]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/init.c
call.c (reference_binding): Use cp_build_qualified_type_real and cp_type_quals consis...
[thirdparty/gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "rtl.h"
31 #include "expr.h"
32 #include "cp-tree.h"
33 #include "flags.h"
34 #include "output.h"
35 #include "except.h"
36 #include "toplev.h"
37 #include "target.h"
38
39 static bool begin_init_stmts (tree *, tree *);
40 static tree finish_init_stmts (bool, tree, tree);
41 static void construct_virtual_base (tree, tree);
42 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
43 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
44 static tree build_vec_delete_1 (tree, tree, tree, special_function_kind, int);
45 static void perform_member_init (tree, tree);
46 static tree build_builtin_delete_call (tree);
47 static int member_init_ok_or_else (tree, tree, tree);
48 static void expand_virtual_init (tree, tree);
49 static tree sort_mem_initializers (tree, tree);
50 static tree initializing_context (tree);
51 static void expand_cleanup_for_base (tree, tree);
52 static tree get_temp_regvar (tree, tree);
53 static tree dfs_initialize_vtbl_ptrs (tree, void *);
54 static tree build_dtor_call (tree, special_function_kind, int);
55 static tree build_field_list (tree, tree, int *);
56 static tree build_vtbl_address (tree);
57 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
58
59 /* We are about to generate some complex initialization code.
60 Conceptually, it is all a single expression. However, we may want
61 to include conditionals, loops, and other such statement-level
62 constructs. Therefore, we build the initialization code inside a
63 statement-expression. This function starts such an expression.
64 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
65 pass them back to finish_init_stmts when the expression is
66 complete. */
67
68 static bool
69 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
70 {
71 bool is_global = !building_stmt_tree ();
72
73 *stmt_expr_p = begin_stmt_expr ();
74 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
75
76 return is_global;
77 }
78
79 /* Finish out the statement-expression begun by the previous call to
80 begin_init_stmts. Returns the statement-expression itself. */
81
82 static tree
83 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
84 {
85 finish_compound_stmt (compound_stmt);
86
87 stmt_expr = finish_stmt_expr (stmt_expr, true);
88
89 gcc_assert (!building_stmt_tree () == is_global);
90
91 return stmt_expr;
92 }
93
94 /* Constructors */
95
96 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
97 which we want to initialize the vtable pointer for, DATA is
98 TREE_LIST whose TREE_VALUE is the this ptr expression. */
99
100 static tree
101 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
102 {
103 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
104 return dfs_skip_bases;
105
106 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
107 {
108 tree base_ptr = TREE_VALUE ((tree) data);
109
110 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1);
111
112 expand_virtual_init (binfo, base_ptr);
113 }
114
115 return NULL_TREE;
116 }
117
118 /* Initialize all the vtable pointers in the object pointed to by
119 ADDR. */
120
121 void
122 initialize_vtbl_ptrs (tree addr)
123 {
124 tree list;
125 tree type;
126
127 type = TREE_TYPE (TREE_TYPE (addr));
128 list = build_tree_list (type, addr);
129
130 /* Walk through the hierarchy, initializing the vptr in each base
131 class. We do these in pre-order because we can't find the virtual
132 bases for a class until we've initialized the vtbl for that
133 class. */
134 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
135 }
136
137 /* Return an expression for the zero-initialization of an object with
138 type T. This expression will either be a constant (in the case
139 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
140 aggregate), or NULL (in the case that T does not require
141 initialization). In either case, the value can be used as
142 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
143 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
144 is the number of elements in the array. If STATIC_STORAGE_P is
145 TRUE, initializers are only generated for entities for which
146 zero-initialization does not simply mean filling the storage with
147 zero bytes. */
148
149 tree
150 build_zero_init (tree type, tree nelts, bool static_storage_p)
151 {
152 tree init = NULL_TREE;
153
154 /* [dcl.init]
155
156 To zero-initialize an object of type T means:
157
158 -- if T is a scalar type, the storage is set to the value of zero
159 converted to T.
160
161 -- if T is a non-union class type, the storage for each nonstatic
162 data member and each base-class subobject is zero-initialized.
163
164 -- if T is a union type, the storage for its first data member is
165 zero-initialized.
166
167 -- if T is an array type, the storage for each element is
168 zero-initialized.
169
170 -- if T is a reference type, no initialization is performed. */
171
172 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
173
174 if (type == error_mark_node)
175 ;
176 else if (static_storage_p && zero_init_p (type))
177 /* In order to save space, we do not explicitly build initializers
178 for items that do not need them. GCC's semantics are that
179 items with static storage duration that are not otherwise
180 initialized are initialized to zero. */
181 ;
182 else if (SCALAR_TYPE_P (type))
183 init = convert (type, integer_zero_node);
184 else if (CLASS_TYPE_P (type))
185 {
186 tree field;
187 VEC(constructor_elt,gc) *v = NULL;
188
189 /* Iterate over the fields, building initializations. */
190 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
191 {
192 if (TREE_CODE (field) != FIELD_DECL)
193 continue;
194
195 /* Note that for class types there will be FIELD_DECLs
196 corresponding to base classes as well. Thus, iterating
197 over TYPE_FIELDs will result in correct initialization of
198 all of the subobjects. */
199 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
200 {
201 tree value = build_zero_init (TREE_TYPE (field),
202 /*nelts=*/NULL_TREE,
203 static_storage_p);
204 if (value)
205 CONSTRUCTOR_APPEND_ELT(v, field, value);
206 }
207
208 /* For unions, only the first field is initialized. */
209 if (TREE_CODE (type) == UNION_TYPE)
210 break;
211 }
212
213 /* Build a constructor to contain the initializations. */
214 init = build_constructor (type, v);
215 }
216 else if (TREE_CODE (type) == ARRAY_TYPE)
217 {
218 tree max_index;
219 VEC(constructor_elt,gc) *v = NULL;
220
221 /* Iterate over the array elements, building initializations. */
222 if (nelts)
223 max_index = fold_build2_loc (input_location,
224 MINUS_EXPR, TREE_TYPE (nelts),
225 nelts, integer_one_node);
226 else
227 max_index = array_type_nelts (type);
228
229 /* If we have an error_mark here, we should just return error mark
230 as we don't know the size of the array yet. */
231 if (max_index == error_mark_node)
232 return error_mark_node;
233 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
234
235 /* A zero-sized array, which is accepted as an extension, will
236 have an upper bound of -1. */
237 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
238 {
239 constructor_elt *ce;
240
241 v = VEC_alloc (constructor_elt, gc, 1);
242 ce = VEC_quick_push (constructor_elt, v, NULL);
243
244 /* If this is a one element array, we just use a regular init. */
245 if (tree_int_cst_equal (size_zero_node, max_index))
246 ce->index = size_zero_node;
247 else
248 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
249 max_index);
250
251 ce->value = build_zero_init (TREE_TYPE (type),
252 /*nelts=*/NULL_TREE,
253 static_storage_p);
254 }
255
256 /* Build a constructor to contain the initializations. */
257 init = build_constructor (type, v);
258 }
259 else if (TREE_CODE (type) == VECTOR_TYPE)
260 init = fold_convert (type, integer_zero_node);
261 else
262 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
263
264 /* In all cases, the initializer is a constant. */
265 if (init)
266 TREE_CONSTANT (init) = 1;
267
268 return init;
269 }
270
271 /* Return a suitable initializer for value-initializing an object of type
272 TYPE, as described in [dcl.init]. */
273
274 tree
275 build_value_init (tree type)
276 {
277 /* [dcl.init]
278
279 To value-initialize an object of type T means:
280
281 - if T is a class type (clause 9) with a user-provided constructor
282 (12.1), then the default constructor for T is called (and the
283 initialization is ill-formed if T has no accessible default
284 constructor);
285
286 - if T is a non-union class type without a user-provided constructor,
287 then every non-static data member and base-class component of T is
288 value-initialized;92)
289
290 - if T is an array type, then each element is value-initialized;
291
292 - otherwise, the object is zero-initialized.
293
294 A program that calls for default-initialization or
295 value-initialization of an entity of reference type is ill-formed.
296
297 92) Value-initialization for such a class object may be implemented by
298 zero-initializing the object and then calling the default
299 constructor. */
300
301 if (CLASS_TYPE_P (type))
302 {
303 if (type_has_user_provided_constructor (type))
304 return build_aggr_init_expr
305 (type,
306 build_special_member_call (NULL_TREE, complete_ctor_identifier,
307 NULL, type, LOOKUP_NORMAL,
308 tf_warning_or_error));
309 else if (TREE_CODE (type) != UNION_TYPE && TYPE_NEEDS_CONSTRUCTING (type))
310 {
311 /* This is a class that needs constructing, but doesn't have
312 a user-provided constructor. So we need to zero-initialize
313 the object and then call the implicitly defined ctor.
314 This will be handled in simplify_aggr_init_expr. */
315 tree ctor = build_special_member_call
316 (NULL_TREE, complete_ctor_identifier,
317 NULL, type, LOOKUP_NORMAL, tf_warning_or_error);
318
319 ctor = build_aggr_init_expr (type, ctor);
320 AGGR_INIT_ZERO_FIRST (ctor) = 1;
321 return ctor;
322 }
323 }
324 return build_value_init_noctor (type);
325 }
326
327 /* Like build_value_init, but don't call the constructor for TYPE. Used
328 for base initializers. */
329
330 tree
331 build_value_init_noctor (tree type)
332 {
333 if (CLASS_TYPE_P (type))
334 {
335 gcc_assert (!TYPE_NEEDS_CONSTRUCTING (type));
336
337 if (TREE_CODE (type) != UNION_TYPE)
338 {
339 tree field;
340 VEC(constructor_elt,gc) *v = NULL;
341
342 /* Iterate over the fields, building initializations. */
343 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
344 {
345 tree ftype, value;
346
347 if (TREE_CODE (field) != FIELD_DECL)
348 continue;
349
350 ftype = TREE_TYPE (field);
351
352 if (TREE_CODE (ftype) == REFERENCE_TYPE)
353 error ("value-initialization of reference");
354
355 /* We could skip vfields and fields of types with
356 user-defined constructors, but I think that won't improve
357 performance at all; it should be simpler in general just
358 to zero out the entire object than try to only zero the
359 bits that actually need it. */
360
361 /* Note that for class types there will be FIELD_DECLs
362 corresponding to base classes as well. Thus, iterating
363 over TYPE_FIELDs will result in correct initialization of
364 all of the subobjects. */
365 value = build_value_init (ftype);
366
367 if (value)
368 CONSTRUCTOR_APPEND_ELT(v, field, value);
369 }
370
371 /* Build a constructor to contain the zero- initializations. */
372 return build_constructor (type, v);
373 }
374 }
375 else if (TREE_CODE (type) == ARRAY_TYPE)
376 {
377 VEC(constructor_elt,gc) *v = NULL;
378
379 /* Iterate over the array elements, building initializations. */
380 tree max_index = array_type_nelts (type);
381
382 /* If we have an error_mark here, we should just return error mark
383 as we don't know the size of the array yet. */
384 if (max_index == error_mark_node)
385 return error_mark_node;
386 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
387
388 /* A zero-sized array, which is accepted as an extension, will
389 have an upper bound of -1. */
390 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
391 {
392 constructor_elt *ce;
393
394 v = VEC_alloc (constructor_elt, gc, 1);
395 ce = VEC_quick_push (constructor_elt, v, NULL);
396
397 /* If this is a one element array, we just use a regular init. */
398 if (tree_int_cst_equal (size_zero_node, max_index))
399 ce->index = size_zero_node;
400 else
401 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
402 max_index);
403
404 ce->value = build_value_init (TREE_TYPE (type));
405
406 /* The gimplifier can't deal with a RANGE_EXPR of TARGET_EXPRs. */
407 gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
408 && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
409 }
410
411 /* Build a constructor to contain the initializations. */
412 return build_constructor (type, v);
413 }
414
415 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
416 }
417
418 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
419 arguments. If TREE_LIST is void_type_node, an empty initializer
420 list was given; if NULL_TREE no initializer was given. */
421
422 static void
423 perform_member_init (tree member, tree init)
424 {
425 tree decl;
426 tree type = TREE_TYPE (member);
427
428 /* Effective C++ rule 12 requires that all data members be
429 initialized. */
430 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
431 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
432 "%qD should be initialized in the member initialization list",
433 member);
434
435 /* Get an lvalue for the data member. */
436 decl = build_class_member_access_expr (current_class_ref, member,
437 /*access_path=*/NULL_TREE,
438 /*preserve_reference=*/true,
439 tf_warning_or_error);
440 if (decl == error_mark_node)
441 return;
442
443 if (init == void_type_node)
444 {
445 /* mem() means value-initialization. */
446 if (TREE_CODE (type) == ARRAY_TYPE)
447 {
448 init = build_vec_init (decl, NULL_TREE, NULL_TREE,
449 /*explicit_value_init_p=*/true,
450 /* from_array=*/0,
451 tf_warning_or_error);
452 finish_expr_stmt (init);
453 }
454 else
455 {
456 if (TREE_CODE (type) == REFERENCE_TYPE)
457 permerror (DECL_SOURCE_LOCATION (current_function_decl),
458 "value-initialization of %q#D, which has reference type",
459 member);
460 else
461 {
462 init = build2 (INIT_EXPR, type, decl, build_value_init (type));
463 finish_expr_stmt (init);
464 }
465 }
466 }
467 /* Deal with this here, as we will get confused if we try to call the
468 assignment op for an anonymous union. This can happen in a
469 synthesized copy constructor. */
470 else if (ANON_AGGR_TYPE_P (type))
471 {
472 if (init)
473 {
474 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
475 finish_expr_stmt (init);
476 }
477 }
478 else if (TYPE_NEEDS_CONSTRUCTING (type))
479 {
480 if (init != NULL_TREE
481 && TREE_CODE (type) == ARRAY_TYPE
482 && TREE_CHAIN (init) == NULL_TREE
483 && TREE_CODE (TREE_TYPE (TREE_VALUE (init))) == ARRAY_TYPE)
484 {
485 /* Initialization of one array from another. */
486 finish_expr_stmt (build_vec_init (decl, NULL_TREE, TREE_VALUE (init),
487 /*explicit_value_init_p=*/false,
488 /* from_array=*/1,
489 tf_warning_or_error));
490 }
491 else
492 {
493 if (CP_TYPE_CONST_P (type)
494 && init == NULL_TREE
495 && !type_has_user_provided_default_constructor (type))
496 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
497 vtable; still give this diagnostic. */
498 permerror (DECL_SOURCE_LOCATION (current_function_decl),
499 "uninitialized member %qD with %<const%> type %qT",
500 member, type);
501 finish_expr_stmt (build_aggr_init (decl, init, 0,
502 tf_warning_or_error));
503 }
504 }
505 else
506 {
507 if (init == NULL_TREE)
508 {
509 tree core_type;
510 /* member traversal: note it leaves init NULL */
511 if (TREE_CODE (type) == REFERENCE_TYPE)
512 permerror (DECL_SOURCE_LOCATION (current_function_decl),
513 "uninitialized reference member %qD",
514 member);
515 else if (CP_TYPE_CONST_P (type))
516 permerror (DECL_SOURCE_LOCATION (current_function_decl),
517 "uninitialized member %qD with %<const%> type %qT",
518 member, type);
519
520 core_type = strip_array_types (type);
521 if (CLASS_TYPE_P (core_type)
522 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
523 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
524 diagnose_uninitialized_cst_or_ref_member (core_type,
525 /*using_new=*/false,
526 /*complain=*/true);
527 }
528 else if (TREE_CODE (init) == TREE_LIST)
529 /* There was an explicit member initialization. Do some work
530 in that case. */
531 init = build_x_compound_expr_from_list (init, "member initializer");
532
533 if (init)
534 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
535 tf_warning_or_error));
536 }
537
538 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
539 {
540 tree expr;
541
542 expr = build_class_member_access_expr (current_class_ref, member,
543 /*access_path=*/NULL_TREE,
544 /*preserve_reference=*/false,
545 tf_warning_or_error);
546 expr = build_delete (type, expr, sfk_complete_destructor,
547 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0);
548
549 if (expr != error_mark_node)
550 finish_eh_cleanup (expr);
551 }
552 }
553
554 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
555 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
556
557 static tree
558 build_field_list (tree t, tree list, int *uses_unions_p)
559 {
560 tree fields;
561
562 *uses_unions_p = 0;
563
564 /* Note whether or not T is a union. */
565 if (TREE_CODE (t) == UNION_TYPE)
566 *uses_unions_p = 1;
567
568 for (fields = TYPE_FIELDS (t); fields; fields = TREE_CHAIN (fields))
569 {
570 /* Skip CONST_DECLs for enumeration constants and so forth. */
571 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
572 continue;
573
574 /* Keep track of whether or not any fields are unions. */
575 if (TREE_CODE (TREE_TYPE (fields)) == UNION_TYPE)
576 *uses_unions_p = 1;
577
578 /* For an anonymous struct or union, we must recursively
579 consider the fields of the anonymous type. They can be
580 directly initialized from the constructor. */
581 if (ANON_AGGR_TYPE_P (TREE_TYPE (fields)))
582 {
583 /* Add this field itself. Synthesized copy constructors
584 initialize the entire aggregate. */
585 list = tree_cons (fields, NULL_TREE, list);
586 /* And now add the fields in the anonymous aggregate. */
587 list = build_field_list (TREE_TYPE (fields), list,
588 uses_unions_p);
589 }
590 /* Add this field. */
591 else if (DECL_NAME (fields))
592 list = tree_cons (fields, NULL_TREE, list);
593 }
594
595 return list;
