]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/init.c
PR c++/87996 - size of array is negative error when SIZE_MAX/2 < sizeof(array) <...
[thirdparty/gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "target.h"
27 #include "cp-tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "gimplify.h"
31 #include "c-family/c-ubsan.h"
32 #include "intl.h"
33 #include "stringpool.h"
34 #include "attribs.h"
35 #include "asan.h"
36
37 static bool begin_init_stmts (tree *, tree *);
38 static tree finish_init_stmts (bool, tree, tree);
39 static void construct_virtual_base (tree, tree);
40 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
41 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
42 static void perform_member_init (tree, tree);
43 static int member_init_ok_or_else (tree, tree, tree);
44 static void expand_virtual_init (tree, tree);
45 static tree sort_mem_initializers (tree, tree);
46 static tree initializing_context (tree);
47 static void expand_cleanup_for_base (tree, tree);
48 static tree dfs_initialize_vtbl_ptrs (tree, void *);
49 static tree build_field_list (tree, tree, int *);
50 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
51
52 static GTY(()) tree fn;
53
54 /* We are about to generate some complex initialization code.
55 Conceptually, it is all a single expression. However, we may want
56 to include conditionals, loops, and other such statement-level
57 constructs. Therefore, we build the initialization code inside a
58 statement-expression. This function starts such an expression.
59 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
60 pass them back to finish_init_stmts when the expression is
61 complete. */
62
63 static bool
64 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
65 {
66 bool is_global = !building_stmt_list_p ();
67
68 *stmt_expr_p = begin_stmt_expr ();
69 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
70
71 return is_global;
72 }
73
74 /* Finish out the statement-expression begun by the previous call to
75 begin_init_stmts. Returns the statement-expression itself. */
76
77 static tree
78 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
79 {
80 finish_compound_stmt (compound_stmt);
81
82 stmt_expr = finish_stmt_expr (stmt_expr, true);
83
84 gcc_assert (!building_stmt_list_p () == is_global);
85
86 return stmt_expr;
87 }
88
89 /* Constructors */
90
91 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
92 which we want to initialize the vtable pointer for, DATA is
93 TREE_LIST whose TREE_VALUE is the this ptr expression. */
94
95 static tree
96 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
97 {
98 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
99 return dfs_skip_bases;
100
101 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
102 {
103 tree base_ptr = TREE_VALUE ((tree) data);
104
105 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
106 tf_warning_or_error);
107
108 expand_virtual_init (binfo, base_ptr);
109 }
110
111 return NULL_TREE;
112 }
113
114 /* Initialize all the vtable pointers in the object pointed to by
115 ADDR. */
116
117 void
118 initialize_vtbl_ptrs (tree addr)
119 {
120 tree list;
121 tree type;
122
123 type = TREE_TYPE (TREE_TYPE (addr));
124 list = build_tree_list (type, addr);
125
126 /* Walk through the hierarchy, initializing the vptr in each base
127 class. We do these in pre-order because we can't find the virtual
128 bases for a class until we've initialized the vtbl for that
129 class. */
130 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
131 }
132
133 /* Return an expression for the zero-initialization of an object with
134 type T. This expression will either be a constant (in the case
135 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
136 aggregate), or NULL (in the case that T does not require
137 initialization). In either case, the value can be used as
138 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
139 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
140 is the number of elements in the array. If STATIC_STORAGE_P is
141 TRUE, initializers are only generated for entities for which
142 zero-initialization does not simply mean filling the storage with
143 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
144 subfields with bit positions at or above that bit size shouldn't
145 be added. Note that this only works when the result is assigned
146 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
147 expand_assignment will end up clearing the full size of TYPE. */
148
149 static tree
150 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
151 tree field_size)
152 {
153 tree init = NULL_TREE;
154
155 /* [dcl.init]
156
157 To zero-initialize an object of type T means:
158
159 -- if T is a scalar type, the storage is set to the value of zero
160 converted to T.
161
162 -- if T is a non-union class type, the storage for each nonstatic
163 data member and each base-class subobject is zero-initialized.
164
165 -- if T is a union type, the storage for its first data member is
166 zero-initialized.
167
168 -- if T is an array type, the storage for each element is
169 zero-initialized.
170
171 -- if T is a reference type, no initialization is performed. */
172
173 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
174
175 if (type == error_mark_node)
176 ;
177 else if (static_storage_p && zero_init_p (type))
178 /* In order to save space, we do not explicitly build initializers
179 for items that do not need them. GCC's semantics are that
180 items with static storage duration that are not otherwise
181 initialized are initialized to zero. */
182 ;
183 else if (TYPE_PTR_OR_PTRMEM_P (type))
184 init = fold (convert (type, nullptr_node));
185 else if (NULLPTR_TYPE_P (type))
186 init = build_int_cst (type, 0);
187 else if (SCALAR_TYPE_P (type))
188 init = fold (convert (type, integer_zero_node));
189 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
190 {
191 tree field;
192 vec<constructor_elt, va_gc> *v = NULL;
193
194 /* Iterate over the fields, building initializations. */
195 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
196 {
197 if (TREE_CODE (field) != FIELD_DECL)
198 continue;
199
200 if (TREE_TYPE (field) == error_mark_node)
201 continue;
202
203 /* Don't add virtual bases for base classes if they are beyond
204 the size of the current field, that means it is present
205 somewhere else in the object. */
206 if (field_size)
207 {
208 tree bitpos = bit_position (field);
209 if (TREE_CODE (bitpos) == INTEGER_CST
210 && !tree_int_cst_lt (bitpos, field_size))
211 continue;
212 }
213
214 /* Note that for class types there will be FIELD_DECLs
215 corresponding to base classes as well. Thus, iterating
216 over TYPE_FIELDs will result in correct initialization of
217 all of the subobjects. */
218 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
219 {
220 tree new_field_size
221 = (DECL_FIELD_IS_BASE (field)
222 && DECL_SIZE (field)
223 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
224 ? DECL_SIZE (field) : NULL_TREE;
225 tree value = build_zero_init_1 (TREE_TYPE (field),
226 /*nelts=*/NULL_TREE,
227 static_storage_p,
228 new_field_size);
229 if (value)
230 CONSTRUCTOR_APPEND_ELT(v, field, value);
231 }
232
233 /* For unions, only the first field is initialized. */
234 if (TREE_CODE (type) == UNION_TYPE)
235 break;
236 }
237
238 /* Build a constructor to contain the initializations. */
239 init = build_constructor (type, v);
240 }
241 else if (TREE_CODE (type) == ARRAY_TYPE)
242 {
243 tree max_index;
244 vec<constructor_elt, va_gc> *v = NULL;
245
246 /* Iterate over the array elements, building initializations. */
247 if (nelts)
248 max_index = fold_build2_loc (input_location,
249 MINUS_EXPR, TREE_TYPE (nelts),
250 nelts, integer_one_node);
251 else
252 max_index = array_type_nelts (type);
253
254 /* If we have an error_mark here, we should just return error mark
255 as we don't know the size of the array yet. */
256 if (max_index == error_mark_node)
257 return error_mark_node;
258 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
259
260 /* A zero-sized array, which is accepted as an extension, will
261 have an upper bound of -1. */
262 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
263 {
264 constructor_elt ce;
265
266 /* If this is a one element array, we just use a regular init. */
267 if (tree_int_cst_equal (size_zero_node, max_index))
268 ce.index = size_zero_node;
269 else
270 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
271 max_index);
272
273 ce.value = build_zero_init_1 (TREE_TYPE (type),
274 /*nelts=*/NULL_TREE,
275 static_storage_p, NULL_TREE);
276 if (ce.value)
277 {
278 vec_alloc (v, 1);
279 v->quick_push (ce);
280 }
281 }
282
283 /* Build a constructor to contain the initializations. */
284 init = build_constructor (type, v);
285 }
286 else if (VECTOR_TYPE_P (type))
287 init = build_zero_cst (type);
288 else
289 {
290 gcc_assert (TYPE_REF_P (type));
291 init = build_zero_cst (type);
292 }
293
294 /* In all cases, the initializer is a constant. */
295 if (init)
296 TREE_CONSTANT (init) = 1;
297
298 return init;
299 }
300
301 /* Return an expression for the zero-initialization of an object with
302 type T. This expression will either be a constant (in the case
303 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
304 aggregate), or NULL (in the case that T does not require
305 initialization). In either case, the value can be used as
306 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
307 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
308 is the number of elements in the array. If STATIC_STORAGE_P is
309 TRUE, initializers are only generated for entities for which
310 zero-initialization does not simply mean filling the storage with
311 zero bytes. */
312
313 tree
314 build_zero_init (tree type, tree nelts, bool static_storage_p)
315 {
316 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
317 }
318
319 /* Return a suitable initializer for value-initializing an object of type
320 TYPE, as described in [dcl.init]. */
321
322 tree
323 build_value_init (tree type, tsubst_flags_t complain)
324 {
325 /* [dcl.init]
326
327 To value-initialize an object of type T means:
328
329 - if T is a class type (clause 9) with either no default constructor
330 (12.1) or a default constructor that is user-provided or deleted,
331 then the object is default-initialized;
332
333 - if T is a (possibly cv-qualified) class type without a user-provided
334 or deleted default constructor, then the object is zero-initialized
335 and the semantic constraints for default-initialization are checked,
336 and if T has a non-trivial default constructor, the object is
337 default-initialized;
338
339 - if T is an array type, then each element is value-initialized;
340
341 - otherwise, the object is zero-initialized.
342
343 A program that calls for default-initialization or
344 value-initialization of an entity of reference type is ill-formed. */
345
346 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
347 gcc_assert (!processing_template_decl
348 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
349
350 if (CLASS_TYPE_P (type)
351 && type_build_ctor_call (type))
352 {
353 tree ctor =
354 build_special_member_call (NULL_TREE, complete_ctor_identifier,
355 NULL, type, LOOKUP_NORMAL,
356 complain);
357 if (ctor == error_mark_node)
358 return ctor;
359 tree fn = NULL_TREE;
360 if (TREE_CODE (ctor) == CALL_EXPR)
361 fn = get_callee_fndecl (ctor);
362 ctor = build_aggr_init_expr (type, ctor);
363 if (fn && user_provided_p (fn))
364 return ctor;
365 else if (TYPE_HAS_COMPLEX_DFLT (type))
366 {
367 /* This is a class that needs constructing, but doesn't have
368 a user-provided constructor. So we need to zero-initialize
369 the object and then call the implicitly defined ctor.
370 This will be handled in simplify_aggr_init_expr. */
371 AGGR_INIT_ZERO_FIRST (ctor) = 1;
372 return ctor;
373 }
374 }
375
376 /* Discard any access checking during subobject initialization;
377 the checks are implied by the call to the ctor which we have
378 verified is OK (cpp0x/defaulted46.C). */
379 push_deferring_access_checks (dk_deferred);
380 tree r = build_value_init_noctor (type, complain);
381 pop_deferring_access_checks ();
382 return r;
383 }
384
385 /* Like build_value_init, but don't call the constructor for TYPE. Used
386 for base initializers. */
387
388 tree
389 build_value_init_noctor (tree type, tsubst_flags_t complain)
390 {
391 if (!COMPLETE_TYPE_P (type))
392 {
393 if (complain & tf_error)
394 error ("value-initialization of incomplete type %qT", type);
395 return error_mark_node;
396 }
397 /* FIXME the class and array cases should just use digest_init once it is
398 SFINAE-enabled. */
399 if (CLASS_TYPE_P (type))
400 {
401 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
402 || errorcount != 0);
403
404 if (TREE_CODE (type) != UNION_TYPE)
405 {
406 tree field;
407 vec<constructor_elt, va_gc> *v = NULL;
408
409 /* Iterate over the fields, building initializations. */
410 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
411 {
412 tree ftype, value;
413
414 if (TREE_CODE (field) != FIELD_DECL)
415 continue;
416
417 ftype = TREE_TYPE (field);
418
419 if (ftype == error_mark_node)
420 continue;
421
422 /* We could skip vfields and fields of types with
423 user-defined constructors, but I think that won't improve
424 performance at all; it should be simpler in general just
425 to zero out the entire object than try to only zero the
426 bits that actually need it. */
427
428 /* Note that for class types there will be FIELD_DECLs
429 corresponding to base classes as well. Thus, iterating
430 over TYPE_FIELDs will result in correct initialization of
431 all of the subobjects. */
432 value = build_value_init (ftype, complain);
433 value = maybe_constant_init (value);
434
435 if (value == error_mark_node)
436 return error_mark_node;
437
438 CONSTRUCTOR_APPEND_ELT(v, field, value);
439
440 /* We shouldn't have gotten here for anything that would need
441 non-trivial initialization, and gimplify_init_ctor_preeval
442 would need to be fixed to allow it. */
443 gcc_assert (TREE_CODE (value) != TARGET_EXPR
444 && TREE_CODE (value) != AGGR_INIT_EXPR);
445 }
446
447 /* Build a constructor to contain the zero- initializations. */
448 return build_constructor (type, v);
449 }
450 }
451 else if (TREE_CODE (type) == ARRAY_TYPE)
452 {
453 vec<constructor_elt, va_gc> *v = NULL;
454
455 /* Iterate over the array elements, building initializations. */
456 tree max_index = array_type_nelts (type);
457
458 /* If we have an error_mark here, we should just return error mark
459 as we don't know the size of the array yet. */
460 if (max_index == error_mark_node)
461 {
462 if (complain & tf_error)
463 error ("cannot value-initialize array of unknown bound %qT",
464 type);
465 return error_mark_node;
466 }
467 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
468
469 /* A zero-sized array, which is accepted as an extension, will
470 have an upper bound of -1. */
471 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
472 {
473 constructor_elt ce;
474
475 /* If this is a one element array, we just use a regular init. */
476 if (tree_int_cst_equal (size_zero_node, max_index))
477 ce.index = size_zero_node;
478 else
479 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
480
481 ce.value = build_value_init (TREE_TYPE (type), complain);
482 ce.value = maybe_constant_init (ce.value);
483 if (ce.value == error_mark_node)
484 return error_mark_node;
485
486 vec_alloc (v, 1);
487 v->quick_push (ce);
488
489 /* We shouldn't have gotten here for anything that would need
490 non-trivial initialization, and gimplify_init_ctor_preeval
491 would need to be fixed to allow it. */
492 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
493 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
494 }
495
496 /* Build a constructor to contain the initializations. */
497 return build_constructor (type, v);
498 }
499 else if (TREE_CODE (type) == FUNCTION_TYPE)
500 {
501 if (complain & tf_error)
502 error ("value-initialization of function type %qT", type);
503 return error_mark_node;
504 }
505 else if (TYPE_REF_P (type))
506 {
507 if (complain & tf_error)
508 error ("value-initialization of reference type %qT", type);
509 return error_mark_node;
510 }
511
512 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
513 }
514
515 /* Initialize current class with INIT, a TREE_LIST of
516 arguments for a target constructor. If TREE_LIST is void_type_node,
517 an empty initializer list was given. */
518
519 static void
520 perform_target_ctor (tree init)
521 {
522 tree decl = current_class_ref;
523 tree type = current_class_type;
524
525 finish_expr_stmt (build_aggr_init (decl, init,
526 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
527 tf_warning_or_error));
528 if (type_build_dtor_call (type))
529 {
530 tree expr = build_delete (type, decl, sfk_complete_destructor,
531 LOOKUP_NORMAL
532 |LOOKUP_NONVIRTUAL
533 |LOOKUP_DESTRUCTOR,
534 0, tf_warning_or_error);
535 if (expr != error_mark_node
536 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
537 finish_eh_cleanup (expr);
538 }
539 }
540
541 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
542
543 static GTY((cache)) tree_cache_map *nsdmi_inst;
544
545 tree
546 get_nsdmi (tree member, bool in_ctor, tsubst_flags_t complain)
547 {
548 tree init;
549 tree save_ccp = current_class_ptr;
550 tree save_ccr = current_class_ref;
551
552 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
553 {
554 init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
555 location_t expr_loc
556 = cp_expr_loc_or_loc (init, DECL_SOURCE_LOCATION (member));
557 tree *slot;
558 if (TREE_CODE (init) == DEFAULT_ARG)
559 /* Unparsed. */;
560 else if (nsdmi_inst && (slot = nsdmi_inst->get (member)))
561 init = *slot;
562 /* Check recursive instantiation. */
563 else if (DECL_INSTANTIATING_NSDMI_P (member))
564 {
565 if (complain & tf_error)
566 error_at (expr_loc, "recursive instantiation of default member "
567 "initializer for %qD", member);
568 init = error_mark_node;
569 }
570 else
571 {
572 cp_evaluated ev;
573
574 location_t sloc = input_location;
575 input_location = expr_loc;
576
577 DECL_INSTANTIATING_NSDMI_P (member) = 1;
578
579 bool pushed = false;
580 if (!currently_open_class (DECL_CONTEXT (member)))
581 {
582 push_to_top_level ();
583 push_nested_class (DECL_CONTEXT (member));
584 pushed = true;
585 }
586
587 gcc_checking_assert (!processing_template_decl);
588
589 inject_this_parameter (DECL_CONTEXT (member), TYPE_UNQUALIFIED);
590
591 start_lambda_scope (member);
