]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/class.c
PR c++/89381 - implicit copy and using-declaration.
[thirdparty/gcc.git] / gcc / cp / class.c
1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* High-level class interface. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "target.h"
28 #include "cp-tree.h"
29 #include "stringpool.h"
30 #include "cgraph.h"
31 #include "stor-layout.h"
32 #include "attribs.h"
33 #include "flags.h"
34 #include "toplev.h"
35 #include "convert.h"
36 #include "dumpfile.h"
37 #include "gimplify.h"
38 #include "intl.h"
39 #include "asan.h"
40
41 /* Id for dumping the class hierarchy. */
42 int class_dump_id;
43
44 /* The number of nested classes being processed. If we are not in the
45 scope of any class, this is zero. */
46
47 int current_class_depth;
48
49 /* In order to deal with nested classes, we keep a stack of classes.
50 The topmost entry is the innermost class, and is the entry at index
51 CURRENT_CLASS_DEPTH */
52
53 typedef struct class_stack_node {
54 /* The name of the class. */
55 tree name;
56
57 /* The _TYPE node for the class. */
58 tree type;
59
60 /* The access specifier pending for new declarations in the scope of
61 this class. */
62 tree access;
63
64 /* If were defining TYPE, the names used in this class. */
65 splay_tree names_used;
66
67 /* Nonzero if this class is no longer open, because of a call to
68 push_to_top_level. */
69 size_t hidden;
70 }* class_stack_node_t;
71
72 struct vtbl_init_data
73 {
74 /* The base for which we're building initializers. */
75 tree binfo;
76 /* The type of the most-derived type. */
77 tree derived;
78 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
79 unless ctor_vtbl_p is true. */
80 tree rtti_binfo;
81 /* The negative-index vtable initializers built up so far. These
82 are in order from least negative index to most negative index. */
83 vec<constructor_elt, va_gc> *inits;
84 /* The binfo for the virtual base for which we're building
85 vcall offset initializers. */
86 tree vbase;
87 /* The functions in vbase for which we have already provided vcall
88 offsets. */
89 vec<tree, va_gc> *fns;
90 /* The vtable index of the next vcall or vbase offset. */
91 tree index;
92 /* Nonzero if we are building the initializer for the primary
93 vtable. */
94 int primary_vtbl_p;
95 /* Nonzero if we are building the initializer for a construction
96 vtable. */
97 int ctor_vtbl_p;
98 /* True when adding vcall offset entries to the vtable. False when
99 merely computing the indices. */
100 bool generate_vcall_entries;
101 };
102
103 /* The type of a function passed to walk_subobject_offsets. */
104 typedef int (*subobject_offset_fn) (tree, tree, splay_tree);
105
106 /* The stack itself. This is a dynamically resized array. The
107 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
108 static int current_class_stack_size;
109 static class_stack_node_t current_class_stack;
110
111 /* The size of the largest empty class seen in this translation unit. */
112 static GTY (()) tree sizeof_biggest_empty_class;
113
114 static tree get_vfield_name (tree);
115 static void finish_struct_anon (tree);
116 static tree get_vtable_name (tree);
117 static void get_basefndecls (tree, tree, vec<tree> *);
118 static int build_primary_vtable (tree, tree);
119 static int build_secondary_vtable (tree);
120 static void finish_vtbls (tree);
121 static void modify_vtable_entry (tree, tree, tree, tree, tree *);
122 static void finish_struct_bits (tree);
123 static int alter_access (tree, tree, tree);
124 static void handle_using_decl (tree, tree);
125 static tree dfs_modify_vtables (tree, void *);
126 static tree modify_all_vtables (tree, tree);
127 static void determine_primary_bases (tree);
128 static void maybe_warn_about_overly_private_class (tree);
129 static void add_implicitly_declared_members (tree, tree*, int, int);
130 static tree fixed_type_or_null (tree, int *, int *);
131 static tree build_simple_base_path (tree expr, tree binfo);
132 static void build_vtbl_initializer (tree, tree, tree, tree, int *,
133 vec<constructor_elt, va_gc> **);
134 static bool check_bitfield_decl (tree);
135 static bool check_field_decl (tree, tree, int *, int *);
136 static void check_field_decls (tree, tree *, int *, int *);
137 static tree *build_base_field (record_layout_info, tree, splay_tree, tree *);
138 static void build_base_fields (record_layout_info, splay_tree, tree *);
139 static void check_methods (tree);
140 static void remove_zero_width_bit_fields (tree);
141 static bool accessible_nvdtor_p (tree);
142
143 /* Used by find_flexarrays and related functions. */
144 struct flexmems_t;
145 static void diagnose_flexarrays (tree, const flexmems_t *);
146 static void find_flexarrays (tree, flexmems_t *, bool = false,
147 tree = NULL_TREE, tree = NULL_TREE);
148 static void check_flexarrays (tree, flexmems_t * = NULL, bool = false);
149 static void check_bases (tree, int *, int *);
150 static void check_bases_and_members (tree);
151 static tree create_vtable_ptr (tree, tree *);
152 static void include_empty_classes (record_layout_info);
153 static void layout_class_type (tree, tree *);
154 static void propagate_binfo_offsets (tree, tree);
155 static void layout_virtual_bases (record_layout_info, splay_tree);
156 static void build_vbase_offset_vtbl_entries (tree, vtbl_init_data *);
157 static void add_vcall_offset_vtbl_entries_r (tree, vtbl_init_data *);
158 static void add_vcall_offset_vtbl_entries_1 (tree, vtbl_init_data *);
159 static void build_vcall_offset_vtbl_entries (tree, vtbl_init_data *);
160 static void add_vcall_offset (tree, tree, vtbl_init_data *);
161 static void layout_vtable_decl (tree, int);
162 static tree dfs_find_final_overrider_pre (tree, void *);
163 static tree dfs_find_final_overrider_post (tree, void *);
164 static tree find_final_overrider (tree, tree, tree);
165 static int make_new_vtable (tree, tree);
166 static tree get_primary_binfo (tree);
167 static int maybe_indent_hierarchy (FILE *, int, int);
168 static tree dump_class_hierarchy_r (FILE *, dump_flags_t, tree, tree, int);
169 static void dump_class_hierarchy (tree);
170 static void dump_class_hierarchy_1 (FILE *, dump_flags_t, tree);
171 static void dump_array (FILE *, tree);
172 static void dump_vtable (tree, tree, tree);
173 static void dump_vtt (tree, tree);
174 static void dump_thunk (FILE *, int, tree);
175 static tree build_vtable (tree, tree, tree);
176 static void initialize_vtable (tree, vec<constructor_elt, va_gc> *);
177 static void layout_nonempty_base_or_field (record_layout_info,
178 tree, tree, splay_tree);
179 static void accumulate_vtbl_inits (tree, tree, tree, tree, tree,
180 vec<constructor_elt, va_gc> **);
181 static void dfs_accumulate_vtbl_inits (tree, tree, tree, tree, tree,
182 vec<constructor_elt, va_gc> **);
183 static void build_rtti_vtbl_entries (tree, vtbl_init_data *);
184 static void build_vcall_and_vbase_vtbl_entries (tree, vtbl_init_data *);
185 static void clone_constructors_and_destructors (tree);
186 static tree build_clone (tree, tree);
187 static void update_vtable_entry_for_fn (tree, tree, tree, tree *, unsigned);
188 static void build_ctor_vtbl_group (tree, tree);
189 static void build_vtt (tree);
190 static tree binfo_ctor_vtable (tree);
191 static void build_vtt_inits (tree, tree, vec<constructor_elt, va_gc> **,
192 tree *);
193 static tree dfs_build_secondary_vptr_vtt_inits (tree, void *);
194 static tree dfs_fixup_binfo_vtbls (tree, void *);
195 static int record_subobject_offset (tree, tree, splay_tree);
196 static int check_subobject_offset (tree, tree, splay_tree);
197 static int walk_subobject_offsets (tree, subobject_offset_fn,
198 tree, splay_tree, tree, int);
199 static int layout_conflict_p (tree, tree, splay_tree, int);
200 static int splay_tree_compare_integer_csts (splay_tree_key k1,
201 splay_tree_key k2);
202 static void warn_about_ambiguous_bases (tree);
203 static bool type_requires_array_cookie (tree);
204 static bool base_derived_from (tree, tree);
205 static int empty_base_at_nonzero_offset_p (tree, tree, splay_tree);
206 static tree end_of_base (tree);
207 static tree get_vcall_index (tree, tree);
208 static bool type_maybe_constexpr_default_constructor (tree);
209 static bool field_poverlapping_p (tree);
210
211 /* Return a COND_EXPR that executes TRUE_STMT if this execution of the
212 'structor is in charge of 'structing virtual bases, or FALSE_STMT
213 otherwise. */
214
215 tree
216 build_if_in_charge (tree true_stmt, tree false_stmt)
217 {
218 gcc_assert (DECL_HAS_IN_CHARGE_PARM_P (current_function_decl));
219 tree cmp = build2 (NE_EXPR, boolean_type_node,
220 current_in_charge_parm, integer_zero_node);
221 tree type = unlowered_expr_type (true_stmt);
222 if (VOID_TYPE_P (type))
223 type = unlowered_expr_type (false_stmt);
224 tree cond = build3 (COND_EXPR, type,
225 cmp, true_stmt, false_stmt);
226 return cond;
227 }
228
229 /* Convert to or from a base subobject. EXPR is an expression of type
230 `A' or `A*', an expression of type `B' or `B*' is returned. To
231 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
232 the B base instance within A. To convert base A to derived B, CODE
233 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
234 In this latter case, A must not be a morally virtual base of B.
235 NONNULL is true if EXPR is known to be non-NULL (this is only
236 needed when EXPR is of pointer type). CV qualifiers are preserved
237 from EXPR. */
238
239 tree
240 build_base_path (enum tree_code code,
241 tree expr,
242 tree binfo,
243 int nonnull,
244 tsubst_flags_t complain)
245 {
246 tree v_binfo = NULL_TREE;
247 tree d_binfo = NULL_TREE;
248 tree probe;
249 tree offset;
250 tree target_type;
251 tree null_test = NULL;
252 tree ptr_target_type;
253 int fixed_type_p;
254 int want_pointer = TYPE_PTR_P (TREE_TYPE (expr));
255 bool has_empty = false;
256 bool virtual_access;
257 bool rvalue = false;
258
259 if (expr == error_mark_node || binfo == error_mark_node || !binfo)
260 return error_mark_node;
261
262 for (probe = binfo; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
263 {
264 d_binfo = probe;
265 if (is_empty_class (BINFO_TYPE (probe)))
266 has_empty = true;
267 if (!v_binfo && BINFO_VIRTUAL_P (probe))
268 v_binfo = probe;
269 }
270
271 probe = TYPE_MAIN_VARIANT (TREE_TYPE (expr));
272 if (want_pointer)
273 probe = TYPE_MAIN_VARIANT (TREE_TYPE (probe));
274 if (dependent_type_p (probe))
275 if (tree open = currently_open_class (probe))
276 probe = open;
277
278 if (code == PLUS_EXPR
279 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo), probe))
280 {
281 /* This can happen when adjust_result_of_qualified_name_lookup can't
282 find a unique base binfo in a call to a member function. We
283 couldn't give the diagnostic then since we might have been calling
284 a static member function, so we do it now. In other cases, eg.
285 during error recovery (c++/71979), we may not have a base at all. */
286 if (complain & tf_error)
287 {
288 tree base = lookup_base (probe, BINFO_TYPE (d_binfo),
289 ba_unique, NULL, complain);
290 gcc_assert (base == error_mark_node || !base);
291 }
292 return error_mark_node;
293 }
294
295 gcc_assert ((code == MINUS_EXPR
296 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), probe))
297 || code == PLUS_EXPR);
298
299 if (binfo == d_binfo)
300 /* Nothing to do. */
301 return expr;
302
303 if (code == MINUS_EXPR && v_binfo)
304 {
305 if (complain & tf_error)
306 {
307 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (v_binfo)))
308 {
309 if (want_pointer)
310 error ("cannot convert from pointer to base class %qT to "
311 "pointer to derived class %qT because the base is "
312 "virtual", BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
313 else
314 error ("cannot convert from base class %qT to derived "
315 "class %qT because the base is virtual",
316 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo));
317 }
318 else
319 {
320 if (want_pointer)
321 error ("cannot convert from pointer to base class %qT to "
322 "pointer to derived class %qT via virtual base %qT",
323 BINFO_TYPE (binfo), BINFO_TYPE (d_binfo),
324 BINFO_TYPE (v_binfo));
325 else
326 error ("cannot convert from base class %qT to derived "
327 "class %qT via virtual base %qT", BINFO_TYPE (binfo),
328 BINFO_TYPE (d_binfo), BINFO_TYPE (v_binfo));
329 }
330 }
331 return error_mark_node;
332 }
333
334 if (!want_pointer)
335 {
336 rvalue = !lvalue_p (expr);
337 /* This must happen before the call to save_expr. */
338 expr = cp_build_addr_expr (expr, complain);
339 }
340 else
341 expr = mark_rvalue_use (expr);
342
343 offset = BINFO_OFFSET (binfo);
344 fixed_type_p = resolves_to_fixed_type_p (expr, &nonnull);
345 target_type = code == PLUS_EXPR ? BINFO_TYPE (binfo) : BINFO_TYPE (d_binfo);
346 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
347 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
348 expression returned matches the input. */
349 target_type = cp_build_qualified_type
350 (target_type, cp_type_quals (TREE_TYPE (TREE_TYPE (expr))));
351 ptr_target_type = build_pointer_type (target_type);
352
353 /* Do we need to look in the vtable for the real offset? */
354 virtual_access = (v_binfo && fixed_type_p <= 0);
355
356 /* Don't bother with the calculations inside sizeof; they'll ICE if the
357 source type is incomplete and the pointer value doesn't matter. In a
358 template (even in instantiate_non_dependent_expr), we don't have vtables
359 set up properly yet, and the value doesn't matter there either; we're
360 just interested in the result of overload resolution. */
361 if (cp_unevaluated_operand != 0
362 || processing_template_decl
363 || in_template_function ())
364 {
365 expr = build_nop (ptr_target_type, expr);
366 goto indout;
367 }
368
369 if (!COMPLETE_TYPE_P (probe))
370 {
371 if (complain & tf_error)
372 error ("cannot convert from %qT to base class %qT because %qT is "
373 "incomplete", BINFO_TYPE (d_binfo), BINFO_TYPE (binfo),
374 BINFO_TYPE (d_binfo));
375 return error_mark_node;
376 }
377
378 /* If we're in an NSDMI, we don't have the full constructor context yet
379 that we need for converting to a virtual base, so just build a stub
380 CONVERT_EXPR and expand it later in bot_replace. */
381 if (virtual_access && fixed_type_p < 0
382 && current_scope () != current_function_decl)
383 {
384 expr = build1 (CONVERT_EXPR, ptr_target_type, expr);
385 CONVERT_EXPR_VBASE_PATH (expr) = true;
386 goto indout;
387 }
388
389 /* Do we need to check for a null pointer? */
390 if (want_pointer && !nonnull)
391 {
392 /* If we know the conversion will not actually change the value
393 of EXPR, then we can avoid testing the expression for NULL.
394 We have to avoid generating a COMPONENT_REF for a base class
395 field, because other parts of the compiler know that such
396 expressions are always non-NULL. */
397 if (!virtual_access && integer_zerop (offset))
398 return build_nop (ptr_target_type, expr);
399 null_test = error_mark_node;
400 }
401
402 /* Protect against multiple evaluation if necessary. */
403 if (TREE_SIDE_EFFECTS (expr) && (null_test || virtual_access))
404 expr = save_expr (expr);
405
406 /* Now that we've saved expr, build the real null test. */
407 if (null_test)
408 {
409 tree zero = cp_convert (TREE_TYPE (expr), nullptr_node, complain);
410 null_test = build2_loc (input_location, NE_EXPR, boolean_type_node,
411 expr, zero);
412 /* This is a compiler generated comparison, don't emit
413 e.g. -Wnonnull-compare warning for it. */
414 TREE_NO_WARNING (null_test) = 1;
415 }
416
417 /* If this is a simple base reference, express it as a COMPONENT_REF. */
418 if (code == PLUS_EXPR && !virtual_access
419 /* We don't build base fields for empty bases, and they aren't very
420 interesting to the optimizers anyway. */
421 && !has_empty)
422 {
423 expr = cp_build_fold_indirect_ref (expr);
424 expr = build_simple_base_path (expr, binfo);
425 if (rvalue && lvalue_p (expr))
426 expr = move (expr);
427 if (want_pointer)
428 expr = build_address (expr);
429 target_type = TREE_TYPE (expr);
430 goto out;
431 }
432
433 if (virtual_access)
434 {
435 /* Going via virtual base V_BINFO. We need the static offset
436 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
437 V_BINFO. That offset is an entry in D_BINFO's vtable. */
438 tree v_offset;
439
440 if (fixed_type_p < 0 && in_base_initializer)
441 {
442 /* In a base member initializer, we cannot rely on the
443 vtable being set up. We have to indirect via the
444 vtt_parm. */
445 tree t;
446
447 t = TREE_TYPE (TYPE_VFIELD (current_class_type));
448 t = build_pointer_type (t);
449 v_offset = fold_convert (t, current_vtt_parm);
450 v_offset = cp_build_fold_indirect_ref (v_offset);
451 }
452 else
453 {
454 tree t = expr;
455 if (sanitize_flags_p (SANITIZE_VPTR)
456 && fixed_type_p == 0)
457 {
458 t = cp_ubsan_maybe_instrument_cast_to_vbase (input_location,
459 probe, expr);
460 if (t == NULL_TREE)
461 t = expr;
462 }
463 v_offset = build_vfield_ref (cp_build_fold_indirect_ref (t),
464 TREE_TYPE (TREE_TYPE (expr)));
465 }
466
467 if (v_offset == error_mark_node)
468 return error_mark_node;
469
470 v_offset = fold_build_pointer_plus (v_offset, BINFO_VPTR_FIELD (v_binfo));
471 v_offset = build1 (NOP_EXPR,
472 build_pointer_type (ptrdiff_type_node),
473 v_offset);
474 v_offset = cp_build_fold_indirect_ref (v_offset);
475 TREE_CONSTANT (v_offset) = 1;
476
477 offset = convert_to_integer (ptrdiff_type_node,
478 size_diffop_loc (input_location, offset,
479 BINFO_OFFSET (v_binfo)));
480
481 if (!integer_zerop (offset))
482 v_offset = build2 (code, ptrdiff_type_node, v_offset, offset);
483
484 if (fixed_type_p < 0)
485 /* Negative fixed_type_p means this is a constructor or destructor;
486 virtual base layout is fixed in in-charge [cd]tors, but not in
487 base [cd]tors. */
488 offset = build_if_in_charge
489 (convert_to_integer (ptrdiff_type_node, BINFO_OFFSET (binfo)),
490 v_offset);
491 else
492 offset = v_offset;
493 }
494
495 if (want_pointer)
496 target_type = ptr_target_type;
497
498 expr = build1 (NOP_EXPR, ptr_target_type, expr);
499
500 if (!integer_zerop (offset))
501 {
502 offset = fold_convert (sizetype, offset);
503 if (code == MINUS_EXPR)
504 offset = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, offset);
505 expr = fold_build_pointer_plus (expr, offset);
506 }
507 else
508 null_test = NULL;
509
510 indout:
511 if (!want_pointer)
512 {
513 expr = cp_build_fold_indirect_ref (expr);
514 if (rvalue)
515 expr = move (expr);
516 }
517
518 out:
519 if (null_test)
520 expr = fold_build3_loc (input_location, COND_EXPR, target_type, null_test, expr,
521 build_zero_cst (target_type));
522
523 return expr;
524 }
525
526 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
527 Perform a derived-to-base conversion by recursively building up a
528 sequence of COMPONENT_REFs to the appropriate base fields. */
529
530 static tree
531 build_simple_base_path (tree expr, tree binfo)
532 {
533 tree type = BINFO_TYPE (binfo);
534 tree d_binfo = BINFO_INHERITANCE_CHAIN (binfo);
535 tree field;
536
537 if (d_binfo == NULL_TREE)
538 {
539 tree temp;
540
541 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr)) == type);
542
543 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
544 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
545 an lvalue in the front end; only _DECLs and _REFs are lvalues
546 in the back end. */
547 temp = unary_complex_lvalue (ADDR_EXPR, expr);
548 if (temp)
549 expr = cp_build_fold_indirect_ref (temp);
550
551 return expr;
552 }
553
554 /* Recurse. */
555 expr = build_simple_base_path (expr, d_binfo);
556
557 for (field = TYPE_FIELDS (BINFO_TYPE (d_binfo));
558 field; field = DECL_CHAIN (field))
559 /* Is this the base field created by build_base_field? */
560 if (TREE_CODE (field) == FIELD_DECL
561 && DECL_FIELD_IS_BASE (field)
562 && TREE_TYPE (field) == type
563 /* If we're looking for a field in the most-derived class,
564 also check the field offset; we can have two base fields
565 of the same type if one is an indirect virtual base and one
566 is a direct non-virtual base. */
567 && (BINFO_INHERITANCE_CHAIN (d_binfo)
568 || tree_int_cst_equal (byte_position (field),
569 BINFO_OFFSET (binfo))))
570 {
571 /* We don't use build_class_member_access_expr here, as that
572 has unnecessary checks, and more importantly results in
573 recursive calls to dfs_walk_once. */
574 int type_quals = cp_type_quals (TREE_TYPE (expr));
575
576 expr = build3 (COMPONENT_REF,
577 cp_build_qualified_type (type, type_quals),
578 expr, field, NULL_TREE);
579 /* Mark the expression const or volatile, as appropriate.
580 Even though we've dealt with the type above, we still have
581 to mark the expression itself. */
582 if (type_quals & TYPE_QUAL_CONST)
583 TREE_READONLY (expr) = 1;
584 if (type_quals & TYPE_QUAL_VOLATILE)
585 TREE_THIS_VOLATILE (expr) = 1;
586
587 return expr;
588 }
589
590 /* Didn't find the base field?!? */
591 gcc_unreachable ();
592 }
593
594 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
595 type is a class type or a pointer to a class type. In the former
596 case, TYPE is also a class type; in the latter it is another
597 pointer type. If CHECK_ACCESS is true, an error message is emitted
598 if TYPE is inaccessible. If OBJECT has pointer type, the value is
599 assumed to be non-NULL. */
600
601 tree
602 convert_to_base (tree object, tree type, bool check_access, bool nonnull,
603 tsubst_flags_t complain)
604 {
605 tree binfo;
606 tree object_type;
607
608 if (TYPE_PTR_P (TREE_TYPE (object)))
609 {
610 object_type = TREE_TYPE (TREE_TYPE (object));
611 type = TREE_TYPE (type);
612 }
613 else
614 object_type = TREE_TYPE (object);
615
616 binfo = lookup_base (object_type, type, check_access ? ba_check : ba_unique,
617 NULL, complain);
618 if (!binfo || binfo == error_mark_node)
619 return error_mark_node;
620
621 return build_base_path (PLUS_EXPR, object, binfo, nonnull, complain);
622 }
623
624 /* EXPR is an expression with unqualified class type. BASE is a base
625 binfo of that class type. Returns EXPR, converted to the BASE
626 type. This function assumes that EXPR is the most derived class;
627 therefore virtual bases can be found at their static offsets. */
628
629 tree
630 convert_to_base_statically (tree expr, tree base)
631 {
632 tree expr_type;
633
634 expr_type = TREE_TYPE (expr);
635 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base), expr_type))
636 {
637 /* If this is a non-empty base, use a COMPONENT_REF. */
638 if (!is_empty_class (BINFO_TYPE (base)))
639 return build_simple_base_path (expr, base);
640
641 /* We use fold_build2 and fold_convert below to simplify the trees
642 provided to the optimizers. It is not safe to call these functions
643 when processing a template because they do not handle C++-specific
644 trees. */
645 gcc_assert (!processing_template_decl);
646 expr = cp_build_addr_expr (expr, tf_warning_or_error);
647 if (!integer_zerop (BINFO_OFFSET (base)))
648 expr = fold_build_pointer_plus_loc (input_location,
649 expr, BINFO_OFFSET (base));
650 expr = fold_convert (build_pointer_type (BINFO_TYPE (base)), expr);
651 expr = build_fold_indirect_ref_loc (input_location, expr);
652 }
653
654 return expr;
655 }
656
657 \f
658 tree
659 build_vfield_ref (tree datum, tree type)
660 {
661 tree vfield, vcontext;
662
663 if (datum == error_mark_node
664 /* Can happen in case of duplicate base types (c++/59082). */
665 || !TYPE_VFIELD (type))
666 return error_mark_node;
667
668 /* First, convert to the requested type. */
669 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum), type))
670 datum = convert_to_base (datum, type, /*check_access=*/false,
671 /*nonnull=*/true, tf_warning_or_error);
672
673 /* Second, the requested type may not be the owner of its own vptr.
674 If not, convert to the base class that owns it. We cannot use
675 convert_to_base here, because VCONTEXT may appear more than once
676 in the inheritance hierarchy of TYPE, and thus direct conversion
677 between the types may be ambiguous. Following the path back up
678 one step at a time via primary bases avoids the problem. */
679 vfield = TYPE_VFIELD (type);
680 vcontext = DECL_CONTEXT (vfield);
681 while (!same_type_ignoring_top_level_qualifiers_p (vcontext, type))
682 {
683 datum = build_simple_base_path (datum, CLASSTYPE_PRIMARY_BINFO (type));
684 type = TREE_TYPE (datum);
685 }
686
687 return build3 (COMPONENT_REF, TREE_TYPE (vfield), datum, vfield, NULL_TREE);
688 }
689
690 /* Given an object INSTANCE, return an expression which yields the
691 vtable element corresponding to INDEX. There are many special
692 cases for INSTANCE which we take care of here, mainly to avoid
693 creating extra tree nodes when we don't have to. */
694
695 tree
696 build_vtbl_ref (tree instance, tree idx)
697 {
698 tree aref;
699 tree vtbl = NULL_TREE;
700
701 /* Try to figure out what a reference refers to, and
702 access its virtual function table directly. */
703
704 int cdtorp = 0;
705 tree fixed_type = fixed_type_or_null (instance, NULL, &cdtorp);
706
707 tree basetype = non_reference (TREE_TYPE (instance));
708
709 if (fixed_type && !cdtorp)
710 {
711 tree binfo = lookup_base (fixed_type, basetype,
712 ba_unique, NULL, tf_none);
713 if (binfo && binfo != error_mark_node)
714 vtbl = unshare_expr (BINFO_VTABLE (binfo));
715 }
716
717 if (!vtbl)
718 vtbl = build_vfield_ref (instance, basetype);
719
720 aref = build_array_ref (input_location, vtbl, idx);
721 TREE_CONSTANT (aref) |= TREE_CONSTANT (vtbl) && TREE_CONSTANT (idx);
722
723 return aref;
724 }
725
726 /* Given a stable object pointer INSTANCE_PTR, return an expression which
727 yields a function pointer corresponding to vtable element INDEX. */
728
729 tree
730 build_vfn_ref (tree instance_ptr, tree idx)
731 {
732 tree aref;
733
734 aref = build_vtbl_ref (cp_build_fold_indirect_ref (instance_ptr), idx);
735
736 /* When using function descriptors, the address of the
737 vtable entry is treated as a function pointer. */
738 if (TARGET_VTABLE_USES_DESCRIPTORS)
739 aref = build1 (NOP_EXPR, TREE_TYPE (aref),
740 cp_build_addr_expr (aref, tf_warning_or_error));
741
742 /* Remember this as a method reference, for later devirtualization. */
743 aref = build3 (OBJ_TYPE_REF, TREE_TYPE (aref), aref, instance_ptr, idx);
744
745 return aref;
746 }
747
748 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
749 for the given TYPE. */
750
751 static tree
752 get_vtable_name (tree type)
753 {
754 return mangle_vtbl_for_type (type);
755 }
756
757 /* DECL is an entity associated with TYPE, like a virtual table or an
758 implicitly generated constructor. Determine whether or not DECL
759 should have external or internal linkage at the object file
760 level. This routine does not deal with COMDAT linkage and other
761 similar complexities; it simply sets TREE_PUBLIC if it possible for
762 entities in other translation units to contain copies of DECL, in
763 the abstract. */
764
765 void
766 set_linkage_according_to_type (tree /*type*/, tree decl)
767 {
768 TREE_PUBLIC (decl) = 1;
769 determine_visibility (decl);
770 }
771
772 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
773 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
774 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
775
776 static tree
777 build_vtable (tree class_type, tree name, tree vtable_type)
778 {
779 tree decl;
780
781 decl = build_lang_decl (VAR_DECL, name, vtable_type);
782 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
783 now to avoid confusion in mangle_decl. */
784 SET_DECL_ASSEMBLER_NAME (decl, name);
785 DECL_CONTEXT (decl) = class_type;
786 DECL_ARTIFICIAL (decl) = 1;
787 TREE_STATIC (decl) = 1;
788 TREE_READONLY (decl) = 1;
789 DECL_VIRTUAL_P (decl) = 1;
790 SET_DECL_ALIGN (decl, TARGET_VTABLE_ENTRY_ALIGN);
791 DECL_USER_ALIGN (decl) = true;
792 DECL_VTABLE_OR_VTT_P (decl) = 1;
793 set_linkage_according_to_type (class_type, decl);
794 /* The vtable has not been defined -- yet. */
795 DECL_EXTERNAL (decl) = 1;
796 DECL_NOT_REALLY_EXTERN (decl) = 1;
797
798 /* Mark the VAR_DECL node representing the vtable itself as a
799 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
800 is rather important that such things be ignored because any
801 effort to actually generate DWARF for them will run into
802 trouble when/if we encounter code like:
803
804 #pragma interface
805 struct S { virtual void member (); };
806
807 because the artificial declaration of the vtable itself (as
808 manufactured by the g++ front end) will say that the vtable is
809 a static member of `S' but only *after* the debug output for
810 the definition of `S' has already been output. This causes
811 grief because the DWARF entry for the definition of the vtable
812 will try to refer back to an earlier *declaration* of the
813 vtable as a static member of `S' and there won't be one. We
814 might be able to arrange to have the "vtable static member"
815 attached to the member list for `S' before the debug info for
816 `S' get written (which would solve the problem) but that would
817 require more intrusive changes to the g++ front end. */
818 DECL_IGNORED_P (decl) = 1;
819
820 return decl;
821 }
822
823 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
824 or even complete. If this does not exist, create it. If COMPLETE is
825 nonzero, then complete the definition of it -- that will render it
826 impossible to actually build the vtable, but is useful to get at those
827 which are known to exist in the runtime. */
828
829 tree
830 get_vtable_decl (tree type, int complete)
831 {
832 tree decl;
833
834 if (CLASSTYPE_VTABLES (type))
835 return CLASSTYPE_VTABLES (type);
836
837 decl = build_vtable (type, get_vtable_name (type), vtbl_type_node);
838 CLASSTYPE_VTABLES (type) = decl;
839
840 if (complete)
841 {
842 DECL_EXTERNAL (decl) = 1;
843 cp_finish_decl (decl, NULL_TREE, false, NULL_TREE, 0);
844 }
845
846 return decl;
847 }
848
849 /* Build the primary virtual function table for TYPE. If BINFO is
850 non-NULL, build the vtable starting with the initial approximation
851 that it is the same as the one which is the head of the association
852 list. Returns a nonzero value if a new vtable is actually
853 created. */
854
855 static int
856 build_primary_vtable (tree binfo, tree type)
857 {
858 tree decl;
859 tree virtuals;
860
861 decl = get_vtable_decl (type, /*complete=*/0);
862
863 if (binfo)
864 {
865 if (BINFO_NEW_VTABLE_MARKED (binfo))
866 /* We have already created a vtable for this base, so there's
867 no need to do it again. */
868 return 0;
869
870 virtuals = copy_list (BINFO_VIRTUALS (binfo));
871 TREE_TYPE (decl) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo));
872 DECL_SIZE (decl) = TYPE_SIZE (TREE_TYPE (decl));
873 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (TREE_TYPE (decl));
874 }
875 else
876 {
877 gcc_assert (TREE_TYPE (decl) == vtbl_type_node);
878 virtuals = NULL_TREE;
879 }
880
881 /* Initialize the association list for this type, based
882 on our first approximation. */
883 BINFO_VTABLE (TYPE_BINFO (type)) = decl;
884 BINFO_VIRTUALS (TYPE_BINFO (type)) = virtuals;
885 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type));
886 return 1;
887 }
888
889 /* Give BINFO a new virtual function table which is initialized
890 with a skeleton-copy of its original initialization. The only
891 entry that changes is the `delta' entry, so we can really
892 share a lot of structure.
893
894 FOR_TYPE is the most derived type which caused this table to
895 be needed.
896
897 Returns nonzero if we haven't met BINFO before.
898
899 The order in which vtables are built (by calling this function) for
900 an object must remain the same, otherwise a binary incompatibility
901 can result. */
902
903 static int
904 build_secondary_vtable (tree binfo)
905 {
906 if (BINFO_NEW_VTABLE_MARKED (binfo))
907 /* We already created a vtable for this base. There's no need to
908 do it again. */
909 return 0;
910
911 /* Remember that we've created a vtable for this BINFO, so that we
912 don't try to do so again. */
913 SET_BINFO_NEW_VTABLE_MARKED (binfo);
914
915 /* Make fresh virtual list, so we can smash it later. */
916 BINFO_VIRTUALS (binfo) = copy_list (BINFO_VIRTUALS (binfo));
917
918 /* Secondary vtables are laid out as part of the same structure as
919 the primary vtable. */
920 BINFO_VTABLE (binfo) = NULL_TREE;
921 return 1;
922 }
923
924 /* Create a new vtable for BINFO which is the hierarchy dominated by
925 T. Return nonzero if we actually created a new vtable. */
926
927 static int
928 make_new_vtable (tree t, tree binfo)
929 {
930 if (binfo == TYPE_BINFO (t))
931 /* In this case, it is *type*'s vtable we are modifying. We start
932 with the approximation that its vtable is that of the
933 immediate base class. */
934 return build_primary_vtable (binfo, t);
935 else
936 /* This is our very own copy of `basetype' to play with. Later,
937 we will fill in all the virtual functions that override the
938 virtual functions in these base classes which are not defined
939 by the current type. */
940 return build_secondary_vtable (binfo);
941 }
942
943 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
944 (which is in the hierarchy dominated by T) list FNDECL as its
945 BV_FN. DELTA is the required constant adjustment from the `this'
946 pointer where the vtable entry appears to the `this' required when
947 the function is actually called. */
948
949 static void
950 modify_vtable_entry (tree t,
951 tree binfo,
952 tree fndecl,
953 tree delta,
954 tree *virtuals)
955 {
956 tree v;
957
958 v = *virtuals;
959
960 if (fndecl != BV_FN (v)
961 || !tree_int_cst_equal (delta, BV_DELTA (v)))
962 {
963 /* We need a new vtable for BINFO. */
964 if (make_new_vtable (t, binfo))
965 {
966 /* If we really did make a new vtable, we also made a copy
967 of the BINFO_VIRTUALS list. Now, we have to find the
968 corresponding entry in that list. */
969 *virtuals = BINFO_VIRTUALS (binfo);
970 while (BV_FN (*virtuals) != BV_FN (v))
971 *virtuals = TREE_CHAIN (*virtuals);
972 v = *virtuals;
973 }
974
975 BV_DELTA (v) = delta;
976 BV_VCALL_INDEX (v) = NULL_TREE;
977 BV_FN (v) = fndecl;
978 }
979 }
980
981 \f
982 /* Add method METHOD to class TYPE. If VIA_USING indicates whether
983 METHOD is being injected via a using_decl. Returns true if the
984 method could be added to the method vec. */
985
986 bool
987 add_method (tree type, tree method, bool via_using)
988 {
989 if (method == error_mark_node)
990 return false;
991
992 gcc_assert (!DECL_EXTERN_C_P (method));
993
994 tree *slot = find_member_slot (type, DECL_NAME (method));
995 tree current_fns = slot ? *slot : NULL_TREE;
996
997 /* Check to see if we've already got this method. */
998 for (ovl_iterator iter (current_fns); iter; ++iter)
999 {
1000 tree fn = *iter;
1001 tree fn_type;
1002 tree method_type;
1003 tree parms1;
1004 tree parms2;
1005
1006 if (TREE_CODE (fn) != TREE_CODE (method))
1007 continue;
1008
1009 /* Two using-declarations can coexist, we'll complain about ambiguity in
1010 overload resolution. */
1011 if (via_using && iter.using_p ()
1012 /* Except handle inherited constructors specially. */
1013 && ! DECL_CONSTRUCTOR_P (fn))
1014 continue;
1015
1016 /* [over.load] Member function declarations with the
1017 same name and the same parameter types cannot be
1018 overloaded if any of them is a static member
1019 function declaration.
1020
1021 [over.load] Member function declarations with the same name and
1022 the same parameter-type-list as well as member function template
1023 declarations with the same name, the same parameter-type-list, and
1024 the same template parameter lists cannot be overloaded if any of
1025 them, but not all, have a ref-qualifier.
1026
1027 [namespace.udecl] When a using-declaration brings names
1028 from a base class into a derived class scope, member
1029 functions in the derived class override and/or hide member
1030 functions with the same name and parameter types in a base
1031 class (rather than conflicting). */
1032 fn_type = TREE_TYPE (fn);
1033 method_type = TREE_TYPE (method);
1034 parms1 = TYPE_ARG_TYPES (fn_type);
1035 parms2 = TYPE_ARG_TYPES (method_type);
1036
1037 /* Compare the quals on the 'this' parm. Don't compare
1038 the whole types, as used functions are treated as
1039 coming from the using class in overload resolution. */
1040 if (! DECL_STATIC_FUNCTION_P (fn)
1041 && ! DECL_STATIC_FUNCTION_P (method)
1042 /* Either both or neither need to be ref-qualified for
1043 differing quals to allow overloading. */
1044 && (FUNCTION_REF_QUALIFIED (fn_type)
1045 == FUNCTION_REF_QUALIFIED (method_type))
1046 && (type_memfn_quals (fn_type) != type_memfn_quals (method_type)
1047 || type_memfn_rqual (fn_type) != type_memfn_rqual (method_type)))
1048 continue;
1049
1050 /* For templates, the return type and template parameters
1051 must be identical. */
1052 if (TREE_CODE (fn) == TEMPLATE_DECL
1053 && (!same_type_p (TREE_TYPE (fn_type),
1054 TREE_TYPE (method_type))
1055 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn),
1056 DECL_TEMPLATE_PARMS (method))))
1057 continue;
1058
1059 if (! DECL_STATIC_FUNCTION_P (fn))
1060 parms1 = TREE_CHAIN (parms1);
1061 if (! DECL_STATIC_FUNCTION_P (method))
1062 parms2 = TREE_CHAIN (parms2);
1063
1064 /* Bring back parameters omitted from an inherited ctor. */
1065 if (ctor_omit_inherited_parms (fn))
1066 parms1 = FUNCTION_FIRST_USER_PARMTYPE (DECL_ORIGIN (fn));
1067 if (ctor_omit_inherited_parms (method))
1068 parms2 = FUNCTION_FIRST_USER_PARMTYPE (DECL_ORIGIN (method));
1069
1070 if (compparms (parms1, parms2)
1071 && (!DECL_CONV_FN_P (fn)
1072 || same_type_p (TREE_TYPE (fn_type),
1073 TREE_TYPE (method_type)))
1074 && equivalently_constrained (fn, method))
1075 {
1076 /* If these are versions of the same function, process and
1077 move on. */
1078 if (TREE_CODE (fn) == FUNCTION_DECL
1079 && maybe_version_functions (method, fn, true))
1080 continue;
1081
1082 if (DECL_INHERITED_CTOR (method))
1083 {
1084 if (DECL_INHERITED_CTOR (fn))
1085 {
1086 tree basem = DECL_INHERITED_CTOR_BASE (method);
1087 tree basef = DECL_INHERITED_CTOR_BASE (fn);
1088 if (flag_new_inheriting_ctors)
1089 {
1090 if (basem == basef)
1091 {
1092 /* Inheriting the same constructor along different
1093 paths, combine them. */
1094 SET_DECL_INHERITED_CTOR
1095 (fn, ovl_make (DECL_INHERITED_CTOR (method),
1096 DECL_INHERITED_CTOR (fn)));
1097 /* And discard the new one. */
1098 return false;
1099 }
1100 else
1101 /* Inherited ctors can coexist until overload
1102 resolution. */
1103 continue;
1104 }
1105 error_at (DECL_SOURCE_LOCATION (method),
1106 "%q#D conflicts with version inherited from %qT",
1107 method, basef);
1108 inform (DECL_SOURCE_LOCATION (fn),
1109 "version inherited from %qT declared here",
1110 basef);
1111 }
1112 /* Otherwise defer to the other function. */
1113 return false;
1114 }
1115
1116 if (via_using)
1117 /* Defer to the local function. */
1118 return false;
1119 else if (flag_new_inheriting_ctors
1120 && DECL_INHERITED_CTOR (fn))
1121 {
1122 /* Remove the inherited constructor. */
1123 current_fns = iter.remove_node (current_fns);
1124 continue;
1125 }
1126 else
1127 {
1128 error_at (DECL_SOURCE_LOCATION (method),
1129 "%q#D cannot be overloaded with %q#D", method, fn);
1130 inform (DECL_SOURCE_LOCATION (fn),
1131 "previous declaration %q#D", fn);
1132 return false;
1133 }
1134 }
1135 }
1136
1137 current_fns = ovl_insert (method, current_fns, via_using);
1138
1139 if (!COMPLETE_TYPE_P (type) && !DECL_CONV_FN_P (method)
1140 && !push_class_level_binding (DECL_NAME (method), current_fns))
1141 return false;
1142
1143 if (!slot)
1144 slot = add_member_slot (type, DECL_NAME (method));
1145
1146 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
1147 grok_special_member_properties (method);
1148
1149 *slot = current_fns;
1150
1151 return true;
1152 }
1153
1154 /* Subroutines of finish_struct. */
1155
1156 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1157 legit, otherwise return 0. */
1158
1159 static int
1160 alter_access (tree t, tree fdecl, tree access)
1161 {
1162 tree elem;
1163
1164 retrofit_lang_decl (fdecl);
1165
1166 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl));
1167
1168 elem = purpose_member (t, DECL_ACCESS (fdecl));
1169 if (elem)
1170 {
1171 if (TREE_VALUE (elem) != access)
1172 {
1173 if (TREE_CODE (TREE_TYPE (fdecl)) == FUNCTION_DECL)
1174 error ("conflicting access specifications for method"
1175 " %q+D, ignored", TREE_TYPE (fdecl));
1176 else
1177 error ("conflicting access specifications for field %qE, ignored",
1178 DECL_NAME (fdecl));
1179 }
1180 else
1181 {
1182 /* They're changing the access to the same thing they changed
1183 it to before. That's OK. */
1184 ;
1185 }
1186 }
1187 else
1188 {
1189 perform_or_defer_access_check (TYPE_BINFO (t), fdecl, fdecl,
1190 tf_warning_or_error);
1191 DECL_ACCESS (fdecl) = tree_cons (t, access, DECL_ACCESS (fdecl));
1192 return 1;
1193 }
1194 return 0;
1195 }
1196
1197 /* Return the access node for DECL's access in its enclosing class. */
1198
1199 tree
1200 declared_access (tree decl)
1201 {
1202 return (TREE_PRIVATE (decl) ? access_private_node
1203 : TREE_PROTECTED (decl) ? access_protected_node
1204 : access_public_node);
1205 }
1206
1207 /* Process the USING_DECL, which is a member of T. */
1208
1209 static void
1210 handle_using_decl (tree using_decl, tree t)
1211 {
1212 tree decl = USING_DECL_DECLS (using_decl);
1213 tree name = DECL_NAME (using_decl);
1214 tree access = declared_access (using_decl);
1215 tree flist = NULL_TREE;
1216 tree old_value;
1217
1218 gcc_assert (!processing_template_decl && decl);
1219
1220 old_value = lookup_member (t, name, /*protect=*/0, /*want_type=*/false,
1221 tf_warning_or_error);
1222 if (old_value)
1223 {
1224 old_value = OVL_FIRST (old_value);
1225
1226 if (DECL_P (old_value) && DECL_CONTEXT (old_value) == t)
1227 /* OK */;
1228 else
1229 old_value = NULL_TREE;
1230 }
1231
1232 cp_emit_debug_info_for_using (decl, t);
1233
1234 if (is_overloaded_fn (decl))
1235 flist = decl;
1236
1237 if (! old_value)
1238 ;
1239 else if (is_overloaded_fn (old_value))
1240 {
1241 if (flist)
1242 /* It's OK to use functions from a base when there are functions with
1243 the same name already present in the current class. */;
1244 else
1245 {
1246 error_at (DECL_SOURCE_LOCATION (using_decl), "%qD invalid in %q#T "
1247 "because of local method %q#D with same name",
1248 using_decl, t, old_value);
1249 inform (DECL_SOURCE_LOCATION (old_value),
1250 "local method %q#D declared here", old_value);
1251 return;
1252 }
1253 }
1254 else if (!DECL_ARTIFICIAL (old_value))
1255 {
1256 error_at (DECL_SOURCE_LOCATION (using_decl), "%qD invalid in %q#T "
1257 "because of local member %q#D with same name",
1258 using_decl, t, old_value);
1259 inform (DECL_SOURCE_LOCATION (old_value),
1260 "local member %q#D declared here", old_value);
1261 return;
1262 }
1263
1264 /* Make type T see field decl FDECL with access ACCESS. */
1265 if (flist)
1266 for (ovl_iterator iter (flist); iter; ++iter)
1267 {
1268 add_method (t, *iter, true);
1269 alter_access (t, *iter, access);
1270 }
1271 else
1272 alter_access (t, decl, access);
1273 }
1274 \f
1275 /* Data structure for find_abi_tags_r, below. */
1276
1277 struct abi_tag_data
1278 {
1279 tree t; // The type that we're checking for missing tags.