596 }
597
598 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
599 a FIELD_DECL or BINFO in T that needs initialization. The
600 TREE_VALUE gives the initializer, or list of initializer arguments.
601
602 Return a TREE_LIST containing all of the initializations required
603 for T, in the order in which they should be performed. The output
604 list has the same format as the input. */
605
606 static tree
607 sort_mem_initializers (tree t, tree mem_inits)
608 {
609 tree init;
610 tree base, binfo, base_binfo;
611 tree sorted_inits;
612 tree next_subobject;
613 VEC(tree,gc) *vbases;
614 int i;
615 int uses_unions_p;
616
617 /* Build up a list of initializations. The TREE_PURPOSE of entry
618 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
619 TREE_VALUE will be the constructor arguments, or NULL if no
620 explicit initialization was provided. */
621 sorted_inits = NULL_TREE;
622
623 /* Process the virtual bases. */
624 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
625 VEC_iterate (tree, vbases, i, base); i++)
626 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
627
628 /* Process the direct bases. */
629 for (binfo = TYPE_BINFO (t), i = 0;
630 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
631 if (!BINFO_VIRTUAL_P (base_binfo))
632 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
633
634 /* Process the non-static data members. */
635 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
636 /* Reverse the entire list of initializations, so that they are in
637 the order that they will actually be performed. */
638 sorted_inits = nreverse (sorted_inits);
639
640 /* If the user presented the initializers in an order different from
641 that in which they will actually occur, we issue a warning. Keep
642 track of the next subobject which can be explicitly initialized
643 without issuing a warning. */
644 next_subobject = sorted_inits;
645
646 /* Go through the explicit initializers, filling in TREE_PURPOSE in
647 the SORTED_INITS. */
648 for (init = mem_inits; init; init = TREE_CHAIN (init))
649 {
650 tree subobject;
651 tree subobject_init;
652
653 subobject = TREE_PURPOSE (init);
654
655 /* If the explicit initializers are in sorted order, then
656 SUBOBJECT will be NEXT_SUBOBJECT, or something following
657 it. */
658 for (subobject_init = next_subobject;
659 subobject_init;
660 subobject_init = TREE_CHAIN (subobject_init))
661 if (TREE_PURPOSE (subobject_init) == subobject)
662 break;
663
664 /* Issue a warning if the explicit initializer order does not
665 match that which will actually occur.
666 ??? Are all these on the correct lines? */
667 if (warn_reorder && !subobject_init)
668 {
669 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
670 warning (OPT_Wreorder, "%q+D will be initialized after",
671 TREE_PURPOSE (next_subobject));
672 else
673 warning (OPT_Wreorder, "base %qT will be initialized after",
674 TREE_PURPOSE (next_subobject));
675 if (TREE_CODE (subobject) == FIELD_DECL)
676 warning (OPT_Wreorder, " %q+#D", subobject);
677 else
678 warning (OPT_Wreorder, " base %qT", subobject);
679 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
680 OPT_Wreorder, " when initialized here");
681 }
682
683 /* Look again, from the beginning of the list. */
684 if (!subobject_init)
685 {
686 subobject_init = sorted_inits;
687 while (TREE_PURPOSE (subobject_init) != subobject)
688 subobject_init = TREE_CHAIN (subobject_init);
689 }
690
691 /* It is invalid to initialize the same subobject more than
692 once. */
693 if (TREE_VALUE (subobject_init))
694 {
695 if (TREE_CODE (subobject) == FIELD_DECL)
696 error_at (DECL_SOURCE_LOCATION (current_function_decl),
697 "multiple initializations given for %qD",
698 subobject);
699 else
700 error_at (DECL_SOURCE_LOCATION (current_function_decl),
701 "multiple initializations given for base %qT",
702 subobject);
703 }
704
705 /* Record the initialization. */
706 TREE_VALUE (subobject_init) = TREE_VALUE (init);
707 next_subobject = subobject_init;
708 }
709
710 /* [class.base.init]
711
712 If a ctor-initializer specifies more than one mem-initializer for
713 multiple members of the same union (including members of
714 anonymous unions), the ctor-initializer is ill-formed. */
715 if (uses_unions_p)
716 {
717 tree last_field = NULL_TREE;
718 for (init = sorted_inits; init; init = TREE_CHAIN (init))
719 {
720 tree field;
721 tree field_type;
722 int done;
723
724 /* Skip uninitialized members and base classes. */
725 if (!TREE_VALUE (init)
726 || TREE_CODE (TREE_PURPOSE (init)) != FIELD_DECL)
727 continue;
728 /* See if this field is a member of a union, or a member of a
729 structure contained in a union, etc. */
730 field = TREE_PURPOSE (init);
731 for (field_type = DECL_CONTEXT (field);
732 !same_type_p (field_type, t);
733 field_type = TYPE_CONTEXT (field_type))
734 if (TREE_CODE (field_type) == UNION_TYPE)
735 break;
736 /* If this field is not a member of a union, skip it. */
737 if (TREE_CODE (field_type) != UNION_TYPE)
738 continue;
739
740 /* It's only an error if we have two initializers for the same
741 union type. */
742 if (!last_field)
743 {
744 last_field = field;
745 continue;
746 }
747
748 /* See if LAST_FIELD and the field initialized by INIT are
749 members of the same union. If so, there's a problem,
750 unless they're actually members of the same structure
751 which is itself a member of a union. For example, given:
752
753 union { struct { int i; int j; }; };
754
755 initializing both `i' and `j' makes sense. */
756 field_type = DECL_CONTEXT (field);
757 done = 0;
758 do
759 {
760 tree last_field_type;
761
762 last_field_type = DECL_CONTEXT (last_field);
763 while (1)
764 {
765 if (same_type_p (last_field_type, field_type))
766 {
767 if (TREE_CODE (field_type) == UNION_TYPE)
768 error_at (DECL_SOURCE_LOCATION (current_function_decl),
769 "initializations for multiple members of %qT",
770 last_field_type);
771 done = 1;
772 break;
773 }
774
775 if (same_type_p (last_field_type, t))
776 break;
777
778 last_field_type = TYPE_CONTEXT (last_field_type);
779 }
780
781 /* If we've reached the outermost class, then we're
782 done. */
783 if (same_type_p (field_type, t))
784 break;
785
786 field_type = TYPE_CONTEXT (field_type);
787 }
788 while (!done);
789
790 last_field = field;
791 }
792 }
793
794 return sorted_inits;
795 }
796
797 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
798 is a TREE_LIST giving the explicit mem-initializer-list for the
799 constructor. The TREE_PURPOSE of each entry is a subobject (a
800 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
801 is a TREE_LIST giving the arguments to the constructor or
802 void_type_node for an empty list of arguments. */
803
804 void
805 emit_mem_initializers (tree mem_inits)
806 {
807 /* We will already have issued an error message about the fact that
808 the type is incomplete. */
809 if (!COMPLETE_TYPE_P (current_class_type))
810 return;
811
812 /* Sort the mem-initializers into the order in which the
813 initializations should be performed. */
814 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
815
816 in_base_initializer = 1;
817
818 /* Initialize base classes. */
819 while (mem_inits
820 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
821 {
822 tree subobject = TREE_PURPOSE (mem_inits);
823 tree arguments = TREE_VALUE (mem_inits);
824
825 /* If these initializations are taking place in a copy constructor,
826 the base class should probably be explicitly initialized if there
827 is a user-defined constructor in the base class (other than the
828 default constructor, which will be called anyway). */
829 if (extra_warnings && !arguments
830 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
831 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
832 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Wextra,
833 "base class %q#T should be explicitly initialized in the "
834 "copy constructor",
835 BINFO_TYPE (subobject));
836
837 /* Initialize the base. */
838 if (BINFO_VIRTUAL_P (subobject))
839 construct_virtual_base (subobject, arguments);
840 else
841 {
842 tree base_addr;
843
844 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
845 subobject, 1);
846 expand_aggr_init_1 (subobject, NULL_TREE,
847 cp_build_indirect_ref (base_addr, RO_NULL,
848 tf_warning_or_error),
849 arguments,
850 LOOKUP_NORMAL,
851 tf_warning_or_error);
852 expand_cleanup_for_base (subobject, NULL_TREE);
853 }
854
855 mem_inits = TREE_CHAIN (mem_inits);
856 }
857 in_base_initializer = 0;
858
859 /* Initialize the vptrs. */
860 initialize_vtbl_ptrs (current_class_ptr);
861
862 /* Initialize the data members. */
863 while (mem_inits)
864 {
865 perform_member_init (TREE_PURPOSE (mem_inits),
866 TREE_VALUE (mem_inits));
867 mem_inits = TREE_CHAIN (mem_inits);
868 }
869 }
870
871 /* Returns the address of the vtable (i.e., the value that should be
872 assigned to the vptr) for BINFO. */
873
874 static tree
875 build_vtbl_address (tree binfo)
876 {
877 tree binfo_for = binfo;
878 tree vtbl;
879
880 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
881 /* If this is a virtual primary base, then the vtable we want to store
882 is that for the base this is being used as the primary base of. We
883 can't simply skip the initialization, because we may be expanding the
884 inits of a subobject constructor where the virtual base layout
885 can be different. */
886 while (BINFO_PRIMARY_P (binfo_for))
887 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
888
889 /* Figure out what vtable BINFO's vtable is based on, and mark it as
890 used. */
891 vtbl = get_vtbl_decl_for_binfo (binfo_for);
892 TREE_USED (vtbl) = 1;
893
894 /* Now compute the address to use when initializing the vptr. */
895 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
896 if (TREE_CODE (vtbl) == VAR_DECL)
897 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
898
899 return vtbl;
900 }
901
902 /* This code sets up the virtual function tables appropriate for
903 the pointer DECL. It is a one-ply initialization.