592
593 /* Do deferred instantiation of the NSDMI. */
594 init = (tsubst_copy_and_build
595 (init, DECL_TI_ARGS (member),
596 complain, member, /*function_p=*/false,
597 /*integral_constant_expression_p=*/false));
598 init = digest_nsdmi_init (member, init, complain);
599
600 finish_lambda_scope ();
601
602 DECL_INSTANTIATING_NSDMI_P (member) = 0;
603
604 if (init != error_mark_node)
605 {
606 if (!nsdmi_inst)
607 nsdmi_inst = tree_cache_map::create_ggc (37);
608 nsdmi_inst->put (member, init);
609 }
610
611 if (pushed)
612 {
613 pop_nested_class ();
614 pop_from_top_level ();
615 }
616
617 input_location = sloc;
618 }
619 }
620 else
621 init = DECL_INITIAL (member);
622
623 if (init && TREE_CODE (init) == DEFAULT_ARG)
624 {
625 if (complain & tf_error)
626 {
627 error ("default member initializer for %qD required before the end "
628 "of its enclosing class", member);
629 inform (location_of (init), "defined here");
630 DECL_INITIAL (member) = error_mark_node;
631 }
632 init = error_mark_node;
633 }
634
635 if (in_ctor)
636 {
637 current_class_ptr = save_ccp;
638 current_class_ref = save_ccr;
639 }
640 else
641 {
642 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
643 refer to; constexpr evaluation knows what to do with it. */
644 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
645 current_class_ptr = build_address (current_class_ref);
646 }
647
648 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
649 so the aggregate init code below will see a CONSTRUCTOR. */
650 bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init));
651 if (simple_target)
652 init = TARGET_EXPR_INITIAL (init);
653 init = break_out_target_exprs (init, /*loc*/true);
654 if (simple_target && TREE_CODE (init) != CONSTRUCTOR)
655 /* Now put it back so C++17 copy elision works. */
656 init = get_target_expr (init);
657
658 current_class_ptr = save_ccp;
659 current_class_ref = save_ccr;
660 return init;
661 }
662
663 /* Diagnose the flexible array MEMBER if its INITializer is non-null
664 and return true if so. Otherwise return false. */
665
666 bool
667 maybe_reject_flexarray_init (tree member, tree init)
668 {
669 tree type = TREE_TYPE (member);
670
671 if (!init
672 || TREE_CODE (type) != ARRAY_TYPE
673 || TYPE_DOMAIN (type))
674 return false;
675
676 /* Point at the flexible array member declaration if it's initialized
677 in-class, and at the ctor if it's initialized in a ctor member
678 initializer list. */
679 location_t loc;
680 if (DECL_INITIAL (member) == init
681 || !current_function_decl
682 || DECL_DEFAULTED_FN (current_function_decl))
683 loc = DECL_SOURCE_LOCATION (member);
684 else
685 loc = DECL_SOURCE_LOCATION (current_function_decl);
686
687 error_at (loc, "initializer for flexible array member %q#D", member);
688 return true;
689 }
690
691 /* If INIT's value can come from a call to std::initializer_list<T>::begin,
692 return that function. Otherwise, NULL_TREE. */
693
694 static tree
695 find_list_begin (tree init)
696 {
697 STRIP_NOPS (init);
698 while (TREE_CODE (init) == COMPOUND_EXPR)
699 init = TREE_OPERAND (init, 1);
700 STRIP_NOPS (init);
701 if (TREE_CODE (init) == COND_EXPR)
702 {
703 tree left = TREE_OPERAND (init, 1);
704 if (!left)
705 left = TREE_OPERAND (init, 0);
706 left = find_list_begin (left);
707 if (left)
708 return left;
709 return find_list_begin (TREE_OPERAND (init, 2));
710 }
711 if (TREE_CODE (init) == CALL_EXPR)
712 if (tree fn = get_callee_fndecl (init))
713 if (id_equal (DECL_NAME (fn), "begin")
714 && is_std_init_list (DECL_CONTEXT (fn)))
715 return fn;
716 return NULL_TREE;
717 }
718
719 /* If INIT initializing MEMBER is copying the address of the underlying array
720 of an initializer_list, warn. */
721
722 static void
723 maybe_warn_list_ctor (tree member, tree init)
724 {
725 tree memtype = TREE_TYPE (member);
726 if (!init || !TYPE_PTR_P (memtype)
727 || !is_list_ctor (current_function_decl))
728 return;
729
730 tree parms = FUNCTION_FIRST_USER_PARMTYPE (current_function_decl);
731 tree initlist = non_reference (TREE_VALUE (parms));
732 tree targs = CLASSTYPE_TI_ARGS (initlist);
733 tree elttype = TREE_VEC_ELT (targs, 0);
734
735 if (!same_type_ignoring_top_level_qualifiers_p
736 (TREE_TYPE (memtype), elttype))
737 return;
738
739 tree begin = find_list_begin (init);
740 if (!begin)
741 return;
742
743 location_t loc = cp_expr_loc_or_loc (init, input_location);
744 warning_at (loc, OPT_Winit_list_lifetime,
745 "initializing %qD from %qE does not extend the lifetime "
746 "of the underlying array", member, begin);
747 }
748
749 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
750 arguments. If TREE_LIST is void_type_node, an empty initializer
751 list was given; if NULL_TREE no initializer was given. */
752
753 static void
754 perform_member_init (tree member, tree init)
755 {
756 tree decl;
757 tree type = TREE_TYPE (member);
758
759 /* Use the non-static data member initializer if there was no
760 mem-initializer for this field. */
761 if (init == NULL_TREE)
762 init = get_nsdmi (member, /*ctor*/true, tf_warning_or_error);
763
764 if (init == error_mark_node)
765 return;
766
767 /* Effective C++ rule 12 requires that all data members be
768 initialized. */
769 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
770 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
771 "%qD should be initialized in the member initialization list",
772 member);
773
774 /* Get an lvalue for the data member. */
775 decl = build_class_member_access_expr (current_class_ref, member,
776 /*access_path=*/NULL_TREE,
777 /*preserve_reference=*/true,
778 tf_warning_or_error);
779 if (decl == error_mark_node)
780 return;
781
782 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
783 && TREE_CHAIN (init) == NULL_TREE)
784 {
785 tree val = TREE_VALUE (init);
786 /* Handle references. */
787 if (REFERENCE_REF_P (val))
788 val = TREE_OPERAND (val, 0);
789 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
790 && TREE_OPERAND (val, 0) == current_class_ref)
791 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
792 OPT_Winit_self, "%qD is initialized with itself",
793 member);
794 }
795
796 if (init == void_type_node)
797 {
798 /* mem() means value-initialization. */
799 if (TREE_CODE (type) == ARRAY_TYPE)
800 {
801 init = build_vec_init_expr (type, init, tf_warning_or_error);
802 init = build2 (INIT_EXPR, type, decl, init);
803 finish_expr_stmt (init);
804 }
805 else
806 {
807 tree value = build_value_init (type, tf_warning_or_error);
808 if (value == error_mark_node)
809 return;
810 init = build2 (INIT_EXPR, type, decl, value);
811 finish_expr_stmt (init);
812 }
813 }
814 /* Deal with this here, as we will get confused if we try to call the
815 assignment op for an anonymous union. This can happen in a
816 synthesized copy constructor. */
817 else if (ANON_AGGR_TYPE_P (type))
818 {
819 if (init)
820 {
821 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
822 finish_expr_stmt (init);
823 }
824 }
825 else if (init
826 && (TYPE_REF_P (type)
827 /* Pre-digested NSDMI. */
828 || (((TREE_CODE (init) == CONSTRUCTOR
829 && TREE_TYPE (init) == type)
830 /* { } mem-initializer. */
831 || (TREE_CODE (init) == TREE_LIST
832 && DIRECT_LIST_INIT_P (TREE_VALUE (init))))
833 && (CP_AGGREGATE_TYPE_P (type)
834 || is_std_init_list (type)))))
835 {
836 /* With references and list-initialization, we need to deal with
837 extending temporary lifetimes. 12.2p5: "A temporary bound to a
838 reference member in a constructor’s ctor-initializer (12.6.2)
839 persists until the constructor exits." */
840 unsigned i; tree t;
841 vec<tree, va_gc> *cleanups = make_tree_vector ();
842 if (TREE_CODE (init) == TREE_LIST)
843 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
844 tf_warning_or_error);
845 if (TREE_TYPE (init) != type)
846 {
847 if (BRACE_ENCLOSED_INITIALIZER_P (init)
848 && CP_AGGREGATE_TYPE_P (type))
849 init = reshape_init (type, init, tf_warning_or_error);
850 init = digest_init (type, init, tf_warning_or_error);
851 }
852 if (init == error_mark_node)
853 return;
854 /* A FIELD_DECL doesn't really have a suitable lifetime, but
855 make_temporary_var_for_ref_to_temp will treat it as automatic and
856 set_up_extended_ref_temp wants to use the decl in a warning. */
857 init = extend_ref_init_temps (member, init, &cleanups);
858 if (TREE_CODE (type) == ARRAY_TYPE
859 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
860 init = build_vec_init_expr (type, init, tf_warning_or_error);
861 init = build2 (INIT_EXPR, type, decl, init);
862 finish_expr_stmt (init);
863 FOR_EACH_VEC_ELT (*cleanups, i, t)
864 push_cleanup (decl, t, false);
865 release_tree_vector (cleanups);
866 }
867 else if (type_build_ctor_call (type)
868 || (init && CLASS_TYPE_P (strip_array_types (type))))
869 {
870 if (TREE_CODE (type) == ARRAY_TYPE)
871 {
872 if (init)
873 {
874 /* Check to make sure the member initializer is valid and
875 something like a CONSTRUCTOR in: T a[] = { 1, 2 } and
876 if it isn't, return early to avoid triggering another
877 error below. */
878 if (maybe_reject_flexarray_init (member, init))
879 return;
880
881 if (TREE_CODE (init) != TREE_LIST || TREE_CHAIN (init))
882 init = error_mark_node;
883 else
884 init = TREE_VALUE (init);
885
886 if (BRACE_ENCLOSED_INITIALIZER_P (init))
887 init = digest_init (type, init, tf_warning_or_error);
888 }
889 if (init == NULL_TREE
890 || same_type_ignoring_top_level_qualifiers_p (type,
891 TREE_TYPE (init)))
892 {
893 if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
894 {
895 /* Initialize the array only if it's not a flexible
896 array member (i.e., if it has an upper bound). */
897 init = build_vec_init_expr (type, init, tf_warning_or_error);
898 init = build2 (INIT_EXPR, type, decl, init);
899 finish_expr_stmt (init);
900 }
901 }
902 else
903 error ("invalid initializer for array member %q#D", member);
904 }
905 else
906 {
907 int flags = LOOKUP_NORMAL;
908 if (DECL_DEFAULTED_FN (current_function_decl))
909 flags |= LOOKUP_DEFAULTED;
910 if (CP_TYPE_CONST_P (type)
911 && init == NULL_TREE
912 && default_init_uninitialized_part (type))
913 {
914 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
915 vtable; still give this diagnostic. */
916 auto_diagnostic_group d;
917 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
918 "uninitialized const member in %q#T", type))
919 inform (DECL_SOURCE_LOCATION (member),
920 "%q#D should be initialized", member );
921 }
922 finish_expr_stmt (build_aggr_init (decl, init, flags,
923 tf_warning_or_error));
924 }
925 }
926 else
927 {
928 if (init == NULL_TREE)
929 {
930 tree core_type;
931 /* member traversal: note it leaves init NULL */
932 if (TYPE_REF_P (type))
933 {
934 auto_diagnostic_group d;
935 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
936 "uninitialized reference member in %q#T", type))
937 inform (DECL_SOURCE_LOCATION (member),
938 "%q#D should be initialized", member);
939 }
940 else if (CP_TYPE_CONST_P (type))
941 {
942 auto_diagnostic_group d;
943 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
944 "uninitialized const member in %q#T", type))
945 inform (DECL_SOURCE_LOCATION (member),
946 "%q#D should be initialized", member );
947 }
948
949 core_type = strip_array_types (type);
950
951 if (CLASS_TYPE_P (core_type)
952 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
953 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
954 diagnose_uninitialized_cst_or_ref_member (core_type,
955 /*using_new=*/false,
956 /*complain=*/true);
957 }
958 else if (TREE_CODE (init) == TREE_LIST)
959 /* There was an explicit member initialization. Do some work
960 in that case. */
961 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
962 tf_warning_or_error);
963
964 maybe_warn_list_ctor (member, init);
965
966 /* Reject a member initializer for a flexible array member. */
967 if (init && !maybe_reject_flexarray_init (member, init))
968 finish_expr_stmt (cp_build_modify_expr (input_location, decl,
969 INIT_EXPR, init,
970 tf_warning_or_error));
971 }
972
973 if (type_build_dtor_call (type))
974 {
975 tree expr;
976
977 expr = build_class_member_access_expr (current_class_ref, member,
978 /*access_path=*/NULL_TREE,
979 /*preserve_reference=*/false,
980 tf_warning_or_error);
981 expr = build_delete (type, expr, sfk_complete_destructor,
982 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
983 tf_warning_or_error);
984
985 if (expr != error_mark_node
986 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
987 finish_eh_cleanup (expr);
988 }
989 }
990
991 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
992 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
993
994 static tree
995 build_field_list (tree t, tree list, int *uses_unions_or_anon_p)
996 {
997 tree fields;
998
999 /* Note whether or not T is a union. */
1000 if (TREE_CODE (t) == UNION_TYPE)
1001 *uses_unions_or_anon_p = 1;
1002
1003 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
1004 {
1005 tree fieldtype;
1006
1007 /* Skip CONST_DECLs for enumeration constants and so forth. */
1008 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
1009 continue;
1010
1011 fieldtype = TREE_TYPE (fields);
1012
1013 /* For an anonymous struct or union, we must recursively
1014 consider the fields of the anonymous type. They can be
1015 directly initialized from the constructor. */
1016 if (ANON_AGGR_TYPE_P (fieldtype))
1017 {
1018 /* Add this field itself. Synthesized copy constructors
1019 initialize the entire aggregate. */
1020 list = tree_cons (fields, NULL_TREE, list);
1021 /* And now add the fields in the anonymous aggregate. */
1022 list = build_field_list (fieldtype, list, uses_unions_or_anon_p);
1023 *uses_unions_or_anon_p = 1;
1024 }
1025 /* Add this field. */
1026 else if (DECL_NAME (fields))
1027 list = tree_cons (fields, NULL_TREE, list);
1028 }
1029
1030 return list;
1031 }
1032
1033 /* Return the innermost aggregate scope for FIELD, whether that is
1034 the enclosing class or an anonymous aggregate within it. */
1035
1036 static tree
1037 innermost_aggr_scope (tree field)
1038 {
1039 if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1040 return TREE_TYPE (field);
1041 else
1042 return DECL_CONTEXT (field);
1043 }
1044
1045 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
1046 a FIELD_DECL or BINFO in T that needs initialization. The
1047 TREE_VALUE gives the initializer, or list of initializer arguments.
1048
1049 Return a TREE_LIST containing all of the initializations required
1050 for T, in the order in which they should be performed. The output
1051 list has the same format as the input. */
1052
1053 static tree
1054 sort_mem_initializers (tree t, tree mem_inits)
1055 {
1056 tree init;
1057 tree base, binfo, base_binfo;
1058 tree sorted_inits;
1059 tree next_subobject;
1060 vec<tree, va_gc> *vbases;
1061 int i;
1062 int uses_unions_or_anon_p = 0;
1063
1064 /* Build up a list of initializations. The TREE_PURPOSE of entry
1065 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
1066 TREE_VALUE will be the constructor arguments, or NULL if no
1067 explicit initialization was provided. */
1068 sorted_inits = NULL_TREE;
1069
1070 /* Process the virtual bases. */
1071 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
1072 vec_safe_iterate (vbases, i, &base); i++)
1073 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
1074
1075 /* Process the direct bases. */
1076 for (binfo = TYPE_BINFO (t), i = 0;
1077 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
1078 if (!BINFO_VIRTUAL_P (base_binfo))
1079 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
1080
1081 /* Process the non-static data members. */
1082 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p);
1083 /* Reverse the entire list of initializations, so that they are in
1084 the order that they will actually be performed. */
1085 sorted_inits = nreverse (sorted_inits);
1086
1087 /* If the user presented the initializers in an order different from
1088 that in which they will actually occur, we issue a warning. Keep
1089 track of the next subobject which can be explicitly initialized
1090 without issuing a warning. */
1091 next_subobject = sorted_inits;
1092
1093 /* Go through the explicit initializers, filling in TREE_PURPOSE in
1094 the SORTED_INITS. */
1095 for (init = mem_inits; init; init = TREE_CHAIN (init))
1096 {
1097 tree subobject;
1098 tree subobject_init;
1099
1100 subobject = TREE_PURPOSE (init);
1101
1102 /* If the explicit initializers are in sorted order, then
1103 SUBOBJECT will be NEXT_SUBOBJECT, or something following
1104 it. */
1105 for (subobject_init = next_subobject;
1106 subobject_init;
1107 subobject_init = TREE_CHAIN (subobject_init))
1108 if (TREE_PURPOSE (subobject_init) == subobject)
1109 break;
1110
1111 /* Issue a warning if the explicit initializer order does not
1112 match that which will actually occur.
1113 ??? Are all these on the correct lines? */
1114 if (warn_reorder && !subobject_init)
1115 {
1116 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
1117 warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
1118 OPT_Wreorder, "%qD will be initialized after",
1119 TREE_PURPOSE (next_subobject));
1120 else
1121 warning (OPT_Wreorder, "base %qT will be initialized after",
1122 TREE_PURPOSE (next_subobject));
1123 if (TREE_CODE (subobject) == FIELD_DECL)
1124 warning_at (DECL_SOURCE_LOCATION (subobject),
1125 OPT_Wreorder, " %q#D", subobject);
1126 else
1127 warning (OPT_Wreorder, " base %qT", subobject);
1128 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1129 OPT_Wreorder, " when initialized here");
1130 }
1131
1132 /* Look again, from the beginning of the list. */
1133 if (!subobject_init)
1134 {
1135 subobject_init = sorted_inits;
1136 while (TREE_PURPOSE (subobject_init) != subobject)
1137 subobject_init = TREE_CHAIN (subobject_init);
1138 }
1139
1140 /* It is invalid to initialize the same subobject more than
1141 once. */
1142 if (TREE_VALUE (subobject_init))
1143 {
1144 if (TREE_CODE (subobject) == FIELD_DECL)
1145 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1146 "multiple initializations given for %qD",
1147 subobject);
1148 else
1149 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1150 "multiple initializations given for base %qT",
1151 subobject);
1152 }
1153
1154 /* Record the initialization. */
1155 TREE_VALUE (subobject_init) = TREE_VALUE (init);
1156 next_subobject = subobject_init;
1157 }
1158
1159 /* [class.base.init]
1160
1161 If a ctor-initializer specifies more than one mem-initializer for
1162 multiple members of the same union (including members of
1163 anonymous unions), the ctor-initializer is ill-formed.
