]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/init.c
Implement P0217R3 - C++17 structured bindings
[thirdparty/gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "target.h"
27 #include "cp-tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "gimplify.h"
31 #include "c-family/c-ubsan.h"
32
33 static bool begin_init_stmts (tree *, tree *);
34 static tree finish_init_stmts (bool, tree, tree);
35 static void construct_virtual_base (tree, tree);
36 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
37 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
38 static void perform_member_init (tree, tree);
39 static int member_init_ok_or_else (tree, tree, tree);
40 static void expand_virtual_init (tree, tree);
41 static tree sort_mem_initializers (tree, tree);
42 static tree initializing_context (tree);
43 static void expand_cleanup_for_base (tree, tree);
44 static tree dfs_initialize_vtbl_ptrs (tree, void *);
45 static tree build_field_list (tree, tree, int *);
46 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
47
48 /* We are about to generate some complex initialization code.
49 Conceptually, it is all a single expression. However, we may want
50 to include conditionals, loops, and other such statement-level
51 constructs. Therefore, we build the initialization code inside a
52 statement-expression. This function starts such an expression.
53 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
54 pass them back to finish_init_stmts when the expression is
55 complete. */
56
57 static bool
58 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
59 {
60 bool is_global = !building_stmt_list_p ();
61
62 *stmt_expr_p = begin_stmt_expr ();
63 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
64
65 return is_global;
66 }
67
68 /* Finish out the statement-expression begun by the previous call to
69 begin_init_stmts. Returns the statement-expression itself. */
70
71 static tree
72 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
73 {
74 finish_compound_stmt (compound_stmt);
75
76 stmt_expr = finish_stmt_expr (stmt_expr, true);
77
78 gcc_assert (!building_stmt_list_p () == is_global);
79
80 return stmt_expr;
81 }
82
83 /* Constructors */
84
85 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
86 which we want to initialize the vtable pointer for, DATA is
87 TREE_LIST whose TREE_VALUE is the this ptr expression. */
88
89 static tree
90 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
91 {
92 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
93 return dfs_skip_bases;
94
95 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
96 {
97 tree base_ptr = TREE_VALUE ((tree) data);
98
99 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
100 tf_warning_or_error);
101
102 expand_virtual_init (binfo, base_ptr);
103 }
104
105 return NULL_TREE;
106 }
107
108 /* Initialize all the vtable pointers in the object pointed to by
109 ADDR. */
110
111 void
112 initialize_vtbl_ptrs (tree addr)
113 {
114 tree list;
115 tree type;
116
117 type = TREE_TYPE (TREE_TYPE (addr));
118 list = build_tree_list (type, addr);
119
120 /* Walk through the hierarchy, initializing the vptr in each base
121 class. We do these in pre-order because we can't find the virtual
122 bases for a class until we've initialized the vtbl for that
123 class. */
124 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
125 }
126
127 /* Return an expression for the zero-initialization of an object with
128 type T. This expression will either be a constant (in the case
129 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
130 aggregate), or NULL (in the case that T does not require
131 initialization). In either case, the value can be used as
132 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
133 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
134 is the number of elements in the array. If STATIC_STORAGE_P is
135 TRUE, initializers are only generated for entities for which
136 zero-initialization does not simply mean filling the storage with
137 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
138 subfields with bit positions at or above that bit size shouldn't
139 be added. Note that this only works when the result is assigned
140 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
141 expand_assignment will end up clearing the full size of TYPE. */
142
143 static tree
144 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
145 tree field_size)
146 {
147 tree init = NULL_TREE;
148
149 /* [dcl.init]
150
151 To zero-initialize an object of type T means:
152
153 -- if T is a scalar type, the storage is set to the value of zero
154 converted to T.
155
156 -- if T is a non-union class type, the storage for each nonstatic
157 data member and each base-class subobject is zero-initialized.
158
159 -- if T is a union type, the storage for its first data member is
160 zero-initialized.
161
162 -- if T is an array type, the storage for each element is
163 zero-initialized.
164
165 -- if T is a reference type, no initialization is performed. */
166
167 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
168
169 if (type == error_mark_node)
170 ;
171 else if (static_storage_p && zero_init_p (type))
172 /* In order to save space, we do not explicitly build initializers
173 for items that do not need them. GCC's semantics are that
174 items with static storage duration that are not otherwise
175 initialized are initialized to zero. */
176 ;
177 else if (TYPE_PTR_OR_PTRMEM_P (type))
178 init = fold (convert (type, nullptr_node));
179 else if (SCALAR_TYPE_P (type))
180 init = fold (convert (type, integer_zero_node));
181 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
182 {
183 tree field;
184 vec<constructor_elt, va_gc> *v = NULL;
185
186 /* Iterate over the fields, building initializations. */
187 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
188 {
189 if (TREE_CODE (field) != FIELD_DECL)
190 continue;
191
192 if (TREE_TYPE (field) == error_mark_node)
193 continue;
194
195 /* Don't add virtual bases for base classes if they are beyond
196 the size of the current field, that means it is present
197 somewhere else in the object. */
198 if (field_size)
199 {
200 tree bitpos = bit_position (field);
201 if (TREE_CODE (bitpos) == INTEGER_CST
202 && !tree_int_cst_lt (bitpos, field_size))
203 continue;
204 }
205
206 /* Note that for class types there will be FIELD_DECLs
207 corresponding to base classes as well. Thus, iterating
208 over TYPE_FIELDs will result in correct initialization of
209 all of the subobjects. */
210 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
211 {
212 tree new_field_size
213 = (DECL_FIELD_IS_BASE (field)
214 && DECL_SIZE (field)
215 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
216 ? DECL_SIZE (field) : NULL_TREE;
217 tree value = build_zero_init_1 (TREE_TYPE (field),
218 /*nelts=*/NULL_TREE,
219 static_storage_p,
220 new_field_size);
221 if (value)
222 CONSTRUCTOR_APPEND_ELT(v, field, value);
223 }
224
225 /* For unions, only the first field is initialized. */
226 if (TREE_CODE (type) == UNION_TYPE)
227 break;
228 }
229
230 /* Build a constructor to contain the initializations. */
231 init = build_constructor (type, v);
232 }
233 else if (TREE_CODE (type) == ARRAY_TYPE)
234 {
235 tree max_index;
236 vec<constructor_elt, va_gc> *v = NULL;
237
238 /* Iterate over the array elements, building initializations. */
239 if (nelts)
240 max_index = fold_build2_loc (input_location,
241 MINUS_EXPR, TREE_TYPE (nelts),
242 nelts, integer_one_node);
243 else
244 max_index = array_type_nelts (type);
245
246 /* If we have an error_mark here, we should just return error mark
247 as we don't know the size of the array yet. */
248 if (max_index == error_mark_node)
249 return error_mark_node;
250 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
251
252 /* A zero-sized array, which is accepted as an extension, will
253 have an upper bound of -1. */
254 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
255 {
256 constructor_elt ce;
257
258 /* If this is a one element array, we just use a regular init. */
259 if (tree_int_cst_equal (size_zero_node, max_index))
260 ce.index = size_zero_node;
261 else
262 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
263 max_index);
264
265 ce.value = build_zero_init_1 (TREE_TYPE (type),
266 /*nelts=*/NULL_TREE,
267 static_storage_p, NULL_TREE);
268 if (ce.value)
269 {
270 vec_alloc (v, 1);
271 v->quick_push (ce);
272 }
273 }
274
275 /* Build a constructor to contain the initializations. */
276 init = build_constructor (type, v);
277 }
278 else if (VECTOR_TYPE_P (type))
279 init = build_zero_cst (type);
280 else
281 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
282
283 /* In all cases, the initializer is a constant. */
284 if (init)
285 TREE_CONSTANT (init) = 1;
286
287 return init;
288 }
289
290 /* Return an expression for the zero-initialization of an object with
291 type T. This expression will either be a constant (in the case
292 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
293 aggregate), or NULL (in the case that T does not require
294 initialization). In either case, the value can be used as
295 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
296 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
297 is the number of elements in the array. If STATIC_STORAGE_P is
298 TRUE, initializers are only generated for entities for which
299 zero-initialization does not simply mean filling the storage with
300 zero bytes. */
301
302 tree
303 build_zero_init (tree type, tree nelts, bool static_storage_p)
304 {
305 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
306 }
307
308 /* Return a suitable initializer for value-initializing an object of type
309 TYPE, as described in [dcl.init]. */
310
311 tree
312 build_value_init (tree type, tsubst_flags_t complain)
313 {
314 /* [dcl.init]
315
316 To value-initialize an object of type T means:
317
318 - if T is a class type (clause 9) with either no default constructor
319 (12.1) or a default constructor that is user-provided or deleted,
320 then the object is default-initialized;
321
322 - if T is a (possibly cv-qualified) class type without a user-provided
323 or deleted default constructor, then the object is zero-initialized
324 and the semantic constraints for default-initialization are checked,
325 and if T has a non-trivial default constructor, the object is
326 default-initialized;
327
328 - if T is an array type, then each element is value-initialized;
329
330 - otherwise, the object is zero-initialized.
331
332 A program that calls for default-initialization or
333 value-initialization of an entity of reference type is ill-formed. */
334
335 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
336 gcc_assert (!processing_template_decl
337 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
338
339 if (CLASS_TYPE_P (type)
340 && type_build_ctor_call (type))
341 {
342 tree ctor =
343 build_special_member_call (NULL_TREE, complete_ctor_identifier,
344 NULL, type, LOOKUP_NORMAL,
345 complain);
346 if (ctor == error_mark_node)
347 return ctor;
348 tree fn = NULL_TREE;
349 if (TREE_CODE (ctor) == CALL_EXPR)
350 fn = get_callee_fndecl (ctor);
351 ctor = build_aggr_init_expr (type, ctor);
352 if (fn && user_provided_p (fn))
353 return ctor;
354 else if (TYPE_HAS_COMPLEX_DFLT (type))
355 {
356 /* This is a class that needs constructing, but doesn't have
357 a user-provided constructor. So we need to zero-initialize
358 the object and then call the implicitly defined ctor.
359 This will be handled in simplify_aggr_init_expr. */
360 AGGR_INIT_ZERO_FIRST (ctor) = 1;
361 return ctor;
362 }
363 }
364
365 /* Discard any access checking during subobject initialization;
366 the checks are implied by the call to the ctor which we have
367 verified is OK (cpp0x/defaulted46.C). */
368 push_deferring_access_checks (dk_deferred);
369 tree r = build_value_init_noctor (type, complain);
370 pop_deferring_access_checks ();
371 return r;
372 }
373
374 /* Like build_value_init, but don't call the constructor for TYPE. Used
375 for base initializers. */
376
377 tree
378 build_value_init_noctor (tree type, tsubst_flags_t complain)
379 {
380 if (!COMPLETE_TYPE_P (type))
381 {
382 if (complain & tf_error)
383 error ("value-initialization of incomplete type %qT", type);
384 return error_mark_node;
385 }
386 /* FIXME the class and array cases should just use digest_init once it is
387 SFINAE-enabled. */
388 if (CLASS_TYPE_P (type))
389 {
390 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
391 || errorcount != 0);
392
393 if (TREE_CODE (type) != UNION_TYPE)
394 {
395 tree field;
396 vec<constructor_elt, va_gc> *v = NULL;
397
398 /* Iterate over the fields, building initializations. */
399 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
400 {
401 tree ftype, value;
402
403 if (TREE_CODE (field) != FIELD_DECL)
404 continue;
405
406 ftype = TREE_TYPE (field);
407
408 if (ftype == error_mark_node)
409 continue;
410
411 /* We could skip vfields and fields of types with
412 user-defined constructors, but I think that won't improve
413 performance at all; it should be simpler in general just
414 to zero out the entire object than try to only zero the
415 bits that actually need it. */
416
417 /* Note that for class types there will be FIELD_DECLs
418 corresponding to base classes as well. Thus, iterating
419 over TYPE_FIELDs will result in correct initialization of
420 all of the subobjects. */
421 value = build_value_init (ftype, complain);
422 value = maybe_constant_init (value);
423
424 if (value == error_mark_node)
425 return error_mark_node;
426
427 CONSTRUCTOR_APPEND_ELT(v, field, value);
428
429 /* We shouldn't have gotten here for anything that would need
430 non-trivial initialization, and gimplify_init_ctor_preeval
431 would need to be fixed to allow it. */
432 gcc_assert (TREE_CODE (value) != TARGET_EXPR
433 && TREE_CODE (value) != AGGR_INIT_EXPR);
434 }
435
436 /* Build a constructor to contain the zero- initializations. */
437 return build_constructor (type, v);
438 }
439 }
440 else if (TREE_CODE (type) == ARRAY_TYPE)
441 {
442 vec<constructor_elt, va_gc> *v = NULL;
443
444 /* Iterate over the array elements, building initializations. */
445 tree max_index = array_type_nelts (type);
446
447 /* If we have an error_mark here, we should just return error mark
448 as we don't know the size of the array yet. */
449 if (max_index == error_mark_node)
450 {
451 if (complain & tf_error)
452 error ("cannot value-initialize array of unknown bound %qT",
453 type);
454 return error_mark_node;
455 }
456 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
457
458 /* A zero-sized array, which is accepted as an extension, will
459 have an upper bound of -1. */
460 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
461 {
462 constructor_elt ce;
463
464 /* If this is a one element array, we just use a regular init. */
465 if (tree_int_cst_equal (size_zero_node, max_index))
466 ce.index = size_zero_node;
467 else
468 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
469
470 ce.value = build_value_init (TREE_TYPE (type), complain);
471 ce.value = maybe_constant_init (ce.value);
472 if (ce.value == error_mark_node)
473 return error_mark_node;
474
475 vec_alloc (v, 1);
476 v->quick_push (ce);
477
478 /* We shouldn't have gotten here for anything that would need
479 non-trivial initialization, and gimplify_init_ctor_preeval
480 would need to be fixed to allow it. */
481 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
482 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
483 }
484
485 /* Build a constructor to contain the initializations. */
486 return build_constructor (type, v);
487 }
488 else if (TREE_CODE (type) == FUNCTION_TYPE)
489 {
490 if (complain & tf_error)
491 error ("value-initialization of function type %qT", type);
492 return error_mark_node;
493 }
494 else if (TREE_CODE (type) == REFERENCE_TYPE)
495 {
496 if (complain & tf_error)
497 error ("value-initialization of reference type %qT", type);
498 return error_mark_node;
499 }
500
501 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
502 }
503
504 /* Initialize current class with INIT, a TREE_LIST of
505 arguments for a target constructor. If TREE_LIST is void_type_node,
506 an empty initializer list was given. */
507
508 static void
509 perform_target_ctor (tree init)
510 {
511 tree decl = current_class_ref;
512 tree type = current_class_type;
513
514 finish_expr_stmt (build_aggr_init (decl, init,
515 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
516 tf_warning_or_error));
517 if (type_build_dtor_call (type))
518 {
519 tree expr = build_delete (type, decl, sfk_complete_destructor,
520 LOOKUP_NORMAL
521 |LOOKUP_NONVIRTUAL
522 |LOOKUP_DESTRUCTOR,
523 0, tf_warning_or_error);
524 if (expr != error_mark_node
525 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
526 finish_eh_cleanup (expr);
527 }
528 }
529
530 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
531
532 tree
533 get_nsdmi (tree member, bool in_ctor)
534 {
535 tree init;
536 tree save_ccp = current_class_ptr;
537 tree save_ccr = current_class_ref;
538
539 if (!in_ctor)
540 {
541 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
542 refer to; constexpr evaluation knows what to do with it. */
543 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
544 current_class_ptr = build_address (current_class_ref);
545 }
546
547 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
548 {
549 init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
550 if (TREE_CODE (init) == DEFAULT_ARG)
551 goto unparsed;
552
553 /* Check recursive instantiation. */
554 if (DECL_INSTANTIATING_NSDMI_P (member))
555 {
556 error ("recursive instantiation of non-static data member "
557 "initializer for %qD", member);
558 init = error_mark_node;
559 }
560 else
561 {
562 DECL_INSTANTIATING_NSDMI_P (member) = 1;
563
564 /* Do deferred instantiation of the NSDMI. */
565 init = (tsubst_copy_and_build
566 (init, DECL_TI_ARGS (member),
567 tf_warning_or_error, member, /*function_p=*/false,
568 /*integral_constant_expression_p=*/false));
569 init = digest_nsdmi_init (member, init);
570
571 DECL_INSTANTIATING_NSDMI_P (member) = 0;
572 }
573 }
574 else
575 {
576 init = DECL_INITIAL (member);
577 if (init && TREE_CODE (init) == DEFAULT_ARG)
578 {
579 unparsed:
580 error ("constructor required before non-static data member "
581 "for %qD has been parsed", member);
582 DECL_INITIAL (member) = error_mark_node;
583 init = error_mark_node;
584 }
585 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
586 so the aggregate init code below will see a CONSTRUCTOR. */
587 bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init));
588 if (simple_target)
589 init = TARGET_EXPR_INITIAL (init);
590 init = break_out_target_exprs (init);
591 if (simple_target && TREE_CODE (init) != CONSTRUCTOR)
592 /* Now put it back so C++17 copy elision works. */
593 init = get_target_expr (init);
594 }
595 current_class_ptr = save_ccp;
596 current_class_ref = save_ccr;
597 return init;
598 }
599
600 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
601 arguments. If TREE_LIST is void_type_node, an empty initializer
602 list was given; if NULL_TREE no initializer was given. */
603
604 static void
605 perform_member_init (tree member, tree init)
606 {
607 tree decl;
608 tree type = TREE_TYPE (member);
609
610 /* Use the non-static data member initializer if there was no
611 mem-initializer for this field. */
612 if (init == NULL_TREE)
613 init = get_nsdmi (member, /*ctor*/true);
614
615 if (init == error_mark_node)
616 return;
617
618 /* Effective C++ rule 12 requires that all data members be
619 initialized. */
620 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
621 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
622 "%qD should be initialized in the member initialization list",
