]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/init.c
* output.h (__gcc_host_wide_int__): Move to hwint.h.
[thirdparty/gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* High-level class interface. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "tree.h"
30 #include "cp-tree.h"
31 #include "flags.h"
32 #include "target.h"
33
34 static bool begin_init_stmts (tree *, tree *);
35 static tree finish_init_stmts (bool, tree, tree);
36 static void construct_virtual_base (tree, tree);
37 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
38 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
39 static void perform_member_init (tree, tree);
40 static tree build_builtin_delete_call (tree);
41 static int member_init_ok_or_else (tree, tree, tree);
42 static void expand_virtual_init (tree, tree);
43 static tree sort_mem_initializers (tree, tree);
44 static tree initializing_context (tree);
45 static void expand_cleanup_for_base (tree, tree);
46 static tree dfs_initialize_vtbl_ptrs (tree, void *);
47 static tree build_field_list (tree, tree, int *);
48 static tree build_vtbl_address (tree);
49 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
50
51 /* We are about to generate some complex initialization code.
52 Conceptually, it is all a single expression. However, we may want
53 to include conditionals, loops, and other such statement-level
54 constructs. Therefore, we build the initialization code inside a
55 statement-expression. This function starts such an expression.
56 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
57 pass them back to finish_init_stmts when the expression is
58 complete. */
59
60 static bool
61 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
62 {
63 bool is_global = !building_stmt_list_p ();
64
65 *stmt_expr_p = begin_stmt_expr ();
66 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
67
68 return is_global;
69 }
70
71 /* Finish out the statement-expression begun by the previous call to
72 begin_init_stmts. Returns the statement-expression itself. */
73
74 static tree
75 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
76 {
77 finish_compound_stmt (compound_stmt);
78
79 stmt_expr = finish_stmt_expr (stmt_expr, true);
80
81 gcc_assert (!building_stmt_list_p () == is_global);
82
83 return stmt_expr;
84 }
85
86 /* Constructors */
87
88 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
89 which we want to initialize the vtable pointer for, DATA is
90 TREE_LIST whose TREE_VALUE is the this ptr expression. */
91
92 static tree
93 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
94 {
95 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
96 return dfs_skip_bases;
97
98 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
99 {
100 tree base_ptr = TREE_VALUE ((tree) data);
101
102 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
103 tf_warning_or_error);
104
105 expand_virtual_init (binfo, base_ptr);
106 }
107
108 return NULL_TREE;
109 }
110
111 /* Initialize all the vtable pointers in the object pointed to by
112 ADDR. */
113
114 void
115 initialize_vtbl_ptrs (tree addr)
116 {
117 tree list;
118 tree type;
119
120 type = TREE_TYPE (TREE_TYPE (addr));
121 list = build_tree_list (type, addr);
122
123 /* Walk through the hierarchy, initializing the vptr in each base
124 class. We do these in pre-order because we can't find the virtual
125 bases for a class until we've initialized the vtbl for that
126 class. */
127 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
128 }
129
130 /* Return an expression for the zero-initialization of an object with
131 type T. This expression will either be a constant (in the case
132 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
133 aggregate), or NULL (in the case that T does not require
134 initialization). In either case, the value can be used as
135 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
136 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
137 is the number of elements in the array. If STATIC_STORAGE_P is
138 TRUE, initializers are only generated for entities for which
139 zero-initialization does not simply mean filling the storage with
140 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
141 subfields with bit positions at or above that bit size shouldn't
142 be added. Note that this only works when the result is assigned
143 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
144 expand_assignment will end up clearing the full size of TYPE. */
145
146 static tree
147 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
148 tree field_size)
149 {
150 tree init = NULL_TREE;
151
152 /* [dcl.init]
153
154 To zero-initialize an object of type T means:
155
156 -- if T is a scalar type, the storage is set to the value of zero
157 converted to T.
158
159 -- if T is a non-union class type, the storage for each nonstatic
160 data member and each base-class subobject is zero-initialized.
161
162 -- if T is a union type, the storage for its first data member is
163 zero-initialized.
164
165 -- if T is an array type, the storage for each element is
166 zero-initialized.
167
168 -- if T is a reference type, no initialization is performed. */
169
170 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
171
172 if (type == error_mark_node)
173 ;
174 else if (static_storage_p && zero_init_p (type))
175 /* In order to save space, we do not explicitly build initializers
176 for items that do not need them. GCC's semantics are that
177 items with static storage duration that are not otherwise
178 initialized are initialized to zero. */
179 ;
180 else if (TYPE_PTR_OR_PTRMEM_P (type))
181 init = convert (type, nullptr_node);
182 else if (SCALAR_TYPE_P (type))
183 init = convert (type, integer_zero_node);
184 else if (CLASS_TYPE_P (type))
185 {
186 tree field;
187 VEC(constructor_elt,gc) *v = NULL;
188
189 /* Iterate over the fields, building initializations. */
190 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
191 {
192 if (TREE_CODE (field) != FIELD_DECL)
193 continue;
194
195 /* Don't add virtual bases for base classes if they are beyond
196 the size of the current field, that means it is present
197 somewhere else in the object. */
198 if (field_size)
199 {
200 tree bitpos = bit_position (field);
201 if (TREE_CODE (bitpos) == INTEGER_CST
202 && !tree_int_cst_lt (bitpos, field_size))
203 continue;
204 }
205
206 /* Note that for class types there will be FIELD_DECLs
207 corresponding to base classes as well. Thus, iterating
208 over TYPE_FIELDs will result in correct initialization of
209 all of the subobjects. */
210 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
211 {
212 tree new_field_size
213 = (DECL_FIELD_IS_BASE (field)
214 && DECL_SIZE (field)
215 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
216 ? DECL_SIZE (field) : NULL_TREE;
217 tree value = build_zero_init_1 (TREE_TYPE (field),
218 /*nelts=*/NULL_TREE,
219 static_storage_p,
220 new_field_size);
221 if (value)
222 CONSTRUCTOR_APPEND_ELT(v, field, value);
223 }
224
225 /* For unions, only the first field is initialized. */
226 if (TREE_CODE (type) == UNION_TYPE)
227 break;
228 }
229
230 /* Build a constructor to contain the initializations. */
231 init = build_constructor (type, v);
232 }
233 else if (TREE_CODE (type) == ARRAY_TYPE)
234 {
235 tree max_index;
236 VEC(constructor_elt,gc) *v = NULL;
237
238 /* Iterate over the array elements, building initializations. */
239 if (nelts)
240 max_index = fold_build2_loc (input_location,
241 MINUS_EXPR, TREE_TYPE (nelts),
242 nelts, integer_one_node);
243 else
244 max_index = array_type_nelts (type);
245
246 /* If we have an error_mark here, we should just return error mark
247 as we don't know the size of the array yet. */
248 if (max_index == error_mark_node)
249 return error_mark_node;
250 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
251
252 /* A zero-sized array, which is accepted as an extension, will
253 have an upper bound of -1. */
254 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
255 {
256 constructor_elt *ce;
257
258 v = VEC_alloc (constructor_elt, gc, 1);
259 ce = VEC_quick_push (constructor_elt, v, NULL);
260
261 /* If this is a one element array, we just use a regular init. */
262 if (tree_int_cst_equal (size_zero_node, max_index))
263 ce->index = size_zero_node;
264 else
265 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
266 max_index);
267
268 ce->value = build_zero_init_1 (TREE_TYPE (type),
269 /*nelts=*/NULL_TREE,
270 static_storage_p, NULL_TREE);
271 }
272
273 /* Build a constructor to contain the initializations. */
274 init = build_constructor (type, v);
275 }
276 else if (TREE_CODE (type) == VECTOR_TYPE)
277 init = build_zero_cst (type);
278 else
279 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
280
281 /* In all cases, the initializer is a constant. */
282 if (init)
283 TREE_CONSTANT (init) = 1;
284
285 return init;
286 }
287
288 /* Return an expression for the zero-initialization of an object with
289 type T. This expression will either be a constant (in the case
290 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
291 aggregate), or NULL (in the case that T does not require
292 initialization). In either case, the value can be used as
293 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
294 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
295 is the number of elements in the array. If STATIC_STORAGE_P is
296 TRUE, initializers are only generated for entities for which
297 zero-initialization does not simply mean filling the storage with
298 zero bytes. */
299
300 tree
301 build_zero_init (tree type, tree nelts, bool static_storage_p)
302 {
303 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
304 }
305
306 /* Return a suitable initializer for value-initializing an object of type
307 TYPE, as described in [dcl.init]. */
308
309 tree
310 build_value_init (tree type, tsubst_flags_t complain)
311 {
312 /* [dcl.init]
313
314 To value-initialize an object of type T means:
315
316 - if T is a class type (clause 9) with a user-provided constructor
317 (12.1), then the default constructor for T is called (and the
318 initialization is ill-formed if T has no accessible default
319 constructor);
320
321 - if T is a non-union class type without a user-provided constructor,
322 then every non-static data member and base-class component of T is
323 value-initialized;92)
324
325 - if T is an array type, then each element is value-initialized;
326
327 - otherwise, the object is zero-initialized.
328
329 A program that calls for default-initialization or
330 value-initialization of an entity of reference type is ill-formed.
331
332 92) Value-initialization for such a class object may be implemented by
333 zero-initializing the object and then calling the default
334 constructor. */
335
336 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
337 gcc_assert (!processing_template_decl
338 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
339
340 if (CLASS_TYPE_P (type))
341 {
342 /* Instead of the above, only consider the user-providedness of the
343 default constructor itself so value-initializing a class with an
344 explicitly defaulted default constructor and another user-provided
345 constructor works properly (c++std-core-19883). */
346 if (type_has_user_provided_default_constructor (type)
347 || (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type)
348 && type_has_user_provided_constructor (type)))
349 return build_aggr_init_expr
350 (type,
351 build_special_member_call (NULL_TREE, complete_ctor_identifier,
352 NULL, type, LOOKUP_NORMAL,
353 complain),
354 complain);
355 else if (TYPE_HAS_COMPLEX_DFLT (type))
356 {
357 /* This is a class that needs constructing, but doesn't have
358 a user-provided constructor. So we need to zero-initialize
359 the object and then call the implicitly defined ctor.
360 This will be handled in simplify_aggr_init_expr. */
361 tree ctor = build_special_member_call
362 (NULL_TREE, complete_ctor_identifier,
363 NULL, type, LOOKUP_NORMAL, complain);
364 ctor = build_aggr_init_expr (type, ctor, complain);
365 if (ctor != error_mark_node)
366 AGGR_INIT_ZERO_FIRST (ctor) = 1;
367 return ctor;
368 }
369 }
370 return build_value_init_noctor (type, complain);
371 }
372
373 /* Like build_value_init, but don't call the constructor for TYPE. Used
374 for base initializers. */
375
376 tree
377 build_value_init_noctor (tree type, tsubst_flags_t complain)
378 {
379 if (!COMPLETE_TYPE_P (type))
380 {
381 if (complain & tf_error)
382 error ("value-initialization of incomplete type %qT", type);
383 return error_mark_node;
384 }
385 /* FIXME the class and array cases should just use digest_init once it is
386 SFINAE-enabled. */
387 if (CLASS_TYPE_P (type))
388 {
389 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type));
390
391 if (TREE_CODE (type) != UNION_TYPE)
392 {
393 tree field;
394 VEC(constructor_elt,gc) *v = NULL;
395
396 /* Iterate over the fields, building initializations. */
397 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
398 {
399 tree ftype, value;
400
401 if (TREE_CODE (field) != FIELD_DECL)
402 continue;
403
404 ftype = TREE_TYPE (field);
405
406 /* We could skip vfields and fields of types with
407 user-defined constructors, but I think that won't improve
408 performance at all; it should be simpler in general just
409 to zero out the entire object than try to only zero the
410 bits that actually need it. */
411
412 /* Note that for class types there will be FIELD_DECLs
413 corresponding to base classes as well. Thus, iterating
414 over TYPE_FIELDs will result in correct initialization of
415 all of the subobjects. */
416 value = build_value_init (ftype, complain);
417
418 if (value == error_mark_node)
419 return error_mark_node;
420
421 if (value)
422 CONSTRUCTOR_APPEND_ELT(v, field, value);
423 }
424
425 /* Build a constructor to contain the zero- initializations. */
426 return build_constructor (type, v);
427 }
428 }
429 else if (TREE_CODE (type) == ARRAY_TYPE)
430 {
431 VEC(constructor_elt,gc) *v = NULL;
432
433 /* Iterate over the array elements, building initializations. */
434 tree max_index = array_type_nelts (type);
435
436 /* If we have an error_mark here, we should just return error mark
437 as we don't know the size of the array yet. */
438 if (max_index == error_mark_node)
439 {
440 if (complain & tf_error)
441 error ("cannot value-initialize array of unknown bound %qT",
442 type);
443 return error_mark_node;
444 }
445 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
446
447 /* A zero-sized array, which is accepted as an extension, will
448 have an upper bound of -1. */
449 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
450 {
451 constructor_elt *ce;
452
453 v = VEC_alloc (constructor_elt, gc, 1);
454 ce = VEC_quick_push (constructor_elt, v, NULL);
455
456 /* If this is a one element array, we just use a regular init. */
457 if (tree_int_cst_equal (size_zero_node, max_index))
458 ce->index = size_zero_node;
459 else
460 ce->index = build2 (RANGE_EXPR, sizetype, size_zero_node,
461 max_index);
462
463 ce->value = build_value_init (TREE_TYPE (type), complain);
464
465 if (ce->value == error_mark_node)
466 return error_mark_node;
467
468 /* We shouldn't have gotten here for anything that would need
469 non-trivial initialization, and gimplify_init_ctor_preeval
470 would need to be fixed to allow it. */
471 gcc_assert (TREE_CODE (ce->value) != TARGET_EXPR
472 && TREE_CODE (ce->value) != AGGR_INIT_EXPR);
473 }
474
475 /* Build a constructor to contain the initializations. */
476 return build_constructor (type, v);
477 }
478 else if (TREE_CODE (type) == FUNCTION_TYPE)
479 {
480 if (complain & tf_error)
481 error ("value-initialization of function type %qT", type);
482 return error_mark_node;
483 }
484 else if (TREE_CODE (type) == REFERENCE_TYPE)
485 {
486 if (complain & tf_error)
487 error ("value-initialization of reference type %qT", type);
488 return error_mark_node;
489 }
490
491 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
492 }
493
494 /* Initialize current class with INIT, a TREE_LIST of
495 arguments for a target constructor. If TREE_LIST is void_type_node,
496 an empty initializer list was given. */
497
498 static void
499 perform_target_ctor (tree init)
500 {
501 tree decl = current_class_ref;
502 tree type = current_class_type;
503
504 finish_expr_stmt (build_aggr_init (decl, init, LOOKUP_NORMAL,
505 tf_warning_or_error));
506 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
507 {
508 tree expr = build_delete (type, decl, sfk_complete_destructor,
509 LOOKUP_NORMAL
510 |LOOKUP_NONVIRTUAL
511 |LOOKUP_DESTRUCTOR,
512 0, tf_warning_or_error);
513 if (expr != error_mark_node)
514 finish_eh_cleanup (expr);
515 }
516 }
517
518 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
519 arguments. If TREE_LIST is void_type_node, an empty initializer
520 list was given; if NULL_TREE no initializer was given. */
521
522 static void
523 perform_member_init (tree member, tree init)
524 {
525 tree decl;
526 tree type = TREE_TYPE (member);
527
528 /* Use the non-static data member initializer if there was no
529 mem-initializer for this field. */
530 if (init == NULL_TREE)
531 {
532 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
533 /* Do deferred instantiation of the NSDMI. */
534 init = (tsubst_copy_and_build
535 (DECL_INITIAL (DECL_TI_TEMPLATE (member)),
536 DECL_TI_ARGS (member),
537 tf_warning_or_error, member, /*function_p=*/false,
538 /*integral_constant_expression_p=*/false));
539 else
540 {
541 init = DECL_INITIAL (member);
542 if (init && TREE_CODE (init) == DEFAULT_ARG)
543 {
544 error ("constructor required before non-static data member "
545 "for %qD has been parsed", member);
546 init = NULL_TREE;
547 }
548 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
549 so the aggregate init code below will see a CONSTRUCTOR. */
550 if (init && TREE_CODE (init) == TARGET_EXPR
551 && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init))))
552 init = TARGET_EXPR_INITIAL (init);
553 init = break_out_target_exprs (init);
554 }
555 }
556
557 if (init == error_mark_node)
558 return;
559
560 /* Effective C++ rule 12 requires that all data members be
561 initialized. */
562 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