1164
1165 Here we also splice out uninitialized union members. */
1166 if (uses_unions_or_anon_p)
1167 {
1168 tree *last_p = NULL;
1169 tree *p;
1170 for (p = &sorted_inits; *p; )
1171 {
1172 tree field;
1173 tree ctx;
1174
1175 init = *p;
1176
1177 field = TREE_PURPOSE (init);
1178
1179 /* Skip base classes. */
1180 if (TREE_CODE (field) != FIELD_DECL)
1181 goto next;
1182
1183 /* If this is an anonymous aggregate with no explicit initializer,
1184 splice it out. */
1185 if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1186 goto splice;
1187
1188 /* See if this field is a member of a union, or a member of a
1189 structure contained in a union, etc. */
1190 ctx = innermost_aggr_scope (field);
1191
1192 /* If this field is not a member of a union, skip it. */
1193 if (TREE_CODE (ctx) != UNION_TYPE
1194 && !ANON_AGGR_TYPE_P (ctx))
1195 goto next;
1196
1197 /* If this union member has no explicit initializer and no NSDMI,
1198 splice it out. */
1199 if (TREE_VALUE (init) || DECL_INITIAL (field))
1200 /* OK. */;
1201 else
1202 goto splice;
1203
1204 /* It's only an error if we have two initializers for the same
1205 union type. */
1206 if (!last_p)
1207 {
1208 last_p = p;
1209 goto next;
1210 }
1211
1212 /* See if LAST_FIELD and the field initialized by INIT are
1213 members of the same union (or the union itself). If so, there's
1214 a problem, unless they're actually members of the same structure
1215 which is itself a member of a union. For example, given:
1216
1217 union { struct { int i; int j; }; };
1218
1219 initializing both `i' and `j' makes sense. */
1220 ctx = common_enclosing_class
1221 (innermost_aggr_scope (field),
1222 innermost_aggr_scope (TREE_PURPOSE (*last_p)));
1223
1224 if (ctx && (TREE_CODE (ctx) == UNION_TYPE
1225 || ctx == TREE_TYPE (TREE_PURPOSE (*last_p))))
1226 {
1227 /* A mem-initializer hides an NSDMI. */
1228 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1229 *last_p = TREE_CHAIN (*last_p);
1230 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1231 goto splice;
1232 else
1233 {
1234 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1235 "initializations for multiple members of %qT",
1236 ctx);
1237 goto splice;
1238 }
1239 }
1240
1241 last_p = p;
1242
1243 next:
1244 p = &TREE_CHAIN (*p);
1245 continue;
1246 splice:
1247 *p = TREE_CHAIN (*p);
1248 continue;
1249 }
1250 }
1251
1252 return sorted_inits;
1253 }
1254
1255 /* Callback for cp_walk_tree to mark all PARM_DECLs in a tree as read. */
1256
1257 static tree
1258 mark_exp_read_r (tree *tp, int *, void *)
1259 {
1260 tree t = *tp;
1261 if (TREE_CODE (t) == PARM_DECL)
1262 mark_exp_read (t);
1263 return NULL_TREE;
1264 }
1265
1266 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1267 is a TREE_LIST giving the explicit mem-initializer-list for the
1268 constructor. The TREE_PURPOSE of each entry is a subobject (a
1269 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1270 is a TREE_LIST giving the arguments to the constructor or
1271 void_type_node for an empty list of arguments. */
1272
1273 void
1274 emit_mem_initializers (tree mem_inits)
1275 {
1276 int flags = LOOKUP_NORMAL;
1277
1278 /* We will already have issued an error message about the fact that
1279 the type is incomplete. */
1280 if (!COMPLETE_TYPE_P (current_class_type))
1281 return;
1282
1283 if (mem_inits
1284 && TYPE_P (TREE_PURPOSE (mem_inits))
1285 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1286 {
1287 /* Delegating constructor. */
1288 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1289 perform_target_ctor (TREE_VALUE (mem_inits));
1290 return;
1291 }
1292
1293 if (DECL_DEFAULTED_FN (current_function_decl)
1294 && ! DECL_INHERITED_CTOR (current_function_decl))
1295 flags |= LOOKUP_DEFAULTED;
1296
1297 /* Sort the mem-initializers into the order in which the
1298 initializations should be performed. */
1299 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1300
1301 in_base_initializer = 1;
1302
1303 /* Initialize base classes. */
1304 for (; (mem_inits
1305 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1306 mem_inits = TREE_CHAIN (mem_inits))
1307 {
1308 tree subobject = TREE_PURPOSE (mem_inits);
1309 tree arguments = TREE_VALUE (mem_inits);
1310
1311 /* We already have issued an error message. */
1312 if (arguments == error_mark_node)
1313 continue;
1314
1315 /* Suppress access control when calling the inherited ctor. */
1316 bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl)
1317 && flag_new_inheriting_ctors
1318 && arguments);
1319 if (inherited_base)
1320 push_deferring_access_checks (dk_deferred);
1321
1322 if (arguments == NULL_TREE)
1323 {
1324 /* If these initializations are taking place in a copy constructor,
1325 the base class should probably be explicitly initialized if there
1326 is a user-defined constructor in the base class (other than the
1327 default constructor, which will be called anyway). */
1328 if (extra_warnings
1329 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1330 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1331 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1332 OPT_Wextra, "base class %q#T should be explicitly "
1333 "initialized in the copy constructor",
1334 BINFO_TYPE (subobject));
1335 }
1336
1337 /* Initialize the base. */
1338 if (!BINFO_VIRTUAL_P (subobject))
1339 {
1340 tree base_addr;
1341
1342 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1343 subobject, 1, tf_warning_or_error);
1344 expand_aggr_init_1 (subobject, NULL_TREE,
1345 cp_build_fold_indirect_ref (base_addr),
1346 arguments,
1347 flags,
1348 tf_warning_or_error);
1349 expand_cleanup_for_base (subobject, NULL_TREE);
1350 }
1351 else if (!ABSTRACT_CLASS_TYPE_P (current_class_type))
1352 /* C++14 DR1658 Means we do not have to construct vbases of
1353 abstract classes. */
1354 construct_virtual_base (subobject, arguments);
1355 else
1356 /* When not constructing vbases of abstract classes, at least mark
1357 the arguments expressions as read to avoid
1358 -Wunused-but-set-parameter false positives. */
1359 cp_walk_tree (&arguments, mark_exp_read_r, NULL, NULL);
1360
1361 if (inherited_base)
1362 pop_deferring_access_checks ();
1363 }
1364 in_base_initializer = 0;
1365
1366 /* Initialize the vptrs. */
1367 initialize_vtbl_ptrs (current_class_ptr);
1368
1369 /* Initialize the data members. */
1370 while (mem_inits)
1371 {
1372 perform_member_init (TREE_PURPOSE (mem_inits),
1373 TREE_VALUE (mem_inits));
1374 mem_inits = TREE_CHAIN (mem_inits);
1375 }
1376 }
1377
1378 /* Returns the address of the vtable (i.e., the value that should be
1379 assigned to the vptr) for BINFO. */
1380
1381 tree
1382 build_vtbl_address (tree binfo)
1383 {
1384 tree binfo_for = binfo;
1385 tree vtbl;
1386
1387 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1388 /* If this is a virtual primary base, then the vtable we want to store
1389 is that for the base this is being used as the primary base of. We
1390 can't simply skip the initialization, because we may be expanding the
1391 inits of a subobject constructor where the virtual base layout
1392 can be different. */
1393 while (BINFO_PRIMARY_P (binfo_for))
1394 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1395
1396 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1397 used. */
1398 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1399 TREE_USED (vtbl) = true;
1400
1401 /* Now compute the address to use when initializing the vptr. */
1402 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1403 if (VAR_P (vtbl))
1404 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1405
1406 return vtbl;
1407 }
1408
1409 /* This code sets up the virtual function tables appropriate for
1410 the pointer DECL. It is a one-ply initialization.
1411
1412 BINFO is the exact type that DECL is supposed to be. In
1413 multiple inheritance, this might mean "C's A" if C : A, B. */
1414
1415 static void
1416 expand_virtual_init (tree binfo, tree decl)
1417 {
1418 tree vtbl, vtbl_ptr;
1419 tree vtt_index;
1420
1421 /* Compute the initializer for vptr. */
1422 vtbl = build_vtbl_address (binfo);
1423
1424 /* We may get this vptr from a VTT, if this is a subobject
1425 constructor or subobject destructor. */
1426 vtt_index = BINFO_VPTR_INDEX (binfo);
1427 if (vtt_index)
1428 {
1429 tree vtbl2;
1430 tree vtt_parm;
1431
1432 /* Compute the value to use, when there's a VTT. */
1433 vtt_parm = current_vtt_parm;
1434 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1435 vtbl2 = cp_build_fold_indirect_ref (vtbl2);
1436 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1437
1438 /* The actual initializer is the VTT value only in the subobject
1439 constructor. In maybe_clone_body we'll substitute NULL for
1440 the vtt_parm in the case of the non-subobject constructor. */
1441 vtbl = build_if_in_charge (vtbl, vtbl2);
1442 }
1443
1444 /* Compute the location of the vtpr. */
1445 vtbl_ptr = build_vfield_ref (cp_build_fold_indirect_ref (decl),
1446 TREE_TYPE (binfo));
1447 gcc_assert (vtbl_ptr != error_mark_node);
1448
1449 /* Assign the vtable to the vptr. */
1450 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1451 finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR,
1452 vtbl, tf_warning_or_error));
1453 }
1454
1455 /* If an exception is thrown in a constructor, those base classes already
1456 constructed must be destroyed. This function creates the cleanup
1457 for BINFO, which has just been constructed. If FLAG is non-NULL,
1458 it is a DECL which is nonzero when this base needs to be
1459 destroyed. */
1460
1461 static void
1462 expand_cleanup_for_base (tree binfo, tree flag)
1463 {
1464 tree expr;
1465
1466 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1467 return;
1468
1469 /* Call the destructor. */
1470 expr = build_special_member_call (current_class_ref,
1471 base_dtor_identifier,
1472 NULL,
1473 binfo,
1474 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1475 tf_warning_or_error);
1476
1477 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1478 return;
1479
1480 if (flag)
1481 expr = fold_build3_loc (input_location,
1482 COND_EXPR, void_type_node,
1483 c_common_truthvalue_conversion (input_location, flag),
1484 expr, integer_zero_node);
1485
1486 finish_eh_cleanup (expr);
1487 }
1488
1489 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1490 constructor. */
1491
1492 static void
1493 construct_virtual_base (tree vbase, tree arguments)
1494 {
1495 tree inner_if_stmt;
1496 tree exp;
1497 tree flag;
1498
1499 /* If there are virtual base classes with destructors, we need to
1500 emit cleanups to destroy them if an exception is thrown during
1501 the construction process. These exception regions (i.e., the
1502 period during which the cleanups must occur) begin from the time
1503 the construction is complete to the end of the function. If we
1504 create a conditional block in which to initialize the
1505 base-classes, then the cleanup region for the virtual base begins
1506 inside a block, and ends outside of that block. This situation
1507 confuses the sjlj exception-handling code. Therefore, we do not
1508 create a single conditional block, but one for each
1509 initialization. (That way the cleanup regions always begin
1510 in the outer block.) We trust the back end to figure out
1511 that the FLAG will not change across initializations, and
1512 avoid doing multiple tests. */
1513 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1514 inner_if_stmt = begin_if_stmt ();
1515 finish_if_stmt_cond (flag, inner_if_stmt);
1516
1517 /* Compute the location of the virtual base. If we're
1518 constructing virtual bases, then we must be the most derived
1519 class. Therefore, we don't have to look up the virtual base;
1520 we already know where it is. */
1521 exp = convert_to_base_statically (current_class_ref, vbase);
1522
1523 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1524 0, tf_warning_or_error);
1525 finish_then_clause (inner_if_stmt);
1526 finish_if_stmt (inner_if_stmt);
1527
1528 expand_cleanup_for_base (vbase, flag);
1529 }
1530
1531 /* Find the context in which this FIELD can be initialized. */
1532
1533 static tree
1534 initializing_context (tree field)
1535 {
1536 tree t = DECL_CONTEXT (field);
1537
1538 /* Anonymous union members can be initialized in the first enclosing
1539 non-anonymous union context. */
1540 while (t && ANON_AGGR_TYPE_P (t))
1541 t = TYPE_CONTEXT (t);
1542 return t;
1543 }
1544
1545 /* Function to give error message if member initialization specification
1546 is erroneous. FIELD is the member we decided to initialize.
1547 TYPE is the type for which the initialization is being performed.
1548 FIELD must be a member of TYPE.
1549
1550 MEMBER_NAME is the name of the member. */
1551
1552 static int
1553 member_init_ok_or_else (tree field, tree type, tree member_name)
1554 {
1555 if (field == error_mark_node)
1556 return 0;
1557 if (!field)
1558 {
1559 error ("class %qT does not have any field named %qD", type,
1560 member_name);
1561 return 0;
1562 }
1563 if (VAR_P (field))
1564 {
1565 error ("%q#D is a static data member; it can only be "
1566 "initialized at its definition",
1567 field);
1568 return 0;
1569 }
1570 if (TREE_CODE (field) != FIELD_DECL)
1571 {
1572 error ("%q#D is not a non-static data member of %qT",
1573 field, type);
1574 return 0;
1575 }
1576 if (initializing_context (field) != type)
1577 {
1578 error ("class %qT does not have any field named %qD", type,
1579 member_name);
1580 return 0;
1581 }
1582
1583 return 1;
1584 }
1585
1586 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1587 is a _TYPE node or TYPE_DECL which names a base for that type.
1588 Check the validity of NAME, and return either the base _TYPE, base
1589 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1590 NULL_TREE and issue a diagnostic.
1591
1592 An old style unnamed direct single base construction is permitted,
1593 where NAME is NULL. */
1594
1595 tree
1596 expand_member_init (tree name)
1597 {
1598 tree basetype;
1599 tree field;
1600
1601 if (!current_class_ref)
1602 return NULL_TREE;
1603
1604 if (!name)
1605 {
1606 /* This is an obsolete unnamed base class initializer. The
1607 parser will already have warned about its use. */
1608 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1609 {
1610 case 0:
1611 error ("unnamed initializer for %qT, which has no base classes",
1612 current_class_type);
1613 return NULL_TREE;
1614 case 1:
1615 basetype = BINFO_TYPE
1616 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1617 break;
1618 default:
1619 error ("unnamed initializer for %qT, which uses multiple inheritance",
1620 current_class_type);
1621 return NULL_TREE;
1622 }
1623 }
1624 else if (TYPE_P (name))
1625 {
1626 basetype = TYPE_MAIN_VARIANT (name);
1627 name = TYPE_NAME (name);
1628 }
1629 else if (TREE_CODE (name) == TYPE_DECL)
1630 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1631 else
1632 basetype = NULL_TREE;
1633
1634 if (basetype)
1635 {
1636 tree class_binfo;
1637 tree direct_binfo;
1638 tree virtual_binfo;
1639 int i;
1640
1641 if (current_template_parms
1642 || same_type_p (basetype, current_class_type))
1643 return basetype;
1644
1645 class_binfo = TYPE_BINFO (current_class_type);
1646 direct_binfo = NULL_TREE;
1647 virtual_binfo = NULL_TREE;
1648
1649 /* Look for a direct base. */
1650 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1651 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1652 break;
1653
1654 /* Look for a virtual base -- unless the direct base is itself
1655 virtual. */
1656 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1657 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1658
1659 /* [class.base.init]
1660
1661 If a mem-initializer-id is ambiguous because it designates
1662 both a direct non-virtual base class and an inherited virtual
1663 base class, the mem-initializer is ill-formed. */
1664 if (direct_binfo && virtual_binfo)
1665 {
1666 error ("%qD is both a direct base and an indirect virtual base",
1667 basetype);
1668 return NULL_TREE;
1669 }
1670
1671 if (!direct_binfo && !virtual_binfo)
1672 {
1673 if (CLASSTYPE_VBASECLASSES (current_class_type))
1674 error ("type %qT is not a direct or virtual base of %qT",
1675 basetype, current_class_type);
1676 else
1677 error ("type %qT is not a direct base of %qT",
1678 basetype, current_class_type);
1679 return NULL_TREE;
1680 }
1681
1682 return direct_binfo ? direct_binfo : virtual_binfo;
1683 }
1684 else
1685 {
1686 if (identifier_p (name))
1687 field = lookup_field (current_class_type, name, 1, false);
1688 else
1689 field = name;
1690
1691 if (member_init_ok_or_else (field, current_class_type, name))
1692 return field;
1693 }
1694
1695 return NULL_TREE;
1696 }
1697
1698 /* This is like `expand_member_init', only it stores one aggregate
1699 value into another.
1700
1701 INIT comes in two flavors: it is either a value which
1702 is to be stored in EXP, or it is a parameter list
1703 to go to a constructor, which will operate on EXP.
1704 If INIT is not a parameter list for a constructor, then set
1705 LOOKUP_ONLYCONVERTING.
1706 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1707 the initializer, if FLAGS is 0, then it is the (init) form.
1708 If `init' is a CONSTRUCTOR, then we emit a warning message,
1709 explaining that such initializations are invalid.
1710
1711 If INIT resolves to a CALL_EXPR which happens to return
1712 something of the type we are looking for, then we know
1713 that we can safely use that call to perform the
1714 initialization.
1715
1716 The virtual function table pointer cannot be set up here, because
1717 we do not really know its type.
1718
1719 This never calls operator=().
1720
1721 When initializing, nothing is CONST.
1722
1723 A default copy constructor may have to be used to perform the
1724 initialization.
1725
1726 A constructor or a conversion operator may have to be used to
1727 perform the initialization, but not both, as it would be ambiguous. */
1728
1729 tree
1730 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1731 {
1732 tree stmt_expr;
1733 tree compound_stmt;
1734 int destroy_temps;
1735 tree type = TREE_TYPE (exp);
1736 int was_const = TREE_READONLY (exp);
1737 int was_volatile = TREE_THIS_VOLATILE (exp);
1738 int is_global;
1739
1740 if (init == error_mark_node)
1741 return error_mark_node;
1742
1743 location_t init_loc = (init
1744 ? cp_expr_loc_or_loc (init, input_location)
1745 : location_of (exp));
1746
1747 TREE_READONLY (exp) = 0;
1748 TREE_THIS_VOLATILE (exp) = 0;
1749
1750 if (TREE_CODE (type) == ARRAY_TYPE)
1751 {
1752 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1753 int from_array = 0;
1754
1755 if (VAR_P (exp) && DECL_DECOMPOSITION_P (exp))
1756 {
1757 from_array = 1;
1758 init = mark_rvalue_use (init);
1759 if (init
1760 && DECL_P (tree_strip_any_location_wrapper (init))
1761 && !(flags & LOOKUP_ONLYCONVERTING))
1762 {
1763 /* Wrap the initializer in a CONSTRUCTOR so that build_vec_init
1764 recognizes it as direct-initialization. */
1765 init = build_constructor_single (init_list_type_node,
1766 NULL_TREE, init);
1767 CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
1768 }
1769 }
1770 else
1771 {
1772 /* Must arrange to initialize each element of EXP
1773 from elements of INIT. */
1774 if (cv_qualified_p (type))
1775 TREE_TYPE (exp) = cv_unqualified (type);
1776 if (itype && cv_qualified_p (itype))
1777 TREE_TYPE (init) = cv_unqualified (itype);
1778 from_array = (itype && same_type_p (TREE_TYPE (init),
1779 TREE_TYPE (exp)));
1780
1781 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init)
1782 && (!from_array
1783 || (TREE_CODE (init) != CONSTRUCTOR
1784 /* Can happen, eg, handling the compound-literals
1785 extension (ext/complit12.C). */
1786 && TREE_CODE (init) != TARGET_EXPR)))
1787 {
1788 if (complain & tf_error)
1789 error_at (init_loc, "array must be initialized "
1790 "with a brace-enclosed initializer");
1791 return error_mark_node;
1792 }
1793 }
1794
1795 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1796 /*explicit_value_init_p=*/false,
1797 from_array,
1798 complain);
1799 TREE_READONLY (exp) = was_const;
1800 TREE_THIS_VOLATILE (exp) = was_volatile;
1801 TREE_TYPE (exp) = type;
1802 /* Restore the type of init unless it was used directly. */
1803 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1804 TREE_TYPE (init) = itype;
1805 return stmt_expr;
1806 }
1807
1808 if (init && init != void_type_node
1809 && TREE_CODE (init) != TREE_LIST
1810 && !(TREE_CODE (init) == TARGET_EXPR
1811 && TARGET_EXPR_DIRECT_INIT_P (init))
1812 && !DIRECT_LIST_INIT_P (init))
1813 flags |= LOOKUP_ONLYCONVERTING;
1814
1815 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1816 destroy_temps = stmts_are_full_exprs_p ();
1817 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1818 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1819 init, LOOKUP_NORMAL|flags, complain);
1820 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1821 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1822 TREE_READONLY (exp) = was_const;
1823 TREE_THIS_VOLATILE (exp) = was_volatile;
1824
1825 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1826 && TREE_SIDE_EFFECTS (stmt_expr)
1827 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1828 /* Just know that we've seen something for this node. */
1829 TREE_USED (exp) = 1;
1830
1831 return stmt_expr;
1832 }
1833
1834 static void
1835 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1836 tsubst_flags_t complain)
1837 {
1838 tree type = TREE_TYPE (exp);
1839
1840 /* It fails because there may not be a constructor which takes
1841 its own type as the first (or only parameter), but which does
1842 take other types via a conversion. So, if the thing initializing
1843 the expression is a unit element of type X, first try X(X&),
1844 followed by initialization by X. If neither of these work
1845 out, then look hard. */
1846 tree rval;
1847 vec<tree, va_gc> *parms;
1848
1849 /* If we have direct-initialization from an initializer list, pull
1850 it out of the TREE_LIST so the code below can see it. */
1851 if (init && TREE_CODE (init) == TREE_LIST
1852 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1853 {
1854 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1855 && TREE_CHAIN (init) == NULL_TREE);
1856 init = TREE_VALUE (init);
1857 /* Only call reshape_init if it has not been called earlier
1858 by the callers. */
1859 if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type))
1860 init = reshape_init (type, init, complain);
1861 }
1862
1863 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1864 && CP_AGGREGATE_TYPE_P (type))
1865 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1866 happen for direct-initialization, too. */
1867 init = digest_init (type, init, complain);
1868
1869 /* A CONSTRUCTOR of the target's type is a previously digested
1870 initializer, whether that happened just above or in
1871 cp_parser_late_parsing_nsdmi.
