]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/init.c
Fix double word typos.
[thirdparty/gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "alias.h"
28 #include "tree.h"
29 #include "stringpool.h"
30 #include "varasm.h"
31 #include "cp-tree.h"
32 #include "flags.h"
33 #include "target.h"
34 #include "gimplify.h"
35 #include "c-family/c-ubsan.h"
36
37 static bool begin_init_stmts (tree *, tree *);
38 static tree finish_init_stmts (bool, tree, tree);
39 static void construct_virtual_base (tree, tree);
40 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
41 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
42 static void perform_member_init (tree, tree);
43 static int member_init_ok_or_else (tree, tree, tree);
44 static void expand_virtual_init (tree, tree);
45 static tree sort_mem_initializers (tree, tree);
46 static tree initializing_context (tree);
47 static void expand_cleanup_for_base (tree, tree);
48 static tree dfs_initialize_vtbl_ptrs (tree, void *);
49 static tree build_field_list (tree, tree, int *);
50 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
51
52 /* We are about to generate some complex initialization code.
53 Conceptually, it is all a single expression. However, we may want
54 to include conditionals, loops, and other such statement-level
55 constructs. Therefore, we build the initialization code inside a
56 statement-expression. This function starts such an expression.
57 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
58 pass them back to finish_init_stmts when the expression is
59 complete. */
60
61 static bool
62 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
63 {
64 bool is_global = !building_stmt_list_p ();
65
66 *stmt_expr_p = begin_stmt_expr ();
67 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
68
69 return is_global;
70 }
71
72 /* Finish out the statement-expression begun by the previous call to
73 begin_init_stmts. Returns the statement-expression itself. */
74
75 static tree
76 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
77 {
78 finish_compound_stmt (compound_stmt);
79
80 stmt_expr = finish_stmt_expr (stmt_expr, true);
81
82 gcc_assert (!building_stmt_list_p () == is_global);
83
84 return stmt_expr;
85 }
86
87 /* Constructors */
88
89 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
90 which we want to initialize the vtable pointer for, DATA is
91 TREE_LIST whose TREE_VALUE is the this ptr expression. */
92
93 static tree
94 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
95 {
96 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
97 return dfs_skip_bases;
98
99 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
100 {
101 tree base_ptr = TREE_VALUE ((tree) data);
102
103 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
104 tf_warning_or_error);
105
106 expand_virtual_init (binfo, base_ptr);
107 }
108
109 return NULL_TREE;
110 }
111
112 /* Initialize all the vtable pointers in the object pointed to by
113 ADDR. */
114
115 void
116 initialize_vtbl_ptrs (tree addr)
117 {
118 tree list;
119 tree type;
120
121 type = TREE_TYPE (TREE_TYPE (addr));
122 list = build_tree_list (type, addr);
123
124 /* Walk through the hierarchy, initializing the vptr in each base
125 class. We do these in pre-order because we can't find the virtual
126 bases for a class until we've initialized the vtbl for that
127 class. */
128 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
129 }
130
131 /* Return an expression for the zero-initialization of an object with
132 type T. This expression will either be a constant (in the case
133 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
134 aggregate), or NULL (in the case that T does not require
135 initialization). In either case, the value can be used as
136 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
137 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
138 is the number of elements in the array. If STATIC_STORAGE_P is
139 TRUE, initializers are only generated for entities for which
140 zero-initialization does not simply mean filling the storage with
141 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
142 subfields with bit positions at or above that bit size shouldn't
143 be added. Note that this only works when the result is assigned
144 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
145 expand_assignment will end up clearing the full size of TYPE. */
146
147 static tree
148 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
149 tree field_size)
150 {
151 tree init = NULL_TREE;
152
153 /* [dcl.init]
154
155 To zero-initialize an object of type T means:
156
157 -- if T is a scalar type, the storage is set to the value of zero
158 converted to T.
159
160 -- if T is a non-union class type, the storage for each nonstatic
161 data member and each base-class subobject is zero-initialized.
162
163 -- if T is a union type, the storage for its first data member is
164 zero-initialized.
165
166 -- if T is an array type, the storage for each element is
167 zero-initialized.
168
169 -- if T is a reference type, no initialization is performed. */
170
171 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
172
173 if (type == error_mark_node)
174 ;
175 else if (static_storage_p && zero_init_p (type))
176 /* In order to save space, we do not explicitly build initializers
177 for items that do not need them. GCC's semantics are that
178 items with static storage duration that are not otherwise
179 initialized are initialized to zero. */
180 ;
181 else if (TYPE_PTR_OR_PTRMEM_P (type))
182 init = convert (type, nullptr_node);
183 else if (SCALAR_TYPE_P (type))
184 init = convert (type, integer_zero_node);
185 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
186 {
187 tree field;
188 vec<constructor_elt, va_gc> *v = NULL;
189
190 /* Iterate over the fields, building initializations. */
191 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
192 {
193 if (TREE_CODE (field) != FIELD_DECL)
194 continue;
195
196 if (TREE_TYPE (field) == error_mark_node)
197 continue;
198
199 /* Don't add virtual bases for base classes if they are beyond
200 the size of the current field, that means it is present
201 somewhere else in the object. */
202 if (field_size)
203 {
204 tree bitpos = bit_position (field);
205 if (TREE_CODE (bitpos) == INTEGER_CST
206 && !tree_int_cst_lt (bitpos, field_size))
207 continue;
208 }
209
210 /* Note that for class types there will be FIELD_DECLs
211 corresponding to base classes as well. Thus, iterating
212 over TYPE_FIELDs will result in correct initialization of
213 all of the subobjects. */
214 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
215 {
216 tree new_field_size
217 = (DECL_FIELD_IS_BASE (field)
218 && DECL_SIZE (field)
219 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
220 ? DECL_SIZE (field) : NULL_TREE;
221 tree value = build_zero_init_1 (TREE_TYPE (field),
222 /*nelts=*/NULL_TREE,
223 static_storage_p,
224 new_field_size);
225 if (value)
226 CONSTRUCTOR_APPEND_ELT(v, field, value);
227 }
228
229 /* For unions, only the first field is initialized. */
230 if (TREE_CODE (type) == UNION_TYPE)
231 break;
232 }
233
234 /* Build a constructor to contain the initializations. */
235 init = build_constructor (type, v);
236 }
237 else if (TREE_CODE (type) == ARRAY_TYPE)
238 {
239 tree max_index;
240 vec<constructor_elt, va_gc> *v = NULL;
241
242 /* Iterate over the array elements, building initializations. */
243 if (nelts)
244 max_index = fold_build2_loc (input_location,
245 MINUS_EXPR, TREE_TYPE (nelts),
246 nelts, integer_one_node);
247 else
248 max_index = array_type_nelts (type);
249
250 /* If we have an error_mark here, we should just return error mark
251 as we don't know the size of the array yet. */
252 if (max_index == error_mark_node)
253 return error_mark_node;
254 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
255
256 /* A zero-sized array, which is accepted as an extension, will
257 have an upper bound of -1. */
258 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
259 {
260 constructor_elt ce;
261
262 /* If this is a one element array, we just use a regular init. */
263 if (tree_int_cst_equal (size_zero_node, max_index))
264 ce.index = size_zero_node;
265 else
266 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
267 max_index);
268
269 ce.value = build_zero_init_1 (TREE_TYPE (type),
270 /*nelts=*/NULL_TREE,
271 static_storage_p, NULL_TREE);
272 if (ce.value)
273 {
274 vec_alloc (v, 1);
275 v->quick_push (ce);
276 }
277 }
278
279 /* Build a constructor to contain the initializations. */
280 init = build_constructor (type, v);
281 }
282 else if (VECTOR_TYPE_P (type))
283 init = build_zero_cst (type);
284 else
285 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
286
287 /* In all cases, the initializer is a constant. */
288 if (init)
289 TREE_CONSTANT (init) = 1;
290
291 return init;
292 }
293
294 /* Return an expression for the zero-initialization of an object with
295 type T. This expression will either be a constant (in the case
296 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
297 aggregate), or NULL (in the case that T does not require
298 initialization). In either case, the value can be used as
299 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
300 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
301 is the number of elements in the array. If STATIC_STORAGE_P is
302 TRUE, initializers are only generated for entities for which
303 zero-initialization does not simply mean filling the storage with
304 zero bytes. */
305
306 tree
307 build_zero_init (tree type, tree nelts, bool static_storage_p)
308 {
309 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
310 }
311
312 /* Return a suitable initializer for value-initializing an object of type
313 TYPE, as described in [dcl.init]. */
314
315 tree
316 build_value_init (tree type, tsubst_flags_t complain)
317 {
318 /* [dcl.init]
319
320 To value-initialize an object of type T means:
321
322 - if T is a class type (clause 9) with either no default constructor
323 (12.1) or a default constructor that is user-provided or deleted,
324 then the object is default-initialized;
325
326 - if T is a (possibly cv-qualified) class type without a user-provided
327 or deleted default constructor, then the object is zero-initialized
328 and the semantic constraints for default-initialization are checked,
329 and if T has a non-trivial default constructor, the object is
330 default-initialized;
331
332 - if T is an array type, then each element is value-initialized;
333
334 - otherwise, the object is zero-initialized.
335
336 A program that calls for default-initialization or
337 value-initialization of an entity of reference type is ill-formed. */
338
339 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
340 gcc_assert (!processing_template_decl
341 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
342
343 if (CLASS_TYPE_P (type)
344 && type_build_ctor_call (type))
345 {
346 tree ctor =
347 build_special_member_call (NULL_TREE, complete_ctor_identifier,
348 NULL, type, LOOKUP_NORMAL,
349 complain);
350 if (ctor == error_mark_node)
351 return ctor;
352 tree fn = NULL_TREE;
353 if (TREE_CODE (ctor) == CALL_EXPR)
354 fn = get_callee_fndecl (ctor);
355 ctor = build_aggr_init_expr (type, ctor);
356 if (fn && user_provided_p (fn))
357 return ctor;
358 else if (TYPE_HAS_COMPLEX_DFLT (type))
359 {
360 /* This is a class that needs constructing, but doesn't have
361 a user-provided constructor. So we need to zero-initialize
362 the object and then call the implicitly defined ctor.
363 This will be handled in simplify_aggr_init_expr. */
364 AGGR_INIT_ZERO_FIRST (ctor) = 1;
365 return ctor;
366 }
367 }
368
369 /* Discard any access checking during subobject initialization;
370 the checks are implied by the call to the ctor which we have
371 verified is OK (cpp0x/defaulted46.C). */
372 push_deferring_access_checks (dk_deferred);
373 tree r = build_value_init_noctor (type, complain);
374 pop_deferring_access_checks ();
375 return r;
376 }
377
378 /* Like build_value_init, but don't call the constructor for TYPE. Used
379 for base initializers. */
380
381 tree
382 build_value_init_noctor (tree type, tsubst_flags_t complain)
383 {
384 if (!COMPLETE_TYPE_P (type))
385 {
386 if (complain & tf_error)
387 error ("value-initialization of incomplete type %qT", type);
388 return error_mark_node;
389 }
390 /* FIXME the class and array cases should just use digest_init once it is
391 SFINAE-enabled. */
392 if (CLASS_TYPE_P (type))
393 {
394 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
395 || errorcount != 0);
396
397 if (TREE_CODE (type) != UNION_TYPE)
398 {
399 tree field;
400 vec<constructor_elt, va_gc> *v = NULL;
401
402 /* Iterate over the fields, building initializations. */
403 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
404 {
405 tree ftype, value;
406
407 if (TREE_CODE (field) != FIELD_DECL)
408 continue;
409
410 ftype = TREE_TYPE (field);
411
412 if (ftype == error_mark_node)
413 continue;
414
415 /* We could skip vfields and fields of types with
416 user-defined constructors, but I think that won't improve
417 performance at all; it should be simpler in general just
418 to zero out the entire object than try to only zero the
419 bits that actually need it. */
420
421 /* Note that for class types there will be FIELD_DECLs
422 corresponding to base classes as well. Thus, iterating
423 over TYPE_FIELDs will result in correct initialization of
424 all of the subobjects. */
425 value = build_value_init (ftype, complain);
426 value = maybe_constant_init (value);
427
428 if (value == error_mark_node)
429 return error_mark_node;
430
431 CONSTRUCTOR_APPEND_ELT(v, field, value);
432
433 /* We shouldn't have gotten here for anything that would need
434 non-trivial initialization, and gimplify_init_ctor_preeval
435 would need to be fixed to allow it. */
436 gcc_assert (TREE_CODE (value) != TARGET_EXPR
437 && TREE_CODE (value) != AGGR_INIT_EXPR);
438 }
439
440 /* Build a constructor to contain the zero- initializations. */
441 return build_constructor (type, v);
442 }
443 }
444 else if (TREE_CODE (type) == ARRAY_TYPE)
445 {
446 vec<constructor_elt, va_gc> *v = NULL;
447
448 /* Iterate over the array elements, building initializations. */
449 tree max_index = array_type_nelts (type);
450
451 /* If we have an error_mark here, we should just return error mark
452 as we don't know the size of the array yet. */
453 if (max_index == error_mark_node)
454 {
455 if (complain & tf_error)
456 error ("cannot value-initialize array of unknown bound %qT",
457 type);
458 return error_mark_node;
459 }
460 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
461
462 /* A zero-sized array, which is accepted as an extension, will
463 have an upper bound of -1. */
464 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
465 {
466 constructor_elt ce;
467
468 /* If this is a one element array, we just use a regular init. */
469 if (tree_int_cst_equal (size_zero_node, max_index))
470 ce.index = size_zero_node;
471 else
472 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
473
474 ce.value = build_value_init (TREE_TYPE (type), complain);
475 ce.value = maybe_constant_init (ce.value);
476 if (ce.value == error_mark_node)
477 return error_mark_node;
478
479 vec_alloc (v, 1);
480 v->quick_push (ce);
481
482 /* We shouldn't have gotten here for anything that would need
483 non-trivial initialization, and gimplify_init_ctor_preeval
484 would need to be fixed to allow it. */
485 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
486 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
487 }
488
489 /* Build a constructor to contain the initializations. */
490 return build_constructor (type, v);
491 }
492 else if (TREE_CODE (type) == FUNCTION_TYPE)
493 {
494 if (complain & tf_error)
495 error ("value-initialization of function type %qT", type);
496 return error_mark_node;
497 }
498 else if (TREE_CODE (type) == REFERENCE_TYPE)
499 {
500 if (complain & tf_error)
501 error ("value-initialization of reference type %qT", type);
502 return error_mark_node;
503 }
504
505 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
506 }
507
508 /* Initialize current class with INIT, a TREE_LIST of
509 arguments for a target constructor. If TREE_LIST is void_type_node,
510 an empty initializer list was given. */
511
512 static void
513 perform_target_ctor (tree init)
514 {
515 tree decl = current_class_ref;
516 tree type = current_class_type;
517
518 finish_expr_stmt (build_aggr_init (decl, init,
519 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
520 tf_warning_or_error));
521 if (type_build_dtor_call (type))
522 {
523 tree expr = build_delete (type, decl, sfk_complete_destructor,
524 LOOKUP_NORMAL
525 |LOOKUP_NONVIRTUAL
526 |LOOKUP_DESTRUCTOR,
527 0, tf_warning_or_error);
528 if (expr != error_mark_node
529 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
530 finish_eh_cleanup (expr);
531 }
532 }
533
534 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
535
536 tree
537 get_nsdmi (tree member, bool in_ctor)
538 {
539 tree init;
540 tree save_ccp = current_class_ptr;
541 tree save_ccr = current_class_ref;
542
543 if (!in_ctor)
544 {
545 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
546 refer to; constexpr evaluation knows what to do with it. */
547 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
548 current_class_ptr = build_address (current_class_ref);
549 }
550
551 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
552 {
553 init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
554 if (TREE_CODE (init) == DEFAULT_ARG)
555 goto unparsed;
556
557 /* Check recursive instantiation. */
558 if (DECL_INSTANTIATING_NSDMI_P (member))
559 {
560 error ("recursive instantiation of non-static data member "
561 "initializer for %qD", member);
562 init = error_mark_node;
563 }
564 else
565 {
566 DECL_INSTANTIATING_NSDMI_P (member) = 1;
567
568 /* Do deferred instantiation of the NSDMI. */
569 init = (tsubst_copy_and_build
570 (init, DECL_TI_ARGS (member),
571 tf_warning_or_error, member, /*function_p=*/false,
572 /*integral_constant_expression_p=*/false));
573 init = digest_nsdmi_init (member, init);
574
575 DECL_INSTANTIATING_NSDMI_P (member) = 0;
576 }
577 }
578 else
579 {
580 init = DECL_INITIAL (member);
581 if (init && TREE_CODE (init) == DEFAULT_ARG)
582 {
583 unparsed:
584 error ("constructor required before non-static data member "
585 "for %qD has been parsed", member);
586 DECL_INITIAL (member) = error_mark_node;
587 init = error_mark_node;
588 }
589 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
590 so the aggregate init code below will see a CONSTRUCTOR. */
591 if (init && TREE_CODE (init) == TARGET_EXPR
592 && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init))))
593 init = TARGET_EXPR_INITIAL (init);
594 init = break_out_target_exprs (init);
595 }
596 current_class_ptr = save_ccp;
597 current_class_ref = save_ccr;
598 return init;
599 }
600
601 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
602 arguments. If TREE_LIST is void_type_node, an empty initializer
603 list was given; if NULL_TREE no initializer was given. */
604
605 static void
606 perform_member_init (tree member, tree init)
607 {
608 tree decl;
609 tree type = TREE_TYPE (member);
