] = convs[0];
1626 t = implicit_conversion (boolean_type_node, argtypes[2], args[2],
1627 /*c_cast_p=*/false, flags);
1628 if (t)
1629 convs[0] = t;
1630 else
1631 viable = 0;
1632 }
1633
1634 add_candidate (candidates, fnname, /*args=*/NULL_TREE,
1635 num_convs, convs,
1636 /*access_path=*/NULL_TREE,
1637 /*conversion_path=*/NULL_TREE,
1638 viable);
1639 }
1640
1641 static bool
1642 is_complete (tree t)
1643 {
1644 return COMPLETE_TYPE_P (complete_type (t));
1645 }
1646
1647 /* Returns nonzero if TYPE is a promoted arithmetic type. */
1648
1649 static bool
1650 promoted_arithmetic_type_p (tree type)
1651 {
1652 /* [over.built]
1653
1654 In this section, the term promoted integral type is used to refer
1655 to those integral types which are preserved by integral promotion
1656 (including e.g. int and long but excluding e.g. char).
1657 Similarly, the term promoted arithmetic type refers to promoted
1658 integral types plus floating types. */
1659 return ((INTEGRAL_TYPE_P (type)
1660 && same_type_p (type_promotes_to (type), type))
1661 || TREE_CODE (type) == REAL_TYPE);
1662 }
1663
1664 /* Create any builtin operator overload candidates for the operator in
1665 question given the converted operand types TYPE1 and TYPE2. The other
1666 args are passed through from add_builtin_candidates to
1667 build_builtin_candidate.
1668
1669 TYPE1 and TYPE2 may not be permissible, and we must filter them.
1670 If CODE is requires candidates operands of the same type of the kind
1671 of which TYPE1 and TYPE2 are, we add both candidates
1672 CODE (TYPE1, TYPE1) and CODE (TYPE2, TYPE2). */
1673
1674 static void
1675 add_builtin_candidate (struct z_candidate **candidates, enum tree_code code,
1676 enum tree_code code2, tree fnname, tree type1,
1677 tree type2, tree *args, tree *argtypes, int flags)
1678 {
1679 switch (code)
1680 {
1681 case POSTINCREMENT_EXPR:
1682 case POSTDECREMENT_EXPR:
1683 args[1] = integer_zero_node;
1684 type2 = integer_type_node;
1685 break;
1686 default:
1687 break;
1688 }
1689
1690 switch (code)
1691 {
1692
1693 /* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
1694 and VQ is either volatile or empty, there exist candidate operator
1695 functions of the form
1696 VQ T& operator++(VQ T&);
1697 T operator++(VQ T&, int);
1698 5 For every pair T, VQ), where T is an enumeration type or an arithmetic
1699 type other than bool, and VQ is either volatile or empty, there exist
1700 candidate operator functions of the form
1701 VQ T& operator--(VQ T&);
1702 T operator--(VQ T&, int);
1703 6 For every pair T, VQ), where T is a cv-qualified or cv-unqualified
1704 complete object type, and VQ is either volatile or empty, there exist
1705 candidate operator functions of the form
1706 T*VQ& operator++(T*VQ&);
1707 T*VQ& operator--(T*VQ&);
1708 T* operator++(T*VQ&, int);
1709 T* operator--(T*VQ&, int); */
1710
1711 case POSTDECREMENT_EXPR:
1712 case PREDECREMENT_EXPR:
1713 if (TREE_CODE (type1) == BOOLEAN_TYPE)
1714 return;
1715 case POSTINCREMENT_EXPR:
1716 case PREINCREMENT_EXPR:
1717 if (ARITHMETIC_TYPE_P (type1) || TYPE_PTROB_P (type1))
1718 {
1719 type1 = build_reference_type (type1);
1720 break;
1721 }
1722 return;
1723
1724 /* 7 For every cv-qualified or cv-unqualified complete object type T, there
1725 exist candidate operator functions of the form
1726
1727 T& operator*(T*);
1728
1729 8 For every function type T, there exist candidate operator functions of
1730 the form
1731 T& operator*(T*); */
1732
1733 case INDIRECT_REF:
1734 if (TREE_CODE (type1) == POINTER_TYPE
1735 && (TYPE_PTROB_P (type1)
1736 || TREE_CODE (TREE_TYPE (type1)) == FUNCTION_TYPE))
1737 break;
1738 return;
1739
1740 /* 9 For every type T, there exist candidate operator functions of the form
1741 T* operator+(T*);
1742
1743 10For every promoted arithmetic type T, there exist candidate operator
1744 functions of the form
1745 T operator+(T);
1746 T operator-(T); */
1747
1748 case UNARY_PLUS_EXPR: /* unary + */
1749 if (TREE_CODE (type1) == POINTER_TYPE)
1750 break;
1751 case NEGATE_EXPR:
1752 if (ARITHMETIC_TYPE_P (type1))
1753 break;
1754 return;
1755
1756 /* 11For every promoted integral type T, there exist candidate operator
1757 functions of the form
1758 T operator~(T); */
1759
1760 case BIT_NOT_EXPR:
1761 if (INTEGRAL_TYPE_P (type1))
1762 break;
1763 return;
1764
1765 /* 12For every quintuple C1, C2, T, CV1, CV2), where C2 is a class type, C1
1766 is the same type as C2 or is a derived class of C2, T is a complete
1767 object type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
1768 there exist candidate operator functions of the form
1769 CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
1770 where CV12 is the union of CV1 and CV2. */
1771
1772 case MEMBER_REF:
1773 if (TREE_CODE (type1) == POINTER_TYPE
1774 && TYPE_PTR_TO_MEMBER_P (type2))
1775 {
1776 tree c1 = TREE_TYPE (type1);
1777 tree c2 = TYPE_PTRMEM_CLASS_TYPE (type2);
1778
1779 if (IS_AGGR_TYPE (c1) && DERIVED_FROM_P (c2, c1)
1780 && (TYPE_PTRMEMFUNC_P (type2)
1781 || is_complete (TYPE_PTRMEM_POINTED_TO_TYPE (type2))))
1782 break;
1783 }
1784 return;
1785
1786 /* 13For every pair of promoted arithmetic types L and R, there exist can-
1787 didate operator functions of the form
1788 LR operator*(L, R);
1789 LR operator/(L, R);
1790 LR operator+(L, R);
1791 LR operator-(L, R);
1792 bool operator<(L, R);
1793 bool operator>(L, R);
1794 bool operator<=(L, R);
1795 bool operator>=(L, R);
1796 bool operator==(L, R);
1797 bool operator!=(L, R);
1798 where LR is the result of the usual arithmetic conversions between
1799 types L and R.
1800
1801 14For every pair of types T and I, where T is a cv-qualified or cv-
1802 unqualified complete object type and I is a promoted integral type,
1803 there exist candidate operator functions of the form
1804 T* operator+(T*, I);
1805 T& operator[](T*, I);
1806 T* operator-(T*, I);
1807 T* operator+(I, T*);
1808 T& operator[](I, T*);
1809
1810 15For every T, where T is a pointer to complete object type, there exist
1811 candidate operator functions of the form112)
1812 ptrdiff_t operator-(T, T);
1813
1814 16For every pointer or enumeration type T, there exist candidate operator
1815 functions of the form
1816 bool operator<(T, T);
1817 bool operator>(T, T);
1818 bool operator<=(T, T);
1819 bool operator>=(T, T);
1820 bool operator==(T, T);
1821 bool operator!=(T, T);
1822
1823 17For every pointer to member type T, there exist candidate operator
1824 functions of the form
1825 bool operator==(T, T);
1826 bool operator!=(T, T); */
1827
1828 case MINUS_EXPR:
1829 if (TYPE_PTROB_P (type1) && TYPE_PTROB_P (type2))
1830 break;
1831 if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
1832 {
1833 type2 = ptrdiff_type_node;
1834 break;
1835 }
1836 case MULT_EXPR:
1837 case TRUNC_DIV_EXPR:
1838 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1839 break;
1840 return;
1841
1842 case EQ_EXPR:
1843 case NE_EXPR:
1844 if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2))
1845 || (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2)))
1846 break;
1847 if (TYPE_PTR_TO_MEMBER_P (type1) && null_ptr_cst_p (args[1]))
1848 {
1849 type2 = type1;
1850 break;
1851 }
1852 if (TYPE_PTR_TO_MEMBER_P (type2) && null_ptr_cst_p (args[0]))
1853 {
1854 type1 = type2;
1855 break;
1856 }
1857 /* Fall through. */
1858 case LT_EXPR:
1859 case GT_EXPR:
1860 case LE_EXPR:
1861 case GE_EXPR:
1862 case MAX_EXPR:
1863 case MIN_EXPR:
1864 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1865 break;
1866 if (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
1867 break;
1868 if (TREE_CODE (type1) == ENUMERAL_TYPE
1869 && TREE_CODE (type2) == ENUMERAL_TYPE)
1870 break;
1871 if (TYPE_PTR_P (type1)
1872 && null_ptr_cst_p (args[1])
1873 && !uses_template_parms (type1))
1874 {
1875 type2 = type1;
1876 break;
1877 }
1878 if (null_ptr_cst_p (args[0])
1879 && TYPE_PTR_P (type2)
1880 && !uses_template_parms (type2))
1881 {
1882 type1 = type2;
1883 break;
1884 }
1885 return;
1886
1887 case PLUS_EXPR:
1888 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1889 break;
1890 case ARRAY_REF:
1891 if (INTEGRAL_TYPE_P (type1) && TYPE_PTROB_P (type2))
1892 {
1893 type1 = ptrdiff_type_node;
1894 break;
1895 }
1896 if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
1897 {
1898 type2 = ptrdiff_type_node;
1899 break;
1900 }
1901 return;
1902
1903 /* 18For every pair of promoted integral types L and R, there exist candi-
1904 date operator functions of the form
1905 LR operator%(L, R);
1906 LR operator&(L, R);
1907 LR operator^(L, R);
1908 LR operator|(L, R);
1909 L operator<<(L, R);
1910 L operator>>(L, R);
1911 where LR is the result of the usual arithmetic conversions between
1912 types L and R. */
1913
1914 case TRUNC_MOD_EXPR:
1915 case BIT_AND_EXPR:
1916 case BIT_IOR_EXPR:
1917 case BIT_XOR_EXPR:
1918 case LSHIFT_EXPR:
1919 case RSHIFT_EXPR:
1920 if (INTEGRAL_TYPE_P (type1) && INTEGRAL_TYPE_P (type2))
1921 break;
1922 return;
1923
1924 /* 19For every triple L, VQ, R), where L is an arithmetic or enumeration
1925 type, VQ is either volatile or empty, and R is a promoted arithmetic
1926 type, there exist candidate operator functions of the form
1927 VQ L& operator=(VQ L&, R);
1928 VQ L& operator*=(VQ L&, R);
1929 VQ L& operator/=(VQ L&, R);
1930 VQ L& operator+=(VQ L&, R);
1931 VQ L& operator-=(VQ L&, R);
1932
1933 20For every pair T, VQ), where T is any type and VQ is either volatile
1934 or empty, there exist candidate operator functions of the form
1935 T*VQ& operator=(T*VQ&, T*);
1936
1937 21For every pair T, VQ), where T is a pointer to member type and VQ is
1938 either volatile or empty, there exist candidate operator functions of
1939 the form
1940 VQ T& operator=(VQ T&, T);
1941
1942 22For every triple T, VQ, I), where T is a cv-qualified or cv-
1943 unqualified complete object type, VQ is either volatile or empty, and
1944 I is a promoted integral type, there exist candidate operator func-
1945 tions of the form
1946 T*VQ& operator+=(T*VQ&, I);
1947 T*VQ& operator-=(T*VQ&, I);
1948
1949 23For every triple L, VQ, R), where L is an integral or enumeration
1950 type, VQ is either volatile or empty, and R is a promoted integral
1951 type, there exist candidate operator functions of the form
1952
1953 VQ L& operator%=(VQ L&, R);
1954 VQ L& operator<<=(VQ L&, R);
1955 VQ L& operator>>=(VQ L&, R);
1956 VQ L& operator&=(VQ L&, R);
1957 VQ L& operator^=(VQ L&, R);
1958 VQ L& operator|=(VQ L&, R); */
1959
1960 case MODIFY_EXPR:
1961 switch (code2)
1962 {
1963 case PLUS_EXPR:
1964 case MINUS_EXPR:
1965 if (TYPE_PTROB_P (type1) && INTEGRAL_TYPE_P (type2))
1966 {
1967 type2 = ptrdiff_type_node;
1968 break;
1969 }
1970 case MULT_EXPR:
1971 case TRUNC_DIV_EXPR:
1972 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1973 break;
1974 return;
1975
1976 case TRUNC_MOD_EXPR:
1977 case BIT_AND_EXPR:
1978 case BIT_IOR_EXPR:
1979 case BIT_XOR_EXPR:
1980 case LSHIFT_EXPR:
1981 case RSHIFT_EXPR:
1982 if (INTEGRAL_TYPE_P (type1) && INTEGRAL_TYPE_P (type2))
1983 break;
1984 return;
1985
1986 case NOP_EXPR:
1987 if (ARITHMETIC_TYPE_P (type1) && ARITHMETIC_TYPE_P (type2))
1988 break;
1989 if ((TYPE_PTRMEMFUNC_P (type1) && TYPE_PTRMEMFUNC_P (type2))
1990 || (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
1991 || (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2))
1992 || ((TYPE_PTRMEMFUNC_P (type1)
1993 || TREE_CODE (type1) == POINTER_TYPE)
1994 && null_ptr_cst_p (args[1])))
1995 {
1996 type2 = type1;
1997 break;
1998 }
1999 return;
2000
2001 default:
2002 gcc_unreachable ();
2003 }
2004 type1 = build_reference_type (type1);
2005 break;
2006
2007 case COND_EXPR:
2008 /* [over.built]
2009
2010 For every pair of promoted arithmetic types L and R, there
2011 exist candidate operator functions of the form
2012
2013 LR operator?(bool, L, R);
2014
2015 where LR is the result of the usual arithmetic conversions
2016 between types L and R.
2017
2018 For every type T, where T is a pointer or pointer-to-member
2019 type, there exist candidate operator functions of the form T
2020 operator?(bool, T, T); */
2021
2022 if (promoted_arithmetic_type_p (type1)
2023 && promoted_arithmetic_type_p (type2))
2024 /* That's OK. */
2025 break;
2026
2027 /* Otherwise, the types should be pointers. */
2028 if (!(TYPE_PTR_P (type1) || TYPE_PTR_TO_MEMBER_P (type1))
2029 || !(TYPE_PTR_P (type2) || TYPE_PTR_TO_MEMBER_P (type2)))
2030 return;
2031
2032 /* We don't check that the two types are the same; the logic
2033 below will actually create two candidates; one in which both
2034 parameter types are TYPE1, and one in which both parameter
2035 types are TYPE2. */
2036 break;
2037
2038 default:
2039 gcc_unreachable ();
2040 }
2041
2042 /* If we're dealing with two pointer types or two enumeral types,
2043 we need candidates for both of them. */
2044 if (type2 && !same_type_p (type1, type2)
2045 && TREE_CODE (type1) == TREE_CODE (type2)
2046 && (TREE_CODE (type1) == REFERENCE_TYPE
2047 || (TYPE_PTR_P (type1) && TYPE_PTR_P (type2))
2048 || (TYPE_PTRMEM_P (type1) && TYPE_PTRMEM_P (type2))
2049 || TYPE_PTRMEMFUNC_P (type1)
2050 || IS_AGGR_TYPE (type1)
2051 || TREE_CODE (type1) == ENUMERAL_TYPE))
2052 {
2053 build_builtin_candidate
2054 (candidates, fnname, type1, type1, args, argtypes, flags);
2055 build_builtin_candidate
2056 (candidates, fnname, type2, type2, args, argtypes, flags);
2057 return;
2058 }
2059
2060 build_builtin_candidate
2061 (candidates, fnname, type1, type2, args, argtypes, flags);
2062 }
2063
2064 tree
2065 type_decays_to (tree type)
2066 {
2067 if (TREE_CODE (type) == ARRAY_TYPE)
2068 return build_pointer_type (TREE_TYPE (type));
2069 if (TREE_CODE (type) == FUNCTION_TYPE)
2070 return build_pointer_type (type);
2071 return type;
2072 }
2073
2074 /* There are three conditions of builtin candidates:
2075
2076 1) bool-taking candidates. These are the same regardless of the input.
2077 2) pointer-pair taking candidates. These are generated for each type
2078 one of the input types converts to.
2079 3) arithmetic candidates. According to the standard, we should generate
2080 all of these, but I'm trying not to...
2081
2082 Here we generate a superset of the possible candidates for this particular
2083 case. That is a subset of the full set the standard defines, plus some
2084 other cases which the standard disallows. add_builtin_candidate will
2085 filter out the invalid set. */
2086
2087 static void
2088 add_builtin_candidates (struct z_candidate **candidates, enum tree_code code,
2089 enum tree_code code2, tree fnname, tree *args,
2090 int flags)
2091 {
2092 int ref1, i;
2093 int enum_p = 0;
2094 tree type, argtypes[3];
2095 /* TYPES[i] is the set of possible builtin-operator parameter types
2096 we will consider for the Ith argument. These are represented as
2097 a TREE_LIST; the TREE_VALUE of each node is the potential
2098 parameter type. */
2099 tree types[2];
2100
2101 for (i = 0; i < 3; ++i)
2102 {
2103 if (args[i])
2104 argtypes[i] = lvalue_type (args[i]);
2105 else
2106 argtypes[i] = NULL_TREE;
2107 }
2108
2109 switch (code)
2110 {
2111 /* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
2112 and VQ is either volatile or empty, there exist candidate operator
2113 functions of the form
2114 VQ T& operator++(VQ T&); */
2115
2116 case POSTINCREMENT_EXPR:
2117 case PREINCREMENT_EXPR:
2118 case POSTDECREMENT_EXPR:
2119 case PREDECREMENT_EXPR:
2120 case MODIFY_EXPR:
2121 ref1 = 1;
2122 break;
2123
2124 /* 24There also exist candidate operator functions of the form
2125 bool operator!(bool);
2126 bool operator&&(bool, bool);
2127 bool operator||(bool, bool); */
2128
2129 case TRUTH_NOT_EXPR:
2130 build_builtin_candidate
2131 (candidates, fnname, boolean_type_node,
2132 NULL_TREE, args, argtypes, flags);
2133 return;
2134
2135 case TRUTH_ORIF_EXPR:
2136 case TRUTH_ANDIF_EXPR:
2137 build_builtin_candidate
2138 (candidates, fnname, boolean_type_node,
2139 boolean_type_node, args, argtypes, flags);
2140 return;
2141
2142 case ADDR_EXPR:
2143 case COMPOUND_EXPR:
2144 case COMPONENT_REF:
2145 return;
2146
2147 case COND_EXPR:
2148 case EQ_EXPR:
2149 case NE_EXPR:
2150 case LT_EXPR:
2151 case LE_EXPR:
2152 case GT_EXPR:
2153 case GE_EXPR:
2154 enum_p = 1;
2155 /* Fall through. */
2156
2157 default:
2158 ref1 = 0;
2159 }
2160
2161 types[0] = types[1] = NULL_TREE;
2162
2163 for (i = 0; i < 2; ++i)
2164 {
2165 if (! args[i])
2166 ;
2167 else if (IS_AGGR_TYPE (argtypes[i]))
2168 {
2169 tree convs;
2170
2171 if (i == 0 && code == MODIFY_EXPR && code2 == NOP_EXPR)
2172 return;
2173
2174 convs = lookup_conversions (argtypes[i]);
2175
2176 if (code == COND_EXPR)
2177 {
2178 if (real_lvalue_p (args[i]))
2179 types[i] = tree_cons
2180 (NULL_TREE, build_reference_type (argtypes[i]), types[i]);
2181
2182 types[i] = tree_cons
2183 (NULL_TREE, TYPE_MAIN_VARIANT (argtypes[i]), types[i]);
2184 }
2185
2186 else if (! convs)
2187 return;
2188
2189 for (; convs; convs = TREE_CHAIN (convs))
2190 {
2191 type = TREE_TYPE (TREE_TYPE (OVL_CURRENT (TREE_VALUE (convs))));
2192
2193 if (i == 0 && ref1
2194 && (TREE_CODE (type) != REFERENCE_TYPE
2195 || CP_TYPE_CONST_P (TREE_TYPE (type))))
2196 continue;
2197
2198 if (code == COND_EXPR && TREE_CODE (type) == REFERENCE_TYPE)
2199 types[i] = tree_cons (NULL_TREE, type, types[i]);
2200
2201 type = non_reference (type);
2202 if (i != 0 || ! ref1)
2203 {
2204 type = TYPE_MAIN_VARIANT (type_decays_to (type));
2205 if (enum_p && TREE_CODE (type) == ENUMERAL_TYPE)
2206 types[i] = tree_cons (NULL_TREE, type, types[i]);
2207 if (INTEGRAL_TYPE_P (type))
2208 type = type_promotes_to (type);
2209 }
2210
2211 if (! value_member (type, types[i]))
2212 types[i] = tree_cons (NULL_TREE, type, types[i]);
2213 }
2214 }
2215 else
2216 {
2217 if (code == COND_EXPR && real_lvalue_p (args[i]))
2218 types[i] = tree_cons
2219 (NULL_TREE, build_reference_type (argtypes[i]), types[i]);
2220 type = non_reference (argtypes[i]);
2221 if (i != 0 || ! ref1)
2222 {
2223 type = TYPE_MAIN_VARIANT (type_decays_to (type));
2224 if (enum_p && TREE_CODE (type) == ENUMERAL_TYPE)
2225 types[i] = tree_cons (NULL_TREE, type, types[i]);
2226 if (INTEGRAL_TYPE_P (type))
2227 type = type_promotes_to (type);
2228 }
2229 types[i] = tree_cons (NULL_TREE, type, types[i]);
2230 }
2231 }
2232
2233 /* Run through the possible parameter types of both arguments,
2234 creating candidates with those parameter types. */
2235 for (; types[0]; types[0] = TREE_CHAIN (types[0]))
2236 {
2237 if (types[1])
2238 for (type = types[1]; type; type = TREE_CHAIN (type))
2239 add_builtin_candidate
2240 (candidates, code, code2, fnname, TREE_VALUE (types[0]),
2241 TREE_VALUE (type), args, argtypes, flags);
2242 else
2243 add_builtin_candidate
2244 (candidates, code, code2, fnname, TREE_VALUE (types[0]),
2245 NULL_TREE, args, argtypes, flags);
2246 }
2247 }
2248
2249
2250 /* If TMPL can be successfully instantiated as indicated by
2251 EXPLICIT_TARGS and ARGLIST, adds the instantiation to CANDIDATES.
2252
2253 TMPL is the template. EXPLICIT_TARGS are any explicit template
2254 arguments. ARGLIST is the arguments provided at the call-site.
2255 The RETURN_TYPE is the desired type for conversion operators. If
2256 OBJ is NULL_TREE, FLAGS and CTYPE are as for add_function_candidate.
2257 If an OBJ is supplied, FLAGS and CTYPE are ignored, and OBJ is as for
2258 add_conv_candidate. */
2259
2260 static struct z_candidate*
2261 add_template_candidate_real (struct z_candidate **candidates, tree tmpl,
2262 tree ctype, tree explicit_targs, tree arglist,
2263 tree return_type, tree access_path,
2264 tree conversion_path, int flags, tree obj,
2265 unification_kind_t strict)
2266 {
2267 int ntparms = DECL_NTPARMS (tmpl);
2268 tree targs = make_tree_vec (ntparms);
2269 tree args_without_in_chrg = arglist;
2270 struct z_candidate *cand;
2271 int i;
2272 tree fn;
2273
2274 /* We don't do deduction on the in-charge parameter, the VTT
2275 parameter or 'this'. */
2276 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (tmpl))
2277 args_without_in_chrg = TREE_CHAIN (args_without_in_chrg);
2278
2279 if ((DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (tmpl)
2280 || DECL_BASE_CONSTRUCTOR_P (tmpl))
2281 && CLASSTYPE_VBASECLASSES (DECL_CONTEXT (tmpl)))
2282 args_without_in_chrg = TREE_CHAIN (args_without_in_chrg);
2283
2284 i = fn_type_unification (tmpl, explicit_targs, targs,
2285 args_without_in_chrg,
2286 return_type, strict, flags);
2287
2288 if (i != 0)
2289 return NULL;
2290
2291 fn = instantiate_template (tmpl, targs, tf_none);
2292 if (fn == error_mark_node)
2293 return NULL;
2294
2295 /* In [class.copy]:
2296
2297 A member function template is never instantiated to perform the
2298 copy of a class object to an object of its class type.
