]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/class.c
c-decl.c (finish_decl): Pass input_location to build_unary_op.
[thirdparty/gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "rtl.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
38 #include "cgraph.h"
39 #include "tree-dump.h"
40
41 /* The number of nested classes being processed. If we are not in the
42 scope of any class, this is zero. */
43
44 int current_class_depth;
45
46 /* In order to deal with nested classes, we keep a stack of classes.
47 The topmost entry is the innermost class, and is the entry at index
48 CURRENT_CLASS_DEPTH */
49
50 typedef struct class_stack_node {
51 /* The name of the class. */
52 tree name;
53
54 /* The _TYPE node for the class. */
55 tree type;
56
57 /* The access specifier pending for new declarations in the scope of
58 this class. */
59 tree access;
60
61 /* If were defining TYPE, the names used in this class. */
62 splay_tree names_used;
63
64 /* Nonzero if this class is no longer open, because of a call to
65 push_to_top_level. */
66 size_t hidden;
67 }* class_stack_node_t;
68
69 typedef struct vtbl_init_data_s
70 {
71 /* The base for which we're building initializers. */
72 tree binfo;
73 /* The type of the most-derived type. */
74 tree derived;
75 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
76 unless ctor_vtbl_p is true. */
77 tree rtti_binfo;
78 /* The negative-index vtable initializers built up so far. These
79 are in order from least negative index to most negative index. */
80 tree inits;
81 /* The last (i.e., most negative) entry in INITS. */
82 tree* last_init;
83 /* The binfo for the virtual base for which we're building
84 vcall offset initializers. */
85 tree vbase;
86 /* The functions in vbase for which we have already provided vcall
87 offsets. */
88 VEC(tree,gc) *fns;
89 /* The vtable index of the next vcall or vbase offset. */
90 tree index;
91 /* Nonzero if we are building the initializer for the primary
92 vtable. */
93 int primary_vtbl_p;
94 /* Nonzero if we are building the initializer for a construction
95 vtable. */
96 int ctor_vtbl_p;
97 /* True when adding vcall offset entries to the vtable. False when
98 merely computing the indices. */
99 bool generate_vcall_entries;
100 } vtbl_init_data;
101
102 /* The type of a function passed to walk_subobject_offsets. */
103 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
104
105 /* The stack itself. This is a dynamically resized array. The
106 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
107 static int current_class_stack_size;
108 static class_stack_node_t current_class_stack;
109
110 /* The size of the largest empty class seen in this translation unit. */
111 static GTY (()) tree sizeof_biggest_empty_class;
112
113 /* An array of all local classes present in this translation unit, in
114 declaration order. */
115 VEC(tree,gc) *local_classes;
116
117 static tree get_vfield_name (tree);
118 static void finish_struct_anon (tree);
119 static tree get_vtable_name (tree);
120 static tree get_basefndecls (tree, tree);
121 static int build_primary_vtable (tree, tree);
122 static int build_secondary_vtable (tree);
123 static void finish_vtbls (tree);
124 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
125 static void finish_struct_bits (tree);
126 static int alter_access (tree, tree, tree);
127 static void handle_using_decl (tree, tree);
128 static tree dfs_modify_vtables (tree, void *);
129 static tree modify_all_vtables (tree, tree);
130 static void determine_primary_bases (tree);
131 static void finish_struct_methods (tree);
132 static void maybe_warn_about_overly_private_class (tree);
133 static int method_name_cmp (const void *, const void *);
134 static int resort_method_name_cmp (const void *, const void *);
135 static void add_implicitly_declared_members (tree, int, int);
136 static tree fixed_type_or_null (tree, int *, int *);
137 static tree build_simple_base_path (tree expr, tree binfo);
138 static tree build_vtbl_ref_1 (tree, tree);
139 static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
140 static int count_fields (tree);
141 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
142 static bool check_bitfield_decl (tree);
143 static void check_field_decl (tree, tree, int *, int *, int *);
144 static void check_field_decls (tree, tree *, int *, int *);
145 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
146 static void build_base_fields (record_layout_info, splay_tree, tree *);
147 static void check_methods (tree);
148 static void remove_zero_width_bit_fields (tree);
149 static void check_bases (tree, int *, int *);
150 static void check_bases_and_members (tree);
151 static tree create_vtable_ptr (tree, tree *);
152 static void include_empty_classes (record_layout_info);
153 static void layout_class_type (tree, tree *);
154 static void fixup_pending_inline (tree);
155 static void fixup_inline_methods (tree);
156 static void propagate_binfo_offsets (tree, tree);
157 static void layout_virtual_bases (record_layout_info, splay_tree);
158 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
160 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
161 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
162 static void add_vcall_offset (tree, tree, vtbl_init_data *);
163 static void layout_vtable_decl (tree, int);
164 static tree dfs_find_final_overrider_pre (tree, void *);
165 static tree dfs_find_final_overrider_post (tree, void *);
166 static tree find_final_overrider (tree, tree, tree);
167 static int make_new_vtable (tree, tree);
168 static tree get_primary_binfo (tree);
169 static int maybe_indent_hierarchy (FILE *, int, int);
170 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
171 static void dump_class_hierarchy (tree);
172 static void dump_class_hierarchy_1 (FILE *, int, tree);
173 static void dump_array (FILE *, tree);
174 static void dump_vtable (tree, tree, tree);
175 static void dump_vtt (tree, tree);
176 static void dump_thunk (FILE *, int, tree);
177 static tree build_vtable (tree, tree, tree);
178 static void initialize_vtable (tree, tree);
179 static void layout_nonempty_base_or_field (record_layout_info,
180 tree, tree, splay_tree);
181 static tree end_of_class (tree, int);
182 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
183 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
184 static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
185 tree);
186 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
187 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
188 static void clone_constructors_and_destructors (tree);
189 static tree build_clone (tree, tree);
190 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
191 static void build_ctor_vtbl_group (tree, tree);
192 static void build_vtt (tree);
193 static tree binfo_ctor_vtable (tree);
194 static tree *build_vtt_inits (tree, tree, tree *, tree *);
195 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
196 static tree dfs_fixup_binfo_vtbls (tree, void *);
197 static int record_subobject_offset (tree, tree, splay_tree);
198 static int check_subobject_offset (tree, tree, splay_tree);
199 static int walk_subobject_offsets (tree, subobject_offset_fn,
200 tree, splay_tree, tree, int);
201 static void record_subobject_offsets (tree, tree, splay_tree, bool);
202 static int layout_conflict_p (tree, tree, splay_tree, int);
203 static int splay_tree_compare_integer_csts (splay_tree_key k1,
204 splay_tree_key k2);
205 static void warn_about_ambiguous_bases (tree);
206 static bool type_requires_array_cookie (tree);
207 static bool contains_empty_class_p (tree);
208 static bool base_derived_from (tree, tree);
209 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
210 static tree end_of_base (tree);
211 static tree get_vcall_index (tree, tree);
212
213 /* Variables shared between class.c and call.c. */
214
215 #ifdef GATHER_STATISTICS
216 int n_vtables = 0;
217 int n_vtable_entries = 0;
218 int n_vtable_searches = 0;
219 int n_vtable_elems = 0;
220 int n_convert_harshness = 0;
221 int n_compute_conversion_costs = 0;
222 int n_inner_fields_searched = 0;
223 #endif
224
225 /* Convert to or from a base subobject. EXPR is an expression of type
226 `A' or `A*', an expression of type `B' or `B*' is returned. To
227 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
228 the B base instance within A. To convert base A to derived B, CODE
229 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
230 In this latter case, A must not be a morally virtual base of B.
231 NONNULL is true if EXPR is known to be non-NULL (this is only
232 needed when EXPR is of pointer type). CV qualifiers are preserved
233 from EXPR. */
234
235 tree
236 build_base_path (enum tree_code code,
237 tree expr,
238 tree binfo,
239 int nonnull)
240 {
241 tree v_binfo = NULL_TREE;
242 tree d_binfo = NULL_TREE;
243 tree probe;
244 tree offset;
245 tree target_type;
246 tree null_test = NULL;
247 tree ptr_target_type;
248 int fixed_type_p;
249 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
250 bool has_empty = false;
251 bool virtual_access;
252
253 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
254 return error_mark_node;
255
256 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
257 {
258 d_binfo = probe;
259 if (is_empty_class (BINFO_TYPE (probe)))
260 has_empty = true;
261 if (!v_binfo && BINFO_VIRTUAL_P (probe))
262 v_binfo = probe;
263 }
264
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
266 if (want_pointer)
267 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
268
269 gcc_assert ((code == MINUS_EXPR
270 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
271 || (code == PLUS_EXPR
272 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));
273
274 if (binfo == d_binfo)
275 /* Nothing to do. */
276 return expr;
277
278 if (code == MINUS_EXPR && v_binfo)
279 {
280 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
281 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
282 return error_mark_node;
283 }
284
285 if (!want_pointer)
286 /* This must happen before the call to save_expr. */
287 expr = cp_build_unary_op (ADDR_EXPR, expr, 0, tf_warning_or_error);
288
289 offset = BINFO_OFFSET (binfo);
290 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
291 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
292
293 /* Do we need to look in the vtable for the real offset? */
294 virtual_access = (v_binfo && fixed_type_p <= 0);
295
296 /* Don't bother with the calculations inside sizeof; they'll ICE if the
297 source type is incomplete and the pointer value doesn't matter. */
298 if (skip_evaluation)
299 {
300 expr = build_nop (build_pointer_type (target_type), expr);
301 if (!want_pointer)
302 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, NULL);
303 return expr;
304 }
305
306 /* Do we need to check for a null pointer? */
307 if (want_pointer && !nonnull)
308 {
309 /* If we know the conversion will not actually change the value
310 of EXPR, then we can avoid testing the expression for NULL.
311 We have to avoid generating a COMPONENT_REF for a base class
312 field, because other parts of the compiler know that such
313 expressions are always non-NULL. */
314 if (!virtual_access && integer_zerop (offset))
315 {
316 tree class_type;
317 /* TARGET_TYPE has been extracted from BINFO, and, is
318 therefore always cv-unqualified. Extract the
319 cv-qualifiers from EXPR so that the expression returned
320 matches the input. */
321 class_type = TREE_TYPE (TREE_TYPE (expr));
322 target_type
323 = cp_build_qualified_type (target_type,
324 cp_type_quals (class_type));
325 return build_nop (build_pointer_type (target_type), expr);
326 }
327 null_test = error_mark_node;
328 }
329
330 /* Protect against multiple evaluation if necessary. */
331 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
332 expr = save_expr (expr);
333
334 /* Now that we've saved expr, build the real null test. */
335 if (null_test)
336 {
337 tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
338 null_test = fold_build2 (NE_EXPR, boolean_type_node,
339 expr, zero);
340 }
341
342 /* If this is a simple base reference, express it as a COMPONENT_REF. */
343 if (code == PLUS_EXPR && !virtual_access
344 /* We don't build base fields for empty bases, and they aren't very
345 interesting to the optimizers anyway. */
346 && !has_empty)
347 {
348 expr = cp_build_indirect_ref (expr, NULL, tf_warning_or_error);
349 expr = build_simple_base_path (expr, binfo);
350 if (want_pointer)
351 expr = build_address (expr);
352 target_type = TREE_TYPE (expr);
353 goto out;
354 }
355
356 if (virtual_access)
357 {
358 /* Going via virtual base V_BINFO. We need the static offset
359 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
360 V_BINFO. That offset is an entry in D_BINFO's vtable. */
361 tree v_offset;
362
363 if (fixed_type_p < 0 && in_base_initializer)
364 {
365 /* In a base member initializer, we cannot rely on the
366 vtable being set up. We have to indirect via the
367 vtt_parm. */
368 tree t;
369
370 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
371 t = build_pointer_type (t);
372 v_offset = convert (t, current_vtt_parm);
373 v_offset = cp_build_indirect_ref (v_offset, NULL,
374 tf_warning_or_error);
375 }
376 else
377 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, NULL,
378 tf_warning_or_error),
379 TREE_TYPE (TREE_TYPE (expr)));
380
381 v_offset = build2 (POINTER_PLUS_EXPR, TREE_TYPE (v_offset),
382 v_offset, fold_convert (sizetype, BINFO_VPTR_FIELD (v_binfo)));
383 v_offset = build1 (NOP_EXPR,
384 build_pointer_type (ptrdiff_type_node),
385 v_offset);
386 v_offset = cp_build_indirect_ref (v_offset, NULL, tf_warning_or_error);
387 TREE_CONSTANT (v_offset) = 1;
388
389 offset = convert_to_integer (ptrdiff_type_node,
390 size_diffop (offset,
391 BINFO_OFFSET (v_binfo)));
392
393 if (!integer_zerop (offset))
394 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
395
396 if (fixed_type_p < 0)
397 /* Negative fixed_type_p means this is a constructor or destructor;
398 virtual base layout is fixed in in-charge [cd]tors, but not in
399 base [cd]tors. */
400 offset = build3 (COND_EXPR, ptrdiff_type_node,
401 build2 (EQ_EXPR, boolean_type_node,
402 current_in_charge_parm, integer_zero_node),
403 v_offset,
404 convert_to_integer (ptrdiff_type_node,
405 BINFO_OFFSET (binfo)));
406 else
407 offset = v_offset;
408 }
409
410 target_type = cp_build_qualified_type
411 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
412 ptr_target_type = build_pointer_type (target_type);
413 if (want_pointer)
414 target_type = ptr_target_type;
415
416 expr = build1 (NOP_EXPR, ptr_target_type, expr);
417
418 if (!integer_zerop (offset))
419 {
420 offset = fold_convert (sizetype, offset);
421 if (code == MINUS_EXPR)
422 offset = fold_build1 (NEGATE_EXPR, sizetype, offset);
423 expr = build2 (POINTER_PLUS_EXPR, ptr_target_type, expr, offset);
424 }
425 else
426 null_test = NULL;
427
428 if (!want_pointer)
429 expr = cp_build_indirect_ref (expr, NULL, tf_warning_or_error);
430
431 out:
432 if (null_test)
433 expr = fold_build3 (COND_EXPR, target_type, null_test, expr,
434 fold_build1 (NOP_EXPR, target_type,
435 integer_zero_node));
436
437 return expr;
438 }
439
440 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
441 Perform a derived-to-base conversion by recursively building up a
442 sequence of COMPONENT_REFs to the appropriate base fields. */
443
444 static tree
445 build_simple_base_path (tree expr, tree binfo)
446 {
447 tree type = BINFO_TYPE (binfo);
448 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
449 tree field;
450
451 if (d_binfo == NULL_TREE)
452 {
453 tree temp;
454
455 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
456
457 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
458 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
459 an lvalue in the front end; only _DECLs and _REFs are lvalues
460 in the back end. */
461 temp = unary_complex_lvalue (ADDR_EXPR, expr);
462 if (temp)
463 expr = cp_build_indirect_ref (temp, NULL, tf_warning_or_error);
464
465 return expr;
466 }
467
468 /* Recurse. */
469 expr = build_simple_base_path (expr, d_binfo);
470
471 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
472 field; field = TREE_CHAIN (field))
473 /* Is this the base field created by build_base_field? */
474 if (TREE_CODE (field) == FIELD_DECL
475 && DECL_FIELD_IS_BASE (field)
476 && TREE_TYPE (field) == type)
477 {
478 /* We don't use build_class_member_access_expr here, as that
479 has unnecessary checks, and more importantly results in
480 recursive calls to dfs_walk_once. */
481 int type_quals = cp_type_quals (TREE_TYPE (expr));
482
483 expr = build3 (COMPONENT_REF,
484 cp_build_qualified_type (type, type_quals),
485 expr, field, NULL_TREE);
486 expr = fold_if_not_in_template (expr);
487
488 /* Mark the expression const or volatile, as appropriate.
489 Even though we've dealt with the type above, we still have
490 to mark the expression itself. */
491 if (type_quals & TYPE_QUAL_CONST)
492 TREE_READONLY (expr) = 1;
493 if (type_quals & TYPE_QUAL_VOLATILE)
494 TREE_THIS_VOLATILE (expr) = 1;
495
496 return expr;
497 }
498
499 /* Didn't find the base field?!? */
500 gcc_unreachable ();
501 }
502
503 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
504 type is a class type or a pointer to a class type. In the former
505 case, TYPE is also a class type; in the latter it is another
506 pointer type. If CHECK_ACCESS is true, an error message is emitted
507 if TYPE is inaccessible. If OBJECT has pointer type, the value is
508 assumed to be non-NULL. */
509
510 tree
511 convert_to_base (tree object, tree type, bool check_access, bool nonnull)
512 {
513 tree binfo;
514 tree object_type;
515
516 if (TYPE_PTR_P (TREE_TYPE (object)))
517 {
518 object_type = TREE_TYPE (TREE_TYPE (object));
519 type = TREE_TYPE (type);
520 }
521 else
522 object_type = TREE_TYPE (object);
523
524 binfo = lookup_base (object_type, type,
525 check_access ? ba_check : ba_unique,
526 NULL);
527 if (!binfo || binfo == error_mark_node)
528 return error_mark_node;
529
530 return build_base_path (PLUS_EXPR, object, binfo, nonnull);
531 }
532
533 /* EXPR is an expression with unqualified class type. BASE is a base
534 binfo of that class type. Returns EXPR, converted to the BASE
535 type. This function assumes that EXPR is the most derived class;
536 therefore virtual bases can be found at their static offsets. */
537
538 tree
539 convert_to_base_statically (tree expr, tree base)
540 {
541 tree expr_type;
542
543 expr_type = TREE_TYPE (expr);
544 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
545 {
546 tree pointer_type;
547
548 pointer_type = build_pointer_type (expr_type);
549
550 /* We use fold_build2 and fold_convert below to simplify the trees
551 provided to the optimizers. It is not safe to call these functions
552 when processing a template because they do not handle C++-specific
553 trees. */
554 gcc_assert (!processing_template_decl);
555 expr = cp_build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1,
556 tf_warning_or_error);
557 if (!integer_zerop (BINFO_OFFSET (base)))
558 expr = fold_build2 (POINTER_PLUS_EXPR, pointer_type, expr,
559 fold_convert (sizetype, BINFO_OFFSET (base)));
560 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
561 expr = build_fold_indirect_ref (expr);
562 }
563
564 return expr;
565 }
566
567 \f
568 tree
569 build_vfield_ref (tree datum, tree type)
570 {
571 tree vfield, vcontext;
572
573 if (datum == error_mark_node)
574 return error_mark_node;
575
576 /* First, convert to the requested type. */
577 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
578 datum = convert_to_base (datum, type, /*check_access=*/false,
579 /*nonnull=*/true);
580
581 /* Second, the requested type may not be the owner of its own vptr.
582 If not, convert to the base class that owns it. We cannot use
583 convert_to_base here, because VCONTEXT may appear more than once
584 in the inheritance hierarchy of TYPE, and thus direct conversion
585 between the types may be ambiguous. Following the path back up
586 one step at a time via primary bases avoids the problem. */
587 vfield = TYPE_VFIELD (type);
588 vcontext = DECL_CONTEXT (vfield);
589 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
590 {
591 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
592 type = TREE_TYPE (datum);
593 }
594
595 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
596 }
597
598 /* Given an object INSTANCE, return an expression which yields the
599 vtable element corresponding to INDEX. There are many special
600 cases for INSTANCE which we take care of here, mainly to avoid
601 creating extra tree nodes when we don't have to. */
602
603 static tree
604 build_vtbl_ref_1 (tree instance, tree idx)
605 {
606 tree aref;
607 tree vtbl = NULL_TREE;
608
609 /* Try to figure out what a reference refers to, and
610 access its virtual function table directly. */
611
612 int cdtorp = 0;
613 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
614
615 tree basetype = non_reference (TREE_TYPE (instance));
616
617 if (fixed_type && !cdtorp)
618 {
619 tree binfo = lookup_base (fixed_type, basetype,
620 ba_unique | ba_quiet, NULL);
621 if (binfo)
622 vtbl = unshare_expr (BINFO_VTABLE (binfo));
623 }
624
625 if (!vtbl)
626 vtbl = build_vfield_ref (instance, basetype);
627
628 assemble_external (vtbl);
629
630 aref = build_array_ref (vtbl, idx, input_location);
631 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
632
633 return aref;
634 }
635
636 tree
637 build_vtbl_ref (tree instance, tree idx)
638 {
639 tree aref = build_vtbl_ref_1 (instance, idx);
640
641 return aref;
642 }
643
644 /* Given a stable object pointer INSTANCE_PTR, return an expression which
645 yields a function pointer corresponding to vtable element INDEX. */
646
647 tree
648 build_vfn_ref (tree instance_ptr, tree idx)
649 {
650 tree aref;
651
652 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, 0,
653 tf_warning_or_error),
654 idx);
655
656 /* When using function descriptors, the address of the
657 vtable entry is treated as a function pointer. */
658 if (TARGET_VTABLE_USES_DESCRIPTORS)
659 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
660 cp_build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1,
661 tf_warning_or_error));
662
663 /* Remember this as a method reference, for later devirtualization. */
664 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
665
666 return aref;
667 }
668
669 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
670 for the given TYPE. */
671
672 static tree
673 get_vtable_name (tree type)
674 {
675 return mangle_vtbl_for_type (type);
676 }
677
678 /* DECL is an entity associated with TYPE, like a virtual table or an
679 implicitly generated constructor. Determine whether or not DECL
680 should have external or internal linkage at the object file
681 level. This routine does not deal with COMDAT linkage and other
682 similar complexities; it simply sets TREE_PUBLIC if it possible for
683 entities in other translation units to contain copies of DECL, in
684 the abstract. */
685
686 void
687 set_linkage_according_to_type (tree type, tree decl)
688 {
689 /* If TYPE involves a local class in a function with internal
690 linkage, then DECL should have internal linkage too. Other local
691 classes have no linkage -- but if their containing functions
692 have external linkage, it makes sense for DECL to have external
693 linkage too. That will allow template definitions to be merged,
694 for example. */
695 if (no_linkage_check (type, /*relaxed_p=*/true))
696 {
697 TREE_PUBLIC (decl) = 0;
698 DECL_INTERFACE_KNOWN (decl) = 1;
699 }
700 else
701 TREE_PUBLIC (decl) = 1;
702 }
703
704 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
705 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
706 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
707
708 static tree
709 build_vtable (tree class_type, tree name, tree vtable_type)
710 {
711 tree decl;
712
713 decl = build_lang_decl (VAR_DECL, name, vtable_type);
714 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
715 now to avoid confusion in mangle_decl. */
716 SET_DECL_ASSEMBLER_NAME (decl, name);
717 DECL_CONTEXT (decl) = class_type;
718 DECL_ARTIFICIAL (decl) = 1;
719 TREE_STATIC (decl) = 1;
720 TREE_READONLY (decl) = 1;
721 DECL_VIRTUAL_P (decl) = 1;
722 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
723 DECL_VTABLE_OR_VTT_P (decl) = 1;
724 /* At one time the vtable info was grabbed 2 words at a time. This
725 fails on sparc unless you have 8-byte alignment. (tiemann) */
726 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
727 DECL_ALIGN (decl));
728 set_linkage_according_to_type (class_type, decl);
729 /* The vtable has not been defined -- yet. */
730 DECL_EXTERNAL (decl) = 1;
731 DECL_NOT_REALLY_EXTERN (decl) = 1;
732
733 /* Mark the VAR_DECL node representing the vtable itself as a
734 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
735 is rather important that such things be ignored because any
736 effort to actually generate DWARF for them will run into
737 trouble when/if we encounter code like:
738
739 #pragma interface
740 struct S { virtual void member (); };
741
742 because the artificial declaration of the vtable itself (as
743 manufactured by the g++ front end) will say that the vtable is
744 a static member of `S' but only *after* the debug output for
745 the definition of `S' has already been output. This causes
746 grief because the DWARF entry for the definition of the vtable
747 will try to refer back to an earlier *declaration* of the
748 vtable as a static member of `S' and there won't be one. We
749 might be able to arrange to have the "vtable static member"
750 attached to the member list for `S' before the debug info for
751 `S' get written (which would solve the problem) but that would
752 require more intrusive changes to the g++ front end. */
753 DECL_IGNORED_P (decl) = 1;
754
755 return decl;
756 }
757
758 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
759 or even complete. If this does not exist, create it. If COMPLETE is
760 nonzero, then complete the definition of it -- that will render it
761 impossible to actually build the vtable, but is useful to get at those
762 which are known to exist in the runtime. */
763
764 tree
765 get_vtable_decl (tree type, int complete)
766 {
767 tree decl;
768
769 if (CLASSTYPE_VTABLES (type))
770 return CLASSTYPE_VTABLES (type);
771
772 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
773 CLASSTYPE_VTABLES (type) = decl;
774
775 if (complete)
776 {
777 DECL_EXTERNAL (decl) = 1;
778 finish_decl (decl, NULL_TREE, NULL_TREE);
779 }
780
781 return decl;
782 }
783
784 /* Build the primary virtual function table for TYPE. If BINFO is
785 non-NULL, build the vtable starting with the initial approximation
786 that it is the same as the one which is the head of the association
787 list. Returns a nonzero value if a new vtable is actually
788 created. */
789
790 static int
791 build_primary_vtable (tree binfo, tree type)
792 {
793 tree decl;
794 tree virtuals;
795
796 decl = get_vtable_decl (type, /*complete=*/0);
797
798 if (binfo)
799 {
800 if (BINFO_NEW_VTABLE_MARKED (binfo))
801 /* We have already created a vtable for this base, so there's
802 no need to do it again. */
803 return 0;
804
805 virtuals = copy_list (BINFO_VIRTUALS (binfo));
806 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
807 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
808 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
809 }
810 else
811 {
812 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
813 virtuals = NULL_TREE;
814 }
815
816 #ifdef GATHER_STATISTICS
817 n_vtables += 1;
818 n_vtable_elems += list_length (virtuals);
819 #endif
820
821 /* Initialize the association list for this type, based
822 on our first approximation. */
823 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
824 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
825 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
826 return 1;
827 }
828
829 /* Give BINFO a new virtual function table which is initialized
830 with a skeleton-copy of its original initialization. The only
831 entry that changes is the `delta' entry, so we can really
832 share a lot of structure.
833
834 FOR_TYPE is the most derived type which caused this table to
835 be needed.
836
837 Returns nonzero if we haven't met BINFO before.
838
839 The order in which vtables are built (by calling this function) for
840 an object must remain the same, otherwise a binary incompatibility
841 can result. */
842
843 static int
844 build_secondary_vtable (tree binfo)
845 {
846 if (BINFO_NEW_VTABLE_MARKED (binfo))
847 /* We already created a vtable for this base. There's no need to
848 do it again. */
849 return 0;
850
851 /* Remember that we've created a vtable for this BINFO, so that we
852 don't try to do so again. */
853 SET_BINFO_NEW_VTABLE_MARKED (binfo);
854
855 /* Make fresh virtual list, so we can smash it later. */
856 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
857
858 /* Secondary vtables are laid out as part of the same structure as
859 the primary vtable. */
860 BINFO_VTABLE (binfo) = NULL_TREE;
861 return 1;
862 }
863
864 /* Create a new vtable for BINFO which is the hierarchy dominated by
865 T. Return nonzero if we actually created a new vtable. */
866
867 static int
868 make_new_vtable (tree t, tree binfo)
869 {
870 if (binfo == TYPE_BINFO (t))
871 /* In this case, it is *type*'s vtable we are modifying. We start
872 with the approximation that its vtable is that of the
873 immediate base class. */
874 return build_primary_vtable (binfo, t);
875 else
876 /* This is our very own copy of `basetype' to play with. Later,
877 we will fill in all the virtual functions that override the
878 virtual functions in these base classes which are not defined
879 by the current type. */
880 return build_secondary_vtable (binfo);
881 }
882
883 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
884 (which is in the hierarchy dominated by T) list FNDECL as its
885 BV_FN. DELTA is the required constant adjustment from the `this'
886 pointer where the vtable entry appears to the `this' required when
887 the function is actually called. */
888
889 static void
890 modify_vtable_entry (tree t,
891 tree binfo,
892 tree fndecl,
893 tree delta,
894 tree *virtuals)
895 {
896 tree v;
897
898 v = *virtuals;
899
900 if (fndecl != BV_FN (v)
901 || !tree_int_cst_equal (delta, BV_DELTA (v)))
902 {
903 /* We need a new vtable for BINFO. */
904 if (make_new_vtable (t, binfo))
905 {
906 /* If we really did make a new vtable, we also made a copy
907 of the BINFO_VIRTUALS list. Now, we have to find the
908 corresponding entry in that list. */
909 *virtuals = BINFO_VIRTUALS (binfo);
910 while (BV_FN (*virtuals) != BV_FN (v))
911 *virtuals = TREE_CHAIN (*virtuals);
912 v = *virtuals;
913 }
914
915 BV_DELTA (v) = delta;
916 BV_VCALL_INDEX (v) = NULL_TREE;
917 BV_FN (v) = fndecl;
918 }
919 }
920
921 \f
922 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
923 the USING_DECL naming METHOD. Returns true if the method could be
924 added to the method vec. */
925
926 bool
927 add_method (tree type, tree method, tree using_decl)
928 {
929 unsigned slot;
930 tree overload;
931 bool template_conv_p = false;
932 bool conv_p;
933 VEC(tree,gc) *method_vec;
934 bool complete_p;
935 bool insert_p = false;
936 tree current_fns;
937 tree fns;
938
939 if (method == error_mark_node)
940 return false;
941
942 complete_p = COMPLETE_TYPE_P (type);
943 conv_p = DECL_CONV_FN_P (method);
944 if (conv_p)
945 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
946 && DECL_TEMPLATE_CONV_FN_P (method));
947
948 method_vec = CLASSTYPE_METHOD_VEC (type);
949 if (!method_vec)
950 {
951 /* Make a new method vector. We start with 8 entries. We must
952 allocate at least two (for constructors and destructors), and
953 we're going to end up with an assignment operator at some
954 point as well. */
955 method_vec = VEC_alloc (tree, gc, 8);
956 /* Create slots for constructors and destructors. */
957 VEC_quick_push (tree, method_vec, NULL_TREE);
958 VEC_quick_push (tree, method_vec, NULL_TREE);
959 CLASSTYPE_METHOD_VEC (type) = method_vec;
960 }
961
962 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
963 grok_special_member_properties (method);
964
965 /* Constructors and destructors go in special slots. */
966 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
967 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
968 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
969 {
970 slot = CLASSTYPE_DESTRUCTOR_SLOT;
971
972 if (TYPE_FOR_JAVA (type))
973 {
974 if (!DECL_ARTIFICIAL (method))
975 error ("Java class %qT cannot have a destructor", type);
976 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
977 error ("Java class %qT cannot have an implicit non-trivial "
978 "destructor",
979 type);
980 }
981 }
982 else
983 {
984 tree m;
985
986 insert_p = true;
987 /* See if we already have an entry with this name. */
988 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
989 VEC_iterate (tree, method_vec, slot, m);
990 ++slot)
991 {
992 m = OVL_CURRENT (m);
993 if (template_conv_p)
994 {
995 if (TREE_CODE (m) == TEMPLATE_DECL
996 && DECL_TEMPLATE_CONV_FN_P (m))
997 insert_p = false;
998 break;
999 }
1000 if (conv_p && !DECL_CONV_FN_P (m))
1001 break;
1002 if (DECL_NAME (m) == DECL_NAME (method))
1003 {
1004 insert_p = false;
1005 break;
1006 }
1007 if (complete_p
1008 && !DECL_CONV_FN_P (m)
1009 && DECL_NAME (m) > DECL_NAME (method))
1010 break;
1011 }
1012 }
1013 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
1014
1015 /* Check to see if we've already got this method. */
1016 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1017 {
1018 tree fn = OVL_CURRENT (fns);
1019 tree fn_type;
1020 tree method_type;
1021 tree parms1;
1022 tree parms2;
1023
1024 if (TREE_CODE (fn) != TREE_CODE (method))
1025 continue;
1026
1027 /* [over.load] Member function declarations with the
1028 same name and the same parameter types cannot be
1029 overloaded if any of them is a static member
1030 function declaration.