623 member);
624
625 /* Get an lvalue for the data member. */
626 decl = build_class_member_access_expr (current_class_ref, member,
627 /*access_path=*/NULL_TREE,
628 /*preserve_reference=*/true,
629 tf_warning_or_error);
630 if (decl == error_mark_node)
631 return;
632
633 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
634 && TREE_CHAIN (init) == NULL_TREE)
635 {
636 tree val = TREE_VALUE (init);
637 /* Handle references. */
638 if (REFERENCE_REF_P (val))
639 val = TREE_OPERAND (val, 0);
640 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
641 && TREE_OPERAND (val, 0) == current_class_ref)
642 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
643 OPT_Winit_self, "%qD is initialized with itself",
644 member);
645 }
646
647 if (init == void_type_node)
648 {
649 /* mem() means value-initialization. */
650 if (TREE_CODE (type) == ARRAY_TYPE)
651 {
652 init = build_vec_init_expr (type, init, tf_warning_or_error);
653 init = build2 (INIT_EXPR, type, decl, init);
654 finish_expr_stmt (init);
655 }
656 else
657 {
658 tree value = build_value_init (type, tf_warning_or_error);
659 if (value == error_mark_node)
660 return;
661 init = build2 (INIT_EXPR, type, decl, value);
662 finish_expr_stmt (init);
663 }
664 }
665 /* Deal with this here, as we will get confused if we try to call the
666 assignment op for an anonymous union. This can happen in a
667 synthesized copy constructor. */
668 else if (ANON_AGGR_TYPE_P (type))
669 {
670 if (init)
671 {
672 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
673 finish_expr_stmt (init);
674 }
675 }
676 else if (init
677 && (TREE_CODE (type) == REFERENCE_TYPE
678 /* Pre-digested NSDMI. */
679 || (((TREE_CODE (init) == CONSTRUCTOR
680 && TREE_TYPE (init) == type)
681 /* { } mem-initializer. */
682 || (TREE_CODE (init) == TREE_LIST
683 && DIRECT_LIST_INIT_P (TREE_VALUE (init))))
684 && (CP_AGGREGATE_TYPE_P (type)
685 || is_std_init_list (type)))))
686 {
687 /* With references and list-initialization, we need to deal with
688 extending temporary lifetimes. 12.2p5: "A temporary bound to a
689 reference member in a constructor’s ctor-initializer (12.6.2)
690 persists until the constructor exits." */
691 unsigned i; tree t;
692 vec<tree, va_gc> *cleanups = make_tree_vector ();
693 if (TREE_CODE (init) == TREE_LIST)
694 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
695 tf_warning_or_error);
696 if (TREE_TYPE (init) != type)
697 {
698 if (BRACE_ENCLOSED_INITIALIZER_P (init)
699 && CP_AGGREGATE_TYPE_P (type))
700 init = reshape_init (type, init, tf_warning_or_error);
701 init = digest_init (type, init, tf_warning_or_error);
702 }
703 if (init == error_mark_node)
704 return;
705 /* A FIELD_DECL doesn't really have a suitable lifetime, but
706 make_temporary_var_for_ref_to_temp will treat it as automatic and
707 set_up_extended_ref_temp wants to use the decl in a warning. */
708 init = extend_ref_init_temps (member, init, &cleanups);
709 if (TREE_CODE (type) == ARRAY_TYPE
710 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
711 init = build_vec_init_expr (type, init, tf_warning_or_error);
712 init = build2 (INIT_EXPR, type, decl, init);
713 finish_expr_stmt (init);
714 FOR_EACH_VEC_ELT (*cleanups, i, t)
715 push_cleanup (decl, t, false);
716 release_tree_vector (cleanups);
717 }
718 else if (type_build_ctor_call (type)
719 || (init && CLASS_TYPE_P (strip_array_types (type))))
720 {
721 if (TREE_CODE (type) == ARRAY_TYPE)
722 {
723 if (init)
724 {
725 if (TREE_CHAIN (init))
726 init = error_mark_node;
727 else
728 init = TREE_VALUE (init);
729 if (BRACE_ENCLOSED_INITIALIZER_P (init))
730 init = digest_init (type, init, tf_warning_or_error);
731 }
732 if (init == NULL_TREE
733 || same_type_ignoring_top_level_qualifiers_p (type,
734 TREE_TYPE (init)))
735 {
736 if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
737 {
738 /* Initialize the array only if it's not a flexible
739 array member (i.e., if it has an upper bound). */
740 init = build_vec_init_expr (type, init, tf_warning_or_error);
741 init = build2 (INIT_EXPR, type, decl, init);
742 finish_expr_stmt (init);
743 }
744 }
745 else
746 error ("invalid initializer for array member %q#D", member);
747 }
748 else
749 {
750 int flags = LOOKUP_NORMAL;
751 if (DECL_DEFAULTED_FN (current_function_decl))
752 flags |= LOOKUP_DEFAULTED;
753 if (CP_TYPE_CONST_P (type)
754 && init == NULL_TREE
755 && default_init_uninitialized_part (type))
756 {
757 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
758 vtable; still give this diagnostic. */
759 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
760 "uninitialized const member in %q#T", type))
761 inform (DECL_SOURCE_LOCATION (member),
762 "%q#D should be initialized", member );
763 }
764 finish_expr_stmt (build_aggr_init (decl, init, flags,
765 tf_warning_or_error));
766 }
767 }
768 else
769 {
770 if (init == NULL_TREE)
771 {
772 tree core_type;
773 /* member traversal: note it leaves init NULL */
774 if (TREE_CODE (type) == REFERENCE_TYPE)
775 {
776 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
777 "uninitialized reference member in %q#T", type))
778 inform (DECL_SOURCE_LOCATION (member),
779 "%q#D should be initialized", member);
780 }
781 else if (CP_TYPE_CONST_P (type))
782 {
783 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
784 "uninitialized const member in %q#T", type))
785 inform (DECL_SOURCE_LOCATION (member),
786 "%q#D should be initialized", member );
787 }
788
789 core_type = strip_array_types (type);
790
791 if (CLASS_TYPE_P (core_type)
792 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
793 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
794 diagnose_uninitialized_cst_or_ref_member (core_type,
795 /*using_new=*/false,
796 /*complain=*/true);
797 }
798 else if (TREE_CODE (init) == TREE_LIST)
799 /* There was an explicit member initialization. Do some work
800 in that case. */
801 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
802 tf_warning_or_error);
803
804 if (init)
805 finish_expr_stmt (cp_build_modify_expr (input_location, decl,
806 INIT_EXPR, init,
807 tf_warning_or_error));
808 }
809
810 if (type_build_dtor_call (type))
811 {
812 tree expr;
813
814 expr = build_class_member_access_expr (current_class_ref, member,
815 /*access_path=*/NULL_TREE,
816 /*preserve_reference=*/false,
817 tf_warning_or_error);
818 expr = build_delete (type, expr, sfk_complete_destructor,
819 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
820 tf_warning_or_error);
821
822 if (expr != error_mark_node
823 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
824 finish_eh_cleanup (expr);
825 }
826 }
827
828 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
829 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
830
831 static tree
832 build_field_list (tree t, tree list, int *uses_unions_or_anon_p)
833 {
834 tree fields;
835
836 /* Note whether or not T is a union. */
837 if (TREE_CODE (t) == UNION_TYPE)
838 *uses_unions_or_anon_p = 1;
839
840 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
841 {
842 tree fieldtype;
843
844 /* Skip CONST_DECLs for enumeration constants and so forth. */
845 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
846 continue;
847
848 fieldtype = TREE_TYPE (fields);
849
850 /* For an anonymous struct or union, we must recursively
851 consider the fields of the anonymous type. They can be
852 directly initialized from the constructor. */
853 if (ANON_AGGR_TYPE_P (fieldtype))
854 {
855 /* Add this field itself. Synthesized copy constructors
856 initialize the entire aggregate. */
857 list = tree_cons (fields, NULL_TREE, list);
858 /* And now add the fields in the anonymous aggregate. */
859 list = build_field_list (fieldtype, list, uses_unions_or_anon_p);
860 *uses_unions_or_anon_p = 1;
861 }
862 /* Add this field. */
863 else if (DECL_NAME (fields))
864 list = tree_cons (fields, NULL_TREE, list);
865 }
866
867 return list;
868 }
869
870 /* Return the innermost aggregate scope for FIELD, whether that is
871 the enclosing class or an anonymous aggregate within it. */
872
873 static tree
874 innermost_aggr_scope (tree field)
875 {
876 if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
877 return TREE_TYPE (field);
878 else
879 return DECL_CONTEXT (field);
880 }
881
882 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
883 a FIELD_DECL or BINFO in T that needs initialization. The
884 TREE_VALUE gives the initializer, or list of initializer arguments.
885
886 Return a TREE_LIST containing all of the initializations required
887 for T, in the order in which they should be performed. The output
888 list has the same format as the input. */
889
890 static tree
891 sort_mem_initializers (tree t, tree mem_inits)
892 {
893 tree init;
894 tree base, binfo, base_binfo;
895 tree sorted_inits;
896 tree next_subobject;
897 vec<tree, va_gc> *vbases;
898 int i;
899 int uses_unions_or_anon_p = 0;
900
901 /* Build up a list of initializations. The TREE_PURPOSE of entry
902 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
903 TREE_VALUE will be the constructor arguments, or NULL if no
904 explicit initialization was provided. */
905 sorted_inits = NULL_TREE;
906
907 /* Process the virtual bases. */
908 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
909 vec_safe_iterate (vbases, i, &base); i++)
910 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
911
912 /* Process the direct bases. */
913 for (binfo = TYPE_BINFO (t), i = 0;
914 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
915 if (!BINFO_VIRTUAL_P (base_binfo))
916 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
917
918 /* Process the non-static data members. */
919 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p);
920 /* Reverse the entire list of initializations, so that they are in
921 the order that they will actually be performed. */
922 sorted_inits = nreverse (sorted_inits);
923
924 /* If the user presented the initializers in an order different from
925 that in which they will actually occur, we issue a warning. Keep
926 track of the next subobject which can be explicitly initialized
927 without issuing a warning. */
928 next_subobject = sorted_inits;
929
930 /* Go through the explicit initializers, filling in TREE_PURPOSE in
931 the SORTED_INITS. */
932 for (init = mem_inits; init; init = TREE_CHAIN (init))
933 {
934 tree subobject;
935 tree subobject_init;
936
937 subobject = TREE_PURPOSE (init);
938
939 /* If the explicit initializers are in sorted order, then
940 SUBOBJECT will be NEXT_SUBOBJECT, or something following
941 it. */
942 for (subobject_init = next_subobject;
943 subobject_init;
944 subobject_init = TREE_CHAIN (subobject_init))
945 if (TREE_PURPOSE (subobject_init) == subobject)
946 break;
947
948 /* Issue a warning if the explicit initializer order does not
949 match that which will actually occur.
950 ??? Are all these on the correct lines? */
951 if (warn_reorder && !subobject_init)
952 {
953 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
954 warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
955 OPT_Wreorder, "%qD will be initialized after",
956 TREE_PURPOSE (next_subobject));
957 else
958 warning (OPT_Wreorder, "base %qT will be initialized after",
959 TREE_PURPOSE (next_subobject));
960 if (TREE_CODE (subobject) == FIELD_DECL)
961 warning_at (DECL_SOURCE_LOCATION (subobject),
962 OPT_Wreorder, " %q#D", subobject);
963 else
964 warning (OPT_Wreorder, " base %qT", subobject);
965 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
966 OPT_Wreorder, " when initialized here");
967 }
968
969 /* Look again, from the beginning of the list. */
970 if (!subobject_init)
971 {
972 subobject_init = sorted_inits;
973 while (TREE_PURPOSE (subobject_init) != subobject)
974 subobject_init = TREE_CHAIN (subobject_init);
975 }
976
977 /* It is invalid to initialize the same subobject more than
978 once. */
979 if (TREE_VALUE (subobject_init))
980 {
981 if (TREE_CODE (subobject) == FIELD_DECL)
982 error_at (DECL_SOURCE_LOCATION (current_function_decl),
983 "multiple initializations given for %qD",
984 subobject);
985 else
986 error_at (DECL_SOURCE_LOCATION (current_function_decl),
987 "multiple initializations given for base %qT",
988 subobject);
989 }
990
991 /* Record the initialization. */
992 TREE_VALUE (subobject_init) = TREE_VALUE (init);
993 next_subobject = subobject_init;
994 }
995
996 /* [class.base.init]
997
998 If a ctor-initializer specifies more than one mem-initializer for
999 multiple members of the same union (including members of
1000 anonymous unions), the ctor-initializer is ill-formed.
1001
1002 Here we also splice out uninitialized union members. */
1003 if (uses_unions_or_anon_p)
1004 {
1005 tree *last_p = NULL;
1006 tree *p;
1007 for (p = &sorted_inits; *p; )
1008 {
1009 tree field;
1010 tree ctx;
1011
1012 init = *p;
1013
1014 field = TREE_PURPOSE (init);
1015
1016 /* Skip base classes. */
1017 if (TREE_CODE (field) != FIELD_DECL)
1018 goto next;
1019
1020 /* If this is an anonymous aggregate with no explicit initializer,
1021 splice it out. */
1022 if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1023 goto splice;
1024
1025 /* See if this field is a member of a union, or a member of a
1026 structure contained in a union, etc. */
1027 ctx = innermost_aggr_scope (field);
1028
1029 /* If this field is not a member of a union, skip it. */
1030 if (TREE_CODE (ctx) != UNION_TYPE
1031 && !ANON_AGGR_TYPE_P (ctx))
1032 goto next;
1033
1034 /* If this union member has no explicit initializer and no NSDMI,
1035 splice it out. */
1036 if (TREE_VALUE (init) || DECL_INITIAL (field))
1037 /* OK. */;
1038 else
1039 goto splice;
1040
1041 /* It's only an error if we have two initializers for the same
1042 union type. */
1043 if (!last_p)
1044 {
1045 last_p = p;
1046 goto next;
1047 }
1048
1049 /* See if LAST_FIELD and the field initialized by INIT are
1050 members of the same union (or the union itself). If so, there's
1051 a problem, unless they're actually members of the same structure
1052 which is itself a member of a union. For example, given:
1053
1054 union { struct { int i; int j; }; };
1055
1056 initializing both `i' and `j' makes sense. */
1057 ctx = common_enclosing_class
1058 (innermost_aggr_scope (field),
1059 innermost_aggr_scope (TREE_PURPOSE (*last_p)));
1060
1061 if (ctx && (TREE_CODE (ctx) == UNION_TYPE
1062 || ctx == TREE_TYPE (TREE_PURPOSE (*last_p))))
1063 {
1064 /* A mem-initializer hides an NSDMI. */
1065 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1066 *last_p = TREE_CHAIN (*last_p);
1067 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1068 goto splice;
1069 else
1070 {
1071 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1072 "initializations for multiple members of %qT",
1073 ctx);
1074 goto splice;
1075 }
1076 }
1077
1078 last_p = p;
1079
1080 next:
1081 p = &TREE_CHAIN (*p);
1082 continue;
1083 splice:
1084 *p = TREE_CHAIN (*p);
1085 continue;
1086 }
1087 }
1088
1089 return sorted_inits;
1090 }
1091
1092 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1093 is a TREE_LIST giving the explicit mem-initializer-list for the
1094 constructor. The TREE_PURPOSE of each entry is a subobject (a
1095 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1096 is a TREE_LIST giving the arguments to the constructor or
1097 void_type_node for an empty list of arguments. */
1098
1099 void
1100 emit_mem_initializers (tree mem_inits)
1101 {
1102 int flags = LOOKUP_NORMAL;
1103
1104 /* We will already have issued an error message about the fact that
1105 the type is incomplete. */
1106 if (!COMPLETE_TYPE_P (current_class_type))
1107 return;
1108
1109 if (mem_inits
1110 && TYPE_P (TREE_PURPOSE (mem_inits))
1111 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1112 {
1113 /* Delegating constructor. */
1114 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1115 perform_target_ctor (TREE_VALUE (mem_inits));
1116 return;
1117 }
1118
1119 if (DECL_DEFAULTED_FN (current_function_decl)
1120 && ! DECL_INHERITED_CTOR (current_function_decl))
1121 flags |= LOOKUP_DEFAULTED;
1122
1123 /* Sort the mem-initializers into the order in which the
1124 initializations should be performed. */
1125 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1126
1127 in_base_initializer = 1;
1128
1129 /* Initialize base classes. */
1130 for (; (mem_inits
1131 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1132 mem_inits = TREE_CHAIN (mem_inits))
1133 {
1134 tree subobject = TREE_PURPOSE (mem_inits);
1135 tree arguments = TREE_VALUE (mem_inits);
1136
1137 /* We already have issued an error message. */
1138 if (arguments == error_mark_node)
1139 continue;
1140
1141 /* Suppress access control when calling the inherited ctor. */
1142 bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl)
1143 && flag_new_inheriting_ctors
1144 && arguments);
1145 if (inherited_base)
1146 push_deferring_access_checks (dk_deferred);
1147
1148 if (arguments == NULL_TREE)
1149 {
1150 /* If these initializations are taking place in a copy constructor,
1151 the base class should probably be explicitly initialized if there
1152 is a user-defined constructor in the base class (other than the
1153 default constructor, which will be called anyway). */
1154 if (extra_warnings
1155 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1156 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1157 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1158 OPT_Wextra, "base class %q#T should be explicitly "
1159 "initialized in the copy constructor",
1160 BINFO_TYPE (subobject));
1161 }
1162
1163 /* Initialize the base. */
1164 if (!BINFO_VIRTUAL_P (subobject))
1165 {
1166 tree base_addr;
1167
1168 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1169 subobject, 1, tf_warning_or_error);
1170 expand_aggr_init_1 (subobject, NULL_TREE,
1171 cp_build_indirect_ref (base_addr, RO_NULL,
1172 tf_warning_or_error),
1173 arguments,
1174 flags,
1175 tf_warning_or_error);
1176 expand_cleanup_for_base (subobject, NULL_TREE);
1177 }
1178 else if (!ABSTRACT_CLASS_TYPE_P (current_class_type))
1179 /* C++14 DR1658 Means we do not have to construct vbases of
1180 abstract classes. */
1181 construct_virtual_base (subobject, arguments);
1182
1183 if (inherited_base)
1184 pop_deferring_access_checks ();
1185 }
1186 in_base_initializer = 0;
1187
1188 /* Initialize the vptrs. */
1189 initialize_vtbl_ptrs (current_class_ptr);
1190
1191 /* Initialize the data members. */
1192 while (mem_inits)
1193 {
1194 perform_member_init (TREE_PURPOSE (mem_inits),
1195 TREE_VALUE (mem_inits));
1196 mem_inits = TREE_CHAIN (mem_inits);
1197 }
1198 }
1199
1200 /* Returns the address of the vtable (i.e., the value that should be
1201 assigned to the vptr) for BINFO. */
1202
1203 tree
1204 build_vtbl_address (tree binfo)
1205 {
1206 tree binfo_for = binfo;
1207 tree vtbl;
1208
1209 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1210 /* If this is a virtual primary base, then the vtable we want to store
1211 is that for the base this is being used as the primary base of. We
1212 can't simply skip the initialization, because we may be expanding the
1213 inits of a subobject constructor where the virtual base layout
1214 can be different. */
1215 while (BINFO_PRIMARY_P (binfo_for))
1216 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1217
1218 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1219 used. */
1220 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1221 TREE_USED (vtbl) = true;
1222
1223 /* Now compute the address to use when initializing the vptr. */
1224 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1225 if (VAR_P (vtbl))
1226 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1227
1228 return vtbl;
1229 }
1230
1231 /* This code sets up the virtual function tables appropriate for
1232 the pointer DECL. It is a one-ply initialization.