2299
2300 It's a little unclear what this means; the standard explicitly
2301 does allow a template to be used to copy a class. For example,
2302 in:
2303
2304 struct A {
2305 A(A&);
2306 template <class T> A(const T&);
2307 };
2308 const A f ();
2309 void g () { A a (f ()); }
2310
2311 the member template will be used to make the copy. The section
2312 quoted above appears in the paragraph that forbids constructors
2313 whose only parameter is (a possibly cv-qualified variant of) the
2314 class type, and a logical interpretation is that the intent was
2315 to forbid the instantiation of member templates which would then
2316 have that form. */
2317 if (DECL_CONSTRUCTOR_P (fn) && list_length (arglist) == 2)
2318 {
2319 tree arg_types = FUNCTION_FIRST_USER_PARMTYPE (fn);
2320 if (arg_types && same_type_p (TYPE_MAIN_VARIANT (TREE_VALUE (arg_types)),
2321 ctype))
2322 return NULL;
2323 }
2324
2325 if (obj != NULL_TREE)
2326 /* Aha, this is a conversion function. */
2327 cand = add_conv_candidate (candidates, fn, obj, access_path,
2328 conversion_path, arglist);
2329 else
2330 cand = add_function_candidate (candidates, fn, ctype,
2331 arglist, access_path,
2332 conversion_path, flags);
2333 if (DECL_TI_TEMPLATE (fn) != tmpl)
2334 /* This situation can occur if a member template of a template
2335 class is specialized. Then, instantiate_template might return
2336 an instantiation of the specialization, in which case the
2337 DECL_TI_TEMPLATE field will point at the original
2338 specialization. For example:
2339
2340 template <class T> struct S { template <class U> void f(U);
2341 template <> void f(int) {}; };
2342 S<double> sd;
2343 sd.f(3);
2344
2345 Here, TMPL will be template <class U> S<double>::f(U).
2346 And, instantiate template will give us the specialization
2347 template <> S<double>::f(int). But, the DECL_TI_TEMPLATE field
2348 for this will point at template <class T> template <> S<T>::f(int),
2349 so that we can find the definition. For the purposes of
2350 overload resolution, however, we want the original TMPL. */
2351 cand->template_decl = tree_cons (tmpl, targs, NULL_TREE);
2352 else
2353 cand->template_decl = DECL_TEMPLATE_INFO (fn);
2354
2355 return cand;
2356 }
2357
2358
2359 static struct z_candidate *
2360 add_template_candidate (struct z_candidate **candidates, tree tmpl, tree ctype,
2361 tree explicit_targs, tree arglist, tree return_type,
2362 tree access_path, tree conversion_path, int flags,
2363 unification_kind_t strict)
2364 {
2365 return
2366 add_template_candidate_real (candidates, tmpl, ctype,
2367 explicit_targs, arglist, return_type,
2368 access_path, conversion_path,
2369 flags, NULL_TREE, strict);
2370 }
2371
2372
2373 static struct z_candidate *
2374 add_template_conv_candidate (struct z_candidate **candidates, tree tmpl,
2375 tree obj, tree arglist, tree return_type,
2376 tree access_path, tree conversion_path)
2377 {
2378 return
2379 add_template_candidate_real (candidates, tmpl, NULL_TREE, NULL_TREE,
2380 arglist, return_type, access_path,
2381 conversion_path, 0, obj, DEDUCE_CONV);
2382 }
2383
2384 /* The CANDS are the set of candidates that were considered for
2385 overload resolution. Return the set of viable candidates. If none
2386 of the candidates were viable, set *ANY_VIABLE_P to true. STRICT_P
2387 is true if a candidate should be considered viable only if it is
2388 strictly viable. */
2389
2390 static struct z_candidate*
2391 splice_viable (struct z_candidate *cands,
2392 bool strict_p,
2393 bool *any_viable_p)
2394 {
2395 struct z_candidate *viable;
2396 struct z_candidate **last_viable;
2397 struct z_candidate **cand;
2398
2399 viable = NULL;
2400 last_viable = &viable;
2401 *any_viable_p = false;
2402
2403 cand = &cands;
2404 while (*cand)
2405 {
2406 struct z_candidate *c = *cand;
2407 if (strict_p ? c->viable == 1 : c->viable)
2408 {
2409 *last_viable = c;
2410 *cand = c->next;
2411 c->next = NULL;
2412 last_viable = &c->next;
2413 *any_viable_p = true;
2414 }
2415 else
2416 cand = &c->next;
2417 }
2418
2419 return viable ? viable : cands;
2420 }
2421
2422 static bool
2423 any_strictly_viable (struct z_candidate *cands)
2424 {
2425 for (; cands; cands = cands->next)
2426 if (cands->viable == 1)
2427 return true;
2428 return false;
2429 }
2430
2431 /* OBJ is being used in an expression like "OBJ.f (...)". In other
2432 words, it is about to become the "this" pointer for a member
2433 function call. Take the address of the object. */
2434
2435 static tree
2436 build_this (tree obj)
2437 {
2438 /* In a template, we are only concerned about the type of the
2439 expression, so we can take a shortcut. */
2440 if (processing_template_decl)
2441 return build_address (obj);
2442
2443 return build_unary_op (ADDR_EXPR, obj, 0);
2444 }
2445
2446 /* Returns true iff functions are equivalent. Equivalent functions are
2447 not '==' only if one is a function-local extern function or if
2448 both are extern "C". */
2449
2450 static inline int
2451 equal_functions (tree fn1, tree fn2)
2452 {
2453 if (DECL_LOCAL_FUNCTION_P (fn1) || DECL_LOCAL_FUNCTION_P (fn2)
2454 || DECL_EXTERN_C_FUNCTION_P (fn1))
2455 return decls_match (fn1, fn2);
2456 return fn1 == fn2;
2457 }
2458
2459 /* Print information about one overload candidate CANDIDATE. MSGSTR
2460 is the text to print before the candidate itself.
2461
2462 NOTE: Unlike most diagnostic functions in GCC, MSGSTR is expected
2463 to have been run through gettext by the caller. This wart makes
2464 life simpler in print_z_candidates and for the translators. */
2465
2466 static void
2467 print_z_candidate (const char *msgstr, struct z_candidate *candidate)
2468 {
2469 if (TREE_CODE (candidate->fn) == IDENTIFIER_NODE)
2470 {
2471 if (candidate->num_convs == 3)
2472 inform ("%s %D(%T, %T, %T) <built-in>", msgstr, candidate->fn,
2473 candidate->convs[0]->type,
2474 candidate->convs[1]->type,
2475 candidate->convs[2]->type);
2476 else if (candidate->num_convs == 2)
2477 inform ("%s %D(%T, %T) <built-in>", msgstr, candidate->fn,
2478 candidate->convs[0]->type,
2479 candidate->convs[1]->type);
2480 else
2481 inform ("%s %D(%T) <built-in>", msgstr, candidate->fn,
2482 candidate->convs[0]->type);
2483 }
2484 else if (TYPE_P (candidate->fn))
2485 inform ("%s %T <conversion>", msgstr, candidate->fn);
2486 else if (candidate->viable == -1)
2487 inform ("%s %+#D <near match>", msgstr, candidate->fn);
2488 else
2489 inform ("%s %+#D", msgstr, candidate->fn);
2490 }
2491
2492 static void
2493 print_z_candidates (struct z_candidate *candidates)
2494 {
2495 const char *str;
2496 struct z_candidate *cand1;
2497 struct z_candidate **cand2;
2498
2499 /* There may be duplicates in the set of candidates. We put off
2500 checking this condition as long as possible, since we have no way
2501 to eliminate duplicates from a set of functions in less than n^2
2502 time. Now we are about to emit an error message, so it is more
2503 permissible to go slowly. */
2504 for (cand1 = candidates; cand1; cand1 = cand1->next)
2505 {
2506 tree fn = cand1->fn;
2507 /* Skip builtin candidates and conversion functions. */
2508 if (TREE_CODE (fn) != FUNCTION_DECL)
2509 continue;
2510 cand2 = &cand1->next;
2511 while (*cand2)
2512 {
2513 if (TREE_CODE ((*cand2)->fn) == FUNCTION_DECL
2514 && equal_functions (fn, (*cand2)->fn))
2515 *cand2 = (*cand2)->next;
2516 else
2517 cand2 = &(*cand2)->next;
2518 }
2519 }
2520
2521 if (!candidates)
2522 return;
2523
2524 str = _("candidates are:");
2525 print_z_candidate (str, candidates);
2526 if (candidates->next)
2527 {
2528 /* Indent successive candidates by the width of the translation
2529 of the above string. */
2530 size_t len = gcc_gettext_width (str) + 1;
2531 char *spaces = (char *) alloca (len);
2532 memset (spaces, ' ', len-1);
2533 spaces[len - 1] = '\0';
2534
2535 candidates = candidates->next;
2536 do
2537 {
2538 print_z_candidate (spaces, candidates);
2539 candidates = candidates->next;
2540 }
2541 while (candidates);
2542 }
2543 }
2544
2545 /* USER_SEQ is a user-defined conversion sequence, beginning with a
2546 USER_CONV. STD_SEQ is the standard conversion sequence applied to
2547 the result of the conversion function to convert it to the final
2548 desired type. Merge the two sequences into a single sequence,
2549 and return the merged sequence. */
2550
2551 static conversion *
2552 merge_conversion_sequences (conversion *user_seq, conversion *std_seq)
2553 {
2554 conversion **t;
2555
2556 gcc_assert (user_seq->kind == ck_user);
2557
2558 /* Find the end of the second conversion sequence. */
2559 t = &(std_seq);
2560 while ((*t)->kind != ck_identity)
2561 t = &((*t)->u.next);
2562
2563 /* Replace the identity conversion with the user conversion
2564 sequence. */
2565 *t = user_seq;
2566
2567 /* The entire sequence is a user-conversion sequence. */
2568 std_seq->user_conv_p = true;
2569
2570 return std_seq;
2571 }
2572
2573 /* Returns the best overload candidate to perform the requested
2574 conversion. This function is used for three the overloading situations
2575 described in [over.match.copy], [over.match.conv], and [over.match.ref].
2576 If TOTYPE is a REFERENCE_TYPE, we're trying to find an lvalue binding as
2577 per [dcl.init.ref], so we ignore temporary bindings. */
2578
2579 static struct z_candidate *
2580 build_user_type_conversion_1 (tree totype, tree expr, int flags)
2581 {
2582 struct z_candidate *candidates, *cand;
2583 tree fromtype = TREE_TYPE (expr);
2584 tree ctors = NULL_TREE;
2585 tree conv_fns = NULL_TREE;
2586 conversion *conv = NULL;
2587 tree args = NULL_TREE;
2588 bool any_viable_p;
2589
2590 /* We represent conversion within a hierarchy using RVALUE_CONV and
2591 BASE_CONV, as specified by [over.best.ics]; these become plain
2592 constructor calls, as specified in [dcl.init]. */
2593 gcc_assert (!IS_AGGR_TYPE (fromtype) || !IS_AGGR_TYPE (totype)
2594 || !DERIVED_FROM_P (totype, fromtype));
2595
2596 if (IS_AGGR_TYPE (totype))
2597 ctors = lookup_fnfields (totype, complete_ctor_identifier, 0);
2598
2599 if (IS_AGGR_TYPE (fromtype))
2600 conv_fns = lookup_conversions (fromtype);
2601
2602 candidates = 0;
2603 flags |= LOOKUP_NO_CONVERSION;
2604
2605 if (ctors)
2606 {
2607 tree t;
2608
2609 ctors = BASELINK_FUNCTIONS (ctors);
2610
2611 t = build_int_cst (build_pointer_type (totype), 0);
2612 args = build_tree_list (NULL_TREE, expr);
2613 /* We should never try to call the abstract or base constructor
2614 from here. */
2615 gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (OVL_CURRENT (ctors))
2616 && !DECL_HAS_VTT_PARM_P (OVL_CURRENT (ctors)));
2617 args = tree_cons (NULL_TREE, t, args);
2618 }
2619 for (; ctors; ctors = OVL_NEXT (ctors))
2620 {
2621 tree ctor = OVL_CURRENT (ctors);
2622 if (DECL_NONCONVERTING_P (ctor))
2623 continue;
2624
2625 if (TREE_CODE (ctor) == TEMPLATE_DECL)
2626 cand = add_template_candidate (&candidates, ctor, totype,
2627 NULL_TREE, args, NULL_TREE,
2628 TYPE_BINFO (totype),
2629 TYPE_BINFO (totype),
2630 flags,
2631 DEDUCE_CALL);
2632 else
2633 cand = add_function_candidate (&candidates, ctor, totype,
2634 args, TYPE_BINFO (totype),
2635 TYPE_BINFO (totype),
2636 flags);
2637
2638 if (cand)
2639 cand->second_conv = build_identity_conv (totype, NULL_TREE);
2640 }
2641
2642 if (conv_fns)
2643 args = build_tree_list (NULL_TREE, build_this (expr));
2644
2645 for (; conv_fns; conv_fns = TREE_CHAIN (conv_fns))
2646 {
2647 tree fns;
2648 tree conversion_path = TREE_PURPOSE (conv_fns);
2649 int convflags = LOOKUP_NO_CONVERSION;
2650
2651 /* If we are called to convert to a reference type, we are trying to
2652 find an lvalue binding, so don't even consider temporaries. If
2653 we don't find an lvalue binding, the caller will try again to
2654 look for a temporary binding. */
2655 if (TREE_CODE (totype) == REFERENCE_TYPE)
2656 convflags |= LOOKUP_NO_TEMP_BIND;
2657
2658 for (fns = TREE_VALUE (conv_fns); fns; fns = OVL_NEXT (fns))
2659 {
2660 tree fn = OVL_CURRENT (fns);
2661
2662 /* [over.match.funcs] For conversion functions, the function
2663 is considered to be a member of the class of the implicit
2664 object argument for the purpose of defining the type of
2665 the implicit object parameter.
2666
2667 So we pass fromtype as CTYPE to add_*_candidate. */
2668
2669 if (TREE_CODE (fn) == TEMPLATE_DECL)
2670 cand = add_template_candidate (&candidates, fn, fromtype,
2671 NULL_TREE,
2672 args, totype,
2673 TYPE_BINFO (fromtype),
2674 conversion_path,
2675 flags,
2676 DEDUCE_CONV);
2677 else
2678 cand = add_function_candidate (&candidates, fn, fromtype,
2679 args,
2680 TYPE_BINFO (fromtype),
2681 conversion_path,
2682 flags);
2683
2684 if (cand)
2685 {
2686 conversion *ics
2687 = implicit_conversion (totype,
2688 TREE_TYPE (TREE_TYPE (cand->fn)),
2689 0,
2690 /*c_cast_p=*/false, convflags);
2691
2692 cand->second_conv = ics;
2693
2694 if (!ics)
2695 cand->viable = 0;
2696 else if (candidates->viable == 1 && ics->bad_p)
2697 cand->viable = -1;
2698 }
2699 }
2700 }
2701
2702 candidates = splice_viable (candidates, pedantic, &any_viable_p);
2703 if (!any_viable_p)
2704 return NULL;
2705
2706 cand = tourney (candidates);
2707 if (cand == 0)
2708 {
2709 if (flags & LOOKUP_COMPLAIN)
2710 {
2711 error ("conversion from %qT to %qT is ambiguous",
2712 fromtype, totype);
2713 print_z_candidates (candidates);
2714 }
2715
2716 cand = candidates; /* any one will do */
2717 cand->second_conv = build_ambiguous_conv (totype, expr);
2718 cand->second_conv->user_conv_p = true;
2719 if (!any_strictly_viable (candidates))
2720 cand->second_conv->bad_p = true;
2721 /* If there are viable candidates, don't set ICS_BAD_FLAG; an
2722 ambiguous conversion is no worse than another user-defined
2723 conversion. */
2724
2725 return cand;
2726 }
2727
2728 /* Build the user conversion sequence. */
2729 conv = build_conv
2730 (ck_user,
2731 (DECL_CONSTRUCTOR_P (cand->fn)
2732 ? totype : non_reference (TREE_TYPE (TREE_TYPE (cand->fn)))),
2733 build_identity_conv (TREE_TYPE (expr), expr));
2734 conv->cand = cand;
2735
2736 /* Combine it with the second conversion sequence. */
2737 cand->second_conv = merge_conversion_sequences (conv,
2738 cand->second_conv);
2739
2740 if (cand->viable == -1)
2741 cand->second_conv->bad_p = true;
2742
2743 return cand;
2744 }
2745
2746 tree
2747 build_user_type_conversion (tree totype, tree expr, int flags)
2748 {
2749 struct z_candidate *cand
2750 = build_user_type_conversion_1 (totype, expr, flags);
2751
2752 if (cand)
2753 {
2754 if (cand->second_conv->kind == ck_ambig)
2755 return error_mark_node;
2756 expr = convert_like (cand->second_conv, expr);
2757 return convert_from_reference (expr);
2758 }
2759 return NULL_TREE;
2760 }
2761
2762 /* Do any initial processing on the arguments to a function call. */
2763
2764 static tree
2765 resolve_args (tree args)
2766 {
2767 tree t;
2768 for (t = args; t; t = TREE_CHAIN (t))
2769 {
2770 tree arg = TREE_VALUE (t);
2771
2772 if (error_operand_p (arg))
2773 return error_mark_node;
2774 else if (VOID_TYPE_P (TREE_TYPE (arg)))
2775 {
2776 error ("invalid use of void expression");
2777 return error_mark_node;
2778 }
2779 else if (invalid_nonstatic_memfn_p (arg))
2780 return error_mark_node;
2781 }
2782 return args;
2783 }
2784
2785 /* Perform overload resolution on FN, which is called with the ARGS.
2786
2787 Return the candidate function selected by overload resolution, or
2788 NULL if the event that overload resolution failed. In the case
2789 that overload resolution fails, *CANDIDATES will be the set of
2790 candidates considered, and ANY_VIABLE_P will be set to true or
2791 false to indicate whether or not any of the candidates were
2792 viable.
2793
2794 The ARGS should already have gone through RESOLVE_ARGS before this
2795 function is called. */
2796
2797 static struct z_candidate *
2798 perform_overload_resolution (tree fn,
2799 tree args,
2800 struct z_candidate **candidates,
2801 bool *any_viable_p)
2802 {
2803 struct z_candidate *cand;
2804 tree explicit_targs = NULL_TREE;
2805 int template_only = 0;
2806
2807 *candidates = NULL;
2808 *any_viable_p = true;
2809
2810 /* Check FN and ARGS. */
2811 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL
2812 || TREE_CODE (fn) == TEMPLATE_DECL
2813 || TREE_CODE (fn) == OVERLOAD
2814 || TREE_CODE (fn) == TEMPLATE_ID_EXPR);
2815 gcc_assert (!args || TREE_CODE (args) == TREE_LIST);
2816
2817 if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
2818 {
2819 explicit_targs = TREE_OPERAND (fn, 1);
2820 fn = TREE_OPERAND (fn, 0);
2821 template_only = 1;
2822 }
2823
2824 /* Add the various candidate functions. */
2825 add_candidates (fn, args, explicit_targs, template_only,
2826 /*conversion_path=*/NULL_TREE,
2827 /*access_path=*/NULL_TREE,
2828 LOOKUP_NORMAL,
2829 candidates);
2830
2831 *candidates = splice_viable (*candidates, pedantic, any_viable_p);
2832 if (!*any_viable_p)
2833 return NULL;
2834
2835 cand = tourney (*candidates);
2836 return cand;
2837 }
2838
2839 /* Return an expression for a call to FN (a namespace-scope function,
2840 or a static member function) with the ARGS. */
2841
2842 tree
2843 build_new_function_call (tree fn, tree args, bool koenig_p)
2844 {
2845 struct z_candidate *candidates, *cand;
2846 bool any_viable_p;
2847 void *p;
2848 tree result;
2849
2850 args = resolve_args (args);
2851 if (args == error_mark_node)
2852 return error_mark_node;
2853
2854 /* If this function was found without using argument dependent
2855 lookup, then we want to ignore any undeclared friend
2856 functions. */
2857 if (!koenig_p)
2858 {
2859 tree orig_fn = fn;
2860
2861 fn = remove_hidden_names (fn);
2862 if (!fn)
2863 {
2864 error ("no matching function for call to %<%D(%A)%>",
2865 DECL_NAME (OVL_CURRENT (orig_fn)), args);
2866 return error_mark_node;
2867 }
2868 }
2869
2870 /* Get the high-water mark for the CONVERSION_OBSTACK. */
2871 p = conversion_obstack_alloc (0);
2872
2873 cand = perform_overload_resolution (fn, args, &candidates, &any_viable_p);
2874
2875 if (!cand)
2876 {
2877 if (!any_viable_p && candidates && ! candidates->next)
2878 return build_function_call (candidates->fn, args);
2879 if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
2880 fn = TREE_OPERAND (fn, 0);
2881 if (!any_viable_p)
2882 error ("no matching function for call to %<%D(%A)%>",
2883 DECL_NAME (OVL_CURRENT (fn)), args);
2884 else
2885 error ("call of overloaded %<%D(%A)%> is ambiguous",
2886 DECL_NAME (OVL_CURRENT (fn)), args);
2887 if (candidates)
2888 print_z_candidates (candidates);
2889 result = error_mark_node;
2890 }
2891 else
2892 result = build_over_call (cand, LOOKUP_NORMAL);
2893
2894 /* Free all the conversions we allocated. */
2895 obstack_free (&conversion_obstack, p);
2896
2897 return result;
2898 }
2899
2900 /* Build a call to a global operator new. FNNAME is the name of the
2901 operator (either "operator new" or "operator new[]") and ARGS are
2902 the arguments provided. *SIZE points to the total number of bytes
2903 required by the allocation, and is updated if that is changed here.
2904 *COOKIE_SIZE is non-NULL if a cookie should be used. If this
2905 function determines that no cookie should be used, after all,
2906 *COOKIE_SIZE is set to NULL_TREE. If FN is non-NULL, it will be
2907 set, upon return, to the allocation function called. */
2908
2909 tree
2910 build_operator_new_call (tree fnname, tree args,
2911 tree *size, tree *cookie_size,
2912 tree *fn)
2913 {
2914 tree fns;
2915 struct z_candidate *candidates;
2916 struct z_candidate *cand;
2917 bool any_viable_p;
2918
2919 if (fn)
2920 *fn = NULL_TREE;
2921 args = tree_cons (NULL_TREE, *size, args);
2922 args = resolve_args (args);
2923 if (args == error_mark_node)
2924 return args;
2925
2926 /* Based on:
2927
2928 [expr.new]
2929
2930 If this lookup fails to find the name, or if the allocated type
2931 is not a class type, the allocation function's name is looked
2932 up in the global scope.
