]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/class.c
java-gimplify.c (java_gimplify_block): New argument to build_empty_stmt.
[thirdparty/gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23
24 /* High-level class interface. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "rtl.h"
34 #include "output.h"
35 #include "toplev.h"
36 #include "target.h"
37 #include "convert.h"
38 #include "cgraph.h"
39 #include "tree-dump.h"
40
41 /* The number of nested classes being processed. If we are not in the
42 scope of any class, this is zero. */
43
44 int current_class_depth;
45
46 /* In order to deal with nested classes, we keep a stack of classes.
47 The topmost entry is the innermost class, and is the entry at index
48 CURRENT_CLASS_DEPTH */
49
50 typedef struct class_stack_node {
51 /* The name of the class. */
52 tree name;
53
54 /* The _TYPE node for the class. */
55 tree type;
56
57 /* The access specifier pending for new declarations in the scope of
58 this class. */
59 tree access;
60
61 /* If were defining TYPE, the names used in this class. */
62 splay_tree names_used;
63
64 /* Nonzero if this class is no longer open, because of a call to
65 push_to_top_level. */
66 size_t hidden;
67 }* class_stack_node_t;
68
69 typedef struct vtbl_init_data_s
70 {
71 /* The base for which we're building initializers. */
72 tree binfo;
73 /* The type of the most-derived type. */
74 tree derived;
75 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
76 unless ctor_vtbl_p is true. */
77 tree rtti_binfo;
78 /* The negative-index vtable initializers built up so far. These
79 are in order from least negative index to most negative index. */
80 tree inits;
81 /* The last (i.e., most negative) entry in INITS. */
82 tree* last_init;
83 /* The binfo for the virtual base for which we're building
84 vcall offset initializers. */
85 tree vbase;
86 /* The functions in vbase for which we have already provided vcall
87 offsets. */
88 VEC(tree,gc) *fns;
89 /* The vtable index of the next vcall or vbase offset. */
90 tree index;
91 /* Nonzero if we are building the initializer for the primary
92 vtable. */
93 int primary_vtbl_p;
94 /* Nonzero if we are building the initializer for a construction
95 vtable. */
96 int ctor_vtbl_p;
97 /* True when adding vcall offset entries to the vtable. False when
98 merely computing the indices. */
99 bool generate_vcall_entries;
100 } vtbl_init_data;
101
102 /* The type of a function passed to walk_subobject_offsets. */
103 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
104
105 /* The stack itself. This is a dynamically resized array. The
106 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
107 static int current_class_stack_size;
108 static class_stack_node_t current_class_stack;
109
110 /* The size of the largest empty class seen in this translation unit. */
111 static GTY (()) tree sizeof_biggest_empty_class;
112
113 /* An array of all local classes present in this translation unit, in
114 declaration order. */
115 VEC(tree,gc) *local_classes;
116
117 static tree get_vfield_name (tree);
118 static void finish_struct_anon (tree);
119 static tree get_vtable_name (tree);
120 static tree get_basefndecls (tree, tree);
121 static int build_primary_vtable (tree, tree);
122 static int build_secondary_vtable (tree);
123 static void finish_vtbls (tree);
124 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
125 static void finish_struct_bits (tree);
126 static int alter_access (tree, tree, tree);
127 static void handle_using_decl (tree, tree);
128 static tree dfs_modify_vtables (tree, void *);
129 static tree modify_all_vtables (tree, tree);
130 static void determine_primary_bases (tree);
131 static void finish_struct_methods (tree);
132 static void maybe_warn_about_overly_private_class (tree);
133 static int method_name_cmp (const void *, const void *);
134 static int resort_method_name_cmp (const void *, const void *);
135 static void add_implicitly_declared_members (tree, int, int);
136 static tree fixed_type_or_null (tree, int *, int *);
137 static tree build_simple_base_path (tree expr, tree binfo);
138 static tree build_vtbl_ref_1 (tree, tree);
139 static tree build_vtbl_initializer (tree, tree, tree, tree, int *);
140 static int count_fields (tree);
141 static int add_fields_to_record_type (tree, struct sorted_fields_type*, int);
142 static bool check_bitfield_decl (tree);
143 static void check_field_decl (tree, tree, int *, int *, int *);
144 static void check_field_decls (tree, tree *, int *, int *);
145 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
146 static void build_base_fields (record_layout_info, splay_tree, tree *);
147 static void check_methods (tree);
148 static void remove_zero_width_bit_fields (tree);
149 static void check_bases (tree, int *, int *);
150 static void check_bases_and_members (tree);
151 static tree create_vtable_ptr (tree, tree *);
152 static void include_empty_classes (record_layout_info);
153 static void layout_class_type (tree, tree *);
154 static void fixup_pending_inline (tree);
155 static void fixup_inline_methods (tree);
156 static void propagate_binfo_offsets (tree, tree);
157 static void layout_virtual_bases (record_layout_info, splay_tree);
158 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
159 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
160 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
161 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
162 static void add_vcall_offset (tree, tree, vtbl_init_data *);
163 static void layout_vtable_decl (tree, int);
164 static tree dfs_find_final_overrider_pre (tree, void *);
165 static tree dfs_find_final_overrider_post (tree, void *);
166 static tree find_final_overrider (tree, tree, tree);
167 static int make_new_vtable (tree, tree);
168 static tree get_primary_binfo (tree);
169 static int maybe_indent_hierarchy (FILE *, int, int);
170 static tree dump_class_hierarchy_r (FILE *, int, tree, tree, int);
171 static void dump_class_hierarchy (tree);
172 static void dump_class_hierarchy_1 (FILE *, int, tree);
173 static void dump_array (FILE *, tree);
174 static void dump_vtable (tree, tree, tree);
175 static void dump_vtt (tree, tree);
176 static void dump_thunk (FILE *, int, tree);
177 static tree build_vtable (tree, tree, tree);
178 static void initialize_vtable (tree, tree);
179 static void layout_nonempty_base_or_field (record_layout_info,
180 tree, tree, splay_tree);
181 static tree end_of_class (tree, int);
182 static bool layout_empty_base (record_layout_info, tree, tree, splay_tree);
183 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree);
184 static tree dfs_accumulate_vtbl_inits (tree, tree, tree, tree,
185 tree);
186 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
187 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
188 static void clone_constructors_and_destructors (tree);
189 static tree build_clone (tree, tree);
190 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
191 static void build_ctor_vtbl_group (tree, tree);
192 static void build_vtt (tree);
193 static tree binfo_ctor_vtable (tree);
194 static tree *build_vtt_inits (tree, tree, tree *, tree *);
195 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
196 static tree dfs_fixup_binfo_vtbls (tree, void *);
197 static int record_subobject_offset (tree, tree, splay_tree);
198 static int check_subobject_offset (tree, tree, splay_tree);
199 static int walk_subobject_offsets (tree, subobject_offset_fn,
200 tree, splay_tree, tree, int);
201 static void record_subobject_offsets (tree, tree, splay_tree, bool);
202 static int layout_conflict_p (tree, tree, splay_tree, int);
203 static int splay_tree_compare_integer_csts (splay_tree_key k1,
204 splay_tree_key k2);
205 static void warn_about_ambiguous_bases (tree);
206 static bool type_requires_array_cookie (tree);
207 static bool contains_empty_class_p (tree);
208 static bool base_derived_from (tree, tree);
209 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
210 static tree end_of_base (tree);
211 static tree get_vcall_index (tree, tree);
212
213 /* Variables shared between class.c and call.c. */
214
215 #ifdef GATHER_STATISTICS
216 int n_vtables = 0;
217 int n_vtable_entries = 0;
218 int n_vtable_searches = 0;
219 int n_vtable_elems = 0;
220 int n_convert_harshness = 0;
221 int n_compute_conversion_costs = 0;
222 int n_inner_fields_searched = 0;
223 #endif
224
225 /* Convert to or from a base subobject. EXPR is an expression of type
226 `A' or `A*', an expression of type `B' or `B*' is returned. To
227 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
228 the B base instance within A. To convert base A to derived B, CODE
229 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
230 In this latter case, A must not be a morally virtual base of B.
231 NONNULL is true if EXPR is known to be non-NULL (this is only
232 needed when EXPR is of pointer type). CV qualifiers are preserved
233 from EXPR. */
234
235 tree
236 build_base_path (enum tree_code code,
237 tree expr,
238 tree binfo,
239 int nonnull)
240 {
241 tree v_binfo = NULL_TREE;
242 tree d_binfo = NULL_TREE;
243 tree probe;
244 tree offset;
245 tree target_type;
246 tree null_test = NULL;
247 tree ptr_target_type;
248 int fixed_type_p;
249 int want_pointer = TREE_CODE (TREE_TYPE (expr)) == POINTER_TYPE;
250 bool has_empty = false;
251 bool virtual_access;
252
253 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
254 return error_mark_node;
255
256 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
257 {
258 d_binfo = probe;
259 if (is_empty_class (BINFO_TYPE (probe)))
260 has_empty = true;
261 if (!v_binfo && BINFO_VIRTUAL_P (probe))
262 v_binfo = probe;
263 }
264
265 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
266 if (want_pointer)
267 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
268
269 gcc_assert ((code == MINUS_EXPR
270 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
271 || (code == PLUS_EXPR
272 && SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe)));
273
274 if (binfo == d_binfo)
275 /* Nothing to do. */
276 return expr;
277
278 if (code == MINUS_EXPR && v_binfo)
279 {
280 error ("cannot convert from base %qT to derived type %qT via virtual base %qT",
281 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
282 return error_mark_node;
283 }
284
285 if (!want_pointer)
286 /* This must happen before the call to save_expr. */
287 expr = cp_build_unary_op (ADDR_EXPR, expr, 0, tf_warning_or_error);
288
289 offset = BINFO_OFFSET (binfo);
290 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
291 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
292
293 /* Do we need to look in the vtable for the real offset? */
294 virtual_access = (v_binfo && fixed_type_p <= 0);
295
296 /* Don't bother with the calculations inside sizeof; they'll ICE if the
297 source type is incomplete and the pointer value doesn't matter. */
298 if (skip_evaluation)
299 {
300 expr = build_nop (build_pointer_type (target_type), expr);
301 if (!want_pointer)
302 expr = build_indirect_ref (EXPR_LOCATION (expr), expr, NULL);
303 return expr;
304 }
305
306 /* Do we need to check for a null pointer? */
307 if (want_pointer && !nonnull)
308 {
309 /* If we know the conversion will not actually change the value
310 of EXPR, then we can avoid testing the expression for NULL.
311 We have to avoid generating a COMPONENT_REF for a base class
312 field, because other parts of the compiler know that such
313 expressions are always non-NULL. */
314 if (!virtual_access && integer_zerop (offset))
315 {
316 tree class_type;
317 /* TARGET_TYPE has been extracted from BINFO, and, is
318 therefore always cv-unqualified. Extract the
319 cv-qualifiers from EXPR so that the expression returned
320 matches the input. */
321 class_type = TREE_TYPE (TREE_TYPE (expr));
322 target_type
323 = cp_build_qualified_type (target_type,
324 cp_type_quals (class_type));
325 return build_nop (build_pointer_type (target_type), expr);
326 }
327 null_test = error_mark_node;
328 }
329
330 /* Protect against multiple evaluation if necessary. */
331 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
332 expr = save_expr (expr);
333
334 /* Now that we've saved expr, build the real null test. */
335 if (null_test)
336 {
337 tree zero = cp_convert (TREE_TYPE (expr), integer_zero_node);
338 null_test = fold_build2 (NE_EXPR, boolean_type_node,
339 expr, zero);
340 }
341
342 /* If this is a simple base reference, express it as a COMPONENT_REF. */
343 if (code == PLUS_EXPR && !virtual_access
344 /* We don't build base fields for empty bases, and they aren't very
345 interesting to the optimizers anyway. */
346 && !has_empty)
347 {
348 expr = cp_build_indirect_ref (expr, NULL, tf_warning_or_error);
349 expr = build_simple_base_path (expr, binfo);
350 if (want_pointer)
351 expr = build_address (expr);
352 target_type = TREE_TYPE (expr);
353 goto out;
354 }
355
356 if (virtual_access)
357 {
358 /* Going via virtual base V_BINFO. We need the static offset
359 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
360 V_BINFO. That offset is an entry in D_BINFO's vtable. */
361 tree v_offset;
362
363 if (fixed_type_p < 0 && in_base_initializer)
364 {
365 /* In a base member initializer, we cannot rely on the
366 vtable being set up. We have to indirect via the
367 vtt_parm. */
368 tree t;
369
370 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
371 t = build_pointer_type (t);
372 v_offset = convert (t, current_vtt_parm);
373 v_offset = cp_build_indirect_ref (v_offset, NULL,
374 tf_warning_or_error);
375 }
376 else
377 v_offset = build_vfield_ref (cp_build_indirect_ref (expr, NULL,
378 tf_warning_or_error),
379 TREE_TYPE (TREE_TYPE (expr)));
380
381 v_offset = build2 (POINTER_PLUS_EXPR, TREE_TYPE (v_offset),
382 v_offset, fold_convert (sizetype, BINFO_VPTR_FIELD (v_binfo)));
383 v_offset = build1 (NOP_EXPR,
384 build_pointer_type (ptrdiff_type_node),
385 v_offset);
386 v_offset = cp_build_indirect_ref (v_offset, NULL, tf_warning_or_error);
387 TREE_CONSTANT (v_offset) = 1;
388
389 offset = convert_to_integer (ptrdiff_type_node,
390 size_diffop (offset,
391 BINFO_OFFSET (v_binfo)));
392
393 if (!integer_zerop (offset))
394 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
395
396 if (fixed_type_p < 0)
397 /* Negative fixed_type_p means this is a constructor or destructor;
398 virtual base layout is fixed in in-charge [cd]tors, but not in
399 base [cd]tors. */
400 offset = build3 (COND_EXPR, ptrdiff_type_node,
401 build2 (EQ_EXPR, boolean_type_node,
402 current_in_charge_parm, integer_zero_node),
403 v_offset,
404 convert_to_integer (ptrdiff_type_node,
405 BINFO_OFFSET (binfo)));
406 else
407 offset = v_offset;
408 }
409
410 target_type = cp_build_qualified_type
411 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
412 ptr_target_type = build_pointer_type (target_type);
413 if (want_pointer)
414 target_type = ptr_target_type;
415
416 expr = build1 (NOP_EXPR, ptr_target_type, expr);
417
418 if (!integer_zerop (offset))
419 {
420 offset = fold_convert (sizetype, offset);
421 if (code == MINUS_EXPR)
422 offset = fold_build1 (NEGATE_EXPR, sizetype, offset);
423 expr = build2 (POINTER_PLUS_EXPR, ptr_target_type, expr, offset);
424 }
425 else
426 null_test = NULL;
427
428 if (!want_pointer)
429 expr = cp_build_indirect_ref (expr, NULL, tf_warning_or_error);
430
431 out:
432 if (null_test)
433 expr = fold_build3 (COND_EXPR, target_type, null_test, expr,
434 fold_build1 (NOP_EXPR, target_type,
435 integer_zero_node));
436
437 return expr;
438 }
439
440 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
441 Perform a derived-to-base conversion by recursively building up a
442 sequence of COMPONENT_REFs to the appropriate base fields. */
443
444 static tree
445 build_simple_base_path (tree expr, tree binfo)
446 {
447 tree type = BINFO_TYPE (binfo);
448 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
449 tree field;
450
451 if (d_binfo == NULL_TREE)
452 {
453 tree temp;
454
455 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
456
457 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
458 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
459 an lvalue in the front end; only _DECLs and _REFs are lvalues
460 in the back end. */
461 temp = unary_complex_lvalue (ADDR_EXPR, expr);
462 if (temp)
463 expr = cp_build_indirect_ref (temp, NULL, tf_warning_or_error);
464
465 return expr;
466 }
467
468 /* Recurse. */
469 expr = build_simple_base_path (expr, d_binfo);
470
471 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
472 field; field = TREE_CHAIN (field))
473 /* Is this the base field created by build_base_field? */
474 if (TREE_CODE (field) == FIELD_DECL
475 && DECL_FIELD_IS_BASE (field)
476 && TREE_TYPE (field) == type)
477 {
478 /* We don't use build_class_member_access_expr here, as that
479 has unnecessary checks, and more importantly results in
480 recursive calls to dfs_walk_once. */
481 int type_quals = cp_type_quals (TREE_TYPE (expr));
482
483 expr = build3 (COMPONENT_REF,
484 cp_build_qualified_type (type, type_quals),
485 expr, field, NULL_TREE);
486 expr = fold_if_not_in_template (expr);
487
488 /* Mark the expression const or volatile, as appropriate.
489 Even though we've dealt with the type above, we still have
490 to mark the expression itself. */
491 if (type_quals & TYPE_QUAL_CONST)
492 TREE_READONLY (expr) = 1;
493 if (type_quals & TYPE_QUAL_VOLATILE)
494 TREE_THIS_VOLATILE (expr) = 1;
495
496 return expr;
497 }
498
499 /* Didn't find the base field?!? */
500 gcc_unreachable ();
501 }
502
503 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
504 type is a class type or a pointer to a class type. In the former
505 case, TYPE is also a class type; in the latter it is another
506 pointer type. If CHECK_ACCESS is true, an error message is emitted
507 if TYPE is inaccessible. If OBJECT has pointer type, the value is
508 assumed to be non-NULL. */
509
510 tree
511 convert_to_base (tree object, tree type, bool check_access, bool nonnull)
512 {
513 tree binfo;
514 tree object_type;
515
516 if (TYPE_PTR_P (TREE_TYPE (object)))
517 {
518 object_type = TREE_TYPE (TREE_TYPE (object));
519 type = TREE_TYPE (type);
520 }
521 else
522 object_type = TREE_TYPE (object);
523
524 binfo = lookup_base (object_type, type,
525 check_access ? ba_check : ba_unique,
526 NULL);
527 if (!binfo || binfo == error_mark_node)
528 return error_mark_node;
529
530 return build_base_path (PLUS_EXPR, object, binfo, nonnull);
531 }
532
533 /* EXPR is an expression with unqualified class type. BASE is a base
534 binfo of that class type. Returns EXPR, converted to the BASE
535 type. This function assumes that EXPR is the most derived class;
536 therefore virtual bases can be found at their static offsets. */
537
538 tree
539 convert_to_base_statically (tree expr, tree base)
540 {
541 tree expr_type;
542
543 expr_type = TREE_TYPE (expr);
544 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
545 {
546 tree pointer_type;
547
548 pointer_type = build_pointer_type (expr_type);
549
550 /* We use fold_build2 and fold_convert below to simplify the trees
551 provided to the optimizers. It is not safe to call these functions
552 when processing a template because they do not handle C++-specific
553 trees. */
554 gcc_assert (!processing_template_decl);
555 expr = cp_build_unary_op (ADDR_EXPR, expr, /*noconvert=*/1,
556 tf_warning_or_error);
557 if (!integer_zerop (BINFO_OFFSET (base)))
558 expr = fold_build2 (POINTER_PLUS_EXPR, pointer_type, expr,
559 fold_convert (sizetype, BINFO_OFFSET (base)));
560 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
561 expr = build_fold_indirect_ref (expr);
562 }
563
564 return expr;
565 }
566
567 \f
568 tree
569 build_vfield_ref (tree datum, tree type)
570 {
571 tree vfield, vcontext;
572
573 if (datum == error_mark_node)
574 return error_mark_node;
575
576 /* First, convert to the requested type. */
577 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
578 datum = convert_to_base (datum, type, /*check_access=*/false,
579 /*nonnull=*/true);
580
581 /* Second, the requested type may not be the owner of its own vptr.
582 If not, convert to the base class that owns it. We cannot use
583 convert_to_base here, because VCONTEXT may appear more than once
584 in the inheritance hierarchy of TYPE, and thus direct conversion
585 between the types may be ambiguous. Following the path back up
586 one step at a time via primary bases avoids the problem. */
587 vfield = TYPE_VFIELD (type);
588 vcontext = DECL_CONTEXT (vfield);
589 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
590 {
591 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
592 type = TREE_TYPE (datum);
593 }
594
595 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
596 }
597
598 /* Given an object INSTANCE, return an expression which yields the
599 vtable element corresponding to INDEX. There are many special
600 cases for INSTANCE which we take care of here, mainly to avoid
601 creating extra tree nodes when we don't have to. */
602
603 static tree
604 build_vtbl_ref_1 (tree instance, tree idx)
605 {
606 tree aref;
607 tree vtbl = NULL_TREE;
608
609 /* Try to figure out what a reference refers to, and
610 access its virtual function table directly. */
611
612 int cdtorp = 0;
613 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
614
615 tree basetype = non_reference (TREE_TYPE (instance));
616
617 if (fixed_type && !cdtorp)
618 {
619 tree binfo = lookup_base (fixed_type, basetype,
620 ba_unique | ba_quiet, NULL);
621 if (binfo)
622 vtbl = unshare_expr (BINFO_VTABLE (binfo));
623 }
624
625 if (!vtbl)
626 vtbl = build_vfield_ref (instance, basetype);
627
628
629 aref = build_array_ref (input_location, vtbl, idx);
630 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
631
632 return aref;
633 }
634
635 tree
636 build_vtbl_ref (tree instance, tree idx)
637 {
638 tree aref = build_vtbl_ref_1 (instance, idx);
639
640 return aref;
641 }
642
643 /* Given a stable object pointer INSTANCE_PTR, return an expression which
644 yields a function pointer corresponding to vtable element INDEX. */
645
646 tree
647 build_vfn_ref (tree instance_ptr, tree idx)
648 {
649 tree aref;
650
651 aref = build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr, 0,
652 tf_warning_or_error),
653 idx);
654
655 /* When using function descriptors, the address of the
656 vtable entry is treated as a function pointer. */
657 if (TARGET_VTABLE_USES_DESCRIPTORS)
658 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
659 cp_build_unary_op (ADDR_EXPR, aref, /*noconvert=*/1,
660 tf_warning_or_error));
661
662 /* Remember this as a method reference, for later devirtualization. */
663 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
664
665 return aref;
666 }
667
668 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
669 for the given TYPE. */
670
671 static tree
672 get_vtable_name (tree type)
673 {
674 return mangle_vtbl_for_type (type);
675 }
676
677 /* DECL is an entity associated with TYPE, like a virtual table or an
678 implicitly generated constructor. Determine whether or not DECL
679 should have external or internal linkage at the object file
680 level. This routine does not deal with COMDAT linkage and other
681 similar complexities; it simply sets TREE_PUBLIC if it possible for
682 entities in other translation units to contain copies of DECL, in
683 the abstract. */
684
685 void
686 set_linkage_according_to_type (tree type, tree decl)
687 {
688 /* If TYPE involves a local class in a function with internal
689 linkage, then DECL should have internal linkage too. Other local
690 classes have no linkage -- but if their containing functions
691 have external linkage, it makes sense for DECL to have external
692 linkage too. That will allow template definitions to be merged,
693 for example. */
694 if (no_linkage_check (type, /*relaxed_p=*/true))
695 {
696 TREE_PUBLIC (decl) = 0;
697 DECL_INTERFACE_KNOWN (decl) = 1;
698 }
699 else
700 TREE_PUBLIC (decl) = 1;
701 }
702
703 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
704 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
705 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
706
707 static tree
708 build_vtable (tree class_type, tree name, tree vtable_type)
709 {
710 tree decl;
711
712 decl = build_lang_decl (VAR_DECL, name, vtable_type);
713 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
714 now to avoid confusion in mangle_decl. */
715 SET_DECL_ASSEMBLER_NAME (decl, name);
716 DECL_CONTEXT (decl) = class_type;
717 DECL_ARTIFICIAL (decl) = 1;
718 TREE_STATIC (decl) = 1;
719 TREE_READONLY (decl) = 1;
720 DECL_VIRTUAL_P (decl) = 1;
721 DECL_ALIGN (decl) = TARGET_VTABLE_ENTRY_ALIGN;
722 DECL_VTABLE_OR_VTT_P (decl) = 1;
723 /* At one time the vtable info was grabbed 2 words at a time. This
724 fails on sparc unless you have 8-byte alignment. (tiemann) */
725 DECL_ALIGN (decl) = MAX (TYPE_ALIGN (double_type_node),
726 DECL_ALIGN (decl));
727 set_linkage_according_to_type (class_type, decl);
728 /* The vtable has not been defined -- yet. */
729 DECL_EXTERNAL (decl) = 1;
730 DECL_NOT_REALLY_EXTERN (decl) = 1;
731
732 /* Mark the VAR_DECL node representing the vtable itself as a
733 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
734 is rather important that such things be ignored because any
735 effort to actually generate DWARF for them will run into
736 trouble when/if we encounter code like:
737
738 #pragma interface
739 struct S { virtual void member (); };
740
741 because the artificial declaration of the vtable itself (as
742 manufactured by the g++ front end) will say that the vtable is
743 a static member of `S' but only *after* the debug output for
744 the definition of `S' has already been output. This causes
745 grief because the DWARF entry for the definition of the vtable
746 will try to refer back to an earlier *declaration* of the
747 vtable as a static member of `S' and there won't be one. We
748 might be able to arrange to have the "vtable static member"
749 attached to the member list for `S' before the debug info for
750 `S' get written (which would solve the problem) but that would
751 require more intrusive changes to the g++ front end. */
752 DECL_IGNORED_P (decl) = 1;
753
754 return decl;
755 }
756
757 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
758 or even complete. If this does not exist, create it. If COMPLETE is
759 nonzero, then complete the definition of it -- that will render it
760 impossible to actually build the vtable, but is useful to get at those
761 which are known to exist in the runtime. */
762
763 tree
764 get_vtable_decl (tree type, int complete)
765 {
766 tree decl;
767
768 if (CLASSTYPE_VTABLES (type))
769 return CLASSTYPE_VTABLES (type);
770
771 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
772 CLASSTYPE_VTABLES (type) = decl;
773
774 if (complete)
775 {
776 DECL_EXTERNAL (decl) = 1;
777 finish_decl (decl, NULL_TREE, NULL_TREE, NULL_TREE);
778 }
779
780 return decl;
781 }
782
783 /* Build the primary virtual function table for TYPE. If BINFO is
784 non-NULL, build the vtable starting with the initial approximation
785 that it is the same as the one which is the head of the association
786 list. Returns a nonzero value if a new vtable is actually
787 created. */
788
789 static int
790 build_primary_vtable (tree binfo, tree type)
791 {
792 tree decl;
793 tree virtuals;
794
795 decl = get_vtable_decl (type, /*complete=*/0);
796
797 if (binfo)
798 {
799 if (BINFO_NEW_VTABLE_MARKED (binfo))
800 /* We have already created a vtable for this base, so there's
801 no need to do it again. */
802 return 0;
803
804 virtuals = copy_list (BINFO_VIRTUALS (binfo));
805 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
806 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
807 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
808 }
809 else
810 {
811 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
812 virtuals = NULL_TREE;
813 }
814
815 #ifdef GATHER_STATISTICS
816 n_vtables += 1;
817 n_vtable_elems += list_length (virtuals);
818 #endif
819
820 /* Initialize the association list for this type, based
821 on our first approximation. */
822 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
823 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
824 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
825 return 1;
826 }
827
828 /* Give BINFO a new virtual function table which is initialized
829 with a skeleton-copy of its original initialization. The only
830 entry that changes is the `delta' entry, so we can really
831 share a lot of structure.
832
833 FOR_TYPE is the most derived type which caused this table to
834 be needed.
835
836 Returns nonzero if we haven't met BINFO before.
837
838 The order in which vtables are built (by calling this function) for
839 an object must remain the same, otherwise a binary incompatibility
840 can result. */
841
842 static int
843 build_secondary_vtable (tree binfo)
844 {
845 if (BINFO_NEW_VTABLE_MARKED (binfo))
846 /* We already created a vtable for this base. There's no need to
847 do it again. */
848 return 0;
849
850 /* Remember that we've created a vtable for this BINFO, so that we
851 don't try to do so again. */
852 SET_BINFO_NEW_VTABLE_MARKED (binfo);
853
854 /* Make fresh virtual list, so we can smash it later. */
855 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
856
857 /* Secondary vtables are laid out as part of the same structure as
858 the primary vtable. */
859 BINFO_VTABLE (binfo) = NULL_TREE;
860 return 1;
861 }
862
863 /* Create a new vtable for BINFO which is the hierarchy dominated by
864 T. Return nonzero if we actually created a new vtable. */
865
866 static int
867 make_new_vtable (tree t, tree binfo)
868 {
869 if (binfo == TYPE_BINFO (t))
870 /* In this case, it is *type*'s vtable we are modifying. We start
871 with the approximation that its vtable is that of the
872 immediate base class. */
873 return build_primary_vtable (binfo, t);
874 else
875 /* This is our very own copy of `basetype' to play with. Later,
876 we will fill in all the virtual functions that override the
877 virtual functions in these base classes which are not defined
878 by the current type. */
879 return build_secondary_vtable (binfo);
880 }
881
882 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
883 (which is in the hierarchy dominated by T) list FNDECL as its
884 BV_FN. DELTA is the required constant adjustment from the `this'
885 pointer where the vtable entry appears to the `this' required when
886 the function is actually called. */
887
888 static void
889 modify_vtable_entry (tree t,
890 tree binfo,
891 tree fndecl,
892 tree delta,
893 tree *virtuals)
894 {
895 tree v;
896
897 v = *virtuals;
898
899 if (fndecl != BV_FN (v)
900 || !tree_int_cst_equal (delta, BV_DELTA (v)))
901 {
902 /* We need a new vtable for BINFO. */
903 if (make_new_vtable (t, binfo))
904 {
905 /* If we really did make a new vtable, we also made a copy
906 of the BINFO_VIRTUALS list. Now, we have to find the
907 corresponding entry in that list. */
908 *virtuals = BINFO_VIRTUALS (binfo);
909 while (BV_FN (*virtuals) != BV_FN (v))
910 *virtuals = TREE_CHAIN (*virtuals);
911 v = *virtuals;
912 }
913
914 BV_DELTA (v) = delta;
915 BV_VCALL_INDEX (v) = NULL_TREE;
916 BV_FN (v) = fndecl;
917 }
918 }
919
920 \f
921 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
922 the USING_DECL naming METHOD. Returns true if the method could be
923 added to the method vec. */
924
925 bool
926 add_method (tree type, tree method, tree using_decl)
927 {
928 unsigned slot;
929 tree overload;
930 bool template_conv_p = false;
931 bool conv_p;
932 VEC(tree,gc) *method_vec;
933 bool complete_p;
934 bool insert_p = false;
935 tree current_fns;
936 tree fns;
937
938 if (method == error_mark_node)
939 return false;
940
941 complete_p = COMPLETE_TYPE_P (type);
942 conv_p = DECL_CONV_FN_P (method);
943 if (conv_p)
944 template_conv_p = (TREE_CODE (method) == TEMPLATE_DECL
945 && DECL_TEMPLATE_CONV_FN_P (method));
946
947 method_vec = CLASSTYPE_METHOD_VEC (type);
948 if (!method_vec)
949 {
950 /* Make a new method vector. We start with 8 entries. We must
951 allocate at least two (for constructors and destructors), and
952 we're going to end up with an assignment operator at some
953 point as well. */
954 method_vec = VEC_alloc (tree, gc, 8);
955 /* Create slots for constructors and destructors. */
956 VEC_quick_push (tree, method_vec, NULL_TREE);
957 VEC_quick_push (tree, method_vec, NULL_TREE);
958 CLASSTYPE_METHOD_VEC (type) = method_vec;
959 }
960
961 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
962 grok_special_member_properties (method);
963
964 /* Constructors and destructors go in special slots. */
965 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method))
966 slot = CLASSTYPE_CONSTRUCTOR_SLOT;
967 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
968 {
969 slot = CLASSTYPE_DESTRUCTOR_SLOT;
970
971 if (TYPE_FOR_JAVA (type))
972 {
973 if (!DECL_ARTIFICIAL (method))
974 error ("Java class %qT cannot have a destructor", type);
975 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
976 error ("Java class %qT cannot have an implicit non-trivial "
977 "destructor",
978 type);
979 }
980 }
981 else
982 {
983 tree m;
984
985 insert_p = true;
986 /* See if we already have an entry with this name. */
987 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
988 VEC_iterate (tree, method_vec, slot, m);
989 ++slot)
990 {
991 m = OVL_CURRENT (m);
992 if (template_conv_p)
993 {
994 if (TREE_CODE (m) == TEMPLATE_DECL
995 && DECL_TEMPLATE_CONV_FN_P (m))
996 insert_p = false;
997 break;
998 }
999 if (conv_p && !DECL_CONV_FN_P (m))
1000 break;
1001 if (DECL_NAME (m) == DECL_NAME (method))
1002 {
1003 insert_p = false;
1004 break;
1005 }
1006 if (complete_p
1007 && !DECL_CONV_FN_P (m)
1008 && DECL_NAME (m) > DECL_NAME (method))
1009 break;
1010 }
1011 }
1012 current_fns = insert_p ? NULL_TREE : VEC_index (tree, method_vec, slot);
1013
1014 /* Check to see if we've already got this method. */
1015 for (fns = current_fns; fns; fns = OVL_NEXT (fns))
1016 {
1017 tree fn = OVL_CURRENT (fns);
1018 tree fn_type;
1019 tree method_type;
1020 tree parms1;
1021 tree parms2;
1022
1023 if (TREE_CODE (fn) != TREE_CODE (method))
1024 continue;
1025
1026 /* [over.load] Member function declarations with the
1027 same name and the same parameter types cannot be
1028 overloaded if any of them is a static member
1029 function declaration.