1233
1234 BINFO is the exact type that DECL is supposed to be. In
1235 multiple inheritance, this might mean "C's A" if C : A, B. */
1236
1237 static void
1238 expand_virtual_init (tree binfo, tree decl)
1239 {
1240 tree vtbl, vtbl_ptr;
1241 tree vtt_index;
1242
1243 /* Compute the initializer for vptr. */
1244 vtbl = build_vtbl_address (binfo);
1245
1246 /* We may get this vptr from a VTT, if this is a subobject
1247 constructor or subobject destructor. */
1248 vtt_index = BINFO_VPTR_INDEX (binfo);
1249 if (vtt_index)
1250 {
1251 tree vtbl2;
1252 tree vtt_parm;
1253
1254 /* Compute the value to use, when there's a VTT. */
1255 vtt_parm = current_vtt_parm;
1256 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1257 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1258 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1259
1260 /* The actual initializer is the VTT value only in the subobject
1261 constructor. In maybe_clone_body we'll substitute NULL for
1262 the vtt_parm in the case of the non-subobject constructor. */
1263 vtbl = build_if_in_charge (vtbl, vtbl2);
1264 }
1265
1266 /* Compute the location of the vtpr. */
1267 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1268 tf_warning_or_error),
1269 TREE_TYPE (binfo));
1270 gcc_assert (vtbl_ptr != error_mark_node);
1271
1272 /* Assign the vtable to the vptr. */
1273 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1274 finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR,
1275 vtbl, tf_warning_or_error));
1276 }
1277
1278 /* If an exception is thrown in a constructor, those base classes already
1279 constructed must be destroyed. This function creates the cleanup
1280 for BINFO, which has just been constructed. If FLAG is non-NULL,
1281 it is a DECL which is nonzero when this base needs to be
1282 destroyed. */
1283
1284 static void
1285 expand_cleanup_for_base (tree binfo, tree flag)
1286 {
1287 tree expr;
1288
1289 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1290 return;
1291
1292 /* Call the destructor. */
1293 expr = build_special_member_call (current_class_ref,
1294 base_dtor_identifier,
1295 NULL,
1296 binfo,
1297 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1298 tf_warning_or_error);
1299
1300 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1301 return;
1302
1303 if (flag)
1304 expr = fold_build3_loc (input_location,
1305 COND_EXPR, void_type_node,
1306 c_common_truthvalue_conversion (input_location, flag),
1307 expr, integer_zero_node);
1308
1309 finish_eh_cleanup (expr);
1310 }
1311
1312 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1313 constructor. */
1314
1315 static void
1316 construct_virtual_base (tree vbase, tree arguments)
1317 {
1318 tree inner_if_stmt;
1319 tree exp;
1320 tree flag;
1321
1322 /* If there are virtual base classes with destructors, we need to
1323 emit cleanups to destroy them if an exception is thrown during
1324 the construction process. These exception regions (i.e., the
1325 period during which the cleanups must occur) begin from the time
1326 the construction is complete to the end of the function. If we
1327 create a conditional block in which to initialize the
1328 base-classes, then the cleanup region for the virtual base begins
1329 inside a block, and ends outside of that block. This situation
1330 confuses the sjlj exception-handling code. Therefore, we do not
1331 create a single conditional block, but one for each
1332 initialization. (That way the cleanup regions always begin
1333 in the outer block.) We trust the back end to figure out
1334 that the FLAG will not change across initializations, and
1335 avoid doing multiple tests. */
1336 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1337 inner_if_stmt = begin_if_stmt ();
1338 finish_if_stmt_cond (flag, inner_if_stmt);
1339
1340 /* Compute the location of the virtual base. If we're
1341 constructing virtual bases, then we must be the most derived
1342 class. Therefore, we don't have to look up the virtual base;
1343 we already know where it is. */
1344 exp = convert_to_base_statically (current_class_ref, vbase);
1345
1346 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1347 0, tf_warning_or_error);
1348 finish_then_clause (inner_if_stmt);
1349 finish_if_stmt (inner_if_stmt);
1350
1351 expand_cleanup_for_base (vbase, flag);
1352 }
1353
1354 /* Find the context in which this FIELD can be initialized. */
1355
1356 static tree
1357 initializing_context (tree field)
1358 {
1359 tree t = DECL_CONTEXT (field);
1360
1361 /* Anonymous union members can be initialized in the first enclosing
1362 non-anonymous union context. */
1363 while (t && ANON_AGGR_TYPE_P (t))
1364 t = TYPE_CONTEXT (t);
1365 return t;
1366 }
1367
1368 /* Function to give error message if member initialization specification
1369 is erroneous. FIELD is the member we decided to initialize.
1370 TYPE is the type for which the initialization is being performed.
1371 FIELD must be a member of TYPE.
1372
1373 MEMBER_NAME is the name of the member. */
1374
1375 static int
1376 member_init_ok_or_else (tree field, tree type, tree member_name)
1377 {
1378 if (field == error_mark_node)
1379 return 0;
1380 if (!field)
1381 {
1382 error ("class %qT does not have any field named %qD", type,
1383 member_name);
1384 return 0;
1385 }
1386 if (VAR_P (field))
1387 {
1388 error ("%q#D is a static data member; it can only be "
1389 "initialized at its definition",
1390 field);
1391 return 0;
1392 }
1393 if (TREE_CODE (field) != FIELD_DECL)
1394 {
1395 error ("%q#D is not a non-static data member of %qT",
1396 field, type);
1397 return 0;
1398 }
1399 if (initializing_context (field) != type)
1400 {
1401 error ("class %qT does not have any field named %qD", type,
1402 member_name);
1403 return 0;
1404 }
1405
1406 return 1;
1407 }
1408
1409 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1410 is a _TYPE node or TYPE_DECL which names a base for that type.
1411 Check the validity of NAME, and return either the base _TYPE, base
1412 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1413 NULL_TREE and issue a diagnostic.
1414
1415 An old style unnamed direct single base construction is permitted,
1416 where NAME is NULL. */
1417
1418 tree
1419 expand_member_init (tree name)
1420 {
1421 tree basetype;
1422 tree field;
1423
1424 if (!current_class_ref)
1425 return NULL_TREE;
1426
1427 if (!name)
1428 {
1429 /* This is an obsolete unnamed base class initializer. The
1430 parser will already have warned about its use. */
1431 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1432 {
1433 case 0:
1434 error ("unnamed initializer for %qT, which has no base classes",
1435 current_class_type);
1436 return NULL_TREE;
1437 case 1:
1438 basetype = BINFO_TYPE
1439 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1440 break;
1441 default:
1442 error ("unnamed initializer for %qT, which uses multiple inheritance",
1443 current_class_type);
1444 return NULL_TREE;
1445 }
1446 }
1447 else if (TYPE_P (name))
1448 {
1449 basetype = TYPE_MAIN_VARIANT (name);
1450 name = TYPE_NAME (name);
1451 }
1452 else if (TREE_CODE (name) == TYPE_DECL)
1453 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1454 else
1455 basetype = NULL_TREE;
1456
1457 if (basetype)
1458 {
1459 tree class_binfo;
1460 tree direct_binfo;
1461 tree virtual_binfo;
1462 int i;
1463
1464 if (current_template_parms
1465 || same_type_p (basetype, current_class_type))
1466 return basetype;
1467
1468 class_binfo = TYPE_BINFO (current_class_type);
1469 direct_binfo = NULL_TREE;
1470 virtual_binfo = NULL_TREE;
1471
1472 /* Look for a direct base. */
1473 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1474 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1475 break;
1476
1477 /* Look for a virtual base -- unless the direct base is itself
1478 virtual. */
1479 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1480 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1481
1482 /* [class.base.init]
1483
1484 If a mem-initializer-id is ambiguous because it designates
1485 both a direct non-virtual base class and an inherited virtual
1486 base class, the mem-initializer is ill-formed. */
1487 if (direct_binfo && virtual_binfo)
1488 {
1489 error ("%qD is both a direct base and an indirect virtual base",
1490 basetype);
1491 return NULL_TREE;
1492 }
1493
1494 if (!direct_binfo && !virtual_binfo)
1495 {
1496 if (CLASSTYPE_VBASECLASSES (current_class_type))
1497 error ("type %qT is not a direct or virtual base of %qT",
1498 basetype, current_class_type);
1499 else
1500 error ("type %qT is not a direct base of %qT",
1501 basetype, current_class_type);
1502 return NULL_TREE;
1503 }
1504
1505 return direct_binfo ? direct_binfo : virtual_binfo;
1506 }
1507 else
1508 {
1509 if (identifier_p (name))
1510 field = lookup_field (current_class_type, name, 1, false);
1511 else
1512 field = name;
1513
1514 if (member_init_ok_or_else (field, current_class_type, name))
1515 return field;
1516 }
1517
1518 return NULL_TREE;
1519 }
1520
1521 /* This is like `expand_member_init', only it stores one aggregate
1522 value into another.
1523
1524 INIT comes in two flavors: it is either a value which
1525 is to be stored in EXP, or it is a parameter list
1526 to go to a constructor, which will operate on EXP.
1527 If INIT is not a parameter list for a constructor, then set
1528 LOOKUP_ONLYCONVERTING.
1529 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1530 the initializer, if FLAGS is 0, then it is the (init) form.
1531 If `init' is a CONSTRUCTOR, then we emit a warning message,
1532 explaining that such initializations are invalid.
1533
1534 If INIT resolves to a CALL_EXPR which happens to return
1535 something of the type we are looking for, then we know
1536 that we can safely use that call to perform the
1537 initialization.
1538
1539 The virtual function table pointer cannot be set up here, because
1540 we do not really know its type.
1541
1542 This never calls operator=().
1543
1544 When initializing, nothing is CONST.
1545
1546 A default copy constructor may have to be used to perform the
1547 initialization.
1548
1549 A constructor or a conversion operator may have to be used to
1550 perform the initialization, but not both, as it would be ambiguous. */
1551
1552 tree
1553 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1554 {
1555 tree stmt_expr;
1556 tree compound_stmt;
1557 int destroy_temps;
1558 tree type = TREE_TYPE (exp);
1559 int was_const = TREE_READONLY (exp);
1560 int was_volatile = TREE_THIS_VOLATILE (exp);
1561 int is_global;
1562
1563 if (init == error_mark_node)
1564 return error_mark_node;
1565
1566 TREE_READONLY (exp) = 0;
1567 TREE_THIS_VOLATILE (exp) = 0;
1568
1569 if (init && init != void_type_node
1570 && TREE_CODE (init) != TREE_LIST
1571 && !(TREE_CODE (init) == TARGET_EXPR
1572 && TARGET_EXPR_DIRECT_INIT_P (init))
1573 && !DIRECT_LIST_INIT_P (init))
1574 flags |= LOOKUP_ONLYCONVERTING;
1575
1576 if (TREE_CODE (type) == ARRAY_TYPE)
1577 {
1578 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1579 int from_array = 0;
1580
1581 if (VAR_P (exp) && DECL_DECOMPOSITION_P (exp))
1582 from_array = 1;
1583 else
1584 {
1585 /* An array may not be initialized use the parenthesized
1586 initialization form -- unless the initializer is "()". */
1587 if (init && TREE_CODE (init) == TREE_LIST)
1588 {
1589 if (complain & tf_error)
1590 error ("bad array initializer");
1591 return error_mark_node;
1592 }
1593 /* Must arrange to initialize each element of EXP
1594 from elements of INIT. */
1595 if (cv_qualified_p (type))
1596 TREE_TYPE (exp) = cv_unqualified (type);
1597 if (itype && cv_qualified_p (itype))
1598 TREE_TYPE (init) = cv_unqualified (itype);
1599 from_array = (itype && same_type_p (TREE_TYPE (init),
1600 TREE_TYPE (exp)));
1601 }
1602
1603 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1604 /*explicit_value_init_p=*/false,
1605 from_array,
1606 complain);
1607 TREE_READONLY (exp) = was_const;
1608 TREE_THIS_VOLATILE (exp) = was_volatile;
1609 TREE_TYPE (exp) = type;
1610 /* Restore the type of init unless it was used directly. */
1611 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1612 TREE_TYPE (init) = itype;
1613 return stmt_expr;
1614 }
1615
1616 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1617 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1618 /* Just know that we've seen something for this node. */
1619 TREE_USED (exp) = 1;
1620
1621 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1622 destroy_temps = stmts_are_full_exprs_p ();
1623 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1624 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1625 init, LOOKUP_NORMAL|flags, complain);
1626 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1627 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1628 TREE_READONLY (exp) = was_const;
1629 TREE_THIS_VOLATILE (exp) = was_volatile;
1630
1631 return stmt_expr;
1632 }
1633
1634 static void
1635 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1636 tsubst_flags_t complain)
1637 {
1638 tree type = TREE_TYPE (exp);
1639 tree ctor_name;
1640
1641 /* It fails because there may not be a constructor which takes
1642 its own type as the first (or only parameter), but which does
1643 take other types via a conversion. So, if the thing initializing
1644 the expression is a unit element of type X, first try X(X&),
1645 followed by initialization by X. If neither of these work
1646 out, then look hard. */
1647 tree rval;
1648 vec<tree, va_gc> *parms;
1649
1650 /* If we have direct-initialization from an initializer list, pull
1651 it out of the TREE_LIST so the code below can see it. */
1652 if (init && TREE_CODE (init) == TREE_LIST
1653 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1654 {
1655 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1656 && TREE_CHAIN (init) == NULL_TREE);
1657 init = TREE_VALUE (init);
1658 /* Only call reshape_init if it has not been called earlier
1659 by the callers. */
1660 if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type))
1661 init = reshape_init (type, init, complain);
1662 }
1663
1664 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1665 && CP_AGGREGATE_TYPE_P (type))
1666 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1667 happen for direct-initialization, too. */
1668 init = digest_init (type, init, complain);
1669
1670 /* A CONSTRUCTOR of the target's type is a previously digested
1671 initializer, whether that happened just above or in
1672 cp_parser_late_parsing_nsdmi.
1673
1674 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1675 set represents the whole initialization, so we shouldn't build up
1676 another ctor call. */
1677 if (init
1678 && (TREE_CODE (init) == CONSTRUCTOR
1679 || (TREE_CODE (init) == TARGET_EXPR
1680 && (TARGET_EXPR_DIRECT_INIT_P (init)
1681 || TARGET_EXPR_LIST_INIT_P (init))))
1682 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1683 {
1684 /* Early initialization via a TARGET_EXPR only works for
1685 complete objects. */
1686 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1687
1688 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1689 TREE_SIDE_EFFECTS (init) = 1;
1690 finish_expr_stmt (init);
1691 return;
1692 }
1693
1694 if (init && TREE_CODE (init) != TREE_LIST
1695 && (flags & LOOKUP_ONLYCONVERTING))
1696 {
1697 /* Base subobjects should only get direct-initialization. */
1698 gcc_assert (true_exp == exp);
1699
1700 if (flags & DIRECT_BIND)
1701 /* Do nothing. We hit this in two cases: Reference initialization,
1702 where we aren't initializing a real variable, so we don't want
1703 to run a new constructor; and catching an exception, where we
1704 have already built up the constructor call so we could wrap it
1705 in an exception region. */;
1706 else
1707 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1708 flags, complain);
1709
1710 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1711 /* We need to protect the initialization of a catch parm with a
1712 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1713 around the TARGET_EXPR for the copy constructor. See
1714 initialize_handler_parm. */
1715 {
1716 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1717 TREE_OPERAND (init, 0));
1718 TREE_TYPE (init) = void_type_node;
1719 }
1720 else
1721 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1722 TREE_SIDE_EFFECTS (init) = 1;
1723 finish_expr_stmt (init);
1724 return;
1725 }
1726
1727 if (init == NULL_TREE)
1728 parms = NULL;
1729 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1730 {
1731 parms = make_tree_vector ();
1732 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1733 vec_safe_push (parms, TREE_VALUE (init));
1734 }
1735 else
1736 parms = make_tree_vector_single (init);
1737
1738 if (exp == current_class_ref && current_function_decl
1739 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1740 {
1741 /* Delegating constructor. */
1742 tree complete;
1743 tree base;
1744 tree elt; unsigned i;
1745
1746 /* Unshare the arguments for the second call. */
1747 vec<tree, va_gc> *parms2 = make_tree_vector ();
1748 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1749 {
1750 elt = break_out_target_exprs (elt);
1751 vec_safe_push (parms2, elt);
1752 }
1753 complete = build_special_member_call (exp, complete_ctor_identifier,
1754 &parms2, binfo, flags,
1755 complain);
1756 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1757 release_tree_vector (parms2);
1758
1759 base = build_special_member_call (exp, base_ctor_identifier,
1760 &parms, binfo, flags,
1761 complain);
1762 base = fold_build_cleanup_point_expr (void_type_node, base);
1763 rval = build_if_in_charge (complete, base);
1764 }
1765 else
1766 {
1767 if (true_exp == exp)
1768 ctor_name = complete_ctor_identifier;
1769 else
1770 ctor_name = base_ctor_identifier;
1771 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1772 complain);
1773 }
1774
1775 if (parms != NULL)
1776 release_tree_vector (parms);
1777
1778 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1779 {
1780 tree fn = get_callee_fndecl (rval);
1781 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1782 {
1783 tree e = maybe_constant_init (rval, exp);
1784 if (TREE_CONSTANT (e))
1785 rval = build2 (INIT_EXPR, type, exp, e);
1786 }
1787 }
1788
1789 /* FIXME put back convert_to_void? */
1790 if (TREE_SIDE_EFFECTS (rval))
1791 finish_expr_stmt (rval);
1792 }
1793
1794 /* This function is responsible for initializing EXP with INIT
1795 (if any).
1796
1797 BINFO is the binfo of the type for who we are performing the
1798 initialization. For example, if W is a virtual base class of A and B,
1799 and C : A, B.
1800 If we are initializing B, then W must contain B's W vtable, whereas
1801 were we initializing C, W must contain C's W vtable.
1802
1803 TRUE_EXP is nonzero if it is the true expression being initialized.
1804 In this case, it may be EXP, or may just contain EXP. The reason we
1805 need this is because if EXP is a base element of TRUE_EXP, we
1806 don't necessarily know by looking at EXP where its virtual
1807 baseclass fields should really be pointing. But we do know
1808 from TRUE_EXP. In constructors, we don't know anything about
1809 the value being initialized.
1810
1811 FLAGS is just passed to `build_new_method_call'. See that function
1812 for its description. */
1813
1814 static void
1815 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1816 tsubst_flags_t complain)
1817 {
1818 tree type = TREE_TYPE (exp);
1819
1820 gcc_assert (init != error_mark_node && type != error_mark_node);
1821 gcc_assert (building_stmt_list_p ());
1822
1823 /* Use a function returning the desired type to initialize EXP for us.
