]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/class.c
Add inline functions for various bitwise operations.
[thirdparty/gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* High-level class interface. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "target.h"
28 #include "cp-tree.h"
29 #include "stringpool.h"
30 #include "cgraph.h"
31 #include "stor-layout.h"
32 #include "attribs.h"
33 #include "flags.h"
34 #include "toplev.h"
35 #include "convert.h"
36 #include "dumpfile.h"
37 #include "gimplify.h"
38 #include "intl.h"
39
40 /* The number of nested classes being processed. If we are not in the
41 scope of any class, this is zero. */
42
43 int current_class_depth;
44
45 /* In order to deal with nested classes, we keep a stack of classes.
46 The topmost entry is the innermost class, and is the entry at index
47 CURRENT_CLASS_DEPTH */
48
49 typedef struct class_stack_node {
50 /* The name of the class. */
51 tree name;
52
53 /* The _TYPE node for the class. */
54 tree type;
55
56 /* The access specifier pending for new declarations in the scope of
57 this class. */
58 tree access;
59
60 /* If were defining TYPE, the names used in this class. */
61 splay_tree names_used;
62
63 /* Nonzero if this class is no longer open, because of a call to
64 push_to_top_level. */
65 size_t hidden;
66 }* class_stack_node_t;
67
68 struct vtbl_init_data
69 {
70 /* The base for which we're building initializers. */
71 tree binfo;
72 /* The type of the most-derived type. */
73 tree derived;
74 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
75 unless ctor_vtbl_p is true. */
76 tree rtti_binfo;
77 /* The negative-index vtable initializers built up so far. These
78 are in order from least negative index to most negative index. */
79 vec<constructor_elt, va_gc> *inits;
80 /* The binfo for the virtual base for which we're building
81 vcall offset initializers. */
82 tree vbase;
83 /* The functions in vbase for which we have already provided vcall
84 offsets. */
85 vec<tree, va_gc> *fns;
86 /* The vtable index of the next vcall or vbase offset. */
87 tree index;
88 /* Nonzero if we are building the initializer for the primary
89 vtable. */
90 int primary_vtbl_p;
91 /* Nonzero if we are building the initializer for a construction
92 vtable. */
93 int ctor_vtbl_p;
94 /* True when adding vcall offset entries to the vtable. False when
95 merely computing the indices. */
96 bool generate_vcall_entries;
97 };
98
99 /* The type of a function passed to walk_subobject_offsets. */
100 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
101
102 /* The stack itself. This is a dynamically resized array. The
103 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
104 static int current_class_stack_size;
105 static class_stack_node_t current_class_stack;
106
107 /* The size of the largest empty class seen in this translation unit. */
108 static GTY (()) tree sizeof_biggest_empty_class;
109
110 /* An array of all local classes present in this translation unit, in
111 declaration order. */
112 vec<tree, va_gc> *local_classes;
113
114 static tree get_vfield_name (tree);
115 static void finish_struct_anon (tree);
116 static tree get_vtable_name (tree);
117 static void get_basefndecls (tree, tree, vec<tree> *);
118 static int build_primary_vtable (tree, tree);
119 static int build_secondary_vtable (tree);
120 static void finish_vtbls (tree);
121 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
122 static void finish_struct_bits (tree);
123 static int alter_access (tree, tree, tree);
124 static void handle_using_decl (tree, tree);
125 static tree dfs_modify_vtables (tree, void *);
126 static tree modify_all_vtables (tree, tree);
127 static void determine_primary_bases (tree);
128 static void finish_struct_methods (tree);
129 static void maybe_warn_about_overly_private_class (tree);
130 static int method_name_cmp (const void *, const void *);
131 static int resort_method_name_cmp (const void *, const void *);
132 static void add_implicitly_declared_members (tree, tree*, int, int);
133 static tree fixed_type_or_null (tree, int *, int *);
134 static tree build_simple_base_path (tree expr, tree binfo);
135 static tree build_vtbl_ref_1 (tree, tree);
136 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
137 vec<constructor_elt, va_gc> **);
138 static int count_fields (tree);
139 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
140 static void insert_into_classtype_sorted_fields (tree, tree, int);
141 static bool check_bitfield_decl (tree);
142 static bool check_field_decl (tree, tree, int *, int *);
143 static void check_field_decls (tree, tree *, int *, int *);
144 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
145 static void build_base_fields (record_layout_info, splay_tree, tree *);
146 static void check_methods (tree);
147 static void remove_zero_width_bit_fields (tree);
148 static bool accessible_nvdtor_p (tree);
149
150 /* Used by find_flexarrays and related. */
151 struct flexmems_t;
152 static void find_flexarrays (tree, flexmems_t *);
153 static void diagnose_flexarrays (tree, const flexmems_t *);
154 static void check_flexarrays (tree, flexmems_t * = NULL);
155 static void check_bases (tree, int *, int *);
156 static void check_bases_and_members (tree);
157 static tree create_vtable_ptr (tree, tree *);
158 static void include_empty_classes (record_layout_info);
159 static void layout_class_type (tree, tree *);
160 static void propagate_binfo_offsets (tree, tree);
161 static void layout_virtual_bases (record_layout_info, splay_tree);
162 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
163 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
164 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
165 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
166 static void add_vcall_offset (tree, tree, vtbl_init_data *);
167 static void layout_vtable_decl (tree, int);
168 static tree dfs_find_final_overrider_pre (tree, void *);
169 static tree dfs_find_final_overrider_post (tree, void *);
170 static tree find_final_overrider (tree, tree, tree);
171 static int make_new_vtable (tree, tree);
172 static tree get_primary_binfo (tree);
173 static int maybe_indent_hierarchy (FILE *, int, int);
174 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
175 static void dump_class_hierarchy (tree);
176 static void dump_class_hierarchy_1 (FILE *, int, tree);
177 static void dump_array (FILE *, tree);
178 static void dump_vtable (tree, tree, tree);
179 static void dump_vtt (tree, tree);
180 static void dump_thunk (FILE *, int, tree);
181 static tree build_vtable (tree, tree, tree);
182 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
183 static void layout_nonempty_base_or_field (record_layout_info,
184 tree, tree, splay_tree);
185 static tree end_of_class (tree, int);
186 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
187 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
188 vec<constructor_elt, va_gc> **);
189 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
190 vec<constructor_elt, va_gc> **);
191 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
192 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
193 static void clone_constructors_and_destructors (tree);
194 static tree build_clone (tree, tree);
195 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
196 static void build_ctor_vtbl_group (tree, tree);
197 static void build_vtt (tree);
198 static tree binfo_ctor_vtable (tree);
199 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
200 tree *);
201 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
202 static tree dfs_fixup_binfo_vtbls (tree, void *);
203 static int record_subobject_offset (tree, tree, splay_tree);
204 static int check_subobject_offset (tree, tree, splay_tree);
205 static int walk_subobject_offsets (tree, subobject_offset_fn,
206 tree, splay_tree, tree, int);
207 static void record_subobject_offsets (tree, tree, splay_tree, bool);
208 static int layout_conflict_p (tree, tree, splay_tree, int);
209 static int splay_tree_compare_integer_csts (splay_tree_key k1,
210 splay_tree_key k2);
211 static void warn_about_ambiguous_bases (tree);
212 static bool type_requires_array_cookie (tree);
213 static bool base_derived_from (tree, tree);
214 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
215 static tree end_of_base (tree);
216 static tree get_vcall_index (tree, tree);
217 static bool type_maybe_constexpr_default_constructor (tree);
218
219 /* Variables shared between class.c and call.c. */
220
221 int n_vtables = 0;
222 int n_vtable_entries = 0;
223 int n_vtable_searches = 0;
224 int n_vtable_elems = 0;
225 int n_convert_harshness = 0;
226 int n_compute_conversion_costs = 0;
227 int n_inner_fields_searched = 0;
228
229 /* Return a COND_EXPR that executes TRUE_STMT if this execution of the
230 'structor is in charge of 'structing virtual bases, or FALSE_STMT
231 otherwise. */
232
233 tree
234 build_if_in_charge (tree true_stmt, tree false_stmt)
235 {
236 gcc_assert (DECL_HAS_IN_CHARGE_PARM_P (current_function_decl));
237 tree cmp = build2 (NE_EXPR, boolean_type_node,
238 current_in_charge_parm, integer_zero_node);
239 tree type = unlowered_expr_type (true_stmt);
240 if (VOID_TYPE_P (type))
241 type = unlowered_expr_type (false_stmt);
242 tree cond = build3 (COND_EXPR, type,
243 cmp, true_stmt, false_stmt);
244 return cond;
245 }
246
247 /* Convert to or from a base subobject. EXPR is an expression of type
248 `A' or `A*', an expression of type `B' or `B*' is returned. To
249 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
250 the B base instance within A. To convert base A to derived B, CODE
251 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
252 In this latter case, A must not be a morally virtual base of B.
253 NONNULL is true if EXPR is known to be non-NULL (this is only
254 needed when EXPR is of pointer type). CV qualifiers are preserved
255 from EXPR. */
256
257 tree
258 build_base_path (enum tree_code code,
259 tree expr,
260 tree binfo,
261 int nonnull,
262 tsubst_flags_t complain)
263 {
264 tree v_binfo = NULL_TREE;
265 tree d_binfo = NULL_TREE;
266 tree probe;
267 tree offset;
268 tree target_type;
269 tree null_test = NULL;
270 tree ptr_target_type;
271 int fixed_type_p;
272 int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
273 bool has_empty = false;
274 bool virtual_access;
275 bool rvalue = false;
276
277 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
278 return error_mark_node;
279
280 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
281 {
282 d_binfo = probe;
283 if (is_empty_class (BINFO_TYPE (probe)))
284 has_empty = true;
285 if (!v_binfo && BINFO_VIRTUAL_P (probe))
286 v_binfo = probe;
287 }
288
289 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
290 if (want_pointer)
291 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
292
293 if (code == PLUS_EXPR
294 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
295 {
296 /* This can happen when adjust_result_of_qualified_name_lookup can't
297 find a unique base binfo in a call to a member function. We
298 couldn't give the diagnostic then since we might have been calling
299 a static member function, so we do it now. */
300 if (complain & tf_error)
301 {
302 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
303 ba_unique, NULL, complain);
304 gcc_assert (base == error_mark_node);
305 }
306 return error_mark_node;
307 }
308
309 gcc_assert ((code == MINUS_EXPR
310 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
311 || code == PLUS_EXPR);
312
313 if (binfo == d_binfo)
314 /* Nothing to do. */
315 return expr;
316
317 if (code == MINUS_EXPR && v_binfo)
318 {
319 if (complain & tf_error)
320 {
321 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (v_binfo)))
322 {
323 if (want_pointer)
324 error ("cannot convert from pointer to base class %qT to "
325 "pointer to derived class %qT because the base is "
326 "virtual", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
327 else
328 error ("cannot convert from base class %qT to derived "
329 "class %qT because the base is virtual",
330 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
331 }
332 else
333 {
334 if (want_pointer)
335 error ("cannot convert from pointer to base class %qT to "
336 "pointer to derived class %qT via virtual base %qT",
337 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
338 BINFO_TYPE (v_binfo));
339 else
340 error ("cannot convert from base class %qT to derived "
341 "class %qT via virtual base %qT", BINFO_TYPE (binfo),
342 BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
343 }
344 }
345 return error_mark_node;
346 }
347
348 if (!want_pointer)
349 {
350 rvalue = !lvalue_p (expr);
351 /* This must happen before the call to save_expr. */
352 expr = cp_build_addr_expr (expr, complain);
353 }
354 else
355 expr = mark_rvalue_use (expr);
356
357 offset = BINFO_OFFSET (binfo);
358 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
359 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
360 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
361 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
362 expression returned matches the input. */
363 target_type = cp_build_qualified_type
364 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
365 ptr_target_type = build_pointer_type (target_type);
366
367 /* Do we need to look in the vtable for the real offset? */
368 virtual_access = (v_binfo && fixed_type_p <= 0);
369
370 /* Don't bother with the calculations inside sizeof; they'll ICE if the
371 source type is incomplete and the pointer value doesn't matter. In a
372 template (even in instantiate_non_dependent_expr), we don't have vtables
373 set up properly yet, and the value doesn't matter there either; we're
374 just interested in the result of overload resolution. */
375 if (cp_unevaluated_operand != 0
376 || in_template_function ())
377 {
378 expr = build_nop (ptr_target_type, expr);
379 goto indout;
380 }
381
382 /* If we're in an NSDMI, we don't have the full constructor context yet
383 that we need for converting to a virtual base, so just build a stub
384 CONVERT_EXPR and expand it later in bot_replace. */
385 if (virtual_access && fixed_type_p < 0
386 && current_scope () != current_function_decl)
387 {
388 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
389 CONVERT_EXPR_VBASE_PATH (expr) = true;
390 goto indout;
391 }
392
393 /* Do we need to check for a null pointer? */
394 if (want_pointer && !nonnull)
395 {
396 /* If we know the conversion will not actually change the value
397 of EXPR, then we can avoid testing the expression for NULL.
398 We have to avoid generating a COMPONENT_REF for a base class
399 field, because other parts of the compiler know that such
400 expressions are always non-NULL. */
401 if (!virtual_access && integer_zerop (offset))
402 return build_nop (ptr_target_type, expr);
403 null_test = error_mark_node;
404 }
405
406 /* Protect against multiple evaluation if necessary. */
407 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
408 expr = save_expr (expr);
409
410 /* Now that we've saved expr, build the real null test. */
411 if (null_test)
412 {
413 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
414 null_test = build2_loc (input_location, NE_EXPR, boolean_type_node,
415 expr, zero);
416 /* This is a compiler generated comparison, don't emit
417 e.g. -Wnonnull-compare warning for it. */
418 TREE_NO_WARNING (null_test) = 1;
419 }
420
421 /* If this is a simple base reference, express it as a COMPONENT_REF. */
422 if (code == PLUS_EXPR && !virtual_access
423 /* We don't build base fields for empty bases, and they aren't very
424 interesting to the optimizers anyway. */
425 && !has_empty)
426 {
427 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
428 expr = build_simple_base_path (expr, binfo);
429 if (rvalue)
430 expr = move (expr);
431 if (want_pointer)
432 expr = build_address (expr);
433 target_type = TREE_TYPE (expr);
434 goto out;
435 }
436
437 if (virtual_access)
438 {
439 /* Going via virtual base V_BINFO. We need the static offset
440 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
441 V_BINFO. That offset is an entry in D_BINFO's vtable. */
442 tree v_offset;
443
444 if (fixed_type_p < 0 && in_base_initializer)
445 {
446 /* In a base member initializer, we cannot rely on the
447 vtable being set up. We have to indirect via the
448 vtt_parm. */
449 tree t;
450
451 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
452 t = build_pointer_type (t);
453 v_offset = fold_convert (t, current_vtt_parm);
454 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
455 }
456 else
457 {
458 tree t = expr;
459 if ((flag_sanitize & SANITIZE_VPTR) && fixed_type_p == 0)
460 {
461 t = cp_ubsan_maybe_instrument_cast_to_vbase (input_location,
462 probe, expr);
463 if (t == NULL_TREE)
464 t = expr;
465 }
466 v_offset = build_vfield_ref (cp_build_indirect_ref (t, RO_NULL,
467 complain),
468 TREE_TYPE (TREE_TYPE (expr)));
469 }
470
471 if (v_offset == error_mark_node)
472 return error_mark_node;
473
474 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
475 v_offset = build1 (NOP_EXPR,
476 build_pointer_type (ptrdiff_type_node),
477 v_offset);
478 v_offset = cp_build_indirect_ref (v_offset, RO_NULL, complain);
479 TREE_CONSTANT (v_offset) = 1;
480
481 offset = convert_to_integer (ptrdiff_type_node,
482 size_diffop_loc (input_location, offset,
483 BINFO_OFFSET (v_binfo)));
484
485 if (!integer_zerop (offset))
486 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
487
488 if (fixed_type_p < 0)
489 /* Negative fixed_type_p means this is a constructor or destructor;
490 virtual base layout is fixed in in-charge [cd]tors, but not in
491 base [cd]tors. */
492 offset = build_if_in_charge
493 (convert_to_integer (ptrdiff_type_node, BINFO_OFFSET (binfo)),
494 v_offset);
495 else
496 offset = v_offset;
497 }
498
499 if (want_pointer)
500 target_type = ptr_target_type;
501
502 expr = build1 (NOP_EXPR, ptr_target_type, expr);
503
504 if (!integer_zerop (offset))
505 {
506 offset = fold_convert (sizetype, offset);
507 if (code == MINUS_EXPR)
508 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
509 expr = fold_build_pointer_plus (expr, offset);
510 }
511 else
512 null_test = NULL;
513
514 indout:
515 if (!want_pointer)
516 {
517 expr = cp_build_indirect_ref (expr, RO_NULL, complain);
518 if (rvalue)
519 expr = move (expr);
520 }
521
522 out:
523 if (null_test)
524 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
525 build_zero_cst (target_type));
526
527 return expr;
528 }
529
530 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
531 Perform a derived-to-base conversion by recursively building up a
532 sequence of COMPONENT_REFs to the appropriate base fields. */
533
534 static tree
535 build_simple_base_path (tree expr, tree binfo)
536 {
537 tree type = BINFO_TYPE (binfo);
538 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
539 tree field;
540
541 if (d_binfo == NULL_TREE)
542 {
543 tree temp;
544
545 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
546
547 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
548 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
549 an lvalue in the front end; only _DECLs and _REFs are lvalues
550 in the back end. */
551 temp = unary_complex_lvalue (ADDR_EXPR, expr);
552 if (temp)
553 expr = cp_build_indirect_ref (temp, RO_NULL, tf_warning_or_error);
554
555 return expr;
556 }
557
558 /* Recurse. */
559 expr = build_simple_base_path (expr, d_binfo);
560
561 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
562 field; field = DECL_CHAIN (field))
563 /* Is this the base field created by build_base_field? */
564 if (TREE_CODE (field) == FIELD_DECL
565 && DECL_FIELD_IS_BASE (field)
566 && TREE_TYPE (field) == type
567 /* If we're looking for a field in the most-derived class,
568 also check the field offset; we can have two base fields
569 of the same type if one is an indirect virtual base and one
570 is a direct non-virtual base. */
571 && (BINFO_INHERITANCE_CHAIN (d_binfo)
572 || tree_int_cst_equal (byte_position (field),
573 BINFO_OFFSET (binfo))))
574 {
575 /* We don't use build_class_member_access_expr here, as that
576 has unnecessary checks, and more importantly results in
577 recursive calls to dfs_walk_once. */
578 int type_quals = cp_type_quals (TREE_TYPE (expr));
579
580 expr = build3 (COMPONENT_REF,
581 cp_build_qualified_type (type, type_quals),
582 expr, field, NULL_TREE);
583 /* Mark the expression const or volatile, as appropriate.
584 Even though we've dealt with the type above, we still have
585 to mark the expression itself. */
586 if (type_quals & TYPE_QUAL_CONST)
587 TREE_READONLY (expr) = 1;
588 if (type_quals & TYPE_QUAL_VOLATILE)
589 TREE_THIS_VOLATILE (expr) = 1;
590
591 return expr;
592 }
593
594 /* Didn't find the base field?!? */
595 gcc_unreachable ();
596 }
597
598 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
599 type is a class type or a pointer to a class type. In the former
600 case, TYPE is also a class type; in the latter it is another
601 pointer type. If CHECK_ACCESS is true, an error message is emitted
602 if TYPE is inaccessible. If OBJECT has pointer type, the value is
603 assumed to be non-NULL. */
604
605 tree
606 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
607 tsubst_flags_t complain)
608 {
609 tree binfo;
610 tree object_type;
611
612 if (TYPE_PTR_P (TREE_TYPE (object)))
613 {
614 object_type = TREE_TYPE (TREE_TYPE (object));
615 type = TREE_TYPE (type);
616 }
617 else
618 object_type = TREE_TYPE (object);
619
620 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
621 NULL, complain);
622 if (!binfo || binfo == error_mark_node)
623 return error_mark_node;
624
625 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
626 }
627
628 /* EXPR is an expression with unqualified class type. BASE is a base
629 binfo of that class type. Returns EXPR, converted to the BASE
630 type. This function assumes that EXPR is the most derived class;
631 therefore virtual bases can be found at their static offsets. */
632
633 tree
634 convert_to_base_statically (tree expr, tree base)
635 {
636 tree expr_type;
637
638 expr_type = TREE_TYPE (expr);
639 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
640 {
641 /* If this is a non-empty base, use a COMPONENT_REF. */
642 if (!is_empty_class (BINFO_TYPE (base)))
643 return build_simple_base_path (expr, base);
644
645 /* We use fold_build2 and fold_convert below to simplify the trees
646 provided to the optimizers. It is not safe to call these functions
647 when processing a template because they do not handle C++-specific
648 trees. */
649 gcc_assert (!processing_template_decl);
650 expr = cp_build_addr_expr (expr, tf_warning_or_error);
651 if (!integer_zerop (BINFO_OFFSET (base)))
652 expr = fold_build_pointer_plus_loc (input_location,
653 expr, BINFO_OFFSET (base));
654 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
655 expr = build_fold_indirect_ref_loc (input_location, expr);
656 }
657
658 return expr;
659 }
660
661 \f
662 tree
663 build_vfield_ref (tree datum, tree type)
664 {
665 tree vfield, vcontext;
666
667 if (datum == error_mark_node
668 /* Can happen in case of duplicate base types (c++/59082). */
669 || !TYPE_VFIELD (type))
670 return error_mark_node;
671
672 /* First, convert to the requested type. */
673 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
674 datum = convert_to_base (datum, type, /*check_access=*/false,
675 /*nonnull=*/true, tf_warning_or_error);
676
677 /* Second, the requested type may not be the owner of its own vptr.
678 If not, convert to the base class that owns it. We cannot use
679 convert_to_base here, because VCONTEXT may appear more than once
680 in the inheritance hierarchy of TYPE, and thus direct conversion
681 between the types may be ambiguous. Following the path back up
682 one step at a time via primary bases avoids the problem. */
683 vfield = TYPE_VFIELD (type);
684 vcontext = DECL_CONTEXT (vfield);
685 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
686 {
687 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
688 type = TREE_TYPE (datum);
689 }
690
691 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
692 }
693
694 /* Given an object INSTANCE, return an expression which yields the
695 vtable element corresponding to INDEX. There are many special
696 cases for INSTANCE which we take care of here, mainly to avoid
697 creating extra tree nodes when we don't have to. */
698
699 static tree
700 build_vtbl_ref_1 (tree instance, tree idx)
701 {
702 tree aref;
703 tree vtbl = NULL_TREE;
704
705 /* Try to figure out what a reference refers to, and
706 access its virtual function table directly. */
707
708 int cdtorp = 0;
709 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
710
711 tree basetype = non_reference (TREE_TYPE (instance));
712
713 if (fixed_type && !cdtorp)
714 {
715 tree binfo = lookup_base (fixed_type, basetype,
716 ba_unique, NULL, tf_none);
717 if (binfo && binfo != error_mark_node)
718 vtbl = unshare_expr (BINFO_VTABLE (binfo));
719 }
720
721 if (!vtbl)
722 vtbl = build_vfield_ref (instance, basetype);
723
724 aref = build_array_ref (input_location, vtbl, idx);
725 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
726
727 return aref;
728 }
729
730 tree
731 build_vtbl_ref (tree instance, tree idx)
732 {
733 tree aref = build_vtbl_ref_1 (instance, idx);
734
735 return aref;
736 }
737
738 /* Given a stable object pointer INSTANCE_PTR, return an expression which
739 yields a function pointer corresponding to vtable element INDEX. */
740
741 tree
742 build_vfn_ref (tree instance_ptr, tree idx)
743 {
744 tree aref;
745
746 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, RO_NULL,
747 tf_warning_or_error),
748 idx);
749
750 /* When using function descriptors, the address of the
751 vtable entry is treated as a function pointer. */
752 if (TARGET_VTABLE_USES_DESCRIPTORS)
753 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
754 cp_build_addr_expr (aref, tf_warning_or_error));
755
756 /* Remember this as a method reference, for later devirtualization. */
757 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
758
759 return aref;
760 }
761
762 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
763 for the given TYPE. */
764
765 static tree
766 get_vtable_name (tree type)
767 {
768 return mangle_vtbl_for_type (type);
769 }
770
771 /* DECL is an entity associated with TYPE, like a virtual table or an
772 implicitly generated constructor. Determine whether or not DECL
773 should have external or internal linkage at the object file
774 level. This routine does not deal with COMDAT linkage and other
775 similar complexities; it simply sets TREE_PUBLIC if it possible for
776 entities in other translation units to contain copies of DECL, in
777 the abstract. */
778
779 void
780 set_linkage_according_to_type (tree /*type*/, tree decl)
781 {
782 TREE_PUBLIC (decl) = 1;
783 determine_visibility (decl);
784 }
785
786 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
787 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
788 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
789
790 static tree
791 build_vtable (tree class_type, tree name, tree vtable_type)
792 {
793 tree decl;
794
795 decl = build_lang_decl (VAR_DECL, name, vtable_type);
796 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
797 now to avoid confusion in mangle_decl. */
798 SET_DECL_ASSEMBLER_NAME (decl, name);
799 DECL_CONTEXT (decl) = class_type;
800 DECL_ARTIFICIAL (decl) = 1;
801 TREE_STATIC (decl) = 1;
802 TREE_READONLY (decl) = 1;
803 DECL_VIRTUAL_P (decl) = 1;
804 SET_DECL_ALIGN (decl, TARGET_VTABLE_ENTRY_ALIGN);
805 DECL_USER_ALIGN (decl) = true;
806 DECL_VTABLE_OR_VTT_P (decl) = 1;
807 set_linkage_according_to_type (class_type, decl);
808 /* The vtable has not been defined -- yet. */
809 DECL_EXTERNAL (decl) = 1;
810 DECL_NOT_REALLY_EXTERN (decl) = 1;
811
812 /* Mark the VAR_DECL node representing the vtable itself as a
813 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
814 is rather important that such things be ignored because any
815 effort to actually generate DWARF for them will run into
816 trouble when/if we encounter code like:
817
818 #pragma interface
819 struct S { virtual void member (); };
820
821 because the artificial declaration of the vtable itself (as
822 manufactured by the g++ front end) will say that the vtable is
823 a static member of `S' but only *after* the debug output for
824 the definition of `S' has already been output. This causes
825 grief because the DWARF entry for the definition of the vtable
826 will try to refer back to an earlier *declaration* of the
827 vtable as a static member of `S' and there won't be one. We
828 might be able to arrange to have the "vtable static member"
829 attached to the member list for `S' before the debug info for
830 `S' get written (which would solve the problem) but that would
831 require more intrusive changes to the g++ front end. */
832 DECL_IGNORED_P (decl) = 1;
833
834 return decl;
835 }
836
837 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
838 or even complete. If this does not exist, create it. If COMPLETE is
839 nonzero, then complete the definition of it -- that will render it
840 impossible to actually build the vtable, but is useful to get at those
841 which are known to exist in the runtime. */
842
843 tree
844 get_vtable_decl (tree type, int complete)
845 {
846 tree decl;
847
848 if (CLASSTYPE_VTABLES (type))
849 return CLASSTYPE_VTABLES (type);
850
851 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
852 CLASSTYPE_VTABLES (type) = decl;
853
854 if (complete)
855 {
856 DECL_EXTERNAL (decl) = 1;
857 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
858 }
859
860 return decl;
861 }
862
863 /* Build the primary virtual function table for TYPE. If BINFO is
864 non-NULL, build the vtable starting with the initial approximation
865 that it is the same as the one which is the head of the association
866 list. Returns a nonzero value if a new vtable is actually
867 created. */
868
869 static int
870 build_primary_vtable (tree binfo, tree type)
871 {
872 tree decl;
873 tree virtuals;
874
875 decl = get_vtable_decl (type, /*complete=*/0);
876
877 if (binfo)
878 {
879 if (BINFO_NEW_VTABLE_MARKED (binfo))
880 /* We have already created a vtable for this base, so there's
881 no need to do it again. */
882 return 0;
883
884 virtuals = copy_list (BINFO_VIRTUALS (binfo));
885 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
886 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
887 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
888 }
889 else
890 {
891 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
892 virtuals = NULL_TREE;
893 }
894
895 if (GATHER_STATISTICS)
896 {
897 n_vtables += 1;
898 n_vtable_elems += list_length (virtuals);
899 }
900
901 /* Initialize the association list for this type, based
902 on our first approximation. */
903 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
904 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
905 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
906 return 1;
907 }
908
909 /* Give BINFO a new virtual function table which is initialized
910 with a skeleton-copy of its original initialization. The only
911 entry that changes is the `delta' entry, so we can really
912 share a lot of structure.
913
914 FOR_TYPE is the most derived type which caused this table to
915 be needed.
916
917 Returns nonzero if we haven't met BINFO before.
918
919 The order in which vtables are built (by calling this function) for
920 an object must remain the same, otherwise a binary incompatibility
921 can result. */
922
923 static int
924 build_secondary_vtable (tree binfo)
925 {
926 if (BINFO_NEW_VTABLE_MARKED (binfo))
927 /* We already created a vtable for this base. There's no need to
928 do it again. */
929 return 0;
930
931 /* Remember that we've created a vtable for this BINFO, so that we
932 don't try to do so again. */
933 SET_BINFO_NEW_VTABLE_MARKED (binfo);
934
935 /* Make fresh virtual list, so we can smash it later. */
936 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
937
938 /* Secondary vtables are laid out as part of the same structure as
939 the primary vtable. */
940 BINFO_VTABLE (binfo) = NULL_TREE;
941 return 1;
942 }
943
944 /* Create a new vtable for BINFO which is the hierarchy dominated by
945 T. Return nonzero if we actually created a new vtable. */
946
947 static int
948 make_new_vtable (tree t, tree binfo)
949 {
950 if (binfo == TYPE_BINFO (t))
951 /* In this case, it is *type*'s vtable we are modifying. We start
952 with the approximation that its vtable is that of the
953 immediate base class. */
954 return build_primary_vtable (binfo, t);
955 else
956 /* This is our very own copy of `basetype' to play with. Later,
957 we will fill in all the virtual functions that override the
958 virtual functions in these base classes which are not defined
959 by the current type. */
960 return build_secondary_vtable (binfo);
961 }
962
963 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
964 (which is in the hierarchy dominated by T) list FNDECL as its
965 BV_FN. DELTA is the required constant adjustment from the `this'
966 pointer where the vtable entry appears to the `this' required when
967 the function is actually called. */
968
969 static void
970 modify_vtable_entry (tree t,
971 tree binfo,
972 tree fndecl,
973 tree delta,
974 tree *virtuals)
975 {
976 tree v;
977
978 v = *virtuals;
979
980 if (fndecl != BV_FN (v)
981 || !tree_int_cst_equal (delta, BV_DELTA (v)))
982 {
983 /* We need a new vtable for BINFO. */
984 if (make_new_vtable (t, binfo))
985 {
986 /* If we really did make a new vtable, we also made a copy
987 of the BINFO_VIRTUALS list. Now, we have to find the
988 corresponding entry in that list. */
989 *virtuals = BINFO_VIRTUALS (binfo);
990 while (BV_FN (*virtuals) != BV_FN (v))
991 *virtuals = TREE_CHAIN (*virtuals);
992 v = *virtuals;
993 }
994
995 BV_DELTA (v) = delta;
996 BV_VCALL_INDEX (v) = NULL_TREE;
997 BV_FN (v) = fndecl;
998 }
999 }
1000
1001 \f
1002 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
1003 the USING_DECL naming METHOD. Returns true if the method could be
1004 added to the method vec. */
1005
1006 bool
1007 add_method (tree type, tree method, tree using_decl)
1008 {
1009 unsigned slot;
1010 tree overload;
1011 bool template_conv_p = false;
1012 bool conv_p;
1013 vec<tree, va_gc> *method_vec;
1014 bool complete_p;
1015 bool insert_p = false;
1016 tree current_fns;
1017 tree fns;
1018
1019 if (method == error_mark_node)
1020 return false;
1021
1022 complete_p = COMPLETE_TYPE_P (type);
1023 conv_p = DECL_CONV_FN_P (method);
1024 if (conv_p)
1025 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
1026 && DECL_TEMPLATE_CONV_FN_P (method));
1027
1028 method_vec = CLASSTYPE_METHOD_VEC (type);
1029 if (!method_vec)
1030 {
1031 /* Make a new method vector. We start with 8 entries. We must
1032 allocate at least two (for constructors and destructors), and
1033 we're going to end up with an assignment operator at some
1034 point as well. */
1035 vec_alloc (method_vec, 8);
1036 /* Create slots for constructors and destructors. */
1037 method_vec->quick_push (NULL_TREE);
1038 method_vec->quick_push (NULL_TREE);
1039 CLASSTYPE_METHOD_VEC (type) = method_vec;
1040 }
1041
1042 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
1043 grok_special_member_properties (method);
1044
1045 /* Constructors and destructors go in special slots. */
1046 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
1047 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
1048 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1049 {
1050 slot = CLASSTYPE_DESTRUCTOR_SLOT;
1051
1052 if (TYPE_FOR_JAVA (type))
1053 {
1054 if (!DECL_ARTIFICIAL (method))
1055 error ("Java class %qT cannot have a destructor", type);
1056 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
1057 error ("Java class %qT cannot have an implicit non-trivial "
1058 "destructor",
1059 type);
1060 }
1061 }
1062 else
1063 {
1064 tree m;
1065
1066 insert_p = true;
1067 /* See if we already have an entry with this name. */
1068 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1069 vec_safe_iterate (method_vec, slot, &m);
1070 ++slot)
1071 {
1072 m = OVL_CURRENT (m);
1073 if (template_conv_p)
1074 {
1075 if (TREE_CODE (m) == TEMPLATE_DECL
1076 && DECL_TEMPLATE_CONV_FN_P (m))
1077 insert_p = false;
1078 break;
1079 }
1080 if (conv_p && !DECL_CONV_FN_P (m))
1081 break;
1082 if (DECL_NAME (m) == DECL_NAME (method))
1083 {
1084 insert_p = false;
1085 break;
1086 }
1087 if (complete_p
1088 && !DECL_CONV_FN_P (m)
1089 && DECL_NAME (m) > DECL_NAME (method))
1090 break;
1091 }
1092 }
1093 current_fns = insert_p ? NULL_TREE : (*method_vec)[slot];
1094
1095 /* Check to see if we've already got this method. */
1096 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1097 {
1098 tree fn = OVL_CURRENT (fns);
1099 tree fn_type;
1100 tree method_type;
1101 tree parms1;
1102 tree parms2;
1103
1104 if (TREE_CODE (fn) != TREE_CODE (method))
1105 continue;
1106
1107 /* [over.load] Member function declarations with the
1108 same name and the same parameter types cannot be
1109 overloaded if any of them is a static member
1110 function declaration.
1111
1112 [over.load] Member function declarations with the same name and
1113 the same parameter-type-list as well as member function template
1114 declarations with the same name, the same parameter-type-list, and
1115 the same template parameter lists cannot be overloaded if any of
1116 them, but not all, have a ref-qualifier.
1117
1118 [namespace.udecl] When a using-declaration brings names
1119 from a base class into a derived class scope, member
1120 functions in the derived class override and/or hide member
1121 functions with the same name and parameter types in a base
1122 class (rather than conflicting). */
1123 fn_type = TREE_TYPE (fn);
1124 method_type = TREE_TYPE (method);
1125 parms1 = TYPE_ARG_TYPES (fn_type);
1126 parms2 = TYPE_ARG_TYPES (method_type);
1127
1128 /* Compare the quals on the 'this' parm. Don't compare
1129 the whole types, as used functions are treated as
1130 coming from the using class in overload resolution. */
1131 if (! DECL_STATIC_FUNCTION_P (fn)
1132 && ! DECL_STATIC_FUNCTION_P (method)
1133 /* Either both or neither need to be ref-qualified for
1134 differing quals to allow overloading. */
1135 && (FUNCTION_REF_QUALIFIED (fn_type)
1136 == FUNCTION_REF_QUALIFIED (method_type))
1137 && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
1138 || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
1139 continue;
1140
1141 /* For templates, the return type and template parameters
1142 must be identical. */
1143 if (TREE_CODE (fn) == TEMPLATE_DECL
1144 && (!same_type_p (TREE_TYPE (fn_type),
1145 TREE_TYPE (method_type))
1146 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1147 DECL_TEMPLATE_PARMS (method))))
1148 continue;
1149
1150 if (! DECL_STATIC_FUNCTION_P (fn))
1151 parms1 = TREE_CHAIN (parms1);
1152 if (! DECL_STATIC_FUNCTION_P (method))
1153 parms2 = TREE_CHAIN (parms2);
1154
1155 if (compparms (parms1, parms2)
1156 && (!DECL_CONV_FN_P (fn)
1157 || same_type_p (TREE_TYPE (fn_type),
1158 TREE_TYPE (method_type)))
1159 && equivalently_constrained (fn, method))
1160 {
1161 /* For function versions, their parms and types match
1162 but they are not duplicates. Record function versions
1163 as and when they are found. extern "C" functions are
1164 not treated as versions. */
1165 if (TREE_CODE (fn) == FUNCTION_DECL
1166 && TREE_CODE (method) == FUNCTION_DECL
1167 && !DECL_EXTERN_C_P (fn)
1168 && !DECL_EXTERN_C_P (method)
1169 && targetm.target_option.function_versions (fn, method))
1170 {
1171 /* Mark functions as versions if necessary. Modify the mangled
1172 decl name if necessary. */
1173 if (!DECL_FUNCTION_VERSIONED (fn))
1174 {
1175 DECL_FUNCTION_VERSIONED (fn) = 1;
1176 if (DECL_ASSEMBLER_NAME_SET_P (fn))
1177 mangle_decl (fn);
1178 }
1179 if (!DECL_FUNCTION_VERSIONED (method))
1180 {
1181 DECL_FUNCTION_VERSIONED (method) = 1;
1182 if (DECL_ASSEMBLER_NAME_SET_P (method))
1183 mangle_decl (method);
1184 }
1185 cgraph_node::record_function_versions (fn, method);
1186 continue;
1187 }
1188 if (DECL_INHERITED_CTOR_BASE (method))
1189 {
1190 if (DECL_INHERITED_CTOR_BASE (fn))
1191 {
1192 error_at (DECL_SOURCE_LOCATION (method),
1193 "%q#D inherited from %qT", method,
1194 DECL_INHERITED_CTOR_BASE (method));
1195 error_at (DECL_SOURCE_LOCATION (fn),
1196 "conflicts with version inherited from %qT",
1197 DECL_INHERITED_CTOR_BASE (fn));
1198 }
1199 /* Otherwise defer to the other function. */
1200 return false;
1201 }
1202 if (using_decl)
1203 {
1204 if (DECL_CONTEXT (fn) == type)
1205 /* Defer to the local function. */
1206 return false;
1207 }
1208 else
1209 {
1210 error ("%q+#D cannot be overloaded", method);
1211 error ("with %q+#D", fn);
1212 }
1213
1214 /* We don't call duplicate_decls here to merge the
1215 declarations because that will confuse things if the
1216 methods have inline definitions. In particular, we
1217 will crash while processing the definitions. */
1218 return false;
1219 }
1220 }
1221
1222 /* A class should never have more than one destructor. */
1223 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1224 return false;
1225
1226 /* Add the new binding. */
1227 if (using_decl)
1228 {
1229 overload = ovl_cons (method, current_fns);
1230 OVL_USED (overload) = true;
1231 }
1232 else
1233 overload = build_overload (method, current_fns);
1234
1235 if (conv_p)
1236 TYPE_HAS_CONVERSION (type) = 1;
1237 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1238 push_class_level_binding (DECL_NAME (method), overload);
1239
1240 if (insert_p)
1241 {
1242 bool reallocated;
1243
1244 /* We only expect to add few methods in the COMPLETE_P case, so
1245 just make room for one more method in that case. */
1246 if (complete_p)
1247 reallocated = vec_safe_reserve_exact (method_vec, 1);
1248 else
1249 reallocated = vec_safe_reserve (method_vec, 1);
1250 if (reallocated)
1251 CLASSTYPE_METHOD_VEC (type) = method_vec;
1252 if (slot == method_vec->length ())
1253 method_vec->quick_push (overload);
1254 else
1255 method_vec->quick_insert (slot, overload);
1256 }
1257 else
1258 /* Replace the current slot. */
1259 (*method_vec)[slot] = overload;
1260 return true;
1261 }
1262
1263 /* Subroutines of finish_struct. */
1264
1265 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1266 legit, otherwise return 0. */
1267
1268 static int
1269 alter_access (tree t, tree fdecl, tree access)
1270 {
1271 tree elem;
1272
1273 if (!DECL_LANG_SPECIFIC (fdecl))
1274 retrofit_lang_decl (fdecl);
1275
1276 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1277
1278 elem = purpose_member (t, DECL_ACCESS (fdecl));
1279 if (elem)
1280 {
1281 if (TREE_VALUE (elem) != access)
1282 {
1283 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1284 error ("conflicting access specifications for method"
1285 " %q+D, ignored", TREE_TYPE (fdecl));
1286 else
1287 error ("conflicting access specifications for field %qE, ignored",
1288 DECL_NAME (fdecl));
1289 }
1290 else
1291 {
1292 /* They're changing the access to the same thing they changed
1293 it to before. That's OK. */
1294 ;
1295 }
1296 }
1297 else
1298 {
1299 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1300 tf_warning_or_error);
1301 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1302 return 1;
1303 }
1304 return 0;
1305 }
1306
1307 /* Process the USING_DECL, which is a member of T. */
1308
1309 static void
1310 handle_using_decl (tree using_decl, tree t)
1311 {
1312 tree decl = USING_DECL_DECLS (using_decl);
1313 tree name = DECL_NAME (using_decl);
1314 tree access
1315 = TREE_PRIVATE (using_decl) ? access_private_node
1316 : TREE_PROTECTED (using_decl) ? access_protected_node
1317 : access_public_node;
1318 tree flist = NULL_TREE;
1319 tree old_value;
1320
1321 gcc_assert (!processing_template_decl && decl);
1322
1323 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1324 tf_warning_or_error);
1325 if (old_value)
1326 {
1327 if (is_overloaded_fn (old_value))
1328 old_value = OVL_CURRENT (old_value);
1329
1330 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1331 /* OK */;
1332 else
1333 old_value = NULL_TREE;
1334 }
1335
1336 cp_emit_debug_info_for_using (decl, t);
1337
1338 if (is_overloaded_fn (decl))
1339 flist = decl;
1340
1341 if (! old_value)
1342 ;
1343 else if (is_overloaded_fn (old_value))
1344 {
1345 if (flist)
1346 /* It's OK to use functions from a base when there are functions with
1347 the same name already present in the current class. */;
1348 else
1349 {
1350 error ("%q+D invalid in %q#T", using_decl, t);
1351 error (" because of local method %q+#D with same name",
1352 OVL_CURRENT (old_value));
1353 return;
1354 }
1355 }
1356 else if (!DECL_ARTIFICIAL (old_value))
1357 {
1358 error ("%q+D invalid in %q#T", using_decl, t);
1359 error (" because of local member %q+#D with same name", old_value);
1360 return;
1361 }
1362
1363 /* Make type T see field decl FDECL with access ACCESS. */
1364 if (flist)
1365 for (; flist; flist = OVL_NEXT (flist))
1366 {
1367 add_method (t, OVL_CURRENT (flist), using_decl);
1368 alter_access (t, OVL_CURRENT (flist), access);
1369 }
1370 else
1371 alter_access (t, decl, access);
1372 }
1373 \f
1374 /* Data structure for find_abi_tags_r, below. */
1375
1376 struct abi_tag_data
1377 {
1378 tree t; // The type that we're checking for missing tags.