1872
1873 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1874 set represents the whole initialization, so we shouldn't build up
1875 another ctor call. */
1876 if (init
1877 && (TREE_CODE (init) == CONSTRUCTOR
1878 || (TREE_CODE (init) == TARGET_EXPR
1879 && (TARGET_EXPR_DIRECT_INIT_P (init)
1880 || TARGET_EXPR_LIST_INIT_P (init))))
1881 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1882 {
1883 /* Early initialization via a TARGET_EXPR only works for
1884 complete objects. */
1885 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1886
1887 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1888 TREE_SIDE_EFFECTS (init) = 1;
1889 finish_expr_stmt (init);
1890 return;
1891 }
1892
1893 if (init && TREE_CODE (init) != TREE_LIST
1894 && (flags & LOOKUP_ONLYCONVERTING))
1895 {
1896 /* Base subobjects should only get direct-initialization. */
1897 gcc_assert (true_exp == exp);
1898
1899 if (flags & DIRECT_BIND)
1900 /* Do nothing. We hit this in two cases: Reference initialization,
1901 where we aren't initializing a real variable, so we don't want
1902 to run a new constructor; and catching an exception, where we
1903 have already built up the constructor call so we could wrap it
1904 in an exception region. */;
1905 else
1906 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1907 flags, complain);
1908
1909 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1910 /* We need to protect the initialization of a catch parm with a
1911 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1912 around the TARGET_EXPR for the copy constructor. See
1913 initialize_handler_parm. */
1914 {
1915 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1916 TREE_OPERAND (init, 0));
1917 TREE_TYPE (init) = void_type_node;
1918 }
1919 else
1920 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1921 TREE_SIDE_EFFECTS (init) = 1;
1922 finish_expr_stmt (init);
1923 return;
1924 }
1925
1926 if (init == NULL_TREE)
1927 parms = NULL;
1928 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1929 {
1930 parms = make_tree_vector ();
1931 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1932 vec_safe_push (parms, TREE_VALUE (init));
1933 }
1934 else
1935 parms = make_tree_vector_single (init);
1936
1937 if (exp == current_class_ref && current_function_decl
1938 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1939 {
1940 /* Delegating constructor. */
1941 tree complete;
1942 tree base;
1943 tree elt; unsigned i;
1944
1945 /* Unshare the arguments for the second call. */
1946 vec<tree, va_gc> *parms2 = make_tree_vector ();
1947 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1948 {
1949 elt = break_out_target_exprs (elt);
1950 vec_safe_push (parms2, elt);
1951 }
1952 complete = build_special_member_call (exp, complete_ctor_identifier,
1953 &parms2, binfo, flags,
1954 complain);
1955 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1956 release_tree_vector (parms2);
1957
1958 base = build_special_member_call (exp, base_ctor_identifier,
1959 &parms, binfo, flags,
1960 complain);
1961 base = fold_build_cleanup_point_expr (void_type_node, base);
1962 rval = build_if_in_charge (complete, base);
1963 }
1964 else
1965 {
1966 tree ctor_name = (true_exp == exp
1967 ? complete_ctor_identifier : base_ctor_identifier);
1968
1969 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1970 complain);
1971 }
1972
1973 if (parms != NULL)
1974 release_tree_vector (parms);
1975
1976 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1977 {
1978 tree fn = get_callee_fndecl (rval);
1979 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1980 {
1981 tree e = maybe_constant_init (rval, exp);
1982 if (TREE_CONSTANT (e))
1983 rval = build2 (INIT_EXPR, type, exp, e);
1984 }
1985 }
1986
1987 /* FIXME put back convert_to_void? */
1988 if (TREE_SIDE_EFFECTS (rval))
1989 finish_expr_stmt (rval);
1990 }
1991
1992 /* This function is responsible for initializing EXP with INIT
1993 (if any).
1994
1995 BINFO is the binfo of the type for who we are performing the
1996 initialization. For example, if W is a virtual base class of A and B,
1997 and C : A, B.
1998 If we are initializing B, then W must contain B's W vtable, whereas
1999 were we initializing C, W must contain C's W vtable.
2000
2001 TRUE_EXP is nonzero if it is the true expression being initialized.
2002 In this case, it may be EXP, or may just contain EXP. The reason we
2003 need this is because if EXP is a base element of TRUE_EXP, we
2004 don't necessarily know by looking at EXP where its virtual
2005 baseclass fields should really be pointing. But we do know
2006 from TRUE_EXP. In constructors, we don't know anything about
2007 the value being initialized.
2008
2009 FLAGS is just passed to `build_new_method_call'. See that function
2010 for its description. */
2011
2012 static void
2013 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
2014 tsubst_flags_t complain)
2015 {
2016 tree type = TREE_TYPE (exp);
2017
2018 gcc_assert (init != error_mark_node && type != error_mark_node);
2019 gcc_assert (building_stmt_list_p ());
2020
2021 /* Use a function returning the desired type to initialize EXP for us.
2022 If the function is a constructor, and its first argument is
2023 NULL_TREE, know that it was meant for us--just slide exp on
2024 in and expand the constructor. Constructors now come
2025 as TARGET_EXPRs. */
2026
2027 if (init && VAR_P (exp)
2028 && COMPOUND_LITERAL_P (init))
2029 {
2030 vec<tree, va_gc> *cleanups = NULL;
2031 /* If store_init_value returns NULL_TREE, the INIT has been
2032 recorded as the DECL_INITIAL for EXP. That means there's
2033 nothing more we have to do. */
2034 init = store_init_value (exp, init, &cleanups, flags);
2035 if (init)
2036 finish_expr_stmt (init);
2037 gcc_assert (!cleanups);
2038 return;
2039 }
2040
2041 /* List-initialization from {} becomes value-initialization for non-aggregate
2042 classes with default constructors. Handle this here when we're
2043 initializing a base, so protected access works. */
2044 if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST)
2045 {
2046 tree elt = TREE_VALUE (init);
2047 if (DIRECT_LIST_INIT_P (elt)
2048 && CONSTRUCTOR_ELTS (elt) == 0
2049 && CLASSTYPE_NON_AGGREGATE (type)
2050 && TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
2051 init = void_type_node;
2052 }
2053
2054 /* If an explicit -- but empty -- initializer list was present,
2055 that's value-initialization. */
2056 if (init == void_type_node)
2057 {
2058 /* If the type has data but no user-provided ctor, we need to zero
2059 out the object. */
2060 if (!type_has_user_provided_constructor (type)
2061 && !is_really_empty_class (type))
2062 {
2063 tree field_size = NULL_TREE;
2064 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
2065 /* Don't clobber already initialized virtual bases. */
2066 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
2067 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
2068 field_size);
2069 init = build2 (INIT_EXPR, type, exp, init);
2070 finish_expr_stmt (init);
2071 }
2072
2073 /* If we don't need to mess with the constructor at all,
2074 then we're done. */
2075 if (! type_build_ctor_call (type))
2076 return;
2077
2078 /* Otherwise fall through and call the constructor. */
2079 init = NULL_TREE;
2080 }
2081
2082 /* We know that expand_default_init can handle everything we want
2083 at this point. */
2084 expand_default_init (binfo, true_exp, exp, init, flags, complain);
2085 }
2086
2087 /* Report an error if TYPE is not a user-defined, class type. If
2088 OR_ELSE is nonzero, give an error message. */
2089
2090 int
2091 is_class_type (tree type, int or_else)
2092 {
2093 if (type == error_mark_node)
2094 return 0;
2095
2096 if (! CLASS_TYPE_P (type))
2097 {
2098 if (or_else)
2099 error ("%qT is not a class type", type);
2100 return 0;
2101 }
2102 return 1;
2103 }
2104
2105 tree
2106 get_type_value (tree name)
2107 {
2108 if (name == error_mark_node)
2109 return NULL_TREE;
2110
2111 if (IDENTIFIER_HAS_TYPE_VALUE (name))
2112 return IDENTIFIER_TYPE_VALUE (name);
2113 else
2114 return NULL_TREE;
2115 }
2116
2117 /* Build a reference to a member of an aggregate. This is not a C++
2118 `&', but really something which can have its address taken, and
2119 then act as a pointer to member, for example TYPE :: FIELD can have
2120 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
2121 this expression is the operand of "&".
2122
2123 @@ Prints out lousy diagnostics for operator <typename>
2124 @@ fields.
2125
2126 @@ This function should be rewritten and placed in search.c. */
2127
2128 tree
2129 build_offset_ref (tree type, tree member, bool address_p,
2130 tsubst_flags_t complain)
2131 {
2132 tree decl;
2133 tree basebinfo = NULL_TREE;
2134
2135 /* class templates can come in as TEMPLATE_DECLs here. */
2136 if (TREE_CODE (member) == TEMPLATE_DECL)
2137 return member;
2138
2139 if (dependent_scope_p (type) || type_dependent_expression_p (member))
2140 return build_qualified_name (NULL_TREE, type, member,
2141 /*template_p=*/false);
2142
2143 gcc_assert (TYPE_P (type));
2144 if (! is_class_type (type, 1))
2145 return error_mark_node;
2146
2147 gcc_assert (DECL_P (member) || BASELINK_P (member));
2148 /* Callers should call mark_used before this point. */
2149 gcc_assert (!DECL_P (member) || TREE_USED (member));
2150
2151 type = TYPE_MAIN_VARIANT (type);
2152 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
2153 {
2154 if (complain & tf_error)
2155 error ("incomplete type %qT does not have member %qD", type, member);
2156 return error_mark_node;
2157 }
2158
2159 /* Entities other than non-static members need no further
2160 processing. */
2161 if (TREE_CODE (member) == TYPE_DECL)
2162 return member;
2163 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
2164 return convert_from_reference (member);
2165
2166 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
2167 {
2168 if (complain & tf_error)
2169 error ("invalid pointer to bit-field %qD", member);
2170 return error_mark_node;
2171 }
2172
2173 /* Set up BASEBINFO for member lookup. */
2174 decl = maybe_dummy_object (type, &basebinfo);
2175
2176 /* A lot of this logic is now handled in lookup_member. */
2177 if (BASELINK_P (member))
2178 {
2179 /* Go from the TREE_BASELINK to the member function info. */
2180 tree t = BASELINK_FUNCTIONS (member);
2181
2182 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
2183 {
2184 /* Get rid of a potential OVERLOAD around it. */
2185 t = OVL_FIRST (t);
2186
2187 /* Unique functions are handled easily. */
2188
2189 /* For non-static member of base class, we need a special rule
2190 for access checking [class.protected]:
2191
2192 If the access is to form a pointer to member, the
2193 nested-name-specifier shall name the derived class
2194 (or any class derived from that class). */
2195 bool ok;
2196 if (address_p && DECL_P (t)
2197 && DECL_NONSTATIC_MEMBER_P (t))
2198 ok = perform_or_defer_access_check (TYPE_BINFO (type), t, t,
2199 complain);
2200 else
2201 ok = perform_or_defer_access_check (basebinfo, t, t,
2202 complain);
2203 if (!ok)
2204 return error_mark_node;
2205 if (DECL_STATIC_FUNCTION_P (t))
2206 return t;
2207 member = t;
2208 }
2209 else
2210 TREE_TYPE (member) = unknown_type_node;
2211 }
2212 else if (address_p && TREE_CODE (member) == FIELD_DECL)
2213 {
2214 /* We need additional test besides the one in
2215 check_accessibility_of_qualified_id in case it is
2216 a pointer to non-static member. */
2217 if (!perform_or_defer_access_check (TYPE_BINFO (type), member, member,
2218 complain))
2219 return error_mark_node;
2220 }
2221
2222 if (!address_p)
2223 {
2224 /* If MEMBER is non-static, then the program has fallen afoul of
2225 [expr.prim]:
2226
2227 An id-expression that denotes a nonstatic data member or
2228 nonstatic member function of a class can only be used:
2229
2230 -- as part of a class member access (_expr.ref_) in which the
2231 object-expression refers to the member's class or a class
2232 derived from that class, or
2233
2234 -- to form a pointer to member (_expr.unary.op_), or
2235
2236 -- in the body of a nonstatic member function of that class or
2237 of a class derived from that class (_class.mfct.nonstatic_), or
2238
2239 -- in a mem-initializer for a constructor for that class or for
2240 a class derived from that class (_class.base.init_). */
2241 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
2242 {
2243 /* Build a representation of the qualified name suitable
2244 for use as the operand to "&" -- even though the "&" is
2245 not actually present. */
2246 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2247 /* In Microsoft mode, treat a non-static member function as if
2248 it were a pointer-to-member. */
2249 if (flag_ms_extensions)
2250 {
2251 PTRMEM_OK_P (member) = 1;
2252 return cp_build_addr_expr (member, complain);
2253 }
2254 if (complain & tf_error)
2255 error ("invalid use of non-static member function %qD",
2256 TREE_OPERAND (member, 1));
2257 return error_mark_node;
2258 }
2259 else if (TREE_CODE (member) == FIELD_DECL)
2260 {
2261 if (complain & tf_error)
2262 error ("invalid use of non-static data member %qD", member);
2263 return error_mark_node;
2264 }
2265 return member;
2266 }
2267
2268 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2269 PTRMEM_OK_P (member) = 1;
2270 return member;
2271 }
2272
2273 /* If DECL is a scalar enumeration constant or variable with a
2274 constant initializer, return the initializer (or, its initializers,
2275 recursively); otherwise, return DECL. If STRICT_P, the
2276 initializer is only returned if DECL is a
2277 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2278 return an aggregate constant. */
2279
2280 static tree
2281 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2282 {
2283 while (TREE_CODE (decl) == CONST_DECL
2284 || decl_constant_var_p (decl)
2285 || (!strict_p && VAR_P (decl)
2286 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl))))
2287 {
2288 tree init;
2289 /* If DECL is a static data member in a template
2290 specialization, we must instantiate it here. The
2291 initializer for the static data member is not processed
2292 until needed; we need it now. */
2293 mark_used (decl, tf_none);
2294 init = DECL_INITIAL (decl);
2295 if (init == error_mark_node)
2296 {
2297 if (TREE_CODE (decl) == CONST_DECL
2298 || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2299 /* Treat the error as a constant to avoid cascading errors on
2300 excessively recursive template instantiation (c++/9335). */
2301 return init;
2302 else
2303 return decl;
2304 }
2305 /* Initializers in templates are generally expanded during
2306 instantiation, so before that for const int i(2)
2307 INIT is a TREE_LIST with the actual initializer as
2308 TREE_VALUE. */
2309 if (processing_template_decl
2310 && init
2311 && TREE_CODE (init) == TREE_LIST
2312 && TREE_CHAIN (init) == NULL_TREE)
2313 init = TREE_VALUE (init);
2314 /* Instantiate a non-dependent initializer for user variables. We
2315 mustn't do this for the temporary for an array compound literal;
2316 trying to instatiate the initializer will keep creating new
2317 temporaries until we crash. Probably it's not useful to do it for
2318 other artificial variables, either. */
2319 if (!DECL_ARTIFICIAL (decl))
2320 init = instantiate_non_dependent_or_null (init);
2321 if (!init
2322 || !TREE_TYPE (init)
2323 || !TREE_CONSTANT (init)
2324 || (!return_aggregate_cst_ok_p
2325 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2326 return an aggregate constant (of which string
2327 literals are a special case), as we do not want
2328 to make inadvertent copies of such entities, and
2329 we must be sure that their addresses are the
2330 same everywhere. */
2331 && (TREE_CODE (init) == CONSTRUCTOR
2332 || TREE_CODE (init) == STRING_CST)))
2333 break;
2334 /* Don't return a CONSTRUCTOR for a variable with partial run-time
2335 initialization, since it doesn't represent the entire value. */
2336 if (TREE_CODE (init) == CONSTRUCTOR
2337 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2338 break;
2339 /* If the variable has a dynamic initializer, don't use its
2340 DECL_INITIAL which doesn't reflect the real value. */
2341 if (VAR_P (decl)
2342 && TREE_STATIC (decl)
2343 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)
2344 && DECL_NONTRIVIALLY_INITIALIZED_P (decl))
2345 break;
2346 decl = unshare_expr (init);
2347 }
2348 return decl;
2349 }
2350
2351 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2352 of integral or enumeration type, or a constexpr variable of scalar type,
2353 then return that value. These are those variables permitted in constant
2354 expressions by [5.19/1]. */
2355
2356 tree
2357 scalar_constant_value (tree decl)
2358 {
2359 return constant_value_1 (decl, /*strict_p=*/true,
2360 /*return_aggregate_cst_ok_p=*/false);
2361 }
2362
2363 /* Like scalar_constant_value, but can also return aggregate initializers. */
2364
2365 tree
2366 decl_really_constant_value (tree decl)
2367 {
2368 return constant_value_1 (decl, /*strict_p=*/true,
2369 /*return_aggregate_cst_ok_p=*/true);
2370 }
2371
2372 /* A more relaxed version of scalar_constant_value, used by the
2373 common C/C++ code. */
2374
2375 tree
2376 decl_constant_value (tree decl)
2377 {
2378 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2379 /*return_aggregate_cst_ok_p=*/true);
2380 }
2381 \f
2382 /* Common subroutines of build_new and build_vec_delete. */
2383 \f
2384 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2385 the type of the object being allocated; otherwise, it's just TYPE.