1031
1032 [namespace.udecl] When a using-declaration brings names
1033 from a base class into a derived class scope, member
1034 functions in the derived class override and/or hide member
1035 functions with the same name and parameter types in a base
1036 class (rather than conflicting). */
1037 fn_type = TREE_TYPE (fn);
1038 method_type = TREE_TYPE (method);
1039 parms1 = TYPE_ARG_TYPES (fn_type);
1040 parms2 = TYPE_ARG_TYPES (method_type);
1041
1042 /* Compare the quals on the 'this' parm. Don't compare
1043 the whole types, as used functions are treated as
1044 coming from the using class in overload resolution. */
1045 if (! DECL_STATIC_FUNCTION_P (fn)
1046 && ! DECL_STATIC_FUNCTION_P (method)
1047 && TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node
1048 && TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node
1049 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
1050 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
1051 continue;
1052
1053 /* For templates, the return type and template parameters
1054 must be identical. */
1055 if (TREE_CODE (fn) == TEMPLATE_DECL
1056 && (!same_type_p (TREE_TYPE (fn_type),
1057 TREE_TYPE (method_type))
1058 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1059 DECL_TEMPLATE_PARMS (method))))
1060 continue;
1061
1062 if (! DECL_STATIC_FUNCTION_P (fn))
1063 parms1 = TREE_CHAIN (parms1);
1064 if (! DECL_STATIC_FUNCTION_P (method))
1065 parms2 = TREE_CHAIN (parms2);
1066
1067 if (compparms (parms1, parms2)
1068 && (!DECL_CONV_FN_P (fn)
1069 || same_type_p (TREE_TYPE (fn_type),
1070 TREE_TYPE (method_type))))
1071 {
1072 if (using_decl)
1073 {
1074 if (DECL_CONTEXT (fn) == type)
1075 /* Defer to the local function. */
1076 return false;
1077 if (DECL_CONTEXT (fn) == DECL_CONTEXT (method))
1078 error ("repeated using declaration %q+D", using_decl);
1079 else
1080 error ("using declaration %q+D conflicts with a previous using declaration",
1081 using_decl);
1082 }
1083 else
1084 {
1085 error ("%q+#D cannot be overloaded", method);
1086 error ("with %q+#D", fn);
1087 }
1088
1089 /* We don't call duplicate_decls here to merge the
1090 declarations because that will confuse things if the
1091 methods have inline definitions. In particular, we
1092 will crash while processing the definitions. */
1093 return false;
1094 }
1095 }
1096
1097 /* A class should never have more than one destructor. */
1098 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1099 return false;
1100
1101 /* Add the new binding. */
1102 overload = build_overload (method, current_fns);
1103
1104 if (conv_p)
1105 TYPE_HAS_CONVERSION (type) = 1;
1106 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1107 push_class_level_binding (DECL_NAME (method), overload);
1108
1109 if (insert_p)
1110 {
1111 bool reallocated;
1112
1113 /* We only expect to add few methods in the COMPLETE_P case, so
1114 just make room for one more method in that case. */
1115 if (complete_p)
1116 reallocated = VEC_reserve_exact (tree, gc, method_vec, 1);
1117 else
1118 reallocated = VEC_reserve (tree, gc, method_vec, 1);
1119 if (reallocated)
1120 CLASSTYPE_METHOD_VEC (type) = method_vec;
1121 if (slot == VEC_length (tree, method_vec))
1122 VEC_quick_push (tree, method_vec, overload);
1123 else
1124 VEC_quick_insert (tree, method_vec, slot, overload);
1125 }
1126 else
1127 /* Replace the current slot. */
1128 VEC_replace (tree, method_vec, slot, overload);
1129 return true;
1130 }
1131
1132 /* Subroutines of finish_struct. */
1133
1134 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1135 legit, otherwise return 0. */
1136
1137 static int
1138 alter_access (tree t, tree fdecl, tree access)
1139 {
1140 tree elem;
1141
1142 if (!DECL_LANG_SPECIFIC (fdecl))
1143 retrofit_lang_decl (fdecl);
1144
1145 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1146
1147 elem = purpose_member (t, DECL_ACCESS (fdecl));
1148 if (elem)
1149 {
1150 if (TREE_VALUE (elem) != access)
1151 {
1152 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1153 error ("conflicting access specifications for method"
1154 " %q+D, ignored", TREE_TYPE (fdecl));
1155 else
1156 error ("conflicting access specifications for field %qE, ignored",
1157 DECL_NAME (fdecl));
1158 }
1159 else
1160 {
1161 /* They're changing the access to the same thing they changed
1162 it to before. That's OK. */
1163 ;
1164 }
1165 }
1166 else
1167 {
1168 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl);
1169 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1170 return 1;
1171 }
1172 return 0;
1173 }
1174
1175 /* Process the USING_DECL, which is a member of T. */
1176
1177 static void
1178 handle_using_decl (tree using_decl, tree t)
1179 {
1180 tree decl = USING_DECL_DECLS (using_decl);
1181 tree name = DECL_NAME (using_decl);
1182 tree access
1183 = TREE_PRIVATE (using_decl) ? access_private_node
1184 : TREE_PROTECTED (using_decl) ? access_protected_node
1185 : access_public_node;
1186 tree flist = NULL_TREE;
1187 tree old_value;
1188
1189 gcc_assert (!processing_template_decl && decl);
1190
1191 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
1192 if (old_value)
1193 {
1194 if (is_overloaded_fn (old_value))
1195 old_value = OVL_CURRENT (old_value);
1196
1197 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1198 /* OK */;
1199 else
1200 old_value = NULL_TREE;
1201 }
1202
1203 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1204
1205 if (is_overloaded_fn (decl))
1206 flist = decl;
1207
1208 if (! old_value)
1209 ;
1210 else if (is_overloaded_fn (old_value))
1211 {
1212 if (flist)
1213 /* It's OK to use functions from a base when there are functions with
1214 the same name already present in the current class. */;
1215 else
1216 {
1217 error ("%q+D invalid in %q#T", using_decl, t);
1218 error (" because of local method %q+#D with same name",
1219 OVL_CURRENT (old_value));
1220 return;
1221 }
1222 }
1223 else if (!DECL_ARTIFICIAL (old_value))
1224 {
1225 error ("%q+D invalid in %q#T", using_decl, t);
1226 error (" because of local member %q+#D with same name", old_value);
1227 return;
1228 }
1229
1230 /* Make type T see field decl FDECL with access ACCESS. */
1231 if (flist)
1232 for (; flist; flist = OVL_NEXT (flist))
1233 {
1234 add_method (t, OVL_CURRENT (flist), using_decl);
1235 alter_access (t, OVL_CURRENT (flist), access);
1236 }
1237 else
1238 alter_access (t, decl, access);
1239 }
1240 \f
1241 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1242 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1243 properties of the bases. */
1244
1245 static void
1246 check_bases (tree t,
1247 int* cant_have_const_ctor_p,
1248 int* no_const_asn_ref_p)
1249 {
1250 int i;
1251 int seen_non_virtual_nearly_empty_base_p;
1252 tree base_binfo;
1253 tree binfo;
1254
1255 seen_non_virtual_nearly_empty_base_p = 0;
1256
1257 for (binfo = TYPE_BINFO (t), i = 0;
1258 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1259 {
1260 tree basetype = TREE_TYPE (base_binfo);
1261
1262 gcc_assert (COMPLETE_TYPE_P (basetype));
1263
1264 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1265 here because the case of virtual functions but non-virtual
1266 dtor is handled in finish_struct_1. */
1267 if (!TYPE_POLYMORPHIC_P (basetype))
1268 warning (OPT_Weffc__,
1269 "base class %q#T has a non-virtual destructor", basetype);
1270
1271 /* If the base class doesn't have copy constructors or
1272 assignment operators that take const references, then the
1273 derived class cannot have such a member automatically
1274 generated. */
1275 if (! TYPE_HAS_CONST_INIT_REF (basetype))
1276 *cant_have_const_ctor_p = 1;
1277 if (TYPE_HAS_ASSIGN_REF (basetype)
1278 && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
1279 *no_const_asn_ref_p = 1;
1280
1281 if (BINFO_VIRTUAL_P (base_binfo))
1282 /* A virtual base does not effect nearly emptiness. */
1283 ;
1284 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1285 {
1286 if (seen_non_virtual_nearly_empty_base_p)
1287 /* And if there is more than one nearly empty base, then the
1288 derived class is not nearly empty either. */
1289 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1290 else
1291 /* Remember we've seen one. */
1292 seen_non_virtual_nearly_empty_base_p = 1;
1293 }
1294 else if (!is_empty_class (basetype))
1295 /* If the base class is not empty or nearly empty, then this
1296 class cannot be nearly empty. */
1297 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1298
1299 /* A lot of properties from the bases also apply to the derived
1300 class. */
1301 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1302 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1303 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1304 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
1305 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
1306 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
1307 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1308 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1309 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1310 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (basetype);
1311 }
1312 }
1313
1314 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1315 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1316 that have had a nearly-empty virtual primary base stolen by some
1317 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1318 T. */
1319
1320 static void
1321 determine_primary_bases (tree t)
1322 {
1323 unsigned i;
1324 tree primary = NULL_TREE;
1325 tree type_binfo = TYPE_BINFO (t);
1326 tree base_binfo;
1327
1328 /* Determine the primary bases of our bases. */
1329 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1330 base_binfo = TREE_CHAIN (base_binfo))
1331 {
1332 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1333
1334 /* See if we're the non-virtual primary of our inheritance
1335 chain. */
1336 if (!BINFO_VIRTUAL_P (base_binfo))
1337 {
1338 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1339 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1340
1341 if (parent_primary
1342 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1343 BINFO_TYPE (parent_primary)))
1344 /* We are the primary binfo. */
1345 BINFO_PRIMARY_P (base_binfo) = 1;
1346 }
1347 /* Determine if we have a virtual primary base, and mark it so.
1348 */
1349 if (primary && BINFO_VIRTUAL_P (primary))
1350 {
1351 tree this_primary = copied_binfo (primary, base_binfo);
1352
1353 if (BINFO_PRIMARY_P (this_primary))
1354 /* Someone already claimed this base. */
1355 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1356 else
1357 {
1358 tree delta;
1359
1360 BINFO_PRIMARY_P (this_primary) = 1;
1361 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1362
1363 /* A virtual binfo might have been copied from within
1364 another hierarchy. As we're about to use it as a
1365 primary base, make sure the offsets match. */
1366 delta = size_diffop (convert (ssizetype,
1367 BINFO_OFFSET (base_binfo)),
1368 convert (ssizetype,
1369 BINFO_OFFSET (this_primary)));
1370
1371 propagate_binfo_offsets (this_primary, delta);
1372 }
1373 }
1374 }
1375
1376 /* First look for a dynamic direct non-virtual base. */
1377 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1378 {
1379 tree basetype = BINFO_TYPE (base_binfo);
1380
1381 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1382 {
1383 primary = base_binfo;
1384 goto found;
1385 }
1386 }
1387
1388 /* A "nearly-empty" virtual base class can be the primary base
1389 class, if no non-virtual polymorphic base can be found. Look for
1390 a nearly-empty virtual dynamic base that is not already a primary
1391 base of something in the hierarchy. If there is no such base,
1392 just pick the first nearly-empty virtual base. */
1393
1394 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1395 base_binfo = TREE_CHAIN (base_binfo))
1396 if (BINFO_VIRTUAL_P (base_binfo)
1397 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1398 {
1399 if (!BINFO_PRIMARY_P (base_binfo))
1400 {
1401 /* Found one that is not primary. */
1402 primary = base_binfo;
1403 goto found;
1404 }
1405 else if (!primary)
1406 /* Remember the first candidate. */
1407 primary = base_binfo;
1408 }
1409
1410 found:
1411 /* If we've got a primary base, use it. */
1412 if (primary)
1413 {
1414 tree basetype = BINFO_TYPE (primary);
1415
1416 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1417 if (BINFO_PRIMARY_P (primary))
1418 /* We are stealing a primary base. */
1419 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1420 BINFO_PRIMARY_P (primary) = 1;
1421 if (BINFO_VIRTUAL_P (primary))
1422 {
1423 tree delta;
1424
1425 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1426 /* A virtual binfo might have been copied from within
1427 another hierarchy. As we're about to use it as a primary
1428 base, make sure the offsets match. */
1429 delta = size_diffop (ssize_int (0),
1430 convert (ssizetype, BINFO_OFFSET (primary)));
1431
1432 propagate_binfo_offsets (primary, delta);
1433 }
1434
1435 primary = TYPE_BINFO (basetype);
1436
1437 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1438 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1439 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1440 }
1441 }
1442 \f
1443 /* Set memoizing fields and bits of T (and its variants) for later
1444 use. */
1445
1446 static void
1447 finish_struct_bits (tree t)
1448 {
1449 tree variants;
1450
1451 /* Fix up variants (if any). */
1452 for (variants = TYPE_NEXT_VARIANT (t);
1453 variants;
1454 variants = TYPE_NEXT_VARIANT (variants))
1455 {
1456 /* These fields are in the _TYPE part of the node, not in
1457 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1458 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1459 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1460 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1461 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1462
1463 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1464
1465 TYPE_BINFO (variants) = TYPE_BINFO (t);
1466
1467 /* Copy whatever these are holding today. */
1468 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1469 TYPE_METHODS (variants) = TYPE_METHODS (t);
1470 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1471
1472 /* All variants of a class have the same attributes. */
1473 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1474 }
1475
1476 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1477 /* For a class w/o baseclasses, 'finish_struct' has set
1478 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1479 Similarly for a class whose base classes do not have vtables.
1480 When neither of these is true, we might have removed abstract
1481 virtuals (by providing a definition), added some (by declaring
1482 new ones), or redeclared ones from a base class. We need to
1483 recalculate what's really an abstract virtual at this point (by
1484 looking in the vtables). */
1485 get_pure_virtuals (t);
1486
1487 /* If this type has a copy constructor or a destructor, force its
1488 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1489 nonzero. This will cause it to be passed by invisible reference
1490 and prevent it from being returned in a register. */
1491 if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1492 {
1493 tree variants;
1494 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1495 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1496 {
1497 TYPE_MODE (variants) = BLKmode;
1498 TREE_ADDRESSABLE (variants) = 1;
1499 }
1500 }
1501 }
1502
1503 /* Issue warnings about T having private constructors, but no friends,
1504 and so forth.
1505
1506 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1507 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1508 non-private static member functions. */
1509
1510 static void
1511 maybe_warn_about_overly_private_class (tree t)
1512 {
1513 int has_member_fn = 0;
1514 int has_nonprivate_method = 0;
1515 tree fn;
1516
1517 if (!warn_ctor_dtor_privacy
1518 /* If the class has friends, those entities might create and
1519 access instances, so we should not warn. */
1520 || (CLASSTYPE_FRIEND_CLASSES (t)
1521 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1522 /* We will have warned when the template was declared; there's
1523 no need to warn on every instantiation. */
1524 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1525 /* There's no reason to even consider warning about this
1526 class. */
1527 return;
1528
1529 /* We only issue one warning, if more than one applies, because
1530 otherwise, on code like:
1531
1532 class A {
1533 // Oops - forgot `public:'
1534 A();
1535 A(const A&);
1536 ~A();
1537 };
1538
1539 we warn several times about essentially the same problem. */
1540
1541 /* Check to see if all (non-constructor, non-destructor) member
1542 functions are private. (Since there are no friends or
1543 non-private statics, we can't ever call any of the private member
1544 functions.) */
1545 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1546 /* We're not interested in compiler-generated methods; they don't
1547 provide any way to call private members. */
1548 if (!DECL_ARTIFICIAL (fn))
1549 {
1550 if (!TREE_PRIVATE (fn))
1551 {
1552 if (DECL_STATIC_FUNCTION_P (fn))
1553 /* A non-private static member function is just like a
1554 friend; it can create and invoke private member
1555 functions, and be accessed without a class
1556 instance. */
1557 return;
1558
1559 has_nonprivate_method = 1;
1560 /* Keep searching for a static member function. */
1561 }
1562 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1563 has_member_fn = 1;
1564 }
1565
1566 if (!has_nonprivate_method && has_member_fn)
1567 {
1568 /* There are no non-private methods, and there's at least one
1569 private member function that isn't a constructor or
1570 destructor. (If all the private members are
1571 constructors/destructors we want to use the code below that
1572 issues error messages specifically referring to
1573 constructors/destructors.) */
1574 unsigned i;
1575 tree binfo = TYPE_BINFO (t);
1576
1577 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1578 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1579 {
1580 has_nonprivate_method = 1;
1581 break;
1582 }
1583 if (!has_nonprivate_method)
1584 {
1585 warning (OPT_Wctor_dtor_privacy,
1586 "all member functions in class %qT are private", t);
1587 return;
1588 }
1589 }
1590
1591 /* Even if some of the member functions are non-private, the class
1592 won't be useful for much if all the constructors or destructors
1593 are private: such an object can never be created or destroyed. */
1594 fn = CLASSTYPE_DESTRUCTORS (t);
1595 if (fn && TREE_PRIVATE (fn))
1596 {
1597 warning (OPT_Wctor_dtor_privacy,
1598 "%q#T only defines a private destructor and has no friends",
1599 t);
1600 return;
1601 }
1602
1603 /* Warn about classes that have private constructors and no friends. */
1604 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1605 /* Implicitly generated constructors are always public. */
1606 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1607 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1608 {
1609 int nonprivate_ctor = 0;
1610
1611 /* If a non-template class does not define a copy
1612 constructor, one is defined for it, enabling it to avoid
1613 this warning. For a template class, this does not
1614 happen, and so we would normally get a warning on:
1615
1616 template <class T> class C { private: C(); };
1617
1618 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1619 complete non-template or fully instantiated classes have this
1620 flag set. */
1621 if (!TYPE_HAS_INIT_REF (t))
1622 nonprivate_ctor = 1;
1623 else
1624 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1625 {
1626 tree ctor = OVL_CURRENT (fn);
1627 /* Ideally, we wouldn't count copy constructors (or, in
1628 fact, any constructor that takes an argument of the
1629 class type as a parameter) because such things cannot
1630 be used to construct an instance of the class unless
1631 you already have one. But, for now at least, we're
1632 more generous. */
1633 if (! TREE_PRIVATE (ctor))
1634 {
1635 nonprivate_ctor = 1;
1636 break;
1637 }
1638 }
1639
1640 if (nonprivate_ctor == 0)
1641 {
1642 warning (OPT_Wctor_dtor_privacy,
1643 "%q#T only defines private constructors and has no friends",
1644 t);
1645 return;
1646 }
1647 }
1648 }
1649
1650 static struct {
1651 gt_pointer_operator new_value;
1652 void *cookie;
1653 } resort_data;
1654
1655 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1656
1657 static int
1658 method_name_cmp (const void* m1_p, const void* m2_p)
1659 {
1660 const tree *const m1 = (const tree *) m1_p;
1661 const tree *const m2 = (const tree *) m2_p;
1662
1663 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1664 return 0;
1665 if (*m1 == NULL_TREE)
1666 return -1;
1667 if (*m2 == NULL_TREE)
1668 return 1;
1669 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1670 return -1;
1671 return 1;
1672 }
1673
1674 /* This routine compares two fields like method_name_cmp but using the
1675 pointer operator in resort_field_decl_data. */
1676
1677 static int
1678 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1679 {
1680 const tree *const m1 = (const tree *) m1_p;
1681 const tree *const m2 = (const tree *) m2_p;
1682 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1683 return 0;
1684 if (*m1 == NULL_TREE)
1685 return -1;
1686 if (*m2 == NULL_TREE)
1687 return 1;
1688 {
1689 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1690 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1691 resort_data.new_value (&d1, resort_data.cookie);
1692 resort_data.new_value (&d2, resort_data.cookie);
1693 if (d1 < d2)
1694 return -1;
1695 }
1696 return 1;
1697 }
1698
1699 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1700
1701 void
1702 resort_type_method_vec (void* obj,
1703 void* orig_obj ATTRIBUTE_UNUSED ,
1704 gt_pointer_operator new_value,
1705 void* cookie)
1706 {
1707 VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
1708 int len = VEC_length (tree, method_vec);
1709 size_t slot;
1710 tree fn;
1711
1712 /* The type conversion ops have to live at the front of the vec, so we
1713 can't sort them. */
1714 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1715 VEC_iterate (tree, method_vec, slot, fn);
1716 ++slot)
1717 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1718 break;
1719
1720 if (len - slot > 1)
1721 {
1722 resort_data.new_value = new_value;
1723 resort_data.cookie = cookie;
1724 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1725 resort_method_name_cmp);
1726 }
1727 }
1728
1729 /* Warn about duplicate methods in fn_fields.
1730
1731 Sort methods that are not special (i.e., constructors, destructors,
1732 and type conversion operators) so that we can find them faster in
1733 search. */
1734
1735 static void
1736 finish_struct_methods (tree t)
1737 {
1738 tree fn_fields;
1739 VEC(tree,gc) *method_vec;
1740 int slot, len;
1741
1742 method_vec = CLASSTYPE_METHOD_VEC (t);
1743 if (!method_vec)
1744 return;
1745
1746 len = VEC_length (tree, method_vec);
1747
1748 /* Clear DECL_IN_AGGR_P for all functions. */
1749 for (fn_fields = TYPE_METHODS (t); fn_fields;
1750 fn_fields = TREE_CHAIN (fn_fields))
1751 DECL_IN_AGGR_P (fn_fields) = 0;
1752
1753 /* Issue warnings about private constructors and such. If there are
1754 no methods, then some public defaults are generated. */
1755 maybe_warn_about_overly_private_class (t);
1756
1757 /* The type conversion ops have to live at the front of the vec, so we
1758 can't sort them. */
1759 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1760 VEC_iterate (tree, method_vec, slot, fn_fields);
1761 ++slot)
1762 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1763 break;
1764 if (len - slot > 1)
1765 qsort (VEC_address (tree, method_vec) + slot,
1766 len-slot, sizeof (tree), method_name_cmp);
1767 }
1768
1769 /* Make BINFO's vtable have N entries, including RTTI entries,
1770 vbase and vcall offsets, etc. Set its type and call the back end
1771 to lay it out. */
1772
1773 static void
1774 layout_vtable_decl (tree binfo, int n)
1775 {
1776 tree atype;
1777 tree vtable;
1778
1779 atype = build_cplus_array_type (vtable_entry_type,
1780 build_index_type (size_int (n - 1)));
1781 layout_type (atype);
1782
1783 /* We may have to grow the vtable. */
1784 vtable = get_vtbl_decl_for_binfo (binfo);
1785 if (!same_type_p (TREE_TYPE (vtable), atype))
1786 {
1787 TREE_TYPE (vtable) = atype;
1788 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1789 layout_decl (vtable, 0);
1790 }
1791 }
1792
1793 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1794 have the same signature. */
1795
1796 int
1797 same_signature_p (const_tree fndecl, const_tree base_fndecl)
1798 {
1799 /* One destructor overrides another if they are the same kind of
1800 destructor. */
1801 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1802 && special_function_p (base_fndecl) == special_function_p (fndecl))
1803 return 1;
1804 /* But a non-destructor never overrides a destructor, nor vice
1805 versa, nor do different kinds of destructors override
1806 one-another. For example, a complete object destructor does not
1807 override a deleting destructor. */
1808 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1809 return 0;
1810
1811 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1812 || (DECL_CONV_FN_P (fndecl)
1813 && DECL_CONV_FN_P (base_fndecl)
1814 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1815 DECL_CONV_FN_TYPE (base_fndecl))))
1816 {
1817 tree types, base_types;
1818 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1819 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1820 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
1821 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
1822 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1823 return 1;
1824 }
1825 return 0;
1826 }
1827
1828 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1829 subobject. */
1830
1831 static bool
1832 base_derived_from (tree derived, tree base)
1833 {
1834 tree probe;
1835
1836 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1837 {
1838 if (probe == derived)
1839 return true;
1840 else if (BINFO_VIRTUAL_P (probe))
1841 /* If we meet a virtual base, we can't follow the inheritance
1842 any more. See if the complete type of DERIVED contains
1843 such a virtual base. */
1844 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1845 != NULL_TREE);
1846 }
1847 return false;
1848 }
1849
1850 typedef struct find_final_overrider_data_s {
1851 /* The function for which we are trying to find a final overrider. */
1852 tree fn;
1853 /* The base class in which the function was declared. */
1854 tree declaring_base;
1855 /* The candidate overriders. */
1856 tree candidates;
1857 /* Path to most derived. */
1858 VEC(tree,heap) *path;
1859 } find_final_overrider_data;
1860
1861 /* Add the overrider along the current path to FFOD->CANDIDATES.
1862 Returns true if an overrider was found; false otherwise. */
1863
1864 static bool
1865 dfs_find_final_overrider_1 (tree binfo,
1866 find_final_overrider_data *ffod,
1867 unsigned depth)
1868 {
1869 tree method;
1870
1871 /* If BINFO is not the most derived type, try a more derived class.
1872 A definition there will overrider a definition here. */
1873 if (depth)
1874 {
1875 depth--;
1876 if (dfs_find_final_overrider_1
1877 (VEC_index (tree, ffod->path, depth), ffod, depth))
1878 return true;
1879 }
1880
1881 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
1882 if (method)
1883 {
1884 tree *candidate = &ffod->candidates;
1885
1886 /* Remove any candidates overridden by this new function. */
1887 while (*candidate)
1888 {
1889 /* If *CANDIDATE overrides METHOD, then METHOD
1890 cannot override anything else on the list. */
1891 if (base_derived_from (TREE_VALUE (*candidate), binfo))
1892 return true;
1893 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1894 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
1895 *candidate = TREE_CHAIN (*candidate);
1896 else
1897 candidate = &TREE_CHAIN (*candidate);
1898 }
1899
1900 /* Add the new function. */
1901 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
1902 return true;
1903 }
1904
1905 return false;
1906 }
1907
1908 /* Called from find_final_overrider via dfs_walk. */
1909
1910 static tree
1911 dfs_find_final_overrider_pre (tree binfo, void *data)
1912 {
1913 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1914
1915 if (binfo == ffod->declaring_base)
1916 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
1917 VEC_safe_push (tree, heap, ffod->path, binfo);
1918
1919 return NULL_TREE;
1920 }
1921
1922 static tree
1923 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
1924 {
1925 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1926 VEC_pop (tree, ffod->path);
1927
1928 return NULL_TREE;
1929 }
1930
1931 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1932 FN and whose TREE_VALUE is the binfo for the base where the
1933 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1934 DERIVED) is the base object in which FN is declared. */
1935
1936 static tree
1937 find_final_overrider (tree derived, tree binfo, tree fn)
1938 {
1939 find_final_overrider_data ffod;
1940
1941 /* Getting this right is a little tricky. This is valid:
1942
1943 struct S { virtual void f (); };
1944 struct T { virtual void f (); };
1945 struct U : public S, public T { };
1946
1947 even though calling `f' in `U' is ambiguous. But,
1948
1949 struct R { virtual void f(); };
1950 struct S : virtual public R { virtual void f (); };
1951 struct T : virtual public R { virtual void f (); };
1952 struct U : public S, public T { };
1953
1954 is not -- there's no way to decide whether to put `S::f' or
1955 `T::f' in the vtable for `R'.
1956
1957 The solution is to look at all paths to BINFO. If we find
1958 different overriders along any two, then there is a problem. */
1959 if (DECL_THUNK_P (fn))
1960 fn = THUNK_TARGET (fn);
1961
1962 /* Determine the depth of the hierarchy. */
1963 ffod.fn = fn;
1964 ffod.declaring_base = binfo;
1965 ffod.candidates = NULL_TREE;
1966 ffod.path = VEC_alloc (tree, heap, 30);
1967
1968 dfs_walk_all (derived, dfs_find_final_overrider_pre,
1969 dfs_find_final_overrider_post, &ffod);
1970
1971 VEC_free (tree, heap, ffod.path);
1972
1973 /* If there was no winner, issue an error message. */
1974 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
1975 return error_mark_node;
1976
1977 return ffod.candidates;
1978 }
1979
1980 /* Return the index of the vcall offset for FN when TYPE is used as a
1981 virtual base. */
1982
1983 static tree
1984 get_vcall_index (tree fn, tree type)
1985 {
1986 VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
1987 tree_pair_p p;
1988 unsigned ix;
1989
1990 for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
1991 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
1992 || same_signature_p (fn, p->purpose))
1993 return p->value;
1994
1995 /* There should always be an appropriate index. */
1996 gcc_unreachable ();
1997 }
1998
1999 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2000 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
2001 corresponding position in the BINFO_VIRTUALS list. */
2002
2003 static void
2004 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2005 unsigned ix)
2006 {
2007 tree b;
2008 tree overrider;
2009 tree delta;
2010 tree virtual_base;
2011 tree first_defn;
2012 tree overrider_fn, overrider_target;
2013 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2014 tree over_return, base_return;
2015 bool lost = false;
2016
2017 /* Find the nearest primary base (possibly binfo itself) which defines
2018 this function; this is the class the caller will convert to when
2019 calling FN through BINFO. */
2020 for (b = binfo; ; b = get_primary_binfo (b))
2021 {
2022 gcc_assert (b);
2023 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2024 break;
2025
2026 /* The nearest definition is from a lost primary. */
2027 if (BINFO_LOST_PRIMARY_P (b))
2028 lost = true;
2029 }
2030 first_defn = b;
2031
2032 /* Find the final overrider. */
2033 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2034 if (overrider == error_mark_node)
2035 {
2036 error ("no unique final overrider for %qD in %qT", target_fn, t);
2037 return;
2038 }
2039 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2040
2041 /* Check for adjusting covariant return types. */
2042 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2043 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2044
2045 if (POINTER_TYPE_P (over_return)
2046 && TREE_CODE (over_return) == TREE_CODE (base_return)
2047 && CLASS_TYPE_P (TREE_TYPE (over_return))
2048 && CLASS_TYPE_P (TREE_TYPE (base_return))
2049 /* If the overrider is invalid, don't even try. */
2050 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2051 {
2052 /* If FN is a covariant thunk, we must figure out the adjustment
2053 to the final base FN was converting to. As OVERRIDER_TARGET might
2054 also be converting to the return type of FN, we have to
2055 combine the two conversions here. */
2056 tree fixed_offset, virtual_offset;
2057
2058 over_return = TREE_TYPE (over_return);
2059 base_return = TREE_TYPE (base_return);
2060
2061 if (DECL_THUNK_P (fn))
2062 {
2063 gcc_assert (DECL_RESULT_THUNK_P (fn));
2064 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2065 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2066 }
2067 else
2068 fixed_offset = virtual_offset = NULL_TREE;
2069
2070 if (virtual_offset)
2071 /* Find the equivalent binfo within the return type of the
2072 overriding function. We will want the vbase offset from
2073 there. */
2074 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2075 over_return);
2076 else if (!same_type_ignoring_top_level_qualifiers_p
2077 (over_return, base_return))
2078 {
2079 /* There was no existing virtual thunk (which takes
2080 precedence). So find the binfo of the base function's
2081 return type within the overriding function's return type.