1379 tree subob; // The subobject of T that we're getting tags from.
1380 tree tags; // error_mark_node for diagnostics, or a list of missing tags.
1381 };
1382
1383 /* Subroutine of find_abi_tags_r. Handle a single TAG found on the class TP
1384 in the context of P. TAG can be either an identifier (the DECL_NAME of
1385 a tag NAMESPACE_DECL) or a STRING_CST (a tag attribute). */
1386
1387 static void
1388 check_tag (tree tag, tree id, tree *tp, abi_tag_data *p)
1389 {
1390 if (!IDENTIFIER_MARKED (id))
1391 {
1392 if (p->tags != error_mark_node)
1393 {
1394 /* We're collecting tags from template arguments or from
1395 the type of a variable or function return type. */
1396 p->tags = tree_cons (NULL_TREE, tag, p->tags);
1397
1398 /* Don't inherit this tag multiple times. */
1399 IDENTIFIER_MARKED (id) = true;
1400
1401 if (TYPE_P (p->t))
1402 {
1403 /* Tags inherited from type template arguments are only used
1404 to avoid warnings. */
1405 ABI_TAG_IMPLICIT (p->tags) = true;
1406 return;
1407 }
1408 /* For functions and variables we want to warn, too. */
1409 }
1410
1411 /* Otherwise we're diagnosing missing tags. */
1412 if (TREE_CODE (p->t) == FUNCTION_DECL)
1413 {
1414 if (warning (OPT_Wabi_tag, "%qD inherits the %E ABI tag "
1415 "that %qT (used in its return type) has",
1416 p->t, tag, *tp))
1417 inform (location_of (*tp), "%qT declared here", *tp);
1418 }
1419 else if (VAR_P (p->t))
1420 {
1421 if (warning (OPT_Wabi_tag, "%qD inherits the %E ABI tag "
1422 "that %qT (used in its type) has", p->t, tag, *tp))
1423 inform (location_of (*tp), "%qT declared here", *tp);
1424 }
1425 else if (TYPE_P (p->subob))
1426 {
1427 if (warning (OPT_Wabi_tag, "%qT does not have the %E ABI tag "
1428 "that base %qT has", p->t, tag, p->subob))
1429 inform (location_of (p->subob), "%qT declared here",
1430 p->subob);
1431 }
1432 else
1433 {
1434 if (warning (OPT_Wabi_tag, "%qT does not have the %E ABI tag "
1435 "that %qT (used in the type of %qD) has",
1436 p->t, tag, *tp, p->subob))
1437 {
1438 inform (location_of (p->subob), "%qD declared here",
1439 p->subob);
1440 inform (location_of (*tp), "%qT declared here", *tp);
1441 }
1442 }
1443 }
1444 }
1445
1446 /* Find all the ABI tags in the attribute list ATTR and either call
1447 check_tag (if TP is non-null) or set IDENTIFIER_MARKED to val. */
1448
1449 static void
1450 mark_or_check_attr_tags (tree attr, tree *tp, abi_tag_data *p, bool val)
1451 {
1452 if (!attr)
1453 return;
1454 for (; (attr = lookup_attribute ("abi_tag", attr));
1455 attr = TREE_CHAIN (attr))
1456 for (tree list = TREE_VALUE (attr); list;
1457 list = TREE_CHAIN (list))
1458 {
1459 tree tag = TREE_VALUE (list);
1460 tree id = get_identifier (TREE_STRING_POINTER (tag));
1461 if (tp)
1462 check_tag (tag, id, tp, p);
1463 else
1464 IDENTIFIER_MARKED (id) = val;
1465 }
1466 }
1467
1468 /* Find all the ABI tags on T and its enclosing scopes and either call
1469 check_tag (if TP is non-null) or set IDENTIFIER_MARKED to val. */
1470
1471 static void
1472 mark_or_check_tags (tree t, tree *tp, abi_tag_data *p, bool val)
1473 {
1474 while (t != global_namespace)
1475 {
1476 tree attr;
1477 if (TYPE_P (t))
1478 {
1479 attr = TYPE_ATTRIBUTES (t);
1480 t = CP_TYPE_CONTEXT (t);
1481 }
1482 else
1483 {
1484 attr = DECL_ATTRIBUTES (t);
1485 t = CP_DECL_CONTEXT (t);
1486 }
1487 mark_or_check_attr_tags (attr, tp, p, val);
1488 }
1489 }
1490
1491 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1492 types with ABI tags, add the corresponding identifiers to the VEC in
1493 *DATA and set IDENTIFIER_MARKED. */
1494
1495 static tree
1496 find_abi_tags_r (tree *tp, int *walk_subtrees, void *data)
1497 {
1498 if (!OVERLOAD_TYPE_P (*tp))
1499 return NULL_TREE;
1500
1501 /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1502 anyway, but let's make sure of it. */
1503 *walk_subtrees = false;
1504
1505 abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1506
1507 mark_or_check_tags (*tp, tp, p, false);
1508
1509 return NULL_TREE;
1510 }
1511
1512 /* walk_tree callback for mark_abi_tags: if *TP is a class, set
1513 IDENTIFIER_MARKED on its ABI tags. */
1514
1515 static tree
1516 mark_abi_tags_r (tree *tp, int *walk_subtrees, void *data)
1517 {
1518 if (!OVERLOAD_TYPE_P (*tp))
1519 return NULL_TREE;
1520
1521 /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1522 anyway, but let's make sure of it. */
1523 *walk_subtrees = false;
1524
1525 bool *valp = static_cast<bool*>(data);
1526
1527 mark_or_check_tags (*tp, NULL, NULL, *valp);
1528
1529 return NULL_TREE;
1530 }
1531
1532 /* Set IDENTIFIER_MARKED on all the ABI tags on T and its enclosing
1533 scopes. */
1534
1535 static void
1536 mark_abi_tags (tree t, bool val)
1537 {
1538 mark_or_check_tags (t, NULL, NULL, val);
1539 if (DECL_P (t))
1540 {
1541 if (DECL_LANG_SPECIFIC (t) && DECL_USE_TEMPLATE (t)
1542 && PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (t)))
1543 {
1544 /* Template arguments are part of the signature. */
1545 tree level = INNERMOST_TEMPLATE_ARGS (DECL_TI_ARGS (t));
1546 for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
1547 {
1548 tree arg = TREE_VEC_ELT (level, j);
1549 cp_walk_tree_without_duplicates (&arg, mark_abi_tags_r, &val);
1550 }
1551 }
1552 if (TREE_CODE (t) == FUNCTION_DECL)
1553 /* A function's parameter types are part of the signature, so
1554 we don't need to inherit any tags that are also in them. */
1555 for (tree arg = FUNCTION_FIRST_USER_PARMTYPE (t); arg;
1556 arg = TREE_CHAIN (arg))
1557 cp_walk_tree_without_duplicates (&TREE_VALUE (arg),
1558 mark_abi_tags_r, &val);
1559 }
1560 }
1561
1562 /* Check that T has all the ABI tags that subobject SUBOB has, or
1563 warn if not. If T is a (variable or function) declaration, also
1564 return any missing tags, and add them to T if JUST_CHECKING is false. */
1565
1566 static tree
1567 check_abi_tags (tree t, tree subob, bool just_checking = false)
1568 {
1569 bool inherit = DECL_P (t);
1570
1571 if (!inherit && !warn_abi_tag)
1572 return NULL_TREE;
1573
1574 tree decl = TYPE_P (t) ? TYPE_NAME (t) : t;
1575 if (!TREE_PUBLIC (decl))
1576 /* No need to worry about things local to this TU. */
1577 return NULL_TREE;
1578
1579 mark_abi_tags (t, true);
1580
1581 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1582 struct abi_tag_data data = { t, subob, error_mark_node };
1583 if (inherit)
1584 data.tags = NULL_TREE;
1585
1586 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1587
1588 if (!(inherit && data.tags))
1589 /* We don't need to do anything with data.tags. */;
1590 else if (just_checking)
1591 for (tree t = data.tags; t; t = TREE_CHAIN (t))
1592 {
1593 tree id = get_identifier (TREE_STRING_POINTER (TREE_VALUE (t)));
1594 IDENTIFIER_MARKED (id) = false;
1595 }
1596 else
1597 {
1598 tree attr = lookup_attribute ("abi_tag", DECL_ATTRIBUTES (t));
1599 if (attr)
1600 TREE_VALUE (attr) = chainon (data.tags, TREE_VALUE (attr));
1601 else
1602 DECL_ATTRIBUTES (t)
1603 = tree_cons (get_identifier ("abi_tag"), data.tags,
1604 DECL_ATTRIBUTES (t));
1605 }
1606
1607 mark_abi_tags (t, false);
1608
1609 return data.tags;
1610 }
1611
1612 /* Check that DECL has all the ABI tags that are used in parts of its type
1613 that are not reflected in its mangled name. */
1614
1615 void
1616 check_abi_tags (tree decl)
1617 {
1618 if (VAR_P (decl))
1619 check_abi_tags (decl, TREE_TYPE (decl));
1620 else if (TREE_CODE (decl) == FUNCTION_DECL
1621 && !DECL_CONV_FN_P (decl)
1622 && !mangle_return_type_p (decl))
1623 check_abi_tags (decl, TREE_TYPE (TREE_TYPE (decl)));
1624 }
1625
1626 /* Return any ABI tags that are used in parts of the type of DECL
1627 that are not reflected in its mangled name. This function is only
1628 used in backward-compatible mangling for ABI <11. */
1629
1630 tree
1631 missing_abi_tags (tree decl)
1632 {
1633 if (VAR_P (decl))
1634 return check_abi_tags (decl, TREE_TYPE (decl), true);
1635 else if (TREE_CODE (decl) == FUNCTION_DECL
1636 /* Don't check DECL_CONV_FN_P here like we do in check_abi_tags, so
1637 that we can use this function for setting need_abi_warning
1638 regardless of the current flag_abi_version. */
1639 && !mangle_return_type_p (decl))
1640 return check_abi_tags (decl, TREE_TYPE (TREE_TYPE (decl)), true);
1641 else
1642 return NULL_TREE;
1643 }
1644
1645 void
1646 inherit_targ_abi_tags (tree t)
1647 {
1648 if (!CLASS_TYPE_P (t)
1649 || CLASSTYPE_TEMPLATE_INFO (t) == NULL_TREE)
1650 return;
1651
1652 mark_abi_tags (t, true);
1653
1654 tree args = CLASSTYPE_TI_ARGS (t);
1655 struct abi_tag_data data = { t, NULL_TREE, NULL_TREE };
1656 for (int i = 0; i < TMPL_ARGS_DEPTH (args); ++i)
1657 {
1658 tree level = TMPL_ARGS_LEVEL (args, i+1);
1659 for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
1660 {
1661 tree arg = TREE_VEC_ELT (level, j);
1662 data.subob = arg;
1663 cp_walk_tree_without_duplicates (&arg, find_abi_tags_r, &data);
1664 }
1665 }
1666
1667 // If we found some tags on our template arguments, add them to our
1668 // abi_tag attribute.
1669 if (data.tags)
1670 {
1671 tree attr = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1672 if (attr)
1673 TREE_VALUE (attr) = chainon (data.tags, TREE_VALUE (attr));
1674 else
1675 TYPE_ATTRIBUTES (t)
1676 = tree_cons (get_identifier ("abi_tag"), data.tags,
1677 TYPE_ATTRIBUTES (t));
1678 }
1679
1680 mark_abi_tags (t, false);
1681 }
1682
1683 /* Return true, iff class T has a non-virtual destructor that is
1684 accessible from outside the class heirarchy (i.e. is public, or
1685 there's a suitable friend. */
1686
1687 static bool
1688 accessible_nvdtor_p (tree t)
1689 {
1690 tree dtor = CLASSTYPE_DESTRUCTORS (t);
1691
1692 /* An implicitly declared destructor is always public. And,
1693 if it were virtual, we would have created it by now. */
1694 if (!dtor)
1695 return true;
1696
1697 if (DECL_VINDEX (dtor))
1698 return false; /* Virtual */
1699
1700 if (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
1701 return true; /* Public */
1702
1703 if (CLASSTYPE_FRIEND_CLASSES (t)
1704 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1705 return true; /* Has friends */
1706
1707 return false;
1708 }
1709
1710 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1711 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1712 properties of the bases. */
1713
1714 static void
1715 check_bases (tree t,
1716 int* cant_have_const_ctor_p,
1717 int* no_const_asn_ref_p)
1718 {
1719 int i;
1720 bool seen_non_virtual_nearly_empty_base_p = 0;
1721 int seen_tm_mask = 0;
1722 tree base_binfo;
1723 tree binfo;
1724 tree field = NULL_TREE;
1725
1726 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1727 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1728 if (TREE_CODE (field) == FIELD_DECL)
1729 break;
1730
1731 for (binfo = TYPE_BINFO (t), i = 0;
1732 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1733 {
1734 tree basetype = TREE_TYPE (base_binfo);
1735
1736 gcc_assert (COMPLETE_TYPE_P (basetype));
1737
1738 if (CLASSTYPE_FINAL (basetype))
1739 error ("cannot derive from %<final%> base %qT in derived type %qT",
1740 basetype, t);
1741
1742 /* If any base class is non-literal, so is the derived class. */
1743 if (!CLASSTYPE_LITERAL_P (basetype))
1744 CLASSTYPE_LITERAL_P (t) = false;
1745
1746 /* If the base class doesn't have copy constructors or
1747 assignment operators that take const references, then the
1748 derived class cannot have such a member automatically
1749 generated. */
1750 if (TYPE_HAS_COPY_CTOR (basetype)
1751 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1752 *cant_have_const_ctor_p = 1;
1753 if (TYPE_HAS_COPY_ASSIGN (basetype)
1754 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1755 *no_const_asn_ref_p = 1;
1756
1757 if (BINFO_VIRTUAL_P (base_binfo))
1758 /* A virtual base does not effect nearly emptiness. */
1759 ;
1760 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1761 {
1762 if (seen_non_virtual_nearly_empty_base_p)
1763 /* And if there is more than one nearly empty base, then the
1764 derived class is not nearly empty either. */
1765 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1766 else
1767 /* Remember we've seen one. */
1768 seen_non_virtual_nearly_empty_base_p = 1;
1769 }
1770 else if (!is_empty_class (basetype))
1771 /* If the base class is not empty or nearly empty, then this
1772 class cannot be nearly empty. */
1773 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1774
1775 /* A lot of properties from the bases also apply to the derived
1776 class. */
1777 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1778 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1779 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1780 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1781 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1782 || !TYPE_HAS_COPY_ASSIGN (basetype));
1783 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1784 || !TYPE_HAS_COPY_CTOR (basetype));
1785 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1786 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1787 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1788 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1789 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1790 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1791 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1792 || TYPE_HAS_COMPLEX_DFLT (basetype));
1793 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT
1794 (t, CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
1795 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (basetype));
1796 SET_CLASSTYPE_REF_FIELDS_NEED_INIT
1797 (t, CLASSTYPE_REF_FIELDS_NEED_INIT (t)
1798 | CLASSTYPE_REF_FIELDS_NEED_INIT (basetype));
1799
1800 /* A standard-layout class is a class that:
1801 ...
1802 * has no non-standard-layout base classes, */
1803 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1804 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1805 {
1806 tree basefield;
1807 /* ...has no base classes of the same type as the first non-static
1808 data member... */
1809 if (field && DECL_CONTEXT (field) == t
1810 && (same_type_ignoring_top_level_qualifiers_p
1811 (TREE_TYPE (field), basetype)))
1812 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1813 else
1814 /* ...either has no non-static data members in the most-derived
1815 class and at most one base class with non-static data
1816 members, or has no base classes with non-static data
1817 members */
1818 for (basefield = TYPE_FIELDS (basetype); basefield;
1819 basefield = DECL_CHAIN (basefield))
1820 if (TREE_CODE (basefield) == FIELD_DECL)
1821 {
1822 if (field)
1823 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1824 else
1825 field = basefield;
1826 break;
1827 }
1828 }
1829
1830 /* Don't bother collecting tm attributes if transactional memory
1831 support is not enabled. */
1832 if (flag_tm)
1833 {
1834 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1835 if (tm_attr)
1836 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1837 }
1838
1839 check_abi_tags (t, basetype);
1840 }
1841
1842 /* If one of the base classes had TM attributes, and the current class
1843 doesn't define its own, then the current class inherits one. */
1844 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1845 {
1846 tree tm_attr = tm_mask_to_attr (least_bit_hwi (seen_tm_mask));
1847 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1848 }
1849 }
1850
1851 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1852 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1853 that have had a nearly-empty virtual primary base stolen by some
1854 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1855 T. */
1856
1857 static void
1858 determine_primary_bases (tree t)
1859 {
1860 unsigned i;
1861 tree primary = NULL_TREE;
1862 tree type_binfo = TYPE_BINFO (t);
1863 tree base_binfo;
1864
1865 /* Determine the primary bases of our bases. */
1866 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1867 base_binfo = TREE_CHAIN (base_binfo))
1868 {
1869 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1870
1871 /* See if we're the non-virtual primary of our inheritance
1872 chain. */
1873 if (!BINFO_VIRTUAL_P (base_binfo))
1874 {
1875 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1876 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1877
1878 if (parent_primary
1879 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1880 BINFO_TYPE (parent_primary)))
1881 /* We are the primary binfo. */
1882 BINFO_PRIMARY_P (base_binfo) = 1;
1883 }
1884 /* Determine if we have a virtual primary base, and mark it so.
1885 */
1886 if (primary && BINFO_VIRTUAL_P (primary))
1887 {
1888 tree this_primary = copied_binfo (primary, base_binfo);
1889
1890 if (BINFO_PRIMARY_P (this_primary))
1891 /* Someone already claimed this base. */
1892 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1893 else
1894 {
1895 tree delta;
1896
1897 BINFO_PRIMARY_P (this_primary) = 1;
1898 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1899
1900 /* A virtual binfo might have been copied from within
1901 another hierarchy. As we're about to use it as a
1902 primary base, make sure the offsets match. */
1903 delta = size_diffop_loc (input_location,
1904 fold_convert (ssizetype,
1905 BINFO_OFFSET (base_binfo)),
1906 fold_convert (ssizetype,
1907 BINFO_OFFSET (this_primary)));
1908
1909 propagate_binfo_offsets (this_primary, delta);
1910 }
1911 }
1912 }
1913
1914 /* First look for a dynamic direct non-virtual base. */
1915 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1916 {
1917 tree basetype = BINFO_TYPE (base_binfo);
1918
1919 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1920 {
1921 primary = base_binfo;
1922 goto found;
1923 }
1924 }
1925
1926 /* A "nearly-empty" virtual base class can be the primary base
1927 class, if no non-virtual polymorphic base can be found. Look for
1928 a nearly-empty virtual dynamic base that is not already a primary
1929 base of something in the hierarchy. If there is no such base,
1930 just pick the first nearly-empty virtual base. */
1931
1932 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1933 base_binfo = TREE_CHAIN (base_binfo))
1934 if (BINFO_VIRTUAL_P (base_binfo)
1935 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1936 {
1937 if (!BINFO_PRIMARY_P (base_binfo))
1938 {
1939 /* Found one that is not primary. */
1940 primary = base_binfo;
1941 goto found;
1942 }
1943 else if (!primary)
1944 /* Remember the first candidate. */
1945 primary = base_binfo;
1946 }
1947
1948 found:
1949 /* If we've got a primary base, use it. */
1950 if (primary)
1951 {
1952 tree basetype = BINFO_TYPE (primary);
1953
1954 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1955 if (BINFO_PRIMARY_P (primary))
1956 /* We are stealing a primary base. */
1957 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1958 BINFO_PRIMARY_P (primary) = 1;
1959 if (BINFO_VIRTUAL_P (primary))
1960 {
1961 tree delta;
1962
1963 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1964 /* A virtual binfo might have been copied from within
1965 another hierarchy. As we're about to use it as a primary
1966 base, make sure the offsets match. */
1967 delta = size_diffop_loc (input_location, ssize_int (0),
1968 fold_convert (ssizetype, BINFO_OFFSET (primary)));
1969
1970 propagate_binfo_offsets (primary, delta);
1971 }
1972
1973 primary = TYPE_BINFO (basetype);
1974
1975 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1976 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1977 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1978 }
1979 }
1980
1981 /* Update the variant types of T. */
1982
1983 void
1984 fixup_type_variants (tree t)
1985 {
1986 tree variants;
1987
1988 if (!t)
1989 return;
1990
1991 for (variants = TYPE_NEXT_VARIANT (t);
1992 variants;
1993 variants = TYPE_NEXT_VARIANT (variants))
1994 {
1995 /* These fields are in the _TYPE part of the node, not in
1996 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1997 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1998 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1999 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
2000 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
2001
2002 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
2003
2004 TYPE_BINFO (variants) = TYPE_BINFO (t);
2005
2006 /* Copy whatever these are holding today. */
2007 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
2008 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
2009 }
2010 }
2011
2012 /* KLASS is a class that we're applying may_alias to after the body is
2013 parsed. Fixup any POINTER_TO and REFERENCE_TO types. The
2014 canonical type(s) will be implicitly updated. */
2015
2016 static void
2017 fixup_may_alias (tree klass)
2018 {
2019 tree t;
2020
2021 for (t = TYPE_POINTER_TO (klass); t; t = TYPE_NEXT_PTR_TO (t))
2022 TYPE_REF_CAN_ALIAS_ALL (t) = true;
2023 for (t = TYPE_REFERENCE_TO (klass); t; t = TYPE_NEXT_REF_TO (t))
2024 TYPE_REF_CAN_ALIAS_ALL (t) = true;
2025 }
2026
2027 /* Early variant fixups: we apply attributes at the beginning of the class
2028 definition, and we need to fix up any variants that have already been
2029 made via elaborated-type-specifier so that check_qualified_type works. */
2030
2031 void
2032 fixup_attribute_variants (tree t)
2033 {
2034 tree variants;
2035
2036 if (!t)
2037 return;
2038
2039 tree attrs = TYPE_ATTRIBUTES (t);
2040 unsigned align = TYPE_ALIGN (t);
2041 bool user_align = TYPE_USER_ALIGN (t);
2042 bool may_alias = lookup_attribute ("may_alias", attrs);
2043
2044 if (may_alias)
2045 fixup_may_alias (t);
2046
2047 for (variants = TYPE_NEXT_VARIANT (t);
2048 variants;
2049 variants = TYPE_NEXT_VARIANT (variants))
2050 {
2051 /* These are the two fields that check_qualified_type looks at and
2052 are affected by attributes. */
2053 TYPE_ATTRIBUTES (variants) = attrs;
2054 unsigned valign = align;
2055 if (TYPE_USER_ALIGN (variants))
2056 valign = MAX (valign, TYPE_ALIGN (variants));
2057 else
2058 TYPE_USER_ALIGN (variants) = user_align;
2059 SET_TYPE_ALIGN (variants, valign);
2060 if (may_alias)
2061 fixup_may_alias (variants);
2062 }
2063 }
2064 \f
2065 /* Set memoizing fields and bits of T (and its variants) for later
2066 use. */
2067
2068 static void
2069 finish_struct_bits (tree t)
2070 {
2071 /* Fix up variants (if any). */
2072 fixup_type_variants (t);
2073
2074 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
2075 /* For a class w/o baseclasses, 'finish_struct' has set
2076 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
2077 Similarly for a class whose base classes do not have vtables.
2078 When neither of these is true, we might have removed abstract
2079 virtuals (by providing a definition), added some (by declaring
2080 new ones), or redeclared ones from a base class. We need to
2081 recalculate what's really an abstract virtual at this point (by
2082 looking in the vtables). */
2083 get_pure_virtuals (t);
2084
2085 /* If this type has a copy constructor or a destructor, force its
2086 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
2087 nonzero. This will cause it to be passed by invisible reference
2088 and prevent it from being returned in a register. */
2089 if (type_has_nontrivial_copy_init (t)
2090 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2091 {
2092 tree variants;
2093 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
2094 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
2095 {
2096 SET_TYPE_MODE (variants, BLKmode);
2097 TREE_ADDRESSABLE (variants) = 1;
2098 }
2099 }
2100 }
2101
2102 /* Issue warnings about T having private constructors, but no friends,
2103 and so forth.
2104
2105 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
2106 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
2107 non-private static member functions. */
2108
2109 static void
2110 maybe_warn_about_overly_private_class (tree t)
2111 {
2112 int has_member_fn = 0;
2113 int has_nonprivate_method = 0;
2114 tree fn;
2115
2116 if (!warn_ctor_dtor_privacy
2117 /* If the class has friends, those entities might create and
2118 access instances, so we should not warn. */
2119 || (CLASSTYPE_FRIEND_CLASSES (t)
2120 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
2121 /* We will have warned when the template was declared; there's
2122 no need to warn on every instantiation. */
2123 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
2124 /* There's no reason to even consider warning about this
2125 class. */
2126 return;
2127
2128 /* We only issue one warning, if more than one applies, because
2129 otherwise, on code like:
2130
2131 class A {
2132 // Oops - forgot `public:'
2133 A();
2134 A(const A&);
2135 ~A();
2136 };
2137
2138 we warn several times about essentially the same problem. */
2139
2140 /* Check to see if all (non-constructor, non-destructor) member
2141 functions are private. (Since there are no friends or
2142 non-private statics, we can't ever call any of the private member
2143 functions.) */
2144 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
2145 /* We're not interested in compiler-generated methods; they don't
2146 provide any way to call private members. */
2147 if (!DECL_ARTIFICIAL (fn))
2148 {
2149 if (!TREE_PRIVATE (fn))
2150 {
2151 if (DECL_STATIC_FUNCTION_P (fn))
2152 /* A non-private static member function is just like a
2153 friend; it can create and invoke private member
2154 functions, and be accessed without a class
2155 instance. */
2156 return;
2157
2158 has_nonprivate_method = 1;
2159 /* Keep searching for a static member function. */
2160 }
2161 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
2162 has_member_fn = 1;
2163 }
2164
2165 if (!has_nonprivate_method && has_member_fn)
2166 {
2167 /* There are no non-private methods, and there's at least one
2168 private member function that isn't a constructor or
2169 destructor. (If all the private members are
2170 constructors/destructors we want to use the code below that
2171 issues error messages specifically referring to
2172 constructors/destructors.) */
2173 unsigned i;
2174 tree binfo = TYPE_BINFO (t);
2175
2176 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
2177 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
2178 {
2179 has_nonprivate_method = 1;
2180 break;
2181 }
2182 if (!has_nonprivate_method)
2183 {
2184 warning (OPT_Wctor_dtor_privacy,
2185 "all member functions in class %qT are private", t);
2186 return;
2187 }
2188 }
2189
2190 /* Even if some of the member functions are non-private, the class
2191 won't be useful for much if all the constructors or destructors
2192 are private: such an object can never be created or destroyed. */
2193 fn = CLASSTYPE_DESTRUCTORS (t);
2194 if (fn && TREE_PRIVATE (fn))
2195 {
2196 warning (OPT_Wctor_dtor_privacy,
2197 "%q#T only defines a private destructor and has no friends",
2198 t);
2199 return;
2200 }
2201
2202 /* Warn about classes that have private constructors and no friends. */
2203 if (TYPE_HAS_USER_CONSTRUCTOR (t)
2204 /* Implicitly generated constructors are always public. */
2205 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
2206 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
2207 {
2208 int nonprivate_ctor = 0;
2209
2210 /* If a non-template class does not define a copy
2211 constructor, one is defined for it, enabling it to avoid
2212 this warning. For a template class, this does not
2213 happen, and so we would normally get a warning on:
2214
2215 template <class T> class C { private: C(); };
2216
2217 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
2218 complete non-template or fully instantiated classes have this
2219 flag set. */
2220 if (!TYPE_HAS_COPY_CTOR (t))
2221 nonprivate_ctor = 1;
2222 else
2223 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
2224 {
2225 tree ctor = OVL_CURRENT (fn);
2226 /* Ideally, we wouldn't count copy constructors (or, in
2227 fact, any constructor that takes an argument of the
2228 class type as a parameter) because such things cannot
2229 be used to construct an instance of the class unless
2230 you already have one. But, for now at least, we're
2231 more generous. */
2232 if (! TREE_PRIVATE (ctor))
2233 {
2234 nonprivate_ctor = 1;
2235 break;
2236 }
2237 }
2238
2239 if (nonprivate_ctor == 0)
2240 {
2241 warning (OPT_Wctor_dtor_privacy,
2242 "%q#T only defines private constructors and has no friends",
2243 t);
2244 return;
2245 }
2246 }
2247 }
2248
2249 static struct {
2250 gt_pointer_operator new_value;
2251 void *cookie;
2252 } resort_data;
2253
2254 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
2255
2256 static int
2257 method_name_cmp (const void* m1_p, const void* m2_p)
2258 {
2259 const tree *const m1 = (const tree *) m1_p;
2260 const tree *const m2 = (const tree *) m2_p;
2261
2262 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2263 return 0;
2264 if (*m1 == NULL_TREE)
2265 return -1;
2266 if (*m2 == NULL_TREE)
2267 return 1;
2268 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
2269 return -1;
2270 return 1;
2271 }
2272
2273 /* This routine compares two fields like method_name_cmp but using the
2274 pointer operator in resort_field_decl_data. */
2275
2276 static int
2277 resort_method_name_cmp (const void* m1_p, const void* m2_p)
2278 {
2279 const tree *const m1 = (const tree *) m1_p;
2280 const tree *const m2 = (const tree *) m2_p;
2281 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
2282 return 0;
2283 if (*m1 == NULL_TREE)
2284 return -1;
2285 if (*m2 == NULL_TREE)
2286 return 1;
2287 {
2288 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
2289 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
2290 resort_data.new_value (&d1, resort_data.cookie);
2291 resort_data.new_value (&d2, resort_data.cookie);
2292 if (d1 < d2)
2293 return -1;
2294 }
2295 return 1;
2296 }
2297
2298 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
2299
2300 void
2301 resort_type_method_vec (void* obj,
2302 void* /*orig_obj*/,
2303 gt_pointer_operator new_value,
2304 void* cookie)
2305 {
2306 vec<tree, va_gc> *method_vec = (vec<tree, va_gc> *) obj;
2307 int len = vec_safe_length (method_vec);
2308 size_t slot;
2309 tree fn;
2310
2311 /* The type conversion ops have to live at the front of the vec, so we
2312 can't sort them. */
2313 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2314 vec_safe_iterate (method_vec, slot, &fn);
2315 ++slot)
2316 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
2317 break;
2318
2319 if (len - slot > 1)
2320 {
2321 resort_data.new_value = new_value;
2322 resort_data.cookie = cookie;
2323 qsort (method_vec->address () + slot, len - slot, sizeof (tree),
2324 resort_method_name_cmp);
2325 }
2326 }
2327
2328 /* Warn about duplicate methods in fn_fields.
2329
2330 Sort methods that are not special (i.e., constructors, destructors,
2331 and type conversion operators) so that we can find them faster in
2332 search. */
2333
2334 static void
2335 finish_struct_methods (tree t)
2336 {
2337 tree fn_fields;
2338 vec<tree, va_gc> *method_vec;
2339 int slot, len;
2340
2341 method_vec = CLASSTYPE_METHOD_VEC (t);
2342 if (!method_vec)
2343 return;
2344
2345 len = method_vec->length ();
2346
2347 /* Clear DECL_IN_AGGR_P for all functions. */
2348 for (fn_fields = TYPE_METHODS (t); fn_fields;
2349 fn_fields = DECL_CHAIN (fn_fields))
2350 DECL_IN_AGGR_P (fn_fields) = 0;
2351
2352 /* Issue warnings about private constructors and such. If there are
2353 no methods, then some public defaults are generated. */
2354 maybe_warn_about_overly_private_class (t);
2355
2356 /* The type conversion ops have to live at the front of the vec, so we
2357 can't sort them. */
2358 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
2359 method_vec->iterate (slot, &fn_fields);
2360 ++slot)
2361 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
2362 break;
2363 if (len - slot > 1)
2364 qsort (method_vec->address () + slot,
2365 len-slot, sizeof (tree), method_name_cmp);
2366 }
2367
2368 /* Make BINFO's vtable have N entries, including RTTI entries,
2369 vbase and vcall offsets, etc. Set its type and call the back end
2370 to lay it out. */
2371
2372 static void
2373 layout_vtable_decl (tree binfo, int n)
2374 {
2375 tree atype;
2376 tree vtable;
2377
2378 atype = build_array_of_n_type (vtable_entry_type, n);
2379 layout_type (atype);
2380
2381 /* We may have to grow the vtable. */
2382 vtable = get_vtbl_decl_for_binfo (binfo);
2383 if (!same_type_p (TREE_TYPE (vtable), atype))
2384 {
2385 TREE_TYPE (vtable) = atype;
2386 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2387 layout_decl (vtable, 0);
2388 }
2389 }
2390
2391 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2392 have the same signature. */
2393
2394 int
2395 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2396 {
2397 /* One destructor overrides another if they are the same kind of
2398 destructor. */
2399 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2400 && special_function_p (base_fndecl) == special_function_p (fndecl))
2401 return 1;
2402 /* But a non-destructor never overrides a destructor, nor vice
2403 versa, nor do different kinds of destructors override
2404 one-another. For example, a complete object destructor does not
2405 override a deleting destructor. */
2406 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2407 return 0;
2408
2409 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2410 || (DECL_CONV_FN_P (fndecl)
2411 && DECL_CONV_FN_P (base_fndecl)
2412 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2413 DECL_CONV_FN_TYPE (base_fndecl))))
2414 {
2415 tree fntype = TREE_TYPE (fndecl);
2416 tree base_fntype = TREE_TYPE (base_fndecl);
2417 if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype)
2418 && type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype)
2419 && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl),
2420 FUNCTION_FIRST_USER_PARMTYPE (base_fndecl)))
2421 return 1;
2422 }
2423 return 0;
2424 }
2425
2426 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2427 subobject. */
2428
2429 static bool
2430 base_derived_from (tree derived, tree base)
2431 {
2432 tree probe;
2433
2434 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2435 {
2436 if (probe == derived)
2437 return true;
2438 else if (BINFO_VIRTUAL_P (probe))
2439 /* If we meet a virtual base, we can't follow the inheritance
2440 any more. See if the complete type of DERIVED contains
2441 such a virtual base. */
2442 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2443 != NULL_TREE);
2444 }
2445 return false;
2446 }
2447
2448 struct find_final_overrider_data {
2449 /* The function for which we are trying to find a final overrider. */
2450 tree fn;
2451 /* The base class in which the function was declared. */
2452 tree declaring_base;
2453 /* The candidate overriders. */
2454 tree candidates;
2455 /* Path to most derived. */
2456 vec<tree> path;
2457 };
2458
2459 /* Add the overrider along the current path to FFOD->CANDIDATES.
2460 Returns true if an overrider was found; false otherwise. */
2461
2462 static bool
2463 dfs_find_final_overrider_1 (tree binfo,
2464 find_final_overrider_data *ffod,
2465 unsigned depth)
2466 {
2467 tree method;
2468
2469 /* If BINFO is not the most derived type, try a more derived class.