904
905 BINFO is the exact type that DECL is supposed to be. In
906 multiple inheritance, this might mean "C's A" if C : A, B. */
907
908 static void
909 expand_virtual_init (tree binfo, tree decl)
910 {
911 tree vtbl, vtbl_ptr;
912 tree vtt_index;
913
914 /* Compute the initializer for vptr. */
915 vtbl = build_vtbl_address (binfo);
916
917 /* We may get this vptr from a VTT, if this is a subobject
918 constructor or subobject destructor. */
919 vtt_index = BINFO_VPTR_INDEX (binfo);
920 if (vtt_index)
921 {
922 tree vtbl2;
923 tree vtt_parm;
924
925 /* Compute the value to use, when there's a VTT. */
926 vtt_parm = current_vtt_parm;
927 vtbl2 = build2 (POINTER_PLUS_EXPR,
928 TREE_TYPE (vtt_parm),
929 vtt_parm,
930 vtt_index);
931 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
932 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
933
934 /* The actual initializer is the VTT value only in the subobject
935 constructor. In maybe_clone_body we'll substitute NULL for
936 the vtt_parm in the case of the non-subobject constructor. */
937 vtbl = build3 (COND_EXPR,
938 TREE_TYPE (vtbl),
939 build2 (EQ_EXPR, boolean_type_node,
940 current_in_charge_parm, integer_zero_node),
941 vtbl2,
942 vtbl);
943 }
944
945 /* Compute the location of the vtpr. */
946 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
947 tf_warning_or_error),
948 TREE_TYPE (binfo));
949 gcc_assert (vtbl_ptr != error_mark_node);
950
951 /* Assign the vtable to the vptr. */
952 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
953 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
954 tf_warning_or_error));
955 }
956
957 /* If an exception is thrown in a constructor, those base classes already
958 constructed must be destroyed. This function creates the cleanup
959 for BINFO, which has just been constructed. If FLAG is non-NULL,
960 it is a DECL which is nonzero when this base needs to be
961 destroyed. */
962
963 static void
964 expand_cleanup_for_base (tree binfo, tree flag)
965 {
966 tree expr;
967
968 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
969 return;
970
971 /* Call the destructor. */
972 expr = build_special_member_call (current_class_ref,
973 base_dtor_identifier,
974 NULL,
975 binfo,
976 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
977 tf_warning_or_error);
978 if (flag)
979 expr = fold_build3_loc (input_location,
980 COND_EXPR, void_type_node,
981 c_common_truthvalue_conversion (input_location, flag),
982 expr, integer_zero_node);
983
984 finish_eh_cleanup (expr);
985 }
986
987 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
988 constructor. */
989
990 static void
991 construct_virtual_base (tree vbase, tree arguments)
992 {
993 tree inner_if_stmt;
994 tree exp;
995 tree flag;
996
997 /* If there are virtual base classes with destructors, we need to
998 emit cleanups to destroy them if an exception is thrown during
999 the construction process. These exception regions (i.e., the
1000 period during which the cleanups must occur) begin from the time
1001 the construction is complete to the end of the function. If we
1002 create a conditional block in which to initialize the
1003 base-classes, then the cleanup region for the virtual base begins
1004 inside a block, and ends outside of that block. This situation
1005 confuses the sjlj exception-handling code. Therefore, we do not
1006 create a single conditional block, but one for each
1007 initialization. (That way the cleanup regions always begin
1008 in the outer block.) We trust the back end to figure out
1009 that the FLAG will not change across initializations, and
1010 avoid doing multiple tests. */
1011 flag = TREE_CHAIN (DECL_ARGUMENTS (current_function_decl));
1012 inner_if_stmt = begin_if_stmt ();
1013 finish_if_stmt_cond (flag, inner_if_stmt);
1014
1015 /* Compute the location of the virtual base. If we're
1016 constructing virtual bases, then we must be the most derived
1017 class. Therefore, we don't have to look up the virtual base;
1018 we already know where it is. */
1019 exp = convert_to_base_statically (current_class_ref, vbase);
1020
1021 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1022 LOOKUP_COMPLAIN, tf_warning_or_error);
1023 finish_then_clause (inner_if_stmt);
1024 finish_if_stmt (inner_if_stmt);
1025
1026 expand_cleanup_for_base (vbase, flag);
1027 }
1028
1029 /* Find the context in which this FIELD can be initialized. */
1030
1031 static tree
1032 initializing_context (tree field)
1033 {
1034 tree t = DECL_CONTEXT (field);
1035
1036 /* Anonymous union members can be initialized in the first enclosing
1037 non-anonymous union context. */
1038 while (t && ANON_AGGR_TYPE_P (t))
1039 t = TYPE_CONTEXT (t);
1040 return t;
1041 }
1042
1043 /* Function to give error message if member initialization specification
1044 is erroneous. FIELD is the member we decided to initialize.
1045 TYPE is the type for which the initialization is being performed.
1046 FIELD must be a member of TYPE.
1047
1048 MEMBER_NAME is the name of the member. */
1049
1050 static int
1051 member_init_ok_or_else (tree field, tree type, tree member_name)
1052 {
1053 if (field == error_mark_node)
1054 return 0;
1055 if (!field)
1056 {
1057 error ("class %qT does not have any field named %qD", type,
1058 member_name);
1059 return 0;
1060 }
1061 if (TREE_CODE (field) == VAR_DECL)
1062 {
1063 error ("%q#D is a static data member; it can only be "
1064 "initialized at its definition",
1065 field);
1066 return 0;
1067 }
1068 if (TREE_CODE (field) != FIELD_DECL)
1069 {
1070 error ("%q#D is not a non-static data member of %qT",
1071 field, type);
1072 return 0;
1073 }
1074 if (initializing_context (field) != type)
1075 {
1076 error ("class %qT does not have any field named %qD", type,
1077 member_name);
1078 return 0;
1079 }
1080
1081 return 1;
1082 }
1083
1084 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1085 is a _TYPE node or TYPE_DECL which names a base for that type.
1086 Check the validity of NAME, and return either the base _TYPE, base
1087 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1088 NULL_TREE and issue a diagnostic.
1089
1090 An old style unnamed direct single base construction is permitted,
1091 where NAME is NULL. */
1092
1093 tree
1094 expand_member_init (tree name)
1095 {
1096 tree basetype;
1097 tree field;
1098
1099 if (!current_class_ref)
1100 return NULL_TREE;
1101
1102 if (!name)
1103 {
1104 /* This is an obsolete unnamed base class initializer. The
1105 parser will already have warned about its use. */
1106 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1107 {
1108 case 0:
1109 error ("unnamed initializer for %qT, which has no base classes",
1110 current_class_type);
1111 return NULL_TREE;
1112 case 1:
1113 basetype = BINFO_TYPE
1114 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1115 break;
1116 default:
1117 error ("unnamed initializer for %qT, which uses multiple inheritance",
1118 current_class_type);
1119 return NULL_TREE;
1120 }
1121 }
1122 else if (TYPE_P (name))
1123 {
1124 basetype = TYPE_MAIN_VARIANT (name);
1125 name = TYPE_NAME (name);
1126 }
1127 else if (TREE_CODE (name) == TYPE_DECL)
1128 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1129 else
1130 basetype = NULL_TREE;
1131
1132 if (basetype)
1133 {
1134 tree class_binfo;
1135 tree direct_binfo;
1136 tree virtual_binfo;
1137 int i;
1138
1139 if (current_template_parms)
1140 return basetype;
1141
1142 class_binfo = TYPE_BINFO (current_class_type);
1143 direct_binfo = NULL_TREE;
1144 virtual_binfo = NULL_TREE;
1145
1146 /* Look for a direct base. */
1147 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1148 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1149 break;
1150
1151 /* Look for a virtual base -- unless the direct base is itself
1152 virtual. */
1153 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1154 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1155
1156 /* [class.base.init]
1157
1158 If a mem-initializer-id is ambiguous because it designates
1159 both a direct non-virtual base class and an inherited virtual
1160 base class, the mem-initializer is ill-formed. */
1161 if (direct_binfo && virtual_binfo)
1162 {
1163 error ("%qD is both a direct base and an indirect virtual base",
1164 basetype);
1165 return NULL_TREE;
1166 }
1167
1168 if (!direct_binfo && !virtual_binfo)
1169 {
1170 if (CLASSTYPE_VBASECLASSES (current_class_type))
1171 error ("type %qT is not a direct or virtual base of %qT",
1172 basetype, current_class_type);
1173 else
1174 error ("type %qT is not a direct base of %qT",
1175 basetype, current_class_type);
1176 return NULL_TREE;
1177 }
1178
1179 return direct_binfo ? direct_binfo : virtual_binfo;
1180 }
1181 else
1182 {
1183 if (TREE_CODE (name) == IDENTIFIER_NODE)
1184 field = lookup_field (current_class_type, name, 1, false);
1185 else
1186 field = name;
1187
1188 if (member_init_ok_or_else (field, current_class_type, name))
1189 return field;
1190 }
1191
1192 return NULL_TREE;
1193 }
1194
1195 /* This is like `expand_member_init', only it stores one aggregate
1196 value into another.
1197
1198 INIT comes in two flavors: it is either a value which
1199 is to be stored in EXP, or it is a parameter list
1200 to go to a constructor, which will operate on EXP.
1201 If INIT is not a parameter list for a constructor, then set
1202 LOOKUP_ONLYCONVERTING.
1203 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1204 the initializer, if FLAGS is 0, then it is the (init) form.
1205 If `init' is a CONSTRUCTOR, then we emit a warning message,
1206 explaining that such initializations are invalid.
1207
1208 If INIT resolves to a CALL_EXPR which happens to return
1209 something of the type we are looking for, then we know
1210 that we can safely use that call to perform the
1211 initialization.
1212
1213 The virtual function table pointer cannot be set up here, because
1214 we do not really know its type.
1215
1216 This never calls operator=().
1217
1218 When initializing, nothing is CONST.
1219
1220 A default copy constructor may have to be used to perform the
1221 initialization.
1222
1223 A constructor or a conversion operator may have to be used to
1224 perform the initialization, but not both, as it would be ambiguous. */
1225
1226 tree
1227 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1228 {
1229 tree stmt_expr;
1230 tree compound_stmt;
1231 int destroy_temps;
1232 tree type = TREE_TYPE (exp);
1233 int was_const = TREE_READONLY (exp);
1234 int was_volatile = TREE_THIS_VOLATILE (exp);
1235 int is_global;
1236
1237 if (init == error_mark_node)
1238 return error_mark_node;
1239
1240 TREE_READONLY (exp) = 0;
1241 TREE_THIS_VOLATILE (exp) = 0;
1242
1243 if (init && TREE_CODE (init) != TREE_LIST)
1244 flags |= LOOKUP_ONLYCONVERTING;
1245
1246 if (TREE_CODE (type) == ARRAY_TYPE)
1247 {
1248 tree itype;
1249
1250 /* An array may not be initialized use the parenthesized
1251 initialization form -- unless the initializer is "()". */
1252 if (init && TREE_CODE (init) == TREE_LIST)
1253 {
1254 if (complain & tf_error)
1255 error ("bad array initializer");
1256 return error_mark_node;
1257 }
1258 /* Must arrange to initialize each element of EXP
1259 from elements of INIT. */
1260 itype = init ? TREE_TYPE (init) : NULL_TREE;
1261 if (cv_qualified_p (type))
1262 TREE_TYPE (exp) = cv_unqualified (type);
1263 if (itype && cv_qualified_p (itype))
1264 TREE_TYPE (init) = cv_unqualified (itype);
1265 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1266 /*explicit_value_init_p=*/false,
1267 itype && same_type_p (TREE_TYPE (init),
1268 TREE_TYPE (exp)),
1269 complain);
1270 TREE_READONLY (exp) = was_const;
1271 TREE_THIS_VOLATILE (exp) = was_volatile;
1272 TREE_TYPE (exp) = type;
1273 if (init)
1274 TREE_TYPE (init) = itype;
1275 return stmt_expr;
1276 }
1277
1278 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1279 /* Just know that we've seen something for this node. */
1280 TREE_USED (exp) = 1;
1281
1282 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1283 destroy_temps = stmts_are_full_exprs_p ();
1284 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1285 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1286 init, LOOKUP_NORMAL|flags, complain);
1287 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1288 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1289 TREE_READONLY (exp) = was_const;
1290 TREE_THIS_VOLATILE (exp) = was_volatile;
1291
1292 return stmt_expr;
1293 }
1294
1295 static void
1296 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1297 tsubst_flags_t complain)
1298 {
1299 tree type = TREE_TYPE (exp);
1300 tree ctor_name;
1301
1302 /* It fails because there may not be a constructor which takes
1303 its own type as the first (or only parameter), but which does
1304 take other types via a conversion. So, if the thing initializing
1305 the expression is a unit element of type X, first try X(X&),
1306 followed by initialization by X. If neither of these work
1307 out, then look hard. */
1308 tree rval;
1309 VEC(tree,gc) *parms;
1310
1311 if (init && TREE_CODE (init) != TREE_LIST
1312 && (flags & LOOKUP_ONLYCONVERTING))
1313 {
1314 /* Base subobjects should only get direct-initialization. */
1315 gcc_assert (true_exp == exp);
1316
1317 if (flags & DIRECT_BIND)
1318 /* Do nothing. We hit this in two cases: Reference initialization,
1319 where we aren't initializing a real variable, so we don't want
1320 to run a new constructor; and catching an exception, where we
1321 have already built up the constructor call so we could wrap it
1322 in an exception region. */;
1323 else if (BRACE_ENCLOSED_INITIALIZER_P (init)
1324 && CP_AGGREGATE_TYPE_P (type))
1325 {
1326 /* A brace-enclosed initializer for an aggregate. */
1327 init = digest_init (type, init);
1328 }
1329 else
1330 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1331
1332 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1333 /* We need to protect the initialization of a catch parm with a
1334 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1335 around the TARGET_EXPR for the copy constructor. See
1336 initialize_handler_parm. */
1337 {
1338 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1339 TREE_OPERAND (init, 0));
1340 TREE_TYPE (init) = void_type_node;
1341 }
1342 else
1343 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1344 TREE_SIDE_EFFECTS (init) = 1;
1345 finish_expr_stmt (init);
1346 return;
1347 }
1348
1349 if (init == NULL_TREE)
1350 parms = NULL;
1351 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1352 {
1353 parms = make_tree_vector ();
1354 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1355 VEC_safe_push (tree, gc, parms, TREE_VALUE (init));
1356 }
1357 else
1358 parms = make_tree_vector_single (init);
1359
1360 if (true_exp == exp)
1361 ctor_name = complete_ctor_identifier;
1362 else
1363 ctor_name = base_ctor_identifier;
1364
1365 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1366 complain);
1367
1368 if (parms != NULL)
1369 release_tree_vector (parms);
1370
1371 if (TREE_SIDE_EFFECTS (rval))
1372 finish_expr_stmt (convert_to_void (rval, NULL, complain));
1373 }
1374
1375 /* This function is responsible for initializing EXP with INIT
1376 (if any).