1030
1031 [namespace.udecl] When a using-declaration brings names
1032 from a base class into a derived class scope, member
1033 functions in the derived class override and/or hide member
1034 functions with the same name and parameter types in a base
1035 class (rather than conflicting). */
1036 fn_type = TREE_TYPE (fn);
1037 method_type = TREE_TYPE (method);
1038 parms1 = TYPE_ARG_TYPES (fn_type);
1039 parms2 = TYPE_ARG_TYPES (method_type);
1040
1041 /* Compare the quals on the 'this' parm. Don't compare
1042 the whole types, as used functions are treated as
1043 coming from the using class in overload resolution. */
1044 if (! DECL_STATIC_FUNCTION_P (fn)
1045 && ! DECL_STATIC_FUNCTION_P (method)
1046 && TREE_TYPE (TREE_VALUE (parms1)) != error_mark_node
1047 && TREE_TYPE (TREE_VALUE (parms2)) != error_mark_node
1048 && (TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms1)))
1049 != TYPE_QUALS (TREE_TYPE (TREE_VALUE (parms2)))))
1050 continue;
1051
1052 /* For templates, the return type and template parameters
1053 must be identical. */
1054 if (TREE_CODE (fn) == TEMPLATE_DECL
1055 && (!same_type_p (TREE_TYPE (fn_type),
1056 TREE_TYPE (method_type))
1057 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1058 DECL_TEMPLATE_PARMS (method))))
1059 continue;
1060
1061 if (! DECL_STATIC_FUNCTION_P (fn))
1062 parms1 = TREE_CHAIN (parms1);
1063 if (! DECL_STATIC_FUNCTION_P (method))
1064 parms2 = TREE_CHAIN (parms2);
1065
1066 if (compparms (parms1, parms2)
1067 && (!DECL_CONV_FN_P (fn)
1068 || same_type_p (TREE_TYPE (fn_type),
1069 TREE_TYPE (method_type))))
1070 {
1071 if (using_decl)
1072 {
1073 if (DECL_CONTEXT (fn) == type)
1074 /* Defer to the local function. */
1075 return false;
1076 if (DECL_CONTEXT (fn) == DECL_CONTEXT (method))
1077 error ("repeated using declaration %q+D", using_decl);
1078 else
1079 error ("using declaration %q+D conflicts with a previous using declaration",
1080 using_decl);
1081 }
1082 else
1083 {
1084 error ("%q+#D cannot be overloaded", method);
1085 error ("with %q+#D", fn);
1086 }
1087
1088 /* We don't call duplicate_decls here to merge the
1089 declarations because that will confuse things if the
1090 methods have inline definitions. In particular, we
1091 will crash while processing the definitions. */
1092 return false;
1093 }
1094 }
1095
1096 /* A class should never have more than one destructor. */
1097 if (current_fns && DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method))
1098 return false;
1099
1100 /* Add the new binding. */
1101 overload = build_overload (method, current_fns);
1102
1103 if (conv_p)
1104 TYPE_HAS_CONVERSION (type) = 1;
1105 else if (slot >= CLASSTYPE_FIRST_CONVERSION_SLOT && !complete_p)
1106 push_class_level_binding (DECL_NAME (method), overload);
1107
1108 if (insert_p)
1109 {
1110 bool reallocated;
1111
1112 /* We only expect to add few methods in the COMPLETE_P case, so
1113 just make room for one more method in that case. */
1114 if (complete_p)
1115 reallocated = VEC_reserve_exact (tree, gc, method_vec, 1);
1116 else
1117 reallocated = VEC_reserve (tree, gc, method_vec, 1);
1118 if (reallocated)
1119 CLASSTYPE_METHOD_VEC (type) = method_vec;
1120 if (slot == VEC_length (tree, method_vec))
1121 VEC_quick_push (tree, method_vec, overload);
1122 else
1123 VEC_quick_insert (tree, method_vec, slot, overload);
1124 }
1125 else
1126 /* Replace the current slot. */
1127 VEC_replace (tree, method_vec, slot, overload);
1128 return true;
1129 }
1130
1131 /* Subroutines of finish_struct. */
1132
1133 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1134 legit, otherwise return 0. */
1135
1136 static int
1137 alter_access (tree t, tree fdecl, tree access)
1138 {
1139 tree elem;
1140
1141 if (!DECL_LANG_SPECIFIC (fdecl))
1142 retrofit_lang_decl (fdecl);
1143
1144 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1145
1146 elem = purpose_member (t, DECL_ACCESS (fdecl));
1147 if (elem)
1148 {
1149 if (TREE_VALUE (elem) != access)
1150 {
1151 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1152 error ("conflicting access specifications for method"
1153 " %q+D, ignored", TREE_TYPE (fdecl));
1154 else
1155 error ("conflicting access specifications for field %qE, ignored",
1156 DECL_NAME (fdecl));
1157 }
1158 else
1159 {
1160 /* They're changing the access to the same thing they changed
1161 it to before. That's OK. */
1162 ;
1163 }
1164 }
1165 else
1166 {
1167 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl);
1168 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1169 return 1;
1170 }
1171 return 0;
1172 }
1173
1174 /* Process the USING_DECL, which is a member of T. */
1175
1176 static void
1177 handle_using_decl (tree using_decl, tree t)
1178 {
1179 tree decl = USING_DECL_DECLS (using_decl);
1180 tree name = DECL_NAME (using_decl);
1181 tree access
1182 = TREE_PRIVATE (using_decl) ? access_private_node
1183 : TREE_PROTECTED (using_decl) ? access_protected_node
1184 : access_public_node;
1185 tree flist = NULL_TREE;
1186 tree old_value;
1187
1188 gcc_assert (!processing_template_decl && decl);
1189
1190 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false);
1191 if (old_value)
1192 {
1193 if (is_overloaded_fn (old_value))
1194 old_value = OVL_CURRENT (old_value);
1195
1196 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1197 /* OK */;
1198 else
1199 old_value = NULL_TREE;
1200 }
1201
1202 cp_emit_debug_info_for_using (decl, USING_DECL_SCOPE (using_decl));
1203
1204 if (is_overloaded_fn (decl))
1205 flist = decl;
1206
1207 if (! old_value)
1208 ;
1209 else if (is_overloaded_fn (old_value))
1210 {
1211 if (flist)
1212 /* It's OK to use functions from a base when there are functions with
1213 the same name already present in the current class. */;
1214 else
1215 {
1216 error ("%q+D invalid in %q#T", using_decl, t);
1217 error (" because of local method %q+#D with same name",
1218 OVL_CURRENT (old_value));
1219 return;
1220 }
1221 }
1222 else if (!DECL_ARTIFICIAL (old_value))
1223 {
1224 error ("%q+D invalid in %q#T", using_decl, t);
1225 error (" because of local member %q+#D with same name", old_value);
1226 return;
1227 }
1228
1229 /* Make type T see field decl FDECL with access ACCESS. */
1230 if (flist)
1231 for (; flist; flist = OVL_NEXT (flist))
1232 {
1233 add_method (t, OVL_CURRENT (flist), using_decl);
1234 alter_access (t, OVL_CURRENT (flist), access);
1235 }
1236 else
1237 alter_access (t, decl, access);
1238 }
1239 \f
1240 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1241 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1242 properties of the bases. */
1243
1244 static void
1245 check_bases (tree t,
1246 int* cant_have_const_ctor_p,
1247 int* no_const_asn_ref_p)
1248 {
1249 int i;
1250 int seen_non_virtual_nearly_empty_base_p;
1251 tree base_binfo;
1252 tree binfo;
1253
1254 seen_non_virtual_nearly_empty_base_p = 0;
1255
1256 for (binfo = TYPE_BINFO (t), i = 0;
1257 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1258 {
1259 tree basetype = TREE_TYPE (base_binfo);
1260
1261 gcc_assert (COMPLETE_TYPE_P (basetype));
1262
1263 /* Effective C++ rule 14. We only need to check TYPE_POLYMORPHIC_P
1264 here because the case of virtual functions but non-virtual
1265 dtor is handled in finish_struct_1. */
1266 if (!TYPE_POLYMORPHIC_P (basetype))
1267 warning (OPT_Weffc__,
1268 "base class %q#T has a non-virtual destructor", basetype);
1269
1270 /* If the base class doesn't have copy constructors or
1271 assignment operators that take const references, then the
1272 derived class cannot have such a member automatically
1273 generated. */
1274 if (! TYPE_HAS_CONST_INIT_REF (basetype))
1275 *cant_have_const_ctor_p = 1;
1276 if (TYPE_HAS_ASSIGN_REF (basetype)
1277 && !TYPE_HAS_CONST_ASSIGN_REF (basetype))
1278 *no_const_asn_ref_p = 1;
1279
1280 if (BINFO_VIRTUAL_P (base_binfo))
1281 /* A virtual base does not effect nearly emptiness. */
1282 ;
1283 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1284 {
1285 if (seen_non_virtual_nearly_empty_base_p)
1286 /* And if there is more than one nearly empty base, then the
1287 derived class is not nearly empty either. */
1288 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1289 else
1290 /* Remember we've seen one. */
1291 seen_non_virtual_nearly_empty_base_p = 1;
1292 }
1293 else if (!is_empty_class (basetype))
1294 /* If the base class is not empty or nearly empty, then this
1295 class cannot be nearly empty. */
1296 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1297
1298 /* A lot of properties from the bases also apply to the derived
1299 class. */
1300 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1301 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1302 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1303 TYPE_HAS_COMPLEX_ASSIGN_REF (t)
1304 |= TYPE_HAS_COMPLEX_ASSIGN_REF (basetype);
1305 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (basetype);
1306 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1307 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1308 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1309 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (basetype);
1310 }
1311 }
1312
1313 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1314 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1315 that have had a nearly-empty virtual primary base stolen by some
1316 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1317 T. */
1318
1319 static void
1320 determine_primary_bases (tree t)
1321 {
1322 unsigned i;
1323 tree primary = NULL_TREE;
1324 tree type_binfo = TYPE_BINFO (t);
1325 tree base_binfo;
1326
1327 /* Determine the primary bases of our bases. */
1328 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1329 base_binfo = TREE_CHAIN (base_binfo))
1330 {
1331 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1332
1333 /* See if we're the non-virtual primary of our inheritance
1334 chain. */
1335 if (!BINFO_VIRTUAL_P (base_binfo))
1336 {
1337 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1338 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1339
1340 if (parent_primary
1341 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1342 BINFO_TYPE (parent_primary)))
1343 /* We are the primary binfo. */
1344 BINFO_PRIMARY_P (base_binfo) = 1;
1345 }
1346 /* Determine if we have a virtual primary base, and mark it so.
1347 */
1348 if (primary && BINFO_VIRTUAL_P (primary))
1349 {
1350 tree this_primary = copied_binfo (primary, base_binfo);
1351
1352 if (BINFO_PRIMARY_P (this_primary))
1353 /* Someone already claimed this base. */
1354 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1355 else
1356 {
1357 tree delta;
1358
1359 BINFO_PRIMARY_P (this_primary) = 1;
1360 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1361
1362 /* A virtual binfo might have been copied from within
1363 another hierarchy. As we're about to use it as a
1364 primary base, make sure the offsets match. */
1365 delta = size_diffop (convert (ssizetype,
1366 BINFO_OFFSET (base_binfo)),
1367 convert (ssizetype,
1368 BINFO_OFFSET (this_primary)));
1369
1370 propagate_binfo_offsets (this_primary, delta);
1371 }
1372 }
1373 }
1374
1375 /* First look for a dynamic direct non-virtual base. */
1376 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1377 {
1378 tree basetype = BINFO_TYPE (base_binfo);
1379
1380 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1381 {
1382 primary = base_binfo;
1383 goto found;
1384 }
1385 }
1386
1387 /* A "nearly-empty" virtual base class can be the primary base
1388 class, if no non-virtual polymorphic base can be found. Look for
1389 a nearly-empty virtual dynamic base that is not already a primary
1390 base of something in the hierarchy. If there is no such base,
1391 just pick the first nearly-empty virtual base. */
1392
1393 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1394 base_binfo = TREE_CHAIN (base_binfo))
1395 if (BINFO_VIRTUAL_P (base_binfo)
1396 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1397 {
1398 if (!BINFO_PRIMARY_P (base_binfo))
1399 {
1400 /* Found one that is not primary. */
1401 primary = base_binfo;
1402 goto found;
1403 }
1404 else if (!primary)
1405 /* Remember the first candidate. */
1406 primary = base_binfo;
1407 }
1408
1409 found:
1410 /* If we've got a primary base, use it. */
1411 if (primary)
1412 {
1413 tree basetype = BINFO_TYPE (primary);
1414
1415 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1416 if (BINFO_PRIMARY_P (primary))
1417 /* We are stealing a primary base. */
1418 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1419 BINFO_PRIMARY_P (primary) = 1;
1420 if (BINFO_VIRTUAL_P (primary))
1421 {
1422 tree delta;
1423
1424 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1425 /* A virtual binfo might have been copied from within
1426 another hierarchy. As we're about to use it as a primary
1427 base, make sure the offsets match. */
1428 delta = size_diffop (ssize_int (0),
1429 convert (ssizetype, BINFO_OFFSET (primary)));
1430
1431 propagate_binfo_offsets (primary, delta);
1432 }
1433
1434 primary = TYPE_BINFO (basetype);
1435
1436 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1437 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1438 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1439 }
1440 }
1441
1442 /* Update the variant types of T. */
1443
1444 void
1445 fixup_type_variants (tree t)
1446 {
1447 tree variants;
1448
1449 if (!t)
1450 return;
1451
1452 for (variants = TYPE_NEXT_VARIANT (t);
1453 variants;
1454 variants = TYPE_NEXT_VARIANT (variants))
1455 {
1456 /* These fields are in the _TYPE part of the node, not in
1457 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1458 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1459 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1460 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1461 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1462
1463 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1464
1465 TYPE_BINFO (variants) = TYPE_BINFO (t);
1466
1467 /* Copy whatever these are holding today. */
1468 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1469 TYPE_METHODS (variants) = TYPE_METHODS (t);
1470 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1471
1472 /* All variants of a class have the same attributes. */
1473 TYPE_ATTRIBUTES (variants) = TYPE_ATTRIBUTES (t);
1474 }
1475 }
1476
1477 \f
1478 /* Set memoizing fields and bits of T (and its variants) for later
1479 use. */
1480
1481 static void
1482 finish_struct_bits (tree t)
1483 {
1484 /* Fix up variants (if any). */
1485 fixup_type_variants (t);
1486
1487 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1488 /* For a class w/o baseclasses, 'finish_struct' has set
1489 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1490 Similarly for a class whose base classes do not have vtables.
1491 When neither of these is true, we might have removed abstract
1492 virtuals (by providing a definition), added some (by declaring
1493 new ones), or redeclared ones from a base class. We need to
1494 recalculate what's really an abstract virtual at this point (by
1495 looking in the vtables). */
1496 get_pure_virtuals (t);
1497
1498 /* If this type has a copy constructor or a destructor, force its
1499 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1500 nonzero. This will cause it to be passed by invisible reference
1501 and prevent it from being returned in a register. */
1502 if (! TYPE_HAS_TRIVIAL_INIT_REF (t) || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
1503 {
1504 tree variants;
1505 DECL_MODE (TYPE_MAIN_DECL (t)) = BLKmode;
1506 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
1507 {
1508 SET_TYPE_MODE (variants, BLKmode);
1509 TREE_ADDRESSABLE (variants) = 1;
1510 }
1511 }
1512 }
1513
1514 /* Issue warnings about T having private constructors, but no friends,
1515 and so forth.
1516
1517 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
1518 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
1519 non-private static member functions. */
1520
1521 static void
1522 maybe_warn_about_overly_private_class (tree t)
1523 {
1524 int has_member_fn = 0;
1525 int has_nonprivate_method = 0;
1526 tree fn;
1527
1528 if (!warn_ctor_dtor_privacy
1529 /* If the class has friends, those entities might create and
1530 access instances, so we should not warn. */
1531 || (CLASSTYPE_FRIEND_CLASSES (t)
1532 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1533 /* We will have warned when the template was declared; there's
1534 no need to warn on every instantiation. */
1535 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1536 /* There's no reason to even consider warning about this
1537 class. */
1538 return;
1539
1540 /* We only issue one warning, if more than one applies, because
1541 otherwise, on code like:
1542
1543 class A {
1544 // Oops - forgot `public:'
1545 A();
1546 A(const A&);
1547 ~A();
1548 };
1549
1550 we warn several times about essentially the same problem. */
1551
1552 /* Check to see if all (non-constructor, non-destructor) member
1553 functions are private. (Since there are no friends or
1554 non-private statics, we can't ever call any of the private member
1555 functions.) */
1556 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
1557 /* We're not interested in compiler-generated methods; they don't
1558 provide any way to call private members. */
1559 if (!DECL_ARTIFICIAL (fn))
1560 {
1561 if (!TREE_PRIVATE (fn))
1562 {
1563 if (DECL_STATIC_FUNCTION_P (fn))
1564 /* A non-private static member function is just like a
1565 friend; it can create and invoke private member
1566 functions, and be accessed without a class
1567 instance. */
1568 return;
1569
1570 has_nonprivate_method = 1;
1571 /* Keep searching for a static member function. */
1572 }
1573 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
1574 has_member_fn = 1;
1575 }
1576
1577 if (!has_nonprivate_method && has_member_fn)
1578 {
1579 /* There are no non-private methods, and there's at least one
1580 private member function that isn't a constructor or
1581 destructor. (If all the private members are
1582 constructors/destructors we want to use the code below that
1583 issues error messages specifically referring to
1584 constructors/destructors.) */
1585 unsigned i;
1586 tree binfo = TYPE_BINFO (t);
1587
1588 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
1589 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
1590 {
1591 has_nonprivate_method = 1;
1592 break;
1593 }
1594 if (!has_nonprivate_method)
1595 {
1596 warning (OPT_Wctor_dtor_privacy,
1597 "all member functions in class %qT are private", t);
1598 return;
1599 }
1600 }
1601
1602 /* Even if some of the member functions are non-private, the class
1603 won't be useful for much if all the constructors or destructors
1604 are private: such an object can never be created or destroyed. */
1605 fn = CLASSTYPE_DESTRUCTORS (t);
1606 if (fn && TREE_PRIVATE (fn))
1607 {
1608 warning (OPT_Wctor_dtor_privacy,
1609 "%q#T only defines a private destructor and has no friends",
1610 t);
1611 return;
1612 }
1613
1614 /* Warn about classes that have private constructors and no friends. */
1615 if (TYPE_HAS_USER_CONSTRUCTOR (t)
1616 /* Implicitly generated constructors are always public. */
1617 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t)
1618 || !CLASSTYPE_LAZY_COPY_CTOR (t)))
1619 {
1620 int nonprivate_ctor = 0;
1621
1622 /* If a non-template class does not define a copy
1623 constructor, one is defined for it, enabling it to avoid
1624 this warning. For a template class, this does not
1625 happen, and so we would normally get a warning on:
1626
1627 template <class T> class C { private: C(); };
1628
1629 To avoid this asymmetry, we check TYPE_HAS_INIT_REF. All
1630 complete non-template or fully instantiated classes have this
1631 flag set. */
1632 if (!TYPE_HAS_INIT_REF (t))
1633 nonprivate_ctor = 1;
1634 else
1635 for (fn = CLASSTYPE_CONSTRUCTORS (t); fn; fn = OVL_NEXT (fn))
1636 {
1637 tree ctor = OVL_CURRENT (fn);
1638 /* Ideally, we wouldn't count copy constructors (or, in
1639 fact, any constructor that takes an argument of the
1640 class type as a parameter) because such things cannot
1641 be used to construct an instance of the class unless
1642 you already have one. But, for now at least, we're
1643 more generous. */
1644 if (! TREE_PRIVATE (ctor))
1645 {
1646 nonprivate_ctor = 1;
1647 break;
1648 }
1649 }
1650
1651 if (nonprivate_ctor == 0)
1652 {
1653 warning (OPT_Wctor_dtor_privacy,
1654 "%q#T only defines private constructors and has no friends",
1655 t);
1656 return;
1657 }
1658 }
1659 }
1660
1661 static struct {
1662 gt_pointer_operator new_value;
1663 void *cookie;
1664 } resort_data;
1665
1666 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
1667
1668 static int
1669 method_name_cmp (const void* m1_p, const void* m2_p)
1670 {
1671 const tree *const m1 = (const tree *) m1_p;
1672 const tree *const m2 = (const tree *) m2_p;
1673
1674 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1675 return 0;
1676 if (*m1 == NULL_TREE)
1677 return -1;
1678 if (*m2 == NULL_TREE)
1679 return 1;
1680 if (DECL_NAME (OVL_CURRENT (*m1)) < DECL_NAME (OVL_CURRENT (*m2)))
1681 return -1;
1682 return 1;
1683 }
1684
1685 /* This routine compares two fields like method_name_cmp but using the
1686 pointer operator in resort_field_decl_data. */
1687
1688 static int
1689 resort_method_name_cmp (const void* m1_p, const void* m2_p)
1690 {
1691 const tree *const m1 = (const tree *) m1_p;
1692 const tree *const m2 = (const tree *) m2_p;
1693 if (*m1 == NULL_TREE && *m2 == NULL_TREE)
1694 return 0;
1695 if (*m1 == NULL_TREE)
1696 return -1;
1697 if (*m2 == NULL_TREE)
1698 return 1;
1699 {
1700 tree d1 = DECL_NAME (OVL_CURRENT (*m1));
1701 tree d2 = DECL_NAME (OVL_CURRENT (*m2));
1702 resort_data.new_value (&d1, resort_data.cookie);
1703 resort_data.new_value (&d2, resort_data.cookie);
1704 if (d1 < d2)
1705 return -1;
1706 }
1707 return 1;
1708 }
1709
1710 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
1711
1712 void
1713 resort_type_method_vec (void* obj,
1714 void* orig_obj ATTRIBUTE_UNUSED ,
1715 gt_pointer_operator new_value,
1716 void* cookie)
1717 {
1718 VEC(tree,gc) *method_vec = (VEC(tree,gc) *) obj;
1719 int len = VEC_length (tree, method_vec);
1720 size_t slot;
1721 tree fn;
1722
1723 /* The type conversion ops have to live at the front of the vec, so we
1724 can't sort them. */
1725 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1726 VEC_iterate (tree, method_vec, slot, fn);
1727 ++slot)
1728 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1729 break;
1730
1731 if (len - slot > 1)
1732 {
1733 resort_data.new_value = new_value;
1734 resort_data.cookie = cookie;
1735 qsort (VEC_address (tree, method_vec) + slot, len - slot, sizeof (tree),
1736 resort_method_name_cmp);
1737 }
1738 }
1739
1740 /* Warn about duplicate methods in fn_fields.
1741
1742 Sort methods that are not special (i.e., constructors, destructors,
1743 and type conversion operators) so that we can find them faster in
1744 search. */
1745
1746 static void
1747 finish_struct_methods (tree t)
1748 {
1749 tree fn_fields;
1750 VEC(tree,gc) *method_vec;
1751 int slot, len;
1752
1753 method_vec = CLASSTYPE_METHOD_VEC (t);
1754 if (!method_vec)
1755 return;
1756
1757 len = VEC_length (tree, method_vec);
1758
1759 /* Clear DECL_IN_AGGR_P for all functions. */
1760 for (fn_fields = TYPE_METHODS (t); fn_fields;
1761 fn_fields = TREE_CHAIN (fn_fields))
1762 DECL_IN_AGGR_P (fn_fields) = 0;
1763
1764 /* Issue warnings about private constructors and such. If there are
1765 no methods, then some public defaults are generated. */
1766 maybe_warn_about_overly_private_class (t);
1767
1768 /* The type conversion ops have to live at the front of the vec, so we
1769 can't sort them. */
1770 for (slot = CLASSTYPE_FIRST_CONVERSION_SLOT;
1771 VEC_iterate (tree, method_vec, slot, fn_fields);
1772 ++slot)
1773 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields)))
1774 break;
1775 if (len - slot > 1)
1776 qsort (VEC_address (tree, method_vec) + slot,
1777 len-slot, sizeof (tree), method_name_cmp);
1778 }
1779
1780 /* Make BINFO's vtable have N entries, including RTTI entries,
1781 vbase and vcall offsets, etc. Set its type and call the back end
1782 to lay it out. */
1783
1784 static void
1785 layout_vtable_decl (tree binfo, int n)
1786 {
1787 tree atype;
1788 tree vtable;
1789
1790 atype = build_cplus_array_type (vtable_entry_type,
1791 build_index_type (size_int (n - 1)));
1792 layout_type (atype);
1793
1794 /* We may have to grow the vtable. */
1795 vtable = get_vtbl_decl_for_binfo (binfo);
1796 if (!same_type_p (TREE_TYPE (vtable), atype))
1797 {
1798 TREE_TYPE (vtable) = atype;
1799 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
1800 layout_decl (vtable, 0);
1801 }
1802 }
1803
1804 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
1805 have the same signature. */
1806
1807 int
1808 same_signature_p (const_tree fndecl, const_tree base_fndecl)
1809 {
1810 /* One destructor overrides another if they are the same kind of
1811 destructor. */
1812 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
1813 && special_function_p (base_fndecl) == special_function_p (fndecl))
1814 return 1;
1815 /* But a non-destructor never overrides a destructor, nor vice
1816 versa, nor do different kinds of destructors override
1817 one-another. For example, a complete object destructor does not
1818 override a deleting destructor. */
1819 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
1820 return 0;
1821
1822 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
1823 || (DECL_CONV_FN_P (fndecl)
1824 && DECL_CONV_FN_P (base_fndecl)
1825 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
1826 DECL_CONV_FN_TYPE (base_fndecl))))
1827 {
1828 tree types, base_types;
1829 types = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
1830 base_types = TYPE_ARG_TYPES (TREE_TYPE (base_fndecl));
1831 if ((TYPE_QUALS (TREE_TYPE (TREE_VALUE (base_types)))
1832 == TYPE_QUALS (TREE_TYPE (TREE_VALUE (types))))
1833 && compparms (TREE_CHAIN (base_types), TREE_CHAIN (types)))
1834 return 1;
1835 }
1836 return 0;
1837 }
1838
1839 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
1840 subobject. */
1841
1842 static bool
1843 base_derived_from (tree derived, tree base)
1844 {
1845 tree probe;
1846
1847 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
1848 {
1849 if (probe == derived)
1850 return true;
1851 else if (BINFO_VIRTUAL_P (probe))
1852 /* If we meet a virtual base, we can't follow the inheritance
1853 any more. See if the complete type of DERIVED contains
1854 such a virtual base. */
1855 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
1856 != NULL_TREE);
1857 }
1858 return false;
1859 }
1860
1861 typedef struct find_final_overrider_data_s {
1862 /* The function for which we are trying to find a final overrider. */
1863 tree fn;
1864 /* The base class in which the function was declared. */
1865 tree declaring_base;
1866 /* The candidate overriders. */
1867 tree candidates;
1868 /* Path to most derived. */
1869 VEC(tree,heap) *path;
1870 } find_final_overrider_data;
1871
1872 /* Add the overrider along the current path to FFOD->CANDIDATES.
1873 Returns true if an overrider was found; false otherwise. */
1874
1875 static bool
1876 dfs_find_final_overrider_1 (tree binfo,
1877 find_final_overrider_data *ffod,
1878 unsigned depth)
1879 {
1880 tree method;
1881
1882 /* If BINFO is not the most derived type, try a more derived class.
1883 A definition there will overrider a definition here. */
1884 if (depth)
1885 {
1886 depth--;
1887 if (dfs_find_final_overrider_1
1888 (VEC_index (tree, ffod->path, depth), ffod, depth))
1889 return true;
1890 }
1891
1892 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
1893 if (method)
1894 {
1895 tree *candidate = &ffod->candidates;
1896
1897 /* Remove any candidates overridden by this new function. */
1898 while (*candidate)
1899 {
1900 /* If *CANDIDATE overrides METHOD, then METHOD
1901 cannot override anything else on the list. */
1902 if (base_derived_from (TREE_VALUE (*candidate), binfo))
1903 return true;
1904 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
1905 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
1906 *candidate = TREE_CHAIN (*candidate);
1907 else
1908 candidate = &TREE_CHAIN (*candidate);
1909 }
1910
1911 /* Add the new function. */
1912 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
1913 return true;
1914 }
1915
1916 return false;
1917 }
1918
1919 /* Called from find_final_overrider via dfs_walk. */
1920
1921 static tree
1922 dfs_find_final_overrider_pre (tree binfo, void *data)
1923 {
1924 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1925
1926 if (binfo == ffod->declaring_base)
1927 dfs_find_final_overrider_1 (binfo, ffod, VEC_length (tree, ffod->path));
1928 VEC_safe_push (tree, heap, ffod->path, binfo);
1929
1930 return NULL_TREE;
1931 }
1932
1933 static tree
1934 dfs_find_final_overrider_post (tree binfo ATTRIBUTE_UNUSED, void *data)
1935 {
1936 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
1937 VEC_pop (tree, ffod->path);
1938
1939 return NULL_TREE;
1940 }
1941
1942 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
1943 FN and whose TREE_VALUE is the binfo for the base where the
1944 overriding occurs. BINFO (in the hierarchy dominated by the binfo
1945 DERIVED) is the base object in which FN is declared. */
1946
1947 static tree
1948 find_final_overrider (tree derived, tree binfo, tree fn)
1949 {
1950 find_final_overrider_data ffod;
1951
1952 /* Getting this right is a little tricky. This is valid:
1953
1954 struct S { virtual void f (); };
1955 struct T { virtual void f (); };
1956 struct U : public S, public T { };
1957
1958 even though calling `f' in `U' is ambiguous. But,
1959
1960 struct R { virtual void f(); };
1961 struct S : virtual public R { virtual void f (); };
1962 struct T : virtual public R { virtual void f (); };
1963 struct U : public S, public T { };
1964
1965 is not -- there's no way to decide whether to put `S::f' or
1966 `T::f' in the vtable for `R'.
1967
1968 The solution is to look at all paths to BINFO. If we find
1969 different overriders along any two, then there is a problem. */
1970 if (DECL_THUNK_P (fn))
1971 fn = THUNK_TARGET (fn);
1972
1973 /* Determine the depth of the hierarchy. */
1974 ffod.fn = fn;
1975 ffod.declaring_base = binfo;
1976 ffod.candidates = NULL_TREE;
1977 ffod.path = VEC_alloc (tree, heap, 30);
1978
1979 dfs_walk_all (derived, dfs_find_final_overrider_pre,
1980 dfs_find_final_overrider_post, &ffod);
1981
1982 VEC_free (tree, heap, ffod.path);
1983
1984 /* If there was no winner, issue an error message. */
1985 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
1986 return error_mark_node;
1987
1988 return ffod.candidates;
1989 }
1990
1991 /* Return the index of the vcall offset for FN when TYPE is used as a
1992 virtual base. */
1993
1994 static tree
1995 get_vcall_index (tree fn, tree type)
1996 {
1997 VEC(tree_pair_s,gc) *indices = CLASSTYPE_VCALL_INDICES (type);
1998 tree_pair_p p;
1999 unsigned ix;
2000
2001 for (ix = 0; VEC_iterate (tree_pair_s, indices, ix, p); ix++)
2002 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2003 || same_signature_p (fn, p->purpose))
2004 return p->value;
2005
2006 /* There should always be an appropriate index. */
2007 gcc_unreachable ();
2008 }
2009
2010 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2011 dominated by T. FN has been overridden in BINFO; VIRTUALS points to the
2012 corresponding position in the BINFO_VIRTUALS list. */
2013
2014 static void
2015 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2016 unsigned ix)
2017 {
2018 tree b;
2019 tree overrider;
2020 tree delta;
2021 tree virtual_base;
2022 tree first_defn;
2023 tree overrider_fn, overrider_target;
2024 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2025 tree over_return, base_return;
2026 bool lost = false;
2027
2028 /* Find the nearest primary base (possibly binfo itself) which defines
2029 this function; this is the class the caller will convert to when
2030 calling FN through BINFO. */
2031 for (b = binfo; ; b = get_primary_binfo (b))
2032 {
2033 gcc_assert (b);
2034 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2035 break;
2036
2037 /* The nearest definition is from a lost primary. */
2038 if (BINFO_LOST_PRIMARY_P (b))
2039 lost = true;
2040 }
2041 first_defn = b;
2042
2043 /* Find the final overrider. */
2044 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2045 if (overrider == error_mark_node)
2046 {
2047 error ("no unique final overrider for %qD in %qT", target_fn, t);
2048 return;
2049 }
2050 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2051
2052 /* Check for adjusting covariant return types. */
2053 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2054 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2055
2056 if (POINTER_TYPE_P (over_return)
2057 && TREE_CODE (over_return) == TREE_CODE (base_return)
2058 && CLASS_TYPE_P (TREE_TYPE (over_return))
2059 && CLASS_TYPE_P (TREE_TYPE (base_return))
2060 /* If the overrider is invalid, don't even try. */
2061 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2062 {
2063 /* If FN is a covariant thunk, we must figure out the adjustment
2064 to the final base FN was converting to. As OVERRIDER_TARGET might
2065 also be converting to the return type of FN, we have to
2066 combine the two conversions here. */
2067 tree fixed_offset, virtual_offset;
2068
2069 over_return = TREE_TYPE (over_return);
2070 base_return = TREE_TYPE (base_return);
2071
2072 if (DECL_THUNK_P (fn))
2073 {
2074 gcc_assert (DECL_RESULT_THUNK_P (fn));
2075 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2076 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2077 }
2078 else
2079 fixed_offset = virtual_offset = NULL_TREE;
2080
2081 if (virtual_offset)
2082 /* Find the equivalent binfo within the return type of the
2083 overriding function. We will want the vbase offset from
2084 there. */
2085 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2086 over_return);
2087 else if (!same_type_ignoring_top_level_qualifiers_p
2088 (over_return, base_return))
2089 {
2090 /* There was no existing virtual thunk (which takes
2091 precedence). So find the binfo of the base function's
2092 return type within the overriding function's return type.