2082 We cannot call lookup base here, because we're inside a
2083 dfs_walk, and will therefore clobber the BINFO_MARKED
2084 flags. Fortunately we know the covariancy is valid (it
2085 has already been checked), so we can just iterate along
2086 the binfos, which have been chained in inheritance graph
2087 order. Of course it is lame that we have to repeat the
2088 search here anyway -- we should really be caching pieces
2089 of the vtable and avoiding this repeated work. */
2090 tree thunk_binfo, base_binfo;
2091
2092 /* Find the base binfo within the overriding function's
2093 return type. We will always find a thunk_binfo, except
2094 when the covariancy is invalid (which we will have
2095 already diagnosed). */
2096 for (base_binfo = TYPE_BINFO (base_return),
2097 thunk_binfo = TYPE_BINFO (over_return);
2098 thunk_binfo;
2099 thunk_binfo = TREE_CHAIN (thunk_binfo))
2100 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2101 BINFO_TYPE (base_binfo)))
2102 break;
2103
2104 /* See if virtual inheritance is involved. */
2105 for (virtual_offset = thunk_binfo;
2106 virtual_offset;
2107 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2108 if (BINFO_VIRTUAL_P (virtual_offset))
2109 break;
2110
2111 if (virtual_offset
2112 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2113 {
2114 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2115
2116 if (virtual_offset)
2117 {
2118 /* We convert via virtual base. Adjust the fixed
2119 offset to be from there. */
2120 offset = size_diffop
2121 (offset, convert
2122 (ssizetype, BINFO_OFFSET (virtual_offset)));
2123 }
2124 if (fixed_offset)
2125 /* There was an existing fixed offset, this must be
2126 from the base just converted to, and the base the
2127 FN was thunking to. */
2128 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2129 else
2130 fixed_offset = offset;
2131 }
2132 }
2133
2134 if (fixed_offset || virtual_offset)
2135 /* Replace the overriding function with a covariant thunk. We
2136 will emit the overriding function in its own slot as
2137 well. */
2138 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2139 fixed_offset, virtual_offset);
2140 }
2141 else
2142 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2143 !DECL_THUNK_P (fn));
2144
2145 /* Assume that we will produce a thunk that convert all the way to
2146 the final overrider, and not to an intermediate virtual base. */
2147 virtual_base = NULL_TREE;
2148
2149 /* See if we can convert to an intermediate virtual base first, and then
2150 use the vcall offset located there to finish the conversion. */
2151 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2152 {
2153 /* If we find the final overrider, then we can stop
2154 walking. */
2155 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2156 BINFO_TYPE (TREE_VALUE (overrider))))
2157 break;
2158
2159 /* If we find a virtual base, and we haven't yet found the
2160 overrider, then there is a virtual base between the
2161 declaring base (first_defn) and the final overrider. */
2162 if (BINFO_VIRTUAL_P (b))
2163 {
2164 virtual_base = b;
2165 break;
2166 }
2167 }
2168
2169 if (overrider_fn != overrider_target && !virtual_base)
2170 {
2171 /* The ABI specifies that a covariant thunk includes a mangling
2172 for a this pointer adjustment. This-adjusting thunks that
2173 override a function from a virtual base have a vcall
2174 adjustment. When the virtual base in question is a primary
2175 virtual base, we know the adjustments are zero, (and in the
2176 non-covariant case, we would not use the thunk).
2177 Unfortunately we didn't notice this could happen, when
2178 designing the ABI and so never mandated that such a covariant
2179 thunk should be emitted. Because we must use the ABI mandated
2180 name, we must continue searching from the binfo where we
2181 found the most recent definition of the function, towards the
2182 primary binfo which first introduced the function into the
2183 vtable. If that enters a virtual base, we must use a vcall
2184 this-adjusting thunk. Bleah! */
2185 tree probe = first_defn;
2186
2187 while ((probe = get_primary_binfo (probe))
2188 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2189 if (BINFO_VIRTUAL_P (probe))
2190 virtual_base = probe;
2191
2192 if (virtual_base)
2193 /* Even if we find a virtual base, the correct delta is
2194 between the overrider and the binfo we're building a vtable
2195 for. */
2196 goto virtual_covariant;
2197 }
2198
2199 /* Compute the constant adjustment to the `this' pointer. The
2200 `this' pointer, when this function is called, will point at BINFO
2201 (or one of its primary bases, which are at the same offset). */
2202 if (virtual_base)
2203 /* The `this' pointer needs to be adjusted from the declaration to
2204 the nearest virtual base. */
2205 delta = size_diffop (convert (ssizetype, BINFO_OFFSET (virtual_base)),
2206 convert (ssizetype, BINFO_OFFSET (first_defn)));
2207 else if (lost)
2208 /* If the nearest definition is in a lost primary, we don't need an
2209 entry in our vtable. Except possibly in a constructor vtable,
2210 if we happen to get our primary back. In that case, the offset
2211 will be zero, as it will be a primary base. */
2212 delta = size_zero_node;
2213 else
2214 /* The `this' pointer needs to be adjusted from pointing to
2215 BINFO to pointing at the base where the final overrider
2216 appears. */
2217 virtual_covariant:
2218 delta = size_diffop (convert (ssizetype,
2219 BINFO_OFFSET (TREE_VALUE (overrider))),
2220 convert (ssizetype, BINFO_OFFSET (binfo)));
2221
2222 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2223
2224 if (virtual_base)
2225 BV_VCALL_INDEX (*virtuals)
2226 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2227 else
2228 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2229 }
2230
2231 /* Called from modify_all_vtables via dfs_walk. */
2232
2233 static tree
2234 dfs_modify_vtables (tree binfo, void* data)
2235 {
2236 tree t = (tree) data;
2237 tree virtuals;
2238 tree old_virtuals;
2239 unsigned ix;
2240
2241 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2242 /* A base without a vtable needs no modification, and its bases
2243 are uninteresting. */
2244 return dfs_skip_bases;
2245
2246 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2247 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2248 /* Don't do the primary vtable, if it's new. */
2249 return NULL_TREE;
2250
2251 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2252 /* There's no need to modify the vtable for a non-virtual primary
2253 base; we're not going to use that vtable anyhow. We do still
2254 need to do this for virtual primary bases, as they could become
2255 non-primary in a construction vtable. */
2256 return NULL_TREE;
2257
2258 make_new_vtable (t, binfo);
2259
2260 /* Now, go through each of the virtual functions in the virtual
2261 function table for BINFO. Find the final overrider, and update
2262 the BINFO_VIRTUALS list appropriately. */
2263 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2264 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2265 virtuals;
2266 ix++, virtuals = TREE_CHAIN (virtuals),
2267 old_virtuals = TREE_CHAIN (old_virtuals))
2268 update_vtable_entry_for_fn (t,
2269 binfo,
2270 BV_FN (old_virtuals),
2271 &virtuals, ix);
2272
2273 return NULL_TREE;
2274 }
2275
2276 /* Update all of the primary and secondary vtables for T. Create new
2277 vtables as required, and initialize their RTTI information. Each
2278 of the functions in VIRTUALS is declared in T and may override a
2279 virtual function from a base class; find and modify the appropriate
2280 entries to point to the overriding functions. Returns a list, in
2281 declaration order, of the virtual functions that are declared in T,
2282 but do not appear in the primary base class vtable, and which
2283 should therefore be appended to the end of the vtable for T. */
2284
2285 static tree
2286 modify_all_vtables (tree t, tree virtuals)
2287 {
2288 tree binfo = TYPE_BINFO (t);
2289 tree *fnsp;
2290
2291 /* Update all of the vtables. */
2292 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2293
2294 /* Add virtual functions not already in our primary vtable. These
2295 will be both those introduced by this class, and those overridden
2296 from secondary bases. It does not include virtuals merely
2297 inherited from secondary bases. */
2298 for (fnsp = &virtuals; *fnsp; )
2299 {
2300 tree fn = TREE_VALUE (*fnsp);
2301
2302 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2303 || DECL_VINDEX (fn) == error_mark_node)
2304 {
2305 /* We don't need to adjust the `this' pointer when
2306 calling this function. */
2307 BV_DELTA (*fnsp) = integer_zero_node;
2308 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2309
2310 /* This is a function not already in our vtable. Keep it. */
2311 fnsp = &TREE_CHAIN (*fnsp);
2312 }
2313 else
2314 /* We've already got an entry for this function. Skip it. */
2315 *fnsp = TREE_CHAIN (*fnsp);
2316 }
2317
2318 return virtuals;
2319 }
2320
2321 /* Get the base virtual function declarations in T that have the
2322 indicated NAME. */
2323
2324 static tree
2325 get_basefndecls (tree name, tree t)
2326 {
2327 tree methods;
2328 tree base_fndecls = NULL_TREE;
2329 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2330 int i;
2331
2332 /* Find virtual functions in T with the indicated NAME. */
2333 i = lookup_fnfields_1 (t, name);
2334 if (i != -1)
2335 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2336 methods;
2337 methods = OVL_NEXT (methods))
2338 {
2339 tree method = OVL_CURRENT (methods);
2340
2341 if (TREE_CODE (method) == FUNCTION_DECL
2342 && DECL_VINDEX (method))
2343 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2344 }
2345
2346 if (base_fndecls)
2347 return base_fndecls;
2348
2349 for (i = 0; i < n_baseclasses; i++)
2350 {
2351 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2352 base_fndecls = chainon (get_basefndecls (name, basetype),
2353 base_fndecls);
2354 }
2355
2356 return base_fndecls;
2357 }
2358
2359 /* If this declaration supersedes the declaration of
2360 a method declared virtual in the base class, then
2361 mark this field as being virtual as well. */
2362
2363 void
2364 check_for_override (tree decl, tree ctype)
2365 {
2366 if (TREE_CODE (decl) == TEMPLATE_DECL)
2367 /* In [temp.mem] we have:
2368
2369 A specialization of a member function template does not
2370 override a virtual function from a base class. */
2371 return;
2372 if ((DECL_DESTRUCTOR_P (decl)
2373 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2374 || DECL_CONV_FN_P (decl))
2375 && look_for_overrides (ctype, decl)
2376 && !DECL_STATIC_FUNCTION_P (decl))
2377 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2378 the error_mark_node so that we know it is an overriding
2379 function. */
2380 DECL_VINDEX (decl) = decl;
2381
2382 if (DECL_VIRTUAL_P (decl))
2383 {
2384 if (!DECL_VINDEX (decl))
2385 DECL_VINDEX (decl) = error_mark_node;
2386 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2387 }
2388 }
2389
2390 /* Warn about hidden virtual functions that are not overridden in t.
2391 We know that constructors and destructors don't apply. */
2392
2393 static void
2394 warn_hidden (tree t)
2395 {
2396 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
2397 tree fns;
2398 size_t i;
2399
2400 /* We go through each separately named virtual function. */
2401 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2402 VEC_iterate (tree, method_vec, i, fns);
2403 ++i)
2404 {
2405 tree fn;
2406 tree name;
2407 tree fndecl;
2408 tree base_fndecls;
2409 tree base_binfo;
2410 tree binfo;
2411 int j;
2412
2413 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2414 have the same name. Figure out what name that is. */
2415 name = DECL_NAME (OVL_CURRENT (fns));
2416 /* There are no possibly hidden functions yet. */
2417 base_fndecls = NULL_TREE;
2418 /* Iterate through all of the base classes looking for possibly
2419 hidden functions. */
2420 for (binfo = TYPE_BINFO (t), j = 0;
2421 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2422 {
2423 tree basetype = BINFO_TYPE (base_binfo);
2424 base_fndecls = chainon (get_basefndecls (name, basetype),
2425 base_fndecls);
2426 }
2427
2428 /* If there are no functions to hide, continue. */
2429 if (!base_fndecls)
2430 continue;
2431
2432 /* Remove any overridden functions. */
2433 for (fn = fns; fn; fn = OVL_NEXT (fn))
2434 {
2435 fndecl = OVL_CURRENT (fn);
2436 if (DECL_VINDEX (fndecl))
2437 {
2438 tree *prev = &base_fndecls;
2439
2440 while (*prev)
2441 /* If the method from the base class has the same
2442 signature as the method from the derived class, it
2443 has been overridden. */
2444 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2445 *prev = TREE_CHAIN (*prev);
2446 else
2447 prev = &TREE_CHAIN (*prev);
2448 }
2449 }
2450
2451 /* Now give a warning for all base functions without overriders,
2452 as they are hidden. */
2453 while (base_fndecls)
2454 {
2455 /* Here we know it is a hider, and no overrider exists. */
2456 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2457 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2458 base_fndecls = TREE_CHAIN (base_fndecls);
2459 }
2460 }
2461 }
2462
2463 /* Check for things that are invalid. There are probably plenty of other
2464 things we should check for also. */
2465
2466 static void
2467 finish_struct_anon (tree t)
2468 {
2469 tree field;
2470
2471 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2472 {
2473 if (TREE_STATIC (field))
2474 continue;
2475 if (TREE_CODE (field) != FIELD_DECL)
2476 continue;
2477
2478 if (DECL_NAME (field) == NULL_TREE
2479 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2480 {
2481 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2482 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2483 for (; elt; elt = TREE_CHAIN (elt))
2484 {
2485 /* We're generally only interested in entities the user
2486 declared, but we also find nested classes by noticing
2487 the TYPE_DECL that we create implicitly. You're
2488 allowed to put one anonymous union inside another,
2489 though, so we explicitly tolerate that. We use
2490 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2491 we also allow unnamed types used for defining fields. */
2492 if (DECL_ARTIFICIAL (elt)
2493 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2494 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2495 continue;
2496
2497 if (TREE_CODE (elt) != FIELD_DECL)
2498 {
2499 if (is_union)
2500 permerror (input_location, "%q+#D invalid; an anonymous union can "
2501 "only have non-static data members", elt);
2502 else
2503 permerror (input_location, "%q+#D invalid; an anonymous struct can "
2504 "only have non-static data members", elt);
2505 continue;
2506 }
2507
2508 if (TREE_PRIVATE (elt))
2509 {
2510 if (is_union)
2511 permerror (input_location, "private member %q+#D in anonymous union", elt);
2512 else
2513 permerror (input_location, "private member %q+#D in anonymous struct", elt);
2514 }
2515 else if (TREE_PROTECTED (elt))
2516 {
2517 if (is_union)
2518 permerror (input_location, "protected member %q+#D in anonymous union", elt);
2519 else
2520 permerror (input_location, "protected member %q+#D in anonymous struct", elt);
2521 }
2522
2523 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2524 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2525 }
2526 }
2527 }
2528 }
2529
2530 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2531 will be used later during class template instantiation.
2532 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2533 a non-static member data (FIELD_DECL), a member function
2534 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2535 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2536 When FRIEND_P is nonzero, T is either a friend class
2537 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2538 (FUNCTION_DECL, TEMPLATE_DECL). */
2539
2540 void
2541 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2542 {
2543 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2544 if (CLASSTYPE_TEMPLATE_INFO (type))
2545 CLASSTYPE_DECL_LIST (type)
2546 = tree_cons (friend_p ? NULL_TREE : type,
2547 t, CLASSTYPE_DECL_LIST (type));
2548 }
2549
2550 /* Create default constructors, assignment operators, and so forth for
2551 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2552 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2553 the class cannot have a default constructor, copy constructor
2554 taking a const reference argument, or an assignment operator taking
2555 a const reference, respectively. */
2556
2557 static void
2558 add_implicitly_declared_members (tree t,
2559 int cant_have_const_cctor,
2560 int cant_have_const_assignment)
2561 {
2562 /* Destructor. */
2563 if (!CLASSTYPE_DESTRUCTORS (t))
2564 {
2565 /* In general, we create destructors lazily. */
2566 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2567 /* However, if the implicit destructor is non-trivial
2568 destructor, we sometimes have to create it at this point. */
2569 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2570 {
2571 bool lazy_p = true;
2572
2573 if (TYPE_FOR_JAVA (t))
2574 /* If this a Java class, any non-trivial destructor is
2575 invalid, even if compiler-generated. Therefore, if the
2576 destructor is non-trivial we create it now. */
2577 lazy_p = false;
2578 else
2579 {
2580 tree binfo;
2581 tree base_binfo;
2582 int ix;
2583
2584 /* If the implicit destructor will be virtual, then we must
2585 generate it now because (unfortunately) we do not
2586 generate virtual tables lazily. */
2587 binfo = TYPE_BINFO (t);
2588 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2589 {
2590 tree base_type;
2591 tree dtor;
2592
2593 base_type = BINFO_TYPE (base_binfo);
2594 dtor = CLASSTYPE_DESTRUCTORS (base_type);
2595 if (dtor && DECL_VIRTUAL_P (dtor))
2596 {
2597 lazy_p = false;
2598 break;
2599 }
2600 }
2601 }
2602
2603 /* If we can't get away with being lazy, generate the destructor
2604 now. */
2605 if (!lazy_p)
2606 lazily_declare_fn (sfk_destructor, t);
2607 }
2608 }
2609
2610 /* [class.ctor]
2611
2612 If there is no user-declared constructor for a class, a default
2613 constructor is implicitly declared. */
2614 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2615 {
2616 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2617 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2618 }
2619
2620 /* [class.ctor]
2621
2622 If a class definition does not explicitly declare a copy
2623 constructor, one is declared implicitly. */
2624 if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
2625 {
2626 TYPE_HAS_INIT_REF (t) = 1;
2627 TYPE_HAS_CONST_INIT_REF (t) = !cant_have_const_cctor;
2628 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2629 }
2630
2631 /* If there is no assignment operator, one will be created if and
2632 when it is needed. For now, just record whether or not the type
2633 of the parameter to the assignment operator will be a const or
2634 non-const reference. */
2635 if (!TYPE_HAS_ASSIGN_REF (t) && !TYPE_FOR_JAVA (t))
2636 {
2637 TYPE_HAS_ASSIGN_REF (t) = 1;
2638 TYPE_HAS_CONST_ASSIGN_REF (t) = !cant_have_const_assignment;
2639 CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 1;
2640 }
2641 }
2642
2643 /* Subroutine of finish_struct_1. Recursively count the number of fields
2644 in TYPE, including anonymous union members. */
2645
2646 static int
2647 count_fields (tree fields)
2648 {
2649 tree x;
2650 int n_fields = 0;
2651 for (x = fields; x; x = TREE_CHAIN (x))
2652 {
2653 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2654 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2655 else
2656 n_fields += 1;
2657 }
2658 return n_fields;
2659 }
2660
2661 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2662 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2663
2664 static int
2665 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2666 {
2667 tree x;
2668 for (x = fields; x; x = TREE_CHAIN (x))
2669 {
2670 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2671 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2672 else
2673 field_vec->elts[idx++] = x;
2674 }
2675 return idx;
2676 }
2677
2678 /* FIELD is a bit-field. We are finishing the processing for its
2679 enclosing type. Issue any appropriate messages and set appropriate
2680 flags. Returns false if an error has been diagnosed. */
2681
2682 static bool
2683 check_bitfield_decl (tree field)
2684 {
2685 tree type = TREE_TYPE (field);
2686 tree w;
2687
2688 /* Extract the declared width of the bitfield, which has been
2689 temporarily stashed in DECL_INITIAL. */
2690 w = DECL_INITIAL (field);
2691 gcc_assert (w != NULL_TREE);
2692 /* Remove the bit-field width indicator so that the rest of the
2693 compiler does not treat that value as an initializer. */
2694 DECL_INITIAL (field) = NULL_TREE;
2695
2696 /* Detect invalid bit-field type. */
2697 if (!INTEGRAL_TYPE_P (type))
2698 {
2699 error ("bit-field %q+#D with non-integral type", field);
2700 w = error_mark_node;
2701 }
2702 else
2703 {
2704 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2705 STRIP_NOPS (w);
2706
2707 /* detect invalid field size. */
2708 w = integral_constant_value (w);
2709
2710 if (TREE_CODE (w) != INTEGER_CST)
2711 {
2712 error ("bit-field %q+D width not an integer constant", field);
2713 w = error_mark_node;
2714 }
2715 else if (tree_int_cst_sgn (w) < 0)
2716 {
2717 error ("negative width in bit-field %q+D", field);
2718 w = error_mark_node;
2719 }
2720 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2721 {
2722 error ("zero width for bit-field %q+D", field);
2723 w = error_mark_node;
2724 }
2725 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2726 && TREE_CODE (type) != ENUMERAL_TYPE
2727 && TREE_CODE (type) != BOOLEAN_TYPE)
2728 warning (0, "width of %q+D exceeds its type", field);
2729 else if (TREE_CODE (type) == ENUMERAL_TYPE
2730 && (0 > compare_tree_int (w,
2731 min_precision (TYPE_MIN_VALUE (type),
2732 TYPE_UNSIGNED (type)))
2733 || 0 > compare_tree_int (w,
2734 min_precision
2735 (TYPE_MAX_VALUE (type),
2736 TYPE_UNSIGNED (type)))))
2737 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
2738 }
2739
2740 if (w != error_mark_node)
2741 {
2742 DECL_SIZE (field) = convert (bitsizetype, w);
2743 DECL_BIT_FIELD (field) = 1;
2744 return true;
2745 }
2746 else
2747 {
2748 /* Non-bit-fields are aligned for their type. */
2749 DECL_BIT_FIELD (field) = 0;
2750 CLEAR_DECL_C_BIT_FIELD (field);
2751 return false;
2752 }
2753 }
2754
2755 /* FIELD is a non bit-field. We are finishing the processing for its
2756 enclosing type T. Issue any appropriate messages and set appropriate
2757 flags. */
2758
2759 static void
2760 check_field_decl (tree field,
2761 tree t,
2762 int* cant_have_const_ctor,
2763 int* no_const_asn_ref,
2764 int* any_default_members)
2765 {
2766 tree type = strip_array_types (TREE_TYPE (field));
2767
2768 /* An anonymous union cannot contain any fields which would change
2769 the settings of CANT_HAVE_CONST_CTOR and friends. */
2770 if (ANON_UNION_TYPE_P (type))
2771 ;
2772 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2773 structs. So, we recurse through their fields here. */
2774 else if (ANON_AGGR_TYPE_P (type))
2775 {
2776 tree fields;
2777
2778 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2779 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2780 check_field_decl (fields, t, cant_have_const_ctor,
2781 no_const_asn_ref, any_default_members);
2782 }
2783 /* Check members with class type for constructors, destructors,
2784 etc. */
2785 else if (CLASS_TYPE_P (type))
2786 {
2787 /* Never let anything with uninheritable virtuals
2788 make it through without complaint. */
2789 abstract_virtuals_error (field, type);
2790
2791 if (TREE_CODE (t) == UNION_TYPE)
2792 {
2793 if (TYPE_NEEDS_CONSTRUCTING (type))
2794 error ("member %q+#D with constructor not allowed in union",
2795 field);
2796 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2797 error ("member %q+#D with destructor not allowed in union", field);
2798 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2799 error ("member %q+#D with copy assignment operator not allowed in union",
2800 field);
2801 }
2802 else
2803 {
2804 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2805 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2806 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2807 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
2808 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
2809 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (type);
2810 }
2811
2812 if (!TYPE_HAS_CONST_INIT_REF (type))
2813 *cant_have_const_ctor = 1;
2814
2815 if (!TYPE_HAS_CONST_ASSIGN_REF (type))
2816 *no_const_asn_ref = 1;
2817 }
2818 if (DECL_INITIAL (field) != NULL_TREE)
2819 {
2820 /* `build_class_init_list' does not recognize
2821 non-FIELD_DECLs. */
2822 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2823 error ("multiple fields in union %qT initialized", t);
2824 *any_default_members = 1;
2825 }
2826 }
2827
2828 /* Check the data members (both static and non-static), class-scoped
2829 typedefs, etc., appearing in the declaration of T. Issue
2830 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2831 declaration order) of access declarations; each TREE_VALUE in this
2832 list is a USING_DECL.
2833
2834 In addition, set the following flags:
2835
2836 EMPTY_P
2837 The class is empty, i.e., contains no non-static data members.
2838
2839 CANT_HAVE_CONST_CTOR_P
2840 This class cannot have an implicitly generated copy constructor
2841 taking a const reference.
2842
2843 CANT_HAVE_CONST_ASN_REF
2844 This class cannot have an implicitly generated assignment
2845 operator taking a const reference.
2846
2847 All of these flags should be initialized before calling this
2848 function.
2849
2850 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2851 fields can be added by adding to this chain. */
2852
2853 static void
2854 check_field_decls (tree t, tree *access_decls,
2855 int *cant_have_const_ctor_p,
2856 int *no_const_asn_ref_p)
2857 {
2858 tree *field;
2859 tree *next;
2860 bool has_pointers;
2861 int any_default_members;
2862 int cant_pack = 0;
2863
2864 /* Assume there are no access declarations. */
2865 *access_decls = NULL_TREE;
2866 /* Assume this class has no pointer members. */
2867 has_pointers = false;
2868 /* Assume none of the members of this class have default
2869 initializations. */
2870 any_default_members = 0;
2871
2872 for (field = &TYPE_FIELDS (t); *field; field = next)
2873 {
2874 tree x = *field;
2875 tree type = TREE_TYPE (x);
2876
2877 next = &TREE_CHAIN (x);
2878
2879 if (TREE_CODE (x) == USING_DECL)
2880 {
2881 /* Prune the access declaration from the list of fields. */
2882 *field = TREE_CHAIN (x);
2883
2884 /* Save the access declarations for our caller. */
2885 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2886
2887 /* Since we've reset *FIELD there's no reason to skip to the
2888 next field. */
2889 next = field;
2890 continue;
2891 }
2892
2893 if (TREE_CODE (x) == TYPE_DECL
2894 || TREE_CODE (x) == TEMPLATE_DECL)
2895 continue;
2896
2897 /* If we've gotten this far, it's a data member, possibly static,
2898 or an enumerator. */
2899 DECL_CONTEXT (x) = t;
2900
2901 /* When this goes into scope, it will be a non-local reference. */
2902 DECL_NONLOCAL (x) = 1;
2903
2904 if (TREE_CODE (t) == UNION_TYPE)
2905 {
2906 /* [class.union]
2907
2908 If a union contains a static data member, or a member of
2909 reference type, the program is ill-formed. */
2910 if (TREE_CODE (x) == VAR_DECL)
2911 {
2912 error ("%q+D may not be static because it is a member of a union", x);
2913 continue;
2914 }
2915 if (TREE_CODE (type) == REFERENCE_TYPE)
2916 {
2917 error ("%q+D may not have reference type %qT because"
2918 " it is a member of a union",
2919 x, type);
2920 continue;
2921 }
2922 }
2923
2924 /* Perform error checking that did not get done in
2925 grokdeclarator. */
2926 if (TREE_CODE (type) == FUNCTION_TYPE)
2927 {
2928 error ("field %q+D invalidly declared function type", x);
2929 type = build_pointer_type (type);
2930 TREE_TYPE (x) = type;
2931 }
2932 else if (TREE_CODE (type) == METHOD_TYPE)
2933 {
2934 error ("field %q+D invalidly declared method type", x);
2935 type = build_pointer_type (type);
2936 TREE_TYPE (x) = type;
2937 }
2938
2939 if (type == error_mark_node)
2940 continue;
2941
2942 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
2943 continue;
2944
2945 /* Now it can only be a FIELD_DECL. */
2946
2947 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
2948 CLASSTYPE_NON_AGGREGATE (t) = 1;
2949
2950 /* If this is of reference type, check if it needs an init. */
2951 if (TREE_CODE (type) == REFERENCE_TYPE)
2952 {
2953 CLASSTYPE_NON_POD_P (t) = 1;
2954 if (DECL_INITIAL (x) == NULL_TREE)
2955 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2956
2957 /* ARM $12.6.2: [A member initializer list] (or, for an
2958 aggregate, initialization by a brace-enclosed list) is the
2959 only way to initialize nonstatic const and reference
2960 members. */
2961 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2962 }
2963
2964 type = strip_array_types (type);
2965
2966 if (TYPE_PACKED (t))
2967 {
2968 if (!pod_type_p (type) && !TYPE_PACKED (type))
2969 {
2970 warning
2971 (0,
2972 "ignoring packed attribute because of unpacked non-POD field %q+#D",
2973 x);
2974 cant_pack = 1;
2975 }
2976 else if (TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
2977 DECL_PACKED (x) = 1;
2978 }
2979
2980 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
2981 /* We don't treat zero-width bitfields as making a class
2982 non-empty. */
2983 ;
2984 else
2985 {
2986 /* The class is non-empty. */
2987 CLASSTYPE_EMPTY_P (t) = 0;
2988 /* The class is not even nearly empty. */
2989 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
2990 /* If one of the data members contains an empty class,
2991 so does T. */
2992 if (CLASS_TYPE_P (type)
2993 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
2994 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
2995 }
2996
2997 /* This is used by -Weffc++ (see below). Warn only for pointers
2998 to members which might hold dynamic memory. So do not warn
2999 for pointers to functions or pointers to members. */
3000 if (TYPE_PTR_P (type)
3001 && !TYPE_PTRFN_P (type)
3002 && !TYPE_PTR_TO_MEMBER_P (type))
3003 has_pointers = true;
3004
3005 if (CLASS_TYPE_P (type))
3006 {
3007 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3008 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3009 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3010 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3011 }
3012
3013 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3014 CLASSTYPE_HAS_MUTABLE (t) = 1;
3015
3016 if (! pod_type_p (type))
3017 /* DR 148 now allows pointers to members (which are POD themselves),
3018 to be allowed in POD structs. */
3019 CLASSTYPE_NON_POD_P (t) = 1;
3020
3021 if (! zero_init_p (type))
3022 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3023
3024 /* If any field is const, the structure type is pseudo-const. */
3025 if (CP_TYPE_CONST_P (type))
3026 {
3027 C_TYPE_FIELDS_READONLY (t) = 1;
3028 if (DECL_INITIAL (x) == NULL_TREE)
3029 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3030
3031 /* ARM $12.6.2: [A member initializer list] (or, for an
3032 aggregate, initialization by a brace-enclosed list) is the
3033 only way to initialize nonstatic const and reference
3034 members. */
3035 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
3036 }
3037 /* A field that is pseudo-const makes the structure likewise. */
3038 else if (CLASS_TYPE_P (type))
3039 {
3040 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3041 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3042 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3043 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3044 }
3045
3046 /* Core issue 80: A nonstatic data member is required to have a
3047 different name from the class iff the class has a
3048 user-declared constructor. */
3049 if (constructor_name_p (DECL_NAME (x), t)
3050 && TYPE_HAS_USER_CONSTRUCTOR (t))
3051 permerror (input_location, "field %q+#D with same name as class", x);
3052
3053 /* We set DECL_C_BIT_FIELD in grokbitfield.