563 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
564 "%qD should be initialized in the member initialization list",
565 member);
566
567 /* Get an lvalue for the data member. */
568 decl = build_class_member_access_expr (current_class_ref, member,
569 /*access_path=*/NULL_TREE,
570 /*preserve_reference=*/true,
571 tf_warning_or_error);
572 if (decl == error_mark_node)
573 return;
574
575 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
576 && TREE_CHAIN (init) == NULL_TREE)
577 {
578 tree val = TREE_VALUE (init);
579 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
580 && TREE_OPERAND (val, 0) == current_class_ref)
581 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
582 OPT_Wuninitialized, "%qD is initialized with itself",
583 member);
584 }
585
586 if (init == void_type_node)
587 {
588 /* mem() means value-initialization. */
589 if (TREE_CODE (type) == ARRAY_TYPE)
590 {
591 init = build_vec_init_expr (type, init, tf_warning_or_error);
592 init = build2 (INIT_EXPR, type, decl, init);
593 finish_expr_stmt (init);
594 }
595 else
596 {
597 tree value = build_value_init (type, tf_warning_or_error);
598 if (value == error_mark_node)
599 return;
600 init = build2 (INIT_EXPR, type, decl, value);
601 finish_expr_stmt (init);
602 }
603 }
604 /* Deal with this here, as we will get confused if we try to call the
605 assignment op for an anonymous union. This can happen in a
606 synthesized copy constructor. */
607 else if (ANON_AGGR_TYPE_P (type))
608 {
609 if (init)
610 {
611 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
612 finish_expr_stmt (init);
613 }
614 }
615 else if (init
616 && (TREE_CODE (type) == REFERENCE_TYPE
617 /* Pre-digested NSDMI. */
618 || (((TREE_CODE (init) == CONSTRUCTOR
619 && TREE_TYPE (init) == type)
620 /* { } mem-initializer. */
621 || (TREE_CODE (init) == TREE_LIST
622 && TREE_CODE (TREE_VALUE (init)) == CONSTRUCTOR
623 && CONSTRUCTOR_IS_DIRECT_INIT (TREE_VALUE (init))))
624 && (CP_AGGREGATE_TYPE_P (type)
625 || is_std_init_list (type)))))
626 {
627 /* With references and list-initialization, we need to deal with
628 extending temporary lifetimes. 12.2p5: "A temporary bound to a
629 reference member in a constructor’s ctor-initializer (12.6.2)
630 persists until the constructor exits." */
631 unsigned i; tree t;
632 VEC(tree,gc) *cleanups = make_tree_vector ();
633 if (TREE_CODE (init) == TREE_LIST)
634 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
635 tf_warning_or_error);
636 if (TREE_TYPE (init) != type)
637 init = digest_init (type, init, tf_warning_or_error);
638 if (init == error_mark_node)
639 return;
640 /* A FIELD_DECL doesn't really have a suitable lifetime, but
641 make_temporary_var_for_ref_to_temp will treat it as automatic and
642 set_up_extended_ref_temp wants to use the decl in a warning. */
643 init = extend_ref_init_temps (member, init, &cleanups);
644 if (TREE_CODE (type) == ARRAY_TYPE
645 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
646 init = build_vec_init_expr (type, init, tf_warning_or_error);
647 init = build2 (INIT_EXPR, type, decl, init);
648 finish_expr_stmt (init);
649 FOR_EACH_VEC_ELT (tree, cleanups, i, t)
650 push_cleanup (decl, t, false);
651 release_tree_vector (cleanups);
652 }
653 else if (type_build_ctor_call (type)
654 || (init && CLASS_TYPE_P (strip_array_types (type))))
655 {
656 if (TREE_CODE (type) == ARRAY_TYPE)
657 {
658 if (init)
659 {
660 if (TREE_CHAIN (init))
661 init = error_mark_node;
662 else
663 init = TREE_VALUE (init);
664 if (BRACE_ENCLOSED_INITIALIZER_P (init))
665 init = digest_init (type, init, tf_warning_or_error);
666 }
667 if (init == NULL_TREE
668 || same_type_ignoring_top_level_qualifiers_p (type,
669 TREE_TYPE (init)))
670 {
671 init = build_vec_init_expr (type, init, tf_warning_or_error);
672 init = build2 (INIT_EXPR, type, decl, init);
673 finish_expr_stmt (init);
674 }
675 else
676 error ("invalid initializer for array member %q#D", member);
677 }
678 else
679 {
680 int flags = LOOKUP_NORMAL;
681 if (DECL_DEFAULTED_FN (current_function_decl))
682 flags |= LOOKUP_DEFAULTED;
683 if (CP_TYPE_CONST_P (type)
684 && init == NULL_TREE
685 && default_init_uninitialized_part (type))
686 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
687 vtable; still give this diagnostic. */
688 permerror (DECL_SOURCE_LOCATION (current_function_decl),
689 "uninitialized member %qD with %<const%> type %qT",
690 member, type);
691 finish_expr_stmt (build_aggr_init (decl, init, flags,
692 tf_warning_or_error));
693 }
694 }
695 else
696 {
697 if (init == NULL_TREE)
698 {
699 tree core_type;
700 /* member traversal: note it leaves init NULL */
701 if (TREE_CODE (type) == REFERENCE_TYPE)
702 permerror (DECL_SOURCE_LOCATION (current_function_decl),
703 "uninitialized reference member %qD",
704 member);
705 else if (CP_TYPE_CONST_P (type))
706 permerror (DECL_SOURCE_LOCATION (current_function_decl),
707 "uninitialized member %qD with %<const%> type %qT",
708 member, type);
709
710 core_type = strip_array_types (type);
711
712 if (CLASS_TYPE_P (core_type)
713 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
714 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
715 diagnose_uninitialized_cst_or_ref_member (core_type,
716 /*using_new=*/false,
717 /*complain=*/true);
718 }
719 else if (TREE_CODE (init) == TREE_LIST)
720 /* There was an explicit member initialization. Do some work
721 in that case. */
722 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
723 tf_warning_or_error);
724
725 if (init)
726 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
727 tf_warning_or_error));
728 }
729
730 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
731 {
732 tree expr;
733
734 expr = build_class_member_access_expr (current_class_ref, member,
735 /*access_path=*/NULL_TREE,
736 /*preserve_reference=*/false,
737 tf_warning_or_error);
738 expr = build_delete (type, expr, sfk_complete_destructor,
739 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
740 tf_warning_or_error);
741
742 if (expr != error_mark_node)
743 finish_eh_cleanup (expr);
744 }
745 }
746
747 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
748 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
749
750 static tree
751 build_field_list (tree t, tree list, int *uses_unions_p)
752 {
753 tree fields;
754
755 /* Note whether or not T is a union. */
756 if (TREE_CODE (t) == UNION_TYPE)
757 *uses_unions_p = 1;
758
759 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
760 {
761 tree fieldtype;
762
763 /* Skip CONST_DECLs for enumeration constants and so forth. */
764 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
765 continue;
766
767 fieldtype = TREE_TYPE (fields);
768 /* Keep track of whether or not any fields are unions. */
769 if (TREE_CODE (fieldtype) == UNION_TYPE)
770 *uses_unions_p = 1;
771
772 /* For an anonymous struct or union, we must recursively
773 consider the fields of the anonymous type. They can be
774 directly initialized from the constructor. */
775 if (ANON_AGGR_TYPE_P (fieldtype))
776 {
777 /* Add this field itself. Synthesized copy constructors
778 initialize the entire aggregate. */
779 list = tree_cons (fields, NULL_TREE, list);
780 /* And now add the fields in the anonymous aggregate. */
781 list = build_field_list (fieldtype, list, uses_unions_p);
782 }
783 /* Add this field. */
784 else if (DECL_NAME (fields))
785 list = tree_cons (fields, NULL_TREE, list);
786 }
787
788 return list;
789 }
790
791 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
792 a FIELD_DECL or BINFO in T that needs initialization. The
793 TREE_VALUE gives the initializer, or list of initializer arguments.
794
795 Return a TREE_LIST containing all of the initializations required
796 for T, in the order in which they should be performed. The output
797 list has the same format as the input. */
798
799 static tree
800 sort_mem_initializers (tree t, tree mem_inits)
801 {
802 tree init;
803 tree base, binfo, base_binfo;
804 tree sorted_inits;
805 tree next_subobject;
806 VEC(tree,gc) *vbases;
807 int i;
808 int uses_unions_p = 0;
809
810 /* Build up a list of initializations. The TREE_PURPOSE of entry
811 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
812 TREE_VALUE will be the constructor arguments, or NULL if no
813 explicit initialization was provided. */
814 sorted_inits = NULL_TREE;
815
816 /* Process the virtual bases. */
817 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
818 VEC_iterate (tree, vbases, i, base); i++)
819 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
820
821 /* Process the direct bases. */
822 for (binfo = TYPE_BINFO (t), i = 0;
823 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
824 if (!BINFO_VIRTUAL_P (base_binfo))
825 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
826
827 /* Process the non-static data members. */
828 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
829 /* Reverse the entire list of initializations, so that they are in
830 the order that they will actually be performed. */
831 sorted_inits = nreverse (sorted_inits);
832
833 /* If the user presented the initializers in an order different from
834 that in which they will actually occur, we issue a warning. Keep
835 track of the next subobject which can be explicitly initialized
836 without issuing a warning. */
837 next_subobject = sorted_inits;
838
839 /* Go through the explicit initializers, filling in TREE_PURPOSE in
840 the SORTED_INITS. */
841 for (init = mem_inits; init; init = TREE_CHAIN (init))
842 {
843 tree subobject;
844 tree subobject_init;
845
846 subobject = TREE_PURPOSE (init);
847
848 /* If the explicit initializers are in sorted order, then
849 SUBOBJECT will be NEXT_SUBOBJECT, or something following
850 it. */
851 for (subobject_init = next_subobject;
852 subobject_init;
853 subobject_init = TREE_CHAIN (subobject_init))
854 if (TREE_PURPOSE (subobject_init) == subobject)
855 break;
856
857 /* Issue a warning if the explicit initializer order does not
858 match that which will actually occur.
859 ??? Are all these on the correct lines? */
860 if (warn_reorder && !subobject_init)
861 {
862 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
863 warning (OPT_Wreorder, "%q+D will be initialized after",
864 TREE_PURPOSE (next_subobject));
865 else
866 warning (OPT_Wreorder, "base %qT will be initialized after",
867 TREE_PURPOSE (next_subobject));
868 if (TREE_CODE (subobject) == FIELD_DECL)
869 warning (OPT_Wreorder, " %q+#D", subobject);
870 else
871 warning (OPT_Wreorder, " base %qT", subobject);
872 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
873 OPT_Wreorder, " when initialized here");
874 }
875
876 /* Look again, from the beginning of the list. */
877 if (!subobject_init)
878 {
879 subobject_init = sorted_inits;
880 while (TREE_PURPOSE (subobject_init) != subobject)
881 subobject_init = TREE_CHAIN (subobject_init);
882 }
883
884 /* It is invalid to initialize the same subobject more than
885 once. */
886 if (TREE_VALUE (subobject_init))
887 {
888 if (TREE_CODE (subobject) == FIELD_DECL)
889 error_at (DECL_SOURCE_LOCATION (current_function_decl),
890 "multiple initializations given for %qD",
891 subobject);
892 else
893 error_at (DECL_SOURCE_LOCATION (current_function_decl),
894 "multiple initializations given for base %qT",
895 subobject);
896 }
897
898 /* Record the initialization. */
899 TREE_VALUE (subobject_init) = TREE_VALUE (init);
900 next_subobject = subobject_init;
901 }
902
903 /* [class.base.init]
904
905 If a ctor-initializer specifies more than one mem-initializer for
906 multiple members of the same union (including members of
907 anonymous unions), the ctor-initializer is ill-formed.
908
909 Here we also splice out uninitialized union members. */
910 if (uses_unions_p)
911 {
912 tree last_field = NULL_TREE;
913 tree *p;
914 for (p = &sorted_inits; *p; )
915 {
916 tree field;
917 tree ctx;
918 int done;
919
920 init = *p;
921
922 field = TREE_PURPOSE (init);
923
924 /* Skip base classes. */
925 if (TREE_CODE (field) != FIELD_DECL)
926 goto next;
927
928 /* If this is an anonymous union with no explicit initializer,
929 splice it out. */
930 if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field)))
931 goto splice;
932
933 /* See if this field is a member of a union, or a member of a
934 structure contained in a union, etc. */
935 for (ctx = DECL_CONTEXT (field);
936 !same_type_p (ctx, t);
937 ctx = TYPE_CONTEXT (ctx))
938 if (TREE_CODE (ctx) == UNION_TYPE)
939 break;
940 /* If this field is not a member of a union, skip it. */
941 if (TREE_CODE (ctx) != UNION_TYPE)
942 goto next;
943
944 /* If this union member has no explicit initializer, splice
945 it out. */
946 if (!TREE_VALUE (init))
947 goto splice;
948
949 /* It's only an error if we have two initializers for the same
950 union type. */
951 if (!last_field)
952 {
953 last_field = field;
954 goto next;
955 }
956
957 /* See if LAST_FIELD and the field initialized by INIT are
958 members of the same union. If so, there's a problem,
959 unless they're actually members of the same structure
960 which is itself a member of a union. For example, given:
961
962 union { struct { int i; int j; }; };
963
964 initializing both `i' and `j' makes sense. */
965 ctx = DECL_CONTEXT (field);
966 done = 0;
967 do
968 {
969 tree last_ctx;
970
971 last_ctx = DECL_CONTEXT (last_field);
972 while (1)
973 {
974 if (same_type_p (last_ctx, ctx))
975 {
976 if (TREE_CODE (ctx) == UNION_TYPE)
977 error_at (DECL_SOURCE_LOCATION (current_function_decl),
978 "initializations for multiple members of %qT",
979 last_ctx);
980 done = 1;
981 break;
982 }
983
984 if (same_type_p (last_ctx, t))
985 break;
986
987 last_ctx = TYPE_CONTEXT (last_ctx);
988 }
989
990 /* If we've reached the outermost class, then we're
991 done. */
992 if (same_type_p (ctx, t))
993 break;
994
995 ctx = TYPE_CONTEXT (ctx);
996 }
997 while (!done);
998
999 last_field = field;
1000
1001 next:
1002 p = &TREE_CHAIN (*p);
1003 continue;
1004 splice:
1005 *p = TREE_CHAIN (*p);
1006 continue;
1007 }
1008 }
1009
1010 return sorted_inits;
1011 }
1012
1013 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1014 is a TREE_LIST giving the explicit mem-initializer-list for the
1015 constructor. The TREE_PURPOSE of each entry is a subobject (a
1016 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1017 is a TREE_LIST giving the arguments to the constructor or
1018 void_type_node for an empty list of arguments. */
1019
1020 void
1021 emit_mem_initializers (tree mem_inits)
1022 {
1023 int flags = LOOKUP_NORMAL;
1024
1025 /* We will already have issued an error message about the fact that
1026 the type is incomplete. */
1027 if (!COMPLETE_TYPE_P (current_class_type))
1028 return;
1029
1030 if (mem_inits
1031 && TYPE_P (TREE_PURPOSE (mem_inits))
1032 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1033 {
1034 /* Delegating constructor. */
1035 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1036 perform_target_ctor (TREE_VALUE (mem_inits));
1037 return;
1038 }
1039
1040 if (DECL_DEFAULTED_FN (current_function_decl))
1041 flags |= LOOKUP_DEFAULTED;
1042
1043 /* Sort the mem-initializers into the order in which the
1044 initializations should be performed. */
1045 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1046
1047 in_base_initializer = 1;
1048
1049 /* Initialize base classes. */
1050 while (mem_inits
1051 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL)
1052 {
1053 tree subobject = TREE_PURPOSE (mem_inits);
1054 tree arguments = TREE_VALUE (mem_inits);
1055
1056 if (arguments == NULL_TREE)
1057 {
1058 /* If these initializations are taking place in a copy constructor,
1059 the base class should probably be explicitly initialized if there
1060 is a user-defined constructor in the base class (other than the
1061 default constructor, which will be called anyway). */
1062 if (extra_warnings
1063 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1064 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1065 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1066 OPT_Wextra, "base class %q#T should be explicitly "
1067 "initialized in the copy constructor",
1068 BINFO_TYPE (subobject));
1069 }
1070
1071 /* Initialize the base. */
1072 if (BINFO_VIRTUAL_P (subobject))
1073 construct_virtual_base (subobject, arguments);
1074 else
1075 {
1076 tree base_addr;
1077
1078 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1079 subobject, 1, tf_warning_or_error);
1080 expand_aggr_init_1 (subobject, NULL_TREE,
1081 cp_build_indirect_ref (base_addr, RO_NULL,
1082 tf_warning_or_error),
1083 arguments,
1084 flags,
1085 tf_warning_or_error);
1086 expand_cleanup_for_base (subobject, NULL_TREE);
1087 }
1088
1089 mem_inits = TREE_CHAIN (mem_inits);
1090 }
1091 in_base_initializer = 0;
1092
1093 /* Initialize the vptrs. */
1094 initialize_vtbl_ptrs (current_class_ptr);
1095
1096 /* Initialize the data members. */
1097 while (mem_inits)
1098 {
1099 perform_member_init (TREE_PURPOSE (mem_inits),
1100 TREE_VALUE (mem_inits));
1101 mem_inits = TREE_CHAIN (mem_inits);
1102 }
1103 }
1104
1105 /* Returns the address of the vtable (i.e., the value that should be
1106 assigned to the vptr) for BINFO. */
1107
1108 static tree
1109 build_vtbl_address (tree binfo)
1110 {
1111 tree binfo_for = binfo;
1112 tree vtbl;
1113
1114 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1115 /* If this is a virtual primary base, then the vtable we want to store
1116 is that for the base this is being used as the primary base of. We
1117 can't simply skip the initialization, because we may be expanding the
1118 inits of a subobject constructor where the virtual base layout
1119 can be different. */
1120 while (BINFO_PRIMARY_P (binfo_for))
1121 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1122
1123 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1124 used. */
1125 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1126 TREE_USED (vtbl) = 1;
1127
1128 /* Now compute the address to use when initializing the vptr. */
1129 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1130 if (TREE_CODE (vtbl) == VAR_DECL)
1131 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1132
1133 return vtbl;
1134 }
1135
1136 /* This code sets up the virtual function tables appropriate for
1137 the pointer DECL. It is a one-ply initialization.