2093 We cannot call lookup base here, because we're inside a
2094 dfs_walk, and will therefore clobber the BINFO_MARKED
2095 flags. Fortunately we know the covariancy is valid (it
2096 has already been checked), so we can just iterate along
2097 the binfos, which have been chained in inheritance graph
2098 order. Of course it is lame that we have to repeat the
2099 search here anyway -- we should really be caching pieces
2100 of the vtable and avoiding this repeated work. */
2101 tree thunk_binfo, base_binfo;
2102
2103 /* Find the base binfo within the overriding function's
2104 return type. We will always find a thunk_binfo, except
2105 when the covariancy is invalid (which we will have
2106 already diagnosed). */
2107 for (base_binfo = TYPE_BINFO (base_return),
2108 thunk_binfo = TYPE_BINFO (over_return);
2109 thunk_binfo;
2110 thunk_binfo = TREE_CHAIN (thunk_binfo))
2111 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2112 BINFO_TYPE (base_binfo)))
2113 break;
2114
2115 /* See if virtual inheritance is involved. */
2116 for (virtual_offset = thunk_binfo;
2117 virtual_offset;
2118 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2119 if (BINFO_VIRTUAL_P (virtual_offset))
2120 break;
2121
2122 if (virtual_offset
2123 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2124 {
2125 tree offset = convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2126
2127 if (virtual_offset)
2128 {
2129 /* We convert via virtual base. Adjust the fixed
2130 offset to be from there. */
2131 offset = size_diffop
2132 (offset, convert
2133 (ssizetype, BINFO_OFFSET (virtual_offset)));
2134 }
2135 if (fixed_offset)
2136 /* There was an existing fixed offset, this must be
2137 from the base just converted to, and the base the
2138 FN was thunking to. */
2139 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2140 else
2141 fixed_offset = offset;
2142 }
2143 }
2144
2145 if (fixed_offset || virtual_offset)
2146 /* Replace the overriding function with a covariant thunk. We
2147 will emit the overriding function in its own slot as
2148 well. */
2149 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2150 fixed_offset, virtual_offset);
2151 }
2152 else
2153 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2154 !DECL_THUNK_P (fn));
2155
2156 /* Assume that we will produce a thunk that convert all the way to
2157 the final overrider, and not to an intermediate virtual base. */
2158 virtual_base = NULL_TREE;
2159
2160 /* See if we can convert to an intermediate virtual base first, and then
2161 use the vcall offset located there to finish the conversion. */
2162 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2163 {
2164 /* If we find the final overrider, then we can stop
2165 walking. */
2166 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2167 BINFO_TYPE (TREE_VALUE (overrider))))
2168 break;
2169
2170 /* If we find a virtual base, and we haven't yet found the
2171 overrider, then there is a virtual base between the
2172 declaring base (first_defn) and the final overrider. */
2173 if (BINFO_VIRTUAL_P (b))
2174 {
2175 virtual_base = b;
2176 break;
2177 }
2178 }
2179
2180 if (overrider_fn != overrider_target && !virtual_base)
2181 {
2182 /* The ABI specifies that a covariant thunk includes a mangling
2183 for a this pointer adjustment. This-adjusting thunks that
2184 override a function from a virtual base have a vcall
2185 adjustment. When the virtual base in question is a primary
2186 virtual base, we know the adjustments are zero, (and in the
2187 non-covariant case, we would not use the thunk).
2188 Unfortunately we didn't notice this could happen, when
2189 designing the ABI and so never mandated that such a covariant
2190 thunk should be emitted. Because we must use the ABI mandated
2191 name, we must continue searching from the binfo where we
2192 found the most recent definition of the function, towards the
2193 primary binfo which first introduced the function into the
2194 vtable. If that enters a virtual base, we must use a vcall
2195 this-adjusting thunk. Bleah! */
2196 tree probe = first_defn;
2197
2198 while ((probe = get_primary_binfo (probe))
2199 && (unsigned) list_length (BINFO_VIRTUALS (probe)) > ix)
2200 if (BINFO_VIRTUAL_P (probe))
2201 virtual_base = probe;
2202
2203 if (virtual_base)
2204 /* Even if we find a virtual base, the correct delta is
2205 between the overrider and the binfo we're building a vtable
2206 for. */
2207 goto virtual_covariant;
2208 }
2209
2210 /* Compute the constant adjustment to the `this' pointer. The
2211 `this' pointer, when this function is called, will point at BINFO
2212 (or one of its primary bases, which are at the same offset). */
2213 if (virtual_base)
2214 /* The `this' pointer needs to be adjusted from the declaration to
2215 the nearest virtual base. */
2216 delta = size_diffop (convert (ssizetype, BINFO_OFFSET (virtual_base)),
2217 convert (ssizetype, BINFO_OFFSET (first_defn)));
2218 else if (lost)
2219 /* If the nearest definition is in a lost primary, we don't need an
2220 entry in our vtable. Except possibly in a constructor vtable,
2221 if we happen to get our primary back. In that case, the offset
2222 will be zero, as it will be a primary base. */
2223 delta = size_zero_node;
2224 else
2225 /* The `this' pointer needs to be adjusted from pointing to
2226 BINFO to pointing at the base where the final overrider
2227 appears. */
2228 virtual_covariant:
2229 delta = size_diffop (convert (ssizetype,
2230 BINFO_OFFSET (TREE_VALUE (overrider))),
2231 convert (ssizetype, BINFO_OFFSET (binfo)));
2232
2233 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2234
2235 if (virtual_base)
2236 BV_VCALL_INDEX (*virtuals)
2237 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2238 else
2239 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2240 }
2241
2242 /* Called from modify_all_vtables via dfs_walk. */
2243
2244 static tree
2245 dfs_modify_vtables (tree binfo, void* data)
2246 {
2247 tree t = (tree) data;
2248 tree virtuals;
2249 tree old_virtuals;
2250 unsigned ix;
2251
2252 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2253 /* A base without a vtable needs no modification, and its bases
2254 are uninteresting. */
2255 return dfs_skip_bases;
2256
2257 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2258 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2259 /* Don't do the primary vtable, if it's new. */
2260 return NULL_TREE;
2261
2262 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2263 /* There's no need to modify the vtable for a non-virtual primary
2264 base; we're not going to use that vtable anyhow. We do still
2265 need to do this for virtual primary bases, as they could become
2266 non-primary in a construction vtable. */
2267 return NULL_TREE;
2268
2269 make_new_vtable (t, binfo);
2270
2271 /* Now, go through each of the virtual functions in the virtual
2272 function table for BINFO. Find the final overrider, and update
2273 the BINFO_VIRTUALS list appropriately. */
2274 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2275 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2276 virtuals;
2277 ix++, virtuals = TREE_CHAIN (virtuals),
2278 old_virtuals = TREE_CHAIN (old_virtuals))
2279 update_vtable_entry_for_fn (t,
2280 binfo,
2281 BV_FN (old_virtuals),
2282 &virtuals, ix);
2283
2284 return NULL_TREE;
2285 }
2286
2287 /* Update all of the primary and secondary vtables for T. Create new
2288 vtables as required, and initialize their RTTI information. Each
2289 of the functions in VIRTUALS is declared in T and may override a
2290 virtual function from a base class; find and modify the appropriate
2291 entries to point to the overriding functions. Returns a list, in
2292 declaration order, of the virtual functions that are declared in T,
2293 but do not appear in the primary base class vtable, and which
2294 should therefore be appended to the end of the vtable for T. */
2295
2296 static tree
2297 modify_all_vtables (tree t, tree virtuals)
2298 {
2299 tree binfo = TYPE_BINFO (t);
2300 tree *fnsp;
2301
2302 /* Update all of the vtables. */
2303 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2304
2305 /* Add virtual functions not already in our primary vtable. These
2306 will be both those introduced by this class, and those overridden
2307 from secondary bases. It does not include virtuals merely
2308 inherited from secondary bases. */
2309 for (fnsp = &virtuals; *fnsp; )
2310 {
2311 tree fn = TREE_VALUE (*fnsp);
2312
2313 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2314 || DECL_VINDEX (fn) == error_mark_node)
2315 {
2316 /* We don't need to adjust the `this' pointer when
2317 calling this function. */
2318 BV_DELTA (*fnsp) = integer_zero_node;
2319 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2320
2321 /* This is a function not already in our vtable. Keep it. */
2322 fnsp = &TREE_CHAIN (*fnsp);
2323 }
2324 else
2325 /* We've already got an entry for this function. Skip it. */
2326 *fnsp = TREE_CHAIN (*fnsp);
2327 }
2328
2329 return virtuals;
2330 }
2331
2332 /* Get the base virtual function declarations in T that have the
2333 indicated NAME. */
2334
2335 static tree
2336 get_basefndecls (tree name, tree t)
2337 {
2338 tree methods;
2339 tree base_fndecls = NULL_TREE;
2340 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2341 int i;
2342
2343 /* Find virtual functions in T with the indicated NAME. */
2344 i = lookup_fnfields_1 (t, name);
2345 if (i != -1)
2346 for (methods = VEC_index (tree, CLASSTYPE_METHOD_VEC (t), i);
2347 methods;
2348 methods = OVL_NEXT (methods))
2349 {
2350 tree method = OVL_CURRENT (methods);
2351
2352 if (TREE_CODE (method) == FUNCTION_DECL
2353 && DECL_VINDEX (method))
2354 base_fndecls = tree_cons (NULL_TREE, method, base_fndecls);
2355 }
2356
2357 if (base_fndecls)
2358 return base_fndecls;
2359
2360 for (i = 0; i < n_baseclasses; i++)
2361 {
2362 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2363 base_fndecls = chainon (get_basefndecls (name, basetype),
2364 base_fndecls);
2365 }
2366
2367 return base_fndecls;
2368 }
2369
2370 /* If this declaration supersedes the declaration of
2371 a method declared virtual in the base class, then
2372 mark this field as being virtual as well. */
2373
2374 void
2375 check_for_override (tree decl, tree ctype)
2376 {
2377 if (TREE_CODE (decl) == TEMPLATE_DECL)
2378 /* In [temp.mem] we have:
2379
2380 A specialization of a member function template does not
2381 override a virtual function from a base class. */
2382 return;
2383 if ((DECL_DESTRUCTOR_P (decl)
2384 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2385 || DECL_CONV_FN_P (decl))
2386 && look_for_overrides (ctype, decl)
2387 && !DECL_STATIC_FUNCTION_P (decl))
2388 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2389 the error_mark_node so that we know it is an overriding
2390 function. */
2391 DECL_VINDEX (decl) = decl;
2392
2393 if (DECL_VIRTUAL_P (decl))
2394 {
2395 if (!DECL_VINDEX (decl))
2396 DECL_VINDEX (decl) = error_mark_node;
2397 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2398 }
2399 }
2400
2401 /* Warn about hidden virtual functions that are not overridden in t.
2402 We know that constructors and destructors don't apply. */
2403
2404 static void
2405 warn_hidden (tree t)
2406 {
2407 VEC(tree,gc) *method_vec = CLASSTYPE_METHOD_VEC (t);
2408 tree fns;
2409 size_t i;
2410
2411 /* We go through each separately named virtual function. */
2412 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2413 VEC_iterate (tree, method_vec, i, fns);
2414 ++i)
2415 {
2416 tree fn;
2417 tree name;
2418 tree fndecl;
2419 tree base_fndecls;
2420 tree base_binfo;
2421 tree binfo;
2422 int j;
2423
2424 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2425 have the same name. Figure out what name that is. */
2426 name = DECL_NAME (OVL_CURRENT (fns));
2427 /* There are no possibly hidden functions yet. */
2428 base_fndecls = NULL_TREE;
2429 /* Iterate through all of the base classes looking for possibly
2430 hidden functions. */
2431 for (binfo = TYPE_BINFO (t), j = 0;
2432 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2433 {
2434 tree basetype = BINFO_TYPE (base_binfo);
2435 base_fndecls = chainon (get_basefndecls (name, basetype),
2436 base_fndecls);
2437 }
2438
2439 /* If there are no functions to hide, continue. */
2440 if (!base_fndecls)
2441 continue;
2442
2443 /* Remove any overridden functions. */
2444 for (fn = fns; fn; fn = OVL_NEXT (fn))
2445 {
2446 fndecl = OVL_CURRENT (fn);
2447 if (DECL_VINDEX (fndecl))
2448 {
2449 tree *prev = &base_fndecls;
2450
2451 while (*prev)
2452 /* If the method from the base class has the same
2453 signature as the method from the derived class, it
2454 has been overridden. */
2455 if (same_signature_p (fndecl, TREE_VALUE (*prev)))
2456 *prev = TREE_CHAIN (*prev);
2457 else
2458 prev = &TREE_CHAIN (*prev);
2459 }
2460 }
2461
2462 /* Now give a warning for all base functions without overriders,
2463 as they are hidden. */
2464 while (base_fndecls)
2465 {
2466 /* Here we know it is a hider, and no overrider exists. */
2467 warning (OPT_Woverloaded_virtual, "%q+D was hidden", TREE_VALUE (base_fndecls));
2468 warning (OPT_Woverloaded_virtual, " by %q+D", fns);
2469 base_fndecls = TREE_CHAIN (base_fndecls);
2470 }
2471 }
2472 }
2473
2474 /* Check for things that are invalid. There are probably plenty of other
2475 things we should check for also. */
2476
2477 static void
2478 finish_struct_anon (tree t)
2479 {
2480 tree field;
2481
2482 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
2483 {
2484 if (TREE_STATIC (field))
2485 continue;
2486 if (TREE_CODE (field) != FIELD_DECL)
2487 continue;
2488
2489 if (DECL_NAME (field) == NULL_TREE
2490 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2491 {
2492 bool is_union = TREE_CODE (TREE_TYPE (field)) == UNION_TYPE;
2493 tree elt = TYPE_FIELDS (TREE_TYPE (field));
2494 for (; elt; elt = TREE_CHAIN (elt))
2495 {
2496 /* We're generally only interested in entities the user
2497 declared, but we also find nested classes by noticing
2498 the TYPE_DECL that we create implicitly. You're
2499 allowed to put one anonymous union inside another,
2500 though, so we explicitly tolerate that. We use
2501 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
2502 we also allow unnamed types used for defining fields. */
2503 if (DECL_ARTIFICIAL (elt)
2504 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2505 || TYPE_ANONYMOUS_P (TREE_TYPE (elt))))
2506 continue;
2507
2508 if (TREE_CODE (elt) != FIELD_DECL)
2509 {
2510 if (is_union)
2511 permerror (input_location, "%q+#D invalid; an anonymous union can "
2512 "only have non-static data members", elt);
2513 else
2514 permerror (input_location, "%q+#D invalid; an anonymous struct can "
2515 "only have non-static data members", elt);
2516 continue;
2517 }
2518
2519 if (TREE_PRIVATE (elt))
2520 {
2521 if (is_union)
2522 permerror (input_location, "private member %q+#D in anonymous union", elt);
2523 else
2524 permerror (input_location, "private member %q+#D in anonymous struct", elt);
2525 }
2526 else if (TREE_PROTECTED (elt))
2527 {
2528 if (is_union)
2529 permerror (input_location, "protected member %q+#D in anonymous union", elt);
2530 else
2531 permerror (input_location, "protected member %q+#D in anonymous struct", elt);
2532 }
2533
2534 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2535 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2536 }
2537 }
2538 }
2539 }
2540
2541 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2542 will be used later during class template instantiation.
2543 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2544 a non-static member data (FIELD_DECL), a member function
2545 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2546 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2547 When FRIEND_P is nonzero, T is either a friend class
2548 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2549 (FUNCTION_DECL, TEMPLATE_DECL). */
2550
2551 void
2552 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2553 {
2554 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2555 if (CLASSTYPE_TEMPLATE_INFO (type))
2556 CLASSTYPE_DECL_LIST (type)
2557 = tree_cons (friend_p ? NULL_TREE : type,
2558 t, CLASSTYPE_DECL_LIST (type));
2559 }
2560
2561 /* Create default constructors, assignment operators, and so forth for
2562 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
2563 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
2564 the class cannot have a default constructor, copy constructor
2565 taking a const reference argument, or an assignment operator taking
2566 a const reference, respectively. */
2567
2568 static void
2569 add_implicitly_declared_members (tree t,
2570 int cant_have_const_cctor,
2571 int cant_have_const_assignment)
2572 {
2573 /* Destructor. */
2574 if (!CLASSTYPE_DESTRUCTORS (t))
2575 {
2576 /* In general, we create destructors lazily. */
2577 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
2578 /* However, if the implicit destructor is non-trivial
2579 destructor, we sometimes have to create it at this point. */
2580 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2581 {
2582 bool lazy_p = true;
2583
2584 if (TYPE_FOR_JAVA (t))
2585 /* If this a Java class, any non-trivial destructor is
2586 invalid, even if compiler-generated. Therefore, if the
2587 destructor is non-trivial we create it now. */
2588 lazy_p = false;
2589 else
2590 {
2591 tree binfo;
2592 tree base_binfo;
2593 int ix;
2594
2595 /* If the implicit destructor will be virtual, then we must
2596 generate it now because (unfortunately) we do not
2597 generate virtual tables lazily. */
2598 binfo = TYPE_BINFO (t);
2599 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
2600 {
2601 tree base_type;
2602 tree dtor;
2603
2604 base_type = BINFO_TYPE (base_binfo);
2605 dtor = CLASSTYPE_DESTRUCTORS (base_type);
2606 if (dtor && DECL_VIRTUAL_P (dtor))
2607 {
2608 lazy_p = false;
2609 break;
2610 }
2611 }
2612 }
2613
2614 /* If we can't get away with being lazy, generate the destructor
2615 now. */
2616 if (!lazy_p)
2617 lazily_declare_fn (sfk_destructor, t);
2618 }
2619 }
2620
2621 /* [class.ctor]
2622
2623 If there is no user-declared constructor for a class, a default
2624 constructor is implicitly declared. */
2625 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
2626 {
2627 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
2628 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
2629 }
2630
2631 /* [class.ctor]
2632
2633 If a class definition does not explicitly declare a copy
2634 constructor, one is declared implicitly. */
2635 if (! TYPE_HAS_INIT_REF (t) && ! TYPE_FOR_JAVA (t))
2636 {
2637 TYPE_HAS_INIT_REF (t) = 1;
2638 TYPE_HAS_CONST_INIT_REF (t) = !cant_have_const_cctor;
2639 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
2640 }
2641
2642 /* If there is no assignment operator, one will be created if and
2643 when it is needed. For now, just record whether or not the type
2644 of the parameter to the assignment operator will be a const or
2645 non-const reference. */
2646 if (!TYPE_HAS_ASSIGN_REF (t) && !TYPE_FOR_JAVA (t))
2647 {
2648 TYPE_HAS_ASSIGN_REF (t) = 1;
2649 TYPE_HAS_CONST_ASSIGN_REF (t) = !cant_have_const_assignment;
2650 CLASSTYPE_LAZY_ASSIGNMENT_OP (t) = 1;
2651 }
2652 }
2653
2654 /* Subroutine of finish_struct_1. Recursively count the number of fields
2655 in TYPE, including anonymous union members. */
2656
2657 static int
2658 count_fields (tree fields)
2659 {
2660 tree x;
2661 int n_fields = 0;
2662 for (x = fields; x; x = TREE_CHAIN (x))
2663 {
2664 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2665 n_fields += count_fields (TYPE_FIELDS (TREE_TYPE (x)));
2666 else
2667 n_fields += 1;
2668 }
2669 return n_fields;
2670 }
2671
2672 /* Subroutine of finish_struct_1. Recursively add all the fields in the
2673 TREE_LIST FIELDS to the SORTED_FIELDS_TYPE elts, starting at offset IDX. */
2674
2675 static int
2676 add_fields_to_record_type (tree fields, struct sorted_fields_type *field_vec, int idx)
2677 {
2678 tree x;
2679 for (x = fields; x; x = TREE_CHAIN (x))
2680 {
2681 if (TREE_CODE (x) == FIELD_DECL && ANON_AGGR_TYPE_P (TREE_TYPE (x)))
2682 idx = add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x)), field_vec, idx);
2683 else
2684 field_vec->elts[idx++] = x;
2685 }
2686 return idx;
2687 }
2688
2689 /* FIELD is a bit-field. We are finishing the processing for its
2690 enclosing type. Issue any appropriate messages and set appropriate
2691 flags. Returns false if an error has been diagnosed. */
2692
2693 static bool
2694 check_bitfield_decl (tree field)
2695 {
2696 tree type = TREE_TYPE (field);
2697 tree w;
2698
2699 /* Extract the declared width of the bitfield, which has been
2700 temporarily stashed in DECL_INITIAL. */
2701 w = DECL_INITIAL (field);
2702 gcc_assert (w != NULL_TREE);
2703 /* Remove the bit-field width indicator so that the rest of the
2704 compiler does not treat that value as an initializer. */
2705 DECL_INITIAL (field) = NULL_TREE;
2706
2707 /* Detect invalid bit-field type. */
2708 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
2709 {
2710 error ("bit-field %q+#D with non-integral type", field);
2711 w = error_mark_node;
2712 }
2713 else
2714 {
2715 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
2716 STRIP_NOPS (w);
2717
2718 /* detect invalid field size. */
2719 w = integral_constant_value (w);
2720
2721 if (TREE_CODE (w) != INTEGER_CST)
2722 {
2723 error ("bit-field %q+D width not an integer constant", field);
2724 w = error_mark_node;
2725 }
2726 else if (tree_int_cst_sgn (w) < 0)
2727 {
2728 error ("negative width in bit-field %q+D", field);
2729 w = error_mark_node;
2730 }
2731 else if (integer_zerop (w) && DECL_NAME (field) != 0)
2732 {
2733 error ("zero width for bit-field %q+D", field);
2734 w = error_mark_node;
2735 }
2736 else if (compare_tree_int (w, TYPE_PRECISION (type)) > 0
2737 && TREE_CODE (type) != ENUMERAL_TYPE
2738 && TREE_CODE (type) != BOOLEAN_TYPE)
2739 warning (0, "width of %q+D exceeds its type", field);
2740 else if (TREE_CODE (type) == ENUMERAL_TYPE
2741 && (0 > compare_tree_int (w,
2742 tree_int_cst_min_precision
2743 (TYPE_MIN_VALUE (type),
2744 TYPE_UNSIGNED (type)))
2745 || 0 > compare_tree_int (w,
2746 tree_int_cst_min_precision
2747 (TYPE_MAX_VALUE (type),
2748 TYPE_UNSIGNED (type)))))
2749 warning (0, "%q+D is too small to hold all values of %q#T", field, type);
2750 }
2751
2752 if (w != error_mark_node)
2753 {
2754 DECL_SIZE (field) = convert (bitsizetype, w);
2755 DECL_BIT_FIELD (field) = 1;
2756 return true;
2757 }
2758 else
2759 {
2760 /* Non-bit-fields are aligned for their type. */
2761 DECL_BIT_FIELD (field) = 0;
2762 CLEAR_DECL_C_BIT_FIELD (field);
2763 return false;
2764 }
2765 }
2766
2767 /* FIELD is a non bit-field. We are finishing the processing for its
2768 enclosing type T. Issue any appropriate messages and set appropriate
2769 flags. */
2770
2771 static void
2772 check_field_decl (tree field,
2773 tree t,
2774 int* cant_have_const_ctor,
2775 int* no_const_asn_ref,
2776 int* any_default_members)
2777 {
2778 tree type = strip_array_types (TREE_TYPE (field));
2779
2780 /* An anonymous union cannot contain any fields which would change
2781 the settings of CANT_HAVE_CONST_CTOR and friends. */
2782 if (ANON_UNION_TYPE_P (type))
2783 ;
2784 /* And, we don't set TYPE_HAS_CONST_INIT_REF, etc., for anonymous
2785 structs. So, we recurse through their fields here. */
2786 else if (ANON_AGGR_TYPE_P (type))
2787 {
2788 tree fields;
2789
2790 for (fields = TYPE_FIELDS (type); fields; fields = TREE_CHAIN (fields))
2791 if (TREE_CODE (fields) == FIELD_DECL && !DECL_C_BIT_FIELD (field))
2792 check_field_decl (fields, t, cant_have_const_ctor,
2793 no_const_asn_ref, any_default_members);
2794 }
2795 /* Check members with class type for constructors, destructors,
2796 etc. */
2797 else if (CLASS_TYPE_P (type))
2798 {
2799 /* Never let anything with uninheritable virtuals
2800 make it through without complaint. */
2801 abstract_virtuals_error (field, type);
2802
2803 if (TREE_CODE (t) == UNION_TYPE)
2804 {
2805 if (TYPE_NEEDS_CONSTRUCTING (type))
2806 error ("member %q+#D with constructor not allowed in union",
2807 field);
2808 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
2809 error ("member %q+#D with destructor not allowed in union", field);
2810 if (TYPE_HAS_COMPLEX_ASSIGN_REF (type))
2811 error ("member %q+#D with copy assignment operator not allowed in union",
2812 field);
2813 }
2814 else
2815 {
2816 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
2817 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
2818 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
2819 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_HAS_COMPLEX_ASSIGN_REF (type);
2820 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_HAS_COMPLEX_INIT_REF (type);
2821 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_HAS_COMPLEX_DFLT (type);
2822 }
2823
2824 if (!TYPE_HAS_CONST_INIT_REF (type))
2825 *cant_have_const_ctor = 1;
2826
2827 if (!TYPE_HAS_CONST_ASSIGN_REF (type))
2828 *no_const_asn_ref = 1;
2829 }
2830 if (DECL_INITIAL (field) != NULL_TREE)
2831 {
2832 /* `build_class_init_list' does not recognize
2833 non-FIELD_DECLs. */
2834 if (TREE_CODE (t) == UNION_TYPE && any_default_members != 0)
2835 error ("multiple fields in union %qT initialized", t);
2836 *any_default_members = 1;
2837 }
2838 }
2839
2840 /* Check the data members (both static and non-static), class-scoped
2841 typedefs, etc., appearing in the declaration of T. Issue
2842 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
2843 declaration order) of access declarations; each TREE_VALUE in this
2844 list is a USING_DECL.
2845
2846 In addition, set the following flags:
2847
2848 EMPTY_P
2849 The class is empty, i.e., contains no non-static data members.
2850
2851 CANT_HAVE_CONST_CTOR_P
2852 This class cannot have an implicitly generated copy constructor
2853 taking a const reference.
2854
2855 CANT_HAVE_CONST_ASN_REF
2856 This class cannot have an implicitly generated assignment
2857 operator taking a const reference.
2858
2859 All of these flags should be initialized before calling this
2860 function.
2861
2862 Returns a pointer to the end of the TYPE_FIELDs chain; additional
2863 fields can be added by adding to this chain. */
2864
2865 static void
2866 check_field_decls (tree t, tree *access_decls,
2867 int *cant_have_const_ctor_p,
2868 int *no_const_asn_ref_p)
2869 {
2870 tree *field;
2871 tree *next;
2872 bool has_pointers;
2873 int any_default_members;
2874 int cant_pack = 0;
2875
2876 /* Assume there are no access declarations. */
2877 *access_decls = NULL_TREE;
2878 /* Assume this class has no pointer members. */
2879 has_pointers = false;
2880 /* Assume none of the members of this class have default
2881 initializations. */
2882 any_default_members = 0;
2883
2884 for (field = &TYPE_FIELDS (t); *field; field = next)
2885 {
2886 tree x = *field;
2887 tree type = TREE_TYPE (x);
2888
2889 next = &TREE_CHAIN (x);
2890
2891 if (TREE_CODE (x) == USING_DECL)
2892 {
2893 /* Prune the access declaration from the list of fields. */
2894 *field = TREE_CHAIN (x);
2895
2896 /* Save the access declarations for our caller. */
2897 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
2898
2899 /* Since we've reset *FIELD there's no reason to skip to the
2900 next field. */
2901 next = field;
2902 continue;
2903 }
2904
2905 if (TREE_CODE (x) == TYPE_DECL
2906 || TREE_CODE (x) == TEMPLATE_DECL)
2907 continue;
2908
2909 /* If we've gotten this far, it's a data member, possibly static,
2910 or an enumerator. */
2911 DECL_CONTEXT (x) = t;
2912
2913 /* When this goes into scope, it will be a non-local reference. */
2914 DECL_NONLOCAL (x) = 1;
2915
2916 if (TREE_CODE (t) == UNION_TYPE)
2917 {
2918 /* [class.union]
2919
2920 If a union contains a static data member, or a member of
2921 reference type, the program is ill-formed. */
2922 if (TREE_CODE (x) == VAR_DECL)
2923 {
2924 error ("%q+D may not be static because it is a member of a union", x);
2925 continue;
2926 }
2927 if (TREE_CODE (type) == REFERENCE_TYPE)
2928 {
2929 error ("%q+D may not have reference type %qT because"
2930 " it is a member of a union",
2931 x, type);
2932 continue;
2933 }
2934 }
2935
2936 /* Perform error checking that did not get done in
2937 grokdeclarator. */
2938 if (TREE_CODE (type) == FUNCTION_TYPE)
2939 {
2940 error ("field %q+D invalidly declared function type", x);
2941 type = build_pointer_type (type);
2942 TREE_TYPE (x) = type;
2943 }
2944 else if (TREE_CODE (type) == METHOD_TYPE)
2945 {
2946 error ("field %q+D invalidly declared method type", x);
2947 type = build_pointer_type (type);
2948 TREE_TYPE (x) = type;
2949 }
2950
2951 if (type == error_mark_node)
2952 continue;
2953
2954 if (TREE_CODE (x) == CONST_DECL || TREE_CODE (x) == VAR_DECL)
2955 continue;
2956
2957 /* Now it can only be a FIELD_DECL. */
2958
2959 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
2960 CLASSTYPE_NON_AGGREGATE (t) = 1;
2961
2962 /* If this is of reference type, check if it needs an init. */
2963 if (TREE_CODE (type) == REFERENCE_TYPE)
2964 {
2965 CLASSTYPE_NON_POD_P (t) = 1;
2966 if (DECL_INITIAL (x) == NULL_TREE)
2967 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
2968
2969 /* ARM $12.6.2: [A member initializer list] (or, for an
2970 aggregate, initialization by a brace-enclosed list) is the
2971 only way to initialize nonstatic const and reference
2972 members. */
2973 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
2974 }
2975
2976 type = strip_array_types (type);
2977
2978 if (TYPE_PACKED (t))
2979 {
2980 if (!pod_type_p (type) && !TYPE_PACKED (type))
2981 {
2982 warning
2983 (0,
2984 "ignoring packed attribute because of unpacked non-POD field %q+#D",
2985 x);
2986 cant_pack = 1;
2987 }
2988 else if (DECL_C_BIT_FIELD (x)
2989 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
2990 DECL_PACKED (x) = 1;
2991 }
2992
2993 if (DECL_C_BIT_FIELD (x) && integer_zerop (DECL_INITIAL (x)))
2994 /* We don't treat zero-width bitfields as making a class
2995 non-empty. */
2996 ;
2997 else
2998 {
2999 /* The class is non-empty. */
3000 CLASSTYPE_EMPTY_P (t) = 0;
3001 /* The class is not even nearly empty. */
3002 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3003 /* If one of the data members contains an empty class,
3004 so does T. */
3005 if (CLASS_TYPE_P (type)
3006 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3007 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3008 }
3009
3010 /* This is used by -Weffc++ (see below). Warn only for pointers
3011 to members which might hold dynamic memory. So do not warn
3012 for pointers to functions or pointers to members. */
3013 if (TYPE_PTR_P (type)
3014 && !TYPE_PTRFN_P (type)
3015 && !TYPE_PTR_TO_MEMBER_P (type))
3016 has_pointers = true;
3017
3018 if (CLASS_TYPE_P (type))
3019 {
3020 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3021 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3022 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3023 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3024 }
3025
3026 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3027 CLASSTYPE_HAS_MUTABLE (t) = 1;
3028
3029 if (! pod_type_p (type))
3030 /* DR 148 now allows pointers to members (which are POD themselves),
3031 to be allowed in POD structs. */
3032 CLASSTYPE_NON_POD_P (t) = 1;
3033
3034 if (! zero_init_p (type))
3035 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3036
3037 /* If any field is const, the structure type is pseudo-const. */
3038 if (CP_TYPE_CONST_P (type))
3039 {
3040 C_TYPE_FIELDS_READONLY (t) = 1;
3041 if (DECL_INITIAL (x) == NULL_TREE)
3042 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3043
3044 /* ARM $12.6.2: [A member initializer list] (or, for an
3045 aggregate, initialization by a brace-enclosed list) is the
3046 only way to initialize nonstatic const and reference
3047 members. */
3048 TYPE_HAS_COMPLEX_ASSIGN_REF (t) = 1;
3049 }
3050 /* A field that is pseudo-const makes the structure likewise. */
3051 else if (CLASS_TYPE_P (type))
3052 {
3053 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3054 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3055 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3056 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3057 }
3058
3059 /* Core issue 80: A nonstatic data member is required to have a
3060 different name from the class iff the class has a
3061 user-declared constructor. */
3062 if (constructor_name_p (DECL_NAME (x), t)
3063 && TYPE_HAS_USER_CONSTRUCTOR (t))
3064 permerror (input_location, "field %q+#D with same name as class", x);
3065
3066 /* We set DECL_C_BIT_FIELD in grokbitfield.