3054 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3055 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3056 check_field_decl (x, t,
3057 cant_have_const_ctor_p,
3058 no_const_asn_ref_p,
3059 &any_default_members);
3060 }
3061
3062 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3063 it should also define a copy constructor and an assignment operator to
3064 implement the correct copy semantic (deep vs shallow, etc.). As it is
3065 not feasible to check whether the constructors do allocate dynamic memory
3066 and store it within members, we approximate the warning like this:
3067
3068 -- Warn only if there are members which are pointers
3069 -- Warn only if there is a non-trivial constructor (otherwise,
3070 there cannot be memory allocated).
3071 -- Warn only if there is a non-trivial destructor. We assume that the
3072 user at least implemented the cleanup correctly, and a destructor
3073 is needed to free dynamic memory.
3074
3075 This seems enough for practical purposes. */
3076 if (warn_ecpp
3077 && has_pointers
3078 && TYPE_HAS_USER_CONSTRUCTOR (t)
3079 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3080 && !(TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
3081 {
3082 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3083
3084 if (! TYPE_HAS_INIT_REF (t))
3085 {
3086 warning (OPT_Weffc__,
3087 " but does not override %<%T(const %T&)%>", t, t);
3088 if (!TYPE_HAS_ASSIGN_REF (t))
3089 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3090 }
3091 else if (! TYPE_HAS_ASSIGN_REF (t))
3092 warning (OPT_Weffc__,
3093 " but does not override %<operator=(const %T&)%>", t);
3094 }
3095
3096 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3097 if (cant_pack)
3098 TYPE_PACKED (t) = 0;
3099
3100 /* Check anonymous struct/anonymous union fields. */
3101 finish_struct_anon (t);
3102
3103 /* We've built up the list of access declarations in reverse order.
3104 Fix that now. */
3105 *access_decls = nreverse (*access_decls);
3106 }
3107
3108 /* If TYPE is an empty class type, records its OFFSET in the table of
3109 OFFSETS. */
3110
3111 static int
3112 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3113 {
3114 splay_tree_node n;
3115
3116 if (!is_empty_class (type))
3117 return 0;
3118
3119 /* Record the location of this empty object in OFFSETS. */
3120 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3121 if (!n)
3122 n = splay_tree_insert (offsets,
3123 (splay_tree_key) offset,
3124 (splay_tree_value) NULL_TREE);
3125 n->value = ((splay_tree_value)
3126 tree_cons (NULL_TREE,
3127 type,
3128 (tree) n->value));
3129
3130 return 0;
3131 }
3132
3133 /* Returns nonzero if TYPE is an empty class type and there is
3134 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3135
3136 static int
3137 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3138 {
3139 splay_tree_node n;
3140 tree t;
3141
3142 if (!is_empty_class (type))
3143 return 0;
3144
3145 /* Record the location of this empty object in OFFSETS. */
3146 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3147 if (!n)
3148 return 0;
3149
3150 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3151 if (same_type_p (TREE_VALUE (t), type))
3152 return 1;
3153
3154 return 0;
3155 }
3156
3157 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3158 F for every subobject, passing it the type, offset, and table of
3159 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3160 be traversed.
3161
3162 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3163 than MAX_OFFSET will not be walked.
3164
3165 If F returns a nonzero value, the traversal ceases, and that value
3166 is returned. Otherwise, returns zero. */
3167
3168 static int
3169 walk_subobject_offsets (tree type,
3170 subobject_offset_fn f,
3171 tree offset,
3172 splay_tree offsets,
3173 tree max_offset,
3174 int vbases_p)
3175 {
3176 int r = 0;
3177 tree type_binfo = NULL_TREE;
3178
3179 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3180 stop. */
3181 if (max_offset && INT_CST_LT (max_offset, offset))
3182 return 0;
3183
3184 if (type == error_mark_node)
3185 return 0;
3186
3187 if (!TYPE_P (type))
3188 {
3189 if (abi_version_at_least (2))
3190 type_binfo = type;
3191 type = BINFO_TYPE (type);
3192 }
3193
3194 if (CLASS_TYPE_P (type))
3195 {
3196 tree field;
3197 tree binfo;
3198 int i;
3199
3200 /* Avoid recursing into objects that are not interesting. */
3201 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3202 return 0;
3203
3204 /* Record the location of TYPE. */
3205 r = (*f) (type, offset, offsets);
3206 if (r)
3207 return r;
3208
3209 /* Iterate through the direct base classes of TYPE. */
3210 if (!type_binfo)
3211 type_binfo = TYPE_BINFO (type);
3212 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3213 {
3214 tree binfo_offset;
3215
3216 if (abi_version_at_least (2)
3217 && BINFO_VIRTUAL_P (binfo))
3218 continue;
3219
3220 if (!vbases_p
3221 && BINFO_VIRTUAL_P (binfo)
3222 && !BINFO_PRIMARY_P (binfo))
3223 continue;
3224
3225 if (!abi_version_at_least (2))
3226 binfo_offset = size_binop (PLUS_EXPR,
3227 offset,
3228 BINFO_OFFSET (binfo));
3229 else
3230 {
3231 tree orig_binfo;
3232 /* We cannot rely on BINFO_OFFSET being set for the base
3233 class yet, but the offsets for direct non-virtual
3234 bases can be calculated by going back to the TYPE. */
3235 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3236 binfo_offset = size_binop (PLUS_EXPR,
3237 offset,
3238 BINFO_OFFSET (orig_binfo));
3239 }
3240
3241 r = walk_subobject_offsets (binfo,
3242 f,
3243 binfo_offset,
3244 offsets,
3245 max_offset,
3246 (abi_version_at_least (2)
3247 ? /*vbases_p=*/0 : vbases_p));
3248 if (r)
3249 return r;
3250 }
3251
3252 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3253 {
3254 unsigned ix;
3255 VEC(tree,gc) *vbases;
3256
3257 /* Iterate through the virtual base classes of TYPE. In G++
3258 3.2, we included virtual bases in the direct base class
3259 loop above, which results in incorrect results; the
3260 correct offsets for virtual bases are only known when
3261 working with the most derived type. */
3262 if (vbases_p)
3263 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3264 VEC_iterate (tree, vbases, ix, binfo); ix++)
3265 {
3266 r = walk_subobject_offsets (binfo,
3267 f,
3268 size_binop (PLUS_EXPR,
3269 offset,
3270 BINFO_OFFSET (binfo)),
3271 offsets,
3272 max_offset,
3273 /*vbases_p=*/0);
3274 if (r)
3275 return r;
3276 }
3277 else
3278 {
3279 /* We still have to walk the primary base, if it is
3280 virtual. (If it is non-virtual, then it was walked
3281 above.) */
3282 tree vbase = get_primary_binfo (type_binfo);
3283
3284 if (vbase && BINFO_VIRTUAL_P (vbase)
3285 && BINFO_PRIMARY_P (vbase)
3286 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3287 {
3288 r = (walk_subobject_offsets
3289 (vbase, f, offset,
3290 offsets, max_offset, /*vbases_p=*/0));
3291 if (r)
3292 return r;
3293 }
3294 }
3295 }
3296
3297 /* Iterate through the fields of TYPE. */
3298 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3299 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3300 {
3301 tree field_offset;
3302
3303 if (abi_version_at_least (2))
3304 field_offset = byte_position (field);
3305 else
3306 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3307 field_offset = DECL_FIELD_OFFSET (field);
3308
3309 r = walk_subobject_offsets (TREE_TYPE (field),
3310 f,
3311 size_binop (PLUS_EXPR,
3312 offset,
3313 field_offset),
3314 offsets,
3315 max_offset,
3316 /*vbases_p=*/1);
3317 if (r)
3318 return r;
3319 }
3320 }
3321 else if (TREE_CODE (type) == ARRAY_TYPE)
3322 {
3323 tree element_type = strip_array_types (type);
3324 tree domain = TYPE_DOMAIN (type);
3325 tree index;
3326
3327 /* Avoid recursing into objects that are not interesting. */
3328 if (!CLASS_TYPE_P (element_type)
3329 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3330 return 0;
3331
3332 /* Step through each of the elements in the array. */
3333 for (index = size_zero_node;
3334 /* G++ 3.2 had an off-by-one error here. */
3335 (abi_version_at_least (2)
3336 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3337 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3338 index = size_binop (PLUS_EXPR, index, size_one_node))
3339 {
3340 r = walk_subobject_offsets (TREE_TYPE (type),
3341 f,
3342 offset,
3343 offsets,
3344 max_offset,
3345 /*vbases_p=*/1);
3346 if (r)
3347 return r;
3348 offset = size_binop (PLUS_EXPR, offset,
3349 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3350 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3351 there's no point in iterating through the remaining
3352 elements of the array. */
3353 if (max_offset && INT_CST_LT (max_offset, offset))
3354 break;
3355 }
3356 }
3357
3358 return 0;
3359 }
3360
3361 /* Record all of the empty subobjects of TYPE (either a type or a
3362 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3363 is being placed at OFFSET; otherwise, it is a base class that is
3364 being placed at OFFSET. */
3365
3366 static void
3367 record_subobject_offsets (tree type,
3368 tree offset,
3369 splay_tree offsets,
3370 bool is_data_member)
3371 {
3372 tree max_offset;
3373 /* If recording subobjects for a non-static data member or a
3374 non-empty base class , we do not need to record offsets beyond
3375 the size of the biggest empty class. Additional data members
3376 will go at the end of the class. Additional base classes will go
3377 either at offset zero (if empty, in which case they cannot
3378 overlap with offsets past the size of the biggest empty class) or
3379 at the end of the class.
3380
3381 However, if we are placing an empty base class, then we must record
3382 all offsets, as either the empty class is at offset zero (where
3383 other empty classes might later be placed) or at the end of the
3384 class (where other objects might then be placed, so other empty
3385 subobjects might later overlap). */
3386 if (is_data_member
3387 || !is_empty_class (BINFO_TYPE (type)))
3388 max_offset = sizeof_biggest_empty_class;
3389 else
3390 max_offset = NULL_TREE;
3391 walk_subobject_offsets (type, record_subobject_offset, offset,
3392 offsets, max_offset, is_data_member);
3393 }
3394
3395 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3396 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3397 virtual bases of TYPE are examined. */
3398
3399 static int
3400 layout_conflict_p (tree type,
3401 tree offset,
3402 splay_tree offsets,
3403 int vbases_p)
3404 {
3405 splay_tree_node max_node;
3406
3407 /* Get the node in OFFSETS that indicates the maximum offset where
3408 an empty subobject is located. */
3409 max_node = splay_tree_max (offsets);
3410 /* If there aren't any empty subobjects, then there's no point in
3411 performing this check. */
3412 if (!max_node)
3413 return 0;
3414
3415 return walk_subobject_offsets (type, check_subobject_offset, offset,
3416 offsets, (tree) (max_node->key),
3417 vbases_p);
3418 }
3419
3420 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3421 non-static data member of the type indicated by RLI. BINFO is the
3422 binfo corresponding to the base subobject, OFFSETS maps offsets to
3423 types already located at those offsets. This function determines
3424 the position of the DECL. */
3425
3426 static void
3427 layout_nonempty_base_or_field (record_layout_info rli,
3428 tree decl,
3429 tree binfo,
3430 splay_tree offsets)
3431 {
3432 tree offset = NULL_TREE;
3433 bool field_p;
3434 tree type;
3435
3436 if (binfo)
3437 {
3438 /* For the purposes of determining layout conflicts, we want to
3439 use the class type of BINFO; TREE_TYPE (DECL) will be the
3440 CLASSTYPE_AS_BASE version, which does not contain entries for
3441 zero-sized bases. */
3442 type = TREE_TYPE (binfo);
3443 field_p = false;
3444 }
3445 else
3446 {
3447 type = TREE_TYPE (decl);
3448 field_p = true;
3449 }
3450
3451 /* Try to place the field. It may take more than one try if we have
3452 a hard time placing the field without putting two objects of the
3453 same type at the same address. */
3454 while (1)
3455 {
3456 struct record_layout_info_s old_rli = *rli;
3457
3458 /* Place this field. */
3459 place_field (rli, decl);
3460 offset = byte_position (decl);
3461
3462 /* We have to check to see whether or not there is already
3463 something of the same type at the offset we're about to use.
3464 For example, consider:
3465
3466 struct S {};
3467 struct T : public S { int i; };
3468 struct U : public S, public T {};
3469
3470 Here, we put S at offset zero in U. Then, we can't put T at
3471 offset zero -- its S component would be at the same address
3472 as the S we already allocated. So, we have to skip ahead.
3473 Since all data members, including those whose type is an
3474 empty class, have nonzero size, any overlap can happen only
3475 with a direct or indirect base-class -- it can't happen with
3476 a data member. */
3477 /* In a union, overlap is permitted; all members are placed at
3478 offset zero. */
3479 if (TREE_CODE (rli->t) == UNION_TYPE)
3480 break;
3481 /* G++ 3.2 did not check for overlaps when placing a non-empty
3482 virtual base. */
3483 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3484 break;
3485 if (layout_conflict_p (field_p ? type : binfo, offset,
3486 offsets, field_p))
3487 {
3488 /* Strip off the size allocated to this field. That puts us
3489 at the first place we could have put the field with
3490 proper alignment. */
3491 *rli = old_rli;
3492
3493 /* Bump up by the alignment required for the type. */
3494 rli->bitpos
3495 = size_binop (PLUS_EXPR, rli->bitpos,
3496 bitsize_int (binfo
3497 ? CLASSTYPE_ALIGN (type)
3498 : TYPE_ALIGN (type)));
3499 normalize_rli (rli);
3500 }
3501 else
3502 /* There was no conflict. We're done laying out this field. */
3503 break;
3504 }
3505
3506 /* Now that we know where it will be placed, update its
3507 BINFO_OFFSET. */
3508 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3509 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3510 this point because their BINFO_OFFSET is copied from another
3511 hierarchy. Therefore, we may not need to add the entire
3512 OFFSET. */
3513 propagate_binfo_offsets (binfo,
3514 size_diffop (convert (ssizetype, offset),
3515 convert (ssizetype,
3516 BINFO_OFFSET (binfo))));
3517 }
3518
3519 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3520
3521 static int
3522 empty_base_at_nonzero_offset_p (tree type,
3523 tree offset,
3524 splay_tree offsets ATTRIBUTE_UNUSED)
3525 {
3526 return is_empty_class (type) && !integer_zerop (offset);
3527 }
3528
3529 /* Layout the empty base BINFO. EOC indicates the byte currently just
3530 past the end of the class, and should be correctly aligned for a
3531 class of the type indicated by BINFO; OFFSETS gives the offsets of
3532 the empty bases allocated so far. T is the most derived
3533 type. Return nonzero iff we added it at the end. */
3534
3535 static bool
3536 layout_empty_base (record_layout_info rli, tree binfo,
3537 tree eoc, splay_tree offsets)
3538 {
3539 tree alignment;
3540 tree basetype = BINFO_TYPE (binfo);
3541 bool atend = false;
3542
3543 /* This routine should only be used for empty classes. */
3544 gcc_assert (is_empty_class (basetype));
3545 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3546
3547 if (!integer_zerop (BINFO_OFFSET (binfo)))
3548 {
3549 if (abi_version_at_least (2))
3550 propagate_binfo_offsets
3551 (binfo, size_diffop (size_zero_node, BINFO_OFFSET (binfo)));
3552 else
3553 warning (OPT_Wabi,
3554 "offset of empty base %qT may not be ABI-compliant and may"
3555 "change in a future version of GCC",
3556 BINFO_TYPE (binfo));
3557 }
3558
3559 /* This is an empty base class. We first try to put it at offset
3560 zero. */
3561 if (layout_conflict_p (binfo,
3562 BINFO_OFFSET (binfo),
3563 offsets,
3564 /*vbases_p=*/0))
3565 {
3566 /* That didn't work. Now, we move forward from the next
3567 available spot in the class. */
3568 atend = true;
3569 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3570 while (1)
3571 {
3572 if (!layout_conflict_p (binfo,
3573 BINFO_OFFSET (binfo),
3574 offsets,
3575 /*vbases_p=*/0))
3576 /* We finally found a spot where there's no overlap. */
3577 break;
3578
3579 /* There's overlap here, too. Bump along to the next spot. */
3580 propagate_binfo_offsets (binfo, alignment);
3581 }
3582 }
3583
3584 if (CLASSTYPE_USER_ALIGN (basetype))
3585 {
3586 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
3587 if (warn_packed)
3588 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
3589 TYPE_USER_ALIGN (rli->t) = 1;
3590 }
3591
3592 return atend;
3593 }
3594
3595 /* Layout the base given by BINFO in the class indicated by RLI.
3596 *BASE_ALIGN is a running maximum of the alignments of
3597 any base class. OFFSETS gives the location of empty base
3598 subobjects. T is the most derived type. Return nonzero if the new
3599 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3600 *NEXT_FIELD, unless BINFO is for an empty base class.
3601
3602 Returns the location at which the next field should be inserted. */
3603
3604 static tree *
3605 build_base_field (record_layout_info rli, tree binfo,
3606 splay_tree offsets, tree *next_field)
3607 {
3608 tree t = rli->t;
3609 tree basetype = BINFO_TYPE (binfo);
3610
3611 if (!COMPLETE_TYPE_P (basetype))
3612 /* This error is now reported in xref_tag, thus giving better
3613 location information. */
3614 return next_field;
3615
3616 /* Place the base class. */
3617 if (!is_empty_class (basetype))
3618 {
3619 tree decl;
3620
3621 /* The containing class is non-empty because it has a non-empty
3622 base class. */
3623 CLASSTYPE_EMPTY_P (t) = 0;
3624
3625 /* Create the FIELD_DECL. */
3626 decl = build_decl (FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3627 DECL_ARTIFICIAL (decl) = 1;
3628 DECL_IGNORED_P (decl) = 1;
3629 DECL_FIELD_CONTEXT (decl) = t;
3630 if (CLASSTYPE_AS_BASE (basetype))
3631 {
3632 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3633 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3634 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3635 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3636 DECL_MODE (decl) = TYPE_MODE (basetype);
3637 DECL_FIELD_IS_BASE (decl) = 1;
3638
3639 /* Try to place the field. It may take more than one try if we
3640 have a hard time placing the field without putting two
3641 objects of the same type at the same address. */
3642 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3643 /* Add the new FIELD_DECL to the list of fields for T. */
3644 TREE_CHAIN (decl) = *next_field;
3645 *next_field = decl;
3646 next_field = &TREE_CHAIN (decl);
3647 }
3648 }
3649 else
3650 {
3651 tree eoc;
3652 bool atend;
3653
3654 /* On some platforms (ARM), even empty classes will not be
3655 byte-aligned. */
3656 eoc = round_up (rli_size_unit_so_far (rli),
3657 CLASSTYPE_ALIGN_UNIT (basetype));
3658 atend = layout_empty_base (rli, binfo, eoc, offsets);
3659 /* A nearly-empty class "has no proper base class that is empty,
3660 not morally virtual, and at an offset other than zero." */
3661 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3662 {
3663 if (atend)
3664 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3665 /* The check above (used in G++ 3.2) is insufficient because
3666 an empty class placed at offset zero might itself have an
3667 empty base at a nonzero offset. */
3668 else if (walk_subobject_offsets (basetype,
3669 empty_base_at_nonzero_offset_p,
3670 size_zero_node,
3671 /*offsets=*/NULL,
3672 /*max_offset=*/NULL_TREE,
3673 /*vbases_p=*/true))
3674 {
3675 if (abi_version_at_least (2))
3676 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3677 else
3678 warning (OPT_Wabi,
3679 "class %qT will be considered nearly empty in a "
3680 "future version of GCC", t);
3681 }
3682 }
3683
3684 /* We do not create a FIELD_DECL for empty base classes because
3685 it might overlap some other field. We want to be able to
3686 create CONSTRUCTORs for the class by iterating over the
3687 FIELD_DECLs, and the back end does not handle overlapping
3688 FIELD_DECLs. */
3689
3690 /* An empty virtual base causes a class to be non-empty
3691 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3692 here because that was already done when the virtual table
3693 pointer was created. */
3694 }
3695
3696 /* Record the offsets of BINFO and its base subobjects. */
3697 record_subobject_offsets (binfo,
3698 BINFO_OFFSET (binfo),
3699 offsets,
3700 /*is_data_member=*/false);
3701
3702 return next_field;
3703 }
3704
3705 /* Layout all of the non-virtual base classes. Record empty
3706 subobjects in OFFSETS. T is the most derived type. Return nonzero
3707 if the type cannot be nearly empty. The fields created
3708 corresponding to the base classes will be inserted at
3709 *NEXT_FIELD. */
3710
3711 static void
3712 build_base_fields (record_layout_info rli,
3713 splay_tree offsets, tree *next_field)
3714 {
3715 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3716 subobjects. */
3717 tree t = rli->t;
3718 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3719 int i;
3720
3721 /* The primary base class is always allocated first. */
3722 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3723 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3724 offsets, next_field);
3725
3726 /* Now allocate the rest of the bases. */
3727 for (i = 0; i < n_baseclasses; ++i)
3728 {
3729 tree base_binfo;
3730
3731 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3732
3733 /* The primary base was already allocated above, so we don't
3734 need to allocate it again here. */
3735 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3736 continue;
3737
3738 /* Virtual bases are added at the end (a primary virtual base
3739 will have already been added). */
3740 if (BINFO_VIRTUAL_P (base_binfo))
3741 continue;
3742
3743 next_field = build_base_field (rli, base_binfo,
3744 offsets, next_field);
3745 }
3746 }
3747
3748 /* Go through the TYPE_METHODS of T issuing any appropriate
3749 diagnostics, figuring out which methods override which other
3750 methods, and so forth. */
3751
3752 static void
3753 check_methods (tree t)
3754 {
3755 tree x;
3756
3757 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3758 {
3759 check_for_override (x, t);
3760 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3761 error ("initializer specified for non-virtual method %q+D", x);
3762 /* The name of the field is the original field name
3763 Save this in auxiliary field for later overloading. */
3764 if (DECL_VINDEX (x))
3765 {
3766 TYPE_POLYMORPHIC_P (t) = 1;
3767 if (DECL_PURE_VIRTUAL_P (x))
3768 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
3769 }
3770 /* All user-provided destructors are non-trivial. */
3771 if (DECL_DESTRUCTOR_P (x) && !DECL_DEFAULTED_FN (x))
3772 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
3773 }
3774 }
3775
3776 /* FN is a constructor or destructor. Clone the declaration to create
3777 a specialized in-charge or not-in-charge version, as indicated by
3778 NAME. */
3779
3780 static tree
3781 build_clone (tree fn, tree name)
3782 {
3783 tree parms;
3784 tree clone;
3785
3786 /* Copy the function. */
3787 clone = copy_decl (fn);
3788 /* Remember where this function came from. */
3789 DECL_CLONED_FUNCTION (clone) = fn;
3790 DECL_ABSTRACT_ORIGIN (clone) = fn;
3791 /* Reset the function name. */
3792 DECL_NAME (clone) = name;
3793 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3794 /* There's no pending inline data for this function. */
3795 DECL_PENDING_INLINE_INFO (clone) = NULL;
3796 DECL_PENDING_INLINE_P (clone) = 0;
3797 /* And it hasn't yet been deferred. */
3798 DECL_DEFERRED_FN (clone) = 0;
3799
3800 /* The base-class destructor is not virtual. */
3801 if (name == base_dtor_identifier)
3802 {
3803 DECL_VIRTUAL_P (clone) = 0;
3804 if (TREE_CODE (clone) != TEMPLATE_DECL)
3805 DECL_VINDEX (clone) = NULL_TREE;
3806 }
3807
3808 /* If there was an in-charge parameter, drop it from the function
3809 type. */
3810 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3811 {
3812 tree basetype;
3813 tree parmtypes;
3814 tree exceptions;
3815
3816 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3817 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3818 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3819 /* Skip the `this' parameter. */
3820 parmtypes = TREE_CHAIN (parmtypes);
3821 /* Skip the in-charge parameter. */
3822 parmtypes = TREE_CHAIN (parmtypes);
3823 /* And the VTT parm, in a complete [cd]tor. */
3824 if (DECL_HAS_VTT_PARM_P (fn)
3825 && ! DECL_NEEDS_VTT_PARM_P (clone))
3826 parmtypes = TREE_CHAIN (parmtypes);
3827 /* If this is subobject constructor or destructor, add the vtt
3828 parameter. */
3829 TREE_TYPE (clone)
3830 = build_method_type_directly (basetype,
3831 TREE_TYPE (TREE_TYPE (clone)),
3832 parmtypes);
3833 if (exceptions)
3834 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3835 exceptions);
3836 TREE_TYPE (clone)
3837 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3838 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3839 }
3840
3841 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3842 aren't function parameters; those are the template parameters. */
3843 if (TREE_CODE (clone) != TEMPLATE_DECL)
3844 {
3845 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3846 /* Remove the in-charge parameter. */
3847 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3848 {
3849 TREE_CHAIN (DECL_ARGUMENTS (clone))
3850 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3851 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3852 }
3853 /* And the VTT parm, in a complete [cd]tor. */
3854 if (DECL_HAS_VTT_PARM_P (fn))
3855 {
3856 if (DECL_NEEDS_VTT_PARM_P (clone))
3857 DECL_HAS_VTT_PARM_P (clone) = 1;
3858 else
3859 {
3860 TREE_CHAIN (DECL_ARGUMENTS (clone))
3861 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3862 DECL_HAS_VTT_PARM_P (clone) = 0;
3863 }
3864 }
3865
3866 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3867 {
3868 DECL_CONTEXT (parms) = clone;
3869 cxx_dup_lang_specific_decl (parms);
3870 }
3871 }
3872
3873 /* Create the RTL for this function. */
3874 SET_DECL_RTL (clone, NULL_RTX);
3875 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
3876
3877 /* Make it easy to find the CLONE given the FN. */
3878 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3879 TREE_CHAIN (fn) = clone;
3880
3881 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3882 if (TREE_CODE (clone) == TEMPLATE_DECL)
3883 {
3884 tree result;
3885
3886 DECL_TEMPLATE_RESULT (clone)
3887 = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3888 result = DECL_TEMPLATE_RESULT (clone);
3889 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3890 DECL_TI_TEMPLATE (result) = clone;
3891 }
3892 else if (pch_file)
3893 note_decl_for_pch (clone);
3894
3895 return clone;
3896 }
3897
3898 /* Produce declarations for all appropriate clones of FN. If
3899 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3900 CLASTYPE_METHOD_VEC as well. */
3901
3902 void
3903 clone_function_decl (tree fn, int update_method_vec_p)
3904 {
3905 tree clone;
3906
3907 /* Avoid inappropriate cloning. */
3908 if (TREE_CHAIN (fn)
3909 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn)))
3910 return;
3911
3912 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
3913 {
3914 /* For each constructor, we need two variants: an in-charge version
3915 and a not-in-charge version. */
3916 clone = build_clone (fn, complete_ctor_identifier);
3917 if (update_method_vec_p)
3918 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3919 clone = build_clone (fn, base_ctor_identifier);
3920 if (update_method_vec_p)
3921 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3922 }
3923 else
3924 {
3925 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
3926
3927 /* For each destructor, we need three variants: an in-charge
3928 version, a not-in-charge version, and an in-charge deleting
3929 version. We clone the deleting version first because that
3930 means it will go second on the TYPE_METHODS list -- and that
3931 corresponds to the correct layout order in the virtual
3932 function table.