1138
1139 BINFO is the exact type that DECL is supposed to be. In
1140 multiple inheritance, this might mean "C's A" if C : A, B. */
1141
1142 static void
1143 expand_virtual_init (tree binfo, tree decl)
1144 {
1145 tree vtbl, vtbl_ptr;
1146 tree vtt_index;
1147
1148 /* Compute the initializer for vptr. */
1149 vtbl = build_vtbl_address (binfo);
1150
1151 /* We may get this vptr from a VTT, if this is a subobject
1152 constructor or subobject destructor. */
1153 vtt_index = BINFO_VPTR_INDEX (binfo);
1154 if (vtt_index)
1155 {
1156 tree vtbl2;
1157 tree vtt_parm;
1158
1159 /* Compute the value to use, when there's a VTT. */
1160 vtt_parm = current_vtt_parm;
1161 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1162 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1163 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1164
1165 /* The actual initializer is the VTT value only in the subobject
1166 constructor. In maybe_clone_body we'll substitute NULL for
1167 the vtt_parm in the case of the non-subobject constructor. */
1168 vtbl = build3 (COND_EXPR,
1169 TREE_TYPE (vtbl),
1170 build2 (EQ_EXPR, boolean_type_node,
1171 current_in_charge_parm, integer_zero_node),
1172 vtbl2,
1173 vtbl);
1174 }
1175
1176 /* Compute the location of the vtpr. */
1177 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1178 tf_warning_or_error),
1179 TREE_TYPE (binfo));
1180 gcc_assert (vtbl_ptr != error_mark_node);
1181
1182 /* Assign the vtable to the vptr. */
1183 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0);
1184 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
1185 tf_warning_or_error));
1186 }
1187
1188 /* If an exception is thrown in a constructor, those base classes already
1189 constructed must be destroyed. This function creates the cleanup
1190 for BINFO, which has just been constructed. If FLAG is non-NULL,
1191 it is a DECL which is nonzero when this base needs to be
1192 destroyed. */
1193
1194 static void
1195 expand_cleanup_for_base (tree binfo, tree flag)
1196 {
1197 tree expr;
1198
1199 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1200 return;
1201
1202 /* Call the destructor. */
1203 expr = build_special_member_call (current_class_ref,
1204 base_dtor_identifier,
1205 NULL,
1206 binfo,
1207 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1208 tf_warning_or_error);
1209 if (flag)
1210 expr = fold_build3_loc (input_location,
1211 COND_EXPR, void_type_node,
1212 c_common_truthvalue_conversion (input_location, flag),
1213 expr, integer_zero_node);
1214
1215 finish_eh_cleanup (expr);
1216 }
1217
1218 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1219 constructor. */
1220
1221 static void
1222 construct_virtual_base (tree vbase, tree arguments)
1223 {
1224 tree inner_if_stmt;
1225 tree exp;
1226 tree flag;
1227
1228 /* If there are virtual base classes with destructors, we need to
1229 emit cleanups to destroy them if an exception is thrown during
1230 the construction process. These exception regions (i.e., the
1231 period during which the cleanups must occur) begin from the time
1232 the construction is complete to the end of the function. If we
1233 create a conditional block in which to initialize the
1234 base-classes, then the cleanup region for the virtual base begins
1235 inside a block, and ends outside of that block. This situation
1236 confuses the sjlj exception-handling code. Therefore, we do not
1237 create a single conditional block, but one for each
1238 initialization. (That way the cleanup regions always begin
1239 in the outer block.) We trust the back end to figure out
1240 that the FLAG will not change across initializations, and
1241 avoid doing multiple tests. */
1242 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1243 inner_if_stmt = begin_if_stmt ();
1244 finish_if_stmt_cond (flag, inner_if_stmt);
1245
1246 /* Compute the location of the virtual base. If we're
1247 constructing virtual bases, then we must be the most derived
1248 class. Therefore, we don't have to look up the virtual base;
1249 we already know where it is. */
1250 exp = convert_to_base_statically (current_class_ref, vbase);
1251
1252 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1253 LOOKUP_COMPLAIN, tf_warning_or_error);
1254 finish_then_clause (inner_if_stmt);
1255 finish_if_stmt (inner_if_stmt);
1256
1257 expand_cleanup_for_base (vbase, flag);
1258 }
1259
1260 /* Find the context in which this FIELD can be initialized. */
1261
1262 static tree
1263 initializing_context (tree field)
1264 {
1265 tree t = DECL_CONTEXT (field);
1266
1267 /* Anonymous union members can be initialized in the first enclosing
1268 non-anonymous union context. */
1269 while (t && ANON_AGGR_TYPE_P (t))
1270 t = TYPE_CONTEXT (t);
1271 return t;
1272 }
1273
1274 /* Function to give error message if member initialization specification
1275 is erroneous. FIELD is the member we decided to initialize.
1276 TYPE is the type for which the initialization is being performed.
1277 FIELD must be a member of TYPE.
1278
1279 MEMBER_NAME is the name of the member. */
1280
1281 static int
1282 member_init_ok_or_else (tree field, tree type, tree member_name)
1283 {
1284 if (field == error_mark_node)
1285 return 0;
1286 if (!field)
1287 {
1288 error ("class %qT does not have any field named %qD", type,
1289 member_name);
1290 return 0;
1291 }
1292 if (TREE_CODE (field) == VAR_DECL)
1293 {
1294 error ("%q#D is a static data member; it can only be "
1295 "initialized at its definition",
1296 field);
1297 return 0;
1298 }
1299 if (TREE_CODE (field) != FIELD_DECL)
1300 {
1301 error ("%q#D is not a non-static data member of %qT",
1302 field, type);
1303 return 0;
1304 }
1305 if (initializing_context (field) != type)
1306 {
1307 error ("class %qT does not have any field named %qD", type,
1308 member_name);
1309 return 0;
1310 }
1311
1312 return 1;
1313 }
1314
1315 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1316 is a _TYPE node or TYPE_DECL which names a base for that type.
1317 Check the validity of NAME, and return either the base _TYPE, base
1318 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1319 NULL_TREE and issue a diagnostic.
1320
1321 An old style unnamed direct single base construction is permitted,
1322 where NAME is NULL. */
1323
1324 tree
1325 expand_member_init (tree name)
1326 {
1327 tree basetype;
1328 tree field;
1329
1330 if (!current_class_ref)
1331 return NULL_TREE;
1332
1333 if (!name)
1334 {
1335 /* This is an obsolete unnamed base class initializer. The
1336 parser will already have warned about its use. */
1337 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1338 {
1339 case 0:
1340 error ("unnamed initializer for %qT, which has no base classes",
1341 current_class_type);
1342 return NULL_TREE;
1343 case 1:
1344 basetype = BINFO_TYPE
1345 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1346 break;
1347 default:
1348 error ("unnamed initializer for %qT, which uses multiple inheritance",
1349 current_class_type);
1350 return NULL_TREE;
1351 }
1352 }
1353 else if (TYPE_P (name))
1354 {
1355 basetype = TYPE_MAIN_VARIANT (name);
1356 name = TYPE_NAME (name);
1357 }
1358 else if (TREE_CODE (name) == TYPE_DECL)
1359 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1360 else
1361 basetype = NULL_TREE;
1362
1363 if (basetype)
1364 {
1365 tree class_binfo;
1366 tree direct_binfo;
1367 tree virtual_binfo;
1368 int i;
1369
1370 if (same_type_p (basetype, current_class_type)
1371 || current_template_parms)
1372 return basetype;
1373
1374 class_binfo = TYPE_BINFO (current_class_type);
1375 direct_binfo = NULL_TREE;
1376 virtual_binfo = NULL_TREE;
1377
1378 /* Look for a direct base. */
1379 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1380 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1381 break;
1382
1383 /* Look for a virtual base -- unless the direct base is itself
1384 virtual. */
1385 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1386 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1387
1388 /* [class.base.init]
1389
1390 If a mem-initializer-id is ambiguous because it designates
1391 both a direct non-virtual base class and an inherited virtual
1392 base class, the mem-initializer is ill-formed. */
1393 if (direct_binfo && virtual_binfo)
1394 {
1395 error ("%qD is both a direct base and an indirect virtual base",
1396 basetype);
1397 return NULL_TREE;
1398 }
1399
1400 if (!direct_binfo && !virtual_binfo)
1401 {
1402 if (CLASSTYPE_VBASECLASSES (current_class_type))
1403 error ("type %qT is not a direct or virtual base of %qT",
1404 basetype, current_class_type);
1405 else
1406 error ("type %qT is not a direct base of %qT",
1407 basetype, current_class_type);
1408 return NULL_TREE;
1409 }
1410
1411 return direct_binfo ? direct_binfo : virtual_binfo;
1412 }
1413 else
1414 {
1415 if (TREE_CODE (name) == IDENTIFIER_NODE)
1416 field = lookup_field (current_class_type, name, 1, false);
1417 else
1418 field = name;
1419
1420 if (member_init_ok_or_else (field, current_class_type, name))
1421 return field;
1422 }
1423
1424 return NULL_TREE;
1425 }
1426
1427 /* This is like `expand_member_init', only it stores one aggregate
1428 value into another.
1429
1430 INIT comes in two flavors: it is either a value which
1431 is to be stored in EXP, or it is a parameter list
1432 to go to a constructor, which will operate on EXP.
1433 If INIT is not a parameter list for a constructor, then set
1434 LOOKUP_ONLYCONVERTING.
1435 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1436 the initializer, if FLAGS is 0, then it is the (init) form.
1437 If `init' is a CONSTRUCTOR, then we emit a warning message,
1438 explaining that such initializations are invalid.
1439
1440 If INIT resolves to a CALL_EXPR which happens to return
1441 something of the type we are looking for, then we know
1442 that we can safely use that call to perform the
1443 initialization.
1444
1445 The virtual function table pointer cannot be set up here, because
1446 we do not really know its type.
1447
1448 This never calls operator=().
1449
1450 When initializing, nothing is CONST.
1451
1452 A default copy constructor may have to be used to perform the
1453 initialization.
1454
1455 A constructor or a conversion operator may have to be used to
1456 perform the initialization, but not both, as it would be ambiguous. */
1457
1458 tree
1459 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1460 {
1461 tree stmt_expr;
1462 tree compound_stmt;
1463 int destroy_temps;
1464 tree type = TREE_TYPE (exp);
1465 int was_const = TREE_READONLY (exp);
1466 int was_volatile = TREE_THIS_VOLATILE (exp);
1467 int is_global;
1468
1469 if (init == error_mark_node)
1470 return error_mark_node;
1471
1472 TREE_READONLY (exp) = 0;
1473 TREE_THIS_VOLATILE (exp) = 0;
1474
1475 if (init && TREE_CODE (init) != TREE_LIST
1476 && !(TREE_CODE (init) == TARGET_EXPR
1477 && TARGET_EXPR_DIRECT_INIT_P (init))
1478 && !(BRACE_ENCLOSED_INITIALIZER_P (init)
1479 && CONSTRUCTOR_IS_DIRECT_INIT (init)))
1480 flags |= LOOKUP_ONLYCONVERTING;
1481
1482 if (TREE_CODE (type) == ARRAY_TYPE)
1483 {
1484 tree itype;
1485
1486 /* An array may not be initialized use the parenthesized
1487 initialization form -- unless the initializer is "()". */
1488 if (init && TREE_CODE (init) == TREE_LIST)
1489 {
1490 if (complain & tf_error)
1491 error ("bad array initializer");
1492 return error_mark_node;
1493 }
1494 /* Must arrange to initialize each element of EXP
1495 from elements of INIT. */
1496 itype = init ? TREE_TYPE (init) : NULL_TREE;
1497 if (cv_qualified_p (type))
1498 TREE_TYPE (exp) = cv_unqualified (type);
1499 if (itype && cv_qualified_p (itype))
1500 TREE_TYPE (init) = cv_unqualified (itype);
1501 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1502 /*explicit_value_init_p=*/false,
1503 itype && same_type_p (TREE_TYPE (init),
1504 TREE_TYPE (exp)),
1505 complain);
1506 TREE_READONLY (exp) = was_const;
1507 TREE_THIS_VOLATILE (exp) = was_volatile;
1508 TREE_TYPE (exp) = type;
1509 if (init)
1510 TREE_TYPE (init) = itype;
1511 return stmt_expr;
1512 }
1513
1514 if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL)
1515 /* Just know that we've seen something for this node. */
1516 TREE_USED (exp) = 1;
1517
1518 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1519 destroy_temps = stmts_are_full_exprs_p ();
1520 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1521 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1522 init, LOOKUP_NORMAL|flags, complain);
1523 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1524 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1525 TREE_READONLY (exp) = was_const;
1526 TREE_THIS_VOLATILE (exp) = was_volatile;
1527
1528 return stmt_expr;
1529 }
1530
1531 static void
1532 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1533 tsubst_flags_t complain)
1534 {
1535 tree type = TREE_TYPE (exp);
1536 tree ctor_name;
1537
1538 /* It fails because there may not be a constructor which takes
1539 its own type as the first (or only parameter), but which does
1540 take other types via a conversion. So, if the thing initializing
1541 the expression is a unit element of type X, first try X(X&),
1542 followed by initialization by X. If neither of these work
1543 out, then look hard. */
1544 tree rval;
1545 VEC(tree,gc) *parms;
1546
1547 /* If we have direct-initialization from an initializer list, pull
1548 it out of the TREE_LIST so the code below can see it. */
1549 if (init && TREE_CODE (init) == TREE_LIST
1550 && BRACE_ENCLOSED_INITIALIZER_P (TREE_VALUE (init))
1551 && CONSTRUCTOR_IS_DIRECT_INIT (TREE_VALUE (init)))
1552 {
1553 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1554 && TREE_CHAIN (init) == NULL_TREE);
1555 init = TREE_VALUE (init);
1556 }
1557
1558 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1559 && CP_AGGREGATE_TYPE_P (type))
1560 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1561 happen for direct-initialization, too. */
1562 init = digest_init (type, init, complain);
1563
1564 /* A CONSTRUCTOR of the target's type is a previously digested
1565 initializer, whether that happened just above or in
1566 cp_parser_late_parsing_nsdmi.