2386 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2387 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2388 a vector of arguments to be provided as arguments to a placement
2389 new operator. This routine performs no semantic checks; it just
2390 creates and returns a NEW_EXPR. */
2391
2392 static tree
2393 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2394 vec<tree, va_gc> *init, int use_global_new)
2395 {
2396 tree init_list;
2397 tree new_expr;
2398
2399 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2400 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2401 permits us to distinguish the case of a missing initializer "new
2402 int" from an empty initializer "new int()". */
2403 if (init == NULL)
2404 init_list = NULL_TREE;
2405 else if (init->is_empty ())
2406 init_list = void_node;
2407 else
2408 init_list = build_tree_list_vec (init);
2409
2410 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2411 build_tree_list_vec (placement), type, nelts,
2412 init_list);
2413 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2414 TREE_SIDE_EFFECTS (new_expr) = 1;
2415
2416 return new_expr;
2417 }
2418
2419 /* Diagnose uninitialized const members or reference members of type
2420 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2421 new expression without a new-initializer and a declaration. Returns
2422 the error count. */
2423
2424 static int
2425 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2426 bool using_new, bool complain)
2427 {
2428 tree field;
2429 int error_count = 0;
2430
2431 if (type_has_user_provided_constructor (type))
2432 return 0;
2433
2434 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2435 {
2436 tree field_type;
2437
2438 if (TREE_CODE (field) != FIELD_DECL)
2439 continue;
2440
2441 field_type = strip_array_types (TREE_TYPE (field));
2442
2443 if (type_has_user_provided_constructor (field_type))
2444 continue;
2445
2446 if (TYPE_REF_P (field_type))
2447 {
2448 ++ error_count;
2449 if (complain)
2450 {
2451 if (DECL_CONTEXT (field) == origin)
2452 {
2453 if (using_new)
2454 error ("uninitialized reference member in %q#T "
2455 "using %<new%> without new-initializer", origin);
2456 else
2457 error ("uninitialized reference member in %q#T", origin);
2458 }
2459 else
2460 {
2461 if (using_new)
2462 error ("uninitialized reference member in base %q#T "
2463 "of %q#T using %<new%> without new-initializer",
2464 DECL_CONTEXT (field), origin);
2465 else
2466 error ("uninitialized reference member in base %q#T "
2467 "of %q#T", DECL_CONTEXT (field), origin);
2468 }
2469 inform (DECL_SOURCE_LOCATION (field),
2470 "%q#D should be initialized", field);
2471 }
2472 }
2473
2474 if (CP_TYPE_CONST_P (field_type))
2475 {
2476 ++ error_count;
2477 if (complain)
2478 {
2479 if (DECL_CONTEXT (field) == origin)
2480 {
2481 if (using_new)
2482 error ("uninitialized const member in %q#T "
2483 "using %<new%> without new-initializer", origin);
2484 else
2485 error ("uninitialized const member in %q#T", origin);
2486 }
2487 else
2488 {
2489 if (using_new)
2490 error ("uninitialized const member in base %q#T "
2491 "of %q#T using %<new%> without new-initializer",
2492 DECL_CONTEXT (field), origin);
2493 else
2494 error ("uninitialized const member in base %q#T "
2495 "of %q#T", DECL_CONTEXT (field), origin);
2496 }
2497 inform (DECL_SOURCE_LOCATION (field),
2498 "%q#D should be initialized", field);
2499 }
2500 }
2501
2502 if (CLASS_TYPE_P (field_type))
2503 error_count
2504 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2505 using_new, complain);
2506 }
2507 return error_count;
2508 }
2509
2510 int
2511 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2512 {
2513 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2514 }
2515
2516 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2517 overflowed. Pretend it returns sizetype so that it plays nicely in the
2518 COND_EXPR. */
2519
2520 tree
2521 throw_bad_array_new_length (void)
2522 {
2523 if (!fn)
2524 {
2525 tree name = get_identifier ("__cxa_throw_bad_array_new_length");
2526
2527 fn = get_global_binding (name);
2528 if (!fn)
2529 fn = push_throw_library_fn
2530 (name, build_function_type_list (sizetype, NULL_TREE));
2531 }
2532
2533 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2534 }
2535
2536 /* Attempt to find the initializer for flexible array field T in the
2537 initializer INIT, when non-null. Returns the initializer when
2538 successful and NULL otherwise. */
2539 static tree
2540 find_flexarray_init (tree t, tree init)
2541 {
2542 if (!init || init == error_mark_node)
2543 return NULL_TREE;
2544
2545 unsigned HOST_WIDE_INT idx;
2546 tree field, elt;
2547
2548 /* Iterate over all top-level initializer elements. */
2549 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
2550 /* If the member T is found, return it. */
2551 if (field == t)
2552 return elt;
2553
2554 return NULL_TREE;
2555 }
2556
2557 /* Attempt to verify that the argument, OPER, of a placement new expression
2558 refers to an object sufficiently large for an object of TYPE or an array
2559 of NELTS of such objects when NELTS is non-null, and issue a warning when
2560 it does not. SIZE specifies the size needed to construct the object or
2561 array and captures the result of NELTS * sizeof (TYPE). (SIZE could be
2562 greater when the array under construction requires a cookie to store
2563 NELTS. GCC's placement new expression stores the cookie when invoking
2564 a user-defined placement new operator function but not the default one.
2565 Placement new expressions with user-defined placement new operator are
2566 not diagnosed since we don't know how they use the buffer (this could
2567 be a future extension). */
2568 static void
2569 warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper)
2570 {
2571 location_t loc = cp_expr_loc_or_loc (oper, input_location);
2572
2573 /* The number of bytes to add to or subtract from the size of the provided
2574 buffer based on an offset into an array or an array element reference.
2575 Although intermediate results may be negative (as in a[3] - 2) a valid
2576 final result cannot be. */
2577 offset_int adjust = 0;
2578 /* True when the size of the entire destination object should be used
2579 to compute the possibly optimistic estimate of the available space. */
2580 bool use_obj_size = false;
2581 /* True when the reference to the destination buffer is an ADDR_EXPR. */
2582 bool addr_expr = false;
2583
2584 STRIP_NOPS (oper);
2585
2586 /* Using a function argument or a (non-array) variable as an argument
2587 to placement new is not checked since it's unknown what it might
2588 point to. */
2589 if (TREE_CODE (oper) == PARM_DECL
2590 || VAR_P (oper)
2591 || TREE_CODE (oper) == COMPONENT_REF)
2592 return;
2593
2594 /* Evaluate any constant expressions. */
2595 size = fold_non_dependent_expr (size);
2596
2597 /* Handle the common case of array + offset expression when the offset
2598 is a constant. */
2599 if (TREE_CODE (oper) == POINTER_PLUS_EXPR)
2600 {
2601 /* If the offset is compile-time constant, use it to compute a more
2602 accurate estimate of the size of the buffer. Since the operand
2603 of POINTER_PLUS_EXPR is represented as an unsigned type, convert
2604 it to signed first.
2605 Otherwise, use the size of the entire array as an optimistic
2606 estimate (this may lead to false negatives). */
2607 tree adj = TREE_OPERAND (oper, 1);
2608 adj = fold_for_warn (adj);
2609 if (CONSTANT_CLASS_P (adj))
2610 adjust += wi::to_offset (convert (ssizetype, adj));
2611 else
2612 use_obj_size = true;
2613
2614 oper = TREE_OPERAND (oper, 0);
2615
2616 STRIP_NOPS (oper);
2617 }
2618
2619 if (TREE_CODE (oper) == TARGET_EXPR)
2620 oper = TREE_OPERAND (oper, 1);
2621 else if (TREE_CODE (oper) == ADDR_EXPR)
2622 {
2623 addr_expr = true;
2624 oper = TREE_OPERAND (oper, 0);
2625 }
2626
2627 STRIP_NOPS (oper);
2628
2629 if (TREE_CODE (oper) == ARRAY_REF
2630 && (addr_expr || TREE_CODE (TREE_TYPE (oper)) == ARRAY_TYPE))
2631 {
2632 /* Similar to the offset computed above, see if the array index
2633 is a compile-time constant. If so, and unless the offset was
2634 not a compile-time constant, use the index to determine the
2635 size of the buffer. Otherwise, use the entire array as
2636 an optimistic estimate of the size. */
2637 const_tree adj = fold_non_dependent_expr (TREE_OPERAND (oper, 1));
2638 if (!use_obj_size && CONSTANT_CLASS_P (adj))
2639 adjust += wi::to_offset (adj);
2640 else
2641 {
2642 use_obj_size = true;
2643 adjust = 0;
2644 }
2645
2646 oper = TREE_OPERAND (oper, 0);
2647 }
2648
2649 /* Refers to the declared object that constains the subobject referenced
2650 by OPER. When the object is initialized, makes it possible to determine
2651 the actual size of a flexible array member used as the buffer passed
2652 as OPER to placement new. */
2653 tree var_decl = NULL_TREE;
2654 /* True when operand is a COMPONENT_REF, to distinguish flexible array
2655 members from arrays of unspecified size. */
2656 bool compref = TREE_CODE (oper) == COMPONENT_REF;
2657
2658 /* For COMPONENT_REF (i.e., a struct member) the size of the entire
2659 enclosing struct. Used to validate the adjustment (offset) into
2660 an array at the end of a struct. */
2661 offset_int compsize = 0;
2662
2663 /* Descend into a struct or union to find the member whose address
2664 is being used as the argument. */
2665 if (TREE_CODE (oper) == COMPONENT_REF)
2666 {
2667 tree comptype = TREE_TYPE (TREE_OPERAND (oper, 0));
2668 compsize = wi::to_offset (TYPE_SIZE_UNIT (comptype));
2669
2670 tree op0 = oper;
2671 while (TREE_CODE (op0 = TREE_OPERAND (op0, 0)) == COMPONENT_REF);
2672 STRIP_ANY_LOCATION_WRAPPER (op0);
2673 if (VAR_P (op0))
2674 var_decl = op0;
2675 oper = TREE_OPERAND (oper, 1);
2676 }
2677
2678 STRIP_ANY_LOCATION_WRAPPER (oper);
2679 tree opertype = TREE_TYPE (oper);
2680 if ((addr_expr || !INDIRECT_TYPE_P (opertype))
2681 && (VAR_P (oper)
2682 || TREE_CODE (oper) == FIELD_DECL
2683 || TREE_CODE (oper) == PARM_DECL))
2684 {
2685 /* A possibly optimistic estimate of the number of bytes available
2686 in the destination buffer. */
2687 offset_int bytes_avail = 0;
2688 /* True when the estimate above is in fact the exact size
2689 of the destination buffer rather than an estimate. */
2690 bool exact_size = true;
2691
2692 /* Treat members of unions and members of structs uniformly, even
2693 though the size of a member of a union may be viewed as extending
2694 to the end of the union itself (it is by __builtin_object_size). */
2695 if ((VAR_P (oper) || use_obj_size)
2696 && DECL_SIZE_UNIT (oper)
2697 && tree_fits_uhwi_p (DECL_SIZE_UNIT (oper)))
2698 {
2699 /* Use the size of the entire array object when the expression
2700 refers to a variable or its size depends on an expression
2701 that's not a compile-time constant. */
2702 bytes_avail = wi::to_offset (DECL_SIZE_UNIT (oper));
2703 exact_size = !use_obj_size;
2704 }
2705 else if (tree opersize = TYPE_SIZE_UNIT (opertype))
2706 {
2707 /* Use the size of the type of the destination buffer object
2708 as the optimistic estimate of the available space in it.
2709 Use the maximum possible size for zero-size arrays and
2710 flexible array members (except of initialized objects
2711 thereof). */
2712 if (TREE_CODE (opersize) == INTEGER_CST)
2713 bytes_avail = wi::to_offset (opersize);
2714 }
2715
2716 if (bytes_avail == 0)
2717 {
2718 if (var_decl)
2719 {
2720 /* Constructing into a buffer provided by the flexible array
2721 member of a declared object (which is permitted as a G++
2722 extension). If the array member has been initialized,
2723 determine its size from the initializer. Otherwise,
2724 the array size is zero. */
2725 if (tree init = find_flexarray_init (oper,
2726 DECL_INITIAL (var_decl)))
2727 bytes_avail = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (init)));
2728 }
2729 else
2730 bytes_avail = (wi::to_offset (TYPE_MAX_VALUE (ptrdiff_type_node))
2731 - compsize);
2732 }
2733
2734 tree_code oper_code = TREE_CODE (opertype);
2735
2736 if (compref && oper_code == ARRAY_TYPE)
2737 {
2738 tree nelts = array_type_nelts_top (opertype);
2739 tree nelts_cst = maybe_constant_value (nelts);
2740 if (TREE_CODE (nelts_cst) == INTEGER_CST
2741 && integer_onep (nelts_cst)
2742 && !var_decl
2743 && warn_placement_new < 2)
2744 return;
2745 }
2746
2747 /* Reduce the size of the buffer by the adjustment computed above
2748 from the offset and/or the index into the array. */
2749 if (bytes_avail < adjust || adjust < 0)
2750 bytes_avail = 0;
2751 else
2752 {
2753 tree elttype = (TREE_CODE (opertype) == ARRAY_TYPE
2754 ? TREE_TYPE (opertype) : opertype);
2755 if (tree eltsize = TYPE_SIZE_UNIT (elttype))
2756 {
2757 bytes_avail -= adjust * wi::to_offset (eltsize);
2758 if (bytes_avail < 0)
2759 bytes_avail = 0;
2760 }
2761 }
2762
2763 /* The minimum amount of space needed for the allocation. This
2764 is an optimistic estimate that makes it possible to detect
2765 placement new invocation for some undersize buffers but not
2766 others. */
2767 offset_int bytes_need;
2768
2769 if (nelts)
2770 nelts = fold_for_warn (nelts);
2771
2772 if (CONSTANT_CLASS_P (size))
2773 bytes_need = wi::to_offset (size);
2774 else if (nelts && CONSTANT_CLASS_P (nelts))
2775 bytes_need = (wi::to_offset (nelts)
2776 * wi::to_offset (TYPE_SIZE_UNIT (type)));
2777 else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2778 bytes_need = wi::to_offset (TYPE_SIZE_UNIT (type));
2779 else
2780 {
2781 /* The type is a VLA. */
2782 return;
2783 }
2784
2785 if (bytes_avail < bytes_need)
2786 {
2787 if (nelts)
2788 if (CONSTANT_CLASS_P (nelts))
2789 warning_at (loc, OPT_Wplacement_new_,
2790 exact_size ?
2791 "placement new constructing an object of type "
2792 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2793 "and size %qwi"
2794 : "placement new constructing an object of type "
2795 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2796 "and size at most %qwu",
2797 type, tree_to_uhwi (nelts), bytes_need.to_uhwi (),
2798 opertype, bytes_avail.to_uhwi ());
2799 else
2800 warning_at (loc, OPT_Wplacement_new_,
2801 exact_size ?
2802 "placement new constructing an array of objects "
2803 "of type %qT and size %qwu in a region of type %qT "
2804 "and size %qwi"
2805 : "placement new constructing an array of objects "
2806 "of type %qT and size %qwu in a region of type %qT "
2807 "and size at most %qwu",
2808 type, bytes_need.to_uhwi (), opertype,
2809 bytes_avail.to_uhwi ());
2810 else
2811 warning_at (loc, OPT_Wplacement_new_,
2812 exact_size ?
2813 "placement new constructing an object of type %qT "
2814 "and size %qwu in a region of type %qT and size %qwi"
2815 : "placement new constructing an object of type %qT "
2816 "and size %qwu in a region of type %qT and size "
2817 "at most %qwu",
2818 type, bytes_need.to_uhwi (), opertype,
2819 bytes_avail.to_uhwi ());
2820 }
2821 }
2822 }
2823
2824 /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__. */
2825
2826 bool
2827 type_has_new_extended_alignment (tree t)
2828 {
2829 return (aligned_new_threshold
2830 && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold);
2831 }
2832
2833 /* Return the alignment we expect malloc to guarantee. This should just be
2834 MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some
2835 reason, so don't let the threshold be smaller than max_align_t_align. */
2836
2837 unsigned
2838 malloc_alignment ()
2839 {
2840 return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT);
2841 }
2842
2843 /* Determine whether an allocation function is a namespace-scope
2844 non-replaceable placement new function. See DR 1748.
2845 TODO: Enable in all standard modes. */
2846 static bool
2847 std_placement_new_fn_p (tree alloc_fn)
2848 {
2849 if (DECL_NAMESPACE_SCOPE_P (alloc_fn))
2850 {
2851 tree first_arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn)));
2852 if ((TREE_VALUE (first_arg) == ptr_type_node)
2853 && TREE_CHAIN (first_arg) == void_list_node)
2854 return true;
2855 }
2856 return false;
2857 }
2858
2859 /* Generate code for a new-expression, including calling the "operator
2860 new" function, initializing the object, and, if an exception occurs
2861 during construction, cleaning up. The arguments are as for
2862 build_raw_new_expr. This may change PLACEMENT and INIT.
2863 TYPE is the type of the object being constructed, possibly an array
2864 of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
2865 be an array of the form U[inner], with the whole expression being
2866 "new U[NELTS][inner]"). */
2867
2868 static tree
2869 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2870 vec<tree, va_gc> **init, bool globally_qualified_p,
2871 tsubst_flags_t complain)
2872 {
2873 tree size, rval;
2874 /* True iff this is a call to "operator new[]" instead of just
2875 "operator new". */
2876 bool array_p = false;
2877 /* If ARRAY_P is true, the element type of the array. This is never
2878 an ARRAY_TYPE; for something like "new int[3][4]", the
2879 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2880 TYPE. */
2881 tree elt_type;
2882 /* The type of the new-expression. (This type is always a pointer
2883 type.) */
2884 tree pointer_type;
2885 tree non_const_pointer_type;
2886 /* The most significant array bound in int[OUTER_NELTS][inner]. */
2887 tree outer_nelts = NULL_TREE;
2888 /* For arrays with a non-constant number of elements, a bounds checks
2889 on the NELTS parameter to avoid integer overflow at runtime. */
2890 tree outer_nelts_check = NULL_TREE;
2891 bool outer_nelts_from_type = false;
2892 /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */
2893 offset_int inner_nelts_count = 1;
2894 tree alloc_call, alloc_expr;
2895 /* Size of the inner array elements (those with constant dimensions). */
2896 offset_int inner_size;
2897 /* The address returned by the call to "operator new". This node is
2898 a VAR_DECL and is therefore reusable. */
2899 tree alloc_node;
2900 tree alloc_fn;
2901 tree cookie_expr, init_expr;
2902 int nothrow, check_new;
2903 /* If non-NULL, the number of extra bytes to allocate at the
2904 beginning of the storage allocated for an array-new expression in
2905 order to store the number of elements. */
2906 tree cookie_size = NULL_TREE;
2907 tree placement_first;
2908 tree placement_expr = NULL_TREE;
2909 /* True if the function we are calling is a placement allocation
2910 function. */
2911 bool placement_allocation_fn_p;
2912 /* True if the storage must be initialized, either by a constructor
2913 or due to an explicit new-initializer. */
2914 bool is_initialized;
2915 /* The address of the thing allocated, not including any cookie. In
2916 particular, if an array cookie is in use, DATA_ADDR is the
2917 address of the first array element. This node is a VAR_DECL, and
2918 is therefore reusable. */
2919 tree data_addr;
2920 tree init_preeval_expr = NULL_TREE;
2921 tree orig_type = type;
2922
2923 if (nelts)
2924 {
2925 outer_nelts = nelts;
2926 array_p = true;
2927 }
2928 else if (TREE_CODE (type) == ARRAY_TYPE)
2929 {
2930 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2931 extension for variable N. (This also covers new T where T is
2932 a VLA typedef.) */
2933 array_p = true;
2934 nelts = array_type_nelts_top (type);
2935 outer_nelts = nelts;
2936 type = TREE_TYPE (type);
2937 outer_nelts_from_type = true;
2938 }
2939
2940 /* Lots of logic below depends on whether we have a constant number of
2941 elements, so go ahead and fold it now. */
2942 const_tree cst_outer_nelts = fold_non_dependent_expr (outer_nelts, complain);
2943
2944 /* If our base type is an array, then make sure we know how many elements
2945 it has. */
2946 for (elt_type = type;
2947 TREE_CODE (elt_type) == ARRAY_TYPE;
2948 elt_type = TREE_TYPE (elt_type))
2949 {
2950 tree inner_nelts = array_type_nelts_top (elt_type);
2951 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2952 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2953 {
2954 wi::overflow_type overflow;
2955 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2956 inner_nelts_count, SIGNED, &overflow);
2957 if (overflow)
2958 {
2959 if (complain & tf_error)
2960 error ("integer overflow in array size");
2961 nelts = error_mark_node;
2962 }
2963 inner_nelts_count = result;
2964 }
2965 else
2966 {
2967 if (complain & tf_error)
2968 {
2969 error_at (cp_expr_loc_or_loc (inner_nelts, input_location),
2970 "array size in new-expression must be constant");
2971 cxx_constant_value(inner_nelts);
2972 }
2973 nelts = error_mark_node;
2974 }
2975 if (nelts != error_mark_node)
2976 nelts = cp_build_binary_op (input_location,
2977 MULT_EXPR, nelts,
2978 inner_nelts_cst,
2979 complain);
2980 }
2981
2982 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2983 {
2984 error ("variably modified type not allowed in new-expression");
2985 return error_mark_node;
2986 }
2987
2988 if (nelts == error_mark_node)
2989 return error_mark_node;
2990
2991 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2992 variable. */
2993 if (outer_nelts_from_type
2994 && !TREE_CONSTANT (cst_outer_nelts))
2995 {
2996 if (complain & tf_warning_or_error)
2997 {
2998 pedwarn (cp_expr_loc_or_loc (outer_nelts, input_location), OPT_Wvla,
2999 typedef_variant_p (orig_type)
3000 ? G_("non-constant array new length must be specified "
3001 "directly, not by typedef")
3002 : G_("non-constant array new length must be specified "
3003 "without parentheses around the type-id"));
3004 }
3005 else
3006 return error_mark_node;
3007 }
3008
3009 if (VOID_TYPE_P (elt_type))
3010 {
3011 if (complain & tf_error)
3012 error ("invalid type %<void%> for new");
3013 return error_mark_node;
3014 }
3015
3016 if (is_std_init_list (elt_type))
3017 warning (OPT_Winit_list_lifetime,
3018 "%<new%> of initializer_list does not "
3019 "extend the lifetime of the underlying array");
3020
3021 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
3022 return error_mark_node;
3023
3024 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
3025
3026 if (*init == NULL && cxx_dialect < cxx11)
3027 {
3028 bool maybe_uninitialized_error = false;
3029 /* A program that calls for default-initialization [...] of an
3030 entity of reference type is ill-formed. */
3031 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
3032 maybe_uninitialized_error = true;
3033
3034 /* A new-expression that creates an object of type T initializes
3035 that object as follows:
3036 - If the new-initializer is omitted:
3037 -- If T is a (possibly cv-qualified) non-POD class type
3038 (or array thereof), the object is default-initialized (8.5).