2933
2934 we disregard block-scope declarations of "operator new". */
2935 fns = lookup_function_nonclass (fnname, args, /*block_p=*/false);
2936
2937 /* Figure out what function is being called. */
2938 cand = perform_overload_resolution (fns, args, &candidates, &any_viable_p);
2939
2940 /* If no suitable function could be found, issue an error message
2941 and give up. */
2942 if (!cand)
2943 {
2944 if (!any_viable_p)
2945 error ("no matching function for call to %<%D(%A)%>",
2946 DECL_NAME (OVL_CURRENT (fns)), args);
2947 else
2948 error ("call of overloaded %<%D(%A)%> is ambiguous",
2949 DECL_NAME (OVL_CURRENT (fns)), args);
2950 if (candidates)
2951 print_z_candidates (candidates);
2952 return error_mark_node;
2953 }
2954
2955 /* If a cookie is required, add some extra space. Whether
2956 or not a cookie is required cannot be determined until
2957 after we know which function was called. */
2958 if (*cookie_size)
2959 {
2960 bool use_cookie = true;
2961 if (!abi_version_at_least (2))
2962 {
2963 tree placement = TREE_CHAIN (args);
2964 /* In G++ 3.2, the check was implemented incorrectly; it
2965 looked at the placement expression, rather than the
2966 type of the function. */
2967 if (placement && !TREE_CHAIN (placement)
2968 && same_type_p (TREE_TYPE (TREE_VALUE (placement)),
2969 ptr_type_node))
2970 use_cookie = false;
2971 }
2972 else
2973 {
2974 tree arg_types;
2975
2976 arg_types = TYPE_ARG_TYPES (TREE_TYPE (cand->fn));
2977 /* Skip the size_t parameter. */
2978 arg_types = TREE_CHAIN (arg_types);
2979 /* Check the remaining parameters (if any). */
2980 if (arg_types
2981 && TREE_CHAIN (arg_types) == void_list_node
2982 && same_type_p (TREE_VALUE (arg_types),
2983 ptr_type_node))
2984 use_cookie = false;
2985 }
2986 /* If we need a cookie, adjust the number of bytes allocated. */
2987 if (use_cookie)
2988 {
2989 /* Update the total size. */
2990 *size = size_binop (PLUS_EXPR, *size, *cookie_size);
2991 /* Update the argument list to reflect the adjusted size. */
2992 TREE_VALUE (args) = *size;
2993 }
2994 else
2995 *cookie_size = NULL_TREE;
2996 }
2997
2998 /* Tell our caller which function we decided to call. */
2999 if (fn)
3000 *fn = cand->fn;
3001
3002 /* Build the CALL_EXPR. */
3003 return build_over_call (cand, LOOKUP_NORMAL);
3004 }
3005
3006 static tree
3007 build_object_call (tree obj, tree args)
3008 {
3009 struct z_candidate *candidates = 0, *cand;
3010 tree fns, convs, mem_args = NULL_TREE;
3011 tree type = TREE_TYPE (obj);
3012 bool any_viable_p;
3013 tree result = NULL_TREE;
3014 void *p;
3015
3016 if (TYPE_PTRMEMFUNC_P (type))
3017 {
3018 /* It's no good looking for an overloaded operator() on a
3019 pointer-to-member-function. */
3020 error ("pointer-to-member function %E cannot be called without an object; consider using .* or ->*", obj);
3021 return error_mark_node;
3022 }
3023
3024 if (TYPE_BINFO (type))
3025 {
3026 fns = lookup_fnfields (TYPE_BINFO (type), ansi_opname (CALL_EXPR), 1);
3027 if (fns == error_mark_node)
3028 return error_mark_node;
3029 }
3030 else
3031 fns = NULL_TREE;
3032
3033 args = resolve_args (args);
3034
3035 if (args == error_mark_node)
3036 return error_mark_node;
3037
3038 /* Get the high-water mark for the CONVERSION_OBSTACK. */
3039 p = conversion_obstack_alloc (0);
3040
3041 if (fns)
3042 {
3043 tree base = BINFO_TYPE (BASELINK_BINFO (fns));
3044 mem_args = tree_cons (NULL_TREE, build_this (obj), args);
3045
3046 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
3047 {
3048 tree fn = OVL_CURRENT (fns);
3049 if (TREE_CODE (fn) == TEMPLATE_DECL)
3050 add_template_candidate (&candidates, fn, base, NULL_TREE,
3051 mem_args, NULL_TREE,
3052 TYPE_BINFO (type),
3053 TYPE_BINFO (type),
3054 LOOKUP_NORMAL, DEDUCE_CALL);
3055 else
3056 add_function_candidate
3057 (&candidates, fn, base, mem_args, TYPE_BINFO (type),
3058 TYPE_BINFO (type), LOOKUP_NORMAL);
3059 }
3060 }
3061
3062 convs = lookup_conversions (type);
3063
3064 for (; convs; convs = TREE_CHAIN (convs))
3065 {
3066 tree fns = TREE_VALUE (convs);
3067 tree totype = TREE_TYPE (TREE_TYPE (OVL_CURRENT (fns)));
3068
3069 if ((TREE_CODE (totype) == POINTER_TYPE
3070 && TREE_CODE (TREE_TYPE (totype)) == FUNCTION_TYPE)
3071 || (TREE_CODE (totype) == REFERENCE_TYPE
3072 && TREE_CODE (TREE_TYPE (totype)) == FUNCTION_TYPE)
3073 || (TREE_CODE (totype) == REFERENCE_TYPE
3074 && TREE_CODE (TREE_TYPE (totype)) == POINTER_TYPE
3075 && TREE_CODE (TREE_TYPE (TREE_TYPE (totype))) == FUNCTION_TYPE))
3076 for (; fns; fns = OVL_NEXT (fns))
3077 {
3078 tree fn = OVL_CURRENT (fns);
3079 if (TREE_CODE (fn) == TEMPLATE_DECL)
3080 add_template_conv_candidate
3081 (&candidates, fn, obj, args, totype,
3082 /*access_path=*/NULL_TREE,
3083 /*conversion_path=*/NULL_TREE);
3084 else
3085 add_conv_candidate (&candidates, fn, obj, args,
3086 /*conversion_path=*/NULL_TREE,
3087 /*access_path=*/NULL_TREE);
3088 }
3089 }
3090
3091 candidates = splice_viable (candidates, pedantic, &any_viable_p);
3092 if (!any_viable_p)
3093 {
3094 error ("no match for call to %<(%T) (%A)%>", TREE_TYPE (obj), args);
3095 print_z_candidates (candidates);
3096 result = error_mark_node;
3097 }
3098 else
3099 {
3100 cand = tourney (candidates);
3101 if (cand == 0)
3102 {
3103 error ("call of %<(%T) (%A)%> is ambiguous", TREE_TYPE (obj), args);
3104 print_z_candidates (candidates);
3105 result = error_mark_node;
3106 }
3107 /* Since cand->fn will be a type, not a function, for a conversion
3108 function, we must be careful not to unconditionally look at
3109 DECL_NAME here. */
3110 else if (TREE_CODE (cand->fn) == FUNCTION_DECL
3111 && DECL_OVERLOADED_OPERATOR_P (cand->fn) == CALL_EXPR)
3112 result = build_over_call (cand, LOOKUP_NORMAL);
3113 else
3114 {
3115 obj = convert_like_with_context (cand->convs[0], obj, cand->fn, -1);
3116 obj = convert_from_reference (obj);
3117 result = build_function_call (obj, args);
3118 }
3119 }
3120
3121 /* Free all the conversions we allocated. */
3122 obstack_free (&conversion_obstack, p);
3123
3124 return result;
3125 }
3126
3127 static void
3128 op_error (enum tree_code code, enum tree_code code2,
3129 tree arg1, tree arg2, tree arg3, const char *problem)
3130 {
3131 const char *opname;
3132
3133 if (code == MODIFY_EXPR)
3134 opname = assignment_operator_name_info[code2].name;
3135 else
3136 opname = operator_name_info[code].name;
3137
3138 switch (code)
3139 {
3140 case COND_EXPR:
3141 error ("%s for ternary %<operator?:%> in %<%E ? %E : %E%>",
3142 problem, arg1, arg2, arg3);
3143 break;
3144
3145 case POSTINCREMENT_EXPR:
3146 case POSTDECREMENT_EXPR:
3147 error ("%s for %<operator%s%> in %<%E%s%>", problem, opname, arg1, opname);
3148 break;
3149
3150 case ARRAY_REF:
3151 error ("%s for %<operator[]%> in %<%E[%E]%>", problem, arg1, arg2);
3152 break;
3153
3154 case REALPART_EXPR:
3155 case IMAGPART_EXPR:
3156 error ("%s for %qs in %<%s %E%>", problem, opname, opname, arg1);
3157 break;
3158
3159 default:
3160 if (arg2)
3161 error ("%s for %<operator%s%> in %<%E %s %E%>",
3162 problem, opname, arg1, opname, arg2);
3163 else
3164 error ("%s for %<operator%s%> in %<%s%E%>",
3165 problem, opname, opname, arg1);
3166 break;
3167 }
3168 }
3169
3170 /* Return the implicit conversion sequence that could be used to
3171 convert E1 to E2 in [expr.cond]. */
3172
3173 static conversion *
3174 conditional_conversion (tree e1, tree e2)
3175 {
3176 tree t1 = non_reference (TREE_TYPE (e1));
3177 tree t2 = non_reference (TREE_TYPE (e2));
3178 conversion *conv;
3179 bool good_base;
3180
3181 /* [expr.cond]
3182
3183 If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
3184 implicitly converted (clause _conv_) to the type "reference to
3185 T2", subject to the constraint that in the conversion the
3186 reference must bind directly (_dcl.init.ref_) to E1. */
3187 if (real_lvalue_p (e2))
3188 {
3189 conv = implicit_conversion (build_reference_type (t2),
3190 t1,
3191 e1,
3192 /*c_cast_p=*/false,
3193 LOOKUP_NO_TEMP_BIND);
3194 if (conv)
3195 return conv;
3196 }
3197
3198 /* [expr.cond]
3199
3200 If E1 and E2 have class type, and the underlying class types are
3201 the same or one is a base class of the other: E1 can be converted
3202 to match E2 if the class of T2 is the same type as, or a base
3203 class of, the class of T1, and the cv-qualification of T2 is the
3204 same cv-qualification as, or a greater cv-qualification than, the
3205 cv-qualification of T1. If the conversion is applied, E1 is
3206 changed to an rvalue of type T2 that still refers to the original
3207 source class object (or the appropriate subobject thereof). */
3208 if (CLASS_TYPE_P (t1) && CLASS_TYPE_P (t2)
3209 && ((good_base = DERIVED_FROM_P (t2, t1)) || DERIVED_FROM_P (t1, t2)))
3210 {
3211 if (good_base && at_least_as_qualified_p (t2, t1))
3212 {
3213 conv = build_identity_conv (t1, e1);
3214 if (!same_type_p (TYPE_MAIN_VARIANT (t1),
3215 TYPE_MAIN_VARIANT (t2)))
3216 conv = build_conv (ck_base, t2, conv);
3217 else
3218 conv = build_conv (ck_rvalue, t2, conv);
3219 return conv;
3220 }
3221 else
3222 return NULL;
3223 }
3224 else
3225 /* [expr.cond]
3226
3227 Otherwise: E1 can be converted to match E2 if E1 can be implicitly
3228 converted to the type that expression E2 would have if E2 were
3229 converted to an rvalue (or the type it has, if E2 is an rvalue). */
3230 return implicit_conversion (t2, t1, e1, /*c_cast_p=*/false,
3231 LOOKUP_NORMAL);
3232 }
3233
3234 /* Implement [expr.cond]. ARG1, ARG2, and ARG3 are the three
3235 arguments to the conditional expression. */
3236
3237 tree
3238 build_conditional_expr (tree arg1, tree arg2, tree arg3)
3239 {
3240 tree arg2_type;
3241 tree arg3_type;
3242 tree result = NULL_TREE;
3243 tree result_type = NULL_TREE;
3244 bool lvalue_p = true;
3245 struct z_candidate *candidates = 0;
3246 struct z_candidate *cand;
3247 void *p;
3248
3249 /* As a G++ extension, the second argument to the conditional can be
3250 omitted. (So that `a ? : c' is roughly equivalent to `a ? a :
3251 c'.) If the second operand is omitted, make sure it is
3252 calculated only once. */
3253 if (!arg2)
3254 {
3255 if (pedantic)
3256 pedwarn ("ISO C++ forbids omitting the middle term of a ?: expression");
3257
3258 /* Make sure that lvalues remain lvalues. See g++.oliva/ext1.C. */
3259 if (real_lvalue_p (arg1))
3260 arg2 = arg1 = stabilize_reference (arg1);
3261 else
3262 arg2 = arg1 = save_expr (arg1);
3263 }
3264
3265 /* [expr.cond]
3266
3267 The first expr ession is implicitly converted to bool (clause
3268 _conv_). */
3269 arg1 = perform_implicit_conversion (boolean_type_node, arg1);
3270
3271 /* If something has already gone wrong, just pass that fact up the
3272 tree. */
3273 if (error_operand_p (arg1)
3274 || error_operand_p (arg2)
3275 || error_operand_p (arg3))
3276 return error_mark_node;
3277
3278 /* [expr.cond]
3279
3280 If either the second or the third operand has type (possibly
3281 cv-qualified) void, then the lvalue-to-rvalue (_conv.lval_),
3282 array-to-pointer (_conv.array_), and function-to-pointer
3283 (_conv.func_) standard conversions are performed on the second
3284 and third operands. */
3285 arg2_type = unlowered_expr_type (arg2);
3286 arg3_type = unlowered_expr_type (arg3);
3287 if (VOID_TYPE_P (arg2_type) || VOID_TYPE_P (arg3_type))
3288 {
3289 /* Do the conversions. We don't these for `void' type arguments
3290 since it can't have any effect and since decay_conversion
3291 does not handle that case gracefully. */
3292 if (!VOID_TYPE_P (arg2_type))
3293 arg2 = decay_conversion (arg2);
3294 if (!VOID_TYPE_P (arg3_type))
3295 arg3 = decay_conversion (arg3);
3296 arg2_type = TREE_TYPE (arg2);
3297 arg3_type = TREE_TYPE (arg3);
3298
3299 /* [expr.cond]
3300
3301 One of the following shall hold:
3302
3303 --The second or the third operand (but not both) is a
3304 throw-expression (_except.throw_); the result is of the
3305 type of the other and is an rvalue.
3306
3307 --Both the second and the third operands have type void; the
3308 result is of type void and is an rvalue.
3309
3310 We must avoid calling force_rvalue for expressions of type
3311 "void" because it will complain that their value is being
3312 used. */
3313 if (TREE_CODE (arg2) == THROW_EXPR
3314 && TREE_CODE (arg3) != THROW_EXPR)
3315 {
3316 if (!VOID_TYPE_P (arg3_type))
3317 arg3 = force_rvalue (arg3);
3318 arg3_type = TREE_TYPE (arg3);
3319 result_type = arg3_type;
3320 }
3321 else if (TREE_CODE (arg2) != THROW_EXPR
3322 && TREE_CODE (arg3) == THROW_EXPR)
3323 {
3324 if (!VOID_TYPE_P (arg2_type))
3325 arg2 = force_rvalue (arg2);
3326 arg2_type = TREE_TYPE (arg2);
3327 result_type = arg2_type;
3328 }
3329 else if (VOID_TYPE_P (arg2_type) && VOID_TYPE_P (arg3_type))
3330 result_type = void_type_node;
3331 else
3332 {
3333 if (VOID_TYPE_P (arg2_type))
3334 error ("second operand to the conditional operator "
3335 "is of type %<void%>, "
3336 "but the third operand is neither a throw-expression "
3337 "nor of type %<void%>");
3338 else
3339 error ("third operand to the conditional operator "
3340 "is of type %<void%>, "
3341 "but the second operand is neither a throw-expression "
3342 "nor of type %<void%>");
3343 return error_mark_node;
3344 }
3345
3346 lvalue_p = false;
3347 goto valid_operands;
3348 }
3349 /* [expr.cond]
3350
3351 Otherwise, if the second and third operand have different types,
3352 and either has (possibly cv-qualified) class type, an attempt is
3353 made to convert each of those operands to the type of the other. */
3354 else if (!same_type_p (arg2_type, arg3_type)
3355 && (CLASS_TYPE_P (arg2_type) || CLASS_TYPE_P (arg3_type)))
3356 {
3357 conversion *conv2;
3358 conversion *conv3;
3359
3360 /* Get the high-water mark for the CONVERSION_OBSTACK. */
3361 p = conversion_obstack_alloc (0);
3362
3363 conv2 = conditional_conversion (arg2, arg3);
3364 conv3 = conditional_conversion (arg3, arg2);
3365
3366 /* [expr.cond]
3367
3368 If both can be converted, or one can be converted but the
3369 conversion is ambiguous, the program is ill-formed. If
3370 neither can be converted, the operands are left unchanged and
3371 further checking is performed as described below. If exactly
3372 one conversion is possible, that conversion is applied to the
3373 chosen operand and the converted operand is used in place of
3374 the original operand for the remainder of this section. */
3375 if ((conv2 && !conv2->bad_p
3376 && conv3 && !conv3->bad_p)
3377 || (conv2 && conv2->kind == ck_ambig)
3378 || (conv3 && conv3->kind == ck_ambig))
3379 {
3380 error ("operands to ?: have different types %qT and %qT",
3381 arg2_type, arg3_type);
3382 result = error_mark_node;
3383 }
3384 else if (conv2 && (!conv2->bad_p || !conv3))
3385 {
3386 arg2 = convert_like (conv2, arg2);
3387 arg2 = convert_from_reference (arg2);
3388 arg2_type = TREE_TYPE (arg2);
3389 /* Even if CONV2 is a valid conversion, the result of the
3390 conversion may be invalid. For example, if ARG3 has type
3391 "volatile X", and X does not have a copy constructor
3392 accepting a "volatile X&", then even if ARG2 can be
3393 converted to X, the conversion will fail. */
3394 if (error_operand_p (arg2))
3395 result = error_mark_node;
3396 }
3397 else if (conv3 && (!conv3->bad_p || !conv2))
3398 {
3399 arg3 = convert_like (conv3, arg3);
3400 arg3 = convert_from_reference (arg3);
3401 arg3_type = TREE_TYPE (arg3);
3402 if (error_operand_p (arg3))
3403 result = error_mark_node;
3404 }
3405
3406 /* Free all the conversions we allocated. */
3407 obstack_free (&conversion_obstack, p);
3408
3409 if (result)
3410 return result;
3411
3412 /* If, after the conversion, both operands have class type,
3413 treat the cv-qualification of both operands as if it were the
3414 union of the cv-qualification of the operands.
3415
3416 The standard is not clear about what to do in this
3417 circumstance. For example, if the first operand has type
3418 "const X" and the second operand has a user-defined
3419 conversion to "volatile X", what is the type of the second
3420 operand after this step? Making it be "const X" (matching
3421 the first operand) seems wrong, as that discards the
3422 qualification without actually performing a copy. Leaving it
3423 as "volatile X" seems wrong as that will result in the
3424 conditional expression failing altogether, even though,
3425 according to this step, the one operand could be converted to
3426 the type of the other. */
3427 if ((conv2 || conv3)
3428 && CLASS_TYPE_P (arg2_type)
3429 && TYPE_QUALS (arg2_type) != TYPE_QUALS (arg3_type))
3430 arg2_type = arg3_type =
3431 cp_build_qualified_type (arg2_type,
3432 TYPE_QUALS (arg2_type)
3433 | TYPE_QUALS (arg3_type));
3434 }
3435
3436 /* [expr.cond]
3437
3438 If the second and third operands are lvalues and have the same
3439 type, the result is of that type and is an lvalue. */
3440 if (real_lvalue_p (arg2)
3441 && real_lvalue_p (arg3)
3442 && same_type_p (arg2_type, arg3_type))
3443 {
3444 result_type = arg2_type;
3445 goto valid_operands;
3446 }
3447
3448 /* [expr.cond]
3449
3450 Otherwise, the result is an rvalue. If the second and third
3451 operand do not have the same type, and either has (possibly
3452 cv-qualified) class type, overload resolution is used to
3453 determine the conversions (if any) to be applied to the operands
3454 (_over.match.oper_, _over.built_). */
3455 lvalue_p = false;
3456 if (!same_type_p (arg2_type, arg3_type)
3457 && (CLASS_TYPE_P (arg2_type) || CLASS_TYPE_P (arg3_type)))
3458 {
3459 tree args[3];
3460 conversion *conv;
3461 bool any_viable_p;
3462
3463 /* Rearrange the arguments so that add_builtin_candidate only has
3464 to know about two args. In build_builtin_candidates, the
3465 arguments are unscrambled. */
3466 args[0] = arg2;
3467 args[1] = arg3;
3468 args[2] = arg1;
3469 add_builtin_candidates (&candidates,
3470 COND_EXPR,
3471 NOP_EXPR,
3472 ansi_opname (COND_EXPR),
3473 args,
3474 LOOKUP_NORMAL);
3475
3476 /* [expr.cond]
3477
3478 If the overload resolution fails, the program is
3479 ill-formed. */
3480 candidates = splice_viable (candidates, pedantic, &any_viable_p);
3481 if (!any_viable_p)
3482 {
3483 op_error (COND_EXPR, NOP_EXPR, arg1, arg2, arg3, "no match");
3484 print_z_candidates (candidates);
3485 return error_mark_node;
3486 }
3487 cand = tourney (candidates);
3488 if (!cand)
3489 {
3490 op_error (COND_EXPR, NOP_EXPR, arg1, arg2, arg3, "no match");
3491 print_z_candidates (candidates);
3492 return error_mark_node;
3493 }
3494
3495 /* [expr.cond]
3496
3497 Otherwise, the conversions thus determined are applied, and
3498 the converted operands are used in place of the original
3499 operands for the remainder of this section. */
3500 conv = cand->convs[0];
3501 arg1 = convert_like (conv, arg1);
3502 conv = cand->convs[1];
3503 arg2 = convert_like (conv, arg2);
3504 conv = cand->convs[2];
3505 arg3 = convert_like (conv, arg3);
3506 }
3507
3508 /* [expr.cond]
3509
3510 Lvalue-to-rvalue (_conv.lval_), array-to-pointer (_conv.array_),
3511 and function-to-pointer (_conv.func_) standard conversions are
3512 performed on the second and third operands.
3513
3514 We need to force the lvalue-to-rvalue conversion here for class types,
3515 so we get TARGET_EXPRs; trying to deal with a COND_EXPR of class rvalues
3516 that isn't wrapped with a TARGET_EXPR plays havoc with exception
3517 regions. */
3518
3519 arg2 = force_rvalue (arg2);
3520 if (!CLASS_TYPE_P (arg2_type))
3521 arg2_type = TREE_TYPE (arg2);
3522
3523 arg3 = force_rvalue (arg3);
3524 if (!CLASS_TYPE_P (arg2_type))
3525 arg3_type = TREE_TYPE (arg3);
3526
3527 if (arg2 == error_mark_node || arg3 == error_mark_node)
3528 return error_mark_node;
3529
3530 /* [expr.cond]
3531
3532 After those conversions, one of the following shall hold:
3533
3534 --The second and third operands have the same type; the result is of
3535 that type. */
3536 if (same_type_p (arg2_type, arg3_type))
3537 result_type = arg2_type;
3538 /* [expr.cond]
3539
3540 --The second and third operands have arithmetic or enumeration
3541 type; the usual arithmetic conversions are performed to bring
3542 them to a common type, and the result is of that type. */
3543 else if ((ARITHMETIC_TYPE_P (arg2_type)
3544 || TREE_CODE (arg2_type) == ENUMERAL_TYPE)
3545 && (ARITHMETIC_TYPE_P (arg3_type)
3546 || TREE_CODE (arg3_type) == ENUMERAL_TYPE))
3547 {
3548 /* In this case, there is always a common type. */
3549 result_type = type_after_usual_arithmetic_conversions (arg2_type,
3550 arg3_type);
3551
3552 if (TREE_CODE (arg2_type) == ENUMERAL_TYPE
3553 && TREE_CODE (arg3_type) == ENUMERAL_TYPE)
3554 warning (0, "enumeral mismatch in conditional expression: %qT vs %qT",
3555 arg2_type, arg3_type);
3556 else if (extra_warnings
3557 && ((TREE_CODE (arg2_type) == ENUMERAL_TYPE
3558 && !same_type_p (arg3_type, type_promotes_to (arg2_type)))
3559 || (TREE_CODE (arg3_type) == ENUMERAL_TYPE
3560 && !same_type_p (arg2_type, type_promotes_to (arg3_type)))))
3561 warning (0, "enumeral and non-enumeral type in conditional expression");
3562
3563 arg2 = perform_implicit_conversion (result_type, arg2);
3564 arg3 = perform_implicit_conversion (result_type, arg3);
3565 }
3566 /* [expr.cond]
3567
3568 --The second and third operands have pointer type, or one has
3569 pointer type and the other is a null pointer constant; pointer
3570 conversions (_conv.ptr_) and qualification conversions
3571 (_conv.qual_) are performed to bring them to their composite
3572 pointer type (_expr.rel_). The result is of the composite
3573 pointer type.