1377
1378 BINFO is the binfo of the type for who we are performing the
1379 initialization. For example, if W is a virtual base class of A and B,
1380 and C : A, B.
1381 If we are initializing B, then W must contain B's W vtable, whereas
1382 were we initializing C, W must contain C's W vtable.
1383
1384 TRUE_EXP is nonzero if it is the true expression being initialized.
1385 In this case, it may be EXP, or may just contain EXP. The reason we
1386 need this is because if EXP is a base element of TRUE_EXP, we
1387 don't necessarily know by looking at EXP where its virtual
1388 baseclass fields should really be pointing. But we do know
1389 from TRUE_EXP. In constructors, we don't know anything about
1390 the value being initialized.
1391
1392 FLAGS is just passed to `build_new_method_call'. See that function
1393 for its description. */
1394
1395 static void
1396 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1397 tsubst_flags_t complain)
1398 {
1399 tree type = TREE_TYPE (exp);
1400
1401 gcc_assert (init != error_mark_node && type != error_mark_node);
1402 gcc_assert (building_stmt_tree ());
1403
1404 /* Use a function returning the desired type to initialize EXP for us.
1405 If the function is a constructor, and its first argument is
1406 NULL_TREE, know that it was meant for us--just slide exp on
1407 in and expand the constructor. Constructors now come
1408 as TARGET_EXPRs. */
1409
1410 if (init && TREE_CODE (exp) == VAR_DECL
1411 && COMPOUND_LITERAL_P (init))
1412 {
1413 /* If store_init_value returns NULL_TREE, the INIT has been
1414 recorded as the DECL_INITIAL for EXP. That means there's
1415 nothing more we have to do. */
1416 init = store_init_value (exp, init, flags);
1417 if (init)
1418 finish_expr_stmt (init);
1419 return;
1420 }
1421
1422 /* If an explicit -- but empty -- initializer list was present,
1423 that's value-initialization. */
1424 if (init == void_type_node)
1425 {
1426 /* If there's a user-provided constructor, we just call that. */
1427 if (type_has_user_provided_constructor (type))
1428 /* Fall through. */;
1429 /* If there isn't, but we still need to call the constructor,
1430 zero out the object first. */
1431 else if (TYPE_NEEDS_CONSTRUCTING (type))
1432 {
1433 init = build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
1434 init = build2 (INIT_EXPR, type, exp, init);
1435 finish_expr_stmt (init);
1436 /* And then call the constructor. */
1437 }
1438 /* If we don't need to mess with the constructor at all,
1439 then just zero out the object and we're done. */
1440 else
1441 {
1442 init = build2 (INIT_EXPR, type, exp, build_value_init_noctor (type));
1443 finish_expr_stmt (init);
1444 return;
1445 }
1446 init = NULL_TREE;
1447 }
1448
1449 /* We know that expand_default_init can handle everything we want
1450 at this point. */
1451 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1452 }
1453
1454 /* Report an error if TYPE is not a user-defined, class type. If
1455 OR_ELSE is nonzero, give an error message. */
1456
1457 int
1458 is_class_type (tree type, int or_else)
1459 {
1460 if (type == error_mark_node)
1461 return 0;
1462
1463 if (! CLASS_TYPE_P (type))
1464 {
1465 if (or_else)
1466 error ("%qT is not a class type", type);
1467 return 0;
1468 }
1469 return 1;
1470 }
1471
1472 tree
1473 get_type_value (tree name)
1474 {
1475 if (name == error_mark_node)
1476 return NULL_TREE;
1477
1478 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1479 return IDENTIFIER_TYPE_VALUE (name);
1480 else
1481 return NULL_TREE;
1482 }
1483
1484 /* Build a reference to a member of an aggregate. This is not a C++
1485 `&', but really something which can have its address taken, and
1486 then act as a pointer to member, for example TYPE :: FIELD can have
1487 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1488 this expression is the operand of "&".
1489
1490 @@ Prints out lousy diagnostics for operator <typename>
1491 @@ fields.
1492
1493 @@ This function should be rewritten and placed in search.c. */
1494
1495 tree
1496 build_offset_ref (tree type, tree member, bool address_p)
1497 {
1498 tree decl;
1499 tree basebinfo = NULL_TREE;
1500
1501 /* class templates can come in as TEMPLATE_DECLs here. */
1502 if (TREE_CODE (member) == TEMPLATE_DECL)
1503 return member;
1504
1505 if (dependent_type_p (type) || type_dependent_expression_p (member))
1506 return build_qualified_name (NULL_TREE, type, member,
1507 /*template_p=*/false);
1508
1509 gcc_assert (TYPE_P (type));
1510 if (! is_class_type (type, 1))
1511 return error_mark_node;
1512
1513 gcc_assert (DECL_P (member) || BASELINK_P (member));
1514 /* Callers should call mark_used before this point. */
1515 gcc_assert (!DECL_P (member) || TREE_USED (member));
1516
1517 if (!COMPLETE_TYPE_P (complete_type (type))
1518 && !TYPE_BEING_DEFINED (type))
1519 {
1520 error ("incomplete type %qT does not have member %qD", type, member);
1521 return error_mark_node;
1522 }
1523
1524 /* Entities other than non-static members need no further
1525 processing. */
1526 if (TREE_CODE (member) == TYPE_DECL)
1527 return member;
1528 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1529 return convert_from_reference (member);
1530
1531 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1532 {
1533 error ("invalid pointer to bit-field %qD", member);
1534 return error_mark_node;
1535 }
1536
1537 /* Set up BASEBINFO for member lookup. */
1538 decl = maybe_dummy_object (type, &basebinfo);
1539
1540 /* A lot of this logic is now handled in lookup_member. */
1541 if (BASELINK_P (member))
1542 {
1543 /* Go from the TREE_BASELINK to the member function info. */
1544 tree t = BASELINK_FUNCTIONS (member);
1545
1546 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1547 {
1548 /* Get rid of a potential OVERLOAD around it. */
1549 t = OVL_CURRENT (t);
1550
1551 /* Unique functions are handled easily. */
1552
1553 /* For non-static member of base class, we need a special rule
1554 for access checking [class.protected]:
1555
1556 If the access is to form a pointer to member, the
1557 nested-name-specifier shall name the derived class
1558 (or any class derived from that class). */
1559 if (address_p && DECL_P (t)
1560 && DECL_NONSTATIC_MEMBER_P (t))
1561 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1562 else
1563 perform_or_defer_access_check (basebinfo, t, t);
1564
1565 if (DECL_STATIC_FUNCTION_P (t))
1566 return t;
1567 member = t;
1568 }
1569 else
1570 TREE_TYPE (member) = unknown_type_node;
1571 }
1572 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1573 /* We need additional test besides the one in
1574 check_accessibility_of_qualified_id in case it is
1575 a pointer to non-static member. */
1576 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1577
1578 if (!address_p)
1579 {
1580 /* If MEMBER is non-static, then the program has fallen afoul of
1581 [expr.prim]:
1582
1583 An id-expression that denotes a nonstatic data member or
1584 nonstatic member function of a class can only be used:
1585
1586 -- as part of a class member access (_expr.ref_) in which the
1587 object-expression refers to the member's class or a class
1588 derived from that class, or
1589
1590 -- to form a pointer to member (_expr.unary.op_), or
1591
1592 -- in the body of a nonstatic member function of that class or
1593 of a class derived from that class (_class.mfct.nonstatic_), or
1594
1595 -- in a mem-initializer for a constructor for that class or for
1596 a class derived from that class (_class.base.init_). */
1597 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1598 {
1599 /* Build a representation of the qualified name suitable
1600 for use as the operand to "&" -- even though the "&" is
1601 not actually present. */
1602 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1603 /* In Microsoft mode, treat a non-static member function as if
1604 it were a pointer-to-member. */
1605 if (flag_ms_extensions)
1606 {
1607 PTRMEM_OK_P (member) = 1;
1608 return cp_build_unary_op (ADDR_EXPR, member, 0,
1609 tf_warning_or_error);
1610 }
1611 error ("invalid use of non-static member function %qD",
1612 TREE_OPERAND (member, 1));
1613 return error_mark_node;
1614 }
1615 else if (TREE_CODE (member) == FIELD_DECL)
1616 {
1617 error ("invalid use of non-static data member %qD", member);
1618 return error_mark_node;
1619 }
1620 return member;
1621 }
1622
1623 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1624 PTRMEM_OK_P (member) = 1;
1625 return member;
1626 }
1627
1628 /* If DECL is a scalar enumeration constant or variable with a
1629 constant initializer, return the initializer (or, its initializers,
1630 recursively); otherwise, return DECL. If INTEGRAL_P, the
1631 initializer is only returned if DECL is an integral
1632 constant-expression. */
1633
1634 static tree
1635 constant_value_1 (tree decl, bool integral_p)
1636 {
1637 while (TREE_CODE (decl) == CONST_DECL
1638 || (integral_p
1639 ? DECL_INTEGRAL_CONSTANT_VAR_P (decl)
1640 : (TREE_CODE (decl) == VAR_DECL
1641 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1642 {
1643 tree init;
1644 /* Static data members in template classes may have
1645 non-dependent initializers. References to such non-static
1646 data members are not value-dependent, so we must retrieve the
1647 initializer here. The DECL_INITIAL will have the right type,
1648 but will not have been folded because that would prevent us
1649 from performing all appropriate semantic checks at
1650 instantiation time. */
1651 if (DECL_CLASS_SCOPE_P (decl)
1652 && CLASSTYPE_TEMPLATE_INFO (DECL_CONTEXT (decl))
1653 && uses_template_parms (CLASSTYPE_TI_ARGS
1654 (DECL_CONTEXT (decl))))
1655 {
1656 ++processing_template_decl;
1657 init = fold_non_dependent_expr (DECL_INITIAL (decl));
1658 --processing_template_decl;
1659 }
1660 else
1661 {
1662 /* If DECL is a static data member in a template
1663 specialization, we must instantiate it here. The
1664 initializer for the static data member is not processed
1665 until needed; we need it now. */
1666 mark_used (decl);
1667 init = DECL_INITIAL (decl);
1668 }
1669 if (init == error_mark_node)
1670 {
1671 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
1672 /* Treat the error as a constant to avoid cascading errors on
1673 excessively recursive template instantiation (c++/9335). */
1674 return init;
1675 else
1676 return decl;
1677 }
1678 /* Initializers in templates are generally expanded during
1679 instantiation, so before that for const int i(2)
1680 INIT is a TREE_LIST with the actual initializer as
1681 TREE_VALUE. */
1682 if (processing_template_decl
1683 && init
1684 && TREE_CODE (init) == TREE_LIST
1685 && TREE_CHAIN (init) == NULL_TREE)
1686 init = TREE_VALUE (init);
1687 if (!init
1688 || !TREE_TYPE (init)
1689 || (integral_p
1690 ? !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (init))
1691 : (!TREE_CONSTANT (init)
1692 /* Do not return an aggregate constant (of which
1693 string literals are a special case), as we do not
1694 want to make inadvertent copies of such entities,
1695 and we must be sure that their addresses are the
1696 same everywhere. */
1697 || TREE_CODE (init) == CONSTRUCTOR
1698 || TREE_CODE (init) == STRING_CST)))
1699 break;
1700 decl = unshare_expr (init);
1701 }
1702 return decl;
1703 }
1704
1705 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
1706 constant of integral or enumeration type, then return that value.
1707 These are those variables permitted in constant expressions by
1708 [5.19/1]. */
1709
1710 tree
1711 integral_constant_value (tree decl)
1712 {
1713 return constant_value_1 (decl, /*integral_p=*/true);
1714 }
1715
1716 /* A more relaxed version of integral_constant_value, used by the
1717 common C/C++ code and by the C++ front end for optimization
1718 purposes. */
1719
1720 tree
1721 decl_constant_value (tree decl)
1722 {
1723 return constant_value_1 (decl,
1724 /*integral_p=*/processing_template_decl);
1725 }
1726 \f
1727 /* Common subroutines of build_new and build_vec_delete. */
1728
1729 /* Call the global __builtin_delete to delete ADDR. */
1730
1731 static tree
1732 build_builtin_delete_call (tree addr)
1733 {
1734 mark_used (global_delete_fndecl);
1735 return build_call_n (global_delete_fndecl, 1, addr);
1736 }
1737 \f
1738 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
1739 the type of the object being allocated; otherwise, it's just TYPE.