610
611 /* Use the non-static data member initializer if there was no
612 mem-initializer for this field. */
613 if (init == NULL_TREE)
614 init = get_nsdmi (member, /*ctor*/true);
615
616 if (init == error_mark_node)
617 return;
618
619 /* Effective C++ rule 12 requires that all data members be
620 initialized. */
621 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
622 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
623 "%qD should be initialized in the member initialization list",
624 member);
625
626 /* Get an lvalue for the data member. */
627 decl = build_class_member_access_expr (current_class_ref, member,
628 /*access_path=*/NULL_TREE,
629 /*preserve_reference=*/true,
630 tf_warning_or_error);
631 if (decl == error_mark_node)
632 return;
633
634 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
635 && TREE_CHAIN (init) == NULL_TREE)
636 {
637 tree val = TREE_VALUE (init);
638 /* Handle references. */
639 if (REFERENCE_REF_P (val))
640 val = TREE_OPERAND (val, 0);
641 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
642 && TREE_OPERAND (val, 0) == current_class_ref)
643 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
644 OPT_Winit_self, "%qD is initialized with itself",
645 member);
646 }
647
648 if (init == void_type_node)
649 {
650 /* mem() means value-initialization. */
651 if (TREE_CODE (type) == ARRAY_TYPE)
652 {
653 init = build_vec_init_expr (type, init, tf_warning_or_error);
654 init = build2 (INIT_EXPR, type, decl, init);
655 finish_expr_stmt (init);
656 }
657 else
658 {
659 tree value = build_value_init (type, tf_warning_or_error);
660 if (value == error_mark_node)
661 return;
662 init = build2 (INIT_EXPR, type, decl, value);
663 finish_expr_stmt (init);
664 }
665 }
666 /* Deal with this here, as we will get confused if we try to call the
667 assignment op for an anonymous union. This can happen in a
668 synthesized copy constructor. */
669 else if (ANON_AGGR_TYPE_P (type))
670 {
671 if (init)
672 {
673 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
674 finish_expr_stmt (init);
675 }
676 }
677 else if (init
678 && (TREE_CODE (type) == REFERENCE_TYPE
679 /* Pre-digested NSDMI. */
680 || (((TREE_CODE (init) == CONSTRUCTOR
681 && TREE_TYPE (init) == type)
682 /* { } mem-initializer. */
683 || (TREE_CODE (init) == TREE_LIST
684 && DIRECT_LIST_INIT_P (TREE_VALUE (init))))
685 && (CP_AGGREGATE_TYPE_P (type)
686 || is_std_init_list (type)))))
687 {
688 /* With references and list-initialization, we need to deal with
689 extending temporary lifetimes. 12.2p5: "A temporary bound to a
690 reference member in a constructor’s ctor-initializer (12.6.2)
691 persists until the constructor exits." */
692 unsigned i; tree t;
693 vec<tree, va_gc> *cleanups = make_tree_vector ();
694 if (TREE_CODE (init) == TREE_LIST)
695 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
696 tf_warning_or_error);
697 if (TREE_TYPE (init) != type)
698 {
699 if (BRACE_ENCLOSED_INITIALIZER_P (init)
700 && CP_AGGREGATE_TYPE_P (type))
701 init = reshape_init (type, init, tf_warning_or_error);
702 init = digest_init (type, init, tf_warning_or_error);
703 }
704 if (init == error_mark_node)
705 return;
706 /* A FIELD_DECL doesn't really have a suitable lifetime, but
707 make_temporary_var_for_ref_to_temp will treat it as automatic and
708 set_up_extended_ref_temp wants to use the decl in a warning. */
709 init = extend_ref_init_temps (member, init, &cleanups);
710 if (TREE_CODE (type) == ARRAY_TYPE
711 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
712 init = build_vec_init_expr (type, init, tf_warning_or_error);
713 init = build2 (INIT_EXPR, type, decl, init);
714 finish_expr_stmt (init);
715 FOR_EACH_VEC_ELT (*cleanups, i, t)
716 push_cleanup (decl, t, false);
717 release_tree_vector (cleanups);
718 }
719 else if (type_build_ctor_call (type)
720 || (init && CLASS_TYPE_P (strip_array_types (type))))
721 {
722 if (TREE_CODE (type) == ARRAY_TYPE)
723 {
724 if (init)
725 {
726 if (TREE_CHAIN (init))
727 init = error_mark_node;
728 else
729 init = TREE_VALUE (init);
730 if (BRACE_ENCLOSED_INITIALIZER_P (init))
731 init = digest_init (type, init, tf_warning_or_error);
732 }
733 if (init == NULL_TREE
734 || same_type_ignoring_top_level_qualifiers_p (type,
735 TREE_TYPE (init)))
736 {
737 init = build_vec_init_expr (type, init, tf_warning_or_error);
738 init = build2 (INIT_EXPR, type, decl, init);
739 finish_expr_stmt (init);
740 }
741 else
742 error ("invalid initializer for array member %q#D", member);
743 }
744 else
745 {
746 int flags = LOOKUP_NORMAL;
747 if (DECL_DEFAULTED_FN (current_function_decl))
748 flags |= LOOKUP_DEFAULTED;
749 if (CP_TYPE_CONST_P (type)
750 && init == NULL_TREE
751 && default_init_uninitialized_part (type))
752 {
753 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
754 vtable; still give this diagnostic. */
755 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
756 "uninitialized const member in %q#T", type))
757 inform (DECL_SOURCE_LOCATION (member),
758 "%q#D should be initialized", member );
759 }
760 finish_expr_stmt (build_aggr_init (decl, init, flags,
761 tf_warning_or_error));
762 }
763 }
764 else
765 {
766 if (init == NULL_TREE)
767 {
768 tree core_type;
769 /* member traversal: note it leaves init NULL */
770 if (TREE_CODE (type) == REFERENCE_TYPE)
771 {
772 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
773 "uninitialized reference member in %q#T", type))
774 inform (DECL_SOURCE_LOCATION (member),
775 "%q#D should be initialized", member);
776 }
777 else if (CP_TYPE_CONST_P (type))
778 {
779 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
780 "uninitialized const member in %q#T", type))
781 inform (DECL_SOURCE_LOCATION (member),
782 "%q#D should be initialized", member );
783 }
784
785 core_type = strip_array_types (type);
786
787 if (CLASS_TYPE_P (core_type)
788 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
789 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
790 diagnose_uninitialized_cst_or_ref_member (core_type,
791 /*using_new=*/false,
792 /*complain=*/true);
793 }
794 else if (TREE_CODE (init) == TREE_LIST)
795 /* There was an explicit member initialization. Do some work
796 in that case. */
797 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
798 tf_warning_or_error);
799
800 if (init)
801 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
802 tf_warning_or_error));
803 }
804
805 if (type_build_dtor_call (type))
806 {
807 tree expr;
808
809 expr = build_class_member_access_expr (current_class_ref, member,
810 /*access_path=*/NULL_TREE,
811 /*preserve_reference=*/false,
812 tf_warning_or_error);
813 expr = build_delete (type, expr, sfk_complete_destructor,
814 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
815 tf_warning_or_error);
816
817 if (expr != error_mark_node
818 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
819 finish_eh_cleanup (expr);
820 }
821 }
822
823 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
824 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
825
826 static tree
827 build_field_list (tree t, tree list, int *uses_unions_p)
828 {
829 tree fields;
830
831 /* Note whether or not T is a union. */
832 if (TREE_CODE (t) == UNION_TYPE)
833 *uses_unions_p = 1;
834
835 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
836 {
837 tree fieldtype;
838
839 /* Skip CONST_DECLs for enumeration constants and so forth. */
840 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
841 continue;
842
843 fieldtype = TREE_TYPE (fields);
844 /* Keep track of whether or not any fields are unions. */
845 if (TREE_CODE (fieldtype) == UNION_TYPE)
846 *uses_unions_p = 1;
847
848 /* For an anonymous struct or union, we must recursively
849 consider the fields of the anonymous type. They can be
850 directly initialized from the constructor. */
851 if (ANON_AGGR_TYPE_P (fieldtype))
852 {
853 /* Add this field itself. Synthesized copy constructors
854 initialize the entire aggregate. */
855 list = tree_cons (fields, NULL_TREE, list);
856 /* And now add the fields in the anonymous aggregate. */
857 list = build_field_list (fieldtype, list, uses_unions_p);
858 }
859 /* Add this field. */
860 else if (DECL_NAME (fields))
861 list = tree_cons (fields, NULL_TREE, list);
862 }
863
864 return list;
865 }
866
867 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
868 a FIELD_DECL or BINFO in T that needs initialization. The
869 TREE_VALUE gives the initializer, or list of initializer arguments.
870
871 Return a TREE_LIST containing all of the initializations required
872 for T, in the order in which they should be performed. The output
873 list has the same format as the input. */
874
875 static tree
876 sort_mem_initializers (tree t, tree mem_inits)
877 {
878 tree init;
879 tree base, binfo, base_binfo;
880 tree sorted_inits;
881 tree next_subobject;
882 vec<tree, va_gc> *vbases;
883 int i;
884 int uses_unions_p = 0;
885
886 /* Build up a list of initializations. The TREE_PURPOSE of entry
887 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
888 TREE_VALUE will be the constructor arguments, or NULL if no
889 explicit initialization was provided. */
890 sorted_inits = NULL_TREE;
891
892 /* Process the virtual bases. */
893 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
894 vec_safe_iterate (vbases, i, &base); i++)
895 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
896
897 /* Process the direct bases. */
898 for (binfo = TYPE_BINFO (t), i = 0;
899 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
900 if (!BINFO_VIRTUAL_P (base_binfo))
901 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
902
903 /* Process the non-static data members. */
904 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
905 /* Reverse the entire list of initializations, so that they are in
906 the order that they will actually be performed. */
907 sorted_inits = nreverse (sorted_inits);
908
909 /* If the user presented the initializers in an order different from
910 that in which they will actually occur, we issue a warning. Keep
911 track of the next subobject which can be explicitly initialized
912 without issuing a warning. */
913 next_subobject = sorted_inits;
914
915 /* Go through the explicit initializers, filling in TREE_PURPOSE in
916 the SORTED_INITS. */
917 for (init = mem_inits; init; init = TREE_CHAIN (init))
918 {
919 tree subobject;
920 tree subobject_init;
921
922 subobject = TREE_PURPOSE (init);
923
924 /* If the explicit initializers are in sorted order, then
925 SUBOBJECT will be NEXT_SUBOBJECT, or something following
926 it. */
927 for (subobject_init = next_subobject;
928 subobject_init;
929 subobject_init = TREE_CHAIN (subobject_init))
930 if (TREE_PURPOSE (subobject_init) == subobject)
931 break;
932
933 /* Issue a warning if the explicit initializer order does not
934 match that which will actually occur.
935 ??? Are all these on the correct lines? */
936 if (warn_reorder && !subobject_init)
937 {
938 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
939 warning (OPT_Wreorder, "%q+D will be initialized after",
940 TREE_PURPOSE (next_subobject));
941 else
942 warning (OPT_Wreorder, "base %qT will be initialized after",
943 TREE_PURPOSE (next_subobject));
944 if (TREE_CODE (subobject) == FIELD_DECL)
945 warning (OPT_Wreorder, " %q+#D", subobject);
946 else
947 warning (OPT_Wreorder, " base %qT", subobject);
948 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
949 OPT_Wreorder, " when initialized here");
950 }
951
952 /* Look again, from the beginning of the list. */
953 if (!subobject_init)
954 {
955 subobject_init = sorted_inits;
956 while (TREE_PURPOSE (subobject_init) != subobject)
957 subobject_init = TREE_CHAIN (subobject_init);
958 }
959
960 /* It is invalid to initialize the same subobject more than
961 once. */
962 if (TREE_VALUE (subobject_init))
963 {
964 if (TREE_CODE (subobject) == FIELD_DECL)
965 error_at (DECL_SOURCE_LOCATION (current_function_decl),
966 "multiple initializations given for %qD",
967 subobject);
968 else
969 error_at (DECL_SOURCE_LOCATION (current_function_decl),
970 "multiple initializations given for base %qT",
971 subobject);
972 }
973
974 /* Record the initialization. */
975 TREE_VALUE (subobject_init) = TREE_VALUE (init);
976 next_subobject = subobject_init;
977 }
978
979 /* [class.base.init]
980
981 If a ctor-initializer specifies more than one mem-initializer for
982 multiple members of the same union (including members of
983 anonymous unions), the ctor-initializer is ill-formed.
984
985 Here we also splice out uninitialized union members. */
986 if (uses_unions_p)
987 {
988 tree *last_p = NULL;
989 tree *p;
990 for (p = &sorted_inits; *p; )
991 {
992 tree field;
993 tree ctx;
994
995 init = *p;
996
997 field = TREE_PURPOSE (init);
998
999 /* Skip base classes. */
1000 if (TREE_CODE (field) != FIELD_DECL)
1001 goto next;
1002
1003 /* If this is an anonymous union with no explicit initializer,
1004 splice it out. */
1005 if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field)))
1006 goto splice;
1007
1008 /* See if this field is a member of a union, or a member of a
1009 structure contained in a union, etc. */
1010 for (ctx = DECL_CONTEXT (field);
1011 !same_type_p (ctx, t);
1012 ctx = TYPE_CONTEXT (ctx))
1013 if (TREE_CODE (ctx) == UNION_TYPE
1014 || !ANON_AGGR_TYPE_P (ctx))
1015 break;
1016 /* If this field is not a member of a union, skip it. */
1017 if (TREE_CODE (ctx) != UNION_TYPE)
1018 goto next;
1019
1020 /* If this union member has no explicit initializer and no NSDMI,
1021 splice it out. */
1022 if (TREE_VALUE (init) || DECL_INITIAL (field))
1023 /* OK. */;
1024 else
1025 goto splice;
1026
1027 /* It's only an error if we have two initializers for the same
1028 union type. */
1029 if (!last_p)
1030 {
1031 last_p = p;
1032 goto next;
1033 }
1034
1035 /* See if LAST_FIELD and the field initialized by INIT are
1036 members of the same union. If so, there's a problem,
1037 unless they're actually members of the same structure
1038 which is itself a member of a union. For example, given:
1039
1040 union { struct { int i; int j; }; };
1041
1042 initializing both `i' and `j' makes sense. */
1043 ctx = common_enclosing_class (DECL_CONTEXT (field),
1044 DECL_CONTEXT (TREE_PURPOSE (*last_p)));
1045
1046 if (ctx && TREE_CODE (ctx) == UNION_TYPE)
1047 {
1048 /* A mem-initializer hides an NSDMI. */
1049 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1050 *last_p = TREE_CHAIN (*last_p);
1051 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1052 goto splice;
1053 else
1054 {
1055 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1056 "initializations for multiple members of %qT",
1057 ctx);
1058 goto splice;
1059 }
1060 }
1061
1062 last_p = p;
1063
1064 next:
1065 p = &TREE_CHAIN (*p);
1066 continue;
1067 splice:
1068 *p = TREE_CHAIN (*p);
1069 continue;
1070 }
1071 }
1072
1073 return sorted_inits;
1074 }
1075
1076 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1077 is a TREE_LIST giving the explicit mem-initializer-list for the
1078 constructor. The TREE_PURPOSE of each entry is a subobject (a
1079 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1080 is a TREE_LIST giving the arguments to the constructor or
1081 void_type_node for an empty list of arguments. */
1082
1083 void
1084 emit_mem_initializers (tree mem_inits)
1085 {
1086 int flags = LOOKUP_NORMAL;
1087
1088 /* We will already have issued an error message about the fact that
1089 the type is incomplete. */
1090 if (!COMPLETE_TYPE_P (current_class_type))
1091 return;
1092
1093 if (mem_inits
1094 && TYPE_P (TREE_PURPOSE (mem_inits))
1095 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1096 {
1097 /* Delegating constructor. */
1098 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1099 perform_target_ctor (TREE_VALUE (mem_inits));
1100 return;
1101 }
1102
1103 if (DECL_DEFAULTED_FN (current_function_decl)
1104 && ! DECL_INHERITED_CTOR_BASE (current_function_decl))
1105 flags |= LOOKUP_DEFAULTED;
1106
1107 /* Sort the mem-initializers into the order in which the
1108 initializations should be performed. */
1109 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1110
1111 in_base_initializer = 1;
1112
1113 /* Initialize base classes. */
1114 for (; (mem_inits
1115 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1116 mem_inits = TREE_CHAIN (mem_inits))
1117 {
1118 tree subobject = TREE_PURPOSE (mem_inits);
1119 tree arguments = TREE_VALUE (mem_inits);
1120
1121 /* We already have issued an error message. */
1122 if (arguments == error_mark_node)
1123 continue;
1124
1125 if (arguments == NULL_TREE)
1126 {
1127 /* If these initializations are taking place in a copy constructor,
1128 the base class should probably be explicitly initialized if there
1129 is a user-defined constructor in the base class (other than the
1130 default constructor, which will be called anyway). */
1131 if (extra_warnings
1132 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1133 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1134 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1135 OPT_Wextra, "base class %q#T should be explicitly "
1136 "initialized in the copy constructor",
1137 BINFO_TYPE (subobject));
1138 }
1139
1140 /* Initialize the base. */
1141 if (BINFO_VIRTUAL_P (subobject))
1142 construct_virtual_base (subobject, arguments);
1143 else
1144 {
1145 tree base_addr;
1146
1147 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1148 subobject, 1, tf_warning_or_error);
1149 expand_aggr_init_1 (subobject, NULL_TREE,
1150 cp_build_indirect_ref (base_addr, RO_NULL,
1151 tf_warning_or_error),
1152 arguments,
1153 flags,
1154 tf_warning_or_error);
1155 expand_cleanup_for_base (subobject, NULL_TREE);
1156 }
1157 }
1158 in_base_initializer = 0;
1159
1160 /* Initialize the vptrs. */
1161 initialize_vtbl_ptrs (current_class_ptr);
1162
1163 /* Initialize the data members. */
1164 while (mem_inits)
1165 {
1166 perform_member_init (TREE_PURPOSE (mem_inits),
1167 TREE_VALUE (mem_inits));
1168 mem_inits = TREE_CHAIN (mem_inits);
1169 }
1170 }
1171
1172 /* Returns the address of the vtable (i.e., the value that should be
1173 assigned to the vptr) for BINFO. */
1174
1175 tree
1176 build_vtbl_address (tree binfo)
1177 {
1178 tree binfo_for = binfo;
1179 tree vtbl;
1180
1181 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1182 /* If this is a virtual primary base, then the vtable we want to store
1183 is that for the base this is being used as the primary base of. We
1184 can't simply skip the initialization, because we may be expanding the
1185 inits of a subobject constructor where the virtual base layout
1186 can be different. */
1187 while (BINFO_PRIMARY_P (binfo_for))
1188 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1189
1190 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1191 used. */
1192 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1193 TREE_USED (vtbl) = true;
1194
1195 /* Now compute the address to use when initializing the vptr. */
1196 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1197 if (VAR_P (vtbl))
1198 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1199
1200 return vtbl;
1201 }
1202
1203 /* This code sets up the virtual function tables appropriate for
1204 the pointer DECL. It is a one-ply initialization.