3933
3934 For a non-virtual destructor, we do not build a deleting
3935 destructor. */
3936 if (DECL_VIRTUAL_P (fn))
3937 {
3938 clone = build_clone (fn, deleting_dtor_identifier);
3939 if (update_method_vec_p)
3940 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3941 }
3942 clone = build_clone (fn, complete_dtor_identifier);
3943 if (update_method_vec_p)
3944 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3945 clone = build_clone (fn, base_dtor_identifier);
3946 if (update_method_vec_p)
3947 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3948 }
3949
3950 /* Note that this is an abstract function that is never emitted. */
3951 DECL_ABSTRACT (fn) = 1;
3952 }
3953
3954 /* DECL is an in charge constructor, which is being defined. This will
3955 have had an in class declaration, from whence clones were
3956 declared. An out-of-class definition can specify additional default
3957 arguments. As it is the clones that are involved in overload
3958 resolution, we must propagate the information from the DECL to its
3959 clones. */
3960
3961 void
3962 adjust_clone_args (tree decl)
3963 {
3964 tree clone;
3965
3966 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION (clone);
3967 clone = TREE_CHAIN (clone))
3968 {
3969 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
3970 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
3971 tree decl_parms, clone_parms;
3972
3973 clone_parms = orig_clone_parms;
3974
3975 /* Skip the 'this' parameter. */
3976 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
3977 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3978
3979 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
3980 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3981 if (DECL_HAS_VTT_PARM_P (decl))
3982 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3983
3984 clone_parms = orig_clone_parms;
3985 if (DECL_HAS_VTT_PARM_P (clone))
3986 clone_parms = TREE_CHAIN (clone_parms);
3987
3988 for (decl_parms = orig_decl_parms; decl_parms;
3989 decl_parms = TREE_CHAIN (decl_parms),
3990 clone_parms = TREE_CHAIN (clone_parms))
3991 {
3992 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
3993 TREE_TYPE (clone_parms)));
3994
3995 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
3996 {
3997 /* A default parameter has been added. Adjust the
3998 clone's parameters. */
3999 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4000 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4001 tree type;
4002
4003 clone_parms = orig_decl_parms;
4004
4005 if (DECL_HAS_VTT_PARM_P (clone))
4006 {
4007 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4008 TREE_VALUE (orig_clone_parms),
4009 clone_parms);
4010 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4011 }
4012 type = build_method_type_directly (basetype,
4013 TREE_TYPE (TREE_TYPE (clone)),
4014 clone_parms);
4015 if (exceptions)
4016 type = build_exception_variant (type, exceptions);
4017 TREE_TYPE (clone) = type;
4018
4019 clone_parms = NULL_TREE;
4020 break;
4021 }
4022 }
4023 gcc_assert (!clone_parms);
4024 }
4025 }
4026
4027 /* For each of the constructors and destructors in T, create an
4028 in-charge and not-in-charge variant. */
4029
4030 static void
4031 clone_constructors_and_destructors (tree t)
4032 {
4033 tree fns;
4034
4035 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4036 out now. */
4037 if (!CLASSTYPE_METHOD_VEC (t))
4038 return;
4039
4040 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4041 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4042 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4043 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4044 }
4045
4046 /* Returns true iff class T has a user-defined constructor other than
4047 the default constructor. */
4048
4049 bool
4050 type_has_user_nondefault_constructor (tree t)
4051 {
4052 tree fns;
4053
4054 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4055 return false;
4056
4057 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4058 {
4059 tree fn = OVL_CURRENT (fns);
4060 if (!DECL_ARTIFICIAL (fn)
4061 && (TREE_CODE (fn) == TEMPLATE_DECL
4062 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4063 != NULL_TREE)))
4064 return true;
4065 }
4066
4067 return false;
4068 }
4069
4070 /* Returns true iff FN is a user-provided function, i.e. user-declared
4071 and not defaulted at its first declaration. */
4072
4073 static bool
4074 user_provided_p (tree fn)
4075 {
4076 if (TREE_CODE (fn) == TEMPLATE_DECL)
4077 return true;
4078 else
4079 return (!DECL_ARTIFICIAL (fn)
4080 && !(DECL_DEFAULTED_FN (fn)
4081 && DECL_INITIALIZED_IN_CLASS_P (fn)));
4082 }
4083
4084 /* Returns true iff class T has a user-provided constructor. */
4085
4086 bool
4087 type_has_user_provided_constructor (tree t)
4088 {
4089 tree fns;
4090
4091 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4092 return false;
4093
4094 /* This can happen in error cases; avoid crashing. */
4095 if (!CLASSTYPE_METHOD_VEC (t))
4096 return false;
4097
4098 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4099 if (user_provided_p (OVL_CURRENT (fns)))
4100 return true;
4101
4102 return false;
4103 }
4104
4105 /* Returns true iff class T has a user-provided default constructor. */
4106
4107 bool
4108 type_has_user_provided_default_constructor (tree t)
4109 {
4110 tree fns, args;
4111
4112 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4113 return false;
4114
4115 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4116 {
4117 tree fn = OVL_CURRENT (fns);
4118 if (TREE_CODE (fn) == FUNCTION_DECL
4119 && user_provided_p (fn))
4120 {
4121 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4122 while (args && TREE_PURPOSE (args))
4123 args = TREE_CHAIN (args);
4124 if (!args || args == void_list_node)
4125 return true;
4126 }
4127 }
4128
4129 return false;
4130 }
4131
4132 /* Returns true if FN can be explicitly defaulted. */
4133
4134 bool
4135 defaultable_fn_p (tree fn)
4136 {
4137 if (DECL_CONSTRUCTOR_P (fn))
4138 {
4139 if (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4140 == NULL_TREE)
4141 return true;
4142 else if (copy_fn_p (fn) > 0)
4143 return true;
4144 else
4145 return false;
4146 }
4147 else if (DECL_DESTRUCTOR_P (fn))
4148 return true;
4149 else if (DECL_ASSIGNMENT_OPERATOR_P (fn))
4150 return copy_fn_p (fn);
4151 else
4152 return false;
4153 }
4154
4155 /* Remove all zero-width bit-fields from T. */
4156
4157 static void
4158 remove_zero_width_bit_fields (tree t)
4159 {
4160 tree *fieldsp;
4161
4162 fieldsp = &TYPE_FIELDS (t);
4163 while (*fieldsp)
4164 {
4165 if (TREE_CODE (*fieldsp) == FIELD_DECL
4166 && DECL_C_BIT_FIELD (*fieldsp)
4167 && DECL_INITIAL (*fieldsp))
4168 *fieldsp = TREE_CHAIN (*fieldsp);
4169 else
4170 fieldsp = &TREE_CHAIN (*fieldsp);
4171 }
4172 }
4173
4174 /* Returns TRUE iff we need a cookie when dynamically allocating an
4175 array whose elements have the indicated class TYPE. */
4176
4177 static bool
4178 type_requires_array_cookie (tree type)
4179 {
4180 tree fns;
4181 bool has_two_argument_delete_p = false;
4182
4183 gcc_assert (CLASS_TYPE_P (type));
4184
4185 /* If there's a non-trivial destructor, we need a cookie. In order
4186 to iterate through the array calling the destructor for each
4187 element, we'll have to know how many elements there are. */
4188 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
4189 return true;
4190
4191 /* If the usual deallocation function is a two-argument whose second
4192 argument is of type `size_t', then we have to pass the size of
4193 the array to the deallocation function, so we will need to store
4194 a cookie. */
4195 fns = lookup_fnfields (TYPE_BINFO (type),
4196 ansi_opname (VEC_DELETE_EXPR),
4197 /*protect=*/0);
4198 /* If there are no `operator []' members, or the lookup is
4199 ambiguous, then we don't need a cookie. */
4200 if (!fns || fns == error_mark_node)
4201 return false;
4202 /* Loop through all of the functions. */
4203 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4204 {
4205 tree fn;
4206 tree second_parm;
4207
4208 /* Select the current function. */
4209 fn = OVL_CURRENT (fns);
4210 /* See if this function is a one-argument delete function. If
4211 it is, then it will be the usual deallocation function. */
4212 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4213 if (second_parm == void_list_node)
4214 return false;
4215 /* Do not consider this function if its second argument is an
4216 ellipsis. */
4217 if (!second_parm)
4218 continue;
4219 /* Otherwise, if we have a two-argument function and the second
4220 argument is `size_t', it will be the usual deallocation
4221 function -- unless there is one-argument function, too. */
4222 if (TREE_CHAIN (second_parm) == void_list_node
4223 && same_type_p (TREE_VALUE (second_parm), size_type_node))
4224 has_two_argument_delete_p = true;
4225 }
4226
4227 return has_two_argument_delete_p;
4228 }
4229
4230 /* Check the validity of the bases and members declared in T. Add any
4231 implicitly-generated functions (like copy-constructors and
4232 assignment operators). Compute various flag bits (like
4233 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4234 level: i.e., independently of the ABI in use. */
4235
4236 static void
4237 check_bases_and_members (tree t)
4238 {
4239 /* Nonzero if the implicitly generated copy constructor should take
4240 a non-const reference argument. */
4241 int cant_have_const_ctor;
4242 /* Nonzero if the implicitly generated assignment operator
4243 should take a non-const reference argument. */
4244 int no_const_asn_ref;
4245 tree access_decls;
4246 bool saved_complex_asn_ref;
4247 bool saved_nontrivial_dtor;
4248
4249 /* By default, we use const reference arguments and generate default
4250 constructors. */
4251 cant_have_const_ctor = 0;
4252 no_const_asn_ref = 0;
4253
4254 /* Check all the base-classes. */
4255 check_bases (t, &cant_have_const_ctor,
4256 &no_const_asn_ref);
4257
4258 /* Check all the method declarations. */
4259 check_methods (t);
4260
4261 /* Save the initial values of these flags which only indicate whether
4262 or not the class has user-provided functions. As we analyze the
4263 bases and members we can set these flags for other reasons. */
4264 saved_complex_asn_ref = TYPE_HAS_COMPLEX_ASSIGN_REF (t);
4265 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
4266
4267 /* Check all the data member declarations. We cannot call
4268 check_field_decls until we have called check_bases check_methods,
4269 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4270 being set appropriately. */
4271 check_field_decls (t, &access_decls,
4272 &cant_have_const_ctor,
4273 &no_const_asn_ref);
4274
4275 /* A nearly-empty class has to be vptr-containing; a nearly empty
4276 class contains just a vptr. */
4277 if (!TYPE_CONTAINS_VPTR_P (t))
4278 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4279
4280 /* Do some bookkeeping that will guide the generation of implicitly
4281 declared member functions. */
4282 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_CONTAINS_VPTR_P (t);
4283 /* We need to call a constructor for this class if it has a
4284 user-provided constructor, or if the default constructor is going
4285 to initialize the vptr. (This is not an if-and-only-if;
4286 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
4287 themselves need constructing.) */
4288 TYPE_NEEDS_CONSTRUCTING (t)
4289 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
4290 /* [dcl.init.aggr]
4291
4292 An aggregate is an array or a class with no user-provided
4293 constructors ... and no virtual functions.
4294
4295 Again, other conditions for being an aggregate are checked
4296 elsewhere. */
4297 CLASSTYPE_NON_AGGREGATE (t)
4298 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
4299 CLASSTYPE_NON_POD_P (t)
4300 |= (CLASSTYPE_NON_AGGREGATE (t)
4301 || saved_nontrivial_dtor || saved_complex_asn_ref);
4302 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_CONTAINS_VPTR_P (t);
4303 TYPE_HAS_COMPLEX_DFLT (t)
4304 |= (TYPE_HAS_DEFAULT_CONSTRUCTOR (t) || TYPE_CONTAINS_VPTR_P (t));
4305
4306 /* If the class has no user-declared constructor, but does have
4307 non-static const or reference data members that can never be
4308 initialized, issue a warning. */
4309 if (warn_uninitialized
4310 /* Classes with user-declared constructors are presumed to
4311 initialize these members. */
4312 && !TYPE_HAS_USER_CONSTRUCTOR (t)
4313 /* Aggregates can be initialized with brace-enclosed
4314 initializers. */
4315 && CLASSTYPE_NON_AGGREGATE (t))
4316 {
4317 tree field;
4318
4319 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4320 {
4321 tree type;
4322
4323 if (TREE_CODE (field) != FIELD_DECL)
4324 continue;
4325
4326 type = TREE_TYPE (field);
4327 if (TREE_CODE (type) == REFERENCE_TYPE)
4328 warning (OPT_Wuninitialized, "non-static reference %q+#D "
4329 "in class without a constructor", field);
4330 else if (CP_TYPE_CONST_P (type)
4331 && (!CLASS_TYPE_P (type)
4332 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
4333 warning (OPT_Wuninitialized, "non-static const member %q+#D "
4334 "in class without a constructor", field);
4335 }
4336 }
4337
4338 /* Synthesize any needed methods. */
4339 add_implicitly_declared_members (t,
4340 cant_have_const_ctor,
4341 no_const_asn_ref);
4342
4343 /* Create the in-charge and not-in-charge variants of constructors
4344 and destructors. */
4345 clone_constructors_and_destructors (t);
4346
4347 /* Process the using-declarations. */
4348 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4349 handle_using_decl (TREE_VALUE (access_decls), t);
4350
4351 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4352 finish_struct_methods (t);
4353
4354 /* Figure out whether or not we will need a cookie when dynamically
4355 allocating an array of this type. */
4356 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4357 = type_requires_array_cookie (t);
4358 }
4359
4360 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4361 accordingly. If a new vfield was created (because T doesn't have a
4362 primary base class), then the newly created field is returned. It
4363 is not added to the TYPE_FIELDS list; it is the caller's
4364 responsibility to do that. Accumulate declared virtual functions
4365 on VIRTUALS_P. */
4366
4367 static tree
4368 create_vtable_ptr (tree t, tree* virtuals_p)
4369 {
4370 tree fn;
4371
4372 /* Collect the virtual functions declared in T. */
4373 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4374 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4375 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4376 {
4377 tree new_virtual = make_node (TREE_LIST);
4378
4379 BV_FN (new_virtual) = fn;
4380 BV_DELTA (new_virtual) = integer_zero_node;
4381 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
4382
4383 TREE_CHAIN (new_virtual) = *virtuals_p;
4384 *virtuals_p = new_virtual;
4385 }
4386
4387 /* If we couldn't find an appropriate base class, create a new field
4388 here. Even if there weren't any new virtual functions, we might need a
4389 new virtual function table if we're supposed to include vptrs in
4390 all classes that need them. */
4391 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4392 {
4393 /* We build this decl with vtbl_ptr_type_node, which is a
4394 `vtable_entry_type*'. It might seem more precise to use
4395 `vtable_entry_type (*)[N]' where N is the number of virtual
4396 functions. However, that would require the vtable pointer in
4397 base classes to have a different type than the vtable pointer
4398 in derived classes. We could make that happen, but that
4399 still wouldn't solve all the problems. In particular, the
4400 type-based alias analysis code would decide that assignments
4401 to the base class vtable pointer can't alias assignments to
4402 the derived class vtable pointer, since they have different
4403 types. Thus, in a derived class destructor, where the base
4404 class constructor was inlined, we could generate bad code for
4405 setting up the vtable pointer.
4406
4407 Therefore, we use one type for all vtable pointers. We still
4408 use a type-correct type; it's just doesn't indicate the array
4409 bounds. That's better than using `void*' or some such; it's
4410 cleaner, and it let's the alias analysis code know that these
4411 stores cannot alias stores to void*! */
4412 tree field;
4413
4414 field = build_decl (FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4415 DECL_VIRTUAL_P (field) = 1;
4416 DECL_ARTIFICIAL (field) = 1;
4417 DECL_FIELD_CONTEXT (field) = t;
4418 DECL_FCONTEXT (field) = t;
4419
4420 TYPE_VFIELD (t) = field;
4421
4422 /* This class is non-empty. */
4423 CLASSTYPE_EMPTY_P (t) = 0;
4424
4425 return field;
4426 }
4427
4428 return NULL_TREE;
4429 }
4430
4431 /* Fixup the inline function given by INFO now that the class is
4432 complete. */
4433
4434 static void
4435 fixup_pending_inline (tree fn)
4436 {
4437 if (DECL_PENDING_INLINE_INFO (fn))
4438 {
4439 tree args = DECL_ARGUMENTS (fn);
4440 while (args)
4441 {
4442 DECL_CONTEXT (args) = fn;
4443 args = TREE_CHAIN (args);
4444 }
4445 }
4446 }
4447
4448 /* Fixup the inline methods and friends in TYPE now that TYPE is
4449 complete. */
4450
4451 static void
4452 fixup_inline_methods (tree type)
4453 {
4454 tree method = TYPE_METHODS (type);
4455 VEC(tree,gc) *friends;
4456 unsigned ix;
4457
4458 if (method && TREE_CODE (method) == TREE_VEC)
4459 {
4460 if (TREE_VEC_ELT (method, 1))
4461 method = TREE_VEC_ELT (method, 1);
4462 else if (TREE_VEC_ELT (method, 0))
4463 method = TREE_VEC_ELT (method, 0);
4464 else
4465 method = TREE_VEC_ELT (method, 2);
4466 }
4467
4468 /* Do inline member functions. */
4469 for (; method; method = TREE_CHAIN (method))
4470 fixup_pending_inline (method);
4471
4472 /* Do friends. */
4473 for (friends = CLASSTYPE_INLINE_FRIENDS (type), ix = 0;
4474 VEC_iterate (tree, friends, ix, method); ix++)
4475 fixup_pending_inline (method);
4476 CLASSTYPE_INLINE_FRIENDS (type) = NULL;
4477 }
4478
4479 /* Add OFFSET to all base types of BINFO which is a base in the
4480 hierarchy dominated by T.
4481
4482 OFFSET, which is a type offset, is number of bytes. */
4483
4484 static void
4485 propagate_binfo_offsets (tree binfo, tree offset)
4486 {
4487 int i;
4488 tree primary_binfo;
4489 tree base_binfo;
4490
4491 /* Update BINFO's offset. */
4492 BINFO_OFFSET (binfo)
4493 = convert (sizetype,
4494 size_binop (PLUS_EXPR,
4495 convert (ssizetype, BINFO_OFFSET (binfo)),
4496 offset));
4497
4498 /* Find the primary base class. */
4499 primary_binfo = get_primary_binfo (binfo);
4500
4501 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
4502 propagate_binfo_offsets (primary_binfo, offset);
4503
4504 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4505 downwards. */
4506 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4507 {
4508 /* Don't do the primary base twice. */
4509 if (base_binfo == primary_binfo)
4510 continue;
4511
4512 if (BINFO_VIRTUAL_P (base_binfo))
4513 continue;
4514
4515 propagate_binfo_offsets (base_binfo, offset);
4516 }
4517 }
4518
4519 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4520 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4521 empty subobjects of T. */
4522
4523 static void
4524 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4525 {
4526 tree vbase;
4527 tree t = rli->t;
4528 bool first_vbase = true;
4529 tree *next_field;
4530
4531 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
4532 return;
4533
4534 if (!abi_version_at_least(2))
4535 {
4536 /* In G++ 3.2, we incorrectly rounded the size before laying out
4537 the virtual bases. */
4538 finish_record_layout (rli, /*free_p=*/false);
4539 #ifdef STRUCTURE_SIZE_BOUNDARY
4540 /* Packed structures don't need to have minimum size. */
4541 if (! TYPE_PACKED (t))
4542 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4543 #endif
4544 rli->offset = TYPE_SIZE_UNIT (t);
4545 rli->bitpos = bitsize_zero_node;
4546 rli->record_align = TYPE_ALIGN (t);
4547 }
4548
4549 /* Find the last field. The artificial fields created for virtual
4550 bases will go after the last extant field to date. */
4551 next_field = &TYPE_FIELDS (t);
4552 while (*next_field)
4553 next_field = &TREE_CHAIN (*next_field);
4554
4555 /* Go through the virtual bases, allocating space for each virtual
4556 base that is not already a primary base class. These are
4557 allocated in inheritance graph order. */
4558 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4559 {
4560 if (!BINFO_VIRTUAL_P (vbase))
4561 continue;
4562
4563 if (!BINFO_PRIMARY_P (vbase))
4564 {
4565 tree basetype = TREE_TYPE (vbase);
4566
4567 /* This virtual base is not a primary base of any class in the
4568 hierarchy, so we have to add space for it. */
4569 next_field = build_base_field (rli, vbase,
4570 offsets, next_field);
4571
4572 /* If the first virtual base might have been placed at a
4573 lower address, had we started from CLASSTYPE_SIZE, rather
4574 than TYPE_SIZE, issue a warning. There can be both false
4575 positives and false negatives from this warning in rare
4576 cases; to deal with all the possibilities would probably
4577 require performing both layout algorithms and comparing
4578 the results which is not particularly tractable. */
4579 if (warn_abi
4580 && first_vbase
4581 && (tree_int_cst_lt
4582 (size_binop (CEIL_DIV_EXPR,
4583 round_up (CLASSTYPE_SIZE (t),
4584 CLASSTYPE_ALIGN (basetype)),
4585 bitsize_unit_node),
4586 BINFO_OFFSET (vbase))))
4587 warning (OPT_Wabi,
4588 "offset of virtual base %qT is not ABI-compliant and "
4589 "may change in a future version of GCC",
4590 basetype);
4591
4592 first_vbase = false;
4593 }
4594 }
4595 }
4596
4597 /* Returns the offset of the byte just past the end of the base class
4598 BINFO. */
4599
4600 static tree
4601 end_of_base (tree binfo)
4602 {
4603 tree size;
4604
4605 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
4606 size = TYPE_SIZE_UNIT (char_type_node);
4607 else if (is_empty_class (BINFO_TYPE (binfo)))
4608 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4609 allocate some space for it. It cannot have virtual bases, so
4610 TYPE_SIZE_UNIT is fine. */
4611 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4612 else
4613 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4614
4615 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4616 }
4617
4618 /* Returns the offset of the byte just past the end of the base class
4619 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4620 only non-virtual bases are included. */
4621
4622 static tree
4623 end_of_class (tree t, int include_virtuals_p)
4624 {
4625 tree result = size_zero_node;
4626 VEC(tree,gc) *vbases;
4627 tree binfo;
4628 tree base_binfo;
4629 tree offset;
4630 int i;
4631
4632 for (binfo = TYPE_BINFO (t), i = 0;
4633 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4634 {
4635 if (!include_virtuals_p
4636 && BINFO_VIRTUAL_P (base_binfo)
4637 && (!BINFO_PRIMARY_P (base_binfo)
4638 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
4639 continue;
4640
4641 offset = end_of_base (base_binfo);
4642 if (INT_CST_LT_UNSIGNED (result, offset))
4643 result = offset;
4644 }
4645
4646 /* G++ 3.2 did not check indirect virtual bases. */
4647 if (abi_version_at_least (2) && include_virtuals_p)
4648 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4649 VEC_iterate (tree, vbases, i, base_binfo); i++)
4650 {
4651 offset = end_of_base (base_binfo);
4652 if (INT_CST_LT_UNSIGNED (result, offset))
4653 result = offset;
4654 }
4655
4656 return result;
4657 }
4658
4659 /* Warn about bases of T that are inaccessible because they are
4660 ambiguous. For example:
4661
4662 struct S {};
4663 struct T : public S {};
4664 struct U : public S, public T {};
4665
4666 Here, `(S*) new U' is not allowed because there are two `S'
4667 subobjects of U. */
4668
4669 static void
4670 warn_about_ambiguous_bases (tree t)
4671 {
4672 int i;
4673 VEC(tree,gc) *vbases;
4674 tree basetype;
4675 tree binfo;
4676 tree base_binfo;
4677
4678 /* If there are no repeated bases, nothing can be ambiguous. */
4679 if (!CLASSTYPE_REPEATED_BASE_P (t))
4680 return;
4681
4682 /* Check direct bases. */
4683 for (binfo = TYPE_BINFO (t), i = 0;
4684 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4685 {
4686 basetype = BINFO_TYPE (base_binfo);
4687
4688 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4689 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
4690 basetype, t);
4691 }
4692
4693 /* Check for ambiguous virtual bases. */
4694 if (extra_warnings)
4695 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4696 VEC_iterate (tree, vbases, i, binfo); i++)
4697 {
4698 basetype = BINFO_TYPE (binfo);
4699
4700 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4701 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity",
4702 basetype, t);
4703 }
4704 }
4705
4706 /* Compare two INTEGER_CSTs K1 and K2. */
4707
4708 static int
4709 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4710 {
4711 return tree_int_cst_compare ((tree) k1, (tree) k2);
4712 }
4713
4714 /* Increase the size indicated in RLI to account for empty classes
4715 that are "off the end" of the class. */
4716
4717 static void
4718 include_empty_classes (record_layout_info rli)
4719 {
4720 tree eoc;
4721 tree rli_size;
4722
4723 /* It might be the case that we grew the class to allocate a
4724 zero-sized base class. That won't be reflected in RLI, yet,
4725 because we are willing to overlay multiple bases at the same
4726 offset. However, now we need to make sure that RLI is big enough
4727 to reflect the entire class. */
4728 eoc = end_of_class (rli->t,
4729 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4730 rli_size = rli_size_unit_so_far (rli);
4731 if (TREE_CODE (rli_size) == INTEGER_CST
4732 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4733 {
4734 if (!abi_version_at_least (2))
4735 /* In version 1 of the ABI, the size of a class that ends with
4736 a bitfield was not rounded up to a whole multiple of a
4737 byte. Because rli_size_unit_so_far returns only the number
4738 of fully allocated bytes, any extra bits were not included
4739 in the size. */
4740 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4741 else
4742 /* The size should have been rounded to a whole byte. */
4743 gcc_assert (tree_int_cst_equal
4744 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
4745 rli->bitpos
4746 = size_binop (PLUS_EXPR,
4747 rli->bitpos,
4748 size_binop (MULT_EXPR,
4749 convert (bitsizetype,
4750 size_binop (MINUS_EXPR,
4751 eoc, rli_size)),
4752 bitsize_int (BITS_PER_UNIT)));
4753 normalize_rli (rli);
4754 }
4755 }
4756
4757 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4758 BINFO_OFFSETs for all of the base-classes. Position the vtable
4759 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4760
4761 static void
4762 layout_class_type (tree t, tree *virtuals_p)
4763 {
4764 tree non_static_data_members;
4765 tree field;
4766 tree vptr;
4767 record_layout_info rli;
4768 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4769 types that appear at that offset. */
4770 splay_tree empty_base_offsets;
4771 /* True if the last field layed out was a bit-field. */
4772 bool last_field_was_bitfield = false;
4773 /* The location at which the next field should be inserted. */
4774 tree *next_field;
4775 /* T, as a base class. */
4776 tree base_t;
4777
4778 /* Keep track of the first non-static data member. */
4779 non_static_data_members = TYPE_FIELDS (t);
4780
4781 /* Start laying out the record. */
4782 rli = start_record_layout (t);
4783
4784 /* Mark all the primary bases in the hierarchy. */
4785 determine_primary_bases (t);
4786
4787 /* Create a pointer to our virtual function table. */
4788 vptr = create_vtable_ptr (t, virtuals_p);
4789
4790 /* The vptr is always the first thing in the class. */
4791 if (vptr)
4792 {
4793 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4794 TYPE_FIELDS (t) = vptr;
4795 next_field = &TREE_CHAIN (vptr);
4796 place_field (rli, vptr);
4797 }
4798 else
4799 next_field = &TYPE_FIELDS (t);
4800
4801 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4802 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
4803 NULL, NULL);
4804 build_base_fields (rli, empty_base_offsets, next_field);
4805
4806 /* Layout the non-static data members. */
4807 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
4808 {
4809 tree type;
4810 tree padding;
4811
4812 /* We still pass things that aren't non-static data members to
4813 the back end, in case it wants to do something with them. */
4814 if (TREE_CODE (field) != FIELD_DECL)
4815 {
4816 place_field (rli, field);
4817 /* If the static data member has incomplete type, keep track
4818 of it so that it can be completed later. (The handling
4819 of pending statics in finish_record_layout is
4820 insufficient; consider:
4821
4822 struct S1;
4823 struct S2 { static S1 s1; };
4824
4825 At this point, finish_record_layout will be called, but
4826 S1 is still incomplete.) */
4827 if (TREE_CODE (field) == VAR_DECL)
4828 {
4829 maybe_register_incomplete_var (field);
4830 /* The visibility of static data members is determined
4831 at their point of declaration, not their point of
4832 definition. */
4833 determine_visibility (field);
4834 }
4835 continue;
4836 }
4837
4838 type = TREE_TYPE (field);
4839 if (type == error_mark_node)
4840 continue;
4841
4842 padding = NULL_TREE;
4843
4844 /* If this field is a bit-field whose width is greater than its
4845 type, then there are some special rules for allocating
4846 it. */
4847 if (DECL_C_BIT_FIELD (field)
4848 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
4849 {
4850 integer_type_kind itk;
4851 tree integer_type;
4852 bool was_unnamed_p = false;
4853 /* We must allocate the bits as if suitably aligned for the
4854 longest integer type that fits in this many bits. type
4855 of the field. Then, we are supposed to use the left over
4856 bits as additional padding. */
4857 for (itk = itk_char; itk != itk_none; ++itk)
4858 if (INT_CST_LT (DECL_SIZE (field),
4859 TYPE_SIZE (integer_types[itk])))
4860 break;
4861
4862 /* ITK now indicates a type that is too large for the
4863 field. We have to back up by one to find the largest
4864 type that fits. */
4865 integer_type = integer_types[itk - 1];
4866
4867 /* Figure out how much additional padding is required. GCC
4868 3.2 always created a padding field, even if it had zero
4869 width. */
4870 if (!abi_version_at_least (2)
4871 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
4872 {
4873 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
4874 /* In a union, the padding field must have the full width
4875 of the bit-field; all fields start at offset zero. */
4876 padding = DECL_SIZE (field);
4877 else
4878 {
4879 if (TREE_CODE (t) == UNION_TYPE)
4880 warning (OPT_Wabi, "size assigned to %qT may not be "
4881 "ABI-compliant and may change in a future "
4882 "version of GCC",
4883 t);
4884 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
4885 TYPE_SIZE (integer_type));
4886 }
4887 }
4888 #ifdef PCC_BITFIELD_TYPE_MATTERS
4889 /* An unnamed bitfield does not normally affect the
4890 alignment of the containing class on a target where
4891 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4892 make any exceptions for unnamed bitfields when the
4893 bitfields are longer than their types. Therefore, we
4894 temporarily give the field a name. */
4895 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
4896 {
4897 was_unnamed_p = true;
4898 DECL_NAME (field) = make_anon_name ();
4899 }
4900 #endif
4901 DECL_SIZE (field) = TYPE_SIZE (integer_type);
4902 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
4903 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
4904 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4905 empty_base_offsets);
4906 if (was_unnamed_p)
4907 DECL_NAME (field) = NULL_TREE;
4908 /* Now that layout has been performed, set the size of the
4909 field to the size of its declared type; the rest of the
4910 field is effectively invisible. */
4911 DECL_SIZE (field) = TYPE_SIZE (type);
4912 /* We must also reset the DECL_MODE of the field. */
4913 if (abi_version_at_least (2))
4914 DECL_MODE (field) = TYPE_MODE (type);
4915 else if (warn_abi
4916 && DECL_MODE (field) != TYPE_MODE (type))
4917 /* Versions of G++ before G++ 3.4 did not reset the
4918 DECL_MODE. */
4919 warning (OPT_Wabi,
4920 "the offset of %qD may not be ABI-compliant and may "
4921 "change in a future version of GCC", field);
4922 }
4923 else
4924 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4925 empty_base_offsets);
4926
4927 /* Remember the location of any empty classes in FIELD. */
4928 if (abi_version_at_least (2))
4929 record_subobject_offsets (TREE_TYPE (field),
4930 byte_position(field),
4931 empty_base_offsets,
4932 /*is_data_member=*/true);
4933
4934 /* If a bit-field does not immediately follow another bit-field,
4935 and yet it starts in the middle of a byte, we have failed to
4936 comply with the ABI. */
4937 if (warn_abi
4938 && DECL_C_BIT_FIELD (field)
4939 /* The TREE_NO_WARNING flag gets set by Objective-C when
4940 laying out an Objective-C class. The ObjC ABI differs
4941 from the C++ ABI, and so we do not want a warning
4942 here. */
4943 && !TREE_NO_WARNING (field)
4944 && !last_field_was_bitfield
4945 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
4946 DECL_FIELD_BIT_OFFSET (field),
4947 bitsize_unit_node)))
4948 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
4949 "change in a future version of GCC", field);
4950
4951 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4952 offset of the field. */
4953 if (warn_abi
4954 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
4955 byte_position (field))
4956 && contains_empty_class_p (TREE_TYPE (field)))
4957 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
4958 "classes to be placed at different locations in a "
4959 "future version of GCC", field);
4960
4961 /* The middle end uses the type of expressions to determine the
4962 possible range of expression values. In order to optimize
4963 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
4964 must be made aware of the width of "i", via its type.
4965
4966 Because C++ does not have integer types of arbitrary width,
4967 we must (for the purposes of the front end) convert from the
4968 type assigned here to the declared type of the bitfield
4969 whenever a bitfield expression is used as an rvalue.