1567
1568 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1569 set represents the whole initialization, so we shouldn't build up
1570 another ctor call. */
1571 if (init
1572 && (TREE_CODE (init) == CONSTRUCTOR
1573 || (TREE_CODE (init) == TARGET_EXPR
1574 && (TARGET_EXPR_DIRECT_INIT_P (init)
1575 || TARGET_EXPR_LIST_INIT_P (init))))
1576 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1577 {
1578 /* Early initialization via a TARGET_EXPR only works for
1579 complete objects. */
1580 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1581
1582 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1583 TREE_SIDE_EFFECTS (init) = 1;
1584 finish_expr_stmt (init);
1585 return;
1586 }
1587
1588 if (init && TREE_CODE (init) != TREE_LIST
1589 && (flags & LOOKUP_ONLYCONVERTING))
1590 {
1591 /* Base subobjects should only get direct-initialization. */
1592 gcc_assert (true_exp == exp);
1593
1594 if (flags & DIRECT_BIND)
1595 /* Do nothing. We hit this in two cases: Reference initialization,
1596 where we aren't initializing a real variable, so we don't want
1597 to run a new constructor; and catching an exception, where we
1598 have already built up the constructor call so we could wrap it
1599 in an exception region. */;
1600 else
1601 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP, flags);
1602
1603 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1604 /* We need to protect the initialization of a catch parm with a
1605 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1606 around the TARGET_EXPR for the copy constructor. See
1607 initialize_handler_parm. */
1608 {
1609 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1610 TREE_OPERAND (init, 0));
1611 TREE_TYPE (init) = void_type_node;
1612 }
1613 else
1614 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1615 TREE_SIDE_EFFECTS (init) = 1;
1616 finish_expr_stmt (init);
1617 return;
1618 }
1619
1620 if (init == NULL_TREE)
1621 parms = NULL;
1622 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1623 {
1624 parms = make_tree_vector ();
1625 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1626 VEC_safe_push (tree, gc, parms, TREE_VALUE (init));
1627 }
1628 else
1629 parms = make_tree_vector_single (init);
1630
1631 if (exp == current_class_ref && current_function_decl
1632 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1633 {
1634 /* Delegating constructor. */
1635 tree complete;
1636 tree base;
1637 tree elt; unsigned i;
1638
1639 /* Unshare the arguments for the second call. */
1640 VEC(tree,gc) *parms2 = make_tree_vector ();
1641 FOR_EACH_VEC_ELT (tree, parms, i, elt)
1642 {
1643 elt = break_out_target_exprs (elt);
1644 VEC_safe_push (tree, gc, parms2, elt);
1645 }
1646 complete = build_special_member_call (exp, complete_ctor_identifier,
1647 &parms2, binfo, flags,
1648 complain);
1649 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1650 release_tree_vector (parms2);
1651
1652 base = build_special_member_call (exp, base_ctor_identifier,
1653 &parms, binfo, flags,
1654 complain);
1655 base = fold_build_cleanup_point_expr (void_type_node, base);
1656 rval = build3 (COND_EXPR, void_type_node,
1657 build2 (EQ_EXPR, boolean_type_node,
1658 current_in_charge_parm, integer_zero_node),
1659 base,
1660 complete);
1661 }
1662 else
1663 {
1664 if (true_exp == exp)
1665 ctor_name = complete_ctor_identifier;
1666 else
1667 ctor_name = base_ctor_identifier;
1668 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1669 complain);
1670 }
1671
1672 if (parms != NULL)
1673 release_tree_vector (parms);
1674
1675 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1676 {
1677 tree fn = get_callee_fndecl (rval);
1678 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1679 {
1680 tree e = maybe_constant_init (rval);
1681 if (TREE_CONSTANT (e))
1682 rval = build2 (INIT_EXPR, type, exp, e);
1683 }
1684 }
1685
1686 /* FIXME put back convert_to_void? */
1687 if (TREE_SIDE_EFFECTS (rval))
1688 finish_expr_stmt (rval);
1689 }
1690
1691 /* This function is responsible for initializing EXP with INIT
1692 (if any).
1693
1694 BINFO is the binfo of the type for who we are performing the
1695 initialization. For example, if W is a virtual base class of A and B,
1696 and C : A, B.
1697 If we are initializing B, then W must contain B's W vtable, whereas
1698 were we initializing C, W must contain C's W vtable.
1699
1700 TRUE_EXP is nonzero if it is the true expression being initialized.
1701 In this case, it may be EXP, or may just contain EXP. The reason we
1702 need this is because if EXP is a base element of TRUE_EXP, we
1703 don't necessarily know by looking at EXP where its virtual
1704 baseclass fields should really be pointing. But we do know
1705 from TRUE_EXP. In constructors, we don't know anything about
1706 the value being initialized.
1707
1708 FLAGS is just passed to `build_new_method_call'. See that function
1709 for its description. */
1710
1711 static void
1712 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1713 tsubst_flags_t complain)
1714 {
1715 tree type = TREE_TYPE (exp);
1716
1717 gcc_assert (init != error_mark_node && type != error_mark_node);
1718 gcc_assert (building_stmt_list_p ());
1719
1720 /* Use a function returning the desired type to initialize EXP for us.
1721 If the function is a constructor, and its first argument is
1722 NULL_TREE, know that it was meant for us--just slide exp on
1723 in and expand the constructor. Constructors now come
1724 as TARGET_EXPRs. */
1725
1726 if (init && TREE_CODE (exp) == VAR_DECL
1727 && COMPOUND_LITERAL_P (init))
1728 {
1729 VEC(tree,gc)* cleanups = NULL;
1730 /* If store_init_value returns NULL_TREE, the INIT has been
1731 recorded as the DECL_INITIAL for EXP. That means there's
1732 nothing more we have to do. */
1733 init = store_init_value (exp, init, &cleanups, flags);
1734 if (init)
1735 finish_expr_stmt (init);
1736 gcc_assert (!cleanups);
1737 return;
1738 }
1739
1740 /* If an explicit -- but empty -- initializer list was present,
1741 that's value-initialization. */
1742 if (init == void_type_node)
1743 {
1744 /* If no user-provided ctor, we need to zero out the object. */
1745 if (!type_has_user_provided_constructor (type))
1746 {
1747 tree field_size = NULL_TREE;
1748 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1749 /* Don't clobber already initialized virtual bases. */
1750 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1751 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1752 field_size);
1753 init = build2 (INIT_EXPR, type, exp, init);
1754 finish_expr_stmt (init);
1755 }
1756
1757 /* If we don't need to mess with the constructor at all,
1758 then we're done. */
1759 if (! type_build_ctor_call (type))
1760 return;
1761
1762 /* Otherwise fall through and call the constructor. */
1763 init = NULL_TREE;
1764 }
1765
1766 /* We know that expand_default_init can handle everything we want
1767 at this point. */
1768 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1769 }
1770
1771 /* Report an error if TYPE is not a user-defined, class type. If
1772 OR_ELSE is nonzero, give an error message. */
1773
1774 int
1775 is_class_type (tree type, int or_else)
1776 {
1777 if (type == error_mark_node)
1778 return 0;
1779
1780 if (! CLASS_TYPE_P (type))
1781 {
1782 if (or_else)
1783 error ("%qT is not a class type", type);
1784 return 0;
1785 }
1786 return 1;
1787 }
1788
1789 tree
1790 get_type_value (tree name)
1791 {
1792 if (name == error_mark_node)
1793 return NULL_TREE;
1794
1795 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1796 return IDENTIFIER_TYPE_VALUE (name);
1797 else
1798 return NULL_TREE;
1799 }
1800
1801 /* Build a reference to a member of an aggregate. This is not a C++
1802 `&', but really something which can have its address taken, and
1803 then act as a pointer to member, for example TYPE :: FIELD can have
1804 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1805 this expression is the operand of "&".
1806
1807 @@ Prints out lousy diagnostics for operator <typename>
1808 @@ fields.
1809
1810 @@ This function should be rewritten and placed in search.c. */
1811
1812 tree
1813 build_offset_ref (tree type, tree member, bool address_p)
1814 {
1815 tree decl;
1816 tree basebinfo = NULL_TREE;
1817
1818 /* class templates can come in as TEMPLATE_DECLs here. */
1819 if (TREE_CODE (member) == TEMPLATE_DECL)
1820 return member;
1821
1822 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1823 return build_qualified_name (NULL_TREE, type, member,
1824 /*template_p=*/false);
1825
1826 gcc_assert (TYPE_P (type));
1827 if (! is_class_type (type, 1))
1828 return error_mark_node;
1829
1830 gcc_assert (DECL_P (member) || BASELINK_P (member));
1831 /* Callers should call mark_used before this point. */
1832 gcc_assert (!DECL_P (member) || TREE_USED (member));
1833
1834 type = TYPE_MAIN_VARIANT (type);
1835 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1836 {
1837 error ("incomplete type %qT does not have member %qD", type, member);
1838 return error_mark_node;
1839 }
1840
1841 /* Entities other than non-static members need no further
1842 processing. */
1843 if (TREE_CODE (member) == TYPE_DECL)
1844 return member;
1845 if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL)
1846 return convert_from_reference (member);
1847
1848 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1849 {
1850 error ("invalid pointer to bit-field %qD", member);
1851 return error_mark_node;
1852 }
1853
1854 /* Set up BASEBINFO for member lookup. */
1855 decl = maybe_dummy_object (type, &basebinfo);
1856
1857 /* A lot of this logic is now handled in lookup_member. */
1858 if (BASELINK_P (member))
1859 {
1860 /* Go from the TREE_BASELINK to the member function info. */
1861 tree t = BASELINK_FUNCTIONS (member);
1862
1863 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1864 {
1865 /* Get rid of a potential OVERLOAD around it. */
1866 t = OVL_CURRENT (t);
1867
1868 /* Unique functions are handled easily. */
1869
1870 /* For non-static member of base class, we need a special rule
1871 for access checking [class.protected]:
1872
1873 If the access is to form a pointer to member, the
1874 nested-name-specifier shall name the derived class
1875 (or any class derived from that class). */
1876 if (address_p && DECL_P (t)
1877 && DECL_NONSTATIC_MEMBER_P (t))
1878 perform_or_defer_access_check (TYPE_BINFO (type), t, t);
1879 else
1880 perform_or_defer_access_check (basebinfo, t, t);
1881
1882 if (DECL_STATIC_FUNCTION_P (t))
1883 return t;
1884 member = t;
1885 }
1886 else
1887 TREE_TYPE (member) = unknown_type_node;
1888 }
1889 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1890 /* We need additional test besides the one in
1891 check_accessibility_of_qualified_id in case it is
1892 a pointer to non-static member. */
1893 perform_or_defer_access_check (TYPE_BINFO (type), member, member);
1894
1895 if (!address_p)
1896 {
1897 /* If MEMBER is non-static, then the program has fallen afoul of
1898 [expr.prim]:
1899
1900 An id-expression that denotes a nonstatic data member or
1901 nonstatic member function of a class can only be used:
1902
1903 -- as part of a class member access (_expr.ref_) in which the
1904 object-expression refers to the member's class or a class
1905 derived from that class, or
1906
1907 -- to form a pointer to member (_expr.unary.op_), or
1908
1909 -- in the body of a nonstatic member function of that class or
1910 of a class derived from that class (_class.mfct.nonstatic_), or
1911
1912 -- in a mem-initializer for a constructor for that class or for
1913 a class derived from that class (_class.base.init_). */
1914 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1915 {
1916 /* Build a representation of the qualified name suitable
1917 for use as the operand to "&" -- even though the "&" is
1918 not actually present. */
1919 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1920 /* In Microsoft mode, treat a non-static member function as if
1921 it were a pointer-to-member. */
1922 if (flag_ms_extensions)
1923 {
1924 PTRMEM_OK_P (member) = 1;
1925 return cp_build_addr_expr (member, tf_warning_or_error);
1926 }
1927 error ("invalid use of non-static member function %qD",
1928 TREE_OPERAND (member, 1));
1929 return error_mark_node;
1930 }
1931 else if (TREE_CODE (member) == FIELD_DECL)
1932 {
1933 error ("invalid use of non-static data member %qD", member);
1934 return error_mark_node;
1935 }
1936 return member;
1937 }
1938
1939 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1940 PTRMEM_OK_P (member) = 1;
1941 return member;
1942 }
1943
1944 /* If DECL is a scalar enumeration constant or variable with a
1945 constant initializer, return the initializer (or, its initializers,
1946 recursively); otherwise, return DECL. If INTEGRAL_P, the
1947 initializer is only returned if DECL is an integral
1948 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
1949 return an aggregate constant. */
1950
1951 static tree
1952 constant_value_1 (tree decl, bool integral_p, bool return_aggregate_cst_ok_p)
1953 {
1954 while (TREE_CODE (decl) == CONST_DECL
1955 || (integral_p
1956 ? decl_constant_var_p (decl)
1957 : (TREE_CODE (decl) == VAR_DECL
1958 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1959 {
1960 tree init;
1961 /* If DECL is a static data member in a template
1962 specialization, we must instantiate it here. The
1963 initializer for the static data member is not processed
1964 until needed; we need it now. */
1965 mark_used (decl);
1966 mark_rvalue_use (decl);
1967 init = DECL_INITIAL (decl);
1968 if (init == error_mark_node)
1969 {
1970 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
1971 /* Treat the error as a constant to avoid cascading errors on
1972 excessively recursive template instantiation (c++/9335). */
1973 return init;
1974 else
1975 return decl;
1976 }
1977 /* Initializers in templates are generally expanded during
1978 instantiation, so before that for const int i(2)
1979 INIT is a TREE_LIST with the actual initializer as
1980 TREE_VALUE. */
1981 if (processing_template_decl
1982 && init
1983 && TREE_CODE (init) == TREE_LIST
1984 && TREE_CHAIN (init) == NULL_TREE)
1985 init = TREE_VALUE (init);
1986 if (!init
1987 || !TREE_TYPE (init)
1988 || !TREE_CONSTANT (init)
1989 || (!integral_p && !return_aggregate_cst_ok_p
1990 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
1991 return an aggregate constant (of which string
1992 literals are a special case), as we do not want
1993 to make inadvertent copies of such entities, and
1994 we must be sure that their addresses are the
1995 same everywhere. */
1996 && (TREE_CODE (init) == CONSTRUCTOR
1997 || TREE_CODE (init) == STRING_CST)))
1998 break;
1999 decl = unshare_expr (init);
2000 }
2001 return decl;
2002 }
2003
2004 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
2005 constant of integral or enumeration type, then return that value.