1205
1206 BINFO is the exact type that DECL is supposed to be. In
1207 multiple inheritance, this might mean "C's A" if C : A, B. */
1208
1209 static void
1210 expand_virtual_init (tree binfo, tree decl)
1211 {
1212 tree vtbl, vtbl_ptr;
1213 tree vtt_index;
1214
1215 /* Compute the initializer for vptr. */
1216 vtbl = build_vtbl_address (binfo);
1217
1218 /* We may get this vptr from a VTT, if this is a subobject
1219 constructor or subobject destructor. */
1220 vtt_index = BINFO_VPTR_INDEX (binfo);
1221 if (vtt_index)
1222 {
1223 tree vtbl2;
1224 tree vtt_parm;
1225
1226 /* Compute the value to use, when there's a VTT. */
1227 vtt_parm = current_vtt_parm;
1228 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1229 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1230 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1231
1232 /* The actual initializer is the VTT value only in the subobject
1233 constructor. In maybe_clone_body we'll substitute NULL for
1234 the vtt_parm in the case of the non-subobject constructor. */
1235 vtbl = build3 (COND_EXPR,
1236 TREE_TYPE (vtbl),
1237 build2 (EQ_EXPR, boolean_type_node,
1238 current_in_charge_parm, integer_zero_node),
1239 vtbl2,
1240 vtbl);
1241 }
1242
1243 /* Compute the location of the vtpr. */
1244 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1245 tf_warning_or_error),
1246 TREE_TYPE (binfo));
1247 gcc_assert (vtbl_ptr != error_mark_node);
1248
1249 /* Assign the vtable to the vptr. */
1250 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1251 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
1252 tf_warning_or_error));
1253 }
1254
1255 /* If an exception is thrown in a constructor, those base classes already
1256 constructed must be destroyed. This function creates the cleanup
1257 for BINFO, which has just been constructed. If FLAG is non-NULL,
1258 it is a DECL which is nonzero when this base needs to be
1259 destroyed. */
1260
1261 static void
1262 expand_cleanup_for_base (tree binfo, tree flag)
1263 {
1264 tree expr;
1265
1266 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1267 return;
1268
1269 /* Call the destructor. */
1270 expr = build_special_member_call (current_class_ref,
1271 base_dtor_identifier,
1272 NULL,
1273 binfo,
1274 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1275 tf_warning_or_error);
1276
1277 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1278 return;
1279
1280 if (flag)
1281 expr = fold_build3_loc (input_location,
1282 COND_EXPR, void_type_node,
1283 c_common_truthvalue_conversion (input_location, flag),
1284 expr, integer_zero_node);
1285
1286 finish_eh_cleanup (expr);
1287 }
1288
1289 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1290 constructor. */
1291
1292 static void
1293 construct_virtual_base (tree vbase, tree arguments)
1294 {
1295 tree inner_if_stmt;
1296 tree exp;
1297 tree flag;
1298
1299 /* If there are virtual base classes with destructors, we need to
1300 emit cleanups to destroy them if an exception is thrown during
1301 the construction process. These exception regions (i.e., the
1302 period during which the cleanups must occur) begin from the time
1303 the construction is complete to the end of the function. If we
1304 create a conditional block in which to initialize the
1305 base-classes, then the cleanup region for the virtual base begins
1306 inside a block, and ends outside of that block. This situation
1307 confuses the sjlj exception-handling code. Therefore, we do not
1308 create a single conditional block, but one for each
1309 initialization. (That way the cleanup regions always begin
1310 in the outer block.) We trust the back end to figure out
1311 that the FLAG will not change across initializations, and
1312 avoid doing multiple tests. */
1313 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1314 inner_if_stmt = begin_if_stmt ();
1315 finish_if_stmt_cond (flag, inner_if_stmt);
1316
1317 /* Compute the location of the virtual base. If we're
1318 constructing virtual bases, then we must be the most derived
1319 class. Therefore, we don't have to look up the virtual base;
1320 we already know where it is. */
1321 exp = convert_to_base_statically (current_class_ref, vbase);
1322
1323 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1324 0, tf_warning_or_error);
1325 finish_then_clause (inner_if_stmt);
1326 finish_if_stmt (inner_if_stmt);
1327
1328 expand_cleanup_for_base (vbase, flag);
1329 }
1330
1331 /* Find the context in which this FIELD can be initialized. */
1332
1333 static tree
1334 initializing_context (tree field)
1335 {
1336 tree t = DECL_CONTEXT (field);
1337
1338 /* Anonymous union members can be initialized in the first enclosing
1339 non-anonymous union context. */
1340 while (t && ANON_AGGR_TYPE_P (t))
1341 t = TYPE_CONTEXT (t);
1342 return t;
1343 }
1344
1345 /* Function to give error message if member initialization specification
1346 is erroneous. FIELD is the member we decided to initialize.
1347 TYPE is the type for which the initialization is being performed.
1348 FIELD must be a member of TYPE.
1349
1350 MEMBER_NAME is the name of the member. */
1351
1352 static int
1353 member_init_ok_or_else (tree field, tree type, tree member_name)
1354 {
1355 if (field == error_mark_node)
1356 return 0;
1357 if (!field)
1358 {
1359 error ("class %qT does not have any field named %qD", type,
1360 member_name);
1361 return 0;
1362 }
1363 if (VAR_P (field))
1364 {
1365 error ("%q#D is a static data member; it can only be "
1366 "initialized at its definition",
1367 field);
1368 return 0;
1369 }
1370 if (TREE_CODE (field) != FIELD_DECL)
1371 {
1372 error ("%q#D is not a non-static data member of %qT",
1373 field, type);
1374 return 0;
1375 }
1376 if (initializing_context (field) != type)
1377 {
1378 error ("class %qT does not have any field named %qD", type,
1379 member_name);
1380 return 0;
1381 }
1382
1383 return 1;
1384 }
1385
1386 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1387 is a _TYPE node or TYPE_DECL which names a base for that type.
1388 Check the validity of NAME, and return either the base _TYPE, base
1389 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1390 NULL_TREE and issue a diagnostic.
1391
1392 An old style unnamed direct single base construction is permitted,
1393 where NAME is NULL. */
1394
1395 tree
1396 expand_member_init (tree name)
1397 {
1398 tree basetype;
1399 tree field;
1400
1401 if (!current_class_ref)
1402 return NULL_TREE;
1403
1404 if (!name)
1405 {
1406 /* This is an obsolete unnamed base class initializer. The
1407 parser will already have warned about its use. */
1408 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1409 {
1410 case 0:
1411 error ("unnamed initializer for %qT, which has no base classes",
1412 current_class_type);
1413 return NULL_TREE;
1414 case 1:
1415 basetype = BINFO_TYPE
1416 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1417 break;
1418 default:
1419 error ("unnamed initializer for %qT, which uses multiple inheritance",
1420 current_class_type);
1421 return NULL_TREE;
1422 }
1423 }
1424 else if (TYPE_P (name))
1425 {
1426 basetype = TYPE_MAIN_VARIANT (name);
1427 name = TYPE_NAME (name);
1428 }
1429 else if (TREE_CODE (name) == TYPE_DECL)
1430 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1431 else
1432 basetype = NULL_TREE;
1433
1434 if (basetype)
1435 {
1436 tree class_binfo;
1437 tree direct_binfo;
1438 tree virtual_binfo;
1439 int i;
1440
1441 if (current_template_parms
1442 || same_type_p (basetype, current_class_type))
1443 return basetype;
1444
1445 class_binfo = TYPE_BINFO (current_class_type);
1446 direct_binfo = NULL_TREE;
1447 virtual_binfo = NULL_TREE;
1448
1449 /* Look for a direct base. */
1450 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1451 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1452 break;
1453
1454 /* Look for a virtual base -- unless the direct base is itself
1455 virtual. */
1456 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1457 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1458
1459 /* [class.base.init]
1460
1461 If a mem-initializer-id is ambiguous because it designates
1462 both a direct non-virtual base class and an inherited virtual
1463 base class, the mem-initializer is ill-formed. */
1464 if (direct_binfo && virtual_binfo)
1465 {
1466 error ("%qD is both a direct base and an indirect virtual base",
1467 basetype);
1468 return NULL_TREE;
1469 }
1470
1471 if (!direct_binfo && !virtual_binfo)
1472 {
1473 if (CLASSTYPE_VBASECLASSES (current_class_type))
1474 error ("type %qT is not a direct or virtual base of %qT",
1475 basetype, current_class_type);
1476 else
1477 error ("type %qT is not a direct base of %qT",
1478 basetype, current_class_type);
1479 return NULL_TREE;
1480 }
1481
1482 return direct_binfo ? direct_binfo : virtual_binfo;
1483 }
1484 else
1485 {
1486 if (identifier_p (name))
1487 field = lookup_field (current_class_type, name, 1, false);
1488 else
1489 field = name;
1490
1491 if (member_init_ok_or_else (field, current_class_type, name))
1492 return field;
1493 }
1494
1495 return NULL_TREE;
1496 }
1497
1498 /* This is like `expand_member_init', only it stores one aggregate
1499 value into another.
1500
1501 INIT comes in two flavors: it is either a value which
1502 is to be stored in EXP, or it is a parameter list
1503 to go to a constructor, which will operate on EXP.
1504 If INIT is not a parameter list for a constructor, then set
1505 LOOKUP_ONLYCONVERTING.
1506 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1507 the initializer, if FLAGS is 0, then it is the (init) form.
1508 If `init' is a CONSTRUCTOR, then we emit a warning message,
1509 explaining that such initializations are invalid.
1510
1511 If INIT resolves to a CALL_EXPR which happens to return
1512 something of the type we are looking for, then we know
1513 that we can safely use that call to perform the
1514 initialization.
1515
1516 The virtual function table pointer cannot be set up here, because
1517 we do not really know its type.
1518
1519 This never calls operator=().
1520
1521 When initializing, nothing is CONST.
1522
1523 A default copy constructor may have to be used to perform the
1524 initialization.
1525
1526 A constructor or a conversion operator may have to be used to
1527 perform the initialization, but not both, as it would be ambiguous. */
1528
1529 tree
1530 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1531 {
1532 tree stmt_expr;
1533 tree compound_stmt;
1534 int destroy_temps;
1535 tree type = TREE_TYPE (exp);
1536 int was_const = TREE_READONLY (exp);
1537 int was_volatile = TREE_THIS_VOLATILE (exp);
1538 int is_global;
1539
1540 if (init == error_mark_node)
1541 return error_mark_node;
1542
1543 TREE_READONLY (exp) = 0;
1544 TREE_THIS_VOLATILE (exp) = 0;
1545
1546 if (init && init != void_type_node
1547 && TREE_CODE (init) != TREE_LIST
1548 && !(TREE_CODE (init) == TARGET_EXPR
1549 && TARGET_EXPR_DIRECT_INIT_P (init))
1550 && !DIRECT_LIST_INIT_P (init))
1551 flags |= LOOKUP_ONLYCONVERTING;
1552
1553 if (TREE_CODE (type) == ARRAY_TYPE)
1554 {
1555 tree itype;
1556
1557 /* An array may not be initialized use the parenthesized
1558 initialization form -- unless the initializer is "()". */
1559 if (init && TREE_CODE (init) == TREE_LIST)
1560 {
1561 if (complain & tf_error)
1562 error ("bad array initializer");
1563 return error_mark_node;
1564 }
1565 /* Must arrange to initialize each element of EXP
1566 from elements of INIT. */
1567 itype = init ? TREE_TYPE (init) : NULL_TREE;
1568 if (cv_qualified_p (type))
1569 TREE_TYPE (exp) = cv_unqualified (type);
1570 if (itype && cv_qualified_p (itype))
1571 TREE_TYPE (init) = cv_unqualified (itype);
1572 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1573 /*explicit_value_init_p=*/false,
1574 itype && same_type_p (TREE_TYPE (init),
1575 TREE_TYPE (exp)),
1576 complain);
1577 TREE_READONLY (exp) = was_const;
1578 TREE_THIS_VOLATILE (exp) = was_volatile;
1579 TREE_TYPE (exp) = type;
1580 /* Restore the type of init unless it was used directly. */
1581 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1582 TREE_TYPE (init) = itype;
1583 return stmt_expr;
1584 }
1585
1586 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1587 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1588 /* Just know that we've seen something for this node. */
1589 TREE_USED (exp) = 1;
1590
1591 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1592 destroy_temps = stmts_are_full_exprs_p ();
1593 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1594 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1595 init, LOOKUP_NORMAL|flags, complain);
1596 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1597 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1598 TREE_READONLY (exp) = was_const;
1599 TREE_THIS_VOLATILE (exp) = was_volatile;
1600
1601 return stmt_expr;
1602 }
1603
1604 static void
1605 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1606 tsubst_flags_t complain)
1607 {
1608 tree type = TREE_TYPE (exp);
1609 tree ctor_name;
1610
1611 /* It fails because there may not be a constructor which takes
1612 its own type as the first (or only parameter), but which does
1613 take other types via a conversion. So, if the thing initializing
1614 the expression is a unit element of type X, first try X(X&),
1615 followed by initialization by X. If neither of these work
1616 out, then look hard. */
1617 tree rval;
1618 vec<tree, va_gc> *parms;
1619
1620 /* If we have direct-initialization from an initializer list, pull
1621 it out of the TREE_LIST so the code below can see it. */
1622 if (init && TREE_CODE (init) == TREE_LIST
1623 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1624 {
1625 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1626 && TREE_CHAIN (init) == NULL_TREE);
1627 init = TREE_VALUE (init);
1628 }
1629
1630 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1631 && CP_AGGREGATE_TYPE_P (type))
1632 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1633 happen for direct-initialization, too. */
1634 {
1635 init = reshape_init (type, init, complain);
1636 init = digest_init (type, init, complain);
1637 }
1638
1639 /* A CONSTRUCTOR of the target's type is a previously digested
1640 initializer, whether that happened just above or in
1641 cp_parser_late_parsing_nsdmi.