4970 Similarly, when assigning a value to a bitfield, the value
4971 must be converted to the type given the bitfield here. */
4972 if (DECL_C_BIT_FIELD (field))
4973 {
4974 unsigned HOST_WIDE_INT width;
4975 tree ftype = TREE_TYPE (field);
4976 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
4977 if (width != TYPE_PRECISION (ftype))
4978 {
4979 TREE_TYPE (field)
4980 = c_build_bitfield_integer_type (width,
4981 TYPE_UNSIGNED (ftype));
4982 TREE_TYPE (field)
4983 = cp_build_qualified_type (TREE_TYPE (field),
4984 TYPE_QUALS (ftype));
4985 }
4986 }
4987
4988 /* If we needed additional padding after this field, add it
4989 now. */
4990 if (padding)
4991 {
4992 tree padding_field;
4993
4994 padding_field = build_decl (FIELD_DECL,
4995 NULL_TREE,
4996 char_type_node);
4997 DECL_BIT_FIELD (padding_field) = 1;
4998 DECL_SIZE (padding_field) = padding;
4999 DECL_CONTEXT (padding_field) = t;
5000 DECL_ARTIFICIAL (padding_field) = 1;
5001 DECL_IGNORED_P (padding_field) = 1;
5002 layout_nonempty_base_or_field (rli, padding_field,
5003 NULL_TREE,
5004 empty_base_offsets);
5005 }
5006
5007 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
5008 }
5009
5010 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
5011 {
5012 /* Make sure that we are on a byte boundary so that the size of
5013 the class without virtual bases will always be a round number
5014 of bytes. */
5015 rli->bitpos = round_up (rli->bitpos, BITS_PER_UNIT);
5016 normalize_rli (rli);
5017 }
5018
5019 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
5020 padding. */
5021 if (!abi_version_at_least (2))
5022 include_empty_classes(rli);
5023
5024 /* Delete all zero-width bit-fields from the list of fields. Now
5025 that the type is laid out they are no longer important. */
5026 remove_zero_width_bit_fields (t);
5027
5028 /* Create the version of T used for virtual bases. We do not use
5029 make_class_type for this version; this is an artificial type. For
5030 a POD type, we just reuse T. */
5031 if (CLASSTYPE_NON_POD_P (t) || CLASSTYPE_EMPTY_P (t))
5032 {
5033 base_t = make_node (TREE_CODE (t));
5034
5035 /* Set the size and alignment for the new type. In G++ 3.2, all
5036 empty classes were considered to have size zero when used as
5037 base classes. */
5038 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
5039 {
5040 TYPE_SIZE (base_t) = bitsize_zero_node;
5041 TYPE_SIZE_UNIT (base_t) = size_zero_node;
5042 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
5043 warning (OPT_Wabi,
5044 "layout of classes derived from empty class %qT "
5045 "may change in a future version of GCC",
5046 t);
5047 }
5048 else
5049 {
5050 tree eoc;
5051
5052 /* If the ABI version is not at least two, and the last
5053 field was a bit-field, RLI may not be on a byte
5054 boundary. In particular, rli_size_unit_so_far might
5055 indicate the last complete byte, while rli_size_so_far
5056 indicates the total number of bits used. Therefore,
5057 rli_size_so_far, rather than rli_size_unit_so_far, is
5058 used to compute TYPE_SIZE_UNIT. */
5059 eoc = end_of_class (t, /*include_virtuals_p=*/0);
5060 TYPE_SIZE_UNIT (base_t)
5061 = size_binop (MAX_EXPR,
5062 convert (sizetype,
5063 size_binop (CEIL_DIV_EXPR,
5064 rli_size_so_far (rli),
5065 bitsize_int (BITS_PER_UNIT))),
5066 eoc);
5067 TYPE_SIZE (base_t)
5068 = size_binop (MAX_EXPR,
5069 rli_size_so_far (rli),
5070 size_binop (MULT_EXPR,
5071 convert (bitsizetype, eoc),
5072 bitsize_int (BITS_PER_UNIT)));
5073 }
5074 TYPE_ALIGN (base_t) = rli->record_align;
5075 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
5076
5077 /* Copy the fields from T. */
5078 next_field = &TYPE_FIELDS (base_t);
5079 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5080 if (TREE_CODE (field) == FIELD_DECL)
5081 {
5082 *next_field = build_decl (FIELD_DECL,
5083 DECL_NAME (field),
5084 TREE_TYPE (field));
5085 DECL_CONTEXT (*next_field) = base_t;
5086 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
5087 DECL_FIELD_BIT_OFFSET (*next_field)
5088 = DECL_FIELD_BIT_OFFSET (field);
5089 DECL_SIZE (*next_field) = DECL_SIZE (field);
5090 DECL_MODE (*next_field) = DECL_MODE (field);
5091 next_field = &TREE_CHAIN (*next_field);
5092 }
5093
5094 /* Record the base version of the type. */
5095 CLASSTYPE_AS_BASE (t) = base_t;
5096 TYPE_CONTEXT (base_t) = t;
5097 }
5098 else
5099 CLASSTYPE_AS_BASE (t) = t;
5100
5101 /* Every empty class contains an empty class. */
5102 if (CLASSTYPE_EMPTY_P (t))
5103 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
5104
5105 /* Set the TYPE_DECL for this type to contain the right
5106 value for DECL_OFFSET, so that we can use it as part
5107 of a COMPONENT_REF for multiple inheritance. */
5108 layout_decl (TYPE_MAIN_DECL (t), 0);
5109
5110 /* Now fix up any virtual base class types that we left lying
5111 around. We must get these done before we try to lay out the
5112 virtual function table. As a side-effect, this will remove the
5113 base subobject fields. */
5114 layout_virtual_bases (rli, empty_base_offsets);
5115
5116 /* Make sure that empty classes are reflected in RLI at this
5117 point. */
5118 include_empty_classes(rli);
5119
5120 /* Make sure not to create any structures with zero size. */
5121 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
5122 place_field (rli,
5123 build_decl (FIELD_DECL, NULL_TREE, char_type_node));
5124
5125 /* Let the back end lay out the type. */
5126 finish_record_layout (rli, /*free_p=*/true);
5127
5128 /* Warn about bases that can't be talked about due to ambiguity. */
5129 warn_about_ambiguous_bases (t);
5130
5131 /* Now that we're done with layout, give the base fields the real types. */
5132 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5133 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
5134 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
5135
5136 /* Clean up. */
5137 splay_tree_delete (empty_base_offsets);
5138
5139 if (CLASSTYPE_EMPTY_P (t)
5140 && tree_int_cst_lt (sizeof_biggest_empty_class,
5141 TYPE_SIZE_UNIT (t)))
5142 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
5143 }
5144
5145 /* Determine the "key method" for the class type indicated by TYPE,
5146 and set CLASSTYPE_KEY_METHOD accordingly. */
5147
5148 void
5149 determine_key_method (tree type)
5150 {
5151 tree method;
5152
5153 if (TYPE_FOR_JAVA (type)
5154 || processing_template_decl
5155 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
5156 || CLASSTYPE_INTERFACE_KNOWN (type))
5157 return;
5158
5159 /* The key method is the first non-pure virtual function that is not
5160 inline at the point of class definition. On some targets the
5161 key function may not be inline; those targets should not call
5162 this function until the end of the translation unit. */
5163 for (method = TYPE_METHODS (type); method != NULL_TREE;
5164 method = TREE_CHAIN (method))
5165 if (DECL_VINDEX (method) != NULL_TREE
5166 && ! DECL_DECLARED_INLINE_P (method)
5167 && ! DECL_PURE_VIRTUAL_P (method))
5168 {
5169 CLASSTYPE_KEY_METHOD (type) = method;
5170 break;
5171 }
5172
5173 return;
5174 }
5175
5176 /* Perform processing required when the definition of T (a class type)
5177 is complete. */
5178
5179 void
5180 finish_struct_1 (tree t)
5181 {
5182 tree x;
5183 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
5184 tree virtuals = NULL_TREE;
5185 int n_fields = 0;
5186
5187 if (COMPLETE_TYPE_P (t))
5188 {
5189 gcc_assert (MAYBE_CLASS_TYPE_P (t));
5190 error ("redefinition of %q#T", t);
5191 popclass ();
5192 return;
5193 }
5194
5195 /* If this type was previously laid out as a forward reference,
5196 make sure we lay it out again. */
5197 TYPE_SIZE (t) = NULL_TREE;
5198 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
5199
5200 fixup_inline_methods (t);
5201
5202 /* Make assumptions about the class; we'll reset the flags if
5203 necessary. */
5204 CLASSTYPE_EMPTY_P (t) = 1;
5205 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
5206 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
5207
5208 /* Do end-of-class semantic processing: checking the validity of the
5209 bases and members and add implicitly generated methods. */
5210 check_bases_and_members (t);
5211
5212 /* Find the key method. */
5213 if (TYPE_CONTAINS_VPTR_P (t))
5214 {
5215 /* The Itanium C++ ABI permits the key method to be chosen when
5216 the class is defined -- even though the key method so
5217 selected may later turn out to be an inline function. On
5218 some systems (such as ARM Symbian OS) the key method cannot
5219 be determined until the end of the translation unit. On such
5220 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
5221 will cause the class to be added to KEYED_CLASSES. Then, in
5222 finish_file we will determine the key method. */
5223 if (targetm.cxx.key_method_may_be_inline ())
5224 determine_key_method (t);
5225
5226 /* If a polymorphic class has no key method, we may emit the vtable
5227 in every translation unit where the class definition appears. */
5228 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
5229 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
5230 }
5231
5232 /* Layout the class itself. */
5233 layout_class_type (t, &virtuals);
5234 if (CLASSTYPE_AS_BASE (t) != t)
5235 /* We use the base type for trivial assignments, and hence it
5236 needs a mode. */
5237 compute_record_mode (CLASSTYPE_AS_BASE (t));
5238
5239 virtuals = modify_all_vtables (t, nreverse (virtuals));
5240
5241 /* If necessary, create the primary vtable for this class. */
5242 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
5243 {
5244 /* We must enter these virtuals into the table. */
5245 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5246 build_primary_vtable (NULL_TREE, t);
5247 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
5248 /* Here we know enough to change the type of our virtual
5249 function table, but we will wait until later this function. */
5250 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
5251 }
5252
5253 if (TYPE_CONTAINS_VPTR_P (t))
5254 {
5255 int vindex;
5256 tree fn;
5257
5258 if (BINFO_VTABLE (TYPE_BINFO (t)))
5259 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
5260 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5261 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
5262
5263 /* Add entries for virtual functions introduced by this class. */
5264 BINFO_VIRTUALS (TYPE_BINFO (t))
5265 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
5266
5267 /* Set DECL_VINDEX for all functions declared in this class. */
5268 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
5269 fn;
5270 fn = TREE_CHAIN (fn),
5271 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
5272 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
5273 {
5274 tree fndecl = BV_FN (fn);
5275
5276 if (DECL_THUNK_P (fndecl))
5277 /* A thunk. We should never be calling this entry directly
5278 from this vtable -- we'd use the entry for the non
5279 thunk base function. */
5280 DECL_VINDEX (fndecl) = NULL_TREE;
5281 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
5282 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
5283 }
5284 }
5285
5286 finish_struct_bits (t);
5287
5288 /* Complete the rtl for any static member objects of the type we're
5289 working on. */
5290 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
5291 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
5292 && TREE_TYPE (x) != error_mark_node
5293 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
5294 DECL_MODE (x) = TYPE_MODE (t);
5295
5296 /* Done with FIELDS...now decide whether to sort these for
5297 faster lookups later.
5298
5299 We use a small number because most searches fail (succeeding
5300 ultimately as the search bores through the inheritance
5301 hierarchy), and we want this failure to occur quickly. */
5302
5303 n_fields = count_fields (TYPE_FIELDS (t));
5304 if (n_fields > 7)
5305 {
5306 struct sorted_fields_type *field_vec = GGC_NEWVAR
5307 (struct sorted_fields_type,
5308 sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
5309 field_vec->len = n_fields;
5310 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5311 qsort (field_vec->elts, n_fields, sizeof (tree),
5312 field_decl_cmp);
5313 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t)))
5314 retrofit_lang_decl (TYPE_MAIN_DECL (t));
5315 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t)) = field_vec;
5316 }
5317
5318 /* Complain if one of the field types requires lower visibility. */
5319 constrain_class_visibility (t);
5320
5321 /* Make the rtl for any new vtables we have created, and unmark
5322 the base types we marked. */
5323 finish_vtbls (t);
5324
5325 /* Build the VTT for T. */
5326 build_vtt (t);
5327
5328 /* This warning does not make sense for Java classes, since they
5329 cannot have destructors. */
5330 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
5331 {
5332 tree dtor;
5333
5334 dtor = CLASSTYPE_DESTRUCTORS (t);
5335 if (/* An implicitly declared destructor is always public. And,
5336 if it were virtual, we would have created it by now. */
5337 !dtor
5338 || (!DECL_VINDEX (dtor)
5339 && (/* public non-virtual */
5340 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
5341 || (/* non-public non-virtual with friends */
5342 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
5343 && (CLASSTYPE_FRIEND_CLASSES (t)
5344 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
5345 warning (OPT_Wnon_virtual_dtor,
5346 "%q#T has virtual functions and accessible"
5347 " non-virtual destructor", t);
5348 }
5349
5350 complete_vars (t);
5351
5352 if (warn_overloaded_virtual)
5353 warn_hidden (t);
5354
5355 /* Class layout, assignment of virtual table slots, etc., is now
5356 complete. Give the back end a chance to tweak the visibility of
5357 the class or perform any other required target modifications. */
5358 targetm.cxx.adjust_class_at_definition (t);
5359
5360 maybe_suppress_debug_info (t);
5361
5362 dump_class_hierarchy (t);
5363
5364 /* Finish debugging output for this type. */
5365 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5366 }
5367
5368 /* When T was built up, the member declarations were added in reverse
5369 order. Rearrange them to declaration order. */
5370
5371 void
5372 unreverse_member_declarations (tree t)
5373 {
5374 tree next;
5375 tree prev;
5376 tree x;
5377
5378 /* The following lists are all in reverse order. Put them in
5379 declaration order now. */
5380 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5381 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5382
5383 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5384 reverse order, so we can't just use nreverse. */
5385 prev = NULL_TREE;
5386 for (x = TYPE_FIELDS (t);
5387 x && TREE_CODE (x) != TYPE_DECL;
5388 x = next)
5389 {
5390 next = TREE_CHAIN (x);
5391 TREE_CHAIN (x) = prev;
5392 prev = x;
5393 }
5394 if (prev)
5395 {
5396 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5397 if (prev)
5398 TYPE_FIELDS (t) = prev;
5399 }
5400 }
5401
5402 tree
5403 finish_struct (tree t, tree attributes)
5404 {
5405 location_t saved_loc = input_location;
5406
5407 /* Now that we've got all the field declarations, reverse everything
5408 as necessary. */
5409 unreverse_member_declarations (t);
5410
5411 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5412
5413 /* Nadger the current location so that diagnostics point to the start of
5414 the struct, not the end. */
5415 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5416
5417 if (processing_template_decl)
5418 {
5419 tree x;
5420
5421 finish_struct_methods (t);
5422 TYPE_SIZE (t) = bitsize_zero_node;
5423 TYPE_SIZE_UNIT (t) = size_zero_node;
5424
5425 /* We need to emit an error message if this type was used as a parameter
5426 and it is an abstract type, even if it is a template. We construct
5427 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5428 account and we call complete_vars with this type, which will check
5429 the PARM_DECLS. Note that while the type is being defined,
5430 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5431 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5432 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
5433 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
5434 if (DECL_PURE_VIRTUAL_P (x))
5435 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
5436 complete_vars (t);
5437 }
5438 else
5439 finish_struct_1 (t);
5440
5441 input_location = saved_loc;
5442
5443 TYPE_BEING_DEFINED (t) = 0;
5444
5445 if (current_class_type)
5446 popclass ();
5447 else
5448 error ("trying to finish struct, but kicked out due to previous parse errors");
5449
5450 if (processing_template_decl && at_function_scope_p ())
5451 add_stmt (build_min (TAG_DEFN, t));
5452
5453 return t;
5454 }
5455 \f
5456 /* Return the dynamic type of INSTANCE, if known.
5457 Used to determine whether the virtual function table is needed
5458 or not.
5459
5460 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5461 of our knowledge of its type. *NONNULL should be initialized
5462 before this function is called. */
5463
5464 static tree
5465 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
5466 {
5467 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
5468
5469 switch (TREE_CODE (instance))
5470 {
5471 case INDIRECT_REF:
5472 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5473 return NULL_TREE;
5474 else
5475 return RECUR (TREE_OPERAND (instance, 0));
5476
5477 case CALL_EXPR:
5478 /* This is a call to a constructor, hence it's never zero. */
5479 if (TREE_HAS_CONSTRUCTOR (instance))
5480 {
5481 if (nonnull)
5482 *nonnull = 1;
5483 return TREE_TYPE (instance);
5484 }
5485 return NULL_TREE;
5486
5487 case SAVE_EXPR:
5488 /* This is a call to a constructor, hence it's never zero. */
5489 if (TREE_HAS_CONSTRUCTOR (instance))
5490 {
5491 if (nonnull)
5492 *nonnull = 1;
5493 return TREE_TYPE (instance);
5494 }
5495 return RECUR (TREE_OPERAND (instance, 0));
5496
5497 case POINTER_PLUS_EXPR:
5498 case PLUS_EXPR:
5499 case MINUS_EXPR:
5500 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5501 return RECUR (TREE_OPERAND (instance, 0));
5502 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5503 /* Propagate nonnull. */
5504 return RECUR (TREE_OPERAND (instance, 0));
5505
5506 return NULL_TREE;
5507
5508 CASE_CONVERT:
5509 return RECUR (TREE_OPERAND (instance, 0));
5510
5511 case ADDR_EXPR:
5512 instance = TREE_OPERAND (instance, 0);
5513 if (nonnull)
5514 {
5515 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5516 with a real object -- given &p->f, p can still be null. */
5517 tree t = get_base_address (instance);
5518 /* ??? Probably should check DECL_WEAK here. */
5519 if (t && DECL_P (t))
5520 *nonnull = 1;
5521 }
5522 return RECUR (instance);
5523
5524 case COMPONENT_REF:
5525 /* If this component is really a base class reference, then the field
5526 itself isn't definitive. */
5527 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
5528 return RECUR (TREE_OPERAND (instance, 0));
5529 return RECUR (TREE_OPERAND (instance, 1));
5530
5531 case VAR_DECL:
5532 case FIELD_DECL:
5533 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5534 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
5535 {
5536 if (nonnull)
5537 *nonnull = 1;
5538 return TREE_TYPE (TREE_TYPE (instance));
5539 }
5540 /* fall through... */
5541 case TARGET_EXPR:
5542 case PARM_DECL:
5543 case RESULT_DECL:
5544 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
5545 {
5546 if (nonnull)
5547 *nonnull = 1;
5548 return TREE_TYPE (instance);
5549 }
5550 else if (instance == current_class_ptr)
5551 {
5552 if (nonnull)
5553 *nonnull = 1;
5554
5555 /* if we're in a ctor or dtor, we know our type. */
5556 if (DECL_LANG_SPECIFIC (current_function_decl)
5557 && (DECL_CONSTRUCTOR_P (current_function_decl)
5558 || DECL_DESTRUCTOR_P (current_function_decl)))
5559 {
5560 if (cdtorp)
5561 *cdtorp = 1;
5562 return TREE_TYPE (TREE_TYPE (instance));
5563 }
5564 }
5565 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5566 {
5567 /* We only need one hash table because it is always left empty. */
5568 static htab_t ht;
5569 if (!ht)
5570 ht = htab_create (37,
5571 htab_hash_pointer,
5572 htab_eq_pointer,
5573 /*htab_del=*/NULL);
5574
5575 /* Reference variables should be references to objects. */
5576 if (nonnull)
5577 *nonnull = 1;
5578
5579 /* Enter the INSTANCE in a table to prevent recursion; a
5580 variable's initializer may refer to the variable
5581 itself. */
5582 if (TREE_CODE (instance) == VAR_DECL
5583 && DECL_INITIAL (instance)
5584 && !htab_find (ht, instance))
5585 {
5586 tree type;
5587 void **slot;
5588
5589 slot = htab_find_slot (ht, instance, INSERT);
5590 *slot = instance;
5591 type = RECUR (DECL_INITIAL (instance));
5592 htab_remove_elt (ht, instance);
5593
5594 return type;
5595 }
5596 }
5597 return NULL_TREE;
5598
5599 default:
5600 return NULL_TREE;
5601 }
5602 #undef RECUR
5603 }
5604
5605 /* Return nonzero if the dynamic type of INSTANCE is known, and
5606 equivalent to the static type. We also handle the case where
5607 INSTANCE is really a pointer. Return negative if this is a
5608 ctor/dtor. There the dynamic type is known, but this might not be
5609 the most derived base of the original object, and hence virtual
5610 bases may not be layed out according to this type.
5611
5612 Used to determine whether the virtual function table is needed
5613 or not.
5614
5615 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5616 of our knowledge of its type. *NONNULL should be initialized
5617 before this function is called. */
5618
5619 int
5620 resolves_to_fixed_type_p (tree instance, int* nonnull)
5621 {
5622 tree t = TREE_TYPE (instance);
5623 int cdtorp = 0;
5624 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5625 if (fixed == NULL_TREE)
5626 return 0;
5627 if (POINTER_TYPE_P (t))
5628 t = TREE_TYPE (t);
5629 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5630 return 0;
5631 return cdtorp ? -1 : 1;
5632 }
5633
5634 \f
5635 void
5636 init_class_processing (void)
5637 {
5638 current_class_depth = 0;
5639 current_class_stack_size = 10;
5640 current_class_stack
5641 = XNEWVEC (struct class_stack_node, current_class_stack_size);
5642 local_classes = VEC_alloc (tree, gc, 8);
5643 sizeof_biggest_empty_class = size_zero_node;
5644
5645 ridpointers[(int) RID_PUBLIC] = access_public_node;
5646 ridpointers[(int) RID_PRIVATE] = access_private_node;
5647 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5648 }
5649
5650 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5651
5652 static void
5653 restore_class_cache (void)
5654 {
5655 tree type;
5656
5657 /* We are re-entering the same class we just left, so we don't
5658 have to search the whole inheritance matrix to find all the
5659 decls to bind again. Instead, we install the cached
5660 class_shadowed list and walk through it binding names. */
5661 push_binding_level (previous_class_level);
5662 class_binding_level = previous_class_level;
5663 /* Restore IDENTIFIER_TYPE_VALUE. */
5664 for (type = class_binding_level->type_shadowed;
5665 type;
5666 type = TREE_CHAIN (type))
5667 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
5668 }
5669
5670 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5671 appropriate for TYPE.
5672
5673 So that we may avoid calls to lookup_name, we cache the _TYPE
5674 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5675
5676 For multiple inheritance, we perform a two-pass depth-first search
5677 of the type lattice. */
5678
5679 void
5680 pushclass (tree type)
5681 {
5682 class_stack_node_t csn;
5683
5684 type = TYPE_MAIN_VARIANT (type);
5685
5686 /* Make sure there is enough room for the new entry on the stack. */
5687 if (current_class_depth + 1 >= current_class_stack_size)
5688 {
5689 current_class_stack_size *= 2;
5690 current_class_stack
5691 = XRESIZEVEC (struct class_stack_node, current_class_stack,
5692 current_class_stack_size);
5693 }
5694
5695 /* Insert a new entry on the class stack. */
5696 csn = current_class_stack + current_class_depth;
5697 csn->name = current_class_name;
5698 csn->type = current_class_type;
5699 csn->access = current_access_specifier;
5700 csn->names_used = 0;
5701 csn->hidden = 0;
5702 current_class_depth++;
5703
5704 /* Now set up the new type. */
5705 current_class_name = TYPE_NAME (type);
5706 if (TREE_CODE (current_class_name) == TYPE_DECL)
5707 current_class_name = DECL_NAME (current_class_name);
5708 current_class_type = type;
5709
5710 /* By default, things in classes are private, while things in
5711 structures or unions are public. */
5712 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5713 ? access_private_node
5714 : access_public_node);
5715
5716 if (previous_class_level
5717 && type != previous_class_level->this_entity
5718 && current_class_depth == 1)
5719 {
5720 /* Forcibly remove any old class remnants. */
5721 invalidate_class_lookup_cache ();
5722 }
5723
5724 if (!previous_class_level
5725 || type != previous_class_level->this_entity
5726 || current_class_depth > 1)
5727 pushlevel_class ();
5728 else
5729 restore_class_cache ();
5730 }
5731
5732 /* When we exit a toplevel class scope, we save its binding level so
5733 that we can restore it quickly. Here, we've entered some other
5734 class, so we must invalidate our cache. */
5735
5736 void
5737 invalidate_class_lookup_cache (void)
5738 {
5739 previous_class_level = NULL;
5740 }
5741
5742 /* Get out of the current class scope. If we were in a class scope
5743 previously, that is the one popped to. */
5744
5745 void
5746 popclass (void)
5747 {
5748 poplevel_class ();
5749
5750 current_class_depth--;
5751 current_class_name = current_class_stack[current_class_depth].name;
5752 current_class_type = current_class_stack[current_class_depth].type;
5753 current_access_specifier = current_class_stack[current_class_depth].access;
5754 if (current_class_stack[current_class_depth].names_used)
5755 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5756 }
5757
5758 /* Mark the top of the class stack as hidden. */
5759
5760 void
5761 push_class_stack (void)
5762 {
5763 if (current_class_depth)
5764 ++current_class_stack[current_class_depth - 1].hidden;
5765 }
5766
5767 /* Mark the top of the class stack as un-hidden. */
5768
5769 void
5770 pop_class_stack (void)
5771 {
5772 if (current_class_depth)
5773 --current_class_stack[current_class_depth - 1].hidden;
5774 }
5775
5776 /* Returns 1 if the class type currently being defined is either T or
5777 a nested type of T. */
5778
5779 bool
5780 currently_open_class (tree t)
5781 {
5782 int i;
5783
5784 /* We start looking from 1 because entry 0 is from global scope,
5785 and has no type. */
5786 for (i = current_class_depth; i > 0; --i)
5787 {
5788 tree c;
5789 if (i == current_class_depth)
5790 c = current_class_type;
5791 else
5792 {
5793 if (current_class_stack[i].hidden)
5794 break;
5795 c = current_class_stack[i].type;
5796 }
5797 if (!c)
5798 continue;
5799 if (same_type_p (c, t))
5800 return true;
5801 }
5802 return false;
5803 }
5804
5805 /* If either current_class_type or one of its enclosing classes are derived
5806 from T, return the appropriate type. Used to determine how we found
5807 something via unqualified lookup. */
5808
5809 tree
5810 currently_open_derived_class (tree t)
5811 {
5812 int i;
5813
5814 /* The bases of a dependent type are unknown. */
5815 if (dependent_type_p (t))
5816 return NULL_TREE;
5817
5818 if (!current_class_type)
5819 return NULL_TREE;
5820
5821 if (DERIVED_FROM_P (t, current_class_type))
5822 return current_class_type;
5823
5824 for (i = current_class_depth - 1; i > 0; --i)
5825 {
5826 if (current_class_stack[i].hidden)
5827 break;
5828 if (DERIVED_FROM_P (t, current_class_stack[i].type))
5829 return current_class_stack[i].type;
5830 }
5831
5832 return NULL_TREE;
5833 }
5834
5835 /* When entering a class scope, all enclosing class scopes' names with
5836 static meaning (static variables, static functions, types and
5837 enumerators) have to be visible. This recursive function calls
5838 pushclass for all enclosing class contexts until global or a local
5839 scope is reached. TYPE is the enclosed class. */
5840
5841 void
5842 push_nested_class (tree type)
5843 {
5844 /* A namespace might be passed in error cases, like A::B:C. */
5845 if (type == NULL_TREE
5846 || !CLASS_TYPE_P (type))
5847 return;
5848
5849 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
5850
5851 pushclass (type);
5852 }
5853
5854 /* Undoes a push_nested_class call. */
5855
5856 void
5857 pop_nested_class (void)
5858 {
5859 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
5860
5861 popclass ();
5862 if (context && CLASS_TYPE_P (context))
5863 pop_nested_class ();
5864 }
5865
5866 /* Returns the number of extern "LANG" blocks we are nested within. */
5867
5868 int
5869 current_lang_depth (void)
5870 {
5871 return VEC_length (tree, current_lang_base);
5872 }
5873
5874 /* Set global variables CURRENT_LANG_NAME to appropriate value
5875 so that behavior of name-mangling machinery is correct. */
5876
5877 void
5878 push_lang_context (tree name)
5879 {
5880 VEC_safe_push (tree, gc, current_lang_base, current_lang_name);
5881
5882 if (name == lang_name_cplusplus)
5883 {
5884 current_lang_name = name;
5885 }
5886 else if (name == lang_name_java)
5887 {
5888 current_lang_name = name;
5889 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5890 (See record_builtin_java_type in decl.c.) However, that causes
5891 incorrect debug entries if these types are actually used.
5892 So we re-enable debug output after extern "Java". */
5893 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
5894 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
5895 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
5896 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
5897 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
5898 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
5899 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
5900 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
5901 }
5902 else if (name == lang_name_c)
5903 {
5904 current_lang_name = name;
5905 }
5906 else
5907 error ("language string %<\"%E\"%> not recognized", name);
5908 }
5909
5910 /* Get out of the current language scope. */
5911
5912 void
5913 pop_lang_context (void)
5914 {
5915 current_lang_name = VEC_pop (tree, current_lang_base);
5916 }
5917 \f
5918 /* Type instantiation routines. */
5919
5920 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5921 matches the TARGET_TYPE. If there is no satisfactory match, return
5922 error_mark_node, and issue an error & warning messages under
5923 control of FLAGS. Permit pointers to member function if FLAGS
5924 permits. If TEMPLATE_ONLY, the name of the overloaded function was
5925 a template-id, and EXPLICIT_TARGS are the explicitly provided
5926 template arguments. If OVERLOAD is for one or more member
5927 functions, then ACCESS_PATH is the base path used to reference
5928 those member functions. */
5929
5930 static tree
5931 resolve_address_of_overloaded_function (tree target_type,
5932 tree overload,
5933 tsubst_flags_t flags,
5934 bool template_only,
5935 tree explicit_targs,
5936 tree access_path)
5937 {
5938 /* Here's what the standard says:
5939
5940 [over.over]
5941
5942 If the name is a function template, template argument deduction
5943 is done, and if the argument deduction succeeds, the deduced
5944 arguments are used to generate a single template function, which
5945 is added to the set of overloaded functions considered.
5946
5947 Non-member functions and static member functions match targets of
5948 type "pointer-to-function" or "reference-to-function." Nonstatic
5949 member functions match targets of type "pointer-to-member
5950 function;" the function type of the pointer to member is used to
5951 select the member function from the set of overloaded member
5952 functions. If a nonstatic member function is selected, the
5953 reference to the overloaded function name is required to have the
5954 form of a pointer to member as described in 5.3.1.
5955
5956 If more than one function is selected, any template functions in
5957 the set are eliminated if the set also contains a non-template
5958 function, and any given template function is eliminated if the
5959 set contains a second template function that is more specialized
5960 than the first according to the partial ordering rules 14.5.5.2.