2470 A definition there will overrider a definition here. */
2471 if (depth)
2472 {
2473 depth--;
2474 if (dfs_find_final_overrider_1
2475 (ffod->path[depth], ffod, depth))
2476 return true;
2477 }
2478
2479 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2480 if (method)
2481 {
2482 tree *candidate = &ffod->candidates;
2483
2484 /* Remove any candidates overridden by this new function. */
2485 while (*candidate)
2486 {
2487 /* If *CANDIDATE overrides METHOD, then METHOD
2488 cannot override anything else on the list. */
2489 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2490 return true;
2491 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2492 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2493 *candidate = TREE_CHAIN (*candidate);
2494 else
2495 candidate = &TREE_CHAIN (*candidate);
2496 }
2497
2498 /* Add the new function. */
2499 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2500 return true;
2501 }
2502
2503 return false;
2504 }
2505
2506 /* Called from find_final_overrider via dfs_walk. */
2507
2508 static tree
2509 dfs_find_final_overrider_pre (tree binfo, void *data)
2510 {
2511 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2512
2513 if (binfo == ffod->declaring_base)
2514 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2515 ffod->path.safe_push (binfo);
2516
2517 return NULL_TREE;
2518 }
2519
2520 static tree
2521 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2522 {
2523 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2524 ffod->path.pop ();
2525
2526 return NULL_TREE;
2527 }
2528
2529 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2530 FN and whose TREE_VALUE is the binfo for the base where the
2531 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2532 DERIVED) is the base object in which FN is declared. */
2533
2534 static tree
2535 find_final_overrider (tree derived, tree binfo, tree fn)
2536 {
2537 find_final_overrider_data ffod;
2538
2539 /* Getting this right is a little tricky. This is valid:
2540
2541 struct S { virtual void f (); };
2542 struct T { virtual void f (); };
2543 struct U : public S, public T { };
2544
2545 even though calling `f' in `U' is ambiguous. But,
2546
2547 struct R { virtual void f(); };
2548 struct S : virtual public R { virtual void f (); };
2549 struct T : virtual public R { virtual void f (); };
2550 struct U : public S, public T { };
2551
2552 is not -- there's no way to decide whether to put `S::f' or
2553 `T::f' in the vtable for `R'.
2554
2555 The solution is to look at all paths to BINFO. If we find
2556 different overriders along any two, then there is a problem. */
2557 if (DECL_THUNK_P (fn))
2558 fn = THUNK_TARGET (fn);
2559
2560 /* Determine the depth of the hierarchy. */
2561 ffod.fn = fn;
2562 ffod.declaring_base = binfo;
2563 ffod.candidates = NULL_TREE;
2564 ffod.path.create (30);
2565
2566 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2567 dfs_find_final_overrider_post, &ffod);
2568
2569 ffod.path.release ();
2570
2571 /* If there was no winner, issue an error message. */
2572 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2573 return error_mark_node;
2574
2575 return ffod.candidates;
2576 }
2577
2578 /* Return the index of the vcall offset for FN when TYPE is used as a
2579 virtual base. */
2580
2581 static tree
2582 get_vcall_index (tree fn, tree type)
2583 {
2584 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2585 tree_pair_p p;
2586 unsigned ix;
2587
2588 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2589 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2590 || same_signature_p (fn, p->purpose))
2591 return p->value;
2592
2593 /* There should always be an appropriate index. */
2594 gcc_unreachable ();
2595 }
2596
2597 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2598 dominated by T. FN is the old function; VIRTUALS points to the
2599 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2600 of that entry in the list. */
2601
2602 static void
2603 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2604 unsigned ix)
2605 {
2606 tree b;
2607 tree overrider;
2608 tree delta;
2609 tree virtual_base;
2610 tree first_defn;
2611 tree overrider_fn, overrider_target;
2612 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2613 tree over_return, base_return;
2614 bool lost = false;
2615
2616 /* Find the nearest primary base (possibly binfo itself) which defines
2617 this function; this is the class the caller will convert to when
2618 calling FN through BINFO. */
2619 for (b = binfo; ; b = get_primary_binfo (b))
2620 {
2621 gcc_assert (b);
2622 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2623 break;
2624
2625 /* The nearest definition is from a lost primary. */
2626 if (BINFO_LOST_PRIMARY_P (b))
2627 lost = true;
2628 }
2629 first_defn = b;
2630
2631 /* Find the final overrider. */
2632 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2633 if (overrider == error_mark_node)
2634 {
2635 error ("no unique final overrider for %qD in %qT", target_fn, t);
2636 return;
2637 }
2638 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2639
2640 /* Check for adjusting covariant return types. */
2641 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2642 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2643
2644 if (POINTER_TYPE_P (over_return)
2645 && TREE_CODE (over_return) == TREE_CODE (base_return)
2646 && CLASS_TYPE_P (TREE_TYPE (over_return))
2647 && CLASS_TYPE_P (TREE_TYPE (base_return))
2648 /* If the overrider is invalid, don't even try. */
2649 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2650 {
2651 /* If FN is a covariant thunk, we must figure out the adjustment
2652 to the final base FN was converting to. As OVERRIDER_TARGET might
2653 also be converting to the return type of FN, we have to
2654 combine the two conversions here. */
2655 tree fixed_offset, virtual_offset;
2656
2657 over_return = TREE_TYPE (over_return);
2658 base_return = TREE_TYPE (base_return);
2659
2660 if (DECL_THUNK_P (fn))
2661 {
2662 gcc_assert (DECL_RESULT_THUNK_P (fn));
2663 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2664 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2665 }
2666 else
2667 fixed_offset = virtual_offset = NULL_TREE;
2668
2669 if (virtual_offset)
2670 /* Find the equivalent binfo within the return type of the
2671 overriding function. We will want the vbase offset from
2672 there. */
2673 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2674 over_return);
2675 else if (!same_type_ignoring_top_level_qualifiers_p
2676 (over_return, base_return))
2677 {
2678 /* There was no existing virtual thunk (which takes
2679 precedence). So find the binfo of the base function's
2680 return type within the overriding function's return type.
2681 Fortunately we know the covariancy is valid (it
2682 has already been checked), so we can just iterate along
2683 the binfos, which have been chained in inheritance graph
2684 order. Of course it is lame that we have to repeat the
2685 search here anyway -- we should really be caching pieces
2686 of the vtable and avoiding this repeated work. */
2687 tree thunk_binfo, base_binfo;
2688
2689 /* Find the base binfo within the overriding function's
2690 return type. We will always find a thunk_binfo, except
2691 when the covariancy is invalid (which we will have
2692 already diagnosed). */
2693 for (base_binfo = TYPE_BINFO (base_return),
2694 thunk_binfo = TYPE_BINFO (over_return);
2695 thunk_binfo;
2696 thunk_binfo = TREE_CHAIN (thunk_binfo))
2697 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2698 BINFO_TYPE (base_binfo)))
2699 break;
2700
2701 /* See if virtual inheritance is involved. */
2702 for (virtual_offset = thunk_binfo;
2703 virtual_offset;
2704 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2705 if (BINFO_VIRTUAL_P (virtual_offset))
2706 break;
2707
2708 if (virtual_offset
2709 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2710 {
2711 tree offset = fold_convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2712
2713 if (virtual_offset)
2714 {
2715 /* We convert via virtual base. Adjust the fixed
2716 offset to be from there. */
2717 offset =
2718 size_diffop (offset,
2719 fold_convert (ssizetype,
2720 BINFO_OFFSET (virtual_offset)));
2721 }
2722 if (fixed_offset)
2723 /* There was an existing fixed offset, this must be
2724 from the base just converted to, and the base the
2725 FN was thunking to. */
2726 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2727 else
2728 fixed_offset = offset;
2729 }
2730 }
2731
2732 if (fixed_offset || virtual_offset)
2733 /* Replace the overriding function with a covariant thunk. We
2734 will emit the overriding function in its own slot as
2735 well. */
2736 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2737 fixed_offset, virtual_offset);
2738 }
2739 else
2740 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2741 !DECL_THUNK_P (fn));
2742
2743 /* If we need a covariant thunk, then we may need to adjust first_defn.
2744 The ABI specifies that the thunks emitted with a function are
2745 determined by which bases the function overrides, so we need to be
2746 sure that we're using a thunk for some overridden base; even if we
2747 know that the necessary this adjustment is zero, there may not be an
2748 appropriate zero-this-adjusment thunk for us to use since thunks for
2749 overriding virtual bases always use the vcall offset.
2750
2751 Furthermore, just choosing any base that overrides this function isn't
2752 quite right, as this slot won't be used for calls through a type that
2753 puts a covariant thunk here. Calling the function through such a type
2754 will use a different slot, and that slot is the one that determines
2755 the thunk emitted for that base.
2756
2757 So, keep looking until we find the base that we're really overriding
2758 in this slot: the nearest primary base that doesn't use a covariant
2759 thunk in this slot. */
2760 if (overrider_target != overrider_fn)
2761 {
2762 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2763 /* We already know that the overrider needs a covariant thunk. */
2764 b = get_primary_binfo (b);
2765 for (; ; b = get_primary_binfo (b))
2766 {
2767 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2768 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2769 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2770 break;
2771 if (BINFO_LOST_PRIMARY_P (b))
2772 lost = true;
2773 }
2774 first_defn = b;
2775 }
2776
2777 /* Assume that we will produce a thunk that convert all the way to
2778 the final overrider, and not to an intermediate virtual base. */
2779 virtual_base = NULL_TREE;
2780
2781 /* See if we can convert to an intermediate virtual base first, and then
2782 use the vcall offset located there to finish the conversion. */
2783 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2784 {
2785 /* If we find the final overrider, then we can stop
2786 walking. */
2787 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2788 BINFO_TYPE (TREE_VALUE (overrider))))
2789 break;
2790
2791 /* If we find a virtual base, and we haven't yet found the
2792 overrider, then there is a virtual base between the
2793 declaring base (first_defn) and the final overrider. */
2794 if (BINFO_VIRTUAL_P (b))
2795 {
2796 virtual_base = b;
2797 break;
2798 }
2799 }
2800
2801 /* Compute the constant adjustment to the `this' pointer. The
2802 `this' pointer, when this function is called, will point at BINFO
2803 (or one of its primary bases, which are at the same offset). */
2804 if (virtual_base)
2805 /* The `this' pointer needs to be adjusted from the declaration to
2806 the nearest virtual base. */
2807 delta = size_diffop_loc (input_location,
2808 fold_convert (ssizetype, BINFO_OFFSET (virtual_base)),
2809 fold_convert (ssizetype, BINFO_OFFSET (first_defn)));
2810 else if (lost)
2811 /* If the nearest definition is in a lost primary, we don't need an
2812 entry in our vtable. Except possibly in a constructor vtable,
2813 if we happen to get our primary back. In that case, the offset
2814 will be zero, as it will be a primary base. */
2815 delta = size_zero_node;
2816 else
2817 /* The `this' pointer needs to be adjusted from pointing to
2818 BINFO to pointing at the base where the final overrider
2819 appears. */
2820 delta = size_diffop_loc (input_location,
2821 fold_convert (ssizetype,
2822 BINFO_OFFSET (TREE_VALUE (overrider))),
2823 fold_convert (ssizetype, BINFO_OFFSET (binfo)));
2824
2825 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2826
2827 if (virtual_base)
2828 BV_VCALL_INDEX (*virtuals)
2829 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2830 else
2831 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2832
2833 BV_LOST_PRIMARY (*virtuals) = lost;
2834 }
2835
2836 /* Called from modify_all_vtables via dfs_walk. */
2837
2838 static tree
2839 dfs_modify_vtables (tree binfo, void* data)
2840 {
2841 tree t = (tree) data;
2842 tree virtuals;
2843 tree old_virtuals;
2844 unsigned ix;
2845
2846 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2847 /* A base without a vtable needs no modification, and its bases
2848 are uninteresting. */
2849 return dfs_skip_bases;
2850
2851 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2852 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2853 /* Don't do the primary vtable, if it's new. */
2854 return NULL_TREE;
2855
2856 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2857 /* There's no need to modify the vtable for a non-virtual primary
2858 base; we're not going to use that vtable anyhow. We do still
2859 need to do this for virtual primary bases, as they could become
2860 non-primary in a construction vtable. */
2861 return NULL_TREE;
2862
2863 make_new_vtable (t, binfo);
2864
2865 /* Now, go through each of the virtual functions in the virtual
2866 function table for BINFO. Find the final overrider, and update
2867 the BINFO_VIRTUALS list appropriately. */
2868 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2869 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2870 virtuals;
2871 ix++, virtuals = TREE_CHAIN (virtuals),
2872 old_virtuals = TREE_CHAIN (old_virtuals))
2873 update_vtable_entry_for_fn (t,
2874 binfo,
2875 BV_FN (old_virtuals),
2876 &virtuals, ix);
2877
2878 return NULL_TREE;
2879 }
2880
2881 /* Update all of the primary and secondary vtables for T. Create new
2882 vtables as required, and initialize their RTTI information. Each
2883 of the functions in VIRTUALS is declared in T and may override a
2884 virtual function from a base class; find and modify the appropriate
2885 entries to point to the overriding functions. Returns a list, in
2886 declaration order, of the virtual functions that are declared in T,
2887 but do not appear in the primary base class vtable, and which
2888 should therefore be appended to the end of the vtable for T. */
2889
2890 static tree
2891 modify_all_vtables (tree t, tree virtuals)
2892 {
2893 tree binfo = TYPE_BINFO (t);
2894 tree *fnsp;
2895
2896 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2897 if (TYPE_CONTAINS_VPTR_P (t))
2898 get_vtable_decl (t, false);
2899
2900 /* Update all of the vtables. */
2901 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2902
2903 /* Add virtual functions not already in our primary vtable. These
2904 will be both those introduced by this class, and those overridden
2905 from secondary bases. It does not include virtuals merely
2906 inherited from secondary bases. */
2907 for (fnsp = &virtuals; *fnsp; )
2908 {
2909 tree fn = TREE_VALUE (*fnsp);
2910
2911 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2912 || DECL_VINDEX (fn) == error_mark_node)
2913 {
2914 /* We don't need to adjust the `this' pointer when
2915 calling this function. */
2916 BV_DELTA (*fnsp) = integer_zero_node;
2917 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2918
2919 /* This is a function not already in our vtable. Keep it. */
2920 fnsp = &TREE_CHAIN (*fnsp);
2921 }
2922 else
2923 /* We've already got an entry for this function. Skip it. */
2924 *fnsp = TREE_CHAIN (*fnsp);
2925 }
2926
2927 return virtuals;
2928 }
2929
2930 /* Get the base virtual function declarations in T that have the
2931 indicated NAME. */
2932
2933 static void
2934 get_basefndecls (tree name, tree t, vec<tree> *base_fndecls)
2935 {
2936 tree methods;
2937 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2938 int i;
2939
2940 /* Find virtual functions in T with the indicated NAME. */
2941 i = lookup_fnfields_1 (t, name);
2942 bool found_decls = false;
2943 if (i != -1)
2944 for (methods = (*CLASSTYPE_METHOD_VEC (t))[i];
2945 methods;
2946 methods = OVL_NEXT (methods))
2947 {
2948 tree method = OVL_CURRENT (methods);
2949
2950 if (TREE_CODE (method) == FUNCTION_DECL
2951 && DECL_VINDEX (method))
2952 {
2953 base_fndecls->safe_push (method);
2954 found_decls = true;
2955 }
2956 }
2957
2958 if (found_decls)
2959 return;
2960
2961 for (i = 0; i < n_baseclasses; i++)
2962 {
2963 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2964 get_basefndecls (name, basetype, base_fndecls);
2965 }
2966 }
2967
2968 /* If this declaration supersedes the declaration of
2969 a method declared virtual in the base class, then
2970 mark this field as being virtual as well. */
2971
2972 void
2973 check_for_override (tree decl, tree ctype)
2974 {
2975 bool overrides_found = false;
2976 if (TREE_CODE (decl) == TEMPLATE_DECL)
2977 /* In [temp.mem] we have:
2978
2979 A specialization of a member function template does not
2980 override a virtual function from a base class. */
2981 return;
2982 if ((DECL_DESTRUCTOR_P (decl)
2983 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2984 || DECL_CONV_FN_P (decl))
2985 && look_for_overrides (ctype, decl)
2986 && !DECL_STATIC_FUNCTION_P (decl))
2987 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2988 the error_mark_node so that we know it is an overriding
2989 function. */
2990 {
2991 DECL_VINDEX (decl) = decl;
2992 overrides_found = true;
2993 if (warn_override && !DECL_OVERRIDE_P (decl)
2994 && !DECL_DESTRUCTOR_P (decl))
2995 warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wsuggest_override,
2996 "%qD can be marked override", decl);
2997 }
2998
2999 if (DECL_VIRTUAL_P (decl))
3000 {
3001 if (!DECL_VINDEX (decl))
3002 DECL_VINDEX (decl) = error_mark_node;
3003 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
3004 if (DECL_DESTRUCTOR_P (decl))
3005 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
3006 }
3007 else if (DECL_FINAL_P (decl))
3008 error ("%q+#D marked %<final%>, but is not virtual", decl);
3009 if (DECL_OVERRIDE_P (decl) && !overrides_found)
3010 error ("%q+#D marked %<override%>, but does not override", decl);
3011 }
3012
3013 /* Warn about hidden virtual functions that are not overridden in t.
3014 We know that constructors and destructors don't apply. */
3015
3016 static void
3017 warn_hidden (tree t)
3018 {
3019 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (t);
3020 tree fns;
3021 size_t i;
3022
3023 /* We go through each separately named virtual function. */
3024 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
3025 vec_safe_iterate (method_vec, i, &fns);
3026 ++i)
3027 {
3028 tree fn;
3029 tree name;
3030 tree fndecl;
3031 tree base_binfo;
3032 tree binfo;
3033 int j;
3034
3035 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
3036 have the same name. Figure out what name that is. */
3037 name = DECL_NAME (OVL_CURRENT (fns));
3038 /* There are no possibly hidden functions yet. */
3039 auto_vec<tree, 20> base_fndecls;
3040 /* Iterate through all of the base classes looking for possibly
3041 hidden functions. */
3042 for (binfo = TYPE_BINFO (t), j = 0;
3043 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
3044 {
3045 tree basetype = BINFO_TYPE (base_binfo);
3046 get_basefndecls (name, basetype, &base_fndecls);
3047 }
3048
3049 /* If there are no functions to hide, continue. */
3050 if (base_fndecls.is_empty ())
3051 continue;
3052
3053 /* Remove any overridden functions. */
3054 for (fn = fns; fn; fn = OVL_NEXT (fn))
3055 {
3056 fndecl = OVL_CURRENT (fn);
3057 if (TREE_CODE (fndecl) == FUNCTION_DECL
3058 && DECL_VINDEX (fndecl))
3059 {
3060 /* If the method from the base class has the same
3061 signature as the method from the derived class, it
3062 has been overridden. */
3063 for (size_t k = 0; k < base_fndecls.length (); k++)
3064 if (base_fndecls[k]
3065 && same_signature_p (fndecl, base_fndecls[k]))
3066 base_fndecls[k] = NULL_TREE;
3067 }
3068 }
3069
3070 /* Now give a warning for all base functions without overriders,
3071 as they are hidden. */
3072 size_t k;
3073 tree base_fndecl;
3074 FOR_EACH_VEC_ELT (base_fndecls, k, base_fndecl)
3075 if (base_fndecl)
3076 {
3077 /* Here we know it is a hider, and no overrider exists. */
3078 warning_at (location_of (base_fndecl),
3079 OPT_Woverloaded_virtual,
3080 "%qD was hidden", base_fndecl);
3081 warning_at (location_of (fns),
3082 OPT_Woverloaded_virtual, " by %qD", fns);
3083 }
3084 }
3085 }
3086
3087 /* Recursive helper for finish_struct_anon. */
3088
3089 static void
3090 finish_struct_anon_r (tree field, bool complain)
3091 {
3092 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
3093 tree elt = TYPE_FIELDS (TREE_TYPE (field));
3094 for (; elt; elt = DECL_CHAIN (elt))
3095 {
3096 /* We're generally only interested in entities the user
3097 declared, but we also find nested classes by noticing
3098 the TYPE_DECL that we create implicitly. You're
3099 allowed to put one anonymous union inside another,
3100 though, so we explicitly tolerate that. We use
3101 TYPE_UNNAMED_P rather than ANON_AGGR_TYPE_P so that
3102 we also allow unnamed types used for defining fields. */
3103 if (DECL_ARTIFICIAL (elt)
3104 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
3105 || TYPE_UNNAMED_P (TREE_TYPE (elt))))
3106 continue;
3107
3108 if (TREE_CODE (elt) != FIELD_DECL)
3109 {
3110 /* We already complained about static data members in
3111 finish_static_data_member_decl. */
3112 if (complain && !VAR_P (elt))
3113 {
3114 if (is_union)
3115 permerror (DECL_SOURCE_LOCATION (elt),
3116 "%q#D invalid; an anonymous union can "
3117 "only have non-static data members", elt);
3118 else
3119 permerror (DECL_SOURCE_LOCATION (elt),
3120 "%q#D invalid; an anonymous struct can "
3121 "only have non-static data members", elt);
3122 }
3123 continue;
3124 }
3125
3126 if (complain)
3127 {
3128 if (TREE_PRIVATE (elt))
3129 {
3130 if (is_union)
3131 permerror (DECL_SOURCE_LOCATION (elt),
3132 "private member %q#D in anonymous union", elt);
3133 else
3134 permerror (DECL_SOURCE_LOCATION (elt),
3135 "private member %q#D in anonymous struct", elt);
3136 }
3137 else if (TREE_PROTECTED (elt))
3138 {
3139 if (is_union)
3140 permerror (DECL_SOURCE_LOCATION (elt),
3141 "protected member %q#D in anonymous union", elt);
3142 else
3143 permerror (DECL_SOURCE_LOCATION (elt),
3144 "protected member %q#D in anonymous struct", elt);
3145 }
3146 }
3147
3148 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
3149 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
3150
3151 /* Recurse into the anonymous aggregates to handle correctly
3152 access control (c++/24926):
3153
3154 class A {
3155 union {
3156 union {
3157 int i;
3158 };
3159 };
3160 };
3161
3162 int j=A().i; */
3163 if (DECL_NAME (elt) == NULL_TREE
3164 && ANON_AGGR_TYPE_P (TREE_TYPE (elt)))
3165 finish_struct_anon_r (elt, /*complain=*/false);
3166 }
3167 }
3168
3169 /* Check for things that are invalid. There are probably plenty of other
3170 things we should check for also. */
3171
3172 static void
3173 finish_struct_anon (tree t)
3174 {
3175 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
3176 {
3177 if (TREE_STATIC (field))
3178 continue;
3179 if (TREE_CODE (field) != FIELD_DECL)
3180 continue;
3181
3182 if (DECL_NAME (field) == NULL_TREE
3183 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
3184 finish_struct_anon_r (field, /*complain=*/true);
3185 }
3186 }
3187
3188 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
3189 will be used later during class template instantiation.
3190 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
3191 a non-static member data (FIELD_DECL), a member function
3192 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
3193 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
3194 When FRIEND_P is nonzero, T is either a friend class
3195 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
3196 (FUNCTION_DECL, TEMPLATE_DECL). */
3197
3198 void
3199 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
3200 {
3201 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
3202 if (CLASSTYPE_TEMPLATE_INFO (type))
3203 CLASSTYPE_DECL_LIST (type)
3204 = tree_cons (friend_p ? NULL_TREE : type,
3205 t, CLASSTYPE_DECL_LIST (type));
3206 }
3207
3208 /* This function is called from declare_virt_assop_and_dtor via
3209 dfs_walk_all.
3210
3211 DATA is a type that direcly or indirectly inherits the base
3212 represented by BINFO. If BINFO contains a virtual assignment [copy
3213 assignment or move assigment] operator or a virtual constructor,
3214 declare that function in DATA if it hasn't been already declared. */
3215
3216 static tree
3217 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
3218 {
3219 tree bv, fn, t = (tree)data;
3220 tree opname = ansi_assopname (NOP_EXPR);
3221
3222 gcc_assert (t && CLASS_TYPE_P (t));
3223 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
3224
3225 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
3226 /* A base without a vtable needs no modification, and its bases
3227 are uninteresting. */
3228 return dfs_skip_bases;
3229
3230 if (BINFO_PRIMARY_P (binfo))
3231 /* If this is a primary base, then we have already looked at the
3232 virtual functions of its vtable. */
3233 return NULL_TREE;
3234
3235 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
3236 {
3237 fn = BV_FN (bv);
3238
3239 if (DECL_NAME (fn) == opname)
3240 {
3241 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
3242 lazily_declare_fn (sfk_copy_assignment, t);
3243 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
3244 lazily_declare_fn (sfk_move_assignment, t);
3245 }
3246 else if (DECL_DESTRUCTOR_P (fn)
3247 && CLASSTYPE_LAZY_DESTRUCTOR (t))
3248 lazily_declare_fn (sfk_destructor, t);
3249 }
3250
3251 return NULL_TREE;
3252 }
3253
3254 /* If the class type T has a direct or indirect base that contains a
3255 virtual assignment operator or a virtual destructor, declare that
3256 function in T if it hasn't been already declared. */
3257
3258 static void
3259 declare_virt_assop_and_dtor (tree t)
3260 {
3261 if (!(TYPE_POLYMORPHIC_P (t)
3262 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
3263 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
3264 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
3265 return;
3266
3267 dfs_walk_all (TYPE_BINFO (t),
3268 dfs_declare_virt_assop_and_dtor,
3269 NULL, t);
3270 }
3271
3272 /* Declare the inheriting constructor for class T inherited from base
3273 constructor CTOR with the parameter array PARMS of size NPARMS. */
3274
3275 static void
3276 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
3277 {
3278 /* We don't declare an inheriting ctor that would be a default,
3279 copy or move ctor for derived or base. */
3280 if (nparms == 0)
3281 return;
3282 if (nparms == 1
3283 && TREE_CODE (parms[0]) == REFERENCE_TYPE)
3284 {
3285 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
3286 if (parm == t || parm == DECL_CONTEXT (ctor))
3287 return;
3288 }
3289
3290 tree parmlist = void_list_node;
3291 for (int i = nparms - 1; i >= 0; i--)
3292 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
3293 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
3294 t, false, ctor, parmlist);
3295 gcc_assert (TYPE_MAIN_VARIANT (t) == t);
3296 if (add_method (t, fn, NULL_TREE))
3297 {
3298 DECL_CHAIN (fn) = TYPE_METHODS (t);
3299 TYPE_METHODS (t) = fn;
3300 }
3301 }
3302
3303 /* Declare all the inheriting constructors for class T inherited from base
3304 constructor CTOR. */
3305
3306 static void
3307 one_inherited_ctor (tree ctor, tree t)
3308 {
3309 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
3310
3311 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
3312 int i = 0;
3313 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
3314 {
3315 if (TREE_PURPOSE (parms))
3316 one_inheriting_sig (t, ctor, new_parms, i);
3317 new_parms[i++] = TREE_VALUE (parms);
3318 }
3319 one_inheriting_sig (t, ctor, new_parms, i);
3320 if (parms == NULL_TREE)
3321 {
3322 if (warning (OPT_Winherited_variadic_ctor,
3323 "the ellipsis in %qD is not inherited", ctor))
3324 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
3325 }
3326 }
3327
3328 /* Create default constructors, assignment operators, and so forth for
3329 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
3330 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
3331 the class cannot have a default constructor, copy constructor
3332 taking a const reference argument, or an assignment operator taking
3333 a const reference, respectively. */
3334
3335 static void
3336 add_implicitly_declared_members (tree t, tree* access_decls,
3337 int cant_have_const_cctor,
3338 int cant_have_const_assignment)
3339 {
3340 bool move_ok = false;
3341
3342 if (cxx_dialect >= cxx11 && !CLASSTYPE_DESTRUCTORS (t)
3343 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
3344 && !type_has_move_constructor (t) && !type_has_move_assign (t))
3345 move_ok = true;
3346
3347 /* Destructor. */
3348 if (!CLASSTYPE_DESTRUCTORS (t))
3349 {
3350 /* In general, we create destructors lazily. */
3351 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
3352
3353 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3354 && TYPE_FOR_JAVA (t))
3355 /* But if this is a Java class, any non-trivial destructor is
3356 invalid, even if compiler-generated. Therefore, if the
3357 destructor is non-trivial we create it now. */
3358 lazily_declare_fn (sfk_destructor, t);
3359 }
3360
3361 /* [class.ctor]
3362
3363 If there is no user-declared constructor for a class, a default
3364 constructor is implicitly declared. */
3365 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
3366 {
3367 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
3368 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
3369 if (cxx_dialect >= cxx11)
3370 TYPE_HAS_CONSTEXPR_CTOR (t)
3371 /* Don't force the declaration to get a hard answer; if the
3372 definition would have made the class non-literal, it will still be
3373 non-literal because of the base or member in question, and that
3374 gives a better diagnostic. */
3375 = type_maybe_constexpr_default_constructor (t);
3376 }
3377
3378 /* [class.ctor]
3379
3380 If a class definition does not explicitly declare a copy
3381 constructor, one is declared implicitly. */
3382 if (! TYPE_HAS_COPY_CTOR (t) && ! TYPE_FOR_JAVA (t))
3383 {
3384 TYPE_HAS_COPY_CTOR (t) = 1;
3385 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
3386 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
3387 if (move_ok)
3388 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
3389 }
3390
3391 /* If there is no assignment operator, one will be created if and
3392 when it is needed. For now, just record whether or not the type
3393 of the parameter to the assignment operator will be a const or
3394 non-const reference. */
3395 if (!TYPE_HAS_COPY_ASSIGN (t) && !TYPE_FOR_JAVA (t))
3396 {
3397 TYPE_HAS_COPY_ASSIGN (t) = 1;
3398 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3399 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3400 if (move_ok && !LAMBDA_TYPE_P (t))
3401 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3402 }
3403
3404 /* We can't be lazy about declaring functions that might override
3405 a virtual function from a base class. */
3406 declare_virt_assop_and_dtor (t);
3407
3408 while (*access_decls)
3409 {
3410 tree using_decl = TREE_VALUE (*access_decls);
3411 tree decl = USING_DECL_DECLS (using_decl);
3412 if (DECL_NAME (using_decl) == ctor_identifier)
3413 {
3414 /* declare, then remove the decl */
3415 tree ctor_list = decl;
3416 location_t loc = input_location;
3417 input_location = DECL_SOURCE_LOCATION (using_decl);
3418 if (ctor_list)
3419 for (; ctor_list; ctor_list = OVL_NEXT (ctor_list))
3420 one_inherited_ctor (OVL_CURRENT (ctor_list), t);
3421 *access_decls = TREE_CHAIN (*access_decls);
3422 input_location = loc;
3423 }
3424 else
3425 access_decls = &TREE_CHAIN (*access_decls);
3426 }
3427 }
3428
3429 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3430 count the number of fields in TYPE, including anonymous union
3431 members. */
3432
3433 static int
3434 count_fields (tree fields)
3435 {
3436 tree x;
3437 int n_fields = 0;
3438 for (x = fields; x; x = DECL_CHAIN (x))
3439 {
3440 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3441 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
3442 else
3443 n_fields += 1;
3444 }
3445 return n_fields;
3446 }
3447
3448 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3449 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3450 elts, starting at offset IDX. */
3451
3452 static int
3453 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
3454 {
3455 tree x;
3456 for (x = fields; x; x = DECL_CHAIN (x))
3457 {
3458 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
3459 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
3460 else
3461 field_vec->elts[idx++] = x;
3462 }
3463 return idx;
3464 }
3465
3466 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3467 starting at offset IDX. */
3468
3469 static int
3470 add_enum_fields_to_record_type (tree enumtype,
3471 struct sorted_fields_type *field_vec,
3472 int idx)
3473 {
3474 tree values;
3475 for (values = TYPE_VALUES (enumtype); values; values = TREE_CHAIN (values))
3476 field_vec->elts[idx++] = TREE_VALUE (values);
3477 return idx;
3478 }
3479
3480 /* FIELD is a bit-field. We are finishing the processing for its
3481 enclosing type. Issue any appropriate messages and set appropriate
3482 flags. Returns false if an error has been diagnosed. */
3483
3484 static bool
3485 check_bitfield_decl (tree field)
3486 {
3487 tree type = TREE_TYPE (field);
3488 tree w;
3489
3490 /* Extract the declared width of the bitfield, which has been
3491 temporarily stashed in DECL_INITIAL. */
3492 w = DECL_INITIAL (field);
3493 gcc_assert (w != NULL_TREE);
3494 /* Remove the bit-field width indicator so that the rest of the
3495 compiler does not treat that value as an initializer. */
3496 DECL_INITIAL (field) = NULL_TREE;
3497
3498 /* Detect invalid bit-field type. */
3499 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3500 {
3501 error ("bit-field %q+#D with non-integral type", field);
3502 w = error_mark_node;
3503 }
3504 else
3505 {
3506 location_t loc = input_location;
3507 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3508 STRIP_NOPS (w);
3509
3510 /* detect invalid field size. */
3511 input_location = DECL_SOURCE_LOCATION (field);
3512 w = cxx_constant_value (w);
3513 input_location = loc;
3514
3515 if (TREE_CODE (w) != INTEGER_CST)
3516 {
3517 error ("bit-field %q+D width not an integer constant", field);
3518 w = error_mark_node;
3519 }
3520 else if (tree_int_cst_sgn (w) < 0)
3521 {
3522 error ("negative width in bit-field %q+D", field);
3523 w = error_mark_node;
3524 }
3525 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3526 {
3527 error ("zero width for bit-field %q+D", field);
3528 w = error_mark_node;
3529 }
3530 else if ((TREE_CODE (type) != ENUMERAL_TYPE
3531 && TREE_CODE (type) != BOOLEAN_TYPE
3532 && compare_tree_int (w, TYPE_PRECISION (type)) > 0)
3533 || ((TREE_CODE (type) == ENUMERAL_TYPE
3534 || TREE_CODE (type) == BOOLEAN_TYPE)
3535 && tree_int_cst_lt (TYPE_SIZE (type), w)))
3536 warning_at (DECL_SOURCE_LOCATION (field), 0,
3537 "width of %qD exceeds its type", field);
3538 else if (TREE_CODE (type) == ENUMERAL_TYPE
3539 && (0 > (compare_tree_int
3540 (w, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type))))))
3541 warning_at (DECL_SOURCE_LOCATION (field), 0,
3542 "%qD is too small to hold all values of %q#T",
3543 field, type);
3544 }
3545
3546 if (w != error_mark_node)
3547 {
3548 DECL_SIZE (field) = fold_convert (bitsizetype, w);
3549 DECL_BIT_FIELD (field) = 1;
3550 return true;
3551 }
3552 else
3553 {
3554 /* Non-bit-fields are aligned for their type. */
3555 DECL_BIT_FIELD (field) = 0;
3556 CLEAR_DECL_C_BIT_FIELD (field);
3557 return false;
3558 }
3559 }
3560
3561 /* FIELD is a non bit-field. We are finishing the processing for its
3562 enclosing type T. Issue any appropriate messages and set appropriate
3563 flags. */
3564
3565 static bool
3566 check_field_decl (tree field,
3567 tree t,
3568 int* cant_have_const_ctor,
3569 int* no_const_asn_ref)
3570 {
3571 tree type = strip_array_types (TREE_TYPE (field));
3572 bool any_default_members = false;
3573
3574 /* In C++98 an anonymous union cannot contain any fields which would change
3575 the settings of CANT_HAVE_CONST_CTOR and friends. */
3576 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx11)
3577 ;
3578 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3579 structs. So, we recurse through their fields here. */
3580 else if (ANON_AGGR_TYPE_P (type))
3581 {
3582 for (tree fields = TYPE_FIELDS (type); fields;
3583 fields = DECL_CHAIN (fields))
3584 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
3585 any_default_members |= check_field_decl (fields, t,
3586 cant_have_const_ctor,
3587 no_const_asn_ref);
3588 }
3589 /* Check members with class type for constructors, destructors,
3590 etc. */
3591 else if (CLASS_TYPE_P (type))
3592 {
3593 /* Never let anything with uninheritable virtuals
3594 make it through without complaint. */
3595 abstract_virtuals_error (field, type);
3596
3597 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx11)
3598 {
3599 static bool warned;
3600 int oldcount = errorcount;
3601 if (TYPE_NEEDS_CONSTRUCTING (type))
3602 error ("member %q+#D with constructor not allowed in union",
3603 field);
3604 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3605 error ("member %q+#D with destructor not allowed in union", field);
3606 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3607 error ("member %q+#D with copy assignment operator not allowed in union",
3608 field);
3609 if (!warned && errorcount > oldcount)
3610 {
3611 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3612 "only available with -std=c++11 or -std=gnu++11");
3613 warned = true;
3614 }
3615 }
3616 else
3617 {
3618 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3619 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3620 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3621 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3622 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3623 || !TYPE_HAS_COPY_ASSIGN (type));
3624 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3625 || !TYPE_HAS_COPY_CTOR (type));
3626 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3627 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3628 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3629 || TYPE_HAS_COMPLEX_DFLT (type));
3630 }
3631
3632 if (TYPE_HAS_COPY_CTOR (type)
3633 && !TYPE_HAS_CONST_COPY_CTOR (type))
3634 *cant_have_const_ctor = 1;
3635
3636 if (TYPE_HAS_COPY_ASSIGN (type)
3637 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3638 *no_const_asn_ref = 1;
3639 }
3640
3641 check_abi_tags (t, field);
3642
3643 if (DECL_INITIAL (field) != NULL_TREE)
3644 /* `build_class_init_list' does not recognize
3645 non-FIELD_DECLs. */
3646 any_default_members = true;
3647
3648 return any_default_members;
3649 }
3650
3651 /* Check the data members (both static and non-static), class-scoped
3652 typedefs, etc., appearing in the declaration of T. Issue
3653 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3654 declaration order) of access declarations; each TREE_VALUE in this
3655 list is a USING_DECL.
3656
3657 In addition, set the following flags:
3658
3659 EMPTY_P
3660 The class is empty, i.e., contains no non-static data members.
3661
3662 CANT_HAVE_CONST_CTOR_P
3663 This class cannot have an implicitly generated copy constructor
3664 taking a const reference.
3665
3666 CANT_HAVE_CONST_ASN_REF
3667 This class cannot have an implicitly generated assignment
3668 operator taking a const reference.
3669
3670 All of these flags should be initialized before calling this
3671 function.
3672
3673 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3674 fields can be added by adding to this chain. */
3675
3676 static void
3677 check_field_decls (tree t, tree *access_decls,
3678 int *cant_have_const_ctor_p,
3679 int *no_const_asn_ref_p)
3680 {
3681 tree *field;
3682 tree *next;
3683 bool has_pointers;
3684 bool any_default_members;
3685 int cant_pack = 0;
3686 int field_access = -1;
3687
3688 /* Assume there are no access declarations. */
3689 *access_decls = NULL_TREE;
3690 /* Assume this class has no pointer members. */
3691 has_pointers = false;
3692 /* Assume none of the members of this class have default
3693 initializations. */
3694 any_default_members = false;
3695
3696 for (field = &TYPE_FIELDS (t); *field; field = next)
3697 {
3698 tree x = *field;
3699 tree type = TREE_TYPE (x);
3700 int this_field_access;
3701
3702 next = &DECL_CHAIN (x);
3703
3704 if (TREE_CODE (x) == USING_DECL)
3705 {
3706 /* Save the access declarations for our caller. */
3707 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3708 continue;
3709 }
3710
3711 if (TREE_CODE (x) == TYPE_DECL
3712 || TREE_CODE (x) == TEMPLATE_DECL)
3713 continue;
3714
3715 /* If we've gotten this far, it's a data member, possibly static,
3716 or an enumerator. */
3717 if (TREE_CODE (x) != CONST_DECL)
3718 DECL_CONTEXT (x) = t;
3719
3720 /* When this goes into scope, it will be a non-local reference. */
3721 DECL_NONLOCAL (x) = 1;
3722
3723 if (TREE_CODE (t) == UNION_TYPE
3724 && cxx_dialect < cxx11)
3725 {
3726 /* [class.union] (C++98)
3727
3728 If a union contains a static data member, or a member of
3729 reference type, the program is ill-formed.