3574
3575 --The second and third operands have pointer to member type, or
3576 one has pointer to member type and the other is a null pointer
3577 constant; pointer to member conversions (_conv.mem_) and
3578 qualification conversions (_conv.qual_) are performed to bring
3579 them to a common type, whose cv-qualification shall match the
3580 cv-qualification of either the second or the third operand.
3581 The result is of the common type. */
3582 else if ((null_ptr_cst_p (arg2)
3583 && (TYPE_PTR_P (arg3_type) || TYPE_PTR_TO_MEMBER_P (arg3_type)))
3584 || (null_ptr_cst_p (arg3)
3585 && (TYPE_PTR_P (arg2_type) || TYPE_PTR_TO_MEMBER_P (arg2_type)))
3586 || (TYPE_PTR_P (arg2_type) && TYPE_PTR_P (arg3_type))
3587 || (TYPE_PTRMEM_P (arg2_type) && TYPE_PTRMEM_P (arg3_type))
3588 || (TYPE_PTRMEMFUNC_P (arg2_type) && TYPE_PTRMEMFUNC_P (arg3_type)))
3589 {
3590 result_type = composite_pointer_type (arg2_type, arg3_type, arg2,
3591 arg3, "conditional expression");
3592 if (result_type == error_mark_node)
3593 return error_mark_node;
3594 arg2 = perform_implicit_conversion (result_type, arg2);
3595 arg3 = perform_implicit_conversion (result_type, arg3);
3596 }
3597
3598 if (!result_type)
3599 {
3600 error ("operands to ?: have different types %qT and %qT",
3601 arg2_type, arg3_type);
3602 return error_mark_node;
3603 }
3604
3605 valid_operands:
3606 result = fold_if_not_in_template (build3 (COND_EXPR, result_type, arg1,
3607 arg2, arg3));
3608 /* We can't use result_type below, as fold might have returned a
3609 throw_expr. */
3610
3611 if (!lvalue_p)
3612 {
3613 /* Expand both sides into the same slot, hopefully the target of
3614 the ?: expression. We used to check for TARGET_EXPRs here,
3615 but now we sometimes wrap them in NOP_EXPRs so the test would
3616 fail. */
3617 if (CLASS_TYPE_P (TREE_TYPE (result)))
3618 result = get_target_expr (result);
3619 /* If this expression is an rvalue, but might be mistaken for an
3620 lvalue, we must add a NON_LVALUE_EXPR. */
3621 result = rvalue (result);
3622 }
3623
3624 return result;
3625 }
3626
3627 /* OPERAND is an operand to an expression. Perform necessary steps
3628 required before using it. If OPERAND is NULL_TREE, NULL_TREE is
3629 returned. */
3630
3631 static tree
3632 prep_operand (tree operand)
3633 {
3634 if (operand)
3635 {
3636 if (CLASS_TYPE_P (TREE_TYPE (operand))
3637 && CLASSTYPE_TEMPLATE_INSTANTIATION (TREE_TYPE (operand)))
3638 /* Make sure the template type is instantiated now. */
3639 instantiate_class_template (TYPE_MAIN_VARIANT (TREE_TYPE (operand)));
3640 }
3641
3642 return operand;
3643 }
3644
3645 /* Add each of the viable functions in FNS (a FUNCTION_DECL or
3646 OVERLOAD) to the CANDIDATES, returning an updated list of
3647 CANDIDATES. The ARGS are the arguments provided to the call,
3648 without any implicit object parameter. The EXPLICIT_TARGS are
3649 explicit template arguments provided. TEMPLATE_ONLY is true if
3650 only template functions should be considered. CONVERSION_PATH,
3651 ACCESS_PATH, and FLAGS are as for add_function_candidate. */
3652
3653 static void
3654 add_candidates (tree fns, tree args,
3655 tree explicit_targs, bool template_only,
3656 tree conversion_path, tree access_path,
3657 int flags,
3658 struct z_candidate **candidates)
3659 {
3660 tree ctype;
3661 tree non_static_args;
3662
3663 ctype = conversion_path ? BINFO_TYPE (conversion_path) : NULL_TREE;
3664 /* Delay creating the implicit this parameter until it is needed. */
3665 non_static_args = NULL_TREE;
3666
3667 while (fns)
3668 {
3669 tree fn;
3670 tree fn_args;
3671
3672 fn = OVL_CURRENT (fns);
3673 /* Figure out which set of arguments to use. */
3674 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
3675 {
3676 /* If this function is a non-static member, prepend the implicit
3677 object parameter. */
3678 if (!non_static_args)
3679 non_static_args = tree_cons (NULL_TREE,
3680 build_this (TREE_VALUE (args)),
3681 TREE_CHAIN (args));
3682 fn_args = non_static_args;
3683 }
3684 else
3685 /* Otherwise, just use the list of arguments provided. */
3686 fn_args = args;
3687
3688 if (TREE_CODE (fn) == TEMPLATE_DECL)
3689 add_template_candidate (candidates,
3690 fn,
3691 ctype,
3692 explicit_targs,
3693 fn_args,
3694 NULL_TREE,
3695 access_path,
3696 conversion_path,
3697 flags,
3698 DEDUCE_CALL);
3699 else if (!template_only)
3700 add_function_candidate (candidates,
3701 fn,
3702 ctype,
3703 fn_args,
3704 access_path,
3705 conversion_path,
3706 flags);
3707 fns = OVL_NEXT (fns);
3708 }
3709 }
3710
3711 tree
3712 build_new_op (enum tree_code code, int flags, tree arg1, tree arg2, tree arg3,
3713 bool *overloaded_p)
3714 {
3715 struct z_candidate *candidates = 0, *cand;
3716 tree arglist, fnname;
3717 tree args[3];
3718 tree result = NULL_TREE;
3719 bool result_valid_p = false;
3720 enum tree_code code2 = NOP_EXPR;
3721 conversion *conv;
3722 void *p;
3723 bool strict_p;
3724 bool any_viable_p;
3725 bool expl_eq_arg1 = false;
3726
3727 if (error_operand_p (arg1)
3728 || error_operand_p (arg2)
3729 || error_operand_p (arg3))
3730 return error_mark_node;
3731
3732 if (code == MODIFY_EXPR)
3733 {
3734 code2 = TREE_CODE (arg3);
3735 arg3 = NULL_TREE;
3736 fnname = ansi_assopname (code2);
3737 }
3738 else
3739 fnname = ansi_opname (code);
3740
3741 arg1 = prep_operand (arg1);
3742
3743 switch (code)
3744 {
3745 case NEW_EXPR:
3746 case VEC_NEW_EXPR:
3747 case VEC_DELETE_EXPR:
3748 case DELETE_EXPR:
3749 /* Use build_op_new_call and build_op_delete_call instead. */
3750 gcc_unreachable ();
3751
3752 case CALL_EXPR:
3753 return build_object_call (arg1, arg2);
3754
3755 case TRUTH_ORIF_EXPR:
3756 case TRUTH_ANDIF_EXPR:
3757 case TRUTH_AND_EXPR:
3758 case TRUTH_OR_EXPR:
3759 if (COMPARISON_CLASS_P (arg1))
3760 expl_eq_arg1 = true;
3761 default:
3762 break;
3763 }
3764
3765 arg2 = prep_operand (arg2);
3766 arg3 = prep_operand (arg3);
3767
3768 if (code == COND_EXPR)
3769 {
3770 if (arg2 == NULL_TREE
3771 || TREE_CODE (TREE_TYPE (arg2)) == VOID_TYPE
3772 || TREE_CODE (TREE_TYPE (arg3)) == VOID_TYPE
3773 || (! IS_OVERLOAD_TYPE (TREE_TYPE (arg2))
3774 && ! IS_OVERLOAD_TYPE (TREE_TYPE (arg3))))
3775 goto builtin;
3776 }
3777 else if (! IS_OVERLOAD_TYPE (TREE_TYPE (arg1))
3778 && (! arg2 || ! IS_OVERLOAD_TYPE (TREE_TYPE (arg2))))
3779 goto builtin;
3780
3781 if (code == POSTINCREMENT_EXPR || code == POSTDECREMENT_EXPR)
3782 arg2 = integer_zero_node;
3783
3784 arglist = NULL_TREE;
3785 if (arg3)
3786 arglist = tree_cons (NULL_TREE, arg3, arglist);
3787 if (arg2)
3788 arglist = tree_cons (NULL_TREE, arg2, arglist);
3789 arglist = tree_cons (NULL_TREE, arg1, arglist);
3790
3791 /* Get the high-water mark for the CONVERSION_OBSTACK. */
3792 p = conversion_obstack_alloc (0);
3793
3794 /* Add namespace-scope operators to the list of functions to
3795 consider. */
3796 add_candidates (lookup_function_nonclass (fnname, arglist, /*block_p=*/true),
3797 arglist, NULL_TREE, false, NULL_TREE, NULL_TREE,
3798 flags, &candidates);
3799 /* Add class-member operators to the candidate set. */
3800 if (CLASS_TYPE_P (TREE_TYPE (arg1)))
3801 {
3802 tree fns;
3803
3804 fns = lookup_fnfields (TREE_TYPE (arg1), fnname, 1);
3805 if (fns == error_mark_node)
3806 {
3807 result = error_mark_node;
3808 goto user_defined_result_ready;
3809 }
3810 if (fns)
3811 add_candidates (BASELINK_FUNCTIONS (fns), arglist,
3812 NULL_TREE, false,
3813 BASELINK_BINFO (fns),
3814 TYPE_BINFO (TREE_TYPE (arg1)),
3815 flags, &candidates);
3816 }
3817
3818 /* Rearrange the arguments for ?: so that add_builtin_candidate only has
3819 to know about two args; a builtin candidate will always have a first
3820 parameter of type bool. We'll handle that in
3821 build_builtin_candidate. */
3822 if (code == COND_EXPR)
3823 {
3824 args[0] = arg2;
3825 args[1] = arg3;
3826 args[2] = arg1;
3827 }
3828 else
3829 {
3830 args[0] = arg1;
3831 args[1] = arg2;
3832 args[2] = NULL_TREE;
3833 }
3834
3835 add_builtin_candidates (&candidates, code, code2, fnname, args, flags);
3836
3837 switch (code)
3838 {
3839 case COMPOUND_EXPR:
3840 case ADDR_EXPR:
3841 /* For these, the built-in candidates set is empty
3842 [over.match.oper]/3. We don't want non-strict matches
3843 because exact matches are always possible with built-in
3844 operators. The built-in candidate set for COMPONENT_REF
3845 would be empty too, but since there are no such built-in
3846 operators, we accept non-strict matches for them. */
3847 strict_p = true;
3848 break;
3849
3850 default:
3851 strict_p = pedantic;
3852 break;
3853 }
3854
3855 candidates = splice_viable (candidates, strict_p, &any_viable_p);
3856 if (!any_viable_p)
3857 {
3858 switch (code)
3859 {
3860 case POSTINCREMENT_EXPR:
3861 case POSTDECREMENT_EXPR:
3862 /* Look for an `operator++ (int)'. If they didn't have
3863 one, then we fall back to the old way of doing things. */
3864 if (flags & LOOKUP_COMPLAIN)
3865 pedwarn ("no %<%D(int)%> declared for postfix %qs, "
3866 "trying prefix operator instead",
3867 fnname,
3868 operator_name_info[code].name);
3869 if (code == POSTINCREMENT_EXPR)
3870 code = PREINCREMENT_EXPR;
3871 else
3872 code = PREDECREMENT_EXPR;
3873 result = build_new_op (code, flags, arg1, NULL_TREE, NULL_TREE,
3874 overloaded_p);
3875 break;
3876
3877 /* The caller will deal with these. */
3878 case ADDR_EXPR:
3879 case COMPOUND_EXPR:
3880 case COMPONENT_REF:
3881 result = NULL_TREE;
3882 result_valid_p = true;
3883 break;
3884
3885 default:
3886 if (flags & LOOKUP_COMPLAIN)
3887 {
3888 op_error (code, code2, arg1, arg2, arg3, "no match");
3889 print_z_candidates (candidates);
3890 }
3891 result = error_mark_node;
3892 break;
3893 }
3894 }
3895 else
3896 {
3897 cand = tourney (candidates);
3898 if (cand == 0)
3899 {
3900 if (flags & LOOKUP_COMPLAIN)
3901 {
3902 op_error (code, code2, arg1, arg2, arg3, "ambiguous overload");
3903 print_z_candidates (candidates);
3904 }
3905 result = error_mark_node;
3906 }
3907 else if (TREE_CODE (cand->fn) == FUNCTION_DECL)
3908 {
3909 if (overloaded_p)
3910 *overloaded_p = true;
3911
3912 result = build_over_call (cand, LOOKUP_NORMAL);
3913 }
3914 else
3915 {
3916 /* Give any warnings we noticed during overload resolution. */
3917 if (cand->warnings)
3918 {
3919 struct candidate_warning *w;
3920 for (w = cand->warnings; w; w = w->next)
3921 joust (cand, w->loser, 1);
3922 }
3923
3924 /* Check for comparison of different enum types. */
3925 switch (code)
3926 {
3927 case GT_EXPR:
3928 case LT_EXPR:
3929 case GE_EXPR:
3930 case LE_EXPR:
3931 case EQ_EXPR:
3932 case NE_EXPR:
3933 if (TREE_CODE (TREE_TYPE (arg1)) == ENUMERAL_TYPE
3934 && TREE_CODE (TREE_TYPE (arg2)) == ENUMERAL_TYPE
3935 && (TYPE_MAIN_VARIANT (TREE_TYPE (arg1))
3936 != TYPE_MAIN_VARIANT (TREE_TYPE (arg2))))
3937 {
3938 warning (0, "comparison between %q#T and %q#T",
3939 TREE_TYPE (arg1), TREE_TYPE (arg2));
3940 }
3941 break;
3942 default:
3943 break;
3944 }
3945
3946 /* We need to strip any leading REF_BIND so that bitfields
3947 don't cause errors. This should not remove any important
3948 conversions, because builtins don't apply to class
3949 objects directly. */
3950 conv = cand->convs[0];
3951 if (conv->kind == ck_ref_bind)
3952 conv = conv->u.next;
3953 arg1 = convert_like (conv, arg1);
3954 if (arg2)
3955 {
3956 conv = cand->convs[1];
3957 if (conv->kind == ck_ref_bind)
3958 conv = conv->u.next;
3959 arg2 = convert_like (conv, arg2);
3960 }
3961 if (arg3)
3962 {
3963 conv = cand->convs[2];
3964 if (conv->kind == ck_ref_bind)
3965 conv = conv->u.next;
3966 arg3 = convert_like (conv, arg3);
3967 }
3968
3969 if (!expl_eq_arg1)
3970 {
3971 warn_logical_operator (code, arg1, arg2);
3972 expl_eq_arg1 = true;
3973 }
3974 }
3975 }
3976
3977 user_defined_result_ready:
3978
3979 /* Free all the conversions we allocated. */
3980 obstack_free (&conversion_obstack, p);
3981
3982 if (result || result_valid_p)
3983 return result;
3984
3985 builtin:
3986 switch (code)
3987 {
3988 case MODIFY_EXPR:
3989 return build_modify_expr (arg1, code2, arg2);
3990
3991 case INDIRECT_REF:
3992 return build_indirect_ref (arg1, "unary *");
3993
3994 case TRUTH_ANDIF_EXPR:
3995 case TRUTH_ORIF_EXPR:
3996 case TRUTH_AND_EXPR:
3997 case TRUTH_OR_EXPR:
3998 if (!expl_eq_arg1)
3999 warn_logical_operator (code, arg1, arg2);
4000 case PLUS_EXPR:
4001 case MINUS_EXPR:
4002 case MULT_EXPR:
4003 case TRUNC_DIV_EXPR:
4004 case GT_EXPR:
4005 case LT_EXPR:
4006 case GE_EXPR:
4007 case LE_EXPR:
4008 case EQ_EXPR:
4009 case NE_EXPR:
4010 case MAX_EXPR:
4011 case MIN_EXPR:
4012 case LSHIFT_EXPR:
4013 case RSHIFT_EXPR:
4014 case TRUNC_MOD_EXPR:
4015 case BIT_AND_EXPR:
4016 case BIT_IOR_EXPR:
4017 case BIT_XOR_EXPR:
4018 return cp_build_binary_op (code, arg1, arg2);
4019
4020 case UNARY_PLUS_EXPR:
4021 case NEGATE_EXPR:
4022 case BIT_NOT_EXPR:
4023 case TRUTH_NOT_EXPR:
4024 case PREINCREMENT_EXPR:
4025 case POSTINCREMENT_EXPR:
4026 case PREDECREMENT_EXPR:
4027 case POSTDECREMENT_EXPR:
4028 case REALPART_EXPR:
4029 case IMAGPART_EXPR:
4030 return build_unary_op (code, arg1, candidates != 0);
4031
4032 case ARRAY_REF:
4033 return build_array_ref (arg1, arg2);
4034
4035 case COND_EXPR:
4036 return build_conditional_expr (arg1, arg2, arg3);
4037
4038 case MEMBER_REF:
4039 return build_m_component_ref (build_indirect_ref (arg1, NULL), arg2);
4040
4041 /* The caller will deal with these. */
4042 case ADDR_EXPR:
4043 case COMPONENT_REF:
4044 case COMPOUND_EXPR:
4045 return NULL_TREE;
4046
4047 default:
4048 gcc_unreachable ();
4049 }
4050 return NULL_TREE;
4051 }
4052
4053 /* Build a call to operator delete. This has to be handled very specially,
4054 because the restrictions on what signatures match are different from all
4055 other call instances. For a normal delete, only a delete taking (void *)
4056 or (void *, size_t) is accepted. For a placement delete, only an exact
4057 match with the placement new is accepted.
4058
4059 CODE is either DELETE_EXPR or VEC_DELETE_EXPR.
4060 ADDR is the pointer to be deleted.
4061 SIZE is the size of the memory block to be deleted.
4062 GLOBAL_P is true if the delete-expression should not consider
4063 class-specific delete operators.
4064 PLACEMENT is the corresponding placement new call, or NULL_TREE.
4065 If PLACEMENT is non-NULL, then ALLOC_FN is the allocation function
4066 called to perform the placement new. */
4067
4068 tree
4069 build_op_delete_call (enum tree_code code, tree addr, tree size,
4070 bool global_p, tree placement,
4071 tree alloc_fn)
4072 {
4073 tree fn = NULL_TREE;
4074 tree fns, fnname, argtypes, type;
4075 int pass;
4076
4077 if (addr == error_mark_node)
4078 return error_mark_node;
4079
4080 type = strip_array_types (TREE_TYPE (TREE_TYPE (addr)));
4081
4082 fnname = ansi_opname (code);
4083
4084 if (CLASS_TYPE_P (type)
4085 && COMPLETE_TYPE_P (complete_type (type))
4086 && !global_p)
4087 /* In [class.free]
4088
4089 If the result of the lookup is ambiguous or inaccessible, or if
4090 the lookup selects a placement deallocation function, the
4091 program is ill-formed.
4092
4093 Therefore, we ask lookup_fnfields to complain about ambiguity. */
4094 {
4095 fns = lookup_fnfields (TYPE_BINFO (type), fnname, 1);
4096 if (fns == error_mark_node)
4097 return error_mark_node;
4098 }
4099 else
4100 fns = NULL_TREE;
4101
4102 if (fns == NULL_TREE)
4103 fns = lookup_name_nonclass (fnname);
4104
4105 /* Strip const and volatile from addr. */
4106 addr = cp_convert (ptr_type_node, addr);
4107
4108 if (placement)
4109 {
4110 /* Get the parameter types for the allocation function that is
4111 being called. */
4112 gcc_assert (alloc_fn != NULL_TREE);
4113 argtypes = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn)));
4114 }
4115 else
4116 {
4117 /* First try it without the size argument. */
4118 argtypes = void_list_node;
4119 }
4120
4121 /* We make two tries at finding a matching `operator delete'. On
4122 the first pass, we look for a one-operator (or placement)
4123 operator delete. If we're not doing placement delete, then on
4124 the second pass we look for a two-argument delete. */
4125 for (pass = 0; pass < (placement ? 1 : 2); ++pass)
4126 {
4127 /* Go through the `operator delete' functions looking for one
4128 with a matching type. */
4129 for (fn = BASELINK_P (fns) ? BASELINK_FUNCTIONS (fns) : fns;
4130 fn;
4131 fn = OVL_NEXT (fn))
4132 {
4133 tree t;
4134
4135 /* The first argument must be "void *". */
4136 t = TYPE_ARG_TYPES (TREE_TYPE (OVL_CURRENT (fn)));
4137 if (!same_type_p (TREE_VALUE (t), ptr_type_node))
4138 continue;
4139 t = TREE_CHAIN (t);
4140 /* On the first pass, check the rest of the arguments. */
4141 if (pass == 0)
4142 {
4143 tree a = argtypes;
4144 while (a && t)
4145 {
4146 if (!same_type_p (TREE_VALUE (a), TREE_VALUE (t)))
4147 break;
4148 a = TREE_CHAIN (a);
4149 t = TREE_CHAIN (t);
4150 }
4151 if (!a && !t)
4152 break;
4153 }
4154 /* On the second pass, the second argument must be
4155 "size_t". */
4156 else if (pass == 1
4157 && same_type_p (TREE_VALUE (t), size_type_node)
4158 && TREE_CHAIN (t) == void_list_node)
4159 break;
4160 }
4161
4162 /* If we found a match, we're done. */
4163 if (fn)
4164 break;
4165 }
4166
4167 /* If we have a matching function, call it. */
4168 if (fn)
4169 {
4170 /* Make sure we have the actual function, and not an
4171 OVERLOAD. */
4172 fn = OVL_CURRENT (fn);
4173
4174 /* If the FN is a member function, make sure that it is
4175 accessible. */
4176 if (DECL_CLASS_SCOPE_P (fn))
4177 perform_or_defer_access_check (TYPE_BINFO (type), fn, fn);
4178
4179 if (placement)
4180 {
4181 /* The placement args might not be suitable for overload
4182 resolution at this point, so build the call directly. */
4183 int nargs = call_expr_nargs (placement);
4184 tree *argarray = (tree *) alloca (nargs * sizeof (tree));
4185 int i;
4186 argarray[0] = addr;
4187 for (i = 1; i < nargs; i++)
4188 argarray[i] = CALL_EXPR_ARG (placement, i);
4189 mark_used (fn);
4190 return build_cxx_call (fn, nargs, argarray);
4191 }
4192 else
4193 {
4194 tree args;
4195 if (pass == 0)
4196 args = tree_cons (NULL_TREE, addr, NULL_TREE);
4197 else
4198 args = tree_cons (NULL_TREE, addr,
4199 build_tree_list (NULL_TREE, size));
4200 return build_function_call (fn, args);
4201 }
4202 }
4203
4204 /* If we are doing placement delete we do nothing if we don't find a
4205 matching op delete. */
4206 if (placement)
4207 return NULL_TREE;
4208
4209 error ("no suitable %<operator %s%> for %qT",
4210 operator_name_info[(int)code].name, type);
4211 return error_mark_node;
4212 }
4213
4214 /* If the current scope isn't allowed to access DECL along
4215 BASETYPE_PATH, give an error. The most derived class in
4216 BASETYPE_PATH is the one used to qualify DECL. DIAG_DECL is
4217 the declaration to use in the error diagnostic. */
4218
4219 bool
4220 enforce_access (tree basetype_path, tree decl, tree diag_decl)
4221 {
4222 gcc_assert (TREE_CODE (basetype_path) == TREE_BINFO);
4223
4224 if (!accessible_p (basetype_path, decl, true))
4225 {
4226 if (TREE_PRIVATE (decl))
4227 error ("%q+#D is private", diag_decl);
4228 else if (TREE_PROTECTED (decl))
4229 error ("%q+#D is protected", diag_decl);
4230 else
4231 error ("%q+#D is inaccessible", diag_decl);
4232 error ("within this context");
4233 return false;
4234 }
4235
4236 return true;
4237 }
4238
4239 /* Check that a callable constructor to initialize a temporary of
4240 TYPE from an EXPR exists. */
4241
4242 static void
4243 check_constructor_callable (tree type, tree expr)
4244 {
4245 build_special_member_call (NULL_TREE,
4246 complete_ctor_identifier,
4247 build_tree_list (NULL_TREE, expr),
4248 type,
4249 LOOKUP_NORMAL | LOOKUP_ONLYCONVERTING
4250 | LOOKUP_NO_CONVERSION
4251 | LOOKUP_CONSTRUCTOR_CALLABLE);
4252 }
4253
4254 /* Initialize a temporary of type TYPE with EXPR. The FLAGS are a
4255 bitwise or of LOOKUP_* values. If any errors are warnings are
4256 generated, set *DIAGNOSTIC_FN to "error" or "warning",
4257 respectively. If no diagnostics are generated, set *DIAGNOSTIC_FN
4258 to NULL. */
4259
4260 static tree
4261 build_temp (tree expr, tree type, int flags,
4262 diagnostic_fn_t *diagnostic_fn)
4263 {
4264 int savew, savee;
4265
4266 savew = warningcount, savee = errorcount;
4267 expr = build_special_member_call (NULL_TREE,
4268 complete_ctor_identifier,
4269 build_tree_list (NULL_TREE, expr),
4270 type, flags);
4271 if (warningcount > savew)
4272 *diagnostic_fn = warning0;
4273 else if (errorcount > savee)
4274 *diagnostic_fn = error;
4275 else
4276 *diagnostic_fn = NULL;
4277 return expr;
4278 }
4279
4280 /* Perform warnings about peculiar, but valid, conversions from/to NULL.