5961 After such eliminations, if any, there shall remain exactly one
5962 selected function. */
5963
5964 int is_ptrmem = 0;
5965 int is_reference = 0;
5966 /* We store the matches in a TREE_LIST rooted here. The functions
5967 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5968 interoperability with most_specialized_instantiation. */
5969 tree matches = NULL_TREE;
5970 tree fn;
5971
5972 /* By the time we get here, we should be seeing only real
5973 pointer-to-member types, not the internal POINTER_TYPE to
5974 METHOD_TYPE representation. */
5975 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
5976 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
5977
5978 gcc_assert (is_overloaded_fn (overload));
5979
5980 /* Check that the TARGET_TYPE is reasonable. */
5981 if (TYPE_PTRFN_P (target_type))
5982 /* This is OK. */;
5983 else if (TYPE_PTRMEMFUNC_P (target_type))
5984 /* This is OK, too. */
5985 is_ptrmem = 1;
5986 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
5987 {
5988 /* This is OK, too. This comes from a conversion to reference
5989 type. */
5990 target_type = build_reference_type (target_type);
5991 is_reference = 1;
5992 }
5993 else
5994 {
5995 if (flags & tf_error)
5996 error ("cannot resolve overloaded function %qD based on"
5997 " conversion to type %qT",
5998 DECL_NAME (OVL_FUNCTION (overload)), target_type);
5999 return error_mark_node;
6000 }
6001
6002 /* If we can find a non-template function that matches, we can just
6003 use it. There's no point in generating template instantiations
6004 if we're just going to throw them out anyhow. But, of course, we
6005 can only do this when we don't *need* a template function. */
6006 if (!template_only)
6007 {
6008 tree fns;
6009
6010 for (fns = overload; fns; fns = OVL_NEXT (fns))
6011 {
6012 tree fn = OVL_CURRENT (fns);
6013 tree fntype;
6014
6015 if (TREE_CODE (fn) == TEMPLATE_DECL)
6016 /* We're not looking for templates just yet. */
6017 continue;
6018
6019 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
6020 != is_ptrmem)
6021 /* We're looking for a non-static member, and this isn't
6022 one, or vice versa. */
6023 continue;
6024
6025 /* Ignore functions which haven't been explicitly
6026 declared. */
6027 if (DECL_ANTICIPATED (fn))
6028 continue;
6029
6030 /* See if there's a match. */
6031 fntype = TREE_TYPE (fn);
6032 if (is_ptrmem)
6033 fntype = build_ptrmemfunc_type (build_pointer_type (fntype));
6034 else if (!is_reference)
6035 fntype = build_pointer_type (fntype);
6036
6037 if (can_convert_arg (target_type, fntype, fn, LOOKUP_NORMAL))
6038 matches = tree_cons (fn, NULL_TREE, matches);
6039 }
6040 }
6041
6042 /* Now, if we've already got a match (or matches), there's no need
6043 to proceed to the template functions. But, if we don't have a
6044 match we need to look at them, too. */
6045 if (!matches)
6046 {
6047 tree target_fn_type;
6048 tree target_arg_types;
6049 tree target_ret_type;
6050 tree fns;
6051
6052 if (is_ptrmem)
6053 target_fn_type
6054 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type));
6055 else
6056 target_fn_type = TREE_TYPE (target_type);
6057 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
6058 target_ret_type = TREE_TYPE (target_fn_type);
6059
6060 /* Never do unification on the 'this' parameter. */
6061 if (TREE_CODE (target_fn_type) == METHOD_TYPE)
6062 target_arg_types = TREE_CHAIN (target_arg_types);
6063
6064 for (fns = overload; fns; fns = OVL_NEXT (fns))
6065 {
6066 tree fn = OVL_CURRENT (fns);
6067 tree instantiation;
6068 tree instantiation_type;
6069 tree targs;
6070
6071 if (TREE_CODE (fn) != TEMPLATE_DECL)
6072 /* We're only looking for templates. */
6073 continue;
6074
6075 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
6076 != is_ptrmem)
6077 /* We're not looking for a non-static member, and this is
6078 one, or vice versa. */
6079 continue;
6080
6081 /* Try to do argument deduction. */
6082 targs = make_tree_vec (DECL_NTPARMS (fn));
6083 if (fn_type_unification (fn, explicit_targs, targs,
6084 target_arg_types, target_ret_type,
6085 DEDUCE_EXACT, LOOKUP_NORMAL))
6086 /* Argument deduction failed. */
6087 continue;
6088
6089 /* Instantiate the template. */
6090 instantiation = instantiate_template (fn, targs, flags);
6091 if (instantiation == error_mark_node)
6092 /* Instantiation failed. */
6093 continue;
6094
6095 /* See if there's a match. */
6096 instantiation_type = TREE_TYPE (instantiation);
6097 if (is_ptrmem)
6098 instantiation_type =
6099 build_ptrmemfunc_type (build_pointer_type (instantiation_type));
6100 else if (!is_reference)
6101 instantiation_type = build_pointer_type (instantiation_type);
6102 if (can_convert_arg (target_type, instantiation_type, instantiation,
6103 LOOKUP_NORMAL))
6104 matches = tree_cons (instantiation, fn, matches);
6105 }
6106
6107 /* Now, remove all but the most specialized of the matches. */
6108 if (matches)
6109 {
6110 tree match = most_specialized_instantiation (matches);
6111
6112 if (match != error_mark_node)
6113 matches = tree_cons (TREE_PURPOSE (match),
6114 NULL_TREE,
6115 NULL_TREE);
6116 }
6117 }
6118
6119 /* Now we should have exactly one function in MATCHES. */
6120 if (matches == NULL_TREE)
6121 {
6122 /* There were *no* matches. */
6123 if (flags & tf_error)
6124 {
6125 error ("no matches converting function %qD to type %q#T",
6126 DECL_NAME (OVL_FUNCTION (overload)),
6127 target_type);
6128
6129 /* print_candidates expects a chain with the functions in
6130 TREE_VALUE slots, so we cons one up here (we're losing anyway,
6131 so why be clever?). */
6132 for (; overload; overload = OVL_NEXT (overload))
6133 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
6134 matches);
6135
6136 print_candidates (matches);
6137 }
6138 return error_mark_node;
6139 }
6140 else if (TREE_CHAIN (matches))
6141 {
6142 /* There were too many matches. */
6143
6144 if (flags & tf_error)
6145 {
6146 tree match;
6147
6148 error ("converting overloaded function %qD to type %q#T is ambiguous",
6149 DECL_NAME (OVL_FUNCTION (overload)),
6150 target_type);
6151
6152 /* Since print_candidates expects the functions in the
6153 TREE_VALUE slot, we flip them here. */
6154 for (match = matches; match; match = TREE_CHAIN (match))
6155 TREE_VALUE (match) = TREE_PURPOSE (match);
6156
6157 print_candidates (matches);
6158 }
6159
6160 return error_mark_node;
6161 }
6162
6163 /* Good, exactly one match. Now, convert it to the correct type. */
6164 fn = TREE_PURPOSE (matches);
6165
6166 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
6167 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
6168 {
6169 static int explained;
6170
6171 if (!(flags & tf_error))
6172 return error_mark_node;
6173
6174 permerror (input_location, "assuming pointer to member %qD", fn);
6175 if (!explained)
6176 {
6177 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
6178 explained = 1;
6179 }
6180 }
6181
6182 /* If we're doing overload resolution purely for the purpose of
6183 determining conversion sequences, we should not consider the
6184 function used. If this conversion sequence is selected, the
6185 function will be marked as used at this point. */
6186 if (!(flags & tf_conv))
6187 {
6188 /* Make =delete work with SFINAE. */
6189 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
6190 return error_mark_node;
6191
6192 mark_used (fn);
6193 /* We could not check access when this expression was originally
6194 created since we did not know at that time to which function
6195 the expression referred. */
6196 if (DECL_FUNCTION_MEMBER_P (fn))
6197 {
6198 gcc_assert (access_path);
6199 perform_or_defer_access_check (access_path, fn, fn);
6200 }
6201 }
6202
6203 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
6204 return cp_build_unary_op (ADDR_EXPR, fn, 0, flags);
6205 else
6206 {
6207 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
6208 will mark the function as addressed, but here we must do it
6209 explicitly. */
6210 cxx_mark_addressable (fn);
6211
6212 return fn;
6213 }
6214 }
6215
6216 /* This function will instantiate the type of the expression given in
6217 RHS to match the type of LHSTYPE. If errors exist, then return
6218 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
6219 we complain on errors. If we are not complaining, never modify rhs,
6220 as overload resolution wants to try many possible instantiations, in
6221 the hope that at least one will work.
6222
6223 For non-recursive calls, LHSTYPE should be a function, pointer to
6224 function, or a pointer to member function. */
6225
6226 tree
6227 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
6228 {
6229 tsubst_flags_t flags_in = flags;
6230 tree access_path = NULL_TREE;
6231
6232 flags &= ~tf_ptrmem_ok;
6233
6234 if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
6235 {
6236 if (flags & tf_error)
6237 error ("not enough type information");
6238 return error_mark_node;
6239 }
6240
6241 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
6242 {
6243 if (same_type_p (lhstype, TREE_TYPE (rhs)))
6244 return rhs;
6245 if (flag_ms_extensions
6246 && TYPE_PTRMEMFUNC_P (lhstype)
6247 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
6248 /* Microsoft allows `A::f' to be resolved to a
6249 pointer-to-member. */
6250 ;
6251 else
6252 {
6253 if (flags & tf_error)
6254 error ("argument of type %qT does not match %qT",
6255 TREE_TYPE (rhs), lhstype);
6256 return error_mark_node;
6257 }
6258 }
6259
6260 if (TREE_CODE (rhs) == BASELINK)
6261 {
6262 access_path = BASELINK_ACCESS_BINFO (rhs);
6263 rhs = BASELINK_FUNCTIONS (rhs);
6264 }
6265
6266 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
6267 deduce any type information. */
6268 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
6269 {
6270 if (flags & tf_error)
6271 error ("not enough type information");
6272 return error_mark_node;
6273 }
6274
6275 /* There only a few kinds of expressions that may have a type
6276 dependent on overload resolution. */
6277 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
6278 || TREE_CODE (rhs) == COMPONENT_REF
6279 || TREE_CODE (rhs) == COMPOUND_EXPR
6280 || really_overloaded_fn (rhs));
6281
6282 /* We don't overwrite rhs if it is an overloaded function.
6283 Copying it would destroy the tree link. */
6284 if (TREE_CODE (rhs) != OVERLOAD)
6285 rhs = copy_node (rhs);
6286
6287 /* This should really only be used when attempting to distinguish
6288 what sort of a pointer to function we have. For now, any
6289 arithmetic operation which is not supported on pointers
6290 is rejected as an error. */
6291
6292 switch (TREE_CODE (rhs))
6293 {
6294 case COMPONENT_REF:
6295 {
6296 tree member = TREE_OPERAND (rhs, 1);
6297
6298 member = instantiate_type (lhstype, member, flags);
6299 if (member != error_mark_node
6300 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
6301 /* Do not lose object's side effects. */
6302 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
6303 TREE_OPERAND (rhs, 0), member);
6304 return member;
6305 }
6306
6307 case OFFSET_REF:
6308 rhs = TREE_OPERAND (rhs, 1);
6309 if (BASELINK_P (rhs))
6310 return instantiate_type (lhstype, rhs, flags_in);
6311
6312 /* This can happen if we are forming a pointer-to-member for a
6313 member template. */
6314 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
6315
6316 /* Fall through. */
6317
6318 case TEMPLATE_ID_EXPR:
6319 {
6320 tree fns = TREE_OPERAND (rhs, 0);
6321 tree args = TREE_OPERAND (rhs, 1);
6322
6323 return
6324 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
6325 /*template_only=*/true,
6326 args, access_path);
6327 }
6328
6329 case OVERLOAD:
6330 case FUNCTION_DECL:
6331 return
6332 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
6333 /*template_only=*/false,
6334 /*explicit_targs=*/NULL_TREE,
6335 access_path);
6336
6337 case COMPOUND_EXPR:
6338 TREE_OPERAND (rhs, 0)
6339 = instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6340 if (TREE_OPERAND (rhs, 0) == error_mark_node)
6341 return error_mark_node;
6342 TREE_OPERAND (rhs, 1)
6343 = instantiate_type (lhstype, TREE_OPERAND (rhs, 1), flags);
6344 if (TREE_OPERAND (rhs, 1) == error_mark_node)
6345 return error_mark_node;
6346
6347 TREE_TYPE (rhs) = lhstype;
6348 return rhs;
6349
6350 case ADDR_EXPR:
6351 {
6352 if (PTRMEM_OK_P (rhs))
6353 flags |= tf_ptrmem_ok;
6354
6355 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6356 }
6357
6358 case ERROR_MARK:
6359 return error_mark_node;
6360
6361 default:
6362 gcc_unreachable ();
6363 }
6364 return error_mark_node;
6365 }
6366 \f
6367 /* Return the name of the virtual function pointer field
6368 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6369 this may have to look back through base types to find the
6370 ultimate field name. (For single inheritance, these could
6371 all be the same name. Who knows for multiple inheritance). */
6372
6373 static tree
6374 get_vfield_name (tree type)
6375 {
6376 tree binfo, base_binfo;
6377 char *buf;
6378
6379 for (binfo = TYPE_BINFO (type);
6380 BINFO_N_BASE_BINFOS (binfo);
6381 binfo = base_binfo)
6382 {
6383 base_binfo = BINFO_BASE_BINFO (binfo, 0);
6384
6385 if (BINFO_VIRTUAL_P (base_binfo)
6386 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
6387 break;
6388 }
6389
6390 type = BINFO_TYPE (binfo);
6391 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
6392 + TYPE_NAME_LENGTH (type) + 2);
6393 sprintf (buf, VFIELD_NAME_FORMAT,
6394 IDENTIFIER_POINTER (constructor_name (type)));
6395 return get_identifier (buf);
6396 }
6397
6398 void
6399 print_class_statistics (void)
6400 {
6401 #ifdef GATHER_STATISTICS
6402 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6403 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6404 if (n_vtables)
6405 {
6406 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6407 n_vtables, n_vtable_searches);
6408 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6409 n_vtable_entries, n_vtable_elems);
6410 }
6411 #endif
6412 }
6413
6414 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6415 according to [class]:
6416 The class-name is also inserted
6417 into the scope of the class itself. For purposes of access checking,
6418 the inserted class name is treated as if it were a public member name. */
6419
6420 void
6421 build_self_reference (void)
6422 {
6423 tree name = constructor_name (current_class_type);
6424 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6425 tree saved_cas;
6426
6427 DECL_NONLOCAL (value) = 1;
6428 DECL_CONTEXT (value) = current_class_type;
6429 DECL_ARTIFICIAL (value) = 1;
6430 SET_DECL_SELF_REFERENCE_P (value);
6431
6432 if (processing_template_decl)
6433 value = push_template_decl (value);
6434
6435 saved_cas = current_access_specifier;
6436 current_access_specifier = access_public_node;
6437 finish_member_declaration (value);
6438 current_access_specifier = saved_cas;
6439 }
6440
6441 /* Returns 1 if TYPE contains only padding bytes. */
6442
6443 int
6444 is_empty_class (tree type)
6445 {
6446 if (type == error_mark_node)
6447 return 0;
6448
6449 if (! MAYBE_CLASS_TYPE_P (type))
6450 return 0;
6451
6452 /* In G++ 3.2, whether or not a class was empty was determined by
6453 looking at its size. */
6454 if (abi_version_at_least (2))
6455 return CLASSTYPE_EMPTY_P (type);
6456 else
6457 return integer_zerop (CLASSTYPE_SIZE (type));
6458 }
6459
6460 /* Returns true if TYPE contains an empty class. */
6461
6462 static bool
6463 contains_empty_class_p (tree type)
6464 {
6465 if (is_empty_class (type))
6466 return true;
6467 if (CLASS_TYPE_P (type))
6468 {
6469 tree field;
6470 tree binfo;
6471 tree base_binfo;
6472 int i;
6473
6474 for (binfo = TYPE_BINFO (type), i = 0;
6475 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6476 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
6477 return true;
6478 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6479 if (TREE_CODE (field) == FIELD_DECL
6480 && !DECL_ARTIFICIAL (field)
6481 && is_empty_class (TREE_TYPE (field)))
6482 return true;
6483 }
6484 else if (TREE_CODE (type) == ARRAY_TYPE)
6485 return contains_empty_class_p (TREE_TYPE (type));
6486 return false;
6487 }
6488
6489 /* Note that NAME was looked up while the current class was being
6490 defined and that the result of that lookup was DECL. */
6491
6492 void
6493 maybe_note_name_used_in_class (tree name, tree decl)
6494 {
6495 splay_tree names_used;
6496
6497 /* If we're not defining a class, there's nothing to do. */
6498 if (!(innermost_scope_kind() == sk_class
6499 && TYPE_BEING_DEFINED (current_class_type)))
6500 return;
6501
6502 /* If there's already a binding for this NAME, then we don't have
6503 anything to worry about. */
6504 if (lookup_member (current_class_type, name,
6505 /*protect=*/0, /*want_type=*/false))
6506 return;
6507
6508 if (!current_class_stack[current_class_depth - 1].names_used)
6509 current_class_stack[current_class_depth - 1].names_used
6510 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6511 names_used = current_class_stack[current_class_depth - 1].names_used;
6512
6513 splay_tree_insert (names_used,
6514 (splay_tree_key) name,
6515 (splay_tree_value) decl);
6516 }
6517
6518 /* Note that NAME was declared (as DECL) in the current class. Check
6519 to see that the declaration is valid. */
6520
6521 void
6522 note_name_declared_in_class (tree name, tree decl)
6523 {
6524 splay_tree names_used;
6525 splay_tree_node n;
6526
6527 /* Look to see if we ever used this name. */
6528 names_used
6529 = current_class_stack[current_class_depth - 1].names_used;
6530 if (!names_used)
6531 return;
6532
6533 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6534 if (n)
6535 {
6536 /* [basic.scope.class]
6537
6538 A name N used in a class S shall refer to the same declaration
6539 in its context and when re-evaluated in the completed scope of
6540 S. */
6541 permerror (input_location, "declaration of %q#D", decl);
6542 permerror (input_location, "changes meaning of %qD from %q+#D",
6543 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
6544 }
6545 }
6546
6547 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6548 Secondary vtables are merged with primary vtables; this function
6549 will return the VAR_DECL for the primary vtable. */
6550
6551 tree
6552 get_vtbl_decl_for_binfo (tree binfo)
6553 {
6554 tree decl;
6555
6556 decl = BINFO_VTABLE (binfo);
6557 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
6558 {
6559 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
6560 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6561 }
6562 if (decl)
6563 gcc_assert (TREE_CODE (decl) == VAR_DECL);
6564 return decl;
6565 }
6566
6567
6568 /* Returns the binfo for the primary base of BINFO. If the resulting
6569 BINFO is a virtual base, and it is inherited elsewhere in the
6570 hierarchy, then the returned binfo might not be the primary base of
6571 BINFO in the complete object. Check BINFO_PRIMARY_P or
6572 BINFO_LOST_PRIMARY_P to be sure. */
6573
6574 static tree
6575 get_primary_binfo (tree binfo)
6576 {
6577 tree primary_base;
6578
6579 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6580 if (!primary_base)
6581 return NULL_TREE;
6582
6583 return copied_binfo (primary_base, binfo);
6584 }
6585
6586 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6587
6588 static int
6589 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6590 {
6591 if (!indented_p)
6592 fprintf (stream, "%*s", indent, "");
6593 return 1;
6594 }
6595
6596 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6597 INDENT should be zero when called from the top level; it is
6598 incremented recursively. IGO indicates the next expected BINFO in
6599 inheritance graph ordering. */
6600
6601 static tree
6602 dump_class_hierarchy_r (FILE *stream,
6603 int flags,
6604 tree binfo,
6605 tree igo,
6606 int indent)
6607 {
6608 int indented = 0;
6609 tree base_binfo;
6610 int i;
6611
6612 indented = maybe_indent_hierarchy (stream, indent, 0);
6613 fprintf (stream, "%s (0x%lx) ",
6614 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
6615 (unsigned long) binfo);
6616 if (binfo != igo)
6617 {
6618 fprintf (stream, "alternative-path\n");
6619 return igo;
6620 }
6621 igo = TREE_CHAIN (binfo);
6622
6623 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6624 tree_low_cst (BINFO_OFFSET (binfo), 0));
6625 if (is_empty_class (BINFO_TYPE (binfo)))
6626 fprintf (stream, " empty");
6627 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6628 fprintf (stream, " nearly-empty");
6629 if (BINFO_VIRTUAL_P (binfo))
6630 fprintf (stream, " virtual");
6631 fprintf (stream, "\n");
6632
6633 indented = 0;
6634 if (BINFO_PRIMARY_P (binfo))
6635 {
6636 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6637 fprintf (stream, " primary-for %s (0x%lx)",
6638 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
6639 TFF_PLAIN_IDENTIFIER),
6640 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
6641 }
6642 if (BINFO_LOST_PRIMARY_P (binfo))
6643 {
6644 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6645 fprintf (stream, " lost-primary");
6646 }
6647 if (indented)
6648 fprintf (stream, "\n");
6649
6650 if (!(flags & TDF_SLIM))
6651 {
6652 int indented = 0;
6653
6654 if (BINFO_SUBVTT_INDEX (binfo))
6655 {
6656 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6657 fprintf (stream, " subvttidx=%s",
6658 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6659 TFF_PLAIN_IDENTIFIER));
6660 }
6661 if (BINFO_VPTR_INDEX (binfo))
6662 {
6663 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6664 fprintf (stream, " vptridx=%s",
6665 expr_as_string (BINFO_VPTR_INDEX (binfo),
6666 TFF_PLAIN_IDENTIFIER));
6667 }
6668 if (BINFO_VPTR_FIELD (binfo))
6669 {
6670 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6671 fprintf (stream, " vbaseoffset=%s",
6672 expr_as_string (BINFO_VPTR_FIELD (binfo),
6673 TFF_PLAIN_IDENTIFIER));
6674 }
6675 if (BINFO_VTABLE (binfo))
6676 {
6677 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6678 fprintf (stream, " vptr=%s",
6679 expr_as_string (BINFO_VTABLE (binfo),
6680 TFF_PLAIN_IDENTIFIER));
6681 }
6682
6683 if (indented)
6684 fprintf (stream, "\n");
6685 }
6686
6687 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
6688 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
6689
6690 return igo;
6691 }
6692
6693 /* Dump the BINFO hierarchy for T. */
6694
6695 static void
6696 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6697 {
6698 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6699 fprintf (stream, " size=%lu align=%lu\n",
6700 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6701 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6702 fprintf (stream, " base size=%lu base align=%lu\n",
6703 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6704 / BITS_PER_UNIT),
6705 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6706 / BITS_PER_UNIT));
6707 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6708 fprintf (stream, "\n");
6709 }
6710
6711 /* Debug interface to hierarchy dumping. */
6712
6713 void
6714 debug_class (tree t)
6715 {
6716 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6717 }
6718
6719 static void
6720 dump_class_hierarchy (tree t)
6721 {
6722 int flags;
6723 FILE *stream = dump_begin (TDI_class, &flags);
6724
6725 if (stream)
6726 {
6727 dump_class_hierarchy_1 (stream, flags, t);
6728 dump_end (TDI_class, stream);
6729 }
6730 }
6731
6732 static void
6733 dump_array (FILE * stream, tree decl)
6734 {
6735 tree value;
6736 unsigned HOST_WIDE_INT ix;
6737 HOST_WIDE_INT elt;
6738 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
6739
6740 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
6741 / BITS_PER_UNIT);
6742 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
6743 fprintf (stream, " %s entries",
6744 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
6745 TFF_PLAIN_IDENTIFIER));
6746 fprintf (stream, "\n");
6747
6748 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
6749 ix, value)
6750 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
6751 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
6752 }
6753
6754 static void
6755 dump_vtable (tree t, tree binfo, tree vtable)
6756 {
6757 int flags;
6758 FILE *stream = dump_begin (TDI_class, &flags);
6759
6760 if (!stream)
6761 return;
6762
6763 if (!(flags & TDF_SLIM))
6764 {
6765 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
6766
6767 fprintf (stream, "%s for %s",
6768 ctor_vtbl_p ? "Construction vtable" : "Vtable",
6769 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
6770 if (ctor_vtbl_p)
6771 {
6772 if (!BINFO_VIRTUAL_P (binfo))
6773 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
6774 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6775 }
6776 fprintf (stream, "\n");
6777 dump_array (stream, vtable);
6778 fprintf (stream, "\n");
6779 }
6780
6781 dump_end (TDI_class, stream);
6782 }
6783
6784 static void
6785 dump_vtt (tree t, tree vtt)
6786 {
6787 int flags;
6788 FILE *stream = dump_begin (TDI_class, &flags);
6789
6790 if (!stream)
6791 return;
6792
6793 if (!(flags & TDF_SLIM))
6794 {
6795 fprintf (stream, "VTT for %s\n",
6796 type_as_string (t, TFF_PLAIN_IDENTIFIER));
6797 dump_array (stream, vtt);
6798 fprintf (stream, "\n");
6799 }
6800
6801 dump_end (TDI_class, stream);
6802 }
6803
6804 /* Dump a function or thunk and its thunkees. */
6805
6806 static void
6807 dump_thunk (FILE *stream, int indent, tree thunk)
6808 {
6809 static const char spaces[] = " ";
6810 tree name = DECL_NAME (thunk);
6811 tree thunks;
6812
6813 fprintf (stream, "%.*s%p %s %s", indent, spaces,
6814 (void *)thunk,
6815 !DECL_THUNK_P (thunk) ? "function"
6816 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
6817 name ? IDENTIFIER_POINTER (name) : "<unset>");
6818 if (DECL_THUNK_P (thunk))
6819 {
6820 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
6821 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
6822
6823 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
6824 if (!virtual_adjust)
6825 /*NOP*/;
6826 else if (DECL_THIS_THUNK_P (thunk))
6827 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
6828 tree_low_cst (virtual_adjust, 0));
6829 else
6830 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
6831 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
6832 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
6833 if (THUNK_ALIAS (thunk))
6834 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
6835 }
6836 fprintf (stream, "\n");
6837 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
6838 dump_thunk (stream, indent + 2, thunks);
6839 }
6840
6841 /* Dump the thunks for FN. */
6842
6843 void
6844 debug_thunks (tree fn)
6845 {
6846 dump_thunk (stderr, 0, fn);
6847 }
6848
6849 /* Virtual function table initialization. */
6850
6851 /* Create all the necessary vtables for T and its base classes. */
6852
6853 static void
6854 finish_vtbls (tree t)
6855 {
6856 tree list;
6857 tree vbase;
6858
6859 /* We lay out the primary and secondary vtables in one contiguous
6860 vtable. The primary vtable is first, followed by the non-virtual
6861 secondary vtables in inheritance graph order. */
6862 list = build_tree_list (BINFO_VTABLE (TYPE_BINFO (t)), NULL_TREE);
6863 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
6864 TYPE_BINFO (t), t, list);
6865
6866 /* Then come the virtual bases, also in inheritance graph order. */
6867 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6868 {
6869 if (!BINFO_VIRTUAL_P (vbase))
6870 continue;
6871 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
6872 }
6873
6874 if (BINFO_VTABLE (TYPE_BINFO (t)))
6875 initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
6876 }
6877
6878 /* Initialize the vtable for BINFO with the INITS. */
6879
6880 static void
6881 initialize_vtable (tree binfo, tree inits)
6882 {
6883 tree decl;
6884
6885 layout_vtable_decl (binfo, list_length (inits));
6886 decl = get_vtbl_decl_for_binfo (binfo);
6887 initialize_artificial_var (decl, inits);
6888 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
6889 }
6890
6891 /* Build the VTT (virtual table table) for T.
6892 A class requires a VTT if it has virtual bases.
6893
6894 This holds
6895 1 - primary virtual pointer for complete object T
6896 2 - secondary VTTs for each direct non-virtual base of T which requires a
6897 VTT
6898 3 - secondary virtual pointers for each direct or indirect base of T which
6899 has virtual bases or is reachable via a virtual path from T.
6900 4 - secondary VTTs for each direct or indirect virtual base of T.