2006 These are those variables permitted in constant expressions by
2007 [5.19/1]. */
2008
2009 tree
2010 integral_constant_value (tree decl)
2011 {
2012 return constant_value_1 (decl, /*integral_p=*/true,
2013 /*return_aggregate_cst_ok_p=*/false);
2014 }
2015
2016 /* A more relaxed version of integral_constant_value, used by the
2017 common C/C++ code. */
2018
2019 tree
2020 decl_constant_value (tree decl)
2021 {
2022 return constant_value_1 (decl, /*integral_p=*/processing_template_decl,
2023 /*return_aggregate_cst_ok_p=*/true);
2024 }
2025
2026 /* A version of integral_constant_value used by the C++ front end for
2027 optimization purposes. */
2028
2029 tree
2030 decl_constant_value_safe (tree decl)
2031 {
2032 return constant_value_1 (decl, /*integral_p=*/processing_template_decl,
2033 /*return_aggregate_cst_ok_p=*/false);
2034 }
2035 \f
2036 /* Common subroutines of build_new and build_vec_delete. */
2037
2038 /* Call the global __builtin_delete to delete ADDR. */
2039
2040 static tree
2041 build_builtin_delete_call (tree addr)
2042 {
2043 mark_used (global_delete_fndecl);
2044 return build_call_n (global_delete_fndecl, 1, addr);
2045 }
2046 \f
2047 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2048 the type of the object being allocated; otherwise, it's just TYPE.
2049 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2050 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2051 a vector of arguments to be provided as arguments to a placement
2052 new operator. This routine performs no semantic checks; it just
2053 creates and returns a NEW_EXPR. */
2054
2055 static tree
2056 build_raw_new_expr (VEC(tree,gc) *placement, tree type, tree nelts,
2057 VEC(tree,gc) *init, int use_global_new)
2058 {
2059 tree init_list;
2060 tree new_expr;
2061
2062 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2063 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2064 permits us to distinguish the case of a missing initializer "new
2065 int" from an empty initializer "new int()". */
2066 if (init == NULL)
2067 init_list = NULL_TREE;
2068 else if (VEC_empty (tree, init))
2069 init_list = void_zero_node;
2070 else
2071 init_list = build_tree_list_vec (init);
2072
2073 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2074 build_tree_list_vec (placement), type, nelts,
2075 init_list);
2076 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2077 TREE_SIDE_EFFECTS (new_expr) = 1;
2078
2079 return new_expr;
2080 }
2081
2082 /* Diagnose uninitialized const members or reference members of type
2083 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2084 new expression without a new-initializer and a declaration. Returns
2085 the error count. */
2086
2087 static int
2088 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2089 bool using_new, bool complain)
2090 {
2091 tree field;
2092 int error_count = 0;
2093
2094 if (type_has_user_provided_constructor (type))
2095 return 0;
2096
2097 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2098 {
2099 tree field_type;
2100
2101 if (TREE_CODE (field) != FIELD_DECL)
2102 continue;
2103
2104 field_type = strip_array_types (TREE_TYPE (field));
2105
2106 if (type_has_user_provided_constructor (field_type))
2107 continue;
2108
2109 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2110 {
2111 ++ error_count;
2112 if (complain)
2113 {
2114 if (using_new)
2115 error ("uninitialized reference member in %q#T "
2116 "using %<new%> without new-initializer", origin);
2117 else
2118 error ("uninitialized reference member in %q#T", origin);
2119 inform (DECL_SOURCE_LOCATION (field),
2120 "%qD should be initialized", field);
2121 }
2122 }
2123
2124 if (CP_TYPE_CONST_P (field_type))
2125 {
2126 ++ error_count;
2127 if (complain)
2128 {
2129 if (using_new)
2130 error ("uninitialized const member in %q#T "
2131 "using %<new%> without new-initializer", origin);
2132 else
2133 error ("uninitialized const member in %q#T", origin);
2134 inform (DECL_SOURCE_LOCATION (field),
2135 "%qD should be initialized", field);
2136 }
2137 }
2138
2139 if (CLASS_TYPE_P (field_type))
2140 error_count
2141 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2142 using_new, complain);
2143 }
2144 return error_count;
2145 }
2146
2147 int
2148 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2149 {
2150 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2151 }
2152
2153 /* Generate code for a new-expression, including calling the "operator
2154 new" function, initializing the object, and, if an exception occurs
2155 during construction, cleaning up. The arguments are as for
2156 build_raw_new_expr. This may change PLACEMENT and INIT. */
2157
2158 static tree
2159 build_new_1 (VEC(tree,gc) **placement, tree type, tree nelts,
2160 VEC(tree,gc) **init, bool globally_qualified_p,
2161 tsubst_flags_t complain)
2162 {
2163 tree size, rval;
2164 /* True iff this is a call to "operator new[]" instead of just
2165 "operator new". */
2166 bool array_p = false;
2167 /* If ARRAY_P is true, the element type of the array. This is never
2168 an ARRAY_TYPE; for something like "new int[3][4]", the
2169 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2170 TYPE. */
2171 tree elt_type;
2172 /* The type of the new-expression. (This type is always a pointer
2173 type.) */
2174 tree pointer_type;
2175 tree non_const_pointer_type;
2176 tree outer_nelts = NULL_TREE;
2177 tree alloc_call, alloc_expr;
2178 /* The address returned by the call to "operator new". This node is
2179 a VAR_DECL and is therefore reusable. */
2180 tree alloc_node;
2181 tree alloc_fn;
2182 tree cookie_expr, init_expr;
2183 int nothrow, check_new;
2184 int use_java_new = 0;
2185 /* If non-NULL, the number of extra bytes to allocate at the
2186 beginning of the storage allocated for an array-new expression in
2187 order to store the number of elements. */
2188 tree cookie_size = NULL_TREE;
2189 tree placement_first;
2190 tree placement_expr = NULL_TREE;
2191 /* True if the function we are calling is a placement allocation
2192 function. */
2193 bool placement_allocation_fn_p;
2194 /* True if the storage must be initialized, either by a constructor
2195 or due to an explicit new-initializer. */
2196 bool is_initialized;
2197 /* The address of the thing allocated, not including any cookie. In
2198 particular, if an array cookie is in use, DATA_ADDR is the
2199 address of the first array element. This node is a VAR_DECL, and
2200 is therefore reusable. */
2201 tree data_addr;
2202 tree init_preeval_expr = NULL_TREE;
2203
2204 if (nelts)
2205 {
2206 outer_nelts = nelts;
2207 array_p = true;
2208 }
2209 else if (TREE_CODE (type) == ARRAY_TYPE)
2210 {
2211 array_p = true;
2212 nelts = array_type_nelts_top (type);
2213 outer_nelts = nelts;
2214 type = TREE_TYPE (type);
2215 }
2216
2217 /* If our base type is an array, then make sure we know how many elements
2218 it has. */
2219 for (elt_type = type;
2220 TREE_CODE (elt_type) == ARRAY_TYPE;
2221 elt_type = TREE_TYPE (elt_type))
2222 nelts = cp_build_binary_op (input_location,
2223 MULT_EXPR, nelts,
2224 array_type_nelts_top (elt_type),
2225 complain);
2226
2227 if (TREE_CODE (elt_type) == VOID_TYPE)
2228 {
2229 if (complain & tf_error)
2230 error ("invalid type %<void%> for new");
2231 return error_mark_node;
2232 }
2233
2234 if (abstract_virtuals_error_sfinae (NULL_TREE, elt_type, complain))
2235 return error_mark_node;
2236
2237 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2238
2239 if (*init == NULL)
2240 {
2241 bool maybe_uninitialized_error = false;
2242 /* A program that calls for default-initialization [...] of an
2243 entity of reference type is ill-formed. */
2244 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2245 maybe_uninitialized_error = true;
2246
2247 /* A new-expression that creates an object of type T initializes
2248 that object as follows:
2249 - If the new-initializer is omitted:
2250 -- If T is a (possibly cv-qualified) non-POD class type
2251 (or array thereof), the object is default-initialized (8.5).
2252 [...]
2253 -- Otherwise, the object created has indeterminate
2254 value. If T is a const-qualified type, or a (possibly
2255 cv-qualified) POD class type (or array thereof)
2256 containing (directly or indirectly) a member of
2257 const-qualified type, the program is ill-formed; */
2258
2259 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2260 maybe_uninitialized_error = true;
2261
2262 if (maybe_uninitialized_error
2263 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2264 /*using_new=*/true,
2265 complain & tf_error))
2266 return error_mark_node;
2267 }
2268
2269 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2270 && default_init_uninitialized_part (elt_type))
2271 {
2272 if (complain & tf_error)
2273 error ("uninitialized const in %<new%> of %q#T", elt_type);
2274 return error_mark_node;
2275 }
2276
2277 size = size_in_bytes (elt_type);
2278 if (array_p)
2279 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2280
2281 alloc_fn = NULL_TREE;
2282
2283 /* If PLACEMENT is a single simple pointer type not passed by
2284 reference, prepare to capture it in a temporary variable. Do
2285 this now, since PLACEMENT will change in the calls below. */
2286 placement_first = NULL_TREE;
2287 if (VEC_length (tree, *placement) == 1
2288 && (TREE_CODE (TREE_TYPE (VEC_index (tree, *placement, 0)))
2289 == POINTER_TYPE))
2290 placement_first = VEC_index (tree, *placement, 0);
2291
2292 /* Allocate the object. */
2293 if (VEC_empty (tree, *placement) && TYPE_FOR_JAVA (elt_type))
2294 {
2295 tree class_addr;
2296 tree class_decl = build_java_class_ref (elt_type);
2297 static const char alloc_name[] = "_Jv_AllocObject";
2298
2299 if (class_decl == error_mark_node)
2300 return error_mark_node;
2301
2302 use_java_new = 1;
2303 if (!get_global_value_if_present (get_identifier (alloc_name),
2304 &alloc_fn))
2305 {
2306 if (complain & tf_error)
2307 error ("call to Java constructor with %qs undefined", alloc_name);
2308 return error_mark_node;
2309 }
2310 else if (really_overloaded_fn (alloc_fn))
2311 {
2312 if (complain & tf_error)
2313 error ("%qD should never be overloaded", alloc_fn);
2314 return error_mark_node;
2315 }
2316 alloc_fn = OVL_CURRENT (alloc_fn);
2317 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2318 alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2319 class_addr, NULL_TREE);
2320 }
2321 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2322 {
2323 error ("Java class %q#T object allocated using placement new", elt_type);
2324 return error_mark_node;
2325 }
2326 else
2327 {
2328 tree fnname;
2329 tree fns;
2330
2331 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2332
2333 if (!globally_qualified_p
2334 && CLASS_TYPE_P (elt_type)
2335 && (array_p
2336 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2337 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2338 {
2339 /* Use a class-specific operator new. */
2340 /* If a cookie is required, add some extra space. */
2341 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2342 {
2343 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2344 size = size_binop (PLUS_EXPR, size, cookie_size);
2345 }
2346 /* Create the argument list. */
2347 VEC_safe_insert (tree, gc, *placement, 0, size);
2348 /* Do name-lookup to find the appropriate operator. */
2349 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2350 if (fns == NULL_TREE)
2351 {
2352 if (complain & tf_error)
2353 error ("no suitable %qD found in class %qT", fnname, elt_type);
2354 return error_mark_node;
2355 }
2356 if (TREE_CODE (fns) == TREE_LIST)
2357 {
2358 if (complain & tf_error)
2359 {
2360 error ("request for member %qD is ambiguous", fnname);
2361 print_candidates (fns);
2362 }
2363 return error_mark_node;
2364 }
2365 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2366 fns, placement,
2367 /*conversion_path=*/NULL_TREE,
2368 LOOKUP_NORMAL,
2369 &alloc_fn,
2370 complain);
2371 }
2372 else
2373 {
2374 /* Use a global operator new. */
2375 /* See if a cookie might be required. */
2376 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2377 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2378 else
2379 cookie_size = NULL_TREE;
2380
2381 alloc_call = build_operator_new_call (fnname, placement,
2382 &size, &cookie_size,
2383 &alloc_fn, complain);
2384 }
2385 }
2386
2387 if (alloc_call == error_mark_node)
2388 return error_mark_node;
2389
2390 gcc_assert (alloc_fn != NULL_TREE);
2391
2392 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2393 into a temporary variable. */
2394 if (!processing_template_decl
2395 && placement_first != NULL_TREE
2396 && TREE_CODE (alloc_call) == CALL_EXPR
2397 && call_expr_nargs (alloc_call) == 2
2398 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2399 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))) == POINTER_TYPE)
2400 {
2401 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2402
2403 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2404 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2405 {
2406 placement_expr = get_target_expr (placement_first);
2407 CALL_EXPR_ARG (alloc_call, 1)
2408 = convert (TREE_TYPE (placement_arg), placement_expr);
2409 }
2410 }
2411
2412 /* In the simple case, we can stop now. */
2413 pointer_type = build_pointer_type (type);
2414 if (!cookie_size && !is_initialized)
2415 return build_nop (pointer_type, alloc_call);
2416
2417 /* Store the result of the allocation call in a variable so that we can
2418 use it more than once. */
2419 alloc_expr = get_target_expr (alloc_call);
2420 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2421
2422 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2423 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2424 alloc_call = TREE_OPERAND (alloc_call, 1);
2425
2426 /* Now, check to see if this function is actually a placement
2427 allocation function. This can happen even when PLACEMENT is NULL
2428 because we might have something like:
2429
2430 struct S { void* operator new (size_t, int i = 0); };
2431
2432 A call to `new S' will get this allocation function, even though
2433 there is no explicit placement argument. If there is more than
2434 one argument, or there are variable arguments, then this is a
2435 placement allocation function. */
2436 placement_allocation_fn_p
2437 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2438 || varargs_function_p (alloc_fn));
2439
2440 /* Preevaluate the placement args so that we don't reevaluate them for a
2441 placement delete. */
2442 if (placement_allocation_fn_p)
2443 {
2444 tree inits;
2445 stabilize_call (alloc_call, &inits);
2446 if (inits)
2447 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2448 alloc_expr);
2449 }
2450
2451 /* unless an allocation function is declared with an empty excep-
2452 tion-specification (_except.spec_), throw(), it indicates failure to
2453 allocate storage by throwing a bad_alloc exception (clause _except_,
2454 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2455 cation function is declared with an empty exception-specification,
2456 throw(), it returns null to indicate failure to allocate storage and a
2457 non-null pointer otherwise.