4281 EXPR is implicitly converted to type TOTYPE.
4282 FN and ARGNUM are used for diagnostics. */
4283
4284 static void
4285 conversion_null_warnings (tree totype, tree expr, tree fn, int argnum)
4286 {
4287 tree t = non_reference (totype);
4288
4289 /* Issue warnings about peculiar, but valid, uses of NULL. */
4290 if (expr == null_node && TREE_CODE (t) != BOOLEAN_TYPE && ARITHMETIC_TYPE_P (t))
4291 {
4292 if (fn)
4293 warning (OPT_Wconversion, "passing NULL to non-pointer argument %P of %qD",
4294 argnum, fn);
4295 else
4296 warning (OPT_Wconversion, "converting to non-pointer type %qT from NULL", t);
4297 }
4298
4299 /* Issue warnings if "false" is converted to a NULL pointer */
4300 else if (expr == boolean_false_node && fn && POINTER_TYPE_P (t))
4301 warning (OPT_Wconversion,
4302 "converting %<false%> to pointer type for argument %P of %qD",
4303 argnum, fn);
4304 }
4305
4306 /* Perform the conversions in CONVS on the expression EXPR. FN and
4307 ARGNUM are used for diagnostics. ARGNUM is zero based, -1
4308 indicates the `this' argument of a method. INNER is nonzero when
4309 being called to continue a conversion chain. It is negative when a
4310 reference binding will be applied, positive otherwise. If
4311 ISSUE_CONVERSION_WARNINGS is true, warnings about suspicious
4312 conversions will be emitted if appropriate. If C_CAST_P is true,
4313 this conversion is coming from a C-style cast; in that case,
4314 conversions to inaccessible bases are permitted. */
4315
4316 static tree
4317 convert_like_real (conversion *convs, tree expr, tree fn, int argnum,
4318 int inner, bool issue_conversion_warnings,
4319 bool c_cast_p)
4320 {
4321 tree totype = convs->type;
4322 diagnostic_fn_t diagnostic_fn;
4323
4324 if (convs->bad_p
4325 && convs->kind != ck_user
4326 && convs->kind != ck_ambig
4327 && convs->kind != ck_ref_bind)
4328 {
4329 conversion *t = convs;
4330 for (; t; t = convs->u.next)
4331 {
4332 if (t->kind == ck_user || !t->bad_p)
4333 {
4334 expr = convert_like_real (t, expr, fn, argnum, 1,
4335 /*issue_conversion_warnings=*/false,
4336 /*c_cast_p=*/false);
4337 break;
4338 }
4339 else if (t->kind == ck_ambig)
4340 return convert_like_real (t, expr, fn, argnum, 1,
4341 /*issue_conversion_warnings=*/false,
4342 /*c_cast_p=*/false);
4343 else if (t->kind == ck_identity)
4344 break;
4345 }
4346 pedwarn ("invalid conversion from %qT to %qT", TREE_TYPE (expr), totype);
4347 if (fn)
4348 pedwarn (" initializing argument %P of %qD", argnum, fn);
4349 return cp_convert (totype, expr);
4350 }
4351
4352 if (issue_conversion_warnings)
4353 conversion_null_warnings (totype, expr, fn, argnum);
4354
4355 switch (convs->kind)
4356 {
4357 case ck_user:
4358 {
4359 struct z_candidate *cand = convs->cand;
4360 tree convfn = cand->fn;
4361
4362 expr = build_over_call (cand, LOOKUP_NORMAL);
4363
4364 /* If this is a constructor or a function returning an aggr type,
4365 we need to build up a TARGET_EXPR. */
4366 if (DECL_CONSTRUCTOR_P (convfn))
4367 expr = build_cplus_new (totype, expr);
4368
4369 /* The result of the call is then used to direct-initialize the object
4370 that is the destination of the copy-initialization. [dcl.init]
4371
4372 Note that this step is not reflected in the conversion sequence;
4373 it affects the semantics when we actually perform the
4374 conversion, but is not considered during overload resolution.
4375
4376 If the target is a class, that means call a ctor. */
4377 if (IS_AGGR_TYPE (totype)
4378 && (inner >= 0 || !lvalue_p (expr)))
4379 {
4380 expr = (build_temp
4381 (expr, totype,
4382 /* Core issue 84, now a DR, says that we don't
4383 allow UDCs for these args (which deliberately
4384 breaks copy-init of an auto_ptr<Base> from an
4385 auto_ptr<Derived>). */
4386 LOOKUP_NORMAL|LOOKUP_ONLYCONVERTING|LOOKUP_NO_CONVERSION,
4387 &diagnostic_fn));
4388
4389 if (diagnostic_fn)
4390 {
4391 if (fn)
4392 diagnostic_fn
4393 (" initializing argument %P of %qD from result of %qD",
4394 argnum, fn, convfn);
4395 else
4396 diagnostic_fn
4397 (" initializing temporary from result of %qD", convfn);
4398 }
4399 expr = build_cplus_new (totype, expr);
4400 }
4401 return expr;
4402 }
4403 case ck_identity:
4404 if (type_unknown_p (expr))
4405 expr = instantiate_type (totype, expr, tf_warning_or_error);
4406 /* Convert a constant to its underlying value, unless we are
4407 about to bind it to a reference, in which case we need to
4408 leave it as an lvalue. */
4409 if (inner >= 0)
4410 expr = decl_constant_value (expr);
4411 if (convs->check_copy_constructor_p)
4412 check_constructor_callable (totype, expr);
4413 return expr;
4414 case ck_ambig:
4415 /* Call build_user_type_conversion again for the error. */
4416 return build_user_type_conversion
4417 (totype, convs->u.expr, LOOKUP_NORMAL);
4418
4419 default:
4420 break;
4421 };
4422
4423 expr = convert_like_real (convs->u.next, expr, fn, argnum,
4424 convs->kind == ck_ref_bind ? -1 : 1,
4425 convs->kind == ck_ref_bind ? issue_conversion_warnings : false,
4426 c_cast_p);
4427 if (expr == error_mark_node)
4428 return error_mark_node;
4429
4430 switch (convs->kind)
4431 {
4432 case ck_rvalue:
4433 expr = convert_bitfield_to_declared_type (expr);
4434 if (! IS_AGGR_TYPE (totype))
4435 return expr;
4436 /* Else fall through. */
4437 case ck_base:
4438 if (convs->kind == ck_base && !convs->need_temporary_p)
4439 {
4440 /* We are going to bind a reference directly to a base-class
4441 subobject of EXPR. */
4442 if (convs->check_copy_constructor_p)
4443 check_constructor_callable (TREE_TYPE (expr), expr);
4444 /* Build an expression for `*((base*) &expr)'. */
4445 expr = build_unary_op (ADDR_EXPR, expr, 0);
4446 expr = convert_to_base (expr, build_pointer_type (totype),
4447 !c_cast_p, /*nonnull=*/true);
4448 expr = build_indirect_ref (expr, "implicit conversion");
4449 return expr;
4450 }
4451
4452 /* Copy-initialization where the cv-unqualified version of the source
4453 type is the same class as, or a derived class of, the class of the
4454 destination [is treated as direct-initialization]. [dcl.init] */
4455 expr = build_temp (expr, totype, LOOKUP_NORMAL|LOOKUP_ONLYCONVERTING,
4456 &diagnostic_fn);
4457 if (diagnostic_fn && fn)
4458 diagnostic_fn (" initializing argument %P of %qD", argnum, fn);
4459 return build_cplus_new (totype, expr);
4460
4461 case ck_ref_bind:
4462 {
4463 tree ref_type = totype;
4464
4465 /* If necessary, create a temporary.
4466
4467 VA_ARG_EXPR and CONSTRUCTOR expressions are special cases
4468 that need temporaries, even when their types are reference
4469 compatible with the type of reference being bound, so the
4470 upcoming call to build_unary_op (ADDR_EXPR, expr, ...)
4471 doesn't fail. */
4472 if (convs->need_temporary_p
4473 || TREE_CODE (expr) == CONSTRUCTOR
4474 || TREE_CODE (expr) == VA_ARG_EXPR)
4475 {
4476 tree type = convs->u.next->type;
4477 cp_lvalue_kind lvalue = real_lvalue_p (expr);
4478
4479 if (!CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (ref_type))
4480 && !TYPE_REF_IS_RVALUE (ref_type))
4481 {
4482 /* If the reference is volatile or non-const, we
4483 cannot create a temporary. */
4484 if (lvalue & clk_bitfield)
4485 error ("cannot bind bitfield %qE to %qT",
4486 expr, ref_type);
4487 else if (lvalue & clk_packed)
4488 error ("cannot bind packed field %qE to %qT",
4489 expr, ref_type);
4490 else
4491 error ("cannot bind rvalue %qE to %qT", expr, ref_type);
4492 return error_mark_node;
4493 }
4494 /* If the source is a packed field, and we must use a copy
4495 constructor, then building the target expr will require
4496 binding the field to the reference parameter to the
4497 copy constructor, and we'll end up with an infinite
4498 loop. If we can use a bitwise copy, then we'll be
4499 OK. */
4500 if ((lvalue & clk_packed)
4501 && CLASS_TYPE_P (type)
4502 && !TYPE_HAS_TRIVIAL_INIT_REF (type))
4503 {
4504 error ("cannot bind packed field %qE to %qT",
4505 expr, ref_type);
4506 return error_mark_node;
4507 }
4508 expr = build_target_expr_with_type (expr, type);
4509 }
4510
4511 /* Take the address of the thing to which we will bind the
4512 reference. */
4513 expr = build_unary_op (ADDR_EXPR, expr, 1);
4514 if (expr == error_mark_node)
4515 return error_mark_node;
4516
4517 /* Convert it to a pointer to the type referred to by the
4518 reference. This will adjust the pointer if a derived to
4519 base conversion is being performed. */
4520 expr = cp_convert (build_pointer_type (TREE_TYPE (ref_type)),
4521 expr);
4522 /* Convert the pointer to the desired reference type. */
4523 return build_nop (ref_type, expr);
4524 }
4525
4526 case ck_lvalue:
4527 return decay_conversion (expr);
4528
4529 case ck_qual:
4530 /* Warn about deprecated conversion if appropriate. */
4531 string_conv_p (totype, expr, 1);
4532 break;
4533
4534 case ck_ptr:
4535 if (convs->base_p)
4536 expr = convert_to_base (expr, totype, !c_cast_p,
4537 /*nonnull=*/false);
4538 return build_nop (totype, expr);
4539
4540 case ck_pmem:
4541 return convert_ptrmem (totype, expr, /*allow_inverse_p=*/false,
4542 c_cast_p);
4543
4544 default:
4545 break;
4546 }
4547
4548 if (issue_conversion_warnings)
4549 expr = convert_and_check (totype, expr);
4550 else
4551 expr = convert (totype, expr);
4552
4553 return expr;
4554 }
4555
4556 /* Build a call to __builtin_trap. */
4557
4558 static tree
4559 call_builtin_trap (void)
4560 {
4561 tree fn = implicit_built_in_decls[BUILT_IN_TRAP];
4562
4563 gcc_assert (fn != NULL);
4564 fn = build_call_n (fn, 0);
4565 return fn;
4566 }
4567
4568 /* ARG is being passed to a varargs function. Perform any conversions
4569 required. Return the converted value. */
4570
4571 tree
4572 convert_arg_to_ellipsis (tree arg)
4573 {
4574 /* [expr.call]
4575
4576 The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4577 standard conversions are performed. */
4578 arg = decay_conversion (arg);
4579 /* [expr.call]
4580
4581 If the argument has integral or enumeration type that is subject
4582 to the integral promotions (_conv.prom_), or a floating point
4583 type that is subject to the floating point promotion
4584 (_conv.fpprom_), the value of the argument is converted to the
4585 promoted type before the call. */
4586 if (TREE_CODE (TREE_TYPE (arg)) == REAL_TYPE
4587 && (TYPE_PRECISION (TREE_TYPE (arg))
4588 < TYPE_PRECISION (double_type_node)))
4589 arg = convert_to_real (double_type_node, arg);
4590 else if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (arg)))
4591 arg = perform_integral_promotions (arg);
4592
4593 arg = require_complete_type (arg);
4594
4595 if (arg != error_mark_node
4596 && !pod_type_p (TREE_TYPE (arg)))
4597 {
4598 /* Undefined behavior [expr.call] 5.2.2/7. We used to just warn
4599 here and do a bitwise copy, but now cp_expr_size will abort if we
4600 try to do that.
4601 If the call appears in the context of a sizeof expression,
4602 there is no need to emit a warning, since the expression won't be
4603 evaluated. We keep the builtin_trap just as a safety check. */
4604 if (!skip_evaluation)
4605 warning (0, "cannot pass objects of non-POD type %q#T through %<...%>; "
4606 "call will abort at runtime", TREE_TYPE (arg));
4607 arg = call_builtin_trap ();
4608 arg = build2 (COMPOUND_EXPR, integer_type_node, arg,
4609 integer_zero_node);
4610 }
4611
4612 return arg;
4613 }
4614
4615 /* va_arg (EXPR, TYPE) is a builtin. Make sure it is not abused. */
4616
4617 tree
4618 build_x_va_arg (tree expr, tree type)
4619 {
4620 if (processing_template_decl)
4621 return build_min (VA_ARG_EXPR, type, expr);
4622
4623 type = complete_type_or_else (type, NULL_TREE);
4624
4625 if (expr == error_mark_node || !type)
4626 return error_mark_node;
4627
4628 if (! pod_type_p (type))
4629 {
4630 /* Remove reference types so we don't ICE later on. */
4631 tree type1 = non_reference (type);
4632 /* Undefined behavior [expr.call] 5.2.2/7. */
4633 warning (0, "cannot receive objects of non-POD type %q#T through %<...%>; "
4634 "call will abort at runtime", type);
4635 expr = convert (build_pointer_type (type1), null_node);
4636 expr = build2 (COMPOUND_EXPR, TREE_TYPE (expr),
4637 call_builtin_trap (), expr);
4638 expr = build_indirect_ref (expr, NULL);
4639 return expr;
4640 }
4641
4642 return build_va_arg (expr, type);
4643 }
4644
4645 /* TYPE has been given to va_arg. Apply the default conversions which
4646 would have happened when passed via ellipsis. Return the promoted
4647 type, or the passed type if there is no change. */
4648
4649 tree
4650 cxx_type_promotes_to (tree type)
4651 {
4652 tree promote;
4653
4654 /* Perform the array-to-pointer and function-to-pointer
4655 conversions. */
4656 type = type_decays_to (type);
4657
4658 promote = type_promotes_to (type);
4659 if (same_type_p (type, promote))
4660 promote = type;
4661
4662 return promote;
4663 }
4664
4665 /* ARG is a default argument expression being passed to a parameter of
4666 the indicated TYPE, which is a parameter to FN. Do any required
4667 conversions. Return the converted value. */
4668
4669 tree
4670 convert_default_arg (tree type, tree arg, tree fn, int parmnum)
4671 {
4672 /* If the ARG is an unparsed default argument expression, the
4673 conversion cannot be performed. */
4674 if (TREE_CODE (arg) == DEFAULT_ARG)
4675 {
4676 error ("the default argument for parameter %d of %qD has "
4677 "not yet been parsed",
4678 parmnum, fn);
4679 return error_mark_node;
4680 }
4681
4682 if (fn && DECL_TEMPLATE_INFO (fn))
4683 arg = tsubst_default_argument (fn, type, arg);
4684
4685 arg = break_out_target_exprs (arg);
4686
4687 if (TREE_CODE (arg) == CONSTRUCTOR)
4688 {
4689 arg = digest_init (type, arg);
4690 arg = convert_for_initialization (0, type, arg, LOOKUP_NORMAL,
4691 "default argument", fn, parmnum);
4692 }
4693 else
4694 {
4695 /* We must make a copy of ARG, in case subsequent processing
4696 alters any part of it. For example, during gimplification a
4697 cast of the form (T) &X::f (where "f" is a member function)
4698 will lead to replacing the PTRMEM_CST for &X::f with a
4699 VAR_DECL. We can avoid the copy for constants, since they
4700 are never modified in place. */
4701 if (!CONSTANT_CLASS_P (arg))
4702 arg = unshare_expr (arg);
4703 arg = convert_for_initialization (0, type, arg, LOOKUP_NORMAL,
4704 "default argument", fn, parmnum);
4705 arg = convert_for_arg_passing (type, arg);
4706 }
4707
4708 return arg;
4709 }
4710
4711 /* Returns the type which will really be used for passing an argument of
4712 type TYPE. */
4713
4714 tree
4715 type_passed_as (tree type)
4716 {
4717 /* Pass classes with copy ctors by invisible reference. */
4718 if (TREE_ADDRESSABLE (type))
4719 {
4720 type = build_reference_type (type);
4721 /* There are no other pointers to this temporary. */
4722 type = build_qualified_type (type, TYPE_QUAL_RESTRICT);
4723 }
4724 else if (targetm.calls.promote_prototypes (type)
4725 && INTEGRAL_TYPE_P (type)
4726 && COMPLETE_TYPE_P (type)
4727 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type),
4728 TYPE_SIZE (integer_type_node)))
4729 type = integer_type_node;
4730
4731 return type;
4732 }
4733
4734 /* Actually perform the appropriate conversion. */
4735
4736 tree
4737 convert_for_arg_passing (tree type, tree val)
4738 {
4739 val = convert_bitfield_to_declared_type (val);
4740 if (val == error_mark_node)
4741 ;
4742 /* Pass classes with copy ctors by invisible reference. */
4743 else if (TREE_ADDRESSABLE (type))
4744 val = build1 (ADDR_EXPR, build_reference_type (type), val);
4745 else if (targetm.calls.promote_prototypes (type)
4746 && INTEGRAL_TYPE_P (type)
4747 && COMPLETE_TYPE_P (type)
4748 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type),
4749 TYPE_SIZE (integer_type_node)))
4750 val = perform_integral_promotions (val);
4751 if (warn_missing_format_attribute)
4752 {
4753 tree rhstype = TREE_TYPE (val);
4754 const enum tree_code coder = TREE_CODE (rhstype);
4755 const enum tree_code codel = TREE_CODE (type);
4756 if ((codel == POINTER_TYPE || codel == REFERENCE_TYPE)
4757 && coder == codel
4758 && check_missing_format_attribute (type, rhstype))
4759 warning (OPT_Wmissing_format_attribute,
4760 "argument of function call might be a candidate for a format attribute");
4761 }
4762 return val;
4763 }
4764
4765 /* Returns true iff FN is a function with magic varargs, i.e. ones for
4766 which no conversions at all should be done. This is true for some
4767 builtins which don't act like normal functions. */
4768
4769 static bool
4770 magic_varargs_p (tree fn)
4771 {
4772 if (DECL_BUILT_IN (fn))
4773 switch (DECL_FUNCTION_CODE (fn))
4774 {
4775 case BUILT_IN_CLASSIFY_TYPE:
4776 case BUILT_IN_CONSTANT_P:
4777 case BUILT_IN_NEXT_ARG:
4778 case BUILT_IN_STDARG_START:
4779 case BUILT_IN_VA_START:
4780 return true;
4781
4782 default:;
4783 }
4784
4785 return false;
4786 }
4787
4788 /* Subroutine of the various build_*_call functions. Overload resolution
4789 has chosen a winning candidate CAND; build up a CALL_EXPR accordingly.
4790 ARGS is a TREE_LIST of the unconverted arguments to the call. FLAGS is a
4791 bitmask of various LOOKUP_* flags which apply to the call itself. */
4792
4793 static tree
4794 build_over_call (struct z_candidate *cand, int flags)
4795 {
4796 tree fn = cand->fn;
4797 tree args = cand->args;
4798 conversion **convs = cand->convs;
4799 conversion *conv;
4800 tree parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
4801 int parmlen;
4802 tree arg, val;
4803 int i = 0;
4804 int j = 0;
4805 int is_method = 0;
4806 int nargs;
4807 tree *argarray;
4808
4809 /* In a template, there is no need to perform all of the work that
4810 is normally done. We are only interested in the type of the call
4811 expression, i.e., the return type of the function. Any semantic
4812 errors will be deferred until the template is instantiated. */
4813 if (processing_template_decl)
4814 {
4815 tree expr;
4816 tree return_type;
4817 return_type = TREE_TYPE (TREE_TYPE (fn));
4818 expr = build_call_list (return_type, fn, args);
4819 if (TREE_THIS_VOLATILE (fn) && cfun)
4820 current_function_returns_abnormally = 1;
4821 if (!VOID_TYPE_P (return_type))
4822 require_complete_type (return_type);
4823 return convert_from_reference (expr);
4824 }
4825
4826 /* Give any warnings we noticed during overload resolution. */
4827 if (cand->warnings)
4828 {
4829 struct candidate_warning *w;
4830 for (w = cand->warnings; w; w = w->next)
4831 joust (cand, w->loser, 1);
4832 }
4833
4834 if (DECL_FUNCTION_MEMBER_P (fn))
4835 {
4836 /* If FN is a template function, two cases must be considered.
4837 For example:
4838
4839 struct A {
4840 protected:
4841 template <class T> void f();
4842 };
4843 template <class T> struct B {
4844 protected:
4845 void g();
4846 };
4847 struct C : A, B<int> {
4848 using A::f; // #1
4849 using B<int>::g; // #2
4850 };
4851
4852 In case #1 where `A::f' is a member template, DECL_ACCESS is
4853 recorded in the primary template but not in its specialization.