1642
1643 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1644 set represents the whole initialization, so we shouldn't build up
1645 another ctor call. */
1646 if (init
1647 && (TREE_CODE (init) == CONSTRUCTOR
1648 || (TREE_CODE (init) == TARGET_EXPR
1649 && (TARGET_EXPR_DIRECT_INIT_P (init)
1650 || TARGET_EXPR_LIST_INIT_P (init))))
1651 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1652 {
1653 /* Early initialization via a TARGET_EXPR only works for
1654 complete objects. */
1655 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1656
1657 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1658 TREE_SIDE_EFFECTS (init) = 1;
1659 finish_expr_stmt (init);
1660 return;
1661 }
1662
1663 if (init && TREE_CODE (init) != TREE_LIST
1664 && (flags & LOOKUP_ONLYCONVERTING))
1665 {
1666 /* Base subobjects should only get direct-initialization. */
1667 gcc_assert (true_exp == exp);
1668
1669 if (flags & DIRECT_BIND)
1670 /* Do nothing. We hit this in two cases: Reference initialization,
1671 where we aren't initializing a real variable, so we don't want
1672 to run a new constructor; and catching an exception, where we
1673 have already built up the constructor call so we could wrap it
1674 in an exception region. */;
1675 else
1676 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1677 flags, complain);
1678
1679 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1680 /* We need to protect the initialization of a catch parm with a
1681 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1682 around the TARGET_EXPR for the copy constructor. See
1683 initialize_handler_parm. */
1684 {
1685 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1686 TREE_OPERAND (init, 0));
1687 TREE_TYPE (init) = void_type_node;
1688 }
1689 else
1690 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1691 TREE_SIDE_EFFECTS (init) = 1;
1692 finish_expr_stmt (init);
1693 return;
1694 }
1695
1696 if (init == NULL_TREE)
1697 parms = NULL;
1698 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1699 {
1700 parms = make_tree_vector ();
1701 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1702 vec_safe_push (parms, TREE_VALUE (init));
1703 }
1704 else
1705 parms = make_tree_vector_single (init);
1706
1707 if (exp == current_class_ref && current_function_decl
1708 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1709 {
1710 /* Delegating constructor. */
1711 tree complete;
1712 tree base;
1713 tree elt; unsigned i;
1714
1715 /* Unshare the arguments for the second call. */
1716 vec<tree, va_gc> *parms2 = make_tree_vector ();
1717 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1718 {
1719 elt = break_out_target_exprs (elt);
1720 vec_safe_push (parms2, elt);
1721 }
1722 complete = build_special_member_call (exp, complete_ctor_identifier,
1723 &parms2, binfo, flags,
1724 complain);
1725 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1726 release_tree_vector (parms2);
1727
1728 base = build_special_member_call (exp, base_ctor_identifier,
1729 &parms, binfo, flags,
1730 complain);
1731 base = fold_build_cleanup_point_expr (void_type_node, base);
1732 rval = build3 (COND_EXPR, void_type_node,
1733 build2 (EQ_EXPR, boolean_type_node,
1734 current_in_charge_parm, integer_zero_node),
1735 base,
1736 complete);
1737 }
1738 else
1739 {
1740 if (true_exp == exp)
1741 ctor_name = complete_ctor_identifier;
1742 else
1743 ctor_name = base_ctor_identifier;
1744 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1745 complain);
1746 }
1747
1748 if (parms != NULL)
1749 release_tree_vector (parms);
1750
1751 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1752 {
1753 tree fn = get_callee_fndecl (rval);
1754 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1755 {
1756 tree e = maybe_constant_init (rval, exp);
1757 if (TREE_CONSTANT (e))
1758 rval = build2 (INIT_EXPR, type, exp, e);
1759 }
1760 }
1761
1762 /* FIXME put back convert_to_void? */
1763 if (TREE_SIDE_EFFECTS (rval))
1764 finish_expr_stmt (rval);
1765 }
1766
1767 /* This function is responsible for initializing EXP with INIT
1768 (if any).
1769
1770 BINFO is the binfo of the type for who we are performing the
1771 initialization. For example, if W is a virtual base class of A and B,
1772 and C : A, B.
1773 If we are initializing B, then W must contain B's W vtable, whereas
1774 were we initializing C, W must contain C's W vtable.
1775
1776 TRUE_EXP is nonzero if it is the true expression being initialized.
1777 In this case, it may be EXP, or may just contain EXP. The reason we
1778 need this is because if EXP is a base element of TRUE_EXP, we
1779 don't necessarily know by looking at EXP where its virtual
1780 baseclass fields should really be pointing. But we do know
1781 from TRUE_EXP. In constructors, we don't know anything about
1782 the value being initialized.
1783
1784 FLAGS is just passed to `build_new_method_call'. See that function
1785 for its description. */
1786
1787 static void
1788 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1789 tsubst_flags_t complain)
1790 {
1791 tree type = TREE_TYPE (exp);
1792
1793 gcc_assert (init != error_mark_node && type != error_mark_node);
1794 gcc_assert (building_stmt_list_p ());
1795
1796 /* Use a function returning the desired type to initialize EXP for us.
1797 If the function is a constructor, and its first argument is
1798 NULL_TREE, know that it was meant for us--just slide exp on
1799 in and expand the constructor. Constructors now come
1800 as TARGET_EXPRs. */
1801
1802 if (init && VAR_P (exp)
1803 && COMPOUND_LITERAL_P (init))
1804 {
1805 vec<tree, va_gc> *cleanups = NULL;
1806 /* If store_init_value returns NULL_TREE, the INIT has been
1807 recorded as the DECL_INITIAL for EXP. That means there's
1808 nothing more we have to do. */
1809 init = store_init_value (exp, init, &cleanups, flags);
1810 if (init)
1811 finish_expr_stmt (init);
1812 gcc_assert (!cleanups);
1813 return;
1814 }
1815
1816 /* If an explicit -- but empty -- initializer list was present,
1817 that's value-initialization. */
1818 if (init == void_type_node)
1819 {
1820 /* If the type has data but no user-provided ctor, we need to zero
1821 out the object. */
1822 if (!type_has_user_provided_constructor (type)
1823 && !is_really_empty_class (type))
1824 {
1825 tree field_size = NULL_TREE;
1826 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1827 /* Don't clobber already initialized virtual bases. */
1828 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1829 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1830 field_size);
1831 init = build2 (INIT_EXPR, type, exp, init);
1832 finish_expr_stmt (init);
1833 }
1834
1835 /* If we don't need to mess with the constructor at all,
1836 then we're done. */
1837 if (! type_build_ctor_call (type))
1838 return;
1839
1840 /* Otherwise fall through and call the constructor. */
1841 init = NULL_TREE;
1842 }
1843
1844 /* We know that expand_default_init can handle everything we want
1845 at this point. */
1846 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1847 }
1848
1849 /* Report an error if TYPE is not a user-defined, class type. If
1850 OR_ELSE is nonzero, give an error message. */
1851
1852 int
1853 is_class_type (tree type, int or_else)
1854 {
1855 if (type == error_mark_node)
1856 return 0;
1857
1858 if (! CLASS_TYPE_P (type))
1859 {
1860 if (or_else)
1861 error ("%qT is not a class type", type);
1862 return 0;
1863 }
1864 return 1;
1865 }
1866
1867 tree
1868 get_type_value (tree name)
1869 {
1870 if (name == error_mark_node)
1871 return NULL_TREE;
1872
1873 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1874 return IDENTIFIER_TYPE_VALUE (name);
1875 else
1876 return NULL_TREE;
1877 }
1878
1879 /* Build a reference to a member of an aggregate. This is not a C++
1880 `&', but really something which can have its address taken, and
1881 then act as a pointer to member, for example TYPE :: FIELD can have
1882 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1883 this expression is the operand of "&".
1884
1885 @@ Prints out lousy diagnostics for operator <typename>
1886 @@ fields.
1887
1888 @@ This function should be rewritten and placed in search.c. */
1889
1890 tree
1891 build_offset_ref (tree type, tree member, bool address_p,
1892 tsubst_flags_t complain)
1893 {
1894 tree decl;
1895 tree basebinfo = NULL_TREE;
1896
1897 /* class templates can come in as TEMPLATE_DECLs here. */
1898 if (TREE_CODE (member) == TEMPLATE_DECL)
1899 return member;
1900
1901 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1902 return build_qualified_name (NULL_TREE, type, member,
1903 /*template_p=*/false);
1904
1905 gcc_assert (TYPE_P (type));
1906 if (! is_class_type (type, 1))
1907 return error_mark_node;
1908
1909 gcc_assert (DECL_P (member) || BASELINK_P (member));
1910 /* Callers should call mark_used before this point. */
1911 gcc_assert (!DECL_P (member) || TREE_USED (member));
1912
1913 type = TYPE_MAIN_VARIANT (type);
1914 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1915 {
1916 if (complain & tf_error)
1917 error ("incomplete type %qT does not have member %qD", type, member);
1918 return error_mark_node;
1919 }
1920
1921 /* Entities other than non-static members need no further
1922 processing. */
1923 if (TREE_CODE (member) == TYPE_DECL)
1924 return member;
1925 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
1926 return convert_from_reference (member);
1927
1928 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1929 {
1930 if (complain & tf_error)
1931 error ("invalid pointer to bit-field %qD", member);
1932 return error_mark_node;
1933 }
1934
1935 /* Set up BASEBINFO for member lookup. */
1936 decl = maybe_dummy_object (type, &basebinfo);
1937
1938 /* A lot of this logic is now handled in lookup_member. */
1939 if (BASELINK_P (member))
1940 {
1941 /* Go from the TREE_BASELINK to the member function info. */
1942 tree t = BASELINK_FUNCTIONS (member);
1943
1944 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1945 {
1946 /* Get rid of a potential OVERLOAD around it. */
1947 t = OVL_CURRENT (t);
1948
1949 /* Unique functions are handled easily. */
1950
1951 /* For non-static member of base class, we need a special rule
1952 for access checking [class.protected]:
1953
1954 If the access is to form a pointer to member, the
1955 nested-name-specifier shall name the derived class
1956 (or any class derived from that class). */
1957 if (address_p && DECL_P (t)
1958 && DECL_NONSTATIC_MEMBER_P (t))
1959 perform_or_defer_access_check (TYPE_BINFO (type), t, t,
1960 complain);
1961 else
1962 perform_or_defer_access_check (basebinfo, t, t,
1963 complain);
1964
1965 if (DECL_STATIC_FUNCTION_P (t))
1966 return t;
1967 member = t;
1968 }
1969 else
1970 TREE_TYPE (member) = unknown_type_node;
1971 }
1972 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1973 /* We need additional test besides the one in
1974 check_accessibility_of_qualified_id in case it is
1975 a pointer to non-static member. */
1976 perform_or_defer_access_check (TYPE_BINFO (type), member, member,
1977 complain);
1978
1979 if (!address_p)
1980 {
1981 /* If MEMBER is non-static, then the program has fallen afoul of
1982 [expr.prim]:
1983
1984 An id-expression that denotes a nonstatic data member or
1985 nonstatic member function of a class can only be used:
1986
1987 -- as part of a class member access (_expr.ref_) in which the
1988 object-expression refers to the member's class or a class
1989 derived from that class, or
1990
1991 -- to form a pointer to member (_expr.unary.op_), or
1992
1993 -- in the body of a nonstatic member function of that class or
1994 of a class derived from that class (_class.mfct.nonstatic_), or
1995
1996 -- in a mem-initializer for a constructor for that class or for
1997 a class derived from that class (_class.base.init_). */
1998 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1999 {
2000 /* Build a representation of the qualified name suitable
2001 for use as the operand to "&" -- even though the "&" is
2002 not actually present. */
2003 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2004 /* In Microsoft mode, treat a non-static member function as if
2005 it were a pointer-to-member. */
2006 if (flag_ms_extensions)
2007 {
2008 PTRMEM_OK_P (member) = 1;
2009 return cp_build_addr_expr (member, complain);
2010 }
2011 if (complain & tf_error)
2012 error ("invalid use of non-static member function %qD",
2013 TREE_OPERAND (member, 1));
2014 return error_mark_node;
2015 }
2016 else if (TREE_CODE (member) == FIELD_DECL)
2017 {
2018 if (complain & tf_error)
2019 error ("invalid use of non-static data member %qD", member);
2020 return error_mark_node;
2021 }
2022 return member;
2023 }
2024
2025 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2026 PTRMEM_OK_P (member) = 1;
2027 return member;
2028 }
2029
2030 /* If DECL is a scalar enumeration constant or variable with a
2031 constant initializer, return the initializer (or, its initializers,
2032 recursively); otherwise, return DECL. If STRICT_P, the
2033 initializer is only returned if DECL is a
2034 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2035 return an aggregate constant. */
2036
2037 static tree
2038 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2039 {
2040 while (TREE_CODE (decl) == CONST_DECL
2041 || (strict_p
2042 ? decl_constant_var_p (decl)
2043 : (VAR_P (decl)
2044 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
2045 {
2046 tree init;
2047 /* If DECL is a static data member in a template
2048 specialization, we must instantiate it here. The
2049 initializer for the static data member is not processed
2050 until needed; we need it now. */
2051 mark_used (decl, tf_none);
2052 mark_rvalue_use (decl);
2053 init = DECL_INITIAL (decl);
2054 if (init == error_mark_node)
2055 {
2056 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2057 /* Treat the error as a constant to avoid cascading errors on
2058 excessively recursive template instantiation (c++/9335). */
2059 return init;
2060 else
2061 return decl;
2062 }
2063 /* Initializers in templates are generally expanded during
2064 instantiation, so before that for const int i(2)
2065 INIT is a TREE_LIST with the actual initializer as
2066 TREE_VALUE. */
2067 if (processing_template_decl
2068 && init
2069 && TREE_CODE (init) == TREE_LIST
2070 && TREE_CHAIN (init) == NULL_TREE)
2071 init = TREE_VALUE (init);
2072 if (!init
2073 || !TREE_TYPE (init)
2074 || !TREE_CONSTANT (init)
2075 || (!return_aggregate_cst_ok_p
2076 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2077 return an aggregate constant (of which string
2078 literals are a special case), as we do not want
2079 to make inadvertent copies of such entities, and
2080 we must be sure that their addresses are the
2081 same everywhere. */
2082 && (TREE_CODE (init) == CONSTRUCTOR
2083 || TREE_CODE (init) == STRING_CST)))
2084 break;
2085 decl = unshare_expr (init);
2086 }
2087 return decl;
2088 }
2089
2090 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2091 of integral or enumeration type, or a constexpr variable of scalar type,
2092 then return that value. These are those variables permitted in constant
2093 expressions by [5.19/1]. */
2094
2095 tree
2096 scalar_constant_value (tree decl)
2097 {
2098 return constant_value_1 (decl, /*strict_p=*/true,
2099 /*return_aggregate_cst_ok_p=*/false);
2100 }
2101
2102 /* Like scalar_constant_value, but can also return aggregate initializers. */
2103
2104 tree
2105 decl_really_constant_value (tree decl)
2106 {
2107 return constant_value_1 (decl, /*strict_p=*/true,
2108 /*return_aggregate_cst_ok_p=*/true);
2109 }
2110
2111 /* A more relaxed version of scalar_constant_value, used by the
2112 common C/C++ code. */
2113
2114 tree
2115 decl_constant_value (tree decl)
2116 {
2117 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2118 /*return_aggregate_cst_ok_p=*/true);
2119 }
2120 \f
2121 /* Common subroutines of build_new and build_vec_delete. */
2122 \f
2123 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2124 the type of the object being allocated; otherwise, it's just TYPE.