2458
2459 So check for a null exception spec on the op new we just called. */
2460
2461 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2462 check_new = (flag_check_new || nothrow) && ! use_java_new;
2463
2464 if (cookie_size)
2465 {
2466 tree cookie;
2467 tree cookie_ptr;
2468 tree size_ptr_type;
2469
2470 /* Adjust so we're pointing to the start of the object. */
2471 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
2472
2473 /* Store the number of bytes allocated so that we can know how
2474 many elements to destroy later. We use the last sizeof
2475 (size_t) bytes to store the number of elements. */
2476 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2477 cookie_ptr = fold_build_pointer_plus_loc (input_location,
2478 alloc_node, cookie_ptr);
2479 size_ptr_type = build_pointer_type (sizetype);
2480 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2481 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2482
2483 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2484
2485 if (targetm.cxx.cookie_has_size ())
2486 {
2487 /* Also store the element size. */
2488 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
2489 fold_build1_loc (input_location,
2490 NEGATE_EXPR, sizetype,
2491 size_in_bytes (sizetype)));
2492
2493 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2494 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2495 size_in_bytes (elt_type));
2496 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2497 cookie, cookie_expr);
2498 }
2499 }
2500 else
2501 {
2502 cookie_expr = NULL_TREE;
2503 data_addr = alloc_node;
2504 }
2505
2506 /* Now use a pointer to the type we've actually allocated. */
2507
2508 /* But we want to operate on a non-const version to start with,
2509 since we'll be modifying the elements. */
2510 non_const_pointer_type = build_pointer_type
2511 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2512
2513 data_addr = fold_convert (non_const_pointer_type, data_addr);
2514 /* Any further uses of alloc_node will want this type, too. */
2515 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2516
2517 /* Now initialize the allocated object. Note that we preevaluate the
2518 initialization expression, apart from the actual constructor call or
2519 assignment--we do this because we want to delay the allocation as long
2520 as possible in order to minimize the size of the exception region for
2521 placement delete. */
2522 if (is_initialized)
2523 {
2524 bool stable;
2525 bool explicit_value_init_p = false;
2526
2527 if (*init != NULL && VEC_empty (tree, *init))
2528 {
2529 *init = NULL;
2530 explicit_value_init_p = true;
2531 }
2532
2533 if (processing_template_decl && explicit_value_init_p)
2534 {
2535 /* build_value_init doesn't work in templates, and we don't need
2536 the initializer anyway since we're going to throw it away and
2537 rebuild it at instantiation time, so just build up a single
2538 constructor call to get any appropriate diagnostics. */
2539 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2540 if (type_build_ctor_call (elt_type))
2541 init_expr = build_special_member_call (init_expr,
2542 complete_ctor_identifier,
2543 init, elt_type,
2544 LOOKUP_NORMAL,
2545 complain);
2546 stable = stabilize_init (init_expr, &init_preeval_expr);
2547 }
2548 else if (array_p)
2549 {
2550 tree vecinit = NULL_TREE;
2551 if (*init && VEC_length (tree, *init) == 1
2552 && BRACE_ENCLOSED_INITIALIZER_P (VEC_index (tree, *init, 0))
2553 && CONSTRUCTOR_IS_DIRECT_INIT (VEC_index (tree, *init, 0)))
2554 {
2555 vecinit = VEC_index (tree, *init, 0);
2556 if (CONSTRUCTOR_NELTS (vecinit) == 0)
2557 /* List-value-initialization, leave it alone. */;
2558 else
2559 {
2560 tree arraytype, domain;
2561 if (TREE_CONSTANT (nelts))
2562 domain = compute_array_index_type (NULL_TREE, nelts,
2563 complain);
2564 else
2565 {
2566 domain = NULL_TREE;
2567 if (CONSTRUCTOR_NELTS (vecinit) > 0)
2568 warning (0, "non-constant array size in new, unable "
2569 "to verify length of initializer-list");
2570 }
2571 arraytype = build_cplus_array_type (type, domain);
2572 vecinit = digest_init (arraytype, vecinit, complain);
2573 }
2574 }
2575 else if (*init)
2576 {
2577 if (complain & tf_error)
2578 permerror (input_location,
2579 "parenthesized initializer in array new");
2580 else
2581 return error_mark_node;
2582 vecinit = build_tree_list_vec (*init);
2583 }
2584 init_expr
2585 = build_vec_init (data_addr,
2586 cp_build_binary_op (input_location,
2587 MINUS_EXPR, outer_nelts,
2588 integer_one_node,
2589 complain),
2590 vecinit,
2591 explicit_value_init_p,
2592 /*from_array=*/0,
2593 complain);
2594
2595 /* An array initialization is stable because the initialization
2596 of each element is a full-expression, so the temporaries don't
2597 leak out. */
2598 stable = true;
2599 }
2600 else
2601 {
2602 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2603
2604 if (type_build_ctor_call (type) && !explicit_value_init_p)
2605 {
2606 init_expr = build_special_member_call (init_expr,
2607 complete_ctor_identifier,
2608 init, elt_type,
2609 LOOKUP_NORMAL,
2610 complain);
2611 }
2612 else if (explicit_value_init_p)
2613 {
2614 /* Something like `new int()'. */
2615 tree val = build_value_init (type, complain);
2616 if (val == error_mark_node)
2617 return error_mark_node;
2618 init_expr = build2 (INIT_EXPR, type, init_expr, val);
2619 }
2620 else
2621 {
2622 tree ie;
2623
2624 /* We are processing something like `new int (10)', which
2625 means allocate an int, and initialize it with 10. */
2626
2627 ie = build_x_compound_expr_from_vec (*init, "new initializer");
2628 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2629 complain);
2630 }
2631 stable = stabilize_init (init_expr, &init_preeval_expr);
2632 }
2633
2634 if (init_expr == error_mark_node)
2635 return error_mark_node;
2636
2637 /* If any part of the object initialization terminates by throwing an
2638 exception and a suitable deallocation function can be found, the
2639 deallocation function is called to free the memory in which the
2640 object was being constructed, after which the exception continues
2641 to propagate in the context of the new-expression. If no
2642 unambiguous matching deallocation function can be found,
2643 propagating the exception does not cause the object's memory to be
2644 freed. */
2645 if (flag_exceptions && ! use_java_new)
2646 {
2647 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2648 tree cleanup;
2649
2650 /* The Standard is unclear here, but the right thing to do
2651 is to use the same method for finding deallocation
2652 functions that we use for finding allocation functions. */
2653 cleanup = (build_op_delete_call
2654 (dcode,
2655 alloc_node,
2656 size,
2657 globally_qualified_p,
2658 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2659 alloc_fn));
2660
2661 if (!cleanup)
2662 /* We're done. */;
2663 else if (stable)
2664 /* This is much simpler if we were able to preevaluate all of
2665 the arguments to the constructor call. */
2666 {
2667 /* CLEANUP is compiler-generated, so no diagnostics. */
2668 TREE_NO_WARNING (cleanup) = true;
2669 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2670 init_expr, cleanup);
2671 /* Likewise, this try-catch is compiler-generated. */
2672 TREE_NO_WARNING (init_expr) = true;
2673 }
2674 else
2675 /* Ack! First we allocate the memory. Then we set our sentry
2676 variable to true, and expand a cleanup that deletes the
2677 memory if sentry is true. Then we run the constructor, and
2678 finally clear the sentry.
2679
2680 We need to do this because we allocate the space first, so
2681 if there are any temporaries with cleanups in the
2682 constructor args and we weren't able to preevaluate them, we
2683 need this EH region to extend until end of full-expression
2684 to preserve nesting. */
2685 {
2686 tree end, sentry, begin;
2687
2688 begin = get_target_expr (boolean_true_node);
2689 CLEANUP_EH_ONLY (begin) = 1;
2690
2691 sentry = TARGET_EXPR_SLOT (begin);
2692
2693 /* CLEANUP is compiler-generated, so no diagnostics. */
2694 TREE_NO_WARNING (cleanup) = true;
2695
2696 TARGET_EXPR_CLEANUP (begin)
2697 = build3 (COND_EXPR, void_type_node, sentry,
2698 cleanup, void_zero_node);
2699
2700 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2701 sentry, boolean_false_node);
2702
2703 init_expr
2704 = build2 (COMPOUND_EXPR, void_type_node, begin,
2705 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2706 end));
2707 /* Likewise, this is compiler-generated. */
2708 TREE_NO_WARNING (init_expr) = true;
2709 }
2710 }
2711 }
2712 else
2713 init_expr = NULL_TREE;
2714
2715 /* Now build up the return value in reverse order. */
2716
2717 rval = data_addr;
2718
2719 if (init_expr)
2720 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2721 if (cookie_expr)
2722 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2723
2724 if (rval == data_addr)
2725 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2726 and return the call (which doesn't need to be adjusted). */
2727 rval = TARGET_EXPR_INITIAL (alloc_expr);
2728 else
2729 {
2730 if (check_new)
2731 {
2732 tree ifexp = cp_build_binary_op (input_location,
2733 NE_EXPR, alloc_node,
2734 nullptr_node,
2735 complain);
2736 rval = build_conditional_expr (ifexp, rval, alloc_node,
2737 complain);
2738 }
2739
2740 /* Perform the allocation before anything else, so that ALLOC_NODE
2741 has been initialized before we start using it. */
2742 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2743 }
2744
2745 if (init_preeval_expr)
2746 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2747
2748 /* A new-expression is never an lvalue. */
2749 gcc_assert (!lvalue_p (rval));
2750
2751 return convert (pointer_type, rval);
2752 }
2753
2754 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2755 is a vector of placement-new arguments (or NULL if none). If NELTS
2756 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2757 is not NULL, then this is an array-new allocation; TYPE is the type
2758 of the elements in the array and NELTS is the number of elements in
2759 the array. *INIT, if non-NULL, is the initializer for the new
2760 object, or an empty vector to indicate an initializer of "()". If
2761 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2762 rather than just "new". This may change PLACEMENT and INIT. */
2763
2764 tree
2765 build_new (VEC(tree,gc) **placement, tree type, tree nelts,
2766 VEC(tree,gc) **init, int use_global_new, tsubst_flags_t complain)
2767 {
2768 tree rval;
2769 VEC(tree,gc) *orig_placement = NULL;
2770 tree orig_nelts = NULL_TREE;
2771 VEC(tree,gc) *orig_init = NULL;
2772
2773 if (type == error_mark_node)
2774 return error_mark_node;
2775
2776 if (nelts == NULL_TREE && VEC_length (tree, *init) == 1
2777 /* Don't do auto deduction where it might affect mangling. */
2778 && (!processing_template_decl || at_function_scope_p ()))
2779 {
2780 tree auto_node = type_uses_auto (type);
2781 if (auto_node)
2782 {
2783 tree d_init = VEC_index (tree, *init, 0);
2784 d_init = resolve_nondeduced_context (d_init);
2785 type = do_auto_deduction (type, d_init, auto_node);
2786 }
2787 }
2788
2789 if (processing_template_decl)
2790 {
2791 if (dependent_type_p (type)
2792 || any_type_dependent_arguments_p (*placement)
2793 || (nelts && type_dependent_expression_p (nelts))
2794 || any_type_dependent_arguments_p (*init))
2795 return build_raw_new_expr (*placement, type, nelts, *init,
2796 use_global_new);
2797
2798 orig_placement = make_tree_vector_copy (*placement);
2799 orig_nelts = nelts;
2800 orig_init = make_tree_vector_copy (*init);
2801
2802 make_args_non_dependent (*placement);
2803 if (nelts)
2804 nelts = build_non_dependent_expr (nelts);
2805 make_args_non_dependent (*init);
2806 }
2807
2808 if (nelts)
2809 {
2810 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
2811 {
2812 if (complain & tf_error)
2813 permerror (input_location, "size in array new must have integral type");
2814 else
2815 return error_mark_node;
2816 }
2817 nelts = mark_rvalue_use (nelts);
2818 nelts = cp_save_expr (cp_convert (sizetype, nelts));
2819 }
2820
2821 /* ``A reference cannot be created by the new operator. A reference
2822 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
2823 returned by new.'' ARM 5.3.3 */
2824 if (TREE_CODE (type) == REFERENCE_TYPE)
2825 {
2826 if (complain & tf_error)
2827 error ("new cannot be applied to a reference type");
2828 else
2829 return error_mark_node;
2830 type = TREE_TYPE (type);
2831 }
2832
2833 if (TREE_CODE (type) == FUNCTION_TYPE)
2834 {
2835 if (complain & tf_error)
2836 error ("new cannot be applied to a function type");
2837 return error_mark_node;
2838 }
2839
2840 /* The type allocated must be complete. If the new-type-id was
2841 "T[N]" then we are just checking that "T" is complete here, but
2842 that is equivalent, since the value of "N" doesn't matter. */
2843 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
2844 return error_mark_node;
2845
2846 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
2847 if (rval == error_mark_node)
2848 return error_mark_node;
2849
2850 if (processing_template_decl)
2851 {
2852 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
2853 orig_init, use_global_new);
2854 release_tree_vector (orig_placement);
2855 release_tree_vector (orig_init);
2856 return ret;
2857 }
2858
2859 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
2860 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
2861 TREE_NO_WARNING (rval) = 1;
2862
2863 return rval;
2864 }
2865
2866 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
2867
2868 tree
2869 build_java_class_ref (tree type)
2870 {
2871 tree name = NULL_TREE, class_decl;
2872 static tree CL_suffix = NULL_TREE;
2873 if (CL_suffix == NULL_TREE)
2874 CL_suffix = get_identifier("class$");
2875 if (jclass_node == NULL_TREE)
2876 {
2877 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
2878 if (jclass_node == NULL_TREE)
2879 {
2880 error ("call to Java constructor, while %<jclass%> undefined");
2881 return error_mark_node;
2882 }
2883 jclass_node = TREE_TYPE (jclass_node);
2884 }
2885
2886 /* Mangle the class$ field. */
2887 {
2888 tree field;
2889 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2890 if (DECL_NAME (field) == CL_suffix)
2891 {
2892 mangle_decl (field);
2893 name = DECL_ASSEMBLER_NAME (field);
2894 break;
2895 }
2896 if (!field)
2897 {
2898 error ("can%'t find %<class$%> in %qT", type);
2899 return error_mark_node;
2900 }
2901 }
2902
2903 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
2904 if (class_decl == NULL_TREE)
2905 {
2906 class_decl = build_decl (input_location,
2907 VAR_DECL, name, TREE_TYPE (jclass_node));
2908 TREE_STATIC (class_decl) = 1;
2909 DECL_EXTERNAL (class_decl) = 1;
2910 TREE_PUBLIC (class_decl) = 1;
2911 DECL_ARTIFICIAL (class_decl) = 1;
2912 DECL_IGNORED_P (class_decl) = 1;
2913 pushdecl_top_level (class_decl);
2914 make_decl_rtl (class_decl);
2915 }
2916 return class_decl;
2917 }
2918 \f
2919 static tree
2920 build_vec_delete_1 (tree base, tree maxindex, tree type,
2921 special_function_kind auto_delete_vec,
2922 int use_global_delete, tsubst_flags_t complain)
2923 {
2924 tree virtual_size;
2925 tree ptype = build_pointer_type (type = complete_type (type));
2926 tree size_exp = size_in_bytes (type);
2927
2928 /* Temporary variables used by the loop. */
2929 tree tbase, tbase_init;
2930
2931 /* This is the body of the loop that implements the deletion of a
2932 single element, and moves temp variables to next elements. */
2933 tree body;
2934
2935 /* This is the LOOP_EXPR that governs the deletion of the elements. */
2936 tree loop = 0;
2937
2938 /* This is the thing that governs what to do after the loop has run. */
2939 tree deallocate_expr = 0;
2940
2941 /* This is the BIND_EXPR which holds the outermost iterator of the
2942 loop. It is convenient to set this variable up and test it before
2943 executing any other code in the loop.