4854 We check access of FN using its primary template.
4855
4856 In case #2, where `B<int>::g' has a DECL_TEMPLATE_INFO simply
4857 because it is a member of class template B, DECL_ACCESS is
4858 recorded in the specialization `B<int>::g'. We cannot use its
4859 primary template because `B<T>::g' and `B<int>::g' may have
4860 different access. */
4861 if (DECL_TEMPLATE_INFO (fn)
4862 && DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (fn)))
4863 perform_or_defer_access_check (cand->access_path,
4864 DECL_TI_TEMPLATE (fn), fn);
4865 else
4866 perform_or_defer_access_check (cand->access_path, fn, fn);
4867 }
4868
4869 if (args && TREE_CODE (args) != TREE_LIST)
4870 args = build_tree_list (NULL_TREE, args);
4871 arg = args;
4872
4873 /* Find maximum size of vector to hold converted arguments. */
4874 parmlen = list_length (parm);
4875 nargs = list_length (args);
4876 if (parmlen > nargs)
4877 nargs = parmlen;
4878 argarray = (tree *) alloca (nargs * sizeof (tree));
4879
4880 /* The implicit parameters to a constructor are not considered by overload
4881 resolution, and must be of the proper type. */
4882 if (DECL_CONSTRUCTOR_P (fn))
4883 {
4884 argarray[j++] = TREE_VALUE (arg);
4885 arg = TREE_CHAIN (arg);
4886 parm = TREE_CHAIN (parm);
4887 /* We should never try to call the abstract constructor. */
4888 gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (fn));
4889
4890 if (DECL_HAS_VTT_PARM_P (fn))
4891 {
4892 argarray[j++] = TREE_VALUE (arg);
4893 arg = TREE_CHAIN (arg);
4894 parm = TREE_CHAIN (parm);
4895 }
4896 }
4897 /* Bypass access control for 'this' parameter. */
4898 else if (TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
4899 {
4900 tree parmtype = TREE_VALUE (parm);
4901 tree argtype = TREE_TYPE (TREE_VALUE (arg));
4902 tree converted_arg;
4903 tree base_binfo;
4904
4905 if (convs[i]->bad_p)
4906 pedwarn ("passing %qT as %<this%> argument of %q#D discards qualifiers",
4907 TREE_TYPE (argtype), fn);
4908
4909 /* [class.mfct.nonstatic]: If a nonstatic member function of a class
4910 X is called for an object that is not of type X, or of a type
4911 derived from X, the behavior is undefined.
4912
4913 So we can assume that anything passed as 'this' is non-null, and
4914 optimize accordingly. */
4915 gcc_assert (TREE_CODE (parmtype) == POINTER_TYPE);
4916 /* Convert to the base in which the function was declared. */
4917 gcc_assert (cand->conversion_path != NULL_TREE);
4918 converted_arg = build_base_path (PLUS_EXPR,
4919 TREE_VALUE (arg),
4920 cand->conversion_path,
4921 1);
4922 /* Check that the base class is accessible. */
4923 if (!accessible_base_p (TREE_TYPE (argtype),
4924 BINFO_TYPE (cand->conversion_path), true))
4925 error ("%qT is not an accessible base of %qT",
4926 BINFO_TYPE (cand->conversion_path),
4927 TREE_TYPE (argtype));
4928 /* If fn was found by a using declaration, the conversion path
4929 will be to the derived class, not the base declaring fn. We
4930 must convert from derived to base. */
4931 base_binfo = lookup_base (TREE_TYPE (TREE_TYPE (converted_arg)),
4932 TREE_TYPE (parmtype), ba_unique, NULL);
4933 converted_arg = build_base_path (PLUS_EXPR, converted_arg,
4934 base_binfo, 1);
4935
4936 argarray[j++] = converted_arg;
4937 parm = TREE_CHAIN (parm);
4938 arg = TREE_CHAIN (arg);
4939 ++i;
4940 is_method = 1;
4941 }
4942
4943 for (; arg && parm;
4944 parm = TREE_CHAIN (parm), arg = TREE_CHAIN (arg), ++i)
4945 {
4946 tree type = TREE_VALUE (parm);
4947
4948 conv = convs[i];
4949
4950 /* Don't make a copy here if build_call is going to. */
4951 if (conv->kind == ck_rvalue
4952 && !TREE_ADDRESSABLE (complete_type (type)))
4953 conv = conv->u.next;
4954
4955 val = convert_like_with_context
4956 (conv, TREE_VALUE (arg), fn, i - is_method);
4957
4958 val = convert_for_arg_passing (type, val);
4959 argarray[j++] = val;
4960 }
4961
4962 /* Default arguments */
4963 for (; parm && parm != void_list_node; parm = TREE_CHAIN (parm), i++)
4964 argarray[j++] = convert_default_arg (TREE_VALUE (parm),
4965 TREE_PURPOSE (parm),
4966 fn, i - is_method);
4967 /* Ellipsis */
4968 for (; arg; arg = TREE_CHAIN (arg))
4969 {
4970 tree a = TREE_VALUE (arg);
4971 if (magic_varargs_p (fn))
4972 /* Do no conversions for magic varargs. */;
4973 else
4974 a = convert_arg_to_ellipsis (a);
4975 argarray[j++] = a;
4976 }
4977
4978 gcc_assert (j <= nargs);
4979 nargs = j;
4980
4981 check_function_arguments (TYPE_ATTRIBUTES (TREE_TYPE (fn)),
4982 nargs, argarray, TYPE_ARG_TYPES (TREE_TYPE (fn)));
4983
4984 /* Avoid actually calling copy constructors and copy assignment operators,
4985 if possible. */
4986
4987 if (! flag_elide_constructors)
4988 /* Do things the hard way. */;
4989 else if (cand->num_convs == 1
4990 && (DECL_COPY_CONSTRUCTOR_P (fn)
4991 || DECL_MOVE_CONSTRUCTOR_P (fn)))
4992 {
4993 tree targ;
4994 arg = argarray[num_artificial_parms_for (fn)];
4995
4996 /* Pull out the real argument, disregarding const-correctness. */
4997 targ = arg;
4998 while (TREE_CODE (targ) == NOP_EXPR
4999 || TREE_CODE (targ) == NON_LVALUE_EXPR
5000 || TREE_CODE (targ) == CONVERT_EXPR)
5001 targ = TREE_OPERAND (targ, 0);
5002 if (TREE_CODE (targ) == ADDR_EXPR)
5003 {
5004 targ = TREE_OPERAND (targ, 0);
5005 if (!same_type_ignoring_top_level_qualifiers_p
5006 (TREE_TYPE (TREE_TYPE (arg)), TREE_TYPE (targ)))
5007 targ = NULL_TREE;
5008 }
5009 else
5010 targ = NULL_TREE;
5011
5012 if (targ)
5013 arg = targ;
5014 else
5015 arg = build_indirect_ref (arg, 0);
5016
5017 /* [class.copy]: the copy constructor is implicitly defined even if
5018 the implementation elided its use. */
5019 if (TYPE_HAS_COMPLEX_INIT_REF (DECL_CONTEXT (fn)))
5020 mark_used (fn);
5021
5022 /* If we're creating a temp and we already have one, don't create a
5023 new one. If we're not creating a temp but we get one, use
5024 INIT_EXPR to collapse the temp into our target. Otherwise, if the
5025 ctor is trivial, do a bitwise copy with a simple TARGET_EXPR for a
5026 temp or an INIT_EXPR otherwise. */
5027 if (integer_zerop (TREE_VALUE (args)))
5028 {
5029 if (TREE_CODE (arg) == TARGET_EXPR)
5030 return arg;
5031 else if (TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn)))
5032 return build_target_expr_with_type (arg, DECL_CONTEXT (fn));
5033 }
5034 else if (TREE_CODE (arg) == TARGET_EXPR
5035 || TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn)))
5036 {
5037 tree to = stabilize_reference
5038 (build_indirect_ref (TREE_VALUE (args), 0));
5039
5040 val = build2 (INIT_EXPR, DECL_CONTEXT (fn), to, arg);
5041 return val;
5042 }
5043 }
5044 else if (DECL_OVERLOADED_OPERATOR_P (fn) == NOP_EXPR
5045 && copy_fn_p (fn)
5046 && TYPE_HAS_TRIVIAL_ASSIGN_REF (DECL_CONTEXT (fn)))
5047 {
5048 tree to = stabilize_reference
5049 (build_indirect_ref (argarray[0], 0));
5050 tree type = TREE_TYPE (to);
5051 tree as_base = CLASSTYPE_AS_BASE (type);
5052
5053 arg = argarray[1];
5054 if (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (as_base)))
5055 {
5056 arg = build_indirect_ref (arg, 0);
5057 val = build2 (MODIFY_EXPR, TREE_TYPE (to), to, arg);
5058 }
5059 else
5060 {
5061 /* We must only copy the non-tail padding parts.
5062 Use __builtin_memcpy for the bitwise copy. */
5063
5064 tree arg0, arg1, arg2, t;
5065
5066 arg2 = TYPE_SIZE_UNIT (as_base);
5067 arg1 = arg;
5068 arg0 = build_unary_op (ADDR_EXPR, to, 0);
5069 t = implicit_built_in_decls[BUILT_IN_MEMCPY];
5070 t = build_call_n (t, 3, arg0, arg1, arg2);
5071
5072 t = convert (TREE_TYPE (arg0), t);
5073 val = build_indirect_ref (t, 0);
5074 }
5075
5076 return val;
5077 }
5078
5079 mark_used (fn);
5080
5081 if (DECL_VINDEX (fn) && (flags & LOOKUP_NONVIRTUAL) == 0)
5082 {
5083 tree t;
5084 tree binfo = lookup_base (TREE_TYPE (TREE_TYPE (argarray[0])),
5085 DECL_CONTEXT (fn),
5086 ba_any, NULL);
5087 gcc_assert (binfo && binfo != error_mark_node);
5088
5089 argarray[0] = build_base_path (PLUS_EXPR, argarray[0], binfo, 1);
5090 if (TREE_SIDE_EFFECTS (argarray[0]))
5091 argarray[0] = save_expr (argarray[0]);
5092 t = build_pointer_type (TREE_TYPE (fn));
5093 if (DECL_CONTEXT (fn) && TYPE_JAVA_INTERFACE (DECL_CONTEXT (fn)))
5094 fn = build_java_interface_fn_ref (fn, argarray[0]);
5095 else
5096 fn = build_vfn_ref (argarray[0], DECL_VINDEX (fn));
5097 TREE_TYPE (fn) = t;
5098 }
5099 else if (DECL_INLINE (fn))
5100 fn = inline_conversion (fn);
5101 else
5102 fn = build_addr_func (fn);
5103
5104 return build_cxx_call (fn, nargs, argarray);
5105 }
5106
5107 /* Build and return a call to FN, using NARGS arguments in ARGARRAY.
5108 This function performs no overload resolution, conversion, or other
5109 high-level operations. */
5110
5111 tree
5112 build_cxx_call (tree fn, int nargs, tree *argarray)
5113 {
5114 tree fndecl;
5115
5116 fn = build_call_a (fn, nargs, argarray);
5117
5118 /* If this call might throw an exception, note that fact. */
5119 fndecl = get_callee_fndecl (fn);
5120 if ((!fndecl || !TREE_NOTHROW (fndecl))
5121 && at_function_scope_p ()
5122 && cfun)
5123 cp_function_chain->can_throw = 1;
5124
5125 /* Some built-in function calls will be evaluated at compile-time in
5126 fold (). */
5127 fn = fold_if_not_in_template (fn);
5128
5129 if (VOID_TYPE_P (TREE_TYPE (fn)))
5130 return fn;
5131
5132 fn = require_complete_type (fn);
5133 if (fn == error_mark_node)
5134 return error_mark_node;
5135
5136 if (IS_AGGR_TYPE (TREE_TYPE (fn)))
5137 fn = build_cplus_new (TREE_TYPE (fn), fn);
5138 return convert_from_reference (fn);
5139 }
5140
5141 static GTY(()) tree java_iface_lookup_fn;
5142
5143 /* Make an expression which yields the address of the Java interface
5144 method FN. This is achieved by generating a call to libjava's
5145 _Jv_LookupInterfaceMethodIdx(). */
5146
5147 static tree
5148 build_java_interface_fn_ref (tree fn, tree instance)
5149 {
5150 tree lookup_fn, method, idx;
5151 tree klass_ref, iface, iface_ref;
5152 int i;
5153
5154 if (!java_iface_lookup_fn)
5155 {
5156 tree endlink = build_void_list_node ();
5157 tree t = tree_cons (NULL_TREE, ptr_type_node,
5158 tree_cons (NULL_TREE, ptr_type_node,
5159 tree_cons (NULL_TREE, java_int_type_node,
5160 endlink)));
5161 java_iface_lookup_fn
5162 = add_builtin_function ("_Jv_LookupInterfaceMethodIdx",
5163 build_function_type (ptr_type_node, t),
5164 0, NOT_BUILT_IN, NULL, NULL_TREE);
5165 }
5166
5167 /* Look up the pointer to the runtime java.lang.Class object for `instance'.
5168 This is the first entry in the vtable. */
5169 klass_ref = build_vtbl_ref (build_indirect_ref (instance, 0),
5170 integer_zero_node);
5171
5172 /* Get the java.lang.Class pointer for the interface being called. */
5173 iface = DECL_CONTEXT (fn);
5174 iface_ref = lookup_field (iface, get_identifier ("class$"), 0, false);
5175 if (!iface_ref || TREE_CODE (iface_ref) != VAR_DECL
5176 || DECL_CONTEXT (iface_ref) != iface)
5177 {
5178 error ("could not find class$ field in java interface type %qT",
5179 iface);
5180 return error_mark_node;
5181 }
5182 iface_ref = build_address (iface_ref);
5183 iface_ref = convert (build_pointer_type (iface), iface_ref);
5184
5185 /* Determine the itable index of FN. */
5186 i = 1;
5187 for (method = TYPE_METHODS (iface); method; method = TREE_CHAIN (method))
5188 {
5189 if (!DECL_VIRTUAL_P (method))
5190 continue;
5191 if (fn == method)
5192 break;
5193 i++;
5194 }
5195 idx = build_int_cst (NULL_TREE, i);
5196
5197 lookup_fn = build1 (ADDR_EXPR,
5198 build_pointer_type (TREE_TYPE (java_iface_lookup_fn)),
5199 java_iface_lookup_fn);
5200 return build_call_nary (ptr_type_node, lookup_fn,
5201 3, klass_ref, iface_ref, idx);
5202 }
5203
5204 /* Returns the value to use for the in-charge parameter when making a
5205 call to a function with the indicated NAME.
5206
5207 FIXME:Can't we find a neater way to do this mapping? */
5208
5209 tree
5210 in_charge_arg_for_name (tree name)
5211 {
5212 if (name == base_ctor_identifier
5213 || name == base_dtor_identifier)
5214 return integer_zero_node;
5215 else if (name == complete_ctor_identifier)
5216 return integer_one_node;
5217 else if (name == complete_dtor_identifier)
5218 return integer_two_node;
5219 else if (name == deleting_dtor_identifier)
5220 return integer_three_node;
5221
5222 /* This function should only be called with one of the names listed
5223 above. */
5224 gcc_unreachable ();
5225 return NULL_TREE;
5226 }
5227
5228 /* Build a call to a constructor, destructor, or an assignment
5229 operator for INSTANCE, an expression with class type. NAME
5230 indicates the special member function to call; ARGS are the
5231 arguments. BINFO indicates the base of INSTANCE that is to be
5232 passed as the `this' parameter to the member function called.
5233
5234 FLAGS are the LOOKUP_* flags to use when processing the call.
5235
5236 If NAME indicates a complete object constructor, INSTANCE may be
5237 NULL_TREE. In this case, the caller will call build_cplus_new to
5238 store the newly constructed object into a VAR_DECL. */
5239
5240 tree
5241 build_special_member_call (tree instance, tree name, tree args,
5242 tree binfo, int flags)
5243 {
5244 tree fns;
5245 /* The type of the subobject to be constructed or destroyed. */
5246 tree class_type;
5247
5248 gcc_assert (name == complete_ctor_identifier
5249 || name == base_ctor_identifier
5250 || name == complete_dtor_identifier
5251 || name == base_dtor_identifier
5252 || name == deleting_dtor_identifier
5253 || name == ansi_assopname (NOP_EXPR));
5254 if (TYPE_P (binfo))
5255 {
5256 /* Resolve the name. */
5257 if (!complete_type_or_else (binfo, NULL_TREE))
5258 return error_mark_node;
5259
5260 binfo = TYPE_BINFO (binfo);
5261 }
5262
5263 gcc_assert (binfo != NULL_TREE);
5264
5265 class_type = BINFO_TYPE (binfo);
5266
5267 /* Handle the special case where INSTANCE is NULL_TREE. */
5268 if (name == complete_ctor_identifier && !instance)
5269 {
5270 instance = build_int_cst (build_pointer_type (class_type), 0);
5271 instance = build1 (INDIRECT_REF, class_type, instance);
5272 }
5273 else
5274 {
5275 if (name == complete_dtor_identifier
5276 || name == base_dtor_identifier
5277 || name == deleting_dtor_identifier)
5278 gcc_assert (args == NULL_TREE);
5279
5280 /* Convert to the base class, if necessary. */
5281 if (!same_type_ignoring_top_level_qualifiers_p
5282 (TREE_TYPE (instance), BINFO_TYPE (binfo)))
5283 {
5284 if (name != ansi_assopname (NOP_EXPR))
5285 /* For constructors and destructors, either the base is
5286 non-virtual, or it is virtual but we are doing the
5287 conversion from a constructor or destructor for the
5288 complete object. In either case, we can convert
5289 statically. */
5290 instance = convert_to_base_statically (instance, binfo);
5291 else
5292 /* However, for assignment operators, we must convert
5293 dynamically if the base is virtual. */
5294 instance = build_base_path (PLUS_EXPR, instance,
5295 binfo, /*nonnull=*/1);
5296 }
5297 }
5298
5299 gcc_assert (instance != NULL_TREE);
5300
5301 fns = lookup_fnfields (binfo, name, 1);
5302
5303 /* When making a call to a constructor or destructor for a subobject
5304 that uses virtual base classes, pass down a pointer to a VTT for
5305 the subobject. */
5306 if ((name == base_ctor_identifier
5307 || name == base_dtor_identifier)
5308 && CLASSTYPE_VBASECLASSES (class_type))
5309 {
5310 tree vtt;
5311 tree sub_vtt;
5312
5313 /* If the current function is a complete object constructor
5314 or destructor, then we fetch the VTT directly.
5315 Otherwise, we look it up using the VTT we were given. */
5316 vtt = TREE_CHAIN (CLASSTYPE_VTABLES (current_class_type));
5317 vtt = decay_conversion (vtt);
5318 vtt = build3 (COND_EXPR, TREE_TYPE (vtt),
5319 build2 (EQ_EXPR, boolean_type_node,
5320 current_in_charge_parm, integer_zero_node),
5321 current_vtt_parm,
5322 vtt);
5323 gcc_assert (BINFO_SUBVTT_INDEX (binfo));
5324 sub_vtt = build2 (POINTER_PLUS_EXPR, TREE_TYPE (vtt), vtt,
5325 BINFO_SUBVTT_INDEX (binfo));
5326
5327 args = tree_cons (NULL_TREE, sub_vtt, args);
5328 }
5329
5330 return build_new_method_call (instance, fns, args,
5331 TYPE_BINFO (BINFO_TYPE (binfo)),
5332 flags, /*fn=*/NULL);
5333 }
5334
5335 /* Return the NAME, as a C string. The NAME indicates a function that
5336 is a member of TYPE. *FREE_P is set to true if the caller must
5337 free the memory returned.
5338
5339 Rather than go through all of this, we should simply set the names
5340 of constructors and destructors appropriately, and dispense with
5341 ctor_identifier, dtor_identifier, etc. */
5342
5343 static char *
5344 name_as_c_string (tree name, tree type, bool *free_p)
5345 {
5346 char *pretty_name;
5347
5348 /* Assume that we will not allocate memory. */
5349 *free_p = false;
5350 /* Constructors and destructors are special. */
5351 if (IDENTIFIER_CTOR_OR_DTOR_P (name))
5352 {
5353 pretty_name
5354 = (char *) IDENTIFIER_POINTER (constructor_name (type));
5355 /* For a destructor, add the '~'. */
5356 if (name == complete_dtor_identifier
5357 || name == base_dtor_identifier
5358 || name == deleting_dtor_identifier)
5359 {
5360 pretty_name = concat ("~", pretty_name, NULL);
5361 /* Remember that we need to free the memory allocated. */
5362 *free_p = true;
5363 }
5364 }
5365 else if (IDENTIFIER_TYPENAME_P (name))
5366 {
5367 pretty_name = concat ("operator ",
5368 type_as_string (TREE_TYPE (name),
5369 TFF_PLAIN_IDENTIFIER),
5370 NULL);
5371 /* Remember that we need to free the memory allocated. */
5372 *free_p = true;
5373 }
5374 else
5375 pretty_name = (char *) IDENTIFIER_POINTER (name);
5376
5377 return pretty_name;
5378 }
5379
5380 /* Build a call to "INSTANCE.FN (ARGS)". If FN_P is non-NULL, it will
5381 be set, upon return, to the function called. */
5382
5383 tree
5384 build_new_method_call (tree instance, tree fns, tree args,
5385 tree conversion_path, int flags,
5386 tree *fn_p)
5387 {
5388 struct z_candidate *candidates = 0, *cand;
5389 tree explicit_targs = NULL_TREE;
5390 tree basetype = NULL_TREE;
5391 tree access_binfo;
5392 tree optype;
5393 tree mem_args = NULL_TREE, instance_ptr;
5394 tree name;
5395 tree user_args;
5396 tree call;
5397 tree fn;
5398 tree class_type;
5399 int template_only = 0;
5400 bool any_viable_p;
5401 tree orig_instance;
5402 tree orig_fns;
5403 tree orig_args;
5404 void *p;
5405
5406 gcc_assert (instance != NULL_TREE);
5407
5408 /* We don't know what function we're going to call, yet. */
5409 if (fn_p)
5410 *fn_p = NULL_TREE;
5411
5412 if (error_operand_p (instance)
5413 || error_operand_p (fns)
5414 || args == error_mark_node)
5415 return error_mark_node;
5416
5417 if (!BASELINK_P (fns))
5418 {
5419 error ("call to non-function %qD", fns);
5420 return error_mark_node;
5421 }
5422
5423 orig_instance = instance;
5424 orig_fns = fns;
5425 orig_args = args;
5426
5427 /* Dismantle the baselink to collect all the information we need. */
5428 if (!conversion_path)
5429 conversion_path = BASELINK_BINFO (fns);
5430 access_binfo = BASELINK_ACCESS_BINFO (fns);
5431 optype = BASELINK_OPTYPE (fns);
5432 fns = BASELINK_FUNCTIONS (fns);
5433 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
5434 {
5435 explicit_targs = TREE_OPERAND (fns, 1);
5436 fns = TREE_OPERAND (fns, 0);
5437 template_only = 1;
5438 }
5439 gcc_assert (TREE_CODE (fns) == FUNCTION_DECL
5440 || TREE_CODE (fns) == TEMPLATE_DECL
5441 || TREE_CODE (fns) == OVERLOAD);
5442 fn = get_first_fn (fns);
5443 name = DECL_NAME (fn);
5444
5445 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (instance));
5446 gcc_assert (CLASS_TYPE_P (basetype));
5447
5448 if (processing_template_decl)
5449 {
5450 instance = build_non_dependent_expr (instance);
5451 args = build_non_dependent_args (orig_args);
5452 }
5453
5454 /* The USER_ARGS are the arguments we will display to users if an
5455 error occurs. The USER_ARGS should not include any
5456 compiler-generated arguments. The "this" pointer hasn't been
5457 added yet. However, we must remove the VTT pointer if this is a
5458 call to a base-class constructor or destructor. */
5459 user_args = args;
5460 if (IDENTIFIER_CTOR_OR_DTOR_P (name))
5461 {
5462 /* Callers should explicitly indicate whether they want to construct
5463 the complete object or just the part without virtual bases. */
5464 gcc_assert (name != ctor_identifier);
5465 /* Similarly for destructors. */
5466 gcc_assert (name != dtor_identifier);
5467 /* Remove the VTT pointer, if present. */
5468 if ((name == base_ctor_identifier || name == base_dtor_identifier)
5469 && CLASSTYPE_VBASECLASSES (basetype))
5470 user_args = TREE_CHAIN (user_args);
5471 }
5472
5473 /* Process the argument list. */
5474 args = resolve_args (args);
5475 if (args == error_mark_node)
5476 return error_mark_node;
5477
5478 instance_ptr = build_this (instance);
5479
5480 /* It's OK to call destructors on cv-qualified objects. Therefore,
5481 convert the INSTANCE_PTR to the unqualified type, if necessary. */
5482 if (DECL_DESTRUCTOR_P (fn))
5483 {
5484 tree type = build_pointer_type (basetype);
5485 if (!same_type_p (type, TREE_TYPE (instance_ptr)))
5486 instance_ptr = build_nop (type, instance_ptr);
5487 name = complete_dtor_identifier;
5488 }
5489
5490 class_type = (conversion_path ? BINFO_TYPE (conversion_path) : NULL_TREE);
5491 mem_args = tree_cons (NULL_TREE, instance_ptr, args);
5492
5493 /* Get the high-water mark for the CONVERSION_OBSTACK. */
5494 p = conversion_obstack_alloc (0);
5495
5496 for (fn = fns; fn; fn = OVL_NEXT (fn))
5497 {
5498 tree t = OVL_CURRENT (fn);
5499 tree this_arglist;
5500
5501 /* We can end up here for copy-init of same or base class. */
5502 if ((flags & LOOKUP_ONLYCONVERTING)
5503 && DECL_NONCONVERTING_P (t))
5504 continue;
5505
5506 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (t))
5507 this_arglist = mem_args;
5508 else
5509 this_arglist = args;
5510
5511 if (TREE_CODE (t) == TEMPLATE_DECL)
5512 /* A member template. */
5513 add_template_candidate (&candidates, t,
5514 class_type,
5515 explicit_targs,
5516 this_arglist, optype,
5517 access_binfo,
5518 conversion_path,
5519 flags,
5520 DEDUCE_CALL);
5521 else if (! template_only)
5522 add_function_candidate (&candidates, t,
5523 class_type,
5524 this_arglist,
5525 access_binfo,
5526 conversion_path,
5527 flags);
5528 }
5529
5530 candidates = splice_viable (candidates, pedantic, &any_viable_p);
5531 if (!any_viable_p)
5532 {
5533 if (!COMPLETE_TYPE_P (basetype))
5534 cxx_incomplete_type_error (instance_ptr, basetype);
5535 else
5536 {
5537 char *pretty_name;
5538 bool free_p;
5539
5540 pretty_name = name_as_c_string (name, basetype, &free_p);
5541 error ("no matching function for call to %<%T::%s(%A)%#V%>",
5542 basetype, pretty_name, user_args,
5543 TREE_TYPE (TREE_TYPE (instance_ptr)));
5544 if (free_p)
5545 free (pretty_name);
5546 }
5547 print_z_candidates (candidates);
5548 call = error_mark_node;
5549 }
5550 else
5551 {
5552 cand = tourney (candidates);
5553 if (cand == 0)
5554 {
5555 char *pretty_name;
5556 bool free_p;
5557
5558 pretty_name = name_as_c_string (name, basetype, &free_p);
5559 error ("call of overloaded %<%s(%A)%> is ambiguous", pretty_name,
5560 user_args);
5561 print_z_candidates (candidates);
5562 if (free_p)
5563 free (pretty_name);
5564 call = error_mark_node;
5565 }
5566 else
5567 {
5568 fn = cand->fn;
5569
5570 if (!(flags & LOOKUP_NONVIRTUAL)
5571 && DECL_PURE_VIRTUAL_P (fn)
5572 && instance == current_class_ref
5573 && (DECL_CONSTRUCTOR_P (current_function_decl)
5574 || DECL_DESTRUCTOR_P (current_function_decl)))
5575 /* This is not an error, it is runtime undefined
5576 behavior. */
5577 warning (0, (DECL_CONSTRUCTOR_P (current_function_decl) ?