1824 If the function is a constructor, and its first argument is
1825 NULL_TREE, know that it was meant for us--just slide exp on
1826 in and expand the constructor. Constructors now come
1827 as TARGET_EXPRs. */
1828
1829 if (init && VAR_P (exp)
1830 && COMPOUND_LITERAL_P (init))
1831 {
1832 vec<tree, va_gc> *cleanups = NULL;
1833 /* If store_init_value returns NULL_TREE, the INIT has been
1834 recorded as the DECL_INITIAL for EXP. That means there's
1835 nothing more we have to do. */
1836 init = store_init_value (exp, init, &cleanups, flags);
1837 if (init)
1838 finish_expr_stmt (init);
1839 gcc_assert (!cleanups);
1840 return;
1841 }
1842
1843 /* List-initialization from {} becomes value-initialization for non-aggregate
1844 classes with default constructors. Handle this here when we're
1845 initializing a base, so protected access works. */
1846 if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST)
1847 {
1848 tree elt = TREE_VALUE (init);
1849 if (DIRECT_LIST_INIT_P (elt)
1850 && CONSTRUCTOR_ELTS (elt) == 0
1851 && CLASSTYPE_NON_AGGREGATE (type)
1852 && TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
1853 init = void_type_node;
1854 }
1855
1856 /* If an explicit -- but empty -- initializer list was present,
1857 that's value-initialization. */
1858 if (init == void_type_node)
1859 {
1860 /* If the type has data but no user-provided ctor, we need to zero
1861 out the object. */
1862 if (!type_has_user_provided_constructor (type)
1863 && !is_really_empty_class (type))
1864 {
1865 tree field_size = NULL_TREE;
1866 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1867 /* Don't clobber already initialized virtual bases. */
1868 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1869 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1870 field_size);
1871 init = build2 (INIT_EXPR, type, exp, init);
1872 finish_expr_stmt (init);
1873 }
1874
1875 /* If we don't need to mess with the constructor at all,
1876 then we're done. */
1877 if (! type_build_ctor_call (type))
1878 return;
1879
1880 /* Otherwise fall through and call the constructor. */
1881 init = NULL_TREE;
1882 }
1883
1884 /* We know that expand_default_init can handle everything we want
1885 at this point. */
1886 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1887 }
1888
1889 /* Report an error if TYPE is not a user-defined, class type. If
1890 OR_ELSE is nonzero, give an error message. */
1891
1892 int
1893 is_class_type (tree type, int or_else)
1894 {
1895 if (type == error_mark_node)
1896 return 0;
1897
1898 if (! CLASS_TYPE_P (type))
1899 {
1900 if (or_else)
1901 error ("%qT is not a class type", type);
1902 return 0;
1903 }
1904 return 1;
1905 }
1906
1907 tree
1908 get_type_value (tree name)
1909 {
1910 if (name == error_mark_node)
1911 return NULL_TREE;
1912
1913 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1914 return IDENTIFIER_TYPE_VALUE (name);
1915 else
1916 return NULL_TREE;
1917 }
1918
1919 /* Build a reference to a member of an aggregate. This is not a C++
1920 `&', but really something which can have its address taken, and
1921 then act as a pointer to member, for example TYPE :: FIELD can have
1922 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1923 this expression is the operand of "&".
1924
1925 @@ Prints out lousy diagnostics for operator <typename>
1926 @@ fields.
1927
1928 @@ This function should be rewritten and placed in search.c. */
1929
1930 tree
1931 build_offset_ref (tree type, tree member, bool address_p,
1932 tsubst_flags_t complain)
1933 {
1934 tree decl;
1935 tree basebinfo = NULL_TREE;
1936
1937 /* class templates can come in as TEMPLATE_DECLs here. */
1938 if (TREE_CODE (member) == TEMPLATE_DECL)
1939 return member;
1940
1941 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1942 return build_qualified_name (NULL_TREE, type, member,
1943 /*template_p=*/false);
1944
1945 gcc_assert (TYPE_P (type));
1946 if (! is_class_type (type, 1))
1947 return error_mark_node;
1948
1949 gcc_assert (DECL_P (member) || BASELINK_P (member));
1950 /* Callers should call mark_used before this point. */
1951 gcc_assert (!DECL_P (member) || TREE_USED (member));
1952
1953 type = TYPE_MAIN_VARIANT (type);
1954 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1955 {
1956 if (complain & tf_error)
1957 error ("incomplete type %qT does not have member %qD", type, member);
1958 return error_mark_node;
1959 }
1960
1961 /* Entities other than non-static members need no further
1962 processing. */
1963 if (TREE_CODE (member) == TYPE_DECL)
1964 return member;
1965 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
1966 return convert_from_reference (member);
1967
1968 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1969 {
1970 if (complain & tf_error)
1971 error ("invalid pointer to bit-field %qD", member);
1972 return error_mark_node;
1973 }
1974
1975 /* Set up BASEBINFO for member lookup. */
1976 decl = maybe_dummy_object (type, &basebinfo);
1977
1978 /* A lot of this logic is now handled in lookup_member. */
1979 if (BASELINK_P (member))
1980 {
1981 /* Go from the TREE_BASELINK to the member function info. */
1982 tree t = BASELINK_FUNCTIONS (member);
1983
1984 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1985 {
1986 /* Get rid of a potential OVERLOAD around it. */
1987 t = OVL_CURRENT (t);
1988
1989 /* Unique functions are handled easily. */
1990
1991 /* For non-static member of base class, we need a special rule
1992 for access checking [class.protected]:
1993
1994 If the access is to form a pointer to member, the
1995 nested-name-specifier shall name the derived class
1996 (or any class derived from that class). */
1997 if (address_p && DECL_P (t)
1998 && DECL_NONSTATIC_MEMBER_P (t))
1999 perform_or_defer_access_check (TYPE_BINFO (type), t, t,
2000 complain);
2001 else
2002 perform_or_defer_access_check (basebinfo, t, t,
2003 complain);
2004
2005 if (DECL_STATIC_FUNCTION_P (t))
2006 return t;
2007 member = t;
2008 }
2009 else
2010 TREE_TYPE (member) = unknown_type_node;
2011 }
2012 else if (address_p && TREE_CODE (member) == FIELD_DECL)
2013 /* We need additional test besides the one in
2014 check_accessibility_of_qualified_id in case it is
2015 a pointer to non-static member. */
2016 perform_or_defer_access_check (TYPE_BINFO (type), member, member,
2017 complain);
2018
2019 if (!address_p)
2020 {
2021 /* If MEMBER is non-static, then the program has fallen afoul of
2022 [expr.prim]:
2023
2024 An id-expression that denotes a nonstatic data member or
2025 nonstatic member function of a class can only be used:
2026
2027 -- as part of a class member access (_expr.ref_) in which the
2028 object-expression refers to the member's class or a class
2029 derived from that class, or
2030
2031 -- to form a pointer to member (_expr.unary.op_), or
2032
2033 -- in the body of a nonstatic member function of that class or
2034 of a class derived from that class (_class.mfct.nonstatic_), or
2035
2036 -- in a mem-initializer for a constructor for that class or for
2037 a class derived from that class (_class.base.init_). */
2038 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
2039 {
2040 /* Build a representation of the qualified name suitable
2041 for use as the operand to "&" -- even though the "&" is
2042 not actually present. */
2043 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2044 /* In Microsoft mode, treat a non-static member function as if
2045 it were a pointer-to-member. */
2046 if (flag_ms_extensions)
2047 {
2048 PTRMEM_OK_P (member) = 1;
2049 return cp_build_addr_expr (member, complain);
2050 }
2051 if (complain & tf_error)
2052 error ("invalid use of non-static member function %qD",
2053 TREE_OPERAND (member, 1));
2054 return error_mark_node;
2055 }
2056 else if (TREE_CODE (member) == FIELD_DECL)
2057 {
2058 if (complain & tf_error)
2059 error ("invalid use of non-static data member %qD", member);
2060 return error_mark_node;
2061 }
2062 return member;
2063 }
2064
2065 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2066 PTRMEM_OK_P (member) = 1;
2067 return member;
2068 }
2069
2070 /* If DECL is a scalar enumeration constant or variable with a
2071 constant initializer, return the initializer (or, its initializers,
2072 recursively); otherwise, return DECL. If STRICT_P, the
2073 initializer is only returned if DECL is a
2074 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2075 return an aggregate constant. */
2076
2077 static tree
2078 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2079 {
2080 while (TREE_CODE (decl) == CONST_DECL
2081 || (strict_p
2082 ? decl_constant_var_p (decl)
2083 : (VAR_P (decl)
2084 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
2085 {
2086 tree init;
2087 /* If DECL is a static data member in a template
2088 specialization, we must instantiate it here. The
2089 initializer for the static data member is not processed
2090 until needed; we need it now. */
2091 mark_used (decl, tf_none);
2092 mark_rvalue_use (decl);
2093 init = DECL_INITIAL (decl);
2094 if (init == error_mark_node)
2095 {
2096 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2097 /* Treat the error as a constant to avoid cascading errors on
2098 excessively recursive template instantiation (c++/9335). */
2099 return init;
2100 else
2101 return decl;
2102 }
2103 /* Initializers in templates are generally expanded during
2104 instantiation, so before that for const int i(2)
2105 INIT is a TREE_LIST with the actual initializer as
2106 TREE_VALUE. */
2107 if (processing_template_decl
2108 && init
2109 && TREE_CODE (init) == TREE_LIST
2110 && TREE_CHAIN (init) == NULL_TREE)
2111 init = TREE_VALUE (init);
2112 /* Instantiate a non-dependent initializer for user variables. We
2113 mustn't do this for the temporary for an array compound literal;
2114 trying to instatiate the initializer will keep creating new
2115 temporaries until we crash. Probably it's not useful to do it for
2116 other artificial variables, either. */
2117 if (!DECL_ARTIFICIAL (decl))
2118 init = instantiate_non_dependent_or_null (init);
2119 if (!init
2120 || !TREE_TYPE (init)
2121 || !TREE_CONSTANT (init)
2122 || (!return_aggregate_cst_ok_p
2123 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2124 return an aggregate constant (of which string
2125 literals are a special case), as we do not want
2126 to make inadvertent copies of such entities, and
2127 we must be sure that their addresses are the
2128 same everywhere. */
2129 && (TREE_CODE (init) == CONSTRUCTOR
2130 || TREE_CODE (init) == STRING_CST)))
2131 break;
2132 /* Don't return a CONSTRUCTOR for a variable with partial run-time
2133 initialization, since it doesn't represent the entire value. */
2134 if (TREE_CODE (init) == CONSTRUCTOR
2135 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2136 break;
2137 decl = unshare_expr (init);
2138 }
2139 return decl;
2140 }
2141
2142 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2143 of integral or enumeration type, or a constexpr variable of scalar type,
2144 then return that value. These are those variables permitted in constant
2145 expressions by [5.19/1]. */
2146
2147 tree
2148 scalar_constant_value (tree decl)
2149 {
2150 return constant_value_1 (decl, /*strict_p=*/true,
2151 /*return_aggregate_cst_ok_p=*/false);
2152 }
2153
2154 /* Like scalar_constant_value, but can also return aggregate initializers. */
2155
2156 tree
2157 decl_really_constant_value (tree decl)
2158 {
2159 return constant_value_1 (decl, /*strict_p=*/true,
2160 /*return_aggregate_cst_ok_p=*/true);
2161 }
2162
2163 /* A more relaxed version of scalar_constant_value, used by the
2164 common C/C++ code. */
2165
2166 tree
2167 decl_constant_value (tree decl)
2168 {
2169 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2170 /*return_aggregate_cst_ok_p=*/true);
2171 }
2172 \f
2173 /* Common subroutines of build_new and build_vec_delete. */
2174 \f
2175 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2176 the type of the object being allocated; otherwise, it's just TYPE.
2177 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2178 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2179 a vector of arguments to be provided as arguments to a placement
2180 new operator. This routine performs no semantic checks; it just
2181 creates and returns a NEW_EXPR. */
2182
2183 static tree
2184 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2185 vec<tree, va_gc> *init, int use_global_new)
2186 {
2187 tree init_list;
2188 tree new_expr;
2189
2190 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2191 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2192 permits us to distinguish the case of a missing initializer "new
2193 int" from an empty initializer "new int()". */
2194 if (init == NULL)
2195 init_list = NULL_TREE;
2196 else if (init->is_empty ())
2197 init_list = void_node;
2198 else
2199 init_list = build_tree_list_vec (init);
2200
2201 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2202 build_tree_list_vec (placement), type, nelts,
2203 init_list);
2204 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2205 TREE_SIDE_EFFECTS (new_expr) = 1;
2206
2207 return new_expr;
2208 }
2209
2210 /* Diagnose uninitialized const members or reference members of type
2211 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2212 new expression without a new-initializer and a declaration. Returns
2213 the error count. */
2214
2215 static int
2216 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2217 bool using_new, bool complain)
2218 {
2219 tree field;
2220 int error_count = 0;
2221
2222 if (type_has_user_provided_constructor (type))
2223 return 0;
2224
2225 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2226 {
2227 tree field_type;
2228
2229 if (TREE_CODE (field) != FIELD_DECL)
2230 continue;
2231
2232 field_type = strip_array_types (TREE_TYPE (field));
2233
2234 if (type_has_user_provided_constructor (field_type))
2235 continue;
2236
2237 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2238 {
2239 ++ error_count;
2240 if (complain)
2241 {
2242 if (DECL_CONTEXT (field) == origin)
2243 {
2244 if (using_new)
2245 error ("uninitialized reference member in %q#T "
2246 "using %<new%> without new-initializer", origin);
2247 else
2248 error ("uninitialized reference member in %q#T", origin);
2249 }
2250 else
2251 {
2252 if (using_new)
2253 error ("uninitialized reference member in base %q#T "
2254 "of %q#T using %<new%> without new-initializer",
2255 DECL_CONTEXT (field), origin);
2256 else
2257 error ("uninitialized reference member in base %q#T "
2258 "of %q#T", DECL_CONTEXT (field), origin);
2259 }
2260 inform (DECL_SOURCE_LOCATION (field),
2261 "%q#D should be initialized", field);
2262 }
2263 }
2264
2265 if (CP_TYPE_CONST_P (field_type))
2266 {
2267 ++ error_count;
2268 if (complain)
2269 {
2270 if (DECL_CONTEXT (field) == origin)
2271 {
2272 if (using_new)
2273 error ("uninitialized const member in %q#T "
2274 "using %<new%> without new-initializer", origin);
2275 else
2276 error ("uninitialized const member in %q#T", origin);
2277 }
2278 else
2279 {
2280 if (using_new)
2281 error ("uninitialized const member in base %q#T "
2282 "of %q#T using %<new%> without new-initializer",
2283 DECL_CONTEXT (field), origin);
2284 else
2285 error ("uninitialized const member in base %q#T "
2286 "of %q#T", DECL_CONTEXT (field), origin);
2287 }
2288 inform (DECL_SOURCE_LOCATION (field),
2289 "%q#D should be initialized", field);
2290 }
2291 }
2292
2293 if (CLASS_TYPE_P (field_type))
2294 error_count
2295 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2296 using_new, complain);
2297 }
2298 return error_count;
2299 }
2300
2301 int
2302 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2303 {
2304 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2305 }
2306
2307 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2308 overflowed. Pretend it returns sizetype so that it plays nicely in the
2309 COND_EXPR. */
2310
2311 tree
2312 throw_bad_array_new_length (void)
2313 {
2314 tree fn = get_identifier ("__cxa_throw_bad_array_new_length");
2315 if (!get_global_value_if_present (fn, &fn))
2316 fn = push_throw_library_fn (fn, build_function_type_list (sizetype,
2317 NULL_TREE));
2318
2319 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2320 }
2321
2322 /* Attempt to find the initializer for field T in the initializer INIT,
2323 when non-null. Returns the initializer when successful and NULL
2324 otherwise. */
2325 static tree
2326 find_field_init (tree t, tree init)
2327 {
2328 if (!init)
2329 return NULL_TREE;
2330
2331 unsigned HOST_WIDE_INT idx;
2332 tree field, elt;
2333
2334 /* Iterate over all top-level initializer elements. */
2335 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
2336 {
2337 /* If the member T is found, return it. */
2338 if (field == t)
2339 return elt;
2340
2341 /* Otherwise continue and/or recurse into nested initializers. */
2342 if (TREE_CODE (elt) == CONSTRUCTOR
2343 && (init = find_field_init (t, elt)))
2344 return init;
2345 }
2346 return NULL_TREE;
2347 }
2348
2349 /* Attempt to verify that the argument, OPER, of a placement new expression
2350 refers to an object sufficiently large for an object of TYPE or an array
2351 of NELTS of such objects when NELTS is non-null, and issue a warning when
2352 it does not. SIZE specifies the size needed to construct the object or
2353 array and captures the result of NELTS * sizeof (TYPE). (SIZE could be
2354 greater when the array under construction requires a cookie to store
2355 NELTS. GCC's placement new expression stores the cookie when invoking
2356 a user-defined placement new operator function but not the default one.
2357 Placement new expressions with user-defined placement new operator are
2358 not diagnosed since we don't know how they use the buffer (this could
2359 be a future extension). */
2360 static void
2361 warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper)
2362 {
2363 location_t loc = EXPR_LOC_OR_LOC (oper, input_location);
2364
2365 /* The number of bytes to add to or subtract from the size of the provided
2366 buffer based on an offset into an array or an array element reference.
2367 Although intermediate results may be negative (as in a[3] - 2) the final
2368 result cannot be. */
2369 HOST_WIDE_INT adjust = 0;
2370 /* True when the size of the entire destination object should be used
2371 to compute the possibly optimistic estimate of the available space. */
2372 bool use_obj_size = false;
2373 /* True when the reference to the destination buffer is an ADDR_EXPR. */
2374 bool addr_expr = false;
2375
2376 STRIP_NOPS (oper);
2377
2378 /* Using a function argument or a (non-array) variable as an argument
2379 to placement new is not checked since it's unknown what it might
2380 point to. */
2381 if (TREE_CODE (oper) == PARM_DECL
2382 || VAR_P (oper)
2383 || TREE_CODE (oper) == COMPONENT_REF)
2384 return;
2385
2386 /* Evaluate any constant expressions. */
2387 size = fold_non_dependent_expr (size);
2388
2389 /* Handle the common case of array + offset expression when the offset
2390 is a constant. */
2391 if (TREE_CODE (oper) == POINTER_PLUS_EXPR)
2392 {
2393 /* If the offset is comple-time constant, use it to compute a more
2394 accurate estimate of the size of the buffer. Since the operand
2395 of POINTER_PLUS_EXPR is represented as an unsigned type, convert
2396 it to signed first.