2125 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2126 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2127 a vector of arguments to be provided as arguments to a placement
2128 new operator. This routine performs no semantic checks; it just
2129 creates and returns a NEW_EXPR. */
2130
2131 static tree
2132 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2133 vec<tree, va_gc> *init, int use_global_new)
2134 {
2135 tree init_list;
2136 tree new_expr;
2137
2138 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2139 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2140 permits us to distinguish the case of a missing initializer "new
2141 int" from an empty initializer "new int()". */
2142 if (init == NULL)
2143 init_list = NULL_TREE;
2144 else if (init->is_empty ())
2145 init_list = void_node;
2146 else
2147 init_list = build_tree_list_vec (init);
2148
2149 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2150 build_tree_list_vec (placement), type, nelts,
2151 init_list);
2152 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2153 TREE_SIDE_EFFECTS (new_expr) = 1;
2154
2155 return new_expr;
2156 }
2157
2158 /* Diagnose uninitialized const members or reference members of type
2159 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2160 new expression without a new-initializer and a declaration. Returns
2161 the error count. */
2162
2163 static int
2164 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2165 bool using_new, bool complain)
2166 {
2167 tree field;
2168 int error_count = 0;
2169
2170 if (type_has_user_provided_constructor (type))
2171 return 0;
2172
2173 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2174 {
2175 tree field_type;
2176
2177 if (TREE_CODE (field) != FIELD_DECL)
2178 continue;
2179
2180 field_type = strip_array_types (TREE_TYPE (field));
2181
2182 if (type_has_user_provided_constructor (field_type))
2183 continue;
2184
2185 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2186 {
2187 ++ error_count;
2188 if (complain)
2189 {
2190 if (DECL_CONTEXT (field) == origin)
2191 {
2192 if (using_new)
2193 error ("uninitialized reference member in %q#T "
2194 "using %<new%> without new-initializer", origin);
2195 else
2196 error ("uninitialized reference member in %q#T", origin);
2197 }
2198 else
2199 {
2200 if (using_new)
2201 error ("uninitialized reference member in base %q#T "
2202 "of %q#T using %<new%> without new-initializer",
2203 DECL_CONTEXT (field), origin);
2204 else
2205 error ("uninitialized reference member in base %q#T "
2206 "of %q#T", DECL_CONTEXT (field), origin);
2207 }
2208 inform (DECL_SOURCE_LOCATION (field),
2209 "%q#D should be initialized", field);
2210 }
2211 }
2212
2213 if (CP_TYPE_CONST_P (field_type))
2214 {
2215 ++ error_count;
2216 if (complain)
2217 {
2218 if (DECL_CONTEXT (field) == origin)
2219 {
2220 if (using_new)
2221 error ("uninitialized const member in %q#T "
2222 "using %<new%> without new-initializer", origin);
2223 else
2224 error ("uninitialized const member in %q#T", origin);
2225 }
2226 else
2227 {
2228 if (using_new)
2229 error ("uninitialized const member in base %q#T "
2230 "of %q#T using %<new%> without new-initializer",
2231 DECL_CONTEXT (field), origin);
2232 else
2233 error ("uninitialized const member in base %q#T "
2234 "of %q#T", DECL_CONTEXT (field), origin);
2235 }
2236 inform (DECL_SOURCE_LOCATION (field),
2237 "%q#D should be initialized", field);
2238 }
2239 }
2240
2241 if (CLASS_TYPE_P (field_type))
2242 error_count
2243 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2244 using_new, complain);
2245 }
2246 return error_count;
2247 }
2248
2249 int
2250 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2251 {
2252 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2253 }
2254
2255 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2256 overflowed. Pretend it returns sizetype so that it plays nicely in the
2257 COND_EXPR. */
2258
2259 tree
2260 throw_bad_array_new_length (void)
2261 {
2262 tree fn = get_identifier ("__cxa_throw_bad_array_new_length");
2263 if (!get_global_value_if_present (fn, &fn))
2264 fn = push_throw_library_fn (fn, build_function_type_list (sizetype,
2265 NULL_TREE));
2266
2267 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2268 }
2269
2270 /* Generate code for a new-expression, including calling the "operator
2271 new" function, initializing the object, and, if an exception occurs
2272 during construction, cleaning up. The arguments are as for
2273 build_raw_new_expr. This may change PLACEMENT and INIT. */
2274
2275 static tree
2276 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2277 vec<tree, va_gc> **init, bool globally_qualified_p,
2278 tsubst_flags_t complain)
2279 {
2280 tree size, rval;
2281 /* True iff this is a call to "operator new[]" instead of just
2282 "operator new". */
2283 bool array_p = false;
2284 /* If ARRAY_P is true, the element type of the array. This is never
2285 an ARRAY_TYPE; for something like "new int[3][4]", the
2286 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2287 TYPE. */
2288 tree elt_type;
2289 /* The type of the new-expression. (This type is always a pointer
2290 type.) */
2291 tree pointer_type;
2292 tree non_const_pointer_type;
2293 tree outer_nelts = NULL_TREE;
2294 /* For arrays, a bounds checks on the NELTS parameter. */
2295 tree outer_nelts_check = NULL_TREE;
2296 bool outer_nelts_from_type = false;
2297 offset_int inner_nelts_count = 1;
2298 tree alloc_call, alloc_expr;
2299 /* Size of the inner array elements. */
2300 offset_int inner_size;
2301 /* The address returned by the call to "operator new". This node is
2302 a VAR_DECL and is therefore reusable. */
2303 tree alloc_node;
2304 tree alloc_fn;
2305 tree cookie_expr, init_expr;
2306 int nothrow, check_new;
2307 int use_java_new = 0;
2308 /* If non-NULL, the number of extra bytes to allocate at the
2309 beginning of the storage allocated for an array-new expression in
2310 order to store the number of elements. */
2311 tree cookie_size = NULL_TREE;
2312 tree placement_first;
2313 tree placement_expr = NULL_TREE;
2314 /* True if the function we are calling is a placement allocation
2315 function. */
2316 bool placement_allocation_fn_p;
2317 /* True if the storage must be initialized, either by a constructor
2318 or due to an explicit new-initializer. */
2319 bool is_initialized;
2320 /* The address of the thing allocated, not including any cookie. In
2321 particular, if an array cookie is in use, DATA_ADDR is the
2322 address of the first array element. This node is a VAR_DECL, and
2323 is therefore reusable. */
2324 tree data_addr;
2325 tree init_preeval_expr = NULL_TREE;
2326 tree orig_type = type;
2327
2328 if (nelts)
2329 {
2330 outer_nelts = nelts;
2331 array_p = true;
2332 }
2333 else if (TREE_CODE (type) == ARRAY_TYPE)
2334 {
2335 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2336 extension for variable N. (This also covers new T where T is
2337 a VLA typedef.) */
2338 array_p = true;
2339 nelts = array_type_nelts_top (type);
2340 outer_nelts = nelts;
2341 type = TREE_TYPE (type);
2342 outer_nelts_from_type = true;
2343 }
2344
2345 /* If our base type is an array, then make sure we know how many elements
2346 it has. */
2347 for (elt_type = type;
2348 TREE_CODE (elt_type) == ARRAY_TYPE;
2349 elt_type = TREE_TYPE (elt_type))
2350 {
2351 tree inner_nelts = array_type_nelts_top (elt_type);
2352 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2353 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2354 {
2355 bool overflow;
2356 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2357 inner_nelts_count, SIGNED, &overflow);
2358 if (overflow)
2359 {
2360 if (complain & tf_error)
2361 error ("integer overflow in array size");
2362 nelts = error_mark_node;
2363 }
2364 inner_nelts_count = result;
2365 }
2366 else
2367 {
2368 if (complain & tf_error)
2369 {
2370 error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2371 "array size in new-expression must be constant");
2372 cxx_constant_value(inner_nelts);
2373 }
2374 nelts = error_mark_node;
2375 }
2376 if (nelts != error_mark_node)
2377 nelts = cp_build_binary_op (input_location,
2378 MULT_EXPR, nelts,
2379 inner_nelts_cst,
2380 complain);
2381 }
2382
2383 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2384 {
2385 error ("variably modified type not allowed in new-expression");
2386 return error_mark_node;
2387 }
2388
2389 if (nelts == error_mark_node)
2390 return error_mark_node;
2391
2392 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2393 variable. */
2394 if (outer_nelts_from_type
2395 && !TREE_CONSTANT (maybe_constant_value (outer_nelts)))
2396 {
2397 if (complain & tf_warning_or_error)
2398 {
2399 const char *msg;
2400 if (typedef_variant_p (orig_type))
2401 msg = ("non-constant array new length must be specified "
2402 "directly, not by typedef");
2403 else
2404 msg = ("non-constant array new length must be specified "
2405 "without parentheses around the type-id");
2406 pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location),
2407 OPT_Wvla, msg);
2408 }
2409 else
2410 return error_mark_node;
2411 }
2412
2413 if (VOID_TYPE_P (elt_type))
2414 {
2415 if (complain & tf_error)
2416 error ("invalid type %<void%> for new");
2417 return error_mark_node;
2418 }
2419
2420 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2421 return error_mark_node;
2422
2423 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2424
2425 if (*init == NULL && cxx_dialect < cxx11)
2426 {
2427 bool maybe_uninitialized_error = false;
2428 /* A program that calls for default-initialization [...] of an
2429 entity of reference type is ill-formed. */
2430 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2431 maybe_uninitialized_error = true;
2432
2433 /* A new-expression that creates an object of type T initializes
2434 that object as follows:
2435 - If the new-initializer is omitted:
2436 -- If T is a (possibly cv-qualified) non-POD class type
2437 (or array thereof), the object is default-initialized (8.5).
2438 [...]
2439 -- Otherwise, the object created has indeterminate
2440 value. If T is a const-qualified type, or a (possibly
2441 cv-qualified) POD class type (or array thereof)
2442 containing (directly or indirectly) a member of
2443 const-qualified type, the program is ill-formed; */
2444
2445 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2446 maybe_uninitialized_error = true;
2447
2448 if (maybe_uninitialized_error
2449 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2450 /*using_new=*/true,
2451 complain & tf_error))
2452 return error_mark_node;
2453 }
2454
2455 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2456 && default_init_uninitialized_part (elt_type))
2457 {
2458 if (complain & tf_error)
2459 error ("uninitialized const in %<new%> of %q#T", elt_type);
2460 return error_mark_node;
2461 }
2462
2463 size = size_in_bytes (elt_type);
2464 if (array_p)
2465 {
2466 /* Maximum available size in bytes. Half of the address space
2467 minus the cookie size. */
2468 offset_int max_size
2469 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
2470 /* Maximum number of outer elements which can be allocated. */
2471 offset_int max_outer_nelts;
2472 tree max_outer_nelts_tree;
2473
2474 gcc_assert (TREE_CODE (size) == INTEGER_CST);
2475 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2476 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2477 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
2478 /* Unconditionally subtract the cookie size. This decreases the
2479 maximum object size and is safe even if we choose not to use
2480 a cookie after all. */
2481 max_size -= wi::to_offset (cookie_size);
2482 bool overflow;
2483 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
2484 &overflow);
2485 if (overflow || wi::gtu_p (inner_size, max_size))
2486 {
2487 if (complain & tf_error)
2488 error ("size of array is too large");
2489 return error_mark_node;
2490 }
2491
2492 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
2493 /* Only keep the top-most seven bits, to simplify encoding the
2494 constant in the instruction stream. */
2495 {
2496 unsigned shift = (max_outer_nelts.get_precision ()) - 7
2497 - wi::clz (max_outer_nelts);
2498 max_outer_nelts = wi::lshift (wi::lrshift (max_outer_nelts, shift),
2499 shift);
2500 }
2501 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
2502
2503 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2504 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2505 outer_nelts,
2506 max_outer_nelts_tree);
2507 }
2508
2509 alloc_fn = NULL_TREE;
2510
2511 /* If PLACEMENT is a single simple pointer type not passed by
2512 reference, prepare to capture it in a temporary variable. Do
2513 this now, since PLACEMENT will change in the calls below. */
2514 placement_first = NULL_TREE;
2515 if (vec_safe_length (*placement) == 1
2516 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
2517 placement_first = (**placement)[0];
2518
2519 /* Allocate the object. */
2520 if (vec_safe_is_empty (*placement) && TYPE_FOR_JAVA (elt_type))
2521 {
2522 tree class_addr;
2523 tree class_decl;
2524 static const char alloc_name[] = "_Jv_AllocObject";
2525
2526 if (!MAYBE_CLASS_TYPE_P (elt_type))
2527 {
2528 error ("%qT isn%'t a valid Java class type", elt_type);
2529 return error_mark_node;
2530 }
2531
2532 class_decl = build_java_class_ref (elt_type);
2533 if (class_decl == error_mark_node)
2534 return error_mark_node;
2535
2536 use_java_new = 1;
2537 if (!get_global_value_if_present (get_identifier (alloc_name),
2538 &alloc_fn))
2539 {
2540 if (complain & tf_error)
2541 error ("call to Java constructor with %qs undefined", alloc_name);
2542 return error_mark_node;
2543 }
2544 else if (really_overloaded_fn (alloc_fn))
2545 {
2546 if (complain & tf_error)
2547 error ("%qD should never be overloaded", alloc_fn);
2548 return error_mark_node;
2549 }
2550 alloc_fn = OVL_CURRENT (alloc_fn);
2551 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2552 alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2553 class_addr, NULL_TREE);
2554 }
2555 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2556 {
2557 error ("Java class %q#T object allocated using placement new", elt_type);
2558 return error_mark_node;
2559 }
2560 else
2561 {
2562 tree fnname;
2563 tree fns;
2564
2565 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2566
2567 if (!globally_qualified_p
2568 && CLASS_TYPE_P (elt_type)
2569 && (array_p
2570 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2571 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2572 {
2573 /* Use a class-specific operator new. */
2574 /* If a cookie is required, add some extra space. */
2575 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2576 size = size_binop (PLUS_EXPR, size, cookie_size);
2577 else
2578 {
2579 cookie_size = NULL_TREE;
2580 /* No size arithmetic necessary, so the size check is
2581 not needed. */
2582 if (outer_nelts_check != NULL && inner_size == 1)
2583 outer_nelts_check = NULL_TREE;
2584 }
2585 /* Perform the overflow check. */
2586 tree errval = TYPE_MAX_VALUE (sizetype);
2587 if (cxx_dialect >= cxx11 && flag_exceptions)
2588 errval = throw_bad_array_new_length ();
2589 if (outer_nelts_check != NULL_TREE)
2590 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
2591 size, errval);
2592 /* Create the argument list. */
2593 vec_safe_insert (*placement, 0, size);
2594 /* Do name-lookup to find the appropriate operator. */
2595 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2596 if (fns == NULL_TREE)
2597 {
2598 if (complain & tf_error)
2599 error ("no suitable %qD found in class %qT", fnname, elt_type);
2600 return error_mark_node;
2601 }
2602 if (TREE_CODE (fns) == TREE_LIST)
2603 {
2604 if (complain & tf_error)
2605 {
2606 error ("request for member %qD is ambiguous", fnname);
2607 print_candidates (fns);
2608 }
2609 return error_mark_node;
2610 }
2611 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2612 fns, placement,
2613 /*conversion_path=*/NULL_TREE,
2614 LOOKUP_NORMAL,
2615 &alloc_fn,
2616 complain);
2617 }
2618 else
2619 {
2620 /* Use a global operator new. */
2621 /* See if a cookie might be required. */
2622 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
2623 {
2624 cookie_size = NULL_TREE;
2625 /* No size arithmetic necessary, so the size check is
2626 not needed. */
2627 if (outer_nelts_check != NULL && inner_size == 1)
2628 outer_nelts_check = NULL_TREE;
2629 }
2630
2631 alloc_call = build_operator_new_call (fnname, placement,
2632 &size, &cookie_size,
2633 outer_nelts_check,
2634 &alloc_fn, complain);
2635 }
2636 }
2637
2638 if (alloc_call == error_mark_node)
2639 return error_mark_node;
2640
2641 gcc_assert (alloc_fn != NULL_TREE);
2642
2643 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2644 into a temporary variable. */
2645 if (!processing_template_decl
2646 && placement_first != NULL_TREE
2647 && TREE_CODE (alloc_call) == CALL_EXPR
2648 && call_expr_nargs (alloc_call) == 2
2649 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2650 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
2651 {
2652 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2653
2654 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2655 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2656 {
2657 placement_expr = get_target_expr (placement_first);
2658 CALL_EXPR_ARG (alloc_call, 1)
2659 = convert (TREE_TYPE (placement_arg), placement_expr);
2660 }
2661 }
2662
2663 /* In the simple case, we can stop now. */
2664 pointer_type = build_pointer_type (type);
2665 if (!cookie_size && !is_initialized)
2666 return build_nop (pointer_type, alloc_call);
2667
2668 /* Store the result of the allocation call in a variable so that we can
2669 use it more than once. */
2670 alloc_expr = get_target_expr (alloc_call);
2671 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2672
2673 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2674 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2675 alloc_call = TREE_OPERAND (alloc_call, 1);
2676
2677 /* Now, check to see if this function is actually a placement
2678 allocation function. This can happen even when PLACEMENT is NULL
2679 because we might have something like:
2680
2681 struct S { void* operator new (size_t, int i = 0); };
2682
2683 A call to `new S' will get this allocation function, even though
2684 there is no explicit placement argument. If there is more than
2685 one argument, or there are variable arguments, then this is a
2686 placement allocation function. */
2687 placement_allocation_fn_p
2688 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2689 || varargs_function_p (alloc_fn));
2690
2691 /* Preevaluate the placement args so that we don't reevaluate them for a
2692 placement delete. */
2693 if (placement_allocation_fn_p)
2694 {
2695 tree inits;
2696 stabilize_call (alloc_call, &inits);
2697 if (inits)
2698 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2699 alloc_expr);
2700 }
2701
2702 /* unless an allocation function is declared with an empty excep-
2703 tion-specification (_except.spec_), throw(), it indicates failure to
2704 allocate storage by throwing a bad_alloc exception (clause _except_,
2705 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2706 cation function is declared with an empty exception-specification,
2707 throw(), it returns null to indicate failure to allocate storage and a
2708 non-null pointer otherwise.