5578 "abstract virtual %q#D called from constructor"
5579 : "abstract virtual %q#D called from destructor"),
5580 fn);
5581
5582 if (TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE
5583 && is_dummy_object (instance_ptr))
5584 {
5585 error ("cannot call member function %qD without object",
5586 fn);
5587 call = error_mark_node;
5588 }
5589 else
5590 {
5591 if (DECL_VINDEX (fn) && ! (flags & LOOKUP_NONVIRTUAL)
5592 && resolves_to_fixed_type_p (instance, 0))
5593 flags |= LOOKUP_NONVIRTUAL;
5594 /* Now we know what function is being called. */
5595 if (fn_p)
5596 *fn_p = fn;
5597 /* Build the actual CALL_EXPR. */
5598 call = build_over_call (cand, flags);
5599 /* In an expression of the form `a->f()' where `f' turns
5600 out to be a static member function, `a' is
5601 none-the-less evaluated. */
5602 if (TREE_CODE (TREE_TYPE (fn)) != METHOD_TYPE
5603 && !is_dummy_object (instance_ptr)
5604 && TREE_SIDE_EFFECTS (instance_ptr))
5605 call = build2 (COMPOUND_EXPR, TREE_TYPE (call),
5606 instance_ptr, call);
5607 else if (call != error_mark_node
5608 && DECL_DESTRUCTOR_P (cand->fn)
5609 && !VOID_TYPE_P (TREE_TYPE (call)))
5610 /* An explicit call of the form "x->~X()" has type
5611 "void". However, on platforms where destructors
5612 return "this" (i.e., those where
5613 targetm.cxx.cdtor_returns_this is true), such calls
5614 will appear to have a return value of pointer type
5615 to the low-level call machinery. We do not want to
5616 change the low-level machinery, since we want to be
5617 able to optimize "delete f()" on such platforms as
5618 "operator delete(~X(f()))" (rather than generating
5619 "t = f(), ~X(t), operator delete (t)"). */
5620 call = build_nop (void_type_node, call);
5621 }
5622 }
5623 }
5624
5625 if (processing_template_decl && call != error_mark_node)
5626 call = (build_min_non_dep_call_list
5627 (call,
5628 build_min_nt (COMPONENT_REF, orig_instance, orig_fns, NULL_TREE),
5629 orig_args));
5630
5631 /* Free all the conversions we allocated. */
5632 obstack_free (&conversion_obstack, p);
5633
5634 return call;
5635 }
5636
5637 /* Returns true iff standard conversion sequence ICS1 is a proper
5638 subsequence of ICS2. */
5639
5640 static bool
5641 is_subseq (conversion *ics1, conversion *ics2)
5642 {
5643 /* We can assume that a conversion of the same code
5644 between the same types indicates a subsequence since we only get
5645 here if the types we are converting from are the same. */
5646
5647 while (ics1->kind == ck_rvalue
5648 || ics1->kind == ck_lvalue)
5649 ics1 = ics1->u.next;
5650
5651 while (1)
5652 {
5653 while (ics2->kind == ck_rvalue
5654 || ics2->kind == ck_lvalue)
5655 ics2 = ics2->u.next;
5656
5657 if (ics2->kind == ck_user
5658 || ics2->kind == ck_ambig
5659 || ics2->kind == ck_identity)
5660 /* At this point, ICS1 cannot be a proper subsequence of
5661 ICS2. We can get a USER_CONV when we are comparing the
5662 second standard conversion sequence of two user conversion
5663 sequences. */
5664 return false;
5665
5666 ics2 = ics2->u.next;
5667
5668 if (ics2->kind == ics1->kind
5669 && same_type_p (ics2->type, ics1->type)
5670 && same_type_p (ics2->u.next->type,
5671 ics1->u.next->type))
5672 return true;
5673 }
5674 }
5675
5676 /* Returns nonzero iff DERIVED is derived from BASE. The inputs may
5677 be any _TYPE nodes. */
5678
5679 bool
5680 is_properly_derived_from (tree derived, tree base)
5681 {
5682 if (!IS_AGGR_TYPE_CODE (TREE_CODE (derived))
5683 || !IS_AGGR_TYPE_CODE (TREE_CODE (base)))
5684 return false;
5685
5686 /* We only allow proper derivation here. The DERIVED_FROM_P macro
5687 considers every class derived from itself. */
5688 return (!same_type_ignoring_top_level_qualifiers_p (derived, base)
5689 && DERIVED_FROM_P (base, derived));
5690 }
5691
5692 /* We build the ICS for an implicit object parameter as a pointer
5693 conversion sequence. However, such a sequence should be compared
5694 as if it were a reference conversion sequence. If ICS is the
5695 implicit conversion sequence for an implicit object parameter,
5696 modify it accordingly. */
5697
5698 static void
5699 maybe_handle_implicit_object (conversion **ics)
5700 {
5701 if ((*ics)->this_p)
5702 {
5703 /* [over.match.funcs]
5704
5705 For non-static member functions, the type of the
5706 implicit object parameter is "reference to cv X"
5707 where X is the class of which the function is a
5708 member and cv is the cv-qualification on the member
5709 function declaration. */
5710 conversion *t = *ics;
5711 tree reference_type;
5712
5713 /* The `this' parameter is a pointer to a class type. Make the
5714 implicit conversion talk about a reference to that same class
5715 type. */
5716 reference_type = TREE_TYPE (t->type);
5717 reference_type = build_reference_type (reference_type);
5718
5719 if (t->kind == ck_qual)
5720 t = t->u.next;
5721 if (t->kind == ck_ptr)
5722 t = t->u.next;
5723 t = build_identity_conv (TREE_TYPE (t->type), NULL_TREE);
5724 t = direct_reference_binding (reference_type, t);
5725 t->rvaluedness_matches_p = 1;
5726 *ics = t;
5727 }
5728 }
5729
5730 /* If *ICS is a REF_BIND set *ICS to the remainder of the conversion,
5731 and return the initial reference binding conversion. Otherwise,
5732 leave *ICS unchanged and return NULL. */
5733
5734 static conversion *
5735 maybe_handle_ref_bind (conversion **ics)
5736 {
5737 if ((*ics)->kind == ck_ref_bind)
5738 {
5739 conversion *old_ics = *ics;
5740 *ics = old_ics->u.next;
5741 (*ics)->user_conv_p = old_ics->user_conv_p;
5742 (*ics)->bad_p = old_ics->bad_p;
5743 return old_ics;
5744 }
5745
5746 return NULL;
5747 }
5748
5749 /* Compare two implicit conversion sequences according to the rules set out in
5750 [over.ics.rank]. Return values:
5751
5752 1: ics1 is better than ics2
5753 -1: ics2 is better than ics1
5754 0: ics1 and ics2 are indistinguishable */
5755
5756 static int
5757 compare_ics (conversion *ics1, conversion *ics2)
5758 {
5759 tree from_type1;
5760 tree from_type2;
5761 tree to_type1;
5762 tree to_type2;
5763 tree deref_from_type1 = NULL_TREE;
5764 tree deref_from_type2 = NULL_TREE;
5765 tree deref_to_type1 = NULL_TREE;
5766 tree deref_to_type2 = NULL_TREE;
5767 conversion_rank rank1, rank2;
5768
5769 /* REF_BINDING is nonzero if the result of the conversion sequence
5770 is a reference type. In that case REF_CONV is the reference
5771 binding conversion. */
5772 conversion *ref_conv1;
5773 conversion *ref_conv2;
5774
5775 /* Handle implicit object parameters. */
5776 maybe_handle_implicit_object (&ics1);
5777 maybe_handle_implicit_object (&ics2);
5778
5779 /* Handle reference parameters. */
5780 ref_conv1 = maybe_handle_ref_bind (&ics1);
5781 ref_conv2 = maybe_handle_ref_bind (&ics2);
5782
5783 /* [over.ics.rank]
5784
5785 When comparing the basic forms of implicit conversion sequences (as
5786 defined in _over.best.ics_)
5787
5788 --a standard conversion sequence (_over.ics.scs_) is a better
5789 conversion sequence than a user-defined conversion sequence
5790 or an ellipsis conversion sequence, and
5791
5792 --a user-defined conversion sequence (_over.ics.user_) is a
5793 better conversion sequence than an ellipsis conversion sequence
5794 (_over.ics.ellipsis_). */
5795 rank1 = CONVERSION_RANK (ics1);
5796 rank2 = CONVERSION_RANK (ics2);
5797
5798 if (rank1 > rank2)
5799 return -1;
5800 else if (rank1 < rank2)
5801 return 1;
5802
5803 if (rank1 == cr_bad)
5804 {
5805 /* XXX Isn't this an extension? */
5806 /* Both ICS are bad. We try to make a decision based on what
5807 would have happened if they'd been good. */
5808 if (ics1->user_conv_p > ics2->user_conv_p
5809 || ics1->rank > ics2->rank)
5810 return -1;
5811 else if (ics1->user_conv_p < ics2->user_conv_p
5812 || ics1->rank < ics2->rank)
5813 return 1;
5814
5815 /* We couldn't make up our minds; try to figure it out below. */
5816 }
5817
5818 if (ics1->ellipsis_p)
5819 /* Both conversions are ellipsis conversions. */
5820 return 0;
5821
5822 /* User-defined conversion sequence U1 is a better conversion sequence
5823 than another user-defined conversion sequence U2 if they contain the
5824 same user-defined conversion operator or constructor and if the sec-
5825 ond standard conversion sequence of U1 is better than the second
5826 standard conversion sequence of U2. */
5827
5828 if (ics1->user_conv_p)
5829 {
5830 conversion *t1;
5831 conversion *t2;
5832
5833 for (t1 = ics1; t1->kind != ck_user; t1 = t1->u.next)
5834 if (t1->kind == ck_ambig)
5835 return 0;
5836 for (t2 = ics2; t2->kind != ck_user; t2 = t2->u.next)
5837 if (t2->kind == ck_ambig)
5838 return 0;
5839
5840 if (t1->cand->fn != t2->cand->fn)
5841 return 0;
5842
5843 /* We can just fall through here, after setting up
5844 FROM_TYPE1 and FROM_TYPE2. */
5845 from_type1 = t1->type;
5846 from_type2 = t2->type;
5847 }
5848 else
5849 {
5850 conversion *t1;
5851 conversion *t2;
5852
5853 /* We're dealing with two standard conversion sequences.
5854
5855 [over.ics.rank]
5856
5857 Standard conversion sequence S1 is a better conversion
5858 sequence than standard conversion sequence S2 if
5859
5860 --S1 is a proper subsequence of S2 (comparing the conversion
5861 sequences in the canonical form defined by _over.ics.scs_,
5862 excluding any Lvalue Transformation; the identity
5863 conversion sequence is considered to be a subsequence of
5864 any non-identity conversion sequence */
5865
5866 t1 = ics1;
5867 while (t1->kind != ck_identity)
5868 t1 = t1->u.next;
5869 from_type1 = t1->type;
5870
5871 t2 = ics2;
5872 while (t2->kind != ck_identity)
5873 t2 = t2->u.next;
5874 from_type2 = t2->type;
5875 }
5876
5877 if (same_type_p (from_type1, from_type2))
5878 {
5879 if (is_subseq (ics1, ics2))
5880 return 1;
5881 if (is_subseq (ics2, ics1))
5882 return -1;
5883 }
5884 /* Otherwise, one sequence cannot be a subsequence of the other; they
5885 don't start with the same type. This can happen when comparing the
5886 second standard conversion sequence in two user-defined conversion
5887 sequences. */
5888
5889 /* [over.ics.rank]
5890
5891 Or, if not that,
5892
5893 --the rank of S1 is better than the rank of S2 (by the rules
5894 defined below):
5895
5896 Standard conversion sequences are ordered by their ranks: an Exact
5897 Match is a better conversion than a Promotion, which is a better
5898 conversion than a Conversion.
5899
5900 Two conversion sequences with the same rank are indistinguishable
5901 unless one of the following rules applies:
5902
5903 --A conversion that is not a conversion of a pointer, or pointer
5904 to member, to bool is better than another conversion that is such
5905 a conversion.
5906
5907 The ICS_STD_RANK automatically handles the pointer-to-bool rule,
5908 so that we do not have to check it explicitly. */
5909 if (ics1->rank < ics2->rank)
5910 return 1;
5911 else if (ics2->rank < ics1->rank)
5912 return -1;
5913
5914 to_type1 = ics1->type;
5915 to_type2 = ics2->type;
5916
5917 if (TYPE_PTR_P (from_type1)
5918 && TYPE_PTR_P (from_type2)
5919 && TYPE_PTR_P (to_type1)
5920 && TYPE_PTR_P (to_type2))
5921 {
5922 deref_from_type1 = TREE_TYPE (from_type1);
5923 deref_from_type2 = TREE_TYPE (from_type2);
5924 deref_to_type1 = TREE_TYPE (to_type1);
5925 deref_to_type2 = TREE_TYPE (to_type2);
5926 }
5927 /* The rules for pointers to members A::* are just like the rules
5928 for pointers A*, except opposite: if B is derived from A then
5929 A::* converts to B::*, not vice versa. For that reason, we
5930 switch the from_ and to_ variables here. */
5931 else if ((TYPE_PTRMEM_P (from_type1) && TYPE_PTRMEM_P (from_type2)
5932 && TYPE_PTRMEM_P (to_type1) && TYPE_PTRMEM_P (to_type2))
5933 || (TYPE_PTRMEMFUNC_P (from_type1)
5934 && TYPE_PTRMEMFUNC_P (from_type2)
5935 && TYPE_PTRMEMFUNC_P (to_type1)
5936 && TYPE_PTRMEMFUNC_P (to_type2)))
5937 {
5938 deref_to_type1 = TYPE_PTRMEM_CLASS_TYPE (from_type1);
5939 deref_to_type2 = TYPE_PTRMEM_CLASS_TYPE (from_type2);
5940 deref_from_type1 = TYPE_PTRMEM_CLASS_TYPE (to_type1);
5941 deref_from_type2 = TYPE_PTRMEM_CLASS_TYPE (to_type2);
5942 }
5943
5944 if (deref_from_type1 != NULL_TREE
5945 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type1))
5946 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type2)))
5947 {
5948 /* This was one of the pointer or pointer-like conversions.