3039 [...]
3040 -- Otherwise, the object created has indeterminate
3041 value. If T is a const-qualified type, or a (possibly
3042 cv-qualified) POD class type (or array thereof)
3043 containing (directly or indirectly) a member of
3044 const-qualified type, the program is ill-formed; */
3045
3046 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
3047 maybe_uninitialized_error = true;
3048
3049 if (maybe_uninitialized_error
3050 && diagnose_uninitialized_cst_or_ref_member (elt_type,
3051 /*using_new=*/true,
3052 complain & tf_error))
3053 return error_mark_node;
3054 }
3055
3056 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
3057 && default_init_uninitialized_part (elt_type))
3058 {
3059 if (complain & tf_error)
3060 error ("uninitialized const in %<new%> of %q#T", elt_type);
3061 return error_mark_node;
3062 }
3063
3064 size = size_in_bytes (elt_type);
3065 if (array_p)
3066 {
3067 /* Maximum available size in bytes. Half of the address space
3068 minus the cookie size. */
3069 offset_int max_size
3070 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
3071 /* Maximum number of outer elements which can be allocated. */
3072 offset_int max_outer_nelts;
3073 tree max_outer_nelts_tree;
3074
3075 gcc_assert (TREE_CODE (size) == INTEGER_CST);
3076 cookie_size = targetm.cxx.get_cookie_size (elt_type);
3077 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
3078 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
3079 /* Unconditionally subtract the cookie size. This decreases the
3080 maximum object size and is safe even if we choose not to use
3081 a cookie after all. */
3082 max_size -= wi::to_offset (cookie_size);
3083 wi::overflow_type overflow;
3084 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
3085 &overflow);
3086 if (overflow || wi::gtu_p (inner_size, max_size))
3087 {
3088 if (complain & tf_error)
3089 {
3090 cst_size_error error;
3091 if (overflow)
3092 error = cst_size_overflow;
3093 else
3094 {
3095 error = cst_size_too_big;
3096 size = size_binop (MULT_EXPR, size,
3097 wide_int_to_tree (sizetype,
3098 inner_nelts_count));
3099 size = cp_fully_fold (size);
3100 }
3101 invalid_array_size_error (input_location, error, size,
3102 /*name=*/NULL_TREE);
3103 }
3104 return error_mark_node;
3105 }
3106
3107 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
3108 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
3109
3110 size = size_binop (MULT_EXPR, size, fold_convert (sizetype, nelts));
3111
3112 if (TREE_CODE (cst_outer_nelts) == INTEGER_CST)
3113 {
3114 if (tree_int_cst_lt (max_outer_nelts_tree, cst_outer_nelts))
3115 {
3116 /* When the array size is constant, check it at compile time
3117 to make sure it doesn't exceed the implementation-defined
3118 maximum, as required by C++ 14 (in C++ 11 this requirement
3119 isn't explicitly stated but it's enforced anyway -- see
3120 grokdeclarator in cp/decl.c). */
3121 if (complain & tf_error)
3122 {
3123 size = cp_fully_fold (size);
3124 invalid_array_size_error (input_location, cst_size_too_big,
3125 size, NULL_TREE);
3126 }
3127 return error_mark_node;
3128 }
3129 }
3130 else
3131 {
3132 /* When a runtime check is necessary because the array size
3133 isn't constant, keep only the top-most seven bits (starting
3134 with the most significant non-zero bit) of the maximum size
3135 to compare the array size against, to simplify encoding the
3136 constant maximum size in the instruction stream. */
3137
3138 unsigned shift = (max_outer_nelts.get_precision ()) - 7
3139 - wi::clz (max_outer_nelts);
3140 max_outer_nelts = (max_outer_nelts >> shift) << shift;
3141
3142 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
3143 outer_nelts,
3144 max_outer_nelts_tree);
3145 }
3146 }
3147
3148 tree align_arg = NULL_TREE;
3149 if (type_has_new_extended_alignment (elt_type))
3150 align_arg = build_int_cst (align_type_node, TYPE_ALIGN_UNIT (elt_type));
3151
3152 alloc_fn = NULL_TREE;
3153
3154 /* If PLACEMENT is a single simple pointer type not passed by
3155 reference, prepare to capture it in a temporary variable. Do
3156 this now, since PLACEMENT will change in the calls below. */
3157 placement_first = NULL_TREE;
3158 if (vec_safe_length (*placement) == 1
3159 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
3160 placement_first = (**placement)[0];
3161
3162 bool member_new_p = false;
3163
3164 /* Allocate the object. */
3165 tree fnname;
3166 tree fns;
3167
3168 fnname = ovl_op_identifier (false, array_p ? VEC_NEW_EXPR : NEW_EXPR);
3169
3170 member_new_p = !globally_qualified_p
3171 && CLASS_TYPE_P (elt_type)
3172 && (array_p
3173 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
3174 : TYPE_HAS_NEW_OPERATOR (elt_type));
3175
3176 if (member_new_p)
3177 {
3178 /* Use a class-specific operator new. */
3179 /* If a cookie is required, add some extra space. */
3180 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
3181 size = size_binop (PLUS_EXPR, size, cookie_size);
3182 else
3183 {
3184 cookie_size = NULL_TREE;
3185 /* No size arithmetic necessary, so the size check is
3186 not needed. */
3187 if (outer_nelts_check != NULL && inner_size == 1)
3188 outer_nelts_check = NULL_TREE;
3189 }
3190 /* Perform the overflow check. */
3191 tree errval = TYPE_MAX_VALUE (sizetype);
3192 if (cxx_dialect >= cxx11 && flag_exceptions)
3193 errval = throw_bad_array_new_length ();
3194 if (outer_nelts_check != NULL_TREE)
3195 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
3196 size, errval);
3197 /* Create the argument list. */
3198 vec_safe_insert (*placement, 0, size);
3199 /* Do name-lookup to find the appropriate operator. */
3200 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
3201 if (fns == NULL_TREE)
3202 {
3203 if (complain & tf_error)
3204 error ("no suitable %qD found in class %qT", fnname, elt_type);
3205 return error_mark_node;
3206 }
3207 if (TREE_CODE (fns) == TREE_LIST)
3208 {
3209 if (complain & tf_error)
3210 {
3211 error ("request for member %qD is ambiguous", fnname);
3212 print_candidates (fns);
3213 }
3214 return error_mark_node;
3215 }
3216 tree dummy = build_dummy_object (elt_type);
3217 alloc_call = NULL_TREE;
3218 if (align_arg)
3219 {
3220 vec<tree, va_gc> *align_args
3221 = vec_copy_and_insert (*placement, align_arg, 1);
3222 alloc_call
3223 = build_new_method_call (dummy, fns, &align_args,
3224 /*conversion_path=*/NULL_TREE,
3225 LOOKUP_NORMAL, &alloc_fn, tf_none);
3226 /* If no matching function is found and the allocated object type
3227 has new-extended alignment, the alignment argument is removed
3228 from the argument list, and overload resolution is performed
3229 again. */
3230 if (alloc_call == error_mark_node)
3231 alloc_call = NULL_TREE;
3232 }
3233 if (!alloc_call)
3234 alloc_call = build_new_method_call (dummy, fns, placement,
3235 /*conversion_path=*/NULL_TREE,
3236 LOOKUP_NORMAL,
3237 &alloc_fn, complain);
3238 }
3239 else
3240 {
3241 /* Use a global operator new. */
3242 /* See if a cookie might be required. */
3243 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
3244 {
3245 cookie_size = NULL_TREE;
3246 /* No size arithmetic necessary, so the size check is
3247 not needed. */
3248 if (outer_nelts_check != NULL && inner_size == 1)
3249 outer_nelts_check = NULL_TREE;
3250 }
3251
3252 alloc_call = build_operator_new_call (fnname, placement,
3253 &size, &cookie_size,
3254 align_arg, outer_nelts_check,
3255 &alloc_fn, complain);
3256 }
3257
3258 if (alloc_call == error_mark_node)
3259 return error_mark_node;
3260
3261 gcc_assert (alloc_fn != NULL_TREE);
3262
3263 /* Now, check to see if this function is actually a placement
3264 allocation function. This can happen even when PLACEMENT is NULL
3265 because we might have something like:
3266
3267 struct S { void* operator new (size_t, int i = 0); };
3268
3269 A call to `new S' will get this allocation function, even though
3270 there is no explicit placement argument. If there is more than
3271 one argument, or there are variable arguments, then this is a
3272 placement allocation function. */
3273 placement_allocation_fn_p
3274 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
3275 || varargs_function_p (alloc_fn));
3276
3277 if (warn_aligned_new
3278 && !placement_allocation_fn_p
3279 && TYPE_ALIGN (elt_type) > malloc_alignment ()
3280 && (warn_aligned_new > 1
3281 || CP_DECL_CONTEXT (alloc_fn) == global_namespace)
3282 && !aligned_allocation_fn_p (alloc_fn))
3283 {
3284 auto_diagnostic_group d;
3285 if (warning (OPT_Waligned_new_, "%<new%> of type %qT with extended "
3286 "alignment %d", elt_type, TYPE_ALIGN_UNIT (elt_type)))
3287 {
3288 inform (input_location, "uses %qD, which does not have an alignment "
3289 "parameter", alloc_fn);
3290 if (!aligned_new_threshold)
3291 inform (input_location, "use %<-faligned-new%> to enable C++17 "
3292 "over-aligned new support");
3293 }
3294 }
3295
3296 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
3297 into a temporary variable. */
3298 if (!processing_template_decl
3299 && TREE_CODE (alloc_call) == CALL_EXPR
3300 && call_expr_nargs (alloc_call) == 2
3301 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
3302 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
3303 {
3304 tree placement = CALL_EXPR_ARG (alloc_call, 1);
3305
3306 if (placement_first != NULL_TREE
3307 && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))
3308 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))))
3309 {
3310 placement_expr = get_target_expr (placement_first);
3311 CALL_EXPR_ARG (alloc_call, 1)
3312 = fold_convert (TREE_TYPE (placement), placement_expr);
3313 }
3314
3315 if (!member_new_p
3316 && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))))
3317 {
3318 /* Attempt to make the warning point at the operator new argument. */
3319 if (placement_first)
3320 placement = placement_first;
3321
3322 warn_placement_new_too_small (orig_type, nelts, size, placement);
3323 }
3324 }
3325
3326 /* In the simple case, we can stop now. */
3327 pointer_type = build_pointer_type (type);
3328 if (!cookie_size && !is_initialized)
3329 return build_nop (pointer_type, alloc_call);
3330
3331 /* Store the result of the allocation call in a variable so that we can
3332 use it more than once. */
3333 alloc_expr = get_target_expr (alloc_call);
3334 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
3335
3336 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
3337 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
3338 alloc_call = TREE_OPERAND (alloc_call, 1);
3339
3340 /* Preevaluate the placement args so that we don't reevaluate them for a
3341 placement delete. */
3342 if (placement_allocation_fn_p)
3343 {
3344 tree inits;
3345 stabilize_call (alloc_call, &inits);
3346 if (inits)
3347 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
3348 alloc_expr);
3349 }
3350
3351 /* unless an allocation function is declared with an empty excep-
3352 tion-specification (_except.spec_), throw(), it indicates failure to
3353 allocate storage by throwing a bad_alloc exception (clause _except_,
3354 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
3355 cation function is declared with an empty exception-specification,
3356 throw(), it returns null to indicate failure to allocate storage and a
3357 non-null pointer otherwise.
3358
3359 So check for a null exception spec on the op new we just called. */
3360
3361 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
3362 check_new
3363 = flag_check_new || (nothrow && !std_placement_new_fn_p (alloc_fn));
3364
3365 if (cookie_size)
3366 {
3367 tree cookie;
3368 tree cookie_ptr;
3369 tree size_ptr_type;
3370
3371 /* Adjust so we're pointing to the start of the object. */
3372 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
3373
3374 /* Store the number of bytes allocated so that we can know how
3375 many elements to destroy later. We use the last sizeof
3376 (size_t) bytes to store the number of elements. */
3377 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
3378 cookie_ptr = fold_build_pointer_plus_loc (input_location,
3379 alloc_node, cookie_ptr);
3380 size_ptr_type = build_pointer_type (sizetype);
3381 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
3382 cookie = cp_build_fold_indirect_ref (cookie_ptr);
3383
3384 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
3385
3386 if (targetm.cxx.cookie_has_size ())
3387 {
3388 /* Also store the element size. */
3389 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
3390 fold_build1_loc (input_location,
3391 NEGATE_EXPR, sizetype,
3392 size_in_bytes (sizetype)));
3393
3394 cookie = cp_build_fold_indirect_ref (cookie_ptr);
3395 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
3396 size_in_bytes (elt_type));
3397 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
3398 cookie, cookie_expr);
3399 }
3400 }
3401 else
3402 {
3403 cookie_expr = NULL_TREE;
3404 data_addr = alloc_node;
3405 }
3406
3407 /* Now use a pointer to the type we've actually allocated. */
3408
3409 /* But we want to operate on a non-const version to start with,
3410 since we'll be modifying the elements. */
3411 non_const_pointer_type = build_pointer_type
3412 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
3413
3414 data_addr = fold_convert (non_const_pointer_type, data_addr);
3415 /* Any further uses of alloc_node will want this type, too. */
3416 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
3417
3418 /* Now initialize the allocated object. Note that we preevaluate the
3419 initialization expression, apart from the actual constructor call or
3420 assignment--we do this because we want to delay the allocation as long
3421 as possible in order to minimize the size of the exception region for
3422 placement delete. */
3423 if (is_initialized)
3424 {
3425 bool stable;
3426 bool explicit_value_init_p = false;
3427
3428 if (*init != NULL && (*init)->is_empty ())
3429 {
3430 *init = NULL;
3431 explicit_value_init_p = true;
3432 }
3433
3434 if (processing_template_decl && explicit_value_init_p)
3435 {
3436 /* build_value_init doesn't work in templates, and we don't need
3437 the initializer anyway since we're going to throw it away and
3438 rebuild it at instantiation time, so just build up a single
3439 constructor call to get any appropriate diagnostics. */
3440 init_expr = cp_build_fold_indirect_ref (data_addr);
3441 if (type_build_ctor_call (elt_type))
3442 init_expr = build_special_member_call (init_expr,
3443 complete_ctor_identifier,
3444 init, elt_type,
3445 LOOKUP_NORMAL,
3446 complain);
3447 stable = stabilize_init (init_expr, &init_preeval_expr);
3448 }
3449 else if (array_p)
3450 {
3451 tree vecinit = NULL_TREE;
3452 if (vec_safe_length (*init) == 1
3453 && DIRECT_LIST_INIT_P ((**init)[0]))
3454 {
3455 vecinit = (**init)[0];
3456 if (CONSTRUCTOR_NELTS (vecinit) == 0)
3457 /* List-value-initialization, leave it alone. */;
3458 else
3459 {
3460 tree arraytype, domain;
3461 if (TREE_CONSTANT (nelts))
3462 domain = compute_array_index_type (NULL_TREE, nelts,
3463 complain);
3464 else
3465 /* We'll check the length at runtime. */
3466 domain = NULL_TREE;
3467 arraytype = build_cplus_array_type (type, domain);
3468 vecinit = digest_init (arraytype, vecinit, complain);
3469 }
3470 }
3471 else if (*init)
3472 {
3473 if (complain & tf_error)
3474 error ("parenthesized initializer in array new");
3475 return error_mark_node;
3476 }
3477 init_expr
3478 = build_vec_init (data_addr,
3479 cp_build_binary_op (input_location,
3480 MINUS_EXPR, outer_nelts,
3481 integer_one_node,
3482 complain),
3483 vecinit,
3484 explicit_value_init_p,
3485 /*from_array=*/0,
3486 complain);
3487
3488 /* An array initialization is stable because the initialization
3489 of each element is a full-expression, so the temporaries don't
3490 leak out. */
3491 stable = true;
3492 }
3493 else
3494 {
3495 init_expr = cp_build_fold_indirect_ref (data_addr);
3496
3497 if (type_build_ctor_call (type) && !explicit_value_init_p)
3498 {
3499 init_expr = build_special_member_call (init_expr,
3500 complete_ctor_identifier,
3501 init, elt_type,
3502 LOOKUP_NORMAL,
3503 complain);
3504 }
3505 else if (explicit_value_init_p)
3506 {
3507 /* Something like `new int()'. NO_CLEANUP is needed so
3508 we don't try and build a (possibly ill-formed)
3509 destructor. */
3510 tree val = build_value_init (type, complain | tf_no_cleanup);
3511 if (val == error_mark_node)
3512 return error_mark_node;
3513 init_expr = build2 (INIT_EXPR, type, init_expr, val);
3514 }
3515 else
3516 {
3517 tree ie;
3518
3519 /* We are processing something like `new int (10)', which
3520 means allocate an int, and initialize it with 10. */
3521
3522 ie = build_x_compound_expr_from_vec (*init, "new initializer",
3523 complain);
3524 init_expr = cp_build_modify_expr (input_location, init_expr,
3525 INIT_EXPR, ie, complain);
3526 }
3527 /* If the initializer uses C++14 aggregate NSDMI that refer to the
3528 object being initialized, replace them now and don't try to
3529 preevaluate. */
3530 bool had_placeholder = false;
3531 if (!processing_template_decl
3532 && TREE_CODE (init_expr) == INIT_EXPR)
3533 TREE_OPERAND (init_expr, 1)
3534 = replace_placeholders (TREE_OPERAND (init_expr, 1),
3535 TREE_OPERAND (init_expr, 0),
3536 &had_placeholder);
3537 stable = (!had_placeholder
3538 && stabilize_init (init_expr, &init_preeval_expr));
3539 }
3540
3541 if (init_expr == error_mark_node)
3542 return error_mark_node;
3543
3544 /* If any part of the object initialization terminates by throwing an
3545 exception and a suitable deallocation function can be found, the
3546 deallocation function is called to free the memory in which the
3547 object was being constructed, after which the exception continues
3548 to propagate in the context of the new-expression. If no
3549 unambiguous matching deallocation function can be found,
3550 propagating the exception does not cause the object's memory to be
3551 freed. */
3552 if (flag_exceptions)
3553 {
3554 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
3555 tree cleanup;
3556
3557 /* The Standard is unclear here, but the right thing to do
3558 is to use the same method for finding deallocation
3559 functions that we use for finding allocation functions. */
3560 cleanup = (build_op_delete_call
3561 (dcode,
3562 alloc_node,
3563 size,
3564 globally_qualified_p,
3565 placement_allocation_fn_p ? alloc_call : NULL_TREE,
3566 alloc_fn,
3567 complain));
3568
3569 if (!cleanup)
3570 /* We're done. */;
3571 else if (stable)
3572 /* This is much simpler if we were able to preevaluate all of
3573 the arguments to the constructor call. */
3574 {
3575 /* CLEANUP is compiler-generated, so no diagnostics. */
3576 TREE_NO_WARNING (cleanup) = true;
3577 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
3578 init_expr, cleanup);
3579 /* Likewise, this try-catch is compiler-generated. */
3580 TREE_NO_WARNING (init_expr) = true;
3581 }
3582 else
3583 /* Ack! First we allocate the memory. Then we set our sentry
3584 variable to true, and expand a cleanup that deletes the
3585 memory if sentry is true. Then we run the constructor, and
3586 finally clear the sentry.