1740 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
1741 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
1742 a vector of arguments to be provided as arguments to a placement
1743 new operator. This routine performs no semantic checks; it just
1744 creates and returns a NEW_EXPR. */
1745
1746 static tree
1747 build_raw_new_expr (VEC(tree,gc) *placement, tree type, tree nelts,
1748 VEC(tree,gc) *init, int use_global_new)
1749 {
1750 tree init_list;
1751 tree new_expr;
1752
1753 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
1754 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
1755 permits us to distinguish the case of a missing initializer "new
1756 int" from an empty initializer "new int()". */
1757 if (init == NULL)
1758 init_list = NULL_TREE;
1759 else if (VEC_empty (tree, init))
1760 init_list = void_zero_node;
1761 else
1762 init_list = build_tree_list_vec (init);
1763
1764 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
1765 build_tree_list_vec (placement), type, nelts,
1766 init_list);
1767 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
1768 TREE_SIDE_EFFECTS (new_expr) = 1;
1769
1770 return new_expr;
1771 }
1772
1773 /* Diagnose uninitialized const members or reference members of type
1774 TYPE. USING_NEW is used to disambiguate the diagnostic between a
1775 new expression without a new-initializer and a declaration. Returns
1776 the error count. */
1777
1778 static int
1779 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
1780 bool using_new, bool complain)
1781 {
1782 tree field;
1783 int error_count = 0;
1784
1785 if (type_has_user_provided_constructor (type))
1786 return 0;
1787
1788 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1789 {
1790 tree field_type;
1791
1792 if (TREE_CODE (field) != FIELD_DECL)
1793 continue;
1794
1795 field_type = strip_array_types (TREE_TYPE (field));
1796
1797 if (TREE_CODE (field_type) == REFERENCE_TYPE)
1798 {
1799 ++ error_count;
1800 if (complain)
1801 {
1802 if (using_new)
1803 error ("uninitialized reference member in %q#T "
1804 "using %<new%> without new-initializer", origin);
1805 else
1806 error ("uninitialized reference member in %q#T", origin);
1807 inform (DECL_SOURCE_LOCATION (field),
1808 "%qD should be initialized", field);
1809 }
1810 }
1811
1812 if (CP_TYPE_CONST_P (field_type))
1813 {
1814 ++ error_count;
1815 if (complain)
1816 {
1817 if (using_new)
1818 error ("uninitialized const member in %q#T "
1819 "using %<new%> without new-initializer", origin);
1820 else
1821 error ("uninitialized const member in %q#T", origin);
1822 inform (DECL_SOURCE_LOCATION (field),
1823 "%qD should be initialized", field);
1824 }
1825 }
1826
1827 if (CLASS_TYPE_P (field_type))
1828 error_count
1829 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
1830 using_new, complain);
1831 }
1832 return error_count;
1833 }
1834
1835 int
1836 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
1837 {
1838 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
1839 }
1840
1841 /* Generate code for a new-expression, including calling the "operator
1842 new" function, initializing the object, and, if an exception occurs
1843 during construction, cleaning up. The arguments are as for
1844 build_raw_new_expr. This may change PLACEMENT and INIT. */
1845
1846 static tree
1847 build_new_1 (VEC(tree,gc) **placement, tree type, tree nelts,
1848 VEC(tree,gc) **init, bool globally_qualified_p,
1849 tsubst_flags_t complain)
1850 {
1851 tree size, rval;
1852 /* True iff this is a call to "operator new[]" instead of just
1853 "operator new". */
1854 bool array_p = false;
1855 /* If ARRAY_P is true, the element type of the array. This is never
1856 an ARRAY_TYPE; for something like "new int[3][4]", the
1857 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
1858 TYPE. */
1859 tree elt_type;
1860 /* The type of the new-expression. (This type is always a pointer
1861 type.) */
1862 tree pointer_type;
1863 tree non_const_pointer_type;
1864 tree outer_nelts = NULL_TREE;
1865 tree alloc_call, alloc_expr;
1866 /* The address returned by the call to "operator new". This node is
1867 a VAR_DECL and is therefore reusable. */
1868 tree alloc_node;
1869 tree alloc_fn;
1870 tree cookie_expr, init_expr;
1871 int nothrow, check_new;
1872 int use_java_new = 0;
1873 /* If non-NULL, the number of extra bytes to allocate at the
1874 beginning of the storage allocated for an array-new expression in
1875 order to store the number of elements. */
1876 tree cookie_size = NULL_TREE;
1877 tree placement_first;
1878 tree placement_expr = NULL_TREE;
1879 /* True if the function we are calling is a placement allocation
1880 function. */
1881 bool placement_allocation_fn_p;
1882 /* True if the storage must be initialized, either by a constructor
1883 or due to an explicit new-initializer. */
1884 bool is_initialized;
1885 /* The address of the thing allocated, not including any cookie. In
1886 particular, if an array cookie is in use, DATA_ADDR is the
1887 address of the first array element. This node is a VAR_DECL, and
1888 is therefore reusable. */
1889 tree data_addr;
1890 tree init_preeval_expr = NULL_TREE;
1891
1892 if (nelts)
1893 {
1894 outer_nelts = nelts;
1895 array_p = true;
1896 }
1897 else if (TREE_CODE (type) == ARRAY_TYPE)
1898 {
1899 array_p = true;
1900 nelts = array_type_nelts_top (type);
1901 outer_nelts = nelts;
1902 type = TREE_TYPE (type);
1903 }
1904
1905 /* If our base type is an array, then make sure we know how many elements
1906 it has. */
1907 for (elt_type = type;
1908 TREE_CODE (elt_type) == ARRAY_TYPE;
1909 elt_type = TREE_TYPE (elt_type))
1910 nelts = cp_build_binary_op (input_location,
1911 MULT_EXPR, nelts,
1912 array_type_nelts_top (elt_type),
1913 complain);
1914
1915 if (TREE_CODE (elt_type) == VOID_TYPE)
1916 {
1917 if (complain & tf_error)
1918 error ("invalid type %<void%> for new");
1919 return error_mark_node;
1920 }
1921
1922 if (abstract_virtuals_error (NULL_TREE, elt_type))
1923 return error_mark_node;
1924
1925 is_initialized = (TYPE_NEEDS_CONSTRUCTING (elt_type) || *init != NULL);
1926
1927 if (*init == NULL)
1928 {
1929 bool maybe_uninitialized_error = false;
1930 /* A program that calls for default-initialization [...] of an
1931 entity of reference type is ill-formed. */
1932 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
1933 maybe_uninitialized_error = true;
1934
1935 /* A new-expression that creates an object of type T initializes
1936 that object as follows:
1937 - If the new-initializer is omitted:
1938 -- If T is a (possibly cv-qualified) non-POD class type
1939 (or array thereof), the object is default-initialized (8.5).
1940 [...]
1941 -- Otherwise, the object created has indeterminate
1942 value. If T is a const-qualified type, or a (possibly
1943 cv-qualified) POD class type (or array thereof)
1944 containing (directly or indirectly) a member of
1945 const-qualified type, the program is ill-formed; */
1946
1947 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
1948 maybe_uninitialized_error = true;
1949
1950 if (maybe_uninitialized_error
1951 && diagnose_uninitialized_cst_or_ref_member (elt_type,
1952 /*using_new=*/true,
1953 complain & tf_error))
1954 return error_mark_node;
1955 }
1956
1957 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
1958 && !type_has_user_provided_default_constructor (elt_type))
1959 {
1960 if (complain & tf_error)
1961 error ("uninitialized const in %<new%> of %q#T", elt_type);
1962 return error_mark_node;
1963 }
1964
1965 size = size_in_bytes (elt_type);
1966 if (array_p)
1967 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
1968
1969 alloc_fn = NULL_TREE;
1970
1971 /* If PLACEMENT is a single simple pointer type not passed by
1972 reference, prepare to capture it in a temporary variable. Do
1973 this now, since PLACEMENT will change in the calls below. */
1974 placement_first = NULL_TREE;
1975 if (VEC_length (tree, *placement) == 1
1976 && (TREE_CODE (TREE_TYPE (VEC_index (tree, *placement, 0)))
1977 == POINTER_TYPE))
1978 placement_first = VEC_index (tree, *placement, 0);
1979
1980 /* Allocate the object. */
1981 if (VEC_empty (tree, *placement) && TYPE_FOR_JAVA (elt_type))
1982 {
1983 tree class_addr;
1984 tree class_decl = build_java_class_ref (elt_type);
1985 static const char alloc_name[] = "_Jv_AllocObject";
1986
1987 if (class_decl == error_mark_node)
1988 return error_mark_node;
1989
1990 use_java_new = 1;
1991 if (!get_global_value_if_present (get_identifier (alloc_name),
1992 &alloc_fn))
1993 {
1994 if (complain & tf_error)
1995 error ("call to Java constructor with %qs undefined", alloc_name);
1996 return error_mark_node;
1997 }
1998 else if (really_overloaded_fn (alloc_fn))
1999 {
2000 if (complain & tf_error)
2001 error ("%qD should never be overloaded", alloc_fn);
2002 return error_mark_node;
2003 }
2004 alloc_fn = OVL_CURRENT (alloc_fn);
2005 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2006 alloc_call = (cp_build_function_call
2007 (alloc_fn,
2008 build_tree_list (NULL_TREE, class_addr),
2009 complain));
2010 }
2011 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2012 {
2013 error ("Java class %q#T object allocated using placement new", elt_type);
2014 return error_mark_node;
2015 }
2016 else
2017 {
2018 tree fnname;
2019 tree fns;
2020
2021 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2022
2023 if (!globally_qualified_p
2024 && CLASS_TYPE_P (elt_type)
2025 && (array_p
2026 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2027 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2028 {
2029 /* Use a class-specific operator new. */
2030 /* If a cookie is required, add some extra space. */
2031 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2032 {
2033 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2034 size = size_binop (PLUS_EXPR, size, cookie_size);
2035 }
2036 /* Create the argument list. */
2037 VEC_safe_insert (tree, gc, *placement, 0, size);
2038 /* Do name-lookup to find the appropriate operator. */
2039 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2040 if (fns == NULL_TREE)
2041 {
2042 if (complain & tf_error)
2043 error ("no suitable %qD found in class %qT", fnname, elt_type);
2044 return error_mark_node;
2045 }
2046 if (TREE_CODE (fns) == TREE_LIST)
2047 {
2048 if (complain & tf_error)
2049 {
2050 error ("request for member %qD is ambiguous", fnname);
2051 print_candidates (fns);
2052 }
2053 return error_mark_node;
2054 }
2055 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2056 fns, placement,
2057 /*conversion_path=*/NULL_TREE,
2058 LOOKUP_NORMAL,
2059 &alloc_fn,
2060 complain);
2061 }
2062 else
2063 {
2064 /* Use a global operator new. */
2065 /* See if a cookie might be required. */
2066 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2067 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2068 else
2069 cookie_size = NULL_TREE;
2070
2071 alloc_call = build_operator_new_call (fnname, placement,
2072 &size, &cookie_size,
2073 &alloc_fn);
2074 }
2075 }
2076
2077 if (alloc_call == error_mark_node)
2078 return error_mark_node;
2079
2080 gcc_assert (alloc_fn != NULL_TREE);
2081
2082 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2083 into a temporary variable. */
2084 if (!processing_template_decl
2085 && placement_first != NULL_TREE
2086 && TREE_CODE (alloc_call) == CALL_EXPR
2087 && call_expr_nargs (alloc_call) == 2
2088 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2089 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
2090 {
2091 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2092
2093 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2094 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2095 {
2096 placement_expr = get_target_expr (placement_first);
2097 CALL_EXPR_ARG (alloc_call, 1)
2098 = convert (TREE_TYPE (placement_arg), placement_expr);
2099 }
2100 }
2101
2102 /* In the simple case, we can stop now. */
2103 pointer_type = build_pointer_type (type);
2104 if (!cookie_size && !is_initialized)
2105 return build_nop (pointer_type, alloc_call);
2106
2107 /* Store the result of the allocation call in a variable so that we can
2108 use it more than once. */
2109 alloc_expr = get_target_expr (alloc_call);
2110 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2111
2112 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2113 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2114 alloc_call = TREE_OPERAND (alloc_call, 1);
2115
2116 /* Now, check to see if this function is actually a placement
2117 allocation function. This can happen even when PLACEMENT is NULL
2118 because we might have something like:
2119
2120 struct S { void* operator new (size_t, int i = 0); };
2121
2122 A call to `new S' will get this allocation function, even though
2123 there is no explicit placement argument. If there is more than
2124 one argument, or there are variable arguments, then this is a
2125 placement allocation function. */
2126 placement_allocation_fn_p
2127 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2128 || varargs_function_p (alloc_fn));
2129
2130 /* Preevaluate the placement args so that we don't reevaluate them for a
2131 placement delete. */
2132 if (placement_allocation_fn_p)
2133 {
2134 tree inits;
2135 stabilize_call (alloc_call, &inits);
2136 if (inits)
2137 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2138 alloc_expr);
2139 }
2140
2141 /* unless an allocation function is declared with an empty excep-
2142 tion-specification (_except.spec_), throw(), it indicates failure to
2143 allocate storage by throwing a bad_alloc exception (clause _except_,
2144 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2145 cation function is declared with an empty exception-specification,
2146 throw(), it returns null to indicate failure to allocate storage and a
2147 non-null pointer otherwise.