1280 tree subob; // The subobject of T that we're getting tags from.
1281 tree tags; // error_mark_node for diagnostics, or a list of missing tags.
1282 };
1283
1284 /* Subroutine of find_abi_tags_r. Handle a single TAG found on the class TP
1285 in the context of P. TAG can be either an identifier (the DECL_NAME of
1286 a tag NAMESPACE_DECL) or a STRING_CST (a tag attribute). */
1287
1288 static void
1289 check_tag (tree tag, tree id, tree *tp, abi_tag_data *p)
1290 {
1291 if (!IDENTIFIER_MARKED (id))
1292 {
1293 if (p->tags != error_mark_node)
1294 {
1295 /* We're collecting tags from template arguments or from
1296 the type of a variable or function return type. */
1297 p->tags = tree_cons (NULL_TREE, tag, p->tags);
1298
1299 /* Don't inherit this tag multiple times. */
1300 IDENTIFIER_MARKED (id) = true;
1301
1302 if (TYPE_P (p->t))
1303 {
1304 /* Tags inherited from type template arguments are only used
1305 to avoid warnings. */
1306 ABI_TAG_IMPLICIT (p->tags) = true;
1307 return;
1308 }
1309 /* For functions and variables we want to warn, too. */
1310 }
1311
1312 /* Otherwise we're diagnosing missing tags. */
1313 if (TREE_CODE (p->t) == FUNCTION_DECL)
1314 {
1315 auto_diagnostic_group d;
1316 if (warning (OPT_Wabi_tag, "%qD inherits the %E ABI tag "
1317 "that %qT (used in its return type) has",
1318 p->t, tag, *tp))
1319 inform (location_of (*tp), "%qT declared here", *tp);
1320 }
1321 else if (VAR_P (p->t))
1322 {
1323 auto_diagnostic_group d;
1324 if (warning (OPT_Wabi_tag, "%qD inherits the %E ABI tag "
1325 "that %qT (used in its type) has", p->t, tag, *tp))
1326 inform (location_of (*tp), "%qT declared here", *tp);
1327 }
1328 else if (TYPE_P (p->subob))
1329 {
1330 auto_diagnostic_group d;
1331 if (warning (OPT_Wabi_tag, "%qT does not have the %E ABI tag "
1332 "that base %qT has", p->t, tag, p->subob))
1333 inform (location_of (p->subob), "%qT declared here",
1334 p->subob);
1335 }
1336 else
1337 {
1338 auto_diagnostic_group d;
1339 if (warning (OPT_Wabi_tag, "%qT does not have the %E ABI tag "
1340 "that %qT (used in the type of %qD) has",
1341 p->t, tag, *tp, p->subob))
1342 {
1343 inform (location_of (p->subob), "%qD declared here",
1344 p->subob);
1345 inform (location_of (*tp), "%qT declared here", *tp);
1346 }
1347 }
1348 }
1349 }
1350
1351 /* Find all the ABI tags in the attribute list ATTR and either call
1352 check_tag (if TP is non-null) or set IDENTIFIER_MARKED to val. */
1353
1354 static void
1355 mark_or_check_attr_tags (tree attr, tree *tp, abi_tag_data *p, bool val)
1356 {
1357 if (!attr)
1358 return;
1359 for (; (attr = lookup_attribute ("abi_tag", attr));
1360 attr = TREE_CHAIN (attr))
1361 for (tree list = TREE_VALUE (attr); list;
1362 list = TREE_CHAIN (list))
1363 {
1364 tree tag = TREE_VALUE (list);
1365 tree id = get_identifier (TREE_STRING_POINTER (tag));
1366 if (tp)
1367 check_tag (tag, id, tp, p);
1368 else
1369 IDENTIFIER_MARKED (id) = val;
1370 }
1371 }
1372
1373 /* Find all the ABI tags on T and its enclosing scopes and either call
1374 check_tag (if TP is non-null) or set IDENTIFIER_MARKED to val. */
1375
1376 static void
1377 mark_or_check_tags (tree t, tree *tp, abi_tag_data *p, bool val)
1378 {
1379 while (t != global_namespace)
1380 {
1381 tree attr;
1382 if (TYPE_P (t))
1383 {
1384 attr = TYPE_ATTRIBUTES (t);
1385 t = CP_TYPE_CONTEXT (t);
1386 }
1387 else
1388 {
1389 attr = DECL_ATTRIBUTES (t);
1390 t = CP_DECL_CONTEXT (t);
1391 }
1392 mark_or_check_attr_tags (attr, tp, p, val);
1393 }
1394 }
1395
1396 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1397 types with ABI tags, add the corresponding identifiers to the VEC in
1398 *DATA and set IDENTIFIER_MARKED. */
1399
1400 static tree
1401 find_abi_tags_r (tree *tp, int *walk_subtrees, void *data)
1402 {
1403 if (!OVERLOAD_TYPE_P (*tp))
1404 return NULL_TREE;
1405
1406 /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1407 anyway, but let's make sure of it. */
1408 *walk_subtrees = false;
1409
1410 abi_tag_data *p = static_cast<struct abi_tag_data*>(data);
1411
1412 mark_or_check_tags (*tp, tp, p, false);
1413
1414 return NULL_TREE;
1415 }
1416
1417 /* walk_tree callback for mark_abi_tags: if *TP is a class, set
1418 IDENTIFIER_MARKED on its ABI tags. */
1419
1420 static tree
1421 mark_abi_tags_r (tree *tp, int *walk_subtrees, void *data)
1422 {
1423 if (!OVERLOAD_TYPE_P (*tp))
1424 return NULL_TREE;
1425
1426 /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1427 anyway, but let's make sure of it. */
1428 *walk_subtrees = false;
1429
1430 bool *valp = static_cast<bool*>(data);
1431
1432 mark_or_check_tags (*tp, NULL, NULL, *valp);
1433
1434 return NULL_TREE;
1435 }
1436
1437 /* Set IDENTIFIER_MARKED on all the ABI tags on T and its enclosing
1438 scopes. */
1439
1440 static void
1441 mark_abi_tags (tree t, bool val)
1442 {
1443 mark_or_check_tags (t, NULL, NULL, val);
1444 if (DECL_P (t))
1445 {
1446 if (DECL_LANG_SPECIFIC (t) && DECL_USE_TEMPLATE (t)
1447 && PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (t)))
1448 {
1449 /* Template arguments are part of the signature. */
1450 tree level = INNERMOST_TEMPLATE_ARGS (DECL_TI_ARGS (t));
1451 for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
1452 {
1453 tree arg = TREE_VEC_ELT (level, j);
1454 cp_walk_tree_without_duplicates (&arg, mark_abi_tags_r, &val);
1455 }
1456 }
1457 if (TREE_CODE (t) == FUNCTION_DECL)
1458 /* A function's parameter types are part of the signature, so
1459 we don't need to inherit any tags that are also in them. */
1460 for (tree arg = FUNCTION_FIRST_USER_PARMTYPE (t); arg;
1461 arg = TREE_CHAIN (arg))
1462 cp_walk_tree_without_duplicates (&TREE_VALUE (arg),
1463 mark_abi_tags_r, &val);
1464 }
1465 }
1466
1467 /* Check that T has all the ABI tags that subobject SUBOB has, or
1468 warn if not. If T is a (variable or function) declaration, also
1469 return any missing tags, and add them to T if JUST_CHECKING is false. */
1470
1471 static tree
1472 check_abi_tags (tree t, tree subob, bool just_checking = false)
1473 {
1474 bool inherit = DECL_P (t);
1475
1476 if (!inherit && !warn_abi_tag)
1477 return NULL_TREE;
1478
1479 tree decl = TYPE_P (t) ? TYPE_NAME (t) : t;
1480 if (!TREE_PUBLIC (decl))
1481 /* No need to worry about things local to this TU. */
1482 return NULL_TREE;
1483
1484 mark_abi_tags (t, true);
1485
1486 tree subtype = TYPE_P (subob) ? subob : TREE_TYPE (subob);
1487 struct abi_tag_data data = { t, subob, error_mark_node };
1488 if (inherit)
1489 data.tags = NULL_TREE;
1490
1491 cp_walk_tree_without_duplicates (&subtype, find_abi_tags_r, &data);
1492
1493 if (!(inherit && data.tags))
1494 /* We don't need to do anything with data.tags. */;
1495 else if (just_checking)
1496 for (tree t = data.tags; t; t = TREE_CHAIN (t))
1497 {
1498 tree id = get_identifier (TREE_STRING_POINTER (TREE_VALUE (t)));
1499 IDENTIFIER_MARKED (id) = false;
1500 }
1501 else
1502 {
1503 tree attr = lookup_attribute ("abi_tag", DECL_ATTRIBUTES (t));
1504 if (attr)
1505 TREE_VALUE (attr) = chainon (data.tags, TREE_VALUE (attr));
1506 else
1507 DECL_ATTRIBUTES (t)
1508 = tree_cons (abi_tag_identifier, data.tags, DECL_ATTRIBUTES (t));
1509 }
1510
1511 mark_abi_tags (t, false);
1512
1513 return data.tags;
1514 }
1515
1516 /* Check that DECL has all the ABI tags that are used in parts of its type
1517 that are not reflected in its mangled name. */
1518
1519 void
1520 check_abi_tags (tree decl)
1521 {
1522 if (VAR_P (decl))
1523 check_abi_tags (decl, TREE_TYPE (decl));
1524 else if (TREE_CODE (decl) == FUNCTION_DECL
1525 && !DECL_CONV_FN_P (decl)
1526 && !mangle_return_type_p (decl))
1527 check_abi_tags (decl, TREE_TYPE (TREE_TYPE (decl)));
1528 }
1529
1530 /* Return any ABI tags that are used in parts of the type of DECL
1531 that are not reflected in its mangled name. This function is only
1532 used in backward-compatible mangling for ABI <11. */
1533
1534 tree
1535 missing_abi_tags (tree decl)
1536 {
1537 if (VAR_P (decl))
1538 return check_abi_tags (decl, TREE_TYPE (decl), true);
1539 else if (TREE_CODE (decl) == FUNCTION_DECL
1540 /* Don't check DECL_CONV_FN_P here like we do in check_abi_tags, so
1541 that we can use this function for setting need_abi_warning
1542 regardless of the current flag_abi_version. */
1543 && !mangle_return_type_p (decl))
1544 return check_abi_tags (decl, TREE_TYPE (TREE_TYPE (decl)), true);
1545 else
1546 return NULL_TREE;
1547 }
1548
1549 void
1550 inherit_targ_abi_tags (tree t)
1551 {
1552 if (!CLASS_TYPE_P (t)
1553 || CLASSTYPE_TEMPLATE_INFO (t) == NULL_TREE)
1554 return;
1555
1556 mark_abi_tags (t, true);
1557
1558 tree args = CLASSTYPE_TI_ARGS (t);
1559 struct abi_tag_data data = { t, NULL_TREE, NULL_TREE };
1560 for (int i = 0; i < TMPL_ARGS_DEPTH (args); ++i)
1561 {
1562 tree level = TMPL_ARGS_LEVEL (args, i+1);
1563 for (int j = 0; j < TREE_VEC_LENGTH (level); ++j)
1564 {
1565 tree arg = TREE_VEC_ELT (level, j);
1566 data.subob = arg;
1567 cp_walk_tree_without_duplicates (&arg, find_abi_tags_r, &data);
1568 }
1569 }
1570
1571 // If we found some tags on our template arguments, add them to our
1572 // abi_tag attribute.
1573 if (data.tags)
1574 {
1575 tree attr = lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t));
1576 if (attr)
1577 TREE_VALUE (attr) = chainon (data.tags, TREE_VALUE (attr));
1578 else
1579 TYPE_ATTRIBUTES (t)
1580 = tree_cons (abi_tag_identifier, data.tags, TYPE_ATTRIBUTES (t));
1581 }
1582
1583 mark_abi_tags (t, false);
1584 }
1585
1586 /* Return true, iff class T has a non-virtual destructor that is
1587 accessible from outside the class heirarchy (i.e. is public, or
1588 there's a suitable friend. */
1589
1590 static bool
1591 accessible_nvdtor_p (tree t)
1592 {
1593 tree dtor = CLASSTYPE_DESTRUCTOR (t);
1594
1595 /* An implicitly declared destructor is always public. And,
1596 if it were virtual, we would have created it by now. */
1597 if (!dtor)
1598 return true;
1599
1600 if (DECL_VINDEX (dtor))
1601 return false; /* Virtual */
1602
1603 if (!TREE_PRIVATE (dtor) && !TREE_PROTECTED (dtor))
1604 return true; /* Public */
1605
1606 if (CLASSTYPE_FRIEND_CLASSES (t)
1607 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
1608 return true; /* Has friends */
1609
1610 return false;
1611 }
1612
1613 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1614 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1615 properties of the bases. */
1616
1617 static void
1618 check_bases (tree t,
1619 int* cant_have_const_ctor_p,
1620 int* no_const_asn_ref_p)
1621 {
1622 int i;
1623 bool seen_non_virtual_nearly_empty_base_p = 0;
1624 int seen_tm_mask = 0;
1625 tree base_binfo;
1626 tree binfo;
1627 tree field = NULL_TREE;
1628
1629 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1630 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
1631 if (TREE_CODE (field) == FIELD_DECL)
1632 break;
1633
1634 for (binfo = TYPE_BINFO (t), i = 0;
1635 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
1636 {
1637 tree basetype = TREE_TYPE (base_binfo);
1638
1639 gcc_assert (COMPLETE_TYPE_P (basetype));
1640
1641 if (CLASSTYPE_FINAL (basetype))
1642 error ("cannot derive from %<final%> base %qT in derived type %qT",
1643 basetype, t);
1644
1645 /* If any base class is non-literal, so is the derived class. */
1646 if (!CLASSTYPE_LITERAL_P (basetype))
1647 CLASSTYPE_LITERAL_P (t) = false;
1648
1649 /* If the base class doesn't have copy constructors or
1650 assignment operators that take const references, then the
1651 derived class cannot have such a member automatically
1652 generated. */
1653 if (TYPE_HAS_COPY_CTOR (basetype)
1654 && ! TYPE_HAS_CONST_COPY_CTOR (basetype))
1655 *cant_have_const_ctor_p = 1;
1656 if (TYPE_HAS_COPY_ASSIGN (basetype)
1657 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype))
1658 *no_const_asn_ref_p = 1;
1659
1660 if (BINFO_VIRTUAL_P (base_binfo))
1661 /* A virtual base does not effect nearly emptiness. */
1662 ;
1663 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype))
1664 {
1665 if (seen_non_virtual_nearly_empty_base_p)
1666 /* And if there is more than one nearly empty base, then the
1667 derived class is not nearly empty either. */
1668 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1669 else
1670 /* Remember we've seen one. */
1671 seen_non_virtual_nearly_empty_base_p = 1;
1672 }
1673 else if (!is_empty_class (basetype))
1674 /* If the base class is not empty or nearly empty, then this
1675 class cannot be nearly empty. */
1676 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
1677
1678 /* A lot of properties from the bases also apply to the derived
1679 class. */
1680 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (basetype);
1681 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1682 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype);
1683 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
1684 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype)
1685 || !TYPE_HAS_COPY_ASSIGN (basetype));
1686 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype)
1687 || !TYPE_HAS_COPY_CTOR (basetype));
1688 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
1689 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype);
1690 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype);
1691 TYPE_POLYMORPHIC_P (t) |= TYPE_POLYMORPHIC_P (basetype);
1692 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t)
1693 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype);
1694 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype)
1695 || TYPE_HAS_COMPLEX_DFLT (basetype));
1696 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT
1697 (t, CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
1698 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (basetype));
1699 SET_CLASSTYPE_REF_FIELDS_NEED_INIT
1700 (t, CLASSTYPE_REF_FIELDS_NEED_INIT (t)
1701 | CLASSTYPE_REF_FIELDS_NEED_INIT (basetype));
1702 if (TYPE_HAS_MUTABLE_P (basetype))
1703 CLASSTYPE_HAS_MUTABLE (t) = 1;
1704
1705 /* A standard-layout class is a class that:
1706 ...
1707 * has no non-standard-layout base classes, */
1708 CLASSTYPE_NON_STD_LAYOUT (t) |= CLASSTYPE_NON_STD_LAYOUT (basetype);
1709 if (!CLASSTYPE_NON_STD_LAYOUT (t))
1710 {
1711 tree basefield;
1712 /* ...has no base classes of the same type as the first non-static
1713 data member... */
1714 if (field && DECL_CONTEXT (field) == t
1715 && (same_type_ignoring_top_level_qualifiers_p
1716 (TREE_TYPE (field), basetype)))
1717 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1718 else
1719 /* ...either has no non-static data members in the most-derived
1720 class and at most one base class with non-static data
1721 members, or has no base classes with non-static data
1722 members */
1723 for (basefield = TYPE_FIELDS (basetype); basefield;
1724 basefield = DECL_CHAIN (basefield))
1725 if (TREE_CODE (basefield) == FIELD_DECL
1726 && !(DECL_FIELD_IS_BASE (basefield)
1727 && integer_zerop (DECL_SIZE (basefield))))
1728 {
1729 if (field)
1730 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
1731 else
1732 field = basefield;
1733 break;
1734 }
1735 }
1736
1737 /* Don't bother collecting tm attributes if transactional memory
1738 support is not enabled. */
1739 if (flag_tm)
1740 {
1741 tree tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (basetype));
1742 if (tm_attr)
1743 seen_tm_mask |= tm_attr_to_mask (tm_attr);
1744 }
1745
1746 check_abi_tags (t, basetype);
1747 }
1748
1749 /* If one of the base classes had TM attributes, and the current class
1750 doesn't define its own, then the current class inherits one. */
1751 if (seen_tm_mask && !find_tm_attribute (TYPE_ATTRIBUTES (t)))
1752 {
1753 tree tm_attr = tm_mask_to_attr (least_bit_hwi (seen_tm_mask));
1754 TYPE_ATTRIBUTES (t) = tree_cons (tm_attr, NULL, TYPE_ATTRIBUTES (t));
1755 }
1756 }
1757
1758 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1759 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1760 that have had a nearly-empty virtual primary base stolen by some
1761 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1762 T. */
1763
1764 static void
1765 determine_primary_bases (tree t)
1766 {
1767 unsigned i;
1768 tree primary = NULL_TREE;
1769 tree type_binfo = TYPE_BINFO (t);
1770 tree base_binfo;
1771
1772 /* Determine the primary bases of our bases. */
1773 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1774 base_binfo = TREE_CHAIN (base_binfo))
1775 {
1776 tree primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo));
1777
1778 /* See if we're the non-virtual primary of our inheritance
1779 chain. */
1780 if (!BINFO_VIRTUAL_P (base_binfo))
1781 {
1782 tree parent = BINFO_INHERITANCE_CHAIN (base_binfo);
1783 tree parent_primary = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent));
1784
1785 if (parent_primary
1786 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
1787 BINFO_TYPE (parent_primary)))
1788 /* We are the primary binfo. */
1789 BINFO_PRIMARY_P (base_binfo) = 1;
1790 }
1791 /* Determine if we have a virtual primary base, and mark it so.
1792 */
1793 if (primary && BINFO_VIRTUAL_P (primary))
1794 {
1795 tree this_primary = copied_binfo (primary, base_binfo);
1796
1797 if (BINFO_PRIMARY_P (this_primary))
1798 /* Someone already claimed this base. */
1799 BINFO_LOST_PRIMARY_P (base_binfo) = 1;
1800 else
1801 {
1802 tree delta;
1803
1804 BINFO_PRIMARY_P (this_primary) = 1;
1805 BINFO_INHERITANCE_CHAIN (this_primary) = base_binfo;
1806
1807 /* A virtual binfo might have been copied from within
1808 another hierarchy. As we're about to use it as a
1809 primary base, make sure the offsets match. */
1810 delta = size_diffop_loc (input_location,
1811 fold_convert (ssizetype,
1812 BINFO_OFFSET (base_binfo)),
1813 fold_convert (ssizetype,
1814 BINFO_OFFSET (this_primary)));
1815
1816 propagate_binfo_offsets (this_primary, delta);
1817 }
1818 }
1819 }
1820
1821 /* First look for a dynamic direct non-virtual base. */
1822 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, base_binfo); i++)
1823 {
1824 tree basetype = BINFO_TYPE (base_binfo);
1825
1826 if (TYPE_CONTAINS_VPTR_P (basetype) && !BINFO_VIRTUAL_P (base_binfo))
1827 {
1828 primary = base_binfo;
1829 goto found;
1830 }
1831 }
1832
1833 /* A "nearly-empty" virtual base class can be the primary base
1834 class, if no non-virtual polymorphic base can be found. Look for
1835 a nearly-empty virtual dynamic base that is not already a primary
1836 base of something in the hierarchy. If there is no such base,
1837 just pick the first nearly-empty virtual base. */
1838
1839 for (base_binfo = TREE_CHAIN (type_binfo); base_binfo;
1840 base_binfo = TREE_CHAIN (base_binfo))
1841 if (BINFO_VIRTUAL_P (base_binfo)
1842 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo)))
1843 {
1844 if (!BINFO_PRIMARY_P (base_binfo))
1845 {
1846 /* Found one that is not primary. */
1847 primary = base_binfo;
1848 goto found;
1849 }
1850 else if (!primary)
1851 /* Remember the first candidate. */
1852 primary = base_binfo;
1853 }
1854
1855 found:
1856 /* If we've got a primary base, use it. */
1857 if (primary)
1858 {
1859 tree basetype = BINFO_TYPE (primary);
1860
1861 CLASSTYPE_PRIMARY_BINFO (t) = primary;
1862 if (BINFO_PRIMARY_P (primary))
1863 /* We are stealing a primary base. */
1864 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary)) = 1;
1865 BINFO_PRIMARY_P (primary) = 1;
1866 if (BINFO_VIRTUAL_P (primary))
1867 {
1868 tree delta;
1869
1870 BINFO_INHERITANCE_CHAIN (primary) = type_binfo;
1871 /* A virtual binfo might have been copied from within
1872 another hierarchy. As we're about to use it as a primary
1873 base, make sure the offsets match. */
1874 delta = size_diffop_loc (input_location, ssize_int (0),
1875 fold_convert (ssizetype, BINFO_OFFSET (primary)));
1876
1877 propagate_binfo_offsets (primary, delta);
1878 }
1879
1880 primary = TYPE_BINFO (basetype);
1881
1882 TYPE_VFIELD (t) = TYPE_VFIELD (basetype);
1883 BINFO_VTABLE (type_binfo) = BINFO_VTABLE (primary);
1884 BINFO_VIRTUALS (type_binfo) = BINFO_VIRTUALS (primary);
1885 }
1886 }
1887
1888 /* Update the variant types of T. */
1889
1890 void
1891 fixup_type_variants (tree t)
1892 {
1893 tree variants;
1894
1895 if (!t)
1896 return;
1897
1898 for (variants = TYPE_NEXT_VARIANT (t);
1899 variants;
1900 variants = TYPE_NEXT_VARIANT (variants))
1901 {
1902 /* These fields are in the _TYPE part of the node, not in
1903 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1904 TYPE_HAS_USER_CONSTRUCTOR (variants) = TYPE_HAS_USER_CONSTRUCTOR (t);
1905 TYPE_NEEDS_CONSTRUCTING (variants) = TYPE_NEEDS_CONSTRUCTING (t);
1906 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants)
1907 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
1908
1909 TYPE_POLYMORPHIC_P (variants) = TYPE_POLYMORPHIC_P (t);
1910
1911 TYPE_BINFO (variants) = TYPE_BINFO (t);
1912
1913 /* Copy whatever these are holding today. */
1914 TYPE_VFIELD (variants) = TYPE_VFIELD (t);
1915 TYPE_FIELDS (variants) = TYPE_FIELDS (t);
1916 }
1917 }
1918
1919 /* KLASS is a class that we're applying may_alias to after the body is
1920 parsed. Fixup any POINTER_TO and REFERENCE_TO types. The
1921 canonical type(s) will be implicitly updated. */
1922
1923 static void
1924 fixup_may_alias (tree klass)
1925 {
1926 tree t, v;
1927
1928 for (t = TYPE_POINTER_TO (klass); t; t = TYPE_NEXT_PTR_TO (t))
1929 for (v = TYPE_MAIN_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
1930 TYPE_REF_CAN_ALIAS_ALL (v) = true;
1931 for (t = TYPE_REFERENCE_TO (klass); t; t = TYPE_NEXT_REF_TO (t))
1932 for (v = TYPE_MAIN_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
1933 TYPE_REF_CAN_ALIAS_ALL (v) = true;
1934 }
1935
1936 /* Early variant fixups: we apply attributes at the beginning of the class
1937 definition, and we need to fix up any variants that have already been
1938 made via elaborated-type-specifier so that check_qualified_type works. */
1939
1940 void
1941 fixup_attribute_variants (tree t)
1942 {
1943 tree variants;
1944
1945 if (!t)
1946 return;
1947
1948 tree attrs = TYPE_ATTRIBUTES (t);
1949 unsigned align = TYPE_ALIGN (t);
1950 bool user_align = TYPE_USER_ALIGN (t);
1951 bool may_alias = lookup_attribute ("may_alias", attrs);
1952 bool packed = TYPE_PACKED (t);
1953
1954 if (may_alias)
1955 fixup_may_alias (t);
1956
1957 for (variants = TYPE_NEXT_VARIANT (t);
1958 variants;
1959 variants = TYPE_NEXT_VARIANT (variants))
1960 {
1961 /* These are the two fields that check_qualified_type looks at and
1962 are affected by attributes. */
1963 TYPE_ATTRIBUTES (variants) = attrs;
1964 unsigned valign = align;
1965 if (TYPE_USER_ALIGN (variants))
1966 valign = MAX (valign, TYPE_ALIGN (variants));
1967 else
1968 TYPE_USER_ALIGN (variants) = user_align;
1969 SET_TYPE_ALIGN (variants, valign);
1970 TYPE_PACKED (variants) = packed;
1971 if (may_alias)
1972 fixup_may_alias (variants);
1973 }
1974 }
1975 \f
1976 /* Set memoizing fields and bits of T (and its variants) for later
1977 use. */
1978
1979 static void
1980 finish_struct_bits (tree t)
1981 {
1982 /* Fix up variants (if any). */
1983 fixup_type_variants (t);
1984
1985 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) && TYPE_POLYMORPHIC_P (t))
1986 /* For a class w/o baseclasses, 'finish_struct' has set
1987 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
1988 Similarly for a class whose base classes do not have vtables.
1989 When neither of these is true, we might have removed abstract
1990 virtuals (by providing a definition), added some (by declaring
1991 new ones), or redeclared ones from a base class. We need to
1992 recalculate what's really an abstract virtual at this point (by
1993 looking in the vtables). */
1994 get_pure_virtuals (t);
1995
1996 /* If this type has a copy constructor or a destructor, force its
1997 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
1998 nonzero. This will cause it to be passed by invisible reference
1999 and prevent it from being returned in a register. */
2000 if (type_has_nontrivial_copy_init (t)
2001 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
2002 {
2003 tree variants;
2004 SET_DECL_MODE (TYPE_MAIN_DECL (t), BLKmode);
2005 for (variants = t; variants; variants = TYPE_NEXT_VARIANT (variants))
2006 {
2007 SET_TYPE_MODE (variants, BLKmode);
2008 TREE_ADDRESSABLE (variants) = 1;
2009 }
2010 }
2011 }
2012
2013 /* Issue warnings about T having private constructors, but no friends,
2014 and so forth.
2015
2016 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
2017 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
2018 non-private static member functions. */
2019
2020 static void
2021 maybe_warn_about_overly_private_class (tree t)
2022 {
2023 int has_member_fn = 0;
2024 int has_nonprivate_method = 0;
2025 bool nonprivate_ctor = false;
2026
2027 if (!warn_ctor_dtor_privacy
2028 /* If the class has friends, those entities might create and
2029 access instances, so we should not warn. */
2030 || (CLASSTYPE_FRIEND_CLASSES (t)
2031 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t)))
2032 /* We will have warned when the template was declared; there's
2033 no need to warn on every instantiation. */
2034 || CLASSTYPE_TEMPLATE_INSTANTIATION (t))
2035 /* There's no reason to even consider warning about this
2036 class. */
2037 return;
2038
2039 /* We only issue one warning, if more than one applies, because
2040 otherwise, on code like:
2041
2042 class A {
2043 // Oops - forgot `public:'
2044 A();
2045 A(const A&);
2046 ~A();
2047 };
2048
2049 we warn several times about essentially the same problem. */
2050
2051 /* Check to see if all (non-constructor, non-destructor) member
2052 functions are private. (Since there are no friends or
2053 non-private statics, we can't ever call any of the private member
2054 functions.) */
2055 for (tree fn = TYPE_FIELDS (t); fn; fn = DECL_CHAIN (fn))
2056 if (TREE_CODE (fn) == USING_DECL
2057 && DECL_NAME (fn) == ctor_identifier
2058 && !TREE_PRIVATE (fn))
2059 nonprivate_ctor = true;
2060 else if (!DECL_DECLARES_FUNCTION_P (fn))
2061 /* Not a function. */;
2062 else if (DECL_ARTIFICIAL (fn))
2063 /* We're not interested in compiler-generated methods; they don't
2064 provide any way to call private members. */;
2065 else if (!TREE_PRIVATE (fn))
2066 {
2067 if (DECL_STATIC_FUNCTION_P (fn))
2068 /* A non-private static member function is just like a
2069 friend; it can create and invoke private member
2070 functions, and be accessed without a class
2071 instance. */
2072 return;
2073
2074 has_nonprivate_method = 1;
2075 /* Keep searching for a static member function. */
2076 }
2077 else if (!DECL_CONSTRUCTOR_P (fn) && !DECL_DESTRUCTOR_P (fn))
2078 has_member_fn = 1;
2079
2080 if (!has_nonprivate_method && has_member_fn)
2081 {
2082 /* There are no non-private methods, and there's at least one
2083 private member function that isn't a constructor or
2084 destructor. (If all the private members are
2085 constructors/destructors we want to use the code below that
2086 issues error messages specifically referring to
2087 constructors/destructors.) */
2088 unsigned i;
2089 tree binfo = TYPE_BINFO (t);
2090
2091 for (i = 0; i != BINFO_N_BASE_BINFOS (binfo); i++)
2092 if (BINFO_BASE_ACCESS (binfo, i) != access_private_node)
2093 {
2094 has_nonprivate_method = 1;
2095 break;
2096 }
2097 if (!has_nonprivate_method)
2098 {
2099 warning (OPT_Wctor_dtor_privacy,
2100 "all member functions in class %qT are private", t);
2101 return;
2102 }
2103 }
2104
2105 /* Even if some of the member functions are non-private, the class
2106 won't be useful for much if all the constructors or destructors
2107 are private: such an object can never be created or destroyed. */
2108 if (tree dtor = CLASSTYPE_DESTRUCTOR (t))
2109 if (TREE_PRIVATE (dtor))
2110 {
2111 warning (OPT_Wctor_dtor_privacy,
2112 "%q#T only defines a private destructor and has no friends",
2113 t);
2114 return;
2115 }
2116
2117 /* Warn about classes that have private constructors and no friends. */
2118 if (TYPE_HAS_USER_CONSTRUCTOR (t)
2119 /* Implicitly generated constructors are always public. */
2120 && !CLASSTYPE_LAZY_DEFAULT_CTOR (t))
2121 {
2122 tree copy_or_move = NULL_TREE;
2123
2124 /* If a non-template class does not define a copy
2125 constructor, one is defined for it, enabling it to avoid
2126 this warning. For a template class, this does not
2127 happen, and so we would normally get a warning on:
2128
2129 template <class T> class C { private: C(); };
2130
2131 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
2132 complete non-template or fully instantiated classes have this
2133 flag set. */
2134 if (!TYPE_HAS_COPY_CTOR (t))
2135 nonprivate_ctor = true;
2136 else
2137 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t));
2138 !nonprivate_ctor && iter; ++iter)
2139 if (TREE_PRIVATE (*iter))
2140 continue;
2141 else if (copy_fn_p (*iter) || move_fn_p (*iter))
2142 /* Ideally, we wouldn't count any constructor that takes
2143 an argument of the class type as a parameter, because
2144 such things cannot be used to construct an instance of
2145 the class unless you already have one. */
2146 copy_or_move = *iter;
2147 else
2148 nonprivate_ctor = true;
2149
2150 if (!nonprivate_ctor)
2151 {
2152 warning (OPT_Wctor_dtor_privacy,
2153 "%q#T only defines private constructors and has no friends",
2154 t);
2155 if (copy_or_move)
2156 inform (DECL_SOURCE_LOCATION (copy_or_move),
2157 "%q#D is public, but requires an existing %q#T object",
2158 copy_or_move, t);
2159 return;
2160 }
2161 }
2162 }
2163
2164 /* Make BINFO's vtable have N entries, including RTTI entries,
2165 vbase and vcall offsets, etc. Set its type and call the back end
2166 to lay it out. */
2167
2168 static void
2169 layout_vtable_decl (tree binfo, int n)
2170 {
2171 tree atype;
2172 tree vtable;
2173
2174 atype = build_array_of_n_type (vtable_entry_type, n);
2175 layout_type (atype);
2176
2177 /* We may have to grow the vtable. */
2178 vtable = get_vtbl_decl_for_binfo (binfo);
2179 if (!same_type_p (TREE_TYPE (vtable), atype))
2180 {
2181 TREE_TYPE (vtable) = atype;
2182 DECL_SIZE (vtable) = DECL_SIZE_UNIT (vtable) = NULL_TREE;
2183 layout_decl (vtable, 0);
2184 }
2185 }
2186
2187 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2188 have the same signature. */
2189
2190 int
2191 same_signature_p (const_tree fndecl, const_tree base_fndecl)
2192 {
2193 /* One destructor overrides another if they are the same kind of
2194 destructor. */
2195 if (DECL_DESTRUCTOR_P (base_fndecl) && DECL_DESTRUCTOR_P (fndecl)
2196 && special_function_p (base_fndecl) == special_function_p (fndecl))
2197 return 1;
2198 /* But a non-destructor never overrides a destructor, nor vice
2199 versa, nor do different kinds of destructors override
2200 one-another. For example, a complete object destructor does not
2201 override a deleting destructor. */
2202 if (DECL_DESTRUCTOR_P (base_fndecl) || DECL_DESTRUCTOR_P (fndecl))
2203 return 0;
2204
2205 if (DECL_NAME (fndecl) == DECL_NAME (base_fndecl)
2206 || (DECL_CONV_FN_P (fndecl)
2207 && DECL_CONV_FN_P (base_fndecl)
2208 && same_type_p (DECL_CONV_FN_TYPE (fndecl),
2209 DECL_CONV_FN_TYPE (base_fndecl))))
2210 {
2211 tree fntype = TREE_TYPE (fndecl);
2212 tree base_fntype = TREE_TYPE (base_fndecl);
2213 if (type_memfn_quals (fntype) == type_memfn_quals (base_fntype)
2214 && type_memfn_rqual (fntype) == type_memfn_rqual (base_fntype)
2215 && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl),
2216 FUNCTION_FIRST_USER_PARMTYPE (base_fndecl)))
2217 return 1;
2218 }
2219 return 0;
2220 }
2221
2222 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2223 subobject. */
2224
2225 static bool
2226 base_derived_from (tree derived, tree base)
2227 {
2228 tree probe;
2229
2230 for (probe = base; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
2231 {
2232 if (probe == derived)
2233 return true;
2234 else if (BINFO_VIRTUAL_P (probe))
2235 /* If we meet a virtual base, we can't follow the inheritance
2236 any more. See if the complete type of DERIVED contains
2237 such a virtual base. */
2238 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (derived))
2239 != NULL_TREE);
2240 }
2241 return false;
2242 }
2243
2244 struct find_final_overrider_data {
2245 /* The function for which we are trying to find a final overrider. */
2246 tree fn;
2247 /* The base class in which the function was declared. */
2248 tree declaring_base;
2249 /* The candidate overriders. */
2250 tree candidates;
2251 /* Path to most derived. */
2252 vec<tree> path;
2253 };
2254
2255 /* Add the overrider along the current path to FFOD->CANDIDATES.
2256 Returns true if an overrider was found; false otherwise. */
2257
2258 static bool
2259 dfs_find_final_overrider_1 (tree binfo,
2260 find_final_overrider_data *ffod,
2261 unsigned depth)
2262 {
2263 tree method;
2264
2265 /* If BINFO is not the most derived type, try a more derived class.
2266 A definition there will overrider a definition here. */
2267 if (depth)
2268 {
2269 depth--;
2270 if (dfs_find_final_overrider_1
2271 (ffod->path[depth], ffod, depth))
2272 return true;
2273 }
2274
2275 method = look_for_overrides_here (BINFO_TYPE (binfo), ffod->fn);
2276 if (method)
2277 {
2278 tree *candidate = &ffod->candidates;
2279
2280 /* Remove any candidates overridden by this new function. */
2281 while (*candidate)
2282 {
2283 /* If *CANDIDATE overrides METHOD, then METHOD
2284 cannot override anything else on the list. */
2285 if (base_derived_from (TREE_VALUE (*candidate), binfo))
2286 return true;
2287 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2288 if (base_derived_from (binfo, TREE_VALUE (*candidate)))
2289 *candidate = TREE_CHAIN (*candidate);
2290 else
2291 candidate = &TREE_CHAIN (*candidate);
2292 }
2293
2294 /* Add the new function. */
2295 ffod->candidates = tree_cons (method, binfo, ffod->candidates);
2296 return true;
2297 }
2298
2299 return false;
2300 }
2301
2302 /* Called from find_final_overrider via dfs_walk. */
2303
2304 static tree
2305 dfs_find_final_overrider_pre (tree binfo, void *data)
2306 {
2307 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2308
2309 if (binfo == ffod->declaring_base)
2310 dfs_find_final_overrider_1 (binfo, ffod, ffod->path.length ());
2311 ffod->path.safe_push (binfo);
2312
2313 return NULL_TREE;
2314 }
2315
2316 static tree
2317 dfs_find_final_overrider_post (tree /*binfo*/, void *data)
2318 {
2319 find_final_overrider_data *ffod = (find_final_overrider_data *) data;
2320 ffod->path.pop ();
2321
2322 return NULL_TREE;
2323 }
2324
2325 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2326 FN and whose TREE_VALUE is the binfo for the base where the
2327 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2328 DERIVED) is the base object in which FN is declared. */
2329
2330 static tree
2331 find_final_overrider (tree derived, tree binfo, tree fn)
2332 {
2333 find_final_overrider_data ffod;
2334
2335 /* Getting this right is a little tricky. This is valid:
2336
2337 struct S { virtual void f (); };
2338 struct T { virtual void f (); };
2339 struct U : public S, public T { };
2340
2341 even though calling `f' in `U' is ambiguous. But,
2342
2343 struct R { virtual void f(); };
2344 struct S : virtual public R { virtual void f (); };
2345 struct T : virtual public R { virtual void f (); };
2346 struct U : public S, public T { };
2347
2348 is not -- there's no way to decide whether to put `S::f' or
2349 `T::f' in the vtable for `R'.
2350
2351 The solution is to look at all paths to BINFO. If we find
2352 different overriders along any two, then there is a problem. */
2353 if (DECL_THUNK_P (fn))
2354 fn = THUNK_TARGET (fn);
2355
2356 /* Determine the depth of the hierarchy. */
2357 ffod.fn = fn;
2358 ffod.declaring_base = binfo;
2359 ffod.candidates = NULL_TREE;
2360 ffod.path.create (30);
2361
2362 dfs_walk_all (derived, dfs_find_final_overrider_pre,
2363 dfs_find_final_overrider_post, &ffod);
2364
2365 ffod.path.release ();
2366
2367 /* If there was no winner, issue an error message. */
2368 if (!ffod.candidates || TREE_CHAIN (ffod.candidates))
2369 return error_mark_node;
2370
2371 return ffod.candidates;
2372 }
2373
2374 /* Return the index of the vcall offset for FN when TYPE is used as a
2375 virtual base. */
2376
2377 static tree
2378 get_vcall_index (tree fn, tree type)
2379 {
2380 vec<tree_pair_s, va_gc> *indices = CLASSTYPE_VCALL_INDICES (type);
2381 tree_pair_p p;
2382 unsigned ix;
2383
2384 FOR_EACH_VEC_SAFE_ELT (indices, ix, p)
2385 if ((DECL_DESTRUCTOR_P (fn) && DECL_DESTRUCTOR_P (p->purpose))
2386 || same_signature_p (fn, p->purpose))
2387 return p->value;
2388
2389 /* There should always be an appropriate index. */
2390 gcc_unreachable ();
2391 }
2392
2393 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2394 dominated by T. FN is the old function; VIRTUALS points to the
2395 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2396 of that entry in the list. */
2397
2398 static void
2399 update_vtable_entry_for_fn (tree t, tree binfo, tree fn, tree* virtuals,
2400 unsigned ix)
2401 {
2402 tree b;
2403 tree overrider;
2404 tree delta;
2405 tree virtual_base;
2406 tree first_defn;
2407 tree overrider_fn, overrider_target;
2408 tree target_fn = DECL_THUNK_P (fn) ? THUNK_TARGET (fn) : fn;
2409 tree over_return, base_return;
2410 bool lost = false;
2411
2412 /* Find the nearest primary base (possibly binfo itself) which defines
2413 this function; this is the class the caller will convert to when
2414 calling FN through BINFO. */
2415 for (b = binfo; ; b = get_primary_binfo (b))
2416 {
2417 gcc_assert (b);
2418 if (look_for_overrides_here (BINFO_TYPE (b), target_fn))
2419 break;
2420
2421 /* The nearest definition is from a lost primary. */
2422 if (BINFO_LOST_PRIMARY_P (b))
2423 lost = true;
2424 }
2425 first_defn = b;
2426
2427 /* Find the final overrider. */
2428 overrider = find_final_overrider (TYPE_BINFO (t), b, target_fn);
2429 if (overrider == error_mark_node)
2430 {
2431 error ("no unique final overrider for %qD in %qT", target_fn, t);
2432 return;
2433 }
2434 overrider_target = overrider_fn = TREE_PURPOSE (overrider);
2435
2436 /* Check for adjusting covariant return types. */
2437 over_return = TREE_TYPE (TREE_TYPE (overrider_target));
2438 base_return = TREE_TYPE (TREE_TYPE (target_fn));
2439
2440 if (INDIRECT_TYPE_P (over_return)
2441 && TREE_CODE (over_return) == TREE_CODE (base_return)
2442 && CLASS_TYPE_P (TREE_TYPE (over_return))
2443 && CLASS_TYPE_P (TREE_TYPE (base_return))
2444 /* If the overrider is invalid, don't even try. */
2445 && !DECL_INVALID_OVERRIDER_P (overrider_target))
2446 {
2447 /* If FN is a covariant thunk, we must figure out the adjustment
2448 to the final base FN was converting to. As OVERRIDER_TARGET might
2449 also be converting to the return type of FN, we have to
2450 combine the two conversions here. */
2451 tree fixed_offset, virtual_offset;
2452
2453 over_return = TREE_TYPE (over_return);
2454 base_return = TREE_TYPE (base_return);
2455
2456 if (DECL_THUNK_P (fn))
2457 {
2458 gcc_assert (DECL_RESULT_THUNK_P (fn));
2459 fixed_offset = ssize_int (THUNK_FIXED_OFFSET (fn));
2460 virtual_offset = THUNK_VIRTUAL_OFFSET (fn);
2461 }
2462 else
2463 fixed_offset = virtual_offset = NULL_TREE;
2464
2465 if (virtual_offset)
2466 /* Find the equivalent binfo within the return type of the
2467 overriding function. We will want the vbase offset from
2468 there. */
2469 virtual_offset = binfo_for_vbase (BINFO_TYPE (virtual_offset),
2470 over_return);
2471 else if (!same_type_ignoring_top_level_qualifiers_p
2472 (over_return, base_return))
2473 {
2474 /* There was no existing virtual thunk (which takes
2475 precedence). So find the binfo of the base function's
2476 return type within the overriding function's return type.