6901
6902 Secondary VTTs look like complete object VTTs without part 4. */
6903
6904 static void
6905 build_vtt (tree t)
6906 {
6907 tree inits;
6908 tree type;
6909 tree vtt;
6910 tree index;
6911
6912 /* Build up the initializers for the VTT. */
6913 inits = NULL_TREE;
6914 index = size_zero_node;
6915 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
6916
6917 /* If we didn't need a VTT, we're done. */
6918 if (!inits)
6919 return;
6920
6921 /* Figure out the type of the VTT. */
6922 type = build_index_type (size_int (list_length (inits) - 1));
6923 type = build_cplus_array_type (const_ptr_type_node, type);
6924
6925 /* Now, build the VTT object itself. */
6926 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
6927 initialize_artificial_var (vtt, inits);
6928 /* Add the VTT to the vtables list. */
6929 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
6930 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
6931
6932 dump_vtt (t, vtt);
6933 }
6934
6935 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6936 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
6937 and CHAIN the vtable pointer for this binfo after construction is
6938 complete. VALUE can also be another BINFO, in which case we recurse. */
6939
6940 static tree
6941 binfo_ctor_vtable (tree binfo)
6942 {
6943 tree vt;
6944
6945 while (1)
6946 {
6947 vt = BINFO_VTABLE (binfo);
6948 if (TREE_CODE (vt) == TREE_LIST)
6949 vt = TREE_VALUE (vt);
6950 if (TREE_CODE (vt) == TREE_BINFO)
6951 binfo = vt;
6952 else
6953 break;
6954 }
6955
6956 return vt;
6957 }
6958
6959 /* Data for secondary VTT initialization. */
6960 typedef struct secondary_vptr_vtt_init_data_s
6961 {
6962 /* Is this the primary VTT? */
6963 bool top_level_p;
6964
6965 /* Current index into the VTT. */
6966 tree index;
6967
6968 /* TREE_LIST of initializers built up. */
6969 tree inits;
6970
6971 /* The type being constructed by this secondary VTT. */
6972 tree type_being_constructed;
6973 } secondary_vptr_vtt_init_data;
6974
6975 /* Recursively build the VTT-initializer for BINFO (which is in the
6976 hierarchy dominated by T). INITS points to the end of the initializer
6977 list to date. INDEX is the VTT index where the next element will be
6978 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
6979 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
6980 for virtual bases of T. When it is not so, we build the constructor
6981 vtables for the BINFO-in-T variant. */
6982
6983 static tree *
6984 build_vtt_inits (tree binfo, tree t, tree *inits, tree *index)
6985 {
6986 int i;
6987 tree b;
6988 tree init;
6989 tree secondary_vptrs;
6990 secondary_vptr_vtt_init_data data;
6991 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
6992
6993 /* We only need VTTs for subobjects with virtual bases. */
6994 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
6995 return inits;
6996
6997 /* We need to use a construction vtable if this is not the primary
6998 VTT. */
6999 if (!top_level_p)
7000 {
7001 build_ctor_vtbl_group (binfo, t);
7002
7003 /* Record the offset in the VTT where this sub-VTT can be found. */
7004 BINFO_SUBVTT_INDEX (binfo) = *index;
7005 }
7006
7007 /* Add the address of the primary vtable for the complete object. */
7008 init = binfo_ctor_vtable (binfo);
7009 *inits = build_tree_list (NULL_TREE, init);
7010 inits = &TREE_CHAIN (*inits);
7011 if (top_level_p)
7012 {
7013 gcc_assert (!BINFO_VPTR_INDEX (binfo));
7014 BINFO_VPTR_INDEX (binfo) = *index;
7015 }
7016 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
7017
7018 /* Recursively add the secondary VTTs for non-virtual bases. */
7019 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
7020 if (!BINFO_VIRTUAL_P (b))
7021 inits = build_vtt_inits (b, t, inits, index);
7022
7023 /* Add secondary virtual pointers for all subobjects of BINFO with
7024 either virtual bases or reachable along a virtual path, except
7025 subobjects that are non-virtual primary bases. */
7026 data.top_level_p = top_level_p;
7027 data.index = *index;
7028 data.inits = NULL;
7029 data.type_being_constructed = BINFO_TYPE (binfo);
7030
7031 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
7032
7033 *index = data.index;
7034
7035 /* The secondary vptrs come back in reverse order. After we reverse
7036 them, and add the INITS, the last init will be the first element
7037 of the chain. */
7038 secondary_vptrs = data.inits;
7039 if (secondary_vptrs)
7040 {
7041 *inits = nreverse (secondary_vptrs);
7042 inits = &TREE_CHAIN (secondary_vptrs);
7043 gcc_assert (*inits == NULL_TREE);
7044 }
7045
7046 if (top_level_p)
7047 /* Add the secondary VTTs for virtual bases in inheritance graph
7048 order. */
7049 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
7050 {
7051 if (!BINFO_VIRTUAL_P (b))
7052 continue;
7053
7054 inits = build_vtt_inits (b, t, inits, index);
7055 }
7056 else
7057 /* Remove the ctor vtables we created. */
7058 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
7059
7060 return inits;
7061 }
7062
7063 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
7064 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
7065
7066 static tree
7067 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
7068 {
7069 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
7070
7071 /* We don't care about bases that don't have vtables. */
7072 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
7073 return dfs_skip_bases;
7074
7075 /* We're only interested in proper subobjects of the type being
7076 constructed. */
7077 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
7078 return NULL_TREE;
7079
7080 /* We're only interested in bases with virtual bases or reachable
7081 via a virtual path from the type being constructed. */
7082 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7083 || binfo_via_virtual (binfo, data->type_being_constructed)))
7084 return dfs_skip_bases;
7085
7086 /* We're not interested in non-virtual primary bases. */
7087 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
7088 return NULL_TREE;
7089
7090 /* Record the index where this secondary vptr can be found. */
7091 if (data->top_level_p)
7092 {
7093 gcc_assert (!BINFO_VPTR_INDEX (binfo));
7094 BINFO_VPTR_INDEX (binfo) = data->index;
7095
7096 if (BINFO_VIRTUAL_P (binfo))
7097 {
7098 /* It's a primary virtual base, and this is not a
7099 construction vtable. Find the base this is primary of in
7100 the inheritance graph, and use that base's vtable
7101 now. */
7102 while (BINFO_PRIMARY_P (binfo))
7103 binfo = BINFO_INHERITANCE_CHAIN (binfo);
7104 }
7105 }
7106
7107 /* Add the initializer for the secondary vptr itself. */
7108 data->inits = tree_cons (NULL_TREE, binfo_ctor_vtable (binfo), data->inits);
7109
7110 /* Advance the vtt index. */
7111 data->index = size_binop (PLUS_EXPR, data->index,
7112 TYPE_SIZE_UNIT (ptr_type_node));
7113
7114 return NULL_TREE;
7115 }
7116
7117 /* Called from build_vtt_inits via dfs_walk. After building
7118 constructor vtables and generating the sub-vtt from them, we need
7119 to restore the BINFO_VTABLES that were scribbled on. DATA is the
7120 binfo of the base whose sub vtt was generated. */
7121
7122 static tree
7123 dfs_fixup_binfo_vtbls (tree binfo, void* data)
7124 {
7125 tree vtable = BINFO_VTABLE (binfo);
7126
7127 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7128 /* If this class has no vtable, none of its bases do. */
7129 return dfs_skip_bases;
7130
7131 if (!vtable)
7132 /* This might be a primary base, so have no vtable in this
7133 hierarchy. */
7134 return NULL_TREE;
7135
7136 /* If we scribbled the construction vtable vptr into BINFO, clear it
7137 out now. */
7138 if (TREE_CODE (vtable) == TREE_LIST
7139 && (TREE_PURPOSE (vtable) == (tree) data))
7140 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
7141
7142 return NULL_TREE;
7143 }
7144
7145 /* Build the construction vtable group for BINFO which is in the
7146 hierarchy dominated by T. */
7147
7148 static void
7149 build_ctor_vtbl_group (tree binfo, tree t)
7150 {
7151 tree list;
7152 tree type;
7153 tree vtbl;
7154 tree inits;
7155 tree id;
7156 tree vbase;
7157
7158 /* See if we've already created this construction vtable group. */
7159 id = mangle_ctor_vtbl_for_type (t, binfo);
7160 if (IDENTIFIER_GLOBAL_VALUE (id))
7161 return;
7162
7163 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
7164 /* Build a version of VTBL (with the wrong type) for use in
7165 constructing the addresses of secondary vtables in the
7166 construction vtable group. */
7167 vtbl = build_vtable (t, id, ptr_type_node);
7168 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
7169 list = build_tree_list (vtbl, NULL_TREE);
7170 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
7171 binfo, t, list);
7172
7173 /* Add the vtables for each of our virtual bases using the vbase in T
7174 binfo. */
7175 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7176 vbase;
7177 vbase = TREE_CHAIN (vbase))
7178 {
7179 tree b;
7180
7181 if (!BINFO_VIRTUAL_P (vbase))
7182 continue;
7183 b = copied_binfo (vbase, binfo);
7184
7185 accumulate_vtbl_inits (b, vbase, binfo, t, list);
7186 }
7187 inits = TREE_VALUE (list);
7188
7189 /* Figure out the type of the construction vtable. */
7190 type = build_index_type (size_int (list_length (inits) - 1));
7191 type = build_cplus_array_type (vtable_entry_type, type);
7192 layout_type (type);
7193 TREE_TYPE (vtbl) = type;
7194 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
7195 layout_decl (vtbl, 0);
7196
7197 /* Initialize the construction vtable. */
7198 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
7199 initialize_artificial_var (vtbl, inits);
7200 dump_vtable (t, binfo, vtbl);
7201 }
7202
7203 /* Add the vtbl initializers for BINFO (and its bases other than
7204 non-virtual primaries) to the list of INITS. BINFO is in the
7205 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
7206 the constructor the vtbl inits should be accumulated for. (If this
7207 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
7208 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
7209 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
7210 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
7211 but are not necessarily the same in terms of layout. */
7212
7213 static void
7214 accumulate_vtbl_inits (tree binfo,
7215 tree orig_binfo,
7216 tree rtti_binfo,
7217 tree t,
7218 tree inits)
7219 {
7220 int i;
7221 tree base_binfo;
7222 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7223
7224 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
7225
7226 /* If it doesn't have a vptr, we don't do anything. */
7227 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7228 return;
7229
7230 /* If we're building a construction vtable, we're not interested in
7231 subobjects that don't require construction vtables. */
7232 if (ctor_vtbl_p
7233 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7234 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
7235 return;
7236
7237 /* Build the initializers for the BINFO-in-T vtable. */
7238 TREE_VALUE (inits)
7239 = chainon (TREE_VALUE (inits),
7240 dfs_accumulate_vtbl_inits (binfo, orig_binfo,
7241 rtti_binfo, t, inits));
7242
7243 /* Walk the BINFO and its bases. We walk in preorder so that as we
7244 initialize each vtable we can figure out at what offset the
7245 secondary vtable lies from the primary vtable. We can't use
7246 dfs_walk here because we need to iterate through bases of BINFO
7247 and RTTI_BINFO simultaneously. */
7248 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7249 {
7250 /* Skip virtual bases. */
7251 if (BINFO_VIRTUAL_P (base_binfo))
7252 continue;
7253 accumulate_vtbl_inits (base_binfo,
7254 BINFO_BASE_BINFO (orig_binfo, i),
7255 rtti_binfo, t,
7256 inits);
7257 }
7258 }
7259
7260 /* Called from accumulate_vtbl_inits. Returns the initializers for
7261 the BINFO vtable. */
7262
7263 static tree
7264 dfs_accumulate_vtbl_inits (tree binfo,
7265 tree orig_binfo,
7266 tree rtti_binfo,
7267 tree t,
7268 tree l)
7269 {
7270 tree inits = NULL_TREE;
7271 tree vtbl = NULL_TREE;
7272 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7273
7274 if (ctor_vtbl_p
7275 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7276 {
7277 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7278 primary virtual base. If it is not the same primary in
7279 the hierarchy of T, we'll need to generate a ctor vtable
7280 for it, to place at its location in T. If it is the same
7281 primary, we still need a VTT entry for the vtable, but it
7282 should point to the ctor vtable for the base it is a
7283 primary for within the sub-hierarchy of RTTI_BINFO.
7284
7285 There are three possible cases:
7286
7287 1) We are in the same place.
7288 2) We are a primary base within a lost primary virtual base of
7289 RTTI_BINFO.
7290 3) We are primary to something not a base of RTTI_BINFO. */
7291
7292 tree b;
7293 tree last = NULL_TREE;
7294
7295 /* First, look through the bases we are primary to for RTTI_BINFO
7296 or a virtual base. */
7297 b = binfo;
7298 while (BINFO_PRIMARY_P (b))
7299 {
7300 b = BINFO_INHERITANCE_CHAIN (b);
7301 last = b;
7302 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7303 goto found;
7304 }
7305 /* If we run out of primary links, keep looking down our
7306 inheritance chain; we might be an indirect primary. */
7307 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7308 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7309 break;
7310 found:
7311
7312 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7313 base B and it is a base of RTTI_BINFO, this is case 2. In
7314 either case, we share our vtable with LAST, i.e. the
7315 derived-most base within B of which we are a primary. */
7316 if (b == rtti_binfo
7317 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
7318 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7319 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7320 binfo_ctor_vtable after everything's been set up. */
7321 vtbl = last;
7322
7323 /* Otherwise, this is case 3 and we get our own. */
7324 }
7325 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7326 return inits;
7327
7328 if (!vtbl)
7329 {
7330 tree index;
7331 int non_fn_entries;
7332
7333 /* Compute the initializer for this vtable. */
7334 inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7335 &non_fn_entries);
7336
7337 /* Figure out the position to which the VPTR should point. */
7338 vtbl = TREE_PURPOSE (l);
7339 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
7340 index = size_binop (PLUS_EXPR,
7341 size_int (non_fn_entries),
7342 size_int (list_length (TREE_VALUE (l))));
7343 index = size_binop (MULT_EXPR,
7344 TYPE_SIZE_UNIT (vtable_entry_type),
7345 index);
7346 vtbl = build2 (POINTER_PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7347 }
7348
7349 if (ctor_vtbl_p)
7350 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7351 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7352 straighten this out. */
7353 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7354 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
7355 inits = NULL_TREE;
7356 else
7357 /* For an ordinary vtable, set BINFO_VTABLE. */
7358 BINFO_VTABLE (binfo) = vtbl;
7359
7360 return inits;
7361 }
7362
7363 static GTY(()) tree abort_fndecl_addr;
7364
7365 /* Construct the initializer for BINFO's virtual function table. BINFO
7366 is part of the hierarchy dominated by T. If we're building a
7367 construction vtable, the ORIG_BINFO is the binfo we should use to
7368 find the actual function pointers to put in the vtable - but they
7369 can be overridden on the path to most-derived in the graph that
7370 ORIG_BINFO belongs. Otherwise,
7371 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7372 BINFO that should be indicated by the RTTI information in the
7373 vtable; it will be a base class of T, rather than T itself, if we
7374 are building a construction vtable.
7375
7376 The value returned is a TREE_LIST suitable for wrapping in a
7377 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7378 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7379 number of non-function entries in the vtable.
7380
7381 It might seem that this function should never be called with a
7382 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7383 base is always subsumed by a derived class vtable. However, when
7384 we are building construction vtables, we do build vtables for
7385 primary bases; we need these while the primary base is being
7386 constructed. */
7387
7388 static tree
7389 build_vtbl_initializer (tree binfo,
7390 tree orig_binfo,
7391 tree t,
7392 tree rtti_binfo,
7393 int* non_fn_entries_p)
7394 {
7395 tree v, b;
7396 tree vfun_inits;
7397 vtbl_init_data vid;
7398 unsigned ix;
7399 tree vbinfo;
7400 VEC(tree,gc) *vbases;
7401
7402 /* Initialize VID. */
7403 memset (&vid, 0, sizeof (vid));
7404 vid.binfo = binfo;
7405 vid.derived = t;
7406 vid.rtti_binfo = rtti_binfo;
7407 vid.last_init = &vid.inits;
7408 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7409 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7410 vid.generate_vcall_entries = true;
7411 /* The first vbase or vcall offset is at index -3 in the vtable. */
7412 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7413
7414 /* Add entries to the vtable for RTTI. */
7415 build_rtti_vtbl_entries (binfo, &vid);
7416
7417 /* Create an array for keeping track of the functions we've
7418 processed. When we see multiple functions with the same
7419 signature, we share the vcall offsets. */
7420 vid.fns = VEC_alloc (tree, gc, 32);
7421 /* Add the vcall and vbase offset entries. */
7422 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7423
7424 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7425 build_vbase_offset_vtbl_entries. */
7426 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
7427 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
7428 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
7429
7430 /* If the target requires padding between data entries, add that now. */
7431 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7432 {
7433 tree cur, *prev;
7434
7435 for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
7436 {
7437 tree add = cur;
7438 int i;
7439
7440 for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
7441 add = tree_cons (NULL_TREE,
7442 build1 (NOP_EXPR, vtable_entry_type,
7443 null_pointer_node),
7444 add);
7445 *prev = add;
7446 }
7447 }
7448
7449 if (non_fn_entries_p)
7450 *non_fn_entries_p = list_length (vid.inits);
7451
7452 /* Go through all the ordinary virtual functions, building up
7453 initializers. */
7454 vfun_inits = NULL_TREE;
7455 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7456 {
7457 tree delta;
7458 tree vcall_index;
7459 tree fn, fn_original;
7460 tree init = NULL_TREE;
7461
7462 fn = BV_FN (v);
7463 fn_original = fn;
7464 if (DECL_THUNK_P (fn))
7465 {
7466 if (!DECL_NAME (fn))
7467 finish_thunk (fn);
7468 if (THUNK_ALIAS (fn))
7469 {
7470 fn = THUNK_ALIAS (fn);
7471 BV_FN (v) = fn;
7472 }
7473 fn_original = THUNK_TARGET (fn);
7474 }
7475
7476 /* If the only definition of this function signature along our
7477 primary base chain is from a lost primary, this vtable slot will
7478 never be used, so just zero it out. This is important to avoid
7479 requiring extra thunks which cannot be generated with the function.
7480
7481 We first check this in update_vtable_entry_for_fn, so we handle
7482 restored primary bases properly; we also need to do it here so we
7483 zero out unused slots in ctor vtables, rather than filling them
7484 with erroneous values (though harmless, apart from relocation
7485 costs). */
7486 for (b = binfo; ; b = get_primary_binfo (b))
7487 {
7488 /* We found a defn before a lost primary; go ahead as normal. */
7489 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7490 break;
7491
7492 /* The nearest definition is from a lost primary; clear the
7493 slot. */
7494 if (BINFO_LOST_PRIMARY_P (b))
7495 {
7496 init = size_zero_node;
7497 break;
7498 }
7499 }
7500
7501 if (! init)
7502 {
7503 /* Pull the offset for `this', and the function to call, out of
7504 the list. */
7505 delta = BV_DELTA (v);
7506 vcall_index = BV_VCALL_INDEX (v);
7507
7508 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
7509 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
7510
7511 /* You can't call an abstract virtual function; it's abstract.
7512 So, we replace these functions with __pure_virtual. */
7513 if (DECL_PURE_VIRTUAL_P (fn_original))
7514 {
7515 fn = abort_fndecl;
7516 if (abort_fndecl_addr == NULL)
7517 abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7518 init = abort_fndecl_addr;
7519 }
7520 else
7521 {
7522 if (!integer_zerop (delta) || vcall_index)
7523 {
7524 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7525 if (!DECL_NAME (fn))
7526 finish_thunk (fn);
7527 }
7528 /* Take the address of the function, considering it to be of an
7529 appropriate generic type. */
7530 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7531 }
7532 }
7533
7534 /* And add it to the chain of initializers. */
7535 if (TARGET_VTABLE_USES_DESCRIPTORS)
7536 {
7537 int i;
7538 if (init == size_zero_node)
7539 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7540 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7541 else
7542 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7543 {
7544 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
7545 TREE_OPERAND (init, 0),
7546 build_int_cst (NULL_TREE, i));
7547 TREE_CONSTANT (fdesc) = 1;
7548
7549 vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
7550 }
7551 }
7552 else
7553 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7554 }
7555
7556 /* The initializers for virtual functions were built up in reverse
7557 order; straighten them out now. */
7558 vfun_inits = nreverse (vfun_inits);
7559
7560 /* The negative offset initializers are also in reverse order. */
7561 vid.inits = nreverse (vid.inits);
7562
7563 /* Chain the two together. */
7564 return chainon (vid.inits, vfun_inits);
7565 }
7566
7567 /* Adds to vid->inits the initializers for the vbase and vcall
7568 offsets in BINFO, which is in the hierarchy dominated by T. */
7569
7570 static void
7571 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7572 {
7573 tree b;
7574
7575 /* If this is a derived class, we must first create entries
7576 corresponding to the primary base class. */
7577 b = get_primary_binfo (binfo);
7578 if (b)
7579 build_vcall_and_vbase_vtbl_entries (b, vid);
7580
7581 /* Add the vbase entries for this base. */
7582 build_vbase_offset_vtbl_entries (binfo, vid);
7583 /* Add the vcall entries for this base. */
7584 build_vcall_offset_vtbl_entries (binfo, vid);
7585 }
7586
7587 /* Returns the initializers for the vbase offset entries in the vtable
7588 for BINFO (which is part of the class hierarchy dominated by T), in
7589 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7590 where the next vbase offset will go. */
7591
7592 static void
7593 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7594 {
7595 tree vbase;
7596 tree t;
7597 tree non_primary_binfo;
7598
7599 /* If there are no virtual baseclasses, then there is nothing to
7600 do. */
7601 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7602 return;
7603
7604 t = vid->derived;
7605
7606 /* We might be a primary base class. Go up the inheritance hierarchy
7607 until we find the most derived class of which we are a primary base:
7608 it is the offset of that which we need to use. */
7609 non_primary_binfo = binfo;
7610 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7611 {
7612 tree b;
7613
7614 /* If we have reached a virtual base, then it must be a primary
7615 base (possibly multi-level) of vid->binfo, or we wouldn't
7616 have called build_vcall_and_vbase_vtbl_entries for it. But it
7617 might be a lost primary, so just skip down to vid->binfo. */
7618 if (BINFO_VIRTUAL_P (non_primary_binfo))
7619 {
7620 non_primary_binfo = vid->binfo;
7621 break;
7622 }
7623
7624 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7625 if (get_primary_binfo (b) != non_primary_binfo)
7626 break;
7627 non_primary_binfo = b;
7628 }
7629
7630 /* Go through the virtual bases, adding the offsets. */
7631 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7632 vbase;
7633 vbase = TREE_CHAIN (vbase))
7634 {
7635 tree b;
7636 tree delta;
7637
7638 if (!BINFO_VIRTUAL_P (vbase))
7639 continue;
7640
7641 /* Find the instance of this virtual base in the complete
7642 object. */
7643 b = copied_binfo (vbase, binfo);
7644
7645 /* If we've already got an offset for this virtual base, we
7646 don't need another one. */
7647 if (BINFO_VTABLE_PATH_MARKED (b))
7648 continue;
7649 BINFO_VTABLE_PATH_MARKED (b) = 1;
7650
7651 /* Figure out where we can find this vbase offset. */
7652 delta = size_binop (MULT_EXPR,
7653 vid->index,
7654 convert (ssizetype,
7655 TYPE_SIZE_UNIT (vtable_entry_type)));
7656 if (vid->primary_vtbl_p)
7657 BINFO_VPTR_FIELD (b) = delta;
7658
7659 if (binfo != TYPE_BINFO (t))
7660 /* The vbase offset had better be the same. */
7661 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
7662
7663 /* The next vbase will come at a more negative offset. */
7664 vid->index = size_binop (MINUS_EXPR, vid->index,
7665 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7666
7667 /* The initializer is the delta from BINFO to this virtual base.
7668 The vbase offsets go in reverse inheritance-graph order, and
7669 we are walking in inheritance graph order so these end up in
7670 the right order. */
7671 delta = size_diffop (BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7672
7673 *vid->last_init
7674 = build_tree_list (NULL_TREE,
7675 fold_build1 (NOP_EXPR,
7676 vtable_entry_type,
7677 delta));
7678 vid->last_init = &TREE_CHAIN (*vid->last_init);
7679 }
7680 }
7681
7682 /* Adds the initializers for the vcall offset entries in the vtable
7683 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7684 to VID->INITS. */
7685
7686 static void
7687 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7688 {
7689 /* We only need these entries if this base is a virtual base. We
7690 compute the indices -- but do not add to the vtable -- when
7691 building the main vtable for a class. */
7692 if (binfo == TYPE_BINFO (vid->derived)
7693 || (BINFO_VIRTUAL_P (binfo)
7694 /* If BINFO is RTTI_BINFO, then (since BINFO does not
7695 correspond to VID->DERIVED), we are building a primary
7696 construction virtual table. Since this is a primary
7697 virtual table, we do not need the vcall offsets for
7698 BINFO. */
7699 && binfo != vid->rtti_binfo))
7700 {
7701 /* We need a vcall offset for each of the virtual functions in this
7702 vtable. For example:
7703
7704 class A { virtual void f (); };
7705 class B1 : virtual public A { virtual void f (); };
7706 class B2 : virtual public A { virtual void f (); };
7707 class C: public B1, public B2 { virtual void f (); };
7708
7709 A C object has a primary base of B1, which has a primary base of A. A
7710 C also has a secondary base of B2, which no longer has a primary base
7711 of A. So the B2-in-C construction vtable needs a secondary vtable for
7712 A, which will adjust the A* to a B2* to call f. We have no way of
7713 knowing what (or even whether) this offset will be when we define B2,
7714 so we store this "vcall offset" in the A sub-vtable and look it up in
7715 a "virtual thunk" for B2::f.
7716
7717 We need entries for all the functions in our primary vtable and
7718 in our non-virtual bases' secondary vtables. */
7719 vid->vbase = binfo;
7720 /* If we are just computing the vcall indices -- but do not need
7721 the actual entries -- not that. */
7722 if (!BINFO_VIRTUAL_P (binfo))
7723 vid->generate_vcall_entries = false;
7724 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7725 add_vcall_offset_vtbl_entries_r (binfo, vid);
7726 }
7727 }
7728
7729 /* Build vcall offsets, starting with those for BINFO. */
7730
7731 static void
7732 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7733 {
7734 int i;
7735 tree primary_binfo;
7736 tree base_binfo;
7737
7738 /* Don't walk into virtual bases -- except, of course, for the
7739 virtual base for which we are building vcall offsets. Any
7740 primary virtual base will have already had its offsets generated
7741 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7742 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
7743 return;
7744
7745 /* If BINFO has a primary base, process it first. */
7746 primary_binfo = get_primary_binfo (binfo);
7747 if (primary_binfo)
7748 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
7749
7750 /* Add BINFO itself to the list. */
7751 add_vcall_offset_vtbl_entries_1 (binfo, vid);
7752
7753 /* Scan the non-primary bases of BINFO. */
7754 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7755 if (base_binfo != primary_binfo)
7756 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
7757 }
7758
7759 /* Called from build_vcall_offset_vtbl_entries_r. */
7760
7761 static void
7762 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
7763 {
7764 /* Make entries for the rest of the virtuals. */
7765 if (abi_version_at_least (2))
7766 {
7767 tree orig_fn;
7768
7769 /* The ABI requires that the methods be processed in declaration
7770 order. G++ 3.2 used the order in the vtable. */
7771 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
7772 orig_fn;
7773 orig_fn = TREE_CHAIN (orig_fn))
7774 if (DECL_VINDEX (orig_fn))
7775 add_vcall_offset (orig_fn, binfo, vid);
7776 }
7777 else
7778 {
7779 tree derived_virtuals;
7780 tree base_virtuals;
7781 tree orig_virtuals;
7782 /* If BINFO is a primary base, the most derived class which has
7783 BINFO as a primary base; otherwise, just BINFO. */
7784 tree non_primary_binfo;
7785
7786 /* We might be a primary base class. Go up the inheritance hierarchy
7787 until we find the most derived class of which we are a primary base:
7788 it is the BINFO_VIRTUALS there that we need to consider. */
7789 non_primary_binfo = binfo;
7790 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7791 {
7792 tree b;
7793
7794 /* If we have reached a virtual base, then it must be vid->vbase,
7795 because we ignore other virtual bases in
7796 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7797 base (possibly multi-level) of vid->binfo, or we wouldn't
7798 have called build_vcall_and_vbase_vtbl_entries for it. But it
7799 might be a lost primary, so just skip down to vid->binfo. */
7800 if (BINFO_VIRTUAL_P (non_primary_binfo))
7801 {
7802 gcc_assert (non_primary_binfo == vid->vbase);
7803 non_primary_binfo = vid->binfo;
7804 break;
7805 }
7806
7807 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7808 if (get_primary_binfo (b) != non_primary_binfo)
7809 break;
7810 non_primary_binfo = b;
7811 }
7812
7813 if (vid->ctor_vtbl_p)
7814 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7815 where rtti_binfo is the most derived type. */
7816 non_primary_binfo
7817 = original_binfo (non_primary_binfo, vid->rtti_binfo);
7818
7819 for (base_virtuals = BINFO_VIRTUALS (binfo),
7820 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
7821 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
7822 base_virtuals;
7823 base_virtuals = TREE_CHAIN (base_virtuals),
7824 derived_virtuals = TREE_CHAIN (derived_virtuals),
7825 orig_virtuals = TREE_CHAIN (orig_virtuals))
7826 {
7827 tree orig_fn;
7828
7829 /* Find the declaration that originally caused this function to
7830 be present in BINFO_TYPE (binfo). */
7831 orig_fn = BV_FN (orig_virtuals);
7832
7833 /* When processing BINFO, we only want to generate vcall slots for
7834 function slots introduced in BINFO. So don't try to generate
7835 one if the function isn't even defined in BINFO. */
7836 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
7837 continue;
7838
7839 add_vcall_offset (orig_fn, binfo, vid);
7840 }
7841 }
7842 }
7843
7844 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7845
7846 static void
7847 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
7848 {
7849 size_t i;
7850 tree vcall_offset;
7851 tree derived_entry;
7852
7853 /* If there is already an entry for a function with the same
7854 signature as FN, then we do not need a second vcall offset.
7855 Check the list of functions already present in the derived
7856 class vtable. */
7857 for (i = 0; VEC_iterate (tree, vid->fns, i, derived_entry); ++i)
7858 {
7859 if (same_signature_p (derived_entry, orig_fn)
7860 /* We only use one vcall offset for virtual destructors,
7861 even though there are two virtual table entries. */
7862 || (DECL_DESTRUCTOR_P (derived_entry)
7863 && DECL_DESTRUCTOR_P (orig_fn)))
7864 return;
7865 }
7866
7867 /* If we are building these vcall offsets as part of building
7868 the vtable for the most derived class, remember the vcall
7869 offset. */
7870 if (vid->binfo == TYPE_BINFO (vid->derived))
7871 {
7872 tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
7873 CLASSTYPE_VCALL_INDICES (vid->derived),
7874 NULL);
7875 elt->purpose = orig_fn;
7876 elt->value = vid->index;
7877 }
7878
7879 /* The next vcall offset will be found at a more negative
7880 offset. */
7881 vid->index = size_binop (MINUS_EXPR, vid->index,
7882 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7883
7884 /* Keep track of this function. */
7885 VEC_safe_push (tree, gc, vid->fns, orig_fn);
7886
7887 if (vid->generate_vcall_entries)
7888 {
7889 tree base;
7890 tree fn;
7891
7892 /* Find the overriding function. */
7893 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
7894 if (fn == error_mark_node)
7895 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
7896 integer_zero_node);
7897 else
7898 {
7899 base = TREE_VALUE (fn);
7900
7901 /* The vbase we're working on is a primary base of
7902 vid->binfo. But it might be a lost primary, so its
7903 BINFO_OFFSET might be wrong, so we just use the
7904 BINFO_OFFSET from vid->binfo. */
7905 vcall_offset = size_diffop (BINFO_OFFSET (base),
7906 BINFO_OFFSET (vid->binfo));
7907 vcall_offset = fold_build1 (NOP_EXPR, vtable_entry_type,
7908 vcall_offset);
7909 }
7910 /* Add the initializer to the vtable. */
7911 *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
7912 vid->last_init = &TREE_CHAIN (*vid->last_init);
7913 }
7914 }
7915
7916 /* Return vtbl initializers for the RTTI entries corresponding to the
7917 BINFO's vtable. The RTTI entries should indicate the object given
7918 by VID->rtti_binfo. */
7919
7920 static void
7921 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
7922 {
7923 tree b;
7924 tree t;
7925 tree basetype;
7926 tree offset;
7927 tree decl;
7928 tree init;
7929
7930 basetype = BINFO_TYPE (binfo);
7931 t = BINFO_TYPE (vid->rtti_binfo);
7932
7933 /* To find the complete object, we will first convert to our most
7934 primary base, and then add the offset in the vtbl to that value. */
7935 b = binfo;
7936 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
7937 && !BINFO_LOST_PRIMARY_P (b))
7938 {
7939 tree primary_base;
7940
7941 primary_base = get_primary_binfo (b);
7942 gcc_assert (BINFO_PRIMARY_P (primary_base)
7943 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
7944 b = primary_base;
7945 }
7946 offset = size_diffop (BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
7947
7948 /* The second entry is the address of the typeinfo object. */
7949 if (flag_rtti)
7950 decl = build_address (get_tinfo_decl (t));
7951 else
7952 decl = integer_zero_node;
7953
7954 /* Convert the declaration to a type that can be stored in the
7955 vtable. */
7956 init = build_nop (vfunc_ptr_type_node, decl);
7957 *vid->last_init = build_tree_list (NULL_TREE, init);
7958 vid->last_init = &TREE_CHAIN (*vid->last_init);
7959
7960 /* Add the offset-to-top entry. It comes earlier in the vtable than
7961 the typeinfo entry. Convert the offset to look like a
7962 function pointer, so that we can put it in the vtable. */
7963 init = build_nop (vfunc_ptr_type_node, offset);
7964 *vid->last_init = build_tree_list (NULL_TREE, init);
7965 vid->last_init = &TREE_CHAIN (*vid->last_init);
7966 }
7967
7968 /* Fold a OBJ_TYPE_REF expression to the address of a function.
7969 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
7970
7971 tree
7972 cp_fold_obj_type_ref (tree ref, tree known_type)
7973 {
7974 HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
7975 HOST_WIDE_INT i = 0;
7976 tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
7977 tree fndecl;
7978
7979 while (i != index)
7980 {
7981 i += (TARGET_VTABLE_USES_DESCRIPTORS
7982 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
7983 v = TREE_CHAIN (v);
7984 }
7985
7986 fndecl = BV_FN (v);
7987
7988 #ifdef ENABLE_CHECKING
7989 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
7990 DECL_VINDEX (fndecl)));
7991 #endif
7992
7993 cgraph_node (fndecl)->local.vtable_method = true;
7994
7995 return build_address (fndecl);
7996 }
7997
7998 #include "gt-cp-class.h"