2709
2710 So check for a null exception spec on the op new we just called. */
2711
2712 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2713 check_new = (flag_check_new || nothrow) && ! use_java_new;
2714
2715 if (cookie_size)
2716 {
2717 tree cookie;
2718 tree cookie_ptr;
2719 tree size_ptr_type;
2720
2721 /* Adjust so we're pointing to the start of the object. */
2722 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
2723
2724 /* Store the number of bytes allocated so that we can know how
2725 many elements to destroy later. We use the last sizeof
2726 (size_t) bytes to store the number of elements. */
2727 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2728 cookie_ptr = fold_build_pointer_plus_loc (input_location,
2729 alloc_node, cookie_ptr);
2730 size_ptr_type = build_pointer_type (sizetype);
2731 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2732 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2733
2734 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2735
2736 if (targetm.cxx.cookie_has_size ())
2737 {
2738 /* Also store the element size. */
2739 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
2740 fold_build1_loc (input_location,
2741 NEGATE_EXPR, sizetype,
2742 size_in_bytes (sizetype)));
2743
2744 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2745 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2746 size_in_bytes (elt_type));
2747 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2748 cookie, cookie_expr);
2749 }
2750 }
2751 else
2752 {
2753 cookie_expr = NULL_TREE;
2754 data_addr = alloc_node;
2755 }
2756
2757 /* Now use a pointer to the type we've actually allocated. */
2758
2759 /* But we want to operate on a non-const version to start with,
2760 since we'll be modifying the elements. */
2761 non_const_pointer_type = build_pointer_type
2762 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2763
2764 data_addr = fold_convert (non_const_pointer_type, data_addr);
2765 /* Any further uses of alloc_node will want this type, too. */
2766 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2767
2768 /* Now initialize the allocated object. Note that we preevaluate the
2769 initialization expression, apart from the actual constructor call or
2770 assignment--we do this because we want to delay the allocation as long
2771 as possible in order to minimize the size of the exception region for
2772 placement delete. */
2773 if (is_initialized)
2774 {
2775 bool stable;
2776 bool explicit_value_init_p = false;
2777
2778 if (*init != NULL && (*init)->is_empty ())
2779 {
2780 *init = NULL;
2781 explicit_value_init_p = true;
2782 }
2783
2784 if (processing_template_decl && explicit_value_init_p)
2785 {
2786 /* build_value_init doesn't work in templates, and we don't need
2787 the initializer anyway since we're going to throw it away and
2788 rebuild it at instantiation time, so just build up a single
2789 constructor call to get any appropriate diagnostics. */
2790 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2791 if (type_build_ctor_call (elt_type))
2792 init_expr = build_special_member_call (init_expr,
2793 complete_ctor_identifier,
2794 init, elt_type,
2795 LOOKUP_NORMAL,
2796 complain);
2797 stable = stabilize_init (init_expr, &init_preeval_expr);
2798 }
2799 else if (array_p)
2800 {
2801 tree vecinit = NULL_TREE;
2802 if (vec_safe_length (*init) == 1
2803 && DIRECT_LIST_INIT_P ((**init)[0]))
2804 {
2805 vecinit = (**init)[0];
2806 if (CONSTRUCTOR_NELTS (vecinit) == 0)
2807 /* List-value-initialization, leave it alone. */;
2808 else
2809 {
2810 tree arraytype, domain;
2811 if (TREE_CONSTANT (nelts))
2812 domain = compute_array_index_type (NULL_TREE, nelts,
2813 complain);
2814 else
2815 /* We'll check the length at runtime. */
2816 domain = NULL_TREE;
2817 arraytype = build_cplus_array_type (type, domain);
2818 vecinit = digest_init (arraytype, vecinit, complain);
2819 }
2820 }
2821 else if (*init)
2822 {
2823 if (complain & tf_error)
2824 permerror (input_location,
2825 "parenthesized initializer in array new");
2826 else
2827 return error_mark_node;
2828 vecinit = build_tree_list_vec (*init);
2829 }
2830 init_expr
2831 = build_vec_init (data_addr,
2832 cp_build_binary_op (input_location,
2833 MINUS_EXPR, outer_nelts,
2834 integer_one_node,
2835 complain),
2836 vecinit,
2837 explicit_value_init_p,
2838 /*from_array=*/0,
2839 complain);
2840
2841 /* An array initialization is stable because the initialization
2842 of each element is a full-expression, so the temporaries don't
2843 leak out. */
2844 stable = true;
2845 }
2846 else
2847 {
2848 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2849
2850 if (type_build_ctor_call (type) && !explicit_value_init_p)
2851 {
2852 init_expr = build_special_member_call (init_expr,
2853 complete_ctor_identifier,
2854 init, elt_type,
2855 LOOKUP_NORMAL,
2856 complain);
2857 }
2858 else if (explicit_value_init_p)
2859 {
2860 /* Something like `new int()'. */
2861 tree val = build_value_init (type, complain);
2862 if (val == error_mark_node)
2863 return error_mark_node;
2864 init_expr = build2 (INIT_EXPR, type, init_expr, val);
2865 }
2866 else
2867 {
2868 tree ie;
2869
2870 /* We are processing something like `new int (10)', which
2871 means allocate an int, and initialize it with 10. */
2872
2873 ie = build_x_compound_expr_from_vec (*init, "new initializer",
2874 complain);
2875 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2876 complain);
2877 }
2878 stable = stabilize_init (init_expr, &init_preeval_expr);
2879 }
2880
2881 if (init_expr == error_mark_node)
2882 return error_mark_node;
2883
2884 /* If any part of the object initialization terminates by throwing an
2885 exception and a suitable deallocation function can be found, the
2886 deallocation function is called to free the memory in which the
2887 object was being constructed, after which the exception continues
2888 to propagate in the context of the new-expression. If no
2889 unambiguous matching deallocation function can be found,
2890 propagating the exception does not cause the object's memory to be
2891 freed. */
2892 if (flag_exceptions && ! use_java_new)
2893 {
2894 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2895 tree cleanup;
2896
2897 /* The Standard is unclear here, but the right thing to do
2898 is to use the same method for finding deallocation
2899 functions that we use for finding allocation functions. */
2900 cleanup = (build_op_delete_call
2901 (dcode,
2902 alloc_node,
2903 size,
2904 globally_qualified_p,
2905 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2906 alloc_fn,
2907 complain));
2908
2909 if (!cleanup)
2910 /* We're done. */;
2911 else if (stable)
2912 /* This is much simpler if we were able to preevaluate all of
2913 the arguments to the constructor call. */
2914 {
2915 /* CLEANUP is compiler-generated, so no diagnostics. */
2916 TREE_NO_WARNING (cleanup) = true;
2917 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2918 init_expr, cleanup);
2919 /* Likewise, this try-catch is compiler-generated. */
2920 TREE_NO_WARNING (init_expr) = true;
2921 }
2922 else
2923 /* Ack! First we allocate the memory. Then we set our sentry
2924 variable to true, and expand a cleanup that deletes the
2925 memory if sentry is true. Then we run the constructor, and
2926 finally clear the sentry.
2927
2928 We need to do this because we allocate the space first, so
2929 if there are any temporaries with cleanups in the
2930 constructor args and we weren't able to preevaluate them, we
2931 need this EH region to extend until end of full-expression
2932 to preserve nesting. */
2933 {
2934 tree end, sentry, begin;
2935
2936 begin = get_target_expr (boolean_true_node);
2937 CLEANUP_EH_ONLY (begin) = 1;
2938
2939 sentry = TARGET_EXPR_SLOT (begin);
2940
2941 /* CLEANUP is compiler-generated, so no diagnostics. */
2942 TREE_NO_WARNING (cleanup) = true;
2943
2944 TARGET_EXPR_CLEANUP (begin)
2945 = build3 (COND_EXPR, void_type_node, sentry,
2946 cleanup, void_node);
2947
2948 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2949 sentry, boolean_false_node);
2950
2951 init_expr
2952 = build2 (COMPOUND_EXPR, void_type_node, begin,
2953 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2954 end));
2955 /* Likewise, this is compiler-generated. */
2956 TREE_NO_WARNING (init_expr) = true;
2957 }
2958 }
2959 }
2960 else
2961 init_expr = NULL_TREE;
2962
2963 /* Now build up the return value in reverse order. */
2964
2965 rval = data_addr;
2966
2967 if (init_expr)
2968 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2969 if (cookie_expr)
2970 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2971
2972 if (rval == data_addr)
2973 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2974 and return the call (which doesn't need to be adjusted). */
2975 rval = TARGET_EXPR_INITIAL (alloc_expr);
2976 else
2977 {
2978 if (check_new)
2979 {
2980 tree ifexp = cp_build_binary_op (input_location,
2981 NE_EXPR, alloc_node,
2982 nullptr_node,
2983 complain);
2984 rval = build_conditional_expr (input_location, ifexp, rval,
2985 alloc_node, complain);
2986 }
2987
2988 /* Perform the allocation before anything else, so that ALLOC_NODE
2989 has been initialized before we start using it. */
2990 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2991 }
2992
2993 if (init_preeval_expr)
2994 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2995
2996 /* A new-expression is never an lvalue. */
2997 gcc_assert (!lvalue_p (rval));
2998
2999 return convert (pointer_type, rval);
3000 }
3001
3002 /* Generate a representation for a C++ "new" expression. *PLACEMENT
3003 is a vector of placement-new arguments (or NULL if none). If NELTS
3004 is NULL, TYPE is the type of the storage to be allocated. If NELTS
3005 is not NULL, then this is an array-new allocation; TYPE is the type
3006 of the elements in the array and NELTS is the number of elements in
3007 the array. *INIT, if non-NULL, is the initializer for the new
3008 object, or an empty vector to indicate an initializer of "()". If
3009 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3010 rather than just "new". This may change PLACEMENT and INIT. */
3011
3012 tree
3013 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
3014 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
3015 {
3016 tree rval;
3017 vec<tree, va_gc> *orig_placement = NULL;
3018 tree orig_nelts = NULL_TREE;
3019 vec<tree, va_gc> *orig_init = NULL;
3020
3021 if (type == error_mark_node)
3022 return error_mark_node;
3023
3024 if (nelts == NULL_TREE && vec_safe_length (*init) == 1
3025 /* Don't do auto deduction where it might affect mangling. */
3026 && (!processing_template_decl || at_function_scope_p ()))
3027 {
3028 tree auto_node = type_uses_auto (type);
3029 if (auto_node)
3030 {
3031 tree d_init = (**init)[0];
3032 d_init = resolve_nondeduced_context (d_init);
3033 type = do_auto_deduction (type, d_init, auto_node);
3034 }
3035 }
3036
3037 if (processing_template_decl)
3038 {
3039 if (dependent_type_p (type)
3040 || any_type_dependent_arguments_p (*placement)
3041 || (nelts && type_dependent_expression_p (nelts))
3042 || (nelts && *init)
3043 || any_type_dependent_arguments_p (*init))
3044 return build_raw_new_expr (*placement, type, nelts, *init,
3045 use_global_new);
3046
3047 orig_placement = make_tree_vector_copy (*placement);
3048 orig_nelts = nelts;
3049 if (*init)
3050 orig_init = make_tree_vector_copy (*init);
3051
3052 make_args_non_dependent (*placement);
3053 if (nelts)
3054 nelts = build_non_dependent_expr (nelts);
3055 make_args_non_dependent (*init);
3056 }
3057
3058 if (nelts)
3059 {
3060 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3061 {
3062 if (complain & tf_error)
3063 permerror (input_location, "size in array new must have integral type");
3064 else
3065 return error_mark_node;
3066 }
3067 nelts = mark_rvalue_use (nelts);
3068 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3069 }
3070
3071 /* ``A reference cannot be created by the new operator. A reference
3072 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3073 returned by new.'' ARM 5.3.3 */
3074 if (TREE_CODE (type) == REFERENCE_TYPE)
3075 {
3076 if (complain & tf_error)
3077 error ("new cannot be applied to a reference type");
3078 else
3079 return error_mark_node;
3080 type = TREE_TYPE (type);
3081 }
3082
3083 if (TREE_CODE (type) == FUNCTION_TYPE)
3084 {
3085 if (complain & tf_error)
3086 error ("new cannot be applied to a function type");
3087 return error_mark_node;
3088 }
3089
3090 /* The type allocated must be complete. If the new-type-id was
3091 "T[N]" then we are just checking that "T" is complete here, but
3092 that is equivalent, since the value of "N" doesn't matter. */
3093 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3094 return error_mark_node;
3095
3096 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3097 if (rval == error_mark_node)
3098 return error_mark_node;
3099
3100 if (processing_template_decl)
3101 {
3102 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3103 orig_init, use_global_new);
3104 release_tree_vector (orig_placement);
3105 release_tree_vector (orig_init);
3106 return ret;
3107 }
3108
3109 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3110 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3111 TREE_NO_WARNING (rval) = 1;
3112
3113 return rval;
3114 }
3115
3116 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
3117
3118 tree
3119 build_java_class_ref (tree type)
3120 {
3121 tree name = NULL_TREE, class_decl;
3122 static tree CL_suffix = NULL_TREE;
3123 if (CL_suffix == NULL_TREE)
3124 CL_suffix = get_identifier("class$");
3125 if (jclass_node == NULL_TREE)
3126 {
3127 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
3128 if (jclass_node == NULL_TREE)
3129 {
3130 error ("call to Java constructor, while %<jclass%> undefined");
3131 return error_mark_node;
3132 }
3133 jclass_node = TREE_TYPE (jclass_node);
3134 }
3135
3136 /* Mangle the class$ field. */
3137 {
3138 tree field;
3139 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3140 if (DECL_NAME (field) == CL_suffix)
3141 {
3142 mangle_decl (field);
3143 name = DECL_ASSEMBLER_NAME (field);
3144 break;
3145 }
3146 if (!field)
3147 {
3148 error ("can%'t find %<class$%> in %qT", type);
3149 return error_mark_node;
3150 }
3151 }
3152
3153 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
3154 if (class_decl == NULL_TREE)
3155 {
3156 class_decl = build_decl (input_location,
3157 VAR_DECL, name, TREE_TYPE (jclass_node));
3158 TREE_STATIC (class_decl) = 1;
3159 DECL_EXTERNAL (class_decl) = 1;
3160 TREE_PUBLIC (class_decl) = 1;
3161 DECL_ARTIFICIAL (class_decl) = 1;
3162 DECL_IGNORED_P (class_decl) = 1;
3163 pushdecl_top_level (class_decl);
3164 make_decl_rtl (class_decl);
3165 }
3166 return class_decl;
3167 }
3168 \f
3169 static tree
3170 build_vec_delete_1 (tree base, tree maxindex, tree type,
3171 special_function_kind auto_delete_vec,
3172 int use_global_delete, tsubst_flags_t complain)
3173 {
3174 tree virtual_size;
3175 tree ptype = build_pointer_type (type = complete_type (type));
3176 tree size_exp;
3177
3178 /* Temporary variables used by the loop. */
3179 tree tbase, tbase_init;
3180
3181 /* This is the body of the loop that implements the deletion of a
3182 single element, and moves temp variables to next elements. */
3183 tree body;
3184
3185 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3186 tree loop = 0;
3187
3188 /* This is the thing that governs what to do after the loop has run. */
3189 tree deallocate_expr = 0;
3190
3191 /* This is the BIND_EXPR which holds the outermost iterator of the
3192 loop. It is convenient to set this variable up and test it before
3193 executing any other code in the loop.