2477 Fortunately we know the covariancy is valid (it
2478 has already been checked), so we can just iterate along
2479 the binfos, which have been chained in inheritance graph
2480 order. Of course it is lame that we have to repeat the
2481 search here anyway -- we should really be caching pieces
2482 of the vtable and avoiding this repeated work. */
2483 tree thunk_binfo = NULL_TREE;
2484 tree base_binfo = TYPE_BINFO (base_return);
2485
2486 /* Find the base binfo within the overriding function's
2487 return type. We will always find a thunk_binfo, except
2488 when the covariancy is invalid (which we will have
2489 already diagnosed). */
2490 if (base_binfo)
2491 for (thunk_binfo = TYPE_BINFO (over_return); thunk_binfo;
2492 thunk_binfo = TREE_CHAIN (thunk_binfo))
2493 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo),
2494 BINFO_TYPE (base_binfo)))
2495 break;
2496 gcc_assert (thunk_binfo || errorcount);
2497
2498 /* See if virtual inheritance is involved. */
2499 for (virtual_offset = thunk_binfo;
2500 virtual_offset;
2501 virtual_offset = BINFO_INHERITANCE_CHAIN (virtual_offset))
2502 if (BINFO_VIRTUAL_P (virtual_offset))
2503 break;
2504
2505 if (virtual_offset
2506 || (thunk_binfo && !BINFO_OFFSET_ZEROP (thunk_binfo)))
2507 {
2508 tree offset = fold_convert (ssizetype, BINFO_OFFSET (thunk_binfo));
2509
2510 if (virtual_offset)
2511 {
2512 /* We convert via virtual base. Adjust the fixed
2513 offset to be from there. */
2514 offset =
2515 size_diffop (offset,
2516 fold_convert (ssizetype,
2517 BINFO_OFFSET (virtual_offset)));
2518 }
2519 if (fixed_offset)
2520 /* There was an existing fixed offset, this must be
2521 from the base just converted to, and the base the
2522 FN was thunking to. */
2523 fixed_offset = size_binop (PLUS_EXPR, fixed_offset, offset);
2524 else
2525 fixed_offset = offset;
2526 }
2527 }
2528
2529 if (fixed_offset || virtual_offset)
2530 /* Replace the overriding function with a covariant thunk. We
2531 will emit the overriding function in its own slot as
2532 well. */
2533 overrider_fn = make_thunk (overrider_target, /*this_adjusting=*/0,
2534 fixed_offset, virtual_offset);
2535 }
2536 else
2537 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target) ||
2538 !DECL_THUNK_P (fn));
2539
2540 /* If we need a covariant thunk, then we may need to adjust first_defn.
2541 The ABI specifies that the thunks emitted with a function are
2542 determined by which bases the function overrides, so we need to be
2543 sure that we're using a thunk for some overridden base; even if we
2544 know that the necessary this adjustment is zero, there may not be an
2545 appropriate zero-this-adjustment thunk for us to use since thunks for
2546 overriding virtual bases always use the vcall offset.
2547
2548 Furthermore, just choosing any base that overrides this function isn't
2549 quite right, as this slot won't be used for calls through a type that
2550 puts a covariant thunk here. Calling the function through such a type
2551 will use a different slot, and that slot is the one that determines
2552 the thunk emitted for that base.
2553
2554 So, keep looking until we find the base that we're really overriding
2555 in this slot: the nearest primary base that doesn't use a covariant
2556 thunk in this slot. */
2557 if (overrider_target != overrider_fn)
2558 {
2559 if (BINFO_TYPE (b) == DECL_CONTEXT (overrider_target))
2560 /* We already know that the overrider needs a covariant thunk. */
2561 b = get_primary_binfo (b);
2562 for (; ; b = get_primary_binfo (b))
2563 {
2564 tree main_binfo = TYPE_BINFO (BINFO_TYPE (b));
2565 tree bv = chain_index (ix, BINFO_VIRTUALS (main_binfo));
2566 if (!DECL_THUNK_P (TREE_VALUE (bv)))
2567 break;
2568 if (BINFO_LOST_PRIMARY_P (b))
2569 lost = true;
2570 }
2571 first_defn = b;
2572 }
2573
2574 /* Assume that we will produce a thunk that convert all the way to
2575 the final overrider, and not to an intermediate virtual base. */
2576 virtual_base = NULL_TREE;
2577
2578 /* See if we can convert to an intermediate virtual base first, and then
2579 use the vcall offset located there to finish the conversion. */
2580 for (; b; b = BINFO_INHERITANCE_CHAIN (b))
2581 {
2582 /* If we find the final overrider, then we can stop
2583 walking. */
2584 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b),
2585 BINFO_TYPE (TREE_VALUE (overrider))))
2586 break;
2587
2588 /* If we find a virtual base, and we haven't yet found the
2589 overrider, then there is a virtual base between the
2590 declaring base (first_defn) and the final overrider. */
2591 if (BINFO_VIRTUAL_P (b))
2592 {
2593 virtual_base = b;
2594 break;
2595 }
2596 }
2597
2598 /* Compute the constant adjustment to the `this' pointer. The
2599 `this' pointer, when this function is called, will point at BINFO
2600 (or one of its primary bases, which are at the same offset). */
2601 if (virtual_base)
2602 /* The `this' pointer needs to be adjusted from the declaration to
2603 the nearest virtual base. */
2604 delta = size_diffop_loc (input_location,
2605 fold_convert (ssizetype, BINFO_OFFSET (virtual_base)),
2606 fold_convert (ssizetype, BINFO_OFFSET (first_defn)));
2607 else if (lost)
2608 /* If the nearest definition is in a lost primary, we don't need an
2609 entry in our vtable. Except possibly in a constructor vtable,
2610 if we happen to get our primary back. In that case, the offset
2611 will be zero, as it will be a primary base. */
2612 delta = size_zero_node;
2613 else
2614 /* The `this' pointer needs to be adjusted from pointing to
2615 BINFO to pointing at the base where the final overrider
2616 appears. */
2617 delta = size_diffop_loc (input_location,
2618 fold_convert (ssizetype,
2619 BINFO_OFFSET (TREE_VALUE (overrider))),
2620 fold_convert (ssizetype, BINFO_OFFSET (binfo)));
2621
2622 modify_vtable_entry (t, binfo, overrider_fn, delta, virtuals);
2623
2624 if (virtual_base)
2625 BV_VCALL_INDEX (*virtuals)
2626 = get_vcall_index (overrider_target, BINFO_TYPE (virtual_base));
2627 else
2628 BV_VCALL_INDEX (*virtuals) = NULL_TREE;
2629
2630 BV_LOST_PRIMARY (*virtuals) = lost;
2631 }
2632
2633 /* Called from modify_all_vtables via dfs_walk. */
2634
2635 static tree
2636 dfs_modify_vtables (tree binfo, void* data)
2637 {
2638 tree t = (tree) data;
2639 tree virtuals;
2640 tree old_virtuals;
2641 unsigned ix;
2642
2643 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2644 /* A base without a vtable needs no modification, and its bases
2645 are uninteresting. */
2646 return dfs_skip_bases;
2647
2648 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t)
2649 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t))
2650 /* Don't do the primary vtable, if it's new. */
2651 return NULL_TREE;
2652
2653 if (BINFO_PRIMARY_P (binfo) && !BINFO_VIRTUAL_P (binfo))
2654 /* There's no need to modify the vtable for a non-virtual primary
2655 base; we're not going to use that vtable anyhow. We do still
2656 need to do this for virtual primary bases, as they could become
2657 non-primary in a construction vtable. */
2658 return NULL_TREE;
2659
2660 make_new_vtable (t, binfo);
2661
2662 /* Now, go through each of the virtual functions in the virtual
2663 function table for BINFO. Find the final overrider, and update
2664 the BINFO_VIRTUALS list appropriately. */
2665 for (ix = 0, virtuals = BINFO_VIRTUALS (binfo),
2666 old_virtuals = BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo)));
2667 virtuals;
2668 ix++, virtuals = TREE_CHAIN (virtuals),
2669 old_virtuals = TREE_CHAIN (old_virtuals))
2670 update_vtable_entry_for_fn (t,
2671 binfo,
2672 BV_FN (old_virtuals),
2673 &virtuals, ix);
2674
2675 return NULL_TREE;
2676 }
2677
2678 /* Update all of the primary and secondary vtables for T. Create new
2679 vtables as required, and initialize their RTTI information. Each
2680 of the functions in VIRTUALS is declared in T and may override a
2681 virtual function from a base class; find and modify the appropriate
2682 entries to point to the overriding functions. Returns a list, in
2683 declaration order, of the virtual functions that are declared in T,
2684 but do not appear in the primary base class vtable, and which
2685 should therefore be appended to the end of the vtable for T. */
2686
2687 static tree
2688 modify_all_vtables (tree t, tree virtuals)
2689 {
2690 tree binfo = TYPE_BINFO (t);
2691 tree *fnsp;
2692
2693 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2694 if (TYPE_CONTAINS_VPTR_P (t))
2695 get_vtable_decl (t, false);
2696
2697 /* Update all of the vtables. */
2698 dfs_walk_once (binfo, dfs_modify_vtables, NULL, t);
2699
2700 /* Add virtual functions not already in our primary vtable. These
2701 will be both those introduced by this class, and those overridden
2702 from secondary bases. It does not include virtuals merely
2703 inherited from secondary bases. */
2704 for (fnsp = &virtuals; *fnsp; )
2705 {
2706 tree fn = TREE_VALUE (*fnsp);
2707
2708 if (!value_member (fn, BINFO_VIRTUALS (binfo))
2709 || DECL_VINDEX (fn) == error_mark_node)
2710 {
2711 /* We don't need to adjust the `this' pointer when
2712 calling this function. */
2713 BV_DELTA (*fnsp) = integer_zero_node;
2714 BV_VCALL_INDEX (*fnsp) = NULL_TREE;
2715
2716 /* This is a function not already in our vtable. Keep it. */
2717 fnsp = &TREE_CHAIN (*fnsp);
2718 }
2719 else
2720 /* We've already got an entry for this function. Skip it. */
2721 *fnsp = TREE_CHAIN (*fnsp);
2722 }
2723
2724 return virtuals;
2725 }
2726
2727 /* Get the base virtual function declarations in T that have the
2728 indicated NAME. */
2729
2730 static void
2731 get_basefndecls (tree name, tree t, vec<tree> *base_fndecls)
2732 {
2733 bool found_decls = false;
2734
2735 /* Find virtual functions in T with the indicated NAME. */
2736 for (ovl_iterator iter (get_class_binding (t, name)); iter; ++iter)
2737 {
2738 tree method = *iter;
2739
2740 if (TREE_CODE (method) == FUNCTION_DECL && DECL_VINDEX (method))
2741 {
2742 base_fndecls->safe_push (method);
2743 found_decls = true;
2744 }
2745 }
2746
2747 if (found_decls)
2748 return;
2749
2750 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
2751 for (int i = 0; i < n_baseclasses; i++)
2752 {
2753 tree basetype = BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t), i));
2754 get_basefndecls (name, basetype, base_fndecls);
2755 }
2756 }
2757
2758 /* If this declaration supersedes the declaration of
2759 a method declared virtual in the base class, then
2760 mark this field as being virtual as well. */
2761
2762 void
2763 check_for_override (tree decl, tree ctype)
2764 {
2765 bool overrides_found = false;
2766 if (TREE_CODE (decl) == TEMPLATE_DECL)
2767 /* In [temp.mem] we have:
2768
2769 A specialization of a member function template does not
2770 override a virtual function from a base class. */
2771 return;
2772 if ((DECL_DESTRUCTOR_P (decl)
2773 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl))
2774 || DECL_CONV_FN_P (decl))
2775 && look_for_overrides (ctype, decl)
2776 && !DECL_STATIC_FUNCTION_P (decl))
2777 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2778 the error_mark_node so that we know it is an overriding
2779 function. */
2780 {
2781 DECL_VINDEX (decl) = decl;
2782 overrides_found = true;
2783 if (warn_override && !DECL_OVERRIDE_P (decl)
2784 && !DECL_DESTRUCTOR_P (decl))
2785 warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wsuggest_override,
2786 "%qD can be marked override", decl);
2787 }
2788
2789 if (DECL_VIRTUAL_P (decl))
2790 {
2791 if (!DECL_VINDEX (decl))
2792 DECL_VINDEX (decl) = error_mark_node;
2793 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl)) = 1;
2794 if (DECL_DESTRUCTOR_P (decl))
2795 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype) = true;
2796 }
2797 else if (DECL_FINAL_P (decl))
2798 error ("%q+#D marked %<final%>, but is not virtual", decl);
2799 if (DECL_OVERRIDE_P (decl) && !overrides_found)
2800 error ("%q+#D marked %<override%>, but does not override", decl);
2801 }
2802
2803 /* Warn about hidden virtual functions that are not overridden in t.
2804 We know that constructors and destructors don't apply. */
2805
2806 static void
2807 warn_hidden (tree t)
2808 {
2809 if (vec<tree, va_gc> *member_vec = CLASSTYPE_MEMBER_VEC (t))
2810 for (unsigned ix = member_vec->length (); ix--;)
2811 {
2812 tree fns = (*member_vec)[ix];
2813
2814 if (!OVL_P (fns))
2815 continue;
2816
2817 tree name = OVL_NAME (fns);
2818 auto_vec<tree, 20> base_fndecls;
2819 tree base_binfo;
2820 tree binfo;
2821 unsigned j;
2822
2823 /* Iterate through all of the base classes looking for possibly
2824 hidden functions. */
2825 for (binfo = TYPE_BINFO (t), j = 0;
2826 BINFO_BASE_ITERATE (binfo, j, base_binfo); j++)
2827 {
2828 tree basetype = BINFO_TYPE (base_binfo);
2829 get_basefndecls (name, basetype, &base_fndecls);
2830 }
2831
2832 /* If there are no functions to hide, continue. */
2833 if (base_fndecls.is_empty ())
2834 continue;
2835
2836 /* Remove any overridden functions. */
2837 for (ovl_iterator iter (fns); iter; ++iter)
2838 {
2839 tree fndecl = *iter;
2840 if (TREE_CODE (fndecl) == FUNCTION_DECL
2841 && DECL_VINDEX (fndecl))
2842 {
2843 /* If the method from the base class has the same
2844 signature as the method from the derived class, it
2845 has been overridden. */
2846 for (size_t k = 0; k < base_fndecls.length (); k++)
2847 if (base_fndecls[k]
2848 && same_signature_p (fndecl, base_fndecls[k]))
2849 base_fndecls[k] = NULL_TREE;
2850 }
2851 }
2852
2853 /* Now give a warning for all base functions without overriders,
2854 as they are hidden. */
2855 tree base_fndecl;
2856 FOR_EACH_VEC_ELT (base_fndecls, j, base_fndecl)
2857 if (base_fndecl)
2858 {
2859 /* Here we know it is a hider, and no overrider exists. */
2860 warning_at (location_of (base_fndecl),
2861 OPT_Woverloaded_virtual,
2862 "%qD was hidden", base_fndecl);
2863 warning_at (location_of (fns),
2864 OPT_Woverloaded_virtual, " by %qD", fns);
2865 }
2866 }
2867 }
2868
2869 /* Recursive helper for finish_struct_anon. */
2870
2871 static void
2872 finish_struct_anon_r (tree field, bool complain)
2873 {
2874 for (tree elt = TYPE_FIELDS (TREE_TYPE (field)); elt; elt = DECL_CHAIN (elt))
2875 {
2876 /* We're generally only interested in entities the user
2877 declared, but we also find nested classes by noticing
2878 the TYPE_DECL that we create implicitly. You're
2879 allowed to put one anonymous union inside another,
2880 though, so we explicitly tolerate that. We use
2881 TYPE_UNNAMED_P rather than ANON_AGGR_TYPE_P so that
2882 we also allow unnamed types used for defining fields. */
2883 if (DECL_ARTIFICIAL (elt)
2884 && (!DECL_IMPLICIT_TYPEDEF_P (elt)
2885 || TYPE_UNNAMED_P (TREE_TYPE (elt))))
2886 continue;
2887
2888 if (complain
2889 && (TREE_CODE (elt) != FIELD_DECL
2890 || (TREE_PRIVATE (elt) || TREE_PROTECTED (elt))))
2891 {
2892 /* We already complained about static data members in
2893 finish_static_data_member_decl. */
2894 if (!VAR_P (elt))
2895 {
2896 auto_diagnostic_group d;
2897 if (permerror (DECL_SOURCE_LOCATION (elt),
2898 TREE_CODE (TREE_TYPE (field)) == UNION_TYPE
2899 ? "%q#D invalid; an anonymous union may "
2900 "only have public non-static data members"
2901 : "%q#D invalid; an anonymous struct may "
2902 "only have public non-static data members", elt))
2903 {
2904 static bool hint;
2905 if (flag_permissive && !hint)
2906 {
2907 hint = true;
2908 inform (DECL_SOURCE_LOCATION (elt),
2909 "this flexibility is deprecated and will be "
2910 "removed");
2911 }
2912 }
2913 }
2914 }
2915
2916 TREE_PRIVATE (elt) = TREE_PRIVATE (field);
2917 TREE_PROTECTED (elt) = TREE_PROTECTED (field);
2918
2919 /* Recurse into the anonymous aggregates to correctly handle
2920 access control (c++/24926):
2921
2922 class A {
2923 union {
2924 union {
2925 int i;
2926 };
2927 };
2928 };
2929
2930 int j=A().i; */
2931 if (DECL_NAME (elt) == NULL_TREE
2932 && ANON_AGGR_TYPE_P (TREE_TYPE (elt)))
2933 finish_struct_anon_r (elt, /*complain=*/false);
2934 }
2935 }
2936
2937 /* Check for things that are invalid. There are probably plenty of other
2938 things we should check for also. */
2939
2940 static void
2941 finish_struct_anon (tree t)
2942 {
2943 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
2944 {
2945 if (TREE_STATIC (field))
2946 continue;
2947 if (TREE_CODE (field) != FIELD_DECL)
2948 continue;
2949
2950 if (DECL_NAME (field) == NULL_TREE
2951 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
2952 finish_struct_anon_r (field, /*complain=*/true);
2953 }
2954 }
2955
2956 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
2957 will be used later during class template instantiation.
2958 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
2959 a non-static member data (FIELD_DECL), a member function
2960 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
2961 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
2962 When FRIEND_P is nonzero, T is either a friend class
2963 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
2964 (FUNCTION_DECL, TEMPLATE_DECL). */
2965
2966 void
2967 maybe_add_class_template_decl_list (tree type, tree t, int friend_p)
2968 {
2969 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
2970 if (CLASSTYPE_TEMPLATE_INFO (type))
2971 CLASSTYPE_DECL_LIST (type)
2972 = tree_cons (friend_p ? NULL_TREE : type,
2973 t, CLASSTYPE_DECL_LIST (type));
2974 }
2975
2976 /* This function is called from declare_virt_assop_and_dtor via
2977 dfs_walk_all.
2978
2979 DATA is a type that direcly or indirectly inherits the base
2980 represented by BINFO. If BINFO contains a virtual assignment [copy
2981 assignment or move assigment] operator or a virtual constructor,
2982 declare that function in DATA if it hasn't been already declared. */
2983
2984 static tree
2985 dfs_declare_virt_assop_and_dtor (tree binfo, void *data)
2986 {
2987 tree bv, fn, t = (tree)data;
2988 tree opname = assign_op_identifier;
2989
2990 gcc_assert (t && CLASS_TYPE_P (t));
2991 gcc_assert (binfo && TREE_CODE (binfo) == TREE_BINFO);
2992
2993 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
2994 /* A base without a vtable needs no modification, and its bases
2995 are uninteresting. */
2996 return dfs_skip_bases;
2997
2998 if (BINFO_PRIMARY_P (binfo))
2999 /* If this is a primary base, then we have already looked at the
3000 virtual functions of its vtable. */
3001 return NULL_TREE;
3002
3003 for (bv = BINFO_VIRTUALS (binfo); bv; bv = TREE_CHAIN (bv))
3004 {
3005 fn = BV_FN (bv);
3006
3007 if (DECL_NAME (fn) == opname)
3008 {
3009 if (CLASSTYPE_LAZY_COPY_ASSIGN (t))
3010 lazily_declare_fn (sfk_copy_assignment, t);
3011 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t))
3012 lazily_declare_fn (sfk_move_assignment, t);
3013 }
3014 else if (DECL_DESTRUCTOR_P (fn)
3015 && CLASSTYPE_LAZY_DESTRUCTOR (t))
3016 lazily_declare_fn (sfk_destructor, t);
3017 }
3018
3019 return NULL_TREE;
3020 }
3021
3022 /* If the class type T has a direct or indirect base that contains a
3023 virtual assignment operator or a virtual destructor, declare that
3024 function in T if it hasn't been already declared. */
3025
3026 static void
3027 declare_virt_assop_and_dtor (tree t)
3028 {
3029 if (!(TYPE_POLYMORPHIC_P (t)
3030 && (CLASSTYPE_LAZY_COPY_ASSIGN (t)
3031 || CLASSTYPE_LAZY_MOVE_ASSIGN (t)
3032 || CLASSTYPE_LAZY_DESTRUCTOR (t))))
3033 return;
3034
3035 dfs_walk_all (TYPE_BINFO (t),
3036 dfs_declare_virt_assop_and_dtor,
3037 NULL, t);
3038 }
3039
3040 /* Declare the inheriting constructor for class T inherited from base
3041 constructor CTOR with the parameter array PARMS of size NPARMS. */
3042
3043 static void
3044 one_inheriting_sig (tree t, tree ctor, tree *parms, int nparms)
3045 {
3046 gcc_assert (TYPE_MAIN_VARIANT (t) == t);
3047
3048 /* We don't declare an inheriting ctor that would be a default,
3049 copy or move ctor for derived or base. */
3050 if (nparms == 0)
3051 return;
3052 if (nparms == 1
3053 && TYPE_REF_P (parms[0]))
3054 {
3055 tree parm = TYPE_MAIN_VARIANT (TREE_TYPE (parms[0]));
3056 if (parm == t || parm == DECL_CONTEXT (ctor))
3057 return;
3058 }
3059
3060 tree parmlist = void_list_node;
3061 for (int i = nparms - 1; i >= 0; i--)
3062 parmlist = tree_cons (NULL_TREE, parms[i], parmlist);
3063 tree fn = implicitly_declare_fn (sfk_inheriting_constructor,
3064 t, false, ctor, parmlist);
3065
3066 if (add_method (t, fn, false))
3067 {
3068 DECL_CHAIN (fn) = TYPE_FIELDS (t);
3069 TYPE_FIELDS (t) = fn;
3070 }
3071 }
3072
3073 /* Declare all the inheriting constructors for class T inherited from base
3074 constructor CTOR. */
3075
3076 static void
3077 one_inherited_ctor (tree ctor, tree t, tree using_decl)
3078 {
3079 tree parms = FUNCTION_FIRST_USER_PARMTYPE (ctor);
3080
3081 if (flag_new_inheriting_ctors)
3082 {
3083 ctor = implicitly_declare_fn (sfk_inheriting_constructor,
3084 t, /*const*/false, ctor, parms);
3085 add_method (t, ctor, using_decl != NULL_TREE);
3086 TYPE_HAS_USER_CONSTRUCTOR (t) = true;
3087 return;
3088 }
3089
3090 tree *new_parms = XALLOCAVEC (tree, list_length (parms));
3091 int i = 0;
3092 for (; parms && parms != void_list_node; parms = TREE_CHAIN (parms))
3093 {
3094 if (TREE_PURPOSE (parms))
3095 one_inheriting_sig (t, ctor, new_parms, i);
3096 new_parms[i++] = TREE_VALUE (parms);
3097 }
3098 one_inheriting_sig (t, ctor, new_parms, i);
3099 if (parms == NULL_TREE)
3100 {
3101 auto_diagnostic_group d;
3102 if (warning (OPT_Winherited_variadic_ctor,
3103 "the ellipsis in %qD is not inherited", ctor))
3104 inform (DECL_SOURCE_LOCATION (ctor), "%qD declared here", ctor);
3105 }
3106 }
3107
3108 /* Create default constructors, assignment operators, and so forth for
3109 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
3110 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
3111 the class cannot have a default constructor, copy constructor
3112 taking a const reference argument, or an assignment operator taking
3113 a const reference, respectively. */
3114
3115 static void
3116 add_implicitly_declared_members (tree t, tree* access_decls,
3117 int cant_have_const_cctor,
3118 int cant_have_const_assignment)
3119 {
3120 /* Destructor. */
3121 if (!CLASSTYPE_DESTRUCTOR (t))
3122 /* In general, we create destructors lazily. */
3123 CLASSTYPE_LAZY_DESTRUCTOR (t) = 1;
3124
3125 bool move_ok = false;
3126 if (cxx_dialect >= cxx11 && CLASSTYPE_LAZY_DESTRUCTOR (t)
3127 && !TYPE_HAS_COPY_CTOR (t) && !TYPE_HAS_COPY_ASSIGN (t)
3128 && !classtype_has_move_assign_or_move_ctor_p (t, false))
3129 move_ok = true;
3130
3131 /* [class.ctor]
3132
3133 If there is no user-declared constructor for a class, a default
3134 constructor is implicitly declared. */
3135 if (! TYPE_HAS_USER_CONSTRUCTOR (t))
3136 {
3137 TYPE_HAS_DEFAULT_CONSTRUCTOR (t) = 1;
3138 CLASSTYPE_LAZY_DEFAULT_CTOR (t) = 1;
3139 if (cxx_dialect >= cxx11)
3140 TYPE_HAS_CONSTEXPR_CTOR (t)
3141 /* Don't force the declaration to get a hard answer; if the
3142 definition would have made the class non-literal, it will still be
3143 non-literal because of the base or member in question, and that
3144 gives a better diagnostic. */
3145 = type_maybe_constexpr_default_constructor (t);
3146 }
3147
3148 /* [class.ctor]
3149
3150 If a class definition does not explicitly declare a copy
3151 constructor, one is declared implicitly. */
3152 if (! TYPE_HAS_COPY_CTOR (t))
3153 {
3154 TYPE_HAS_COPY_CTOR (t) = 1;
3155 TYPE_HAS_CONST_COPY_CTOR (t) = !cant_have_const_cctor;
3156 CLASSTYPE_LAZY_COPY_CTOR (t) = 1;
3157 if (move_ok)
3158 CLASSTYPE_LAZY_MOVE_CTOR (t) = 1;
3159 }
3160
3161 /* If there is no assignment operator, one will be created if and
3162 when it is needed. For now, just record whether or not the type
3163 of the parameter to the assignment operator will be a const or
3164 non-const reference. */
3165 if (!TYPE_HAS_COPY_ASSIGN (t))
3166 {
3167 TYPE_HAS_COPY_ASSIGN (t) = 1;
3168 TYPE_HAS_CONST_COPY_ASSIGN (t) = !cant_have_const_assignment;
3169 CLASSTYPE_LAZY_COPY_ASSIGN (t) = 1;
3170 if (move_ok && !LAMBDA_TYPE_P (t))
3171 CLASSTYPE_LAZY_MOVE_ASSIGN (t) = 1;
3172 }
3173
3174 /* We can't be lazy about declaring functions that might override
3175 a virtual function from a base class. */
3176 declare_virt_assop_and_dtor (t);
3177
3178 while (*access_decls)
3179 {
3180 tree using_decl = TREE_VALUE (*access_decls);
3181 tree decl = USING_DECL_DECLS (using_decl);
3182 if (DECL_NAME (using_decl) == ctor_identifier)
3183 {
3184 /* declare, then remove the decl */
3185 tree ctor_list = decl;
3186 location_t loc = input_location;
3187 input_location = DECL_SOURCE_LOCATION (using_decl);
3188 for (ovl_iterator iter (ctor_list); iter; ++iter)
3189 one_inherited_ctor (*iter, t, using_decl);
3190 *access_decls = TREE_CHAIN (*access_decls);
3191 input_location = loc;
3192 }
3193 else
3194 access_decls = &TREE_CHAIN (*access_decls);
3195 }
3196 }
3197
3198 /* FIELD is a bit-field. We are finishing the processing for its
3199 enclosing type. Issue any appropriate messages and set appropriate
3200 flags. Returns false if an error has been diagnosed. */
3201
3202 static bool
3203 check_bitfield_decl (tree field)
3204 {
3205 tree type = TREE_TYPE (field);
3206 tree w;
3207
3208 /* Extract the declared width of the bitfield, which has been
3209 temporarily stashed in DECL_BIT_FIELD_REPRESENTATIVE by grokbitfield. */
3210 w = DECL_BIT_FIELD_REPRESENTATIVE (field);
3211 gcc_assert (w != NULL_TREE);
3212 /* Remove the bit-field width indicator so that the rest of the
3213 compiler does not treat that value as a qualifier. */
3214 DECL_BIT_FIELD_REPRESENTATIVE (field) = NULL_TREE;
3215
3216 /* Detect invalid bit-field type. */
3217 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type))
3218 {
3219 error_at (DECL_SOURCE_LOCATION (field),
3220 "bit-field %q#D with non-integral type %qT", field, type);
3221 w = error_mark_node;
3222 }
3223 else
3224 {
3225 location_t loc = input_location;
3226 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3227 STRIP_NOPS (w);
3228
3229 /* detect invalid field size. */
3230 input_location = DECL_SOURCE_LOCATION (field);
3231 w = cxx_constant_value (w);
3232 input_location = loc;
3233
3234 if (TREE_CODE (w) != INTEGER_CST)
3235 {
3236 error ("bit-field %q+D width not an integer constant", field);
3237 w = error_mark_node;
3238 }
3239 else if (tree_int_cst_sgn (w) < 0)
3240 {
3241 error ("negative width in bit-field %q+D", field);
3242 w = error_mark_node;
3243 }
3244 else if (integer_zerop (w) && DECL_NAME (field) != 0)
3245 {
3246 error ("zero width for bit-field %q+D", field);
3247 w = error_mark_node;
3248 }
3249 else if ((TREE_CODE (type) != ENUMERAL_TYPE
3250 && TREE_CODE (type) != BOOLEAN_TYPE
3251 && compare_tree_int (w, TYPE_PRECISION (type)) > 0)
3252 || ((TREE_CODE (type) == ENUMERAL_TYPE
3253 || TREE_CODE (type) == BOOLEAN_TYPE)
3254 && tree_int_cst_lt (TYPE_SIZE (type), w)))
3255 warning_at (DECL_SOURCE_LOCATION (field), 0,
3256 "width of %qD exceeds its type", field);
3257 else if (TREE_CODE (type) == ENUMERAL_TYPE)
3258 {
3259 int prec = TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type));
3260 if (compare_tree_int (w, prec) < 0)
3261 warning_at (DECL_SOURCE_LOCATION (field), 0,
3262 "%qD is too small to hold all values of %q#T",
3263 field, type);
3264 }
3265 }
3266
3267 if (w != error_mark_node)
3268 {
3269 DECL_SIZE (field) = fold_convert (bitsizetype, w);
3270 DECL_BIT_FIELD (field) = 1;
3271 return true;
3272 }
3273 else
3274 {
3275 /* Non-bit-fields are aligned for their type. */
3276 DECL_BIT_FIELD (field) = 0;
3277 CLEAR_DECL_C_BIT_FIELD (field);
3278 return false;
3279 }
3280 }
3281
3282 /* FIELD is a non bit-field. We are finishing the processing for its
3283 enclosing type T. Issue any appropriate messages and set appropriate
3284 flags. */
3285
3286 static bool
3287 check_field_decl (tree field,
3288 tree t,
3289 int* cant_have_const_ctor,
3290 int* no_const_asn_ref)
3291 {
3292 tree type = strip_array_types (TREE_TYPE (field));
3293 bool any_default_members = false;
3294
3295 /* In C++98 an anonymous union cannot contain any fields which would change
3296 the settings of CANT_HAVE_CONST_CTOR and friends. */
3297 if (ANON_UNION_TYPE_P (type) && cxx_dialect < cxx11)
3298 ;
3299 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3300 structs. So, we recurse through their fields here. */
3301 else if (ANON_AGGR_TYPE_P (type))
3302 {
3303 for (tree fields = TYPE_FIELDS (type); fields;
3304 fields = DECL_CHAIN (fields))
3305 if (TREE_CODE (fields) == FIELD_DECL)
3306 any_default_members |= check_field_decl (fields, t,
3307 cant_have_const_ctor,
3308 no_const_asn_ref);
3309 }
3310 /* Check members with class type for constructors, destructors,
3311 etc. */
3312 else if (CLASS_TYPE_P (type))
3313 {
3314 /* Never let anything with uninheritable virtuals
3315 make it through without complaint. */
3316 abstract_virtuals_error (field, type);
3317
3318 if (TREE_CODE (t) == UNION_TYPE && cxx_dialect < cxx11)
3319 {
3320 static bool warned;
3321 int oldcount = errorcount;
3322 if (TYPE_NEEDS_CONSTRUCTING (type))
3323 error ("member %q+#D with constructor not allowed in union",
3324 field);
3325 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
3326 error ("member %q+#D with destructor not allowed in union", field);
3327 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type))
3328 error ("member %q+#D with copy assignment operator not allowed in union",
3329 field);
3330 if (!warned && errorcount > oldcount)
3331 {
3332 inform (DECL_SOURCE_LOCATION (field), "unrestricted unions "
3333 "only available with -std=c++11 or -std=gnu++11");
3334 warned = true;
3335 }
3336 }
3337 else
3338 {
3339 TYPE_NEEDS_CONSTRUCTING (t) |= TYPE_NEEDS_CONSTRUCTING (type);
3340 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3341 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type);
3342 TYPE_HAS_COMPLEX_COPY_ASSIGN (t)
3343 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type)
3344 || !TYPE_HAS_COPY_ASSIGN (type));
3345 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type)
3346 || !TYPE_HAS_COPY_CTOR (type));
3347 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type);
3348 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type);
3349 TYPE_HAS_COMPLEX_DFLT (t) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
3350 || TYPE_HAS_COMPLEX_DFLT (type));
3351 }
3352
3353 if (TYPE_HAS_COPY_CTOR (type)
3354 && !TYPE_HAS_CONST_COPY_CTOR (type))
3355 *cant_have_const_ctor = 1;
3356
3357 if (TYPE_HAS_COPY_ASSIGN (type)
3358 && !TYPE_HAS_CONST_COPY_ASSIGN (type))
3359 *no_const_asn_ref = 1;
3360 }
3361
3362 check_abi_tags (t, field);
3363
3364 if (DECL_INITIAL (field) != NULL_TREE)
3365 /* `build_class_init_list' does not recognize
3366 non-FIELD_DECLs. */
3367 any_default_members = true;
3368
3369 return any_default_members;
3370 }
3371
3372 /* Check the data members (both static and non-static), class-scoped
3373 typedefs, etc., appearing in the declaration of T. Issue
3374 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3375 declaration order) of access declarations; each TREE_VALUE in this
3376 list is a USING_DECL.
3377
3378 In addition, set the following flags:
3379
3380 EMPTY_P
3381 The class is empty, i.e., contains no non-static data members.
3382
3383 CANT_HAVE_CONST_CTOR_P
3384 This class cannot have an implicitly generated copy constructor
3385 taking a const reference.
3386
3387 CANT_HAVE_CONST_ASN_REF
3388 This class cannot have an implicitly generated assignment
3389 operator taking a const reference.
3390
3391 All of these flags should be initialized before calling this
3392 function.
3393
3394 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3395 fields can be added by adding to this chain. */
3396
3397 static void
3398 check_field_decls (tree t, tree *access_decls,
3399 int *cant_have_const_ctor_p,
3400 int *no_const_asn_ref_p)
3401 {
3402 tree *field;
3403 tree *next;
3404 bool has_pointers;
3405 bool any_default_members;
3406 int cant_pack = 0;
3407 int field_access = -1;
3408
3409 /* Assume there are no access declarations. */
3410 *access_decls = NULL_TREE;
3411 /* Assume this class has no pointer members. */
3412 has_pointers = false;
3413 /* Assume none of the members of this class have default
3414 initializations. */
3415 any_default_members = false;
3416
3417 for (field = &TYPE_FIELDS (t); *field; field = next)
3418 {
3419 tree x = *field;
3420 tree type = TREE_TYPE (x);
3421 int this_field_access;
3422
3423 next = &DECL_CHAIN (x);
3424
3425 if (TREE_CODE (x) == USING_DECL)
3426 {
3427 /* Save the access declarations for our caller. */
3428 *access_decls = tree_cons (NULL_TREE, x, *access_decls);
3429 continue;
3430 }
3431
3432 if (TREE_CODE (x) == TYPE_DECL
3433 || TREE_CODE (x) == TEMPLATE_DECL)
3434 continue;
3435
3436 if (TREE_CODE (x) == FUNCTION_DECL)
3437 /* FIXME: We should fold in the checking from check_methods. */
3438 continue;
3439
3440 /* If we've gotten this far, it's a data member, possibly static,
3441 or an enumerator. */
3442 if (TREE_CODE (x) != CONST_DECL)
3443 DECL_CONTEXT (x) = t;
3444
3445 /* When this goes into scope, it will be a non-local reference. */
3446 DECL_NONLOCAL (x) = 1;
3447
3448 if (TREE_CODE (t) == UNION_TYPE)
3449 {
3450 /* [class.union] (C++98)
3451
3452 If a union contains a static data member, or a member of
3453 reference type, the program is ill-formed.
3454
3455 In C++11 [class.union] says:
3456 If a union contains a non-static data member of reference type
3457 the program is ill-formed. */
3458 if (VAR_P (x) && cxx_dialect < cxx11)
3459 {
3460 error ("in C++98 %q+D may not be static because it is "
3461 "a member of a union", x);
3462 continue;
3463 }
3464 if (TYPE_REF_P (type)
3465 && TREE_CODE (x) == FIELD_DECL)
3466 {
3467 error ("non-static data member %q+D in a union may not "
3468 "have reference type %qT", x, type);
3469 continue;
3470 }
3471 }
3472
3473 /* Perform error checking that did not get done in
3474 grokdeclarator. */
3475 if (TREE_CODE (type) == FUNCTION_TYPE)
3476 {
3477 error ("field %q+D invalidly declared function type", x);
3478 type = build_pointer_type (type);
3479 TREE_TYPE (x) = type;
3480 }
3481 else if (TREE_CODE (type) == METHOD_TYPE)
3482 {
3483 error ("field %q+D invalidly declared method type", x);
3484 type = build_pointer_type (type);
3485 TREE_TYPE (x) = type;
3486 }
3487
3488 if (type == error_mark_node)
3489 continue;
3490
3491 if (TREE_CODE (x) == CONST_DECL || VAR_P (x))
3492 continue;
3493
3494 /* Now it can only be a FIELD_DECL. */
3495
3496 if (TREE_PRIVATE (x) || TREE_PROTECTED (x))
3497 CLASSTYPE_NON_AGGREGATE (t) = 1;
3498
3499 /* If at least one non-static data member is non-literal, the whole
3500 class becomes non-literal. Per Core/1453, volatile non-static
3501 data members and base classes are also not allowed.
3502 Note: if the type is incomplete we will complain later on. */
3503 if (COMPLETE_TYPE_P (type)
3504 && (!literal_type_p (type) || CP_TYPE_VOLATILE_P (type)))
3505 CLASSTYPE_LITERAL_P (t) = false;
3506
3507 /* A standard-layout class is a class that:
3508 ...
3509 has the same access control (Clause 11) for all non-static data members,
3510 ... */
3511 this_field_access = TREE_PROTECTED (x) ? 1 : TREE_PRIVATE (x) ? 2 : 0;
3512 if (field_access == -1)
3513 field_access = this_field_access;
3514 else if (this_field_access != field_access)
3515 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3516
3517 /* If this is of reference type, check if it needs an init. */
3518 if (TYPE_REF_P (type))
3519 {
3520 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3521 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3522 if (DECL_INITIAL (x) == NULL_TREE)
3523 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3524 if (cxx_dialect < cxx11)
3525 {
3526 /* ARM $12.6.2: [A member initializer list] (or, for an
3527 aggregate, initialization by a brace-enclosed list) is the
3528 only way to initialize nonstatic const and reference
3529 members. */
3530 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3531 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3532 }
3533 }
3534
3535 type = strip_array_types (type);
3536
3537 if (TYPE_PACKED (t))
3538 {
3539 if (!layout_pod_type_p (type) && !TYPE_PACKED (type))
3540 {
3541 warning_at
3542 (DECL_SOURCE_LOCATION (x), 0,
3543 "ignoring packed attribute because of unpacked non-POD field %q#D",
3544 x);
3545 cant_pack = 1;
3546 }
3547 else if (DECL_C_BIT_FIELD (x)
3548 || TYPE_ALIGN (TREE_TYPE (x)) > BITS_PER_UNIT)
3549 DECL_PACKED (x) = 1;
3550 }
3551
3552 if (DECL_C_BIT_FIELD (x)
3553 && integer_zerop (DECL_BIT_FIELD_REPRESENTATIVE (x)))
3554 /* We don't treat zero-width bitfields as making a class
3555 non-empty. */
3556 ;
3557 else if (field_poverlapping_p (x) && is_empty_class (type))
3558 {
3559 /* Empty data members also don't make a class non-empty. */
3560 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3561 }
3562 else
3563 {
3564 /* The class is non-empty. */
3565 CLASSTYPE_EMPTY_P (t) = 0;
3566 /* The class is not even nearly empty. */
3567 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
3568 /* If one of the data members contains an empty class,
3569 so does T. */
3570 if (CLASS_TYPE_P (type)
3571 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3572 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
3573 }
3574
3575 /* This is used by -Weffc++ (see below). Warn only for pointers
3576 to members which might hold dynamic memory. So do not warn
3577 for pointers to functions or pointers to members. */
3578 if (TYPE_PTR_P (type)
3579 && !TYPE_PTRFN_P (type))
3580 has_pointers = true;
3581
3582 if (CLASS_TYPE_P (type))
3583 {
3584 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type))
3585 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t, 1);
3586 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type))
3587 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3588 }
3589
3590 if (DECL_MUTABLE_P (x) || TYPE_HAS_MUTABLE_P (type))
3591 CLASSTYPE_HAS_MUTABLE (t) = 1;
3592
3593 if (DECL_MUTABLE_P (x))
3594 {
3595 if (CP_TYPE_CONST_P (type))
3596 {
3597 error ("member %q+D cannot be declared both %<const%> "
3598 "and %<mutable%>", x);
3599 continue;
3600 }
3601 if (TYPE_REF_P (type))
3602 {
3603 error ("member %q+D cannot be declared as a %<mutable%> "
3604 "reference", x);
3605 continue;
3606 }
3607 }
3608
3609 if (! layout_pod_type_p (type))
3610 /* DR 148 now allows pointers to members (which are POD themselves),
3611 to be allowed in POD structs. */
3612 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3613
3614 if (field_poverlapping_p (x))
3615 /* A potentially-overlapping non-static data member makes the class
3616 non-layout-POD. */
3617 CLASSTYPE_NON_LAYOUT_POD_P (t) = 1;
3618
3619 if (!std_layout_type_p (type))
3620 CLASSTYPE_NON_STD_LAYOUT (t) = 1;
3621
3622 if (! zero_init_p (type))
3623 CLASSTYPE_NON_ZERO_INIT_P (t) = 1;
3624
3625 /* We set DECL_C_BIT_FIELD in grokbitfield.
3626 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3627 if (DECL_C_BIT_FIELD (x))
3628 check_bitfield_decl (x);
3629
3630 if (check_field_decl (x, t, cant_have_const_ctor_p, no_const_asn_ref_p))
3631 {
3632 if (any_default_members
3633 && TREE_CODE (t) == UNION_TYPE)
3634 error ("multiple fields in union %qT initialized", t);
3635 any_default_members = true;
3636 }
3637
3638 /* Now that we've removed bit-field widths from DECL_INITIAL,
3639 anything left in DECL_INITIAL is an NSDMI that makes the class
3640 non-aggregate in C++11. */
3641 if (DECL_INITIAL (x) && cxx_dialect < cxx14)
3642 CLASSTYPE_NON_AGGREGATE (t) = true;
3643
3644 /* If any field is const, the structure type is pseudo-const. */
3645 if (CP_TYPE_CONST_P (type))
3646 {
3647 C_TYPE_FIELDS_READONLY (t) = 1;
3648 if (DECL_INITIAL (x) == NULL_TREE)
3649 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t, 1);
3650 if (cxx_dialect < cxx11)
3651 {
3652 /* ARM $12.6.2: [A member initializer list] (or, for an
3653 aggregate, initialization by a brace-enclosed list) is the
3654 only way to initialize nonstatic const and reference
3655 members. */
3656 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) = 1;
3657 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) = 1;
3658 }
3659 }
3660 /* A field that is pseudo-const makes the structure likewise. */
3661 else if (CLASS_TYPE_P (type))
3662 {
3663 C_TYPE_FIELDS_READONLY (t) |= C_TYPE_FIELDS_READONLY (type);
3664 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t,
3665 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t)
3666 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type));
3667 }
3668
3669 /* Core issue 80: A nonstatic data member is required to have a
3670 different name from the class iff the class has a
3671 user-declared constructor. */
3672 if (constructor_name_p (DECL_NAME (x), t)
3673 && TYPE_HAS_USER_CONSTRUCTOR (t))
3674 permerror (DECL_SOURCE_LOCATION (x),
3675 "field %q#D with same name as class", x);
3676 }
3677
3678 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3679 it should also define a copy constructor and an assignment operator to
3680 implement the correct copy semantic (deep vs shallow, etc.). As it is
3681 not feasible to check whether the constructors do allocate dynamic memory
3682 and store it within members, we approximate the warning like this:
3683
3684 -- Warn only if there are members which are pointers
3685 -- Warn only if there is a non-trivial constructor (otherwise,
3686 there cannot be memory allocated).
3687 -- Warn only if there is a non-trivial destructor. We assume that the
3688 user at least implemented the cleanup correctly, and a destructor
3689 is needed to free dynamic memory.