3730
3731 In C++11 this limitation doesn't exist anymore. */
3732 if (VAR_P (x))
3733 {
3734 error ("in C++98 %q+D may not be static because it is "
3735 "a member of a union", x);
3736 continue;
3737 }
3738 if (TREE_CODE (type) == REFERENCE_TYPE)
3739 {
3740 error ("in C++98 %q+D may not have reference type %qT "
3741 "because it is a member of a union", x, type);
3742 continue;
3743 }
3744 }
3745
3746 /* Perform error checking that did not get done in
3747 grokdeclarator. */
3748 if (TREE_CODE (type) == FUNCTION_TYPE)
3749 {
3750 error ("field %q+D invalidly declared function type", x);
3751 type = build_pointer_type (type);
3752 TREE_TYPE (x) = type;
3753 }
3754 else if (TREE_CODE (type) == METHOD_TYPE)
3755 {
3756 error ("field %q+D invalidly declared method type", x);
3757 type = build_pointer_type (type);
3758 TREE_TYPE (x) = type;
3759 }
3760
3761 if (type == error_mark_node)
3762 continue;
3763
3764 if (TREE_CODE (x) == CONST_DECL || VAR_P (x))
3765 continue;
3766
3767 /* Now it can only be a FIELD_DECL. */
3768
3769 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3770 CLASSTYPE_NON_AGGREGATE (t) = 1;
3771
3772 /* If at least one non-static data member is non-literal, the whole
3773 class becomes non-literal. Per Core/1453, volatile non-static
3774 data members and base classes are also not allowed.
3775 Note: if the type is incomplete we will complain later on. */
3776 if (COMPLETE_TYPE_P (type)
3777 && (!literal_type_p (type) || CP_TYPE_VOLATILE_P (type)))
3778 CLASSTYPE_LITERAL_P (t) = false;
3779
3780 /* A standard-layout class is a class that:
3781 ...
3782 has the same access control (Clause 11) for all non-static data members,
3783 ... */
3784 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3785 if (field_access == -1)
3786 field_access = this_field_access;
3787 else if (this_field_access != field_access)
3788 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3789
3790 /* If this is of reference type, check if it needs an init. */
3791 if (TREE_CODE (type) == REFERENCE_TYPE)
3792 {
3793 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3794 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3795 if (DECL_INITIAL (x) == NULL_TREE)
3796 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3797 if (cxx_dialect < cxx11)
3798 {
3799 /* ARM $12.6.2: [A member initializer list] (or, for an
3800 aggregate, initialization by a brace-enclosed list) is the
3801 only way to initialize nonstatic const and reference
3802 members. */
3803 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3804 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3805 }
3806 }
3807
3808 type = strip_array_types (type);
3809
3810 if (TYPE_PACKED (t))
3811 {
3812 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3813 {
3814 warning_at
3815 (DECL_SOURCE_LOCATION (x), 0,
3816 "ignoring packed attribute because of unpacked non-POD field %q#D",
3817 x);
3818 cant_pack = 1;
3819 }
3820 else if (DECL_C_BIT_FIELD (x)
3821 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3822 DECL_PACKED (x) = 1;
3823 }
3824
3825 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
3826 /* We don't treat zero-width bitfields as making a class
3827 non-empty. */
3828 ;
3829 else
3830 {
3831 /* The class is non-empty. */
3832 CLASSTYPE_EMPTY_P (t) = 0;
3833 /* The class is not even nearly empty. */
3834 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3835 /* If one of the data members contains an empty class,
3836 so does T. */
3837 if (CLASS_TYPE_P (type)
3838 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3839 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3840 }
3841
3842 /* This is used by -Weffc++ (see below). Warn only for pointers
3843 to members which might hold dynamic memory. So do not warn
3844 for pointers to functions or pointers to members. */
3845 if (TYPE_PTR_P (type)
3846 && !TYPE_PTRFN_P (type))
3847 has_pointers = true;
3848
3849 if (CLASS_TYPE_P (type))
3850 {
3851 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3852 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3853 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3854 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3855 }
3856
3857 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3858 CLASSTYPE_HAS_MUTABLE (t) = 1;
3859
3860 if (DECL_MUTABLE_P (x))
3861 {
3862 if (CP_TYPE_CONST_P (type))
3863 {
3864 error ("member %q+D cannot be declared both %<const%> "
3865 "and %<mutable%>", x);
3866 continue;
3867 }
3868 if (TREE_CODE (type) == REFERENCE_TYPE)
3869 {
3870 error ("member %q+D cannot be declared as a %<mutable%> "
3871 "reference", x);
3872 continue;
3873 }
3874 }
3875
3876 if (! layout_pod_type_p (type))
3877 /* DR 148 now allows pointers to members (which are POD themselves),
3878 to be allowed in POD structs. */
3879 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3880
3881 if (!std_layout_type_p (type))
3882 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3883
3884 if (! zero_init_p (type))
3885 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3886
3887 /* We set DECL_C_BIT_FIELD in grokbitfield.
3888 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3889 if ((! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3890 && check_field_decl (x, t,
3891 cant_have_const_ctor_p,
3892 no_const_asn_ref_p))
3893 {
3894 if (any_default_members
3895 && TREE_CODE (t) == UNION_TYPE)
3896 error ("multiple fields in union %qT initialized", t);
3897 any_default_members = true;
3898 }
3899
3900 /* Now that we've removed bit-field widths from DECL_INITIAL,
3901 anything left in DECL_INITIAL is an NSDMI that makes the class
3902 non-aggregate in C++11. */
3903 if (DECL_INITIAL (x) && cxx_dialect < cxx14)
3904 CLASSTYPE_NON_AGGREGATE (t) = true;
3905
3906 /* If any field is const, the structure type is pseudo-const. */
3907 if (CP_TYPE_CONST_P (type))
3908 {
3909 C_TYPE_FIELDS_READONLY (t) = 1;
3910 if (DECL_INITIAL (x) == NULL_TREE)
3911 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3912 if (cxx_dialect < cxx11)
3913 {
3914 /* ARM $12.6.2: [A member initializer list] (or, for an
3915 aggregate, initialization by a brace-enclosed list) is the
3916 only way to initialize nonstatic const and reference
3917 members. */
3918 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3919 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3920 }
3921 }
3922 /* A field that is pseudo-const makes the structure likewise. */
3923 else if (CLASS_TYPE_P (type))
3924 {
3925 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3926 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3927 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3928 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3929 }
3930
3931 /* Core issue 80: A nonstatic data member is required to have a
3932 different name from the class iff the class has a
3933 user-declared constructor. */
3934 if (constructor_name_p (DECL_NAME (x), t)
3935 && TYPE_HAS_USER_CONSTRUCTOR (t))
3936 permerror (DECL_SOURCE_LOCATION (x),
3937 "field %q#D with same name as class", x);
3938 }
3939
3940 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3941 it should also define a copy constructor and an assignment operator to
3942 implement the correct copy semantic (deep vs shallow, etc.). As it is
3943 not feasible to check whether the constructors do allocate dynamic memory
3944 and store it within members, we approximate the warning like this:
3945
3946 -- Warn only if there are members which are pointers
3947 -- Warn only if there is a non-trivial constructor (otherwise,
3948 there cannot be memory allocated).
3949 -- Warn only if there is a non-trivial destructor. We assume that the
3950 user at least implemented the cleanup correctly, and a destructor
3951 is needed to free dynamic memory.
3952
3953 This seems enough for practical purposes. */
3954 if (warn_ecpp
3955 && has_pointers
3956 && TYPE_HAS_USER_CONSTRUCTOR (t)
3957 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3958 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3959 {
3960 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3961
3962 if (! TYPE_HAS_COPY_CTOR (t))
3963 {
3964 warning (OPT_Weffc__,
3965 " but does not override %<%T(const %T&)%>", t, t);
3966 if (!TYPE_HAS_COPY_ASSIGN (t))
3967 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3968 }
3969 else if (! TYPE_HAS_COPY_ASSIGN (t))
3970 warning (OPT_Weffc__,
3971 " but does not override %<operator=(const %T&)%>", t);
3972 }
3973
3974 /* Non-static data member initializers make the default constructor
3975 non-trivial. */
3976 if (any_default_members)
3977 {
3978 TYPE_NEEDS_CONSTRUCTING (t) = true;
3979 TYPE_HAS_COMPLEX_DFLT (t) = true;
3980 }
3981
3982 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3983 if (cant_pack)
3984 TYPE_PACKED (t) = 0;
3985
3986 /* Check anonymous struct/anonymous union fields. */
3987 finish_struct_anon (t);
3988
3989 /* We've built up the list of access declarations in reverse order.
3990 Fix that now. */
3991 *access_decls = nreverse (*access_decls);
3992 }
3993
3994 /* If TYPE is an empty class type, records its OFFSET in the table of
3995 OFFSETS. */
3996
3997 static int
3998 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3999 {
4000 splay_tree_node n;
4001
4002 if (!is_empty_class (type))
4003 return 0;
4004
4005 /* Record the location of this empty object in OFFSETS. */
4006 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
4007 if (!n)
4008 n = splay_tree_insert (offsets,
4009 (splay_tree_key) offset,
4010 (splay_tree_value) NULL_TREE);
4011 n->value = ((splay_tree_value)
4012 tree_cons (NULL_TREE,
4013 type,
4014 (tree) n->value));
4015
4016 return 0;
4017 }
4018
4019 /* Returns nonzero if TYPE is an empty class type and there is
4020 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
4021
4022 static int
4023 check_subobject_offset (tree type, tree offset, splay_tree offsets)
4024 {
4025 splay_tree_node n;
4026 tree t;
4027
4028 if (!is_empty_class (type))
4029 return 0;
4030
4031 /* Record the location of this empty object in OFFSETS. */
4032 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
4033 if (!n)
4034 return 0;
4035
4036 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
4037 if (same_type_p (TREE_VALUE (t), type))
4038 return 1;
4039
4040 return 0;
4041 }
4042
4043 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
4044 F for every subobject, passing it the type, offset, and table of
4045 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
4046 be traversed.
4047
4048 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
4049 than MAX_OFFSET will not be walked.
4050
4051 If F returns a nonzero value, the traversal ceases, and that value
4052 is returned. Otherwise, returns zero. */
4053
4054 static int
4055 walk_subobject_offsets (tree type,
4056 subobject_offset_fn f,
4057 tree offset,
4058 splay_tree offsets,
4059 tree max_offset,
4060 int vbases_p)
4061 {
4062 int r = 0;
4063 tree type_binfo = NULL_TREE;
4064
4065 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
4066 stop. */
4067 if (max_offset && tree_int_cst_lt (max_offset, offset))
4068 return 0;
4069
4070 if (type == error_mark_node)
4071 return 0;
4072
4073 if (!TYPE_P (type))
4074 {
4075 type_binfo = type;
4076 type = BINFO_TYPE (type);
4077 }
4078
4079 if (CLASS_TYPE_P (type))
4080 {
4081 tree field;
4082 tree binfo;
4083 int i;
4084
4085 /* Avoid recursing into objects that are not interesting. */
4086 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
4087 return 0;
4088
4089 /* Record the location of TYPE. */
4090 r = (*f) (type, offset, offsets);
4091 if (r)
4092 return r;
4093
4094 /* Iterate through the direct base classes of TYPE. */
4095 if (!type_binfo)
4096 type_binfo = TYPE_BINFO (type);
4097 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
4098 {
4099 tree binfo_offset;
4100
4101 if (BINFO_VIRTUAL_P (binfo))
4102 continue;
4103
4104 tree orig_binfo;
4105 /* We cannot rely on BINFO_OFFSET being set for the base
4106 class yet, but the offsets for direct non-virtual
4107 bases can be calculated by going back to the TYPE. */
4108 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
4109 binfo_offset = size_binop (PLUS_EXPR,
4110 offset,
4111 BINFO_OFFSET (orig_binfo));
4112
4113 r = walk_subobject_offsets (binfo,
4114 f,
4115 binfo_offset,
4116 offsets,
4117 max_offset,
4118 /*vbases_p=*/0);
4119 if (r)
4120 return r;
4121 }
4122
4123 if (CLASSTYPE_VBASECLASSES (type))
4124 {
4125 unsigned ix;
4126 vec<tree, va_gc> *vbases;
4127
4128 /* Iterate through the virtual base classes of TYPE. In G++
4129 3.2, we included virtual bases in the direct base class
4130 loop above, which results in incorrect results; the
4131 correct offsets for virtual bases are only known when
4132 working with the most derived type. */
4133 if (vbases_p)
4134 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
4135 vec_safe_iterate (vbases, ix, &binfo); ix++)
4136 {
4137 r = walk_subobject_offsets (binfo,
4138 f,
4139 size_binop (PLUS_EXPR,
4140 offset,
4141 BINFO_OFFSET (binfo)),
4142 offsets,
4143 max_offset,
4144 /*vbases_p=*/0);
4145 if (r)
4146 return r;
4147 }
4148 else
4149 {
4150 /* We still have to walk the primary base, if it is
4151 virtual. (If it is non-virtual, then it was walked
4152 above.) */
4153 tree vbase = get_primary_binfo (type_binfo);
4154
4155 if (vbase && BINFO_VIRTUAL_P (vbase)
4156 && BINFO_PRIMARY_P (vbase)
4157 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
4158 {
4159 r = (walk_subobject_offsets
4160 (vbase, f, offset,
4161 offsets, max_offset, /*vbases_p=*/0));
4162 if (r)
4163 return r;
4164 }
4165 }
4166 }
4167
4168 /* Iterate through the fields of TYPE. */
4169 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
4170 if (TREE_CODE (field) == FIELD_DECL
4171 && TREE_TYPE (field) != error_mark_node
4172 && !DECL_ARTIFICIAL (field))
4173 {
4174 tree field_offset;
4175
4176 field_offset = byte_position (field);
4177
4178 r = walk_subobject_offsets (TREE_TYPE (field),
4179 f,
4180 size_binop (PLUS_EXPR,
4181 offset,
4182 field_offset),
4183 offsets,
4184 max_offset,
4185 /*vbases_p=*/1);
4186 if (r)
4187 return r;
4188 }
4189 }
4190 else if (TREE_CODE (type) == ARRAY_TYPE)
4191 {
4192 tree element_type = strip_array_types (type);
4193 tree domain = TYPE_DOMAIN (type);
4194 tree index;
4195
4196 /* Avoid recursing into objects that are not interesting. */
4197 if (!CLASS_TYPE_P (element_type)
4198 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type)
4199 || !domain
4200 || integer_minus_onep (TYPE_MAX_VALUE (domain)))
4201 return 0;
4202
4203 /* Step through each of the elements in the array. */
4204 for (index = size_zero_node;
4205 !tree_int_cst_lt (TYPE_MAX_VALUE (domain), index);
4206 index = size_binop (PLUS_EXPR, index, size_one_node))
4207 {
4208 r = walk_subobject_offsets (TREE_TYPE (type),
4209 f,
4210 offset,
4211 offsets,
4212 max_offset,
4213 /*vbases_p=*/1);
4214 if (r)
4215 return r;
4216 offset = size_binop (PLUS_EXPR, offset,
4217 TYPE_SIZE_UNIT (TREE_TYPE (type)));
4218 /* If this new OFFSET is bigger than the MAX_OFFSET, then
4219 there's no point in iterating through the remaining
4220 elements of the array. */
4221 if (max_offset && tree_int_cst_lt (max_offset, offset))
4222 break;
4223 }
4224 }
4225
4226 return 0;
4227 }
4228
4229 /* Record all of the empty subobjects of TYPE (either a type or a
4230 binfo). If IS_DATA_MEMBER is true, then a non-static data member
4231 is being placed at OFFSET; otherwise, it is a base class that is
4232 being placed at OFFSET. */
4233
4234 static void
4235 record_subobject_offsets (tree type,
4236 tree offset,
4237 splay_tree offsets,
4238 bool is_data_member)
4239 {
4240 tree max_offset;
4241 /* If recording subobjects for a non-static data member or a
4242 non-empty base class , we do not need to record offsets beyond
4243 the size of the biggest empty class. Additional data members
4244 will go at the end of the class. Additional base classes will go
4245 either at offset zero (if empty, in which case they cannot
4246 overlap with offsets past the size of the biggest empty class) or
4247 at the end of the class.
4248
4249 However, if we are placing an empty base class, then we must record
4250 all offsets, as either the empty class is at offset zero (where
4251 other empty classes might later be placed) or at the end of the
4252 class (where other objects might then be placed, so other empty
4253 subobjects might later overlap). */
4254 if (is_data_member
4255 || !is_empty_class (BINFO_TYPE (type)))
4256 max_offset = sizeof_biggest_empty_class;
4257 else
4258 max_offset = NULL_TREE;
4259 walk_subobject_offsets (type, record_subobject_offset, offset,
4260 offsets, max_offset, is_data_member);
4261 }
4262
4263 /* Returns nonzero if any of the empty subobjects of TYPE (located at
4264 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
4265 virtual bases of TYPE are examined. */
4266
4267 static int
4268 layout_conflict_p (tree type,
4269 tree offset,
4270 splay_tree offsets,
4271 int vbases_p)
4272 {
4273 splay_tree_node max_node;
4274
4275 /* Get the node in OFFSETS that indicates the maximum offset where
4276 an empty subobject is located. */
4277 max_node = splay_tree_max (offsets);
4278 /* If there aren't any empty subobjects, then there's no point in
4279 performing this check. */
4280 if (!max_node)
4281 return 0;
4282
4283 return walk_subobject_offsets (type, check_subobject_offset, offset,
4284 offsets, (tree) (max_node->key),
4285 vbases_p);
4286 }
4287
4288 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
4289 non-static data member of the type indicated by RLI. BINFO is the
4290 binfo corresponding to the base subobject, OFFSETS maps offsets to
4291 types already located at those offsets. This function determines
4292 the position of the DECL. */
4293
4294 static void
4295 layout_nonempty_base_or_field (record_layout_info rli,
4296 tree decl,
4297 tree binfo,
4298 splay_tree offsets)
4299 {
4300 tree offset = NULL_TREE;
4301 bool field_p;
4302 tree type;
4303
4304 if (binfo)
4305 {
4306 /* For the purposes of determining layout conflicts, we want to
4307 use the class type of BINFO; TREE_TYPE (DECL) will be the
4308 CLASSTYPE_AS_BASE version, which does not contain entries for
4309 zero-sized bases. */
4310 type = TREE_TYPE (binfo);
4311 field_p = false;
4312 }
4313 else
4314 {
4315 type = TREE_TYPE (decl);
4316 field_p = true;
4317 }
4318
4319 /* Try to place the field. It may take more than one try if we have
4320 a hard time placing the field without putting two objects of the
4321 same type at the same address. */
4322 while (1)
4323 {
4324 struct record_layout_info_s old_rli = *rli;
4325
4326 /* Place this field. */
4327 place_field (rli, decl);
4328 offset = byte_position (decl);
4329
4330 /* We have to check to see whether or not there is already
4331 something of the same type at the offset we're about to use.
4332 For example, consider:
4333
4334 struct S {};
4335 struct T : public S { int i; };
4336 struct U : public S, public T {};
4337
4338 Here, we put S at offset zero in U. Then, we can't put T at
4339 offset zero -- its S component would be at the same address
4340 as the S we already allocated. So, we have to skip ahead.
4341 Since all data members, including those whose type is an
4342 empty class, have nonzero size, any overlap can happen only
4343 with a direct or indirect base-class -- it can't happen with
4344 a data member. */
4345 /* In a union, overlap is permitted; all members are placed at
4346 offset zero. */
4347 if (TREE_CODE (rli->t) == UNION_TYPE)
4348 break;
4349 if (layout_conflict_p (field_p ? type : binfo, offset,
4350 offsets, field_p))
4351 {
4352 /* Strip off the size allocated to this field. That puts us
4353 at the first place we could have put the field with
4354 proper alignment. */
4355 *rli = old_rli;
4356
4357 /* Bump up by the alignment required for the type. */
4358 rli->bitpos
4359 = size_binop (PLUS_EXPR, rli->bitpos,
4360 bitsize_int (binfo
4361 ? CLASSTYPE_ALIGN (type)
4362 : TYPE_ALIGN (type)));
4363 normalize_rli (rli);
4364 }
4365 else if (TREE_CODE (type) == NULLPTR_TYPE
4366 && warn_abi && abi_version_crosses (9))
4367 {
4368 /* Before ABI v9, we were giving nullptr_t alignment of 1; if
4369 the offset wasn't aligned like a pointer when we started to
4370 layout this field, that affects its position. */
4371 tree pos = rli_size_unit_so_far (&old_rli);
4372 if (int_cst_value (pos) % TYPE_ALIGN_UNIT (ptr_type_node) != 0)
4373 {
4374 if (abi_version_at_least (9))
4375 warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wabi,
4376 "alignment of %qD increased in -fabi-version=9 "
4377 "(GCC 5.2)", decl);
4378 else
4379 warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wabi, "alignment "
4380 "of %qD will increase in -fabi-version=9", decl);
4381 }
4382 break;
4383 }
4384 else
4385 /* There was no conflict. We're done laying out this field. */
4386 break;
4387 }
4388
4389 /* Now that we know where it will be placed, update its
4390 BINFO_OFFSET. */
4391 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
4392 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
4393 this point because their BINFO_OFFSET is copied from another
4394 hierarchy. Therefore, we may not need to add the entire
4395 OFFSET. */
4396 propagate_binfo_offsets (binfo,
4397 size_diffop_loc (input_location,
4398 fold_convert (ssizetype, offset),
4399 fold_convert (ssizetype,
4400 BINFO_OFFSET (binfo))));
4401 }
4402
4403 /* Returns true if TYPE is empty and OFFSET is nonzero. */
4404
4405 static int
4406 empty_base_at_nonzero_offset_p (tree type,
4407 tree offset,
4408 splay_tree /*offsets*/)
4409 {
4410 return is_empty_class (type) && !integer_zerop (offset);
4411 }
4412
4413 /* Layout the empty base BINFO. EOC indicates the byte currently just
4414 past the end of the class, and should be correctly aligned for a
4415 class of the type indicated by BINFO; OFFSETS gives the offsets of
4416 the empty bases allocated so far. T is the most derived
4417 type. Return nonzero iff we added it at the end. */
4418
4419 static bool
4420 layout_empty_base (record_layout_info rli, tree binfo,
4421 tree eoc, splay_tree offsets)
4422 {
4423 tree alignment;
4424 tree basetype = BINFO_TYPE (binfo);
4425 bool atend = false;
4426
4427 /* This routine should only be used for empty classes. */
4428 gcc_assert (is_empty_class (basetype));
4429 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
4430
4431 if (!integer_zerop (BINFO_OFFSET (binfo)))
4432 propagate_binfo_offsets
4433 (binfo, size_diffop_loc (input_location,
4434 size_zero_node, BINFO_OFFSET (binfo)));
4435
4436 /* This is an empty base class. We first try to put it at offset
4437 zero. */
4438 if (layout_conflict_p (binfo,
4439 BINFO_OFFSET (binfo),
4440 offsets,
4441 /*vbases_p=*/0))
4442 {
4443 /* That didn't work. Now, we move forward from the next
4444 available spot in the class. */
4445 atend = true;
4446 propagate_binfo_offsets (binfo, fold_convert (ssizetype, eoc));
4447 while (1)
4448 {
4449 if (!layout_conflict_p (binfo,
4450 BINFO_OFFSET (binfo),
4451 offsets,
4452 /*vbases_p=*/0))
4453 /* We finally found a spot where there's no overlap. */
4454 break;
4455
4456 /* There's overlap here, too. Bump along to the next spot. */
4457 propagate_binfo_offsets (binfo, alignment);
4458 }
4459 }
4460
4461 if (CLASSTYPE_USER_ALIGN (basetype))
4462 {
4463 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
4464 if (warn_packed)
4465 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
4466 TYPE_USER_ALIGN (rli->t) = 1;
4467 }
4468
4469 return atend;
4470 }
4471
4472 /* Layout the base given by BINFO in the class indicated by RLI.
4473 *BASE_ALIGN is a running maximum of the alignments of
4474 any base class. OFFSETS gives the location of empty base
4475 subobjects. T is the most derived type. Return nonzero if the new
4476 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4477 *NEXT_FIELD, unless BINFO is for an empty base class.
4478
4479 Returns the location at which the next field should be inserted. */
4480
4481 static tree *
4482 build_base_field (record_layout_info rli, tree binfo,
4483 splay_tree offsets, tree *next_field)
4484 {
4485 tree t = rli->t;
4486 tree basetype = BINFO_TYPE (binfo);
4487
4488 if (!COMPLETE_TYPE_P (basetype))
4489 /* This error is now reported in xref_tag, thus giving better
4490 location information. */
4491 return next_field;
4492
4493 /* Place the base class. */
4494 if (!is_empty_class (basetype))
4495 {
4496 tree decl;
4497
4498 /* The containing class is non-empty because it has a non-empty
4499 base class. */
4500 CLASSTYPE_EMPTY_P (t) = 0;
4501
4502 /* Create the FIELD_DECL. */
4503 decl = build_decl (input_location,
4504 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4505 DECL_ARTIFICIAL (decl) = 1;
4506 DECL_IGNORED_P (decl) = 1;
4507 DECL_FIELD_CONTEXT (decl) = t;
4508 if (CLASSTYPE_AS_BASE (basetype))
4509 {
4510 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4511 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4512 SET_DECL_ALIGN (decl, CLASSTYPE_ALIGN (basetype));
4513 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4514 DECL_MODE (decl) = TYPE_MODE (basetype);
4515 DECL_FIELD_IS_BASE (decl) = 1;
4516
4517 /* Try to place the field. It may take more than one try if we
4518 have a hard time placing the field without putting two
4519 objects of the same type at the same address. */
4520 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4521 /* Add the new FIELD_DECL to the list of fields for T. */
4522 DECL_CHAIN (decl) = *next_field;
4523 *next_field = decl;
4524 next_field = &DECL_CHAIN (decl);
4525 }
4526 }
4527 else
4528 {
4529 tree eoc;
4530 bool atend;
4531
4532 /* On some platforms (ARM), even empty classes will not be
4533 byte-aligned. */
4534 eoc = round_up_loc (input_location,
4535 rli_size_unit_so_far (rli),
4536 CLASSTYPE_ALIGN_UNIT (basetype));
4537 atend = layout_empty_base (rli, binfo, eoc, offsets);
4538 /* A nearly-empty class "has no proper base class that is empty,
4539 not morally virtual, and at an offset other than zero." */
4540 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4541 {
4542 if (atend)
4543 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4544 /* The check above (used in G++ 3.2) is insufficient because
4545 an empty class placed at offset zero might itself have an
4546 empty base at a nonzero offset. */
4547 else if (walk_subobject_offsets (basetype,
4548 empty_base_at_nonzero_offset_p,
4549 size_zero_node,
4550 /*offsets=*/NULL,
4551 /*max_offset=*/NULL_TREE,
4552 /*vbases_p=*/true))
4553 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4554 }
4555
4556 /* We do not create a FIELD_DECL for empty base classes because
4557 it might overlap some other field. We want to be able to
4558 create CONSTRUCTORs for the class by iterating over the
4559 FIELD_DECLs, and the back end does not handle overlapping
4560 FIELD_DECLs. */
4561
4562 /* An empty virtual base causes a class to be non-empty
4563 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4564 here because that was already done when the virtual table
4565 pointer was created. */
4566 }
4567
4568 /* Record the offsets of BINFO and its base subobjects. */
4569 record_subobject_offsets (binfo,
4570 BINFO_OFFSET (binfo),
4571 offsets,
4572 /*is_data_member=*/false);
4573
4574 return next_field;
4575 }
4576
4577 /* Layout all of the non-virtual base classes. Record empty
4578 subobjects in OFFSETS. T is the most derived type. Return nonzero
4579 if the type cannot be nearly empty. The fields created
4580 corresponding to the base classes will be inserted at
4581 *NEXT_FIELD. */
4582
4583 static void
4584 build_base_fields (record_layout_info rli,
4585 splay_tree offsets, tree *next_field)
4586 {
4587 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4588 subobjects. */
4589 tree t = rli->t;
4590 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4591 int i;
4592
4593 /* The primary base class is always allocated first. */
4594 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4595 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4596 offsets, next_field);
4597
4598 /* Now allocate the rest of the bases. */
4599 for (i = 0; i < n_baseclasses; ++i)
4600 {
4601 tree base_binfo;
4602
4603 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4604
4605 /* The primary base was already allocated above, so we don't
4606 need to allocate it again here. */
4607 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4608 continue;
4609
4610 /* Virtual bases are added at the end (a primary virtual base
4611 will have already been added). */
4612 if (BINFO_VIRTUAL_P (base_binfo))
4613 continue;
4614
4615 next_field = build_base_field (rli, base_binfo,
4616 offsets, next_field);
4617 }
4618 }
4619
4620 /* Go through the TYPE_METHODS of T issuing any appropriate
4621 diagnostics, figuring out which methods override which other
4622 methods, and so forth. */
4623
4624 static void
4625 check_methods (tree t)
4626 {
4627 tree x;
4628
4629 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
4630 {
4631 check_for_override (x, t);
4632 if (DECL_PURE_VIRTUAL_P (x) && (TREE_CODE (x) != FUNCTION_DECL || ! DECL_VINDEX (x)))
4633 error ("initializer specified for non-virtual method %q+D", x);
4634 /* The name of the field is the original field name
4635 Save this in auxiliary field for later overloading. */
4636 if (TREE_CODE (x) == FUNCTION_DECL && DECL_VINDEX (x))
4637 {
4638 TYPE_POLYMORPHIC_P (t) = 1;
4639 if (DECL_PURE_VIRTUAL_P (x))
4640 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4641 }
4642 /* All user-provided destructors are non-trivial.
4643 Constructors and assignment ops are handled in
4644 grok_special_member_properties. */
4645 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4646 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4647 if (!DECL_VIRTUAL_P (x)
4648 && lookup_attribute ("transaction_safe_dynamic", DECL_ATTRIBUTES (x)))
4649 error_at (DECL_SOURCE_LOCATION (x),
4650 "%<transaction_safe_dynamic%> may only be specified for "
4651 "a virtual function");
4652 }
4653 }
4654
4655 /* FN is a constructor or destructor. Clone the declaration to create
4656 a specialized in-charge or not-in-charge version, as indicated by
4657 NAME. */
4658
4659 static tree
4660 build_clone (tree fn, tree name)
4661 {
4662 tree parms;
4663 tree clone;
4664
4665 /* Copy the function. */
4666 clone = copy_decl (fn);
4667 /* Reset the function name. */
4668 DECL_NAME (clone) = name;
4669 /* Remember where this function came from. */
4670 DECL_ABSTRACT_ORIGIN (clone) = fn;
4671 /* Make it easy to find the CLONE given the FN. */
4672 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4673 DECL_CHAIN (fn) = clone;
4674
4675 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4676 if (TREE_CODE (clone) == TEMPLATE_DECL)
4677 {
4678 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4679 DECL_TEMPLATE_RESULT (clone) = result;
4680 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4681 DECL_TI_TEMPLATE (result) = clone;
4682 TREE_TYPE (clone) = TREE_TYPE (result);
4683 return clone;
4684 }
4685 else
4686 {
4687 // Clone constraints.
4688 if (flag_concepts)
4689 if (tree ci = get_constraints (fn))
4690 set_constraints (clone, copy_node (ci));
4691 }
4692
4693
4694 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4695 DECL_CLONED_FUNCTION (clone) = fn;
4696 /* There's no pending inline data for this function. */
4697 DECL_PENDING_INLINE_INFO (clone) = NULL;
4698 DECL_PENDING_INLINE_P (clone) = 0;
4699
4700 /* The base-class destructor is not virtual. */
4701 if (name == base_dtor_identifier)
4702 {
4703 DECL_VIRTUAL_P (clone) = 0;
4704 if (TREE_CODE (clone) != TEMPLATE_DECL)
4705 DECL_VINDEX (clone) = NULL_TREE;
4706 }
4707
4708 /* If there was an in-charge parameter, drop it from the function
4709 type. */
4710 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4711 {
4712 tree basetype;
4713 tree parmtypes;
4714 tree exceptions;
4715
4716 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4717 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4718 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4719 /* Skip the `this' parameter. */
4720 parmtypes = TREE_CHAIN (parmtypes);
4721 /* Skip the in-charge parameter. */
4722 parmtypes = TREE_CHAIN (parmtypes);
4723 /* And the VTT parm, in a complete [cd]tor. */
4724 if (DECL_HAS_VTT_PARM_P (fn)
4725 && ! DECL_NEEDS_VTT_PARM_P (clone))
4726 parmtypes = TREE_CHAIN (parmtypes);
4727 /* If this is subobject constructor or destructor, add the vtt
4728 parameter. */
4729 TREE_TYPE (clone)
4730 = build_method_type_directly (basetype,
4731 TREE_TYPE (TREE_TYPE (clone)),
4732 parmtypes);
4733 if (exceptions)
4734 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
4735 exceptions);
4736 TREE_TYPE (clone)
4737 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4738 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4739 }
4740
4741 /* Copy the function parameters. */
4742 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4743 /* Remove the in-charge parameter. */
4744 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4745 {
4746 DECL_CHAIN (DECL_ARGUMENTS (clone))
4747 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4748 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4749 }
4750 /* And the VTT parm, in a complete [cd]tor. */
4751 if (DECL_HAS_VTT_PARM_P (fn))
4752 {
4753 if (DECL_NEEDS_VTT_PARM_P (clone))
4754 DECL_HAS_VTT_PARM_P (clone) = 1;
4755 else
4756 {
4757 DECL_CHAIN (DECL_ARGUMENTS (clone))
4758 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4759 DECL_HAS_VTT_PARM_P (clone) = 0;
4760 }
4761 }
4762
4763 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4764 {
4765 DECL_CONTEXT (parms) = clone;
4766 cxx_dup_lang_specific_decl (parms);
4767 }
4768
4769 /* Create the RTL for this function. */
4770 SET_DECL_RTL (clone, NULL);
4771 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4772
4773 return clone;
4774 }
4775
4776 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4777 not invoke this function directly.
4778
4779 For a non-thunk function, returns the address of the slot for storing
4780 the function it is a clone of. Otherwise returns NULL_TREE.
4781
4782 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4783 cloned_function is unset. This is to support the separate
4784 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4785 on a template makes sense, but not the former. */
4786
4787 tree *
4788 decl_cloned_function_p (const_tree decl, bool just_testing)
4789 {
4790 tree *ptr;
4791 if (just_testing)
4792 decl = STRIP_TEMPLATE (decl);
4793
4794 if (TREE_CODE (decl) != FUNCTION_DECL
4795 || !DECL_LANG_SPECIFIC (decl)
4796 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4797 {
4798 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4799 if (!just_testing)
4800 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4801 else
4802 #endif
4803 return NULL;
4804 }
4805
4806 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4807 if (just_testing && *ptr == NULL_TREE)
4808 return NULL;
4809 else
4810 return ptr;
4811 }
4812
4813 /* Produce declarations for all appropriate clones of FN. If
4814 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4815 CLASTYPE_METHOD_VEC as well. */
4816
4817 void
4818 clone_function_decl (tree fn, int update_method_vec_p)
4819 {
4820 tree clone;
4821
4822 /* Avoid inappropriate cloning. */
4823 if (DECL_CHAIN (fn)
4824 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4825 return;
4826
4827 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4828 {
4829 /* For each constructor, we need two variants: an in-charge version
4830 and a not-in-charge version. */
4831 clone = build_clone (fn, complete_ctor_identifier);
4832 if (update_method_vec_p)
4833 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4834 clone = build_clone (fn, base_ctor_identifier);
4835 if (update_method_vec_p)
4836 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4837 }
4838 else
4839 {
4840 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4841
4842 /* For each destructor, we need three variants: an in-charge
4843 version, a not-in-charge version, and an in-charge deleting
4844 version. We clone the deleting version first because that
4845 means it will go second on the TYPE_METHODS list -- and that
4846 corresponds to the correct layout order in the virtual
4847 function table.