3067 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3068 if (! DECL_C_BIT_FIELD (x) || ! check_bitfield_decl (x))
3069 check_field_decl (x, t,
3070 cant_have_const_ctor_p,
3071 no_const_asn_ref_p,
3072 &any_default_members);
3073 }
3074
3075 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3076 it should also define a copy constructor and an assignment operator to
3077 implement the correct copy semantic (deep vs shallow, etc.). As it is
3078 not feasible to check whether the constructors do allocate dynamic memory
3079 and store it within members, we approximate the warning like this:
3080
3081 -- Warn only if there are members which are pointers
3082 -- Warn only if there is a non-trivial constructor (otherwise,
3083 there cannot be memory allocated).
3084 -- Warn only if there is a non-trivial destructor. We assume that the
3085 user at least implemented the cleanup correctly, and a destructor
3086 is needed to free dynamic memory.
3087
3088 This seems enough for practical purposes. */
3089 if (warn_ecpp
3090 && has_pointers
3091 && TYPE_HAS_USER_CONSTRUCTOR (t)
3092 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3093 && !(TYPE_HAS_INIT_REF (t) && TYPE_HAS_ASSIGN_REF (t)))
3094 {
3095 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3096
3097 if (! TYPE_HAS_INIT_REF (t))
3098 {
3099 warning (OPT_Weffc__,
3100 " but does not override %<%T(const %T&)%>", t, t);
3101 if (!TYPE_HAS_ASSIGN_REF (t))
3102 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3103 }
3104 else if (! TYPE_HAS_ASSIGN_REF (t))
3105 warning (OPT_Weffc__,
3106 " but does not override %<operator=(const %T&)%>", t);
3107 }
3108
3109 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3110 if (cant_pack)
3111 TYPE_PACKED (t) = 0;
3112
3113 /* Check anonymous struct/anonymous union fields. */
3114 finish_struct_anon (t);
3115
3116 /* We've built up the list of access declarations in reverse order.
3117 Fix that now. */
3118 *access_decls = nreverse (*access_decls);
3119 }
3120
3121 /* If TYPE is an empty class type, records its OFFSET in the table of
3122 OFFSETS. */
3123
3124 static int
3125 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3126 {
3127 splay_tree_node n;
3128
3129 if (!is_empty_class (type))
3130 return 0;
3131
3132 /* Record the location of this empty object in OFFSETS. */
3133 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3134 if (!n)
3135 n = splay_tree_insert (offsets,
3136 (splay_tree_key) offset,
3137 (splay_tree_value) NULL_TREE);
3138 n->value = ((splay_tree_value)
3139 tree_cons (NULL_TREE,
3140 type,
3141 (tree) n->value));
3142
3143 return 0;
3144 }
3145
3146 /* Returns nonzero if TYPE is an empty class type and there is
3147 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3148
3149 static int
3150 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3151 {
3152 splay_tree_node n;
3153 tree t;
3154
3155 if (!is_empty_class (type))
3156 return 0;
3157
3158 /* Record the location of this empty object in OFFSETS. */
3159 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3160 if (!n)
3161 return 0;
3162
3163 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3164 if (same_type_p (TREE_VALUE (t), type))
3165 return 1;
3166
3167 return 0;
3168 }
3169
3170 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3171 F for every subobject, passing it the type, offset, and table of
3172 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3173 be traversed.
3174
3175 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3176 than MAX_OFFSET will not be walked.
3177
3178 If F returns a nonzero value, the traversal ceases, and that value
3179 is returned. Otherwise, returns zero. */
3180
3181 static int
3182 walk_subobject_offsets (tree type,
3183 subobject_offset_fn f,
3184 tree offset,
3185 splay_tree offsets,
3186 tree max_offset,
3187 int vbases_p)
3188 {
3189 int r = 0;
3190 tree type_binfo = NULL_TREE;
3191
3192 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3193 stop. */
3194 if (max_offset && INT_CST_LT (max_offset, offset))
3195 return 0;
3196
3197 if (type == error_mark_node)
3198 return 0;
3199
3200 if (!TYPE_P (type))
3201 {
3202 if (abi_version_at_least (2))
3203 type_binfo = type;
3204 type = BINFO_TYPE (type);
3205 }
3206
3207 if (CLASS_TYPE_P (type))
3208 {
3209 tree field;
3210 tree binfo;
3211 int i;
3212
3213 /* Avoid recursing into objects that are not interesting. */
3214 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3215 return 0;
3216
3217 /* Record the location of TYPE. */
3218 r = (*f) (type, offset, offsets);
3219 if (r)
3220 return r;
3221
3222 /* Iterate through the direct base classes of TYPE. */
3223 if (!type_binfo)
3224 type_binfo = TYPE_BINFO (type);
3225 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3226 {
3227 tree binfo_offset;
3228
3229 if (abi_version_at_least (2)
3230 && BINFO_VIRTUAL_P (binfo))
3231 continue;
3232
3233 if (!vbases_p
3234 && BINFO_VIRTUAL_P (binfo)
3235 && !BINFO_PRIMARY_P (binfo))
3236 continue;
3237
3238 if (!abi_version_at_least (2))
3239 binfo_offset = size_binop (PLUS_EXPR,
3240 offset,
3241 BINFO_OFFSET (binfo));
3242 else
3243 {
3244 tree orig_binfo;
3245 /* We cannot rely on BINFO_OFFSET being set for the base
3246 class yet, but the offsets for direct non-virtual
3247 bases can be calculated by going back to the TYPE. */
3248 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3249 binfo_offset = size_binop (PLUS_EXPR,
3250 offset,
3251 BINFO_OFFSET (orig_binfo));
3252 }
3253
3254 r = walk_subobject_offsets (binfo,
3255 f,
3256 binfo_offset,
3257 offsets,
3258 max_offset,
3259 (abi_version_at_least (2)
3260 ? /*vbases_p=*/0 : vbases_p));
3261 if (r)
3262 return r;
3263 }
3264
3265 if (abi_version_at_least (2) && CLASSTYPE_VBASECLASSES (type))
3266 {
3267 unsigned ix;
3268 VEC(tree,gc) *vbases;
3269
3270 /* Iterate through the virtual base classes of TYPE. In G++
3271 3.2, we included virtual bases in the direct base class
3272 loop above, which results in incorrect results; the
3273 correct offsets for virtual bases are only known when
3274 working with the most derived type. */
3275 if (vbases_p)
3276 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3277 VEC_iterate (tree, vbases, ix, binfo); ix++)
3278 {
3279 r = walk_subobject_offsets (binfo,
3280 f,
3281 size_binop (PLUS_EXPR,
3282 offset,
3283 BINFO_OFFSET (binfo)),
3284 offsets,
3285 max_offset,
3286 /*vbases_p=*/0);
3287 if (r)
3288 return r;
3289 }
3290 else
3291 {
3292 /* We still have to walk the primary base, if it is
3293 virtual. (If it is non-virtual, then it was walked
3294 above.) */
3295 tree vbase = get_primary_binfo (type_binfo);
3296
3297 if (vbase && BINFO_VIRTUAL_P (vbase)
3298 && BINFO_PRIMARY_P (vbase)
3299 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3300 {
3301 r = (walk_subobject_offsets
3302 (vbase, f, offset,
3303 offsets, max_offset, /*vbases_p=*/0));
3304 if (r)
3305 return r;
3306 }
3307 }
3308 }
3309
3310 /* Iterate through the fields of TYPE. */
3311 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
3312 if (TREE_CODE (field) == FIELD_DECL && !DECL_ARTIFICIAL (field))
3313 {
3314 tree field_offset;
3315
3316 if (abi_version_at_least (2))
3317 field_offset = byte_position (field);
3318 else
3319 /* In G++ 3.2, DECL_FIELD_OFFSET was used. */
3320 field_offset = DECL_FIELD_OFFSET (field);
3321
3322 r = walk_subobject_offsets (TREE_TYPE (field),
3323 f,
3324 size_binop (PLUS_EXPR,
3325 offset,
3326 field_offset),
3327 offsets,
3328 max_offset,
3329 /*vbases_p=*/1);
3330 if (r)
3331 return r;
3332 }
3333 }
3334 else if (TREE_CODE (type) == ARRAY_TYPE)
3335 {
3336 tree element_type = strip_array_types (type);
3337 tree domain = TYPE_DOMAIN (type);
3338 tree index;
3339
3340 /* Avoid recursing into objects that are not interesting. */
3341 if (!CLASS_TYPE_P (element_type)
3342 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type))
3343 return 0;
3344
3345 /* Step through each of the elements in the array. */
3346 for (index = size_zero_node;
3347 /* G++ 3.2 had an off-by-one error here. */
3348 (abi_version_at_least (2)
3349 ? !INT_CST_LT (TYPE_MAX_VALUE (domain), index)
3350 : INT_CST_LT (index, TYPE_MAX_VALUE (domain)));
3351 index = size_binop (PLUS_EXPR, index, size_one_node))
3352 {
3353 r = walk_subobject_offsets (TREE_TYPE (type),
3354 f,
3355 offset,
3356 offsets,
3357 max_offset,
3358 /*vbases_p=*/1);
3359 if (r)
3360 return r;
3361 offset = size_binop (PLUS_EXPR, offset,
3362 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3363 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3364 there's no point in iterating through the remaining
3365 elements of the array. */
3366 if (max_offset && INT_CST_LT (max_offset, offset))
3367 break;
3368 }
3369 }
3370
3371 return 0;
3372 }
3373
3374 /* Record all of the empty subobjects of TYPE (either a type or a
3375 binfo). If IS_DATA_MEMBER is true, then a non-static data member
3376 is being placed at OFFSET; otherwise, it is a base class that is
3377 being placed at OFFSET. */
3378
3379 static void
3380 record_subobject_offsets (tree type,
3381 tree offset,
3382 splay_tree offsets,
3383 bool is_data_member)
3384 {
3385 tree max_offset;
3386 /* If recording subobjects for a non-static data member or a
3387 non-empty base class , we do not need to record offsets beyond
3388 the size of the biggest empty class. Additional data members
3389 will go at the end of the class. Additional base classes will go
3390 either at offset zero (if empty, in which case they cannot
3391 overlap with offsets past the size of the biggest empty class) or
3392 at the end of the class.
3393
3394 However, if we are placing an empty base class, then we must record
3395 all offsets, as either the empty class is at offset zero (where
3396 other empty classes might later be placed) or at the end of the
3397 class (where other objects might then be placed, so other empty
3398 subobjects might later overlap). */
3399 if (is_data_member
3400 || !is_empty_class (BINFO_TYPE (type)))
3401 max_offset = sizeof_biggest_empty_class;
3402 else
3403 max_offset = NULL_TREE;
3404 walk_subobject_offsets (type, record_subobject_offset, offset,
3405 offsets, max_offset, is_data_member);
3406 }
3407
3408 /* Returns nonzero if any of the empty subobjects of TYPE (located at
3409 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
3410 virtual bases of TYPE are examined. */
3411
3412 static int
3413 layout_conflict_p (tree type,
3414 tree offset,
3415 splay_tree offsets,
3416 int vbases_p)
3417 {
3418 splay_tree_node max_node;
3419
3420 /* Get the node in OFFSETS that indicates the maximum offset where
3421 an empty subobject is located. */
3422 max_node = splay_tree_max (offsets);
3423 /* If there aren't any empty subobjects, then there's no point in
3424 performing this check. */
3425 if (!max_node)
3426 return 0;
3427
3428 return walk_subobject_offsets (type, check_subobject_offset, offset,
3429 offsets, (tree) (max_node->key),
3430 vbases_p);
3431 }
3432
3433 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
3434 non-static data member of the type indicated by RLI. BINFO is the
3435 binfo corresponding to the base subobject, OFFSETS maps offsets to
3436 types already located at those offsets. This function determines
3437 the position of the DECL. */
3438
3439 static void
3440 layout_nonempty_base_or_field (record_layout_info rli,
3441 tree decl,
3442 tree binfo,
3443 splay_tree offsets)
3444 {
3445 tree offset = NULL_TREE;
3446 bool field_p;
3447 tree type;
3448
3449 if (binfo)
3450 {
3451 /* For the purposes of determining layout conflicts, we want to
3452 use the class type of BINFO; TREE_TYPE (DECL) will be the
3453 CLASSTYPE_AS_BASE version, which does not contain entries for
3454 zero-sized bases. */
3455 type = TREE_TYPE (binfo);
3456 field_p = false;
3457 }
3458 else
3459 {
3460 type = TREE_TYPE (decl);
3461 field_p = true;
3462 }
3463
3464 /* Try to place the field. It may take more than one try if we have
3465 a hard time placing the field without putting two objects of the
3466 same type at the same address. */
3467 while (1)
3468 {
3469 struct record_layout_info_s old_rli = *rli;
3470
3471 /* Place this field. */
3472 place_field (rli, decl);
3473 offset = byte_position (decl);
3474
3475 /* We have to check to see whether or not there is already
3476 something of the same type at the offset we're about to use.
3477 For example, consider:
3478
3479 struct S {};
3480 struct T : public S { int i; };
3481 struct U : public S, public T {};
3482
3483 Here, we put S at offset zero in U. Then, we can't put T at
3484 offset zero -- its S component would be at the same address
3485 as the S we already allocated. So, we have to skip ahead.
3486 Since all data members, including those whose type is an
3487 empty class, have nonzero size, any overlap can happen only
3488 with a direct or indirect base-class -- it can't happen with
3489 a data member. */
3490 /* In a union, overlap is permitted; all members are placed at
3491 offset zero. */
3492 if (TREE_CODE (rli->t) == UNION_TYPE)
3493 break;
3494 /* G++ 3.2 did not check for overlaps when placing a non-empty
3495 virtual base. */
3496 if (!abi_version_at_least (2) && binfo && BINFO_VIRTUAL_P (binfo))
3497 break;
3498 if (layout_conflict_p (field_p ? type : binfo, offset,
3499 offsets, field_p))
3500 {
3501 /* Strip off the size allocated to this field. That puts us
3502 at the first place we could have put the field with
3503 proper alignment. */
3504 *rli = old_rli;
3505
3506 /* Bump up by the alignment required for the type. */
3507 rli->bitpos
3508 = size_binop (PLUS_EXPR, rli->bitpos,
3509 bitsize_int (binfo
3510 ? CLASSTYPE_ALIGN (type)
3511 : TYPE_ALIGN (type)));
3512 normalize_rli (rli);
3513 }
3514 else
3515 /* There was no conflict. We're done laying out this field. */
3516 break;
3517 }
3518
3519 /* Now that we know where it will be placed, update its
3520 BINFO_OFFSET. */
3521 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
3522 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
3523 this point because their BINFO_OFFSET is copied from another
3524 hierarchy. Therefore, we may not need to add the entire
3525 OFFSET. */
3526 propagate_binfo_offsets (binfo,
3527 size_diffop (convert (ssizetype, offset),
3528 convert (ssizetype,
3529 BINFO_OFFSET (binfo))));
3530 }
3531
3532 /* Returns true if TYPE is empty and OFFSET is nonzero. */
3533
3534 static int
3535 empty_base_at_nonzero_offset_p (tree type,
3536 tree offset,
3537 splay_tree offsets ATTRIBUTE_UNUSED)
3538 {
3539 return is_empty_class (type) && !integer_zerop (offset);
3540 }
3541
3542 /* Layout the empty base BINFO. EOC indicates the byte currently just
3543 past the end of the class, and should be correctly aligned for a
3544 class of the type indicated by BINFO; OFFSETS gives the offsets of
3545 the empty bases allocated so far. T is the most derived
3546 type. Return nonzero iff we added it at the end. */
3547
3548 static bool
3549 layout_empty_base (record_layout_info rli, tree binfo,
3550 tree eoc, splay_tree offsets)
3551 {
3552 tree alignment;
3553 tree basetype = BINFO_TYPE (binfo);
3554 bool atend = false;
3555
3556 /* This routine should only be used for empty classes. */
3557 gcc_assert (is_empty_class (basetype));
3558 alignment = ssize_int (CLASSTYPE_ALIGN_UNIT (basetype));
3559
3560 if (!integer_zerop (BINFO_OFFSET (binfo)))
3561 {
3562 if (abi_version_at_least (2))
3563 propagate_binfo_offsets
3564 (binfo, size_diffop (size_zero_node, BINFO_OFFSET (binfo)));
3565 else
3566 warning (OPT_Wabi,
3567 "offset of empty base %qT may not be ABI-compliant and may"
3568 "change in a future version of GCC",
3569 BINFO_TYPE (binfo));
3570 }
3571
3572 /* This is an empty base class. We first try to put it at offset
3573 zero. */
3574 if (layout_conflict_p (binfo,
3575 BINFO_OFFSET (binfo),
3576 offsets,
3577 /*vbases_p=*/0))
3578 {
3579 /* That didn't work. Now, we move forward from the next
3580 available spot in the class. */
3581 atend = true;
3582 propagate_binfo_offsets (binfo, convert (ssizetype, eoc));
3583 while (1)
3584 {
3585 if (!layout_conflict_p (binfo,
3586 BINFO_OFFSET (binfo),
3587 offsets,
3588 /*vbases_p=*/0))
3589 /* We finally found a spot where there's no overlap. */
3590 break;
3591
3592 /* There's overlap here, too. Bump along to the next spot. */
3593 propagate_binfo_offsets (binfo, alignment);
3594 }
3595 }
3596
3597 if (CLASSTYPE_USER_ALIGN (basetype))
3598 {
3599 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (basetype));
3600 if (warn_packed)
3601 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (basetype));
3602 TYPE_USER_ALIGN (rli->t) = 1;
3603 }
3604
3605 return atend;
3606 }
3607
3608 /* Layout the base given by BINFO in the class indicated by RLI.
3609 *BASE_ALIGN is a running maximum of the alignments of
3610 any base class. OFFSETS gives the location of empty base
3611 subobjects. T is the most derived type. Return nonzero if the new
3612 object cannot be nearly-empty. A new FIELD_DECL is inserted at
3613 *NEXT_FIELD, unless BINFO is for an empty base class.
3614
3615 Returns the location at which the next field should be inserted. */
3616
3617 static tree *
3618 build_base_field (record_layout_info rli, tree binfo,
3619 splay_tree offsets, tree *next_field)
3620 {
3621 tree t = rli->t;
3622 tree basetype = BINFO_TYPE (binfo);
3623
3624 if (!COMPLETE_TYPE_P (basetype))
3625 /* This error is now reported in xref_tag, thus giving better
3626 location information. */
3627 return next_field;
3628
3629 /* Place the base class. */
3630 if (!is_empty_class (basetype))
3631 {
3632 tree decl;
3633
3634 /* The containing class is non-empty because it has a non-empty
3635 base class. */
3636 CLASSTYPE_EMPTY_P (t) = 0;
3637
3638 /* Create the FIELD_DECL. */
3639 decl = build_decl (input_location,
3640 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
3641 DECL_ARTIFICIAL (decl) = 1;
3642 DECL_IGNORED_P (decl) = 1;
3643 DECL_FIELD_CONTEXT (decl) = t;
3644 if (CLASSTYPE_AS_BASE (basetype))
3645 {
3646 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
3647 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
3648 DECL_ALIGN (decl) = CLASSTYPE_ALIGN (basetype);
3649 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
3650 DECL_MODE (decl) = TYPE_MODE (basetype);
3651 DECL_FIELD_IS_BASE (decl) = 1;
3652
3653 /* Try to place the field. It may take more than one try if we
3654 have a hard time placing the field without putting two
3655 objects of the same type at the same address. */
3656 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
3657 /* Add the new FIELD_DECL to the list of fields for T. */
3658 TREE_CHAIN (decl) = *next_field;
3659 *next_field = decl;
3660 next_field = &TREE_CHAIN (decl);
3661 }
3662 }
3663 else
3664 {
3665 tree eoc;
3666 bool atend;
3667
3668 /* On some platforms (ARM), even empty classes will not be
3669 byte-aligned. */
3670 eoc = round_up (rli_size_unit_so_far (rli),
3671 CLASSTYPE_ALIGN_UNIT (basetype));
3672 atend = layout_empty_base (rli, binfo, eoc, offsets);
3673 /* A nearly-empty class "has no proper base class that is empty,
3674 not morally virtual, and at an offset other than zero." */
3675 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
3676 {
3677 if (atend)
3678 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3679 /* The check above (used in G++ 3.2) is insufficient because
3680 an empty class placed at offset zero might itself have an
3681 empty base at a nonzero offset. */
3682 else if (walk_subobject_offsets (basetype,
3683 empty_base_at_nonzero_offset_p,
3684 size_zero_node,
3685 /*offsets=*/NULL,
3686 /*max_offset=*/NULL_TREE,
3687 /*vbases_p=*/true))
3688 {
3689 if (abi_version_at_least (2))
3690 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3691 else
3692 warning (OPT_Wabi,
3693 "class %qT will be considered nearly empty in a "
3694 "future version of GCC", t);
3695 }
3696 }
3697
3698 /* We do not create a FIELD_DECL for empty base classes because
3699 it might overlap some other field. We want to be able to
3700 create CONSTRUCTORs for the class by iterating over the
3701 FIELD_DECLs, and the back end does not handle overlapping
3702 FIELD_DECLs. */
3703
3704 /* An empty virtual base causes a class to be non-empty
3705 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
3706 here because that was already done when the virtual table
3707 pointer was created. */
3708 }
3709
3710 /* Record the offsets of BINFO and its base subobjects. */
3711 record_subobject_offsets (binfo,
3712 BINFO_OFFSET (binfo),
3713 offsets,
3714 /*is_data_member=*/false);
3715
3716 return next_field;
3717 }
3718
3719 /* Layout all of the non-virtual base classes. Record empty
3720 subobjects in OFFSETS. T is the most derived type. Return nonzero
3721 if the type cannot be nearly empty. The fields created
3722 corresponding to the base classes will be inserted at
3723 *NEXT_FIELD. */
3724
3725 static void
3726 build_base_fields (record_layout_info rli,
3727 splay_tree offsets, tree *next_field)
3728 {
3729 /* Chain to hold all the new FIELD_DECLs which stand in for base class
3730 subobjects. */
3731 tree t = rli->t;
3732 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
3733 int i;
3734
3735 /* The primary base class is always allocated first. */
3736 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
3737 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
3738 offsets, next_field);
3739
3740 /* Now allocate the rest of the bases. */
3741 for (i = 0; i < n_baseclasses; ++i)
3742 {
3743 tree base_binfo;
3744
3745 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
3746
3747 /* The primary base was already allocated above, so we don't
3748 need to allocate it again here. */
3749 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
3750 continue;
3751
3752 /* Virtual bases are added at the end (a primary virtual base
3753 will have already been added). */
3754 if (BINFO_VIRTUAL_P (base_binfo))
3755 continue;
3756
3757 next_field = build_base_field (rli, base_binfo,
3758 offsets, next_field);
3759 }
3760 }
3761
3762 /* Go through the TYPE_METHODS of T issuing any appropriate
3763 diagnostics, figuring out which methods override which other
3764 methods, and so forth. */
3765
3766 static void
3767 check_methods (tree t)
3768 {
3769 tree x;
3770
3771 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
3772 {
3773 check_for_override (x, t);
3774 if (DECL_PURE_VIRTUAL_P (x) && ! DECL_VINDEX (x))
3775 error ("initializer specified for non-virtual method %q+D", x);
3776 /* The name of the field is the original field name
3777 Save this in auxiliary field for later overloading. */
3778 if (DECL_VINDEX (x))
3779 {
3780 TYPE_POLYMORPHIC_P (t) = 1;
3781 if (DECL_PURE_VIRTUAL_P (x))
3782 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
3783 }
3784 /* All user-provided destructors are non-trivial. */
3785 if (DECL_DESTRUCTOR_P (x) && !DECL_DEFAULTED_FN (x))
3786 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
3787 }
3788 }
3789
3790 /* FN is a constructor or destructor. Clone the declaration to create
3791 a specialized in-charge or not-in-charge version, as indicated by
3792 NAME. */
3793
3794 static tree
3795 build_clone (tree fn, tree name)
3796 {
3797 tree parms;
3798 tree clone;
3799
3800 /* Copy the function. */
3801 clone = copy_decl (fn);
3802 /* Remember where this function came from. */
3803 DECL_CLONED_FUNCTION (clone) = fn;
3804 DECL_ABSTRACT_ORIGIN (clone) = fn;
3805 /* Reset the function name. */
3806 DECL_NAME (clone) = name;
3807 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
3808 /* There's no pending inline data for this function. */
3809 DECL_PENDING_INLINE_INFO (clone) = NULL;
3810 DECL_PENDING_INLINE_P (clone) = 0;
3811 /* And it hasn't yet been deferred. */
3812 DECL_DEFERRED_FN (clone) = 0;
3813
3814 /* The base-class destructor is not virtual. */
3815 if (name == base_dtor_identifier)
3816 {
3817 DECL_VIRTUAL_P (clone) = 0;
3818 if (TREE_CODE (clone) != TEMPLATE_DECL)
3819 DECL_VINDEX (clone) = NULL_TREE;
3820 }
3821
3822 /* If there was an in-charge parameter, drop it from the function
3823 type. */
3824 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3825 {
3826 tree basetype;
3827 tree parmtypes;
3828 tree exceptions;
3829
3830 exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
3831 basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
3832 parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
3833 /* Skip the `this' parameter. */
3834 parmtypes = TREE_CHAIN (parmtypes);
3835 /* Skip the in-charge parameter. */
3836 parmtypes = TREE_CHAIN (parmtypes);
3837 /* And the VTT parm, in a complete [cd]tor. */
3838 if (DECL_HAS_VTT_PARM_P (fn)
3839 && ! DECL_NEEDS_VTT_PARM_P (clone))
3840 parmtypes = TREE_CHAIN (parmtypes);
3841 /* If this is subobject constructor or destructor, add the vtt
3842 parameter. */
3843 TREE_TYPE (clone)
3844 = build_method_type_directly (basetype,
3845 TREE_TYPE (TREE_TYPE (clone)),
3846 parmtypes);
3847 if (exceptions)
3848 TREE_TYPE (clone) = build_exception_variant (TREE_TYPE (clone),
3849 exceptions);
3850 TREE_TYPE (clone)
3851 = cp_build_type_attribute_variant (TREE_TYPE (clone),
3852 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
3853 }
3854
3855 /* Copy the function parameters. But, DECL_ARGUMENTS on a TEMPLATE_DECL
3856 aren't function parameters; those are the template parameters. */
3857 if (TREE_CODE (clone) != TEMPLATE_DECL)
3858 {
3859 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
3860 /* Remove the in-charge parameter. */
3861 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
3862 {
3863 TREE_CHAIN (DECL_ARGUMENTS (clone))
3864 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3865 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
3866 }
3867 /* And the VTT parm, in a complete [cd]tor. */
3868 if (DECL_HAS_VTT_PARM_P (fn))
3869 {
3870 if (DECL_NEEDS_VTT_PARM_P (clone))
3871 DECL_HAS_VTT_PARM_P (clone) = 1;
3872 else
3873 {
3874 TREE_CHAIN (DECL_ARGUMENTS (clone))
3875 = TREE_CHAIN (TREE_CHAIN (DECL_ARGUMENTS (clone)));
3876 DECL_HAS_VTT_PARM_P (clone) = 0;
3877 }
3878 }
3879
3880 for (parms = DECL_ARGUMENTS (clone); parms; parms = TREE_CHAIN (parms))
3881 {
3882 DECL_CONTEXT (parms) = clone;
3883 cxx_dup_lang_specific_decl (parms);
3884 }
3885 }
3886
3887 /* Create the RTL for this function. */
3888 SET_DECL_RTL (clone, NULL_RTX);
3889 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
3890
3891 /* Make it easy to find the CLONE given the FN. */
3892 TREE_CHAIN (clone) = TREE_CHAIN (fn);
3893 TREE_CHAIN (fn) = clone;
3894
3895 /* If this is a template, handle the DECL_TEMPLATE_RESULT as well. */
3896 if (TREE_CODE (clone) == TEMPLATE_DECL)
3897 {
3898 tree result;
3899
3900 DECL_TEMPLATE_RESULT (clone)
3901 = build_clone (DECL_TEMPLATE_RESULT (clone), name);
3902 result = DECL_TEMPLATE_RESULT (clone);
3903 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
3904 DECL_TI_TEMPLATE (result) = clone;
3905 }
3906 else if (pch_file)
3907 note_decl_for_pch (clone);
3908
3909 return clone;
3910 }
3911
3912 /* Produce declarations for all appropriate clones of FN. If
3913 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
3914 CLASTYPE_METHOD_VEC as well. */
3915
3916 void
3917 clone_function_decl (tree fn, int update_method_vec_p)
3918 {
3919 tree clone;
3920
3921 /* Avoid inappropriate cloning. */
3922 if (TREE_CHAIN (fn)
3923 && DECL_CLONED_FUNCTION (TREE_CHAIN (fn)))
3924 return;
3925
3926 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
3927 {
3928 /* For each constructor, we need two variants: an in-charge version
3929 and a not-in-charge version. */
3930 clone = build_clone (fn, complete_ctor_identifier);
3931 if (update_method_vec_p)
3932 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3933 clone = build_clone (fn, base_ctor_identifier);
3934 if (update_method_vec_p)
3935 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3936 }
3937 else
3938 {
3939 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
3940
3941 /* For each destructor, we need three variants: an in-charge
3942 version, a not-in-charge version, and an in-charge deleting
3943 version. We clone the deleting version first because that
3944 means it will go second on the TYPE_METHODS list -- and that
3945 corresponds to the correct layout order in the virtual
3946 function table.