3690
3691 This seems enough for practical purposes. */
3692 if (warn_ecpp
3693 && has_pointers
3694 && TYPE_HAS_USER_CONSTRUCTOR (t)
3695 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
3696 && !(TYPE_HAS_COPY_CTOR (t) && TYPE_HAS_COPY_ASSIGN (t)))
3697 {
3698 warning (OPT_Weffc__, "%q#T has pointer data members", t);
3699
3700 if (! TYPE_HAS_COPY_CTOR (t))
3701 {
3702 warning (OPT_Weffc__,
3703 " but does not override %<%T(const %T&)%>", t, t);
3704 if (!TYPE_HAS_COPY_ASSIGN (t))
3705 warning (OPT_Weffc__, " or %<operator=(const %T&)%>", t);
3706 }
3707 else if (! TYPE_HAS_COPY_ASSIGN (t))
3708 warning (OPT_Weffc__,
3709 " but does not override %<operator=(const %T&)%>", t);
3710 }
3711
3712 /* Non-static data member initializers make the default constructor
3713 non-trivial. */
3714 if (any_default_members)
3715 {
3716 TYPE_NEEDS_CONSTRUCTING (t) = true;
3717 TYPE_HAS_COMPLEX_DFLT (t) = true;
3718 }
3719
3720 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3721 if (cant_pack)
3722 TYPE_PACKED (t) = 0;
3723
3724 /* Check anonymous struct/anonymous union fields. */
3725 finish_struct_anon (t);
3726
3727 /* We've built up the list of access declarations in reverse order.
3728 Fix that now. */
3729 *access_decls = nreverse (*access_decls);
3730 }
3731
3732 /* If TYPE is an empty class type, records its OFFSET in the table of
3733 OFFSETS. */
3734
3735 static int
3736 record_subobject_offset (tree type, tree offset, splay_tree offsets)
3737 {
3738 splay_tree_node n;
3739
3740 if (!is_empty_class (type))
3741 return 0;
3742
3743 /* Record the location of this empty object in OFFSETS. */
3744 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3745 if (!n)
3746 n = splay_tree_insert (offsets,
3747 (splay_tree_key) offset,
3748 (splay_tree_value) NULL_TREE);
3749 n->value = ((splay_tree_value)
3750 tree_cons (NULL_TREE,
3751 type,
3752 (tree) n->value));
3753
3754 return 0;
3755 }
3756
3757 /* Returns nonzero if TYPE is an empty class type and there is
3758 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3759
3760 static int
3761 check_subobject_offset (tree type, tree offset, splay_tree offsets)
3762 {
3763 splay_tree_node n;
3764 tree t;
3765
3766 if (!is_empty_class (type))
3767 return 0;
3768
3769 /* Record the location of this empty object in OFFSETS. */
3770 n = splay_tree_lookup (offsets, (splay_tree_key) offset);
3771 if (!n)
3772 return 0;
3773
3774 for (t = (tree) n->value; t; t = TREE_CHAIN (t))
3775 if (same_type_p (TREE_VALUE (t), type))
3776 return 1;
3777
3778 return 0;
3779 }
3780
3781 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3782 F for every subobject, passing it the type, offset, and table of
3783 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3784 be traversed.
3785
3786 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3787 than MAX_OFFSET will not be walked.
3788
3789 If F returns a nonzero value, the traversal ceases, and that value
3790 is returned. Otherwise, returns zero. */
3791
3792 static int
3793 walk_subobject_offsets (tree type,
3794 subobject_offset_fn f,
3795 tree offset,
3796 splay_tree offsets,
3797 tree max_offset,
3798 int vbases_p)
3799 {
3800 int r = 0;
3801 tree type_binfo = NULL_TREE;
3802
3803 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3804 stop. */
3805 if (max_offset && tree_int_cst_lt (max_offset, offset))
3806 return 0;
3807
3808 if (type == error_mark_node)
3809 return 0;
3810
3811 if (!TYPE_P (type))
3812 {
3813 type_binfo = type;
3814 type = BINFO_TYPE (type);
3815 }
3816
3817 if (CLASS_TYPE_P (type))
3818 {
3819 tree field;
3820 tree binfo;
3821 int i;
3822
3823 /* Avoid recursing into objects that are not interesting. */
3824 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type))
3825 return 0;
3826
3827 /* Record the location of TYPE. */
3828 r = (*f) (type, offset, offsets);
3829 if (r)
3830 return r;
3831
3832 /* Iterate through the direct base classes of TYPE. */
3833 if (!type_binfo)
3834 type_binfo = TYPE_BINFO (type);
3835 for (i = 0; BINFO_BASE_ITERATE (type_binfo, i, binfo); i++)
3836 {
3837 tree binfo_offset;
3838
3839 if (BINFO_VIRTUAL_P (binfo))
3840 continue;
3841
3842 tree orig_binfo;
3843 /* We cannot rely on BINFO_OFFSET being set for the base
3844 class yet, but the offsets for direct non-virtual
3845 bases can be calculated by going back to the TYPE. */
3846 orig_binfo = BINFO_BASE_BINFO (TYPE_BINFO (type), i);
3847 binfo_offset = size_binop (PLUS_EXPR,
3848 offset,
3849 BINFO_OFFSET (orig_binfo));
3850
3851 r = walk_subobject_offsets (binfo,
3852 f,
3853 binfo_offset,
3854 offsets,
3855 max_offset,
3856 /*vbases_p=*/0);
3857 if (r)
3858 return r;
3859 }
3860
3861 if (CLASSTYPE_VBASECLASSES (type))
3862 {
3863 unsigned ix;
3864 vec<tree, va_gc> *vbases;
3865
3866 /* Iterate through the virtual base classes of TYPE. In G++
3867 3.2, we included virtual bases in the direct base class
3868 loop above, which results in incorrect results; the
3869 correct offsets for virtual bases are only known when
3870 working with the most derived type. */
3871 if (vbases_p)
3872 for (vbases = CLASSTYPE_VBASECLASSES (type), ix = 0;
3873 vec_safe_iterate (vbases, ix, &binfo); ix++)
3874 {
3875 r = walk_subobject_offsets (binfo,
3876 f,
3877 size_binop (PLUS_EXPR,
3878 offset,
3879 BINFO_OFFSET (binfo)),
3880 offsets,
3881 max_offset,
3882 /*vbases_p=*/0);
3883 if (r)
3884 return r;
3885 }
3886 else
3887 {
3888 /* We still have to walk the primary base, if it is
3889 virtual. (If it is non-virtual, then it was walked
3890 above.) */
3891 tree vbase = get_primary_binfo (type_binfo);
3892
3893 if (vbase && BINFO_VIRTUAL_P (vbase)
3894 && BINFO_PRIMARY_P (vbase)
3895 && BINFO_INHERITANCE_CHAIN (vbase) == type_binfo)
3896 {
3897 r = (walk_subobject_offsets
3898 (vbase, f, offset,
3899 offsets, max_offset, /*vbases_p=*/0));
3900 if (r)
3901 return r;
3902 }
3903 }
3904 }
3905
3906 /* Iterate through the fields of TYPE. */
3907 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3908 if (TREE_CODE (field) == FIELD_DECL
3909 && TREE_TYPE (field) != error_mark_node
3910 && !DECL_ARTIFICIAL (field))
3911 {
3912 tree field_offset;
3913
3914 field_offset = byte_position (field);
3915
3916 r = walk_subobject_offsets (TREE_TYPE (field),
3917 f,
3918 size_binop (PLUS_EXPR,
3919 offset,
3920 field_offset),
3921 offsets,
3922 max_offset,
3923 /*vbases_p=*/1);
3924 if (r)
3925 return r;
3926 }
3927 }
3928 else if (TREE_CODE (type) == ARRAY_TYPE)
3929 {
3930 tree element_type = strip_array_types (type);
3931 tree domain = TYPE_DOMAIN (type);
3932 tree index;
3933
3934 /* Avoid recursing into objects that are not interesting. */
3935 if (!CLASS_TYPE_P (element_type)
3936 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type)
3937 || !domain
3938 || integer_minus_onep (TYPE_MAX_VALUE (domain)))
3939 return 0;
3940
3941 /* Step through each of the elements in the array. */
3942 for (index = size_zero_node;
3943 !tree_int_cst_lt (TYPE_MAX_VALUE (domain), index);
3944 index = size_binop (PLUS_EXPR, index, size_one_node))
3945 {
3946 r = walk_subobject_offsets (TREE_TYPE (type),
3947 f,
3948 offset,
3949 offsets,
3950 max_offset,
3951 /*vbases_p=*/1);
3952 if (r)
3953 return r;
3954 offset = size_binop (PLUS_EXPR, offset,
3955 TYPE_SIZE_UNIT (TREE_TYPE (type)));
3956 /* If this new OFFSET is bigger than the MAX_OFFSET, then
3957 there's no point in iterating through the remaining
3958 elements of the array. */
3959 if (max_offset && tree_int_cst_lt (max_offset, offset))
3960 break;
3961 }
3962 }
3963
3964 return 0;
3965 }
3966
3967 /* Return true iff FIELD_DECL DECL is potentially overlapping. */
3968
3969 static bool
3970 field_poverlapping_p (tree decl)
3971 {
3972 /* Base fields are actually potentially overlapping, but C++ bases go through
3973 a different code path based on binfos, and ObjC++ base fields are laid out
3974 in objc-act, so we don't want layout_class_type to mess with them. */
3975 if (DECL_FIELD_IS_BASE (decl))
3976 {
3977 gcc_checking_assert (c_dialect_objc ());
3978 return false;
3979 }
3980
3981 return lookup_attribute ("no_unique_address",
3982 DECL_ATTRIBUTES (decl));
3983 }
3984
3985 /* Record all of the empty subobjects of DECL_OR_BINFO. */
3986
3987 static void
3988 record_subobject_offsets (tree decl_or_binfo,
3989 splay_tree offsets)
3990 {
3991 tree type, offset;
3992 bool overlapping, vbases_p;
3993
3994 if (DECL_P (decl_or_binfo))
3995 {
3996 tree decl = decl_or_binfo;
3997 type = TREE_TYPE (decl);
3998 offset = byte_position (decl);
3999 overlapping = field_poverlapping_p (decl);
4000 vbases_p = true;
4001 }
4002 else
4003 {
4004 type = BINFO_TYPE (decl_or_binfo);
4005 offset = BINFO_OFFSET (decl_or_binfo);
4006 overlapping = true;
4007 vbases_p = false;
4008 }
4009
4010 tree max_offset;
4011 /* If recording subobjects for a non-static data member or a
4012 non-empty base class, we do not need to record offsets beyond
4013 the size of the biggest empty class. Additional data members
4014 will go at the end of the class. Additional base classes will go
4015 either at offset zero (if empty, in which case they cannot
4016 overlap with offsets past the size of the biggest empty class) or
4017 at the end of the class.
4018
4019 However, if we are placing an empty base class, then we must record
4020 all offsets, as either the empty class is at offset zero (where
4021 other empty classes might later be placed) or at the end of the
4022 class (where other objects might then be placed, so other empty
4023 subobjects might later overlap). */
4024 if (!overlapping
4025 || !is_empty_class (type))
4026 max_offset = sizeof_biggest_empty_class;
4027 else
4028 max_offset = NULL_TREE;
4029 walk_subobject_offsets (type, record_subobject_offset, offset,
4030 offsets, max_offset, vbases_p);
4031 }
4032
4033 /* Returns nonzero if any of the empty subobjects of TYPE (located at
4034 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
4035 virtual bases of TYPE are examined. */
4036
4037 static int
4038 layout_conflict_p (tree type,
4039 tree offset,
4040 splay_tree offsets,
4041 int vbases_p)
4042 {
4043 splay_tree_node max_node;
4044
4045 /* Get the node in OFFSETS that indicates the maximum offset where
4046 an empty subobject is located. */
4047 max_node = splay_tree_max (offsets);
4048 /* If there aren't any empty subobjects, then there's no point in
4049 performing this check. */
4050 if (!max_node)
4051 return 0;
4052
4053 return walk_subobject_offsets (type, check_subobject_offset, offset,
4054 offsets, (tree) (max_node->key),
4055 vbases_p);
4056 }
4057
4058 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
4059 non-static data member of the type indicated by RLI. BINFO is the
4060 binfo corresponding to the base subobject, OFFSETS maps offsets to
4061 types already located at those offsets. This function determines
4062 the position of the DECL. */
4063
4064 static void
4065 layout_nonempty_base_or_field (record_layout_info rli,
4066 tree decl,
4067 tree binfo,
4068 splay_tree offsets)
4069 {
4070 tree offset = NULL_TREE;
4071 bool field_p;
4072 tree type;
4073
4074 if (binfo)
4075 {
4076 /* For the purposes of determining layout conflicts, we want to
4077 use the class type of BINFO; TREE_TYPE (DECL) will be the
4078 CLASSTYPE_AS_BASE version, which does not contain entries for
4079 zero-sized bases. */
4080 type = TREE_TYPE (binfo);
4081 field_p = false;
4082 }
4083 else
4084 {
4085 type = TREE_TYPE (decl);
4086 field_p = true;
4087 }
4088
4089 /* Try to place the field. It may take more than one try if we have
4090 a hard time placing the field without putting two objects of the
4091 same type at the same address. */
4092 while (1)
4093 {
4094 struct record_layout_info_s old_rli = *rli;
4095
4096 /* Place this field. */
4097 place_field (rli, decl);
4098 offset = byte_position (decl);
4099
4100 /* We have to check to see whether or not there is already
4101 something of the same type at the offset we're about to use.
4102 For example, consider:
4103
4104 struct S {};
4105 struct T : public S { int i; };
4106 struct U : public S, public T {};
4107
4108 Here, we put S at offset zero in U. Then, we can't put T at
4109 offset zero -- its S component would be at the same address
4110 as the S we already allocated. So, we have to skip ahead.
4111 Since all data members, including those whose type is an
4112 empty class, have nonzero size, any overlap can happen only
4113 with a direct or indirect base-class -- it can't happen with
4114 a data member. */
4115 /* In a union, overlap is permitted; all members are placed at
4116 offset zero. */
4117 if (TREE_CODE (rli->t) == UNION_TYPE)
4118 break;
4119 if (layout_conflict_p (field_p ? type : binfo, offset,
4120 offsets, field_p))
4121 {
4122 /* Strip off the size allocated to this field. That puts us
4123 at the first place we could have put the field with
4124 proper alignment. */
4125 *rli = old_rli;
4126
4127 /* Bump up by the alignment required for the type. */
4128 rli->bitpos
4129 = size_binop (PLUS_EXPR, rli->bitpos,
4130 bitsize_int (binfo
4131 ? CLASSTYPE_ALIGN (type)
4132 : TYPE_ALIGN (type)));
4133 normalize_rli (rli);
4134 }
4135 else if (TREE_CODE (type) == NULLPTR_TYPE
4136 && warn_abi && abi_version_crosses (9))
4137 {
4138 /* Before ABI v9, we were giving nullptr_t alignment of 1; if
4139 the offset wasn't aligned like a pointer when we started to
4140 layout this field, that affects its position. */
4141 tree pos = rli_size_unit_so_far (&old_rli);
4142 if (int_cst_value (pos) % TYPE_ALIGN_UNIT (ptr_type_node) != 0)
4143 {
4144 if (abi_version_at_least (9))
4145 warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wabi,
4146 "alignment of %qD increased in -fabi-version=9 "
4147 "(GCC 5.2)", decl);
4148 else
4149 warning_at (DECL_SOURCE_LOCATION (decl), OPT_Wabi, "alignment "
4150 "of %qD will increase in -fabi-version=9", decl);
4151 }
4152 break;
4153 }
4154 else
4155 /* There was no conflict. We're done laying out this field. */
4156 break;
4157 }
4158
4159 /* Now that we know where it will be placed, update its
4160 BINFO_OFFSET. */
4161 if (binfo && CLASS_TYPE_P (BINFO_TYPE (binfo)))
4162 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
4163 this point because their BINFO_OFFSET is copied from another
4164 hierarchy. Therefore, we may not need to add the entire
4165 OFFSET. */
4166 propagate_binfo_offsets (binfo,
4167 size_diffop_loc (input_location,
4168 fold_convert (ssizetype, offset),
4169 fold_convert (ssizetype,
4170 BINFO_OFFSET (binfo))));
4171 }
4172
4173 /* Returns true if TYPE is empty and OFFSET is nonzero. */
4174
4175 static int
4176 empty_base_at_nonzero_offset_p (tree type,
4177 tree offset,
4178 splay_tree /*offsets*/)
4179 {
4180 return is_empty_class (type) && !integer_zerop (offset);
4181 }
4182
4183 /* Layout the empty base BINFO. EOC indicates the byte currently just
4184 past the end of the class, and should be correctly aligned for a
4185 class of the type indicated by BINFO; OFFSETS gives the offsets of
4186 the empty bases allocated so far. T is the most derived
4187 type. Return nonzero iff we added it at the end. */
4188
4189 static bool
4190 layout_empty_base_or_field (record_layout_info rli, tree binfo_or_decl,
4191 splay_tree offsets)
4192 {
4193 tree alignment;
4194 bool atend = false;
4195 tree binfo = NULL_TREE;
4196 tree decl = NULL_TREE;
4197 tree type;
4198 if (TREE_CODE (binfo_or_decl) == TREE_BINFO)
4199 {
4200 binfo = binfo_or_decl;
4201 type = BINFO_TYPE (binfo);
4202 }
4203 else
4204 {
4205 decl = binfo_or_decl;
4206 type = TREE_TYPE (decl);
4207 }
4208
4209 /* On some platforms (ARM), even empty classes will not be
4210 byte-aligned. */
4211 tree eoc = round_up_loc (input_location,
4212 rli_size_unit_so_far (rli),
4213 CLASSTYPE_ALIGN_UNIT (type));
4214
4215 /* This routine should only be used for empty classes. */
4216 gcc_assert (is_empty_class (type));
4217 alignment = size_int (CLASSTYPE_ALIGN_UNIT (type));
4218
4219 /* This is an empty base class. We first try to put it at offset
4220 zero. */
4221 tree offset = size_zero_node;
4222 if (layout_conflict_p (type,
4223 offset,
4224 offsets,
4225 /*vbases_p=*/0))
4226 {
4227 /* That didn't work. Now, we move forward from the next
4228 available spot in the class. */
4229 atend = true;
4230 offset = eoc;
4231 while (1)
4232 {
4233 if (!layout_conflict_p (type,
4234 offset,
4235 offsets,
4236 /*vbases_p=*/0))
4237 /* We finally found a spot where there's no overlap. */
4238 break;
4239
4240 /* There's overlap here, too. Bump along to the next spot. */
4241 offset = size_binop (PLUS_EXPR, offset, alignment);
4242 }
4243 }
4244
4245 if (CLASSTYPE_USER_ALIGN (type))
4246 {
4247 rli->record_align = MAX (rli->record_align, CLASSTYPE_ALIGN (type));
4248 if (warn_packed)
4249 rli->unpacked_align = MAX (rli->unpacked_align, CLASSTYPE_ALIGN (type));
4250 TYPE_USER_ALIGN (rli->t) = 1;
4251 }
4252
4253 if (binfo)
4254 /* Adjust BINFO_OFFSET (binfo) to be exactly OFFSET. */
4255 propagate_binfo_offsets (binfo,
4256 size_diffop (offset, BINFO_OFFSET (binfo)));
4257 else
4258 {
4259 DECL_FIELD_OFFSET (decl) = offset;
4260 DECL_FIELD_BIT_OFFSET (decl) = bitsize_zero_node;
4261 SET_DECL_OFFSET_ALIGN (decl, BITS_PER_UNIT);
4262 }
4263
4264 return atend;
4265 }
4266
4267 /* Build the FIELD_DECL for BASETYPE as a base of T, add it to the chain of
4268 fields at NEXT_FIELD, and return it. */
4269
4270 static tree
4271 build_base_field_1 (tree t, tree basetype, tree *&next_field)
4272 {
4273 /* Create the FIELD_DECL. */
4274 gcc_assert (CLASSTYPE_AS_BASE (basetype));
4275 tree decl = build_decl (input_location,
4276 FIELD_DECL, NULL_TREE, CLASSTYPE_AS_BASE (basetype));
4277 DECL_ARTIFICIAL (decl) = 1;
4278 DECL_IGNORED_P (decl) = 1;
4279 DECL_FIELD_CONTEXT (decl) = t;
4280 if (is_empty_class (basetype))
4281 /* CLASSTYPE_SIZE is one byte, but the field needs to have size zero. */
4282 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = size_zero_node;
4283 else
4284 {
4285 DECL_SIZE (decl) = CLASSTYPE_SIZE (basetype);
4286 DECL_SIZE_UNIT (decl) = CLASSTYPE_SIZE_UNIT (basetype);
4287 }
4288 SET_DECL_ALIGN (decl, CLASSTYPE_ALIGN (basetype));
4289 DECL_USER_ALIGN (decl) = CLASSTYPE_USER_ALIGN (basetype);
4290 SET_DECL_MODE (decl, TYPE_MODE (basetype));
4291 DECL_FIELD_IS_BASE (decl) = 1;
4292
4293 /* Add the new FIELD_DECL to the list of fields for T. */
4294 DECL_CHAIN (decl) = *next_field;
4295 *next_field = decl;
4296 next_field = &DECL_CHAIN (decl);
4297
4298 return decl;
4299 }
4300
4301 /* Layout the base given by BINFO in the class indicated by RLI.
4302 *BASE_ALIGN is a running maximum of the alignments of
4303 any base class. OFFSETS gives the location of empty base
4304 subobjects. T is the most derived type. Return nonzero if the new
4305 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4306 *NEXT_FIELD, unless BINFO is for an empty base class.
4307
4308 Returns the location at which the next field should be inserted. */
4309
4310 static tree *
4311 build_base_field (record_layout_info rli, tree binfo,
4312 splay_tree offsets, tree *next_field)
4313 {
4314 tree t = rli->t;
4315 tree basetype = BINFO_TYPE (binfo);
4316
4317 if (!COMPLETE_TYPE_P (basetype))
4318 /* This error is now reported in xref_tag, thus giving better
4319 location information. */
4320 return next_field;
4321
4322 /* Place the base class. */
4323 if (!is_empty_class (basetype))
4324 {
4325 tree decl;
4326
4327 /* The containing class is non-empty because it has a non-empty
4328 base class. */
4329 CLASSTYPE_EMPTY_P (t) = 0;
4330
4331 /* Create the FIELD_DECL. */
4332 decl = build_base_field_1 (t, basetype, next_field);
4333
4334 /* Try to place the field. It may take more than one try if we
4335 have a hard time placing the field without putting two
4336 objects of the same type at the same address. */
4337 layout_nonempty_base_or_field (rli, decl, binfo, offsets);
4338 }
4339 else
4340 {
4341 bool atend = layout_empty_base_or_field (rli, binfo, offsets);
4342 /* A nearly-empty class "has no proper base class that is empty,
4343 not morally virtual, and at an offset other than zero." */
4344 if (!BINFO_VIRTUAL_P (binfo) && CLASSTYPE_NEARLY_EMPTY_P (t))
4345 {
4346 if (atend)
4347 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4348 /* The check above (used in G++ 3.2) is insufficient because
4349 an empty class placed at offset zero might itself have an
4350 empty base at a nonzero offset. */
4351 else if (walk_subobject_offsets (basetype,
4352 empty_base_at_nonzero_offset_p,
4353 size_zero_node,
4354 /*offsets=*/NULL,
4355 /*max_offset=*/NULL_TREE,
4356 /*vbases_p=*/true))
4357 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
4358 }
4359
4360 /* We used to not create a FIELD_DECL for empty base classes because of
4361 back end issues with overlapping FIELD_DECLs, but that doesn't seem to
4362 be a problem anymore. We need them to handle initialization of C++17
4363 aggregate bases. */
4364 if (cxx_dialect >= cxx17 && !BINFO_VIRTUAL_P (binfo))
4365 {
4366 tree decl = build_base_field_1 (t, basetype, next_field);
4367 DECL_FIELD_OFFSET (decl) = BINFO_OFFSET (binfo);
4368 DECL_FIELD_BIT_OFFSET (decl) = bitsize_zero_node;
4369 SET_DECL_OFFSET_ALIGN (decl, BITS_PER_UNIT);
4370 }
4371
4372 /* An empty virtual base causes a class to be non-empty
4373 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4374 here because that was already done when the virtual table
4375 pointer was created. */
4376 }
4377
4378 /* Record the offsets of BINFO and its base subobjects. */
4379 record_subobject_offsets (binfo, offsets);
4380
4381 return next_field;
4382 }
4383
4384 /* Layout all of the non-virtual base classes. Record empty
4385 subobjects in OFFSETS. T is the most derived type. Return nonzero
4386 if the type cannot be nearly empty. The fields created
4387 corresponding to the base classes will be inserted at
4388 *NEXT_FIELD. */
4389
4390 static void
4391 build_base_fields (record_layout_info rli,
4392 splay_tree offsets, tree *next_field)
4393 {
4394 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4395 subobjects. */
4396 tree t = rli->t;
4397 int n_baseclasses = BINFO_N_BASE_BINFOS (TYPE_BINFO (t));
4398 int i;
4399
4400 /* The primary base class is always allocated first. */
4401 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
4402 next_field = build_base_field (rli, CLASSTYPE_PRIMARY_BINFO (t),
4403 offsets, next_field);
4404
4405 /* Now allocate the rest of the bases. */
4406 for (i = 0; i < n_baseclasses; ++i)
4407 {
4408 tree base_binfo;
4409
4410 base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
4411
4412 /* The primary base was already allocated above, so we don't
4413 need to allocate it again here. */
4414 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
4415 continue;
4416
4417 /* Virtual bases are added at the end (a primary virtual base
4418 will have already been added). */
4419 if (BINFO_VIRTUAL_P (base_binfo))
4420 continue;
4421
4422 next_field = build_base_field (rli, base_binfo,
4423 offsets, next_field);
4424 }
4425 }
4426
4427 /* Go through the TYPE_FIELDS of T issuing any appropriate
4428 diagnostics, figuring out which methods override which other
4429 methods, and so forth. */
4430
4431 static void
4432 check_methods (tree t)
4433 {
4434 for (tree x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
4435 if (DECL_DECLARES_FUNCTION_P (x))
4436 {
4437 check_for_override (x, t);
4438
4439 if (DECL_PURE_VIRTUAL_P (x)
4440 && (TREE_CODE (x) != FUNCTION_DECL || ! DECL_VINDEX (x)))
4441 error ("initializer specified for non-virtual method %q+D", x);
4442 /* The name of the field is the original field name
4443 Save this in auxiliary field for later overloading. */
4444 if (TREE_CODE (x) == FUNCTION_DECL && DECL_VINDEX (x))
4445 {
4446 TYPE_POLYMORPHIC_P (t) = 1;
4447 if (DECL_PURE_VIRTUAL_P (x))
4448 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
4449 }
4450
4451 /* All user-provided destructors are non-trivial.
4452 Constructors and assignment ops are handled in
4453 grok_special_member_properties. */
4454 if (DECL_DESTRUCTOR_P (x) && user_provided_p (x))
4455 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = 1;
4456 if (!DECL_VIRTUAL_P (x)
4457 && lookup_attribute ("transaction_safe_dynamic",
4458 DECL_ATTRIBUTES (x)))
4459 error_at (DECL_SOURCE_LOCATION (x),
4460 "%<transaction_safe_dynamic%> may only be specified for "
4461 "a virtual function");
4462 }
4463 }
4464
4465 /* FN is a constructor or destructor. Clone the declaration to create
4466 a specialized in-charge or not-in-charge version, as indicated by
4467 NAME. */
4468
4469 static tree
4470 build_clone (tree fn, tree name)
4471 {
4472 tree parms;
4473 tree clone;
4474
4475 /* Copy the function. */
4476 clone = copy_decl (fn);
4477 /* Reset the function name. */
4478 DECL_NAME (clone) = name;
4479 /* Remember where this function came from. */
4480 DECL_ABSTRACT_ORIGIN (clone) = fn;
4481 /* Make it easy to find the CLONE given the FN. */
4482 DECL_CHAIN (clone) = DECL_CHAIN (fn);
4483 DECL_CHAIN (fn) = clone;
4484
4485 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4486 if (TREE_CODE (clone) == TEMPLATE_DECL)
4487 {
4488 tree result = build_clone (DECL_TEMPLATE_RESULT (clone), name);
4489 DECL_TEMPLATE_RESULT (clone) = result;
4490 DECL_TEMPLATE_INFO (result) = copy_node (DECL_TEMPLATE_INFO (result));
4491 DECL_TI_TEMPLATE (result) = clone;
4492 TREE_TYPE (clone) = TREE_TYPE (result);
4493 return clone;
4494 }
4495 else
4496 {
4497 // Clone constraints.
4498 if (flag_concepts)
4499 if (tree ci = get_constraints (fn))
4500 set_constraints (clone, copy_node (ci));
4501 }
4502
4503
4504 SET_DECL_ASSEMBLER_NAME (clone, NULL_TREE);
4505 DECL_CLONED_FUNCTION (clone) = fn;
4506 /* There's no pending inline data for this function. */
4507 DECL_PENDING_INLINE_INFO (clone) = NULL;
4508 DECL_PENDING_INLINE_P (clone) = 0;
4509
4510 /* The base-class destructor is not virtual. */
4511 if (name == base_dtor_identifier)
4512 {
4513 DECL_VIRTUAL_P (clone) = 0;
4514 if (TREE_CODE (clone) != TEMPLATE_DECL)
4515 DECL_VINDEX (clone) = NULL_TREE;
4516 }
4517
4518 bool ctor_omit_inherited_parms_p = ctor_omit_inherited_parms (clone);
4519 if (ctor_omit_inherited_parms_p)
4520 gcc_assert (DECL_HAS_IN_CHARGE_PARM_P (clone));
4521
4522 /* If there was an in-charge parameter, drop it from the function
4523 type. */
4524 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4525 {
4526 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4527 tree parmtypes = TYPE_ARG_TYPES (TREE_TYPE (clone));
4528 /* Skip the `this' parameter. */
4529 parmtypes = TREE_CHAIN (parmtypes);
4530 /* Skip the in-charge parameter. */
4531 parmtypes = TREE_CHAIN (parmtypes);
4532 /* And the VTT parm, in a complete [cd]tor. */
4533 if (DECL_HAS_VTT_PARM_P (fn)
4534 && ! DECL_NEEDS_VTT_PARM_P (clone))
4535 parmtypes = TREE_CHAIN (parmtypes);
4536 if (ctor_omit_inherited_parms_p)
4537 {
4538 /* If we're omitting inherited parms, that just leaves the VTT. */
4539 gcc_assert (DECL_NEEDS_VTT_PARM_P (clone));
4540 parmtypes = tree_cons (NULL_TREE, vtt_parm_type, void_list_node);
4541 }
4542 TREE_TYPE (clone)
4543 = build_method_type_directly (basetype,
4544 TREE_TYPE (TREE_TYPE (clone)),
4545 parmtypes);
4546 TREE_TYPE (clone)
4547 = cp_build_type_attribute_variant (TREE_TYPE (clone),
4548 TYPE_ATTRIBUTES (TREE_TYPE (fn)));
4549 TREE_TYPE (clone)
4550 = cxx_copy_lang_qualifiers (TREE_TYPE (clone), TREE_TYPE (fn));
4551 }
4552
4553 /* Copy the function parameters. */
4554 DECL_ARGUMENTS (clone) = copy_list (DECL_ARGUMENTS (clone));
4555 /* Remove the in-charge parameter. */
4556 if (DECL_HAS_IN_CHARGE_PARM_P (clone))
4557 {
4558 DECL_CHAIN (DECL_ARGUMENTS (clone))
4559 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4560 DECL_HAS_IN_CHARGE_PARM_P (clone) = 0;
4561 }
4562 /* And the VTT parm, in a complete [cd]tor. */
4563 if (DECL_HAS_VTT_PARM_P (fn))
4564 {
4565 if (DECL_NEEDS_VTT_PARM_P (clone))
4566 DECL_HAS_VTT_PARM_P (clone) = 1;
4567 else
4568 {
4569 DECL_CHAIN (DECL_ARGUMENTS (clone))
4570 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone)));
4571 DECL_HAS_VTT_PARM_P (clone) = 0;
4572 }
4573 }
4574
4575 /* A base constructor inheriting from a virtual base doesn't get the
4576 arguments. */
4577 if (ctor_omit_inherited_parms_p)
4578 DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone))) = NULL_TREE;
4579
4580 for (parms = DECL_ARGUMENTS (clone); parms; parms = DECL_CHAIN (parms))
4581 {
4582 DECL_CONTEXT (parms) = clone;
4583 cxx_dup_lang_specific_decl (parms);
4584 }
4585
4586 /* Create the RTL for this function. */
4587 SET_DECL_RTL (clone, NULL);
4588 rest_of_decl_compilation (clone, /*top_level=*/1, at_eof);
4589
4590 return clone;
4591 }
4592
4593 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4594 not invoke this function directly.
4595
4596 For a non-thunk function, returns the address of the slot for storing
4597 the function it is a clone of. Otherwise returns NULL_TREE.
4598
4599 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4600 cloned_function is unset. This is to support the separate
4601 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4602 on a template makes sense, but not the former. */
4603
4604 tree *
4605 decl_cloned_function_p (const_tree decl, bool just_testing)
4606 {
4607 tree *ptr;
4608 if (just_testing)
4609 decl = STRIP_TEMPLATE (decl);
4610
4611 if (TREE_CODE (decl) != FUNCTION_DECL
4612 || !DECL_LANG_SPECIFIC (decl)
4613 || DECL_LANG_SPECIFIC (decl)->u.fn.thunk_p)
4614 {
4615 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4616 if (!just_testing)
4617 lang_check_failed (__FILE__, __LINE__, __FUNCTION__);
4618 else
4619 #endif
4620 return NULL;
4621 }
4622
4623 ptr = &DECL_LANG_SPECIFIC (decl)->u.fn.u5.cloned_function;
4624 if (just_testing && *ptr == NULL_TREE)
4625 return NULL;
4626 else
4627 return ptr;
4628 }
4629
4630 /* Produce declarations for all appropriate clones of FN. If
4631 UPDATE_METHODS is true, the clones are added to the
4632 CLASSTYPE_MEMBER_VEC. */
4633
4634 void
4635 clone_function_decl (tree fn, bool update_methods)
4636 {
4637 tree clone;
4638
4639 /* Avoid inappropriate cloning. */
4640 if (DECL_CHAIN (fn)
4641 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn)))
4642 return;
4643
4644 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn))
4645 {
4646 /* For each constructor, we need two variants: an in-charge version
4647 and a not-in-charge version. */
4648 clone = build_clone (fn, complete_ctor_identifier);
4649 if (update_methods)
4650 add_method (DECL_CONTEXT (clone), clone, false);
4651 clone = build_clone (fn, base_ctor_identifier);
4652 if (update_methods)
4653 add_method (DECL_CONTEXT (clone), clone, false);
4654 }
4655 else
4656 {
4657 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn));
4658
4659 /* For each destructor, we need three variants: an in-charge
4660 version, a not-in-charge version, and an in-charge deleting
4661 version. We clone the deleting version first because that
4662 means it will go second on the TYPE_FIELDS list -- and that
4663 corresponds to the correct layout order in the virtual
4664 function table.
4665
4666 For a non-virtual destructor, we do not build a deleting
4667 destructor. */
4668 if (DECL_VIRTUAL_P (fn))
4669 {
4670 clone = build_clone (fn, deleting_dtor_identifier);
4671 if (update_methods)
4672 add_method (DECL_CONTEXT (clone), clone, false);
4673 }
4674 clone = build_clone (fn, complete_dtor_identifier);
4675 if (update_methods)
4676 add_method (DECL_CONTEXT (clone), clone, false);
4677 clone = build_clone (fn, base_dtor_identifier);
4678 if (update_methods)
4679 add_method (DECL_CONTEXT (clone), clone, false);
4680 }
4681
4682 /* Note that this is an abstract function that is never emitted. */
4683 DECL_ABSTRACT_P (fn) = true;
4684 }
4685
4686 /* DECL is an in charge constructor, which is being defined. This will
4687 have had an in class declaration, from whence clones were
4688 declared. An out-of-class definition can specify additional default
4689 arguments. As it is the clones that are involved in overload
4690 resolution, we must propagate the information from the DECL to its
4691 clones. */
4692
4693 void
4694 adjust_clone_args (tree decl)
4695 {
4696 tree clone;
4697
4698 for (clone = DECL_CHAIN (decl); clone && DECL_CLONED_FUNCTION_P (clone);
4699 clone = DECL_CHAIN (clone))
4700 {
4701 tree orig_clone_parms = TYPE_ARG_TYPES (TREE_TYPE (clone));
4702 tree orig_decl_parms = TYPE_ARG_TYPES (TREE_TYPE (decl));
4703 tree decl_parms, clone_parms;
4704
4705 clone_parms = orig_clone_parms;
4706
4707 /* Skip the 'this' parameter. */
4708 orig_clone_parms = TREE_CHAIN (orig_clone_parms);
4709 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4710
4711 if (DECL_HAS_IN_CHARGE_PARM_P (decl))
4712 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4713 if (DECL_HAS_VTT_PARM_P (decl))
4714 orig_decl_parms = TREE_CHAIN (orig_decl_parms);
4715
4716 clone_parms = orig_clone_parms;
4717 if (DECL_HAS_VTT_PARM_P (clone))
4718 clone_parms = TREE_CHAIN (clone_parms);
4719
4720 for (decl_parms = orig_decl_parms; decl_parms;
4721 decl_parms = TREE_CHAIN (decl_parms),
4722 clone_parms = TREE_CHAIN (clone_parms))
4723 {
4724 if (clone_parms == void_list_node)
4725 {
4726 gcc_assert (decl_parms == clone_parms
4727 || ctor_omit_inherited_parms (clone));
4728 break;
4729 }
4730
4731 gcc_assert (same_type_p (TREE_TYPE (decl_parms),
4732 TREE_TYPE (clone_parms)));
4733
4734 if (TREE_PURPOSE (decl_parms) && !TREE_PURPOSE (clone_parms))
4735 {
4736 /* A default parameter has been added. Adjust the
4737 clone's parameters. */
4738 clone_parms = orig_decl_parms;
4739
4740 if (DECL_HAS_VTT_PARM_P (clone))
4741 {
4742 clone_parms = tree_cons (TREE_PURPOSE (orig_clone_parms),
4743 TREE_VALUE (orig_clone_parms),
4744 clone_parms);
4745 TREE_TYPE (clone_parms) = TREE_TYPE (orig_clone_parms);
4746 }
4747
4748 tree basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (clone));
4749 tree type
4750 = build_method_type_directly (basetype,
4751 TREE_TYPE (TREE_TYPE (clone)),
4752 clone_parms);
4753 if (tree attrs = TYPE_ATTRIBUTES (TREE_TYPE (clone)))
4754 type = cp_build_type_attribute_variant (type, attrs);
4755 type = cxx_copy_lang_qualifiers (type, TREE_TYPE (clone));
4756 TREE_TYPE (clone) = type;
4757
4758 clone_parms = NULL_TREE;
4759 break;
4760 }
4761 }
4762 gcc_assert (!clone_parms || clone_parms == void_list_node);
4763 }
4764 }
4765
4766 /* For each of the constructors and destructors in T, create an
4767 in-charge and not-in-charge variant. */
4768
4769 static void
4770 clone_constructors_and_destructors (tree t)
4771 {
4772 /* While constructors can be via a using declaration, at this point
4773 we no longer need to know that. */
4774 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
4775 clone_function_decl (*iter, /*update_methods=*/true);
4776
4777 if (tree dtor = CLASSTYPE_DESTRUCTOR (t))
4778 clone_function_decl (dtor, /*update_methods=*/true);
4779 }
4780
4781 /* Deduce noexcept for a destructor DTOR. */
4782
4783 void
4784 deduce_noexcept_on_destructor (tree dtor)
4785 {
4786 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor)))
4787 TREE_TYPE (dtor) = build_exception_variant (TREE_TYPE (dtor),
4788 noexcept_deferred_spec);
4789 }
4790
4791 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4792 of TYPE for virtual functions which FNDECL overrides. Return a
4793 mask of the tm attributes found therein. */
4794
4795 static int
4796 look_for_tm_attr_overrides (tree type, tree fndecl)
4797 {
4798 tree binfo = TYPE_BINFO (type);
4799 tree base_binfo;
4800 int ix, found = 0;
4801
4802 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ++ix)
4803 {
4804 tree o, basetype = BINFO_TYPE (base_binfo);
4805
4806 if (!TYPE_POLYMORPHIC_P (basetype))
4807 continue;
4808
4809 o = look_for_overrides_here (basetype, fndecl);
4810 if (o)
4811 {
4812 if (lookup_attribute ("transaction_safe_dynamic",
4813 DECL_ATTRIBUTES (o)))
4814 /* transaction_safe_dynamic is not inherited. */;
4815 else
4816 found |= tm_attr_to_mask (find_tm_attribute
4817 (TYPE_ATTRIBUTES (TREE_TYPE (o))));
4818 }
4819 else
4820 found |= look_for_tm_attr_overrides (basetype, fndecl);
4821 }
4822
4823 return found;
4824 }
4825
4826 /* Subroutine of set_method_tm_attributes. Handle the checks and
4827 inheritance for one virtual method FNDECL. */
4828
4829 static void
4830 set_one_vmethod_tm_attributes (tree type, tree fndecl)
4831 {
4832 tree tm_attr;
4833 int found, have;
4834
4835 found = look_for_tm_attr_overrides (type, fndecl);
4836
4837 /* If FNDECL doesn't actually override anything (i.e. T is the
4838 class that first declares FNDECL virtual), then we're done. */
4839 if (found == 0)
4840 return;
4841
4842 tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl)));
4843 have = tm_attr_to_mask (tm_attr);
4844
4845 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4846 tm_pure must match exactly, otherwise no weakening of
4847 tm_safe > tm_callable > nothing. */
4848 /* ??? The tm_pure attribute didn't make the transition to the
4849 multivendor language spec. */
4850 if (have == TM_ATTR_PURE)
4851 {
4852 if (found != TM_ATTR_PURE)
4853 {
4854 found &= -found;
4855 goto err_override;
4856 }
4857 }
4858 /* If the overridden function is tm_pure, then FNDECL must be. */
4859 else if (found == TM_ATTR_PURE && tm_attr)
4860 goto err_override;
4861 /* Look for base class combinations that cannot be satisfied. */
4862 else if (found != TM_ATTR_PURE && (found & TM_ATTR_PURE))
4863 {
4864 found &= ~TM_ATTR_PURE;
4865 found &= -found;
4866 error_at (DECL_SOURCE_LOCATION (fndecl),
4867 "method overrides both %<transaction_pure%> and %qE methods",
4868 tm_mask_to_attr (found));
4869 }
4870 /* If FNDECL did not declare an attribute, then inherit the most
4871 restrictive one. */
4872 else if (tm_attr == NULL)
4873 {
4874 apply_tm_attr (fndecl, tm_mask_to_attr (least_bit_hwi (found)));
4875 }
4876 /* Otherwise validate that we're not weaker than a function
4877 that is being overridden. */
4878 else
4879 {
4880 found &= -found;
4881 if (found <= TM_ATTR_CALLABLE && have > found)
4882 goto err_override;
4883 }
4884 return;
4885
4886 err_override:
4887 error_at (DECL_SOURCE_LOCATION (fndecl),
4888 "method declared %qE overriding %qE method",
4889 tm_attr, tm_mask_to_attr (found));
4890 }
4891
4892 /* For each of the methods in T, propagate a class-level tm attribute. */
4893
4894 static void
4895 set_method_tm_attributes (tree t)
4896 {
4897 tree class_tm_attr, fndecl;
4898
4899 /* Don't bother collecting tm attributes if transactional memory
4900 support is not enabled. */
4901 if (!flag_tm)
4902 return;
4903
4904 /* Process virtual methods first, as they inherit directly from the
4905 base virtual function and also require validation of new attributes. */
4906 if (TYPE_CONTAINS_VPTR_P (t))
4907 {
4908 tree vchain;
4909 for (vchain = BINFO_VIRTUALS (TYPE_BINFO (t)); vchain;
4910 vchain = TREE_CHAIN (vchain))
4911 {
4912 fndecl = BV_FN (vchain);
4913 if (DECL_THUNK_P (fndecl))
4914 fndecl = THUNK_TARGET (fndecl);
4915 set_one_vmethod_tm_attributes (t, fndecl);
4916 }
4917 }
4918
4919 /* If the class doesn't have an attribute, nothing more to do. */
4920 class_tm_attr = find_tm_attribute (TYPE_ATTRIBUTES (t));
4921 if (class_tm_attr == NULL)
4922 return;
4923
4924 /* Any method that does not yet have a tm attribute inherits
4925 the one from the class. */
4926 for (fndecl = TYPE_FIELDS (t); fndecl; fndecl = DECL_CHAIN (fndecl))
4927 if (DECL_DECLARES_FUNCTION_P (fndecl)
4928 && !find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
4929 apply_tm_attr (fndecl, class_tm_attr);
4930 }
4931
4932 /* Returns true if FN is a default constructor. */
4933
4934 bool
4935 default_ctor_p (tree fn)
4936 {
4937 return (DECL_CONSTRUCTOR_P (fn)
4938 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn)));
4939 }
4940
4941 /* Returns true iff class T has a user-provided constructor that can be called
4942 with more than zero arguments. */
4943
4944 bool
4945 type_has_user_nondefault_constructor (tree t)
4946 {
4947 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4948 return false;
4949
4950 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
4951 {
4952 tree fn = *iter;
4953 if (user_provided_p (fn)
4954 && (TREE_CODE (fn) == TEMPLATE_DECL
4955 || (skip_artificial_parms_for (fn, DECL_ARGUMENTS (fn))
4956 != NULL_TREE)))
4957 return true;
4958 }
4959
4960 return false;
4961 }
4962
4963 /* Returns the defaulted constructor if T has one. Otherwise, returns
4964 NULL_TREE. */
4965
4966 tree
4967 in_class_defaulted_default_constructor (tree t)
4968 {
4969 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
4970 return NULL_TREE;
4971
4972 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
4973 {
4974 tree fn = *iter;
4975
4976 if (DECL_DEFAULTED_IN_CLASS_P (fn)
4977 && default_ctor_p (fn))
4978 return fn;
4979 }
4980
4981 return NULL_TREE;
4982 }
4983
4984 /* Returns true iff FN is a user-provided function, i.e. user-declared
4985 and not defaulted at its first declaration. */
4986
4987 bool
4988 user_provided_p (tree fn)
4989 {
4990 if (TREE_CODE (fn) == TEMPLATE_DECL)
4991 return true;
4992 else
4993 return (!DECL_ARTIFICIAL (fn)
4994 && !(DECL_INITIALIZED_IN_CLASS_P (fn)
4995 && (DECL_DEFAULTED_FN (fn) || DECL_DELETED_FN (fn))));
4996 }
4997
4998 /* Returns true iff class T has a user-provided constructor. */
4999
5000 bool
5001 type_has_user_provided_constructor (tree t)
5002 {
5003 if (!CLASS_TYPE_P (t))
5004 return false;
5005
5006 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
5007 return false;
5008
5009 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
5010 if (user_provided_p (*iter))
5011 return true;
5012
5013 return false;
5014 }
5015
5016 /* Returns true iff class T has a user-provided or explicit constructor. */
5017
5018 bool
5019 type_has_user_provided_or_explicit_constructor (tree t)
5020 {
5021 if (!CLASS_TYPE_P (t))
5022 return false;
5023
5024 if (!TYPE_HAS_USER_CONSTRUCTOR (t))
5025 return false;
5026
5027 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
5028 {
5029 tree fn = *iter;
5030 if (user_provided_p (fn) || DECL_NONCONVERTING_P (fn))
5031 return true;
5032 }
5033
5034 return false;
5035 }
5036
5037 /* Returns true iff class T has a non-user-provided (i.e. implicitly
5038 declared or explicitly defaulted in the class body) default
5039 constructor. */
5040
5041 bool
5042 type_has_non_user_provided_default_constructor (tree t)
5043 {
5044 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (t))
5045 return false;
5046 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5047 return true;
5048
5049 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
5050 {
5051 tree fn = *iter;
5052 if (TREE_CODE (fn) == FUNCTION_DECL
5053 && default_ctor_p (fn)
5054 && !user_provided_p (fn))
5055 return true;
5056 }
5057
5058 return false;
5059 }
5060
5061 /* TYPE is being used as a virtual base, and has a non-trivial move
5062 assignment. Return true if this is due to there being a user-provided
5063 move assignment in TYPE or one of its subobjects; if there isn't, then
5064 multiple move assignment can't cause any harm. */
5065
5066 bool
5067 vbase_has_user_provided_move_assign (tree type)
5068 {
5069 /* Does the type itself have a user-provided move assignment operator? */
5070 if (!CLASSTYPE_LAZY_MOVE_ASSIGN (type))
5071 for (ovl_iterator iter (get_class_binding_direct
5072 (type, assign_op_identifier));
5073 iter; ++iter)
5074 if (user_provided_p (*iter) && move_fn_p (*iter))
5075 return true;
5076
5077 /* Do any of its bases? */
5078 tree binfo = TYPE_BINFO (type);
5079 tree base_binfo;
5080 for (int i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5081 if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo)))
5082 return true;
5083
5084 /* Or non-static data members? */
5085 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
5086 {
5087 if (TREE_CODE (field) == FIELD_DECL
5088 && CLASS_TYPE_P (TREE_TYPE (field))
5089 && vbase_has_user_provided_move_assign (TREE_TYPE (field)))
5090 return true;
5091 }
5092
5093 /* Seems not. */
5094 return false;
5095 }
5096
5097 /* If default-initialization leaves part of TYPE uninitialized, returns
5098 a DECL for the field or TYPE itself (DR 253). */
5099
5100 tree
5101 default_init_uninitialized_part (tree type)
5102 {
5103 tree t, r, binfo;
5104 int i;
5105
5106 type = strip_array_types (type);
5107 if (!CLASS_TYPE_P (type))
5108 return type;
5109 if (!type_has_non_user_provided_default_constructor (type))
5110 return NULL_TREE;
5111 for (binfo = TYPE_BINFO (type), i = 0;
5112 BINFO_BASE_ITERATE (binfo, i, t); ++i)
5113 {
5114 r = default_init_uninitialized_part (BINFO_TYPE (t));
5115 if (r)
5116 return r;
5117 }
5118 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
5119 if (TREE_CODE (t) == FIELD_DECL
5120 && !DECL_ARTIFICIAL (t)
5121 && !DECL_INITIAL (t))
5122 {
5123 r = default_init_uninitialized_part (TREE_TYPE (t));
5124 if (r)
5125 return DECL_P (r) ? r : t;
5126 }
5127
5128 return NULL_TREE;
5129 }
5130
5131 /* Returns true iff for class T, a trivial synthesized default constructor
5132 would be constexpr. */
5133
5134 bool
5135 trivial_default_constructor_is_constexpr (tree t)
5136 {
5137 /* A defaulted trivial default constructor is constexpr
5138 if there is nothing to initialize. */
5139 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t));
5140 /* A class with a vptr doesn't have a trivial default ctor. */
5141 return is_really_empty_class (t, /*ignore_vptr*/true);
5142 }
5143
5144 /* Returns true iff class T has a constexpr default constructor. */
5145
5146 bool
5147 type_has_constexpr_default_constructor (tree t)
5148 {
5149 tree fns;
5150
5151 if (!CLASS_TYPE_P (t))
5152 {
5153 /* The caller should have stripped an enclosing array. */
5154 gcc_assert (TREE_CODE (t) != ARRAY_TYPE);
5155 return false;
5156 }
5157 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t))
5158 {
5159 if (!TYPE_HAS_COMPLEX_DFLT (t))
5160 return trivial_default_constructor_is_constexpr (t);
5161 /* Non-trivial, we need to check subobject constructors. */
5162 lazily_declare_fn (sfk_constructor, t);
5163 }
5164 fns = locate_ctor (t);
5165 return (fns && DECL_DECLARED_CONSTEXPR_P (fns));
5166 }
5167
5168 /* Returns true iff class T has a constexpr default constructor or has an
5169 implicitly declared default constructor that we can't tell if it's constexpr
5170 without forcing a lazy declaration (which might cause undesired
5171 instantiations). */
5172
5173 bool
5174 type_maybe_constexpr_default_constructor (tree t)
5175 {
5176 if (CLASS_TYPE_P (t) && CLASSTYPE_LAZY_DEFAULT_CTOR (t)
5177 && TYPE_HAS_COMPLEX_DFLT (t))
5178 /* Assume it's constexpr. */
5179 return true;
5180 return type_has_constexpr_default_constructor (t);
5181 }
5182
5183 /* Returns true iff class TYPE has a virtual destructor. */
5184
5185 bool
5186 type_has_virtual_destructor (tree type)
5187 {
5188 tree dtor;
5189
5190 if (!CLASS_TYPE_P (type))
5191 return false;
5192
5193 gcc_assert (COMPLETE_TYPE_P (type));
5194 dtor = CLASSTYPE_DESTRUCTOR (type);
5195 return (dtor && DECL_VIRTUAL_P (dtor));
5196 }
5197
5198 /* Returns true iff T, a class, has a move-assignment or
5199 move-constructor. Does not lazily declare either.