4848
4849 For a non-virtual destructor, we do not build a deleting
4850 destructor. */
4851 if (DECL_VIRTUAL_P (fn))
4852 {
4853 clone = build_clone (fn, deleting_dtor_identifier);
4854 if (update_method_vec_p)
4855 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4856 }
4857 clone = build_clone (fn, complete_dtor_identifier);
4858 if (update_method_vec_p)
4859 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4860 clone = build_clone (fn, base_dtor_identifier);
4861 if (update_method_vec_p)
4862 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
4863 }
4864
4865 /* Note that this is an abstract function that is never emitted. */
4866 DECL_ABSTRACT_P (fn) = true;
4867 }
4868
4869 /* DECL is an in charge constructor, which is being defined. This will
4870 have had an in class declaration, from whence clones were
4871 declared. An out-of-class definition can specify additional default
4872 arguments. As it is the clones that are involved in overload
4873 resolution, we must propagate the information from the DECL to its
4874 clones. */
4875
4876 void
4877 adjust_clone_args (tree decl)
4878 {
4879 tree clone;
4880
4881 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4882 clone = DECL_CHAIN (clone))
4883 {
4884 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4885 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4886 tree decl_parms, clone_parms;
4887
4888 clone_parms = orig_clone_parms;
4889
4890 /* Skip the 'this' parameter. */
4891 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4892 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4893
4894 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4895 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4896 if (DECL_HAS_VTT_PARM_P (decl))
4897 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4898
4899 clone_parms = orig_clone_parms;
4900 if (DECL_HAS_VTT_PARM_P (clone))
4901 clone_parms = TREE_CHAIN (clone_parms);
4902
4903 for (decl_parms = orig_decl_parms; decl_parms;
4904 decl_parms = TREE_CHAIN (decl_parms),
4905 clone_parms = TREE_CHAIN (clone_parms))
4906 {
4907 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4908 TREE_TYPE (clone_parms)));
4909
4910 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4911 {
4912 /* A default parameter has been added. Adjust the
4913 clone's parameters. */
4914 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4915 tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone));
4916 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4917 tree type;
4918
4919 clone_parms = orig_decl_parms;
4920
4921 if (DECL_HAS_VTT_PARM_P (clone))
4922 {
4923 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4924 TREE_VALUE (orig_clone_parms),
4925 clone_parms);
4926 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4927 }
4928 type = build_method_type_directly (basetype,
4929 TREE_TYPE (TREE_TYPE (clone)),
4930 clone_parms);
4931 if (exceptions)
4932 type = build_exception_variant (type, exceptions);
4933 if (attrs)
4934 type = cp_build_type_attribute_variant (type, attrs);
4935 TREE_TYPE (clone) = type;
4936
4937 clone_parms = NULL_TREE;
4938 break;
4939 }
4940 }
4941 gcc_assert (!clone_parms);
4942 }
4943 }
4944
4945 /* For each of the constructors and destructors in T, create an
4946 in-charge and not-in-charge variant. */
4947
4948 static void
4949 clone_constructors_and_destructors (tree t)
4950 {
4951 tree fns;
4952
4953 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4954 out now. */
4955 if (!CLASSTYPE_METHOD_VEC (t))
4956 return;
4957
4958 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4959 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4960 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4961 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4962 }
4963
4964 /* Deduce noexcept for a destructor DTOR. */
4965
4966 void
4967 deduce_noexcept_on_destructor (tree dtor)
4968 {
4969 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4970 {
4971 tree eh_spec = unevaluated_noexcept_spec ();
4972 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor), eh_spec);
4973 }
4974 }
4975
4976 /* For each destructor in T, deduce noexcept:
4977
4978 12.4/3: A declaration of a destructor that does not have an
4979 exception-specification is implicitly considered to have the
4980 same exception-specification as an implicit declaration (15.4). */
4981
4982 static void
4983 deduce_noexcept_on_destructors (tree t)
4984 {
4985 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4986 out now. */
4987 if (!CLASSTYPE_METHOD_VEC (t))
4988 return;
4989
4990 for (tree fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4991 deduce_noexcept_on_destructor (OVL_CURRENT (fns));
4992 }
4993
4994 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4995 of TYPE for virtual functions which FNDECL overrides. Return a
4996 mask of the tm attributes found therein. */
4997
4998 static int
4999 look_for_tm_attr_overrides (tree type, tree fndecl)
5000 {
5001 tree binfo = TYPE_BINFO (type);
5002 tree base_binfo;
5003 int ix, found = 0;
5004
5005 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
5006 {
5007 tree o, basetype = BINFO_TYPE (base_binfo);
5008
5009 if (!TYPE_POLYMORPHIC_P (basetype))
5010 continue;
5011
5012 o = look_for_overrides_here (basetype, fndecl);
5013 if (o)
5014 {
5015 if (lookup_attribute ("transaction_safe_dynamic",
5016 DECL_ATTRIBUTES (o)))
5017 /* transaction_safe_dynamic is not inherited. */;
5018 else
5019 found |= tm_attr_to_mask (find_tm_attribute
5020 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
5021 }
5022 else
5023 found |= look_for_tm_attr_overrides (basetype, fndecl);
5024 }
5025
5026 return found;
5027 }
5028
5029 /* Subroutine of set_method_tm_attributes. Handle the checks and
5030 inheritance for one virtual method FNDECL. */
5031
5032 static void
5033 set_one_vmethod_tm_attributes (tree type, tree fndecl)
5034 {
5035 tree tm_attr;
5036 int found, have;
5037
5038 found = look_for_tm_attr_overrides (type, fndecl);
5039
5040 /* If FNDECL doesn't actually override anything (i.e. T is the
5041 class that first declares FNDECL virtual), then we're done. */
5042 if (found == 0)
5043 return;
5044
5045 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
5046 have = tm_attr_to_mask (tm_attr);
5047
5048 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
5049 tm_pure must match exactly, otherwise no weakening of
5050 tm_safe > tm_callable > nothing. */
5051 /* ??? The tm_pure attribute didn't make the transition to the
5052 multivendor language spec. */
5053 if (have == TM_ATTR_PURE)
5054 {
5055 if (found != TM_ATTR_PURE)
5056 {
5057 found &= -found;
5058 goto err_override;
5059 }
5060 }
5061 /* If the overridden function is tm_pure, then FNDECL must be. */
5062 else if (found == TM_ATTR_PURE && tm_attr)
5063 goto err_override;
5064 /* Look for base class combinations that cannot be satisfied. */
5065 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
5066 {
5067 found &= ~TM_ATTR_PURE;
5068 found &= -found;
5069 error_at (DECL_SOURCE_LOCATION (fndecl),
5070 "method overrides both %<transaction_pure%> and %qE methods",
5071 tm_mask_to_attr (found));
5072 }
5073 /* If FNDECL did not declare an attribute, then inherit the most
5074 restrictive one. */
5075 else if (tm_attr == NULL)
5076 {
5077 apply_tm_attr (fndecl, tm_mask_to_attr (least_bit_hwi (found)));
5078 }
5079 /* Otherwise validate that we're not weaker than a function
5080 that is being overridden. */
5081 else
5082 {
5083 found &= -found;
5084 if (found <= TM_ATTR_CALLABLE && have > found)
5085 goto err_override;
5086 }
5087 return;
5088
5089 err_override:
5090 error_at (DECL_SOURCE_LOCATION (fndecl),
5091 "method declared %qE overriding %qE method",
5092 tm_attr, tm_mask_to_attr (found));
5093 }
5094
5095 /* For each of the methods in T, propagate a class-level tm attribute. */
5096
5097 static void
5098 set_method_tm_attributes (tree t)
5099 {
5100 tree class_tm_attr, fndecl;
5101
5102 /* Don't bother collecting tm attributes if transactional memory
5103 support is not enabled. */
5104 if (!flag_tm)
5105 return;
5106
5107 /* Process virtual methods first, as they inherit directly from the
5108 base virtual function and also require validation of new attributes. */
5109 if (TYPE_CONTAINS_VPTR_P (t))
5110 {
5111 tree vchain;
5112 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
5113 vchain = TREE_CHAIN (vchain))
5114 {
5115 fndecl = BV_FN (vchain);
5116 if (DECL_THUNK_P (fndecl))
5117 fndecl = THUNK_TARGET (fndecl);
5118 set_one_vmethod_tm_attributes (t, fndecl);
5119 }
5120 }
5121
5122 /* If the class doesn't have an attribute, nothing more to do. */
5123 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
5124 if (class_tm_attr == NULL)
5125 return;
5126
5127 /* Any method that does not yet have a tm attribute inherits
5128 the one from the class. */
5129 for (fndecl = TYPE_METHODS (t); fndecl; fndecl = TREE_CHAIN (fndecl))
5130 {
5131 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
5132 apply_tm_attr (fndecl, class_tm_attr);
5133 }
5134 }
5135
5136 /* Returns true if FN is a default constructor. */
5137
5138 bool
5139 default_ctor_p (tree fn)
5140 {
5141 return (DECL_CONSTRUCTOR_P (fn)
5142 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)));
5143 }
5144
5145 /* Returns true iff class T has a user-defined constructor that can be called
5146 with more than zero arguments. */
5147
5148 bool
5149 type_has_user_nondefault_constructor (tree t)
5150 {
5151 tree fns;
5152
5153 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
5154 return false;
5155
5156 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5157 {
5158 tree fn = OVL_CURRENT (fns);
5159 if (!DECL_ARTIFICIAL (fn)
5160 && (TREE_CODE (fn) == TEMPLATE_DECL
5161 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
5162 != NULL_TREE)))
5163 return true;
5164 }
5165
5166 return false;
5167 }
5168
5169 /* Returns the defaulted constructor if T has one. Otherwise, returns
5170 NULL_TREE. */
5171
5172 tree
5173 in_class_defaulted_default_constructor (tree t)
5174 {
5175 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
5176 return NULL_TREE;
5177
5178 for (tree fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5179 {
5180 tree fn = OVL_CURRENT (fns);
5181
5182 if (DECL_DEFAULTED_IN_CLASS_P (fn)
5183 && default_ctor_p (fn))
5184 return fn;
5185 }
5186
5187 return NULL_TREE;
5188 }
5189
5190 /* Returns true iff FN is a user-provided function, i.e. user-declared
5191 and not defaulted at its first declaration. */
5192
5193 bool
5194 user_provided_p (tree fn)
5195 {
5196 if (TREE_CODE (fn) == TEMPLATE_DECL)
5197 return true;
5198 else
5199 return (!DECL_ARTIFICIAL (fn)
5200 && !(DECL_INITIALIZED_IN_CLASS_P (fn)
5201 && (DECL_DEFAULTED_FN (fn) || DECL_DELETED_FN (fn))));
5202 }
5203
5204 /* Returns true iff class T has a user-provided constructor. */
5205
5206 bool
5207 type_has_user_provided_constructor (tree t)
5208 {
5209 tree fns;
5210
5211 if (!CLASS_TYPE_P (t))
5212 return false;
5213
5214 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
5215 return false;
5216
5217 /* This can happen in error cases; avoid crashing. */
5218 if (!CLASSTYPE_METHOD_VEC (t))
5219 return false;
5220
5221 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5222 if (user_provided_p (OVL_CURRENT (fns)))
5223 return true;
5224
5225 return false;
5226 }
5227
5228 /* Returns true iff class T has a user-provided or explicit constructor. */
5229
5230 bool
5231 type_has_user_provided_or_explicit_constructor (tree t)
5232 {
5233 tree fns;
5234
5235 if (!CLASS_TYPE_P (t))
5236 return false;
5237
5238 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
5239 return false;
5240
5241 /* This can happen in error cases; avoid crashing. */
5242 if (!CLASSTYPE_METHOD_VEC (t))
5243 return false;
5244
5245 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5246 {
5247 tree fn = OVL_CURRENT (fns);
5248 if (user_provided_p (fn) || DECL_NONCONVERTING_P (fn))
5249 return true;
5250 }
5251
5252 return false;
5253 }
5254
5255 /* Returns true iff class T has a non-user-provided (i.e. implicitly
5256 declared or explicitly defaulted in the class body) default
5257 constructor. */
5258
5259 bool
5260 type_has_non_user_provided_default_constructor (tree t)
5261 {
5262 tree fns;
5263
5264 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (t))
5265 return false;
5266 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5267 return true;
5268
5269 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5270 {
5271 tree fn = OVL_CURRENT (fns);
5272 if (TREE_CODE (fn) == FUNCTION_DECL
5273 && default_ctor_p (fn)
5274 && !user_provided_p (fn))
5275 return true;
5276 }
5277
5278 return false;
5279 }
5280
5281 /* TYPE is being used as a virtual base, and has a non-trivial move
5282 assignment. Return true if this is due to there being a user-provided
5283 move assignment in TYPE or one of its subobjects; if there isn't, then
5284 multiple move assignment can't cause any harm. */
5285
5286 bool
5287 vbase_has_user_provided_move_assign (tree type)
5288 {
5289 /* Does the type itself have a user-provided move assignment operator? */
5290 for (tree fns
5291 = lookup_fnfields_slot_nolazy (type, ansi_assopname (NOP_EXPR));
5292 fns; fns = OVL_NEXT (fns))
5293 {
5294 tree fn = OVL_CURRENT (fns);
5295 if (move_fn_p (fn) && user_provided_p (fn))
5296 return true;
5297 }
5298
5299 /* Do any of its bases? */
5300 tree binfo = TYPE_BINFO (type);
5301 tree base_binfo;
5302 for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5303 if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo)))
5304 return true;
5305
5306 /* Or non-static data members? */
5307 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5308 {
5309 if (TREE_CODE (field) == FIELD_DECL
5310 && CLASS_TYPE_P (TREE_TYPE (field))
5311 && vbase_has_user_provided_move_assign (TREE_TYPE (field)))
5312 return true;
5313 }
5314
5315 /* Seems not. */
5316 return false;
5317 }
5318
5319 /* If default-initialization leaves part of TYPE uninitialized, returns
5320 a DECL for the field or TYPE itself (DR 253). */
5321
5322 tree
5323 default_init_uninitialized_part (tree type)
5324 {
5325 tree t, r, binfo;
5326 int i;
5327
5328 type = strip_array_types (type);
5329 if (!CLASS_TYPE_P (type))
5330 return type;
5331 if (!type_has_non_user_provided_default_constructor (type))
5332 return NULL_TREE;
5333 for (binfo = TYPE_BINFO (type), i = 0;
5334 BINFO_BASE_ITERATE (binfo, i, t); ++i)
5335 {
5336 r = default_init_uninitialized_part (BINFO_TYPE (t));
5337 if (r)
5338 return r;
5339 }
5340 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
5341 if (TREE_CODE (t) == FIELD_DECL
5342 && !DECL_ARTIFICIAL (t)
5343 && !DECL_INITIAL (t))
5344 {
5345 r = default_init_uninitialized_part (TREE_TYPE (t));
5346 if (r)
5347 return DECL_P (r) ? r : t;
5348 }
5349
5350 return NULL_TREE;
5351 }
5352
5353 /* Returns true iff for class T, a trivial synthesized default constructor
5354 would be constexpr. */
5355
5356 bool
5357 trivial_default_constructor_is_constexpr (tree t)
5358 {
5359 /* A defaulted trivial default constructor is constexpr
5360 if there is nothing to initialize. */
5361 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
5362 return is_really_empty_class (t);
5363 }
5364
5365 /* Returns true iff class T has a constexpr default constructor. */
5366
5367 bool
5368 type_has_constexpr_default_constructor (tree t)
5369 {
5370 tree fns;
5371
5372 if (!CLASS_TYPE_P (t))
5373 {
5374 /* The caller should have stripped an enclosing array. */
5375 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
5376 return false;
5377 }
5378 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5379 {
5380 if (!TYPE_HAS_COMPLEX_DFLT (t))
5381 return trivial_default_constructor_is_constexpr (t);
5382 /* Non-trivial, we need to check subobject constructors. */
5383 lazily_declare_fn (sfk_constructor, t);
5384 }
5385 fns = locate_ctor (t);
5386 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
5387 }
5388
5389 /* Returns true iff class T has a constexpr default constructor or has an
5390 implicitly declared default constructor that we can't tell if it's constexpr
5391 without forcing a lazy declaration (which might cause undesired
5392 instantiations). */
5393
5394 bool
5395 type_maybe_constexpr_default_constructor (tree t)
5396 {
5397 if (CLASS_TYPE_P (t) && CLASSTYPE_LAZY_DEFAULT_CTOR (t)
5398 && TYPE_HAS_COMPLEX_DFLT (t))
5399 /* Assume it's constexpr. */
5400 return true;
5401 return type_has_constexpr_default_constructor (t);
5402 }
5403
5404 /* Returns true iff class TYPE has a virtual destructor. */
5405
5406 bool
5407 type_has_virtual_destructor (tree type)
5408 {
5409 tree dtor;
5410
5411 if (!CLASS_TYPE_P (type))
5412 return false;
5413
5414 gcc_assert (COMPLETE_TYPE_P (type));
5415 dtor = CLASSTYPE_DESTRUCTORS (type);
5416 return (dtor && DECL_VIRTUAL_P (dtor));
5417 }
5418
5419 /* Returns true iff class T has a move constructor. */
5420
5421 bool
5422 type_has_move_constructor (tree t)
5423 {
5424 tree fns;
5425
5426 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5427 {
5428 gcc_assert (COMPLETE_TYPE_P (t));
5429 lazily_declare_fn (sfk_move_constructor, t);
5430 }
5431
5432 if (!CLASSTYPE_METHOD_VEC (t))
5433 return false;
5434
5435 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5436 if (move_fn_p (OVL_CURRENT (fns)))
5437 return true;
5438
5439 return false;
5440 }
5441
5442 /* Returns true iff class T has a move assignment operator. */
5443
5444 bool
5445 type_has_move_assign (tree t)
5446 {
5447 tree fns;
5448
5449 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5450 {
5451 gcc_assert (COMPLETE_TYPE_P (t));
5452 lazily_declare_fn (sfk_move_assignment, t);
5453 }
5454
5455 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5456 fns; fns = OVL_NEXT (fns))
5457 if (move_fn_p (OVL_CURRENT (fns)))
5458 return true;
5459
5460 return false;
5461 }
5462
5463 /* Returns true iff class T has a move constructor that was explicitly
5464 declared in the class body. Note that this is different from
5465 "user-provided", which doesn't include functions that are defaulted in
5466 the class. */
5467
5468 bool
5469 type_has_user_declared_move_constructor (tree t)
5470 {
5471 tree fns;
5472
5473 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5474 return false;
5475
5476 if (!CLASSTYPE_METHOD_VEC (t))
5477 return false;
5478
5479 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5480 {
5481 tree fn = OVL_CURRENT (fns);
5482 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5483 return true;
5484 }
5485
5486 return false;
5487 }
5488
5489 /* Returns true iff class T has a move assignment operator that was
5490 explicitly declared in the class body. */
5491
5492 bool
5493 type_has_user_declared_move_assign (tree t)
5494 {
5495 tree fns;
5496
5497 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5498 return false;
5499
5500 for (fns = lookup_fnfields_slot_nolazy (t, ansi_assopname (NOP_EXPR));
5501 fns; fns = OVL_NEXT (fns))
5502 {
5503 tree fn = OVL_CURRENT (fns);
5504 if (move_fn_p (fn) && !DECL_ARTIFICIAL (fn))
5505 return true;
5506 }
5507
5508 return false;
5509 }
5510
5511 /* Nonzero if we need to build up a constructor call when initializing an
5512 object of this class, either because it has a user-declared constructor
5513 or because it doesn't have a default constructor (so we need to give an
5514 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5515 what you care about is whether or not an object can be produced by a
5516 constructor (e.g. so we don't set TREE_READONLY on const variables of
5517 such type); use this function when what you care about is whether or not
5518 to try to call a constructor to create an object. The latter case is
5519 the former plus some cases of constructors that cannot be called. */
5520
5521 bool
5522 type_build_ctor_call (tree t)
5523 {
5524 tree inner;
5525 if (TYPE_NEEDS_CONSTRUCTING (t))
5526 return true;
5527 inner = strip_array_types (t);
5528 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner))
5529 return false;
5530 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (inner))
5531 return true;
5532 if (cxx_dialect < cxx11)
5533 return false;
5534 /* A user-declared constructor might be private, and a constructor might
5535 be trivial but deleted. */
5536 for (tree fns = lookup_fnfields_slot (inner, complete_ctor_identifier);
5537 fns; fns = OVL_NEXT (fns))
5538 {
5539 tree fn = OVL_CURRENT (fns);
5540 if (!DECL_ARTIFICIAL (fn)
5541 || DECL_DELETED_FN (fn))
5542 return true;
5543 }
5544 return false;
5545 }
5546
5547 /* Like type_build_ctor_call, but for destructors. */
5548
5549 bool
5550 type_build_dtor_call (tree t)
5551 {
5552 tree inner;
5553 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5554 return true;
5555 inner = strip_array_types (t);
5556 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner)
5557 || !COMPLETE_TYPE_P (inner))
5558 return false;
5559 if (cxx_dialect < cxx11)
5560 return false;
5561 /* A user-declared destructor might be private, and a destructor might
5562 be trivial but deleted. */
5563 for (tree fns = lookup_fnfields_slot (inner, complete_dtor_identifier);
5564 fns; fns = OVL_NEXT (fns))
5565 {
5566 tree fn = OVL_CURRENT (fns);
5567 if (!DECL_ARTIFICIAL (fn)
5568 || DECL_DELETED_FN (fn))
5569 return true;
5570 }
5571 return false;
5572 }
5573
5574 /* Remove all zero-width bit-fields from T. */
5575
5576 static void
5577 remove_zero_width_bit_fields (tree t)
5578 {
5579 tree *fieldsp;
5580
5581 fieldsp = &TYPE_FIELDS (t);
5582 while (*fieldsp)
5583 {
5584 if (TREE_CODE (*fieldsp) == FIELD_DECL
5585 && DECL_C_BIT_FIELD (*fieldsp)
5586 /* We should not be confused by the fact that grokbitfield
5587 temporarily sets the width of the bit field into
5588 DECL_INITIAL (*fieldsp).
5589 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5590 to that width. */
5591 && (DECL_SIZE (*fieldsp) == NULL_TREE
5592 || integer_zerop (DECL_SIZE (*fieldsp))))
5593 *fieldsp = DECL_CHAIN (*fieldsp);
5594 else
5595 fieldsp = &DECL_CHAIN (*fieldsp);
5596 }
5597 }
5598
5599 /* Returns TRUE iff we need a cookie when dynamically allocating an
5600 array whose elements have the indicated class TYPE. */
5601
5602 static bool
5603 type_requires_array_cookie (tree type)
5604 {
5605 tree fns;
5606 bool has_two_argument_delete_p = false;
5607
5608 gcc_assert (CLASS_TYPE_P (type));
5609
5610 /* If there's a non-trivial destructor, we need a cookie. In order
5611 to iterate through the array calling the destructor for each
5612 element, we'll have to know how many elements there are. */
5613 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5614 return true;
5615
5616 /* If the usual deallocation function is a two-argument whose second
5617 argument is of type `size_t', then we have to pass the size of
5618 the array to the deallocation function, so we will need to store
5619 a cookie. */
5620 fns = lookup_fnfields (TYPE_BINFO (type),
5621 ansi_opname (VEC_DELETE_EXPR),
5622 /*protect=*/0);
5623 /* If there are no `operator []' members, or the lookup is
5624 ambiguous, then we don't need a cookie. */
5625 if (!fns || fns == error_mark_node)
5626 return false;
5627 /* Loop through all of the functions. */
5628 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
5629 {
5630 tree fn;
5631 tree second_parm;
5632
5633 /* Select the current function. */
5634 fn = OVL_CURRENT (fns);
5635 /* See if this function is a one-argument delete function. If
5636 it is, then it will be the usual deallocation function. */
5637 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5638 if (second_parm == void_list_node)
5639 return false;
5640 /* Do not consider this function if its second argument is an
5641 ellipsis. */
5642 if (!second_parm)
5643 continue;
5644 /* Otherwise, if we have a two-argument function and the second
5645 argument is `size_t', it will be the usual deallocation
5646 function -- unless there is one-argument function, too. */
5647 if (TREE_CHAIN (second_parm) == void_list_node
5648 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5649 has_two_argument_delete_p = true;
5650 }
5651
5652 return has_two_argument_delete_p;
5653 }
5654
5655 /* Finish computing the `literal type' property of class type T.
5656
5657 At this point, we have already processed base classes and
5658 non-static data members. We need to check whether the copy
5659 constructor is trivial, the destructor is trivial, and there
5660 is a trivial default constructor or at least one constexpr
5661 constructor other than the copy constructor. */
5662
5663 static void
5664 finalize_literal_type_property (tree t)
5665 {
5666 tree fn;
5667
5668 if (cxx_dialect < cxx11
5669 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5670 CLASSTYPE_LITERAL_P (t) = false;
5671 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5672 && CLASSTYPE_NON_AGGREGATE (t)
5673 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5674 CLASSTYPE_LITERAL_P (t) = false;
5675
5676 if (!CLASSTYPE_LITERAL_P (t))
5677 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5678 if (DECL_DECLARED_CONSTEXPR_P (fn)
5679 && TREE_CODE (fn) != TEMPLATE_DECL
5680 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5681 && !DECL_CONSTRUCTOR_P (fn))
5682 {
5683 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5684 if (!DECL_GENERATED_P (fn) && !LAMBDA_TYPE_P (t))
5685 {
5686 error ("enclosing class of constexpr non-static member "
5687 "function %q+#D is not a literal type", fn);
5688 explain_non_literal_class (t);
5689 }
5690 }
5691 }
5692
5693 /* T is a non-literal type used in a context which requires a constant
5694 expression. Explain why it isn't literal. */
5695
5696 void
5697 explain_non_literal_class (tree t)
5698 {
5699 static hash_set<tree> *diagnosed;
5700
5701 if (!CLASS_TYPE_P (t))
5702 return;
5703 t = TYPE_MAIN_VARIANT (t);
5704
5705 if (diagnosed == NULL)
5706 diagnosed = new hash_set<tree>;
5707 if (diagnosed->add (t))
5708 /* Already explained. */
5709 return;
5710
5711 inform (0, "%q+T is not literal because:", t);
5712 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5713 inform (0, " %q+T has a non-trivial destructor", t);
5714 else if (CLASSTYPE_NON_AGGREGATE (t)
5715 && !TYPE_HAS_TRIVIAL_DFLT (t)
5716 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5717 {
5718 inform (0, " %q+T is not an aggregate, does not have a trivial "
5719 "default constructor, and has no constexpr constructor that "
5720 "is not a copy or move constructor", t);
5721 if (type_has_non_user_provided_default_constructor (t))
5722 {
5723 /* Note that we can't simply call locate_ctor because when the
5724 constructor is deleted it just returns NULL_TREE. */
5725 tree fns;
5726 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
5727 {
5728 tree fn = OVL_CURRENT (fns);
5729 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5730
5731 parms = skip_artificial_parms_for (fn, parms);
5732
5733 if (sufficient_parms_p (parms))
5734 {
5735 if (DECL_DELETED_FN (fn))
5736 maybe_explain_implicit_delete (fn);
5737 else
5738 explain_invalid_constexpr_fn (fn);
5739 break;
5740 }
5741 }
5742 }
5743 }
5744 else
5745 {
5746 tree binfo, base_binfo, field; int i;
5747 for (binfo = TYPE_BINFO (t), i = 0;
5748 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5749 {
5750 tree basetype = TREE_TYPE (base_binfo);
5751 if (!CLASSTYPE_LITERAL_P (basetype))
5752 {
5753 inform (0, " base class %qT of %q+T is non-literal",
5754 basetype, t);
5755 explain_non_literal_class (basetype);
5756 return;
5757 }
5758 }
5759 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5760 {
5761 tree ftype;
5762 if (TREE_CODE (field) != FIELD_DECL)
5763 continue;
5764 ftype = TREE_TYPE (field);
5765 if (!literal_type_p (ftype))
5766 {
5767 inform (DECL_SOURCE_LOCATION (field),
5768 " non-static data member %qD has non-literal type",
5769 field);
5770 if (CLASS_TYPE_P (ftype))
5771 explain_non_literal_class (ftype);
5772 }
5773 if (CP_TYPE_VOLATILE_P (ftype))
5774 inform (DECL_SOURCE_LOCATION (field),
5775 " non-static data member %qD has volatile type", field);
5776 }
5777 }
5778 }
5779
5780 /* Check the validity of the bases and members declared in T. Add any
5781 implicitly-generated functions (like copy-constructors and
5782 assignment operators). Compute various flag bits (like
5783 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5784 level: i.e., independently of the ABI in use. */
5785
5786 static void
5787 check_bases_and_members (tree t)
5788 {
5789 /* Nonzero if the implicitly generated copy constructor should take
5790 a non-const reference argument. */
5791 int cant_have_const_ctor;
5792 /* Nonzero if the implicitly generated assignment operator
5793 should take a non-const reference argument. */
5794 int no_const_asn_ref;
5795 tree access_decls;
5796 bool saved_complex_asn_ref;
5797 bool saved_nontrivial_dtor;
5798 tree fn;
5799
5800 /* By default, we use const reference arguments and generate default
5801 constructors. */
5802 cant_have_const_ctor = 0;
5803 no_const_asn_ref = 0;
5804
5805 /* Check all the base-classes and set FMEM members to point to arrays
5806 of potential interest. */
5807 check_bases (t, &cant_have_const_ctor, &no_const_asn_ref);
5808
5809 /* Deduce noexcept on destructors. This needs to happen after we've set
5810 triviality flags appropriately for our bases. */
5811 if (cxx_dialect >= cxx11)
5812 deduce_noexcept_on_destructors (t);
5813
5814 /* Check all the method declarations. */
5815 check_methods (t);
5816
5817 /* Save the initial values of these flags which only indicate whether
5818 or not the class has user-provided functions. As we analyze the
5819 bases and members we can set these flags for other reasons. */
5820 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5821 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5822
5823 /* Check all the data member declarations. We cannot call
5824 check_field_decls until we have called check_bases check_methods,
5825 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5826 being set appropriately. */
5827 check_field_decls (t, &access_decls,
5828 &cant_have_const_ctor,
5829 &no_const_asn_ref);
5830
5831 /* A nearly-empty class has to be vptr-containing; a nearly empty
5832 class contains just a vptr. */
5833 if (!TYPE_CONTAINS_VPTR_P (t))
5834 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5835
5836 /* Do some bookkeeping that will guide the generation of implicitly
5837 declared member functions. */
5838 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5839 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5840 /* We need to call a constructor for this class if it has a
5841 user-provided constructor, or if the default constructor is going
5842 to initialize the vptr. (This is not an if-and-only-if;
5843 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5844 themselves need constructing.) */
5845 TYPE_NEEDS_CONSTRUCTING (t)
5846 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5847 /* [dcl.init.aggr]
5848
5849 An aggregate is an array or a class with no user-provided
5850 constructors ... and no virtual functions.
5851
5852 Again, other conditions for being an aggregate are checked
5853 elsewhere. */
5854 CLASSTYPE_NON_AGGREGATE (t)
5855 |= (type_has_user_provided_or_explicit_constructor (t)
5856 || TYPE_POLYMORPHIC_P (t));
5857 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5858 retain the old definition internally for ABI reasons. */
5859 CLASSTYPE_NON_LAYOUT_POD_P (t)
5860 |= (CLASSTYPE_NON_AGGREGATE (t)
5861 || saved_nontrivial_dtor || saved_complex_asn_ref);
5862 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5863 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5864 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5865 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5866
5867 /* If the only explicitly declared default constructor is user-provided,
5868 set TYPE_HAS_COMPLEX_DFLT. */
5869 if (!TYPE_HAS_COMPLEX_DFLT (t)
5870 && TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5871 && !type_has_non_user_provided_default_constructor (t))
5872 TYPE_HAS_COMPLEX_DFLT (t) = true;
5873
5874 /* Warn if a public base of a polymorphic type has an accessible
5875 non-virtual destructor. It is only now that we know the class is
5876 polymorphic. Although a polymorphic base will have a already
5877 been diagnosed during its definition, we warn on use too. */
5878 if (TYPE_POLYMORPHIC_P (t) && warn_nonvdtor)
5879 {
5880 tree binfo = TYPE_BINFO (t);
5881 vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
5882 tree base_binfo;
5883 unsigned i;
5884
5885 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5886 {
5887 tree basetype = TREE_TYPE (base_binfo);
5888
5889 if ((*accesses)[i] == access_public_node
5890 && (TYPE_POLYMORPHIC_P (basetype) || warn_ecpp)
5891 && accessible_nvdtor_p (basetype))
5892 warning (OPT_Wnon_virtual_dtor,
5893 "base class %q#T has accessible non-virtual destructor",
5894 basetype);
5895 }
5896 }
5897
5898 /* If the class has no user-declared constructor, but does have
5899 non-static const or reference data members that can never be
5900 initialized, issue a warning. */
5901 if (warn_uninitialized
5902 /* Classes with user-declared constructors are presumed to
5903 initialize these members. */
5904 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5905 /* Aggregates can be initialized with brace-enclosed
5906 initializers. */
5907 && CLASSTYPE_NON_AGGREGATE (t))
5908 {
5909 tree field;
5910
5911 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5912 {
5913 tree type;
5914
5915 if (TREE_CODE (field) != FIELD_DECL
5916 || DECL_INITIAL (field) != NULL_TREE)
5917 continue;
5918
5919 type = TREE_TYPE (field);
5920 if (TREE_CODE (type) == REFERENCE_TYPE)
5921 warning_at (DECL_SOURCE_LOCATION (field),
5922 OPT_Wuninitialized, "non-static reference %q#D "
5923 "in class without a constructor", field);
5924 else if (CP_TYPE_CONST_P (type)
5925 && (!CLASS_TYPE_P (type)
5926 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5927 warning_at (DECL_SOURCE_LOCATION (field),
5928 OPT_Wuninitialized, "non-static const member %q#D "
5929 "in class without a constructor", field);
5930 }
5931 }
5932
5933 /* Synthesize any needed methods. */
5934 add_implicitly_declared_members (t, &access_decls,
5935 cant_have_const_ctor,
5936 no_const_asn_ref);
5937
5938 /* Check defaulted declarations here so we have cant_have_const_ctor
5939 and don't need to worry about clones. */
5940 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
5941 if (!DECL_ARTIFICIAL (fn) && DECL_DEFAULTED_IN_CLASS_P (fn))
5942 {
5943 int copy = copy_fn_p (fn);
5944 if (copy > 0)
5945 {
5946 bool imp_const_p
5947 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5948 : !no_const_asn_ref);
5949 bool fn_const_p = (copy == 2);
5950
5951 if (fn_const_p && !imp_const_p)
5952 /* If the function is defaulted outside the class, we just
5953 give the synthesis error. */
5954 error ("%q+D declared to take const reference, but implicit "
5955 "declaration would take non-const", fn);
5956 }
5957 defaulted_late_check (fn);
5958 }
5959
5960 if (LAMBDA_TYPE_P (t))
5961 {
5962 /* "This class type is not an aggregate." */
5963 CLASSTYPE_NON_AGGREGATE (t) = 1;
5964 }
5965
5966 /* Compute the 'literal type' property before we
5967 do anything with non-static member functions. */
5968 finalize_literal_type_property (t);
5969
5970 /* Create the in-charge and not-in-charge variants of constructors
5971 and destructors. */
5972 clone_constructors_and_destructors (t);
5973
5974 /* Process the using-declarations. */
5975 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5976 handle_using_decl (TREE_VALUE (access_decls), t);
5977
5978 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5979 finish_struct_methods (t);
5980
5981 /* Figure out whether or not we will need a cookie when dynamically
5982 allocating an array of this type. */
5983 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
5984 = type_requires_array_cookie (t);
5985 }
5986
5987 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5988 accordingly. If a new vfield was created (because T doesn't have a
5989 primary base class), then the newly created field is returned. It
5990 is not added to the TYPE_FIELDS list; it is the caller's
5991 responsibility to do that. Accumulate declared virtual functions
5992 on VIRTUALS_P. */
5993
5994 static tree
5995 create_vtable_ptr (tree t, tree* virtuals_p)
5996 {
5997 tree fn;
5998
5999 /* Collect the virtual functions declared in T. */
6000 for (fn = TYPE_METHODS (t); fn; fn = DECL_CHAIN (fn))
6001 if (TREE_CODE (fn) == FUNCTION_DECL
6002 && DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
6003 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
6004 {
6005 tree new_virtual = make_node (TREE_LIST);
6006
6007 BV_FN (new_virtual) = fn;
6008 BV_DELTA (new_virtual) = integer_zero_node;
6009 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
6010
6011 TREE_CHAIN (new_virtual) = *virtuals_p;
6012 *virtuals_p = new_virtual;
6013 }
6014
6015 /* If we couldn't find an appropriate base class, create a new field
6016 here. Even if there weren't any new virtual functions, we might need a
6017 new virtual function table if we're supposed to include vptrs in
6018 all classes that need them. */
6019 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
6020 {
6021 /* We build this decl with vtbl_ptr_type_node, which is a
6022 `vtable_entry_type*'. It might seem more precise to use
6023 `vtable_entry_type (*)[N]' where N is the number of virtual
6024 functions. However, that would require the vtable pointer in
6025 base classes to have a different type than the vtable pointer
6026 in derived classes. We could make that happen, but that
6027 still wouldn't solve all the problems. In particular, the
6028 type-based alias analysis code would decide that assignments
6029 to the base class vtable pointer can't alias assignments to
6030 the derived class vtable pointer, since they have different
6031 types. Thus, in a derived class destructor, where the base
6032 class constructor was inlined, we could generate bad code for
6033 setting up the vtable pointer.
6034
6035 Therefore, we use one type for all vtable pointers. We still
6036 use a type-correct type; it's just doesn't indicate the array
6037 bounds. That's better than using `void*' or some such; it's
6038 cleaner, and it let's the alias analysis code know that these
6039 stores cannot alias stores to void*! */
6040 tree field;
6041
6042 field = build_decl (input_location,
6043 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
6044 DECL_VIRTUAL_P (field) = 1;
6045 DECL_ARTIFICIAL (field) = 1;
6046 DECL_FIELD_CONTEXT (field) = t;
6047 DECL_FCONTEXT (field) = t;
6048 if (TYPE_PACKED (t))
6049 DECL_PACKED (field) = 1;
6050
6051 TYPE_VFIELD (t) = field;
6052
6053 /* This class is non-empty. */
6054 CLASSTYPE_EMPTY_P (t) = 0;
6055
6056 return field;
6057 }
6058
6059 return NULL_TREE;
6060 }
6061
6062 /* Add OFFSET to all base types of BINFO which is a base in the
6063 hierarchy dominated by T.