2397 Otherwise, use the size of the entire array as an optimistic
2398 estimate (this may lead to false negatives). */
2399 tree adj = TREE_OPERAND (oper, 1);
2400 if (CONSTANT_CLASS_P (adj))
2401 adjust += tree_to_shwi (convert (ssizetype, adj));
2402 else
2403 use_obj_size = true;
2404
2405 oper = TREE_OPERAND (oper, 0);
2406
2407 STRIP_NOPS (oper);
2408 }
2409
2410 if (TREE_CODE (oper) == TARGET_EXPR)
2411 oper = TREE_OPERAND (oper, 1);
2412 else if (TREE_CODE (oper) == ADDR_EXPR)
2413 {
2414 addr_expr = true;
2415 oper = TREE_OPERAND (oper, 0);
2416 }
2417
2418 STRIP_NOPS (oper);
2419
2420 if (TREE_CODE (oper) == ARRAY_REF
2421 && (addr_expr || TREE_CODE (TREE_TYPE (oper)) == ARRAY_TYPE))
2422 {
2423 /* Similar to the offset computed above, see if the array index
2424 is a compile-time constant. If so, and unless the offset was
2425 not a compile-time constant, use the index to determine the
2426 size of the buffer. Otherwise, use the entire array as
2427 an optimistic estimate of the size. */
2428 const_tree adj = TREE_OPERAND (oper, 1);
2429 if (!use_obj_size && CONSTANT_CLASS_P (adj))
2430 adjust += tree_to_shwi (adj);
2431 else
2432 {
2433 use_obj_size = true;
2434 adjust = 0;
2435 }
2436
2437 oper = TREE_OPERAND (oper, 0);
2438 }
2439
2440 /* Refers to the declared object that constains the subobject referenced
2441 by OPER. When the object is initialized, makes it possible to determine
2442 the actual size of a flexible array member used as the buffer passed
2443 as OPER to placement new. */
2444 tree var_decl = NULL_TREE;
2445 /* True when operand is a COMPONENT_REF, to distinguish flexible array
2446 members from arrays of unspecified size. */
2447 bool compref = TREE_CODE (oper) == COMPONENT_REF;
2448
2449 /* Descend into a struct or union to find the member whose address
2450 is being used as the argument. */
2451 if (TREE_CODE (oper) == COMPONENT_REF)
2452 {
2453 tree op0 = oper;
2454 while (TREE_CODE (op0 = TREE_OPERAND (op0, 0)) == COMPONENT_REF);
2455 if (VAR_P (op0))
2456 var_decl = op0;
2457 oper = TREE_OPERAND (oper, 1);
2458 }
2459
2460 if ((addr_expr || !POINTER_TYPE_P (TREE_TYPE (oper)))
2461 && (VAR_P (oper)
2462 || TREE_CODE (oper) == FIELD_DECL
2463 || TREE_CODE (oper) == PARM_DECL))
2464 {
2465 /* A possibly optimistic estimate of the number of bytes available
2466 in the destination buffer. */
2467 unsigned HOST_WIDE_INT bytes_avail = 0;
2468 /* True when the estimate above is in fact the exact size
2469 of the destination buffer rather than an estimate. */
2470 bool exact_size = true;
2471
2472 /* Treat members of unions and members of structs uniformly, even
2473 though the size of a member of a union may be viewed as extending
2474 to the end of the union itself (it is by __builtin_object_size). */
2475 if ((VAR_P (oper) || use_obj_size)
2476 && DECL_SIZE_UNIT (oper)
2477 && tree_fits_uhwi_p (DECL_SIZE_UNIT (oper)))
2478 {
2479 /* Use the size of the entire array object when the expression
2480 refers to a variable or its size depends on an expression
2481 that's not a compile-time constant. */
2482 bytes_avail = tree_to_uhwi (DECL_SIZE_UNIT (oper));
2483 exact_size = !use_obj_size;
2484 }
2485 else if (TYPE_SIZE_UNIT (TREE_TYPE (oper))
2486 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (oper))))
2487 {
2488 /* Use the size of the type of the destination buffer object
2489 as the optimistic estimate of the available space in it. */
2490 bytes_avail = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (oper)));
2491 }
2492 else if (var_decl)
2493 {
2494 /* Constructing into a buffer provided by the flexible array
2495 member of a declared object (which is permitted as a G++
2496 extension). If the array member has been initialized,
2497 determine its size from the initializer. Otherwise,
2498 the array size is zero. */
2499 bytes_avail = 0;
2500
2501 if (tree init = find_field_init (oper, DECL_INITIAL (var_decl)))
2502 bytes_avail = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (init)));
2503 }
2504 else
2505 {
2506 /* Bail if neither the size of the object nor its type is known. */
2507 return;
2508 }
2509
2510 tree_code oper_code = TREE_CODE (TREE_TYPE (oper));
2511
2512 if (compref && oper_code == ARRAY_TYPE)
2513 {
2514 /* Avoid diagnosing flexible array members (which are accepted
2515 as an extension and diagnosed with -Wpedantic) and zero-length
2516 arrays (also an extension).
2517 Overflowing construction in one-element arrays is diagnosed
2518 only at level 2. */
2519 if (bytes_avail == 0 && !var_decl)
2520 return;
2521
2522 tree nelts = array_type_nelts_top (TREE_TYPE (oper));
2523 tree nelts_cst = maybe_constant_value (nelts);
2524 if (TREE_CODE (nelts_cst) == INTEGER_CST
2525 && integer_onep (nelts_cst)
2526 && !var_decl
2527 && warn_placement_new < 2)
2528 return;
2529 }
2530
2531 /* The size of the buffer can only be adjusted down but not up. */
2532 gcc_checking_assert (0 <= adjust);
2533
2534 /* Reduce the size of the buffer by the adjustment computed above
2535 from the offset and/or the index into the array. */
2536 if (bytes_avail < static_cast<unsigned HOST_WIDE_INT>(adjust))
2537 bytes_avail = 0;
2538 else
2539 bytes_avail -= adjust;
2540
2541 /* The minimum amount of space needed for the allocation. This
2542 is an optimistic estimate that makes it possible to detect
2543 placement new invocation for some undersize buffers but not
2544 others. */
2545 unsigned HOST_WIDE_INT bytes_need;
2546
2547 if (CONSTANT_CLASS_P (size))
2548 bytes_need = tree_to_uhwi (size);
2549 else if (nelts && CONSTANT_CLASS_P (nelts))
2550 bytes_need = tree_to_uhwi (nelts)
2551 * tree_to_uhwi (TYPE_SIZE_UNIT (type));
2552 else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2553 bytes_need = tree_to_uhwi (TYPE_SIZE_UNIT (type));
2554 else
2555 {
2556 /* The type is a VLA. */
2557 return;
2558 }
2559
2560 if (bytes_avail < bytes_need)
2561 {
2562 if (nelts)
2563 if (CONSTANT_CLASS_P (nelts))
2564 warning_at (loc, OPT_Wplacement_new_,
2565 exact_size ?
2566 "placement new constructing an object of type "
2567 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2568 "and size %qwi"
2569 : "placement new constructing an object of type "
2570 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2571 "and size at most %qwu",
2572 type, tree_to_uhwi (nelts), bytes_need,
2573 TREE_TYPE (oper),
2574 bytes_avail);
2575 else
2576 warning_at (loc, OPT_Wplacement_new_,
2577 exact_size ?
2578 "placement new constructing an array of objects "
2579 "of type %qT and size %qwu in a region of type %qT "
2580 "and size %qwi"
2581 : "placement new constructing an array of objects "
2582 "of type %qT and size %qwu in a region of type %qT "
2583 "and size at most %qwu",
2584 type, bytes_need, TREE_TYPE (oper),
2585 bytes_avail);
2586 else
2587 warning_at (loc, OPT_Wplacement_new_,
2588 exact_size ?
2589 "placement new constructing an object of type %qT "
2590 "and size %qwu in a region of type %qT and size %qwi"
2591 : "placement new constructing an object of type %qT"
2592 "and size %qwu in a region of type %qT and size "
2593 "at most %qwu",
2594 type, bytes_need, TREE_TYPE (oper),
2595 bytes_avail);
2596 }
2597 }
2598 }
2599
2600 /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__. */
2601
2602 bool
2603 type_has_new_extended_alignment (tree t)
2604 {
2605 return (aligned_new_threshold
2606 && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold);
2607 }
2608
2609 /* Return the alignment we expect malloc to guarantee. This should just be
2610 MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some
2611 reason, so don't let the threshold be smaller than max_align_t_align. */
2612
2613 unsigned
2614 malloc_alignment ()
2615 {
2616 return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT);
2617 }
2618
2619 /* Generate code for a new-expression, including calling the "operator
2620 new" function, initializing the object, and, if an exception occurs
2621 during construction, cleaning up. The arguments are as for
2622 build_raw_new_expr. This may change PLACEMENT and INIT.
2623 TYPE is the type of the object being constructed, possibly an array
2624 of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
2625 be an array of the form U[inner], with the whole expression being
2626 "new U[NELTS][inner]"). */
2627
2628 static tree
2629 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2630 vec<tree, va_gc> **init, bool globally_qualified_p,
2631 tsubst_flags_t complain)
2632 {
2633 tree size, rval;
2634 /* True iff this is a call to "operator new[]" instead of just
2635 "operator new". */
2636 bool array_p = false;
2637 /* If ARRAY_P is true, the element type of the array. This is never
2638 an ARRAY_TYPE; for something like "new int[3][4]", the
2639 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2640 TYPE. */
2641 tree elt_type;
2642 /* The type of the new-expression. (This type is always a pointer
2643 type.) */
2644 tree pointer_type;
2645 tree non_const_pointer_type;
2646 /* The most significant array bound in int[OUTER_NELTS][inner]. */
2647 tree outer_nelts = NULL_TREE;
2648 /* For arrays with a non-constant number of elements, a bounds checks
2649 on the NELTS parameter to avoid integer overflow at runtime. */
2650 tree outer_nelts_check = NULL_TREE;
2651 bool outer_nelts_from_type = false;
2652 /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */
2653 offset_int inner_nelts_count = 1;
2654 tree alloc_call, alloc_expr;
2655 /* Size of the inner array elements (those with constant dimensions). */
2656 offset_int inner_size;
2657 /* The address returned by the call to "operator new". This node is
2658 a VAR_DECL and is therefore reusable. */
2659 tree alloc_node;
2660 tree alloc_fn;
2661 tree cookie_expr, init_expr;
2662 int nothrow, check_new;
2663 /* If non-NULL, the number of extra bytes to allocate at the
2664 beginning of the storage allocated for an array-new expression in
2665 order to store the number of elements. */
2666 tree cookie_size = NULL_TREE;
2667 tree placement_first;
2668 tree placement_expr = NULL_TREE;
2669 /* True if the function we are calling is a placement allocation
2670 function. */
2671 bool placement_allocation_fn_p;
2672 /* True if the storage must be initialized, either by a constructor
2673 or due to an explicit new-initializer. */
2674 bool is_initialized;
2675 /* The address of the thing allocated, not including any cookie. In
2676 particular, if an array cookie is in use, DATA_ADDR is the
2677 address of the first array element. This node is a VAR_DECL, and
2678 is therefore reusable. */
2679 tree data_addr;
2680 tree init_preeval_expr = NULL_TREE;
2681 tree orig_type = type;
2682
2683 if (nelts)
2684 {
2685 outer_nelts = nelts;
2686 array_p = true;
2687 }
2688 else if (TREE_CODE (type) == ARRAY_TYPE)
2689 {
2690 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2691 extension for variable N. (This also covers new T where T is
2692 a VLA typedef.) */
2693 array_p = true;
2694 nelts = array_type_nelts_top (type);
2695 outer_nelts = nelts;
2696 type = TREE_TYPE (type);
2697 outer_nelts_from_type = true;
2698 }
2699
2700 /* Lots of logic below. depends on whether we have a constant number of
2701 elements, so go ahead and fold it now. */
2702 if (outer_nelts)
2703 outer_nelts = maybe_constant_value (outer_nelts);
2704
2705 /* If our base type is an array, then make sure we know how many elements
2706 it has. */
2707 for (elt_type = type;
2708 TREE_CODE (elt_type) == ARRAY_TYPE;
2709 elt_type = TREE_TYPE (elt_type))
2710 {
2711 tree inner_nelts = array_type_nelts_top (elt_type);
2712 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2713 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2714 {
2715 bool overflow;
2716 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2717 inner_nelts_count, SIGNED, &overflow);
2718 if (overflow)
2719 {
2720 if (complain & tf_error)
2721 error ("integer overflow in array size");
2722 nelts = error_mark_node;
2723 }
2724 inner_nelts_count = result;
2725 }
2726 else
2727 {
2728 if (complain & tf_error)
2729 {
2730 error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2731 "array size in new-expression must be constant");
2732 cxx_constant_value(inner_nelts);
2733 }
2734 nelts = error_mark_node;
2735 }
2736 if (nelts != error_mark_node)
2737 nelts = cp_build_binary_op (input_location,
2738 MULT_EXPR, nelts,
2739 inner_nelts_cst,
2740 complain);
2741 }
2742
2743 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2744 {
2745 error ("variably modified type not allowed in new-expression");
2746 return error_mark_node;
2747 }
2748
2749 if (nelts == error_mark_node)
2750 return error_mark_node;
2751
2752 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2753 variable. */
2754 if (outer_nelts_from_type
2755 && !TREE_CONSTANT (outer_nelts))
2756 {
2757 if (complain & tf_warning_or_error)
2758 {
2759 const char *msg;
2760 if (typedef_variant_p (orig_type))
2761 msg = ("non-constant array new length must be specified "
2762 "directly, not by typedef");
2763 else
2764 msg = ("non-constant array new length must be specified "
2765 "without parentheses around the type-id");
2766 pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location),
2767 OPT_Wvla, msg);
2768 }
2769 else
2770 return error_mark_node;
2771 }
2772
2773 if (VOID_TYPE_P (elt_type))
2774 {
2775 if (complain & tf_error)
2776 error ("invalid type %<void%> for new");
2777 return error_mark_node;
2778 }
2779
2780 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2781 return error_mark_node;
2782
2783 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2784
2785 if (*init == NULL && cxx_dialect < cxx11)
2786 {
2787 bool maybe_uninitialized_error = false;
2788 /* A program that calls for default-initialization [...] of an
2789 entity of reference type is ill-formed. */
2790 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2791 maybe_uninitialized_error = true;
2792
2793 /* A new-expression that creates an object of type T initializes
2794 that object as follows:
2795 - If the new-initializer is omitted:
2796 -- If T is a (possibly cv-qualified) non-POD class type
2797 (or array thereof), the object is default-initialized (8.5).
2798 [...]
2799 -- Otherwise, the object created has indeterminate
2800 value. If T is a const-qualified type, or a (possibly
2801 cv-qualified) POD class type (or array thereof)
2802 containing (directly or indirectly) a member of
2803 const-qualified type, the program is ill-formed; */
2804
2805 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2806 maybe_uninitialized_error = true;
2807
2808 if (maybe_uninitialized_error
2809 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2810 /*using_new=*/true,
2811 complain & tf_error))
2812 return error_mark_node;
2813 }
2814
2815 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2816 && default_init_uninitialized_part (elt_type))
2817 {
2818 if (complain & tf_error)
2819 error ("uninitialized const in %<new%> of %q#T", elt_type);
2820 return error_mark_node;
2821 }
2822
2823 size = size_in_bytes (elt_type);
2824 if (array_p)
2825 {
2826 /* Maximum available size in bytes. Half of the address space
2827 minus the cookie size. */
2828 offset_int max_size
2829 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
2830 /* Maximum number of outer elements which can be allocated. */
2831 offset_int max_outer_nelts;
2832 tree max_outer_nelts_tree;
2833
2834 gcc_assert (TREE_CODE (size) == INTEGER_CST);
2835 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2836 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2837 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
2838 /* Unconditionally subtract the cookie size. This decreases the
2839 maximum object size and is safe even if we choose not to use
2840 a cookie after all. */
2841 max_size -= wi::to_offset (cookie_size);
2842 bool overflow;
2843 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
2844 &overflow);
2845 if (overflow || wi::gtu_p (inner_size, max_size))
2846 {
2847 if (complain & tf_error)
2848 error ("size of array is too large");
2849 return error_mark_node;
2850 }
2851
2852 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
2853 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
2854
2855 size = size_binop (MULT_EXPR, size, fold_convert (sizetype, nelts));
2856
2857 if (INTEGER_CST == TREE_CODE (outer_nelts))
2858 {
2859 if (tree_int_cst_lt (max_outer_nelts_tree, outer_nelts))
2860 {
2861 /* When the array size is constant, check it at compile time
2862 to make sure it doesn't exceed the implementation-defined
2863 maximum, as required by C++ 14 (in C++ 11 this requirement
2864 isn't explicitly stated but it's enforced anyway -- see
2865 grokdeclarator in cp/decl.c). */
2866 if (complain & tf_error)
2867 error ("size of array is too large");
2868 return error_mark_node;
2869 }
2870 }
2871 else
2872 {
2873 /* When a runtime check is necessary because the array size
2874 isn't constant, keep only the top-most seven bits (starting
2875 with the most significant non-zero bit) of the maximum size
2876 to compare the array size against, to simplify encoding the
2877 constant maximum size in the instruction stream. */
2878
2879 unsigned shift = (max_outer_nelts.get_precision ()) - 7
2880 - wi::clz (max_outer_nelts);
2881 max_outer_nelts = (max_outer_nelts >> shift) << shift;
2882
2883 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2884 outer_nelts,
2885 max_outer_nelts_tree);
2886 }
2887 }
2888
2889 tree align_arg = NULL_TREE;
2890 if (type_has_new_extended_alignment (elt_type))
2891 align_arg = build_int_cst (align_type_node, TYPE_ALIGN_UNIT (elt_type));
2892
2893 alloc_fn = NULL_TREE;
2894
2895 /* If PLACEMENT is a single simple pointer type not passed by
2896 reference, prepare to capture it in a temporary variable. Do
2897 this now, since PLACEMENT will change in the calls below. */
2898 placement_first = NULL_TREE;
2899 if (vec_safe_length (*placement) == 1
2900 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
2901 placement_first = (**placement)[0];
2902
2903 bool member_new_p = false;
2904
2905 /* Allocate the object. */
2906 tree fnname;
2907 tree fns;
2908
2909 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2910
2911 member_new_p = !globally_qualified_p
2912 && CLASS_TYPE_P (elt_type)
2913 && (array_p
2914 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2915 : TYPE_HAS_NEW_OPERATOR (elt_type));
2916
2917 if (member_new_p)
2918 {
2919 /* Use a class-specific operator new. */
2920 /* If a cookie is required, add some extra space. */
2921 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2922 size = size_binop (PLUS_EXPR, size, cookie_size);
2923 else
2924 {
2925 cookie_size = NULL_TREE;
2926 /* No size arithmetic necessary, so the size check is
2927 not needed. */
2928 if (outer_nelts_check != NULL && inner_size == 1)
2929 outer_nelts_check = NULL_TREE;
2930 }
2931 /* Perform the overflow check. */
2932 tree errval = TYPE_MAX_VALUE (sizetype);
2933 if (cxx_dialect >= cxx11 && flag_exceptions)
2934 errval = throw_bad_array_new_length ();
2935 if (outer_nelts_check != NULL_TREE)
2936 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
2937 size, errval);
2938 /* Create the argument list. */
2939 vec_safe_insert (*placement, 0, size);
2940 /* Do name-lookup to find the appropriate operator. */
2941 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2942 if (fns == NULL_TREE)
2943 {
2944 if (complain & tf_error)
2945 error ("no suitable %qD found in class %qT", fnname, elt_type);
2946 return error_mark_node;
2947 }
2948 if (TREE_CODE (fns) == TREE_LIST)
2949 {
2950 if (complain & tf_error)
2951 {
2952 error ("request for member %qD is ambiguous", fnname);
2953 print_candidates (fns);
2954 }
2955 return error_mark_node;
2956 }
2957 tree dummy = build_dummy_object (elt_type);
2958 alloc_call = NULL_TREE;
2959 if (align_arg)
2960 {
2961 vec<tree, va_gc> *align_args
2962 = vec_copy_and_insert (*placement, align_arg, 1);
2963 alloc_call
2964 = build_new_method_call (dummy, fns, &align_args,
2965 /*conversion_path=*/NULL_TREE,
2966 LOOKUP_NORMAL, &alloc_fn, tf_none);
2967 /* If no matching function is found and the allocated object type
2968 has new-extended alignment, the alignment argument is removed
2969 from the argument list, and overload resolution is performed
2970 again. */
2971 if (alloc_call == error_mark_node)
2972 alloc_call = NULL_TREE;
2973 }
2974 if (!alloc_call)
2975 alloc_call = build_new_method_call (dummy, fns, placement,
2976 /*conversion_path=*/NULL_TREE,
2977 LOOKUP_NORMAL,
2978 &alloc_fn, complain);
2979 }
2980 else
2981 {
2982 /* Use a global operator new. */
2983 /* See if a cookie might be required. */
2984 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
2985 {
2986 cookie_size = NULL_TREE;
2987 /* No size arithmetic necessary, so the size check is
2988 not needed. */
2989 if (outer_nelts_check != NULL && inner_size == 1)
2990 outer_nelts_check = NULL_TREE;
2991 }
2992
2993 alloc_call = build_operator_new_call (fnname, placement,
2994 &size, &cookie_size,
2995 align_arg, outer_nelts_check,
2996 &alloc_fn, complain);
2997 }
2998
2999 if (alloc_call == error_mark_node)
3000 return error_mark_node;
3001
3002 gcc_assert (alloc_fn != NULL_TREE);
3003
3004 /* Now, check to see if this function is actually a placement
3005 allocation function. This can happen even when PLACEMENT is NULL
3006 because we might have something like:
3007
3008 struct S { void* operator new (size_t, int i = 0); };
3009
3010 A call to `new S' will get this allocation function, even though
3011 there is no explicit placement argument. If there is more than
3012 one argument, or there are variable arguments, then this is a
3013 placement allocation function. */
3014 placement_allocation_fn_p
3015 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
3016 || varargs_function_p (alloc_fn));
3017
3018 if (warn_aligned_new
3019 && !placement_allocation_fn_p
3020 && TYPE_ALIGN (elt_type) > malloc_alignment ()
3021 && (warn_aligned_new > 1
3022 || CP_DECL_CONTEXT (alloc_fn) == global_namespace)
3023 && !aligned_allocation_fn_p (alloc_fn))
3024 {
3025 warning (OPT_Waligned_new_, "%<new%> of type %qT with extended "
3026 "alignment %d", elt_type, TYPE_ALIGN_UNIT (elt_type));
3027 inform (input_location, "uses %qD, which does not have an alignment "
3028 "parameter", alloc_fn);
3029 if (!aligned_new_threshold)
3030 inform (input_location, "use %<-faligned-new%> to enable C++17 "
3031 "over-aligned new support");
3032 }
3033
3034 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
3035 into a temporary variable. */
3036 if (!processing_template_decl
3037 && TREE_CODE (alloc_call) == CALL_EXPR
3038 && call_expr_nargs (alloc_call) == 2
3039 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
3040 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
3041 {
3042 tree placement = CALL_EXPR_ARG (alloc_call, 1);
3043
3044 if (placement_first != NULL_TREE
3045 && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))
3046 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))))
3047 {
3048 placement_expr = get_target_expr (placement_first);
3049 CALL_EXPR_ARG (alloc_call, 1)
3050 = fold_convert (TREE_TYPE (placement), placement_expr);
3051 }
3052
3053 if (!member_new_p
3054 && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))))
3055 {
3056 /* Attempt to make the warning point at the operator new argument. */
3057 if (placement_first)
3058 placement = placement_first;
3059
3060 warn_placement_new_too_small (orig_type, nelts, size, placement);
3061 }
3062 }
3063
3064 /* In the simple case, we can stop now. */
3065 pointer_type = build_pointer_type (type);
3066 if (!cookie_size && !is_initialized)
3067 return build_nop (pointer_type, alloc_call);
3068
3069 /* Store the result of the allocation call in a variable so that we can
3070 use it more than once. */
3071 alloc_expr = get_target_expr (alloc_call);
3072 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
3073
3074 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
3075 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
3076 alloc_call = TREE_OPERAND (alloc_call, 1);
3077
3078 /* Preevaluate the placement args so that we don't reevaluate them for a
3079 placement delete. */
3080 if (placement_allocation_fn_p)
3081 {
3082 tree inits;
3083 stabilize_call (alloc_call, &inits);
3084 if (inits)
3085 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
3086 alloc_expr);
3087 }
3088
3089 /* unless an allocation function is declared with an empty excep-
3090 tion-specification (_except.spec_), throw(), it indicates failure to
3091 allocate storage by throwing a bad_alloc exception (clause _except_,
3092 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
3093 cation function is declared with an empty exception-specification,
3094 throw(), it returns null to indicate failure to allocate storage and a
3095 non-null pointer otherwise.