5200 If USER_P is false, any move function will do. If it is true, the
5201 move function must be user-declared.
5202
5203 Note that user-declared here is different from "user-provided",
5204 which doesn't include functions that are defaulted in the
5205 class. */
5206
5207 bool
5208 classtype_has_move_assign_or_move_ctor_p (tree t, bool user_p)
5209 {
5210 gcc_assert (user_p
5211 || (!CLASSTYPE_LAZY_MOVE_CTOR (t)
5212 && !CLASSTYPE_LAZY_MOVE_ASSIGN (t)));
5213
5214 if (!CLASSTYPE_LAZY_MOVE_CTOR (t))
5215 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
5216 if ((!user_p || !DECL_ARTIFICIAL (*iter)) && move_fn_p (*iter))
5217 return true;
5218
5219 if (!CLASSTYPE_LAZY_MOVE_ASSIGN (t))
5220 for (ovl_iterator iter (get_class_binding_direct
5221 (t, assign_op_identifier));
5222 iter; ++iter)
5223 if ((!user_p || !DECL_ARTIFICIAL (*iter))
5224 && DECL_CONTEXT (*iter) == t
5225 && move_fn_p (*iter))
5226 return true;
5227
5228 return false;
5229 }
5230
5231 /* True iff T has a move constructor that is not deleted. */
5232
5233 bool
5234 classtype_has_non_deleted_move_ctor (tree t)
5235 {
5236 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
5237 lazily_declare_fn (sfk_move_constructor, t);
5238 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
5239 if (move_fn_p (*iter) && !DECL_DELETED_FN (*iter))
5240 return true;
5241 return false;
5242 }
5243
5244 /* If T, a class, has a user-provided copy constructor, copy assignment
5245 operator, or destructor, returns that function. Otherwise, null. */
5246
5247 tree
5248 classtype_has_depr_implicit_copy (tree t)
5249 {
5250 if (!CLASSTYPE_LAZY_COPY_CTOR (t))
5251 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
5252 {
5253 tree fn = *iter;
5254 if (user_provided_p (fn) && copy_fn_p (fn))
5255 return fn;
5256 }
5257
5258 if (!CLASSTYPE_LAZY_COPY_ASSIGN (t))
5259 for (ovl_iterator iter (get_class_binding_direct
5260 (t, assign_op_identifier));
5261 iter; ++iter)
5262 {
5263 tree fn = *iter;
5264 if (user_provided_p (fn) && copy_fn_p (fn))
5265 return fn;
5266 }
5267
5268 if (!CLASSTYPE_LAZY_DESTRUCTOR (t))
5269 {
5270 tree fn = CLASSTYPE_DESTRUCTOR (t);
5271 if (user_provided_p (fn))
5272 return fn;
5273 }
5274
5275 return NULL_TREE;
5276 }
5277
5278 /* Nonzero if we need to build up a constructor call when initializing an
5279 object of this class, either because it has a user-declared constructor
5280 or because it doesn't have a default constructor (so we need to give an
5281 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5282 what you care about is whether or not an object can be produced by a
5283 constructor (e.g. so we don't set TREE_READONLY on const variables of
5284 such type); use this function when what you care about is whether or not
5285 to try to call a constructor to create an object. The latter case is
5286 the former plus some cases of constructors that cannot be called. */
5287
5288 bool
5289 type_build_ctor_call (tree t)
5290 {
5291 tree inner;
5292 if (TYPE_NEEDS_CONSTRUCTING (t))
5293 return true;
5294 inner = strip_array_types (t);
5295 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner))
5296 return false;
5297 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (inner))
5298 return true;
5299 if (cxx_dialect < cxx11)
5300 return false;
5301 /* A user-declared constructor might be private, and a constructor might
5302 be trivial but deleted. */
5303 for (ovl_iterator iter (get_class_binding (inner, complete_ctor_identifier));
5304 iter; ++iter)
5305 {
5306 tree fn = *iter;
5307 if (!DECL_ARTIFICIAL (fn)
5308 || TREE_DEPRECATED (fn)
5309 || DECL_DELETED_FN (fn))
5310 return true;
5311 }
5312 return false;
5313 }
5314
5315 /* Like type_build_ctor_call, but for destructors. */
5316
5317 bool
5318 type_build_dtor_call (tree t)
5319 {
5320 tree inner;
5321 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5322 return true;
5323 inner = strip_array_types (t);
5324 if (!CLASS_TYPE_P (inner) || ANON_AGGR_TYPE_P (inner)
5325 || !COMPLETE_TYPE_P (inner))
5326 return false;
5327 if (cxx_dialect < cxx11)
5328 return false;
5329 /* A user-declared destructor might be private, and a destructor might
5330 be trivial but deleted. */
5331 for (ovl_iterator iter (get_class_binding (inner, complete_dtor_identifier));
5332 iter; ++iter)
5333 {
5334 tree fn = *iter;
5335 if (!DECL_ARTIFICIAL (fn)
5336 || TREE_DEPRECATED (fn)
5337 || DECL_DELETED_FN (fn))
5338 return true;
5339 }
5340 return false;
5341 }
5342
5343 /* Remove all zero-width bit-fields from T. */
5344
5345 static void
5346 remove_zero_width_bit_fields (tree t)
5347 {
5348 tree *fieldsp;
5349
5350 fieldsp = &TYPE_FIELDS (t);
5351 while (*fieldsp)
5352 {
5353 if (TREE_CODE (*fieldsp) == FIELD_DECL
5354 && DECL_C_BIT_FIELD (*fieldsp)
5355 /* We should not be confused by the fact that grokbitfield
5356 temporarily sets the width of the bit field into
5357 DECL_BIT_FIELD_REPRESENTATIVE (*fieldsp).
5358 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5359 to that width. */
5360 && (DECL_SIZE (*fieldsp) == NULL_TREE
5361 || integer_zerop (DECL_SIZE (*fieldsp))))
5362 *fieldsp = DECL_CHAIN (*fieldsp);
5363 else
5364 fieldsp = &DECL_CHAIN (*fieldsp);
5365 }
5366 }
5367
5368 /* Returns TRUE iff we need a cookie when dynamically allocating an
5369 array whose elements have the indicated class TYPE. */
5370
5371 static bool
5372 type_requires_array_cookie (tree type)
5373 {
5374 tree fns;
5375 bool has_two_argument_delete_p = false;
5376
5377 gcc_assert (CLASS_TYPE_P (type));
5378
5379 /* If there's a non-trivial destructor, we need a cookie. In order
5380 to iterate through the array calling the destructor for each
5381 element, we'll have to know how many elements there are. */
5382 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
5383 return true;
5384
5385 /* If the usual deallocation function is a two-argument whose second
5386 argument is of type `size_t', then we have to pass the size of
5387 the array to the deallocation function, so we will need to store
5388 a cookie. */
5389 fns = lookup_fnfields (TYPE_BINFO (type),
5390 ovl_op_identifier (false, VEC_DELETE_EXPR),
5391 /*protect=*/0);
5392 /* If there are no `operator []' members, or the lookup is
5393 ambiguous, then we don't need a cookie. */
5394 if (!fns || fns == error_mark_node)
5395 return false;
5396 /* Loop through all of the functions. */
5397 for (lkp_iterator iter (BASELINK_FUNCTIONS (fns)); iter; ++iter)
5398 {
5399 tree fn = *iter;
5400
5401 /* See if this function is a one-argument delete function. If
5402 it is, then it will be the usual deallocation function. */
5403 tree second_parm = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)));
5404 if (second_parm == void_list_node)
5405 return false;
5406 /* Do not consider this function if its second argument is an
5407 ellipsis. */
5408 if (!second_parm)
5409 continue;
5410 /* Otherwise, if we have a two-argument function and the second
5411 argument is `size_t', it will be the usual deallocation
5412 function -- unless there is one-argument function, too. */
5413 if (TREE_CHAIN (second_parm) == void_list_node
5414 && same_type_p (TREE_VALUE (second_parm), size_type_node))
5415 has_two_argument_delete_p = true;
5416 }
5417
5418 return has_two_argument_delete_p;
5419 }
5420
5421 /* Finish computing the `literal type' property of class type T.
5422
5423 At this point, we have already processed base classes and
5424 non-static data members. We need to check whether the copy
5425 constructor is trivial, the destructor is trivial, and there
5426 is a trivial default constructor or at least one constexpr
5427 constructor other than the copy constructor. */
5428
5429 static void
5430 finalize_literal_type_property (tree t)
5431 {
5432 tree fn;
5433
5434 if (cxx_dialect < cxx11
5435 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5436 CLASSTYPE_LITERAL_P (t) = false;
5437 else if (CLASSTYPE_LITERAL_P (t) && LAMBDA_TYPE_P (t))
5438 CLASSTYPE_LITERAL_P (t) = (cxx_dialect >= cxx17);
5439 else if (CLASSTYPE_LITERAL_P (t) && !TYPE_HAS_TRIVIAL_DFLT (t)
5440 && CLASSTYPE_NON_AGGREGATE (t)
5441 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5442 CLASSTYPE_LITERAL_P (t) = false;
5443
5444 /* C++14 DR 1684 removed this restriction. */
5445 if (cxx_dialect < cxx14
5446 && !CLASSTYPE_LITERAL_P (t) && !LAMBDA_TYPE_P (t))
5447 for (fn = TYPE_FIELDS (t); fn; fn = DECL_CHAIN (fn))
5448 if (TREE_CODE (fn) == FUNCTION_DECL
5449 && DECL_DECLARED_CONSTEXPR_P (fn)
5450 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
5451 && !DECL_CONSTRUCTOR_P (fn))
5452 {
5453 DECL_DECLARED_CONSTEXPR_P (fn) = false;
5454 if (!DECL_GENERATED_P (fn))
5455 {
5456 auto_diagnostic_group d;
5457 if (pedwarn (DECL_SOURCE_LOCATION (fn), OPT_Wpedantic,
5458 "enclosing class of %<constexpr%> non-static "
5459 "member function %q+#D is not a literal type", fn))
5460 explain_non_literal_class (t);
5461 }
5462 }
5463 }
5464
5465 /* T is a non-literal type used in a context which requires a constant
5466 expression. Explain why it isn't literal. */
5467
5468 void
5469 explain_non_literal_class (tree t)
5470 {
5471 static hash_set<tree> *diagnosed;
5472
5473 if (!CLASS_TYPE_P (t))
5474 return;
5475 t = TYPE_MAIN_VARIANT (t);
5476
5477 if (diagnosed == NULL)
5478 diagnosed = new hash_set<tree>;
5479 if (diagnosed->add (t))
5480 /* Already explained. */
5481 return;
5482
5483 auto_diagnostic_group d;
5484 inform (UNKNOWN_LOCATION, "%q+T is not literal because:", t);
5485 if (cxx_dialect < cxx17 && LAMBDA_TYPE_P (t))
5486 inform (UNKNOWN_LOCATION,
5487 " %qT is a closure type, which is only literal in "
5488 "C++17 and later", t);
5489 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t))
5490 inform (UNKNOWN_LOCATION, " %q+T has a non-trivial destructor", t);
5491 else if (CLASSTYPE_NON_AGGREGATE (t)
5492 && !TYPE_HAS_TRIVIAL_DFLT (t)
5493 && !LAMBDA_TYPE_P (t)
5494 && !TYPE_HAS_CONSTEXPR_CTOR (t))
5495 {
5496 inform (UNKNOWN_LOCATION,
5497 " %q+T is not an aggregate, does not have a trivial "
5498 "default constructor, and has no %<constexpr%> constructor that "
5499 "is not a copy or move constructor", t);
5500 if (type_has_non_user_provided_default_constructor (t))
5501 /* Note that we can't simply call locate_ctor because when the
5502 constructor is deleted it just returns NULL_TREE. */
5503 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
5504 {
5505 tree fn = *iter;
5506 tree parms = TYPE_ARG_TYPES (TREE_TYPE (fn));
5507
5508 parms = skip_artificial_parms_for (fn, parms);
5509
5510 if (sufficient_parms_p (parms))
5511 {
5512 if (DECL_DELETED_FN (fn))
5513 maybe_explain_implicit_delete (fn);
5514 else
5515 explain_invalid_constexpr_fn (fn);
5516 break;
5517 }
5518 }
5519 }
5520 else
5521 {
5522 tree binfo, base_binfo, field; int i;
5523 for (binfo = TYPE_BINFO (t), i = 0;
5524 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5525 {
5526 tree basetype = TREE_TYPE (base_binfo);
5527 if (!CLASSTYPE_LITERAL_P (basetype))
5528 {
5529 inform (UNKNOWN_LOCATION,
5530 " base class %qT of %q+T is non-literal",
5531 basetype, t);
5532 explain_non_literal_class (basetype);
5533 return;
5534 }
5535 }
5536 for (field = TYPE_FIELDS (t); field; field = TREE_CHAIN (field))
5537 {
5538 tree ftype;
5539 if (TREE_CODE (field) != FIELD_DECL)
5540 continue;
5541 ftype = TREE_TYPE (field);
5542 if (!literal_type_p (ftype))
5543 {
5544 inform (DECL_SOURCE_LOCATION (field),
5545 " non-static data member %qD has non-literal type",
5546 field);
5547 if (CLASS_TYPE_P (ftype))
5548 explain_non_literal_class (ftype);
5549 }
5550 if (CP_TYPE_VOLATILE_P (ftype))
5551 inform (DECL_SOURCE_LOCATION (field),
5552 " non-static data member %qD has volatile type", field);
5553 }
5554 }
5555 }
5556
5557 /* Check the validity of the bases and members declared in T. Add any
5558 implicitly-generated functions (like copy-constructors and
5559 assignment operators). Compute various flag bits (like
5560 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5561 level: i.e., independently of the ABI in use. */
5562
5563 static void
5564 check_bases_and_members (tree t)
5565 {
5566 /* Nonzero if the implicitly generated copy constructor should take
5567 a non-const reference argument. */
5568 int cant_have_const_ctor;
5569 /* Nonzero if the implicitly generated assignment operator
5570 should take a non-const reference argument. */
5571 int no_const_asn_ref;
5572 tree access_decls;
5573 bool saved_complex_asn_ref;
5574 bool saved_nontrivial_dtor;
5575 tree fn;
5576
5577 /* By default, we use const reference arguments and generate default
5578 constructors. */
5579 cant_have_const_ctor = 0;
5580 no_const_asn_ref = 0;
5581
5582 /* Check all the base-classes and set FMEM members to point to arrays
5583 of potential interest. */
5584 check_bases (t, &cant_have_const_ctor, &no_const_asn_ref);
5585
5586 /* Deduce noexcept on destructor. This needs to happen after we've set
5587 triviality flags appropriately for our bases. */
5588 if (cxx_dialect >= cxx11)
5589 if (tree dtor = CLASSTYPE_DESTRUCTOR (t))
5590 deduce_noexcept_on_destructor (dtor);
5591
5592 /* Check all the method declarations. */
5593 check_methods (t);
5594
5595 /* Save the initial values of these flags which only indicate whether
5596 or not the class has user-provided functions. As we analyze the
5597 bases and members we can set these flags for other reasons. */
5598 saved_complex_asn_ref = TYPE_HAS_COMPLEX_COPY_ASSIGN (t);
5599 saved_nontrivial_dtor = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t);
5600
5601 /* Check all the data member declarations. We cannot call
5602 check_field_decls until we have called check_bases check_methods,
5603 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5604 being set appropriately. */
5605 check_field_decls (t, &access_decls,
5606 &cant_have_const_ctor,
5607 &no_const_asn_ref);
5608
5609 /* A nearly-empty class has to be vptr-containing; a nearly empty
5610 class contains just a vptr. */
5611 if (!TYPE_CONTAINS_VPTR_P (t))
5612 CLASSTYPE_NEARLY_EMPTY_P (t) = 0;
5613
5614 /* Do some bookkeeping that will guide the generation of implicitly
5615 declared member functions. */
5616 TYPE_HAS_COMPLEX_COPY_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5617 TYPE_HAS_COMPLEX_MOVE_CTOR (t) |= TYPE_CONTAINS_VPTR_P (t);
5618 /* We need to call a constructor for this class if it has a
5619 user-provided constructor, or if the default constructor is going
5620 to initialize the vptr. (This is not an if-and-only-if;
5621 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5622 themselves need constructing.) */
5623 TYPE_NEEDS_CONSTRUCTING (t)
5624 |= (type_has_user_provided_constructor (t) || TYPE_CONTAINS_VPTR_P (t));
5625 /* [dcl.init.aggr]
5626
5627 An aggregate is an array or a class with no user-provided
5628 constructors ... and no virtual functions.
5629
5630 Again, other conditions for being an aggregate are checked
5631 elsewhere. */
5632 CLASSTYPE_NON_AGGREGATE (t)
5633 |= ((cxx_dialect < cxx2a
5634 ? type_has_user_provided_or_explicit_constructor (t)
5635 : TYPE_HAS_USER_CONSTRUCTOR (t))
5636 || TYPE_POLYMORPHIC_P (t));
5637 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5638 retain the old definition internally for ABI reasons. */
5639 CLASSTYPE_NON_LAYOUT_POD_P (t)
5640 |= (CLASSTYPE_NON_AGGREGATE (t)
5641 || saved_nontrivial_dtor || saved_complex_asn_ref);
5642 CLASSTYPE_NON_STD_LAYOUT (t) |= TYPE_CONTAINS_VPTR_P (t);
5643 TYPE_HAS_COMPLEX_COPY_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5644 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t) |= TYPE_CONTAINS_VPTR_P (t);
5645 TYPE_HAS_COMPLEX_DFLT (t) |= TYPE_CONTAINS_VPTR_P (t);
5646
5647 /* If the only explicitly declared default constructor is user-provided,
5648 set TYPE_HAS_COMPLEX_DFLT. */
5649 if (!TYPE_HAS_COMPLEX_DFLT (t)
5650 && TYPE_HAS_DEFAULT_CONSTRUCTOR (t)
5651 && !type_has_non_user_provided_default_constructor (t))
5652 TYPE_HAS_COMPLEX_DFLT (t) = true;
5653
5654 /* Warn if a public base of a polymorphic type has an accessible
5655 non-virtual destructor. It is only now that we know the class is
5656 polymorphic. Although a polymorphic base will have a already
5657 been diagnosed during its definition, we warn on use too. */
5658 if (TYPE_POLYMORPHIC_P (t) && warn_nonvdtor)
5659 {
5660 tree binfo = TYPE_BINFO (t);
5661 vec<tree, va_gc> *accesses = BINFO_BASE_ACCESSES (binfo);
5662 tree base_binfo;
5663 unsigned i;
5664
5665 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
5666 {
5667 tree basetype = TREE_TYPE (base_binfo);
5668
5669 if ((*accesses)[i] == access_public_node
5670 && (TYPE_POLYMORPHIC_P (basetype) || warn_ecpp)
5671 && accessible_nvdtor_p (basetype))
5672 warning (OPT_Wnon_virtual_dtor,
5673 "base class %q#T has accessible non-virtual destructor",
5674 basetype);
5675 }
5676 }
5677
5678 /* If the class has no user-declared constructor, but does have
5679 non-static const or reference data members that can never be
5680 initialized, issue a warning. */
5681 if (warn_uninitialized
5682 /* Classes with user-declared constructors are presumed to
5683 initialize these members. */
5684 && !TYPE_HAS_USER_CONSTRUCTOR (t)
5685 /* Aggregates can be initialized with brace-enclosed
5686 initializers. */
5687 && CLASSTYPE_NON_AGGREGATE (t))
5688 {
5689 tree field;
5690
5691 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5692 {
5693 tree type;
5694
5695 if (TREE_CODE (field) != FIELD_DECL
5696 || DECL_INITIAL (field) != NULL_TREE)
5697 continue;
5698
5699 type = TREE_TYPE (field);
5700 if (TYPE_REF_P (type))
5701 warning_at (DECL_SOURCE_LOCATION (field),
5702 OPT_Wuninitialized, "non-static reference %q#D "
5703 "in class without a constructor", field);
5704 else if (CP_TYPE_CONST_P (type)
5705 && (!CLASS_TYPE_P (type)
5706 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type)))
5707 warning_at (DECL_SOURCE_LOCATION (field),
5708 OPT_Wuninitialized, "non-static const member %q#D "
5709 "in class without a constructor", field);
5710 }
5711 }
5712
5713 /* Synthesize any needed methods. */
5714 add_implicitly_declared_members (t, &access_decls,
5715 cant_have_const_ctor,
5716 no_const_asn_ref);
5717
5718 /* Check defaulted declarations here so we have cant_have_const_ctor
5719 and don't need to worry about clones. */
5720 for (fn = TYPE_FIELDS (t); fn; fn = DECL_CHAIN (fn))
5721 if (DECL_DECLARES_FUNCTION_P (fn)
5722 && !DECL_ARTIFICIAL (fn)
5723 && DECL_DEFAULTED_IN_CLASS_P (fn))
5724 {
5725 int copy = copy_fn_p (fn);
5726 if (copy > 0)
5727 {
5728 bool imp_const_p
5729 = (DECL_CONSTRUCTOR_P (fn) ? !cant_have_const_ctor
5730 : !no_const_asn_ref);
5731 bool fn_const_p = (copy == 2);
5732
5733 if (fn_const_p && !imp_const_p)
5734 /* If the function is defaulted outside the class, we just
5735 give the synthesis error. Core Issue #1331 says this is
5736 no longer ill-formed, it is defined as deleted instead. */
5737 DECL_DELETED_FN (fn) = true;
5738 }
5739 defaulted_late_check (fn);
5740 }
5741
5742 if (LAMBDA_TYPE_P (t))
5743 {
5744 /* "This class type is not an aggregate." */
5745 CLASSTYPE_NON_AGGREGATE (t) = 1;
5746 }
5747
5748 /* Compute the 'literal type' property before we
5749 do anything with non-static member functions. */
5750 finalize_literal_type_property (t);
5751
5752 /* Create the in-charge and not-in-charge variants of constructors
5753 and destructors. */
5754 clone_constructors_and_destructors (t);
5755
5756 /* Process the using-declarations. */
5757 for (; access_decls; access_decls = TREE_CHAIN (access_decls))
5758 handle_using_decl (TREE_VALUE (access_decls), t);
5759
5760 /* Figure out whether or not we will need a cookie when dynamically
5761 allocating an array of this type. */
5762 LANG_TYPE_CLASS_CHECK (t)->vec_new_uses_cookie
5763 = type_requires_array_cookie (t);
5764 }
5765
5766 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5767 accordingly. If a new vfield was created (because T doesn't have a
5768 primary base class), then the newly created field is returned. It
5769 is not added to the TYPE_FIELDS list; it is the caller's
5770 responsibility to do that. Accumulate declared virtual functions
5771 on VIRTUALS_P. */
5772
5773 static tree
5774 create_vtable_ptr (tree t, tree* virtuals_p)
5775 {
5776 tree fn;
5777
5778 /* Collect the virtual functions declared in T. */
5779 for (fn = TYPE_FIELDS (t); fn; fn = DECL_CHAIN (fn))
5780 if (TREE_CODE (fn) == FUNCTION_DECL
5781 && DECL_VINDEX (fn) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn)
5782 && TREE_CODE (DECL_VINDEX (fn)) != INTEGER_CST)
5783 {
5784 tree new_virtual = make_node (TREE_LIST);
5785
5786 BV_FN (new_virtual) = fn;
5787 BV_DELTA (new_virtual) = integer_zero_node;
5788 BV_VCALL_INDEX (new_virtual) = NULL_TREE;
5789
5790 TREE_CHAIN (new_virtual) = *virtuals_p;
5791 *virtuals_p = new_virtual;
5792 }
5793
5794 /* If we couldn't find an appropriate base class, create a new field
5795 here. Even if there weren't any new virtual functions, we might need a
5796 new virtual function table if we're supposed to include vptrs in
5797 all classes that need them. */
5798 if (!TYPE_VFIELD (t) && (*virtuals_p || TYPE_CONTAINS_VPTR_P (t)))
5799 {
5800 /* We build this decl with vtbl_ptr_type_node, which is a
5801 `vtable_entry_type*'. It might seem more precise to use
5802 `vtable_entry_type (*)[N]' where N is the number of virtual
5803 functions. However, that would require the vtable pointer in
5804 base classes to have a different type than the vtable pointer
5805 in derived classes. We could make that happen, but that
5806 still wouldn't solve all the problems. In particular, the
5807 type-based alias analysis code would decide that assignments
5808 to the base class vtable pointer can't alias assignments to
5809 the derived class vtable pointer, since they have different
5810 types. Thus, in a derived class destructor, where the base
5811 class constructor was inlined, we could generate bad code for
5812 setting up the vtable pointer.
5813
5814 Therefore, we use one type for all vtable pointers. We still
5815 use a type-correct type; it's just doesn't indicate the array
5816 bounds. That's better than using `void*' or some such; it's
5817 cleaner, and it let's the alias analysis code know that these
5818 stores cannot alias stores to void*! */
5819 tree field;
5820
5821 field = build_decl (input_location,
5822 FIELD_DECL, get_vfield_name (t), vtbl_ptr_type_node);
5823 DECL_VIRTUAL_P (field) = 1;
5824 DECL_ARTIFICIAL (field) = 1;
5825 DECL_FIELD_CONTEXT (field) = t;
5826 DECL_FCONTEXT (field) = t;
5827 if (TYPE_PACKED (t))
5828 DECL_PACKED (field) = 1;
5829
5830 TYPE_VFIELD (t) = field;
5831
5832 /* This class is non-empty. */
5833 CLASSTYPE_EMPTY_P (t) = 0;
5834
5835 return field;
5836 }
5837
5838 return NULL_TREE;
5839 }
5840
5841 /* Add OFFSET to all base types of BINFO which is a base in the
5842 hierarchy dominated by T.
5843
5844 OFFSET, which is a type offset, is number of bytes. */
5845
5846 static void
5847 propagate_binfo_offsets (tree binfo, tree offset)
5848 {
5849 int i;
5850 tree primary_binfo;
5851 tree base_binfo;
5852
5853 /* Update BINFO's offset. */
5854 BINFO_OFFSET (binfo)
5855 = fold_convert (sizetype,
5856 size_binop (PLUS_EXPR,
5857 fold_convert (ssizetype, BINFO_OFFSET (binfo)),
5858 offset));
5859
5860 /* Find the primary base class. */
5861 primary_binfo = get_primary_binfo (binfo);
5862
5863 if (primary_binfo && BINFO_INHERITANCE_CHAIN (primary_binfo) == binfo)
5864 propagate_binfo_offsets (primary_binfo, offset);
5865
5866 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5867 downwards. */
5868 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5869 {
5870 /* Don't do the primary base twice. */
5871 if (base_binfo == primary_binfo)
5872 continue;
5873
5874 if (BINFO_VIRTUAL_P (base_binfo))
5875 continue;
5876
5877 propagate_binfo_offsets (base_binfo, offset);
5878 }
5879 }
5880
5881 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5882 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5883 empty subobjects of T. */
5884
5885 static void
5886 layout_virtual_bases (record_layout_info rli, splay_tree offsets)
5887 {
5888 tree vbase;
5889 tree t = rli->t;
5890 tree *next_field;
5891
5892 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) == 0)
5893 return;
5894
5895 /* Find the last field. The artificial fields created for virtual
5896 bases will go after the last extant field to date. */
5897 next_field = &TYPE_FIELDS (t);
5898 while (*next_field)
5899 next_field = &DECL_CHAIN (*next_field);
5900
5901 /* Go through the virtual bases, allocating space for each virtual
5902 base that is not already a primary base class. These are
5903 allocated in inheritance graph order. */
5904 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
5905 {
5906 if (!BINFO_VIRTUAL_P (vbase))
5907 continue;
5908
5909 if (!BINFO_PRIMARY_P (vbase))
5910 {
5911 /* This virtual base is not a primary base of any class in the
5912 hierarchy, so we have to add space for it. */
5913 next_field = build_base_field (rli, vbase,
5914 offsets, next_field);
5915 }
5916 }
5917 }
5918
5919 /* Returns the offset of the byte just past the end of the base class
5920 BINFO. */
5921
5922 static tree
5923 end_of_base (tree binfo)
5924 {
5925 tree size;
5926
5927 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo)))
5928 size = TYPE_SIZE_UNIT (char_type_node);
5929 else if (is_empty_class (BINFO_TYPE (binfo)))
5930 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5931 allocate some space for it. It cannot have virtual bases, so
5932 TYPE_SIZE_UNIT is fine. */
5933 size = TYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5934 else
5935 size = CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo));
5936
5937 return size_binop (PLUS_EXPR, BINFO_OFFSET (binfo), size);
5938 }
5939
5940 /* Returns the offset of the byte just past the end of the base class or empty
5941 data member with the highest offset in T. If INCLUDE_VIRTUALS_P is zero,
5942 then only non-virtual bases are included. */
5943
5944 static tree
5945 end_of_class (tree t, bool include_virtuals_p)
5946 {
5947 tree result = size_zero_node;
5948 vec<tree, va_gc> *vbases;
5949 tree binfo;
5950 tree base_binfo;
5951 tree offset;
5952 int i;
5953
5954 for (binfo = TYPE_BINFO (t), i = 0;
5955 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
5956 {
5957 if (!include_virtuals_p
5958 && BINFO_VIRTUAL_P (base_binfo)
5959 && (!BINFO_PRIMARY_P (base_binfo)
5960 || BINFO_INHERITANCE_CHAIN (base_binfo) != TYPE_BINFO (t)))
5961 continue;
5962
5963 offset = end_of_base (base_binfo);
5964 if (tree_int_cst_lt (result, offset))
5965 result = offset;
5966 }
5967
5968 /* Also consider empty data members. */
5969 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
5970 if (TREE_CODE (field) == FIELD_DECL
5971 && !DECL_ARTIFICIAL (field)
5972 && field_poverlapping_p (field)
5973 && is_empty_class (TREE_TYPE (field)))
5974 {
5975 /* Update sizeof(C) to max (sizeof(C), offset(D)+sizeof(D)) */
5976 offset = size_binop (PLUS_EXPR, DECL_FIELD_OFFSET (field),
5977 TYPE_SIZE_UNIT (TREE_TYPE (field)));
5978 if (tree_int_cst_lt (result, offset))
5979 result = offset;
5980 }
5981
5982 if (include_virtuals_p)
5983 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
5984 vec_safe_iterate (vbases, i, &base_binfo); i++)
5985 {
5986 offset = end_of_base (base_binfo);
5987 if (tree_int_cst_lt (result, offset))
5988 result = offset;
5989 }
5990
5991 return result;
5992 }
5993
5994 /* Warn about bases of T that are inaccessible because they are
5995 ambiguous. For example:
5996
5997 struct S {};
5998 struct T : public S {};
5999 struct U : public S, public T {};
6000
6001 Here, `(S*) new U' is not allowed because there are two `S'
6002 subobjects of U. */
6003
6004 static void
6005 warn_about_ambiguous_bases (tree t)
6006 {
6007 int i;
6008 vec<tree, va_gc> *vbases;
6009 tree basetype;
6010 tree binfo;
6011 tree base_binfo;
6012
6013 /* If there are no repeated bases, nothing can be ambiguous. */
6014 if (!CLASSTYPE_REPEATED_BASE_P (t))
6015 return;
6016
6017 /* Check direct bases. */
6018 for (binfo = TYPE_BINFO (t), i = 0;
6019 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
6020 {
6021 basetype = BINFO_TYPE (base_binfo);
6022
6023 if (!uniquely_derived_from_p (basetype, t))
6024 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
6025 basetype, t);
6026 }
6027
6028 /* Check for ambiguous virtual bases. */
6029 if (extra_warnings)
6030 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
6031 vec_safe_iterate (vbases, i, &binfo); i++)
6032 {
6033 basetype = BINFO_TYPE (binfo);
6034
6035 if (!uniquely_derived_from_p (basetype, t))
6036 warning (OPT_Wextra, "virtual base %qT inaccessible in %qT due "
6037 "to ambiguity", basetype, t);
6038 }
6039 }
6040
6041 /* Compare two INTEGER_CSTs K1 and K2. */
6042
6043 static int
6044 splay_tree_compare_integer_csts (splay_tree_key k1, splay_tree_key k2)
6045 {
6046 return tree_int_cst_compare ((tree) k1, (tree) k2);
6047 }
6048
6049 /* Increase the size indicated in RLI to account for empty classes
6050 that are "off the end" of the class. */
6051
6052 static void
6053 include_empty_classes (record_layout_info rli)
6054 {
6055 tree eoc;
6056 tree rli_size;
6057
6058 /* It might be the case that we grew the class to allocate a
6059 zero-sized base class. That won't be reflected in RLI, yet,
6060 because we are willing to overlay multiple bases at the same
6061 offset. However, now we need to make sure that RLI is big enough
6062 to reflect the entire class. */
6063 eoc = end_of_class (rli->t, CLASSTYPE_AS_BASE (rli->t) != NULL_TREE);
6064 rli_size = rli_size_unit_so_far (rli);
6065 if (TREE_CODE (rli_size) == INTEGER_CST
6066 && tree_int_cst_lt (rli_size, eoc))
6067 {
6068 /* The size should have been rounded to a whole byte. */
6069 gcc_assert (tree_int_cst_equal
6070 (rli->bitpos, round_down (rli->bitpos, BITS_PER_UNIT)));
6071 rli->bitpos
6072 = size_binop (PLUS_EXPR,
6073 rli->bitpos,
6074 size_binop (MULT_EXPR,
6075 fold_convert (bitsizetype,
6076 size_binop (MINUS_EXPR,
6077 eoc, rli_size)),
6078 bitsize_int (BITS_PER_UNIT)));
6079 normalize_rli (rli);
6080 }
6081 }
6082
6083 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
6084 BINFO_OFFSETs for all of the base-classes. Position the vtable
6085 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
6086
6087 static void
6088 layout_class_type (tree t, tree *virtuals_p)
6089 {
6090 tree non_static_data_members;
6091 tree field;
6092 tree vptr;
6093 record_layout_info rli;
6094 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
6095 types that appear at that offset. */
6096 splay_tree empty_base_offsets;
6097 /* True if the last field laid out was a bit-field. */
6098 bool last_field_was_bitfield = false;
6099 /* The location at which the next field should be inserted. */
6100 tree *next_field;
6101
6102 /* Keep track of the first non-static data member. */
6103 non_static_data_members = TYPE_FIELDS (t);
6104
6105 /* Start laying out the record. */
6106 rli = start_record_layout (t);
6107
6108 /* Mark all the primary bases in the hierarchy. */
6109 determine_primary_bases (t);
6110
6111 /* Create a pointer to our virtual function table. */
6112 vptr = create_vtable_ptr (t, virtuals_p);
6113
6114 /* The vptr is always the first thing in the class. */
6115 if (vptr)
6116 {
6117 DECL_CHAIN (vptr) = TYPE_FIELDS (t);
6118 TYPE_FIELDS (t) = vptr;
6119 next_field = &DECL_CHAIN (vptr);
6120 place_field (rli, vptr);
6121 }
6122 else
6123 next_field = &TYPE_FIELDS (t);
6124
6125 /* Build FIELD_DECLs for all of the non-virtual base-types. */
6126 empty_base_offsets = splay_tree_new (splay_tree_compare_integer_csts,
6127 NULL, NULL);
6128 build_base_fields (rli, empty_base_offsets, next_field);
6129
6130 /* Layout the non-static data members. */
6131 for (field = non_static_data_members; field; field = DECL_CHAIN (field))
6132 {
6133 tree type;
6134 tree padding;
6135
6136 /* We still pass things that aren't non-static data members to
6137 the back end, in case it wants to do something with them. */
6138 if (TREE_CODE (field) != FIELD_DECL)
6139 {
6140 place_field (rli, field);
6141 /* If the static data member has incomplete type, keep track
6142 of it so that it can be completed later. (The handling
6143 of pending statics in finish_record_layout is
6144 insufficient; consider:
6145
6146 struct S1;
6147 struct S2 { static S1 s1; };
6148
6149 At this point, finish_record_layout will be called, but
6150 S1 is still incomplete.) */
6151 if (VAR_P (field))
6152 {
6153 maybe_register_incomplete_var (field);
6154 /* The visibility of static data members is determined
6155 at their point of declaration, not their point of
6156 definition. */
6157 determine_visibility (field);
6158 }
6159 continue;
6160 }
6161
6162 type = TREE_TYPE (field);
6163 if (type == error_mark_node)
6164 continue;
6165
6166 padding = NULL_TREE;
6167
6168 bool might_overlap = field_poverlapping_p (field);
6169
6170 if (might_overlap && CLASS_TYPE_P (type)
6171 && (CLASSTYPE_NON_LAYOUT_POD_P (type) || CLASSTYPE_EMPTY_P (type)))
6172 {
6173 /* if D is a potentially-overlapping data member, update sizeof(C) to
6174 max (sizeof(C), offset(D)+max (nvsize(D), dsize(D))). */
6175 tree nvsize = CLASSTYPE_SIZE_UNIT (type);
6176 /* end_of_class doesn't always give dsize, but it does in the case of
6177 a class with virtual bases, which is when dsize > nvsize. */
6178 tree dsize = end_of_class (type, /*vbases*/true);
6179 if (tree_int_cst_le (dsize, nvsize))
6180 {
6181 DECL_SIZE_UNIT (field) = nvsize;
6182 DECL_SIZE (field) = CLASSTYPE_SIZE (type);
6183 }
6184 else
6185 {
6186 DECL_SIZE_UNIT (field) = dsize;
6187 DECL_SIZE (field) = bit_from_pos (dsize, bitsize_zero_node);
6188 }
6189 }
6190
6191 /* If this field is a bit-field whose width is greater than its
6192 type, then there are some special rules for allocating
6193 it. */
6194 if (DECL_C_BIT_FIELD (field)
6195 && tree_int_cst_lt (TYPE_SIZE (type), DECL_SIZE (field)))
6196 {
6197 bool was_unnamed_p = false;
6198 /* We must allocate the bits as if suitably aligned for the
6199 longest integer type that fits in this many bits. Then,
6200 we are supposed to use the left over bits as additional
6201 padding. */
6202
6203 /* Do not pick a type bigger than MAX_FIXED_MODE_SIZE. */
6204 tree limit = size_int (MAX_FIXED_MODE_SIZE);
6205 if (tree_int_cst_lt (DECL_SIZE (field), limit))
6206 limit = DECL_SIZE (field);
6207
6208 tree integer_type = integer_types[itk_char];
6209 for (unsigned itk = itk_char; itk != itk_none; itk++)
6210 if (tree next = integer_types[itk])
6211 {
6212 if (tree_int_cst_lt (limit, TYPE_SIZE (next)))
6213 /* Too big, so our current guess is what we want. */
6214 break;
6215 /* Not bigger than limit, ok */
6216 integer_type = next;
6217 }
6218
6219 /* Figure out how much additional padding is required. */
6220 if (TREE_CODE (t) == UNION_TYPE)
6221 /* In a union, the padding field must have the full width
6222 of the bit-field; all fields start at offset zero. */
6223 padding = DECL_SIZE (field);
6224 else
6225 padding = size_binop (MINUS_EXPR, DECL_SIZE (field),
6226 TYPE_SIZE (integer_type));
6227
6228 if (integer_zerop (padding))
6229 padding = NULL_TREE;
6230
6231 /* An unnamed bitfield does not normally affect the
6232 alignment of the containing class on a target where
6233 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
6234 make any exceptions for unnamed bitfields when the
6235 bitfields are longer than their types. Therefore, we
6236 temporarily give the field a name. */
6237 if (PCC_BITFIELD_TYPE_MATTERS && !DECL_NAME (field))
6238 {
6239 was_unnamed_p = true;
6240 DECL_NAME (field) = make_anon_name ();
6241 }
6242
6243 DECL_SIZE (field) = TYPE_SIZE (integer_type);
6244 SET_DECL_ALIGN (field, TYPE_ALIGN (integer_type));
6245 DECL_USER_ALIGN (field) = TYPE_USER_ALIGN (integer_type);
6246 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6247 empty_base_offsets);
6248 if (was_unnamed_p)
6249 DECL_NAME (field) = NULL_TREE;
6250 /* Now that layout has been performed, set the size of the
6251 field to the size of its declared type; the rest of the
6252 field is effectively invisible. */
6253 DECL_SIZE (field) = TYPE_SIZE (type);
6254 /* We must also reset the DECL_MODE of the field. */
6255 SET_DECL_MODE (field, TYPE_MODE (type));
6256 }
6257 else if (might_overlap && is_empty_class (type))
6258 layout_empty_base_or_field (rli, field, empty_base_offsets);
6259 else
6260 layout_nonempty_base_or_field (rli, field, NULL_TREE,
6261 empty_base_offsets);
6262
6263 /* Remember the location of any empty classes in FIELD. */
6264 record_subobject_offsets (field, empty_base_offsets);
6265
6266 /* If a bit-field does not immediately follow another bit-field,
6267 and yet it starts in the middle of a byte, we have failed to
6268 comply with the ABI. */
6269 if (warn_abi
6270 && DECL_C_BIT_FIELD (field)
6271 /* The TREE_NO_WARNING flag gets set by Objective-C when
6272 laying out an Objective-C class. The ObjC ABI differs
6273 from the C++ ABI, and so we do not want a warning
6274 here. */
6275 && !TREE_NO_WARNING (field)
6276 && !last_field_was_bitfield
6277 && !integer_zerop (size_binop (TRUNC_MOD_EXPR,
6278 DECL_FIELD_BIT_OFFSET (field),
6279 bitsize_unit_node)))
6280 warning_at (DECL_SOURCE_LOCATION (field), OPT_Wabi,
6281 "offset of %qD is not ABI-compliant and may "
6282 "change in a future version of GCC", field);
6283
6284 /* The middle end uses the type of expressions to determine the
6285 possible range of expression values. In order to optimize
6286 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6287 must be made aware of the width of "i", via its type.