6064
6065 OFFSET, which is a type offset, is number of bytes. */
6066
6067 static void
6068 propagate_binfo_offsets (tree binfo, tree offset)
6069 {
6070 int i;
6071 tree primary_binfo;
6072 tree base_binfo;
6073
6074 /* Update BINFO's offset. */
6075 BINFO_OFFSET (binfo)
6076 = fold_convert (sizetype,
6077 size_binop (PLUS_EXPR,
6078 fold_convert (ssizetype, BINFO_OFFSET (binfo)),
6079 offset));
6080
6081 /* Find the primary base class. */
6082 primary_binfo = get_primary_binfo (binfo);
6083
6084 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
6085 propagate_binfo_offsets (primary_binfo, offset);
6086
6087 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
6088 downwards. */
6089 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6090 {
6091 /* Don't do the primary base twice. */
6092 if (base_binfo == primary_binfo)
6093 continue;
6094
6095 if (BINFO_VIRTUAL_P (base_binfo))
6096 continue;
6097
6098 propagate_binfo_offsets (base_binfo, offset);
6099 }
6100 }
6101
6102 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
6103 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
6104 empty subobjects of T. */
6105
6106 static void
6107 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
6108 {
6109 tree vbase;
6110 tree t = rli->t;
6111 tree *next_field;
6112
6113 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
6114 return;
6115
6116 /* Find the last field. The artificial fields created for virtual
6117 bases will go after the last extant field to date. */
6118 next_field = &TYPE_FIELDS (t);
6119 while (*next_field)
6120 next_field = &DECL_CHAIN (*next_field);
6121
6122 /* Go through the virtual bases, allocating space for each virtual
6123 base that is not already a primary base class. These are
6124 allocated in inheritance graph order. */
6125 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6126 {
6127 if (!BINFO_VIRTUAL_P (vbase))
6128 continue;
6129
6130 if (!BINFO_PRIMARY_P (vbase))
6131 {
6132 /* This virtual base is not a primary base of any class in the
6133 hierarchy, so we have to add space for it. */
6134 next_field = build_base_field (rli, vbase,
6135 offsets, next_field);
6136 }
6137 }
6138 }
6139
6140 /* Returns the offset of the byte just past the end of the base class
6141 BINFO. */
6142
6143 static tree
6144 end_of_base (tree binfo)
6145 {
6146 tree size;
6147
6148 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
6149 size = TYPE_SIZE_UNIT (char_type_node);
6150 else if (is_empty_class (BINFO_TYPE (binfo)))
6151 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
6152 allocate some space for it. It cannot have virtual bases, so
6153 TYPE_SIZE_UNIT is fine. */
6154 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
6155 else
6156 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
6157
6158 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
6159 }
6160
6161 /* Returns the offset of the byte just past the end of the base class
6162 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
6163 only non-virtual bases are included. */
6164
6165 static tree
6166 end_of_class (tree t, int include_virtuals_p)
6167 {
6168 tree result = size_zero_node;
6169 vec<tree, va_gc> *vbases;
6170 tree binfo;
6171 tree base_binfo;
6172 tree offset;
6173 int i;
6174
6175 for (binfo = TYPE_BINFO (t), i = 0;
6176 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6177 {
6178 if (!include_virtuals_p
6179 && BINFO_VIRTUAL_P (base_binfo)
6180 && (!BINFO_PRIMARY_P (base_binfo)
6181 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
6182 continue;
6183
6184 offset = end_of_base (base_binfo);
6185 if (tree_int_cst_lt (result, offset))
6186 result = offset;
6187 }
6188
6189 if (include_virtuals_p)
6190 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
6191 vec_safe_iterate (vbases, i, &base_binfo); i++)
6192 {
6193 offset = end_of_base (base_binfo);
6194 if (tree_int_cst_lt (result, offset))
6195 result = offset;
6196 }
6197
6198 return result;
6199 }
6200
6201 /* Warn about bases of T that are inaccessible because they are
6202 ambiguous. For example:
6203
6204 struct S {};
6205 struct T : public S {};
6206 struct U : public S, public T {};
6207
6208 Here, `(S*) new U' is not allowed because there are two `S'
6209 subobjects of U. */
6210
6211 static void
6212 warn_about_ambiguous_bases (tree t)
6213 {
6214 int i;
6215 vec<tree, va_gc> *vbases;
6216 tree basetype;
6217 tree binfo;
6218 tree base_binfo;
6219
6220 /* If there are no repeated bases, nothing can be ambiguous. */
6221 if (!CLASSTYPE_REPEATED_BASE_P (t))
6222 return;
6223
6224 /* Check direct bases. */
6225 for (binfo = TYPE_BINFO (t), i = 0;
6226 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6227 {
6228 basetype = BINFO_TYPE (base_binfo);
6229
6230 if (!uniquely_derived_from_p (basetype, t))
6231 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
6232 basetype, t);
6233 }
6234
6235 /* Check for ambiguous virtual bases. */
6236 if (extra_warnings)
6237 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
6238 vec_safe_iterate (vbases, i, &binfo); i++)
6239 {
6240 basetype = BINFO_TYPE (binfo);
6241
6242 if (!uniquely_derived_from_p (basetype, t))
6243 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
6244 "to ambiguity", basetype, t);
6245 }
6246 }
6247
6248 /* Compare two INTEGER_CSTs K1 and K2. */
6249
6250 static int
6251 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
6252 {
6253 return tree_int_cst_compare ((tree) k1, (tree) k2);
6254 }
6255
6256 /* Increase the size indicated in RLI to account for empty classes
6257 that are "off the end" of the class. */
6258
6259 static void
6260 include_empty_classes (record_layout_info rli)
6261 {
6262 tree eoc;
6263 tree rli_size;
6264
6265 /* It might be the case that we grew the class to allocate a
6266 zero-sized base class. That won't be reflected in RLI, yet,
6267 because we are willing to overlay multiple bases at the same
6268 offset. However, now we need to make sure that RLI is big enough
6269 to reflect the entire class. */
6270 eoc = end_of_class (rli->t,
6271 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
6272 rli_size = rli_size_unit_so_far (rli);
6273 if (TREE_CODE (rli_size) == INTEGER_CST
6274 && tree_int_cst_lt (rli_size, eoc))
6275 {
6276 /* The size should have been rounded to a whole byte. */
6277 gcc_assert (tree_int_cst_equal
6278 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
6279 rli->bitpos
6280 = size_binop (PLUS_EXPR,
6281 rli->bitpos,
6282 size_binop (MULT_EXPR,
6283 fold_convert (bitsizetype,
6284 size_binop (MINUS_EXPR,
6285 eoc, rli_size)),
6286 bitsize_int (BITS_PER_UNIT)));
6287 normalize_rli (rli);
6288 }
6289 }
6290
6291 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
6292 BINFO_OFFSETs for all of the base-classes. Position the vtable
6293 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
6294
6295 static void
6296 layout_class_type (tree t, tree *virtuals_p)
6297 {
6298 tree non_static_data_members;
6299 tree field;
6300 tree vptr;
6301 record_layout_info rli;
6302 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
6303 types that appear at that offset. */
6304 splay_tree empty_base_offsets;
6305 /* True if the last field laid out was a bit-field. */
6306 bool last_field_was_bitfield = false;
6307 /* The location at which the next field should be inserted. */
6308 tree *next_field;
6309 /* T, as a base class. */
6310 tree base_t;
6311
6312 /* Keep track of the first non-static data member. */
6313 non_static_data_members = TYPE_FIELDS (t);
6314
6315 /* Start laying out the record. */
6316 rli = start_record_layout (t);
6317
6318 /* Mark all the primary bases in the hierarchy. */
6319 determine_primary_bases (t);
6320
6321 /* Create a pointer to our virtual function table. */
6322 vptr = create_vtable_ptr (t, virtuals_p);
6323
6324 /* The vptr is always the first thing in the class. */
6325 if (vptr)
6326 {
6327 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
6328 TYPE_FIELDS (t) = vptr;
6329 next_field = &DECL_CHAIN (vptr);
6330 place_field (rli, vptr);
6331 }
6332 else
6333 next_field = &TYPE_FIELDS (t);
6334
6335 /* Build FIELD_DECLs for all of the non-virtual base-types. */
6336 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
6337 NULL, NULL);
6338 build_base_fields (rli, empty_base_offsets, next_field);
6339
6340 /* Layout the non-static data members. */
6341 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
6342 {
6343 tree type;
6344 tree padding;
6345
6346 /* We still pass things that aren't non-static data members to
6347 the back end, in case it wants to do something with them. */
6348 if (TREE_CODE (field) != FIELD_DECL)
6349 {
6350 place_field (rli, field);
6351 /* If the static data member has incomplete type, keep track
6352 of it so that it can be completed later. (The handling
6353 of pending statics in finish_record_layout is
6354 insufficient; consider:
6355
6356 struct S1;
6357 struct S2 { static S1 s1; };
6358
6359 At this point, finish_record_layout will be called, but
6360 S1 is still incomplete.) */
6361 if (VAR_P (field))
6362 {
6363 maybe_register_incomplete_var (field);
6364 /* The visibility of static data members is determined
6365 at their point of declaration, not their point of
6366 definition. */
6367 determine_visibility (field);
6368 }
6369 continue;
6370 }
6371
6372 type = TREE_TYPE (field);
6373 if (type == error_mark_node)
6374 continue;
6375
6376 padding = NULL_TREE;
6377
6378 /* If this field is a bit-field whose width is greater than its
6379 type, then there are some special rules for allocating
6380 it. */
6381 if (DECL_C_BIT_FIELD (field)
6382 && tree_int_cst_lt (TYPE_SIZE (type), DECL_SIZE (field)))
6383 {
6384 unsigned int itk;
6385 tree integer_type;
6386 bool was_unnamed_p = false;
6387 /* We must allocate the bits as if suitably aligned for the
6388 longest integer type that fits in this many bits. type
6389 of the field. Then, we are supposed to use the left over
6390 bits as additional padding. */
6391 for (itk = itk_char; itk != itk_none; ++itk)
6392 if (integer_types[itk] != NULL_TREE
6393 && (tree_int_cst_lt (size_int (MAX_FIXED_MODE_SIZE),
6394 TYPE_SIZE (integer_types[itk]))
6395 || tree_int_cst_lt (DECL_SIZE (field),
6396 TYPE_SIZE (integer_types[itk]))))
6397 break;
6398
6399 /* ITK now indicates a type that is too large for the
6400 field. We have to back up by one to find the largest
6401 type that fits. */
6402 do
6403 {
6404 --itk;
6405 integer_type = integer_types[itk];
6406 } while (itk > 0 && integer_type == NULL_TREE);
6407
6408 /* Figure out how much additional padding is required. */
6409 if (tree_int_cst_lt (TYPE_SIZE (integer_type), DECL_SIZE (field)))
6410 {
6411 if (TREE_CODE (t) == UNION_TYPE)
6412 /* In a union, the padding field must have the full width
6413 of the bit-field; all fields start at offset zero. */
6414 padding = DECL_SIZE (field);
6415 else
6416 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
6417 TYPE_SIZE (integer_type));
6418 }
6419
6420 /* An unnamed bitfield does not normally affect the
6421 alignment of the containing class on a target where
6422 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
6423 make any exceptions for unnamed bitfields when the
6424 bitfields are longer than their types. Therefore, we
6425 temporarily give the field a name. */
6426 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
6427 {
6428 was_unnamed_p = true;
6429 DECL_NAME (field) = make_anon_name ();
6430 }
6431
6432 DECL_SIZE (field) = TYPE_SIZE (integer_type);
6433 SET_DECL_ALIGN (field, TYPE_ALIGN (integer_type));
6434 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
6435 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6436 empty_base_offsets);
6437 if (was_unnamed_p)
6438 DECL_NAME (field) = NULL_TREE;
6439 /* Now that layout has been performed, set the size of the
6440 field to the size of its declared type; the rest of the
6441 field is effectively invisible. */
6442 DECL_SIZE (field) = TYPE_SIZE (type);
6443 /* We must also reset the DECL_MODE of the field. */
6444 DECL_MODE (field) = TYPE_MODE (type);
6445 }
6446 else
6447 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6448 empty_base_offsets);
6449
6450 /* Remember the location of any empty classes in FIELD. */
6451 record_subobject_offsets (TREE_TYPE (field),
6452 byte_position(field),
6453 empty_base_offsets,
6454 /*is_data_member=*/true);
6455
6456 /* If a bit-field does not immediately follow another bit-field,
6457 and yet it starts in the middle of a byte, we have failed to
6458 comply with the ABI. */
6459 if (warn_abi
6460 && DECL_C_BIT_FIELD (field)
6461 /* The TREE_NO_WARNING flag gets set by Objective-C when
6462 laying out an Objective-C class. The ObjC ABI differs
6463 from the C++ ABI, and so we do not want a warning
6464 here. */
6465 && !TREE_NO_WARNING (field)
6466 && !last_field_was_bitfield
6467 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
6468 DECL_FIELD_BIT_OFFSET (field),
6469 bitsize_unit_node)))
6470 warning_at (DECL_SOURCE_LOCATION (field), OPT_Wabi,
6471 "offset of %qD is not ABI-compliant and may "
6472 "change in a future version of GCC", field);
6473
6474 /* The middle end uses the type of expressions to determine the
6475 possible range of expression values. In order to optimize
6476 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6477 must be made aware of the width of "i", via its type.
6478
6479 Because C++ does not have integer types of arbitrary width,
6480 we must (for the purposes of the front end) convert from the
6481 type assigned here to the declared type of the bitfield
6482 whenever a bitfield expression is used as an rvalue.
6483 Similarly, when assigning a value to a bitfield, the value
6484 must be converted to the type given the bitfield here. */
6485 if (DECL_C_BIT_FIELD (field))
6486 {
6487 unsigned HOST_WIDE_INT width;
6488 tree ftype = TREE_TYPE (field);
6489 width = tree_to_uhwi (DECL_SIZE (field));
6490 if (width != TYPE_PRECISION (ftype))
6491 {
6492 TREE_TYPE (field)
6493 = c_build_bitfield_integer_type (width,
6494 TYPE_UNSIGNED (ftype));
6495 TREE_TYPE (field)
6496 = cp_build_qualified_type (TREE_TYPE (field),
6497 cp_type_quals (ftype));
6498 }
6499 }
6500
6501 /* If we needed additional padding after this field, add it
6502 now. */
6503 if (padding)
6504 {
6505 tree padding_field;
6506
6507 padding_field = build_decl (input_location,
6508 FIELD_DECL,
6509 NULL_TREE,
6510 char_type_node);
6511 DECL_BIT_FIELD (padding_field) = 1;
6512 DECL_SIZE (padding_field) = padding;
6513 DECL_CONTEXT (padding_field) = t;
6514 DECL_ARTIFICIAL (padding_field) = 1;
6515 DECL_IGNORED_P (padding_field) = 1;
6516 layout_nonempty_base_or_field (rli, padding_field,
6517 NULL_TREE,
6518 empty_base_offsets);
6519 }
6520
6521 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6522 }
6523
6524 if (!integer_zerop (rli->bitpos))
6525 {
6526 /* Make sure that we are on a byte boundary so that the size of
6527 the class without virtual bases will always be a round number
6528 of bytes. */
6529 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6530 normalize_rli (rli);
6531 }
6532
6533 /* Delete all zero-width bit-fields from the list of fields. Now
6534 that the type is laid out they are no longer important. */
6535 remove_zero_width_bit_fields (t);
6536
6537 /* Create the version of T used for virtual bases. We do not use
6538 make_class_type for this version; this is an artificial type. For
6539 a POD type, we just reuse T. */
6540 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6541 {
6542 base_t = make_node (TREE_CODE (t));
6543
6544 /* Set the size and alignment for the new type. */
6545 tree eoc;
6546
6547 /* If the ABI version is not at least two, and the last
6548 field was a bit-field, RLI may not be on a byte
6549 boundary. In particular, rli_size_unit_so_far might
6550 indicate the last complete byte, while rli_size_so_far
6551 indicates the total number of bits used. Therefore,
6552 rli_size_so_far, rather than rli_size_unit_so_far, is
6553 used to compute TYPE_SIZE_UNIT. */
6554 eoc = end_of_class (t, /*include_virtuals_p=*/0);
6555 TYPE_SIZE_UNIT (base_t)
6556 = size_binop (MAX_EXPR,
6557 fold_convert (sizetype,
6558 size_binop (CEIL_DIV_EXPR,
6559 rli_size_so_far (rli),
6560 bitsize_int (BITS_PER_UNIT))),
6561 eoc);
6562 TYPE_SIZE (base_t)
6563 = size_binop (MAX_EXPR,
6564 rli_size_so_far (rli),
6565 size_binop (MULT_EXPR,
6566 fold_convert (bitsizetype, eoc),
6567 bitsize_int (BITS_PER_UNIT)));
6568 SET_TYPE_ALIGN (base_t, rli->record_align);
6569 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6570
6571 /* Copy the fields from T. */
6572 next_field = &TYPE_FIELDS (base_t);
6573 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6574 if (TREE_CODE (field) == FIELD_DECL)
6575 {
6576 *next_field = copy_node (field);
6577 DECL_CONTEXT (*next_field) = base_t;
6578 next_field = &DECL_CHAIN (*next_field);
6579 }
6580 *next_field = NULL_TREE;
6581
6582 /* Record the base version of the type. */
6583 CLASSTYPE_AS_BASE (t) = base_t;
6584 TYPE_CONTEXT (base_t) = t;
6585 }
6586 else
6587 CLASSTYPE_AS_BASE (t) = t;
6588
6589 /* Every empty class contains an empty class. */
6590 if (CLASSTYPE_EMPTY_P (t))
6591 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6592
6593 /* Set the TYPE_DECL for this type to contain the right
6594 value for DECL_OFFSET, so that we can use it as part
6595 of a COMPONENT_REF for multiple inheritance. */
6596 layout_decl (TYPE_MAIN_DECL (t), 0);
6597
6598 /* Now fix up any virtual base class types that we left lying
6599 around. We must get these done before we try to lay out the
6600 virtual function table. As a side-effect, this will remove the
6601 base subobject fields. */
6602 layout_virtual_bases (rli, empty_base_offsets);
6603
6604 /* Make sure that empty classes are reflected in RLI at this
6605 point. */
6606 include_empty_classes(rli);
6607
6608 /* Make sure not to create any structures with zero size. */
6609 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6610 place_field (rli,
6611 build_decl (input_location,
6612 FIELD_DECL, NULL_TREE, char_type_node));
6613
6614 /* If this is a non-POD, declaring it packed makes a difference to how it
6615 can be used as a field; don't let finalize_record_size undo it. */
6616 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6617 rli->packed_maybe_necessary = true;
6618
6619 /* Let the back end lay out the type. */
6620 finish_record_layout (rli, /*free_p=*/true);
6621
6622 if (TYPE_SIZE_UNIT (t)
6623 && TREE_CODE (TYPE_SIZE_UNIT (t)) == INTEGER_CST
6624 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (t))
6625 && !valid_constant_size_p (TYPE_SIZE_UNIT (t)))
6626 error ("size of type %qT is too large (%qE bytes)", t, TYPE_SIZE_UNIT (t));
6627
6628 /* Warn about bases that can't be talked about due to ambiguity. */
6629 warn_about_ambiguous_bases (t);
6630
6631 /* Now that we're done with layout, give the base fields the real types. */
6632 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6633 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6634 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6635
6636 /* Clean up. */
6637 splay_tree_delete (empty_base_offsets);
6638
6639 if (CLASSTYPE_EMPTY_P (t)
6640 && tree_int_cst_lt (sizeof_biggest_empty_class,
6641 TYPE_SIZE_UNIT (t)))
6642 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6643 }
6644
6645 /* Determine the "key method" for the class type indicated by TYPE,
6646 and set CLASSTYPE_KEY_METHOD accordingly. */
6647
6648 void
6649 determine_key_method (tree type)
6650 {
6651 tree method;
6652
6653 if (TYPE_FOR_JAVA (type)
6654 || processing_template_decl
6655 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6656 || CLASSTYPE_INTERFACE_KNOWN (type))
6657 return;
6658
6659 /* The key method is the first non-pure virtual function that is not
6660 inline at the point of class definition. On some targets the
6661 key function may not be inline; those targets should not call
6662 this function until the end of the translation unit. */
6663 for (method = TYPE_METHODS (type); method != NULL_TREE;
6664 method = DECL_CHAIN (method))
6665 if (TREE_CODE (method) == FUNCTION_DECL
6666 && DECL_VINDEX (method) != NULL_TREE
6667 && ! DECL_DECLARED_INLINE_P (method)
6668 && ! DECL_PURE_VIRTUAL_P (method))
6669 {
6670 CLASSTYPE_KEY_METHOD (type) = method;
6671 break;
6672 }
6673
6674 return;
6675 }
6676
6677
6678 /* Allocate and return an instance of struct sorted_fields_type with
6679 N fields. */
6680
6681 static struct sorted_fields_type *
6682 sorted_fields_type_new (int n)
6683 {
6684 struct sorted_fields_type *sft;
6685 sft = (sorted_fields_type *) ggc_internal_alloc (sizeof (sorted_fields_type)
6686 + n * sizeof (tree));
6687 sft->len = n;
6688
6689 return sft;
6690 }
6691
6692 /* Helper of find_flexarrays. Return true when FLD refers to a non-static
6693 class data member of non-zero size, otherwise false. */
6694
6695 static inline bool
6696 field_nonempty_p (const_tree fld)
6697 {
6698 if (TREE_CODE (fld) == ERROR_MARK)
6699 return false;
6700
6701 tree type = TREE_TYPE (fld);
6702 if (TREE_CODE (fld) == FIELD_DECL
6703 && TREE_CODE (type) != ERROR_MARK
6704 && (DECL_NAME (fld) || RECORD_OR_UNION_TYPE_P (type)))
6705 {
6706 return TYPE_SIZE (type)
6707 && (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
6708 || !tree_int_cst_equal (size_zero_node, TYPE_SIZE (type)));
6709 }
6710
6711 return false;
6712 }
6713
6714 /* Used by find_flexarrays and related. */
6715 struct flexmems_t {
6716 /* The first flexible array member or non-zero array member found
6717 in order of layout. */
6718 tree array;
6719 /* First non-static non-empty data member in the class or its bases. */
6720 tree first;
6721 /* First non-static non-empty data member following either the flexible
6722 array member, if found, or the zero-length array member. */
6723 tree after;
6724 };
6725
6726 /* Find either the first flexible array member or the first zero-length
6727 array, in that order or preference, among members of class T (but not
6728 its base classes), and set members of FMEM accordingly. */
6729
6730 static void
6731 find_flexarrays (tree t, flexmems_t *fmem)
6732 {
6733 for (tree fld = TYPE_FIELDS (t), next; fld; fld = next)
6734 {
6735 /* Find the next non-static data member if it exists. */
6736 for (next = fld;
6737 (next = DECL_CHAIN (next))
6738 && TREE_CODE (next) != FIELD_DECL; );
6739
6740 tree fldtype = TREE_TYPE (fld);
6741 if (TREE_CODE (fld) != TYPE_DECL
6742 && RECORD_OR_UNION_TYPE_P (fldtype)
6743 && TYPE_UNNAMED_P (fldtype))
6744 {
6745 /* Members of anonymous structs and unions are treated as if
6746 they were members of the containing class. Descend into
6747 the anonymous struct or union and find a flexible array
6748 member or zero-length array among its fields. */
6749 find_flexarrays (fldtype, fmem);
6750 continue;
6751 }
6752
6753 /* Skip anything that's not a (non-static) data member. */
6754 if (TREE_CODE (fld) != FIELD_DECL)
6755 continue;
6756
6757 /* Skip virtual table pointers. */
6758 if (DECL_ARTIFICIAL (fld))
6759 continue;
6760
6761 if (field_nonempty_p (fld))
6762 {
6763 /* Remember the first non-static data member. */
6764 if (!fmem->first)
6765 fmem->first = fld;
6766
6767 /* Remember the first non-static data member after the flexible
6768 array member, if one has been found, or the zero-length array
6769 if it has been found. */
6770 if (!fmem->after && fmem->array)
6771 fmem->after = fld;
6772 }
6773
6774 /* Skip non-arrays. */
6775 if (TREE_CODE (fldtype) != ARRAY_TYPE)
6776 continue;
6777
6778 /* Determine the upper bound of the array if it has one. */
6779 if (TYPE_DOMAIN (fldtype))
6780 {
6781 if (fmem->array)
6782 {
6783 /* Make a record of the zero-length array if either one
6784 such field or a flexible array member has been seen to
6785 handle the pathological and unlikely case of multiple
6786 such members. */
6787 if (!fmem->after)
6788 fmem->after = fld;
6789 }
6790 else if (integer_all_onesp (TYPE_MAX_VALUE (TYPE_DOMAIN (fldtype))))
6791 /* Remember the first zero-length array unless a flexible array
6792 member has already been seen. */
6793 fmem->array = fld;
6794 }
6795 else
6796 {
6797 /* Flexible array members have no upper bound. */
6798 if (fmem->array)
6799 {
6800 /* Replace the zero-length array if it's been stored and
6801 reset the after pointer. */
6802 if (TYPE_DOMAIN (TREE_TYPE (fmem->array)))
6803 {
6804 fmem->array = fld;
6805 fmem->after = NULL_TREE;
6806 }
6807 }
6808 else
6809 fmem->array = fld;
6810 }
6811 }
6812 }
6813
6814 /* Issue diagnostics for invalid flexible array members or zero-length
6815 arrays that are not the last elements of the containing class or its
6816 base classes or that are its sole members. */
6817
6818 static void
6819 diagnose_flexarrays (tree t, const flexmems_t *fmem)
6820 {
6821 /* Members of anonymous structs and unions are considered to be members
6822 of the containing struct or union. */
6823 if (TYPE_UNNAMED_P (t) || !fmem->array)
6824 return;
6825
6826 const char *msg = 0;
6827
6828 if (TYPE_DOMAIN (TREE_TYPE (fmem->array)))
6829 {
6830 if (fmem->after)
6831 msg = G_("zero-size array member %qD not at end of %q#T");
6832 else if (!fmem->first)
6833 msg = G_("zero-size array member %qD in an otherwise empty %q#T");
6834
6835 if (msg && pedwarn (DECL_SOURCE_LOCATION (fmem->array),
6836 OPT_Wpedantic, msg, fmem->array, t))
6837
6838 inform (location_of (t), "in the definition of %q#T", t);
6839 }
6840 else
6841 {
6842 if (fmem->after)
6843 msg = G_("flexible array member %qD not at end of %q#T");
6844 else if (!fmem->first)
6845 msg = G_("flexible array member %qD in an otherwise empty %q#T");
6846
6847 if (msg)
6848 {
6849 error_at (DECL_SOURCE_LOCATION (fmem->array), msg,
6850 fmem->array, t);
6851
6852 /* In the unlikely event that the member following the flexible
6853 array member is declared in a different class, point to it.
6854 Otherwise it should be obvious. */
6855 if (fmem->after
6856 && (DECL_CONTEXT (fmem->after) != DECL_CONTEXT (fmem->array)))
6857 inform (DECL_SOURCE_LOCATION (fmem->after),
6858 "next member %q#D declared here",
6859 fmem->after);
6860
6861 inform (location_of (t), "in the definition of %q#T", t);
6862 }
6863 }
6864 }
6865
6866
6867 /* Recursively check to make sure that any flexible array or zero-length
6868 array members of class T or its bases are valid (i.e., not the sole
6869 non-static data member of T and, if one exists, that it is the last
6870 non-static data member of T and its base classes. FMEM is expected
6871 to be initially null and is used internally by recursive calls to
6872 the function. Issue the appropriate diagnostics for the array member
6873 that fails the checks. */
6874
6875 static void
6876 check_flexarrays (tree t, flexmems_t *fmem /* = NULL */)
6877 {
6878 /* Initialize the result of a search for flexible array and zero-length
6879 array members. Avoid doing any work if the most interesting FMEM data
6880 have already been populated. */
6881 flexmems_t flexmems = flexmems_t ();
6882 if (!fmem)
6883 fmem = &flexmems;
6884 else if (fmem->array && fmem->first && fmem->after)
6885 return;
6886
6887 /* Recursively check the primary base class first. */
6888 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6889 {
6890 tree basetype = BINFO_TYPE (CLASSTYPE_PRIMARY_BINFO (t));
6891 check_flexarrays (basetype, fmem);
6892 }
6893
6894 /* Recursively check the base classes. */
6895 int nbases = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
6896 for (int i = 0; i < nbases; ++i)
6897 {
6898 tree base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
6899
6900 /* The primary base class was already checked above. */
6901 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
6902 continue;
6903
6904 /* Virtual base classes are at the end. */
6905 if (BINFO_VIRTUAL_P (base_binfo))
6906 continue;
6907
6908 /* Check the base class. */
6909 check_flexarrays (BINFO_TYPE (base_binfo), fmem);
6910 }
6911
6912 if (fmem == &flexmems)
6913 {
6914 /* Check virtual base classes only once per derived class.
6915 I.e., this check is not performed recursively for base
6916 classes. */
6917 int i;
6918 tree base_binfo;
6919 vec<tree, va_gc> *vbases;
6920 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
6921 vec_safe_iterate (vbases, i, &base_binfo); i++)
6922 {
6923 /* Check the virtual base class. */
6924 tree basetype = TREE_TYPE (base_binfo);
6925
6926 check_flexarrays (basetype, fmem);
6927 }
6928 }
6929
6930 /* Search the members of the current (derived) class. */
6931 find_flexarrays (t, fmem);
6932
6933 if (fmem == &flexmems)
6934 {
6935 /* Issue diagnostics for invalid flexible and zero-length array members
6936 found in base classes or among the members of the current class. */
6937 diagnose_flexarrays (t, fmem);
6938 }
6939 }
6940
6941 /* Perform processing required when the definition of T (a class type)
6942 is complete. Diagnose invalid definitions of flexible array members
6943 and zero-size arrays. */
6944
6945 void
6946 finish_struct_1 (tree t)
6947 {
6948 tree x;
6949 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6950 tree virtuals = NULL_TREE;
6951
6952 if (COMPLETE_TYPE_P (t))
6953 {
6954 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6955 error ("redefinition of %q#T", t);
6956 popclass ();
6957 return;
6958 }
6959
6960 /* If this type was previously laid out as a forward reference,
6961 make sure we lay it out again. */
6962 TYPE_SIZE (t) = NULL_TREE;
6963 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6964
6965 /* Make assumptions about the class; we'll reset the flags if
6966 necessary. */
6967 CLASSTYPE_EMPTY_P (t) = 1;
6968 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6969 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6970 CLASSTYPE_LITERAL_P (t) = true;
6971
6972 /* Do end-of-class semantic processing: checking the validity of the
6973 bases and members and add implicitly generated methods. */
6974 check_bases_and_members (t);
6975
6976 /* Find the key method. */
6977 if (TYPE_CONTAINS_VPTR_P (t))
6978 {
6979 /* The Itanium C++ ABI permits the key method to be chosen when
6980 the class is defined -- even though the key method so
6981 selected may later turn out to be an inline function. On
6982 some systems (such as ARM Symbian OS) the key method cannot
6983 be determined until the end of the translation unit. On such
6984 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6985 will cause the class to be added to KEYED_CLASSES. Then, in
6986 finish_file we will determine the key method. */
6987 if (targetm.cxx.key_method_may_be_inline ())
6988 determine_key_method (t);
6989
6990 /* If a polymorphic class has no key method, we may emit the vtable
6991 in every translation unit where the class definition appears. If
6992 we're devirtualizing, we can look into the vtable even if we
6993 aren't emitting it. */
6994 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
6995 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
6996 }
6997
6998 /* Layout the class itself. */
6999 layout_class_type (t, &virtuals);
7000 if (CLASSTYPE_AS_BASE (t) != t)
7001 /* We use the base type for trivial assignments, and hence it
7002 needs a mode. */
7003 compute_record_mode (CLASSTYPE_AS_BASE (t));
7004
7005 /* With the layout complete, check for flexible array members and
7006 zero-length arrays that might overlap other members in the final
7007 layout. */
7008 check_flexarrays (t);
7009
7010 virtuals = modify_all_vtables (t, nreverse (virtuals));
7011
7012 /* If necessary, create the primary vtable for this class. */
7013 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
7014 {
7015 /* We must enter these virtuals into the table. */
7016 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
7017 build_primary_vtable (NULL_TREE, t);
7018 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
7019 /* Here we know enough to change the type of our virtual
7020 function table, but we will wait until later this function. */
7021 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
7022
7023 /* If we're warning about ABI tags, check the types of the new
7024 virtual functions. */
7025 if (warn_abi_tag)
7026 for (tree v = virtuals; v; v = TREE_CHAIN (v))
7027 check_abi_tags (t, TREE_VALUE (v));
7028 }
7029
7030 if (TYPE_CONTAINS_VPTR_P (t))
7031 {
7032 int vindex;
7033 tree fn;
7034
7035 if (BINFO_VTABLE (TYPE_BINFO (t)))
7036 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
7037 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
7038 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
7039
7040 /* Add entries for virtual functions introduced by this class. */
7041 BINFO_VIRTUALS (TYPE_BINFO (t))
7042 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
7043
7044 /* Set DECL_VINDEX for all functions declared in this class. */
7045 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
7046 fn;
7047 fn = TREE_CHAIN (fn),
7048 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
7049 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
7050 {
7051 tree fndecl = BV_FN (fn);
7052
7053 if (DECL_THUNK_P (fndecl))
7054 /* A thunk. We should never be calling this entry directly
7055 from this vtable -- we'd use the entry for the non
7056 thunk base function. */
7057 DECL_VINDEX (fndecl) = NULL_TREE;
7058 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
7059 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
7060 }
7061 }
7062
7063 finish_struct_bits (t);
7064 set_method_tm_attributes (t);
7065 if (flag_openmp || flag_openmp_simd)
7066 finish_omp_declare_simd_methods (t);
7067
7068 /* Complete the rtl for any static member objects of the type we're
7069 working on. */
7070 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
7071 if (VAR_P (x) && TREE_STATIC (x)
7072 && TREE_TYPE (x) != error_mark_node
7073 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
7074 DECL_MODE (x) = TYPE_MODE (t);
7075
7076 /* Done with FIELDS...now decide whether to sort these for
7077 faster lookups later.
7078
7079 We use a small number because most searches fail (succeeding
7080 ultimately as the search bores through the inheritance
7081 hierarchy), and we want this failure to occur quickly. */
7082
7083 insert_into_classtype_sorted_fields (TYPE_FIELDS (t), t, 8);
7084
7085 /* Complain if one of the field types requires lower visibility. */
7086 constrain_class_visibility (t);
7087
7088 /* Make the rtl for any new vtables we have created, and unmark
7089 the base types we marked. */
7090 finish_vtbls (t);
7091
7092 /* Build the VTT for T. */
7093 build_vtt (t);
7094
7095 /* This warning does not make sense for Java classes, since they
7096 cannot have destructors. */
7097 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor
7098 && TYPE_POLYMORPHIC_P (t) && accessible_nvdtor_p (t)
7099 && !CLASSTYPE_FINAL (t))
7100 warning (OPT_Wnon_virtual_dtor,
7101 "%q#T has virtual functions and accessible"
7102 " non-virtual destructor", t);
7103
7104 complete_vars (t);
7105
7106 if (warn_overloaded_virtual)
7107 warn_hidden (t);
7108
7109 /* Class layout, assignment of virtual table slots, etc., is now
7110 complete. Give the back end a chance to tweak the visibility of
7111 the class or perform any other required target modifications. */
7112 targetm.cxx.adjust_class_at_definition (t);
7113
7114 maybe_suppress_debug_info (t);
7115
7116 if (flag_vtable_verify)
7117 vtv_save_class_info (t);
7118
7119 dump_class_hierarchy (t);
7120
7121 /* Finish debugging output for this type. */
7122 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
7123
7124 if (TYPE_TRANSPARENT_AGGR (t))
7125 {
7126 tree field = first_field (t);
7127 if (field == NULL_TREE || error_operand_p (field))
7128 {
7129 error ("type transparent %q#T does not have any fields", t);
7130 TYPE_TRANSPARENT_AGGR (t) = 0;
7131 }
7132 else if (DECL_ARTIFICIAL (field))
7133 {
7134 if (DECL_FIELD_IS_BASE (field))
7135 error ("type transparent class %qT has base classes", t);
7136 else
7137 {
7138 gcc_checking_assert (DECL_VIRTUAL_P (field));
7139 error ("type transparent class %qT has virtual functions", t);
7140 }
7141 TYPE_TRANSPARENT_AGGR (t) = 0;
7142 }
7143 else if (TYPE_MODE (t) != DECL_MODE (field))
7144 {
7145 error ("type transparent %q#T cannot be made transparent because "
7146 "the type of the first field has a different ABI from the "
7147 "class overall", t);
7148 TYPE_TRANSPARENT_AGGR (t) = 0;
7149 }
7150 }
7151 }
7152
7153 /* Insert FIELDS into T for the sorted case if the FIELDS count is
7154 equal to THRESHOLD or greater than THRESHOLD. */
7155
7156 static void
7157 insert_into_classtype_sorted_fields (tree fields, tree t, int threshold)
7158 {
7159 int n_fields = count_fields (fields);
7160 if (n_fields >= threshold)
7161 {
7162 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
7163 add_fields_to_record_type (fields, field_vec, 0);
7164 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
7165 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
7166 }
7167 }
7168
7169 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
7170
7171 void
7172 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype, tree t)
7173 {
7174 struct sorted_fields_type *sorted_fields = CLASSTYPE_SORTED_FIELDS (t);
7175 if (sorted_fields)
7176 {
7177 int i;
7178 int n_fields
7179 = list_length (TYPE_VALUES (enumtype)) + sorted_fields->len;
7180 struct sorted_fields_type *field_vec = sorted_fields_type_new (n_fields);
7181
7182 for (i = 0; i < sorted_fields->len; ++i)
7183 field_vec->elts[i] = sorted_fields->elts[i];
7184
7185 add_enum_fields_to_record_type (enumtype, field_vec,
7186 sorted_fields->len);
7187 qsort (field_vec->elts, n_fields, sizeof (tree), field_decl_cmp);
7188 CLASSTYPE_SORTED_FIELDS (t) = field_vec;
7189 }
7190 }
7191
7192 /* When T was built up, the member declarations were added in reverse
7193 order. Rearrange them to declaration order. */
7194
7195 void
7196 unreverse_member_declarations (tree t)
7197 {
7198 tree next;
7199 tree prev;
7200 tree x;
7201
7202 /* The following lists are all in reverse order. Put them in
7203 declaration order now. */
7204 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
7205 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
7206
7207 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
7208 reverse order, so we can't just use nreverse. */
7209 prev = NULL_TREE;
7210 for (x = TYPE_FIELDS (t);
7211 x && TREE_CODE (x) != TYPE_DECL;
7212 x = next)
7213 {
7214 next = DECL_CHAIN (x);
7215 DECL_CHAIN (x) = prev;
7216 prev = x;
7217 }
7218 if (prev)
7219 {
7220 DECL_CHAIN (TYPE_FIELDS (t)) = x;
7221 if (prev)
7222 TYPE_FIELDS (t) = prev;
7223 }
7224 }
7225
7226 tree
7227 finish_struct (tree t, tree attributes)
7228 {
7229 location_t saved_loc = input_location;
7230
7231 /* Now that we've got all the field declarations, reverse everything
7232 as necessary. */
7233 unreverse_member_declarations (t);
7234
7235 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
7236 fixup_attribute_variants (t);
7237
7238 /* Nadger the current location so that diagnostics point to the start of
7239 the struct, not the end. */
7240 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
7241
7242 if (processing_template_decl)
7243 {
7244 tree x;
7245
7246 finish_struct_methods (t);
7247 TYPE_SIZE (t) = bitsize_zero_node;
7248 TYPE_SIZE_UNIT (t) = size_zero_node;
7249
7250 /* We need to emit an error message if this type was used as a parameter
7251 and it is an abstract type, even if it is a template. We construct
7252 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
7253 account and we call complete_vars with this type, which will check
7254 the PARM_DECLS. Note that while the type is being defined,
7255 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
7256 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
7257 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
7258 for (x = TYPE_METHODS (t); x; x = DECL_CHAIN (x))
7259 if (DECL_PURE_VIRTUAL_P (x))
7260 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
7261 complete_vars (t);
7262 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
7263 an enclosing scope is a template class, so that this function be
7264 found by lookup_fnfields_1 when the using declaration is not
7265 instantiated yet. */
7266 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
7267 if (TREE_CODE (x) == USING_DECL)
7268 {
7269 tree fn = strip_using_decl (x);
7270 if (is_overloaded_fn (fn))
7271 for (; fn; fn = OVL_NEXT (fn))
7272 add_method (t, OVL_CURRENT (fn), x);
7273 }
7274
7275 /* Remember current #pragma pack value. */
7276 TYPE_PRECISION (t) = maximum_field_alignment;
7277
7278 /* Fix up any variants we've already built. */
7279 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
7280 {
7281 TYPE_SIZE (x) = TYPE_SIZE (t);
7282 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
7283 TYPE_FIELDS (x) = TYPE_FIELDS (t);
7284 TYPE_METHODS (x) = TYPE_METHODS (t);
7285 }
7286 }
7287 else
7288 finish_struct_1 (t);
7289
7290 if (is_std_init_list (t))
7291 {
7292 /* People keep complaining that the compiler crashes on an invalid
7293 definition of initializer_list, so I guess we should explicitly
7294 reject it. What the compiler internals care about is that it's a
7295 template and has a pointer field followed by an integer field. */
7296 bool ok = false;
7297 if (processing_template_decl)
7298 {
7299 tree f = next_initializable_field (TYPE_FIELDS (t));
7300 if (f && TREE_CODE (TREE_TYPE (f)) == POINTER_TYPE)
7301 {
7302 f = next_initializable_field (DECL_CHAIN (f));
7303 if (f && same_type_p (TREE_TYPE (f), size_type_node))
7304 ok = true;
7305 }
7306 }
7307 if (!ok)
7308 fatal_error (input_location,
7309 "definition of std::initializer_list does not match "
7310 "#include <initializer_list>");
7311 }
7312
7313 input_location = saved_loc;
7314
7315 TYPE_BEING_DEFINED (t) = 0;
7316
7317 if (current_class_type)
7318 popclass ();
7319 else
7320 error ("trying to finish struct, but kicked out due to previous parse errors");
7321
7322 if (processing_template_decl && at_function_scope_p ()
7323 /* Lambdas are defined by the LAMBDA_EXPR. */
7324 && !LAMBDA_TYPE_P (t))
7325 add_stmt (build_min (TAG_DEFN, t));
7326
7327 return t;
7328 }
7329 \f
7330 /* Hash table to avoid endless recursion when handling references. */
7331 static hash_table<nofree_ptr_hash<tree_node> > *fixed_type_or_null_ref_ht;
7332
7333 /* Return the dynamic type of INSTANCE, if known.
7334 Used to determine whether the virtual function table is needed
7335 or not.
7336
7337 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
7338 of our knowledge of its type. *NONNULL should be initialized
7339 before this function is called. */
7340
7341 static tree
7342 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
7343 {
7344 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
7345
7346 switch (TREE_CODE (instance))
7347 {
7348 case INDIRECT_REF:
7349 if (POINTER_TYPE_P (TREE_TYPE (instance)))
7350 return NULL_TREE;
7351 else
7352 return RECUR (TREE_OPERAND (instance, 0));
7353
7354 case CALL_EXPR:
7355 /* This is a call to a constructor, hence it's never zero. */
7356 if (TREE_HAS_CONSTRUCTOR (instance))
7357 {
7358 if (nonnull)
7359 *nonnull = 1;
7360 return TREE_TYPE (instance);
7361 }
7362 return NULL_TREE;
7363
7364 case SAVE_EXPR:
7365 /* This is a call to a constructor, hence it's never zero. */
7366 if (TREE_HAS_CONSTRUCTOR (instance))
7367 {
7368 if (nonnull)
7369 *nonnull = 1;
7370 return TREE_TYPE (instance);
7371 }
7372 return RECUR (TREE_OPERAND (instance, 0));
7373
7374 case POINTER_PLUS_EXPR:
7375 case PLUS_EXPR:
7376 case MINUS_EXPR:
7377 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
7378 return RECUR (TREE_OPERAND (instance, 0));
7379 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
7380 /* Propagate nonnull. */
7381 return RECUR (TREE_OPERAND (instance, 0));
7382
7383 return NULL_TREE;
7384
7385 CASE_CONVERT:
7386 return RECUR (TREE_OPERAND (instance, 0));
7387
7388 case ADDR_EXPR:
7389 instance = TREE_OPERAND (instance, 0);
7390 if (nonnull)
7391 {
7392 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
7393 with a real object -- given &p->f, p can still be null. */
7394 tree t = get_base_address (instance);
7395 /* ??? Probably should check DECL_WEAK here. */
7396 if (t && DECL_P (t))
7397 *nonnull = 1;
7398 }
7399 return RECUR (instance);
7400
7401 case COMPONENT_REF:
7402 /* If this component is really a base class reference, then the field
7403 itself isn't definitive. */
7404 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
7405 return RECUR (TREE_OPERAND (instance, 0));
7406 return RECUR (TREE_OPERAND (instance, 1));
7407
7408 case VAR_DECL:
7409 case FIELD_DECL:
7410 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
7411 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
7412 {
7413 if (nonnull)
7414 *nonnull = 1;
7415 return TREE_TYPE (TREE_TYPE (instance));
7416 }
7417 /* fall through. */
7418 case TARGET_EXPR:
7419 case PARM_DECL:
7420 case RESULT_DECL:
7421 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
7422 {
7423 if (nonnull)
7424 *nonnull = 1;
7425 return TREE_TYPE (instance);
7426 }
7427 else if (instance == current_class_ptr)
7428 {
7429 if (nonnull)
7430 *nonnull = 1;
7431
7432 /* if we're in a ctor or dtor, we know our type. If
7433 current_class_ptr is set but we aren't in a function, we're in
7434 an NSDMI (and therefore a constructor). */
7435 if (current_scope () != current_function_decl
7436 || (DECL_LANG_SPECIFIC (current_function_decl)
7437 && (DECL_CONSTRUCTOR_P (current_function_decl)
7438 || DECL_DESTRUCTOR_P (current_function_decl))))
7439 {
7440 if (cdtorp)
7441 *cdtorp = 1;
7442 return TREE_TYPE (TREE_TYPE (instance));
7443 }
7444 }
7445 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
7446 {
7447 /* We only need one hash table because it is always left empty. */
7448 if (!fixed_type_or_null_ref_ht)
7449 fixed_type_or_null_ref_ht
7450 = new hash_table<nofree_ptr_hash<tree_node> > (37);
7451
7452 /* Reference variables should be references to objects. */
7453 if (nonnull)
7454 *nonnull = 1;
7455
7456 /* Enter the INSTANCE in a table to prevent recursion; a
7457 variable's initializer may refer to the variable
7458 itself. */
7459 if (VAR_P (instance)
7460 && DECL_INITIAL (instance)
7461 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
7462 && !fixed_type_or_null_ref_ht->find (instance))
7463 {
7464 tree type;
7465 tree_node **slot;
7466
7467 slot = fixed_type_or_null_ref_ht->find_slot (instance, INSERT);
7468 *slot = instance;
7469 type = RECUR (DECL_INITIAL (instance));
7470 fixed_type_or_null_ref_ht->remove_elt (instance);
7471
7472 return type;
7473 }
7474 }
7475 return NULL_TREE;
7476
7477 default:
7478 return NULL_TREE;
7479 }
7480 #undef RECUR
7481 }
7482
7483 /* Return nonzero if the dynamic type of INSTANCE is known, and
7484 equivalent to the static type. We also handle the case where
7485 INSTANCE is really a pointer. Return negative if this is a
7486 ctor/dtor. There the dynamic type is known, but this might not be
7487 the most derived base of the original object, and hence virtual
7488 bases may not be laid out according to this type.