3947
3948 For a non-virtual destructor, we do not build a deleting
3949 destructor. */
3950 if (DECL_VIRTUAL_P (fn))
3951 {
3952 clone = build_clone (fn, deleting_dtor_identifier);
3953 if (update_method_vec_p)
3954 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3955 }
3956 clone = build_clone (fn, complete_dtor_identifier);
3957 if (update_method_vec_p)
3958 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3959 clone = build_clone (fn, base_dtor_identifier);
3960 if (update_method_vec_p)
3961 add_method (DECL_CONTEXT (clone), clone, NULL_TREE);
3962 }
3963
3964 /* Note that this is an abstract function that is never emitted. */
3965 DECL_ABSTRACT (fn) = 1;
3966 }
3967
3968 /* DECL is an in charge constructor, which is being defined. This will
3969 have had an in class declaration, from whence clones were
3970 declared. An out-of-class definition can specify additional default
3971 arguments. As it is the clones that are involved in overload
3972 resolution, we must propagate the information from the DECL to its
3973 clones. */
3974
3975 void
3976 adjust_clone_args (tree decl)
3977 {
3978 tree clone;
3979
3980 for (clone = TREE_CHAIN (decl); clone && DECL_CLONED_FUNCTION (clone);
3981 clone = TREE_CHAIN (clone))
3982 {
3983 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
3984 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
3985 tree decl_parms, clone_parms;
3986
3987 clone_parms = orig_clone_parms;
3988
3989 /* Skip the 'this' parameter. */
3990 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
3991 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3992
3993 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
3994 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3995 if (DECL_HAS_VTT_PARM_P (decl))
3996 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
3997
3998 clone_parms = orig_clone_parms;
3999 if (DECL_HAS_VTT_PARM_P (clone))
4000 clone_parms = TREE_CHAIN (clone_parms);
4001
4002 for (decl_parms = orig_decl_parms; decl_parms;
4003 decl_parms = TREE_CHAIN (decl_parms),
4004 clone_parms = TREE_CHAIN (clone_parms))
4005 {
4006 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4007 TREE_TYPE (clone_parms)));
4008
4009 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4010 {
4011 /* A default parameter has been added. Adjust the
4012 clone's parameters. */
4013 tree exceptions = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone));
4014 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4015 tree type;
4016
4017 clone_parms = orig_decl_parms;
4018
4019 if (DECL_HAS_VTT_PARM_P (clone))
4020 {
4021 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4022 TREE_VALUE (orig_clone_parms),
4023 clone_parms);
4024 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4025 }
4026 type = build_method_type_directly (basetype,
4027 TREE_TYPE (TREE_TYPE (clone)),
4028 clone_parms);
4029 if (exceptions)
4030 type = build_exception_variant (type, exceptions);
4031 TREE_TYPE (clone) = type;
4032
4033 clone_parms = NULL_TREE;
4034 break;
4035 }
4036 }
4037 gcc_assert (!clone_parms);
4038 }
4039 }
4040
4041 /* For each of the constructors and destructors in T, create an
4042 in-charge and not-in-charge variant. */
4043
4044 static void
4045 clone_constructors_and_destructors (tree t)
4046 {
4047 tree fns;
4048
4049 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4050 out now. */
4051 if (!CLASSTYPE_METHOD_VEC (t))
4052 return;
4053
4054 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4055 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4056 for (fns = CLASSTYPE_DESTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4057 clone_function_decl (OVL_CURRENT (fns), /*update_method_vec_p=*/1);
4058 }
4059
4060 /* Returns true iff class T has a user-defined constructor other than
4061 the default constructor. */
4062
4063 bool
4064 type_has_user_nondefault_constructor (tree t)
4065 {
4066 tree fns;
4067
4068 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4069 return false;
4070
4071 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4072 {
4073 tree fn = OVL_CURRENT (fns);
4074 if (!DECL_ARTIFICIAL (fn)
4075 && (TREE_CODE (fn) == TEMPLATE_DECL
4076 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4077 != NULL_TREE)))
4078 return true;
4079 }
4080
4081 return false;
4082 }
4083
4084 /* Returns true iff FN is a user-provided function, i.e. user-declared
4085 and not defaulted at its first declaration. */
4086
4087 static bool
4088 user_provided_p (tree fn)
4089 {
4090 if (TREE_CODE (fn) == TEMPLATE_DECL)
4091 return true;
4092 else
4093 return (!DECL_ARTIFICIAL (fn)
4094 && !(DECL_DEFAULTED_FN (fn)
4095 && DECL_INITIALIZED_IN_CLASS_P (fn)));
4096 }
4097
4098 /* Returns true iff class T has a user-provided constructor. */
4099
4100 bool
4101 type_has_user_provided_constructor (tree t)
4102 {
4103 tree fns;
4104
4105 if (!CLASS_TYPE_P (t))
4106 return false;
4107
4108 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4109 return false;
4110
4111 /* This can happen in error cases; avoid crashing. */
4112 if (!CLASSTYPE_METHOD_VEC (t))
4113 return false;
4114
4115 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4116 if (user_provided_p (OVL_CURRENT (fns)))
4117 return true;
4118
4119 return false;
4120 }
4121
4122 /* Returns true iff class T has a user-provided default constructor. */
4123
4124 bool
4125 type_has_user_provided_default_constructor (tree t)
4126 {
4127 tree fns, args;
4128
4129 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4130 return false;
4131
4132 for (fns = CLASSTYPE_CONSTRUCTORS (t); fns; fns = OVL_NEXT (fns))
4133 {
4134 tree fn = OVL_CURRENT (fns);
4135 if (TREE_CODE (fn) == FUNCTION_DECL
4136 && user_provided_p (fn))
4137 {
4138 args = FUNCTION_FIRST_USER_PARMTYPE (fn);
4139 while (args && TREE_PURPOSE (args))
4140 args = TREE_CHAIN (args);
4141 if (!args || args == void_list_node)
4142 return true;
4143 }
4144 }
4145
4146 return false;
4147 }
4148
4149 /* Returns true if FN can be explicitly defaulted. */
4150
4151 bool
4152 defaultable_fn_p (tree fn)
4153 {
4154 if (DECL_CONSTRUCTOR_P (fn))
4155 {
4156 if (FUNCTION_FIRST_USER_PARMTYPE (fn) == void_list_node)
4157 return true;
4158 else if (copy_fn_p (fn) > 0
4159 && (TREE_CHAIN (FUNCTION_FIRST_USER_PARMTYPE (fn))
4160 == void_list_node))
4161 return true;
4162 else
4163 return false;
4164 }
4165 else if (DECL_DESTRUCTOR_P (fn))
4166 return true;
4167 else if (DECL_ASSIGNMENT_OPERATOR_P (fn)
4168 && DECL_OVERLOADED_OPERATOR_P (fn) == NOP_EXPR)
4169 return copy_fn_p (fn);
4170 else
4171 return false;
4172 }
4173
4174 /* Remove all zero-width bit-fields from T. */
4175
4176 static void
4177 remove_zero_width_bit_fields (tree t)
4178 {
4179 tree *fieldsp;
4180
4181 fieldsp = &TYPE_FIELDS (t);
4182 while (*fieldsp)
4183 {
4184 if (TREE_CODE (*fieldsp) == FIELD_DECL
4185 && DECL_C_BIT_FIELD (*fieldsp)
4186 && DECL_INITIAL (*fieldsp))
4187 *fieldsp = TREE_CHAIN (*fieldsp);
4188 else
4189 fieldsp = &TREE_CHAIN (*fieldsp);
4190 }
4191 }
4192
4193 /* Returns TRUE iff we need a cookie when dynamically allocating an
4194 array whose elements have the indicated class TYPE. */
4195
4196 static bool
4197 type_requires_array_cookie (tree type)
4198 {
4199 tree fns;
4200 bool has_two_argument_delete_p = false;
4201
4202 gcc_assert (CLASS_TYPE_P (type));
4203
4204 /* If there's a non-trivial destructor, we need a cookie. In order
4205 to iterate through the array calling the destructor for each
4206 element, we'll have to know how many elements there are. */
4207 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
4208 return true;
4209
4210 /* If the usual deallocation function is a two-argument whose second
4211 argument is of type `size_t', then we have to pass the size of
4212 the array to the deallocation function, so we will need to store
4213 a cookie. */
4214 fns = lookup_fnfields (TYPE_BINFO (type),
4215 ansi_opname (VEC_DELETE_EXPR),
4216 /*protect=*/0);
4217 /* If there are no `operator []' members, or the lookup is
4218 ambiguous, then we don't need a cookie. */
4219 if (!fns || fns == error_mark_node)
4220 return false;
4221 /* Loop through all of the functions. */
4222 for (fns = BASELINK_FUNCTIONS (fns); fns; fns = OVL_NEXT (fns))
4223 {
4224 tree fn;
4225 tree second_parm;
4226
4227 /* Select the current function. */
4228 fn = OVL_CURRENT (fns);
4229 /* See if this function is a one-argument delete function. If
4230 it is, then it will be the usual deallocation function. */
4231 second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
4232 if (second_parm == void_list_node)
4233 return false;
4234 /* Do not consider this function if its second argument is an
4235 ellipsis. */
4236 if (!second_parm)
4237 continue;
4238 /* Otherwise, if we have a two-argument function and the second
4239 argument is `size_t', it will be the usual deallocation
4240 function -- unless there is one-argument function, too. */
4241 if (TREE_CHAIN (second_parm) == void_list_node
4242 && same_type_p (TREE_VALUE (second_parm), size_type_node))
4243 has_two_argument_delete_p = true;
4244 }
4245
4246 return has_two_argument_delete_p;
4247 }
4248
4249 /* Check the validity of the bases and members declared in T. Add any
4250 implicitly-generated functions (like copy-constructors and
4251 assignment operators). Compute various flag bits (like
4252 CLASSTYPE_NON_POD_T) for T. This routine works purely at the C++
4253 level: i.e., independently of the ABI in use. */
4254
4255 static void
4256 check_bases_and_members (tree t)
4257 {
4258 /* Nonzero if the implicitly generated copy constructor should take
4259 a non-const reference argument. */
4260 int cant_have_const_ctor;
4261 /* Nonzero if the implicitly generated assignment operator
4262 should take a non-const reference argument. */
4263 int no_const_asn_ref;
4264 tree access_decls;
4265 bool saved_complex_asn_ref;
4266 bool saved_nontrivial_dtor;
4267
4268 /* By default, we use const reference arguments and generate default
4269 constructors. */
4270 cant_have_const_ctor = 0;
4271 no_const_asn_ref = 0;
4272
4273 /* Check all the base-classes. */
4274 check_bases (t, &cant_have_const_ctor,
4275 &no_const_asn_ref);
4276
4277 /* Check all the method declarations. */
4278 check_methods (t);
4279
4280 /* Save the initial values of these flags which only indicate whether
4281 or not the class has user-provided functions. As we analyze the
4282 bases and members we can set these flags for other reasons. */
4283 saved_complex_asn_ref = TYPE_HAS_COMPLEX_ASSIGN_REF (t);
4284 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
4285
4286 /* Check all the data member declarations. We cannot call
4287 check_field_decls until we have called check_bases check_methods,
4288 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
4289 being set appropriately. */
4290 check_field_decls (t, &access_decls,
4291 &cant_have_const_ctor,
4292 &no_const_asn_ref);
4293
4294 /* A nearly-empty class has to be vptr-containing; a nearly empty
4295 class contains just a vptr. */
4296 if (!TYPE_CONTAINS_VPTR_P (t))
4297 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4298
4299 /* Do some bookkeeping that will guide the generation of implicitly
4300 declared member functions. */
4301 TYPE_HAS_COMPLEX_INIT_REF (t) |= TYPE_CONTAINS_VPTR_P (t);
4302 /* We need to call a constructor for this class if it has a
4303 user-provided constructor, or if the default constructor is going
4304 to initialize the vptr. (This is not an if-and-only-if;
4305 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
4306 themselves need constructing.) */
4307 TYPE_NEEDS_CONSTRUCTING (t)
4308 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
4309 /* [dcl.init.aggr]
4310
4311 An aggregate is an array or a class with no user-provided
4312 constructors ... and no virtual functions.
4313
4314 Again, other conditions for being an aggregate are checked
4315 elsewhere. */
4316 CLASSTYPE_NON_AGGREGATE (t)
4317 |= (type_has_user_provided_constructor (t) || TYPE_POLYMORPHIC_P (t));
4318 CLASSTYPE_NON_POD_P (t)
4319 |= (CLASSTYPE_NON_AGGREGATE (t)
4320 || saved_nontrivial_dtor || saved_complex_asn_ref);
4321 TYPE_HAS_COMPLEX_ASSIGN_REF (t) |= TYPE_CONTAINS_VPTR_P (t);
4322 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
4323
4324 /* If the class has no user-declared constructor, but does have
4325 non-static const or reference data members that can never be
4326 initialized, issue a warning. */
4327 if (warn_uninitialized
4328 /* Classes with user-declared constructors are presumed to
4329 initialize these members. */
4330 && !TYPE_HAS_USER_CONSTRUCTOR (t)
4331 /* Aggregates can be initialized with brace-enclosed
4332 initializers. */
4333 && CLASSTYPE_NON_AGGREGATE (t))
4334 {
4335 tree field;
4336
4337 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
4338 {
4339 tree type;
4340
4341 if (TREE_CODE (field) != FIELD_DECL)
4342 continue;
4343
4344 type = TREE_TYPE (field);
4345 if (TREE_CODE (type) == REFERENCE_TYPE)
4346 warning (OPT_Wuninitialized, "non-static reference %q+#D "
4347 "in class without a constructor", field);
4348 else if (CP_TYPE_CONST_P (type)
4349 && (!CLASS_TYPE_P (type)
4350 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
4351 warning (OPT_Wuninitialized, "non-static const member %q+#D "
4352 "in class without a constructor", field);
4353 }
4354 }
4355
4356 /* Synthesize any needed methods. */
4357 add_implicitly_declared_members (t,
4358 cant_have_const_ctor,
4359 no_const_asn_ref);
4360
4361 /* Create the in-charge and not-in-charge variants of constructors
4362 and destructors. */
4363 clone_constructors_and_destructors (t);
4364
4365 /* Process the using-declarations. */
4366 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
4367 handle_using_decl (TREE_VALUE (access_decls), t);
4368
4369 /* Build and sort the CLASSTYPE_METHOD_VEC. */
4370 finish_struct_methods (t);
4371
4372 /* Figure out whether or not we will need a cookie when dynamically
4373 allocating an array of this type. */
4374 TYPE_LANG_SPECIFIC (t)->u.c.vec_new_uses_cookie
4375 = type_requires_array_cookie (t);
4376 }
4377
4378 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
4379 accordingly. If a new vfield was created (because T doesn't have a
4380 primary base class), then the newly created field is returned. It
4381 is not added to the TYPE_FIELDS list; it is the caller's
4382 responsibility to do that. Accumulate declared virtual functions
4383 on VIRTUALS_P. */
4384
4385 static tree
4386 create_vtable_ptr (tree t, tree* virtuals_p)
4387 {
4388 tree fn;
4389
4390 /* Collect the virtual functions declared in T. */
4391 for (fn = TYPE_METHODS (t); fn; fn = TREE_CHAIN (fn))
4392 if (DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
4393 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
4394 {
4395 tree new_virtual = make_node (TREE_LIST);
4396
4397 BV_FN (new_virtual) = fn;
4398 BV_DELTA (new_virtual) = integer_zero_node;
4399 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
4400
4401 TREE_CHAIN (new_virtual) = *virtuals_p;
4402 *virtuals_p = new_virtual;
4403 }
4404
4405 /* If we couldn't find an appropriate base class, create a new field
4406 here. Even if there weren't any new virtual functions, we might need a
4407 new virtual function table if we're supposed to include vptrs in
4408 all classes that need them. */
4409 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
4410 {
4411 /* We build this decl with vtbl_ptr_type_node, which is a
4412 `vtable_entry_type*'. It might seem more precise to use
4413 `vtable_entry_type (*)[N]' where N is the number of virtual
4414 functions. However, that would require the vtable pointer in
4415 base classes to have a different type than the vtable pointer
4416 in derived classes. We could make that happen, but that
4417 still wouldn't solve all the problems. In particular, the
4418 type-based alias analysis code would decide that assignments
4419 to the base class vtable pointer can't alias assignments to
4420 the derived class vtable pointer, since they have different
4421 types. Thus, in a derived class destructor, where the base
4422 class constructor was inlined, we could generate bad code for
4423 setting up the vtable pointer.
4424
4425 Therefore, we use one type for all vtable pointers. We still
4426 use a type-correct type; it's just doesn't indicate the array
4427 bounds. That's better than using `void*' or some such; it's
4428 cleaner, and it let's the alias analysis code know that these
4429 stores cannot alias stores to void*! */
4430 tree field;
4431
4432 field = build_decl (input_location,
4433 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
4434 DECL_VIRTUAL_P (field) = 1;
4435 DECL_ARTIFICIAL (field) = 1;
4436 DECL_FIELD_CONTEXT (field) = t;
4437 DECL_FCONTEXT (field) = t;
4438
4439 TYPE_VFIELD (t) = field;
4440
4441 /* This class is non-empty. */
4442 CLASSTYPE_EMPTY_P (t) = 0;
4443
4444 return field;
4445 }
4446
4447 return NULL_TREE;
4448 }
4449
4450 /* Fixup the inline function given by INFO now that the class is
4451 complete. */
4452
4453 static void
4454 fixup_pending_inline (tree fn)
4455 {
4456 if (DECL_PENDING_INLINE_INFO (fn))
4457 {
4458 tree args = DECL_ARGUMENTS (fn);
4459 while (args)
4460 {
4461 DECL_CONTEXT (args) = fn;
4462 args = TREE_CHAIN (args);
4463 }
4464 }
4465 }
4466
4467 /* Fixup the inline methods and friends in TYPE now that TYPE is
4468 complete. */
4469
4470 static void
4471 fixup_inline_methods (tree type)
4472 {
4473 tree method = TYPE_METHODS (type);
4474 VEC(tree,gc) *friends;
4475 unsigned ix;
4476
4477 if (method && TREE_CODE (method) == TREE_VEC)
4478 {
4479 if (TREE_VEC_ELT (method, 1))
4480 method = TREE_VEC_ELT (method, 1);
4481 else if (TREE_VEC_ELT (method, 0))
4482 method = TREE_VEC_ELT (method, 0);
4483 else
4484 method = TREE_VEC_ELT (method, 2);
4485 }
4486
4487 /* Do inline member functions. */
4488 for (; method; method = TREE_CHAIN (method))
4489 fixup_pending_inline (method);
4490
4491 /* Do friends. */
4492 for (friends = CLASSTYPE_INLINE_FRIENDS (type), ix = 0;
4493 VEC_iterate (tree, friends, ix, method); ix++)
4494 fixup_pending_inline (method);
4495 CLASSTYPE_INLINE_FRIENDS (type) = NULL;
4496 }
4497
4498 /* Add OFFSET to all base types of BINFO which is a base in the
4499 hierarchy dominated by T.
4500
4501 OFFSET, which is a type offset, is number of bytes. */
4502
4503 static void
4504 propagate_binfo_offsets (tree binfo, tree offset)
4505 {
4506 int i;
4507 tree primary_binfo;
4508 tree base_binfo;
4509
4510 /* Update BINFO's offset. */
4511 BINFO_OFFSET (binfo)
4512 = convert (sizetype,
4513 size_binop (PLUS_EXPR,
4514 convert (ssizetype, BINFO_OFFSET (binfo)),
4515 offset));
4516
4517 /* Find the primary base class. */
4518 primary_binfo = get_primary_binfo (binfo);
4519
4520 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
4521 propagate_binfo_offsets (primary_binfo, offset);
4522
4523 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
4524 downwards. */
4525 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4526 {
4527 /* Don't do the primary base twice. */
4528 if (base_binfo == primary_binfo)
4529 continue;
4530
4531 if (BINFO_VIRTUAL_P (base_binfo))
4532 continue;
4533
4534 propagate_binfo_offsets (base_binfo, offset);
4535 }
4536 }
4537
4538 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
4539 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
4540 empty subobjects of T. */
4541
4542 static void
4543 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
4544 {
4545 tree vbase;
4546 tree t = rli->t;
4547 bool first_vbase = true;
4548 tree *next_field;
4549
4550 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
4551 return;
4552
4553 if (!abi_version_at_least(2))
4554 {
4555 /* In G++ 3.2, we incorrectly rounded the size before laying out
4556 the virtual bases. */
4557 finish_record_layout (rli, /*free_p=*/false);
4558 #ifdef STRUCTURE_SIZE_BOUNDARY
4559 /* Packed structures don't need to have minimum size. */
4560 if (! TYPE_PACKED (t))
4561 TYPE_ALIGN (t) = MAX (TYPE_ALIGN (t), (unsigned) STRUCTURE_SIZE_BOUNDARY);
4562 #endif
4563 rli->offset = TYPE_SIZE_UNIT (t);
4564 rli->bitpos = bitsize_zero_node;
4565 rli->record_align = TYPE_ALIGN (t);
4566 }
4567
4568 /* Find the last field. The artificial fields created for virtual
4569 bases will go after the last extant field to date. */
4570 next_field = &TYPE_FIELDS (t);
4571 while (*next_field)
4572 next_field = &TREE_CHAIN (*next_field);
4573
4574 /* Go through the virtual bases, allocating space for each virtual
4575 base that is not already a primary base class. These are
4576 allocated in inheritance graph order. */
4577 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
4578 {
4579 if (!BINFO_VIRTUAL_P (vbase))
4580 continue;
4581
4582 if (!BINFO_PRIMARY_P (vbase))
4583 {
4584 tree basetype = TREE_TYPE (vbase);
4585
4586 /* This virtual base is not a primary base of any class in the
4587 hierarchy, so we have to add space for it. */
4588 next_field = build_base_field (rli, vbase,
4589 offsets, next_field);
4590
4591 /* If the first virtual base might have been placed at a
4592 lower address, had we started from CLASSTYPE_SIZE, rather
4593 than TYPE_SIZE, issue a warning. There can be both false
4594 positives and false negatives from this warning in rare
4595 cases; to deal with all the possibilities would probably
4596 require performing both layout algorithms and comparing
4597 the results which is not particularly tractable. */
4598 if (warn_abi
4599 && first_vbase
4600 && (tree_int_cst_lt
4601 (size_binop (CEIL_DIV_EXPR,
4602 round_up (CLASSTYPE_SIZE (t),
4603 CLASSTYPE_ALIGN (basetype)),
4604 bitsize_unit_node),
4605 BINFO_OFFSET (vbase))))
4606 warning (OPT_Wabi,
4607 "offset of virtual base %qT is not ABI-compliant and "
4608 "may change in a future version of GCC",
4609 basetype);
4610
4611 first_vbase = false;
4612 }
4613 }
4614 }
4615
4616 /* Returns the offset of the byte just past the end of the base class
4617 BINFO. */
4618
4619 static tree
4620 end_of_base (tree binfo)
4621 {
4622 tree size;
4623
4624 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
4625 size = TYPE_SIZE_UNIT (char_type_node);
4626 else if (is_empty_class (BINFO_TYPE (binfo)))
4627 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
4628 allocate some space for it. It cannot have virtual bases, so
4629 TYPE_SIZE_UNIT is fine. */
4630 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4631 else
4632 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
4633
4634 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
4635 }
4636
4637 /* Returns the offset of the byte just past the end of the base class
4638 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
4639 only non-virtual bases are included. */
4640
4641 static tree
4642 end_of_class (tree t, int include_virtuals_p)
4643 {
4644 tree result = size_zero_node;
4645 VEC(tree,gc) *vbases;
4646 tree binfo;
4647 tree base_binfo;
4648 tree offset;
4649 int i;
4650
4651 for (binfo = TYPE_BINFO (t), i = 0;
4652 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4653 {
4654 if (!include_virtuals_p
4655 && BINFO_VIRTUAL_P (base_binfo)
4656 && (!BINFO_PRIMARY_P (base_binfo)
4657 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
4658 continue;
4659
4660 offset = end_of_base (base_binfo);
4661 if (INT_CST_LT_UNSIGNED (result, offset))
4662 result = offset;
4663 }
4664
4665 /* G++ 3.2 did not check indirect virtual bases. */
4666 if (abi_version_at_least (2) && include_virtuals_p)
4667 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4668 VEC_iterate (tree, vbases, i, base_binfo); i++)
4669 {
4670 offset = end_of_base (base_binfo);
4671 if (INT_CST_LT_UNSIGNED (result, offset))
4672 result = offset;
4673 }
4674
4675 return result;
4676 }
4677
4678 /* Warn about bases of T that are inaccessible because they are
4679 ambiguous. For example:
4680
4681 struct S {};
4682 struct T : public S {};
4683 struct U : public S, public T {};
4684
4685 Here, `(S*) new U' is not allowed because there are two `S'
4686 subobjects of U. */
4687
4688 static void
4689 warn_about_ambiguous_bases (tree t)
4690 {
4691 int i;
4692 VEC(tree,gc) *vbases;
4693 tree basetype;
4694 tree binfo;
4695 tree base_binfo;
4696
4697 /* If there are no repeated bases, nothing can be ambiguous. */
4698 if (!CLASSTYPE_REPEATED_BASE_P (t))
4699 return;
4700
4701 /* Check direct bases. */
4702 for (binfo = TYPE_BINFO (t), i = 0;
4703 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
4704 {
4705 basetype = BINFO_TYPE (base_binfo);
4706
4707 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4708 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
4709 basetype, t);
4710 }
4711
4712 /* Check for ambiguous virtual bases. */
4713 if (extra_warnings)
4714 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
4715 VEC_iterate (tree, vbases, i, binfo); i++)
4716 {
4717 basetype = BINFO_TYPE (binfo);
4718
4719 if (!lookup_base (t, basetype, ba_unique | ba_quiet, NULL))
4720 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due to ambiguity",
4721 basetype, t);
4722 }
4723 }
4724
4725 /* Compare two INTEGER_CSTs K1 and K2. */
4726
4727 static int
4728 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
4729 {
4730 return tree_int_cst_compare ((tree) k1, (tree) k2);
4731 }
4732
4733 /* Increase the size indicated in RLI to account for empty classes
4734 that are "off the end" of the class. */
4735
4736 static void
4737 include_empty_classes (record_layout_info rli)
4738 {
4739 tree eoc;
4740 tree rli_size;
4741
4742 /* It might be the case that we grew the class to allocate a
4743 zero-sized base class. That won't be reflected in RLI, yet,
4744 because we are willing to overlay multiple bases at the same
4745 offset. However, now we need to make sure that RLI is big enough
4746 to reflect the entire class. */
4747 eoc = end_of_class (rli->t,
4748 CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
4749 rli_size = rli_size_unit_so_far (rli);
4750 if (TREE_CODE (rli_size) == INTEGER_CST
4751 && INT_CST_LT_UNSIGNED (rli_size, eoc))
4752 {
4753 if (!abi_version_at_least (2))
4754 /* In version 1 of the ABI, the size of a class that ends with
4755 a bitfield was not rounded up to a whole multiple of a
4756 byte. Because rli_size_unit_so_far returns only the number
4757 of fully allocated bytes, any extra bits were not included
4758 in the size. */
4759 rli->bitpos = round_down (rli->bitpos, BITS_PER_UNIT);
4760 else
4761 /* The size should have been rounded to a whole byte. */
4762 gcc_assert (tree_int_cst_equal
4763 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
4764 rli->bitpos
4765 = size_binop (PLUS_EXPR,
4766 rli->bitpos,
4767 size_binop (MULT_EXPR,
4768 convert (bitsizetype,
4769 size_binop (MINUS_EXPR,
4770 eoc, rli_size)),
4771 bitsize_int (BITS_PER_UNIT)));
4772 normalize_rli (rli);
4773 }
4774 }
4775
4776 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
4777 BINFO_OFFSETs for all of the base-classes. Position the vtable
4778 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
4779
4780 static void
4781 layout_class_type (tree t, tree *virtuals_p)
4782 {
4783 tree non_static_data_members;
4784 tree field;
4785 tree vptr;
4786 record_layout_info rli;
4787 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
4788 types that appear at that offset. */
4789 splay_tree empty_base_offsets;
4790 /* True if the last field layed out was a bit-field. */
4791 bool last_field_was_bitfield = false;
4792 /* The location at which the next field should be inserted. */
4793 tree *next_field;
4794 /* T, as a base class. */
4795 tree base_t;
4796
4797 /* Keep track of the first non-static data member. */
4798 non_static_data_members = TYPE_FIELDS (t);
4799
4800 /* Start laying out the record. */
4801 rli = start_record_layout (t);
4802
4803 /* Mark all the primary bases in the hierarchy. */
4804 determine_primary_bases (t);
4805
4806 /* Create a pointer to our virtual function table. */
4807 vptr = create_vtable_ptr (t, virtuals_p);
4808
4809 /* The vptr is always the first thing in the class. */
4810 if (vptr)
4811 {
4812 TREE_CHAIN (vptr) = TYPE_FIELDS (t);
4813 TYPE_FIELDS (t) = vptr;
4814 next_field = &TREE_CHAIN (vptr);
4815 place_field (rli, vptr);
4816 }
4817 else
4818 next_field = &TYPE_FIELDS (t);
4819
4820 /* Build FIELD_DECLs for all of the non-virtual base-types. */
4821 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
4822 NULL, NULL);
4823 build_base_fields (rli, empty_base_offsets, next_field);
4824
4825 /* Layout the non-static data members. */
4826 for (field = non_static_data_members; field; field = TREE_CHAIN (field))
4827 {
4828 tree type;
4829 tree padding;
4830
4831 /* We still pass things that aren't non-static data members to
4832 the back end, in case it wants to do something with them. */
4833 if (TREE_CODE (field) != FIELD_DECL)
4834 {
4835 place_field (rli, field);
4836 /* If the static data member has incomplete type, keep track
4837 of it so that it can be completed later. (The handling
4838 of pending statics in finish_record_layout is
4839 insufficient; consider:
4840
4841 struct S1;
4842 struct S2 { static S1 s1; };
4843
4844 At this point, finish_record_layout will be called, but
4845 S1 is still incomplete.) */
4846 if (TREE_CODE (field) == VAR_DECL)
4847 {
4848 maybe_register_incomplete_var (field);
4849 /* The visibility of static data members is determined
4850 at their point of declaration, not their point of
4851 definition. */
4852 determine_visibility (field);
4853 }
4854 continue;
4855 }
4856
4857 type = TREE_TYPE (field);
4858 if (type == error_mark_node)
4859 continue;
4860
4861 padding = NULL_TREE;
4862
4863 /* If this field is a bit-field whose width is greater than its
4864 type, then there are some special rules for allocating
4865 it. */
4866 if (DECL_C_BIT_FIELD (field)
4867 && INT_CST_LT (TYPE_SIZE (type), DECL_SIZE (field)))
4868 {
4869 unsigned int itk;
4870 tree integer_type;
4871 bool was_unnamed_p = false;
4872 /* We must allocate the bits as if suitably aligned for the
4873 longest integer type that fits in this many bits. type
4874 of the field. Then, we are supposed to use the left over
4875 bits as additional padding. */
4876 for (itk = itk_char; itk != itk_none; ++itk)
4877 if (INT_CST_LT (DECL_SIZE (field),
4878 TYPE_SIZE (integer_types[itk])))
4879 break;
4880
4881 /* ITK now indicates a type that is too large for the
4882 field. We have to back up by one to find the largest
4883 type that fits. */
4884 integer_type = integer_types[itk - 1];
4885
4886 /* Figure out how much additional padding is required. GCC
4887 3.2 always created a padding field, even if it had zero
4888 width. */
4889 if (!abi_version_at_least (2)
4890 || INT_CST_LT (TYPE_SIZE (integer_type), DECL_SIZE (field)))
4891 {
4892 if (abi_version_at_least (2) && TREE_CODE (t) == UNION_TYPE)
4893 /* In a union, the padding field must have the full width
4894 of the bit-field; all fields start at offset zero. */
4895 padding = DECL_SIZE (field);
4896 else
4897 {
4898 if (TREE_CODE (t) == UNION_TYPE)
4899 warning (OPT_Wabi, "size assigned to %qT may not be "
4900 "ABI-compliant and may change in a future "
4901 "version of GCC",
4902 t);
4903 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
4904 TYPE_SIZE (integer_type));
4905 }
4906 }
4907 #ifdef PCC_BITFIELD_TYPE_MATTERS
4908 /* An unnamed bitfield does not normally affect the
4909 alignment of the containing class on a target where
4910 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
4911 make any exceptions for unnamed bitfields when the
4912 bitfields are longer than their types. Therefore, we
4913 temporarily give the field a name. */
4914 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
4915 {
4916 was_unnamed_p = true;
4917 DECL_NAME (field) = make_anon_name ();
4918 }
4919 #endif
4920 DECL_SIZE (field) = TYPE_SIZE (integer_type);
4921 DECL_ALIGN (field) = TYPE_ALIGN (integer_type);
4922 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
4923 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4924 empty_base_offsets);
4925 if (was_unnamed_p)
4926 DECL_NAME (field) = NULL_TREE;
4927 /* Now that layout has been performed, set the size of the
4928 field to the size of its declared type; the rest of the
4929 field is effectively invisible. */
4930 DECL_SIZE (field) = TYPE_SIZE (type);
4931 /* We must also reset the DECL_MODE of the field. */
4932 if (abi_version_at_least (2))
4933 DECL_MODE (field) = TYPE_MODE (type);
4934 else if (warn_abi
4935 && DECL_MODE (field) != TYPE_MODE (type))
4936 /* Versions of G++ before G++ 3.4 did not reset the
4937 DECL_MODE. */
4938 warning (OPT_Wabi,
4939 "the offset of %qD may not be ABI-compliant and may "
4940 "change in a future version of GCC", field);
4941 }
4942 else
4943 layout_nonempty_base_or_field (rli, field, NULL_TREE,
4944 empty_base_offsets);
4945
4946 /* Remember the location of any empty classes in FIELD. */
4947 if (abi_version_at_least (2))
4948 record_subobject_offsets (TREE_TYPE (field),
4949 byte_position(field),
4950 empty_base_offsets,
4951 /*is_data_member=*/true);
4952
4953 /* If a bit-field does not immediately follow another bit-field,
4954 and yet it starts in the middle of a byte, we have failed to
4955 comply with the ABI. */
4956 if (warn_abi
4957 && DECL_C_BIT_FIELD (field)
4958 /* The TREE_NO_WARNING flag gets set by Objective-C when
4959 laying out an Objective-C class. The ObjC ABI differs
4960 from the C++ ABI, and so we do not want a warning
4961 here. */
4962 && !TREE_NO_WARNING (field)
4963 && !last_field_was_bitfield
4964 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
4965 DECL_FIELD_BIT_OFFSET (field),
4966 bitsize_unit_node)))
4967 warning (OPT_Wabi, "offset of %q+D is not ABI-compliant and may "
4968 "change in a future version of GCC", field);
4969
4970 /* G++ used to use DECL_FIELD_OFFSET as if it were the byte
4971 offset of the field. */
4972 if (warn_abi
4973 && !tree_int_cst_equal (DECL_FIELD_OFFSET (field),
4974 byte_position (field))
4975 && contains_empty_class_p (TREE_TYPE (field)))
4976 warning (OPT_Wabi, "%q+D contains empty classes which may cause base "
4977 "classes to be placed at different locations in a "
4978 "future version of GCC", field);
4979
4980 /* The middle end uses the type of expressions to determine the
4981 possible range of expression values. In order to optimize
4982 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
4983 must be made aware of the width of "i", via its type.
4984
4985 Because C++ does not have integer types of arbitrary width,
4986 we must (for the purposes of the front end) convert from the
4987 type assigned here to the declared type of the bitfield
4988 whenever a bitfield expression is used as an rvalue.