3587
3588 We need to do this because we allocate the space first, so
3589 if there are any temporaries with cleanups in the
3590 constructor args and we weren't able to preevaluate them, we
3591 need this EH region to extend until end of full-expression
3592 to preserve nesting. */
3593 {
3594 tree end, sentry, begin;
3595
3596 begin = get_target_expr (boolean_true_node);
3597 CLEANUP_EH_ONLY (begin) = 1;
3598
3599 sentry = TARGET_EXPR_SLOT (begin);
3600
3601 /* CLEANUP is compiler-generated, so no diagnostics. */
3602 TREE_NO_WARNING (cleanup) = true;
3603
3604 TARGET_EXPR_CLEANUP (begin)
3605 = build3 (COND_EXPR, void_type_node, sentry,
3606 cleanup, void_node);
3607
3608 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
3609 sentry, boolean_false_node);
3610
3611 init_expr
3612 = build2 (COMPOUND_EXPR, void_type_node, begin,
3613 build2 (COMPOUND_EXPR, void_type_node, init_expr,
3614 end));
3615 /* Likewise, this is compiler-generated. */
3616 TREE_NO_WARNING (init_expr) = true;
3617 }
3618 }
3619 }
3620 else
3621 init_expr = NULL_TREE;
3622
3623 /* Now build up the return value in reverse order. */
3624
3625 rval = data_addr;
3626
3627 if (init_expr)
3628 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
3629 if (cookie_expr)
3630 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
3631
3632 if (rval == data_addr)
3633 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
3634 and return the call (which doesn't need to be adjusted). */
3635 rval = TARGET_EXPR_INITIAL (alloc_expr);
3636 else
3637 {
3638 if (check_new)
3639 {
3640 tree ifexp = cp_build_binary_op (input_location,
3641 NE_EXPR, alloc_node,
3642 nullptr_node,
3643 complain);
3644 rval = build_conditional_expr (input_location, ifexp, rval,
3645 alloc_node, complain);
3646 }
3647
3648 /* Perform the allocation before anything else, so that ALLOC_NODE
3649 has been initialized before we start using it. */
3650 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
3651 }
3652
3653 if (init_preeval_expr)
3654 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
3655
3656 /* A new-expression is never an lvalue. */
3657 gcc_assert (!obvalue_p (rval));
3658
3659 return convert (pointer_type, rval);
3660 }
3661
3662 /* Generate a representation for a C++ "new" expression. *PLACEMENT
3663 is a vector of placement-new arguments (or NULL if none). If NELTS
3664 is NULL, TYPE is the type of the storage to be allocated. If NELTS
3665 is not NULL, then this is an array-new allocation; TYPE is the type
3666 of the elements in the array and NELTS is the number of elements in
3667 the array. *INIT, if non-NULL, is the initializer for the new
3668 object, or an empty vector to indicate an initializer of "()". If
3669 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3670 rather than just "new". This may change PLACEMENT and INIT. */
3671
3672 tree
3673 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
3674 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
3675 {
3676 tree rval;
3677 vec<tree, va_gc> *orig_placement = NULL;
3678 tree orig_nelts = NULL_TREE;
3679 vec<tree, va_gc> *orig_init = NULL;
3680
3681 if (type == error_mark_node)
3682 return error_mark_node;
3683
3684 if (nelts == NULL_TREE
3685 /* Don't do auto deduction where it might affect mangling. */
3686 && (!processing_template_decl || at_function_scope_p ()))
3687 {
3688 tree auto_node = type_uses_auto (type);
3689 if (auto_node)
3690 {
3691 tree d_init = NULL_TREE;
3692 const size_t len = vec_safe_length (*init);
3693 /* E.g. new auto(x) must have exactly one element, or
3694 a {} initializer will have one element. */
3695 if (len == 1)
3696 {
3697 d_init = (**init)[0];
3698 d_init = resolve_nondeduced_context (d_init, complain);
3699 }
3700 /* For the rest, e.g. new A(1, 2, 3), create a list. */
3701 else if (len > 1)
3702 {
3703 unsigned int n;
3704 tree t;
3705 tree *pp = &d_init;
3706 FOR_EACH_VEC_ELT (**init, n, t)
3707 {
3708 t = resolve_nondeduced_context (t, complain);
3709 *pp = build_tree_list (NULL_TREE, t);
3710 pp = &TREE_CHAIN (*pp);
3711 }
3712 }
3713 type = do_auto_deduction (type, d_init, auto_node, complain);
3714 }
3715 }
3716
3717 if (processing_template_decl)
3718 {
3719 if (dependent_type_p (type)
3720 || any_type_dependent_arguments_p (*placement)
3721 || (nelts && type_dependent_expression_p (nelts))
3722 || (nelts && *init)
3723 || any_type_dependent_arguments_p (*init))
3724 return build_raw_new_expr (*placement, type, nelts, *init,
3725 use_global_new);
3726
3727 orig_placement = make_tree_vector_copy (*placement);
3728 orig_nelts = nelts;
3729 if (*init)
3730 {
3731 orig_init = make_tree_vector_copy (*init);
3732 /* Also copy any CONSTRUCTORs in *init, since reshape_init and
3733 digest_init clobber them in place. */
3734 for (unsigned i = 0; i < orig_init->length(); ++i)
3735 {
3736 tree e = (**init)[i];
3737 if (TREE_CODE (e) == CONSTRUCTOR)
3738 (**init)[i] = copy_node (e);
3739 }
3740 }
3741
3742 make_args_non_dependent (*placement);
3743 if (nelts)
3744 nelts = build_non_dependent_expr (nelts);
3745 make_args_non_dependent (*init);
3746 }
3747
3748 if (nelts)
3749 {
3750 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3751 {
3752 if (complain & tf_error)
3753 permerror (input_location, "size in array new must have integral type");
3754 else
3755 return error_mark_node;
3756 }
3757
3758 /* Try to determine the constant value only for the purposes
3759 of the diagnostic below but continue to use the original
3760 value and handle const folding later. */
3761 const_tree cst_nelts = fold_non_dependent_expr (nelts, complain);
3762
3763 /* The expression in a noptr-new-declarator is erroneous if it's of
3764 non-class type and its value before converting to std::size_t is
3765 less than zero. ... If the expression is a constant expression,
3766 the program is ill-fomed. */
3767 if (TREE_CODE (cst_nelts) == INTEGER_CST
3768 && !valid_array_size_p (input_location, cst_nelts, NULL_TREE,
3769 complain & tf_error))
3770 return error_mark_node;
3771
3772 nelts = mark_rvalue_use (nelts);
3773 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3774 }
3775
3776 /* ``A reference cannot be created by the new operator. A reference
3777 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3778 returned by new.'' ARM 5.3.3 */
3779 if (TYPE_REF_P (type))
3780 {
3781 if (complain & tf_error)
3782 error ("new cannot be applied to a reference type");
3783 else
3784 return error_mark_node;
3785 type = TREE_TYPE (type);
3786 }
3787
3788 if (TREE_CODE (type) == FUNCTION_TYPE)
3789 {
3790 if (complain & tf_error)
3791 error ("new cannot be applied to a function type");
3792 return error_mark_node;
3793 }
3794
3795 /* The type allocated must be complete. If the new-type-id was
3796 "T[N]" then we are just checking that "T" is complete here, but
3797 that is equivalent, since the value of "N" doesn't matter. */
3798 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3799 return error_mark_node;
3800
3801 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3802 if (rval == error_mark_node)
3803 return error_mark_node;
3804
3805 if (processing_template_decl)
3806 {
3807 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3808 orig_init, use_global_new);
3809 release_tree_vector (orig_placement);
3810 release_tree_vector (orig_init);
3811 return ret;
3812 }
3813
3814 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3815 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3816 TREE_NO_WARNING (rval) = 1;
3817
3818 return rval;
3819 }
3820 \f
3821 static tree
3822 build_vec_delete_1 (tree base, tree maxindex, tree type,
3823 special_function_kind auto_delete_vec,
3824 int use_global_delete, tsubst_flags_t complain)
3825 {
3826 tree virtual_size;
3827 tree ptype = build_pointer_type (type = complete_type (type));
3828 tree size_exp;
3829
3830 /* Temporary variables used by the loop. */
3831 tree tbase, tbase_init;
3832
3833 /* This is the body of the loop that implements the deletion of a
3834 single element, and moves temp variables to next elements. */
3835 tree body;
3836
3837 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3838 tree loop = 0;
3839
3840 /* This is the thing that governs what to do after the loop has run. */
3841 tree deallocate_expr = 0;
3842
3843 /* This is the BIND_EXPR which holds the outermost iterator of the
3844 loop. It is convenient to set this variable up and test it before
3845 executing any other code in the loop.
3846 This is also the containing expression returned by this function. */
3847 tree controller = NULL_TREE;
3848 tree tmp;
3849
3850 /* We should only have 1-D arrays here. */
3851 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3852
3853 if (base == error_mark_node || maxindex == error_mark_node)
3854 return error_mark_node;
3855
3856 if (!COMPLETE_TYPE_P (type))
3857 {
3858 if (complain & tf_warning)
3859 {
3860 auto_diagnostic_group d;
3861 if (warning (OPT_Wdelete_incomplete,
3862 "possible problem detected in invocation of "
3863 "delete [] operator:"))
3864 {
3865 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3866 inform (input_location, "neither the destructor nor the "
3867 "class-specific operator delete [] will be called, "
3868 "even if they are declared when the class is defined");
3869 }
3870 }
3871 /* This size won't actually be used. */
3872 size_exp = size_one_node;
3873 goto no_destructor;
3874 }
3875
3876 size_exp = size_in_bytes (type);
3877
3878 if (! MAYBE_CLASS_TYPE_P (type))
3879 goto no_destructor;
3880 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3881 {
3882 /* Make sure the destructor is callable. */
3883 if (type_build_dtor_call (type))
3884 {
3885 tmp = build_delete (ptype, base, sfk_complete_destructor,
3886 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3887 complain);
3888 if (tmp == error_mark_node)
3889 return error_mark_node;
3890 }
3891 goto no_destructor;
3892 }
3893
3894 /* The below is short by the cookie size. */
3895 virtual_size = size_binop (MULT_EXPR, size_exp,
3896 fold_convert (sizetype, maxindex));
3897
3898 tbase = create_temporary_var (ptype);
3899 tbase_init
3900 = cp_build_modify_expr (input_location, tbase, NOP_EXPR,
3901 fold_build_pointer_plus_loc (input_location,
3902 fold_convert (ptype,
3903 base),
3904 virtual_size),
3905 complain);
3906 if (tbase_init == error_mark_node)
3907 return error_mark_node;
3908 controller = build3 (BIND_EXPR, void_type_node, tbase,
3909 NULL_TREE, NULL_TREE);
3910 TREE_SIDE_EFFECTS (controller) = 1;
3911
3912 body = build1 (EXIT_EXPR, void_type_node,
3913 build2 (EQ_EXPR, boolean_type_node, tbase,
3914 fold_convert (ptype, base)));
3915 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3916 tmp = fold_build_pointer_plus (tbase, tmp);
3917 tmp = cp_build_modify_expr (input_location, tbase, NOP_EXPR, tmp, complain);
3918 if (tmp == error_mark_node)
3919 return error_mark_node;
3920 body = build_compound_expr (input_location, body, tmp);
3921 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3922 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3923 complain);
3924 if (tmp == error_mark_node)
3925 return error_mark_node;
3926 body = build_compound_expr (input_location, body, tmp);
3927
3928 loop = build1 (LOOP_EXPR, void_type_node, body);
3929 loop = build_compound_expr (input_location, tbase_init, loop);
3930
3931 no_destructor:
3932 /* Delete the storage if appropriate. */
3933 if (auto_delete_vec == sfk_deleting_destructor)
3934 {
3935 tree base_tbd;
3936
3937 /* The below is short by the cookie size. */
3938 virtual_size = size_binop (MULT_EXPR, size_exp,
3939 fold_convert (sizetype, maxindex));
3940
3941 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3942 /* no header */
3943 base_tbd = base;
3944 else
3945 {
3946 tree cookie_size;
3947
3948 cookie_size = targetm.cxx.get_cookie_size (type);
3949 base_tbd = cp_build_binary_op (input_location,
3950 MINUS_EXPR,
3951 cp_convert (string_type_node,
3952 base, complain),
3953 cookie_size,
3954 complain);
3955 if (base_tbd == error_mark_node)
3956 return error_mark_node;
3957 base_tbd = cp_convert (ptype, base_tbd, complain);
3958 /* True size with header. */
3959 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3960 }
3961
3962 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3963 base_tbd, virtual_size,
3964 use_global_delete & 1,
3965 /*placement=*/NULL_TREE,
3966 /*alloc_fn=*/NULL_TREE,
3967 complain);
3968 }
3969
3970 body = loop;
3971 if (!deallocate_expr)
3972 ;
3973 else if (!body)
3974 body = deallocate_expr;
3975 else
3976 /* The delete operator mist be called, even if a destructor
3977 throws. */
3978 body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr);
3979
3980 if (!body)
3981 body = integer_zero_node;
3982
3983 /* Outermost wrapper: If pointer is null, punt. */
3984 tree cond = build2_loc (input_location, NE_EXPR, boolean_type_node, base,
3985 fold_convert (TREE_TYPE (base), nullptr_node));
3986 /* This is a compiler generated comparison, don't emit
3987 e.g. -Wnonnull-compare warning for it. */
3988 TREE_NO_WARNING (cond) = 1;
3989 body = build3_loc (input_location, COND_EXPR, void_type_node,
3990 cond, body, integer_zero_node);
3991 COND_EXPR_IS_VEC_DELETE (body) = true;
3992 body = build1 (NOP_EXPR, void_type_node, body);
3993
3994 if (controller)
3995 {
3996 TREE_OPERAND (controller, 1) = body;
3997 body = controller;
3998 }
3999
4000 if (TREE_CODE (base) == SAVE_EXPR)
4001 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
4002 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
4003
4004 return convert_to_void (body, ICV_CAST, complain);
4005 }
4006
4007 /* Create an unnamed variable of the indicated TYPE. */
4008
4009 tree
4010 create_temporary_var (tree type)
4011 {
4012 tree decl;
4013
4014 decl = build_decl (input_location,
4015 VAR_DECL, NULL_TREE, type);
4016 TREE_USED (decl) = 1;
4017 DECL_ARTIFICIAL (decl) = 1;
4018 DECL_IGNORED_P (decl) = 1;
4019 DECL_CONTEXT (decl) = current_function_decl;
4020
4021 return decl;
4022 }
4023
4024 /* Create a new temporary variable of the indicated TYPE, initialized
4025 to INIT.
4026
4027 It is not entered into current_binding_level, because that breaks
4028 things when it comes time to do final cleanups (which take place
4029 "outside" the binding contour of the function). */
4030
4031 tree
4032 get_temp_regvar (tree type, tree init)
4033 {
4034 tree decl;
4035
4036 decl = create_temporary_var (type);
4037 add_decl_expr (decl);
4038
4039 finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR,
4040 init, tf_warning_or_error));
4041
4042 return decl;
4043 }
4044
4045 /* Subroutine of build_vec_init. Returns true if assigning to an array of
4046 INNER_ELT_TYPE from INIT is trivial. */
4047
4048 static bool
4049 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
4050 {
4051 tree fromtype = inner_elt_type;
4052 if (lvalue_p (init))
4053 fromtype = cp_build_reference_type (fromtype, /*rval*/false);
4054 return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
4055 }
4056
4057 /* Subroutine of build_vec_init: Check that the array has at least N
4058 elements. Other parameters are local variables in build_vec_init. */
4059
4060 void
4061 finish_length_check (tree atype, tree iterator, tree obase, unsigned n)
4062 {
4063 tree nelts = build_int_cst (ptrdiff_type_node, n - 1);
4064 if (TREE_CODE (atype) != ARRAY_TYPE)
4065 {
4066 if (flag_exceptions)
4067 {
4068 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
4069 nelts);
4070 c = build3 (COND_EXPR, void_type_node, c,
4071 throw_bad_array_new_length (), void_node);
4072 finish_expr_stmt (c);
4073 }
4074 /* Don't check an array new when -fno-exceptions. */
4075 }
4076 else if (sanitize_flags_p (SANITIZE_BOUNDS)
4077 && current_function_decl != NULL_TREE)
4078 {
4079 /* Make sure the last element of the initializer is in bounds. */
4080 finish_expr_stmt
4081 (ubsan_instrument_bounds
4082 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
4083 }
4084 }
4085
4086 /* `build_vec_init' returns tree structure that performs
4087 initialization of a vector of aggregate types.
4088
4089 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
4090 to the first element, of POINTER_TYPE.
4091 MAXINDEX is the maximum index of the array (one less than the
4092 number of elements). It is only used if BASE is a pointer or
4093 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
4094
4095 INIT is the (possibly NULL) initializer.
4096
4097 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
4098 elements in the array are value-initialized.