2148
2149 So check for a null exception spec on the op new we just called. */
2150
2151 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2152 check_new = (flag_check_new || nothrow) && ! use_java_new;
2153
2154 if (cookie_size)
2155 {
2156 tree cookie;
2157 tree cookie_ptr;
2158 tree size_ptr_type;
2159
2160 /* Adjust so we're pointing to the start of the object. */
2161 data_addr = build2 (POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2162 alloc_node, cookie_size);
2163
2164 /* Store the number of bytes allocated so that we can know how
2165 many elements to destroy later. We use the last sizeof
2166 (size_t) bytes to store the number of elements. */
2167 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2168 cookie_ptr = fold_build2_loc (input_location,
2169 POINTER_PLUS_EXPR, TREE_TYPE (alloc_node),
2170 alloc_node, cookie_ptr);
2171 size_ptr_type = build_pointer_type (sizetype);
2172 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2173 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2174
2175 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2176
2177 if (targetm.cxx.cookie_has_size ())
2178 {
2179 /* Also store the element size. */
2180 cookie_ptr = build2 (POINTER_PLUS_EXPR, size_ptr_type, cookie_ptr,
2181 fold_build1_loc (input_location,
2182 NEGATE_EXPR, sizetype,
2183 size_in_bytes (sizetype)));
2184
2185 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2186 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2187 size_in_bytes (elt_type));
2188 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2189 cookie, cookie_expr);
2190 }
2191 }
2192 else
2193 {
2194 cookie_expr = NULL_TREE;
2195 data_addr = alloc_node;
2196 }
2197
2198 /* Now use a pointer to the type we've actually allocated. */
2199
2200 /* But we want to operate on a non-const version to start with,
2201 since we'll be modifying the elements. */
2202 non_const_pointer_type = build_pointer_type
2203 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2204
2205 data_addr = fold_convert (non_const_pointer_type, data_addr);
2206 /* Any further uses of alloc_node will want this type, too. */
2207 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2208
2209 /* Now initialize the allocated object. Note that we preevaluate the
2210 initialization expression, apart from the actual constructor call or
2211 assignment--we do this because we want to delay the allocation as long
2212 as possible in order to minimize the size of the exception region for
2213 placement delete. */
2214 if (is_initialized)
2215 {
2216 bool stable;
2217 bool explicit_value_init_p = false;
2218
2219 if (*init != NULL && VEC_empty (tree, *init))
2220 {
2221 *init = NULL;
2222 explicit_value_init_p = true;
2223 }
2224
2225 if (array_p)
2226 {
2227 tree vecinit = NULL_TREE;
2228 if (*init && VEC_length (tree, *init) == 1
2229 && BRACE_ENCLOSED_INITIALIZER_P (VEC_index (tree, *init, 0))
2230 && CONSTRUCTOR_IS_DIRECT_INIT (VEC_index (tree, *init, 0)))
2231 {
2232 tree arraytype, domain;
2233 vecinit = VEC_index (tree, *init, 0);
2234 if (TREE_CONSTANT (nelts))
2235 domain = compute_array_index_type (NULL_TREE, nelts);
2236 else
2237 {
2238 domain = NULL_TREE;
2239 if (CONSTRUCTOR_NELTS (vecinit) > 0)
2240 warning (0, "non-constant array size in new, unable to "
2241 "verify length of initializer-list");
2242 }
2243 arraytype = build_cplus_array_type (type, domain);
2244 vecinit = digest_init (arraytype, vecinit);
2245 }
2246 else if (*init)
2247 {
2248 if (complain & tf_error)
2249 permerror (input_location, "ISO C++ forbids initialization in array new");
2250 else
2251 return error_mark_node;
2252 vecinit = build_tree_list_vec (*init);
2253 }
2254 init_expr
2255 = build_vec_init (data_addr,
2256 cp_build_binary_op (input_location,
2257 MINUS_EXPR, outer_nelts,
2258 integer_one_node,
2259 complain),
2260 vecinit,
2261 explicit_value_init_p,
2262 /*from_array=*/0,
2263 complain);
2264
2265 /* An array initialization is stable because the initialization
2266 of each element is a full-expression, so the temporaries don't
2267 leak out. */
2268 stable = true;
2269 }
2270 else
2271 {
2272 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2273
2274 if (TYPE_NEEDS_CONSTRUCTING (type) && !explicit_value_init_p)
2275 {
2276 init_expr = build_special_member_call (init_expr,
2277 complete_ctor_identifier,
2278 init, elt_type,
2279 LOOKUP_NORMAL,
2280 complain);
2281 }
2282 else if (explicit_value_init_p)
2283 {
2284 /* Something like `new int()'. */
2285 init_expr = build2 (INIT_EXPR, type,
2286 init_expr, build_value_init (type));
2287 }
2288 else
2289 {
2290 tree ie;
2291
2292 /* We are processing something like `new int (10)', which
2293 means allocate an int, and initialize it with 10. */
2294
2295 ie = build_x_compound_expr_from_vec (*init, "new initializer");
2296 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2297 complain);
2298 }
2299 stable = stabilize_init (init_expr, &init_preeval_expr);
2300 }
2301
2302 if (init_expr == error_mark_node)
2303 return error_mark_node;
2304
2305 /* If any part of the object initialization terminates by throwing an
2306 exception and a suitable deallocation function can be found, the
2307 deallocation function is called to free the memory in which the
2308 object was being constructed, after which the exception continues
2309 to propagate in the context of the new-expression. If no
2310 unambiguous matching deallocation function can be found,
2311 propagating the exception does not cause the object's memory to be
2312 freed. */
2313 if (flag_exceptions && ! use_java_new)
2314 {
2315 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2316 tree cleanup;
2317
2318 /* The Standard is unclear here, but the right thing to do
2319 is to use the same method for finding deallocation
2320 functions that we use for finding allocation functions. */
2321 cleanup = (build_op_delete_call
2322 (dcode,
2323 alloc_node,
2324 size,
2325 globally_qualified_p,
2326 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2327 alloc_fn));
2328
2329 if (!cleanup)
2330 /* We're done. */;
2331 else if (stable)
2332 /* This is much simpler if we were able to preevaluate all of
2333 the arguments to the constructor call. */
2334 {
2335 /* CLEANUP is compiler-generated, so no diagnostics. */
2336 TREE_NO_WARNING (cleanup) = true;
2337 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2338 init_expr, cleanup);
2339 /* Likewise, this try-catch is compiler-generated. */
2340 TREE_NO_WARNING (init_expr) = true;
2341 }
2342 else
2343 /* Ack! First we allocate the memory. Then we set our sentry
2344 variable to true, and expand a cleanup that deletes the
2345 memory if sentry is true. Then we run the constructor, and
2346 finally clear the sentry.
2347
2348 We need to do this because we allocate the space first, so
2349 if there are any temporaries with cleanups in the
2350 constructor args and we weren't able to preevaluate them, we
2351 need this EH region to extend until end of full-expression
2352 to preserve nesting. */
2353 {
2354 tree end, sentry, begin;
2355
2356 begin = get_target_expr (boolean_true_node);
2357 CLEANUP_EH_ONLY (begin) = 1;
2358
2359 sentry = TARGET_EXPR_SLOT (begin);
2360
2361 /* CLEANUP is compiler-generated, so no diagnostics. */
2362 TREE_NO_WARNING (cleanup) = true;
2363
2364 TARGET_EXPR_CLEANUP (begin)
2365 = build3 (COND_EXPR, void_type_node, sentry,
2366 cleanup, void_zero_node);
2367
2368 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2369 sentry, boolean_false_node);
2370
2371 init_expr
2372 = build2 (COMPOUND_EXPR, void_type_node, begin,
2373 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2374 end));
2375 /* Likewise, this is compiler-generated. */
2376 TREE_NO_WARNING (init_expr) = true;
2377 }
2378 }
2379 }
2380 else
2381 init_expr = NULL_TREE;
2382
2383 /* Now build up the return value in reverse order. */
2384
2385 rval = data_addr;
2386
2387 if (init_expr)
2388 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2389 if (cookie_expr)
2390 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2391
2392 if (rval == data_addr)
2393 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2394 and return the call (which doesn't need to be adjusted). */
2395 rval = TARGET_EXPR_INITIAL (alloc_expr);
2396 else
2397 {
2398 if (check_new)
2399 {
2400 tree ifexp = cp_build_binary_op (input_location,
2401 NE_EXPR, alloc_node,
2402 integer_zero_node,
2403 complain);
2404 rval = build_conditional_expr (ifexp, rval, alloc_node,
2405 complain);
2406 }
2407
2408 /* Perform the allocation before anything else, so that ALLOC_NODE
2409 has been initialized before we start using it. */
2410 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2411 }
2412
2413 if (init_preeval_expr)
2414 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2415
2416 /* A new-expression is never an lvalue. */
2417 gcc_assert (!lvalue_p (rval));
2418
2419 return convert (pointer_type, rval);
2420 }
2421
2422 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2423 is a vector of placement-new arguments (or NULL if none). If NELTS
2424 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2425 is not NULL, then this is an array-new allocation; TYPE is the type
2426 of the elements in the array and NELTS is the number of elements in
2427 the array. *INIT, if non-NULL, is the initializer for the new
2428 object, or an empty vector to indicate an initializer of "()". If
2429 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2430 rather than just "new". This may change PLACEMENT and INIT. */
2431
2432 tree
2433 build_new (VEC(tree,gc) **placement, tree type, tree nelts,
2434 VEC(tree,gc) **init, int use_global_new, tsubst_flags_t complain)
2435 {
2436 tree rval;
2437 VEC(tree,gc) *orig_placement = NULL;
2438 tree orig_nelts = NULL_TREE;
2439 VEC(tree,gc) *orig_init = NULL;
2440
2441 if (type == error_mark_node)
2442 return error_mark_node;
2443
2444 if (nelts == NULL_TREE && VEC_length (tree, *init) == 1)
2445 {
2446 tree auto_node = type_uses_auto (type);
2447 if (auto_node && describable_type (VEC_index (tree, *init, 0)))
2448 type = do_auto_deduction (type, VEC_index (tree, *init, 0), auto_node);
2449 }
2450
2451 if (processing_template_decl)
2452 {
2453 if (dependent_type_p (type)
2454 || any_type_dependent_arguments_p (*placement)
2455 || (nelts && type_dependent_expression_p (nelts))
2456 || any_type_dependent_arguments_p (*init))
2457 return build_raw_new_expr (*placement, type, nelts, *init,
2458 use_global_new);
2459
2460 orig_placement = make_tree_vector_copy (*placement);
2461 orig_nelts = nelts;
2462 orig_init = make_tree_vector_copy (*init);
2463
2464 make_args_non_dependent (*placement);
2465 if (nelts)
2466 nelts = build_non_dependent_expr (nelts);
2467 make_args_non_dependent (*init);
2468 }
2469
2470 if (nelts)
2471 {
2472 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2473 {
2474 if (complain & tf_error)
2475 permerror (input_location, "size in array new must have integral type");
2476 else
2477 return error_mark_node;
2478 }
2479 nelts = mark_rvalue_use (nelts);
2480 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2481 }
2482
2483 /* ``A reference cannot be created by the new operator. A reference
2484 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2485 returned by new.'' ARM 5.3.3 */
2486 if (TREE_CODE (type) == REFERENCE_TYPE)
2487 {
2488 if (complain & tf_error)
2489 error ("new cannot be applied to a reference type");
2490 else
2491 return error_mark_node;
2492 type = TREE_TYPE (type);
2493 }
2494
2495 if (TREE_CODE (type) == FUNCTION_TYPE)
2496 {
2497 if (complain & tf_error)
2498 error ("new cannot be applied to a function type");
2499 return error_mark_node;
2500 }
2501
2502 /* The type allocated must be complete. If the new-type-id was
2503 "T[N]" then we are just checking that "T" is complete here, but
2504 that is equivalent, since the value of "N" doesn't matter. */
2505 if (!complete_type_or_else (type, NULL_TREE))
2506 return error_mark_node;
2507
2508 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2509 if (rval == error_mark_node)
2510 return error_mark_node;
2511
2512 if (processing_template_decl)
2513 {
2514 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
2515 orig_init, use_global_new);
2516 release_tree_vector (orig_placement);
2517 release_tree_vector (orig_init);
2518 return ret;
2519 }
2520
2521 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2522 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2523 TREE_NO_WARNING (rval) = 1;
2524
2525 return rval;
2526 }
2527
2528 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2529
2530 tree
2531 build_java_class_ref (tree type)
2532 {
2533 tree name = NULL_TREE, class_decl;
2534 static tree CL_suffix = NULL_TREE;
2535 if (CL_suffix == NULL_TREE)
2536 CL_suffix = get_identifier("class$");
2537 if (jclass_node == NULL_TREE)
2538 {
2539 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2540 if (jclass_node == NULL_TREE)
2541 {
2542 error ("call to Java constructor, while %<jclass%> undefined");
2543 return error_mark_node;
2544 }
2545 jclass_node = TREE_TYPE (jclass_node);
2546 }
2547
2548 /* Mangle the class$ field. */
2549 {
2550 tree field;
2551 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2552 if (DECL_NAME (field) == CL_suffix)
2553 {
2554 mangle_decl (field);
2555 name = DECL_ASSEMBLER_NAME (field);
2556 break;
2557 }
2558 if (!field)
2559 {
2560 error ("can't find %<class$%> in %qT", type);
2561 return error_mark_node;
2562 }
2563 }
2564
2565 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2566 if (class_decl == NULL_TREE)
2567 {
2568 class_decl = build_decl (input_location,
2569 VAR_DECL, name, TREE_TYPE (jclass_node));
2570 TREE_STATIC (class_decl) = 1;
2571 DECL_EXTERNAL (class_decl) = 1;
2572 TREE_PUBLIC (class_decl) = 1;
2573 DECL_ARTIFICIAL (class_decl) = 1;
2574 DECL_IGNORED_P (class_decl) = 1;
2575 pushdecl_top_level (class_decl);
2576 make_decl_rtl (class_decl);
2577 }
2578 return class_decl;
2579 }
2580 \f
2581 static tree
2582 build_vec_delete_1 (tree base, tree maxindex, tree type,
2583 special_function_kind auto_delete_vec, int use_global_delete)
2584 {
2585 tree virtual_size;
2586 tree ptype = build_pointer_type (type = complete_type (type));
2587 tree size_exp = size_in_bytes (type);
2588
2589 /* Temporary variables used by the loop. */
2590 tree tbase, tbase_init;
2591
2592 /* This is the body of the loop that implements the deletion of a
2593 single element, and moves temp variables to next elements. */
2594 tree body;
2595
2596 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2597 tree loop = 0;
2598
2599 /* This is the thing that governs what to do after the loop has run. */
2600 tree deallocate_expr = 0;
2601
2602 /* This is the BIND_EXPR which holds the outermost iterator of the
2603 loop. It is convenient to set this variable up and test it before
2604 executing any other code in the loop.