3096
3097 So check for a null exception spec on the op new we just called. */
3098
3099 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
3100 check_new = (flag_check_new || nothrow);
3101
3102 if (cookie_size)
3103 {
3104 tree cookie;
3105 tree cookie_ptr;
3106 tree size_ptr_type;
3107
3108 /* Adjust so we're pointing to the start of the object. */
3109 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
3110
3111 /* Store the number of bytes allocated so that we can know how
3112 many elements to destroy later. We use the last sizeof
3113 (size_t) bytes to store the number of elements. */
3114 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
3115 cookie_ptr = fold_build_pointer_plus_loc (input_location,
3116 alloc_node, cookie_ptr);
3117 size_ptr_type = build_pointer_type (sizetype);
3118 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
3119 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
3120
3121 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
3122
3123 if (targetm.cxx.cookie_has_size ())
3124 {
3125 /* Also store the element size. */
3126 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
3127 fold_build1_loc (input_location,
3128 NEGATE_EXPR, sizetype,
3129 size_in_bytes (sizetype)));
3130
3131 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
3132 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
3133 size_in_bytes (elt_type));
3134 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
3135 cookie, cookie_expr);
3136 }
3137 }
3138 else
3139 {
3140 cookie_expr = NULL_TREE;
3141 data_addr = alloc_node;
3142 }
3143
3144 /* Now use a pointer to the type we've actually allocated. */
3145
3146 /* But we want to operate on a non-const version to start with,
3147 since we'll be modifying the elements. */
3148 non_const_pointer_type = build_pointer_type
3149 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
3150
3151 data_addr = fold_convert (non_const_pointer_type, data_addr);
3152 /* Any further uses of alloc_node will want this type, too. */
3153 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
3154
3155 /* Now initialize the allocated object. Note that we preevaluate the
3156 initialization expression, apart from the actual constructor call or
3157 assignment--we do this because we want to delay the allocation as long
3158 as possible in order to minimize the size of the exception region for
3159 placement delete. */
3160 if (is_initialized)
3161 {
3162 bool stable;
3163 bool explicit_value_init_p = false;
3164
3165 if (*init != NULL && (*init)->is_empty ())
3166 {
3167 *init = NULL;
3168 explicit_value_init_p = true;
3169 }
3170
3171 if (processing_template_decl && explicit_value_init_p)
3172 {
3173 /* build_value_init doesn't work in templates, and we don't need
3174 the initializer anyway since we're going to throw it away and
3175 rebuild it at instantiation time, so just build up a single
3176 constructor call to get any appropriate diagnostics. */
3177 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
3178 if (type_build_ctor_call (elt_type))
3179 init_expr = build_special_member_call (init_expr,
3180 complete_ctor_identifier,
3181 init, elt_type,
3182 LOOKUP_NORMAL,
3183 complain);
3184 stable = stabilize_init (init_expr, &init_preeval_expr);
3185 }
3186 else if (array_p)
3187 {
3188 tree vecinit = NULL_TREE;
3189 if (vec_safe_length (*init) == 1
3190 && DIRECT_LIST_INIT_P ((**init)[0]))
3191 {
3192 vecinit = (**init)[0];
3193 if (CONSTRUCTOR_NELTS (vecinit) == 0)
3194 /* List-value-initialization, leave it alone. */;
3195 else
3196 {
3197 tree arraytype, domain;
3198 if (TREE_CONSTANT (nelts))
3199 domain = compute_array_index_type (NULL_TREE, nelts,
3200 complain);
3201 else
3202 /* We'll check the length at runtime. */
3203 domain = NULL_TREE;
3204 arraytype = build_cplus_array_type (type, domain);
3205 vecinit = digest_init (arraytype, vecinit, complain);
3206 }
3207 }
3208 else if (*init)
3209 {
3210 if (complain & tf_error)
3211 permerror (input_location,
3212 "parenthesized initializer in array new");
3213 else
3214 return error_mark_node;
3215 vecinit = build_tree_list_vec (*init);
3216 }
3217 init_expr
3218 = build_vec_init (data_addr,
3219 cp_build_binary_op (input_location,
3220 MINUS_EXPR, outer_nelts,
3221 integer_one_node,
3222 complain),
3223 vecinit,
3224 explicit_value_init_p,
3225 /*from_array=*/0,
3226 complain);
3227
3228 /* An array initialization is stable because the initialization
3229 of each element is a full-expression, so the temporaries don't
3230 leak out. */
3231 stable = true;
3232 }
3233 else
3234 {
3235 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
3236
3237 if (type_build_ctor_call (type) && !explicit_value_init_p)
3238 {
3239 init_expr = build_special_member_call (init_expr,
3240 complete_ctor_identifier,
3241 init, elt_type,
3242 LOOKUP_NORMAL,
3243 complain);
3244 }
3245 else if (explicit_value_init_p)
3246 {
3247 /* Something like `new int()'. */
3248 tree val = build_value_init (type, complain);
3249 if (val == error_mark_node)
3250 return error_mark_node;
3251 init_expr = build2 (INIT_EXPR, type, init_expr, val);
3252 }
3253 else
3254 {
3255 tree ie;
3256
3257 /* We are processing something like `new int (10)', which
3258 means allocate an int, and initialize it with 10. */
3259
3260 ie = build_x_compound_expr_from_vec (*init, "new initializer",
3261 complain);
3262 init_expr = cp_build_modify_expr (input_location, init_expr,
3263 INIT_EXPR, ie, complain);
3264 }
3265 stable = stabilize_init (init_expr, &init_preeval_expr);
3266 }
3267
3268 if (init_expr == error_mark_node)
3269 return error_mark_node;
3270
3271 /* If any part of the object initialization terminates by throwing an
3272 exception and a suitable deallocation function can be found, the
3273 deallocation function is called to free the memory in which the
3274 object was being constructed, after which the exception continues
3275 to propagate in the context of the new-expression. If no
3276 unambiguous matching deallocation function can be found,
3277 propagating the exception does not cause the object's memory to be
3278 freed. */
3279 if (flag_exceptions)
3280 {
3281 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
3282 tree cleanup;
3283
3284 /* The Standard is unclear here, but the right thing to do
3285 is to use the same method for finding deallocation
3286 functions that we use for finding allocation functions. */
3287 cleanup = (build_op_delete_call
3288 (dcode,
3289 alloc_node,
3290 size,
3291 globally_qualified_p,
3292 placement_allocation_fn_p ? alloc_call : NULL_TREE,
3293 alloc_fn,
3294 complain));
3295
3296 if (!cleanup)
3297 /* We're done. */;
3298 else if (stable)
3299 /* This is much simpler if we were able to preevaluate all of
3300 the arguments to the constructor call. */
3301 {
3302 /* CLEANUP is compiler-generated, so no diagnostics. */
3303 TREE_NO_WARNING (cleanup) = true;
3304 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
3305 init_expr, cleanup);
3306 /* Likewise, this try-catch is compiler-generated. */
3307 TREE_NO_WARNING (init_expr) = true;
3308 }
3309 else
3310 /* Ack! First we allocate the memory. Then we set our sentry
3311 variable to true, and expand a cleanup that deletes the
3312 memory if sentry is true. Then we run the constructor, and
3313 finally clear the sentry.
3314
3315 We need to do this because we allocate the space first, so
3316 if there are any temporaries with cleanups in the
3317 constructor args and we weren't able to preevaluate them, we
3318 need this EH region to extend until end of full-expression
3319 to preserve nesting. */
3320 {
3321 tree end, sentry, begin;
3322
3323 begin = get_target_expr (boolean_true_node);
3324 CLEANUP_EH_ONLY (begin) = 1;
3325
3326 sentry = TARGET_EXPR_SLOT (begin);
3327
3328 /* CLEANUP is compiler-generated, so no diagnostics. */
3329 TREE_NO_WARNING (cleanup) = true;
3330
3331 TARGET_EXPR_CLEANUP (begin)
3332 = build3 (COND_EXPR, void_type_node, sentry,
3333 cleanup, void_node);
3334
3335 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
3336 sentry, boolean_false_node);
3337
3338 init_expr
3339 = build2 (COMPOUND_EXPR, void_type_node, begin,
3340 build2 (COMPOUND_EXPR, void_type_node, init_expr,
3341 end));
3342 /* Likewise, this is compiler-generated. */
3343 TREE_NO_WARNING (init_expr) = true;
3344 }
3345 }
3346 }
3347 else
3348 init_expr = NULL_TREE;
3349
3350 /* Now build up the return value in reverse order. */
3351
3352 rval = data_addr;
3353
3354 if (init_expr)
3355 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
3356 if (cookie_expr)
3357 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
3358
3359 if (rval == data_addr)
3360 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
3361 and return the call (which doesn't need to be adjusted). */
3362 rval = TARGET_EXPR_INITIAL (alloc_expr);
3363 else
3364 {
3365 if (check_new)
3366 {
3367 tree ifexp = cp_build_binary_op (input_location,
3368 NE_EXPR, alloc_node,
3369 nullptr_node,
3370 complain);
3371 rval = build_conditional_expr (input_location, ifexp, rval,
3372 alloc_node, complain);
3373 }
3374
3375 /* Perform the allocation before anything else, so that ALLOC_NODE
3376 has been initialized before we start using it. */
3377 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
3378 }
3379
3380 if (init_preeval_expr)
3381 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
3382
3383 /* A new-expression is never an lvalue. */
3384 gcc_assert (!obvalue_p (rval));
3385
3386 return convert (pointer_type, rval);
3387 }
3388
3389 /* Generate a representation for a C++ "new" expression. *PLACEMENT
3390 is a vector of placement-new arguments (or NULL if none). If NELTS
3391 is NULL, TYPE is the type of the storage to be allocated. If NELTS
3392 is not NULL, then this is an array-new allocation; TYPE is the type
3393 of the elements in the array and NELTS is the number of elements in
3394 the array. *INIT, if non-NULL, is the initializer for the new
3395 object, or an empty vector to indicate an initializer of "()". If
3396 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3397 rather than just "new". This may change PLACEMENT and INIT. */
3398
3399 tree
3400 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
3401 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
3402 {
3403 tree rval;
3404 vec<tree, va_gc> *orig_placement = NULL;
3405 tree orig_nelts = NULL_TREE;
3406 vec<tree, va_gc> *orig_init = NULL;
3407
3408 if (type == error_mark_node)
3409 return error_mark_node;
3410
3411 if (nelts == NULL_TREE && vec_safe_length (*init) == 1
3412 /* Don't do auto deduction where it might affect mangling. */
3413 && (!processing_template_decl || at_function_scope_p ()))
3414 {
3415 tree auto_node = type_uses_auto (type);
3416 if (auto_node)
3417 {
3418 tree d_init = (**init)[0];
3419 d_init = resolve_nondeduced_context (d_init, complain);
3420 type = do_auto_deduction (type, d_init, auto_node);
3421 }
3422 }
3423
3424 if (processing_template_decl)
3425 {
3426 if (dependent_type_p (type)
3427 || any_type_dependent_arguments_p (*placement)
3428 || (nelts && type_dependent_expression_p (nelts))
3429 || (nelts && *init)
3430 || any_type_dependent_arguments_p (*init))
3431 return build_raw_new_expr (*placement, type, nelts, *init,
3432 use_global_new);
3433
3434 orig_placement = make_tree_vector_copy (*placement);
3435 orig_nelts = nelts;
3436 if (*init)
3437 orig_init = make_tree_vector_copy (*init);
3438
3439 make_args_non_dependent (*placement);
3440 if (nelts)
3441 nelts = build_non_dependent_expr (nelts);
3442 make_args_non_dependent (*init);
3443 }
3444
3445 if (nelts)
3446 {
3447 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3448 {
3449 if (complain & tf_error)
3450 permerror (input_location, "size in array new must have integral type");
3451 else
3452 return error_mark_node;
3453 }
3454
3455 /* Try to determine the constant value only for the purposes
3456 of the diagnostic below but continue to use the original
3457 value and handle const folding later. */
3458 const_tree cst_nelts = maybe_constant_value (nelts);
3459
3460 /* The expression in a noptr-new-declarator is erroneous if it's of
3461 non-class type and its value before converting to std::size_t is
3462 less than zero. ... If the expression is a constant expression,
3463 the program is ill-fomed. */
3464 if (INTEGER_CST == TREE_CODE (cst_nelts)
3465 && tree_int_cst_sgn (cst_nelts) == -1)
3466 {
3467 if (complain & tf_error)
3468 error ("size of array is negative");
3469 return error_mark_node;
3470 }
3471
3472 nelts = mark_rvalue_use (nelts);
3473 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3474 }
3475
3476 /* ``A reference cannot be created by the new operator. A reference
3477 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3478 returned by new.'' ARM 5.3.3 */
3479 if (TREE_CODE (type) == REFERENCE_TYPE)
3480 {
3481 if (complain & tf_error)
3482 error ("new cannot be applied to a reference type");
3483 else
3484 return error_mark_node;
3485 type = TREE_TYPE (type);
3486 }
3487
3488 if (TREE_CODE (type) == FUNCTION_TYPE)
3489 {
3490 if (complain & tf_error)
3491 error ("new cannot be applied to a function type");
3492 return error_mark_node;
3493 }
3494
3495 /* The type allocated must be complete. If the new-type-id was
3496 "T[N]" then we are just checking that "T" is complete here, but
3497 that is equivalent, since the value of "N" doesn't matter. */
3498 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3499 return error_mark_node;
3500
3501 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3502 if (rval == error_mark_node)
3503 return error_mark_node;
3504
3505 if (processing_template_decl)
3506 {
3507 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3508 orig_init, use_global_new);
3509 release_tree_vector (orig_placement);
3510 release_tree_vector (orig_init);
3511 return ret;
3512 }
3513
3514 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3515 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3516 TREE_NO_WARNING (rval) = 1;
3517
3518 return rval;
3519 }
3520 \f
3521 static tree
3522 build_vec_delete_1 (tree base, tree maxindex, tree type,
3523 special_function_kind auto_delete_vec,
3524 int use_global_delete, tsubst_flags_t complain)
3525 {
3526 tree virtual_size;
3527 tree ptype = build_pointer_type (type = complete_type (type));
3528 tree size_exp;
3529
3530 /* Temporary variables used by the loop. */
3531 tree tbase, tbase_init;
3532
3533 /* This is the body of the loop that implements the deletion of a
3534 single element, and moves temp variables to next elements. */
3535 tree body;
3536
3537 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3538 tree loop = 0;
3539
3540 /* This is the thing that governs what to do after the loop has run. */
3541 tree deallocate_expr = 0;
3542
3543 /* This is the BIND_EXPR which holds the outermost iterator of the
3544 loop. It is convenient to set this variable up and test it before
3545 executing any other code in the loop.