4989 Similarly, when assigning a value to a bitfield, the value
4990 must be converted to the type given the bitfield here. */
4991 if (DECL_C_BIT_FIELD (field))
4992 {
4993 unsigned HOST_WIDE_INT width;
4994 tree ftype = TREE_TYPE (field);
4995 width = tree_low_cst (DECL_SIZE (field), /*unsignedp=*/1);
4996 if (width != TYPE_PRECISION (ftype))
4997 {
4998 TREE_TYPE (field)
4999 = c_build_bitfield_integer_type (width,
5000 TYPE_UNSIGNED (ftype));
5001 TREE_TYPE (field)
5002 = cp_build_qualified_type (TREE_TYPE (field),
5003 TYPE_QUALS (ftype));
5004 }
5005 }
5006
5007 /* If we needed additional padding after this field, add it
5008 now. */
5009 if (padding)
5010 {
5011 tree padding_field;
5012
5013 padding_field = build_decl (input_location,
5014 FIELD_DECL,
5015 NULL_TREE,
5016 char_type_node);
5017 DECL_BIT_FIELD (padding_field) = 1;
5018 DECL_SIZE (padding_field) = padding;
5019 DECL_CONTEXT (padding_field) = t;
5020 DECL_ARTIFICIAL (padding_field) = 1;
5021 DECL_IGNORED_P (padding_field) = 1;
5022 layout_nonempty_base_or_field (rli, padding_field,
5023 NULL_TREE,
5024 empty_base_offsets);
5025 }
5026
5027 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
5028 }
5029
5030 if (abi_version_at_least (2) && !integer_zerop (rli->bitpos))
5031 {
5032 /* Make sure that we are on a byte boundary so that the size of
5033 the class without virtual bases will always be a round number
5034 of bytes. */
5035 rli->bitpos = round_up (rli->bitpos, BITS_PER_UNIT);
5036 normalize_rli (rli);
5037 }
5038
5039 /* G++ 3.2 does not allow virtual bases to be overlaid with tail
5040 padding. */
5041 if (!abi_version_at_least (2))
5042 include_empty_classes(rli);
5043
5044 /* Delete all zero-width bit-fields from the list of fields. Now
5045 that the type is laid out they are no longer important. */
5046 remove_zero_width_bit_fields (t);
5047
5048 /* Create the version of T used for virtual bases. We do not use
5049 make_class_type for this version; this is an artificial type. For
5050 a POD type, we just reuse T. */
5051 if (CLASSTYPE_NON_POD_P (t) || CLASSTYPE_EMPTY_P (t))
5052 {
5053 base_t = make_node (TREE_CODE (t));
5054
5055 /* Set the size and alignment for the new type. In G++ 3.2, all
5056 empty classes were considered to have size zero when used as
5057 base classes. */
5058 if (!abi_version_at_least (2) && CLASSTYPE_EMPTY_P (t))
5059 {
5060 TYPE_SIZE (base_t) = bitsize_zero_node;
5061 TYPE_SIZE_UNIT (base_t) = size_zero_node;
5062 if (warn_abi && !integer_zerop (rli_size_unit_so_far (rli)))
5063 warning (OPT_Wabi,
5064 "layout of classes derived from empty class %qT "
5065 "may change in a future version of GCC",
5066 t);
5067 }
5068 else
5069 {
5070 tree eoc;
5071
5072 /* If the ABI version is not at least two, and the last
5073 field was a bit-field, RLI may not be on a byte
5074 boundary. In particular, rli_size_unit_so_far might
5075 indicate the last complete byte, while rli_size_so_far
5076 indicates the total number of bits used. Therefore,
5077 rli_size_so_far, rather than rli_size_unit_so_far, is
5078 used to compute TYPE_SIZE_UNIT. */
5079 eoc = end_of_class (t, /*include_virtuals_p=*/0);
5080 TYPE_SIZE_UNIT (base_t)
5081 = size_binop (MAX_EXPR,
5082 convert (sizetype,
5083 size_binop (CEIL_DIV_EXPR,
5084 rli_size_so_far (rli),
5085 bitsize_int (BITS_PER_UNIT))),
5086 eoc);
5087 TYPE_SIZE (base_t)
5088 = size_binop (MAX_EXPR,
5089 rli_size_so_far (rli),
5090 size_binop (MULT_EXPR,
5091 convert (bitsizetype, eoc),
5092 bitsize_int (BITS_PER_UNIT)));
5093 }
5094 TYPE_ALIGN (base_t) = rli->record_align;
5095 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
5096
5097 /* Copy the fields from T. */
5098 next_field = &TYPE_FIELDS (base_t);
5099 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5100 if (TREE_CODE (field) == FIELD_DECL)
5101 {
5102 *next_field = build_decl (input_location,
5103 FIELD_DECL,
5104 DECL_NAME (field),
5105 TREE_TYPE (field));
5106 DECL_CONTEXT (*next_field) = base_t;
5107 DECL_FIELD_OFFSET (*next_field) = DECL_FIELD_OFFSET (field);
5108 DECL_FIELD_BIT_OFFSET (*next_field)
5109 = DECL_FIELD_BIT_OFFSET (field);
5110 DECL_SIZE (*next_field) = DECL_SIZE (field);
5111 DECL_MODE (*next_field) = DECL_MODE (field);
5112 next_field = &TREE_CHAIN (*next_field);
5113 }
5114
5115 /* Record the base version of the type. */
5116 CLASSTYPE_AS_BASE (t) = base_t;
5117 TYPE_CONTEXT (base_t) = t;
5118 }
5119 else
5120 CLASSTYPE_AS_BASE (t) = t;
5121
5122 /* Every empty class contains an empty class. */
5123 if (CLASSTYPE_EMPTY_P (t))
5124 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
5125
5126 /* Set the TYPE_DECL for this type to contain the right
5127 value for DECL_OFFSET, so that we can use it as part
5128 of a COMPONENT_REF for multiple inheritance. */
5129 layout_decl (TYPE_MAIN_DECL (t), 0);
5130
5131 /* Now fix up any virtual base class types that we left lying
5132 around. We must get these done before we try to lay out the
5133 virtual function table. As a side-effect, this will remove the
5134 base subobject fields. */
5135 layout_virtual_bases (rli, empty_base_offsets);
5136
5137 /* Make sure that empty classes are reflected in RLI at this
5138 point. */
5139 include_empty_classes(rli);
5140
5141 /* Make sure not to create any structures with zero size. */
5142 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
5143 place_field (rli,
5144 build_decl (input_location,
5145 FIELD_DECL, NULL_TREE, char_type_node));
5146
5147 /* Let the back end lay out the type. */
5148 finish_record_layout (rli, /*free_p=*/true);
5149
5150 /* Warn about bases that can't be talked about due to ambiguity. */
5151 warn_about_ambiguous_bases (t);
5152
5153 /* Now that we're done with layout, give the base fields the real types. */
5154 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5155 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
5156 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
5157
5158 /* Clean up. */
5159 splay_tree_delete (empty_base_offsets);
5160
5161 if (CLASSTYPE_EMPTY_P (t)
5162 && tree_int_cst_lt (sizeof_biggest_empty_class,
5163 TYPE_SIZE_UNIT (t)))
5164 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
5165 }
5166
5167 /* Determine the "key method" for the class type indicated by TYPE,
5168 and set CLASSTYPE_KEY_METHOD accordingly. */
5169
5170 void
5171 determine_key_method (tree type)
5172 {
5173 tree method;
5174
5175 if (TYPE_FOR_JAVA (type)
5176 || processing_template_decl
5177 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
5178 || CLASSTYPE_INTERFACE_KNOWN (type))
5179 return;
5180
5181 /* The key method is the first non-pure virtual function that is not
5182 inline at the point of class definition. On some targets the
5183 key function may not be inline; those targets should not call
5184 this function until the end of the translation unit. */
5185 for (method = TYPE_METHODS (type); method != NULL_TREE;
5186 method = TREE_CHAIN (method))
5187 if (DECL_VINDEX (method) != NULL_TREE
5188 && ! DECL_DECLARED_INLINE_P (method)
5189 && ! DECL_PURE_VIRTUAL_P (method))
5190 {
5191 CLASSTYPE_KEY_METHOD (type) = method;
5192 break;
5193 }
5194
5195 return;
5196 }
5197
5198 /* Perform processing required when the definition of T (a class type)
5199 is complete. */
5200
5201 void
5202 finish_struct_1 (tree t)
5203 {
5204 tree x;
5205 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
5206 tree virtuals = NULL_TREE;
5207 int n_fields = 0;
5208
5209 if (COMPLETE_TYPE_P (t))
5210 {
5211 gcc_assert (MAYBE_CLASS_TYPE_P (t));
5212 error ("redefinition of %q#T", t);
5213 popclass ();
5214 return;
5215 }
5216
5217 /* If this type was previously laid out as a forward reference,
5218 make sure we lay it out again. */
5219 TYPE_SIZE (t) = NULL_TREE;
5220 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
5221
5222 fixup_inline_methods (t);
5223
5224 /* Make assumptions about the class; we'll reset the flags if
5225 necessary. */
5226 CLASSTYPE_EMPTY_P (t) = 1;
5227 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
5228 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
5229
5230 /* Do end-of-class semantic processing: checking the validity of the
5231 bases and members and add implicitly generated methods. */
5232 check_bases_and_members (t);
5233
5234 /* Find the key method. */
5235 if (TYPE_CONTAINS_VPTR_P (t))
5236 {
5237 /* The Itanium C++ ABI permits the key method to be chosen when
5238 the class is defined -- even though the key method so
5239 selected may later turn out to be an inline function. On
5240 some systems (such as ARM Symbian OS) the key method cannot
5241 be determined until the end of the translation unit. On such
5242 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
5243 will cause the class to be added to KEYED_CLASSES. Then, in
5244 finish_file we will determine the key method. */
5245 if (targetm.cxx.key_method_may_be_inline ())
5246 determine_key_method (t);
5247
5248 /* If a polymorphic class has no key method, we may emit the vtable
5249 in every translation unit where the class definition appears. */
5250 if (CLASSTYPE_KEY_METHOD (t) == NULL_TREE)
5251 keyed_classes = tree_cons (NULL_TREE, t, keyed_classes);
5252 }
5253
5254 /* Layout the class itself. */
5255 layout_class_type (t, &virtuals);
5256 if (CLASSTYPE_AS_BASE (t) != t)
5257 /* We use the base type for trivial assignments, and hence it
5258 needs a mode. */
5259 compute_record_mode (CLASSTYPE_AS_BASE (t));
5260
5261 virtuals = modify_all_vtables (t, nreverse (virtuals));
5262
5263 /* If necessary, create the primary vtable for this class. */
5264 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
5265 {
5266 /* We must enter these virtuals into the table. */
5267 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5268 build_primary_vtable (NULL_TREE, t);
5269 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
5270 /* Here we know enough to change the type of our virtual
5271 function table, but we will wait until later this function. */
5272 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
5273 }
5274
5275 if (TYPE_CONTAINS_VPTR_P (t))
5276 {
5277 int vindex;
5278 tree fn;
5279
5280 if (BINFO_VTABLE (TYPE_BINFO (t)))
5281 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
5282 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
5283 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
5284
5285 /* Add entries for virtual functions introduced by this class. */
5286 BINFO_VIRTUALS (TYPE_BINFO (t))
5287 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
5288
5289 /* Set DECL_VINDEX for all functions declared in this class. */
5290 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
5291 fn;
5292 fn = TREE_CHAIN (fn),
5293 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
5294 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
5295 {
5296 tree fndecl = BV_FN (fn);
5297
5298 if (DECL_THUNK_P (fndecl))
5299 /* A thunk. We should never be calling this entry directly
5300 from this vtable -- we'd use the entry for the non
5301 thunk base function. */
5302 DECL_VINDEX (fndecl) = NULL_TREE;
5303 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
5304 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
5305 }
5306 }
5307
5308 finish_struct_bits (t);
5309
5310 /* Complete the rtl for any static member objects of the type we're
5311 working on. */
5312 for (x = TYPE_FIELDS (t); x; x = TREE_CHAIN (x))
5313 if (TREE_CODE (x) == VAR_DECL && TREE_STATIC (x)
5314 && TREE_TYPE (x) != error_mark_node
5315 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
5316 DECL_MODE (x) = TYPE_MODE (t);
5317
5318 /* Done with FIELDS...now decide whether to sort these for
5319 faster lookups later.
5320
5321 We use a small number because most searches fail (succeeding
5322 ultimately as the search bores through the inheritance
5323 hierarchy), and we want this failure to occur quickly. */
5324
5325 n_fields = count_fields (TYPE_FIELDS (t));
5326 if (n_fields > 7)
5327 {
5328 struct sorted_fields_type *field_vec = GGC_NEWVAR
5329 (struct sorted_fields_type,
5330 sizeof (struct sorted_fields_type) + n_fields * sizeof (tree));
5331 field_vec->len = n_fields;
5332 add_fields_to_record_type (TYPE_FIELDS (t), field_vec, 0);
5333 qsort (field_vec->elts, n_fields, sizeof (tree),
5334 field_decl_cmp);
5335 if (! DECL_LANG_SPECIFIC (TYPE_MAIN_DECL (t)))
5336 retrofit_lang_decl (TYPE_MAIN_DECL (t));
5337 DECL_SORTED_FIELDS (TYPE_MAIN_DECL (t)) = field_vec;
5338 }
5339
5340 /* Complain if one of the field types requires lower visibility. */
5341 constrain_class_visibility (t);
5342
5343 /* Make the rtl for any new vtables we have created, and unmark
5344 the base types we marked. */
5345 finish_vtbls (t);
5346
5347 /* Build the VTT for T. */
5348 build_vtt (t);
5349
5350 /* This warning does not make sense for Java classes, since they
5351 cannot have destructors. */
5352 if (!TYPE_FOR_JAVA (t) && warn_nonvdtor && TYPE_POLYMORPHIC_P (t))
5353 {
5354 tree dtor;
5355
5356 dtor = CLASSTYPE_DESTRUCTORS (t);
5357 if (/* An implicitly declared destructor is always public. And,
5358 if it were virtual, we would have created it by now. */
5359 !dtor
5360 || (!DECL_VINDEX (dtor)
5361 && (/* public non-virtual */
5362 (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
5363 || (/* non-public non-virtual with friends */
5364 (TREE_PRIVATE (dtor) || TREE_PROTECTED (dtor))
5365 && (CLASSTYPE_FRIEND_CLASSES (t)
5366 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))))))
5367 warning (OPT_Wnon_virtual_dtor,
5368 "%q#T has virtual functions and accessible"
5369 " non-virtual destructor", t);
5370 }
5371
5372 complete_vars (t);
5373
5374 if (warn_overloaded_virtual)
5375 warn_hidden (t);
5376
5377 /* Class layout, assignment of virtual table slots, etc., is now
5378 complete. Give the back end a chance to tweak the visibility of
5379 the class or perform any other required target modifications. */
5380 targetm.cxx.adjust_class_at_definition (t);
5381
5382 maybe_suppress_debug_info (t);
5383
5384 dump_class_hierarchy (t);
5385
5386 /* Finish debugging output for this type. */
5387 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
5388 }
5389
5390 /* When T was built up, the member declarations were added in reverse
5391 order. Rearrange them to declaration order. */
5392
5393 void
5394 unreverse_member_declarations (tree t)
5395 {
5396 tree next;
5397 tree prev;
5398 tree x;
5399
5400 /* The following lists are all in reverse order. Put them in
5401 declaration order now. */
5402 TYPE_METHODS (t) = nreverse (TYPE_METHODS (t));
5403 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
5404
5405 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
5406 reverse order, so we can't just use nreverse. */
5407 prev = NULL_TREE;
5408 for (x = TYPE_FIELDS (t);
5409 x && TREE_CODE (x) != TYPE_DECL;
5410 x = next)
5411 {
5412 next = TREE_CHAIN (x);
5413 TREE_CHAIN (x) = prev;
5414 prev = x;
5415 }
5416 if (prev)
5417 {
5418 TREE_CHAIN (TYPE_FIELDS (t)) = x;
5419 if (prev)
5420 TYPE_FIELDS (t) = prev;
5421 }
5422 }
5423
5424 tree
5425 finish_struct (tree t, tree attributes)
5426 {
5427 location_t saved_loc = input_location;
5428
5429 /* Now that we've got all the field declarations, reverse everything
5430 as necessary. */
5431 unreverse_member_declarations (t);
5432
5433 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
5434
5435 /* Nadger the current location so that diagnostics point to the start of
5436 the struct, not the end. */
5437 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
5438
5439 if (processing_template_decl)
5440 {
5441 tree x;
5442
5443 finish_struct_methods (t);
5444 TYPE_SIZE (t) = bitsize_zero_node;
5445 TYPE_SIZE_UNIT (t) = size_zero_node;
5446
5447 /* We need to emit an error message if this type was used as a parameter
5448 and it is an abstract type, even if it is a template. We construct
5449 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
5450 account and we call complete_vars with this type, which will check
5451 the PARM_DECLS. Note that while the type is being defined,
5452 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
5453 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
5454 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
5455 for (x = TYPE_METHODS (t); x; x = TREE_CHAIN (x))
5456 if (DECL_PURE_VIRTUAL_P (x))
5457 VEC_safe_push (tree, gc, CLASSTYPE_PURE_VIRTUALS (t), x);
5458 complete_vars (t);
5459 }
5460 else
5461 finish_struct_1 (t);
5462
5463 input_location = saved_loc;
5464
5465 TYPE_BEING_DEFINED (t) = 0;
5466
5467 if (current_class_type)
5468 popclass ();
5469 else
5470 error ("trying to finish struct, but kicked out due to previous parse errors");
5471
5472 if (processing_template_decl && at_function_scope_p ())
5473 add_stmt (build_min (TAG_DEFN, t));
5474
5475 return t;
5476 }
5477 \f
5478 /* Return the dynamic type of INSTANCE, if known.
5479 Used to determine whether the virtual function table is needed
5480 or not.
5481
5482 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5483 of our knowledge of its type. *NONNULL should be initialized
5484 before this function is called. */
5485
5486 static tree
5487 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
5488 {
5489 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
5490
5491 switch (TREE_CODE (instance))
5492 {
5493 case INDIRECT_REF:
5494 if (POINTER_TYPE_P (TREE_TYPE (instance)))
5495 return NULL_TREE;
5496 else
5497 return RECUR (TREE_OPERAND (instance, 0));
5498
5499 case CALL_EXPR:
5500 /* This is a call to a constructor, hence it's never zero. */
5501 if (TREE_HAS_CONSTRUCTOR (instance))
5502 {
5503 if (nonnull)
5504 *nonnull = 1;
5505 return TREE_TYPE (instance);
5506 }
5507 return NULL_TREE;
5508
5509 case SAVE_EXPR:
5510 /* This is a call to a constructor, hence it's never zero. */
5511 if (TREE_HAS_CONSTRUCTOR (instance))
5512 {
5513 if (nonnull)
5514 *nonnull = 1;
5515 return TREE_TYPE (instance);
5516 }
5517 return RECUR (TREE_OPERAND (instance, 0));
5518
5519 case POINTER_PLUS_EXPR:
5520 case PLUS_EXPR:
5521 case MINUS_EXPR:
5522 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
5523 return RECUR (TREE_OPERAND (instance, 0));
5524 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
5525 /* Propagate nonnull. */
5526 return RECUR (TREE_OPERAND (instance, 0));
5527
5528 return NULL_TREE;
5529
5530 CASE_CONVERT:
5531 return RECUR (TREE_OPERAND (instance, 0));
5532
5533 case ADDR_EXPR:
5534 instance = TREE_OPERAND (instance, 0);
5535 if (nonnull)
5536 {
5537 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
5538 with a real object -- given &p->f, p can still be null. */
5539 tree t = get_base_address (instance);
5540 /* ??? Probably should check DECL_WEAK here. */
5541 if (t && DECL_P (t))
5542 *nonnull = 1;
5543 }
5544 return RECUR (instance);
5545
5546 case COMPONENT_REF:
5547 /* If this component is really a base class reference, then the field
5548 itself isn't definitive. */
5549 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
5550 return RECUR (TREE_OPERAND (instance, 0));
5551 return RECUR (TREE_OPERAND (instance, 1));
5552
5553 case VAR_DECL:
5554 case FIELD_DECL:
5555 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
5556 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
5557 {
5558 if (nonnull)
5559 *nonnull = 1;
5560 return TREE_TYPE (TREE_TYPE (instance));
5561 }
5562 /* fall through... */
5563 case TARGET_EXPR:
5564 case PARM_DECL:
5565 case RESULT_DECL:
5566 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
5567 {
5568 if (nonnull)
5569 *nonnull = 1;
5570 return TREE_TYPE (instance);
5571 }
5572 else if (instance == current_class_ptr)
5573 {
5574 if (nonnull)
5575 *nonnull = 1;
5576
5577 /* if we're in a ctor or dtor, we know our type. */
5578 if (DECL_LANG_SPECIFIC (current_function_decl)
5579 && (DECL_CONSTRUCTOR_P (current_function_decl)
5580 || DECL_DESTRUCTOR_P (current_function_decl)))
5581 {
5582 if (cdtorp)
5583 *cdtorp = 1;
5584 return TREE_TYPE (TREE_TYPE (instance));
5585 }
5586 }
5587 else if (TREE_CODE (TREE_TYPE (instance)) == REFERENCE_TYPE)
5588 {
5589 /* We only need one hash table because it is always left empty. */
5590 static htab_t ht;
5591 if (!ht)
5592 ht = htab_create (37,
5593 htab_hash_pointer,
5594 htab_eq_pointer,
5595 /*htab_del=*/NULL);
5596
5597 /* Reference variables should be references to objects. */
5598 if (nonnull)
5599 *nonnull = 1;
5600
5601 /* Enter the INSTANCE in a table to prevent recursion; a
5602 variable's initializer may refer to the variable
5603 itself. */
5604 if (TREE_CODE (instance) == VAR_DECL
5605 && DECL_INITIAL (instance)
5606 && !htab_find (ht, instance))
5607 {
5608 tree type;
5609 void **slot;
5610
5611 slot = htab_find_slot (ht, instance, INSERT);
5612 *slot = instance;
5613 type = RECUR (DECL_INITIAL (instance));
5614 htab_remove_elt (ht, instance);
5615
5616 return type;
5617 }
5618 }
5619 return NULL_TREE;
5620
5621 default:
5622 return NULL_TREE;
5623 }
5624 #undef RECUR
5625 }
5626
5627 /* Return nonzero if the dynamic type of INSTANCE is known, and
5628 equivalent to the static type. We also handle the case where
5629 INSTANCE is really a pointer. Return negative if this is a
5630 ctor/dtor. There the dynamic type is known, but this might not be
5631 the most derived base of the original object, and hence virtual
5632 bases may not be layed out according to this type.
5633
5634 Used to determine whether the virtual function table is needed
5635 or not.
5636
5637 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
5638 of our knowledge of its type. *NONNULL should be initialized
5639 before this function is called. */
5640
5641 int
5642 resolves_to_fixed_type_p (tree instance, int* nonnull)
5643 {
5644 tree t = TREE_TYPE (instance);
5645 int cdtorp = 0;
5646 tree fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
5647 if (fixed == NULL_TREE)
5648 return 0;
5649 if (POINTER_TYPE_P (t))
5650 t = TREE_TYPE (t);
5651 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
5652 return 0;
5653 return cdtorp ? -1 : 1;
5654 }
5655
5656 \f
5657 void
5658 init_class_processing (void)
5659 {
5660 current_class_depth = 0;
5661 current_class_stack_size = 10;
5662 current_class_stack
5663 = XNEWVEC (struct class_stack_node, current_class_stack_size);
5664 local_classes = VEC_alloc (tree, gc, 8);
5665 sizeof_biggest_empty_class = size_zero_node;
5666
5667 ridpointers[(int) RID_PUBLIC] = access_public_node;
5668 ridpointers[(int) RID_PRIVATE] = access_private_node;
5669 ridpointers[(int) RID_PROTECTED] = access_protected_node;
5670 }
5671
5672 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
5673
5674 static void
5675 restore_class_cache (void)
5676 {
5677 tree type;
5678
5679 /* We are re-entering the same class we just left, so we don't
5680 have to search the whole inheritance matrix to find all the
5681 decls to bind again. Instead, we install the cached
5682 class_shadowed list and walk through it binding names. */
5683 push_binding_level (previous_class_level);
5684 class_binding_level = previous_class_level;
5685 /* Restore IDENTIFIER_TYPE_VALUE. */
5686 for (type = class_binding_level->type_shadowed;
5687 type;
5688 type = TREE_CHAIN (type))
5689 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
5690 }
5691
5692 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
5693 appropriate for TYPE.
5694
5695 So that we may avoid calls to lookup_name, we cache the _TYPE
5696 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
5697
5698 For multiple inheritance, we perform a two-pass depth-first search
5699 of the type lattice. */
5700
5701 void
5702 pushclass (tree type)
5703 {
5704 class_stack_node_t csn;
5705
5706 type = TYPE_MAIN_VARIANT (type);
5707
5708 /* Make sure there is enough room for the new entry on the stack. */
5709 if (current_class_depth + 1 >= current_class_stack_size)
5710 {
5711 current_class_stack_size *= 2;
5712 current_class_stack
5713 = XRESIZEVEC (struct class_stack_node, current_class_stack,
5714 current_class_stack_size);
5715 }
5716
5717 /* Insert a new entry on the class stack. */
5718 csn = current_class_stack + current_class_depth;
5719 csn->name = current_class_name;
5720 csn->type = current_class_type;
5721 csn->access = current_access_specifier;
5722 csn->names_used = 0;
5723 csn->hidden = 0;
5724 current_class_depth++;
5725
5726 /* Now set up the new type. */
5727 current_class_name = TYPE_NAME (type);
5728 if (TREE_CODE (current_class_name) == TYPE_DECL)
5729 current_class_name = DECL_NAME (current_class_name);
5730 current_class_type = type;
5731
5732 /* By default, things in classes are private, while things in
5733 structures or unions are public. */
5734 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
5735 ? access_private_node
5736 : access_public_node);
5737
5738 if (previous_class_level
5739 && type != previous_class_level->this_entity
5740 && current_class_depth == 1)
5741 {
5742 /* Forcibly remove any old class remnants. */
5743 invalidate_class_lookup_cache ();
5744 }
5745
5746 if (!previous_class_level
5747 || type != previous_class_level->this_entity
5748 || current_class_depth > 1)
5749 pushlevel_class ();
5750 else
5751 restore_class_cache ();
5752 }
5753
5754 /* When we exit a toplevel class scope, we save its binding level so
5755 that we can restore it quickly. Here, we've entered some other
5756 class, so we must invalidate our cache. */
5757
5758 void
5759 invalidate_class_lookup_cache (void)
5760 {
5761 previous_class_level = NULL;
5762 }
5763
5764 /* Get out of the current class scope. If we were in a class scope
5765 previously, that is the one popped to. */
5766
5767 void
5768 popclass (void)
5769 {
5770 poplevel_class ();
5771
5772 current_class_depth--;
5773 current_class_name = current_class_stack[current_class_depth].name;
5774 current_class_type = current_class_stack[current_class_depth].type;
5775 current_access_specifier = current_class_stack[current_class_depth].access;
5776 if (current_class_stack[current_class_depth].names_used)
5777 splay_tree_delete (current_class_stack[current_class_depth].names_used);
5778 }
5779
5780 /* Mark the top of the class stack as hidden. */
5781
5782 void
5783 push_class_stack (void)
5784 {
5785 if (current_class_depth)
5786 ++current_class_stack[current_class_depth - 1].hidden;
5787 }
5788
5789 /* Mark the top of the class stack as un-hidden. */
5790
5791 void
5792 pop_class_stack (void)
5793 {
5794 if (current_class_depth)
5795 --current_class_stack[current_class_depth - 1].hidden;
5796 }
5797
5798 /* Returns 1 if the class type currently being defined is either T or
5799 a nested type of T. */
5800
5801 bool
5802 currently_open_class (tree t)
5803 {
5804 int i;
5805
5806 if (!CLASS_TYPE_P (t))
5807 return false;
5808
5809 /* We start looking from 1 because entry 0 is from global scope,
5810 and has no type. */
5811 for (i = current_class_depth; i > 0; --i)
5812 {
5813 tree c;
5814 if (i == current_class_depth)
5815 c = current_class_type;
5816 else
5817 {
5818 if (current_class_stack[i].hidden)
5819 break;
5820 c = current_class_stack[i].type;
5821 }
5822 if (!c)
5823 continue;
5824 if (same_type_p (c, t))
5825 return true;
5826 }
5827 return false;
5828 }
5829
5830 /* If either current_class_type or one of its enclosing classes are derived
5831 from T, return the appropriate type. Used to determine how we found
5832 something via unqualified lookup. */
5833
5834 tree
5835 currently_open_derived_class (tree t)
5836 {
5837 int i;
5838
5839 /* The bases of a dependent type are unknown. */
5840 if (dependent_type_p (t))
5841 return NULL_TREE;
5842
5843 if (!current_class_type)
5844 return NULL_TREE;
5845
5846 if (DERIVED_FROM_P (t, current_class_type))
5847 return current_class_type;
5848
5849 for (i = current_class_depth - 1; i > 0; --i)
5850 {
5851 if (current_class_stack[i].hidden)
5852 break;
5853 if (DERIVED_FROM_P (t, current_class_stack[i].type))
5854 return current_class_stack[i].type;
5855 }
5856
5857 return NULL_TREE;
5858 }
5859
5860 /* When entering a class scope, all enclosing class scopes' names with
5861 static meaning (static variables, static functions, types and
5862 enumerators) have to be visible. This recursive function calls
5863 pushclass for all enclosing class contexts until global or a local
5864 scope is reached. TYPE is the enclosed class. */
5865
5866 void
5867 push_nested_class (tree type)
5868 {
5869 /* A namespace might be passed in error cases, like A::B:C. */
5870 if (type == NULL_TREE
5871 || !CLASS_TYPE_P (type))
5872 return;
5873
5874 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
5875
5876 pushclass (type);
5877 }
5878
5879 /* Undoes a push_nested_class call. */
5880
5881 void
5882 pop_nested_class (void)
5883 {
5884 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
5885
5886 popclass ();
5887 if (context && CLASS_TYPE_P (context))
5888 pop_nested_class ();
5889 }
5890
5891 /* Returns the number of extern "LANG" blocks we are nested within. */
5892
5893 int
5894 current_lang_depth (void)
5895 {
5896 return VEC_length (tree, current_lang_base);
5897 }
5898
5899 /* Set global variables CURRENT_LANG_NAME to appropriate value
5900 so that behavior of name-mangling machinery is correct. */
5901
5902 void
5903 push_lang_context (tree name)
5904 {
5905 VEC_safe_push (tree, gc, current_lang_base, current_lang_name);
5906
5907 if (name == lang_name_cplusplus)
5908 {
5909 current_lang_name = name;
5910 }
5911 else if (name == lang_name_java)
5912 {
5913 current_lang_name = name;
5914 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
5915 (See record_builtin_java_type in decl.c.) However, that causes
5916 incorrect debug entries if these types are actually used.
5917 So we re-enable debug output after extern "Java". */
5918 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node)) = 0;
5919 DECL_IGNORED_P (TYPE_NAME (java_short_type_node)) = 0;
5920 DECL_IGNORED_P (TYPE_NAME (java_int_type_node)) = 0;
5921 DECL_IGNORED_P (TYPE_NAME (java_long_type_node)) = 0;
5922 DECL_IGNORED_P (TYPE_NAME (java_float_type_node)) = 0;
5923 DECL_IGNORED_P (TYPE_NAME (java_double_type_node)) = 0;
5924 DECL_IGNORED_P (TYPE_NAME (java_char_type_node)) = 0;
5925 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node)) = 0;
5926 }
5927 else if (name == lang_name_c)
5928 {
5929 current_lang_name = name;
5930 }
5931 else
5932 error ("language string %<\"%E\"%> not recognized", name);
5933 }
5934
5935 /* Get out of the current language scope. */
5936
5937 void
5938 pop_lang_context (void)
5939 {
5940 current_lang_name = VEC_pop (tree, current_lang_base);
5941 }
5942 \f
5943 /* Type instantiation routines. */
5944
5945 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
5946 matches the TARGET_TYPE. If there is no satisfactory match, return
5947 error_mark_node, and issue an error & warning messages under
5948 control of FLAGS. Permit pointers to member function if FLAGS
5949 permits. If TEMPLATE_ONLY, the name of the overloaded function was
5950 a template-id, and EXPLICIT_TARGS are the explicitly provided
5951 template arguments.
5952
5953 If OVERLOAD is for one or more member functions, then ACCESS_PATH
5954 is the base path used to reference those member functions. If
5955 TF_NO_ACCESS_CONTROL is not set in FLAGS, and the address is
5956 resolved to a member function, access checks will be performed and
5957 errors issued if appropriate. */
5958
5959 static tree
5960 resolve_address_of_overloaded_function (tree target_type,
5961 tree overload,
5962 tsubst_flags_t flags,
5963 bool template_only,
5964 tree explicit_targs,
5965 tree access_path)
5966 {
5967 /* Here's what the standard says:
5968
5969 [over.over]
5970
5971 If the name is a function template, template argument deduction
5972 is done, and if the argument deduction succeeds, the deduced
5973 arguments are used to generate a single template function, which
5974 is added to the set of overloaded functions considered.
5975
5976 Non-member functions and static member functions match targets of
5977 type "pointer-to-function" or "reference-to-function." Nonstatic
5978 member functions match targets of type "pointer-to-member
5979 function;" the function type of the pointer to member is used to
5980 select the member function from the set of overloaded member
5981 functions. If a nonstatic member function is selected, the
5982 reference to the overloaded function name is required to have the
5983 form of a pointer to member as described in 5.3.1.
5984
5985 If more than one function is selected, any template functions in
5986 the set are eliminated if the set also contains a non-template
5987 function, and any given template function is eliminated if the
5988 set contains a second template function that is more specialized
5989 than the first according to the partial ordering rules 14.5.5.2.