2605 This is also the containing expression returned by this function. */
2606 tree controller = NULL_TREE;
2607 tree tmp;
2608
2609 /* We should only have 1-D arrays here. */
2610 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2611
2612 if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2613 goto no_destructor;
2614
2615 /* The below is short by the cookie size. */
2616 virtual_size = size_binop (MULT_EXPR, size_exp,
2617 convert (sizetype, maxindex));
2618
2619 tbase = create_temporary_var (ptype);
2620 tbase_init = cp_build_modify_expr (tbase, NOP_EXPR,
2621 fold_build2_loc (input_location,
2622 POINTER_PLUS_EXPR, ptype,
2623 fold_convert (ptype, base),
2624 virtual_size),
2625 tf_warning_or_error);
2626 controller = build3 (BIND_EXPR, void_type_node, tbase,
2627 NULL_TREE, NULL_TREE);
2628 TREE_SIDE_EFFECTS (controller) = 1;
2629
2630 body = build1 (EXIT_EXPR, void_type_node,
2631 build2 (EQ_EXPR, boolean_type_node, tbase,
2632 fold_convert (ptype, base)));
2633 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
2634 body = build_compound_expr
2635 (input_location,
2636 body, cp_build_modify_expr (tbase, NOP_EXPR,
2637 build2 (POINTER_PLUS_EXPR, ptype, tbase, tmp),
2638 tf_warning_or_error));
2639 body = build_compound_expr
2640 (input_location,
2641 body, build_delete (ptype, tbase, sfk_complete_destructor,
2642 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1));
2643
2644 loop = build1 (LOOP_EXPR, void_type_node, body);
2645 loop = build_compound_expr (input_location, tbase_init, loop);
2646
2647 no_destructor:
2648 /* If the delete flag is one, or anything else with the low bit set,
2649 delete the storage. */
2650 if (auto_delete_vec != sfk_base_destructor)
2651 {
2652 tree base_tbd;
2653
2654 /* The below is short by the cookie size. */
2655 virtual_size = size_binop (MULT_EXPR, size_exp,
2656 convert (sizetype, maxindex));
2657
2658 if (! TYPE_VEC_NEW_USES_COOKIE (type))
2659 /* no header */
2660 base_tbd = base;
2661 else
2662 {
2663 tree cookie_size;
2664
2665 cookie_size = targetm.cxx.get_cookie_size (type);
2666 base_tbd
2667 = cp_convert (ptype,
2668 cp_build_binary_op (input_location,
2669 MINUS_EXPR,
2670 cp_convert (string_type_node,
2671 base),
2672 cookie_size,
2673 tf_warning_or_error));
2674 /* True size with header. */
2675 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
2676 }
2677
2678 if (auto_delete_vec == sfk_deleting_destructor)
2679 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
2680 base_tbd, virtual_size,
2681 use_global_delete & 1,
2682 /*placement=*/NULL_TREE,
2683 /*alloc_fn=*/NULL_TREE);
2684 }
2685
2686 body = loop;
2687 if (!deallocate_expr)
2688 ;
2689 else if (!body)
2690 body = deallocate_expr;
2691 else
2692 body = build_compound_expr (input_location, body, deallocate_expr);
2693
2694 if (!body)
2695 body = integer_zero_node;
2696
2697 /* Outermost wrapper: If pointer is null, punt. */
2698 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
2699 fold_build2_loc (input_location,
2700 NE_EXPR, boolean_type_node, base,
2701 convert (TREE_TYPE (base),
2702 integer_zero_node)),
2703 body, integer_zero_node);
2704 body = build1 (NOP_EXPR, void_type_node, body);
2705
2706 if (controller)
2707 {
2708 TREE_OPERAND (controller, 1) = body;
2709 body = controller;
2710 }
2711
2712 if (TREE_CODE (base) == SAVE_EXPR)
2713 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
2714 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
2715
2716 return convert_to_void (body, /*implicit=*/NULL, tf_warning_or_error);
2717 }
2718
2719 /* Create an unnamed variable of the indicated TYPE. */
2720
2721 tree
2722 create_temporary_var (tree type)
2723 {
2724 tree decl;
2725
2726 decl = build_decl (input_location,
2727 VAR_DECL, NULL_TREE, type);
2728 TREE_USED (decl) = 1;
2729 DECL_ARTIFICIAL (decl) = 1;
2730 DECL_IGNORED_P (decl) = 1;
2731 DECL_CONTEXT (decl) = current_function_decl;
2732
2733 return decl;
2734 }
2735
2736 /* Create a new temporary variable of the indicated TYPE, initialized
2737 to INIT.
2738
2739 It is not entered into current_binding_level, because that breaks
2740 things when it comes time to do final cleanups (which take place
2741 "outside" the binding contour of the function). */
2742
2743 static tree
2744 get_temp_regvar (tree type, tree init)
2745 {
2746 tree decl;
2747
2748 decl = create_temporary_var (type);
2749 add_decl_expr (decl);
2750
2751 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
2752 tf_warning_or_error));
2753
2754 return decl;
2755 }
2756
2757 /* `build_vec_init' returns tree structure that performs
2758 initialization of a vector of aggregate types.
2759
2760 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
2761 to the first element, of POINTER_TYPE.
2762 MAXINDEX is the maximum index of the array (one less than the
2763 number of elements). It is only used if BASE is a pointer or
2764 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
2765
2766 INIT is the (possibly NULL) initializer.
2767
2768 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
2769 elements in the array are value-initialized.
2770
2771 FROM_ARRAY is 0 if we should init everything with INIT
2772 (i.e., every element initialized from INIT).
2773 FROM_ARRAY is 1 if we should index into INIT in parallel
2774 with initialization of DECL.
2775 FROM_ARRAY is 2 if we should index into INIT in parallel,
2776 but use assignment instead of initialization. */
2777
2778 tree
2779 build_vec_init (tree base, tree maxindex, tree init,
2780 bool explicit_value_init_p,
2781 int from_array, tsubst_flags_t complain)
2782 {
2783 tree rval;
2784 tree base2 = NULL_TREE;
2785 tree itype = NULL_TREE;
2786 tree iterator;
2787 /* The type of BASE. */
2788 tree atype = TREE_TYPE (base);
2789 /* The type of an element in the array. */
2790 tree type = TREE_TYPE (atype);
2791 /* The element type reached after removing all outer array
2792 types. */
2793 tree inner_elt_type;
2794 /* The type of a pointer to an element in the array. */
2795 tree ptype;
2796 tree stmt_expr;
2797 tree compound_stmt;
2798 int destroy_temps;
2799 tree try_block = NULL_TREE;
2800 int num_initialized_elts = 0;
2801 bool is_global;
2802
2803 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
2804 maxindex = array_type_nelts (atype);
2805
2806 if (maxindex == NULL_TREE || maxindex == error_mark_node)
2807 return error_mark_node;
2808
2809 if (explicit_value_init_p)
2810 gcc_assert (!init);
2811
2812 inner_elt_type = strip_array_types (type);
2813
2814 /* Look through the TARGET_EXPR around a compound literal. */
2815 if (init && TREE_CODE (init) == TARGET_EXPR
2816 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
2817 && from_array != 2)
2818 init = TARGET_EXPR_INITIAL (init);
2819
2820 if (init
2821 && TREE_CODE (atype) == ARRAY_TYPE
2822 && (from_array == 2
2823 ? (!CLASS_TYPE_P (inner_elt_type)
2824 || !TYPE_HAS_COMPLEX_ASSIGN_REF (inner_elt_type))
2825 : !TYPE_NEEDS_CONSTRUCTING (type))
2826 && ((TREE_CODE (init) == CONSTRUCTOR
2827 /* Don't do this if the CONSTRUCTOR might contain something
2828 that might throw and require us to clean up. */
2829 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
2830 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
2831 || from_array))
2832 {
2833 /* Do non-default initialization of trivial arrays resulting from
2834 brace-enclosed initializers. In this case, digest_init and
2835 store_constructor will handle the semantics for us. */
2836
2837 stmt_expr = build2 (INIT_EXPR, atype, base, init);
2838 return stmt_expr;
2839 }
2840
2841 maxindex = cp_convert (ptrdiff_type_node, maxindex);
2842 if (TREE_CODE (atype) == ARRAY_TYPE)
2843 {
2844 ptype = build_pointer_type (type);
2845 base = cp_convert (ptype, decay_conversion (base));
2846 }
2847 else
2848 ptype = atype;
2849
2850 /* The code we are generating looks like:
2851 ({
2852 T* t1 = (T*) base;
2853 T* rval = t1;
2854 ptrdiff_t iterator = maxindex;
2855 try {
2856 for (; iterator != -1; --iterator) {
2857 ... initialize *t1 ...
2858 ++t1;
2859 }
2860 } catch (...) {
2861 ... destroy elements that were constructed ...
2862 }
2863 rval;
2864 })
2865
2866 We can omit the try and catch blocks if we know that the
2867 initialization will never throw an exception, or if the array
2868 elements do not have destructors. We can omit the loop completely if
2869 the elements of the array do not have constructors.
2870
2871 We actually wrap the entire body of the above in a STMT_EXPR, for
2872 tidiness.
2873
2874 When copying from array to another, when the array elements have
2875 only trivial copy constructors, we should use __builtin_memcpy
2876 rather than generating a loop. That way, we could take advantage
2877 of whatever cleverness the back end has for dealing with copies
2878 of blocks of memory. */
2879
2880 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
2881 destroy_temps = stmts_are_full_exprs_p ();
2882 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2883 rval = get_temp_regvar (ptype, base);
2884 base = get_temp_regvar (ptype, rval);
2885 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
2886
2887 /* If initializing one array from another, initialize element by
2888 element. We rely upon the below calls to do the argument
2889 checking. Evaluate the initializer before entering the try block. */
2890 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
2891 {
2892 base2 = decay_conversion (init);
2893 itype = TREE_TYPE (base2);
2894 base2 = get_temp_regvar (itype, base2);
2895 itype = TREE_TYPE (itype);
2896 }
2897
2898 /* Protect the entire array initialization so that we can destroy
2899 the partially constructed array if an exception is thrown.
2900 But don't do this if we're assigning. */
2901 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
2902 && from_array != 2)
2903 {
2904 try_block = begin_try_block ();
2905 }
2906
2907 if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
2908 {
2909 /* Do non-default initialization of non-trivial arrays resulting from
2910 brace-enclosed initializers. */
2911 unsigned HOST_WIDE_INT idx;
2912 tree elt;
2913 from_array = 0;
2914
2915 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
2916 {
2917 tree baseref = build1 (INDIRECT_REF, type, base);
2918
2919 num_initialized_elts++;
2920
2921 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
2922 if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
2923 finish_expr_stmt (build_aggr_init (baseref, elt, 0, complain));
2924 else
2925 finish_expr_stmt (cp_build_modify_expr (baseref, NOP_EXPR,
2926 elt, complain));
2927 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
2928
2929 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
2930 complain));
2931 finish_expr_stmt (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2932 complain));
2933 }
2934
2935 /* Clear out INIT so that we don't get confused below. */
2936 init = NULL_TREE;
2937 }
2938 else if (from_array)
2939 {
2940 if (init)
2941 /* OK, we set base2 above. */;
2942 else if (TYPE_LANG_SPECIFIC (type)
2943 && TYPE_NEEDS_CONSTRUCTING (type)
2944 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2945 {
2946 if (complain & tf_error)
2947 error ("initializer ends prematurely");
2948 return error_mark_node;
2949 }
2950 }
2951
2952 /* Now, default-initialize any remaining elements. We don't need to
2953 do that if a) the type does not need constructing, or b) we've
2954 already initialized all the elements.