7489
7490 Used to determine whether the virtual function table is needed
7491 or not.
7492
7493 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
7494 of our knowledge of its type. *NONNULL should be initialized
7495 before this function is called. */
7496
7497 int
7498 resolves_to_fixed_type_p (tree instance, int* nonnull)
7499 {
7500 tree t = TREE_TYPE (instance);
7501 int cdtorp = 0;
7502 tree fixed;
7503
7504 /* processing_template_decl can be false in a template if we're in
7505 instantiate_non_dependent_expr, but we still want to suppress
7506 this check. */
7507 if (in_template_function ())
7508 {
7509 /* In a template we only care about the type of the result. */
7510 if (nonnull)
7511 *nonnull = true;
7512 return true;
7513 }
7514
7515 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
7516 if (fixed == NULL_TREE)
7517 return 0;
7518 if (POINTER_TYPE_P (t))
7519 t = TREE_TYPE (t);
7520 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
7521 return 0;
7522 return cdtorp ? -1 : 1;
7523 }
7524
7525 \f
7526 void
7527 init_class_processing (void)
7528 {
7529 current_class_depth = 0;
7530 current_class_stack_size = 10;
7531 current_class_stack
7532 = XNEWVEC (struct class_stack_node, current_class_stack_size);
7533 vec_alloc (local_classes, 8);
7534 sizeof_biggest_empty_class = size_zero_node;
7535
7536 ridpointers[(int) RID_PUBLIC] = access_public_node;
7537 ridpointers[(int) RID_PRIVATE] = access_private_node;
7538 ridpointers[(int) RID_PROTECTED] = access_protected_node;
7539 }
7540
7541 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
7542
7543 static void
7544 restore_class_cache (void)
7545 {
7546 tree type;
7547
7548 /* We are re-entering the same class we just left, so we don't
7549 have to search the whole inheritance matrix to find all the
7550 decls to bind again. Instead, we install the cached
7551 class_shadowed list and walk through it binding names. */
7552 push_binding_level (previous_class_level);
7553 class_binding_level = previous_class_level;
7554 /* Restore IDENTIFIER_TYPE_VALUE. */
7555 for (type = class_binding_level->type_shadowed;
7556 type;
7557 type = TREE_CHAIN (type))
7558 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
7559 }
7560
7561 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
7562 appropriate for TYPE.
7563
7564 So that we may avoid calls to lookup_name, we cache the _TYPE
7565 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
7566
7567 For multiple inheritance, we perform a two-pass depth-first search
7568 of the type lattice. */
7569
7570 void
7571 pushclass (tree type)
7572 {
7573 class_stack_node_t csn;
7574
7575 type = TYPE_MAIN_VARIANT (type);
7576
7577 /* Make sure there is enough room for the new entry on the stack. */
7578 if (current_class_depth + 1 >= current_class_stack_size)
7579 {
7580 current_class_stack_size *= 2;
7581 current_class_stack
7582 = XRESIZEVEC (struct class_stack_node, current_class_stack,
7583 current_class_stack_size);
7584 }
7585
7586 /* Insert a new entry on the class stack. */
7587 csn = current_class_stack + current_class_depth;
7588 csn->name = current_class_name;
7589 csn->type = current_class_type;
7590 csn->access = current_access_specifier;
7591 csn->names_used = 0;
7592 csn->hidden = 0;
7593 current_class_depth++;
7594
7595 /* Now set up the new type. */
7596 current_class_name = TYPE_NAME (type);
7597 if (TREE_CODE (current_class_name) == TYPE_DECL)
7598 current_class_name = DECL_NAME (current_class_name);
7599 current_class_type = type;
7600
7601 /* By default, things in classes are private, while things in
7602 structures or unions are public. */
7603 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
7604 ? access_private_node
7605 : access_public_node);
7606
7607 if (previous_class_level
7608 && type != previous_class_level->this_entity
7609 && current_class_depth == 1)
7610 {
7611 /* Forcibly remove any old class remnants. */
7612 invalidate_class_lookup_cache ();
7613 }
7614
7615 if (!previous_class_level
7616 || type != previous_class_level->this_entity
7617 || current_class_depth > 1)
7618 pushlevel_class ();
7619 else
7620 restore_class_cache ();
7621 }
7622
7623 /* When we exit a toplevel class scope, we save its binding level so
7624 that we can restore it quickly. Here, we've entered some other
7625 class, so we must invalidate our cache. */
7626
7627 void
7628 invalidate_class_lookup_cache (void)
7629 {
7630 previous_class_level = NULL;
7631 }
7632
7633 /* Get out of the current class scope. If we were in a class scope
7634 previously, that is the one popped to. */
7635
7636 void
7637 popclass (void)
7638 {
7639 poplevel_class ();
7640
7641 current_class_depth--;
7642 current_class_name = current_class_stack[current_class_depth].name;
7643 current_class_type = current_class_stack[current_class_depth].type;
7644 current_access_specifier = current_class_stack[current_class_depth].access;
7645 if (current_class_stack[current_class_depth].names_used)
7646 splay_tree_delete (current_class_stack[current_class_depth].names_used);
7647 }
7648
7649 /* Mark the top of the class stack as hidden. */
7650
7651 void
7652 push_class_stack (void)
7653 {
7654 if (current_class_depth)
7655 ++current_class_stack[current_class_depth - 1].hidden;
7656 }
7657
7658 /* Mark the top of the class stack as un-hidden. */
7659
7660 void
7661 pop_class_stack (void)
7662 {
7663 if (current_class_depth)
7664 --current_class_stack[current_class_depth - 1].hidden;
7665 }
7666
7667 /* Returns 1 if the class type currently being defined is either T or
7668 a nested type of T. Returns the type from the current_class_stack,
7669 which might be equivalent to but not equal to T in case of
7670 constrained partial specializations. */
7671
7672 tree
7673 currently_open_class (tree t)
7674 {
7675 int i;
7676
7677 if (!CLASS_TYPE_P (t))
7678 return NULL_TREE;
7679
7680 t = TYPE_MAIN_VARIANT (t);
7681
7682 /* We start looking from 1 because entry 0 is from global scope,
7683 and has no type. */
7684 for (i = current_class_depth; i > 0; --i)
7685 {
7686 tree c;
7687 if (i == current_class_depth)
7688 c = current_class_type;
7689 else
7690 {
7691 if (current_class_stack[i].hidden)
7692 break;
7693 c = current_class_stack[i].type;
7694 }
7695 if (!c)
7696 continue;
7697 if (same_type_p (c, t))
7698 return c;
7699 }
7700 return NULL_TREE;
7701 }
7702
7703 /* If either current_class_type or one of its enclosing classes are derived
7704 from T, return the appropriate type. Used to determine how we found
7705 something via unqualified lookup. */
7706
7707 tree
7708 currently_open_derived_class (tree t)
7709 {
7710 int i;
7711
7712 /* The bases of a dependent type are unknown. */
7713 if (dependent_type_p (t))
7714 return NULL_TREE;
7715
7716 if (!current_class_type)
7717 return NULL_TREE;
7718
7719 if (DERIVED_FROM_P (t, current_class_type))
7720 return current_class_type;
7721
7722 for (i = current_class_depth - 1; i > 0; --i)
7723 {
7724 if (current_class_stack[i].hidden)
7725 break;
7726 if (DERIVED_FROM_P (t, current_class_stack[i].type))
7727 return current_class_stack[i].type;
7728 }
7729
7730 return NULL_TREE;
7731 }
7732
7733 /* Return the outermost enclosing class type that is still open, or
7734 NULL_TREE. */
7735
7736 tree
7737 outermost_open_class (void)
7738 {
7739 if (!current_class_type)
7740 return NULL_TREE;
7741 tree r = NULL_TREE;
7742 if (TYPE_BEING_DEFINED (current_class_type))
7743 r = current_class_type;
7744 for (int i = current_class_depth - 1; i > 0; --i)
7745 {
7746 if (current_class_stack[i].hidden)
7747 break;
7748 tree t = current_class_stack[i].type;
7749 if (!TYPE_BEING_DEFINED (t))
7750 break;
7751 r = t;
7752 }
7753 return r;
7754 }
7755
7756 /* Returns the innermost class type which is not a lambda closure type. */
7757
7758 tree
7759 current_nonlambda_class_type (void)
7760 {
7761 int i;
7762
7763 /* We start looking from 1 because entry 0 is from global scope,
7764 and has no type. */
7765 for (i = current_class_depth; i > 0; --i)
7766 {
7767 tree c;
7768 if (i == current_class_depth)
7769 c = current_class_type;
7770 else
7771 {
7772 if (current_class_stack[i].hidden)
7773 break;
7774 c = current_class_stack[i].type;
7775 }
7776 if (!c)
7777 continue;
7778 if (!LAMBDA_TYPE_P (c))
7779 return c;
7780 }
7781 return NULL_TREE;
7782 }
7783
7784 /* When entering a class scope, all enclosing class scopes' names with
7785 static meaning (static variables, static functions, types and
7786 enumerators) have to be visible. This recursive function calls
7787 pushclass for all enclosing class contexts until global or a local
7788 scope is reached. TYPE is the enclosed class. */
7789
7790 void
7791 push_nested_class (tree type)
7792 {
7793 /* A namespace might be passed in error cases, like A::B:C. */
7794 if (type == NULL_TREE
7795 || !CLASS_TYPE_P (type))
7796 return;
7797
7798 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7799
7800 pushclass (type);
7801 }
7802
7803 /* Undoes a push_nested_class call. */
7804
7805 void
7806 pop_nested_class (void)
7807 {
7808 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7809
7810 popclass ();
7811 if (context && CLASS_TYPE_P (context))
7812 pop_nested_class ();
7813 }
7814
7815 /* Returns the number of extern "LANG" blocks we are nested within. */
7816
7817 int
7818 current_lang_depth (void)
7819 {
7820 return vec_safe_length (current_lang_base);
7821 }
7822
7823 /* Set global variables CURRENT_LANG_NAME to appropriate value
7824 so that behavior of name-mangling machinery is correct. */
7825
7826 void
7827 push_lang_context (tree name)
7828 {
7829 vec_safe_push (current_lang_base, current_lang_name);
7830
7831 if (name == lang_name_cplusplus)
7832 {
7833 current_lang_name = name;
7834 }
7835 else if (name == lang_name_java)
7836 {
7837 current_lang_name = name;
7838 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7839 (See record_builtin_java_type in decl.c.) However, that causes
7840 incorrect debug entries if these types are actually used.
7841 So we re-enable debug output after extern "Java". */
7842 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
7843 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
7844 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
7845 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
7846 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
7847 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
7848 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
7849 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
7850 }
7851 else if (name == lang_name_c)
7852 {
7853 current_lang_name = name;
7854 }
7855 else
7856 error ("language string %<\"%E\"%> not recognized", name);
7857 }
7858
7859 /* Get out of the current language scope. */
7860
7861 void
7862 pop_lang_context (void)
7863 {
7864 current_lang_name = current_lang_base->pop ();
7865 }
7866 \f
7867 /* Type instantiation routines. */
7868
7869 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7870 matches the TARGET_TYPE. If there is no satisfactory match, return
7871 error_mark_node, and issue an error & warning messages under
7872 control of FLAGS. Permit pointers to member function if FLAGS
7873 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7874 a template-id, and EXPLICIT_TARGS are the explicitly provided
7875 template arguments.
7876
7877 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7878 is the base path used to reference those member functions. If
7879 the address is resolved to a member function, access checks will be
7880 performed and errors issued if appropriate. */
7881
7882 static tree
7883 resolve_address_of_overloaded_function (tree target_type,
7884 tree overload,
7885 tsubst_flags_t complain,
7886 bool template_only,
7887 tree explicit_targs,
7888 tree access_path)
7889 {
7890 /* Here's what the standard says:
7891
7892 [over.over]
7893
7894 If the name is a function template, template argument deduction
7895 is done, and if the argument deduction succeeds, the deduced
7896 arguments are used to generate a single template function, which
7897 is added to the set of overloaded functions considered.
7898
7899 Non-member functions and static member functions match targets of
7900 type "pointer-to-function" or "reference-to-function." Nonstatic
7901 member functions match targets of type "pointer-to-member
7902 function;" the function type of the pointer to member is used to
7903 select the member function from the set of overloaded member
7904 functions. If a nonstatic member function is selected, the
7905 reference to the overloaded function name is required to have the
7906 form of a pointer to member as described in 5.3.1.
7907
7908 If more than one function is selected, any template functions in
7909 the set are eliminated if the set also contains a non-template
7910 function, and any given template function is eliminated if the
7911 set contains a second template function that is more specialized
7912 than the first according to the partial ordering rules 14.5.5.2.
7913 After such eliminations, if any, there shall remain exactly one
7914 selected function. */
7915
7916 int is_ptrmem = 0;
7917 /* We store the matches in a TREE_LIST rooted here. The functions
7918 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7919 interoperability with most_specialized_instantiation. */
7920 tree matches = NULL_TREE;
7921 tree fn;
7922 tree target_fn_type;
7923
7924 /* By the time we get here, we should be seeing only real
7925 pointer-to-member types, not the internal POINTER_TYPE to
7926 METHOD_TYPE representation. */
7927 gcc_assert (!TYPE_PTR_P (target_type)
7928 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7929
7930 gcc_assert (is_overloaded_fn (overload));
7931
7932 /* Check that the TARGET_TYPE is reasonable. */
7933 if (TYPE_PTRFN_P (target_type)
7934 || TYPE_REFFN_P (target_type))
7935 /* This is OK. */;
7936 else if (TYPE_PTRMEMFUNC_P (target_type))
7937 /* This is OK, too. */
7938 is_ptrmem = 1;
7939 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7940 /* This is OK, too. This comes from a conversion to reference
7941 type. */
7942 target_type = build_reference_type (target_type);
7943 else
7944 {
7945 if (complain & tf_error)
7946 error ("cannot resolve overloaded function %qD based on"
7947 " conversion to type %qT",
7948 DECL_NAME (OVL_FUNCTION (overload)), target_type);
7949 return error_mark_node;
7950 }
7951
7952 /* Non-member functions and static member functions match targets of type
7953 "pointer-to-function" or "reference-to-function." Nonstatic member
7954 functions match targets of type "pointer-to-member-function;" the
7955 function type of the pointer to member is used to select the member
7956 function from the set of overloaded member functions.
7957
7958 So figure out the FUNCTION_TYPE that we want to match against. */
7959 target_fn_type = static_fn_type (target_type);
7960
7961 /* If we can find a non-template function that matches, we can just
7962 use it. There's no point in generating template instantiations
7963 if we're just going to throw them out anyhow. But, of course, we
7964 can only do this when we don't *need* a template function. */
7965 if (!template_only)
7966 {
7967 tree fns;
7968
7969 for (fns = overload; fns; fns = OVL_NEXT (fns))
7970 {
7971 tree fn = OVL_CURRENT (fns);
7972
7973 if (TREE_CODE (fn) == TEMPLATE_DECL)
7974 /* We're not looking for templates just yet. */
7975 continue;
7976
7977 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7978 != is_ptrmem)
7979 /* We're looking for a non-static member, and this isn't
7980 one, or vice versa. */
7981 continue;
7982
7983 /* Ignore functions which haven't been explicitly
7984 declared. */
7985 if (DECL_ANTICIPATED (fn))
7986 continue;
7987
7988 /* See if there's a match. */
7989 tree fntype = static_fn_type (fn);
7990 if (same_type_p (target_fn_type, fntype)
7991 || can_convert_tx_safety (target_fn_type, fntype))
7992 matches = tree_cons (fn, NULL_TREE, matches);
7993 }
7994 }
7995
7996 /* Now, if we've already got a match (or matches), there's no need
7997 to proceed to the template functions. But, if we don't have a
7998 match we need to look at them, too. */
7999 if (!matches)
8000 {
8001 tree target_arg_types;
8002 tree target_ret_type;
8003 tree fns;
8004 tree *args;
8005 unsigned int nargs, ia;
8006 tree arg;
8007
8008 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
8009 target_ret_type = TREE_TYPE (target_fn_type);
8010
8011 nargs = list_length (target_arg_types);
8012 args = XALLOCAVEC (tree, nargs);
8013 for (arg = target_arg_types, ia = 0;
8014 arg != NULL_TREE && arg != void_list_node;
8015 arg = TREE_CHAIN (arg), ++ia)
8016 args[ia] = TREE_VALUE (arg);
8017 nargs = ia;
8018
8019 for (fns = overload; fns; fns = OVL_NEXT (fns))
8020 {
8021 tree fn = OVL_CURRENT (fns);
8022 tree instantiation;
8023 tree targs;
8024
8025 if (TREE_CODE (fn) != TEMPLATE_DECL)
8026 /* We're only looking for templates. */
8027 continue;
8028
8029 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
8030 != is_ptrmem)
8031 /* We're not looking for a non-static member, and this is
8032 one, or vice versa. */
8033 continue;
8034
8035 tree ret = target_ret_type;
8036
8037 /* If the template has a deduced return type, don't expose it to
8038 template argument deduction. */
8039 if (undeduced_auto_decl (fn))
8040 ret = NULL_TREE;
8041
8042 /* Try to do argument deduction. */
8043 targs = make_tree_vec (DECL_NTPARMS (fn));
8044 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
8045 nargs, ret,
8046 DEDUCE_EXACT, LOOKUP_NORMAL,
8047 false, false);
8048 if (instantiation == error_mark_node)
8049 /* Instantiation failed. */
8050 continue;
8051
8052 /* Constraints must be satisfied. This is done before
8053 return type deduction since that instantiates the
8054 function. */
8055 if (flag_concepts && !constraints_satisfied_p (instantiation))
8056 continue;
8057
8058 /* And now force instantiation to do return type deduction. */
8059 if (undeduced_auto_decl (instantiation))
8060 {
8061 ++function_depth;
8062 instantiate_decl (instantiation, /*defer*/false, /*class*/false);
8063 --function_depth;
8064
8065 require_deduced_type (instantiation);
8066 }
8067
8068 /* See if there's a match. */
8069 tree fntype = static_fn_type (instantiation);
8070 if (same_type_p (target_fn_type, fntype)
8071 || can_convert_tx_safety (target_fn_type, fntype))
8072 matches = tree_cons (instantiation, fn, matches);
8073 }
8074
8075 /* Now, remove all but the most specialized of the matches. */
8076 if (matches)
8077 {
8078 tree match = most_specialized_instantiation (matches);
8079
8080 if (match != error_mark_node)
8081 matches = tree_cons (TREE_PURPOSE (match),
8082 NULL_TREE,
8083 NULL_TREE);
8084 }
8085 }
8086
8087 /* Now we should have exactly one function in MATCHES. */
8088 if (matches == NULL_TREE)
8089 {
8090 /* There were *no* matches. */
8091 if (complain & tf_error)
8092 {
8093 error ("no matches converting function %qD to type %q#T",
8094 DECL_NAME (OVL_CURRENT (overload)),
8095 target_type);
8096
8097 print_candidates (overload);
8098 }
8099 return error_mark_node;
8100 }
8101 else if (TREE_CHAIN (matches))
8102 {
8103 /* There were too many matches. First check if they're all
8104 the same function. */
8105 tree match = NULL_TREE;
8106
8107 fn = TREE_PURPOSE (matches);
8108
8109 /* For multi-versioned functions, more than one match is just fine and
8110 decls_match will return false as they are different. */
8111 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
8112 if (!decls_match (fn, TREE_PURPOSE (match))
8113 && !targetm.target_option.function_versions
8114 (fn, TREE_PURPOSE (match)))
8115 break;
8116
8117 if (match)
8118 {
8119 if (complain & tf_error)
8120 {
8121 error ("converting overloaded function %qD to type %q#T is ambiguous",
8122 DECL_NAME (OVL_FUNCTION (overload)),
8123 target_type);
8124
8125 /* Since print_candidates expects the functions in the
8126 TREE_VALUE slot, we flip them here. */
8127 for (match = matches; match; match = TREE_CHAIN (match))
8128 TREE_VALUE (match) = TREE_PURPOSE (match);
8129
8130 print_candidates (matches);
8131 }
8132
8133 return error_mark_node;
8134 }
8135 }
8136
8137 /* Good, exactly one match. Now, convert it to the correct type. */
8138 fn = TREE_PURPOSE (matches);
8139
8140 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
8141 && !(complain & tf_ptrmem_ok) && !flag_ms_extensions)
8142 {
8143 static int explained;
8144
8145 if (!(complain & tf_error))
8146 return error_mark_node;
8147
8148 permerror (input_location, "assuming pointer to member %qD", fn);
8149 if (!explained)
8150 {
8151 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
8152 explained = 1;
8153 }
8154 }
8155
8156 /* If a pointer to a function that is multi-versioned is requested, the
8157 pointer to the dispatcher function is returned instead. This works
8158 well because indirectly calling the function will dispatch the right
8159 function version at run-time. */
8160 if (DECL_FUNCTION_VERSIONED (fn))
8161 {
8162 fn = get_function_version_dispatcher (fn);
8163 if (fn == NULL)
8164 return error_mark_node;
8165 /* Mark all the versions corresponding to the dispatcher as used. */
8166 if (!(complain & tf_conv))
8167 mark_versions_used (fn);
8168 }
8169
8170 /* If we're doing overload resolution purely for the purpose of
8171 determining conversion sequences, we should not consider the
8172 function used. If this conversion sequence is selected, the
8173 function will be marked as used at this point. */
8174 if (!(complain & tf_conv))
8175 {
8176 /* Make =delete work with SFINAE. */
8177 if (DECL_DELETED_FN (fn) && !(complain & tf_error))
8178 return error_mark_node;
8179 if (!mark_used (fn, complain) && !(complain & tf_error))
8180 return error_mark_node;
8181 }
8182
8183 /* We could not check access to member functions when this
8184 expression was originally created since we did not know at that
8185 time to which function the expression referred. */
8186 if (DECL_FUNCTION_MEMBER_P (fn))
8187 {
8188 gcc_assert (access_path);
8189 perform_or_defer_access_check (access_path, fn, fn, complain);
8190 }
8191
8192 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
8193 return cp_build_addr_expr (fn, complain);
8194 else
8195 {
8196 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
8197 will mark the function as addressed, but here we must do it
8198 explicitly. */
8199 cxx_mark_addressable (fn);
8200
8201 return fn;
8202 }
8203 }
8204
8205 /* This function will instantiate the type of the expression given in
8206 RHS to match the type of LHSTYPE. If errors exist, then return
8207 error_mark_node. COMPLAIN is a bit mask. If TF_ERROR is set, then
8208 we complain on errors. If we are not complaining, never modify rhs,
8209 as overload resolution wants to try many possible instantiations, in
8210 the hope that at least one will work.
8211
8212 For non-recursive calls, LHSTYPE should be a function, pointer to
8213 function, or a pointer to member function. */
8214
8215 tree
8216 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t complain)
8217 {
8218 tsubst_flags_t complain_in = complain;
8219 tree access_path = NULL_TREE;
8220
8221 complain &= ~tf_ptrmem_ok;
8222
8223 if (lhstype == unknown_type_node)
8224 {
8225 if (complain & tf_error)
8226 error ("not enough type information");
8227 return error_mark_node;
8228 }
8229
8230 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
8231 {
8232 tree fntype = non_reference (lhstype);
8233 if (same_type_p (fntype, TREE_TYPE (rhs)))
8234 return rhs;
8235 if (flag_ms_extensions
8236 && TYPE_PTRMEMFUNC_P (fntype)
8237 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
8238 /* Microsoft allows `A::f' to be resolved to a
8239 pointer-to-member. */
8240 ;
8241 else
8242 {
8243 if (complain & tf_error)
8244 error ("cannot convert %qE from type %qT to type %qT",
8245 rhs, TREE_TYPE (rhs), fntype);
8246 return error_mark_node;
8247 }
8248 }
8249
8250 if (BASELINK_P (rhs))
8251 {
8252 access_path = BASELINK_ACCESS_BINFO (rhs);
8253 rhs = BASELINK_FUNCTIONS (rhs);
8254 }
8255
8256 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
8257 deduce any type information. */
8258 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
8259 {
8260 if (complain & tf_error)
8261 error ("not enough type information");
8262 return error_mark_node;
8263 }
8264
8265 /* If we instantiate a template, and it is a A ?: C expression
8266 with omitted B, look through the SAVE_EXPR. */
8267 if (TREE_CODE (rhs) == SAVE_EXPR)
8268 rhs = TREE_OPERAND (rhs, 0);
8269
8270 /* There are only a few kinds of expressions that may have a type
8271 dependent on overload resolution. */
8272 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
8273 || TREE_CODE (rhs) == COMPONENT_REF
8274 || is_overloaded_fn (rhs)
8275 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
8276
8277 /* This should really only be used when attempting to distinguish
8278 what sort of a pointer to function we have. For now, any
8279 arithmetic operation which is not supported on pointers
8280 is rejected as an error. */
8281
8282 switch (TREE_CODE (rhs))
8283 {
8284 case COMPONENT_REF:
8285 {
8286 tree member = TREE_OPERAND (rhs, 1);
8287
8288 member = instantiate_type (lhstype, member, complain);
8289 if (member != error_mark_node
8290 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
8291 /* Do not lose object's side effects. */
8292 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
8293 TREE_OPERAND (rhs, 0), member);
8294 return member;
8295 }
8296
8297 case OFFSET_REF:
8298 rhs = TREE_OPERAND (rhs, 1);
8299 if (BASELINK_P (rhs))
8300 return instantiate_type (lhstype, rhs, complain_in);
8301
8302 /* This can happen if we are forming a pointer-to-member for a
8303 member template. */
8304 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
8305
8306 /* Fall through. */
8307
8308 case TEMPLATE_ID_EXPR:
8309 {
8310 tree fns = TREE_OPERAND (rhs, 0);
8311 tree args = TREE_OPERAND (rhs, 1);
8312
8313 return
8314 resolve_address_of_overloaded_function (lhstype, fns, complain_in,
8315 /*template_only=*/true,
8316 args, access_path);
8317 }
8318
8319 case OVERLOAD:
8320 case FUNCTION_DECL:
8321 return
8322 resolve_address_of_overloaded_function (lhstype, rhs, complain_in,
8323 /*template_only=*/false,
8324 /*explicit_targs=*/NULL_TREE,
8325 access_path);
8326
8327 case ADDR_EXPR:
8328 {
8329 if (PTRMEM_OK_P (rhs))
8330 complain |= tf_ptrmem_ok;
8331
8332 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), complain);
8333 }
8334
8335 case ERROR_MARK:
8336 return error_mark_node;
8337
8338 default:
8339 gcc_unreachable ();
8340 }
8341 return error_mark_node;
8342 }
8343 \f
8344 /* Return the name of the virtual function pointer field
8345 (as an IDENTIFIER_NODE) for the given TYPE. Note that
8346 this may have to look back through base types to find the
8347 ultimate field name. (For single inheritance, these could
8348 all be the same name. Who knows for multiple inheritance). */
8349
8350 static tree
8351 get_vfield_name (tree type)
8352 {
8353 tree binfo, base_binfo;
8354 char *buf;
8355
8356 for (binfo = TYPE_BINFO (type);
8357 BINFO_N_BASE_BINFOS (binfo);
8358 binfo = base_binfo)
8359 {
8360 base_binfo = BINFO_BASE_BINFO (binfo, 0);
8361
8362 if (BINFO_VIRTUAL_P (base_binfo)
8363 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
8364 break;
8365 }
8366
8367 type = BINFO_TYPE (binfo);
8368 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
8369 + TYPE_NAME_LENGTH (type) + 2);
8370 sprintf (buf, VFIELD_NAME_FORMAT,
8371 IDENTIFIER_POINTER (constructor_name (type)));
8372 return get_identifier (buf);
8373 }
8374
8375 void
8376 print_class_statistics (void)
8377 {
8378 if (! GATHER_STATISTICS)
8379 return;
8380
8381 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
8382 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
8383 if (n_vtables)
8384 {
8385 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
8386 n_vtables, n_vtable_searches);
8387 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
8388 n_vtable_entries, n_vtable_elems);
8389 }
8390 }
8391
8392 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
8393 according to [class]:
8394 The class-name is also inserted
8395 into the scope of the class itself. For purposes of access checking,
8396 the inserted class name is treated as if it were a public member name. */
8397
8398 void
8399 build_self_reference (void)
8400 {
8401 tree name = constructor_name (current_class_type);
8402 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
8403 tree saved_cas;
8404
8405 DECL_NONLOCAL (value) = 1;
8406 DECL_CONTEXT (value) = current_class_type;
8407 DECL_ARTIFICIAL (value) = 1;
8408 SET_DECL_SELF_REFERENCE_P (value);
8409 set_underlying_type (value);
8410
8411 if (processing_template_decl)
8412 value = push_template_decl (value);
8413
8414 saved_cas = current_access_specifier;
8415 current_access_specifier = access_public_node;
8416 finish_member_declaration (value);
8417 current_access_specifier = saved_cas;
8418 }
8419
8420 /* Returns 1 if TYPE contains only padding bytes. */
8421
8422 int
8423 is_empty_class (tree type)
8424 {
8425 if (type == error_mark_node)
8426 return 0;
8427
8428 if (! CLASS_TYPE_P (type))
8429 return 0;
8430
8431 return CLASSTYPE_EMPTY_P (type);
8432 }
8433
8434 /* Returns true if TYPE contains no actual data, just various
8435 possible combinations of empty classes and possibly a vptr. */
8436
8437 bool
8438 is_really_empty_class (tree type)
8439 {
8440 if (CLASS_TYPE_P (type))
8441 {
8442 tree field;
8443 tree binfo;
8444 tree base_binfo;
8445 int i;
8446
8447 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
8448 out, but we'd like to be able to check this before then. */
8449 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
8450 return true;
8451
8452 for (binfo = TYPE_BINFO (type), i = 0;
8453 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8454 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
8455 return false;
8456 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
8457 if (TREE_CODE (field) == FIELD_DECL
8458 && !DECL_ARTIFICIAL (field)
8459 /* An unnamed bit-field is not a data member. */
8460 && (DECL_NAME (field) || !DECL_C_BIT_FIELD (field))
8461 && !is_really_empty_class (TREE_TYPE (field)))
8462 return false;
8463 return true;
8464 }
8465 else if (TREE_CODE (type) == ARRAY_TYPE)
8466 return (integer_zerop (array_type_nelts_top (type))
8467 || is_really_empty_class (TREE_TYPE (type)));
8468 return false;
8469 }
8470
8471 /* Note that NAME was looked up while the current class was being
8472 defined and that the result of that lookup was DECL. */
8473
8474 void
8475 maybe_note_name_used_in_class (tree name, tree decl)
8476 {
8477 splay_tree names_used;
8478
8479 /* If we're not defining a class, there's nothing to do. */
8480 if (!(innermost_scope_kind() == sk_class
8481 && TYPE_BEING_DEFINED (current_class_type)
8482 && !LAMBDA_TYPE_P (current_class_type)))
8483 return;
8484
8485 /* If there's already a binding for this NAME, then we don't have
8486 anything to worry about. */
8487 if (lookup_member (current_class_type, name,
8488 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
8489 return;
8490
8491 if (!current_class_stack[current_class_depth - 1].names_used)
8492 current_class_stack[current_class_depth - 1].names_used
8493 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
8494 names_used = current_class_stack[current_class_depth - 1].names_used;
8495
8496 splay_tree_insert (names_used,
8497 (splay_tree_key) name,
8498 (splay_tree_value) decl);
8499 }
8500
8501 /* Note that NAME was declared (as DECL) in the current class. Check
8502 to see that the declaration is valid. */
8503
8504 void
8505 note_name_declared_in_class (tree name, tree decl)
8506 {
8507 splay_tree names_used;
8508 splay_tree_node n;
8509
8510 /* Look to see if we ever used this name. */
8511 names_used
8512 = current_class_stack[current_class_depth - 1].names_used;
8513 if (!names_used)
8514 return;
8515 /* The C language allows members to be declared with a type of the same
8516 name, and the C++ standard says this diagnostic is not required. So
8517 allow it in extern "C" blocks unless predantic is specified.