2944 This is also the containing expression returned by this function. */
2945 tree controller = NULL_TREE;
2946 tree tmp;
2947
2948 /* We should only have 1-D arrays here. */
2949 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
2950
2951 if (base == error_mark_node || maxindex == error_mark_node)
2952 return error_mark_node;
2953
2954 if (! MAYBE_CLASS_TYPE_P (type) || TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
2955 goto no_destructor;
2956
2957 /* The below is short by the cookie size. */
2958 virtual_size = size_binop (MULT_EXPR, size_exp,
2959 convert (sizetype, maxindex));
2960
2961 tbase = create_temporary_var (ptype);
2962 tbase_init
2963 = cp_build_modify_expr (tbase, NOP_EXPR,
2964 fold_build_pointer_plus_loc (input_location,
2965 fold_convert (ptype,
2966 base),
2967 virtual_size),
2968 complain);
2969 if (tbase_init == error_mark_node)
2970 return error_mark_node;
2971 controller = build3 (BIND_EXPR, void_type_node, tbase,
2972 NULL_TREE, NULL_TREE);
2973 TREE_SIDE_EFFECTS (controller) = 1;
2974
2975 body = build1 (EXIT_EXPR, void_type_node,
2976 build2 (EQ_EXPR, boolean_type_node, tbase,
2977 fold_convert (ptype, base)));
2978 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
2979 tmp = fold_build_pointer_plus (tbase, tmp);
2980 tmp = cp_build_modify_expr (tbase, NOP_EXPR, tmp, complain);
2981 if (tmp == error_mark_node)
2982 return error_mark_node;
2983 body = build_compound_expr (input_location, body, tmp);
2984 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
2985 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
2986 complain);
2987 if (tmp == error_mark_node)
2988 return error_mark_node;
2989 body = build_compound_expr (input_location, body, tmp);
2990
2991 loop = build1 (LOOP_EXPR, void_type_node, body);
2992 loop = build_compound_expr (input_location, tbase_init, loop);
2993
2994 no_destructor:
2995 /* Delete the storage if appropriate. */
2996 if (auto_delete_vec == sfk_deleting_destructor)
2997 {
2998 tree base_tbd;
2999
3000 /* The below is short by the cookie size. */
3001 virtual_size = size_binop (MULT_EXPR, size_exp,
3002 convert (sizetype, maxindex));
3003
3004 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3005 /* no header */
3006 base_tbd = base;
3007 else
3008 {
3009 tree cookie_size;
3010
3011 cookie_size = targetm.cxx.get_cookie_size (type);
3012 base_tbd = cp_build_binary_op (input_location,
3013 MINUS_EXPR,
3014 cp_convert (string_type_node,
3015 base),
3016 cookie_size,
3017 complain);
3018 if (base_tbd == error_mark_node)
3019 return error_mark_node;
3020 base_tbd = cp_convert (ptype, base_tbd);
3021 /* True size with header. */
3022 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3023 }
3024
3025 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3026 base_tbd, virtual_size,
3027 use_global_delete & 1,
3028 /*placement=*/NULL_TREE,
3029 /*alloc_fn=*/NULL_TREE);
3030 }
3031
3032 body = loop;
3033 if (!deallocate_expr)
3034 ;
3035 else if (!body)
3036 body = deallocate_expr;
3037 else
3038 body = build_compound_expr (input_location, body, deallocate_expr);
3039
3040 if (!body)
3041 body = integer_zero_node;
3042
3043 /* Outermost wrapper: If pointer is null, punt. */
3044 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
3045 fold_build2_loc (input_location,
3046 NE_EXPR, boolean_type_node, base,
3047 convert (TREE_TYPE (base),
3048 nullptr_node)),
3049 body, integer_zero_node);
3050 body = build1 (NOP_EXPR, void_type_node, body);
3051
3052 if (controller)
3053 {
3054 TREE_OPERAND (controller, 1) = body;
3055 body = controller;
3056 }
3057
3058 if (TREE_CODE (base) == SAVE_EXPR)
3059 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3060 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3061
3062 return convert_to_void (body, ICV_CAST, complain);
3063 }
3064
3065 /* Create an unnamed variable of the indicated TYPE. */
3066
3067 tree
3068 create_temporary_var (tree type)
3069 {
3070 tree decl;
3071
3072 decl = build_decl (input_location,
3073 VAR_DECL, NULL_TREE, type);
3074 TREE_USED (decl) = 1;
3075 DECL_ARTIFICIAL (decl) = 1;
3076 DECL_IGNORED_P (decl) = 1;
3077 DECL_CONTEXT (decl) = current_function_decl;
3078
3079 return decl;
3080 }
3081
3082 /* Create a new temporary variable of the indicated TYPE, initialized
3083 to INIT.
3084
3085 It is not entered into current_binding_level, because that breaks
3086 things when it comes time to do final cleanups (which take place
3087 "outside" the binding contour of the function). */
3088
3089 tree
3090 get_temp_regvar (tree type, tree init)
3091 {
3092 tree decl;
3093
3094 decl = create_temporary_var (type);
3095 add_decl_expr (decl);
3096
3097 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
3098 tf_warning_or_error));
3099
3100 return decl;
3101 }
3102
3103 /* `build_vec_init' returns tree structure that performs
3104 initialization of a vector of aggregate types.
3105
3106 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3107 to the first element, of POINTER_TYPE.
3108 MAXINDEX is the maximum index of the array (one less than the
3109 number of elements). It is only used if BASE is a pointer or
3110 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3111
3112 INIT is the (possibly NULL) initializer.
3113
3114 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3115 elements in the array are value-initialized.
3116
3117 FROM_ARRAY is 0 if we should init everything with INIT
3118 (i.e., every element initialized from INIT).
3119 FROM_ARRAY is 1 if we should index into INIT in parallel
3120 with initialization of DECL.
3121 FROM_ARRAY is 2 if we should index into INIT in parallel,
3122 but use assignment instead of initialization. */
3123
3124 tree
3125 build_vec_init (tree base, tree maxindex, tree init,
3126 bool explicit_value_init_p,
3127 int from_array, tsubst_flags_t complain)
3128 {
3129 tree rval;
3130 tree base2 = NULL_TREE;
3131 tree itype = NULL_TREE;
3132 tree iterator;
3133 /* The type of BASE. */
3134 tree atype = TREE_TYPE (base);
3135 /* The type of an element in the array. */
3136 tree type = TREE_TYPE (atype);
3137 /* The element type reached after removing all outer array
3138 types. */
3139 tree inner_elt_type;
3140 /* The type of a pointer to an element in the array. */
3141 tree ptype;
3142 tree stmt_expr;
3143 tree compound_stmt;
3144 int destroy_temps;
3145 tree try_block = NULL_TREE;
3146 int num_initialized_elts = 0;
3147 bool is_global;
3148 tree const_init = NULL_TREE;
3149 tree obase = base;
3150 bool xvalue = false;
3151 bool errors = false;
3152
3153 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3154 maxindex = array_type_nelts (atype);
3155
3156 if (maxindex == NULL_TREE || maxindex == error_mark_node
3157 || integer_all_onesp (maxindex))
3158 return error_mark_node;
3159
3160 if (explicit_value_init_p)
3161 gcc_assert (!init);
3162
3163 inner_elt_type = strip_array_types (type);
3164
3165 /* Look through the TARGET_EXPR around a compound literal. */
3166 if (init && TREE_CODE (init) == TARGET_EXPR
3167 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3168 && from_array != 2)
3169 init = TARGET_EXPR_INITIAL (init);
3170
3171 if (init
3172 && TREE_CODE (atype) == ARRAY_TYPE
3173 && (from_array == 2
3174 ? (!CLASS_TYPE_P (inner_elt_type)
3175 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (inner_elt_type))
3176 : !TYPE_NEEDS_CONSTRUCTING (type))
3177 && ((TREE_CODE (init) == CONSTRUCTOR
3178 /* Don't do this if the CONSTRUCTOR might contain something
3179 that might throw and require us to clean up. */
3180 && (VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (init))
3181 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3182 || from_array))
3183 {
3184 /* Do non-default initialization of trivial arrays resulting from
3185 brace-enclosed initializers. In this case, digest_init and
3186 store_constructor will handle the semantics for us. */
3187
3188 stmt_expr = build2 (INIT_EXPR, atype, base, init);
3189 return stmt_expr;
3190 }
3191
3192 maxindex = cp_convert (ptrdiff_type_node, maxindex);
3193 if (TREE_CODE (atype) == ARRAY_TYPE)
3194 {
3195 ptype = build_pointer_type (type);
3196 base = decay_conversion (base, complain);
3197 if (base == error_mark_node)
3198 return error_mark_node;
3199 base = cp_convert (ptype, base);
3200 }
3201 else
3202 ptype = atype;
3203
3204 /* The code we are generating looks like:
3205 ({
3206 T* t1 = (T*) base;
3207 T* rval = t1;
3208 ptrdiff_t iterator = maxindex;
3209 try {
3210 for (; iterator != -1; --iterator) {
3211 ... initialize *t1 ...
3212 ++t1;
3213 }
3214 } catch (...) {
3215 ... destroy elements that were constructed ...
3216 }
3217 rval;
3218 })
3219
3220 We can omit the try and catch blocks if we know that the
3221 initialization will never throw an exception, or if the array
3222 elements do not have destructors. We can omit the loop completely if
3223 the elements of the array do not have constructors.
3224
3225 We actually wrap the entire body of the above in a STMT_EXPR, for
3226 tidiness.
3227
3228 When copying from array to another, when the array elements have
3229 only trivial copy constructors, we should use __builtin_memcpy
3230 rather than generating a loop. That way, we could take advantage
3231 of whatever cleverness the back end has for dealing with copies
3232 of blocks of memory. */
3233
3234 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3235 destroy_temps = stmts_are_full_exprs_p ();
3236 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3237 rval = get_temp_regvar (ptype, base);
3238 base = get_temp_regvar (ptype, rval);
3239 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3240
3241 /* If initializing one array from another, initialize element by
3242 element. We rely upon the below calls to do the argument
3243 checking. Evaluate the initializer before entering the try block. */
3244 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3245 {
3246 if (lvalue_kind (init) & clk_rvalueref)
3247 xvalue = true;
3248 base2 = decay_conversion (init, complain);
3249 if (base2 == error_mark_node)
3250 return error_mark_node;
3251 itype = TREE_TYPE (base2);
3252 base2 = get_temp_regvar (itype, base2);
3253 itype = TREE_TYPE (itype);
3254 }
3255
3256 /* Protect the entire array initialization so that we can destroy
3257 the partially constructed array if an exception is thrown.
3258 But don't do this if we're assigning. */
3259 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3260 && from_array != 2)
3261 {
3262 try_block = begin_try_block ();
3263 }
3264
3265 /* If the initializer is {}, then all elements are initialized from {}.
3266 But for non-classes, that's the same as value-initialization. */
3267 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
3268 && CONSTRUCTOR_NELTS (init) == 0)
3269 {
3270 if (CLASS_TYPE_P (type))
3271 /* Leave init alone. */;
3272 else
3273 {
3274 init = NULL_TREE;
3275 explicit_value_init_p = true;
3276 }
3277 }
3278
3279 /* Maybe pull out constant value when from_array? */
3280
3281 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3282 {
3283 /* Do non-default initialization of non-trivial arrays resulting from
3284 brace-enclosed initializers. */
3285 unsigned HOST_WIDE_INT idx;
3286 tree field, elt;
3287 /* Should we try to create a constant initializer? */
3288 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
3289 && (literal_type_p (inner_elt_type)
3290 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
3291 /* If the constructor already has the array type, it's been through
3292 digest_init, so we shouldn't try to do anything more. */
3293 bool digested = same_type_p (atype, TREE_TYPE (init));
3294 bool saw_non_const = false;
3295 bool saw_const = false;
3296 /* If we're initializing a static array, we want to do static
3297 initialization of any elements with constant initializers even if
3298 some are non-constant. */
3299 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3300 VEC(constructor_elt,gc) *new_vec;
3301 from_array = 0;
3302
3303 if (try_const)
3304 new_vec = VEC_alloc (constructor_elt, gc, CONSTRUCTOR_NELTS (init));
3305 else
3306 new_vec = NULL;
3307
3308 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
3309 {
3310 tree baseref = build1 (INDIRECT_REF, type, base);
3311 tree one_init;
3312
3313 num_initialized_elts++;
3314
3315 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3316 if (digested)
3317 one_init = build2 (INIT_EXPR, type, baseref, elt);
3318 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
3319 one_init = build_aggr_init (baseref, elt, 0, complain);
3320 else
3321 one_init = cp_build_modify_expr (baseref, NOP_EXPR,
3322 elt, complain);
3323 if (one_init == error_mark_node)
3324 errors = true;
3325 if (try_const)
3326 {
3327 tree e = one_init;
3328 if (TREE_CODE (e) == EXPR_STMT)
3329 e = TREE_OPERAND (e, 0);
3330 if (TREE_CODE (e) == CONVERT_EXPR
3331 && VOID_TYPE_P (TREE_TYPE (e)))
3332 e = TREE_OPERAND (e, 0);
3333 e = maybe_constant_init (e);
3334 if (reduced_constant_expression_p (e))
3335 {
3336 CONSTRUCTOR_APPEND_ELT (new_vec, field, e);
3337 if (do_static_init)
3338 one_init = NULL_TREE;
3339 else
3340 one_init = build2 (INIT_EXPR, type, baseref, e);
3341 saw_const = true;
3342 }
3343 else
3344 {
3345 if (do_static_init)
3346 CONSTRUCTOR_APPEND_ELT (new_vec, field,
3347 build_zero_init (TREE_TYPE (e),
3348 NULL_TREE, true));
3349 saw_non_const = true;
3350 }
3351 }
3352
3353 if (one_init)
3354 finish_expr_stmt (one_init);
3355 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3356
3357 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain);
3358 if (one_init == error_mark_node)
3359 errors = true;
3360 else
3361 finish_expr_stmt (one_init);
3362
3363 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3364 complain);
3365 if (one_init == error_mark_node)
3366 errors = true;
3367 else
3368 finish_expr_stmt (one_init);
3369 }
3370
3371 if (try_const)
3372 {
3373 if (!saw_non_const)
3374 const_init = build_constructor (atype, new_vec);
3375 else if (do_static_init && saw_const)
3376 DECL_INITIAL (obase) = build_constructor (atype, new_vec);
3377 else
3378 VEC_free (constructor_elt, gc, new_vec);
3379 }
3380
3381 /* Clear out INIT so that we don't get confused below. */
3382 init = NULL_TREE;
3383 }
3384 else if (from_array)
3385 {
3386 if (init)
3387 /* OK, we set base2 above. */;
3388 else if (CLASS_TYPE_P (type)
3389 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
3390 {
3391 if (complain & tf_error)
3392 error ("initializer ends prematurely");
3393 errors = true;
3394 }
3395 }
3396
3397 /* Now, default-initialize any remaining elements. We don't need to
3398 do that if a) the type does not need constructing, or b) we've
3399 already initialized all the elements.