3546 This is also the containing expression returned by this function. */
3547 tree controller = NULL_TREE;
3548 tree tmp;
3549
3550 /* We should only have 1-D arrays here. */
3551 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3552
3553 if (base == error_mark_node || maxindex == error_mark_node)
3554 return error_mark_node;
3555
3556 if (!COMPLETE_TYPE_P (type))
3557 {
3558 if ((complain & tf_warning)
3559 && warning (OPT_Wdelete_incomplete,
3560 "possible problem detected in invocation of "
3561 "delete [] operator:"))
3562 {
3563 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3564 inform (input_location, "neither the destructor nor the "
3565 "class-specific operator delete [] will be called, "
3566 "even if they are declared when the class is defined");
3567 }
3568 /* This size won't actually be used. */
3569 size_exp = size_one_node;
3570 goto no_destructor;
3571 }
3572
3573 size_exp = size_in_bytes (type);
3574
3575 if (! MAYBE_CLASS_TYPE_P (type))
3576 goto no_destructor;
3577 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3578 {
3579 /* Make sure the destructor is callable. */
3580 if (type_build_dtor_call (type))
3581 {
3582 tmp = build_delete (ptype, base, sfk_complete_destructor,
3583 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3584 complain);
3585 if (tmp == error_mark_node)
3586 return error_mark_node;
3587 }
3588 goto no_destructor;
3589 }
3590
3591 /* The below is short by the cookie size. */
3592 virtual_size = size_binop (MULT_EXPR, size_exp,
3593 fold_convert (sizetype, maxindex));
3594
3595 tbase = create_temporary_var (ptype);
3596 tbase_init
3597 = cp_build_modify_expr (input_location, tbase, NOP_EXPR,
3598 fold_build_pointer_plus_loc (input_location,
3599 fold_convert (ptype,
3600 base),
3601 virtual_size),
3602 complain);
3603 if (tbase_init == error_mark_node)
3604 return error_mark_node;
3605 controller = build3 (BIND_EXPR, void_type_node, tbase,
3606 NULL_TREE, NULL_TREE);
3607 TREE_SIDE_EFFECTS (controller) = 1;
3608
3609 body = build1 (EXIT_EXPR, void_type_node,
3610 build2 (EQ_EXPR, boolean_type_node, tbase,
3611 fold_convert (ptype, base)));
3612 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3613 tmp = fold_build_pointer_plus (tbase, tmp);
3614 tmp = cp_build_modify_expr (input_location, tbase, NOP_EXPR, tmp, complain);
3615 if (tmp == error_mark_node)
3616 return error_mark_node;
3617 body = build_compound_expr (input_location, body, tmp);
3618 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3619 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3620 complain);
3621 if (tmp == error_mark_node)
3622 return error_mark_node;
3623 body = build_compound_expr (input_location, body, tmp);
3624
3625 loop = build1 (LOOP_EXPR, void_type_node, body);
3626 loop = build_compound_expr (input_location, tbase_init, loop);
3627
3628 no_destructor:
3629 /* Delete the storage if appropriate. */
3630 if (auto_delete_vec == sfk_deleting_destructor)
3631 {
3632 tree base_tbd;
3633
3634 /* The below is short by the cookie size. */
3635 virtual_size = size_binop (MULT_EXPR, size_exp,
3636 fold_convert (sizetype, maxindex));
3637
3638 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3639 /* no header */
3640 base_tbd = base;
3641 else
3642 {
3643 tree cookie_size;
3644
3645 cookie_size = targetm.cxx.get_cookie_size (type);
3646 base_tbd = cp_build_binary_op (input_location,
3647 MINUS_EXPR,
3648 cp_convert (string_type_node,
3649 base, complain),
3650 cookie_size,
3651 complain);
3652 if (base_tbd == error_mark_node)
3653 return error_mark_node;
3654 base_tbd = cp_convert (ptype, base_tbd, complain);
3655 /* True size with header. */
3656 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3657 }
3658
3659 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3660 base_tbd, virtual_size,
3661 use_global_delete & 1,
3662 /*placement=*/NULL_TREE,
3663 /*alloc_fn=*/NULL_TREE,
3664 complain);
3665 }
3666
3667 body = loop;
3668 if (!deallocate_expr)
3669 ;
3670 else if (!body)
3671 body = deallocate_expr;
3672 else
3673 /* The delete operator mist be called, even if a destructor
3674 throws. */
3675 body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr);
3676
3677 if (!body)
3678 body = integer_zero_node;
3679
3680 /* Outermost wrapper: If pointer is null, punt. */
3681 tree cond = build2_loc (input_location, NE_EXPR, boolean_type_node, base,
3682 fold_convert (TREE_TYPE (base), nullptr_node));
3683 /* This is a compiler generated comparison, don't emit
3684 e.g. -Wnonnull-compare warning for it. */
3685 TREE_NO_WARNING (cond) = 1;
3686 body = build3_loc (input_location, COND_EXPR, void_type_node,
3687 cond, body, integer_zero_node);
3688 COND_EXPR_IS_VEC_DELETE (body) = true;
3689 body = build1 (NOP_EXPR, void_type_node, body);
3690
3691 if (controller)
3692 {
3693 TREE_OPERAND (controller, 1) = body;
3694 body = controller;
3695 }
3696
3697 if (TREE_CODE (base) == SAVE_EXPR)
3698 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3699 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3700
3701 return convert_to_void (body, ICV_CAST, complain);
3702 }
3703
3704 /* Create an unnamed variable of the indicated TYPE. */
3705
3706 tree
3707 create_temporary_var (tree type)
3708 {
3709 tree decl;
3710
3711 decl = build_decl (input_location,
3712 VAR_DECL, NULL_TREE, type);
3713 TREE_USED (decl) = 1;
3714 DECL_ARTIFICIAL (decl) = 1;
3715 DECL_IGNORED_P (decl) = 1;
3716 DECL_CONTEXT (decl) = current_function_decl;
3717
3718 return decl;
3719 }
3720
3721 /* Create a new temporary variable of the indicated TYPE, initialized
3722 to INIT.
3723
3724 It is not entered into current_binding_level, because that breaks
3725 things when it comes time to do final cleanups (which take place
3726 "outside" the binding contour of the function). */
3727
3728 tree
3729 get_temp_regvar (tree type, tree init)
3730 {
3731 tree decl;
3732
3733 decl = create_temporary_var (type);
3734 add_decl_expr (decl);
3735
3736 finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR,
3737 init, tf_warning_or_error));
3738
3739 return decl;
3740 }
3741
3742 /* Subroutine of build_vec_init. Returns true if assigning to an array of
3743 INNER_ELT_TYPE from INIT is trivial. */
3744
3745 static bool
3746 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
3747 {
3748 tree fromtype = inner_elt_type;
3749 if (lvalue_p (init))
3750 fromtype = cp_build_reference_type (fromtype, /*rval*/false);
3751 return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
3752 }
3753
3754 /* `build_vec_init' returns tree structure that performs
3755 initialization of a vector of aggregate types.
3756
3757 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3758 to the first element, of POINTER_TYPE.
3759 MAXINDEX is the maximum index of the array (one less than the
3760 number of elements). It is only used if BASE is a pointer or
3761 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3762
3763 INIT is the (possibly NULL) initializer.
3764
3765 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3766 elements in the array are value-initialized.
3767
3768 FROM_ARRAY is 0 if we should init everything with INIT
3769 (i.e., every element initialized from INIT).
3770 FROM_ARRAY is 1 if we should index into INIT in parallel
3771 with initialization of DECL.
3772 FROM_ARRAY is 2 if we should index into INIT in parallel,
3773 but use assignment instead of initialization. */
3774
3775 tree
3776 build_vec_init (tree base, tree maxindex, tree init,
3777 bool explicit_value_init_p,
3778 int from_array, tsubst_flags_t complain)
3779 {
3780 tree rval;
3781 tree base2 = NULL_TREE;
3782 tree itype = NULL_TREE;
3783 tree iterator;
3784 /* The type of BASE. */
3785 tree atype = TREE_TYPE (base);
3786 /* The type of an element in the array. */
3787 tree type = TREE_TYPE (atype);
3788 /* The element type reached after removing all outer array
3789 types. */
3790 tree inner_elt_type;
3791 /* The type of a pointer to an element in the array. */
3792 tree ptype;
3793 tree stmt_expr;
3794 tree compound_stmt;
3795 int destroy_temps;
3796 tree try_block = NULL_TREE;
3797 int num_initialized_elts = 0;
3798 bool is_global;
3799 tree obase = base;
3800 bool xvalue = false;
3801 bool errors = false;
3802
3803 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3804 maxindex = array_type_nelts (atype);
3805
3806 if (maxindex == NULL_TREE || maxindex == error_mark_node)
3807 return error_mark_node;
3808
3809 maxindex = maybe_constant_value (maxindex);
3810 if (explicit_value_init_p)
3811 gcc_assert (!init);
3812
3813 inner_elt_type = strip_array_types (type);
3814
3815 /* Look through the TARGET_EXPR around a compound literal. */
3816 if (init && TREE_CODE (init) == TARGET_EXPR
3817 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3818 && from_array != 2)
3819 init = TARGET_EXPR_INITIAL (init);
3820
3821 /* If we have a braced-init-list, make sure that the array
3822 is big enough for all the initializers. */
3823 bool length_check = (init && TREE_CODE (init) == CONSTRUCTOR
3824 && CONSTRUCTOR_NELTS (init) > 0
3825 && !TREE_CONSTANT (maxindex));
3826
3827 if (init
3828 && TREE_CODE (atype) == ARRAY_TYPE
3829 && TREE_CONSTANT (maxindex)
3830 && (from_array == 2
3831 ? vec_copy_assign_is_trivial (inner_elt_type, init)
3832 : !TYPE_NEEDS_CONSTRUCTING (type))
3833 && ((TREE_CODE (init) == CONSTRUCTOR
3834 /* Don't do this if the CONSTRUCTOR might contain something
3835 that might throw and require us to clean up. */
3836 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
3837 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3838 || from_array))
3839 {
3840 /* Do non-default initialization of trivial arrays resulting from
3841 brace-enclosed initializers. In this case, digest_init and
3842 store_constructor will handle the semantics for us. */
3843
3844 if (BRACE_ENCLOSED_INITIALIZER_P (init))
3845 init = digest_init (atype, init, complain);
3846 stmt_expr = build2 (INIT_EXPR, atype, base, init);
3847 return stmt_expr;
3848 }
3849
3850 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
3851 maxindex = fold_simple (maxindex);
3852
3853 if (TREE_CODE (atype) == ARRAY_TYPE)
3854 {
3855 ptype = build_pointer_type (type);
3856 base = decay_conversion (base, complain);
3857 if (base == error_mark_node)
3858 return error_mark_node;
3859 base = cp_convert (ptype, base, complain);
3860 }
3861 else
3862 ptype = atype;
3863
3864 /* The code we are generating looks like:
3865 ({
3866 T* t1 = (T*) base;
3867 T* rval = t1;
3868 ptrdiff_t iterator = maxindex;
3869 try {
3870 for (; iterator != -1; --iterator) {
3871 ... initialize *t1 ...
3872 ++t1;
3873 }
3874 } catch (...) {
3875 ... destroy elements that were constructed ...
3876 }
3877 rval;
3878 })
3879
3880 We can omit the try and catch blocks if we know that the
3881 initialization will never throw an exception, or if the array
3882 elements do not have destructors. We can omit the loop completely if
3883 the elements of the array do not have constructors.
3884
3885 We actually wrap the entire body of the above in a STMT_EXPR, for
3886 tidiness.
3887
3888 When copying from array to another, when the array elements have
3889 only trivial copy constructors, we should use __builtin_memcpy
3890 rather than generating a loop. That way, we could take advantage
3891 of whatever cleverness the back end has for dealing with copies
3892 of blocks of memory. */
3893
3894 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3895 destroy_temps = stmts_are_full_exprs_p ();
3896 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3897 rval = get_temp_regvar (ptype, base);
3898 base = get_temp_regvar (ptype, rval);
3899 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3900
3901 bool direct_init = false;
3902 if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init)
3903 && CONSTRUCTOR_NELTS (init) == 1)
3904 {
3905 tree elt = CONSTRUCTOR_ELT (init, 0)->value;
3906 if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE)
3907 {
3908 direct_init = DIRECT_LIST_INIT_P (init);
3909 init = elt;
3910 }
3911 }
3912
3913 /* If initializing one array from another, initialize element by
3914 element. We rely upon the below calls to do the argument
3915 checking. Evaluate the initializer before entering the try block. */
3916 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3917 {
3918 if (lvalue_kind (init) & clk_rvalueref)
3919 xvalue = true;
3920 base2 = decay_conversion (init, complain);
3921 if (base2 == error_mark_node)
3922 return error_mark_node;
3923 itype = TREE_TYPE (base2);
3924 base2 = get_temp_regvar (itype, base2);
3925 itype = TREE_TYPE (itype);
3926 }
3927
3928 /* Protect the entire array initialization so that we can destroy
3929 the partially constructed array if an exception is thrown.
3930 But don't do this if we're assigning. */
3931 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3932 && from_array != 2)
3933 {
3934 try_block = begin_try_block ();
3935 }
3936
3937 /* Should we try to create a constant initializer? */
3938 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
3939 && TREE_CONSTANT (maxindex)
3940 && (init ? TREE_CODE (init) == CONSTRUCTOR
3941 : (type_has_constexpr_default_constructor
3942 (inner_elt_type)))
3943 && (literal_type_p (inner_elt_type)
3944 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
3945 vec<constructor_elt, va_gc> *const_vec = NULL;
3946 bool saw_non_const = false;
3947 /* If we're initializing a static array, we want to do static
3948 initialization of any elements with constant initializers even if
3949 some are non-constant. */
3950 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3951
3952 bool empty_list = false;
3953 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
3954 && CONSTRUCTOR_NELTS (init) == 0)
3955 /* Skip over the handling of non-empty init lists. */
3956 empty_list = true;
3957
3958 /* Maybe pull out constant value when from_array? */
3959
3960 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3961 {
3962 /* Do non-default initialization of non-trivial arrays resulting from
3963 brace-enclosed initializers. */
3964 unsigned HOST_WIDE_INT idx;
3965 tree field, elt;
3966 /* If the constructor already has the array type, it's been through
3967 digest_init, so we shouldn't try to do anything more. */
3968 bool digested = same_type_p (atype, TREE_TYPE (init));
3969 from_array = 0;
3970
3971 if (length_check)
3972 {
3973 tree nelts = build_int_cst (ptrdiff_type_node,
3974 CONSTRUCTOR_NELTS (init) - 1);
3975 if (TREE_CODE (atype) != ARRAY_TYPE)
3976 {
3977 if (flag_exceptions)
3978 {
3979 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
3980 nelts);
3981 c = build3 (COND_EXPR, void_type_node, c,
3982 throw_bad_array_new_length (), void_node);
3983 finish_expr_stmt (c);
3984 }
3985 /* Don't check an array new when -fno-exceptions. */
3986 }
3987 else if (flag_sanitize & SANITIZE_BOUNDS
3988 && do_ubsan_in_current_function ())
3989 {
3990 /* Make sure the last element of the initializer is in bounds. */
3991 finish_expr_stmt
3992 (ubsan_instrument_bounds
3993 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
3994 }
3995 }
3996
3997 if (try_const)
3998 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
3999
4000 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
4001 {
4002 tree baseref = build1 (INDIRECT_REF, type, base);
4003 tree one_init;
4004
4005 num_initialized_elts++;
4006
4007 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4008 if (digested)
4009 one_init = build2 (INIT_EXPR, type, baseref, elt);
4010 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
4011 one_init = build_aggr_init (baseref, elt, 0, complain);
4012 else
4013 one_init = cp_build_modify_expr (input_location, baseref,
4014 NOP_EXPR, elt, complain);
4015 if (one_init == error_mark_node)
4016 errors = true;
4017 if (try_const)
4018 {
4019 tree e = maybe_constant_init (one_init);
4020 if (reduced_constant_expression_p (e))
4021 {
4022 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4023 if (do_static_init)
4024 one_init = NULL_TREE;
4025 else
4026 one_init = build2 (INIT_EXPR, type, baseref, e);
4027 }
4028 else
4029 {
4030 if (do_static_init)
4031 {
4032 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
4033 true);
4034 if (value)
4035 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
4036 }
4037 saw_non_const = true;
4038 }
4039 }
4040
4041 if (one_init)
4042 finish_expr_stmt (one_init);
4043 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4044
4045 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4046 complain);
4047 if (one_init == error_mark_node)
4048 errors = true;
4049 else
4050 finish_expr_stmt (one_init);
4051
4052 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4053 complain);
4054 if (one_init == error_mark_node)
4055 errors = true;
4056 else
4057 finish_expr_stmt (one_init);
4058 }
4059
4060 /* Any elements without explicit initializers get T{}. */
4061 empty_list = true;
4062 }
4063 else if (from_array)
4064 {
4065 if (init)
4066 /* OK, we set base2 above. */;
4067 else if (CLASS_TYPE_P (type)
4068 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
4069 {
4070 if (complain & tf_error)
4071 error ("initializer ends prematurely");
4072 errors = true;
4073 }
4074 }
4075
4076 /* Now, default-initialize any remaining elements. We don't need to
4077 do that if a) the type does not need constructing, or b) we've
4078 already initialized all the elements.
4079
4080 We do need to keep going if we're copying an array. */
4081
4082 if (try_const && !init)
4083 /* With a constexpr default constructor, which we checked for when
4084 setting try_const above, default-initialization is equivalent to
4085 value-initialization, and build_value_init gives us something more
4086 friendly to maybe_constant_init. */
4087 explicit_value_init_p = true;
4088 if (from_array
4089 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
4090 && ! (tree_fits_shwi_p (maxindex)
4091 && (num_initialized_elts
4092 == tree_to_shwi (maxindex) + 1))))
4093 {
4094 /* If the ITERATOR is lesser or equal to -1, then we don't have to loop;
4095 we've already initialized all the elements. */
4096 tree for_stmt;
4097 tree elt_init;
4098 tree to;
4099
4100 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
4101 finish_init_stmt (for_stmt);
4102 finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator,
4103 build_int_cst (TREE_TYPE (iterator), -1)),
4104 for_stmt, false);
4105 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4106 complain);
4107 if (elt_init == error_mark_node)
4108 errors = true;
4109 finish_for_expr (elt_init, for_stmt);
4110
4111 to = build1 (INDIRECT_REF, type, base);
4112
4113 /* If the initializer is {}, then all elements are initialized from T{}.