8518 Allow it in all cases if -ms-extensions is specified. */
8519 if ((!pedantic && current_lang_name == lang_name_c)
8520 || flag_ms_extensions)
8521 return;
8522 n = splay_tree_lookup (names_used, (splay_tree_key) name);
8523 if (n)
8524 {
8525 /* [basic.scope.class]
8526
8527 A name N used in a class S shall refer to the same declaration
8528 in its context and when re-evaluated in the completed scope of
8529 S. */
8530 permerror (input_location, "declaration of %q#D", decl);
8531 permerror (location_of ((tree) n->value),
8532 "changes meaning of %qD from %q#D",
8533 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
8534 }
8535 }
8536
8537 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
8538 Secondary vtables are merged with primary vtables; this function
8539 will return the VAR_DECL for the primary vtable. */
8540
8541 tree
8542 get_vtbl_decl_for_binfo (tree binfo)
8543 {
8544 tree decl;
8545
8546 decl = BINFO_VTABLE (binfo);
8547 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
8548 {
8549 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
8550 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
8551 }
8552 if (decl)
8553 gcc_assert (VAR_P (decl));
8554 return decl;
8555 }
8556
8557
8558 /* Returns the binfo for the primary base of BINFO. If the resulting
8559 BINFO is a virtual base, and it is inherited elsewhere in the
8560 hierarchy, then the returned binfo might not be the primary base of
8561 BINFO in the complete object. Check BINFO_PRIMARY_P or
8562 BINFO_LOST_PRIMARY_P to be sure. */
8563
8564 static tree
8565 get_primary_binfo (tree binfo)
8566 {
8567 tree primary_base;
8568
8569 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
8570 if (!primary_base)
8571 return NULL_TREE;
8572
8573 return copied_binfo (primary_base, binfo);
8574 }
8575
8576 /* As above, but iterate until we reach the binfo that actually provides the
8577 vptr for BINFO. */
8578
8579 static tree
8580 most_primary_binfo (tree binfo)
8581 {
8582 tree b = binfo;
8583 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
8584 && !BINFO_LOST_PRIMARY_P (b))
8585 {
8586 tree primary_base = get_primary_binfo (b);
8587 gcc_assert (BINFO_PRIMARY_P (primary_base)
8588 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
8589 b = primary_base;
8590 }
8591 return b;
8592 }
8593
8594 /* Returns true if BINFO gets its vptr from a virtual base of the most derived
8595 type. Note that the virtual inheritance might be above or below BINFO in
8596 the hierarchy. */
8597
8598 bool
8599 vptr_via_virtual_p (tree binfo)
8600 {
8601 if (TYPE_P (binfo))
8602 binfo = TYPE_BINFO (binfo);
8603 tree primary = most_primary_binfo (binfo);
8604 /* Don't limit binfo_via_virtual, we want to return true when BINFO itself is
8605 a morally virtual base. */
8606 tree virt = binfo_via_virtual (primary, NULL_TREE);
8607 return virt != NULL_TREE;
8608 }
8609
8610 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
8611
8612 static int
8613 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
8614 {
8615 if (!indented_p)
8616 fprintf (stream, "%*s", indent, "");
8617 return 1;
8618 }
8619
8620 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
8621 INDENT should be zero when called from the top level; it is
8622 incremented recursively. IGO indicates the next expected BINFO in
8623 inheritance graph ordering. */
8624
8625 static tree
8626 dump_class_hierarchy_r (FILE *stream,
8627 int flags,
8628 tree binfo,
8629 tree igo,
8630 int indent)
8631 {
8632 int indented = 0;
8633 tree base_binfo;
8634 int i;
8635
8636 indented = maybe_indent_hierarchy (stream, indent, 0);
8637 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
8638 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
8639 (HOST_WIDE_INT) (uintptr_t) binfo);
8640 if (binfo != igo)
8641 {
8642 fprintf (stream, "alternative-path\n");
8643 return igo;
8644 }
8645 igo = TREE_CHAIN (binfo);
8646
8647 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
8648 tree_to_shwi (BINFO_OFFSET (binfo)));
8649 if (is_empty_class (BINFO_TYPE (binfo)))
8650 fprintf (stream, " empty");
8651 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
8652 fprintf (stream, " nearly-empty");
8653 if (BINFO_VIRTUAL_P (binfo))
8654 fprintf (stream, " virtual");
8655 fprintf (stream, "\n");
8656
8657 indented = 0;
8658 if (BINFO_PRIMARY_P (binfo))
8659 {
8660 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8661 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
8662 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
8663 TFF_PLAIN_IDENTIFIER),
8664 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
8665 }
8666 if (BINFO_LOST_PRIMARY_P (binfo))
8667 {
8668 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8669 fprintf (stream, " lost-primary");
8670 }
8671 if (indented)
8672 fprintf (stream, "\n");
8673
8674 if (!(flags & TDF_SLIM))
8675 {
8676 int indented = 0;
8677
8678 if (BINFO_SUBVTT_INDEX (binfo))
8679 {
8680 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8681 fprintf (stream, " subvttidx=%s",
8682 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
8683 TFF_PLAIN_IDENTIFIER));
8684 }
8685 if (BINFO_VPTR_INDEX (binfo))
8686 {
8687 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8688 fprintf (stream, " vptridx=%s",
8689 expr_as_string (BINFO_VPTR_INDEX (binfo),
8690 TFF_PLAIN_IDENTIFIER));
8691 }
8692 if (BINFO_VPTR_FIELD (binfo))
8693 {
8694 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8695 fprintf (stream, " vbaseoffset=%s",
8696 expr_as_string (BINFO_VPTR_FIELD (binfo),
8697 TFF_PLAIN_IDENTIFIER));
8698 }
8699 if (BINFO_VTABLE (binfo))
8700 {
8701 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8702 fprintf (stream, " vptr=%s",
8703 expr_as_string (BINFO_VTABLE (binfo),
8704 TFF_PLAIN_IDENTIFIER));
8705 }
8706
8707 if (indented)
8708 fprintf (stream, "\n");
8709 }
8710
8711 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
8712 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
8713
8714 return igo;
8715 }
8716
8717 /* Dump the BINFO hierarchy for T. */
8718
8719 static void
8720 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
8721 {
8722 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8723 fprintf (stream, " size=%lu align=%lu\n",
8724 (unsigned long)(tree_to_shwi (TYPE_SIZE (t)) / BITS_PER_UNIT),
8725 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
8726 fprintf (stream, " base size=%lu base align=%lu\n",
8727 (unsigned long)(tree_to_shwi (TYPE_SIZE (CLASSTYPE_AS_BASE (t)))
8728 / BITS_PER_UNIT),
8729 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
8730 / BITS_PER_UNIT));
8731 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
8732 fprintf (stream, "\n");
8733 }
8734
8735 /* Debug interface to hierarchy dumping. */
8736
8737 void
8738 debug_class (tree t)
8739 {
8740 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
8741 }
8742
8743 static void
8744 dump_class_hierarchy (tree t)
8745 {
8746 int flags;
8747 FILE *stream = get_dump_info (TDI_class, &flags);
8748
8749 if (stream)
8750 {
8751 dump_class_hierarchy_1 (stream, flags, t);
8752 }
8753 }
8754
8755 static void
8756 dump_array (FILE * stream, tree decl)
8757 {
8758 tree value;
8759 unsigned HOST_WIDE_INT ix;
8760 HOST_WIDE_INT elt;
8761 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
8762
8763 elt = (tree_to_shwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))))
8764 / BITS_PER_UNIT);
8765 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
8766 fprintf (stream, " %s entries",
8767 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
8768 TFF_PLAIN_IDENTIFIER));
8769 fprintf (stream, "\n");
8770
8771 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
8772 ix, value)
8773 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
8774 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
8775 }
8776
8777 static void
8778 dump_vtable (tree t, tree binfo, tree vtable)
8779 {
8780 int flags;
8781 FILE *stream = get_dump_info (TDI_class, &flags);
8782
8783 if (!stream)
8784 return;
8785
8786 if (!(flags & TDF_SLIM))
8787 {
8788 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
8789
8790 fprintf (stream, "%s for %s",
8791 ctor_vtbl_p ? "Construction vtable" : "Vtable",
8792 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
8793 if (ctor_vtbl_p)
8794 {
8795 if (!BINFO_VIRTUAL_P (binfo))
8796 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
8797 (HOST_WIDE_INT) (uintptr_t) binfo);
8798 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8799 }
8800 fprintf (stream, "\n");
8801 dump_array (stream, vtable);
8802 fprintf (stream, "\n");
8803 }
8804 }
8805
8806 static void
8807 dump_vtt (tree t, tree vtt)
8808 {
8809 int flags;
8810 FILE *stream = get_dump_info (TDI_class, &flags);
8811
8812 if (!stream)
8813 return;
8814
8815 if (!(flags & TDF_SLIM))
8816 {
8817 fprintf (stream, "VTT for %s\n",
8818 type_as_string (t, TFF_PLAIN_IDENTIFIER));
8819 dump_array (stream, vtt);
8820 fprintf (stream, "\n");
8821 }
8822 }
8823
8824 /* Dump a function or thunk and its thunkees. */
8825
8826 static void
8827 dump_thunk (FILE *stream, int indent, tree thunk)
8828 {
8829 static const char spaces[] = " ";
8830 tree name = DECL_NAME (thunk);
8831 tree thunks;
8832
8833 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8834 (void *)thunk,
8835 !DECL_THUNK_P (thunk) ? "function"
8836 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8837 name ? IDENTIFIER_POINTER (name) : "<unset>");
8838 if (DECL_THUNK_P (thunk))
8839 {
8840 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8841 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8842
8843 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8844 if (!virtual_adjust)
8845 /*NOP*/;
8846 else if (DECL_THIS_THUNK_P (thunk))
8847 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8848 tree_to_shwi (virtual_adjust));
8849 else
8850 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8851 tree_to_shwi (BINFO_VPTR_FIELD (virtual_adjust)),
8852 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8853 if (THUNK_ALIAS (thunk))
8854 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8855 }
8856 fprintf (stream, "\n");
8857 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8858 dump_thunk (stream, indent + 2, thunks);
8859 }
8860
8861 /* Dump the thunks for FN. */
8862
8863 void
8864 debug_thunks (tree fn)
8865 {
8866 dump_thunk (stderr, 0, fn);
8867 }
8868
8869 /* Virtual function table initialization. */
8870
8871 /* Create all the necessary vtables for T and its base classes. */
8872
8873 static void
8874 finish_vtbls (tree t)
8875 {
8876 tree vbase;
8877 vec<constructor_elt, va_gc> *v = NULL;
8878 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8879
8880 /* We lay out the primary and secondary vtables in one contiguous
8881 vtable. The primary vtable is first, followed by the non-virtual
8882 secondary vtables in inheritance graph order. */
8883 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8884 vtable, t, &v);
8885
8886 /* Then come the virtual bases, also in inheritance graph order. */
8887 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8888 {
8889 if (!BINFO_VIRTUAL_P (vbase))
8890 continue;
8891 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8892 }
8893
8894 if (BINFO_VTABLE (TYPE_BINFO (t)))
8895 initialize_vtable (TYPE_BINFO (t), v);
8896 }
8897
8898 /* Initialize the vtable for BINFO with the INITS. */
8899
8900 static void
8901 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8902 {
8903 tree decl;
8904
8905 layout_vtable_decl (binfo, vec_safe_length (inits));
8906 decl = get_vtbl_decl_for_binfo (binfo);
8907 initialize_artificial_var (decl, inits);
8908 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8909 }
8910
8911 /* Build the VTT (virtual table table) for T.
8912 A class requires a VTT if it has virtual bases.
8913
8914 This holds
8915 1 - primary virtual pointer for complete object T
8916 2 - secondary VTTs for each direct non-virtual base of T which requires a
8917 VTT
8918 3 - secondary virtual pointers for each direct or indirect base of T which
8919 has virtual bases or is reachable via a virtual path from T.
8920 4 - secondary VTTs for each direct or indirect virtual base of T.
8921
8922 Secondary VTTs look like complete object VTTs without part 4. */
8923
8924 static void
8925 build_vtt (tree t)
8926 {
8927 tree type;
8928 tree vtt;
8929 tree index;
8930 vec<constructor_elt, va_gc> *inits;
8931
8932 /* Build up the initializers for the VTT. */
8933 inits = NULL;
8934 index = size_zero_node;
8935 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8936
8937 /* If we didn't need a VTT, we're done. */
8938 if (!inits)
8939 return;
8940
8941 /* Figure out the type of the VTT. */
8942 type = build_array_of_n_type (const_ptr_type_node,
8943 inits->length ());
8944
8945 /* Now, build the VTT object itself. */
8946 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8947 initialize_artificial_var (vtt, inits);
8948 /* Add the VTT to the vtables list. */
8949 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8950 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8951
8952 dump_vtt (t, vtt);
8953 }
8954
8955 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8956 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8957 and CHAIN the vtable pointer for this binfo after construction is
8958 complete. VALUE can also be another BINFO, in which case we recurse. */
8959
8960 static tree
8961 binfo_ctor_vtable (tree binfo)
8962 {
8963 tree vt;
8964
8965 while (1)
8966 {
8967 vt = BINFO_VTABLE (binfo);
8968 if (TREE_CODE (vt) == TREE_LIST)
8969 vt = TREE_VALUE (vt);
8970 if (TREE_CODE (vt) == TREE_BINFO)
8971 binfo = vt;
8972 else
8973 break;
8974 }
8975
8976 return vt;
8977 }
8978
8979 /* Data for secondary VTT initialization. */
8980 struct secondary_vptr_vtt_init_data
8981 {
8982 /* Is this the primary VTT? */
8983 bool top_level_p;
8984
8985 /* Current index into the VTT. */
8986 tree index;
8987
8988 /* Vector of initializers built up. */
8989 vec<constructor_elt, va_gc> *inits;
8990
8991 /* The type being constructed by this secondary VTT. */
8992 tree type_being_constructed;
8993 };
8994
8995 /* Recursively build the VTT-initializer for BINFO (which is in the
8996 hierarchy dominated by T). INITS points to the end of the initializer
8997 list to date. INDEX is the VTT index where the next element will be
8998 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8999 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
9000 for virtual bases of T. When it is not so, we build the constructor
9001 vtables for the BINFO-in-T variant. */
9002
9003 static void
9004 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
9005 tree *index)
9006 {
9007 int i;
9008 tree b;
9009 tree init;
9010 secondary_vptr_vtt_init_data data;
9011 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
9012
9013 /* We only need VTTs for subobjects with virtual bases. */
9014 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
9015 return;
9016
9017 /* We need to use a construction vtable if this is not the primary
9018 VTT. */
9019 if (!top_level_p)
9020 {
9021 build_ctor_vtbl_group (binfo, t);
9022
9023 /* Record the offset in the VTT where this sub-VTT can be found. */
9024 BINFO_SUBVTT_INDEX (binfo) = *index;
9025 }
9026
9027 /* Add the address of the primary vtable for the complete object. */
9028 init = binfo_ctor_vtable (binfo);
9029 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
9030 if (top_level_p)
9031 {
9032 gcc_assert (!BINFO_VPTR_INDEX (binfo));
9033 BINFO_VPTR_INDEX (binfo) = *index;
9034 }
9035 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
9036
9037 /* Recursively add the secondary VTTs for non-virtual bases. */
9038 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
9039 if (!BINFO_VIRTUAL_P (b))
9040 build_vtt_inits (b, t, inits, index);
9041
9042 /* Add secondary virtual pointers for all subobjects of BINFO with
9043 either virtual bases or reachable along a virtual path, except
9044 subobjects that are non-virtual primary bases. */
9045 data.top_level_p = top_level_p;
9046 data.index = *index;
9047 data.inits = *inits;
9048 data.type_being_constructed = BINFO_TYPE (binfo);
9049
9050 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
9051
9052 *index = data.index;
9053
9054 /* data.inits might have grown as we added secondary virtual pointers.
9055 Make sure our caller knows about the new vector. */
9056 *inits = data.inits;
9057
9058 if (top_level_p)
9059 /* Add the secondary VTTs for virtual bases in inheritance graph
9060 order. */
9061 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
9062 {
9063 if (!BINFO_VIRTUAL_P (b))
9064 continue;
9065
9066 build_vtt_inits (b, t, inits, index);
9067 }
9068 else
9069 /* Remove the ctor vtables we created. */
9070 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
9071 }
9072
9073 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
9074 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
9075
9076 static tree
9077 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
9078 {
9079 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
9080
9081 /* We don't care about bases that don't have vtables. */
9082 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
9083 return dfs_skip_bases;
9084
9085 /* We're only interested in proper subobjects of the type being
9086 constructed. */
9087 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
9088 return NULL_TREE;
9089
9090 /* We're only interested in bases with virtual bases or reachable
9091 via a virtual path from the type being constructed. */
9092 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
9093 || binfo_via_virtual (binfo, data->type_being_constructed)))
9094 return dfs_skip_bases;
9095
9096 /* We're not interested in non-virtual primary bases. */
9097 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
9098 return NULL_TREE;
9099
9100 /* Record the index where this secondary vptr can be found. */
9101 if (data->top_level_p)
9102 {
9103 gcc_assert (!BINFO_VPTR_INDEX (binfo));
9104 BINFO_VPTR_INDEX (binfo) = data->index;
9105
9106 if (BINFO_VIRTUAL_P (binfo))
9107 {
9108 /* It's a primary virtual base, and this is not a
9109 construction vtable. Find the base this is primary of in
9110 the inheritance graph, and use that base's vtable
9111 now. */
9112 while (BINFO_PRIMARY_P (binfo))
9113 binfo = BINFO_INHERITANCE_CHAIN (binfo);
9114 }
9115 }
9116
9117 /* Add the initializer for the secondary vptr itself. */
9118 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
9119
9120 /* Advance the vtt index. */
9121 data->index = size_binop (PLUS_EXPR, data->index,
9122 TYPE_SIZE_UNIT (ptr_type_node));
9123
9124 return NULL_TREE;
9125 }
9126
9127 /* Called from build_vtt_inits via dfs_walk. After building
9128 constructor vtables and generating the sub-vtt from them, we need
9129 to restore the BINFO_VTABLES that were scribbled on. DATA is the
9130 binfo of the base whose sub vtt was generated. */
9131
9132 static tree
9133 dfs_fixup_binfo_vtbls (tree binfo, void* data)
9134 {
9135 tree vtable = BINFO_VTABLE (binfo);
9136
9137 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
9138 /* If this class has no vtable, none of its bases do. */
9139 return dfs_skip_bases;
9140
9141 if (!vtable)
9142 /* This might be a primary base, so have no vtable in this
9143 hierarchy. */
9144 return NULL_TREE;
9145
9146 /* If we scribbled the construction vtable vptr into BINFO, clear it
9147 out now. */
9148 if (TREE_CODE (vtable) == TREE_LIST
9149 && (TREE_PURPOSE (vtable) == (tree) data))
9150 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
9151
9152 return NULL_TREE;
9153 }
9154
9155 /* Build the construction vtable group for BINFO which is in the
9156 hierarchy dominated by T. */
9157
9158 static void
9159 build_ctor_vtbl_group (tree binfo, tree t)
9160 {
9161 tree type;
9162 tree vtbl;
9163 tree id;
9164 tree vbase;
9165 vec<constructor_elt, va_gc> *v;
9166
9167 /* See if we've already created this construction vtable group. */
9168 id = mangle_ctor_vtbl_for_type (t, binfo);
9169 if (IDENTIFIER_GLOBAL_VALUE (id))
9170 return;
9171
9172 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
9173 /* Build a version of VTBL (with the wrong type) for use in
9174 constructing the addresses of secondary vtables in the
9175 construction vtable group. */
9176 vtbl = build_vtable (t, id, ptr_type_node);
9177 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
9178 /* Don't export construction vtables from shared libraries. Even on
9179 targets that don't support hidden visibility, this tells
9180 can_refer_decl_in_current_unit_p not to assume that it's safe to
9181 access from a different compilation unit (bz 54314). */
9182 DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
9183 DECL_VISIBILITY_SPECIFIED (vtbl) = true;
9184
9185 v = NULL;
9186 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
9187 binfo, vtbl, t, &v);
9188
9189 /* Add the vtables for each of our virtual bases using the vbase in T
9190 binfo. */
9191 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
9192 vbase;
9193 vbase = TREE_CHAIN (vbase))
9194 {
9195 tree b;
9196
9197 if (!BINFO_VIRTUAL_P (vbase))
9198 continue;
9199 b = copied_binfo (vbase, binfo);
9200
9201 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
9202 }
9203
9204 /* Figure out the type of the construction vtable. */
9205 type = build_array_of_n_type (vtable_entry_type, v->length ());
9206 layout_type (type);
9207 TREE_TYPE (vtbl) = type;
9208 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
9209 layout_decl (vtbl, 0);
9210
9211 /* Initialize the construction vtable. */
9212 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
9213 initialize_artificial_var (vtbl, v);
9214 dump_vtable (t, binfo, vtbl);
9215 }
9216
9217 /* Add the vtbl initializers for BINFO (and its bases other than
9218 non-virtual primaries) to the list of INITS. BINFO is in the
9219 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
9220 the constructor the vtbl inits should be accumulated for. (If this
9221 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
9222 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
9223 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
9224 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
9225 but are not necessarily the same in terms of layout. */
9226
9227 static void
9228 accumulate_vtbl_inits (tree binfo,
9229 tree orig_binfo,
9230 tree rtti_binfo,
9231 tree vtbl,
9232 tree t,
9233 vec<constructor_elt, va_gc> **inits)
9234 {
9235 int i;
9236 tree base_binfo;
9237 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
9238
9239 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
9240
9241 /* If it doesn't have a vptr, we don't do anything. */
9242 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
9243 return;
9244
9245 /* If we're building a construction vtable, we're not interested in
9246 subobjects that don't require construction vtables. */
9247 if (ctor_vtbl_p
9248 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
9249 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
9250 return;
9251
9252 /* Build the initializers for the BINFO-in-T vtable. */
9253 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
9254
9255 /* Walk the BINFO and its bases. We walk in preorder so that as we
9256 initialize each vtable we can figure out at what offset the
9257 secondary vtable lies from the primary vtable. We can't use
9258 dfs_walk here because we need to iterate through bases of BINFO
9259 and RTTI_BINFO simultaneously. */
9260 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9261 {
9262 /* Skip virtual bases. */
9263 if (BINFO_VIRTUAL_P (base_binfo))
9264 continue;
9265 accumulate_vtbl_inits (base_binfo,
9266 BINFO_BASE_BINFO (orig_binfo, i),
9267 rtti_binfo, vtbl, t,
9268 inits);
9269 }
9270 }
9271
9272 /* Called from accumulate_vtbl_inits. Adds the initializers for the
9273 BINFO vtable to L. */
9274
9275 static void
9276 dfs_accumulate_vtbl_inits (tree binfo,
9277 tree orig_binfo,
9278 tree rtti_binfo,
9279 tree orig_vtbl,
9280 tree t,
9281 vec<constructor_elt, va_gc> **l)
9282 {
9283 tree vtbl = NULL_TREE;
9284 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
9285 int n_inits;
9286
9287 if (ctor_vtbl_p
9288 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
9289 {
9290 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
9291 primary virtual base. If it is not the same primary in
9292 the hierarchy of T, we'll need to generate a ctor vtable
9293 for it, to place at its location in T. If it is the same
9294 primary, we still need a VTT entry for the vtable, but it
9295 should point to the ctor vtable for the base it is a
9296 primary for within the sub-hierarchy of RTTI_BINFO.
9297
9298 There are three possible cases:
9299
9300 1) We are in the same place.
9301 2) We are a primary base within a lost primary virtual base of
9302 RTTI_BINFO.
9303 3) We are primary to something not a base of RTTI_BINFO. */
9304
9305 tree b;
9306 tree last = NULL_TREE;
9307
9308 /* First, look through the bases we are primary to for RTTI_BINFO
9309 or a virtual base. */
9310 b = binfo;
9311 while (BINFO_PRIMARY_P (b))
9312 {
9313 b = BINFO_INHERITANCE_CHAIN (b);
9314 last = b;
9315 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
9316 goto found;
9317 }
9318 /* If we run out of primary links, keep looking down our
9319 inheritance chain; we might be an indirect primary. */
9320 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
9321 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
9322 break;
9323 found:
9324
9325 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
9326 base B and it is a base of RTTI_BINFO, this is case 2. In
9327 either case, we share our vtable with LAST, i.e. the
9328 derived-most base within B of which we are a primary. */
9329 if (b == rtti_binfo
9330 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
9331 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
9332 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
9333 binfo_ctor_vtable after everything's been set up. */
9334 vtbl = last;
9335
9336 /* Otherwise, this is case 3 and we get our own. */
9337 }
9338 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
9339 return;
9340
9341 n_inits = vec_safe_length (*l);
9342
9343 if (!vtbl)
9344 {
9345 tree index;
9346 int non_fn_entries;
9347
9348 /* Add the initializer for this vtable. */
9349 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
9350 &non_fn_entries, l);
9351
9352 /* Figure out the position to which the VPTR should point. */
9353 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
9354 index = size_binop (MULT_EXPR,
9355 TYPE_SIZE_UNIT (vtable_entry_type),
9356 size_int (non_fn_entries + n_inits));
9357 vtbl = fold_build_pointer_plus (vtbl, index);
9358 }
9359
9360 if (ctor_vtbl_p)
9361 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
9362 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
9363 straighten this out. */
9364 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
9365 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
9366 /* Throw away any unneeded intializers. */
9367 (*l)->truncate (n_inits);
9368 else
9369 /* For an ordinary vtable, set BINFO_VTABLE. */
9370 BINFO_VTABLE (binfo) = vtbl;
9371 }
9372
9373 static GTY(()) tree abort_fndecl_addr;
9374
9375 /* Construct the initializer for BINFO's virtual function table. BINFO
9376 is part of the hierarchy dominated by T. If we're building a
9377 construction vtable, the ORIG_BINFO is the binfo we should use to
9378 find the actual function pointers to put in the vtable - but they
9379 can be overridden on the path to most-derived in the graph that
9380 ORIG_BINFO belongs. Otherwise,
9381 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
9382 BINFO that should be indicated by the RTTI information in the
9383 vtable; it will be a base class of T, rather than T itself, if we
9384 are building a construction vtable.
9385
9386 The value returned is a TREE_LIST suitable for wrapping in a
9387 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
9388 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
9389 number of non-function entries in the vtable.
9390
9391 It might seem that this function should never be called with a
9392 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
9393 base is always subsumed by a derived class vtable. However, when
9394 we are building construction vtables, we do build vtables for
9395 primary bases; we need these while the primary base is being
9396 constructed. */
9397
9398 static void
9399 build_vtbl_initializer (tree binfo,
9400 tree orig_binfo,
9401 tree t,
9402 tree rtti_binfo,
9403 int* non_fn_entries_p,
9404 vec<constructor_elt, va_gc> **inits)
9405 {
9406 tree v;
9407 vtbl_init_data vid;
9408 unsigned ix, jx;
9409 tree vbinfo;
9410 vec<tree, va_gc> *vbases;
9411 constructor_elt *e;
9412
9413 /* Initialize VID. */
9414 memset (&vid, 0, sizeof (vid));
9415 vid.binfo = binfo;
9416 vid.derived = t;
9417 vid.rtti_binfo = rtti_binfo;
9418 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
9419 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
9420 vid.generate_vcall_entries = true;
9421 /* The first vbase or vcall offset is at index -3 in the vtable. */
9422 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
9423
9424 /* Add entries to the vtable for RTTI. */
9425 build_rtti_vtbl_entries (binfo, &vid);
9426
9427 /* Create an array for keeping track of the functions we've
9428 processed. When we see multiple functions with the same
9429 signature, we share the vcall offsets. */
9430 vec_alloc (vid.fns, 32);
9431 /* Add the vcall and vbase offset entries. */
9432 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
9433
9434 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
9435 build_vbase_offset_vtbl_entries. */
9436 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
9437 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
9438 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
9439
9440 /* If the target requires padding between data entries, add that now. */
9441 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
9442 {
9443 int n_entries = vec_safe_length (vid.inits);
9444
9445 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
9446
9447 /* Move data entries into their new positions and add padding
9448 after the new positions. Iterate backwards so we don't
9449 overwrite entries that we would need to process later. */
9450 for (ix = n_entries - 1;
9451 vid.inits->iterate (ix, &e);
9452 ix--)
9453 {
9454 int j;
9455 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
9456 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
9457
9458 (*vid.inits)[new_position] = *e;
9459
9460 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
9461 {
9462 constructor_elt *f = &(*vid.inits)[new_position - j];
9463 f->index = NULL_TREE;
9464 f->value = build1 (NOP_EXPR, vtable_entry_type,
9465 null_pointer_node);
9466 }
9467 }
9468 }
9469
9470 if (non_fn_entries_p)
9471 *non_fn_entries_p = vec_safe_length (vid.inits);
9472
9473 /* The initializers for virtual functions were built up in reverse
9474 order. Straighten them out and add them to the running list in one
9475 step. */
9476 jx = vec_safe_length (*inits);
9477 vec_safe_grow (*inits, jx + vid.inits->length ());
9478
9479 for (ix = vid.inits->length () - 1;
9480 vid.inits->iterate (ix, &e);
9481 ix--, jx++)
9482 (**inits)[jx] = *e;
9483
9484 /* Go through all the ordinary virtual functions, building up
9485 initializers. */
9486 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
9487 {
9488 tree delta;
9489 tree vcall_index;
9490 tree fn, fn_original;
9491 tree init = NULL_TREE;
9492
9493 fn = BV_FN (v);
9494 fn_original = fn;
9495 if (DECL_THUNK_P (fn))
9496 {
9497 if (!DECL_NAME (fn))
9498 finish_thunk (fn);
9499 if (THUNK_ALIAS (fn))
9500 {
9501 fn = THUNK_ALIAS (fn);
9502 BV_FN (v) = fn;
9503 }
9504 fn_original = THUNK_TARGET (fn);
9505 }
9506
9507 /* If the only definition of this function signature along our
9508 primary base chain is from a lost primary, this vtable slot will
9509 never be used, so just zero it out. This is important to avoid
9510 requiring extra thunks which cannot be generated with the function.
9511
9512 We first check this in update_vtable_entry_for_fn, so we handle
9513 restored primary bases properly; we also need to do it here so we
9514 zero out unused slots in ctor vtables, rather than filling them
9515 with erroneous values (though harmless, apart from relocation
9516 costs). */
9517 if (BV_LOST_PRIMARY (v))
9518 init = size_zero_node;
9519
9520 if (! init)
9521 {
9522 /* Pull the offset for `this', and the function to call, out of
9523 the list. */
9524 delta = BV_DELTA (v);
9525 vcall_index = BV_VCALL_INDEX (v);
9526
9527 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
9528 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
9529
9530 /* You can't call an abstract virtual function; it's abstract.
9531 So, we replace these functions with __pure_virtual. */
9532 if (DECL_PURE_VIRTUAL_P (fn_original))
9533 {
9534 fn = abort_fndecl;
9535 if (!TARGET_VTABLE_USES_DESCRIPTORS)
9536 {
9537 if (abort_fndecl_addr == NULL)
9538 abort_fndecl_addr
9539 = fold_convert (vfunc_ptr_type_node,
9540 build_fold_addr_expr (fn));
9541 init = abort_fndecl_addr;
9542 }
9543 }
9544 /* Likewise for deleted virtuals. */
9545 else if (DECL_DELETED_FN (fn_original))
9546 {
9547 fn = get_identifier ("__cxa_deleted_virtual");
9548 if (!get_global_value_if_present (fn, &fn))
9549 fn = push_library_fn (fn, (build_function_type_list
9550 (void_type_node, NULL_TREE)),
9551 NULL_TREE, ECF_NORETURN);
9552 if (!TARGET_VTABLE_USES_DESCRIPTORS)
9553 init = fold_convert (vfunc_ptr_type_node,
9554 build_fold_addr_expr (fn));
9555 }
9556 else
9557 {
9558 if (!integer_zerop (delta) || vcall_index)
9559 {
9560 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
9561 if (!DECL_NAME (fn))
9562 finish_thunk (fn);
9563 }
9564 /* Take the address of the function, considering it to be of an
9565 appropriate generic type. */
9566 if (!TARGET_VTABLE_USES_DESCRIPTORS)
9567 init = fold_convert (vfunc_ptr_type_node,
9568 build_fold_addr_expr (fn));
9569 /* Don't refer to a virtual destructor from a constructor
9570 vtable or a vtable for an abstract class, since destroying
9571 an object under construction is undefined behavior and we
9572 don't want it to be considered a candidate for speculative
9573 devirtualization. But do create the thunk for ABI
9574 compliance. */
9575 if (DECL_DESTRUCTOR_P (fn_original)
9576 && (CLASSTYPE_PURE_VIRTUALS (DECL_CONTEXT (fn_original))
9577 || orig_binfo != binfo))
9578 init = size_zero_node;
9579 }
9580 }
9581
9582 /* And add it to the chain of initializers. */
9583 if (TARGET_VTABLE_USES_DESCRIPTORS)
9584 {
9585 int i;
9586 if (init == size_zero_node)
9587 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
9588 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
9589 else
9590 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
9591 {
9592 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
9593 fn, build_int_cst (NULL_TREE, i));
9594 TREE_CONSTANT (fdesc) = 1;
9595
9596 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, fdesc);
9597 }
9598 }
9599 else
9600 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
9601 }
9602 }
9603
9604 /* Adds to vid->inits the initializers for the vbase and vcall
9605 offsets in BINFO, which is in the hierarchy dominated by T. */
9606
9607 static void
9608 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
9609 {
9610 tree b;
9611
9612 /* If this is a derived class, we must first create entries
9613 corresponding to the primary base class. */
9614 b = get_primary_binfo (binfo);
9615 if (b)
9616 build_vcall_and_vbase_vtbl_entries (b, vid);
9617
9618 /* Add the vbase entries for this base. */
9619 build_vbase_offset_vtbl_entries (binfo, vid);
9620 /* Add the vcall entries for this base. */
9621 build_vcall_offset_vtbl_entries (binfo, vid);
9622 }
9623
9624 /* Returns the initializers for the vbase offset entries in the vtable
9625 for BINFO (which is part of the class hierarchy dominated by T), in
9626 reverse order. VBASE_OFFSET_INDEX gives the vtable index
9627 where the next vbase offset will go. */
9628
9629 static void
9630 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9631 {
9632 tree vbase;
9633 tree t;
9634 tree non_primary_binfo;
9635
9636 /* If there are no virtual baseclasses, then there is nothing to
9637 do. */
9638 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
9639 return;
9640
9641 t = vid->derived;
9642
9643 /* We might be a primary base class. Go up the inheritance hierarchy
9644 until we find the most derived class of which we are a primary base:
9645 it is the offset of that which we need to use. */
9646 non_primary_binfo = binfo;
9647 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
9648 {
9649 tree b;
9650
9651 /* If we have reached a virtual base, then it must be a primary
9652 base (possibly multi-level) of vid->binfo, or we wouldn't
9653 have called build_vcall_and_vbase_vtbl_entries for it. But it
9654 might be a lost primary, so just skip down to vid->binfo. */
9655 if (BINFO_VIRTUAL_P (non_primary_binfo))
9656 {
9657 non_primary_binfo = vid->binfo;
9658 break;
9659 }
9660
9661 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9662 if (get_primary_binfo (b) != non_primary_binfo)
9663 break;
9664 non_primary_binfo = b;
9665 }
9666
9667 /* Go through the virtual bases, adding the offsets. */
9668 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
9669 vbase;
9670 vbase = TREE_CHAIN (vbase))
9671 {
9672 tree b;
9673 tree delta;
9674
9675 if (!BINFO_VIRTUAL_P (vbase))
9676 continue;
9677
9678 /* Find the instance of this virtual base in the complete
9679 object. */
9680 b = copied_binfo (vbase, binfo);
9681
9682 /* If we've already got an offset for this virtual base, we
9683 don't need another one. */
9684 if (BINFO_VTABLE_PATH_MARKED (b))
9685 continue;
9686 BINFO_VTABLE_PATH_MARKED (b) = 1;
9687
9688 /* Figure out where we can find this vbase offset. */
9689 delta = size_binop (MULT_EXPR,
9690 vid->index,
9691 fold_convert (ssizetype,
9692 TYPE_SIZE_UNIT (vtable_entry_type)));
9693 if (vid->primary_vtbl_p)
9694 BINFO_VPTR_FIELD (b) = delta;
9695
9696 if (binfo != TYPE_BINFO (t))
9697 /* The vbase offset had better be the same. */
9698 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
9699
9700 /* The next vbase will come at a more negative offset. */
9701 vid->index = size_binop (MINUS_EXPR, vid->index,
9702 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9703
9704 /* The initializer is the delta from BINFO to this virtual base.
9705 The vbase offsets go in reverse inheritance-graph order, and
9706 we are walking in inheritance graph order so these end up in
9707 the right order. */
9708 delta = size_diffop_loc (input_location,
9709 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
9710
9711 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
9712 fold_build1_loc (input_location, NOP_EXPR,
9713 vtable_entry_type, delta));
9714 }
9715 }
9716
9717 /* Adds the initializers for the vcall offset entries in the vtable
9718 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
9719 to VID->INITS. */
9720
9721 static void
9722 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9723 {
9724 /* We only need these entries if this base is a virtual base. We
9725 compute the indices -- but do not add to the vtable -- when
9726 building the main vtable for a class. */
9727 if (binfo == TYPE_BINFO (vid->derived)
9728 || (BINFO_VIRTUAL_P (binfo)
9729 /* If BINFO is RTTI_BINFO, then (since BINFO does not
9730 correspond to VID->DERIVED), we are building a primary
9731 construction virtual table. Since this is a primary
9732 virtual table, we do not need the vcall offsets for
9733 BINFO. */
9734 && binfo != vid->rtti_binfo))
9735 {
9736 /* We need a vcall offset for each of the virtual functions in this
9737 vtable. For example:
9738
9739 class A { virtual void f (); };
9740 class B1 : virtual public A { virtual void f (); };
9741 class B2 : virtual public A { virtual void f (); };
9742 class C: public B1, public B2 { virtual void f (); };
9743
9744 A C object has a primary base of B1, which has a primary base of A. A
9745 C also has a secondary base of B2, which no longer has a primary base
9746 of A. So the B2-in-C construction vtable needs a secondary vtable for
9747 A, which will adjust the A* to a B2* to call f. We have no way of
9748 knowing what (or even whether) this offset will be when we define B2,
9749 so we store this "vcall offset" in the A sub-vtable and look it up in
9750 a "virtual thunk" for B2::f.
9751
9752 We need entries for all the functions in our primary vtable and
9753 in our non-virtual bases' secondary vtables. */
9754 vid->vbase = binfo;
9755 /* If we are just computing the vcall indices -- but do not need
9756 the actual entries -- not that. */
9757 if (!BINFO_VIRTUAL_P (binfo))
9758 vid->generate_vcall_entries = false;
9759 /* Now, walk through the non-virtual bases, adding vcall offsets. */
9760 add_vcall_offset_vtbl_entries_r (binfo, vid);
9761 }
9762 }
9763
9764 /* Build vcall offsets, starting with those for BINFO. */
9765
9766 static void
9767 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
9768 {
9769 int i;
9770 tree primary_binfo;
9771 tree base_binfo;
9772
9773 /* Don't walk into virtual bases -- except, of course, for the
9774 virtual base for which we are building vcall offsets. Any
9775 primary virtual base will have already had its offsets generated
9776 through the recursion in build_vcall_and_vbase_vtbl_entries. */
9777 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
9778 return;
9779
9780 /* If BINFO has a primary base, process it first. */
9781 primary_binfo = get_primary_binfo (binfo);
9782 if (primary_binfo)
9783 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
9784
9785 /* Add BINFO itself to the list. */
9786 add_vcall_offset_vtbl_entries_1 (binfo, vid);
9787
9788 /* Scan the non-primary bases of BINFO. */
9789 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9790 if (base_binfo != primary_binfo)
9791 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
9792 }
9793
9794 /* Called from build_vcall_offset_vtbl_entries_r. */
9795
9796 static void
9797 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
9798 {
9799 /* Make entries for the rest of the virtuals. */
9800 tree orig_fn;
9801
9802 /* The ABI requires that the methods be processed in declaration
9803 order. */
9804 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
9805 orig_fn;
9806 orig_fn = DECL_CHAIN (orig_fn))
9807 if (TREE_CODE (orig_fn) == FUNCTION_DECL && DECL_VINDEX (orig_fn))
9808 add_vcall_offset (orig_fn, binfo, vid);
9809 }
9810
9811 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9812
9813 static void
9814 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9815 {
9816 size_t i;
9817 tree vcall_offset;
9818 tree derived_entry;
9819
9820 /* If there is already an entry for a function with the same
9821 signature as FN, then we do not need a second vcall offset.
9822 Check the list of functions already present in the derived
9823 class vtable. */
9824 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9825 {
9826 if (same_signature_p (derived_entry, orig_fn)
9827 /* We only use one vcall offset for virtual destructors,
9828 even though there are two virtual table entries. */
9829 || (DECL_DESTRUCTOR_P (derived_entry)
9830 && DECL_DESTRUCTOR_P (orig_fn)))
9831 return;
9832 }
9833
9834 /* If we are building these vcall offsets as part of building
9835 the vtable for the most derived class, remember the vcall
9836 offset. */
9837 if (vid->binfo == TYPE_BINFO (vid->derived))
9838 {
9839 tree_pair_s elt = {orig_fn, vid->index};
9840 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9841 }
9842
9843 /* The next vcall offset will be found at a more negative
9844 offset. */
9845 vid->index = size_binop (MINUS_EXPR, vid->index,
9846 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9847
9848 /* Keep track of this function. */
9849 vec_safe_push (vid->fns, orig_fn);
9850
9851 if (vid->generate_vcall_entries)
9852 {
9853 tree base;
9854 tree fn;
9855
9856 /* Find the overriding function. */
9857 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9858 if (fn == error_mark_node)
9859 vcall_offset = build_zero_cst (vtable_entry_type);
9860 else
9861 {
9862 base = TREE_VALUE (fn);
9863
9864 /* The vbase we're working on is a primary base of
9865 vid->binfo. But it might be a lost primary, so its
9866 BINFO_OFFSET might be wrong, so we just use the
9867 BINFO_OFFSET from vid->binfo. */
9868 vcall_offset = size_diffop_loc (input_location,
9869 BINFO_OFFSET (base),
9870 BINFO_OFFSET (vid->binfo));
9871 vcall_offset = fold_build1_loc (input_location,
9872 NOP_EXPR, vtable_entry_type,
9873 vcall_offset);
9874 }
9875 /* Add the initializer to the vtable. */
9876 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9877 }
9878 }
9879
9880 /* Return vtbl initializers for the RTTI entries corresponding to the
9881 BINFO's vtable. The RTTI entries should indicate the object given
9882 by VID->rtti_binfo. */
9883
9884 static void
9885 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9886 {
9887 tree b;
9888 tree t;
9889 tree offset;
9890 tree decl;
9891 tree init;
9892
9893 t = BINFO_TYPE (vid->rtti_binfo);
9894
9895 /* To find the complete object, we will first convert to our most
9896 primary base, and then add the offset in the vtbl to that value. */
9897 b = most_primary_binfo (binfo);
9898 offset = size_diffop_loc (input_location,
9899 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9900
9901 /* The second entry is the address of the typeinfo object. */
9902 if (flag_rtti)
9903 decl = build_address (get_tinfo_decl (t));
9904 else
9905 decl = integer_zero_node;
9906
9907 /* Convert the declaration to a type that can be stored in the
9908 vtable. */
9909 init = build_nop (vfunc_ptr_type_node, decl);
9910 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9911
9912 /* Add the offset-to-top entry. It comes earlier in the vtable than
9913 the typeinfo entry. Convert the offset to look like a
9914 function pointer, so that we can put it in the vtable. */
9915 init = build_nop (vfunc_ptr_type_node, offset);
9916 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9917 }
9918
9919 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9920 accessibility. */
9921
9922 bool
9923 uniquely_derived_from_p (tree parent, tree type)
9924 {
9925 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9926 return base && base != error_mark_node;
9927 }
9928
9929 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9930
9931 bool
9932 publicly_uniquely_derived_p (tree parent, tree type)
9933 {
9934 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9935 NULL, tf_none);
9936 return base && base != error_mark_node;
9937 }
9938
9939 /* CTX1 and CTX2 are declaration contexts. Return the innermost common
9940 class between them, if any. */
9941
9942 tree
9943 common_enclosing_class (tree ctx1, tree ctx2)
9944 {
9945 if (!TYPE_P (ctx1) || !TYPE_P (ctx2))
9946 return NULL_TREE;
9947 gcc_assert (ctx1 == TYPE_MAIN_VARIANT (ctx1)
9948 && ctx2 == TYPE_MAIN_VARIANT (ctx2));
9949 if (ctx1 == ctx2)
9950 return ctx1;
9951 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9952 TYPE_MARKED_P (t) = true;
9953 tree found = NULL_TREE;
9954 for (tree t = ctx2; TYPE_P (t); t = TYPE_CONTEXT (t))
9955 if (TYPE_MARKED_P (t))
9956 {
9957 found = t;
9958 break;
9959 }
9960 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9961 TYPE_MARKED_P (t) = false;
9962 return found;
9963 }
9964
9965 #include "gt-cp-class.h"