6288
6289 Because C++ does not have integer types of arbitrary width,
6290 we must (for the purposes of the front end) convert from the
6291 type assigned here to the declared type of the bitfield
6292 whenever a bitfield expression is used as an rvalue.
6293 Similarly, when assigning a value to a bitfield, the value
6294 must be converted to the type given the bitfield here. */
6295 if (DECL_C_BIT_FIELD (field))
6296 {
6297 unsigned HOST_WIDE_INT width;
6298 tree ftype = TREE_TYPE (field);
6299 width = tree_to_uhwi (DECL_SIZE (field));
6300 if (width != TYPE_PRECISION (ftype))
6301 {
6302 TREE_TYPE (field)
6303 = c_build_bitfield_integer_type (width,
6304 TYPE_UNSIGNED (ftype));
6305 TREE_TYPE (field)
6306 = cp_build_qualified_type (TREE_TYPE (field),
6307 cp_type_quals (ftype));
6308 }
6309 }
6310
6311 /* If we needed additional padding after this field, add it
6312 now. */
6313 if (padding)
6314 {
6315 tree padding_field;
6316
6317 padding_field = build_decl (input_location,
6318 FIELD_DECL,
6319 NULL_TREE,
6320 char_type_node);
6321 DECL_BIT_FIELD (padding_field) = 1;
6322 DECL_SIZE (padding_field) = padding;
6323 DECL_CONTEXT (padding_field) = t;
6324 DECL_ARTIFICIAL (padding_field) = 1;
6325 DECL_IGNORED_P (padding_field) = 1;
6326 DECL_PADDING_P (padding_field) = 1;
6327 layout_nonempty_base_or_field (rli, padding_field,
6328 NULL_TREE,
6329 empty_base_offsets);
6330 }
6331
6332 last_field_was_bitfield = DECL_C_BIT_FIELD (field);
6333 }
6334
6335 if (!integer_zerop (rli->bitpos))
6336 {
6337 /* Make sure that we are on a byte boundary so that the size of
6338 the class without virtual bases will always be a round number
6339 of bytes. */
6340 rli->bitpos = round_up_loc (input_location, rli->bitpos, BITS_PER_UNIT);
6341 normalize_rli (rli);
6342 }
6343
6344 /* Delete all zero-width bit-fields from the list of fields. Now
6345 that the type is laid out they are no longer important. */
6346 remove_zero_width_bit_fields (t);
6347
6348 if (CLASSTYPE_NON_LAYOUT_POD_P (t) || CLASSTYPE_EMPTY_P (t))
6349 {
6350 /* T needs a different layout as a base (eliding virtual bases
6351 or whatever). Create that version. */
6352 tree base_t = make_node (TREE_CODE (t));
6353
6354 /* If the ABI version is not at least two, and the last
6355 field was a bit-field, RLI may not be on a byte
6356 boundary. In particular, rli_size_unit_so_far might
6357 indicate the last complete byte, while rli_size_so_far
6358 indicates the total number of bits used. Therefore,
6359 rli_size_so_far, rather than rli_size_unit_so_far, is
6360 used to compute TYPE_SIZE_UNIT. */
6361 tree eoc = end_of_class (t, /*include_virtuals_p=*/0);
6362 TYPE_SIZE_UNIT (base_t)
6363 = size_binop (MAX_EXPR,
6364 fold_convert (sizetype,
6365 size_binop (CEIL_DIV_EXPR,
6366 rli_size_so_far (rli),
6367 bitsize_int (BITS_PER_UNIT))),
6368 eoc);
6369 TYPE_SIZE (base_t)
6370 = size_binop (MAX_EXPR,
6371 rli_size_so_far (rli),
6372 size_binop (MULT_EXPR,
6373 fold_convert (bitsizetype, eoc),
6374 bitsize_int (BITS_PER_UNIT)));
6375 SET_TYPE_ALIGN (base_t, rli->record_align);
6376 TYPE_USER_ALIGN (base_t) = TYPE_USER_ALIGN (t);
6377 TYPE_TYPELESS_STORAGE (base_t) = TYPE_TYPELESS_STORAGE (t);
6378
6379 /* Copy the non-static data members of T. This will include its
6380 direct non-virtual bases & vtable. */
6381 next_field = &TYPE_FIELDS (base_t);
6382 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6383 if (TREE_CODE (field) == FIELD_DECL)
6384 {
6385 *next_field = copy_node (field);
6386 DECL_CONTEXT (*next_field) = base_t;
6387 next_field = &DECL_CHAIN (*next_field);
6388 }
6389 *next_field = NULL_TREE;
6390
6391 /* We use the base type for trivial assignments, and hence it
6392 needs a mode. */
6393 compute_record_mode (base_t);
6394
6395 TYPE_CONTEXT (base_t) = t;
6396
6397 /* Record the base version of the type. */
6398 CLASSTYPE_AS_BASE (t) = base_t;
6399 }
6400 else
6401 CLASSTYPE_AS_BASE (t) = t;
6402
6403 /* Every empty class contains an empty class. */
6404 if (CLASSTYPE_EMPTY_P (t))
6405 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 1;
6406
6407 /* Set the TYPE_DECL for this type to contain the right
6408 value for DECL_OFFSET, so that we can use it as part
6409 of a COMPONENT_REF for multiple inheritance. */
6410 layout_decl (TYPE_MAIN_DECL (t), 0);
6411
6412 /* Now fix up any virtual base class types that we left lying
6413 around. We must get these done before we try to lay out the
6414 virtual function table. As a side-effect, this will remove the
6415 base subobject fields. */
6416 layout_virtual_bases (rli, empty_base_offsets);
6417
6418 /* Make sure that empty classes are reflected in RLI at this
6419 point. */
6420 include_empty_classes (rli);
6421
6422 /* Make sure not to create any structures with zero size. */
6423 if (integer_zerop (rli_size_unit_so_far (rli)) && CLASSTYPE_EMPTY_P (t))
6424 place_field (rli,
6425 build_decl (input_location,
6426 FIELD_DECL, NULL_TREE, char_type_node));
6427
6428 /* If this is a non-POD, declaring it packed makes a difference to how it
6429 can be used as a field; don't let finalize_record_size undo it. */
6430 if (TYPE_PACKED (t) && !layout_pod_type_p (t))
6431 rli->packed_maybe_necessary = true;
6432
6433 /* Let the back end lay out the type. */
6434 finish_record_layout (rli, /*free_p=*/true);
6435
6436 if (TYPE_SIZE_UNIT (t)
6437 && TREE_CODE (TYPE_SIZE_UNIT (t)) == INTEGER_CST
6438 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (t))
6439 && !valid_constant_size_p (TYPE_SIZE_UNIT (t)))
6440 error ("size of type %qT is too large (%qE bytes)", t, TYPE_SIZE_UNIT (t));
6441
6442 /* Warn about bases that can't be talked about due to ambiguity. */
6443 warn_about_ambiguous_bases (t);
6444
6445 /* Now that we're done with layout, give the base fields the real types. */
6446 for (field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
6447 if (DECL_ARTIFICIAL (field) && IS_FAKE_BASE_TYPE (TREE_TYPE (field)))
6448 TREE_TYPE (field) = TYPE_CONTEXT (TREE_TYPE (field));
6449
6450 /* Clean up. */
6451 splay_tree_delete (empty_base_offsets);
6452
6453 if (CLASSTYPE_EMPTY_P (t)
6454 && tree_int_cst_lt (sizeof_biggest_empty_class,
6455 TYPE_SIZE_UNIT (t)))
6456 sizeof_biggest_empty_class = TYPE_SIZE_UNIT (t);
6457 }
6458
6459 /* Determine the "key method" for the class type indicated by TYPE,
6460 and set CLASSTYPE_KEY_METHOD accordingly. */
6461
6462 void
6463 determine_key_method (tree type)
6464 {
6465 tree method;
6466
6467 if (processing_template_decl
6468 || CLASSTYPE_TEMPLATE_INSTANTIATION (type)
6469 || CLASSTYPE_INTERFACE_KNOWN (type))
6470 return;
6471
6472 /* The key method is the first non-pure virtual function that is not
6473 inline at the point of class definition. On some targets the
6474 key function may not be inline; those targets should not call
6475 this function until the end of the translation unit. */
6476 for (method = TYPE_FIELDS (type); method; method = DECL_CHAIN (method))
6477 if (TREE_CODE (method) == FUNCTION_DECL
6478 && DECL_VINDEX (method) != NULL_TREE
6479 && ! DECL_DECLARED_INLINE_P (method)
6480 && ! DECL_PURE_VIRTUAL_P (method))
6481 {
6482 CLASSTYPE_KEY_METHOD (type) = method;
6483 break;
6484 }
6485
6486 return;
6487 }
6488
6489 /* Helper of find_flexarrays. Return true when FLD refers to a non-static
6490 class data member of non-zero size, otherwise false. */
6491
6492 static inline bool
6493 field_nonempty_p (const_tree fld)
6494 {
6495 if (TREE_CODE (fld) == ERROR_MARK)
6496 return false;
6497
6498 tree type = TREE_TYPE (fld);
6499 if (TREE_CODE (fld) == FIELD_DECL
6500 && TREE_CODE (type) != ERROR_MARK
6501 && (DECL_NAME (fld) || RECORD_OR_UNION_TYPE_P (type)))
6502 {
6503 return TYPE_SIZE (type)
6504 && (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
6505 || !tree_int_cst_equal (size_zero_node, TYPE_SIZE (type)));
6506 }
6507
6508 return false;
6509 }
6510
6511 /* Used by find_flexarrays and related functions. */
6512
6513 struct flexmems_t
6514 {
6515 /* The first flexible array member or non-zero array member found
6516 in the order of layout. */
6517 tree array;
6518 /* First non-static non-empty data member in the class or its bases. */
6519 tree first;
6520 /* The first non-static non-empty data member following either
6521 the flexible array member, if found, or the zero-length array member
6522 otherwise. AFTER[1] refers to the first such data member of a union
6523 of which the struct containing the flexible array member or zero-length
6524 array is a member, or NULL when no such union exists. This element is
6525 only used during searching, not for diagnosing problems. AFTER[0]
6526 refers to the first such data member that is not a member of such
6527 a union. */
6528 tree after[2];
6529
6530 /* Refers to a struct (not union) in which the struct of which the flexible
6531 array is member is defined. Used to diagnose strictly (according to C)
6532 invalid uses of the latter structs. */
6533 tree enclosing;
6534 };
6535
6536 /* Find either the first flexible array member or the first zero-length
6537 array, in that order of preference, among members of class T (but not
6538 its base classes), and set members of FMEM accordingly.
6539 BASE_P is true if T is a base class of another class.
6540 PUN is set to the outermost union in which the flexible array member
6541 (or zero-length array) is defined if one such union exists, otherwise
6542 to NULL.
6543 Similarly, PSTR is set to a data member of the outermost struct of
6544 which the flexible array is a member if one such struct exists,
6545 otherwise to NULL. */
6546
6547 static void
6548 find_flexarrays (tree t, flexmems_t *fmem, bool base_p,
6549 tree pun /* = NULL_TREE */,
6550 tree pstr /* = NULL_TREE */)
6551 {
6552 /* Set the "pointer" to the outermost enclosing union if not set
6553 yet and maintain it for the remainder of the recursion. */
6554 if (!pun && TREE_CODE (t) == UNION_TYPE)
6555 pun = t;
6556
6557 for (tree fld = TYPE_FIELDS (t); fld; fld = DECL_CHAIN (fld))
6558 {
6559 if (fld == error_mark_node)
6560 return;
6561
6562 /* Is FLD a typedef for an anonymous struct? */
6563
6564 /* FIXME: Note that typedefs (as well as arrays) need to be fully
6565 handled elsewhere so that errors like the following are detected
6566 as well:
6567 typedef struct { int i, a[], j; } S; // bug c++/72753
6568 S s [2]; // bug c++/68489
6569 */
6570 if (TREE_CODE (fld) == TYPE_DECL
6571 && DECL_IMPLICIT_TYPEDEF_P (fld)
6572 && CLASS_TYPE_P (TREE_TYPE (fld))
6573 && anon_aggrname_p (DECL_NAME (fld)))
6574 {
6575 /* Check the nested unnamed type referenced via a typedef
6576 independently of FMEM (since it's not a data member of
6577 the enclosing class). */
6578 check_flexarrays (TREE_TYPE (fld));
6579 continue;
6580 }
6581
6582 /* Skip anything that's GCC-generated or not a (non-static) data
6583 member. */
6584 if (DECL_ARTIFICIAL (fld) || TREE_CODE (fld) != FIELD_DECL)
6585 continue;
6586
6587 /* Type of the member. */
6588 tree fldtype = TREE_TYPE (fld);
6589 if (fldtype == error_mark_node)
6590 return;
6591
6592 /* Determine the type of the array element or object referenced
6593 by the member so that it can be checked for flexible array
6594 members if it hasn't been yet. */
6595 tree eltype = fldtype;
6596 while (TREE_CODE (eltype) == ARRAY_TYPE
6597 || INDIRECT_TYPE_P (eltype))
6598 eltype = TREE_TYPE (eltype);
6599
6600 if (RECORD_OR_UNION_TYPE_P (eltype))
6601 {
6602 if (fmem->array && !fmem->after[bool (pun)])
6603 {
6604 /* Once the member after the flexible array has been found
6605 we're done. */
6606 fmem->after[bool (pun)] = fld;
6607 break;
6608 }
6609
6610 if (eltype == fldtype || TYPE_UNNAMED_P (eltype))
6611 {
6612 /* Descend into the non-static member struct or union and try
6613 to find a flexible array member or zero-length array among
6614 its members. This is only necessary for anonymous types
6615 and types in whose context the current type T has not been
6616 defined (the latter must not be checked again because they
6617 are already in the process of being checked by one of the
6618 recursive calls). */
6619
6620 tree first = fmem->first;
6621 tree array = fmem->array;
6622
6623 /* If this member isn't anonymous and a prior non-flexible array
6624 member has been seen in one of the enclosing structs, clear
6625 the FIRST member since it doesn't contribute to the flexible
6626 array struct's members. */
6627 if (first && !array && !ANON_AGGR_TYPE_P (eltype))
6628 fmem->first = NULL_TREE;
6629
6630 find_flexarrays (eltype, fmem, false, pun,
6631 !pstr && TREE_CODE (t) == RECORD_TYPE ? fld : pstr);
6632
6633 if (fmem->array != array)
6634 continue;
6635
6636 if (first && !array && !ANON_AGGR_TYPE_P (eltype))
6637 {
6638 /* Restore the FIRST member reset above if no flexible
6639 array member has been found in this member's struct. */
6640 fmem->first = first;
6641 }
6642
6643 /* If the member struct contains the first flexible array
6644 member, or if this member is a base class, continue to
6645 the next member and avoid setting the FMEM->NEXT pointer
6646 to point to it. */
6647 if (base_p)
6648 continue;
6649 }
6650 }
6651
6652 if (field_nonempty_p (fld))
6653 {
6654 /* Remember the first non-static data member. */
6655 if (!fmem->first)
6656 fmem->first = fld;
6657
6658 /* Remember the first non-static data member after the flexible
6659 array member, if one has been found, or the zero-length array
6660 if it has been found. */
6661 if (fmem->array && !fmem->after[bool (pun)])
6662 fmem->after[bool (pun)] = fld;
6663 }
6664
6665 /* Skip non-arrays. */
6666 if (TREE_CODE (fldtype) != ARRAY_TYPE)
6667 continue;
6668
6669 /* Determine the upper bound of the array if it has one. */
6670 if (TYPE_DOMAIN (fldtype))
6671 {
6672 if (fmem->array)
6673 {
6674 /* Make a record of the zero-length array if either one
6675 such field or a flexible array member has been seen to
6676 handle the pathological and unlikely case of multiple
6677 such members. */
6678 if (!fmem->after[bool (pun)])
6679 fmem->after[bool (pun)] = fld;
6680 }
6681 else if (integer_all_onesp (TYPE_MAX_VALUE (TYPE_DOMAIN (fldtype))))
6682 {
6683 /* Remember the first zero-length array unless a flexible array
6684 member has already been seen. */
6685 fmem->array = fld;
6686 fmem->enclosing = pstr;
6687 }
6688 }
6689 else
6690 {
6691 /* Flexible array members have no upper bound. */
6692 if (fmem->array)
6693 {
6694 if (TYPE_DOMAIN (TREE_TYPE (fmem->array)))
6695 {
6696 /* Replace the zero-length array if it's been stored and
6697 reset the after pointer. */
6698 fmem->after[bool (pun)] = NULL_TREE;
6699 fmem->array = fld;
6700 fmem->enclosing = pstr;
6701 }
6702 else if (!fmem->after[bool (pun)])
6703 /* Make a record of another flexible array member. */
6704 fmem->after[bool (pun)] = fld;
6705 }
6706 else
6707 {
6708 fmem->array = fld;
6709 fmem->enclosing = pstr;
6710 }
6711 }
6712 }
6713 }
6714
6715 /* Diagnose a strictly (by the C standard) invalid use of a struct with
6716 a flexible array member (or the zero-length array extension). */
6717
6718 static void
6719 diagnose_invalid_flexarray (const flexmems_t *fmem)
6720 {
6721 if (fmem->array && fmem->enclosing)
6722 {
6723 auto_diagnostic_group d;
6724 if (pedwarn (location_of (fmem->enclosing), OPT_Wpedantic,
6725 TYPE_DOMAIN (TREE_TYPE (fmem->array))
6726 ? G_("invalid use of %q#T with a zero-size array "
6727 "in %q#D")
6728 : G_("invalid use of %q#T with a flexible array member "
6729 "in %q#T"),
6730 DECL_CONTEXT (fmem->array),
6731 DECL_CONTEXT (fmem->enclosing)))
6732 inform (DECL_SOURCE_LOCATION (fmem->array),
6733 "array member %q#D declared here", fmem->array);
6734 }
6735 }
6736
6737 /* Issue diagnostics for invalid flexible array members or zero-length
6738 arrays that are not the last elements of the containing class or its
6739 base classes or that are its sole members. */
6740
6741 static void
6742 diagnose_flexarrays (tree t, const flexmems_t *fmem)
6743 {
6744 if (!fmem->array)
6745 return;
6746
6747 if (fmem->first && !fmem->after[0])
6748 {
6749 diagnose_invalid_flexarray (fmem);
6750 return;
6751 }
6752
6753 /* Has a diagnostic been issued? */
6754 bool diagd = false;
6755
6756 const char *msg = 0;
6757
6758 if (TYPE_DOMAIN (TREE_TYPE (fmem->array)))
6759 {
6760 if (fmem->after[0])
6761 msg = G_("zero-size array member %qD not at end of %q#T");
6762 else if (!fmem->first)
6763 msg = G_("zero-size array member %qD in an otherwise empty %q#T");
6764
6765 if (msg)
6766 {
6767 location_t loc = DECL_SOURCE_LOCATION (fmem->array);
6768
6769 auto_diagnostic_group d;
6770 if (pedwarn (loc, OPT_Wpedantic, msg, fmem->array, t))
6771 {
6772 inform (location_of (t), "in the definition of %q#T", t);
6773 diagd = true;
6774 }
6775 }
6776 }
6777 else
6778 {
6779 if (fmem->after[0])
6780 msg = G_("flexible array member %qD not at end of %q#T");
6781 else if (!fmem->first)
6782 msg = G_("flexible array member %qD in an otherwise empty %q#T");
6783
6784 if (msg)
6785 {
6786 location_t loc = DECL_SOURCE_LOCATION (fmem->array);
6787 diagd = true;
6788
6789 auto_diagnostic_group d;
6790 error_at (loc, msg, fmem->array, t);
6791
6792 /* In the unlikely event that the member following the flexible
6793 array member is declared in a different class, or the member
6794 overlaps another member of a common union, point to it.
6795 Otherwise it should be obvious. */
6796 if (fmem->after[0]
6797 && ((DECL_CONTEXT (fmem->after[0])
6798 != DECL_CONTEXT (fmem->array))))
6799 {
6800 inform (DECL_SOURCE_LOCATION (fmem->after[0]),
6801 "next member %q#D declared here",
6802 fmem->after[0]);
6803 inform (location_of (t), "in the definition of %q#T", t);
6804 }
6805 }
6806 }
6807
6808 if (!diagd && fmem->array && fmem->enclosing)
6809 diagnose_invalid_flexarray (fmem);
6810 }
6811
6812
6813 /* Recursively check to make sure that any flexible array or zero-length
6814 array members of class T or its bases are valid (i.e., not the sole
6815 non-static data member of T and, if one exists, that it is the last
6816 non-static data member of T and its base classes. FMEM is expected
6817 to be initially null and is used internally by recursive calls to
6818 the function. Issue the appropriate diagnostics for the array member
6819 that fails the checks. */
6820
6821 static void
6822 check_flexarrays (tree t, flexmems_t *fmem /* = NULL */,
6823 bool base_p /* = false */)
6824 {
6825 /* Initialize the result of a search for flexible array and zero-length
6826 array members. Avoid doing any work if the most interesting FMEM data
6827 have already been populated. */
6828 flexmems_t flexmems = flexmems_t ();
6829 if (!fmem)
6830 fmem = &flexmems;
6831 else if (fmem->array && fmem->first && fmem->after[0])
6832 return;
6833
6834 tree fam = fmem->array;
6835
6836 /* Recursively check the primary base class first. */
6837 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6838 {
6839 tree basetype = BINFO_TYPE (CLASSTYPE_PRIMARY_BINFO (t));
6840 check_flexarrays (basetype, fmem, true);
6841 }
6842
6843 /* Recursively check the base classes. */
6844 int nbases = TYPE_BINFO (t) ? BINFO_N_BASE_BINFOS (TYPE_BINFO (t)) : 0;
6845 for (int i = 0; i < nbases; ++i)
6846 {
6847 tree base_binfo = BINFO_BASE_BINFO (TYPE_BINFO (t), i);
6848
6849 /* The primary base class was already checked above. */
6850 if (base_binfo == CLASSTYPE_PRIMARY_BINFO (t))
6851 continue;
6852
6853 /* Virtual base classes are at the end. */
6854 if (BINFO_VIRTUAL_P (base_binfo))
6855 continue;
6856
6857 /* Check the base class. */
6858 check_flexarrays (BINFO_TYPE (base_binfo), fmem, /*base_p=*/true);
6859 }
6860
6861 if (fmem == &flexmems)
6862 {
6863 /* Check virtual base classes only once per derived class.
6864 I.e., this check is not performed recursively for base
6865 classes. */
6866 int i;
6867 tree base_binfo;
6868 vec<tree, va_gc> *vbases;
6869 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
6870 vec_safe_iterate (vbases, i, &base_binfo); i++)
6871 {
6872 /* Check the virtual base class. */
6873 tree basetype = TREE_TYPE (base_binfo);
6874
6875 check_flexarrays (basetype, fmem, /*base_p=*/true);
6876 }
6877 }
6878
6879 /* Is the type unnamed (and therefore a member of it potentially
6880 an anonymous struct or union)? */
6881 bool maybe_anon_p = TYPE_UNNAMED_P (t);
6882
6883 /* Search the members of the current (possibly derived) class, skipping
6884 unnamed structs and unions since those could be anonymous. */
6885 if (fmem != &flexmems || !maybe_anon_p)
6886 find_flexarrays (t, fmem, base_p || fam != fmem->array);
6887
6888 if (fmem == &flexmems && !maybe_anon_p)
6889 {
6890 /* Issue diagnostics for invalid flexible and zero-length array
6891 members found in base classes or among the members of the current
6892 class. Ignore anonymous structs and unions whose members are
6893 considered to be members of the enclosing class and thus will
6894 be diagnosed when checking it. */
6895 diagnose_flexarrays (t, fmem);
6896 }
6897 }
6898
6899 /* Perform processing required when the definition of T (a class type)
6900 is complete. Diagnose invalid definitions of flexible array members
6901 and zero-size arrays. */
6902
6903 void
6904 finish_struct_1 (tree t)
6905 {
6906 tree x;
6907 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6908 tree virtuals = NULL_TREE;
6909
6910 if (COMPLETE_TYPE_P (t))
6911 {
6912 gcc_assert (MAYBE_CLASS_TYPE_P (t));
6913 error ("redefinition of %q#T", t);
6914 popclass ();
6915 return;
6916 }
6917
6918 /* If this type was previously laid out as a forward reference,
6919 make sure we lay it out again. */
6920 TYPE_SIZE (t) = NULL_TREE;
6921 CLASSTYPE_PRIMARY_BINFO (t) = NULL_TREE;
6922
6923 /* Make assumptions about the class; we'll reset the flags if
6924 necessary. */
6925 CLASSTYPE_EMPTY_P (t) = 1;
6926 CLASSTYPE_NEARLY_EMPTY_P (t) = 1;
6927 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t) = 0;
6928 CLASSTYPE_LITERAL_P (t) = true;
6929
6930 /* Do end-of-class semantic processing: checking the validity of the
6931 bases and members and add implicitly generated methods. */
6932 check_bases_and_members (t);
6933
6934 /* Find the key method. */
6935 if (TYPE_CONTAINS_VPTR_P (t))
6936 {
6937 /* The Itanium C++ ABI permits the key method to be chosen when
6938 the class is defined -- even though the key method so
6939 selected may later turn out to be an inline function. On
6940 some systems (such as ARM Symbian OS) the key method cannot
6941 be determined until the end of the translation unit. On such
6942 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6943 will cause the class to be added to KEYED_CLASSES. Then, in
6944 finish_file we will determine the key method. */
6945 if (targetm.cxx.key_method_may_be_inline ())
6946 determine_key_method (t);
6947
6948 /* If a polymorphic class has no key method, we may emit the vtable
6949 in every translation unit where the class definition appears. If
6950 we're devirtualizing, we can look into the vtable even if we
6951 aren't emitting it. */
6952 if (!CLASSTYPE_KEY_METHOD (t))
6953 vec_safe_push (keyed_classes, t);
6954 }
6955
6956 /* Layout the class itself. */
6957 layout_class_type (t, &virtuals);
6958 /* COMPLETE_TYPE_P is now true. */
6959
6960 set_class_bindings (t);
6961
6962 /* With the layout complete, check for flexible array members and
6963 zero-length arrays that might overlap other members in the final
6964 layout. */
6965 check_flexarrays (t);
6966
6967 virtuals = modify_all_vtables (t, nreverse (virtuals));
6968
6969 /* If necessary, create the primary vtable for this class. */
6970 if (virtuals || TYPE_CONTAINS_VPTR_P (t))
6971 {
6972 /* We must enter these virtuals into the table. */
6973 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6974 build_primary_vtable (NULL_TREE, t);
6975 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t)))
6976 /* Here we know enough to change the type of our virtual
6977 function table, but we will wait until later this function. */
6978 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t), t);
6979
6980 /* If we're warning about ABI tags, check the types of the new
6981 virtual functions. */
6982 if (warn_abi_tag)
6983 for (tree v = virtuals; v; v = TREE_CHAIN (v))
6984 check_abi_tags (t, TREE_VALUE (v));
6985 }
6986
6987 if (TYPE_CONTAINS_VPTR_P (t))
6988 {
6989 int vindex;
6990 tree fn;
6991
6992 if (BINFO_VTABLE (TYPE_BINFO (t)))
6993 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t))));
6994 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t))
6995 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t)) == NULL_TREE);
6996
6997 /* Add entries for virtual functions introduced by this class. */
6998 BINFO_VIRTUALS (TYPE_BINFO (t))
6999 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t)), virtuals);
7000
7001 /* Set DECL_VINDEX for all functions declared in this class. */
7002 for (vindex = 0, fn = BINFO_VIRTUALS (TYPE_BINFO (t));
7003 fn;
7004 fn = TREE_CHAIN (fn),
7005 vindex += (TARGET_VTABLE_USES_DESCRIPTORS
7006 ? TARGET_VTABLE_USES_DESCRIPTORS : 1))
7007 {
7008 tree fndecl = BV_FN (fn);
7009
7010 if (DECL_THUNK_P (fndecl))
7011 /* A thunk. We should never be calling this entry directly
7012 from this vtable -- we'd use the entry for the non
7013 thunk base function. */
7014 DECL_VINDEX (fndecl) = NULL_TREE;
7015 else if (TREE_CODE (DECL_VINDEX (fndecl)) != INTEGER_CST)
7016 DECL_VINDEX (fndecl) = build_int_cst (NULL_TREE, vindex);
7017 }
7018 }
7019
7020 finish_struct_bits (t);
7021
7022 set_method_tm_attributes (t);
7023 if (flag_openmp || flag_openmp_simd)
7024 finish_omp_declare_simd_methods (t);
7025
7026 /* Clear DECL_IN_AGGR_P for all member functions. Complete the rtl
7027 for any static member objects of the type we're working on. */
7028 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
7029 if (DECL_DECLARES_FUNCTION_P (x))
7030 DECL_IN_AGGR_P (x) = false;
7031 else if (VAR_P (x) && TREE_STATIC (x)
7032 && TREE_TYPE (x) != error_mark_node
7033 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x)), t))
7034 SET_DECL_MODE (x, TYPE_MODE (t));
7035
7036 /* Complain if one of the field types requires lower visibility. */
7037 constrain_class_visibility (t);
7038
7039 /* Make the rtl for any new vtables we have created, and unmark
7040 the base types we marked. */
7041 finish_vtbls (t);
7042
7043 /* Build the VTT for T. */
7044 build_vtt (t);
7045
7046 if (warn_nonvdtor
7047 && TYPE_POLYMORPHIC_P (t) && accessible_nvdtor_p (t)
7048 && !CLASSTYPE_FINAL (t))
7049 warning (OPT_Wnon_virtual_dtor,
7050 "%q#T has virtual functions and accessible"
7051 " non-virtual destructor", t);
7052
7053 complete_vars (t);
7054
7055 if (warn_overloaded_virtual)
7056 warn_hidden (t);
7057
7058 /* Class layout, assignment of virtual table slots, etc., is now
7059 complete. Give the back end a chance to tweak the visibility of
7060 the class or perform any other required target modifications. */
7061 targetm.cxx.adjust_class_at_definition (t);
7062
7063 maybe_suppress_debug_info (t);
7064
7065 if (flag_vtable_verify)
7066 vtv_save_class_info (t);
7067
7068 dump_class_hierarchy (t);
7069
7070 /* Finish debugging output for this type. */
7071 rest_of_type_compilation (t, ! LOCAL_CLASS_P (t));
7072
7073 if (TYPE_TRANSPARENT_AGGR (t))
7074 {
7075 tree field = first_field (t);
7076 if (field == NULL_TREE || error_operand_p (field))
7077 {
7078 error ("type transparent %q#T does not have any fields", t);
7079 TYPE_TRANSPARENT_AGGR (t) = 0;
7080 }
7081 else if (DECL_ARTIFICIAL (field))
7082 {
7083 if (DECL_FIELD_IS_BASE (field))
7084 error ("type transparent class %qT has base classes", t);
7085 else
7086 {
7087 gcc_checking_assert (DECL_VIRTUAL_P (field));
7088 error ("type transparent class %qT has virtual functions", t);
7089 }
7090 TYPE_TRANSPARENT_AGGR (t) = 0;
7091 }
7092 else if (TYPE_MODE (t) != DECL_MODE (field))
7093 {
7094 error ("type transparent %q#T cannot be made transparent because "
7095 "the type of the first field has a different ABI from the "
7096 "class overall", t);
7097 TYPE_TRANSPARENT_AGGR (t) = 0;
7098 }
7099 }
7100 }
7101
7102 /* When T was built up, the member declarations were added in reverse
7103 order. Rearrange them to declaration order. */
7104
7105 void
7106 unreverse_member_declarations (tree t)
7107 {
7108 tree next;
7109 tree prev;
7110 tree x;
7111
7112 /* The following lists are all in reverse order. Put them in
7113 declaration order now. */
7114 CLASSTYPE_DECL_LIST (t) = nreverse (CLASSTYPE_DECL_LIST (t));
7115
7116 /* For the TYPE_FIELDS, only the non TYPE_DECLs are in reverse
7117 order, so we can't just use nreverse. Due to stat_hack
7118 chicanery in finish_member_declaration. */
7119 prev = NULL_TREE;
7120 for (x = TYPE_FIELDS (t);
7121 x && TREE_CODE (x) != TYPE_DECL;
7122 x = next)
7123 {
7124 next = DECL_CHAIN (x);
7125 DECL_CHAIN (x) = prev;
7126 prev = x;
7127 }
7128
7129 if (prev)
7130 {
7131 DECL_CHAIN (TYPE_FIELDS (t)) = x;
7132 TYPE_FIELDS (t) = prev;
7133 }
7134 }
7135
7136 tree
7137 finish_struct (tree t, tree attributes)
7138 {
7139 location_t saved_loc = input_location;
7140
7141 /* Now that we've got all the field declarations, reverse everything
7142 as necessary. */
7143 unreverse_member_declarations (t);
7144
7145 cplus_decl_attributes (&t, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
7146 fixup_attribute_variants (t);
7147
7148 /* Nadger the current location so that diagnostics point to the start of
7149 the struct, not the end. */
7150 input_location = DECL_SOURCE_LOCATION (TYPE_NAME (t));
7151
7152 if (processing_template_decl)
7153 {
7154 tree x;
7155
7156 /* We need to add the target functions of USING_DECLS, so that
7157 they can be found when the using declaration is not
7158 instantiated yet. */
7159 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
7160 if (TREE_CODE (x) == USING_DECL)
7161 {
7162 tree fn = strip_using_decl (x);
7163 if (OVL_P (fn))
7164 for (lkp_iterator iter (fn); iter; ++iter)
7165 add_method (t, *iter, true);
7166 }
7167 else if (DECL_DECLARES_FUNCTION_P (x))
7168 DECL_IN_AGGR_P (x) = false;
7169
7170 /* Also add a USING_DECL for operator=. We know there'll be (at
7171 least) one, but we don't know the signature(s). We want name
7172 lookup not to fail or recurse into bases. This isn't added
7173 to the template decl list so we drop this at instantiation
7174 time. */
7175 tree ass_op = build_lang_decl (USING_DECL, assign_op_identifier,
7176 NULL_TREE);
7177 DECL_CONTEXT (ass_op) = t;
7178 USING_DECL_SCOPE (ass_op) = t;
7179 DECL_DEPENDENT_P (ass_op) = true;
7180 DECL_ARTIFICIAL (ass_op) = true;
7181 DECL_CHAIN (ass_op) = TYPE_FIELDS (t);
7182 TYPE_FIELDS (t) = ass_op;
7183
7184 TYPE_SIZE (t) = bitsize_zero_node;
7185 TYPE_SIZE_UNIT (t) = size_zero_node;
7186 /* COMPLETE_TYPE_P is now true. */
7187
7188 set_class_bindings (t);
7189
7190 /* We need to emit an error message if this type was used as a parameter
7191 and it is an abstract type, even if it is a template. We construct
7192 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
7193 account and we call complete_vars with this type, which will check
7194 the PARM_DECLS. Note that while the type is being defined,
7195 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
7196 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
7197 CLASSTYPE_PURE_VIRTUALS (t) = NULL;
7198 for (x = TYPE_FIELDS (t); x; x = DECL_CHAIN (x))
7199 if (TREE_CODE (x) == FUNCTION_DECL && DECL_PURE_VIRTUAL_P (x))
7200 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t), x);
7201 complete_vars (t);
7202
7203 /* Remember current #pragma pack value. */
7204 TYPE_PRECISION (t) = maximum_field_alignment;
7205
7206 /* Fix up any variants we've already built. */
7207 for (x = TYPE_NEXT_VARIANT (t); x; x = TYPE_NEXT_VARIANT (x))
7208 {
7209 TYPE_SIZE (x) = TYPE_SIZE (t);
7210 TYPE_SIZE_UNIT (x) = TYPE_SIZE_UNIT (t);
7211 TYPE_FIELDS (x) = TYPE_FIELDS (t);
7212 }
7213 }
7214 else
7215 finish_struct_1 (t);
7216 /* COMPLETE_TYPE_P is now true. */
7217
7218 maybe_warn_about_overly_private_class (t);
7219
7220 if (is_std_init_list (t))
7221 {
7222 /* People keep complaining that the compiler crashes on an invalid
7223 definition of initializer_list, so I guess we should explicitly
7224 reject it. What the compiler internals care about is that it's a
7225 template and has a pointer field followed by size_type field. */
7226 bool ok = false;
7227 if (processing_template_decl)
7228 {
7229 tree f = next_initializable_field (TYPE_FIELDS (t));
7230 if (f && TYPE_PTR_P (TREE_TYPE (f)))
7231 {
7232 f = next_initializable_field (DECL_CHAIN (f));
7233 if (f && same_type_p (TREE_TYPE (f), size_type_node))
7234 ok = true;
7235 }
7236 }
7237 if (!ok)
7238 fatal_error (input_location, "definition of %qD does not match "
7239 "%<#include <initializer_list>%>", TYPE_NAME (t));
7240 }
7241
7242 input_location = saved_loc;
7243
7244 TYPE_BEING_DEFINED (t) = 0;
7245
7246 if (current_class_type)
7247 popclass ();
7248 else
7249 error ("trying to finish struct, but kicked out due to previous parse errors");
7250
7251 if (processing_template_decl && at_function_scope_p ()
7252 /* Lambdas are defined by the LAMBDA_EXPR. */
7253 && !LAMBDA_TYPE_P (t))
7254 add_stmt (build_min (TAG_DEFN, t));
7255
7256 return t;
7257 }
7258 \f
7259 /* Hash table to avoid endless recursion when handling references. */
7260 static hash_table<nofree_ptr_hash<tree_node> > *fixed_type_or_null_ref_ht;
7261
7262 /* Return the dynamic type of INSTANCE, if known.
7263 Used to determine whether the virtual function table is needed
7264 or not.
7265
7266 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
7267 of our knowledge of its type. *NONNULL should be initialized
7268 before this function is called. */
7269
7270 static tree
7271 fixed_type_or_null (tree instance, int *nonnull, int *cdtorp)
7272 {
7273 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
7274
7275 switch (TREE_CODE (instance))
7276 {
7277 case INDIRECT_REF:
7278 if (INDIRECT_TYPE_P (TREE_TYPE (instance)))
7279 return NULL_TREE;
7280 else
7281 return RECUR (TREE_OPERAND (instance, 0));
7282
7283 case CALL_EXPR:
7284 /* This is a call to a constructor, hence it's never zero. */
7285 if (CALL_EXPR_FN (instance)
7286 && TREE_HAS_CONSTRUCTOR (instance))
7287 {
7288 if (nonnull)
7289 *nonnull = 1;
7290 return TREE_TYPE (instance);
7291 }
7292 return NULL_TREE;
7293
7294 case SAVE_EXPR:
7295 /* This is a call to a constructor, hence it's never zero. */
7296 if (TREE_HAS_CONSTRUCTOR (instance))
7297 {
7298 if (nonnull)
7299 *nonnull = 1;
7300 return TREE_TYPE (instance);
7301 }
7302 return RECUR (TREE_OPERAND (instance, 0));
7303
7304 case POINTER_PLUS_EXPR:
7305 case PLUS_EXPR:
7306 case MINUS_EXPR:
7307 if (TREE_CODE (TREE_OPERAND (instance, 0)) == ADDR_EXPR)
7308 return RECUR (TREE_OPERAND (instance, 0));
7309 if (TREE_CODE (TREE_OPERAND (instance, 1)) == INTEGER_CST)
7310 /* Propagate nonnull. */
7311 return RECUR (TREE_OPERAND (instance, 0));
7312
7313 return NULL_TREE;
7314
7315 CASE_CONVERT:
7316 return RECUR (TREE_OPERAND (instance, 0));
7317
7318 case ADDR_EXPR:
7319 instance = TREE_OPERAND (instance, 0);
7320 if (nonnull)
7321 {
7322 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
7323 with a real object -- given &p->f, p can still be null. */
7324 tree t = get_base_address (instance);
7325 /* ??? Probably should check DECL_WEAK here. */
7326 if (t && DECL_P (t))
7327 *nonnull = 1;
7328 }
7329 return RECUR (instance);
7330
7331 case COMPONENT_REF:
7332 /* If this component is really a base class reference, then the field
7333 itself isn't definitive. */
7334 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance, 1)))
7335 return RECUR (TREE_OPERAND (instance, 0));
7336 return RECUR (TREE_OPERAND (instance, 1));
7337
7338 case VAR_DECL:
7339 case FIELD_DECL:
7340 if (TREE_CODE (TREE_TYPE (instance)) == ARRAY_TYPE
7341 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance))))
7342 {
7343 if (nonnull)
7344 *nonnull = 1;
7345 return TREE_TYPE (TREE_TYPE (instance));
7346 }
7347 /* fall through. */
7348 case TARGET_EXPR:
7349 case PARM_DECL:
7350 case RESULT_DECL:
7351 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance)))
7352 {
7353 if (nonnull)
7354 *nonnull = 1;
7355 return TREE_TYPE (instance);
7356 }
7357 else if (instance == current_class_ptr)
7358 {
7359 if (nonnull)
7360 *nonnull = 1;
7361
7362 /* if we're in a ctor or dtor, we know our type. If
7363 current_class_ptr is set but we aren't in a function, we're in
7364 an NSDMI (and therefore a constructor). */
7365 if (current_scope () != current_function_decl
7366 || (DECL_LANG_SPECIFIC (current_function_decl)
7367 && (DECL_CONSTRUCTOR_P (current_function_decl)
7368 || DECL_DESTRUCTOR_P (current_function_decl))))
7369 {
7370 if (cdtorp)
7371 *cdtorp = 1;
7372 return TREE_TYPE (TREE_TYPE (instance));
7373 }
7374 }
7375 else if (TYPE_REF_P (TREE_TYPE (instance)))
7376 {
7377 /* We only need one hash table because it is always left empty. */
7378 if (!fixed_type_or_null_ref_ht)
7379 fixed_type_or_null_ref_ht
7380 = new hash_table<nofree_ptr_hash<tree_node> > (37);
7381
7382 /* Reference variables should be references to objects. */
7383 if (nonnull)
7384 *nonnull = 1;
7385
7386 /* Enter the INSTANCE in a table to prevent recursion; a
7387 variable's initializer may refer to the variable
7388 itself. */
7389 if (VAR_P (instance)
7390 && DECL_INITIAL (instance)
7391 && !type_dependent_expression_p_push (DECL_INITIAL (instance))
7392 && !fixed_type_or_null_ref_ht->find (instance))
7393 {
7394 tree type;
7395 tree_node **slot;
7396
7397 slot = fixed_type_or_null_ref_ht->find_slot (instance, INSERT);
7398 *slot = instance;
7399 type = RECUR (DECL_INITIAL (instance));
7400 fixed_type_or_null_ref_ht->remove_elt (instance);
7401
7402 return type;
7403 }
7404 }
7405 return NULL_TREE;
7406
7407 case VIEW_CONVERT_EXPR:
7408 if (location_wrapper_p (instance))
7409 return RECUR (TREE_OPERAND (instance, 0));
7410 else
7411 /* TODO: Recursion may be correct for some non-location-wrapper
7412 uses of VIEW_CONVERT_EXPR. */
7413 return NULL_TREE;
7414
7415 default:
7416 return NULL_TREE;
7417 }
7418 #undef RECUR
7419 }
7420
7421 /* Return nonzero if the dynamic type of INSTANCE is known, and
7422 equivalent to the static type. We also handle the case where
7423 INSTANCE is really a pointer. Return negative if this is a
7424 ctor/dtor. There the dynamic type is known, but this might not be
7425 the most derived base of the original object, and hence virtual
7426 bases may not be laid out according to this type.