4114 But for non-classes, that's the same as value-initialization. */
4115 if (empty_list)
4116 {
4117 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
4118 {
4119 init = build_constructor (init_list_type_node, NULL);
4120 }
4121 else
4122 {
4123 init = NULL_TREE;
4124 explicit_value_init_p = true;
4125 }
4126 }
4127
4128 if (from_array)
4129 {
4130 tree from;
4131
4132 if (base2)
4133 {
4134 from = build1 (INDIRECT_REF, itype, base2);
4135 if (xvalue)
4136 from = move (from);
4137 if (direct_init)
4138 from = build_tree_list (NULL_TREE, from);
4139 }
4140 else
4141 from = NULL_TREE;
4142
4143 if (from_array == 2)
4144 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR,
4145 from, complain);
4146 else if (type_build_ctor_call (type))
4147 elt_init = build_aggr_init (to, from, 0, complain);
4148 else if (from)
4149 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from,
4150 complain);
4151 else
4152 gcc_unreachable ();
4153 }
4154 else if (TREE_CODE (type) == ARRAY_TYPE)
4155 {
4156 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
4157 sorry
4158 ("cannot initialize multi-dimensional array with initializer");
4159 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
4160 0, init,
4161 explicit_value_init_p,
4162 0, complain);
4163 }
4164 else if (explicit_value_init_p)
4165 {
4166 elt_init = build_value_init (type, complain);
4167 if (elt_init != error_mark_node)
4168 elt_init = build2 (INIT_EXPR, type, to, elt_init);
4169 }
4170 else
4171 {
4172 gcc_assert (type_build_ctor_call (type) || init);
4173 if (CLASS_TYPE_P (type))
4174 elt_init = build_aggr_init (to, init, 0, complain);
4175 else
4176 {
4177 if (TREE_CODE (init) == TREE_LIST)
4178 init = build_x_compound_expr_from_list (init, ELK_INIT,
4179 complain);
4180 elt_init = build2 (INIT_EXPR, type, to, init);
4181 }
4182 }
4183
4184 if (elt_init == error_mark_node)
4185 errors = true;
4186
4187 if (try_const)
4188 {
4189 /* FIXME refs to earlier elts */
4190 tree e = maybe_constant_init (elt_init);
4191 if (reduced_constant_expression_p (e))
4192 {
4193 if (initializer_zerop (e))
4194 /* Don't fill the CONSTRUCTOR with zeros. */
4195 e = NULL_TREE;
4196 if (do_static_init)
4197 elt_init = NULL_TREE;
4198 }
4199 else
4200 {
4201 saw_non_const = true;
4202 if (do_static_init)
4203 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
4204 else
4205 e = NULL_TREE;
4206 }
4207
4208 if (e)
4209 {
4210 int max = tree_to_shwi (maxindex)+1;
4211 for (; num_initialized_elts < max; ++num_initialized_elts)
4212 {
4213 tree field = size_int (num_initialized_elts);
4214 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4215 }
4216 }
4217 }
4218
4219 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4220 if (elt_init)
4221 finish_expr_stmt (elt_init);
4222 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4223
4224 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4225 complain));
4226 if (base2)
4227 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, false,
4228 complain));
4229
4230 finish_for_stmt (for_stmt);
4231 }
4232
4233 /* Make sure to cleanup any partially constructed elements. */
4234 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4235 && from_array != 2)
4236 {
4237 tree e;
4238 tree m = cp_build_binary_op (input_location,
4239 MINUS_EXPR, maxindex, iterator,
4240 complain);
4241
4242 /* Flatten multi-dimensional array since build_vec_delete only
4243 expects one-dimensional array. */
4244 if (TREE_CODE (type) == ARRAY_TYPE)
4245 m = cp_build_binary_op (input_location,
4246 MULT_EXPR, m,
4247 /* Avoid mixing signed and unsigned. */
4248 convert (TREE_TYPE (m),
4249 array_type_nelts_total (type)),
4250 complain);
4251
4252 finish_cleanup_try_block (try_block);
4253 e = build_vec_delete_1 (rval, m,
4254 inner_elt_type, sfk_complete_destructor,
4255 /*use_global_delete=*/0, complain);
4256 if (e == error_mark_node)
4257 errors = true;
4258 finish_cleanup (e, try_block);
4259 }
4260
4261 /* The value of the array initialization is the array itself, RVAL
4262 is a pointer to the first element. */
4263 finish_stmt_expr_expr (rval, stmt_expr);
4264
4265 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
4266
4267 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
4268
4269 if (errors)
4270 return error_mark_node;
4271
4272 if (try_const)
4273 {
4274 if (!saw_non_const)
4275 {
4276 tree const_init = build_constructor (atype, const_vec);
4277 return build2 (INIT_EXPR, atype, obase, const_init);
4278 }
4279 else if (do_static_init && !vec_safe_is_empty (const_vec))
4280 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
4281 else
4282 vec_free (const_vec);
4283 }
4284
4285 /* Now make the result have the correct type. */
4286 if (TREE_CODE (atype) == ARRAY_TYPE)
4287 {
4288 atype = build_pointer_type (atype);
4289 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
4290 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
4291 TREE_NO_WARNING (stmt_expr) = 1;
4292 }
4293
4294 return stmt_expr;
4295 }
4296
4297 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
4298 build_delete. */
4299
4300 static tree
4301 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
4302 tsubst_flags_t complain)
4303 {
4304 tree name;
4305 tree fn;
4306 switch (dtor_kind)
4307 {
4308 case sfk_complete_destructor:
4309 name = complete_dtor_identifier;
4310 break;
4311
4312 case sfk_base_destructor:
4313 name = base_dtor_identifier;
4314 break;
4315
4316 case sfk_deleting_destructor:
4317 name = deleting_dtor_identifier;
4318 break;
4319
4320 default:
4321 gcc_unreachable ();
4322 }
4323 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
4324 return build_new_method_call (exp, fn,
4325 /*args=*/NULL,
4326 /*conversion_path=*/NULL_TREE,
4327 flags,
4328 /*fn_p=*/NULL,
4329 complain);
4330 }
4331
4332 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
4333 ADDR is an expression which yields the store to be destroyed.
4334 AUTO_DELETE is the name of the destructor to call, i.e., either
4335 sfk_complete_destructor, sfk_base_destructor, or
4336 sfk_deleting_destructor.
4337
4338 FLAGS is the logical disjunction of zero or more LOOKUP_
4339 flags. See cp-tree.h for more info. */
4340
4341 tree
4342 build_delete (tree otype, tree addr, special_function_kind auto_delete,
4343 int flags, int use_global_delete, tsubst_flags_t complain)
4344 {
4345 tree expr;
4346
4347 if (addr == error_mark_node)
4348 return error_mark_node;
4349
4350 tree type = TYPE_MAIN_VARIANT (otype);
4351
4352 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
4353 set to `error_mark_node' before it gets properly cleaned up. */
4354 if (type == error_mark_node)
4355 return error_mark_node;
4356
4357 if (TREE_CODE (type) == POINTER_TYPE)
4358 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4359
4360 if (TREE_CODE (type) == ARRAY_TYPE)
4361 {
4362 if (TYPE_DOMAIN (type) == NULL_TREE)
4363 {
4364 if (complain & tf_error)
4365 error ("unknown array size in delete");
4366 return error_mark_node;
4367 }
4368 return build_vec_delete (addr, array_type_nelts (type),
4369 auto_delete, use_global_delete, complain);
4370 }
4371
4372 if (TYPE_PTR_P (otype))
4373 {
4374 addr = mark_rvalue_use (addr);
4375
4376 /* We don't want to warn about delete of void*, only other
4377 incomplete types. Deleting other incomplete types
4378 invokes undefined behavior, but it is not ill-formed, so
4379 compile to something that would even do The Right Thing
4380 (TM) should the type have a trivial dtor and no delete
4381 operator. */
4382 if (!VOID_TYPE_P (type))
4383 {
4384 complete_type (type);
4385 if (!COMPLETE_TYPE_P (type))
4386 {
4387 if ((complain & tf_warning)
4388 && warning (OPT_Wdelete_incomplete,
4389 "possible problem detected in invocation of "
4390 "delete operator:"))
4391 {
4392 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
4393 inform (input_location,
4394 "neither the destructor nor the class-specific "
4395 "operator delete will be called, even if they are "
4396 "declared when the class is defined");
4397 }
4398 }
4399 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
4400 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4401 && TYPE_POLYMORPHIC_P (type))
4402 {
4403 tree dtor;
4404 dtor = CLASSTYPE_DESTRUCTORS (type);
4405 if (!dtor || !DECL_VINDEX (dtor))
4406 {
4407 if (CLASSTYPE_PURE_VIRTUALS (type))
4408 warning (OPT_Wdelete_non_virtual_dtor,
4409 "deleting object of abstract class type %qT"
4410 " which has non-virtual destructor"
4411 " will cause undefined behavior", type);
4412 else
4413 warning (OPT_Wdelete_non_virtual_dtor,
4414 "deleting object of polymorphic class type %qT"
4415 " which has non-virtual destructor"
4416 " might cause undefined behavior", type);
4417 }
4418 }
4419 }
4420 if (TREE_SIDE_EFFECTS (addr))
4421 addr = save_expr (addr);
4422
4423 /* Throw away const and volatile on target type of addr. */
4424 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4425 }
4426 else
4427 {
4428 /* Don't check PROTECT here; leave that decision to the
4429 destructor. If the destructor is accessible, call it,
4430 else report error. */
4431 addr = cp_build_addr_expr (addr, complain);
4432 if (addr == error_mark_node)
4433 return error_mark_node;
4434 if (TREE_SIDE_EFFECTS (addr))
4435 addr = save_expr (addr);
4436
4437 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4438 }
4439
4440 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4441 {
4442 /* Make sure the destructor is callable. */
4443 if (type_build_dtor_call (type))
4444 {
4445 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
4446 complain),
4447 sfk_complete_destructor, flags, complain);
4448 if (expr == error_mark_node)
4449 return error_mark_node;
4450 }
4451
4452 if (auto_delete != sfk_deleting_destructor)
4453 return void_node;
4454
4455 return build_op_delete_call (DELETE_EXPR, addr,
4456 cxx_sizeof_nowarn (type),
4457 use_global_delete,
4458 /*placement=*/NULL_TREE,
4459 /*alloc_fn=*/NULL_TREE,
4460 complain);
4461 }
4462 else
4463 {
4464 tree head = NULL_TREE;
4465 tree do_delete = NULL_TREE;
4466 tree ifexp;
4467
4468 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4469 lazily_declare_fn (sfk_destructor, type);
4470
4471 /* For `::delete x', we must not use the deleting destructor
4472 since then we would not be sure to get the global `operator
4473 delete'. */
4474 if (use_global_delete && auto_delete == sfk_deleting_destructor)
4475 {
4476 /* We will use ADDR multiple times so we must save it. */
4477 addr = save_expr (addr);
4478 head = get_target_expr (build_headof (addr));
4479 /* Delete the object. */
4480 do_delete = build_op_delete_call (DELETE_EXPR,
4481 head,
4482 cxx_sizeof_nowarn (type),
4483 /*global_p=*/true,
4484 /*placement=*/NULL_TREE,
4485 /*alloc_fn=*/NULL_TREE,
4486 complain);
4487 /* Otherwise, treat this like a complete object destructor
4488 call. */
4489 auto_delete = sfk_complete_destructor;
4490 }
4491 /* If the destructor is non-virtual, there is no deleting
4492 variant. Instead, we must explicitly call the appropriate
4493 `operator delete' here. */
4494 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
4495 && auto_delete == sfk_deleting_destructor)
4496 {
4497 /* We will use ADDR multiple times so we must save it. */
4498 addr = save_expr (addr);
4499 /* Build the call. */
4500 do_delete = build_op_delete_call (DELETE_EXPR,
4501 addr,
4502 cxx_sizeof_nowarn (type),
4503 /*global_p=*/false,
4504 /*placement=*/NULL_TREE,
4505 /*alloc_fn=*/NULL_TREE,
4506 complain);
4507 /* Call the complete object destructor. */
4508 auto_delete = sfk_complete_destructor;
4509 }
4510 else if (auto_delete == sfk_deleting_destructor
4511 && TYPE_GETS_REG_DELETE (type))
4512 {
4513 /* Make sure we have access to the member op delete, even though
4514 we'll actually be calling it from the destructor. */
4515 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4516 /*global_p=*/false,
4517 /*placement=*/NULL_TREE,
4518 /*alloc_fn=*/NULL_TREE,
4519 complain);
4520 }
4521
4522 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4523 auto_delete, flags, complain);
4524 if (expr == error_mark_node)
4525 return error_mark_node;
4526 if (do_delete)
4527 /* The delete operator must be called, regardless of whether
4528 the destructor throws.
4529
4530 [expr.delete]/7 The deallocation function is called
4531 regardless of whether the destructor for the object or some
4532 element of the array throws an exception. */
4533 expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete);
4534
4535 /* We need to calculate this before the dtor changes the vptr. */
4536 if (head)
4537 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4538
4539 if (flags & LOOKUP_DESTRUCTOR)
4540 /* Explicit destructor call; don't check for null pointer. */
4541 ifexp = integer_one_node;
4542 else
4543 {
4544 /* Handle deleting a null pointer. */
4545 warning_sentinel s (warn_address);
4546 ifexp = cp_build_binary_op (input_location, NE_EXPR, addr,
4547 nullptr_node, complain);
4548 if (ifexp == error_mark_node)
4549 return error_mark_node;
4550 /* This is a compiler generated comparison, don't emit
4551 e.g. -Wnonnull-compare warning for it. */
4552 else if (TREE_CODE (ifexp) == NE_EXPR)
4553 TREE_NO_WARNING (ifexp) = 1;
4554 }
4555
4556 if (ifexp != integer_one_node)
4557 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4558
4559 return expr;
4560 }
4561 }
4562
4563 /* At the beginning of a destructor, push cleanups that will call the
4564 destructors for our base classes and members.
4565
4566 Called from begin_destructor_body. */
4567
4568 void
4569 push_base_cleanups (void)
4570 {
4571 tree binfo, base_binfo;
4572 int i;
4573 tree member;
4574 tree expr;
4575 vec<tree, va_gc> *vbases;
4576
4577 /* Run destructors for all virtual baseclasses. */
4578 if (!ABSTRACT_CLASS_TYPE_P (current_class_type)
4579 && CLASSTYPE_VBASECLASSES (current_class_type))
4580 {
4581 tree cond = (condition_conversion
4582 (build2 (BIT_AND_EXPR, integer_type_node,
4583 current_in_charge_parm,
4584 integer_two_node)));
4585
4586 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4587 order, which is also the right order for pushing cleanups. */
4588 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4589 vec_safe_iterate (vbases, i, &base_binfo); i++)
4590 {
4591 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4592 {
4593 expr = build_special_member_call (current_class_ref,
4594 base_dtor_identifier,
4595 NULL,
4596 base_binfo,
4597 (LOOKUP_NORMAL
4598 | LOOKUP_NONVIRTUAL),
4599 tf_warning_or_error);
4600 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4601 {
4602 expr = build3 (COND_EXPR, void_type_node, cond,
4603 expr, void_node);
4604 finish_decl_cleanup (NULL_TREE, expr);
4605 }
4606 }
4607 }
4608 }
4609
4610 /* Take care of the remaining baseclasses. */
4611 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4612 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4613 {
4614 if (BINFO_VIRTUAL_P (base_binfo)
4615 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4616 continue;
4617
4618 expr = build_special_member_call (current_class_ref,
4619 base_dtor_identifier,
4620 NULL, base_binfo,
4621 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4622 tf_warning_or_error);
4623 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4624 finish_decl_cleanup (NULL_TREE, expr);
4625 }
4626
4627 /* Don't automatically destroy union members. */
4628 if (TREE_CODE (current_class_type) == UNION_TYPE)
4629 return;
4630
4631 for (member = TYPE_FIELDS (current_class_type); member;
4632 member = DECL_CHAIN (member))
4633 {
4634 tree this_type = TREE_TYPE (member);
4635 if (this_type == error_mark_node
4636 || TREE_CODE (member) != FIELD_DECL
4637 || DECL_ARTIFICIAL (member))
4638 continue;
4639 if (ANON_AGGR_TYPE_P (this_type))
4640 continue;
4641 if (type_build_dtor_call (this_type))
4642 {
4643 tree this_member = (build_class_member_access_expr
4644 (current_class_ref, member,
4645 /*access_path=*/NULL_TREE,
4646 /*preserve_reference=*/false,
4647 tf_warning_or_error));
4648 expr = build_delete (this_type, this_member,
4649 sfk_complete_destructor,
4650 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4651 0, tf_warning_or_error);
4652 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4653 finish_decl_cleanup (NULL_TREE, expr);
4654 }
4655 }
4656 }
4657
4658 /* Build a C++ vector delete expression.
4659 MAXINDEX is the number of elements to be deleted.
4660 ELT_SIZE is the nominal size of each element in the vector.
4661 BASE is the expression that should yield the store to be deleted.
4662 This function expands (or synthesizes) these calls itself.
4663 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4664
4665 This also calls delete for virtual baseclasses of elements of the vector.
4666
4667 Update: MAXINDEX is no longer needed. The size can be extracted from the
4668 start of the vector for pointers, and from the type for arrays. We still
4669 use MAXINDEX for arrays because it happens to already have one of the
4670 values we'd have to extract. (We could use MAXINDEX with pointers to
4671 confirm the size, and trap if the numbers differ; not clear that it'd
4672 be worth bothering.) */
4673
4674 tree
4675 build_vec_delete (tree base, tree maxindex,
4676 special_function_kind auto_delete_vec,
4677 int use_global_delete, tsubst_flags_t complain)
4678 {
4679 tree type;
4680 tree rval;
4681 tree base_init = NULL_TREE;
4682
4683 type = TREE_TYPE (base);
4684
4685 if (TYPE_PTR_P (type))
4686 {
4687 /* Step back one from start of vector, and read dimension. */
4688 tree cookie_addr;
4689 tree size_ptr_type = build_pointer_type (sizetype);
4690
4691 base = mark_rvalue_use (base);
4692 if (TREE_SIDE_EFFECTS (base))
4693 {
4694 base_init = get_target_expr (base);
4695 base = TARGET_EXPR_SLOT (base_init);
4696 }
4697 type = strip_array_types (TREE_TYPE (type));
4698 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4699 sizetype, TYPE_SIZE_UNIT (sizetype));
4700 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4701 cookie_addr);
4702 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4703 }
4704 else if (TREE_CODE (type) == ARRAY_TYPE)
4705 {
4706 /* Get the total number of things in the array, maxindex is a
4707 bad name. */
4708 maxindex = array_type_nelts_total (type);
4709 type = strip_array_types (type);
4710 base = decay_conversion (base, complain);
4711 if (base == error_mark_node)
4712 return error_mark_node;
4713 if (TREE_SIDE_EFFECTS (base))
4714 {
4715 base_init = get_target_expr (base);
4716 base = TARGET_EXPR_SLOT (base_init);
4717 }
4718 }
4719 else
4720 {
4721 if (base != error_mark_node && !(complain & tf_error))
4722 error ("type to vector delete is neither pointer or array type");
4723 return error_mark_node;
4724 }
4725
4726 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4727 use_global_delete, complain);
4728 if (base_init && rval != error_mark_node)
4729 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4730
4731 return rval;
4732 }