5949
5950 [over.ics.rank]
5951
5952 --If class B is derived directly or indirectly from class A,
5953 conversion of B* to A* is better than conversion of B* to
5954 void*, and conversion of A* to void* is better than
5955 conversion of B* to void*. */
5956 if (TREE_CODE (deref_to_type1) == VOID_TYPE
5957 && TREE_CODE (deref_to_type2) == VOID_TYPE)
5958 {
5959 if (is_properly_derived_from (deref_from_type1,
5960 deref_from_type2))
5961 return -1;
5962 else if (is_properly_derived_from (deref_from_type2,
5963 deref_from_type1))
5964 return 1;
5965 }
5966 else if (TREE_CODE (deref_to_type1) == VOID_TYPE
5967 || TREE_CODE (deref_to_type2) == VOID_TYPE)
5968 {
5969 if (same_type_p (deref_from_type1, deref_from_type2))
5970 {
5971 if (TREE_CODE (deref_to_type2) == VOID_TYPE)
5972 {
5973 if (is_properly_derived_from (deref_from_type1,
5974 deref_to_type1))
5975 return 1;
5976 }
5977 /* We know that DEREF_TO_TYPE1 is `void' here. */
5978 else if (is_properly_derived_from (deref_from_type1,
5979 deref_to_type2))
5980 return -1;
5981 }
5982 }
5983 else if (IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type1))
5984 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type2)))
5985 {
5986 /* [over.ics.rank]
5987
5988 --If class B is derived directly or indirectly from class A
5989 and class C is derived directly or indirectly from B,
5990
5991 --conversion of C* to B* is better than conversion of C* to
5992 A*,
5993
5994 --conversion of B* to A* is better than conversion of C* to
5995 A* */
5996 if (same_type_p (deref_from_type1, deref_from_type2))
5997 {
5998 if (is_properly_derived_from (deref_to_type1,
5999 deref_to_type2))
6000 return 1;
6001 else if (is_properly_derived_from (deref_to_type2,
6002 deref_to_type1))
6003 return -1;
6004 }
6005 else if (same_type_p (deref_to_type1, deref_to_type2))
6006 {
6007 if (is_properly_derived_from (deref_from_type2,
6008 deref_from_type1))
6009 return 1;
6010 else if (is_properly_derived_from (deref_from_type1,
6011 deref_from_type2))
6012 return -1;
6013 }
6014 }
6015 }
6016 else if (CLASS_TYPE_P (non_reference (from_type1))
6017 && same_type_p (from_type1, from_type2))
6018 {
6019 tree from = non_reference (from_type1);
6020
6021 /* [over.ics.rank]
6022
6023 --binding of an expression of type C to a reference of type
6024 B& is better than binding an expression of type C to a
6025 reference of type A&
6026
6027 --conversion of C to B is better than conversion of C to A, */
6028 if (is_properly_derived_from (from, to_type1)
6029 && is_properly_derived_from (from, to_type2))
6030 {
6031 if (is_properly_derived_from (to_type1, to_type2))
6032 return 1;
6033 else if (is_properly_derived_from (to_type2, to_type1))
6034 return -1;
6035 }
6036 }
6037 else if (CLASS_TYPE_P (non_reference (to_type1))
6038 && same_type_p (to_type1, to_type2))
6039 {
6040 tree to = non_reference (to_type1);
6041
6042 /* [over.ics.rank]
6043
6044 --binding of an expression of type B to a reference of type
6045 A& is better than binding an expression of type C to a
6046 reference of type A&,
6047
6048 --conversion of B to A is better than conversion of C to A */
6049 if (is_properly_derived_from (from_type1, to)
6050 && is_properly_derived_from (from_type2, to))
6051 {
6052 if (is_properly_derived_from (from_type2, from_type1))
6053 return 1;
6054 else if (is_properly_derived_from (from_type1, from_type2))
6055 return -1;
6056 }
6057 }
6058
6059 /* [over.ics.rank]
6060
6061 --S1 and S2 differ only in their qualification conversion and yield
6062 similar types T1 and T2 (_conv.qual_), respectively, and the cv-
6063 qualification signature of type T1 is a proper subset of the cv-
6064 qualification signature of type T2 */
6065 if (ics1->kind == ck_qual
6066 && ics2->kind == ck_qual
6067 && same_type_p (from_type1, from_type2))
6068 return comp_cv_qual_signature (to_type1, to_type2);
6069
6070 /* [over.ics.rank]
6071
6072 --S1 and S2 are reference bindings (_dcl.init.ref_) and neither refers
6073 to an implicit object parameter, and either S1 binds an lvalue reference
6074 to an lvalue and S2 binds an rvalue reference or S1 binds an rvalue
6075 reference to an rvalue and S2 binds an lvalue reference
6076 (C++0x draft standard, 13.3.3.2)
6077
6078 --S1 and S2 are reference bindings (_dcl.init.ref_), and the
6079 types to which the references refer are the same type except for
6080 top-level cv-qualifiers, and the type to which the reference
6081 initialized by S2 refers is more cv-qualified than the type to
6082 which the reference initialized by S1 refers */
6083
6084 if (ref_conv1 && ref_conv2
6085 && same_type_ignoring_top_level_qualifiers_p (to_type1, to_type2))
6086 {
6087 if (ref_conv1->rvaluedness_matches_p
6088 && !ref_conv2->rvaluedness_matches_p)
6089 return 1;
6090 else if (!ref_conv1->rvaluedness_matches_p
6091 && ref_conv2->rvaluedness_matches_p)
6092 return -1;
6093
6094 return comp_cv_qualification (TREE_TYPE (ref_conv2->type),
6095 TREE_TYPE (ref_conv1->type));
6096 }
6097
6098 /* Neither conversion sequence is better than the other. */
6099 return 0;
6100 }
6101
6102 /* The source type for this standard conversion sequence. */
6103
6104 static tree
6105 source_type (conversion *t)
6106 {
6107 for (;; t = t->u.next)
6108 {
6109 if (t->kind == ck_user
6110 || t->kind == ck_ambig
6111 || t->kind == ck_identity)
6112 return t->type;
6113 }
6114 gcc_unreachable ();
6115 }
6116
6117 /* Note a warning about preferring WINNER to LOSER. We do this by storing
6118 a pointer to LOSER and re-running joust to produce the warning if WINNER
6119 is actually used. */
6120
6121 static void
6122 add_warning (struct z_candidate *winner, struct z_candidate *loser)
6123 {
6124 candidate_warning *cw = (candidate_warning *)
6125 conversion_obstack_alloc (sizeof (candidate_warning));
6126 cw->loser = loser;
6127 cw->next = winner->warnings;
6128 winner->warnings = cw;
6129 }
6130
6131 /* Compare two candidates for overloading as described in
6132 [over.match.best]. Return values:
6133
6134 1: cand1 is better than cand2
6135 -1: cand2 is better than cand1
6136 0: cand1 and cand2 are indistinguishable */
6137
6138 static int
6139 joust (struct z_candidate *cand1, struct z_candidate *cand2, bool warn)
6140 {
6141 int winner = 0;
6142 int off1 = 0, off2 = 0;
6143 size_t i;
6144 size_t len;
6145
6146 /* Candidates that involve bad conversions are always worse than those
6147 that don't. */
6148 if (cand1->viable > cand2->viable)
6149 return 1;
6150 if (cand1->viable < cand2->viable)
6151 return -1;
6152
6153 /* If we have two pseudo-candidates for conversions to the same type,
6154 or two candidates for the same function, arbitrarily pick one. */
6155 if (cand1->fn == cand2->fn
6156 && (IS_TYPE_OR_DECL_P (cand1->fn)))
6157 return 1;
6158
6159 /* a viable function F1
6160 is defined to be a better function than another viable function F2 if
6161 for all arguments i, ICSi(F1) is not a worse conversion sequence than
6162 ICSi(F2), and then */
6163
6164 /* for some argument j, ICSj(F1) is a better conversion sequence than
6165 ICSj(F2) */
6166
6167 /* For comparing static and non-static member functions, we ignore
6168 the implicit object parameter of the non-static function. The
6169 standard says to pretend that the static function has an object
6170 parm, but that won't work with operator overloading. */
6171 len = cand1->num_convs;
6172 if (len != cand2->num_convs)
6173 {
6174 int static_1 = DECL_STATIC_FUNCTION_P (cand1->fn);
6175 int static_2 = DECL_STATIC_FUNCTION_P (cand2->fn);
6176
6177 gcc_assert (static_1 != static_2);
6178
6179 if (static_1)
6180 off2 = 1;
6181 else
6182 {
6183 off1 = 1;
6184 --len;
6185 }
6186 }
6187
6188 for (i = 0; i < len; ++i)
6189 {
6190 conversion *t1 = cand1->convs[i + off1];
6191 conversion *t2 = cand2->convs[i + off2];
6192 int comp = compare_ics (t1, t2);
6193
6194 if (comp != 0)
6195 {
6196 if (warn_sign_promo
6197 && (CONVERSION_RANK (t1) + CONVERSION_RANK (t2)
6198 == cr_std + cr_promotion)
6199 && t1->kind == ck_std
6200 && t2->kind == ck_std
6201 && TREE_CODE (t1->type) == INTEGER_TYPE
6202 && TREE_CODE (t2->type) == INTEGER_TYPE
6203 && (TYPE_PRECISION (t1->type)
6204 == TYPE_PRECISION (t2->type))
6205 && (TYPE_UNSIGNED (t1->u.next->type)
6206 || (TREE_CODE (t1->u.next->type)
6207 == ENUMERAL_TYPE)))
6208 {
6209 tree type = t1->u.next->type;
6210 tree type1, type2;
6211 struct z_candidate *w, *l;
6212 if (comp > 0)
6213 type1 = t1->type, type2 = t2->type,
6214 w = cand1, l = cand2;
6215 else
6216 type1 = t2->type, type2 = t1->type,
6217 w = cand2, l = cand1;
6218
6219 if (warn)
6220 {
6221 warning (OPT_Wsign_promo, "passing %qT chooses %qT over %qT",
6222 type, type1, type2);
6223 warning (OPT_Wsign_promo, " in call to %qD", w->fn);
6224 }
6225 else
6226 add_warning (w, l);
6227 }
6228
6229 if (winner && comp != winner)
6230 {
6231 winner = 0;
6232 goto tweak;
6233 }
6234 winner = comp;
6235 }
6236 }
6237
6238 /* warn about confusing overload resolution for user-defined conversions,
6239 either between a constructor and a conversion op, or between two
6240 conversion ops. */
6241 if (winner && warn_conversion && cand1->second_conv
6242 && (!DECL_CONSTRUCTOR_P (cand1->fn) || !DECL_CONSTRUCTOR_P (cand2->fn))
6243 && winner != compare_ics (cand1->second_conv, cand2->second_conv))
6244 {
6245 struct z_candidate *w, *l;
6246 bool give_warning = false;
6247
6248 if (winner == 1)
6249 w = cand1, l = cand2;
6250 else
6251 w = cand2, l = cand1;
6252
6253 /* We don't want to complain about `X::operator T1 ()'
6254 beating `X::operator T2 () const', when T2 is a no less
6255 cv-qualified version of T1. */
6256 if (DECL_CONTEXT (w->fn) == DECL_CONTEXT (l->fn)
6257 && !DECL_CONSTRUCTOR_P (w->fn) && !DECL_CONSTRUCTOR_P (l->fn))
6258 {
6259 tree t = TREE_TYPE (TREE_TYPE (l->fn));
6260 tree f = TREE_TYPE (TREE_TYPE (w->fn));
6261
6262 if (TREE_CODE (t) == TREE_CODE (f) && POINTER_TYPE_P (t))
6263 {
6264 t = TREE_TYPE (t);
6265 f = TREE_TYPE (f);
6266 }
6267 if (!comp_ptr_ttypes (t, f))
6268 give_warning = true;
6269 }
6270 else
6271 give_warning = true;
6272
6273 if (!give_warning)
6274 /*NOP*/;
6275 else if (warn)
6276 {
6277 tree source = source_type (w->convs[0]);
6278 if (! DECL_CONSTRUCTOR_P (w->fn))
6279 source = TREE_TYPE (source);
6280 warning (OPT_Wconversion, "choosing %qD over %qD", w->fn, l->fn);
6281 warning (OPT_Wconversion, " for conversion from %qT to %qT",
6282 source, w->second_conv->type);
6283 inform (" because conversion sequence for the argument is better");
6284 }
6285 else
6286 add_warning (w, l);
6287 }
6288
6289 if (winner)
6290 return winner;
6291
6292 /* or, if not that,
6293 F1 is a non-template function and F2 is a template function
6294 specialization. */
6295
6296 if (!cand1->template_decl && cand2->template_decl)
6297 return 1;
6298 else if (cand1->template_decl && !cand2->template_decl)
6299 return -1;
6300
6301 /* or, if not that,
6302 F1 and F2 are template functions and the function template for F1 is
6303 more specialized than the template for F2 according to the partial
6304 ordering rules. */
6305
6306 if (cand1->template_decl && cand2->template_decl)
6307 {
6308 winner = more_specialized_fn
6309 (TI_TEMPLATE (cand1->template_decl),
6310 TI_TEMPLATE (cand2->template_decl),
6311 /* [temp.func.order]: The presence of unused ellipsis and default
6312 arguments has no effect on the partial ordering of function
6313 templates. add_function_candidate() will not have
6314 counted the "this" argument for constructors. */
6315 cand1->num_convs + DECL_CONSTRUCTOR_P (cand1->fn));
6316 if (winner)
6317 return winner;
6318 }
6319
6320 /* or, if not that,
6321 the context is an initialization by user-defined conversion (see
6322 _dcl.init_ and _over.match.user_) and the standard conversion
6323 sequence from the return type of F1 to the destination type (i.e.,
6324 the type of the entity being initialized) is a better conversion
6325 sequence than the standard conversion sequence from the return type
6326 of F2 to the destination type. */
6327
6328 if (cand1->second_conv)
6329 {
6330 winner = compare_ics (cand1->second_conv, cand2->second_conv);
6331 if (winner)
6332 return winner;
6333 }
6334
6335 /* Check whether we can discard a builtin candidate, either because we
6336 have two identical ones or matching builtin and non-builtin candidates.
6337
6338 (Pedantically in the latter case the builtin which matched the user
6339 function should not be added to the overload set, but we spot it here.
6340
6341 [over.match.oper]
6342 ... the builtin candidates include ...
6343 - do not have the same parameter type list as any non-template
6344 non-member candidate. */
6345
6346 if (TREE_CODE (cand1->fn) == IDENTIFIER_NODE
6347 || TREE_CODE (cand2->fn) == IDENTIFIER_NODE)
6348 {
6349 for (i = 0; i < len; ++i)
6350 if (!same_type_p (cand1->convs[i]->type,
6351 cand2->convs[i]->type))
6352 break;
6353 if (i == cand1->num_convs)
6354 {
6355 if (cand1->fn == cand2->fn)
6356 /* Two built-in candidates; arbitrarily pick one. */
6357 return 1;
6358 else if (TREE_CODE (cand1->fn) == IDENTIFIER_NODE)
6359 /* cand1 is built-in; prefer cand2. */
6360 return -1;
6361 else
6362 /* cand2 is built-in; prefer cand1. */
6363 return 1;
6364 }
6365 }
6366
6367 /* If the two functions are the same (this can happen with declarations
6368 in multiple scopes and arg-dependent lookup), arbitrarily choose one. */
6369 if (DECL_P (cand1->fn) && DECL_P (cand2->fn)
6370 && equal_functions (cand1->fn, cand2->fn))
6371 return 1;
6372
6373 tweak:
6374
6375 /* Extension: If the worst conversion for one candidate is worse than the
6376 worst conversion for the other, take the first. */
6377 if (!pedantic)
6378 {
6379 conversion_rank rank1 = cr_identity, rank2 = cr_identity;
6380 struct z_candidate *w = 0, *l = 0;
6381
6382 for (i = 0; i < len; ++i)
6383 {
6384 if (CONVERSION_RANK (cand1->convs[i+off1]) > rank1)
6385 rank1 = CONVERSION_RANK (cand1->convs[i+off1]);
6386 if (CONVERSION_RANK (cand2->convs[i + off2]) > rank2)
6387 rank2 = CONVERSION_RANK (cand2->convs[i + off2]);
6388 }
6389 if (rank1 < rank2)
6390 winner = 1, w = cand1, l = cand2;
6391 if (rank1 > rank2)
6392 winner = -1, w = cand2, l = cand1;
6393 if (winner)
6394 {
6395 if (warn)
6396 {
6397 pedwarn ("\
6398 ISO C++ says that these are ambiguous, even \
6399 though the worst conversion for the first is better than \
6400 the worst conversion for the second:");
6401 print_z_candidate (_("candidate 1:"), w);
6402 print_z_candidate (_("candidate 2:"), l);
6403 }
6404 else
6405 add_warning (w, l);
6406 return winner;
6407 }
6408 }
6409
6410 gcc_assert (!winner);
6411 return 0;
6412 }
6413
6414 /* Given a list of candidates for overloading, find the best one, if any.
6415 This algorithm has a worst case of O(2n) (winner is last), and a best
6416 case of O(n/2) (totally ambiguous); much better than a sorting
6417 algorithm. */
6418
6419 static struct z_candidate *
6420 tourney (struct z_candidate *candidates)
6421 {
6422 struct z_candidate *champ = candidates, *challenger;
6423 int fate;
6424 int champ_compared_to_predecessor = 0;
6425
6426 /* Walk through the list once, comparing each current champ to the next
6427 candidate, knocking out a candidate or two with each comparison. */
6428
6429 for (challenger = champ->next; challenger; )
6430 {
6431 fate = joust (champ, challenger, 0);
6432 if (fate == 1)
6433 challenger = challenger->next;
6434 else
6435 {
6436 if (fate == 0)
6437 {
6438 champ = challenger->next;
6439 if (champ == 0)
6440 return NULL;
6441 champ_compared_to_predecessor = 0;
6442 }
6443 else
6444 {
6445 champ = challenger;
6446 champ_compared_to_predecessor = 1;
6447 }
6448
6449 challenger = champ->next;
6450 }
6451 }
6452
6453 /* Make sure the champ is better than all the candidates it hasn't yet
6454 been compared to. */
6455
6456 for (challenger = candidates;
6457 challenger != champ
6458 && !(champ_compared_to_predecessor && challenger->next == champ);
6459 challenger = challenger->next)
6460 {
6461 fate = joust (champ, challenger, 0);
6462 if (fate != 1)
6463 return NULL;
6464 }
6465
6466 return champ;
6467 }
6468
6469 /* Returns nonzero if things of type FROM can be converted to TO. */
6470
6471 bool
6472 can_convert (tree to, tree from)
6473 {
6474 return can_convert_arg (to, from, NULL_TREE, LOOKUP_NORMAL);
6475 }
6476
6477 /* Returns nonzero if ARG (of type FROM) can be converted to TO. */
6478
6479 bool
6480 can_convert_arg (tree to, tree from, tree arg, int flags)
6481 {
6482 conversion *t;
6483 void *p;
6484 bool ok_p;
6485
6486 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6487 p = conversion_obstack_alloc (0);
6488
6489 t = implicit_conversion (to, from, arg, /*c_cast_p=*/false,
6490 flags);
6491 ok_p = (t && !t->bad_p);
6492
6493 /* Free all the conversions we allocated. */
6494 obstack_free (&conversion_obstack, p);
6495
6496 return ok_p;
6497 }
6498
6499 /* Like can_convert_arg, but allows dubious conversions as well. */
6500
6501 bool
6502 can_convert_arg_bad (tree to, tree from, tree arg)
6503 {
6504 conversion *t;
6505 void *p;
6506
6507 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6508 p = conversion_obstack_alloc (0);
6509 /* Try to perform the conversion. */
6510 t = implicit_conversion (to, from, arg, /*c_cast_p=*/false,
6511 LOOKUP_NORMAL);
6512 /* Free all the conversions we allocated. */
6513 obstack_free (&conversion_obstack, p);
6514
6515 return t != NULL;
6516 }
6517
6518 /* Convert EXPR to TYPE. Return the converted expression.
6519
6520 Note that we allow bad conversions here because by the time we get to
6521 this point we are committed to doing the conversion. If we end up
6522 doing a bad conversion, convert_like will complain. */
6523
6524 tree
6525 perform_implicit_conversion (tree type, tree expr)
6526 {
6527 conversion *conv;
6528 void *p;
6529
6530 if (error_operand_p (expr))
6531 return error_mark_node;
6532
6533 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6534 p = conversion_obstack_alloc (0);
6535
6536 conv = implicit_conversion (type, TREE_TYPE (expr), expr,
6537 /*c_cast_p=*/false,
6538 LOOKUP_NORMAL);
6539 if (!conv)
6540 {
6541 error ("could not convert %qE to %qT", expr, type);
6542 expr = error_mark_node;
6543 }
6544 else if (processing_template_decl)
6545 {
6546 /* In a template, we are only concerned about determining the
6547 type of non-dependent expressions, so we do not have to
6548 perform the actual conversion. */
6549 if (TREE_TYPE (expr) != type)
6550 expr = build_nop (type, expr);
6551 }
6552 else
6553 expr = convert_like (conv, expr);
6554
6555 /* Free all the conversions we allocated. */
6556 obstack_free (&conversion_obstack, p);
6557
6558 return expr;
6559 }
6560
6561 /* Convert EXPR to TYPE (as a direct-initialization) if that is
6562 permitted. If the conversion is valid, the converted expression is
6563 returned. Otherwise, NULL_TREE is returned, except in the case
6564 that TYPE is a class type; in that case, an error is issued. If
6565 C_CAST_P is true, then this direction initialization is taking
6566 place as part of a static_cast being attempted as part of a C-style
6567 cast. */
6568
6569 tree
6570 perform_direct_initialization_if_possible (tree type,
6571 tree expr,
6572 bool c_cast_p)
6573 {
6574 conversion *conv;
6575 void *p;
6576
6577 if (type == error_mark_node || error_operand_p (expr))
6578 return error_mark_node;
6579 /* [dcl.init]
6580
6581 If the destination type is a (possibly cv-qualified) class type:
6582
6583 -- If the initialization is direct-initialization ...,
6584 constructors are considered. ... If no constructor applies, or
6585 the overload resolution is ambiguous, the initialization is
6586 ill-formed. */
6587 if (CLASS_TYPE_P (type))
6588 {
6589 expr = build_special_member_call (NULL_TREE, complete_ctor_identifier,
6590 build_tree_list (NULL_TREE, expr),
6591 type, LOOKUP_NORMAL);
6592 return build_cplus_new (type, expr);
6593 }
6594
6595 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6596 p = conversion_obstack_alloc (0);
6597
6598 conv = implicit_conversion (type, TREE_TYPE (expr), expr,
6599 c_cast_p,
6600 LOOKUP_NORMAL);
6601 if (!conv || conv->bad_p)
6602 expr = NULL_TREE;
6603 else
6604 expr = convert_like_real (conv, expr, NULL_TREE, 0, 0,
6605 /*issue_conversion_warnings=*/false,
6606 c_cast_p);
6607
6608 /* Free all the conversions we allocated. */
6609 obstack_free (&conversion_obstack, p);
6610
6611 return expr;
6612 }
6613
6614 /* DECL is a VAR_DECL whose type is a REFERENCE_TYPE. The reference
6615 is being bound to a temporary. Create and return a new VAR_DECL
6616 with the indicated TYPE; this variable will store the value to
6617 which the reference is bound. */
6618
6619 tree
6620 make_temporary_var_for_ref_to_temp (tree decl, tree type)
6621 {
6622 tree var;
6623
6624 /* Create the variable. */
6625 var = create_temporary_var (type);
6626
6627 /* Register the variable. */
6628 if (TREE_STATIC (decl))
6629 {
6630 /* Namespace-scope or local static; give it a mangled name. */
6631 tree name;
6632
6633 TREE_STATIC (var) = 1;
6634 name = mangle_ref_init_variable (decl);
6635 DECL_NAME (var) = name;
6636 SET_DECL_ASSEMBLER_NAME (var, name);
6637 var = pushdecl_top_level (var);
6638 }
6639 else
6640 /* Create a new cleanup level if necessary. */
6641 maybe_push_cleanup_level (type);
6642
6643 return var;
6644 }
6645
6646 /* Convert EXPR to the indicated reference TYPE, in a way suitable for
6647 initializing a variable of that TYPE. If DECL is non-NULL, it is
6648 the VAR_DECL being initialized with the EXPR. (In that case, the
6649 type of DECL will be TYPE.) If DECL is non-NULL, then CLEANUP must
6650 also be non-NULL, and with *CLEANUP initialized to NULL. Upon
6651 return, if *CLEANUP is no longer NULL, it will be an expression
6652 that should be pushed as a cleanup after the returned expression
6653 is used to initialize DECL.
6654
6655 Return the converted expression. */
6656
6657 tree
6658 initialize_reference (tree type, tree expr, tree decl, tree *cleanup)
6659 {
6660 conversion *conv;
6661 void *p;
6662
6663 if (type == error_mark_node || error_operand_p (expr))
6664 return error_mark_node;
6665
6666 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6667 p = conversion_obstack_alloc (0);
6668
6669 conv = reference_binding (type, TREE_TYPE (expr), expr, /*c_cast_p=*/false,
6670 LOOKUP_NORMAL);
6671 if (!conv || conv->bad_p)
6672 {
6673 if (!(TYPE_QUALS (TREE_TYPE (type)) & TYPE_QUAL_CONST)
6674 && !real_lvalue_p (expr))
6675 error ("invalid initialization of non-const reference of "
6676 "type %qT from a temporary of type %qT",
6677 type, TREE_TYPE (expr));
6678 else
6679 error ("invalid initialization of reference of type "
6680 "%qT from expression of type %qT", type,
6681 TREE_TYPE (expr));
6682 return error_mark_node;
6683 }
6684
6685 /* If DECL is non-NULL, then this special rule applies:
6686
6687 [class.temporary]
6688
6689 The temporary to which the reference is bound or the temporary
6690 that is the complete object to which the reference is bound
6691 persists for the lifetime of the reference.
6692
6693 The temporaries created during the evaluation of the expression
6694 initializing the reference, except the temporary to which the
6695 reference is bound, are destroyed at the end of the
6696 full-expression in which they are created.
6697
6698 In that case, we store the converted expression into a new
6699 VAR_DECL in a new scope.
6700
6701 However, we want to be careful not to create temporaries when
6702 they are not required. For example, given:
6703
6704 struct B {};
6705 struct D : public B {};
6706 D f();
6707 const B& b = f();
6708
6709 there is no need to copy the return value from "f"; we can just
6710 extend its lifetime. Similarly, given:
6711
6712 struct S {};
6713 struct T { operator S(); };
6714 T t;
6715 const S& s = t;
6716
6717 we can extend the lifetime of the return value of the conversion
6718 operator. */
6719 gcc_assert (conv->kind == ck_ref_bind);
6720 if (decl)
6721 {
6722 tree var;
6723 tree base_conv_type;
6724
6725 /* Skip over the REF_BIND. */
6726 conv = conv->u.next;
6727 /* If the next conversion is a BASE_CONV, skip that too -- but
6728 remember that the conversion was required. */
6729 if (conv->kind == ck_base)
6730 {
6731 if (conv->check_copy_constructor_p)
6732 check_constructor_callable (TREE_TYPE (expr), expr);
6733 base_conv_type = conv->type;
6734 conv = conv->u.next;
6735 }
6736 else
6737 base_conv_type = NULL_TREE;
6738 /* Perform the remainder of the conversion. */
6739 expr = convert_like_real (conv, expr,
6740 /*fn=*/NULL_TREE, /*argnum=*/0,
6741 /*inner=*/-1,
6742 /*issue_conversion_warnings=*/true,
6743 /*c_cast_p=*/false);
6744 if (error_operand_p (expr))
6745 expr = error_mark_node;
6746 else
6747 {
6748 if (!real_lvalue_p (expr))
6749 {
6750 tree init;
6751 tree type;
6752
6753 /* Create the temporary variable. */
6754 type = TREE_TYPE (expr);
6755 var = make_temporary_var_for_ref_to_temp (decl, type);
6756 layout_decl (var, 0);
6757 /* If the rvalue is the result of a function call it will be
6758 a TARGET_EXPR. If it is some other construct (such as a
6759 member access expression where the underlying object is
6760 itself the result of a function call), turn it into a
6761 TARGET_EXPR here. It is important that EXPR be a
6762 TARGET_EXPR below since otherwise the INIT_EXPR will
6763 attempt to make a bitwise copy of EXPR to initialize
6764 VAR. */
6765 if (TREE_CODE (expr) != TARGET_EXPR)
6766 expr = get_target_expr (expr);
6767 /* Create the INIT_EXPR that will initialize the temporary
6768 variable. */
6769 init = build2 (INIT_EXPR, type, var, expr);
6770 if (at_function_scope_p ())
6771 {
6772 add_decl_expr (var);
6773 *cleanup = cxx_maybe_build_cleanup (var);
6774
6775 /* We must be careful to destroy the temporary only
6776 after its initialization has taken place. If the
6777 initialization throws an exception, then the
6778 destructor should not be run. We cannot simply
6779 transform INIT into something like:
6780
6781 (INIT, ({ CLEANUP_STMT; }))
6782
6783 because emit_local_var always treats the
6784 initializer as a full-expression. Thus, the
6785 destructor would run too early; it would run at the
6786 end of initializing the reference variable, rather
6787 than at the end of the block enclosing the
6788 reference variable.
6789
6790 The solution is to pass back a cleanup expression
6791 which the caller is responsible for attaching to
6792 the statement tree. */
6793 }
6794 else
6795 {
6796 rest_of_decl_compilation (var, /*toplev=*/1, at_eof);
6797 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
6798 static_aggregates = tree_cons (NULL_TREE, var,
6799 static_aggregates);
6800 }
6801 /* Use its address to initialize the reference variable. */
6802 expr = build_address (var);
6803 if (base_conv_type)
6804 expr = convert_to_base (expr,
6805 build_pointer_type (base_conv_type),
6806 /*check_access=*/true,
6807 /*nonnull=*/true);
6808 expr = build2 (COMPOUND_EXPR, TREE_TYPE (expr), init, expr);
6809 }
6810 else
6811 /* Take the address of EXPR. */
6812 expr = build_unary_op (ADDR_EXPR, expr, 0);
6813 /* If a BASE_CONV was required, perform it now. */
6814 if (base_conv_type)
6815 expr = (perform_implicit_conversion
6816 (build_pointer_type (base_conv_type), expr));
6817 expr = build_nop (type, expr);
6818 }
6819 }
6820 else
6821 /* Perform the conversion. */
6822 expr = convert_like (conv, expr);
6823
6824 /* Free all the conversions we allocated. */
6825 obstack_free (&conversion_obstack, p);
6826
6827 return expr;
6828 }
6829
6830 #include "gt-cp-call.h"