7427
7428 Used to determine whether the virtual function table is needed
7429 or not.
7430
7431 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
7432 of our knowledge of its type. *NONNULL should be initialized
7433 before this function is called. */
7434
7435 int
7436 resolves_to_fixed_type_p (tree instance, int* nonnull)
7437 {
7438 tree t = TREE_TYPE (instance);
7439 int cdtorp = 0;
7440 tree fixed;
7441
7442 /* processing_template_decl can be false in a template if we're in
7443 instantiate_non_dependent_expr, but we still want to suppress
7444 this check. */
7445 if (in_template_function ())
7446 {
7447 /* In a template we only care about the type of the result. */
7448 if (nonnull)
7449 *nonnull = true;
7450 return true;
7451 }
7452
7453 fixed = fixed_type_or_null (instance, nonnull, &cdtorp);
7454 if (fixed == NULL_TREE)
7455 return 0;
7456 if (INDIRECT_TYPE_P (t))
7457 t = TREE_TYPE (t);
7458 if (!same_type_ignoring_top_level_qualifiers_p (t, fixed))
7459 return 0;
7460 return cdtorp ? -1 : 1;
7461 }
7462
7463 \f
7464 void
7465 init_class_processing (void)
7466 {
7467 current_class_depth = 0;
7468 current_class_stack_size = 10;
7469 current_class_stack
7470 = XNEWVEC (struct class_stack_node, current_class_stack_size);
7471 sizeof_biggest_empty_class = size_zero_node;
7472
7473 ridpointers[(int) RID_PUBLIC] = access_public_node;
7474 ridpointers[(int) RID_PRIVATE] = access_private_node;
7475 ridpointers[(int) RID_PROTECTED] = access_protected_node;
7476 }
7477
7478 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
7479
7480 static void
7481 restore_class_cache (void)
7482 {
7483 tree type;
7484
7485 /* We are re-entering the same class we just left, so we don't
7486 have to search the whole inheritance matrix to find all the
7487 decls to bind again. Instead, we install the cached
7488 class_shadowed list and walk through it binding names. */
7489 push_binding_level (previous_class_level);
7490 class_binding_level = previous_class_level;
7491 /* Restore IDENTIFIER_TYPE_VALUE. */
7492 for (type = class_binding_level->type_shadowed;
7493 type;
7494 type = TREE_CHAIN (type))
7495 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type), TREE_TYPE (type));
7496 }
7497
7498 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
7499 appropriate for TYPE.
7500
7501 So that we may avoid calls to lookup_name, we cache the _TYPE
7502 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
7503
7504 For multiple inheritance, we perform a two-pass depth-first search
7505 of the type lattice. */
7506
7507 void
7508 pushclass (tree type)
7509 {
7510 class_stack_node_t csn;
7511
7512 type = TYPE_MAIN_VARIANT (type);
7513
7514 /* Make sure there is enough room for the new entry on the stack. */
7515 if (current_class_depth + 1 >= current_class_stack_size)
7516 {
7517 current_class_stack_size *= 2;
7518 current_class_stack
7519 = XRESIZEVEC (struct class_stack_node, current_class_stack,
7520 current_class_stack_size);
7521 }
7522
7523 /* Insert a new entry on the class stack. */
7524 csn = current_class_stack + current_class_depth;
7525 csn->name = current_class_name;
7526 csn->type = current_class_type;
7527 csn->access = current_access_specifier;
7528 csn->names_used = 0;
7529 csn->hidden = 0;
7530 current_class_depth++;
7531
7532 /* Now set up the new type. */
7533 current_class_name = TYPE_NAME (type);
7534 if (TREE_CODE (current_class_name) == TYPE_DECL)
7535 current_class_name = DECL_NAME (current_class_name);
7536 current_class_type = type;
7537
7538 /* By default, things in classes are private, while things in
7539 structures or unions are public. */
7540 current_access_specifier = (CLASSTYPE_DECLARED_CLASS (type)
7541 ? access_private_node
7542 : access_public_node);
7543
7544 if (previous_class_level
7545 && type != previous_class_level->this_entity
7546 && current_class_depth == 1)
7547 {
7548 /* Forcibly remove any old class remnants. */
7549 invalidate_class_lookup_cache ();
7550 }
7551
7552 if (!previous_class_level
7553 || type != previous_class_level->this_entity
7554 || current_class_depth > 1)
7555 pushlevel_class ();
7556 else
7557 restore_class_cache ();
7558 }
7559
7560 /* When we exit a toplevel class scope, we save its binding level so
7561 that we can restore it quickly. Here, we've entered some other
7562 class, so we must invalidate our cache. */
7563
7564 void
7565 invalidate_class_lookup_cache (void)
7566 {
7567 previous_class_level = NULL;
7568 }
7569
7570 /* Get out of the current class scope. If we were in a class scope
7571 previously, that is the one popped to. */
7572
7573 void
7574 popclass (void)
7575 {
7576 poplevel_class ();
7577
7578 current_class_depth--;
7579 current_class_name = current_class_stack[current_class_depth].name;
7580 current_class_type = current_class_stack[current_class_depth].type;
7581 current_access_specifier = current_class_stack[current_class_depth].access;
7582 if (current_class_stack[current_class_depth].names_used)
7583 splay_tree_delete (current_class_stack[current_class_depth].names_used);
7584 }
7585
7586 /* Mark the top of the class stack as hidden. */
7587
7588 void
7589 push_class_stack (void)
7590 {
7591 if (current_class_depth)
7592 ++current_class_stack[current_class_depth - 1].hidden;
7593 }
7594
7595 /* Mark the top of the class stack as un-hidden. */
7596
7597 void
7598 pop_class_stack (void)
7599 {
7600 if (current_class_depth)
7601 --current_class_stack[current_class_depth - 1].hidden;
7602 }
7603
7604 /* If the class type currently being defined is either T or
7605 a nested type of T, returns the type from the current_class_stack,
7606 which might be equivalent to but not equal to T in case of
7607 constrained partial specializations. */
7608
7609 tree
7610 currently_open_class (tree t)
7611 {
7612 int i;
7613
7614 if (!CLASS_TYPE_P (t))
7615 return NULL_TREE;
7616
7617 t = TYPE_MAIN_VARIANT (t);
7618
7619 /* We start looking from 1 because entry 0 is from global scope,
7620 and has no type. */
7621 for (i = current_class_depth; i > 0; --i)
7622 {
7623 tree c;
7624 if (i == current_class_depth)
7625 c = current_class_type;
7626 else
7627 {
7628 if (current_class_stack[i].hidden)
7629 break;
7630 c = current_class_stack[i].type;
7631 }
7632 if (!c)
7633 continue;
7634 if (same_type_p (c, t))
7635 return c;
7636 }
7637 return NULL_TREE;
7638 }
7639
7640 /* If either current_class_type or one of its enclosing classes are derived
7641 from T, return the appropriate type. Used to determine how we found
7642 something via unqualified lookup. */
7643
7644 tree
7645 currently_open_derived_class (tree t)
7646 {
7647 int i;
7648
7649 /* The bases of a dependent type are unknown. */
7650 if (dependent_type_p (t))
7651 return NULL_TREE;
7652
7653 if (!current_class_type)
7654 return NULL_TREE;
7655
7656 if (DERIVED_FROM_P (t, current_class_type))
7657 return current_class_type;
7658
7659 for (i = current_class_depth - 1; i > 0; --i)
7660 {
7661 if (current_class_stack[i].hidden)
7662 break;
7663 if (DERIVED_FROM_P (t, current_class_stack[i].type))
7664 return current_class_stack[i].type;
7665 }
7666
7667 return NULL_TREE;
7668 }
7669
7670 /* Return the outermost enclosing class type that is still open, or
7671 NULL_TREE. */
7672
7673 tree
7674 outermost_open_class (void)
7675 {
7676 if (!current_class_type)
7677 return NULL_TREE;
7678 tree r = NULL_TREE;
7679 if (TYPE_BEING_DEFINED (current_class_type))
7680 r = current_class_type;
7681 for (int i = current_class_depth - 1; i > 0; --i)
7682 {
7683 if (current_class_stack[i].hidden)
7684 break;
7685 tree t = current_class_stack[i].type;
7686 if (!TYPE_BEING_DEFINED (t))
7687 break;
7688 r = t;
7689 }
7690 return r;
7691 }
7692
7693 /* Returns the innermost class type which is not a lambda closure type. */
7694
7695 tree
7696 current_nonlambda_class_type (void)
7697 {
7698 tree type = current_class_type;
7699 while (type && LAMBDA_TYPE_P (type))
7700 type = decl_type_context (TYPE_NAME (type));
7701 return type;
7702 }
7703
7704 /* When entering a class scope, all enclosing class scopes' names with
7705 static meaning (static variables, static functions, types and
7706 enumerators) have to be visible. This recursive function calls
7707 pushclass for all enclosing class contexts until global or a local
7708 scope is reached. TYPE is the enclosed class. */
7709
7710 void
7711 push_nested_class (tree type)
7712 {
7713 /* A namespace might be passed in error cases, like A::B:C. */
7714 if (type == NULL_TREE
7715 || !CLASS_TYPE_P (type))
7716 return;
7717
7718 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type)));
7719
7720 pushclass (type);
7721 }
7722
7723 /* Undoes a push_nested_class call. */
7724
7725 void
7726 pop_nested_class (void)
7727 {
7728 tree context = DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type));
7729
7730 popclass ();
7731 if (context && CLASS_TYPE_P (context))
7732 pop_nested_class ();
7733 }
7734
7735 /* Returns the number of extern "LANG" blocks we are nested within. */
7736
7737 int
7738 current_lang_depth (void)
7739 {
7740 return vec_safe_length (current_lang_base);
7741 }
7742
7743 /* Set global variables CURRENT_LANG_NAME to appropriate value
7744 so that behavior of name-mangling machinery is correct. */
7745
7746 void
7747 push_lang_context (tree name)
7748 {
7749 vec_safe_push (current_lang_base, current_lang_name);
7750
7751 if (name == lang_name_cplusplus)
7752 current_lang_name = name;
7753 else if (name == lang_name_c)
7754 current_lang_name = name;
7755 else
7756 error ("language string %<\"%E\"%> not recognized", name);
7757 }
7758
7759 /* Get out of the current language scope. */
7760
7761 void
7762 pop_lang_context (void)
7763 {
7764 current_lang_name = current_lang_base->pop ();
7765 }
7766 \f
7767 /* Type instantiation routines. */
7768
7769 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7770 matches the TARGET_TYPE. If there is no satisfactory match, return
7771 error_mark_node, and issue an error & warning messages under
7772 control of FLAGS. Permit pointers to member function if FLAGS
7773 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7774 a template-id, and EXPLICIT_TARGS are the explicitly provided
7775 template arguments.
7776
7777 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7778 is the base path used to reference those member functions. If
7779 the address is resolved to a member function, access checks will be
7780 performed and errors issued if appropriate. */
7781
7782 static tree
7783 resolve_address_of_overloaded_function (tree target_type,
7784 tree overload,
7785 tsubst_flags_t complain,
7786 bool template_only,
7787 tree explicit_targs,
7788 tree access_path)
7789 {
7790 /* Here's what the standard says:
7791
7792 [over.over]
7793
7794 If the name is a function template, template argument deduction
7795 is done, and if the argument deduction succeeds, the deduced
7796 arguments are used to generate a single template function, which
7797 is added to the set of overloaded functions considered.
7798
7799 Non-member functions and static member functions match targets of
7800 type "pointer-to-function" or "reference-to-function." Nonstatic
7801 member functions match targets of type "pointer-to-member
7802 function;" the function type of the pointer to member is used to
7803 select the member function from the set of overloaded member
7804 functions. If a nonstatic member function is selected, the
7805 reference to the overloaded function name is required to have the
7806 form of a pointer to member as described in 5.3.1.
7807
7808 If more than one function is selected, any template functions in
7809 the set are eliminated if the set also contains a non-template
7810 function, and any given template function is eliminated if the
7811 set contains a second template function that is more specialized
7812 than the first according to the partial ordering rules 14.5.5.2.
7813 After such eliminations, if any, there shall remain exactly one
7814 selected function. */
7815
7816 int is_ptrmem = 0;
7817 /* We store the matches in a TREE_LIST rooted here. The functions
7818 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7819 interoperability with most_specialized_instantiation. */
7820 tree matches = NULL_TREE;
7821 tree fn;
7822 tree target_fn_type;
7823
7824 /* By the time we get here, we should be seeing only real
7825 pointer-to-member types, not the internal POINTER_TYPE to
7826 METHOD_TYPE representation. */
7827 gcc_assert (!TYPE_PTR_P (target_type)
7828 || TREE_CODE (TREE_TYPE (target_type)) != METHOD_TYPE);
7829
7830 gcc_assert (is_overloaded_fn (overload));
7831
7832 /* Check that the TARGET_TYPE is reasonable. */
7833 if (TYPE_PTRFN_P (target_type)
7834 || TYPE_REFFN_P (target_type))
7835 /* This is OK. */;
7836 else if (TYPE_PTRMEMFUNC_P (target_type))
7837 /* This is OK, too. */
7838 is_ptrmem = 1;
7839 else if (TREE_CODE (target_type) == FUNCTION_TYPE)
7840 /* This is OK, too. This comes from a conversion to reference
7841 type. */
7842 target_type = build_reference_type (target_type);
7843 else
7844 {
7845 if (complain & tf_error)
7846 error ("cannot resolve overloaded function %qD based on"
7847 " conversion to type %qT",
7848 OVL_NAME (overload), target_type);
7849 return error_mark_node;
7850 }
7851
7852 /* Non-member functions and static member functions match targets of type
7853 "pointer-to-function" or "reference-to-function." Nonstatic member
7854 functions match targets of type "pointer-to-member-function;" the
7855 function type of the pointer to member is used to select the member
7856 function from the set of overloaded member functions.
7857
7858 So figure out the FUNCTION_TYPE that we want to match against. */
7859 target_fn_type = static_fn_type (target_type);
7860
7861 /* If we can find a non-template function that matches, we can just
7862 use it. There's no point in generating template instantiations
7863 if we're just going to throw them out anyhow. But, of course, we
7864 can only do this when we don't *need* a template function. */
7865 if (!template_only)
7866 for (lkp_iterator iter (overload); iter; ++iter)
7867 {
7868 tree fn = *iter;
7869
7870 if (TREE_CODE (fn) == TEMPLATE_DECL)
7871 /* We're not looking for templates just yet. */
7872 continue;
7873
7874 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE) != is_ptrmem)
7875 /* We're looking for a non-static member, and this isn't
7876 one, or vice versa. */
7877 continue;
7878
7879 /* In C++17 we need the noexcept-qualifier to compare types. */
7880 if (flag_noexcept_type
7881 && !maybe_instantiate_noexcept (fn, complain))
7882 continue;
7883
7884 /* See if there's a match. */
7885 tree fntype = static_fn_type (fn);
7886 if (same_type_p (target_fn_type, fntype)
7887 || fnptr_conv_p (target_fn_type, fntype))
7888 matches = tree_cons (fn, NULL_TREE, matches);
7889 }
7890
7891 /* Now, if we've already got a match (or matches), there's no need
7892 to proceed to the template functions. But, if we don't have a
7893 match we need to look at them, too. */
7894 if (!matches)
7895 {
7896 tree target_arg_types;
7897 tree target_ret_type;
7898 tree *args;
7899 unsigned int nargs, ia;
7900 tree arg;
7901
7902 target_arg_types = TYPE_ARG_TYPES (target_fn_type);
7903 target_ret_type = TREE_TYPE (target_fn_type);
7904
7905 nargs = list_length (target_arg_types);
7906 args = XALLOCAVEC (tree, nargs);
7907 for (arg = target_arg_types, ia = 0;
7908 arg != NULL_TREE && arg != void_list_node;
7909 arg = TREE_CHAIN (arg), ++ia)
7910 args[ia] = TREE_VALUE (arg);
7911 nargs = ia;
7912
7913 for (lkp_iterator iter (overload); iter; ++iter)
7914 {
7915 tree fn = *iter;
7916 tree instantiation;
7917 tree targs;
7918
7919 if (TREE_CODE (fn) != TEMPLATE_DECL)
7920 /* We're only looking for templates. */
7921 continue;
7922
7923 if ((TREE_CODE (TREE_TYPE (fn)) == METHOD_TYPE)
7924 != is_ptrmem)
7925 /* We're not looking for a non-static member, and this is
7926 one, or vice versa. */
7927 continue;
7928
7929 tree ret = target_ret_type;
7930
7931 /* If the template has a deduced return type, don't expose it to
7932 template argument deduction. */
7933 if (undeduced_auto_decl (fn))
7934 ret = NULL_TREE;
7935
7936 /* Try to do argument deduction. */
7937 targs = make_tree_vec (DECL_NTPARMS (fn));
7938 instantiation = fn_type_unification (fn, explicit_targs, targs, args,
7939 nargs, ret,
7940 DEDUCE_EXACT, LOOKUP_NORMAL,
7941 NULL, false, false);
7942 if (instantiation == error_mark_node)
7943 /* Instantiation failed. */
7944 continue;
7945
7946 /* Constraints must be satisfied. This is done before
7947 return type deduction since that instantiates the
7948 function. */
7949 if (flag_concepts && !constraints_satisfied_p (instantiation))
7950 continue;
7951
7952 /* And now force instantiation to do return type deduction. */
7953 if (undeduced_auto_decl (instantiation))
7954 {
7955 ++function_depth;
7956 instantiate_decl (instantiation, /*defer*/false, /*class*/false);
7957 --function_depth;
7958
7959 require_deduced_type (instantiation);
7960 }
7961
7962 /* In C++17 we need the noexcept-qualifier to compare types. */
7963 if (flag_noexcept_type)
7964 maybe_instantiate_noexcept (instantiation, complain);
7965
7966 /* See if there's a match. */
7967 tree fntype = static_fn_type (instantiation);
7968 if (same_type_p (target_fn_type, fntype)
7969 || fnptr_conv_p (target_fn_type, fntype))
7970 matches = tree_cons (instantiation, fn, matches);
7971 }
7972
7973 /* Now, remove all but the most specialized of the matches. */
7974 if (matches)
7975 {
7976 tree match = most_specialized_instantiation (matches);
7977
7978 if (match != error_mark_node)
7979 matches = tree_cons (TREE_PURPOSE (match),
7980 NULL_TREE,
7981 NULL_TREE);
7982 }
7983 }
7984
7985 /* Now we should have exactly one function in MATCHES. */
7986 if (matches == NULL_TREE)
7987 {
7988 /* There were *no* matches. */
7989 if (complain & tf_error)
7990 {
7991 error ("no matches converting function %qD to type %q#T",
7992 OVL_NAME (overload), target_type);
7993
7994 print_candidates (overload);
7995 }
7996 return error_mark_node;
7997 }
7998 else if (TREE_CHAIN (matches))
7999 {
8000 /* There were too many matches. First check if they're all
8001 the same function. */
8002 tree match = NULL_TREE;
8003
8004 fn = TREE_PURPOSE (matches);
8005
8006 /* For multi-versioned functions, more than one match is just fine and
8007 decls_match will return false as they are different. */
8008 for (match = TREE_CHAIN (matches); match; match = TREE_CHAIN (match))
8009 if (!decls_match (fn, TREE_PURPOSE (match))
8010 && !targetm.target_option.function_versions
8011 (fn, TREE_PURPOSE (match)))
8012 break;
8013
8014 if (match)
8015 {
8016 if (complain & tf_error)
8017 {
8018 error ("converting overloaded function %qD to type %q#T is ambiguous",
8019 OVL_NAME (overload), target_type);
8020
8021 /* Since print_candidates expects the functions in the
8022 TREE_VALUE slot, we flip them here. */
8023 for (match = matches; match; match = TREE_CHAIN (match))
8024 TREE_VALUE (match) = TREE_PURPOSE (match);
8025
8026 print_candidates (matches);
8027 }
8028
8029 return error_mark_node;
8030 }
8031 }
8032
8033 /* Good, exactly one match. Now, convert it to the correct type. */
8034 fn = TREE_PURPOSE (matches);
8035
8036 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn)
8037 && !(complain & tf_ptrmem_ok) && !flag_ms_extensions)
8038 {
8039 static int explained;
8040
8041 if (!(complain & tf_error))
8042 return error_mark_node;
8043
8044 auto_diagnostic_group d;
8045 if (permerror (input_location, "assuming pointer to member %qD", fn)
8046 && !explained)
8047 {
8048 inform (input_location, "(a pointer to member can only be "
8049 "formed with %<&%E%>)", fn);
8050 explained = 1;
8051 }
8052 }
8053
8054 /* If a pointer to a function that is multi-versioned is requested, the
8055 pointer to the dispatcher function is returned instead. This works
8056 well because indirectly calling the function will dispatch the right
8057 function version at run-time. */
8058 if (DECL_FUNCTION_VERSIONED (fn))
8059 {
8060 fn = get_function_version_dispatcher (fn);
8061 if (fn == NULL)
8062 return error_mark_node;
8063 /* Mark all the versions corresponding to the dispatcher as used. */
8064 if (!(complain & tf_conv))
8065 mark_versions_used (fn);
8066 }
8067
8068 /* If we're doing overload resolution purely for the purpose of
8069 determining conversion sequences, we should not consider the
8070 function used. If this conversion sequence is selected, the
8071 function will be marked as used at this point. */
8072 if (!(complain & tf_conv))
8073 {
8074 /* Make =delete work with SFINAE. */
8075 if (DECL_DELETED_FN (fn) && !(complain & tf_error))
8076 return error_mark_node;
8077 if (!mark_used (fn, complain) && !(complain & tf_error))
8078 return error_mark_node;
8079 }
8080
8081 /* We could not check access to member functions when this
8082 expression was originally created since we did not know at that
8083 time to which function the expression referred. */
8084 if (DECL_FUNCTION_MEMBER_P (fn))
8085 {
8086 gcc_assert (access_path);
8087 perform_or_defer_access_check (access_path, fn, fn, complain);
8088 }
8089
8090 if (TYPE_PTRFN_P (target_type) || TYPE_PTRMEMFUNC_P (target_type))
8091 return cp_build_addr_expr (fn, complain);
8092 else
8093 {
8094 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
8095 will mark the function as addressed, but here we must do it
8096 explicitly. */
8097 cxx_mark_addressable (fn);
8098
8099 return fn;
8100 }
8101 }
8102
8103 /* This function will instantiate the type of the expression given in
8104 RHS to match the type of LHSTYPE. If errors exist, then return
8105 error_mark_node. COMPLAIN is a bit mask. If TF_ERROR is set, then
8106 we complain on errors. If we are not complaining, never modify rhs,
8107 as overload resolution wants to try many possible instantiations, in
8108 the hope that at least one will work.
8109
8110 For non-recursive calls, LHSTYPE should be a function, pointer to
8111 function, or a pointer to member function. */
8112
8113 tree
8114 instantiate_type (tree lhstype, tree rhs, tsubst_flags_t complain)
8115 {
8116 tsubst_flags_t complain_in = complain;
8117 tree access_path = NULL_TREE;
8118
8119 complain &= ~tf_ptrmem_ok;
8120
8121 if (lhstype == unknown_type_node)
8122 {
8123 if (complain & tf_error)
8124 error ("not enough type information");
8125 return error_mark_node;
8126 }
8127
8128 if (TREE_TYPE (rhs) != NULL_TREE && ! (type_unknown_p (rhs)))
8129 {
8130 tree fntype = non_reference (lhstype);
8131 if (same_type_p (fntype, TREE_TYPE (rhs)))
8132 return rhs;
8133 if (fnptr_conv_p (fntype, TREE_TYPE (rhs)))
8134 return rhs;
8135 if (flag_ms_extensions
8136 && TYPE_PTRMEMFUNC_P (fntype)
8137 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs)))
8138 /* Microsoft allows `A::f' to be resolved to a
8139 pointer-to-member. */
8140 ;
8141 else
8142 {
8143 if (complain & tf_error)
8144 error ("cannot convert %qE from type %qT to type %qT",
8145 rhs, TREE_TYPE (rhs), fntype);
8146 return error_mark_node;
8147 }
8148 }
8149
8150 /* If we instantiate a template, and it is a A ?: C expression
8151 with omitted B, look through the SAVE_EXPR. */
8152 if (TREE_CODE (rhs) == SAVE_EXPR)
8153 rhs = TREE_OPERAND (rhs, 0);
8154
8155 if (BASELINK_P (rhs))
8156 {
8157 access_path = BASELINK_ACCESS_BINFO (rhs);
8158 rhs = BASELINK_FUNCTIONS (rhs);
8159 }
8160
8161 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
8162 deduce any type information. */
8163 if (TREE_CODE (rhs) == NON_DEPENDENT_EXPR)
8164 {
8165 if (complain & tf_error)
8166 error ("not enough type information");
8167 return error_mark_node;
8168 }
8169
8170 /* There are only a few kinds of expressions that may have a type
8171 dependent on overload resolution. */
8172 gcc_assert (TREE_CODE (rhs) == ADDR_EXPR
8173 || TREE_CODE (rhs) == COMPONENT_REF
8174 || is_overloaded_fn (rhs)
8175 || (flag_ms_extensions && TREE_CODE (rhs) == FUNCTION_DECL));
8176
8177 /* This should really only be used when attempting to distinguish
8178 what sort of a pointer to function we have. For now, any
8179 arithmetic operation which is not supported on pointers
8180 is rejected as an error. */
8181
8182 switch (TREE_CODE (rhs))
8183 {
8184 case COMPONENT_REF:
8185 {
8186 tree member = TREE_OPERAND (rhs, 1);
8187
8188 member = instantiate_type (lhstype, member, complain);
8189 if (member != error_mark_node
8190 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs, 0)))
8191 /* Do not lose object's side effects. */
8192 return build2 (COMPOUND_EXPR, TREE_TYPE (member),
8193 TREE_OPERAND (rhs, 0), member);
8194 return member;
8195 }
8196
8197 case OFFSET_REF:
8198 rhs = TREE_OPERAND (rhs, 1);
8199 if (BASELINK_P (rhs))
8200 return instantiate_type (lhstype, rhs, complain_in);
8201
8202 /* This can happen if we are forming a pointer-to-member for a
8203 member template. */
8204 gcc_assert (TREE_CODE (rhs) == TEMPLATE_ID_EXPR);
8205
8206 /* Fall through. */
8207
8208 case TEMPLATE_ID_EXPR:
8209 {
8210 tree fns = TREE_OPERAND (rhs, 0);
8211 tree args = TREE_OPERAND (rhs, 1);
8212
8213 return
8214 resolve_address_of_overloaded_function (lhstype, fns, complain_in,
8215 /*template_only=*/true,
8216 args, access_path);
8217 }
8218
8219 case OVERLOAD:
8220 case FUNCTION_DECL:
8221 return
8222 resolve_address_of_overloaded_function (lhstype, rhs, complain_in,
8223 /*template_only=*/false,
8224 /*explicit_targs=*/NULL_TREE,
8225 access_path);
8226
8227 case ADDR_EXPR:
8228 {
8229 if (PTRMEM_OK_P (rhs))
8230 complain |= tf_ptrmem_ok;
8231
8232 return instantiate_type (lhstype, TREE_OPERAND (rhs, 0), complain);
8233 }
8234
8235 case ERROR_MARK:
8236 return error_mark_node;
8237
8238 default:
8239 gcc_unreachable ();
8240 }
8241 return error_mark_node;
8242 }
8243 \f
8244 /* Return the name of the virtual function pointer field
8245 (as an IDENTIFIER_NODE) for the given TYPE. Note that
8246 this may have to look back through base types to find the
8247 ultimate field name. (For single inheritance, these could
8248 all be the same name. Who knows for multiple inheritance). */
8249
8250 static tree
8251 get_vfield_name (tree type)
8252 {
8253 tree binfo, base_binfo;
8254
8255 for (binfo = TYPE_BINFO (type);
8256 BINFO_N_BASE_BINFOS (binfo);
8257 binfo = base_binfo)
8258 {
8259 base_binfo = BINFO_BASE_BINFO (binfo, 0);
8260
8261 if (BINFO_VIRTUAL_P (base_binfo)
8262 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo)))
8263 break;
8264 }
8265
8266 type = BINFO_TYPE (binfo);
8267 tree ctor_name = constructor_name (type);
8268 char *buf = (char *) alloca (sizeof (VFIELD_NAME_FORMAT)
8269 + IDENTIFIER_LENGTH (ctor_name) + 2);
8270 sprintf (buf, VFIELD_NAME_FORMAT, IDENTIFIER_POINTER (ctor_name));
8271 return get_identifier (buf);
8272 }
8273
8274 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
8275 according to [class]:
8276 The class-name is also inserted
8277 into the scope of the class itself. For purposes of access checking,
8278 the inserted class name is treated as if it were a public member name. */
8279
8280 void
8281 build_self_reference (void)
8282 {
8283 tree name = DECL_NAME (TYPE_NAME (current_class_type));
8284 tree value = build_lang_decl (TYPE_DECL, name, current_class_type);
8285
8286 DECL_NONLOCAL (value) = 1;
8287 DECL_CONTEXT (value) = current_class_type;
8288 DECL_ARTIFICIAL (value) = 1;
8289 SET_DECL_SELF_REFERENCE_P (value);
8290 set_underlying_type (value);
8291
8292 if (processing_template_decl)
8293 value = push_template_decl (value);
8294
8295 tree saved_cas = current_access_specifier;
8296 current_access_specifier = access_public_node;
8297 finish_member_declaration (value);
8298 current_access_specifier = saved_cas;
8299 }
8300
8301 /* Returns 1 if TYPE contains only padding bytes. */
8302
8303 int
8304 is_empty_class (tree type)
8305 {
8306 if (type == error_mark_node)
8307 return 0;
8308
8309 if (! CLASS_TYPE_P (type))
8310 return 0;
8311
8312 return CLASSTYPE_EMPTY_P (type);
8313 }
8314
8315 /* Returns true if TYPE contains no actual data, just various
8316 possible combinations of empty classes. If IGNORE_VPTR is true,
8317 a vptr doesn't prevent the class from being considered empty. Typically
8318 we want to ignore the vptr on assignment, and not on initialization. */
8319
8320 bool
8321 is_really_empty_class (tree type, bool ignore_vptr)
8322 {
8323 if (CLASS_TYPE_P (type))
8324 {
8325 tree field;
8326 tree binfo;
8327 tree base_binfo;
8328 int i;
8329
8330 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
8331 out, but we'd like to be able to check this before then. */
8332 if (COMPLETE_TYPE_P (type) && is_empty_class (type))
8333 return true;
8334
8335 if (!ignore_vptr && TYPE_CONTAINS_VPTR_P (type))
8336 return false;
8337
8338 for (binfo = TYPE_BINFO (type), i = 0;
8339 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
8340 if (!is_really_empty_class (BINFO_TYPE (base_binfo), ignore_vptr))
8341 return false;
8342 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
8343 if (TREE_CODE (field) == FIELD_DECL
8344 && !DECL_ARTIFICIAL (field)
8345 /* An unnamed bit-field is not a data member. */
8346 && !DECL_UNNAMED_BIT_FIELD (field)
8347 && !is_really_empty_class (TREE_TYPE (field), ignore_vptr))
8348 return false;
8349 return true;
8350 }
8351 else if (TREE_CODE (type) == ARRAY_TYPE)
8352 return (integer_zerop (array_type_nelts_top (type))
8353 || is_really_empty_class (TREE_TYPE (type), ignore_vptr));
8354 return false;
8355 }
8356
8357 /* Note that NAME was looked up while the current class was being
8358 defined and that the result of that lookup was DECL. */
8359
8360 void
8361 maybe_note_name_used_in_class (tree name, tree decl)
8362 {
8363 splay_tree names_used;
8364
8365 /* If we're not defining a class, there's nothing to do. */
8366 if (!(innermost_scope_kind() == sk_class
8367 && TYPE_BEING_DEFINED (current_class_type)
8368 && !LAMBDA_TYPE_P (current_class_type)))
8369 return;
8370
8371 /* If there's already a binding for this NAME, then we don't have
8372 anything to worry about. */
8373 if (lookup_member (current_class_type, name,
8374 /*protect=*/0, /*want_type=*/false, tf_warning_or_error))
8375 return;
8376
8377 if (!current_class_stack[current_class_depth - 1].names_used)
8378 current_class_stack[current_class_depth - 1].names_used
8379 = splay_tree_new (splay_tree_compare_pointers, 0, 0);
8380 names_used = current_class_stack[current_class_depth - 1].names_used;
8381
8382 splay_tree_insert (names_used,
8383 (splay_tree_key) name,
8384 (splay_tree_value) decl);
8385 }
8386
8387 /* Note that NAME was declared (as DECL) in the current class. Check
8388 to see that the declaration is valid. */
8389
8390 void
8391 note_name_declared_in_class (tree name, tree decl)
8392 {
8393 splay_tree names_used;
8394 splay_tree_node n;
8395
8396 /* Look to see if we ever used this name. */
8397 names_used
8398 = current_class_stack[current_class_depth - 1].names_used;
8399 if (!names_used)
8400 return;
8401 /* The C language allows members to be declared with a type of the same
8402 name, and the C++ standard says this diagnostic is not required. So
8403 allow it in extern "C" blocks unless predantic is specified.
8404 Allow it in all cases if -ms-extensions is specified. */
8405 if ((!pedantic && current_lang_name == lang_name_c)
8406 || flag_ms_extensions)
8407 return;
8408 n = splay_tree_lookup (names_used, (splay_tree_key) name);
8409 if (n)
8410 {
8411 /* [basic.scope.class]
8412
8413 A name N used in a class S shall refer to the same declaration
8414 in its context and when re-evaluated in the completed scope of
8415 S. */
8416 if (permerror (location_of (decl),
8417 "declaration of %q#D changes meaning of %qD",
8418 decl, OVL_NAME (decl)))
8419 inform (location_of ((tree) n->value),
8420 "%qD declared here as %q#D",
8421 OVL_NAME (decl), (tree) n->value);
8422 }
8423 }
8424
8425 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
8426 Secondary vtables are merged with primary vtables; this function
8427 will return the VAR_DECL for the primary vtable. */
8428
8429 tree
8430 get_vtbl_decl_for_binfo (tree binfo)
8431 {
8432 tree decl;
8433
8434 decl = BINFO_VTABLE (binfo);
8435 if (decl && TREE_CODE (decl) == POINTER_PLUS_EXPR)
8436 {
8437 gcc_assert (TREE_CODE (TREE_OPERAND (decl, 0)) == ADDR_EXPR);
8438 decl = TREE_OPERAND (TREE_OPERAND (decl, 0), 0);
8439 }
8440 if (decl)
8441 gcc_assert (VAR_P (decl));
8442 return decl;
8443 }
8444
8445
8446 /* Returns the binfo for the primary base of BINFO. If the resulting
8447 BINFO is a virtual base, and it is inherited elsewhere in the
8448 hierarchy, then the returned binfo might not be the primary base of
8449 BINFO in the complete object. Check BINFO_PRIMARY_P or
8450 BINFO_LOST_PRIMARY_P to be sure. */
8451
8452 static tree
8453 get_primary_binfo (tree binfo)
8454 {
8455 tree primary_base;
8456
8457 primary_base = CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo));
8458 if (!primary_base)
8459 return NULL_TREE;
8460
8461 return copied_binfo (primary_base, binfo);
8462 }
8463
8464 /* As above, but iterate until we reach the binfo that actually provides the
8465 vptr for BINFO. */
8466
8467 static tree
8468 most_primary_binfo (tree binfo)
8469 {
8470 tree b = binfo;
8471 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b))
8472 && !BINFO_LOST_PRIMARY_P (b))
8473 {
8474 tree primary_base = get_primary_binfo (b);
8475 gcc_assert (BINFO_PRIMARY_P (primary_base)
8476 && BINFO_INHERITANCE_CHAIN (primary_base) == b);
8477 b = primary_base;
8478 }
8479 return b;
8480 }
8481
8482 /* Returns true if BINFO gets its vptr from a virtual base of the most derived
8483 type. Note that the virtual inheritance might be above or below BINFO in
8484 the hierarchy. */
8485
8486 bool
8487 vptr_via_virtual_p (tree binfo)
8488 {
8489 if (TYPE_P (binfo))
8490 binfo = TYPE_BINFO (binfo);
8491 tree primary = most_primary_binfo (binfo);
8492 /* Don't limit binfo_via_virtual, we want to return true when BINFO itself is
8493 a morally virtual base. */
8494 tree virt = binfo_via_virtual (primary, NULL_TREE);
8495 return virt != NULL_TREE;
8496 }
8497
8498 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
8499
8500 static int
8501 maybe_indent_hierarchy (FILE * stream, int indent, int indented_p)
8502 {
8503 if (!indented_p)
8504 fprintf (stream, "%*s", indent, "");
8505 return 1;
8506 }
8507
8508 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
8509 INDENT should be zero when called from the top level; it is
8510 incremented recursively. IGO indicates the next expected BINFO in
8511 inheritance graph ordering. */
8512
8513 static tree
8514 dump_class_hierarchy_r (FILE *stream,
8515 dump_flags_t flags,
8516 tree binfo,
8517 tree igo,
8518 int indent)
8519 {
8520 int indented = 0;
8521 tree base_binfo;
8522 int i;
8523
8524 indented = maybe_indent_hierarchy (stream, indent, 0);
8525 fprintf (stream, "%s (0x" HOST_WIDE_INT_PRINT_HEX ") ",
8526 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER),
8527 (HOST_WIDE_INT) (uintptr_t) binfo);
8528 if (binfo != igo)
8529 {
8530 fprintf (stream, "alternative-path\n");
8531 return igo;
8532 }
8533 igo = TREE_CHAIN (binfo);
8534
8535 fprintf (stream, HOST_WIDE_INT_PRINT_DEC,
8536 tree_to_shwi (BINFO_OFFSET (binfo)));
8537 if (is_empty_class (BINFO_TYPE (binfo)))
8538 fprintf (stream, " empty");
8539 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo)))
8540 fprintf (stream, " nearly-empty");
8541 if (BINFO_VIRTUAL_P (binfo))
8542 fprintf (stream, " virtual");
8543 fprintf (stream, "\n");
8544
8545 indented = 0;
8546 if (BINFO_PRIMARY_P (binfo))
8547 {
8548 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8549 fprintf (stream, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX ")",
8550 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo)),
8551 TFF_PLAIN_IDENTIFIER),
8552 (HOST_WIDE_INT) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo));
8553 }
8554 if (BINFO_LOST_PRIMARY_P (binfo))
8555 {
8556 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8557 fprintf (stream, " lost-primary");
8558 }
8559 if (indented)
8560 fprintf (stream, "\n");
8561
8562 if (!(flags & TDF_SLIM))
8563 {
8564 int indented = 0;
8565
8566 if (BINFO_SUBVTT_INDEX (binfo))
8567 {
8568 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8569 fprintf (stream, " subvttidx=%s",
8570 expr_as_string (BINFO_SUBVTT_INDEX (binfo),
8571 TFF_PLAIN_IDENTIFIER));
8572 }
8573 if (BINFO_VPTR_INDEX (binfo))
8574 {
8575 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8576 fprintf (stream, " vptridx=%s",
8577 expr_as_string (BINFO_VPTR_INDEX (binfo),
8578 TFF_PLAIN_IDENTIFIER));
8579 }
8580 if (BINFO_VPTR_FIELD (binfo))
8581 {
8582 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8583 fprintf (stream, " vbaseoffset=%s",
8584 expr_as_string (BINFO_VPTR_FIELD (binfo),
8585 TFF_PLAIN_IDENTIFIER));
8586 }
8587 if (BINFO_VTABLE (binfo))
8588 {
8589 indented = maybe_indent_hierarchy (stream, indent + 3, indented);
8590 fprintf (stream, " vptr=%s",
8591 expr_as_string (BINFO_VTABLE (binfo),
8592 TFF_PLAIN_IDENTIFIER));
8593 }
8594
8595 if (indented)
8596 fprintf (stream, "\n");
8597 }
8598
8599 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
8600 igo = dump_class_hierarchy_r (stream, flags, base_binfo, igo, indent + 2);
8601
8602 return igo;
8603 }
8604
8605 /* Dump the BINFO hierarchy for T. */
8606
8607 static void
8608 dump_class_hierarchy_1 (FILE *stream, dump_flags_t flags, tree t)
8609 {
8610 fprintf (stream, "Class %s\n", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8611 fprintf (stream, " size=%lu align=%lu\n",
8612 (unsigned long)(tree_to_shwi (TYPE_SIZE (t)) / BITS_PER_UNIT),
8613 (unsigned long)(TYPE_ALIGN (t) / BITS_PER_UNIT));
8614 fprintf (stream, " base size=%lu base align=%lu\n",
8615 (unsigned long)(tree_to_shwi (TYPE_SIZE (CLASSTYPE_AS_BASE (t)))
8616 / BITS_PER_UNIT),
8617 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t))
8618 / BITS_PER_UNIT));
8619 dump_class_hierarchy_r (stream, flags, TYPE_BINFO (t), TYPE_BINFO (t), 0);
8620 fprintf (stream, "\n");
8621 }
8622
8623 /* Debug interface to hierarchy dumping. */
8624
8625 void
8626 debug_class (tree t)
8627 {
8628 dump_class_hierarchy_1 (stderr, TDF_SLIM, t);
8629 }
8630
8631 static void
8632 dump_class_hierarchy (tree t)
8633 {
8634 dump_flags_t flags;
8635 if (FILE *stream = dump_begin (class_dump_id, &flags))
8636 {
8637 dump_class_hierarchy_1 (stream, flags, t);
8638 dump_end (class_dump_id, stream);
8639 }
8640 }
8641
8642 static void
8643 dump_array (FILE * stream, tree decl)
8644 {
8645 tree value;
8646 unsigned HOST_WIDE_INT ix;
8647 HOST_WIDE_INT elt;
8648 tree size = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl)));
8649
8650 elt = (tree_to_shwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl))))
8651 / BITS_PER_UNIT);
8652 fprintf (stream, "%s:", decl_as_string (decl, TFF_PLAIN_IDENTIFIER));
8653 fprintf (stream, " %s entries",
8654 expr_as_string (size_binop (PLUS_EXPR, size, size_one_node),
8655 TFF_PLAIN_IDENTIFIER));
8656 fprintf (stream, "\n");
8657
8658 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl)),
8659 ix, value)
8660 fprintf (stream, "%-4ld %s\n", (long)(ix * elt),
8661 expr_as_string (value, TFF_PLAIN_IDENTIFIER));
8662 }
8663
8664 static void
8665 dump_vtable (tree t, tree binfo, tree vtable)
8666 {
8667 dump_flags_t flags;
8668 FILE *stream = dump_begin (class_dump_id, &flags);
8669
8670 if (!stream)
8671 return;
8672
8673 if (!(flags & TDF_SLIM))
8674 {
8675 int ctor_vtbl_p = TYPE_BINFO (t) != binfo;
8676
8677 fprintf (stream, "%s for %s",
8678 ctor_vtbl_p ? "Construction vtable" : "Vtable",
8679 type_as_string (BINFO_TYPE (binfo), TFF_PLAIN_IDENTIFIER));
8680 if (ctor_vtbl_p)
8681 {
8682 if (!BINFO_VIRTUAL_P (binfo))
8683 fprintf (stream, " (0x" HOST_WIDE_INT_PRINT_HEX " instance)",
8684 (HOST_WIDE_INT) (uintptr_t) binfo);
8685 fprintf (stream, " in %s", type_as_string (t, TFF_PLAIN_IDENTIFIER));
8686 }
8687 fprintf (stream, "\n");
8688 dump_array (stream, vtable);
8689 fprintf (stream, "\n");
8690 }
8691
8692 dump_end (class_dump_id, stream);
8693 }
8694
8695 static void
8696 dump_vtt (tree t, tree vtt)
8697 {
8698 dump_flags_t flags;
8699 FILE *stream = dump_begin (class_dump_id, &flags);
8700
8701 if (!stream)
8702 return;
8703
8704 if (!(flags & TDF_SLIM))
8705 {
8706 fprintf (stream, "VTT for %s\n",
8707 type_as_string (t, TFF_PLAIN_IDENTIFIER));
8708 dump_array (stream, vtt);
8709 fprintf (stream, "\n");
8710 }
8711
8712 dump_end (class_dump_id, stream);
8713 }
8714
8715 /* Dump a function or thunk and its thunkees. */
8716
8717 static void
8718 dump_thunk (FILE *stream, int indent, tree thunk)
8719 {
8720 static const char spaces[] = " ";
8721 tree name = DECL_NAME (thunk);
8722 tree thunks;
8723
8724 fprintf (stream, "%.*s%p %s %s", indent, spaces,
8725 (void *)thunk,
8726 !DECL_THUNK_P (thunk) ? "function"
8727 : DECL_THIS_THUNK_P (thunk) ? "this-thunk" : "covariant-thunk",
8728 name ? IDENTIFIER_POINTER (name) : "<unset>");
8729 if (DECL_THUNK_P (thunk))
8730 {
8731 HOST_WIDE_INT fixed_adjust = THUNK_FIXED_OFFSET (thunk);
8732 tree virtual_adjust = THUNK_VIRTUAL_OFFSET (thunk);
8733
8734 fprintf (stream, " fixed=" HOST_WIDE_INT_PRINT_DEC, fixed_adjust);
8735 if (!virtual_adjust)
8736 /*NOP*/;
8737 else if (DECL_THIS_THUNK_P (thunk))
8738 fprintf (stream, " vcall=" HOST_WIDE_INT_PRINT_DEC,
8739 tree_to_shwi (virtual_adjust));
8740 else
8741 fprintf (stream, " vbase=" HOST_WIDE_INT_PRINT_DEC "(%s)",
8742 tree_to_shwi (BINFO_VPTR_FIELD (virtual_adjust)),
8743 type_as_string (BINFO_TYPE (virtual_adjust), TFF_SCOPE));
8744 if (THUNK_ALIAS (thunk))
8745 fprintf (stream, " alias to %p", (void *)THUNK_ALIAS (thunk));
8746 }
8747 fprintf (stream, "\n");
8748 for (thunks = DECL_THUNKS (thunk); thunks; thunks = TREE_CHAIN (thunks))
8749 dump_thunk (stream, indent + 2, thunks);
8750 }
8751
8752 /* Dump the thunks for FN. */
8753
8754 void
8755 debug_thunks (tree fn)
8756 {
8757 dump_thunk (stderr, 0, fn);
8758 }
8759
8760 /* Virtual function table initialization. */
8761
8762 /* Create all the necessary vtables for T and its base classes. */
8763
8764 static void
8765 finish_vtbls (tree t)
8766 {
8767 tree vbase;
8768 vec<constructor_elt, va_gc> *v = NULL;
8769 tree vtable = BINFO_VTABLE (TYPE_BINFO (t));
8770
8771 /* We lay out the primary and secondary vtables in one contiguous
8772 vtable. The primary vtable is first, followed by the non-virtual
8773 secondary vtables in inheritance graph order. */
8774 accumulate_vtbl_inits (TYPE_BINFO (t), TYPE_BINFO (t), TYPE_BINFO (t),
8775 vtable, t, &v);
8776
8777 /* Then come the virtual bases, also in inheritance graph order. */
8778 for (vbase = TYPE_BINFO (t); vbase; vbase = TREE_CHAIN (vbase))
8779 {
8780 if (!BINFO_VIRTUAL_P (vbase))
8781 continue;
8782 accumulate_vtbl_inits (vbase, vbase, TYPE_BINFO (t), vtable, t, &v);
8783 }
8784
8785 if (BINFO_VTABLE (TYPE_BINFO (t)))
8786 initialize_vtable (TYPE_BINFO (t), v);
8787 }
8788
8789 /* Initialize the vtable for BINFO with the INITS. */
8790
8791 static void
8792 initialize_vtable (tree binfo, vec<constructor_elt, va_gc> *inits)
8793 {
8794 tree decl;
8795
8796 layout_vtable_decl (binfo, vec_safe_length (inits));
8797 decl = get_vtbl_decl_for_binfo (binfo);
8798 initialize_artificial_var (decl, inits);
8799 dump_vtable (BINFO_TYPE (binfo), binfo, decl);
8800 }
8801
8802 /* Build the VTT (virtual table table) for T.