5990 After such eliminations, if any, there shall remain exactly one
5991 selected function. */
5992
5993 int is_ptrmem = 0;
5994 int is_reference = 0;
5995 /* We store the matches in a TREE_LIST rooted here. The functions
5996 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
5997 interoperability with most_specialized_instantiation. */
5998 tree matches = NULL_TREE;
5999 tree fn;
6000
6001 /* By the time we get here, we should be seeing only real
6002 pointer-to-member types, not the internal POINTER_TYPE to
6003 METHOD_TYPE representation. */
6004 gcc_assert (TREE_CODE (target_type) != POINTER_TYPE
6005 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
6006
6007 gcc_assert (is_overloaded_fn (overload));
6008
6009 /* Check that the TARGET_TYPE is reasonable. */
6010 if (TYPE_PTRFN_P (target_type))
6011 /* This is OK. */;
6012 else if (TYPE_PTRMEMFUNC_P (target_type))
6013 /* This is OK, too. */
6014 is_ptrmem = 1;
6015 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
6016 {
6017 /* This is OK, too. This comes from a conversion to reference
6018 type. */
6019 target_type = build_reference_type (target_type);
6020 is_reference = 1;
6021 }
6022 else
6023 {
6024 if (flags & tf_error)
6025 error ("cannot resolve overloaded function %qD based on"
6026 " conversion to type %qT",
6027 DECL_NAME (OVL_FUNCTION (overload)), target_type);
6028 return error_mark_node;
6029 }
6030
6031 /* If we can find a non-template function that matches, we can just
6032 use it. There's no point in generating template instantiations
6033 if we're just going to throw them out anyhow. But, of course, we
6034 can only do this when we don't *need* a template function. */
6035 if (!template_only)
6036 {
6037 tree fns;
6038
6039 for (fns = overload; fns; fns = OVL_NEXT (fns))
6040 {
6041 tree fn = OVL_CURRENT (fns);
6042 tree fntype;
6043
6044 if (TREE_CODE (fn) == TEMPLATE_DECL)
6045 /* We're not looking for templates just yet. */
6046 continue;
6047
6048 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
6049 != is_ptrmem)
6050 /* We're looking for a non-static member, and this isn't
6051 one, or vice versa. */
6052 continue;
6053
6054 /* Ignore functions which haven't been explicitly
6055 declared. */
6056 if (DECL_ANTICIPATED (fn))
6057 continue;
6058
6059 /* See if there's a match. */
6060 fntype = TREE_TYPE (fn);
6061 if (is_ptrmem)
6062 fntype = build_ptrmemfunc_type (build_pointer_type (fntype));
6063 else if (!is_reference)
6064 fntype = build_pointer_type (fntype);
6065
6066 if (can_convert_arg (target_type, fntype, fn, LOOKUP_NORMAL))
6067 matches = tree_cons (fn, NULL_TREE, matches);
6068 }
6069 }
6070
6071 /* Now, if we've already got a match (or matches), there's no need
6072 to proceed to the template functions. But, if we don't have a
6073 match we need to look at them, too. */
6074 if (!matches)
6075 {
6076 tree target_fn_type;
6077 tree target_arg_types;
6078 tree target_ret_type;
6079 tree fns;
6080 tree *args;
6081 unsigned int nargs, ia;
6082 tree arg;
6083
6084 if (is_ptrmem)
6085 target_fn_type
6086 = TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (target_type));
6087 else
6088 target_fn_type = TREE_TYPE (target_type);
6089 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
6090 target_ret_type = TREE_TYPE (target_fn_type);
6091
6092 /* Never do unification on the 'this' parameter. */
6093 if (TREE_CODE (target_fn_type) == METHOD_TYPE)
6094 target_arg_types = TREE_CHAIN (target_arg_types);
6095
6096 nargs = list_length (target_arg_types);
6097 args = XALLOCAVEC (tree, nargs);
6098 for (arg = target_arg_types, ia = 0;
6099 arg != NULL_TREE && arg != void_list_node;
6100 arg = TREE_CHAIN (arg), ++ia)
6101 args[ia] = TREE_VALUE (arg);
6102 nargs = ia;
6103
6104 for (fns = overload; fns; fns = OVL_NEXT (fns))
6105 {
6106 tree fn = OVL_CURRENT (fns);
6107 tree instantiation;
6108 tree instantiation_type;
6109 tree targs;
6110
6111 if (TREE_CODE (fn) != TEMPLATE_DECL)
6112 /* We're only looking for templates. */
6113 continue;
6114
6115 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
6116 != is_ptrmem)
6117 /* We're not looking for a non-static member, and this is
6118 one, or vice versa. */
6119 continue;
6120
6121 /* Try to do argument deduction. */
6122 targs = make_tree_vec (DECL_NTPARMS (fn));
6123 if (fn_type_unification (fn, explicit_targs, targs, args, nargs,
6124 target_ret_type, DEDUCE_EXACT,
6125 LOOKUP_NORMAL))
6126 /* Argument deduction failed. */
6127 continue;
6128
6129 /* Instantiate the template. */
6130 instantiation = instantiate_template (fn, targs, flags);
6131 if (instantiation == error_mark_node)
6132 /* Instantiation failed. */
6133 continue;
6134
6135 /* See if there's a match. */
6136 instantiation_type = TREE_TYPE (instantiation);
6137 if (is_ptrmem)
6138 instantiation_type =
6139 build_ptrmemfunc_type (build_pointer_type (instantiation_type));
6140 else if (!is_reference)
6141 instantiation_type = build_pointer_type (instantiation_type);
6142 if (can_convert_arg (target_type, instantiation_type, instantiation,
6143 LOOKUP_NORMAL))
6144 matches = tree_cons (instantiation, fn, matches);
6145 }
6146
6147 /* Now, remove all but the most specialized of the matches. */
6148 if (matches)
6149 {
6150 tree match = most_specialized_instantiation (matches);
6151
6152 if (match != error_mark_node)
6153 matches = tree_cons (TREE_PURPOSE (match),
6154 NULL_TREE,
6155 NULL_TREE);
6156 }
6157 }
6158
6159 /* Now we should have exactly one function in MATCHES. */
6160 if (matches == NULL_TREE)
6161 {
6162 /* There were *no* matches. */
6163 if (flags & tf_error)
6164 {
6165 error ("no matches converting function %qD to type %q#T",
6166 DECL_NAME (OVL_CURRENT (overload)),
6167 target_type);
6168
6169 /* print_candidates expects a chain with the functions in
6170 TREE_VALUE slots, so we cons one up here (we're losing anyway,
6171 so why be clever?). */
6172 for (; overload; overload = OVL_NEXT (overload))
6173 matches = tree_cons (NULL_TREE, OVL_CURRENT (overload),
6174 matches);
6175
6176 print_candidates (matches);
6177 }
6178 return error_mark_node;
6179 }
6180 else if (TREE_CHAIN (matches))
6181 {
6182 /* There were too many matches. First check if they're all
6183 the same function. */
6184 tree match;
6185
6186 fn = TREE_PURPOSE (matches);
6187 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
6188 if (!decls_match (fn, TREE_PURPOSE (matches)))
6189 break;
6190
6191 if (match)
6192 {
6193 if (flags & tf_error)
6194 {
6195 error ("converting overloaded function %qD to type %q#T is ambiguous",
6196 DECL_NAME (OVL_FUNCTION (overload)),
6197 target_type);
6198
6199 /* Since print_candidates expects the functions in the
6200 TREE_VALUE slot, we flip them here. */
6201 for (match = matches; match; match = TREE_CHAIN (match))
6202 TREE_VALUE (match) = TREE_PURPOSE (match);
6203
6204 print_candidates (matches);
6205 }
6206
6207 return error_mark_node;
6208 }
6209 }
6210
6211 /* Good, exactly one match. Now, convert it to the correct type. */
6212 fn = TREE_PURPOSE (matches);
6213
6214 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
6215 && !(flags & tf_ptrmem_ok) && !flag_ms_extensions)
6216 {
6217 static int explained;
6218
6219 if (!(flags & tf_error))
6220 return error_mark_node;
6221
6222 permerror (input_location, "assuming pointer to member %qD", fn);
6223 if (!explained)
6224 {
6225 inform (input_location, "(a pointer to member can only be formed with %<&%E%>)", fn);
6226 explained = 1;
6227 }
6228 }
6229
6230 /* If we're doing overload resolution purely for the purpose of
6231 determining conversion sequences, we should not consider the
6232 function used. If this conversion sequence is selected, the
6233 function will be marked as used at this point. */
6234 if (!(flags & tf_conv))
6235 {
6236 /* Make =delete work with SFINAE. */
6237 if (DECL_DELETED_FN (fn) && !(flags & tf_error))
6238 return error_mark_node;
6239
6240 mark_used (fn);
6241 }
6242
6243 /* We could not check access to member functions when this
6244 expression was originally created since we did not know at that
6245 time to which function the expression referred. */
6246 if (!(flags & tf_no_access_control)
6247 && DECL_FUNCTION_MEMBER_P (fn))
6248 {
6249 gcc_assert (access_path);
6250 perform_or_defer_access_check (access_path, fn, fn);
6251 }
6252
6253 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
6254 return cp_build_unary_op (ADDR_EXPR, fn, 0, flags);
6255 else
6256 {
6257 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
6258 will mark the function as addressed, but here we must do it
6259 explicitly. */
6260 cxx_mark_addressable (fn);
6261
6262 return fn;
6263 }
6264 }
6265
6266 /* This function will instantiate the type of the expression given in
6267 RHS to match the type of LHSTYPE. If errors exist, then return
6268 error_mark_node. FLAGS is a bit mask. If TF_ERROR is set, then
6269 we complain on errors. If we are not complaining, never modify rhs,
6270 as overload resolution wants to try many possible instantiations, in
6271 the hope that at least one will work.
6272
6273 For non-recursive calls, LHSTYPE should be a function, pointer to
6274 function, or a pointer to member function. */
6275
6276 tree
6277 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t flags)
6278 {
6279 tsubst_flags_t flags_in = flags;
6280 tree access_path = NULL_TREE;
6281
6282 flags &= ~tf_ptrmem_ok;
6283
6284 if (TREE_CODE (lhstype) == UNKNOWN_TYPE)
6285 {
6286 if (flags & tf_error)
6287 error ("not enough type information");
6288 return error_mark_node;
6289 }
6290
6291 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
6292 {
6293 if (same_type_p (lhstype, TREE_TYPE (rhs)))
6294 return rhs;
6295 if (flag_ms_extensions
6296 && TYPE_PTRMEMFUNC_P (lhstype)
6297 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
6298 /* Microsoft allows `A::f' to be resolved to a
6299 pointer-to-member. */
6300 ;
6301 else
6302 {
6303 if (flags & tf_error)
6304 error ("argument of type %qT does not match %qT",
6305 TREE_TYPE (rhs), lhstype);
6306 return error_mark_node;
6307 }
6308 }
6309
6310 if (TREE_CODE (rhs) == BASELINK)
6311 {
6312 access_path = BASELINK_ACCESS_BINFO (rhs);
6313 rhs = BASELINK_FUNCTIONS (rhs);
6314 }
6315
6316 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
6317 deduce any type information. */
6318 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
6319 {
6320 if (flags & tf_error)
6321 error ("not enough type information");
6322 return error_mark_node;
6323 }
6324
6325 /* There only a few kinds of expressions that may have a type
6326 dependent on overload resolution. */
6327 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
6328 || TREE_CODE (rhs) == COMPONENT_REF
6329 || really_overloaded_fn (rhs)
6330 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
6331
6332 /* This should really only be used when attempting to distinguish
6333 what sort of a pointer to function we have. For now, any
6334 arithmetic operation which is not supported on pointers
6335 is rejected as an error. */
6336
6337 switch (TREE_CODE (rhs))
6338 {
6339 case COMPONENT_REF:
6340 {
6341 tree member = TREE_OPERAND (rhs, 1);
6342
6343 member = instantiate_type (lhstype, member, flags);
6344 if (member != error_mark_node
6345 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
6346 /* Do not lose object's side effects. */
6347 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
6348 TREE_OPERAND (rhs, 0), member);
6349 return member;
6350 }
6351
6352 case OFFSET_REF:
6353 rhs = TREE_OPERAND (rhs, 1);
6354 if (BASELINK_P (rhs))
6355 return instantiate_type (lhstype, rhs, flags_in);
6356
6357 /* This can happen if we are forming a pointer-to-member for a
6358 member template. */
6359 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
6360
6361 /* Fall through. */
6362
6363 case TEMPLATE_ID_EXPR:
6364 {
6365 tree fns = TREE_OPERAND (rhs, 0);
6366 tree args = TREE_OPERAND (rhs, 1);
6367
6368 return
6369 resolve_address_of_overloaded_function (lhstype, fns, flags_in,
6370 /*template_only=*/true,
6371 args, access_path);
6372 }
6373
6374 case OVERLOAD:
6375 case FUNCTION_DECL:
6376 return
6377 resolve_address_of_overloaded_function (lhstype, rhs, flags_in,
6378 /*template_only=*/false,
6379 /*explicit_targs=*/NULL_TREE,
6380 access_path);
6381
6382 case ADDR_EXPR:
6383 {
6384 if (PTRMEM_OK_P (rhs))
6385 flags |= tf_ptrmem_ok;
6386
6387 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), flags);
6388 }
6389
6390 case ERROR_MARK:
6391 return error_mark_node;
6392
6393 default:
6394 gcc_unreachable ();
6395 }
6396 return error_mark_node;
6397 }
6398 \f
6399 /* Return the name of the virtual function pointer field
6400 (as an IDENTIFIER_NODE) for the given TYPE. Note that
6401 this may have to look back through base types to find the
6402 ultimate field name. (For single inheritance, these could
6403 all be the same name. Who knows for multiple inheritance). */
6404
6405 static tree
6406 get_vfield_name (tree type)
6407 {
6408 tree binfo, base_binfo;
6409 char *buf;
6410
6411 for (binfo = TYPE_BINFO (type);
6412 BINFO_N_BASE_BINFOS (binfo);
6413 binfo = base_binfo)
6414 {
6415 base_binfo = BINFO_BASE_BINFO (binfo, 0);
6416
6417 if (BINFO_VIRTUAL_P (base_binfo)
6418 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
6419 break;
6420 }
6421
6422 type = BINFO_TYPE (binfo);
6423 buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
6424 + TYPE_NAME_LENGTH (type) + 2);
6425 sprintf (buf, VFIELD_NAME_FORMAT,
6426 IDENTIFIER_POINTER (constructor_name (type)));
6427 return get_identifier (buf);
6428 }
6429
6430 void
6431 print_class_statistics (void)
6432 {
6433 #ifdef GATHER_STATISTICS
6434 fprintf (stderr, "convert_harshness = %d\n", n_convert_harshness);
6435 fprintf (stderr, "compute_conversion_costs = %d\n", n_compute_conversion_costs);
6436 if (n_vtables)
6437 {
6438 fprintf (stderr, "vtables = %d; vtable searches = %d\n",
6439 n_vtables, n_vtable_searches);
6440 fprintf (stderr, "vtable entries = %d; vtable elems = %d\n",
6441 n_vtable_entries, n_vtable_elems);
6442 }
6443 #endif
6444 }
6445
6446 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
6447 according to [class]:
6448 The class-name is also inserted
6449 into the scope of the class itself. For purposes of access checking,
6450 the inserted class name is treated as if it were a public member name. */
6451
6452 void
6453 build_self_reference (void)
6454 {
6455 tree name = constructor_name (current_class_type);
6456 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
6457 tree saved_cas;
6458
6459 DECL_NONLOCAL (value) = 1;
6460 DECL_CONTEXT (value) = current_class_type;
6461 DECL_ARTIFICIAL (value) = 1;
6462 SET_DECL_SELF_REFERENCE_P (value);
6463
6464 if (processing_template_decl)
6465 value = push_template_decl (value);
6466
6467 saved_cas = current_access_specifier;
6468 current_access_specifier = access_public_node;
6469 finish_member_declaration (value);
6470 current_access_specifier = saved_cas;
6471 }
6472
6473 /* Returns 1 if TYPE contains only padding bytes. */
6474
6475 int
6476 is_empty_class (tree type)
6477 {
6478 if (type == error_mark_node)
6479 return 0;
6480
6481 if (! CLASS_TYPE_P (type))
6482 return 0;
6483
6484 /* In G++ 3.2, whether or not a class was empty was determined by
6485 looking at its size. */
6486 if (abi_version_at_least (2))
6487 return CLASSTYPE_EMPTY_P (type);
6488 else
6489 return integer_zerop (CLASSTYPE_SIZE (type));
6490 }
6491
6492 /* Returns true if TYPE contains an empty class. */
6493
6494 static bool
6495 contains_empty_class_p (tree type)
6496 {
6497 if (is_empty_class (type))
6498 return true;
6499 if (CLASS_TYPE_P (type))
6500 {
6501 tree field;
6502 tree binfo;
6503 tree base_binfo;
6504 int i;
6505
6506 for (binfo = TYPE_BINFO (type), i = 0;
6507 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6508 if (contains_empty_class_p (BINFO_TYPE (base_binfo)))
6509 return true;
6510 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6511 if (TREE_CODE (field) == FIELD_DECL
6512 && !DECL_ARTIFICIAL (field)
6513 && is_empty_class (TREE_TYPE (field)))
6514 return true;
6515 }
6516 else if (TREE_CODE (type) == ARRAY_TYPE)
6517 return contains_empty_class_p (TREE_TYPE (type));
6518 return false;
6519 }
6520
6521 /* Returns true if TYPE contains no actual data, just various
6522 possible combinations of empty classes. */
6523
6524 bool
6525 is_really_empty_class (tree type)
6526 {
6527 if (is_empty_class (type))
6528 return true;
6529 if (CLASS_TYPE_P (type))
6530 {
6531 tree field;
6532 tree binfo;
6533 tree base_binfo;
6534 int i;
6535
6536 for (binfo = TYPE_BINFO (type), i = 0;
6537 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6538 if (!is_really_empty_class (BINFO_TYPE (base_binfo)))
6539 return false;
6540 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
6541 if (TREE_CODE (field) == FIELD_DECL
6542 && !DECL_ARTIFICIAL (field)
6543 && !is_really_empty_class (TREE_TYPE (field)))
6544 return false;
6545 return true;
6546 }
6547 else if (TREE_CODE (type) == ARRAY_TYPE)
6548 return is_really_empty_class (TREE_TYPE (type));
6549 return false;
6550 }
6551
6552 /* Note that NAME was looked up while the current class was being
6553 defined and that the result of that lookup was DECL. */
6554
6555 void
6556 maybe_note_name_used_in_class (tree name, tree decl)
6557 {
6558 splay_tree names_used;
6559
6560 /* If we're not defining a class, there's nothing to do. */
6561 if (!(innermost_scope_kind() == sk_class
6562 && TYPE_BEING_DEFINED (current_class_type)))
6563 return;
6564
6565 /* If there's already a binding for this NAME, then we don't have
6566 anything to worry about. */
6567 if (lookup_member (current_class_type, name,
6568 /*protect=*/0, /*want_type=*/false))
6569 return;
6570
6571 if (!current_class_stack[current_class_depth - 1].names_used)
6572 current_class_stack[current_class_depth - 1].names_used
6573 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
6574 names_used = current_class_stack[current_class_depth - 1].names_used;
6575
6576 splay_tree_insert (names_used,
6577 (splay_tree_key) name,
6578 (splay_tree_value) decl);
6579 }
6580
6581 /* Note that NAME was declared (as DECL) in the current class. Check
6582 to see that the declaration is valid. */
6583
6584 void
6585 note_name_declared_in_class (tree name, tree decl)
6586 {
6587 splay_tree names_used;
6588 splay_tree_node n;
6589
6590 /* Look to see if we ever used this name. */
6591 names_used
6592 = current_class_stack[current_class_depth - 1].names_used;
6593 if (!names_used)
6594 return;
6595
6596 n = splay_tree_lookup (names_used, (splay_tree_key) name);
6597 if (n)
6598 {
6599 /* [basic.scope.class]
6600
6601 A name N used in a class S shall refer to the same declaration
6602 in its context and when re-evaluated in the completed scope of
6603 S. */
6604 permerror (input_location, "declaration of %q#D", decl);
6605 permerror (input_location, "changes meaning of %qD from %q+#D",
6606 DECL_NAME (OVL_CURRENT (decl)), (tree) n->value);
6607 }
6608 }
6609
6610 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
6611 Secondary vtables are merged with primary vtables; this function
6612 will return the VAR_DECL for the primary vtable. */
6613
6614 tree
6615 get_vtbl_decl_for_binfo (tree binfo)
6616 {
6617 tree decl;
6618
6619 decl = BINFO_VTABLE (binfo);
6620 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
6621 {
6622 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
6623 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
6624 }
6625 if (decl)
6626 gcc_assert (TREE_CODE (decl) == VAR_DECL);
6627 return decl;
6628 }
6629
6630
6631 /* Returns the binfo for the primary base of BINFO. If the resulting
6632 BINFO is a virtual base, and it is inherited elsewhere in the
6633 hierarchy, then the returned binfo might not be the primary base of
6634 BINFO in the complete object. Check BINFO_PRIMARY_P or
6635 BINFO_LOST_PRIMARY_P to be sure. */
6636
6637 static tree
6638 get_primary_binfo (tree binfo)
6639 {
6640 tree primary_base;
6641
6642 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
6643 if (!primary_base)
6644 return NULL_TREE;
6645
6646 return copied_binfo (primary_base, binfo);
6647 }
6648
6649 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
6650
6651 static int
6652 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
6653 {
6654 if (!indented_p)
6655 fprintf (stream, "%*s", indent, "");
6656 return 1;
6657 }
6658
6659 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
6660 INDENT should be zero when called from the top level; it is
6661 incremented recursively. IGO indicates the next expected BINFO in
6662 inheritance graph ordering. */
6663
6664 static tree
6665 dump_class_hierarchy_r (FILE *stream,
6666 int flags,
6667 tree binfo,
6668 tree igo,
6669 int indent)
6670 {
6671 int indented = 0;
6672 tree base_binfo;
6673 int i;
6674
6675 indented = maybe_indent_hierarchy (stream, indent, 0);
6676 fprintf (stream, "%s (0x%lx) ",
6677 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
6678 (unsigned long) binfo);
6679 if (binfo != igo)
6680 {
6681 fprintf (stream, "alternative-path\n");
6682 return igo;
6683 }
6684 igo = TREE_CHAIN (binfo);
6685
6686 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
6687 tree_low_cst (BINFO_OFFSET (binfo), 0));
6688 if (is_empty_class (BINFO_TYPE (binfo)))
6689 fprintf (stream, " empty");
6690 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
6691 fprintf (stream, " nearly-empty");
6692 if (BINFO_VIRTUAL_P (binfo))
6693 fprintf (stream, " virtual");
6694 fprintf (stream, "\n");
6695
6696 indented = 0;
6697 if (BINFO_PRIMARY_P (binfo))
6698 {
6699 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6700 fprintf (stream, " primary-for %s (0x%lx)",
6701 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
6702 TFF_PLAIN_IDENTIFIER),
6703 (unsigned long)BINFO_INHERITANCE_CHAIN (binfo));
6704 }
6705 if (BINFO_LOST_PRIMARY_P (binfo))
6706 {
6707 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6708 fprintf (stream, " lost-primary");
6709 }
6710 if (indented)
6711 fprintf (stream, "\n");
6712
6713 if (!(flags & TDF_SLIM))
6714 {
6715 int indented = 0;
6716
6717 if (BINFO_SUBVTT_INDEX (binfo))
6718 {
6719 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6720 fprintf (stream, " subvttidx=%s",
6721 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
6722 TFF_PLAIN_IDENTIFIER));
6723 }
6724 if (BINFO_VPTR_INDEX (binfo))
6725 {
6726 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6727 fprintf (stream, " vptridx=%s",
6728 expr_as_string (BINFO_VPTR_INDEX (binfo),
6729 TFF_PLAIN_IDENTIFIER));
6730 }
6731 if (BINFO_VPTR_FIELD (binfo))
6732 {
6733 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6734 fprintf (stream, " vbaseoffset=%s",
6735 expr_as_string (BINFO_VPTR_FIELD (binfo),
6736 TFF_PLAIN_IDENTIFIER));
6737 }
6738 if (BINFO_VTABLE (binfo))
6739 {
6740 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
6741 fprintf (stream, " vptr=%s",
6742 expr_as_string (BINFO_VTABLE (binfo),
6743 TFF_PLAIN_IDENTIFIER));
6744 }
6745
6746 if (indented)
6747 fprintf (stream, "\n");
6748 }
6749
6750 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
6751 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
6752
6753 return igo;
6754 }
6755
6756 /* Dump the BINFO hierarchy for T. */
6757
6758 static void
6759 dump_class_hierarchy_1 (FILE *stream, int flags, tree t)
6760 {
6761 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6762 fprintf (stream, " size=%lu align=%lu\n",
6763 (unsigned long)(tree_low_cst (TYPE_SIZE (t), 0) / BITS_PER_UNIT),
6764 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
6765 fprintf (stream, " base size=%lu base align=%lu\n",
6766 (unsigned long)(tree_low_cst (TYPE_SIZE (CLASSTYPE_AS_BASE (t)), 0)
6767 / BITS_PER_UNIT),
6768 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
6769 / BITS_PER_UNIT));
6770 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
6771 fprintf (stream, "\n");
6772 }
6773
6774 /* Debug interface to hierarchy dumping. */
6775
6776 void
6777 debug_class (tree t)
6778 {
6779 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
6780 }
6781
6782 static void
6783 dump_class_hierarchy (tree t)
6784 {
6785 int flags;
6786 FILE *stream = dump_begin (TDI_class, &flags);
6787
6788 if (stream)
6789 {
6790 dump_class_hierarchy_1 (stream, flags, t);
6791 dump_end (TDI_class, stream);
6792 }
6793 }
6794
6795 static void
6796 dump_array (FILE * stream, tree decl)
6797 {
6798 tree value;
6799 unsigned HOST_WIDE_INT ix;
6800 HOST_WIDE_INT elt;
6801 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
6802
6803 elt = (tree_low_cst (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))), 0)
6804 / BITS_PER_UNIT);
6805 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
6806 fprintf (stream, " %s entries",
6807 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
6808 TFF_PLAIN_IDENTIFIER));
6809 fprintf (stream, "\n");
6810
6811 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
6812 ix, value)
6813 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
6814 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
6815 }
6816
6817 static void
6818 dump_vtable (tree t, tree binfo, tree vtable)
6819 {
6820 int flags;
6821 FILE *stream = dump_begin (TDI_class, &flags);
6822
6823 if (!stream)
6824 return;
6825
6826 if (!(flags & TDF_SLIM))
6827 {
6828 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
6829
6830 fprintf (stream, "%s for %s",
6831 ctor_vtbl_p ? "Construction vtable" : "Vtable",
6832 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
6833 if (ctor_vtbl_p)
6834 {
6835 if (!BINFO_VIRTUAL_P (binfo))
6836 fprintf (stream, " (0x%lx instance)", (unsigned long)binfo);
6837 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
6838 }
6839 fprintf (stream, "\n");
6840 dump_array (stream, vtable);
6841 fprintf (stream, "\n");
6842 }
6843
6844 dump_end (TDI_class, stream);
6845 }
6846
6847 static void
6848 dump_vtt (tree t, tree vtt)
6849 {
6850 int flags;
6851 FILE *stream = dump_begin (TDI_class, &flags);
6852
6853 if (!stream)
6854 return;
6855
6856 if (!(flags & TDF_SLIM))
6857 {
6858 fprintf (stream, "VTT for %s\n",
6859 type_as_string (t, TFF_PLAIN_IDENTIFIER));
6860 dump_array (stream, vtt);
6861 fprintf (stream, "\n");
6862 }
6863
6864 dump_end (TDI_class, stream);
6865 }
6866
6867 /* Dump a function or thunk and its thunkees. */
6868
6869 static void
6870 dump_thunk (FILE *stream, int indent, tree thunk)
6871 {
6872 static const char spaces[] = " ";
6873 tree name = DECL_NAME (thunk);
6874 tree thunks;
6875
6876 fprintf (stream, "%.*s%p %s %s", indent, spaces,
6877 (void *)thunk,
6878 !DECL_THUNK_P (thunk) ? "function"
6879 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
6880 name ? IDENTIFIER_POINTER (name) : "<unset>");
6881 if (DECL_THUNK_P (thunk))
6882 {
6883 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
6884 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
6885
6886 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
6887 if (!virtual_adjust)
6888 /*NOP*/;
6889 else if (DECL_THIS_THUNK_P (thunk))
6890 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
6891 tree_low_cst (virtual_adjust, 0));
6892 else
6893 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
6894 tree_low_cst (BINFO_VPTR_FIELD (virtual_adjust), 0),
6895 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
6896 if (THUNK_ALIAS (thunk))
6897 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
6898 }
6899 fprintf (stream, "\n");
6900 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
6901 dump_thunk (stream, indent + 2, thunks);
6902 }
6903
6904 /* Dump the thunks for FN. */
6905
6906 void
6907 debug_thunks (tree fn)
6908 {
6909 dump_thunk (stderr, 0, fn);
6910 }
6911
6912 /* Virtual function table initialization. */
6913
6914 /* Create all the necessary vtables for T and its base classes. */
6915
6916 static void
6917 finish_vtbls (tree t)
6918 {
6919 tree list;
6920 tree vbase;
6921
6922 /* We lay out the primary and secondary vtables in one contiguous
6923 vtable. The primary vtable is first, followed by the non-virtual
6924 secondary vtables in inheritance graph order. */
6925 list = build_tree_list (BINFO_VTABLE (TYPE_BINFO (t)), NULL_TREE);
6926 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t),
6927 TYPE_BINFO (t), t, list);
6928
6929 /* Then come the virtual bases, also in inheritance graph order. */
6930 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
6931 {
6932 if (!BINFO_VIRTUAL_P (vbase))
6933 continue;
6934 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), t, list);
6935 }
6936
6937 if (BINFO_VTABLE (TYPE_BINFO (t)))
6938 initialize_vtable (TYPE_BINFO (t), TREE_VALUE (list));
6939 }
6940
6941 /* Initialize the vtable for BINFO with the INITS. */
6942
6943 static void
6944 initialize_vtable (tree binfo, tree inits)
6945 {
6946 tree decl;
6947
6948 layout_vtable_decl (binfo, list_length (inits));
6949 decl = get_vtbl_decl_for_binfo (binfo);
6950 initialize_artificial_var (decl, inits);
6951 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
6952 }
6953
6954 /* Build the VTT (virtual table table) for T.
6955 A class requires a VTT if it has virtual bases.
6956
6957 This holds
6958 1 - primary virtual pointer for complete object T
6959 2 - secondary VTTs for each direct non-virtual base of T which requires a
6960 VTT
6961 3 - secondary virtual pointers for each direct or indirect base of T which
6962 has virtual bases or is reachable via a virtual path from T.
6963 4 - secondary VTTs for each direct or indirect virtual base of T.