3194 This is also the containing expression returned by this function. */
3195 tree controller = NULL_TREE;
3196 tree tmp;
3197
3198 /* We should only have 1-D arrays here. */
3199 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3200
3201 if (base == error_mark_node || maxindex == error_mark_node)
3202 return error_mark_node;
3203
3204 if (!COMPLETE_TYPE_P (type))
3205 {
3206 if ((complain & tf_warning)
3207 && warning (OPT_Wdelete_incomplete,
3208 "possible problem detected in invocation of "
3209 "delete [] operator:"))
3210 {
3211 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3212 inform (input_location, "neither the destructor nor the "
3213 "class-specific operator delete [] will be called, "
3214 "even if they are declared when the class is defined");
3215 }
3216 /* This size won't actually be used. */
3217 size_exp = size_one_node;
3218 goto no_destructor;
3219 }
3220
3221 size_exp = size_in_bytes (type);
3222
3223 if (! MAYBE_CLASS_TYPE_P (type))
3224 goto no_destructor;
3225 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3226 {
3227 /* Make sure the destructor is callable. */
3228 if (type_build_dtor_call (type))
3229 {
3230 tmp = build_delete (ptype, base, sfk_complete_destructor,
3231 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3232 complain);
3233 if (tmp == error_mark_node)
3234 return error_mark_node;
3235 }
3236 goto no_destructor;
3237 }
3238
3239 /* The below is short by the cookie size. */
3240 virtual_size = size_binop (MULT_EXPR, size_exp,
3241 convert (sizetype, maxindex));
3242
3243 tbase = create_temporary_var (ptype);
3244 tbase_init
3245 = cp_build_modify_expr (tbase, NOP_EXPR,
3246 fold_build_pointer_plus_loc (input_location,
3247 fold_convert (ptype,
3248 base),
3249 virtual_size),
3250 complain);
3251 if (tbase_init == error_mark_node)
3252 return error_mark_node;
3253 controller = build3 (BIND_EXPR, void_type_node, tbase,
3254 NULL_TREE, NULL_TREE);
3255 TREE_SIDE_EFFECTS (controller) = 1;
3256
3257 body = build1 (EXIT_EXPR, void_type_node,
3258 build2 (EQ_EXPR, boolean_type_node, tbase,
3259 fold_convert (ptype, base)));
3260 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3261 tmp = fold_build_pointer_plus (tbase, tmp);
3262 tmp = cp_build_modify_expr (tbase, NOP_EXPR, tmp, complain);
3263 if (tmp == error_mark_node)
3264 return error_mark_node;
3265 body = build_compound_expr (input_location, body, tmp);
3266 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3267 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3268 complain);
3269 if (tmp == error_mark_node)
3270 return error_mark_node;
3271 body = build_compound_expr (input_location, body, tmp);
3272
3273 loop = build1 (LOOP_EXPR, void_type_node, body);
3274 loop = build_compound_expr (input_location, tbase_init, loop);
3275
3276 no_destructor:
3277 /* Delete the storage if appropriate. */
3278 if (auto_delete_vec == sfk_deleting_destructor)
3279 {
3280 tree base_tbd;
3281
3282 /* The below is short by the cookie size. */
3283 virtual_size = size_binop (MULT_EXPR, size_exp,
3284 convert (sizetype, maxindex));
3285
3286 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3287 /* no header */
3288 base_tbd = base;
3289 else
3290 {
3291 tree cookie_size;
3292
3293 cookie_size = targetm.cxx.get_cookie_size (type);
3294 base_tbd = cp_build_binary_op (input_location,
3295 MINUS_EXPR,
3296 cp_convert (string_type_node,
3297 base, complain),
3298 cookie_size,
3299 complain);
3300 if (base_tbd == error_mark_node)
3301 return error_mark_node;
3302 base_tbd = cp_convert (ptype, base_tbd, complain);
3303 /* True size with header. */
3304 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3305 }
3306
3307 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3308 base_tbd, virtual_size,
3309 use_global_delete & 1,
3310 /*placement=*/NULL_TREE,
3311 /*alloc_fn=*/NULL_TREE,
3312 complain);
3313 }
3314
3315 body = loop;
3316 if (!deallocate_expr)
3317 ;
3318 else if (!body)
3319 body = deallocate_expr;
3320 else
3321 body = build_compound_expr (input_location, body, deallocate_expr);
3322
3323 if (!body)
3324 body = integer_zero_node;
3325
3326 /* Outermost wrapper: If pointer is null, punt. */
3327 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
3328 fold_build2_loc (input_location,
3329 NE_EXPR, boolean_type_node, base,
3330 convert (TREE_TYPE (base),
3331 nullptr_node)),
3332 body, integer_zero_node);
3333 body = build1 (NOP_EXPR, void_type_node, body);
3334
3335 if (controller)
3336 {
3337 TREE_OPERAND (controller, 1) = body;
3338 body = controller;
3339 }
3340
3341 if (TREE_CODE (base) == SAVE_EXPR)
3342 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3343 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3344
3345 return convert_to_void (body, ICV_CAST, complain);
3346 }
3347
3348 /* Create an unnamed variable of the indicated TYPE. */
3349
3350 tree
3351 create_temporary_var (tree type)
3352 {
3353 tree decl;
3354
3355 decl = build_decl (input_location,
3356 VAR_DECL, NULL_TREE, type);
3357 TREE_USED (decl) = 1;
3358 DECL_ARTIFICIAL (decl) = 1;
3359 DECL_IGNORED_P (decl) = 1;
3360 DECL_CONTEXT (decl) = current_function_decl;
3361
3362 return decl;
3363 }
3364
3365 /* Create a new temporary variable of the indicated TYPE, initialized
3366 to INIT.
3367
3368 It is not entered into current_binding_level, because that breaks
3369 things when it comes time to do final cleanups (which take place
3370 "outside" the binding contour of the function). */
3371
3372 tree
3373 get_temp_regvar (tree type, tree init)
3374 {
3375 tree decl;
3376
3377 decl = create_temporary_var (type);
3378 add_decl_expr (decl);
3379
3380 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
3381 tf_warning_or_error));
3382
3383 return decl;
3384 }
3385
3386 /* Subroutine of build_vec_init. Returns true if assigning to an array of
3387 INNER_ELT_TYPE from INIT is trivial. */
3388
3389 static bool
3390 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
3391 {
3392 tree fromtype = inner_elt_type;
3393 if (real_lvalue_p (init))
3394 fromtype = cp_build_reference_type (fromtype, /*rval*/false);
3395 return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
3396 }
3397
3398 /* `build_vec_init' returns tree structure that performs
3399 initialization of a vector of aggregate types.
3400
3401 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3402 to the first element, of POINTER_TYPE.
3403 MAXINDEX is the maximum index of the array (one less than the
3404 number of elements). It is only used if BASE is a pointer or
3405 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3406
3407 INIT is the (possibly NULL) initializer.
3408
3409 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3410 elements in the array are value-initialized.
3411
3412 FROM_ARRAY is 0 if we should init everything with INIT
3413 (i.e., every element initialized from INIT).
3414 FROM_ARRAY is 1 if we should index into INIT in parallel
3415 with initialization of DECL.
3416 FROM_ARRAY is 2 if we should index into INIT in parallel,
3417 but use assignment instead of initialization. */
3418
3419 tree
3420 build_vec_init (tree base, tree maxindex, tree init,
3421 bool explicit_value_init_p,
3422 int from_array, tsubst_flags_t complain)
3423 {
3424 tree rval;
3425 tree base2 = NULL_TREE;
3426 tree itype = NULL_TREE;
3427 tree iterator;
3428 /* The type of BASE. */
3429 tree atype = TREE_TYPE (base);
3430 /* The type of an element in the array. */
3431 tree type = TREE_TYPE (atype);
3432 /* The element type reached after removing all outer array
3433 types. */
3434 tree inner_elt_type;
3435 /* The type of a pointer to an element in the array. */
3436 tree ptype;
3437 tree stmt_expr;
3438 tree compound_stmt;
3439 int destroy_temps;
3440 tree try_block = NULL_TREE;
3441 int num_initialized_elts = 0;
3442 bool is_global;
3443 tree obase = base;
3444 bool xvalue = false;
3445 bool errors = false;
3446
3447 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3448 maxindex = array_type_nelts (atype);
3449
3450 if (maxindex == NULL_TREE || maxindex == error_mark_node)
3451 return error_mark_node;
3452
3453 if (explicit_value_init_p)
3454 gcc_assert (!init);
3455
3456 inner_elt_type = strip_array_types (type);
3457
3458 /* Look through the TARGET_EXPR around a compound literal. */
3459 if (init && TREE_CODE (init) == TARGET_EXPR
3460 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3461 && from_array != 2)
3462 init = TARGET_EXPR_INITIAL (init);
3463
3464 /* If we have a braced-init-list, make sure that the array
3465 is big enough for all the initializers. */
3466 bool length_check = (init && TREE_CODE (init) == CONSTRUCTOR
3467 && CONSTRUCTOR_NELTS (init) > 0
3468 && !TREE_CONSTANT (maxindex));
3469
3470 if (init
3471 && TREE_CODE (atype) == ARRAY_TYPE
3472 && TREE_CONSTANT (maxindex)
3473 && (from_array == 2
3474 ? vec_copy_assign_is_trivial (inner_elt_type, init)
3475 : !TYPE_NEEDS_CONSTRUCTING (type))
3476 && ((TREE_CODE (init) == CONSTRUCTOR
3477 /* Don't do this if the CONSTRUCTOR might contain something
3478 that might throw and require us to clean up. */
3479 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
3480 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3481 || from_array))
3482 {
3483 /* Do non-default initialization of trivial arrays resulting from
3484 brace-enclosed initializers. In this case, digest_init and
3485 store_constructor will handle the semantics for us. */
3486
3487 if (BRACE_ENCLOSED_INITIALIZER_P (init))
3488 init = digest_init (atype, init, complain);
3489 stmt_expr = build2 (INIT_EXPR, atype, base, init);
3490 return stmt_expr;
3491 }
3492
3493 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
3494 if (TREE_CODE (atype) == ARRAY_TYPE)
3495 {
3496 ptype = build_pointer_type (type);
3497 base = decay_conversion (base, complain);
3498 if (base == error_mark_node)
3499 return error_mark_node;
3500 base = cp_convert (ptype, base, complain);
3501 }
3502 else
3503 ptype = atype;
3504
3505 /* The code we are generating looks like:
3506 ({
3507 T* t1 = (T*) base;
3508 T* rval = t1;
3509 ptrdiff_t iterator = maxindex;
3510 try {
3511 for (; iterator != -1; --iterator) {
3512 ... initialize *t1 ...
3513 ++t1;
3514 }
3515 } catch (...) {
3516 ... destroy elements that were constructed ...
3517 }
3518 rval;
3519 })
3520
3521 We can omit the try and catch blocks if we know that the
3522 initialization will never throw an exception, or if the array
3523 elements do not have destructors. We can omit the loop completely if
3524 the elements of the array do not have constructors.
3525
3526 We actually wrap the entire body of the above in a STMT_EXPR, for
3527 tidiness.
3528
3529 When copying from array to another, when the array elements have
3530 only trivial copy constructors, we should use __builtin_memcpy
3531 rather than generating a loop. That way, we could take advantage
3532 of whatever cleverness the back end has for dealing with copies
3533 of blocks of memory. */
3534
3535 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3536 destroy_temps = stmts_are_full_exprs_p ();
3537 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3538 rval = get_temp_regvar (ptype, base);
3539 base = get_temp_regvar (ptype, rval);
3540 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3541
3542 /* If initializing one array from another, initialize element by
3543 element. We rely upon the below calls to do the argument
3544 checking. Evaluate the initializer before entering the try block. */
3545 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3546 {
3547 if (lvalue_kind (init) & clk_rvalueref)
3548 xvalue = true;
3549 base2 = decay_conversion (init, complain);
3550 if (base2 == error_mark_node)
3551 return error_mark_node;
3552 itype = TREE_TYPE (base2);
3553 base2 = get_temp_regvar (itype, base2);
3554 itype = TREE_TYPE (itype);
3555 }
3556
3557 /* Protect the entire array initialization so that we can destroy
3558 the partially constructed array if an exception is thrown.
3559 But don't do this if we're assigning. */
3560 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3561 && from_array != 2)
3562 {
3563 try_block = begin_try_block ();
3564 }
3565
3566 /* Should we try to create a constant initializer? */
3567 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
3568 && TREE_CONSTANT (maxindex)
3569 && (init ? TREE_CODE (init) == CONSTRUCTOR
3570 : (type_has_constexpr_default_constructor
3571 (inner_elt_type)))
3572 && (literal_type_p (inner_elt_type)
3573 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
3574 vec<constructor_elt, va_gc> *const_vec = NULL;
3575 bool saw_non_const = false;
3576 /* If we're initializing a static array, we want to do static
3577 initialization of any elements with constant initializers even if
3578 some are non-constant. */
3579 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3580
3581 bool empty_list = false;
3582 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
3583 && CONSTRUCTOR_NELTS (init) == 0)
3584 /* Skip over the handling of non-empty init lists. */
3585 empty_list = true;
3586
3587 /* Maybe pull out constant value when from_array? */
3588
3589 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3590 {
3591 /* Do non-default initialization of non-trivial arrays resulting from
3592 brace-enclosed initializers. */
3593 unsigned HOST_WIDE_INT idx;
3594 tree field, elt;
3595 /* If the constructor already has the array type, it's been through
3596 digest_init, so we shouldn't try to do anything more. */
3597 bool digested = same_type_p (atype, TREE_TYPE (init));
3598 from_array = 0;
3599
3600 if (length_check)
3601 {
3602 tree nelts = size_int (CONSTRUCTOR_NELTS (init) - 1);
3603 if (TREE_CODE (atype) != ARRAY_TYPE)
3604 {
3605 if (flag_exceptions)
3606 {
3607 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
3608 nelts);
3609 c = build3 (COND_EXPR, void_type_node, c,
3610 throw_bad_array_new_length (), void_node);
3611 finish_expr_stmt (c);
3612 }
3613 /* Don't check an array new when -fno-exceptions. */
3614 }
3615 else if (flag_sanitize & SANITIZE_BOUNDS
3616 && do_ubsan_in_current_function ())
3617 {
3618 /* Make sure the last element of the initializer is in bounds. */
3619 finish_expr_stmt
3620 (ubsan_instrument_bounds
3621 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
3622 }
3623 }
3624
3625 if (try_const)
3626 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
3627
3628 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
3629 {
3630 tree baseref = build1 (INDIRECT_REF, type, base);
3631 tree one_init;
3632
3633 num_initialized_elts++;
3634
3635 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3636 if (digested)
3637 one_init = build2 (INIT_EXPR, type, baseref, elt);
3638 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
3639 one_init = build_aggr_init (baseref, elt, 0, complain);
3640 else
3641 one_init = cp_build_modify_expr (baseref, NOP_EXPR,
3642 elt, complain);
3643 if (one_init == error_mark_node)
3644 errors = true;
3645 if (try_const)
3646 {
3647 tree e = maybe_constant_init (one_init);
3648 if (reduced_constant_expression_p (e))
3649 {
3650 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
3651 if (do_static_init)
3652 one_init = NULL_TREE;
3653 else
3654 one_init = build2 (INIT_EXPR, type, baseref, e);
3655 }
3656 else
3657 {
3658 if (do_static_init)
3659 {
3660 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
3661 true);
3662 if (value)
3663 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
3664 }
3665 saw_non_const = true;
3666 }
3667 }
3668
3669 if (one_init)
3670 finish_expr_stmt (one_init);
3671 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3672
3673 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain);
3674 if (one_init == error_mark_node)
3675 errors = true;
3676 else
3677 finish_expr_stmt (one_init);
3678
3679 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3680 complain);
3681 if (one_init == error_mark_node)
3682 errors = true;
3683 else
3684 finish_expr_stmt (one_init);
3685 }
3686
3687 /* Any elements without explicit initializers get T{}. */
3688 empty_list = true;
3689 }
3690 else if (from_array)
3691 {
3692 if (init)
3693 /* OK, we set base2 above. */;
3694 else if (CLASS_TYPE_P (type)
3695 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
3696 {
3697 if (complain & tf_error)
3698 error ("initializer ends prematurely");
3699 errors = true;
3700 }
3701 }
3702
3703 /* Now, default-initialize any remaining elements. We don't need to
3704 do that if a) the type does not need constructing, or b) we've
3705 already initialized all the elements.
3706
3707 We do need to keep going if we're copying an array. */
3708
3709 if (try_const && !init)
3710 /* With a constexpr default constructor, which we checked for when
3711 setting try_const above, default-initialization is equivalent to
3712 value-initialization, and build_value_init gives us something more
3713 friendly to maybe_constant_init. */
3714 explicit_value_init_p = true;
3715 if (from_array
3716 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
3717 && ! (tree_fits_shwi_p (maxindex)
3718 && (num_initialized_elts
3719 == tree_to_shwi (maxindex) + 1))))
3720 {
3721 /* If the ITERATOR is equal to -1, then we don't have to loop;
3722 we've already initialized all the elements. */
3723 tree for_stmt;
3724 tree elt_init;
3725 tree to;
3726
3727 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
3728 finish_for_init_stmt (for_stmt);
3729 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
3730 build_int_cst (TREE_TYPE (iterator), -1)),
3731 for_stmt, false);
3732 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3733 complain);
3734 if (elt_init == error_mark_node)
3735 errors = true;
3736 finish_for_expr (elt_init, for_stmt);
3737
3738 to = build1 (INDIRECT_REF, type, base);
3739
3740 /* If the initializer is {}, then all elements are initialized from T{}.