3400
3401 We do need to keep going if we're copying an array. */
3402
3403 if (from_array
3404 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
3405 && ! (host_integerp (maxindex, 0)
3406 && (num_initialized_elts
3407 == tree_low_cst (maxindex, 0) + 1))))
3408 {
3409 /* If the ITERATOR is equal to -1, then we don't have to loop;
3410 we've already initialized all the elements. */
3411 tree for_stmt;
3412 tree elt_init;
3413 tree to;
3414
3415 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
3416 finish_for_init_stmt (for_stmt);
3417 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
3418 build_int_cst (TREE_TYPE (iterator), -1)),
3419 for_stmt);
3420 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3421 complain);
3422 if (elt_init == error_mark_node)
3423 errors = true;
3424 finish_for_expr (elt_init, for_stmt);
3425
3426 to = build1 (INDIRECT_REF, type, base);
3427
3428 if (from_array)
3429 {
3430 tree from;
3431
3432 if (base2)
3433 {
3434 from = build1 (INDIRECT_REF, itype, base2);
3435 if (xvalue)
3436 from = move (from);
3437 }
3438 else
3439 from = NULL_TREE;
3440
3441 if (from_array == 2)
3442 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3443 complain);
3444 else if (type_build_ctor_call (type))
3445 elt_init = build_aggr_init (to, from, 0, complain);
3446 else if (from)
3447 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3448 complain);
3449 else
3450 gcc_unreachable ();
3451 }
3452 else if (TREE_CODE (type) == ARRAY_TYPE)
3453 {
3454 if (init != 0)
3455 sorry
3456 ("cannot initialize multi-dimensional array with initializer");
3457 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3458 0, 0,
3459 explicit_value_init_p,
3460 0, complain);
3461 }
3462 else if (explicit_value_init_p)
3463 {
3464 elt_init = build_value_init (type, complain);
3465 if (elt_init != error_mark_node)
3466 elt_init = build2 (INIT_EXPR, type, to, elt_init);
3467 }
3468 else
3469 {
3470 gcc_assert (type_build_ctor_call (type) || init);
3471 if (CLASS_TYPE_P (type))
3472 elt_init = build_aggr_init (to, init, 0, complain);
3473 else
3474 {
3475 if (TREE_CODE (init) == TREE_LIST)
3476 init = build_x_compound_expr_from_list (init, ELK_INIT,
3477 complain);
3478 elt_init = build2 (INIT_EXPR, type, to, init);
3479 }
3480 }
3481
3482 if (elt_init == error_mark_node)
3483 errors = true;
3484
3485 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3486 finish_expr_stmt (elt_init);
3487 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3488
3489 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3490 complain));
3491 if (base2)
3492 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3493 complain));
3494
3495 finish_for_stmt (for_stmt);
3496 }
3497
3498 /* Make sure to cleanup any partially constructed elements. */
3499 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3500 && from_array != 2)
3501 {
3502 tree e;
3503 tree m = cp_build_binary_op (input_location,
3504 MINUS_EXPR, maxindex, iterator,
3505 complain);
3506
3507 /* Flatten multi-dimensional array since build_vec_delete only
3508 expects one-dimensional array. */
3509 if (TREE_CODE (type) == ARRAY_TYPE)
3510 m = cp_build_binary_op (input_location,
3511 MULT_EXPR, m,
3512 array_type_nelts_total (type),
3513 complain);
3514
3515 finish_cleanup_try_block (try_block);
3516 e = build_vec_delete_1 (rval, m,
3517 inner_elt_type, sfk_complete_destructor,
3518 /*use_global_delete=*/0, complain);
3519 if (e == error_mark_node)
3520 errors = true;
3521 finish_cleanup (e, try_block);
3522 }
3523
3524 /* The value of the array initialization is the array itself, RVAL
3525 is a pointer to the first element. */
3526 finish_stmt_expr_expr (rval, stmt_expr);
3527
3528 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3529
3530 /* Now make the result have the correct type. */
3531 if (TREE_CODE (atype) == ARRAY_TYPE)
3532 {
3533 atype = build_pointer_type (atype);
3534 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3535 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3536 TREE_NO_WARNING (stmt_expr) = 1;
3537 }
3538
3539 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3540
3541 if (const_init)
3542 return build2 (INIT_EXPR, atype, obase, const_init);
3543 if (errors)
3544 return error_mark_node;
3545 return stmt_expr;
3546 }
3547
3548 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3549 build_delete. */
3550
3551 static tree
3552 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
3553 tsubst_flags_t complain)
3554 {
3555 tree name;
3556 tree fn;
3557 switch (dtor_kind)
3558 {
3559 case sfk_complete_destructor:
3560 name = complete_dtor_identifier;
3561 break;
3562
3563 case sfk_base_destructor:
3564 name = base_dtor_identifier;
3565 break;
3566
3567 case sfk_deleting_destructor:
3568 name = deleting_dtor_identifier;
3569 break;
3570
3571 default:
3572 gcc_unreachable ();
3573 }
3574 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3575 return build_new_method_call (exp, fn,
3576 /*args=*/NULL,
3577 /*conversion_path=*/NULL_TREE,
3578 flags,
3579 /*fn_p=*/NULL,
3580 complain);
3581 }
3582
3583 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3584 ADDR is an expression which yields the store to be destroyed.
3585 AUTO_DELETE is the name of the destructor to call, i.e., either
3586 sfk_complete_destructor, sfk_base_destructor, or
3587 sfk_deleting_destructor.
3588
3589 FLAGS is the logical disjunction of zero or more LOOKUP_
3590 flags. See cp-tree.h for more info. */
3591
3592 tree
3593 build_delete (tree type, tree addr, special_function_kind auto_delete,
3594 int flags, int use_global_delete, tsubst_flags_t complain)
3595 {
3596 tree expr;
3597
3598 if (addr == error_mark_node)
3599 return error_mark_node;
3600
3601 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3602 set to `error_mark_node' before it gets properly cleaned up. */
3603 if (type == error_mark_node)
3604 return error_mark_node;
3605
3606 type = TYPE_MAIN_VARIANT (type);
3607
3608 addr = mark_rvalue_use (addr);
3609
3610 if (TREE_CODE (type) == POINTER_TYPE)
3611 {
3612 bool complete_p = true;
3613
3614 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3615 if (TREE_CODE (type) == ARRAY_TYPE)
3616 goto handle_array;
3617
3618 /* We don't want to warn about delete of void*, only other
3619 incomplete types. Deleting other incomplete types
3620 invokes undefined behavior, but it is not ill-formed, so
3621 compile to something that would even do The Right Thing
3622 (TM) should the type have a trivial dtor and no delete
3623 operator. */
3624 if (!VOID_TYPE_P (type))
3625 {
3626 complete_type (type);
3627 if (!COMPLETE_TYPE_P (type))
3628 {
3629 if ((complain & tf_warning)
3630 && warning (0, "possible problem detected in invocation of "
3631 "delete operator:"))
3632 {
3633 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3634 inform (input_location, "neither the destructor nor the class-specific "
3635 "operator delete will be called, even if they are "
3636 "declared when the class is defined");
3637 }
3638 complete_p = false;
3639 }
3640 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
3641 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
3642 && TYPE_POLYMORPHIC_P (type))
3643 {
3644 tree dtor;
3645 dtor = CLASSTYPE_DESTRUCTORS (type);
3646 if (!dtor || !DECL_VINDEX (dtor))
3647 {
3648 if (CLASSTYPE_PURE_VIRTUALS (type))
3649 warning (OPT_Wdelete_non_virtual_dtor,
3650 "deleting object of abstract class type %qT"
3651 " which has non-virtual destructor"
3652 " will cause undefined behaviour", type);
3653 else
3654 warning (OPT_Wdelete_non_virtual_dtor,
3655 "deleting object of polymorphic class type %qT"
3656 " which has non-virtual destructor"
3657 " might cause undefined behaviour", type);
3658 }
3659 }
3660 }
3661 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3662 /* Call the builtin operator delete. */
3663 return build_builtin_delete_call (addr);
3664 if (TREE_SIDE_EFFECTS (addr))
3665 addr = save_expr (addr);
3666
3667 /* Throw away const and volatile on target type of addr. */
3668 addr = convert_force (build_pointer_type (type), addr, 0);
3669 }
3670 else if (TREE_CODE (type) == ARRAY_TYPE)
3671 {
3672 handle_array:
3673
3674 if (TYPE_DOMAIN (type) == NULL_TREE)
3675 {
3676 if (complain & tf_error)
3677 error ("unknown array size in delete");
3678 return error_mark_node;
3679 }
3680 return build_vec_delete (addr, array_type_nelts (type),
3681 auto_delete, use_global_delete, complain);
3682 }
3683 else
3684 {
3685 /* Don't check PROTECT here; leave that decision to the
3686 destructor. If the destructor is accessible, call it,
3687 else report error. */
3688 addr = cp_build_addr_expr (addr, complain);
3689 if (addr == error_mark_node)
3690 return error_mark_node;
3691 if (TREE_SIDE_EFFECTS (addr))
3692 addr = save_expr (addr);
3693
3694 addr = convert_force (build_pointer_type (type), addr, 0);
3695 }
3696
3697 gcc_assert (MAYBE_CLASS_TYPE_P (type));
3698
3699 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3700 {
3701 if (auto_delete != sfk_deleting_destructor)
3702 return void_zero_node;
3703
3704 return build_op_delete_call (DELETE_EXPR, addr,
3705 cxx_sizeof_nowarn (type),
3706 use_global_delete,
3707 /*placement=*/NULL_TREE,
3708 /*alloc_fn=*/NULL_TREE);
3709 }
3710 else
3711 {
3712 tree head = NULL_TREE;
3713 tree do_delete = NULL_TREE;
3714 tree ifexp;
3715
3716 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3717 lazily_declare_fn (sfk_destructor, type);
3718
3719 /* For `::delete x', we must not use the deleting destructor
3720 since then we would not be sure to get the global `operator
3721 delete'. */
3722 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3723 {
3724 /* We will use ADDR multiple times so we must save it. */
3725 addr = save_expr (addr);
3726 head = get_target_expr (build_headof (addr));
3727 /* Delete the object. */
3728 do_delete = build_builtin_delete_call (head);
3729 /* Otherwise, treat this like a complete object destructor
3730 call. */
3731 auto_delete = sfk_complete_destructor;
3732 }
3733 /* If the destructor is non-virtual, there is no deleting
3734 variant. Instead, we must explicitly call the appropriate
3735 `operator delete' here. */
3736 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
3737 && auto_delete == sfk_deleting_destructor)
3738 {
3739 /* We will use ADDR multiple times so we must save it. */
3740 addr = save_expr (addr);
3741 /* Build the call. */
3742 do_delete = build_op_delete_call (DELETE_EXPR,
3743 addr,
3744 cxx_sizeof_nowarn (type),
3745 /*global_p=*/false,
3746 /*placement=*/NULL_TREE,
3747 /*alloc_fn=*/NULL_TREE);
3748 /* Call the complete object destructor. */
3749 auto_delete = sfk_complete_destructor;
3750 }
3751 else if (auto_delete == sfk_deleting_destructor
3752 && TYPE_GETS_REG_DELETE (type))
3753 {
3754 /* Make sure we have access to the member op delete, even though
3755 we'll actually be calling it from the destructor. */
3756 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
3757 /*global_p=*/false,
3758 /*placement=*/NULL_TREE,
3759 /*alloc_fn=*/NULL_TREE);
3760 }
3761
3762 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
3763 auto_delete, flags, complain);
3764 if (expr == error_mark_node)
3765 return error_mark_node;
3766 if (do_delete)
3767 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
3768
3769 /* We need to calculate this before the dtor changes the vptr. */
3770 if (head)
3771 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
3772
3773 if (flags & LOOKUP_DESTRUCTOR)
3774 /* Explicit destructor call; don't check for null pointer. */
3775 ifexp = integer_one_node;
3776 else
3777 {
3778 /* Handle deleting a null pointer. */
3779 ifexp = fold (cp_build_binary_op (input_location,
3780 NE_EXPR, addr, nullptr_node,
3781 complain));
3782 if (ifexp == error_mark_node)
3783 return error_mark_node;
3784 }
3785
3786 if (ifexp != integer_one_node)
3787 expr = build3 (COND_EXPR, void_type_node,
3788 ifexp, expr, void_zero_node);
3789
3790 return expr;
3791 }
3792 }
3793
3794 /* At the beginning of a destructor, push cleanups that will call the
3795 destructors for our base classes and members.
3796
3797 Called from begin_destructor_body. */
3798
3799 void
3800 push_base_cleanups (void)
3801 {
3802 tree binfo, base_binfo;
3803 int i;
3804 tree member;
3805 tree expr;
3806 VEC(tree,gc) *vbases;
3807
3808 /* Run destructors for all virtual baseclasses. */
3809 if (CLASSTYPE_VBASECLASSES (current_class_type))
3810 {
3811 tree cond = (condition_conversion
3812 (build2 (BIT_AND_EXPR, integer_type_node,
3813 current_in_charge_parm,
3814 integer_two_node)));
3815
3816 /* The CLASSTYPE_VBASECLASSES vector is in initialization
3817 order, which is also the right order for pushing cleanups. */
3818 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
3819 VEC_iterate (tree, vbases, i, base_binfo); i++)
3820 {
3821 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
3822 {
3823 expr = build_special_member_call (current_class_ref,
3824 base_dtor_identifier,
3825 NULL,
3826 base_binfo,
3827 (LOOKUP_NORMAL
3828 | LOOKUP_NONVIRTUAL),
3829 tf_warning_or_error);
3830 expr = build3 (COND_EXPR, void_type_node, cond,
3831 expr, void_zero_node);
3832 finish_decl_cleanup (NULL_TREE, expr);
3833 }
3834 }
3835 }
3836
3837 /* Take care of the remaining baseclasses. */
3838 for (binfo = TYPE_BINFO (current_class_type), i = 0;
3839 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
3840 {
3841 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo))
3842 || BINFO_VIRTUAL_P (base_binfo))
3843 continue;
3844
3845 expr = build_special_member_call (current_class_ref,
3846 base_dtor_identifier,
3847 NULL, base_binfo,
3848 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
3849 tf_warning_or_error);
3850 finish_decl_cleanup (NULL_TREE, expr);
3851 }
3852
3853 /* Don't automatically destroy union members. */
3854 if (TREE_CODE (current_class_type) == UNION_TYPE)
3855 return;
3856
3857 for (member = TYPE_FIELDS (current_class_type); member;
3858 member = DECL_CHAIN (member))
3859 {
3860 tree this_type = TREE_TYPE (member);
3861 if (this_type == error_mark_node
3862 || TREE_CODE (member) != FIELD_DECL
3863 || DECL_ARTIFICIAL (member))
3864 continue;
3865 if (ANON_UNION_TYPE_P (this_type))
3866 continue;
3867 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
3868 {
3869 tree this_member = (build_class_member_access_expr
3870 (current_class_ref, member,
3871 /*access_path=*/NULL_TREE,
3872 /*preserve_reference=*/false,
3873 tf_warning_or_error));
3874 expr = build_delete (this_type, this_member,
3875 sfk_complete_destructor,
3876 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
3877 0, tf_warning_or_error);
3878 finish_decl_cleanup (NULL_TREE, expr);
3879 }
3880 }
3881 }
3882
3883 /* Build a C++ vector delete expression.
3884 MAXINDEX is the number of elements to be deleted.
3885 ELT_SIZE is the nominal size of each element in the vector.
3886 BASE is the expression that should yield the store to be deleted.
3887 This function expands (or synthesizes) these calls itself.
3888 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
3889
3890 This also calls delete for virtual baseclasses of elements of the vector.
3891
3892 Update: MAXINDEX is no longer needed. The size can be extracted from the
3893 start of the vector for pointers, and from the type for arrays. We still
3894 use MAXINDEX for arrays because it happens to already have one of the
3895 values we'd have to extract. (We could use MAXINDEX with pointers to
3896 confirm the size, and trap if the numbers differ; not clear that it'd
3897 be worth bothering.) */
3898
3899 tree
3900 build_vec_delete (tree base, tree maxindex,
3901 special_function_kind auto_delete_vec,
3902 int use_global_delete, tsubst_flags_t complain)
3903 {
3904 tree type;
3905 tree rval;
3906 tree base_init = NULL_TREE;
3907
3908 type = TREE_TYPE (base);
3909
3910 if (TREE_CODE (type) == POINTER_TYPE)
3911 {
3912 /* Step back one from start of vector, and read dimension. */
3913 tree cookie_addr;
3914 tree size_ptr_type = build_pointer_type (sizetype);
3915
3916 if (TREE_SIDE_EFFECTS (base))
3917 {
3918 base_init = get_target_expr (base);
3919 base = TARGET_EXPR_SLOT (base_init);
3920 }
3921 type = strip_array_types (TREE_TYPE (type));
3922 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
3923 sizetype, TYPE_SIZE_UNIT (sizetype));
3924 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
3925 cookie_addr);
3926 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
3927 }
3928 else if (TREE_CODE (type) == ARRAY_TYPE)
3929 {
3930 /* Get the total number of things in the array, maxindex is a
3931 bad name. */
3932 maxindex = array_type_nelts_total (type);
3933 type = strip_array_types (type);
3934 base = cp_build_addr_expr (base, complain);
3935 if (base == error_mark_node)
3936 return error_mark_node;
3937 if (TREE_SIDE_EFFECTS (base))
3938 {
3939 base_init = get_target_expr (base);
3940 base = TARGET_EXPR_SLOT (base_init);
3941 }
3942 }
3943 else
3944 {
3945 if (base != error_mark_node && !(complain & tf_error))
3946 error ("type to vector delete is neither pointer or array type");
3947 return error_mark_node;
3948 }
3949
3950 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
3951 use_global_delete, complain);
3952 if (base_init && rval != error_mark_node)
3953 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
3954
3955 return rval;
3956 }