6964
6965 Secondary VTTs look like complete object VTTs without part 4. */
6966
6967 static void
6968 build_vtt (tree t)
6969 {
6970 tree inits;
6971 tree type;
6972 tree vtt;
6973 tree index;
6974
6975 /* Build up the initializers for the VTT. */
6976 inits = NULL_TREE;
6977 index = size_zero_node;
6978 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
6979
6980 /* If we didn't need a VTT, we're done. */
6981 if (!inits)
6982 return;
6983
6984 /* Figure out the type of the VTT. */
6985 type = build_index_type (size_int (list_length (inits) - 1));
6986 type = build_cplus_array_type (const_ptr_type_node, type);
6987
6988 /* Now, build the VTT object itself. */
6989 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
6990 initialize_artificial_var (vtt, inits);
6991 /* Add the VTT to the vtables list. */
6992 TREE_CHAIN (vtt) = TREE_CHAIN (CLASSTYPE_VTABLES (t));
6993 TREE_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
6994
6995 dump_vtt (t, vtt);
6996 }
6997
6998 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
6999 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
7000 and CHAIN the vtable pointer for this binfo after construction is
7001 complete. VALUE can also be another BINFO, in which case we recurse. */
7002
7003 static tree
7004 binfo_ctor_vtable (tree binfo)
7005 {
7006 tree vt;
7007
7008 while (1)
7009 {
7010 vt = BINFO_VTABLE (binfo);
7011 if (TREE_CODE (vt) == TREE_LIST)
7012 vt = TREE_VALUE (vt);
7013 if (TREE_CODE (vt) == TREE_BINFO)
7014 binfo = vt;
7015 else
7016 break;
7017 }
7018
7019 return vt;
7020 }
7021
7022 /* Data for secondary VTT initialization. */
7023 typedef struct secondary_vptr_vtt_init_data_s
7024 {
7025 /* Is this the primary VTT? */
7026 bool top_level_p;
7027
7028 /* Current index into the VTT. */
7029 tree index;
7030
7031 /* TREE_LIST of initializers built up. */
7032 tree inits;
7033
7034 /* The type being constructed by this secondary VTT. */
7035 tree type_being_constructed;
7036 } secondary_vptr_vtt_init_data;
7037
7038 /* Recursively build the VTT-initializer for BINFO (which is in the
7039 hierarchy dominated by T). INITS points to the end of the initializer
7040 list to date. INDEX is the VTT index where the next element will be
7041 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
7042 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
7043 for virtual bases of T. When it is not so, we build the constructor
7044 vtables for the BINFO-in-T variant. */
7045
7046 static tree *
7047 build_vtt_inits (tree binfo, tree t, tree *inits, tree *index)
7048 {
7049 int i;
7050 tree b;
7051 tree init;
7052 tree secondary_vptrs;
7053 secondary_vptr_vtt_init_data data;
7054 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7055
7056 /* We only need VTTs for subobjects with virtual bases. */
7057 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7058 return inits;
7059
7060 /* We need to use a construction vtable if this is not the primary
7061 VTT. */
7062 if (!top_level_p)
7063 {
7064 build_ctor_vtbl_group (binfo, t);
7065
7066 /* Record the offset in the VTT where this sub-VTT can be found. */
7067 BINFO_SUBVTT_INDEX (binfo) = *index;
7068 }
7069
7070 /* Add the address of the primary vtable for the complete object. */
7071 init = binfo_ctor_vtable (binfo);
7072 *inits = build_tree_list (NULL_TREE, init);
7073 inits = &TREE_CHAIN (*inits);
7074 if (top_level_p)
7075 {
7076 gcc_assert (!BINFO_VPTR_INDEX (binfo));
7077 BINFO_VPTR_INDEX (binfo) = *index;
7078 }
7079 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
7080
7081 /* Recursively add the secondary VTTs for non-virtual bases. */
7082 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
7083 if (!BINFO_VIRTUAL_P (b))
7084 inits = build_vtt_inits (b, t, inits, index);
7085
7086 /* Add secondary virtual pointers for all subobjects of BINFO with
7087 either virtual bases or reachable along a virtual path, except
7088 subobjects that are non-virtual primary bases. */
7089 data.top_level_p = top_level_p;
7090 data.index = *index;
7091 data.inits = NULL;
7092 data.type_being_constructed = BINFO_TYPE (binfo);
7093
7094 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
7095
7096 *index = data.index;
7097
7098 /* The secondary vptrs come back in reverse order. After we reverse
7099 them, and add the INITS, the last init will be the first element
7100 of the chain. */
7101 secondary_vptrs = data.inits;
7102 if (secondary_vptrs)
7103 {
7104 *inits = nreverse (secondary_vptrs);
7105 inits = &TREE_CHAIN (secondary_vptrs);
7106 gcc_assert (*inits == NULL_TREE);
7107 }
7108
7109 if (top_level_p)
7110 /* Add the secondary VTTs for virtual bases in inheritance graph
7111 order. */
7112 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
7113 {
7114 if (!BINFO_VIRTUAL_P (b))
7115 continue;
7116
7117 inits = build_vtt_inits (b, t, inits, index);
7118 }
7119 else
7120 /* Remove the ctor vtables we created. */
7121 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
7122
7123 return inits;
7124 }
7125
7126 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
7127 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
7128
7129 static tree
7130 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
7131 {
7132 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
7133
7134 /* We don't care about bases that don't have vtables. */
7135 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
7136 return dfs_skip_bases;
7137
7138 /* We're only interested in proper subobjects of the type being
7139 constructed. */
7140 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
7141 return NULL_TREE;
7142
7143 /* We're only interested in bases with virtual bases or reachable
7144 via a virtual path from the type being constructed. */
7145 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7146 || binfo_via_virtual (binfo, data->type_being_constructed)))
7147 return dfs_skip_bases;
7148
7149 /* We're not interested in non-virtual primary bases. */
7150 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
7151 return NULL_TREE;
7152
7153 /* Record the index where this secondary vptr can be found. */
7154 if (data->top_level_p)
7155 {
7156 gcc_assert (!BINFO_VPTR_INDEX (binfo));
7157 BINFO_VPTR_INDEX (binfo) = data->index;
7158
7159 if (BINFO_VIRTUAL_P (binfo))
7160 {
7161 /* It's a primary virtual base, and this is not a
7162 construction vtable. Find the base this is primary of in
7163 the inheritance graph, and use that base's vtable
7164 now. */
7165 while (BINFO_PRIMARY_P (binfo))
7166 binfo = BINFO_INHERITANCE_CHAIN (binfo);
7167 }
7168 }
7169
7170 /* Add the initializer for the secondary vptr itself. */
7171 data->inits = tree_cons (NULL_TREE, binfo_ctor_vtable (binfo), data->inits);
7172
7173 /* Advance the vtt index. */
7174 data->index = size_binop (PLUS_EXPR, data->index,
7175 TYPE_SIZE_UNIT (ptr_type_node));
7176
7177 return NULL_TREE;
7178 }
7179
7180 /* Called from build_vtt_inits via dfs_walk. After building
7181 constructor vtables and generating the sub-vtt from them, we need
7182 to restore the BINFO_VTABLES that were scribbled on. DATA is the
7183 binfo of the base whose sub vtt was generated. */
7184
7185 static tree
7186 dfs_fixup_binfo_vtbls (tree binfo, void* data)
7187 {
7188 tree vtable = BINFO_VTABLE (binfo);
7189
7190 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7191 /* If this class has no vtable, none of its bases do. */
7192 return dfs_skip_bases;
7193
7194 if (!vtable)
7195 /* This might be a primary base, so have no vtable in this
7196 hierarchy. */
7197 return NULL_TREE;
7198
7199 /* If we scribbled the construction vtable vptr into BINFO, clear it
7200 out now. */
7201 if (TREE_CODE (vtable) == TREE_LIST
7202 && (TREE_PURPOSE (vtable) == (tree) data))
7203 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
7204
7205 return NULL_TREE;
7206 }
7207
7208 /* Build the construction vtable group for BINFO which is in the
7209 hierarchy dominated by T. */
7210
7211 static void
7212 build_ctor_vtbl_group (tree binfo, tree t)
7213 {
7214 tree list;
7215 tree type;
7216 tree vtbl;
7217 tree inits;
7218 tree id;
7219 tree vbase;
7220
7221 /* See if we've already created this construction vtable group. */
7222 id = mangle_ctor_vtbl_for_type (t, binfo);
7223 if (IDENTIFIER_GLOBAL_VALUE (id))
7224 return;
7225
7226 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
7227 /* Build a version of VTBL (with the wrong type) for use in
7228 constructing the addresses of secondary vtables in the
7229 construction vtable group. */
7230 vtbl = build_vtable (t, id, ptr_type_node);
7231 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
7232 list = build_tree_list (vtbl, NULL_TREE);
7233 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
7234 binfo, t, list);
7235
7236 /* Add the vtables for each of our virtual bases using the vbase in T
7237 binfo. */
7238 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7239 vbase;
7240 vbase = TREE_CHAIN (vbase))
7241 {
7242 tree b;
7243
7244 if (!BINFO_VIRTUAL_P (vbase))
7245 continue;
7246 b = copied_binfo (vbase, binfo);
7247
7248 accumulate_vtbl_inits (b, vbase, binfo, t, list);
7249 }
7250 inits = TREE_VALUE (list);
7251
7252 /* Figure out the type of the construction vtable. */
7253 type = build_index_type (size_int (list_length (inits) - 1));
7254 type = build_cplus_array_type (vtable_entry_type, type);
7255 layout_type (type);
7256 TREE_TYPE (vtbl) = type;
7257 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
7258 layout_decl (vtbl, 0);
7259
7260 /* Initialize the construction vtable. */
7261 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
7262 initialize_artificial_var (vtbl, inits);
7263 dump_vtable (t, binfo, vtbl);
7264 }
7265
7266 /* Add the vtbl initializers for BINFO (and its bases other than
7267 non-virtual primaries) to the list of INITS. BINFO is in the
7268 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
7269 the constructor the vtbl inits should be accumulated for. (If this
7270 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
7271 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
7272 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
7273 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
7274 but are not necessarily the same in terms of layout. */
7275
7276 static void
7277 accumulate_vtbl_inits (tree binfo,
7278 tree orig_binfo,
7279 tree rtti_binfo,
7280 tree t,
7281 tree inits)
7282 {
7283 int i;
7284 tree base_binfo;
7285 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7286
7287 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
7288
7289 /* If it doesn't have a vptr, we don't do anything. */
7290 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
7291 return;
7292
7293 /* If we're building a construction vtable, we're not interested in
7294 subobjects that don't require construction vtables. */
7295 if (ctor_vtbl_p
7296 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
7297 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
7298 return;
7299
7300 /* Build the initializers for the BINFO-in-T vtable. */
7301 TREE_VALUE (inits)
7302 = chainon (TREE_VALUE (inits),
7303 dfs_accumulate_vtbl_inits (binfo, orig_binfo,
7304 rtti_binfo, t, inits));
7305
7306 /* Walk the BINFO and its bases. We walk in preorder so that as we
7307 initialize each vtable we can figure out at what offset the
7308 secondary vtable lies from the primary vtable. We can't use
7309 dfs_walk here because we need to iterate through bases of BINFO
7310 and RTTI_BINFO simultaneously. */
7311 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7312 {
7313 /* Skip virtual bases. */
7314 if (BINFO_VIRTUAL_P (base_binfo))
7315 continue;
7316 accumulate_vtbl_inits (base_binfo,
7317 BINFO_BASE_BINFO (orig_binfo, i),
7318 rtti_binfo, t,
7319 inits);
7320 }
7321 }
7322
7323 /* Called from accumulate_vtbl_inits. Returns the initializers for
7324 the BINFO vtable. */
7325
7326 static tree
7327 dfs_accumulate_vtbl_inits (tree binfo,
7328 tree orig_binfo,
7329 tree rtti_binfo,
7330 tree t,
7331 tree l)
7332 {
7333 tree inits = NULL_TREE;
7334 tree vtbl = NULL_TREE;
7335 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7336
7337 if (ctor_vtbl_p
7338 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
7339 {
7340 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
7341 primary virtual base. If it is not the same primary in
7342 the hierarchy of T, we'll need to generate a ctor vtable
7343 for it, to place at its location in T. If it is the same
7344 primary, we still need a VTT entry for the vtable, but it
7345 should point to the ctor vtable for the base it is a
7346 primary for within the sub-hierarchy of RTTI_BINFO.
7347
7348 There are three possible cases:
7349
7350 1) We are in the same place.
7351 2) We are a primary base within a lost primary virtual base of
7352 RTTI_BINFO.
7353 3) We are primary to something not a base of RTTI_BINFO. */
7354
7355 tree b;
7356 tree last = NULL_TREE;
7357
7358 /* First, look through the bases we are primary to for RTTI_BINFO
7359 or a virtual base. */
7360 b = binfo;
7361 while (BINFO_PRIMARY_P (b))
7362 {
7363 b = BINFO_INHERITANCE_CHAIN (b);
7364 last = b;
7365 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7366 goto found;
7367 }
7368 /* If we run out of primary links, keep looking down our
7369 inheritance chain; we might be an indirect primary. */
7370 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
7371 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
7372 break;
7373 found:
7374
7375 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
7376 base B and it is a base of RTTI_BINFO, this is case 2. In
7377 either case, we share our vtable with LAST, i.e. the
7378 derived-most base within B of which we are a primary. */
7379 if (b == rtti_binfo
7380 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
7381 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
7382 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
7383 binfo_ctor_vtable after everything's been set up. */
7384 vtbl = last;
7385
7386 /* Otherwise, this is case 3 and we get our own. */
7387 }
7388 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
7389 return inits;
7390
7391 if (!vtbl)
7392 {
7393 tree index;
7394 int non_fn_entries;
7395
7396 /* Compute the initializer for this vtable. */
7397 inits = build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
7398 &non_fn_entries);
7399
7400 /* Figure out the position to which the VPTR should point. */
7401 vtbl = TREE_PURPOSE (l);
7402 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, vtbl);
7403 index = size_binop (PLUS_EXPR,
7404 size_int (non_fn_entries),
7405 size_int (list_length (TREE_VALUE (l))));
7406 index = size_binop (MULT_EXPR,
7407 TYPE_SIZE_UNIT (vtable_entry_type),
7408 index);
7409 vtbl = build2 (POINTER_PLUS_EXPR, TREE_TYPE (vtbl), vtbl, index);
7410 }
7411
7412 if (ctor_vtbl_p)
7413 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
7414 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
7415 straighten this out. */
7416 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
7417 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
7418 inits = NULL_TREE;
7419 else
7420 /* For an ordinary vtable, set BINFO_VTABLE. */
7421 BINFO_VTABLE (binfo) = vtbl;
7422
7423 return inits;
7424 }
7425
7426 static GTY(()) tree abort_fndecl_addr;
7427
7428 /* Construct the initializer for BINFO's virtual function table. BINFO
7429 is part of the hierarchy dominated by T. If we're building a
7430 construction vtable, the ORIG_BINFO is the binfo we should use to
7431 find the actual function pointers to put in the vtable - but they
7432 can be overridden on the path to most-derived in the graph that
7433 ORIG_BINFO belongs. Otherwise,
7434 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
7435 BINFO that should be indicated by the RTTI information in the
7436 vtable; it will be a base class of T, rather than T itself, if we
7437 are building a construction vtable.
7438
7439 The value returned is a TREE_LIST suitable for wrapping in a
7440 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
7441 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
7442 number of non-function entries in the vtable.
7443
7444 It might seem that this function should never be called with a
7445 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
7446 base is always subsumed by a derived class vtable. However, when
7447 we are building construction vtables, we do build vtables for
7448 primary bases; we need these while the primary base is being
7449 constructed. */
7450
7451 static tree
7452 build_vtbl_initializer (tree binfo,
7453 tree orig_binfo,
7454 tree t,
7455 tree rtti_binfo,
7456 int* non_fn_entries_p)
7457 {
7458 tree v, b;
7459 tree vfun_inits;
7460 vtbl_init_data vid;
7461 unsigned ix;
7462 tree vbinfo;
7463 VEC(tree,gc) *vbases;
7464
7465 /* Initialize VID. */
7466 memset (&vid, 0, sizeof (vid));
7467 vid.binfo = binfo;
7468 vid.derived = t;
7469 vid.rtti_binfo = rtti_binfo;
7470 vid.last_init = &vid.inits;
7471 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
7472 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
7473 vid.generate_vcall_entries = true;
7474 /* The first vbase or vcall offset is at index -3 in the vtable. */
7475 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
7476
7477 /* Add entries to the vtable for RTTI. */
7478 build_rtti_vtbl_entries (binfo, &vid);
7479
7480 /* Create an array for keeping track of the functions we've
7481 processed. When we see multiple functions with the same
7482 signature, we share the vcall offsets. */
7483 vid.fns = VEC_alloc (tree, gc, 32);
7484 /* Add the vcall and vbase offset entries. */
7485 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
7486
7487 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
7488 build_vbase_offset_vtbl_entries. */
7489 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
7490 VEC_iterate (tree, vbases, ix, vbinfo); ix++)
7491 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
7492
7493 /* If the target requires padding between data entries, add that now. */
7494 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
7495 {
7496 tree cur, *prev;
7497
7498 for (prev = &vid.inits; (cur = *prev); prev = &TREE_CHAIN (cur))
7499 {
7500 tree add = cur;
7501 int i;
7502
7503 for (i = 1; i < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++i)
7504 add = tree_cons (NULL_TREE,
7505 build1 (NOP_EXPR, vtable_entry_type,
7506 null_pointer_node),
7507 add);
7508 *prev = add;
7509 }
7510 }
7511
7512 if (non_fn_entries_p)
7513 *non_fn_entries_p = list_length (vid.inits);
7514
7515 /* Go through all the ordinary virtual functions, building up
7516 initializers. */
7517 vfun_inits = NULL_TREE;
7518 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
7519 {
7520 tree delta;
7521 tree vcall_index;
7522 tree fn, fn_original;
7523 tree init = NULL_TREE;
7524
7525 fn = BV_FN (v);
7526 fn_original = fn;
7527 if (DECL_THUNK_P (fn))
7528 {
7529 if (!DECL_NAME (fn))
7530 finish_thunk (fn);
7531 if (THUNK_ALIAS (fn))
7532 {
7533 fn = THUNK_ALIAS (fn);
7534 BV_FN (v) = fn;
7535 }
7536 fn_original = THUNK_TARGET (fn);
7537 }
7538
7539 /* If the only definition of this function signature along our
7540 primary base chain is from a lost primary, this vtable slot will
7541 never be used, so just zero it out. This is important to avoid
7542 requiring extra thunks which cannot be generated with the function.
7543
7544 We first check this in update_vtable_entry_for_fn, so we handle
7545 restored primary bases properly; we also need to do it here so we
7546 zero out unused slots in ctor vtables, rather than filling them
7547 with erroneous values (though harmless, apart from relocation
7548 costs). */
7549 for (b = binfo; ; b = get_primary_binfo (b))
7550 {
7551 /* We found a defn before a lost primary; go ahead as normal. */
7552 if (look_for_overrides_here (BINFO_TYPE (b), fn_original))
7553 break;
7554
7555 /* The nearest definition is from a lost primary; clear the
7556 slot. */
7557 if (BINFO_LOST_PRIMARY_P (b))
7558 {
7559 init = size_zero_node;
7560 break;
7561 }
7562 }
7563
7564 if (! init)
7565 {
7566 /* Pull the offset for `this', and the function to call, out of
7567 the list. */
7568 delta = BV_DELTA (v);
7569 vcall_index = BV_VCALL_INDEX (v);
7570
7571 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
7572 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
7573
7574 /* You can't call an abstract virtual function; it's abstract.
7575 So, we replace these functions with __pure_virtual. */
7576 if (DECL_PURE_VIRTUAL_P (fn_original))
7577 {
7578 fn = abort_fndecl;
7579 if (abort_fndecl_addr == NULL)
7580 abort_fndecl_addr = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7581 init = abort_fndecl_addr;
7582 }
7583 else
7584 {
7585 if (!integer_zerop (delta) || vcall_index)
7586 {
7587 fn = make_thunk (fn, /*this_adjusting=*/1, delta, vcall_index);
7588 if (!DECL_NAME (fn))
7589 finish_thunk (fn);
7590 }
7591 /* Take the address of the function, considering it to be of an
7592 appropriate generic type. */
7593 init = build1 (ADDR_EXPR, vfunc_ptr_type_node, fn);
7594 }
7595 }
7596
7597 /* And add it to the chain of initializers. */
7598 if (TARGET_VTABLE_USES_DESCRIPTORS)
7599 {
7600 int i;
7601 if (init == size_zero_node)
7602 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7603 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7604 else
7605 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
7606 {
7607 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
7608 TREE_OPERAND (init, 0),
7609 build_int_cst (NULL_TREE, i));
7610 TREE_CONSTANT (fdesc) = 1;
7611
7612 vfun_inits = tree_cons (NULL_TREE, fdesc, vfun_inits);
7613 }
7614 }
7615 else
7616 vfun_inits = tree_cons (NULL_TREE, init, vfun_inits);
7617 }
7618
7619 /* The initializers for virtual functions were built up in reverse
7620 order; straighten them out now. */
7621 vfun_inits = nreverse (vfun_inits);
7622
7623 /* The negative offset initializers are also in reverse order. */
7624 vid.inits = nreverse (vid.inits);
7625
7626 /* Chain the two together. */
7627 return chainon (vid.inits, vfun_inits);
7628 }
7629
7630 /* Adds to vid->inits the initializers for the vbase and vcall
7631 offsets in BINFO, which is in the hierarchy dominated by T. */
7632
7633 static void
7634 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
7635 {
7636 tree b;
7637
7638 /* If this is a derived class, we must first create entries
7639 corresponding to the primary base class. */
7640 b = get_primary_binfo (binfo);
7641 if (b)
7642 build_vcall_and_vbase_vtbl_entries (b, vid);
7643
7644 /* Add the vbase entries for this base. */
7645 build_vbase_offset_vtbl_entries (binfo, vid);
7646 /* Add the vcall entries for this base. */
7647 build_vcall_offset_vtbl_entries (binfo, vid);
7648 }
7649
7650 /* Returns the initializers for the vbase offset entries in the vtable
7651 for BINFO (which is part of the class hierarchy dominated by T), in
7652 reverse order. VBASE_OFFSET_INDEX gives the vtable index
7653 where the next vbase offset will go. */
7654
7655 static void
7656 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7657 {
7658 tree vbase;
7659 tree t;
7660 tree non_primary_binfo;
7661
7662 /* If there are no virtual baseclasses, then there is nothing to
7663 do. */
7664 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
7665 return;
7666
7667 t = vid->derived;
7668
7669 /* We might be a primary base class. Go up the inheritance hierarchy
7670 until we find the most derived class of which we are a primary base:
7671 it is the offset of that which we need to use. */
7672 non_primary_binfo = binfo;
7673 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7674 {
7675 tree b;
7676
7677 /* If we have reached a virtual base, then it must be a primary
7678 base (possibly multi-level) of vid->binfo, or we wouldn't
7679 have called build_vcall_and_vbase_vtbl_entries for it. But it
7680 might be a lost primary, so just skip down to vid->binfo. */
7681 if (BINFO_VIRTUAL_P (non_primary_binfo))
7682 {
7683 non_primary_binfo = vid->binfo;
7684 break;
7685 }
7686
7687 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7688 if (get_primary_binfo (b) != non_primary_binfo)
7689 break;
7690 non_primary_binfo = b;
7691 }
7692
7693 /* Go through the virtual bases, adding the offsets. */
7694 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
7695 vbase;
7696 vbase = TREE_CHAIN (vbase))
7697 {
7698 tree b;
7699 tree delta;
7700
7701 if (!BINFO_VIRTUAL_P (vbase))
7702 continue;
7703
7704 /* Find the instance of this virtual base in the complete
7705 object. */
7706 b = copied_binfo (vbase, binfo);
7707
7708 /* If we've already got an offset for this virtual base, we
7709 don't need another one. */
7710 if (BINFO_VTABLE_PATH_MARKED (b))
7711 continue;
7712 BINFO_VTABLE_PATH_MARKED (b) = 1;
7713
7714 /* Figure out where we can find this vbase offset. */
7715 delta = size_binop (MULT_EXPR,
7716 vid->index,
7717 convert (ssizetype,
7718 TYPE_SIZE_UNIT (vtable_entry_type)));
7719 if (vid->primary_vtbl_p)
7720 BINFO_VPTR_FIELD (b) = delta;
7721
7722 if (binfo != TYPE_BINFO (t))
7723 /* The vbase offset had better be the same. */
7724 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
7725
7726 /* The next vbase will come at a more negative offset. */
7727 vid->index = size_binop (MINUS_EXPR, vid->index,
7728 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7729
7730 /* The initializer is the delta from BINFO to this virtual base.
7731 The vbase offsets go in reverse inheritance-graph order, and
7732 we are walking in inheritance graph order so these end up in
7733 the right order. */
7734 delta = size_diffop (BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
7735
7736 *vid->last_init
7737 = build_tree_list (NULL_TREE,
7738 fold_build1 (NOP_EXPR,
7739 vtable_entry_type,
7740 delta));
7741 vid->last_init = &TREE_CHAIN (*vid->last_init);
7742 }
7743 }
7744
7745 /* Adds the initializers for the vcall offset entries in the vtable
7746 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
7747 to VID->INITS. */
7748
7749 static void
7750 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
7751 {
7752 /* We only need these entries if this base is a virtual base. We
7753 compute the indices -- but do not add to the vtable -- when
7754 building the main vtable for a class. */
7755 if (binfo == TYPE_BINFO (vid->derived)
7756 || (BINFO_VIRTUAL_P (binfo)
7757 /* If BINFO is RTTI_BINFO, then (since BINFO does not
7758 correspond to VID->DERIVED), we are building a primary
7759 construction virtual table. Since this is a primary
7760 virtual table, we do not need the vcall offsets for
7761 BINFO. */
7762 && binfo != vid->rtti_binfo))
7763 {
7764 /* We need a vcall offset for each of the virtual functions in this
7765 vtable. For example:
7766
7767 class A { virtual void f (); };
7768 class B1 : virtual public A { virtual void f (); };
7769 class B2 : virtual public A { virtual void f (); };
7770 class C: public B1, public B2 { virtual void f (); };
7771
7772 A C object has a primary base of B1, which has a primary base of A. A
7773 C also has a secondary base of B2, which no longer has a primary base
7774 of A. So the B2-in-C construction vtable needs a secondary vtable for
7775 A, which will adjust the A* to a B2* to call f. We have no way of
7776 knowing what (or even whether) this offset will be when we define B2,
7777 so we store this "vcall offset" in the A sub-vtable and look it up in
7778 a "virtual thunk" for B2::f.
7779
7780 We need entries for all the functions in our primary vtable and
7781 in our non-virtual bases' secondary vtables. */
7782 vid->vbase = binfo;
7783 /* If we are just computing the vcall indices -- but do not need
7784 the actual entries -- not that. */
7785 if (!BINFO_VIRTUAL_P (binfo))
7786 vid->generate_vcall_entries = false;
7787 /* Now, walk through the non-virtual bases, adding vcall offsets. */
7788 add_vcall_offset_vtbl_entries_r (binfo, vid);
7789 }
7790 }
7791
7792 /* Build vcall offsets, starting with those for BINFO. */
7793
7794 static void
7795 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
7796 {
7797 int i;
7798 tree primary_binfo;
7799 tree base_binfo;
7800
7801 /* Don't walk into virtual bases -- except, of course, for the
7802 virtual base for which we are building vcall offsets. Any
7803 primary virtual base will have already had its offsets generated
7804 through the recursion in build_vcall_and_vbase_vtbl_entries. */
7805 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
7806 return;
7807
7808 /* If BINFO has a primary base, process it first. */
7809 primary_binfo = get_primary_binfo (binfo);
7810 if (primary_binfo)
7811 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
7812
7813 /* Add BINFO itself to the list. */
7814 add_vcall_offset_vtbl_entries_1 (binfo, vid);
7815
7816 /* Scan the non-primary bases of BINFO. */
7817 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
7818 if (base_binfo != primary_binfo)
7819 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
7820 }
7821
7822 /* Called from build_vcall_offset_vtbl_entries_r. */
7823
7824 static void
7825 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
7826 {
7827 /* Make entries for the rest of the virtuals. */
7828 if (abi_version_at_least (2))
7829 {
7830 tree orig_fn;
7831
7832 /* The ABI requires that the methods be processed in declaration
7833 order. G++ 3.2 used the order in the vtable. */
7834 for (orig_fn = TYPE_METHODS (BINFO_TYPE (binfo));
7835 orig_fn;
7836 orig_fn = TREE_CHAIN (orig_fn))
7837 if (DECL_VINDEX (orig_fn))
7838 add_vcall_offset (orig_fn, binfo, vid);
7839 }
7840 else
7841 {
7842 tree derived_virtuals;
7843 tree base_virtuals;
7844 tree orig_virtuals;
7845 /* If BINFO is a primary base, the most derived class which has
7846 BINFO as a primary base; otherwise, just BINFO. */
7847 tree non_primary_binfo;
7848
7849 /* We might be a primary base class. Go up the inheritance hierarchy
7850 until we find the most derived class of which we are a primary base:
7851 it is the BINFO_VIRTUALS there that we need to consider. */
7852 non_primary_binfo = binfo;
7853 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
7854 {
7855 tree b;
7856
7857 /* If we have reached a virtual base, then it must be vid->vbase,
7858 because we ignore other virtual bases in
7859 add_vcall_offset_vtbl_entries_r. In turn, it must be a primary
7860 base (possibly multi-level) of vid->binfo, or we wouldn't
7861 have called build_vcall_and_vbase_vtbl_entries for it. But it
7862 might be a lost primary, so just skip down to vid->binfo. */
7863 if (BINFO_VIRTUAL_P (non_primary_binfo))
7864 {
7865 gcc_assert (non_primary_binfo == vid->vbase);
7866 non_primary_binfo = vid->binfo;
7867 break;
7868 }
7869
7870 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
7871 if (get_primary_binfo (b) != non_primary_binfo)
7872 break;
7873 non_primary_binfo = b;
7874 }
7875
7876 if (vid->ctor_vtbl_p)
7877 /* For a ctor vtable we need the equivalent binfo within the hierarchy
7878 where rtti_binfo is the most derived type. */
7879 non_primary_binfo
7880 = original_binfo (non_primary_binfo, vid->rtti_binfo);
7881
7882 for (base_virtuals = BINFO_VIRTUALS (binfo),
7883 derived_virtuals = BINFO_VIRTUALS (non_primary_binfo),
7884 orig_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
7885 base_virtuals;
7886 base_virtuals = TREE_CHAIN (base_virtuals),
7887 derived_virtuals = TREE_CHAIN (derived_virtuals),
7888 orig_virtuals = TREE_CHAIN (orig_virtuals))
7889 {
7890 tree orig_fn;
7891
7892 /* Find the declaration that originally caused this function to
7893 be present in BINFO_TYPE (binfo). */
7894 orig_fn = BV_FN (orig_virtuals);
7895
7896 /* When processing BINFO, we only want to generate vcall slots for
7897 function slots introduced in BINFO. So don't try to generate
7898 one if the function isn't even defined in BINFO. */
7899 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), DECL_CONTEXT (orig_fn)))
7900 continue;
7901
7902 add_vcall_offset (orig_fn, binfo, vid);
7903 }
7904 }
7905 }
7906
7907 /* Add a vcall offset entry for ORIG_FN to the vtable. */
7908
7909 static void
7910 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
7911 {
7912 size_t i;
7913 tree vcall_offset;
7914 tree derived_entry;
7915
7916 /* If there is already an entry for a function with the same
7917 signature as FN, then we do not need a second vcall offset.
7918 Check the list of functions already present in the derived
7919 class vtable. */
7920 for (i = 0; VEC_iterate (tree, vid->fns, i, derived_entry); ++i)
7921 {
7922 if (same_signature_p (derived_entry, orig_fn)
7923 /* We only use one vcall offset for virtual destructors,
7924 even though there are two virtual table entries. */
7925 || (DECL_DESTRUCTOR_P (derived_entry)
7926 && DECL_DESTRUCTOR_P (orig_fn)))
7927 return;
7928 }
7929
7930 /* If we are building these vcall offsets as part of building
7931 the vtable for the most derived class, remember the vcall
7932 offset. */
7933 if (vid->binfo == TYPE_BINFO (vid->derived))
7934 {
7935 tree_pair_p elt = VEC_safe_push (tree_pair_s, gc,
7936 CLASSTYPE_VCALL_INDICES (vid->derived),
7937 NULL);
7938 elt->purpose = orig_fn;
7939 elt->value = vid->index;
7940 }
7941
7942 /* The next vcall offset will be found at a more negative
7943 offset. */
7944 vid->index = size_binop (MINUS_EXPR, vid->index,
7945 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
7946
7947 /* Keep track of this function. */
7948 VEC_safe_push (tree, gc, vid->fns, orig_fn);
7949
7950 if (vid->generate_vcall_entries)
7951 {
7952 tree base;
7953 tree fn;
7954
7955 /* Find the overriding function. */
7956 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
7957 if (fn == error_mark_node)
7958 vcall_offset = build1 (NOP_EXPR, vtable_entry_type,
7959 integer_zero_node);
7960 else
7961 {
7962 base = TREE_VALUE (fn);
7963
7964 /* The vbase we're working on is a primary base of
7965 vid->binfo. But it might be a lost primary, so its
7966 BINFO_OFFSET might be wrong, so we just use the
7967 BINFO_OFFSET from vid->binfo. */
7968 vcall_offset = size_diffop (BINFO_OFFSET (base),
7969 BINFO_OFFSET (vid->binfo));
7970 vcall_offset = fold_build1 (NOP_EXPR, vtable_entry_type,
7971 vcall_offset);
7972 }
7973 /* Add the initializer to the vtable. */
7974 *vid->last_init = build_tree_list (NULL_TREE, vcall_offset);
7975 vid->last_init = &TREE_CHAIN (*vid->last_init);
7976 }
7977 }
7978
7979 /* Return vtbl initializers for the RTTI entries corresponding to the
7980 BINFO's vtable. The RTTI entries should indicate the object given
7981 by VID->rtti_binfo. */
7982
7983 static void
7984 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
7985 {
7986 tree b;
7987 tree t;
7988 tree basetype;
7989 tree offset;
7990 tree decl;
7991 tree init;
7992
7993 basetype = BINFO_TYPE (binfo);
7994 t = BINFO_TYPE (vid->rtti_binfo);
7995
7996 /* To find the complete object, we will first convert to our most
7997 primary base, and then add the offset in the vtbl to that value. */
7998 b = binfo;
7999 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
8000 && !BINFO_LOST_PRIMARY_P (b))
8001 {
8002 tree primary_base;
8003
8004 primary_base = get_primary_binfo (b);
8005 gcc_assert (BINFO_PRIMARY_P (primary_base)
8006 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
8007 b = primary_base;
8008 }
8009 offset = size_diffop (BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
8010
8011 /* The second entry is the address of the typeinfo object. */
8012 if (flag_rtti)
8013 decl = build_address (get_tinfo_decl (t));
8014 else
8015 decl = integer_zero_node;
8016
8017 /* Convert the declaration to a type that can be stored in the
8018 vtable. */
8019 init = build_nop (vfunc_ptr_type_node, decl);
8020 *vid->last_init = build_tree_list (NULL_TREE, init);
8021 vid->last_init = &TREE_CHAIN (*vid->last_init);
8022
8023 /* Add the offset-to-top entry. It comes earlier in the vtable than
8024 the typeinfo entry. Convert the offset to look like a
8025 function pointer, so that we can put it in the vtable. */
8026 init = build_nop (vfunc_ptr_type_node, offset);
8027 *vid->last_init = build_tree_list (NULL_TREE, init);
8028 vid->last_init = &TREE_CHAIN (*vid->last_init);
8029 }
8030
8031 /* Fold a OBJ_TYPE_REF expression to the address of a function.
8032 KNOWN_TYPE carries the true type of OBJ_TYPE_REF_OBJECT(REF). */
8033
8034 tree
8035 cp_fold_obj_type_ref (tree ref, tree known_type)
8036 {
8037 HOST_WIDE_INT index = tree_low_cst (OBJ_TYPE_REF_TOKEN (ref), 1);
8038 HOST_WIDE_INT i = 0;
8039 tree v = BINFO_VIRTUALS (TYPE_BINFO (known_type));
8040 tree fndecl;
8041
8042 while (i != index)
8043 {
8044 i += (TARGET_VTABLE_USES_DESCRIPTORS
8045 ? TARGET_VTABLE_USES_DESCRIPTORS : 1);
8046 v = TREE_CHAIN (v);
8047 }
8048
8049 fndecl = BV_FN (v);
8050
8051 #ifdef ENABLE_CHECKING
8052 gcc_assert (tree_int_cst_equal (OBJ_TYPE_REF_TOKEN (ref),
8053 DECL_VINDEX (fndecl)));
8054 #endif
8055
8056 cgraph_node (fndecl)->local.vtable_method = true;
8057
8058 return build_address (fndecl);
8059 }
8060
8061 #include "gt-cp-class.h"