3741 But for non-classes, that's the same as value-initialization. */
3742 if (empty_list)
3743 {
3744 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
3745 {
3746 init = build_constructor (init_list_type_node, NULL);
3747 }
3748 else
3749 {
3750 init = NULL_TREE;
3751 explicit_value_init_p = true;
3752 }
3753 }
3754
3755 if (from_array)
3756 {
3757 tree from;
3758
3759 if (base2)
3760 {
3761 from = build1 (INDIRECT_REF, itype, base2);
3762 if (xvalue)
3763 from = move (from);
3764 }
3765 else
3766 from = NULL_TREE;
3767
3768 if (from_array == 2)
3769 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3770 complain);
3771 else if (type_build_ctor_call (type))
3772 elt_init = build_aggr_init (to, from, 0, complain);
3773 else if (from)
3774 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3775 complain);
3776 else
3777 gcc_unreachable ();
3778 }
3779 else if (TREE_CODE (type) == ARRAY_TYPE)
3780 {
3781 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
3782 sorry
3783 ("cannot initialize multi-dimensional array with initializer");
3784 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3785 0, init,
3786 explicit_value_init_p,
3787 0, complain);
3788 }
3789 else if (explicit_value_init_p)
3790 {
3791 elt_init = build_value_init (type, complain);
3792 if (elt_init != error_mark_node)
3793 elt_init = build2 (INIT_EXPR, type, to, elt_init);
3794 }
3795 else
3796 {
3797 gcc_assert (type_build_ctor_call (type) || init);
3798 if (CLASS_TYPE_P (type))
3799 elt_init = build_aggr_init (to, init, 0, complain);
3800 else
3801 {
3802 if (TREE_CODE (init) == TREE_LIST)
3803 init = build_x_compound_expr_from_list (init, ELK_INIT,
3804 complain);
3805 elt_init = build2 (INIT_EXPR, type, to, init);
3806 }
3807 }
3808
3809 if (elt_init == error_mark_node)
3810 errors = true;
3811
3812 if (try_const)
3813 {
3814 /* FIXME refs to earlier elts */
3815 tree e = maybe_constant_init (elt_init);
3816 if (reduced_constant_expression_p (e))
3817 {
3818 if (initializer_zerop (e))
3819 /* Don't fill the CONSTRUCTOR with zeros. */
3820 e = NULL_TREE;
3821 if (do_static_init)
3822 elt_init = NULL_TREE;
3823 }
3824 else
3825 {
3826 saw_non_const = true;
3827 if (do_static_init)
3828 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
3829 else
3830 e = NULL_TREE;
3831 }
3832
3833 if (e)
3834 {
3835 int max = tree_to_shwi (maxindex)+1;
3836 for (; num_initialized_elts < max; ++num_initialized_elts)
3837 {
3838 tree field = size_int (num_initialized_elts);
3839 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
3840 }
3841 }
3842 }
3843
3844 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3845 if (elt_init)
3846 finish_expr_stmt (elt_init);
3847 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3848
3849 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3850 complain));
3851 if (base2)
3852 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3853 complain));
3854
3855 finish_for_stmt (for_stmt);
3856 }
3857
3858 /* Make sure to cleanup any partially constructed elements. */
3859 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3860 && from_array != 2)
3861 {
3862 tree e;
3863 tree m = cp_build_binary_op (input_location,
3864 MINUS_EXPR, maxindex, iterator,
3865 complain);
3866
3867 /* Flatten multi-dimensional array since build_vec_delete only
3868 expects one-dimensional array. */
3869 if (TREE_CODE (type) == ARRAY_TYPE)
3870 m = cp_build_binary_op (input_location,
3871 MULT_EXPR, m,
3872 /* Avoid mixing signed and unsigned. */
3873 convert (TREE_TYPE (m),
3874 array_type_nelts_total (type)),
3875 complain);
3876
3877 finish_cleanup_try_block (try_block);
3878 e = build_vec_delete_1 (rval, m,
3879 inner_elt_type, sfk_complete_destructor,
3880 /*use_global_delete=*/0, complain);
3881 if (e == error_mark_node)
3882 errors = true;
3883 finish_cleanup (e, try_block);
3884 }
3885
3886 /* The value of the array initialization is the array itself, RVAL
3887 is a pointer to the first element. */
3888 finish_stmt_expr_expr (rval, stmt_expr);
3889
3890 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3891
3892 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3893
3894 if (errors)
3895 return error_mark_node;
3896
3897 if (try_const)
3898 {
3899 if (!saw_non_const)
3900 {
3901 tree const_init = build_constructor (atype, const_vec);
3902 return build2 (INIT_EXPR, atype, obase, const_init);
3903 }
3904 else if (do_static_init && !vec_safe_is_empty (const_vec))
3905 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
3906 else
3907 vec_free (const_vec);
3908 }
3909
3910 /* Now make the result have the correct type. */
3911 if (TREE_CODE (atype) == ARRAY_TYPE)
3912 {
3913 atype = build_pointer_type (atype);
3914 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3915 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3916 TREE_NO_WARNING (stmt_expr) = 1;
3917 }
3918
3919 return stmt_expr;
3920 }
3921
3922 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3923 build_delete. */
3924
3925 static tree
3926 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
3927 tsubst_flags_t complain)
3928 {
3929 tree name;
3930 tree fn;
3931 switch (dtor_kind)
3932 {
3933 case sfk_complete_destructor:
3934 name = complete_dtor_identifier;
3935 break;
3936
3937 case sfk_base_destructor:
3938 name = base_dtor_identifier;
3939 break;
3940
3941 case sfk_deleting_destructor:
3942 name = deleting_dtor_identifier;
3943 break;
3944
3945 default:
3946 gcc_unreachable ();
3947 }
3948 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3949 return build_new_method_call (exp, fn,
3950 /*args=*/NULL,
3951 /*conversion_path=*/NULL_TREE,
3952 flags,
3953 /*fn_p=*/NULL,
3954 complain);
3955 }
3956
3957 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3958 ADDR is an expression which yields the store to be destroyed.
3959 AUTO_DELETE is the name of the destructor to call, i.e., either
3960 sfk_complete_destructor, sfk_base_destructor, or
3961 sfk_deleting_destructor.
3962
3963 FLAGS is the logical disjunction of zero or more LOOKUP_
3964 flags. See cp-tree.h for more info. */
3965
3966 tree
3967 build_delete (tree otype, tree addr, special_function_kind auto_delete,
3968 int flags, int use_global_delete, tsubst_flags_t complain)
3969 {
3970 tree expr;
3971
3972 if (addr == error_mark_node)
3973 return error_mark_node;
3974
3975 tree type = TYPE_MAIN_VARIANT (otype);
3976
3977 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3978 set to `error_mark_node' before it gets properly cleaned up. */
3979 if (type == error_mark_node)
3980 return error_mark_node;
3981
3982 if (TREE_CODE (type) == POINTER_TYPE)
3983 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3984
3985 if (TREE_CODE (type) == ARRAY_TYPE)
3986 {
3987 if (TYPE_DOMAIN (type) == NULL_TREE)
3988 {
3989 if (complain & tf_error)
3990 error ("unknown array size in delete");
3991 return error_mark_node;
3992 }
3993 return build_vec_delete (addr, array_type_nelts (type),
3994 auto_delete, use_global_delete, complain);
3995 }
3996
3997 if (TYPE_PTR_P (otype))
3998 {
3999 addr = mark_rvalue_use (addr);
4000
4001 /* We don't want to warn about delete of void*, only other
4002 incomplete types. Deleting other incomplete types
4003 invokes undefined behavior, but it is not ill-formed, so
4004 compile to something that would even do The Right Thing
4005 (TM) should the type have a trivial dtor and no delete
4006 operator. */
4007 if (!VOID_TYPE_P (type))
4008 {
4009 complete_type (type);
4010 if (!COMPLETE_TYPE_P (type))
4011 {
4012 if ((complain & tf_warning)
4013 && warning (OPT_Wdelete_incomplete,
4014 "possible problem detected in invocation of "
4015 "delete operator:"))
4016 {
4017 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
4018 inform (input_location,
4019 "neither the destructor nor the class-specific "
4020 "operator delete will be called, even if they are "
4021 "declared when the class is defined");
4022 }
4023 }
4024 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
4025 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4026 && TYPE_POLYMORPHIC_P (type))
4027 {
4028 tree dtor;
4029 dtor = CLASSTYPE_DESTRUCTORS (type);
4030 if (!dtor || !DECL_VINDEX (dtor))
4031 {
4032 if (CLASSTYPE_PURE_VIRTUALS (type))
4033 warning (OPT_Wdelete_non_virtual_dtor,
4034 "deleting object of abstract class type %qT"
4035 " which has non-virtual destructor"
4036 " will cause undefined behaviour", type);
4037 else
4038 warning (OPT_Wdelete_non_virtual_dtor,
4039 "deleting object of polymorphic class type %qT"
4040 " which has non-virtual destructor"
4041 " might cause undefined behaviour", type);
4042 }
4043 }
4044 }
4045 if (TREE_SIDE_EFFECTS (addr))
4046 addr = save_expr (addr);
4047
4048 /* Throw away const and volatile on target type of addr. */
4049 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4050 }
4051 else
4052 {
4053 /* Don't check PROTECT here; leave that decision to the
4054 destructor. If the destructor is accessible, call it,
4055 else report error. */
4056 addr = cp_build_addr_expr (addr, complain);
4057 if (addr == error_mark_node)
4058 return error_mark_node;
4059 if (TREE_SIDE_EFFECTS (addr))
4060 addr = save_expr (addr);
4061
4062 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4063 }
4064
4065 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4066 {
4067 /* Make sure the destructor is callable. */
4068 if (type_build_dtor_call (type))
4069 {
4070 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
4071 complain),
4072 sfk_complete_destructor, flags, complain);
4073 if (expr == error_mark_node)
4074 return error_mark_node;
4075 }
4076
4077 if (auto_delete != sfk_deleting_destructor)
4078 return void_node;
4079
4080 return build_op_delete_call (DELETE_EXPR, addr,
4081 cxx_sizeof_nowarn (type),
4082 use_global_delete,
4083 /*placement=*/NULL_TREE,
4084 /*alloc_fn=*/NULL_TREE,
4085 complain);
4086 }
4087 else
4088 {
4089 tree head = NULL_TREE;
4090 tree do_delete = NULL_TREE;
4091 tree ifexp;
4092
4093 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4094 lazily_declare_fn (sfk_destructor, type);
4095
4096 /* For `::delete x', we must not use the deleting destructor
4097 since then we would not be sure to get the global `operator
4098 delete'. */
4099 if (use_global_delete && auto_delete == sfk_deleting_destructor)
4100 {
4101 /* We will use ADDR multiple times so we must save it. */
4102 addr = save_expr (addr);
4103 head = get_target_expr (build_headof (addr));
4104 /* Delete the object. */
4105 do_delete = build_op_delete_call (DELETE_EXPR,
4106 head,
4107 cxx_sizeof_nowarn (type),
4108 /*global_p=*/true,
4109 /*placement=*/NULL_TREE,
4110 /*alloc_fn=*/NULL_TREE,
4111 complain);
4112 /* Otherwise, treat this like a complete object destructor
4113 call. */
4114 auto_delete = sfk_complete_destructor;
4115 }
4116 /* If the destructor is non-virtual, there is no deleting
4117 variant. Instead, we must explicitly call the appropriate
4118 `operator delete' here. */
4119 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
4120 && auto_delete == sfk_deleting_destructor)
4121 {
4122 /* We will use ADDR multiple times so we must save it. */
4123 addr = save_expr (addr);
4124 /* Build the call. */
4125 do_delete = build_op_delete_call (DELETE_EXPR,
4126 addr,
4127 cxx_sizeof_nowarn (type),
4128 /*global_p=*/false,
4129 /*placement=*/NULL_TREE,
4130 /*alloc_fn=*/NULL_TREE,
4131 complain);
4132 /* Call the complete object destructor. */
4133 auto_delete = sfk_complete_destructor;
4134 }
4135 else if (auto_delete == sfk_deleting_destructor
4136 && TYPE_GETS_REG_DELETE (type))
4137 {
4138 /* Make sure we have access to the member op delete, even though
4139 we'll actually be calling it from the destructor. */
4140 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4141 /*global_p=*/false,
4142 /*placement=*/NULL_TREE,
4143 /*alloc_fn=*/NULL_TREE,
4144 complain);
4145 }
4146
4147 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4148 auto_delete, flags, complain);
4149 if (expr == error_mark_node)
4150 return error_mark_node;
4151 if (do_delete)
4152 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
4153
4154 /* We need to calculate this before the dtor changes the vptr. */
4155 if (head)
4156 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4157
4158 if (flags & LOOKUP_DESTRUCTOR)
4159 /* Explicit destructor call; don't check for null pointer. */
4160 ifexp = integer_one_node;
4161 else
4162 {
4163 /* Handle deleting a null pointer. */
4164 ifexp = fold (cp_build_binary_op (input_location,
4165 NE_EXPR, addr, nullptr_node,
4166 complain));
4167 if (ifexp == error_mark_node)
4168 return error_mark_node;
4169 }
4170
4171 if (ifexp != integer_one_node)
4172 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4173
4174 return expr;
4175 }
4176 }
4177
4178 /* At the beginning of a destructor, push cleanups that will call the
4179 destructors for our base classes and members.
4180
4181 Called from begin_destructor_body. */
4182
4183 void
4184 push_base_cleanups (void)
4185 {
4186 tree binfo, base_binfo;
4187 int i;
4188 tree member;
4189 tree expr;
4190 vec<tree, va_gc> *vbases;
4191
4192 /* Run destructors for all virtual baseclasses. */
4193 if (CLASSTYPE_VBASECLASSES (current_class_type))
4194 {
4195 tree cond = (condition_conversion
4196 (build2 (BIT_AND_EXPR, integer_type_node,
4197 current_in_charge_parm,
4198 integer_two_node)));
4199
4200 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4201 order, which is also the right order for pushing cleanups. */
4202 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4203 vec_safe_iterate (vbases, i, &base_binfo); i++)
4204 {
4205 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4206 {
4207 expr = build_special_member_call (current_class_ref,
4208 base_dtor_identifier,
4209 NULL,
4210 base_binfo,
4211 (LOOKUP_NORMAL
4212 | LOOKUP_NONVIRTUAL),
4213 tf_warning_or_error);
4214 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4215 {
4216 expr = build3 (COND_EXPR, void_type_node, cond,
4217 expr, void_node);
4218 finish_decl_cleanup (NULL_TREE, expr);
4219 }
4220 }
4221 }
4222 }
4223
4224 /* Take care of the remaining baseclasses. */
4225 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4226 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4227 {
4228 if (BINFO_VIRTUAL_P (base_binfo)
4229 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4230 continue;
4231
4232 expr = build_special_member_call (current_class_ref,
4233 base_dtor_identifier,
4234 NULL, base_binfo,
4235 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4236 tf_warning_or_error);
4237 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4238 finish_decl_cleanup (NULL_TREE, expr);
4239 }
4240
4241 /* Don't automatically destroy union members. */
4242 if (TREE_CODE (current_class_type) == UNION_TYPE)
4243 return;
4244
4245 for (member = TYPE_FIELDS (current_class_type); member;
4246 member = DECL_CHAIN (member))
4247 {
4248 tree this_type = TREE_TYPE (member);
4249 if (this_type == error_mark_node
4250 || TREE_CODE (member) != FIELD_DECL
4251 || DECL_ARTIFICIAL (member))
4252 continue;
4253 if (ANON_AGGR_TYPE_P (this_type))
4254 continue;
4255 if (type_build_dtor_call (this_type))
4256 {
4257 tree this_member = (build_class_member_access_expr
4258 (current_class_ref, member,
4259 /*access_path=*/NULL_TREE,
4260 /*preserve_reference=*/false,
4261 tf_warning_or_error));
4262 expr = build_delete (this_type, this_member,
4263 sfk_complete_destructor,
4264 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4265 0, tf_warning_or_error);
4266 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4267 finish_decl_cleanup (NULL_TREE, expr);
4268 }
4269 }
4270 }
4271
4272 /* Build a C++ vector delete expression.
4273 MAXINDEX is the number of elements to be deleted.
4274 ELT_SIZE is the nominal size of each element in the vector.
4275 BASE is the expression that should yield the store to be deleted.
4276 This function expands (or synthesizes) these calls itself.
4277 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4278
4279 This also calls delete for virtual baseclasses of elements of the vector.
4280
4281 Update: MAXINDEX is no longer needed. The size can be extracted from the
4282 start of the vector for pointers, and from the type for arrays. We still
4283 use MAXINDEX for arrays because it happens to already have one of the
4284 values we'd have to extract. (We could use MAXINDEX with pointers to
4285 confirm the size, and trap if the numbers differ; not clear that it'd
4286 be worth bothering.) */
4287
4288 tree
4289 build_vec_delete (tree base, tree maxindex,
4290 special_function_kind auto_delete_vec,
4291 int use_global_delete, tsubst_flags_t complain)
4292 {
4293 tree type;
4294 tree rval;
4295 tree base_init = NULL_TREE;
4296
4297 type = TREE_TYPE (base);
4298
4299 if (TYPE_PTR_P (type))
4300 {
4301 /* Step back one from start of vector, and read dimension. */
4302 tree cookie_addr;
4303 tree size_ptr_type = build_pointer_type (sizetype);
4304
4305 base = mark_rvalue_use (base);
4306 if (TREE_SIDE_EFFECTS (base))
4307 {
4308 base_init = get_target_expr (base);
4309 base = TARGET_EXPR_SLOT (base_init);
4310 }
4311 type = strip_array_types (TREE_TYPE (type));
4312 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4313 sizetype, TYPE_SIZE_UNIT (sizetype));
4314 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4315 cookie_addr);
4316 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4317 }
4318 else if (TREE_CODE (type) == ARRAY_TYPE)
4319 {
4320 /* Get the total number of things in the array, maxindex is a
4321 bad name. */
4322 maxindex = array_type_nelts_total (type);
4323 type = strip_array_types (type);
4324 base = decay_conversion (base, complain);
4325 if (base == error_mark_node)
4326 return error_mark_node;
4327 if (TREE_SIDE_EFFECTS (base))
4328 {
4329 base_init = get_target_expr (base);
4330 base = TARGET_EXPR_SLOT (base_init);
4331 }
4332 }
4333 else
4334 {
4335 if (base != error_mark_node && !(complain & tf_error))
4336 error ("type to vector delete is neither pointer or array type");
4337 return error_mark_node;
4338 }
4339
4340 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4341 use_global_delete, complain);
4342 if (base_init && rval != error_mark_node)
4343 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4344
4345 return rval;
4346 }