8803 A class requires a VTT if it has virtual bases.
8804
8805 This holds
8806 1 - primary virtual pointer for complete object T
8807 2 - secondary VTTs for each direct non-virtual base of T which requires a
8808 VTT
8809 3 - secondary virtual pointers for each direct or indirect base of T which
8810 has virtual bases or is reachable via a virtual path from T.
8811 4 - secondary VTTs for each direct or indirect virtual base of T.
8812
8813 Secondary VTTs look like complete object VTTs without part 4. */
8814
8815 static void
8816 build_vtt (tree t)
8817 {
8818 tree type;
8819 tree vtt;
8820 tree index;
8821 vec<constructor_elt, va_gc> *inits;
8822
8823 /* Build up the initializers for the VTT. */
8824 inits = NULL;
8825 index = size_zero_node;
8826 build_vtt_inits (TYPE_BINFO (t), t, &inits, &index);
8827
8828 /* If we didn't need a VTT, we're done. */
8829 if (!inits)
8830 return;
8831
8832 /* Figure out the type of the VTT. */
8833 type = build_array_of_n_type (const_ptr_type_node,
8834 inits->length ());
8835
8836 /* Now, build the VTT object itself. */
8837 vtt = build_vtable (t, mangle_vtt_for_type (t), type);
8838 initialize_artificial_var (vtt, inits);
8839 /* Add the VTT to the vtables list. */
8840 DECL_CHAIN (vtt) = DECL_CHAIN (CLASSTYPE_VTABLES (t));
8841 DECL_CHAIN (CLASSTYPE_VTABLES (t)) = vtt;
8842
8843 dump_vtt (t, vtt);
8844 }
8845
8846 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8847 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8848 and CHAIN the vtable pointer for this binfo after construction is
8849 complete. VALUE can also be another BINFO, in which case we recurse. */
8850
8851 static tree
8852 binfo_ctor_vtable (tree binfo)
8853 {
8854 tree vt;
8855
8856 while (1)
8857 {
8858 vt = BINFO_VTABLE (binfo);
8859 if (TREE_CODE (vt) == TREE_LIST)
8860 vt = TREE_VALUE (vt);
8861 if (TREE_CODE (vt) == TREE_BINFO)
8862 binfo = vt;
8863 else
8864 break;
8865 }
8866
8867 return vt;
8868 }
8869
8870 /* Data for secondary VTT initialization. */
8871 struct secondary_vptr_vtt_init_data
8872 {
8873 /* Is this the primary VTT? */
8874 bool top_level_p;
8875
8876 /* Current index into the VTT. */
8877 tree index;
8878
8879 /* Vector of initializers built up. */
8880 vec<constructor_elt, va_gc> *inits;
8881
8882 /* The type being constructed by this secondary VTT. */
8883 tree type_being_constructed;
8884 };
8885
8886 /* Recursively build the VTT-initializer for BINFO (which is in the
8887 hierarchy dominated by T). INITS points to the end of the initializer
8888 list to date. INDEX is the VTT index where the next element will be
8889 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8890 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8891 for virtual bases of T. When it is not so, we build the constructor
8892 vtables for the BINFO-in-T variant. */
8893
8894 static void
8895 build_vtt_inits (tree binfo, tree t, vec<constructor_elt, va_gc> **inits,
8896 tree *index)
8897 {
8898 int i;
8899 tree b;
8900 tree init;
8901 secondary_vptr_vtt_init_data data;
8902 int top_level_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
8903
8904 /* We only need VTTs for subobjects with virtual bases. */
8905 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
8906 return;
8907
8908 /* We need to use a construction vtable if this is not the primary
8909 VTT. */
8910 if (!top_level_p)
8911 {
8912 build_ctor_vtbl_group (binfo, t);
8913
8914 /* Record the offset in the VTT where this sub-VTT can be found. */
8915 BINFO_SUBVTT_INDEX (binfo) = *index;
8916 }
8917
8918 /* Add the address of the primary vtable for the complete object. */
8919 init = binfo_ctor_vtable (binfo);
8920 CONSTRUCTOR_APPEND_ELT (*inits, NULL_TREE, init);
8921 if (top_level_p)
8922 {
8923 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8924 BINFO_VPTR_INDEX (binfo) = *index;
8925 }
8926 *index = size_binop (PLUS_EXPR, *index, TYPE_SIZE_UNIT (ptr_type_node));
8927
8928 /* Recursively add the secondary VTTs for non-virtual bases. */
8929 for (i = 0; BINFO_BASE_ITERATE (binfo, i, b); ++i)
8930 if (!BINFO_VIRTUAL_P (b))
8931 build_vtt_inits (b, t, inits, index);
8932
8933 /* Add secondary virtual pointers for all subobjects of BINFO with
8934 either virtual bases or reachable along a virtual path, except
8935 subobjects that are non-virtual primary bases. */
8936 data.top_level_p = top_level_p;
8937 data.index = *index;
8938 data.inits = *inits;
8939 data.type_being_constructed = BINFO_TYPE (binfo);
8940
8941 dfs_walk_once (binfo, dfs_build_secondary_vptr_vtt_inits, NULL, &data);
8942
8943 *index = data.index;
8944
8945 /* data.inits might have grown as we added secondary virtual pointers.
8946 Make sure our caller knows about the new vector. */
8947 *inits = data.inits;
8948
8949 if (top_level_p)
8950 /* Add the secondary VTTs for virtual bases in inheritance graph
8951 order. */
8952 for (b = TYPE_BINFO (BINFO_TYPE (binfo)); b; b = TREE_CHAIN (b))
8953 {
8954 if (!BINFO_VIRTUAL_P (b))
8955 continue;
8956
8957 build_vtt_inits (b, t, inits, index);
8958 }
8959 else
8960 /* Remove the ctor vtables we created. */
8961 dfs_walk_all (binfo, dfs_fixup_binfo_vtbls, NULL, binfo);
8962 }
8963
8964 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8965 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8966
8967 static tree
8968 dfs_build_secondary_vptr_vtt_inits (tree binfo, void *data_)
8969 {
8970 secondary_vptr_vtt_init_data *data = (secondary_vptr_vtt_init_data *)data_;
8971
8972 /* We don't care about bases that don't have vtables. */
8973 if (!TYPE_VFIELD (BINFO_TYPE (binfo)))
8974 return dfs_skip_bases;
8975
8976 /* We're only interested in proper subobjects of the type being
8977 constructed. */
8978 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->type_being_constructed))
8979 return NULL_TREE;
8980
8981 /* We're only interested in bases with virtual bases or reachable
8982 via a virtual path from the type being constructed. */
8983 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
8984 || binfo_via_virtual (binfo, data->type_being_constructed)))
8985 return dfs_skip_bases;
8986
8987 /* We're not interested in non-virtual primary bases. */
8988 if (!BINFO_VIRTUAL_P (binfo) && BINFO_PRIMARY_P (binfo))
8989 return NULL_TREE;
8990
8991 /* Record the index where this secondary vptr can be found. */
8992 if (data->top_level_p)
8993 {
8994 gcc_assert (!BINFO_VPTR_INDEX (binfo));
8995 BINFO_VPTR_INDEX (binfo) = data->index;
8996
8997 if (BINFO_VIRTUAL_P (binfo))
8998 {
8999 /* It's a primary virtual base, and this is not a
9000 construction vtable. Find the base this is primary of in
9001 the inheritance graph, and use that base's vtable
9002 now. */
9003 while (BINFO_PRIMARY_P (binfo))
9004 binfo = BINFO_INHERITANCE_CHAIN (binfo);
9005 }
9006 }
9007
9008 /* Add the initializer for the secondary vptr itself. */
9009 CONSTRUCTOR_APPEND_ELT (data->inits, NULL_TREE, binfo_ctor_vtable (binfo));
9010
9011 /* Advance the vtt index. */
9012 data->index = size_binop (PLUS_EXPR, data->index,
9013 TYPE_SIZE_UNIT (ptr_type_node));
9014
9015 return NULL_TREE;
9016 }
9017
9018 /* Called from build_vtt_inits via dfs_walk. After building
9019 constructor vtables and generating the sub-vtt from them, we need
9020 to restore the BINFO_VTABLES that were scribbled on. DATA is the
9021 binfo of the base whose sub vtt was generated. */
9022
9023 static tree
9024 dfs_fixup_binfo_vtbls (tree binfo, void* data)
9025 {
9026 tree vtable = BINFO_VTABLE (binfo);
9027
9028 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
9029 /* If this class has no vtable, none of its bases do. */
9030 return dfs_skip_bases;
9031
9032 if (!vtable)
9033 /* This might be a primary base, so have no vtable in this
9034 hierarchy. */
9035 return NULL_TREE;
9036
9037 /* If we scribbled the construction vtable vptr into BINFO, clear it
9038 out now. */
9039 if (TREE_CODE (vtable) == TREE_LIST
9040 && (TREE_PURPOSE (vtable) == (tree) data))
9041 BINFO_VTABLE (binfo) = TREE_CHAIN (vtable);
9042
9043 return NULL_TREE;
9044 }
9045
9046 /* Build the construction vtable group for BINFO which is in the
9047 hierarchy dominated by T. */
9048
9049 static void
9050 build_ctor_vtbl_group (tree binfo, tree t)
9051 {
9052 tree type;
9053 tree vtbl;
9054 tree id;
9055 tree vbase;
9056 vec<constructor_elt, va_gc> *v;
9057
9058 /* See if we've already created this construction vtable group. */
9059 id = mangle_ctor_vtbl_for_type (t, binfo);
9060 if (get_global_binding (id))
9061 return;
9062
9063 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t));
9064 /* Build a version of VTBL (with the wrong type) for use in
9065 constructing the addresses of secondary vtables in the
9066 construction vtable group. */
9067 vtbl = build_vtable (t, id, ptr_type_node);
9068 DECL_CONSTRUCTION_VTABLE_P (vtbl) = 1;
9069 /* Don't export construction vtables from shared libraries. Even on
9070 targets that don't support hidden visibility, this tells
9071 can_refer_decl_in_current_unit_p not to assume that it's safe to
9072 access from a different compilation unit (bz 54314). */
9073 DECL_VISIBILITY (vtbl) = VISIBILITY_HIDDEN;
9074 DECL_VISIBILITY_SPECIFIED (vtbl) = true;
9075
9076 v = NULL;
9077 accumulate_vtbl_inits (binfo, TYPE_BINFO (TREE_TYPE (binfo)),
9078 binfo, vtbl, t, &v);
9079
9080 /* Add the vtables for each of our virtual bases using the vbase in T
9081 binfo. */
9082 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
9083 vbase;
9084 vbase = TREE_CHAIN (vbase))
9085 {
9086 tree b;
9087
9088 if (!BINFO_VIRTUAL_P (vbase))
9089 continue;
9090 b = copied_binfo (vbase, binfo);
9091
9092 accumulate_vtbl_inits (b, vbase, binfo, vtbl, t, &v);
9093 }
9094
9095 /* Figure out the type of the construction vtable. */
9096 type = build_array_of_n_type (vtable_entry_type, v->length ());
9097 layout_type (type);
9098 TREE_TYPE (vtbl) = type;
9099 DECL_SIZE (vtbl) = DECL_SIZE_UNIT (vtbl) = NULL_TREE;
9100 layout_decl (vtbl, 0);
9101
9102 /* Initialize the construction vtable. */
9103 CLASSTYPE_VTABLES (t) = chainon (CLASSTYPE_VTABLES (t), vtbl);
9104 initialize_artificial_var (vtbl, v);
9105 dump_vtable (t, binfo, vtbl);
9106 }
9107
9108 /* Add the vtbl initializers for BINFO (and its bases other than
9109 non-virtual primaries) to the list of INITS. BINFO is in the
9110 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
9111 the constructor the vtbl inits should be accumulated for. (If this
9112 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
9113 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
9114 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
9115 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
9116 but are not necessarily the same in terms of layout. */
9117
9118 static void
9119 accumulate_vtbl_inits (tree binfo,
9120 tree orig_binfo,
9121 tree rtti_binfo,
9122 tree vtbl,
9123 tree t,
9124 vec<constructor_elt, va_gc> **inits)
9125 {
9126 int i;
9127 tree base_binfo;
9128 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
9129
9130 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (orig_binfo)));
9131
9132 /* If it doesn't have a vptr, we don't do anything. */
9133 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
9134 return;
9135
9136 /* If we're building a construction vtable, we're not interested in
9137 subobjects that don't require construction vtables. */
9138 if (ctor_vtbl_p
9139 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo))
9140 && !binfo_via_virtual (orig_binfo, BINFO_TYPE (rtti_binfo)))
9141 return;
9142
9143 /* Build the initializers for the BINFO-in-T vtable. */
9144 dfs_accumulate_vtbl_inits (binfo, orig_binfo, rtti_binfo, vtbl, t, inits);
9145
9146 /* Walk the BINFO and its bases. We walk in preorder so that as we
9147 initialize each vtable we can figure out at what offset the
9148 secondary vtable lies from the primary vtable. We can't use
9149 dfs_walk here because we need to iterate through bases of BINFO
9150 and RTTI_BINFO simultaneously. */
9151 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9152 {
9153 /* Skip virtual bases. */
9154 if (BINFO_VIRTUAL_P (base_binfo))
9155 continue;
9156 accumulate_vtbl_inits (base_binfo,
9157 BINFO_BASE_BINFO (orig_binfo, i),
9158 rtti_binfo, vtbl, t,
9159 inits);
9160 }
9161 }
9162
9163 /* Called from accumulate_vtbl_inits. Adds the initializers for the
9164 BINFO vtable to L. */
9165
9166 static void
9167 dfs_accumulate_vtbl_inits (tree binfo,
9168 tree orig_binfo,
9169 tree rtti_binfo,
9170 tree orig_vtbl,
9171 tree t,
9172 vec<constructor_elt, va_gc> **l)
9173 {
9174 tree vtbl = NULL_TREE;
9175 int ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
9176 int n_inits;
9177
9178 if (ctor_vtbl_p
9179 && BINFO_VIRTUAL_P (orig_binfo) && BINFO_PRIMARY_P (orig_binfo))
9180 {
9181 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
9182 primary virtual base. If it is not the same primary in
9183 the hierarchy of T, we'll need to generate a ctor vtable
9184 for it, to place at its location in T. If it is the same
9185 primary, we still need a VTT entry for the vtable, but it
9186 should point to the ctor vtable for the base it is a
9187 primary for within the sub-hierarchy of RTTI_BINFO.
9188
9189 There are three possible cases:
9190
9191 1) We are in the same place.
9192 2) We are a primary base within a lost primary virtual base of
9193 RTTI_BINFO.
9194 3) We are primary to something not a base of RTTI_BINFO. */
9195
9196 tree b;
9197 tree last = NULL_TREE;
9198
9199 /* First, look through the bases we are primary to for RTTI_BINFO
9200 or a virtual base. */
9201 b = binfo;
9202 while (BINFO_PRIMARY_P (b))
9203 {
9204 b = BINFO_INHERITANCE_CHAIN (b);
9205 last = b;
9206 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
9207 goto found;
9208 }
9209 /* If we run out of primary links, keep looking down our
9210 inheritance chain; we might be an indirect primary. */
9211 for (b = last; b; b = BINFO_INHERITANCE_CHAIN (b))
9212 if (BINFO_VIRTUAL_P (b) || b == rtti_binfo)
9213 break;
9214 found:
9215
9216 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
9217 base B and it is a base of RTTI_BINFO, this is case 2. In
9218 either case, we share our vtable with LAST, i.e. the
9219 derived-most base within B of which we are a primary. */
9220 if (b == rtti_binfo
9221 || (b && binfo_for_vbase (BINFO_TYPE (b), BINFO_TYPE (rtti_binfo))))
9222 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
9223 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
9224 binfo_ctor_vtable after everything's been set up. */
9225 vtbl = last;
9226
9227 /* Otherwise, this is case 3 and we get our own. */
9228 }
9229 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo))
9230 return;
9231
9232 n_inits = vec_safe_length (*l);
9233
9234 if (!vtbl)
9235 {
9236 tree index;
9237 int non_fn_entries;
9238
9239 /* Add the initializer for this vtable. */
9240 build_vtbl_initializer (binfo, orig_binfo, t, rtti_binfo,
9241 &non_fn_entries, l);
9242
9243 /* Figure out the position to which the VPTR should point. */
9244 vtbl = build1 (ADDR_EXPR, vtbl_ptr_type_node, orig_vtbl);
9245 index = size_binop (MULT_EXPR,
9246 TYPE_SIZE_UNIT (vtable_entry_type),
9247 size_int (non_fn_entries + n_inits));
9248 vtbl = fold_build_pointer_plus (vtbl, index);
9249 }
9250
9251 if (ctor_vtbl_p)
9252 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
9253 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
9254 straighten this out. */
9255 BINFO_VTABLE (binfo) = tree_cons (rtti_binfo, vtbl, BINFO_VTABLE (binfo));
9256 else if (BINFO_PRIMARY_P (binfo) && BINFO_VIRTUAL_P (binfo))
9257 /* Throw away any unneeded intializers. */
9258 (*l)->truncate (n_inits);
9259 else
9260 /* For an ordinary vtable, set BINFO_VTABLE. */
9261 BINFO_VTABLE (binfo) = vtbl;
9262 }
9263
9264 static GTY(()) tree abort_fndecl_addr;
9265 static GTY(()) tree dvirt_fn;
9266
9267 /* Construct the initializer for BINFO's virtual function table. BINFO
9268 is part of the hierarchy dominated by T. If we're building a
9269 construction vtable, the ORIG_BINFO is the binfo we should use to
9270 find the actual function pointers to put in the vtable - but they
9271 can be overridden on the path to most-derived in the graph that
9272 ORIG_BINFO belongs. Otherwise,
9273 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
9274 BINFO that should be indicated by the RTTI information in the
9275 vtable; it will be a base class of T, rather than T itself, if we
9276 are building a construction vtable.
9277
9278 The value returned is a TREE_LIST suitable for wrapping in a
9279 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
9280 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
9281 number of non-function entries in the vtable.
9282
9283 It might seem that this function should never be called with a
9284 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
9285 base is always subsumed by a derived class vtable. However, when
9286 we are building construction vtables, we do build vtables for
9287 primary bases; we need these while the primary base is being
9288 constructed. */
9289
9290 static void
9291 build_vtbl_initializer (tree binfo,
9292 tree orig_binfo,
9293 tree t,
9294 tree rtti_binfo,
9295 int* non_fn_entries_p,
9296 vec<constructor_elt, va_gc> **inits)
9297 {
9298 tree v;
9299 vtbl_init_data vid;
9300 unsigned ix, jx;
9301 tree vbinfo;
9302 vec<tree, va_gc> *vbases;
9303 constructor_elt *e;
9304
9305 /* Initialize VID. */
9306 memset (&vid, 0, sizeof (vid));
9307 vid.binfo = binfo;
9308 vid.derived = t;
9309 vid.rtti_binfo = rtti_binfo;
9310 vid.primary_vtbl_p = SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), t);
9311 vid.ctor_vtbl_p = !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo), t);
9312 vid.generate_vcall_entries = true;
9313 /* The first vbase or vcall offset is at index -3 in the vtable. */
9314 vid.index = ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE);
9315
9316 /* Add entries to the vtable for RTTI. */
9317 build_rtti_vtbl_entries (binfo, &vid);
9318
9319 /* Create an array for keeping track of the functions we've
9320 processed. When we see multiple functions with the same
9321 signature, we share the vcall offsets. */
9322 vec_alloc (vid.fns, 32);
9323 /* Add the vcall and vbase offset entries. */
9324 build_vcall_and_vbase_vtbl_entries (binfo, &vid);
9325
9326 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
9327 build_vbase_offset_vtbl_entries. */
9328 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
9329 vec_safe_iterate (vbases, ix, &vbinfo); ix++)
9330 BINFO_VTABLE_PATH_MARKED (vbinfo) = 0;
9331
9332 /* If the target requires padding between data entries, add that now. */
9333 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE > 1)
9334 {
9335 int n_entries = vec_safe_length (vid.inits);
9336
9337 vec_safe_grow (vid.inits, TARGET_VTABLE_DATA_ENTRY_DISTANCE * n_entries);
9338
9339 /* Move data entries into their new positions and add padding
9340 after the new positions. Iterate backwards so we don't
9341 overwrite entries that we would need to process later. */
9342 for (ix = n_entries - 1;
9343 vid.inits->iterate (ix, &e);
9344 ix--)
9345 {
9346 int j;
9347 int new_position = (TARGET_VTABLE_DATA_ENTRY_DISTANCE * ix
9348 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE - 1));
9349
9350 (*vid.inits)[new_position] = *e;
9351
9352 for (j = 1; j < TARGET_VTABLE_DATA_ENTRY_DISTANCE; ++j)
9353 {
9354 constructor_elt *f = &(*vid.inits)[new_position - j];
9355 f->index = NULL_TREE;
9356 f->value = build1 (NOP_EXPR, vtable_entry_type,
9357 null_pointer_node);
9358 }
9359 }
9360 }
9361
9362 if (non_fn_entries_p)
9363 *non_fn_entries_p = vec_safe_length (vid.inits);
9364
9365 /* The initializers for virtual functions were built up in reverse
9366 order. Straighten them out and add them to the running list in one
9367 step. */
9368 jx = vec_safe_length (*inits);
9369 vec_safe_grow (*inits, jx + vid.inits->length ());
9370
9371 for (ix = vid.inits->length () - 1;
9372 vid.inits->iterate (ix, &e);
9373 ix--, jx++)
9374 (**inits)[jx] = *e;
9375
9376 /* Go through all the ordinary virtual functions, building up
9377 initializers. */
9378 for (v = BINFO_VIRTUALS (orig_binfo); v; v = TREE_CHAIN (v))
9379 {
9380 tree delta;
9381 tree vcall_index;
9382 tree fn, fn_original;
9383 tree init = NULL_TREE;
9384
9385 fn = BV_FN (v);
9386 fn_original = fn;
9387 if (DECL_THUNK_P (fn))
9388 {
9389 if (!DECL_NAME (fn))
9390 finish_thunk (fn);
9391 if (THUNK_ALIAS (fn))
9392 {
9393 fn = THUNK_ALIAS (fn);
9394 BV_FN (v) = fn;
9395 }
9396 fn_original = THUNK_TARGET (fn);
9397 }
9398
9399 /* If the only definition of this function signature along our
9400 primary base chain is from a lost primary, this vtable slot will
9401 never be used, so just zero it out. This is important to avoid
9402 requiring extra thunks which cannot be generated with the function.
9403
9404 We first check this in update_vtable_entry_for_fn, so we handle
9405 restored primary bases properly; we also need to do it here so we
9406 zero out unused slots in ctor vtables, rather than filling them
9407 with erroneous values (though harmless, apart from relocation
9408 costs). */
9409 if (BV_LOST_PRIMARY (v))
9410 init = size_zero_node;
9411
9412 if (! init)
9413 {
9414 /* Pull the offset for `this', and the function to call, out of
9415 the list. */
9416 delta = BV_DELTA (v);
9417 vcall_index = BV_VCALL_INDEX (v);
9418
9419 gcc_assert (TREE_CODE (delta) == INTEGER_CST);
9420 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
9421
9422 /* You can't call an abstract virtual function; it's abstract.
9423 So, we replace these functions with __pure_virtual. */
9424 if (DECL_PURE_VIRTUAL_P (fn_original))
9425 {
9426 fn = abort_fndecl;
9427 if (!TARGET_VTABLE_USES_DESCRIPTORS)
9428 {
9429 if (abort_fndecl_addr == NULL)
9430 abort_fndecl_addr
9431 = fold_convert (vfunc_ptr_type_node,
9432 build_fold_addr_expr (fn));
9433 init = abort_fndecl_addr;
9434 }
9435 }
9436 /* Likewise for deleted virtuals. */
9437 else if (DECL_DELETED_FN (fn_original))
9438 {
9439 if (!dvirt_fn)
9440 {
9441 tree name = get_identifier ("__cxa_deleted_virtual");
9442 dvirt_fn = get_global_binding (name);
9443 if (!dvirt_fn)
9444 dvirt_fn = push_library_fn
9445 (name,
9446 build_function_type_list (void_type_node, NULL_TREE),
9447 NULL_TREE, ECF_NORETURN | ECF_COLD);
9448 }
9449 fn = dvirt_fn;
9450 if (!TARGET_VTABLE_USES_DESCRIPTORS)
9451 init = fold_convert (vfunc_ptr_type_node,
9452 build_fold_addr_expr (fn));
9453 }
9454 else
9455 {
9456 if (!integer_zerop (delta) || vcall_index)
9457 {
9458 fn = make_thunk (fn, /*this_adjusting=*/1,
9459 delta, vcall_index);
9460 if (!DECL_NAME (fn))
9461 finish_thunk (fn);
9462 }
9463 /* Take the address of the function, considering it to be of an
9464 appropriate generic type. */
9465 if (!TARGET_VTABLE_USES_DESCRIPTORS)
9466 init = fold_convert (vfunc_ptr_type_node,
9467 build_fold_addr_expr (fn));
9468 /* Don't refer to a virtual destructor from a constructor
9469 vtable or a vtable for an abstract class, since destroying
9470 an object under construction is undefined behavior and we
9471 don't want it to be considered a candidate for speculative
9472 devirtualization. But do create the thunk for ABI
9473 compliance. */
9474 if (DECL_DESTRUCTOR_P (fn_original)
9475 && (CLASSTYPE_PURE_VIRTUALS (DECL_CONTEXT (fn_original))
9476 || orig_binfo != binfo))
9477 init = size_zero_node;
9478 }
9479 }
9480
9481 /* And add it to the chain of initializers. */
9482 if (TARGET_VTABLE_USES_DESCRIPTORS)
9483 {
9484 int i;
9485 if (init == size_zero_node)
9486 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
9487 CONSTRUCTOR_APPEND_ELT (*inits, size_int (jx++), init);
9488 else
9489 for (i = 0; i < TARGET_VTABLE_USES_DESCRIPTORS; ++i)
9490 {
9491 tree fdesc = build2 (FDESC_EXPR, vfunc_ptr_type_node,
9492 fn, build_int_cst (NULL_TREE, i));
9493 TREE_CONSTANT (fdesc) = 1;
9494
9495 CONSTRUCTOR_APPEND_ELT (*inits, size_int (jx++), fdesc);
9496 }
9497 }
9498 else
9499 CONSTRUCTOR_APPEND_ELT (*inits, size_int (jx++), init);
9500 }
9501 }
9502
9503 /* Adds to vid->inits the initializers for the vbase and vcall
9504 offsets in BINFO, which is in the hierarchy dominated by T. */
9505
9506 static void
9507 build_vcall_and_vbase_vtbl_entries (tree binfo, vtbl_init_data* vid)
9508 {
9509 tree b;
9510
9511 /* If this is a derived class, we must first create entries
9512 corresponding to the primary base class. */
9513 b = get_primary_binfo (binfo);
9514 if (b)
9515 build_vcall_and_vbase_vtbl_entries (b, vid);
9516
9517 /* Add the vbase entries for this base. */
9518 build_vbase_offset_vtbl_entries (binfo, vid);
9519 /* Add the vcall entries for this base. */
9520 build_vcall_offset_vtbl_entries (binfo, vid);
9521 }
9522
9523 /* Returns the initializers for the vbase offset entries in the vtable
9524 for BINFO (which is part of the class hierarchy dominated by T), in
9525 reverse order. VBASE_OFFSET_INDEX gives the vtable index
9526 where the next vbase offset will go. */
9527
9528 static void
9529 build_vbase_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9530 {
9531 tree vbase;
9532 tree t;
9533 tree non_primary_binfo;
9534
9535 /* If there are no virtual baseclasses, then there is nothing to
9536 do. */
9537 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)))
9538 return;
9539
9540 t = vid->derived;
9541
9542 /* We might be a primary base class. Go up the inheritance hierarchy
9543 until we find the most derived class of which we are a primary base:
9544 it is the offset of that which we need to use. */
9545 non_primary_binfo = binfo;
9546 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo))
9547 {
9548 tree b;
9549
9550 /* If we have reached a virtual base, then it must be a primary
9551 base (possibly multi-level) of vid->binfo, or we wouldn't
9552 have called build_vcall_and_vbase_vtbl_entries for it. But it
9553 might be a lost primary, so just skip down to vid->binfo. */
9554 if (BINFO_VIRTUAL_P (non_primary_binfo))
9555 {
9556 non_primary_binfo = vid->binfo;
9557 break;
9558 }
9559
9560 b = BINFO_INHERITANCE_CHAIN (non_primary_binfo);
9561 if (get_primary_binfo (b) != non_primary_binfo)
9562 break;
9563 non_primary_binfo = b;
9564 }
9565
9566 /* Go through the virtual bases, adding the offsets. */
9567 for (vbase = TYPE_BINFO (BINFO_TYPE (binfo));
9568 vbase;
9569 vbase = TREE_CHAIN (vbase))
9570 {
9571 tree b;
9572 tree delta;
9573
9574 if (!BINFO_VIRTUAL_P (vbase))
9575 continue;
9576
9577 /* Find the instance of this virtual base in the complete
9578 object. */
9579 b = copied_binfo (vbase, binfo);
9580
9581 /* If we've already got an offset for this virtual base, we
9582 don't need another one. */
9583 if (BINFO_VTABLE_PATH_MARKED (b))
9584 continue;
9585 BINFO_VTABLE_PATH_MARKED (b) = 1;
9586
9587 /* Figure out where we can find this vbase offset. */
9588 delta = size_binop (MULT_EXPR,
9589 vid->index,
9590 fold_convert (ssizetype,
9591 TYPE_SIZE_UNIT (vtable_entry_type)));
9592 if (vid->primary_vtbl_p)
9593 BINFO_VPTR_FIELD (b) = delta;
9594
9595 if (binfo != TYPE_BINFO (t))
9596 /* The vbase offset had better be the same. */
9597 gcc_assert (tree_int_cst_equal (delta, BINFO_VPTR_FIELD (vbase)));
9598
9599 /* The next vbase will come at a more negative offset. */
9600 vid->index = size_binop (MINUS_EXPR, vid->index,
9601 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9602
9603 /* The initializer is the delta from BINFO to this virtual base.
9604 The vbase offsets go in reverse inheritance-graph order, and
9605 we are walking in inheritance graph order so these end up in
9606 the right order. */
9607 delta = size_diffop_loc (input_location,
9608 BINFO_OFFSET (b), BINFO_OFFSET (non_primary_binfo));
9609
9610 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE,
9611 fold_build1_loc (input_location, NOP_EXPR,
9612 vtable_entry_type, delta));
9613 }
9614 }
9615
9616 /* Adds the initializers for the vcall offset entries in the vtable
9617 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
9618 to VID->INITS. */
9619
9620 static void
9621 build_vcall_offset_vtbl_entries (tree binfo, vtbl_init_data* vid)
9622 {
9623 /* We only need these entries if this base is a virtual base. We
9624 compute the indices -- but do not add to the vtable -- when
9625 building the main vtable for a class. */
9626 if (binfo == TYPE_BINFO (vid->derived)
9627 || (BINFO_VIRTUAL_P (binfo)
9628 /* If BINFO is RTTI_BINFO, then (since BINFO does not
9629 correspond to VID->DERIVED), we are building a primary
9630 construction virtual table. Since this is a primary
9631 virtual table, we do not need the vcall offsets for
9632 BINFO. */
9633 && binfo != vid->rtti_binfo))
9634 {
9635 /* We need a vcall offset for each of the virtual functions in this
9636 vtable. For example:
9637
9638 class A { virtual void f (); };
9639 class B1 : virtual public A { virtual void f (); };
9640 class B2 : virtual public A { virtual void f (); };
9641 class C: public B1, public B2 { virtual void f (); };
9642
9643 A C object has a primary base of B1, which has a primary base of A. A
9644 C also has a secondary base of B2, which no longer has a primary base
9645 of A. So the B2-in-C construction vtable needs a secondary vtable for
9646 A, which will adjust the A* to a B2* to call f. We have no way of
9647 knowing what (or even whether) this offset will be when we define B2,
9648 so we store this "vcall offset" in the A sub-vtable and look it up in
9649 a "virtual thunk" for B2::f.
9650
9651 We need entries for all the functions in our primary vtable and
9652 in our non-virtual bases' secondary vtables. */
9653 vid->vbase = binfo;
9654 /* If we are just computing the vcall indices -- but do not need
9655 the actual entries -- not that. */
9656 if (!BINFO_VIRTUAL_P (binfo))
9657 vid->generate_vcall_entries = false;
9658 /* Now, walk through the non-virtual bases, adding vcall offsets. */
9659 add_vcall_offset_vtbl_entries_r (binfo, vid);
9660 }
9661 }
9662
9663 /* Build vcall offsets, starting with those for BINFO. */
9664
9665 static void
9666 add_vcall_offset_vtbl_entries_r (tree binfo, vtbl_init_data* vid)
9667 {
9668 int i;
9669 tree primary_binfo;
9670 tree base_binfo;
9671
9672 /* Don't walk into virtual bases -- except, of course, for the
9673 virtual base for which we are building vcall offsets. Any
9674 primary virtual base will have already had its offsets generated
9675 through the recursion in build_vcall_and_vbase_vtbl_entries. */
9676 if (BINFO_VIRTUAL_P (binfo) && vid->vbase != binfo)
9677 return;
9678
9679 /* If BINFO has a primary base, process it first. */
9680 primary_binfo = get_primary_binfo (binfo);
9681 if (primary_binfo)
9682 add_vcall_offset_vtbl_entries_r (primary_binfo, vid);
9683
9684 /* Add BINFO itself to the list. */
9685 add_vcall_offset_vtbl_entries_1 (binfo, vid);
9686
9687 /* Scan the non-primary bases of BINFO. */
9688 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
9689 if (base_binfo != primary_binfo)
9690 add_vcall_offset_vtbl_entries_r (base_binfo, vid);
9691 }
9692
9693 /* Called from build_vcall_offset_vtbl_entries_r. */
9694
9695 static void
9696 add_vcall_offset_vtbl_entries_1 (tree binfo, vtbl_init_data* vid)
9697 {
9698 /* Make entries for the rest of the virtuals. */
9699 tree orig_fn;
9700
9701 /* The ABI requires that the methods be processed in declaration
9702 order. */
9703 for (orig_fn = TYPE_FIELDS (BINFO_TYPE (binfo));
9704 orig_fn;
9705 orig_fn = DECL_CHAIN (orig_fn))
9706 if (TREE_CODE (orig_fn) == FUNCTION_DECL && DECL_VINDEX (orig_fn))
9707 add_vcall_offset (orig_fn, binfo, vid);
9708 }
9709
9710 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9711
9712 static void
9713 add_vcall_offset (tree orig_fn, tree binfo, vtbl_init_data *vid)
9714 {
9715 size_t i;
9716 tree vcall_offset;
9717 tree derived_entry;
9718
9719 /* If there is already an entry for a function with the same
9720 signature as FN, then we do not need a second vcall offset.
9721 Check the list of functions already present in the derived
9722 class vtable. */
9723 FOR_EACH_VEC_SAFE_ELT (vid->fns, i, derived_entry)
9724 {
9725 if (same_signature_p (derived_entry, orig_fn)
9726 /* We only use one vcall offset for virtual destructors,
9727 even though there are two virtual table entries. */
9728 || (DECL_DESTRUCTOR_P (derived_entry)
9729 && DECL_DESTRUCTOR_P (orig_fn)))
9730 return;
9731 }
9732
9733 /* If we are building these vcall offsets as part of building
9734 the vtable for the most derived class, remember the vcall
9735 offset. */
9736 if (vid->binfo == TYPE_BINFO (vid->derived))
9737 {
9738 tree_pair_s elt = {orig_fn, vid->index};
9739 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid->derived), elt);
9740 }
9741
9742 /* The next vcall offset will be found at a more negative
9743 offset. */
9744 vid->index = size_binop (MINUS_EXPR, vid->index,
9745 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE));
9746
9747 /* Keep track of this function. */
9748 vec_safe_push (vid->fns, orig_fn);
9749
9750 if (vid->generate_vcall_entries)
9751 {
9752 tree base;
9753 tree fn;
9754
9755 /* Find the overriding function. */
9756 fn = find_final_overrider (vid->rtti_binfo, binfo, orig_fn);
9757 if (fn == error_mark_node)
9758 vcall_offset = build_zero_cst (vtable_entry_type);
9759 else
9760 {
9761 base = TREE_VALUE (fn);
9762
9763 /* The vbase we're working on is a primary base of
9764 vid->binfo. But it might be a lost primary, so its
9765 BINFO_OFFSET might be wrong, so we just use the
9766 BINFO_OFFSET from vid->binfo. */
9767 vcall_offset = size_diffop_loc (input_location,
9768 BINFO_OFFSET (base),
9769 BINFO_OFFSET (vid->binfo));
9770 vcall_offset = fold_build1_loc (input_location,
9771 NOP_EXPR, vtable_entry_type,
9772 vcall_offset);
9773 }
9774 /* Add the initializer to the vtable. */
9775 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, vcall_offset);
9776 }
9777 }
9778
9779 /* Return vtbl initializers for the RTTI entries corresponding to the
9780 BINFO's vtable. The RTTI entries should indicate the object given
9781 by VID->rtti_binfo. */
9782
9783 static void
9784 build_rtti_vtbl_entries (tree binfo, vtbl_init_data* vid)
9785 {
9786 tree b;
9787 tree t;
9788 tree offset;
9789 tree decl;
9790 tree init;
9791
9792 t = BINFO_TYPE (vid->rtti_binfo);
9793
9794 /* To find the complete object, we will first convert to our most
9795 primary base, and then add the offset in the vtbl to that value. */
9796 b = most_primary_binfo (binfo);
9797 offset = size_diffop_loc (input_location,
9798 BINFO_OFFSET (vid->rtti_binfo), BINFO_OFFSET (b));
9799
9800 /* The second entry is the address of the typeinfo object. */
9801 if (flag_rtti)
9802 decl = build_address (get_tinfo_decl (t));
9803 else
9804 decl = integer_zero_node;
9805
9806 /* Convert the declaration to a type that can be stored in the
9807 vtable. */
9808 init = build_nop (vfunc_ptr_type_node, decl);
9809 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9810
9811 /* Add the offset-to-top entry. It comes earlier in the vtable than
9812 the typeinfo entry. Convert the offset to look like a
9813 function pointer, so that we can put it in the vtable. */
9814 init = build_nop (vfunc_ptr_type_node, offset);
9815 CONSTRUCTOR_APPEND_ELT (vid->inits, NULL_TREE, init);
9816 }
9817
9818 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9819 accessibility. */
9820
9821 bool
9822 uniquely_derived_from_p (tree parent, tree type)
9823 {
9824 tree base = lookup_base (type, parent, ba_unique, NULL, tf_none);
9825 return base && base != error_mark_node;
9826 }
9827
9828 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9829
9830 bool
9831 publicly_uniquely_derived_p (tree parent, tree type)
9832 {
9833 tree base = lookup_base (type, parent, ba_ignore_scope | ba_check,
9834 NULL, tf_none);
9835 return base && base != error_mark_node;
9836 }
9837
9838 /* CTX1 and CTX2 are declaration contexts. Return the innermost common
9839 class between them, if any. */
9840
9841 tree
9842 common_enclosing_class (tree ctx1, tree ctx2)
9843 {
9844 if (!TYPE_P (ctx1) || !TYPE_P (ctx2))
9845 return NULL_TREE;
9846 gcc_assert (ctx1 == TYPE_MAIN_VARIANT (ctx1)
9847 && ctx2 == TYPE_MAIN_VARIANT (ctx2));
9848 if (ctx1 == ctx2)
9849 return ctx1;
9850 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9851 TYPE_MARKED_P (t) = true;
9852 tree found = NULL_TREE;
9853 for (tree t = ctx2; TYPE_P (t); t = TYPE_CONTEXT (t))
9854 if (TYPE_MARKED_P (t))
9855 {
9856 found = t;
9857 break;
9858 }
9859 for (tree t = ctx1; TYPE_P (t); t = TYPE_CONTEXT (t))
9860 TYPE_MARKED_P (t) = false;
9861 return found;
9862 }
9863
9864 #include "gt-cp-class.h"