2955
2956 We do need to keep going if we're copying an array. */
2957
2958 if (from_array
2959 || ((TYPE_NEEDS_CONSTRUCTING (type) || explicit_value_init_p)
2960 && ! (host_integerp (maxindex, 0)
2961 && (num_initialized_elts
2962 == tree_low_cst (maxindex, 0) + 1))))
2963 {
2964 /* If the ITERATOR is equal to -1, then we don't have to loop;
2965 we've already initialized all the elements. */
2966 tree for_stmt;
2967 tree elt_init;
2968 tree to;
2969
2970 for_stmt = begin_for_stmt ();
2971 finish_for_init_stmt (for_stmt);
2972 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
2973 build_int_cst (TREE_TYPE (iterator), -1)),
2974 for_stmt);
2975 finish_for_expr (cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
2976 complain),
2977 for_stmt);
2978
2979 to = build1 (INDIRECT_REF, type, base);
2980
2981 if (from_array)
2982 {
2983 tree from;
2984
2985 if (base2)
2986 from = build1 (INDIRECT_REF, itype, base2);
2987 else
2988 from = NULL_TREE;
2989
2990 if (from_array == 2)
2991 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2992 complain);
2993 else if (TYPE_NEEDS_CONSTRUCTING (type))
2994 elt_init = build_aggr_init (to, from, 0, complain);
2995 else if (from)
2996 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
2997 complain);
2998 else
2999 gcc_unreachable ();
3000 }
3001 else if (TREE_CODE (type) == ARRAY_TYPE)
3002 {
3003 if (init != 0)
3004 sorry
3005 ("cannot initialize multi-dimensional array with initializer");
3006 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3007 0, 0,
3008 explicit_value_init_p,
3009 0, complain);
3010 }
3011 else if (explicit_value_init_p)
3012 elt_init = build2 (INIT_EXPR, type, to,
3013 build_value_init (type));
3014 else
3015 {
3016 gcc_assert (TYPE_NEEDS_CONSTRUCTING (type));
3017 elt_init = build_aggr_init (to, init, 0, complain);
3018 }
3019
3020 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3021 finish_expr_stmt (elt_init);
3022 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3023
3024 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3025 complain));
3026 if (base2)
3027 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3028 complain));
3029
3030 finish_for_stmt (for_stmt);
3031 }
3032
3033 /* Make sure to cleanup any partially constructed elements. */
3034 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3035 && from_array != 2)
3036 {
3037 tree e;
3038 tree m = cp_build_binary_op (input_location,
3039 MINUS_EXPR, maxindex, iterator,
3040 complain);
3041
3042 /* Flatten multi-dimensional array since build_vec_delete only
3043 expects one-dimensional array. */
3044 if (TREE_CODE (type) == ARRAY_TYPE)
3045 m = cp_build_binary_op (input_location,
3046 MULT_EXPR, m,
3047 array_type_nelts_total (type),
3048 complain);
3049
3050 finish_cleanup_try_block (try_block);
3051 e = build_vec_delete_1 (rval, m,
3052 inner_elt_type, sfk_base_destructor,
3053 /*use_global_delete=*/0);
3054 finish_cleanup (e, try_block);
3055 }
3056
3057 /* The value of the array initialization is the array itself, RVAL
3058 is a pointer to the first element. */
3059 finish_stmt_expr_expr (rval, stmt_expr);
3060
3061 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3062
3063 /* Now make the result have the correct type. */
3064 if (TREE_CODE (atype) == ARRAY_TYPE)
3065 {
3066 atype = build_pointer_type (atype);
3067 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3068 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3069 TREE_NO_WARNING (stmt_expr) = 1;
3070 }
3071
3072 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3073 return stmt_expr;
3074 }
3075
3076 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3077 build_delete. */
3078
3079 static tree
3080 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags)
3081 {
3082 tree name;
3083 tree fn;
3084 switch (dtor_kind)
3085 {
3086 case sfk_complete_destructor:
3087 name = complete_dtor_identifier;
3088 break;
3089
3090 case sfk_base_destructor:
3091 name = base_dtor_identifier;
3092 break;
3093
3094 case sfk_deleting_destructor:
3095 name = deleting_dtor_identifier;
3096 break;
3097
3098 default:
3099 gcc_unreachable ();
3100 }
3101 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3102 return build_new_method_call (exp, fn,
3103 /*args=*/NULL,
3104 /*conversion_path=*/NULL_TREE,
3105 flags,
3106 /*fn_p=*/NULL,
3107 tf_warning_or_error);
3108 }
3109
3110 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3111 ADDR is an expression which yields the store to be destroyed.
3112 AUTO_DELETE is the name of the destructor to call, i.e., either
3113 sfk_complete_destructor, sfk_base_destructor, or
3114 sfk_deleting_destructor.
3115
3116 FLAGS is the logical disjunction of zero or more LOOKUP_
3117 flags. See cp-tree.h for more info. */
3118
3119 tree
3120 build_delete (tree type, tree addr, special_function_kind auto_delete,
3121 int flags, int use_global_delete)
3122 {
3123 tree expr;
3124
3125 if (addr == error_mark_node)
3126 return error_mark_node;
3127
3128 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3129 set to `error_mark_node' before it gets properly cleaned up. */
3130 if (type == error_mark_node)
3131 return error_mark_node;
3132
3133 type = TYPE_MAIN_VARIANT (type);
3134
3135 addr = mark_rvalue_use (addr);
3136
3137 if (TREE_CODE (type) == POINTER_TYPE)
3138 {
3139 bool complete_p = true;
3140
3141 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3142 if (TREE_CODE (type) == ARRAY_TYPE)
3143 goto handle_array;
3144
3145 /* We don't want to warn about delete of void*, only other
3146 incomplete types. Deleting other incomplete types
3147 invokes undefined behavior, but it is not ill-formed, so
3148 compile to something that would even do The Right Thing
3149 (TM) should the type have a trivial dtor and no delete
3150 operator. */
3151 if (!VOID_TYPE_P (type))
3152 {
3153 complete_type (type);
3154 if (!COMPLETE_TYPE_P (type))
3155 {
3156 if (warning (0, "possible problem detected in invocation of "
3157 "delete operator:"))
3158 {
3159 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3160 inform (input_location, "neither the destructor nor the class-specific "
3161 "operator delete will be called, even if they are "
3162 "declared when the class is defined.");
3163 }
3164 complete_p = false;
3165 }
3166 }
3167 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3168 /* Call the builtin operator delete. */
3169 return build_builtin_delete_call (addr);
3170 if (TREE_SIDE_EFFECTS (addr))
3171 addr = save_expr (addr);
3172
3173 /* Throw away const and volatile on target type of addr. */
3174 addr = convert_force (build_pointer_type (type), addr, 0);
3175 }
3176 else if (TREE_CODE (type) == ARRAY_TYPE)
3177 {
3178 handle_array:
3179
3180 if (TYPE_DOMAIN (type) == NULL_TREE)
3181 {
3182 error ("unknown array size in delete");
3183 return error_mark_node;
3184 }
3185 return build_vec_delete (addr, array_type_nelts (type),
3186 auto_delete, use_global_delete);
3187 }
3188 else
3189 {
3190 /* Don't check PROTECT here; leave that decision to the
3191 destructor. If the destructor is accessible, call it,
3192 else report error. */
3193 addr = cp_build_unary_op (ADDR_EXPR, addr, 0, tf_warning_or_error);
3194 if (TREE_SIDE_EFFECTS (addr))
3195 addr = save_expr (addr);
3196
3197 addr = convert_force (build_pointer_type (type), addr, 0);
3198 }
3199
3200 gcc_assert (MAYBE_CLASS_TYPE_P (type));
3201
3202 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3203 {
3204 if (auto_delete != sfk_deleting_destructor)
3205 return void_zero_node;
3206
3207 return build_op_delete_call (DELETE_EXPR, addr,
3208 cxx_sizeof_nowarn (type),
3209 use_global_delete,
3210 /*placement=*/NULL_TREE,
3211 /*alloc_fn=*/NULL_TREE);
3212 }
3213 else
3214 {
3215 tree head = NULL_TREE;
3216 tree do_delete = NULL_TREE;
3217 tree ifexp;
3218
3219 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3220 lazily_declare_fn (sfk_destructor, type);
3221
3222 /* For `::delete x', we must not use the deleting destructor
3223 since then we would not be sure to get the global `operator
3224 delete'. */
3225 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3226 {
3227 /* We will use ADDR multiple times so we must save it. */
3228 addr = save_expr (addr);
3229 head = get_target_expr (build_headof (addr));
3230 /* Delete the object. */
3231 do_delete = build_builtin_delete_call (head);
3232 /* Otherwise, treat this like a complete object destructor
3233 call. */
3234 auto_delete = sfk_complete_destructor;
3235 }
3236 /* If the destructor is non-virtual, there is no deleting
3237 variant. Instead, we must explicitly call the appropriate
3238 `operator delete' here. */
3239 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3240 && auto_delete == sfk_deleting_destructor)
3241 {
3242 /* We will use ADDR multiple times so we must save it. */
3243 addr = save_expr (addr);
3244 /* Build the call. */
3245 do_delete = build_op_delete_call (DELETE_EXPR,
3246 addr,
3247 cxx_sizeof_nowarn (type),
3248 /*global_p=*/false,
3249 /*placement=*/NULL_TREE,
3250 /*alloc_fn=*/NULL_TREE);
3251 /* Call the complete object destructor. */
3252 auto_delete = sfk_complete_destructor;
3253 }
3254 else if (auto_delete == sfk_deleting_destructor
3255 && TYPE_GETS_REG_DELETE (type))
3256 {
3257 /* Make sure we have access to the member op delete, even though
3258 we'll actually be calling it from the destructor. */
3259 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3260 /*global_p=*/false,
3261 /*placement=*/NULL_TREE,
3262 /*alloc_fn=*/NULL_TREE);
3263 }
3264
3265 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
3266 tf_warning_or_error),
3267 auto_delete, flags);
3268 if (do_delete)
3269 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3270
3271 /* We need to calculate this before the dtor changes the vptr. */
3272 if (head)
3273 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3274
3275 if (flags & LOOKUP_DESTRUCTOR)
3276 /* Explicit destructor call; don't check for null pointer. */
3277 ifexp = integer_one_node;
3278 else
3279 /* Handle deleting a null pointer. */
3280 ifexp = fold (cp_build_binary_op (input_location,
3281 NE_EXPR, addr, integer_zero_node,
3282 tf_warning_or_error));
3283
3284 if (ifexp != integer_one_node)
3285 expr = build3 (COND_EXPR, void_type_node,
3286 ifexp, expr, void_zero_node);
3287
3288 return expr;
3289 }
3290 }
3291
3292 /* At the beginning of a destructor, push cleanups that will call the
3293 destructors for our base classes and members.
3294
3295 Called from begin_destructor_body. */
3296
3297 void
3298 push_base_cleanups (void)
3299 {
3300 tree binfo, base_binfo;
3301 int i;
3302 tree member;
3303 tree expr;
3304 VEC(tree,gc) *vbases;
3305
3306 /* Run destructors for all virtual baseclasses. */
3307 if (CLASSTYPE_VBASECLASSES (current_class_type))
3308 {
3309 tree cond = (condition_conversion
3310 (build2 (BIT_AND_EXPR, integer_type_node,
3311 current_in_charge_parm,
3312 integer_two_node)));
3313
3314 /* The CLASSTYPE_VBASECLASSES vector is in initialization
3315 order, which is also the right order for pushing cleanups. */
3316 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3317 VEC_iterate (tree, vbases, i, base_binfo); i++)
3318 {
3319 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3320 {
3321 expr = build_special_member_call (current_class_ref,
3322 base_dtor_identifier,
3323 NULL,
3324 base_binfo,
3325 (LOOKUP_NORMAL
3326 | LOOKUP_NONVIRTUAL),
3327 tf_warning_or_error);
3328 expr = build3 (COND_EXPR, void_type_node, cond,
3329 expr, void_zero_node);
3330 finish_decl_cleanup (NULL_TREE, expr);
3331 }
3332 }
3333 }
3334
3335 /* Take care of the remaining baseclasses. */
3336 for (binfo = TYPE_BINFO (current_class_type), i = 0;
3337 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3338 {
3339 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3340 || BINFO_VIRTUAL_P (base_binfo))
3341 continue;
3342
3343 expr = build_special_member_call (current_class_ref,
3344 base_dtor_identifier,
3345 NULL, base_binfo,
3346 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
3347 tf_warning_or_error);
3348 finish_decl_cleanup (NULL_TREE, expr);
3349 }
3350
3351 for (member = TYPE_FIELDS (current_class_type); member;
3352 member = TREE_CHAIN (member))
3353 {
3354 if (TREE_TYPE (member) == error_mark_node
3355 || TREE_CODE (member) != FIELD_DECL
3356 || DECL_ARTIFICIAL (member))
3357 continue;
3358 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (member)))
3359 {
3360 tree this_member = (build_class_member_access_expr
3361 (current_class_ref, member,
3362 /*access_path=*/NULL_TREE,
3363 /*preserve_reference=*/false,
3364 tf_warning_or_error));
3365 tree this_type = TREE_TYPE (member);
3366 expr = build_delete (this_type, this_member,
3367 sfk_complete_destructor,
3368 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3369 0);
3370 finish_decl_cleanup (NULL_TREE, expr);
3371 }
3372 }
3373 }
3374
3375 /* Build a C++ vector delete expression.
3376 MAXINDEX is the number of elements to be deleted.
3377 ELT_SIZE is the nominal size of each element in the vector.
3378 BASE is the expression that should yield the store to be deleted.
3379 This function expands (or synthesizes) these calls itself.
3380 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3381
3382 This also calls delete for virtual baseclasses of elements of the vector.
3383
3384 Update: MAXINDEX is no longer needed. The size can be extracted from the
3385 start of the vector for pointers, and from the type for arrays. We still
3386 use MAXINDEX for arrays because it happens to already have one of the
3387 values we'd have to extract. (We could use MAXINDEX with pointers to
3388 confirm the size, and trap if the numbers differ; not clear that it'd
3389 be worth bothering.) */
3390
3391 tree
3392 build_vec_delete (tree base, tree maxindex,
3393 special_function_kind auto_delete_vec, int use_global_delete)
3394 {
3395 tree type;
3396 tree rval;
3397 tree base_init = NULL_TREE;
3398
3399 type = TREE_TYPE (base);
3400
3401 if (TREE_CODE (type) == POINTER_TYPE)
3402 {
3403 /* Step back one from start of vector, and read dimension. */
3404 tree cookie_addr;
3405 tree size_ptr_type = build_pointer_type (sizetype);
3406
3407 if (TREE_SIDE_EFFECTS (base))
3408 {
3409 base_init = get_target_expr (base);
3410 base = TARGET_EXPR_SLOT (base_init);
3411 }
3412 type = strip_array_types (TREE_TYPE (type));
3413 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
3414 sizetype, TYPE_SIZE_UNIT (sizetype));
3415 cookie_addr = build2 (POINTER_PLUS_EXPR,
3416 size_ptr_type,
3417 fold_convert (size_ptr_type, base),
3418 cookie_addr);
3419 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, tf_warning_or_error);
3420 }
3421 else if (TREE_CODE (type) == ARRAY_TYPE)
3422 {
3423 /* Get the total number of things in the array, maxindex is a
3424 bad name. */
3425 maxindex = array_type_nelts_total (type);
3426 type = strip_array_types (type);
3427 base = cp_build_unary_op (ADDR_EXPR, base, 1, tf_warning_or_error);
3428 if (TREE_SIDE_EFFECTS (base))
3429 {
3430 base_init = get_target_expr (base);
3431 base = TARGET_EXPR_SLOT (base_init);
3432 }
3433 }
3434 else
3435 {
3436 if (base != error_mark_node)
3437 error ("type to vector delete is neither pointer or array type");
3438 return error_mark_node;
3439 }
3440
3441 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3442 use_global_delete);
3443 if (base_init)
3444 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3445
3446 return rval;
3447 }