4099
4100 FROM_ARRAY is 0 if we should init everything with INIT
4101 (i.e., every element initialized from INIT).
4102 FROM_ARRAY is 1 if we should index into INIT in parallel
4103 with initialization of DECL.
4104 FROM_ARRAY is 2 if we should index into INIT in parallel,
4105 but use assignment instead of initialization. */
4106
4107 tree
4108 build_vec_init (tree base, tree maxindex, tree init,
4109 bool explicit_value_init_p,
4110 int from_array, tsubst_flags_t complain)
4111 {
4112 tree rval;
4113 tree base2 = NULL_TREE;
4114 tree itype = NULL_TREE;
4115 tree iterator;
4116 /* The type of BASE. */
4117 tree atype = TREE_TYPE (base);
4118 /* The type of an element in the array. */
4119 tree type = TREE_TYPE (atype);
4120 /* The element type reached after removing all outer array
4121 types. */
4122 tree inner_elt_type;
4123 /* The type of a pointer to an element in the array. */
4124 tree ptype;
4125 tree stmt_expr;
4126 tree compound_stmt;
4127 int destroy_temps;
4128 tree try_block = NULL_TREE;
4129 HOST_WIDE_INT num_initialized_elts = 0;
4130 bool is_global;
4131 tree obase = base;
4132 bool xvalue = false;
4133 bool errors = false;
4134 location_t loc = (init ? cp_expr_loc_or_loc (init, input_location)
4135 : location_of (base));
4136
4137 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
4138 maxindex = array_type_nelts (atype);
4139
4140 if (maxindex == NULL_TREE || maxindex == error_mark_node)
4141 return error_mark_node;
4142
4143 maxindex = maybe_constant_value (maxindex);
4144 if (explicit_value_init_p)
4145 gcc_assert (!init);
4146
4147 inner_elt_type = strip_array_types (type);
4148
4149 /* Look through the TARGET_EXPR around a compound literal. */
4150 if (init && TREE_CODE (init) == TARGET_EXPR
4151 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
4152 && from_array != 2)
4153 init = TARGET_EXPR_INITIAL (init);
4154
4155 bool direct_init = false;
4156 if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init)
4157 && CONSTRUCTOR_NELTS (init) == 1)
4158 {
4159 tree elt = CONSTRUCTOR_ELT (init, 0)->value;
4160 if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE)
4161 {
4162 direct_init = DIRECT_LIST_INIT_P (init);
4163 init = elt;
4164 }
4165 }
4166
4167 /* If we have a braced-init-list or string constant, make sure that the array
4168 is big enough for all the initializers. */
4169 bool length_check = (init
4170 && (TREE_CODE (init) == STRING_CST
4171 || (TREE_CODE (init) == CONSTRUCTOR
4172 && CONSTRUCTOR_NELTS (init) > 0))
4173 && !TREE_CONSTANT (maxindex));
4174
4175 if (init
4176 && TREE_CODE (atype) == ARRAY_TYPE
4177 && TREE_CONSTANT (maxindex)
4178 && (from_array == 2
4179 ? vec_copy_assign_is_trivial (inner_elt_type, init)
4180 : !TYPE_NEEDS_CONSTRUCTING (type))
4181 && ((TREE_CODE (init) == CONSTRUCTOR
4182 && (BRACE_ENCLOSED_INITIALIZER_P (init)
4183 || (same_type_ignoring_top_level_qualifiers_p
4184 (atype, TREE_TYPE (init))))
4185 /* Don't do this if the CONSTRUCTOR might contain something
4186 that might throw and require us to clean up. */
4187 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
4188 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
4189 || from_array))
4190 {
4191 /* Do non-default initialization of trivial arrays resulting from
4192 brace-enclosed initializers. In this case, digest_init and
4193 store_constructor will handle the semantics for us. */
4194
4195 if (BRACE_ENCLOSED_INITIALIZER_P (init))
4196 init = digest_init (atype, init, complain);
4197 stmt_expr = build2 (INIT_EXPR, atype, base, init);
4198 return stmt_expr;
4199 }
4200
4201 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
4202 maxindex = fold_simple (maxindex);
4203
4204 if (TREE_CODE (atype) == ARRAY_TYPE)
4205 {
4206 ptype = build_pointer_type (type);
4207 base = decay_conversion (base, complain);
4208 if (base == error_mark_node)
4209 return error_mark_node;
4210 base = cp_convert (ptype, base, complain);
4211 }
4212 else
4213 ptype = atype;
4214
4215 /* The code we are generating looks like:
4216 ({
4217 T* t1 = (T*) base;
4218 T* rval = t1;
4219 ptrdiff_t iterator = maxindex;
4220 try {
4221 for (; iterator != -1; --iterator) {
4222 ... initialize *t1 ...
4223 ++t1;
4224 }
4225 } catch (...) {
4226 ... destroy elements that were constructed ...
4227 }
4228 rval;
4229 })
4230
4231 We can omit the try and catch blocks if we know that the
4232 initialization will never throw an exception, or if the array
4233 elements do not have destructors. We can omit the loop completely if
4234 the elements of the array do not have constructors.
4235
4236 We actually wrap the entire body of the above in a STMT_EXPR, for
4237 tidiness.
4238
4239 When copying from array to another, when the array elements have
4240 only trivial copy constructors, we should use __builtin_memcpy
4241 rather than generating a loop. That way, we could take advantage
4242 of whatever cleverness the back end has for dealing with copies
4243 of blocks of memory. */
4244
4245 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
4246 destroy_temps = stmts_are_full_exprs_p ();
4247 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4248 rval = get_temp_regvar (ptype, base);
4249 base = get_temp_regvar (ptype, rval);
4250 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
4251
4252 /* If initializing one array from another, initialize element by
4253 element. We rely upon the below calls to do the argument
4254 checking. Evaluate the initializer before entering the try block. */
4255 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
4256 {
4257 if (lvalue_kind (init) & clk_rvalueref)
4258 xvalue = true;
4259 base2 = decay_conversion (init, complain);
4260 if (base2 == error_mark_node)
4261 return error_mark_node;
4262 itype = TREE_TYPE (base2);
4263 base2 = get_temp_regvar (itype, base2);
4264 itype = TREE_TYPE (itype);
4265 }
4266
4267 /* Protect the entire array initialization so that we can destroy
4268 the partially constructed array if an exception is thrown.
4269 But don't do this if we're assigning. */
4270 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4271 && from_array != 2)
4272 {
4273 try_block = begin_try_block ();
4274 }
4275
4276 /* Should we try to create a constant initializer? */
4277 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
4278 && TREE_CONSTANT (maxindex)
4279 && (init ? TREE_CODE (init) == CONSTRUCTOR
4280 : (type_has_constexpr_default_constructor
4281 (inner_elt_type)))
4282 && (literal_type_p (inner_elt_type)
4283 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
4284 vec<constructor_elt, va_gc> *const_vec = NULL;
4285 bool saw_non_const = false;
4286 /* If we're initializing a static array, we want to do static
4287 initialization of any elements with constant initializers even if
4288 some are non-constant. */
4289 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
4290
4291 bool empty_list = false;
4292 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
4293 && CONSTRUCTOR_NELTS (init) == 0)
4294 /* Skip over the handling of non-empty init lists. */
4295 empty_list = true;
4296
4297 /* Maybe pull out constant value when from_array? */
4298
4299 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
4300 {
4301 /* Do non-default initialization of non-trivial arrays resulting from
4302 brace-enclosed initializers. */
4303 unsigned HOST_WIDE_INT idx;
4304 tree field, elt;
4305 /* If the constructor already has the array type, it's been through
4306 digest_init, so we shouldn't try to do anything more. */
4307 bool digested = same_type_p (atype, TREE_TYPE (init));
4308 from_array = 0;
4309
4310 if (length_check)
4311 finish_length_check (atype, iterator, obase, CONSTRUCTOR_NELTS (init));
4312
4313 if (try_const)
4314 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
4315
4316 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
4317 {
4318 tree baseref = build1 (INDIRECT_REF, type, base);
4319 tree one_init;
4320
4321 num_initialized_elts++;
4322
4323 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4324 if (digested)
4325 one_init = build2 (INIT_EXPR, type, baseref, elt);
4326 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
4327 one_init = build_aggr_init (baseref, elt, 0, complain);
4328 else
4329 one_init = cp_build_modify_expr (input_location, baseref,
4330 NOP_EXPR, elt, complain);
4331 if (one_init == error_mark_node)
4332 errors = true;
4333 if (try_const)
4334 {
4335 tree e = maybe_constant_init (one_init);
4336 if (reduced_constant_expression_p (e))
4337 {
4338 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4339 if (do_static_init)
4340 one_init = NULL_TREE;
4341 else
4342 one_init = build2 (INIT_EXPR, type, baseref, e);
4343 }
4344 else
4345 {
4346 if (do_static_init)
4347 {
4348 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
4349 true);
4350 if (value)
4351 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
4352 }
4353 saw_non_const = true;
4354 }
4355 }
4356
4357 if (one_init)
4358 finish_expr_stmt (one_init);
4359 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4360
4361 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4362 complain);
4363 if (one_init == error_mark_node)
4364 errors = true;
4365 else
4366 finish_expr_stmt (one_init);
4367
4368 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4369 complain);
4370 if (one_init == error_mark_node)
4371 errors = true;
4372 else
4373 finish_expr_stmt (one_init);
4374 }
4375
4376 /* Any elements without explicit initializers get T{}. */
4377 empty_list = true;
4378 }
4379 else if (init && TREE_CODE (init) == STRING_CST)
4380 {
4381 /* Check that the array is at least as long as the string. */
4382 if (length_check)
4383 finish_length_check (atype, iterator, obase,
4384 TREE_STRING_LENGTH (init));
4385 tree length = build_int_cst (ptrdiff_type_node,
4386 TREE_STRING_LENGTH (init));
4387
4388 /* Copy the string to the first part of the array. */
4389 tree alias_set = build_int_cst (build_pointer_type (type), 0);
4390 tree lhs = build2 (MEM_REF, TREE_TYPE (init), base, alias_set);
4391 tree stmt = build2 (MODIFY_EXPR, void_type_node, lhs, init);
4392 finish_expr_stmt (stmt);
4393
4394 /* Adjust the counter and pointer. */
4395 stmt = cp_build_binary_op (loc, MINUS_EXPR, iterator, length, complain);
4396 stmt = build2 (MODIFY_EXPR, void_type_node, iterator, stmt);
4397 finish_expr_stmt (stmt);
4398
4399 stmt = cp_build_binary_op (loc, PLUS_EXPR, base, length, complain);
4400 stmt = build2 (MODIFY_EXPR, void_type_node, base, stmt);
4401 finish_expr_stmt (stmt);
4402
4403 /* And set the rest of the array to NUL. */
4404 from_array = 0;
4405 explicit_value_init_p = true;
4406 }
4407 else if (from_array)
4408 {
4409 if (init)
4410 /* OK, we set base2 above. */;
4411 else if (CLASS_TYPE_P (type)
4412 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
4413 {
4414 if (complain & tf_error)
4415 error ("initializer ends prematurely");
4416 errors = true;
4417 }
4418 }
4419
4420 /* Now, default-initialize any remaining elements. We don't need to
4421 do that if a) the type does not need constructing, or b) we've
4422 already initialized all the elements.
4423
4424 We do need to keep going if we're copying an array. */
4425
4426 if (try_const && !init)
4427 /* With a constexpr default constructor, which we checked for when
4428 setting try_const above, default-initialization is equivalent to
4429 value-initialization, and build_value_init gives us something more
4430 friendly to maybe_constant_init. */
4431 explicit_value_init_p = true;
4432 if (from_array
4433 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
4434 && ! (tree_fits_shwi_p (maxindex)
4435 && (num_initialized_elts
4436 == tree_to_shwi (maxindex) + 1))))
4437 {
4438 /* If the ITERATOR is lesser or equal to -1, then we don't have to loop;
4439 we've already initialized all the elements. */
4440 tree for_stmt;
4441 tree elt_init;
4442 tree to;
4443
4444 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
4445 finish_init_stmt (for_stmt);
4446 finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator,
4447 build_int_cst (TREE_TYPE (iterator), -1)),
4448 for_stmt, false, 0);
4449 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4450 complain);
4451 if (elt_init == error_mark_node)
4452 errors = true;
4453 finish_for_expr (elt_init, for_stmt);
4454
4455 to = build1 (INDIRECT_REF, type, base);
4456
4457 /* If the initializer is {}, then all elements are initialized from T{}.
4458 But for non-classes, that's the same as value-initialization. */
4459 if (empty_list)
4460 {
4461 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
4462 {
4463 init = build_constructor (init_list_type_node, NULL);
4464 }
4465 else
4466 {
4467 init = NULL_TREE;
4468 explicit_value_init_p = true;
4469 }
4470 }
4471
4472 if (from_array)
4473 {
4474 tree from;
4475
4476 if (base2)
4477 {
4478 from = build1 (INDIRECT_REF, itype, base2);
4479 if (xvalue)
4480 from = move (from);
4481 if (direct_init)
4482 from = build_tree_list (NULL_TREE, from);
4483 }
4484 else
4485 from = NULL_TREE;
4486
4487 if (TREE_CODE (type) == ARRAY_TYPE)
4488 elt_init = build_vec_init (to, NULL_TREE, from, /*val_init*/false,
4489 from_array, complain);
4490 else if (from_array == 2)
4491 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR,
4492 from, complain);
4493 else if (type_build_ctor_call (type))
4494 elt_init = build_aggr_init (to, from, 0, complain);
4495 else if (from)
4496 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from,
4497 complain);
4498 else
4499 gcc_unreachable ();
4500 }
4501 else if (TREE_CODE (type) == ARRAY_TYPE)
4502 {
4503 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
4504 {
4505 if ((complain & tf_error))
4506 error_at (loc, "array must be initialized "
4507 "with a brace-enclosed initializer");
4508 elt_init = error_mark_node;
4509 }
4510 else
4511 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
4512 0, init,
4513 explicit_value_init_p,
4514 0, complain);
4515 }
4516 else if (explicit_value_init_p)
4517 {
4518 elt_init = build_value_init (type, complain);
4519 if (elt_init != error_mark_node)
4520 elt_init = build2 (INIT_EXPR, type, to, elt_init);
4521 }
4522 else
4523 {
4524 gcc_assert (type_build_ctor_call (type) || init);
4525 if (CLASS_TYPE_P (type))
4526 elt_init = build_aggr_init (to, init, 0, complain);
4527 else
4528 {
4529 if (TREE_CODE (init) == TREE_LIST)
4530 init = build_x_compound_expr_from_list (init, ELK_INIT,
4531 complain);
4532 elt_init = (init == error_mark_node
4533 ? error_mark_node
4534 : build2 (INIT_EXPR, type, to, init));
4535 }
4536 }
4537
4538 if (elt_init == error_mark_node)
4539 errors = true;
4540
4541 if (try_const)
4542 {
4543 /* FIXME refs to earlier elts */
4544 tree e = maybe_constant_init (elt_init);
4545 if (reduced_constant_expression_p (e))
4546 {
4547 if (initializer_zerop (e))
4548 /* Don't fill the CONSTRUCTOR with zeros. */
4549 e = NULL_TREE;
4550 if (do_static_init)
4551 elt_init = NULL_TREE;
4552 }
4553 else
4554 {
4555 saw_non_const = true;
4556 if (do_static_init)
4557 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
4558 else
4559 e = NULL_TREE;
4560 }
4561
4562 if (e)
4563 {
4564 HOST_WIDE_INT last = tree_to_shwi (maxindex);
4565 if (num_initialized_elts <= last)
4566 {
4567 tree field = size_int (num_initialized_elts);
4568 if (num_initialized_elts != last)
4569 field = build2 (RANGE_EXPR, sizetype, field,
4570 size_int (last));
4571 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4572 }
4573 }
4574 }
4575
4576 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4577 if (elt_init && !errors)
4578 finish_expr_stmt (elt_init);
4579 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4580
4581 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4582 complain));
4583 if (base2)
4584 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, false,
4585 complain));
4586
4587 finish_for_stmt (for_stmt);
4588 }
4589
4590 /* Make sure to cleanup any partially constructed elements. */
4591 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4592 && from_array != 2)
4593 {
4594 tree e;
4595 tree m = cp_build_binary_op (input_location,
4596 MINUS_EXPR, maxindex, iterator,
4597 complain);
4598
4599 /* Flatten multi-dimensional array since build_vec_delete only
4600 expects one-dimensional array. */
4601 if (TREE_CODE (type) == ARRAY_TYPE)
4602 m = cp_build_binary_op (input_location,
4603 MULT_EXPR, m,
4604 /* Avoid mixing signed and unsigned. */
4605 convert (TREE_TYPE (m),
4606 array_type_nelts_total (type)),
4607 complain);
4608
4609 finish_cleanup_try_block (try_block);
4610 e = build_vec_delete_1 (rval, m,
4611 inner_elt_type, sfk_complete_destructor,
4612 /*use_global_delete=*/0, complain);
4613 if (e == error_mark_node)
4614 errors = true;
4615 finish_cleanup (e, try_block);
4616 }
4617
4618 /* The value of the array initialization is the array itself, RVAL
4619 is a pointer to the first element. */
4620 finish_stmt_expr_expr (rval, stmt_expr);
4621
4622 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
4623
4624 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
4625
4626 if (errors)
4627 return error_mark_node;
4628
4629 if (try_const)
4630 {
4631 if (!saw_non_const)
4632 {
4633 tree const_init = build_constructor (atype, const_vec);
4634 return build2 (INIT_EXPR, atype, obase, const_init);
4635 }
4636 else if (do_static_init && !vec_safe_is_empty (const_vec))
4637 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
4638 else
4639 vec_free (const_vec);
4640 }
4641
4642 /* Now make the result have the correct type. */
4643 if (TREE_CODE (atype) == ARRAY_TYPE)
4644 {
4645 atype = build_pointer_type (atype);
4646 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
4647 stmt_expr = cp_build_fold_indirect_ref (stmt_expr);
4648 TREE_NO_WARNING (stmt_expr) = 1;
4649 }
4650
4651 return stmt_expr;
4652 }
4653
4654 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
4655 build_delete. */
4656
4657 static tree
4658 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
4659 tsubst_flags_t complain)
4660 {
4661 tree name;
4662 switch (dtor_kind)
4663 {
4664 case sfk_complete_destructor:
4665 name = complete_dtor_identifier;
4666 break;
4667
4668 case sfk_base_destructor:
4669 name = base_dtor_identifier;
4670 break;
4671
4672 case sfk_deleting_destructor:
4673 name = deleting_dtor_identifier;
4674 break;
4675
4676 default:
4677 gcc_unreachable ();
4678 }
4679
4680 return build_special_member_call (exp, name,
4681 /*args=*/NULL,
4682 /*binfo=*/TREE_TYPE (exp),
4683 flags,
4684 complain);
4685 }
4686
4687 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
4688 ADDR is an expression which yields the store to be destroyed.
4689 AUTO_DELETE is the name of the destructor to call, i.e., either
4690 sfk_complete_destructor, sfk_base_destructor, or
4691 sfk_deleting_destructor.
4692
4693 FLAGS is the logical disjunction of zero or more LOOKUP_
4694 flags. See cp-tree.h for more info. */
4695
4696 tree
4697 build_delete (tree otype, tree addr, special_function_kind auto_delete,
4698 int flags, int use_global_delete, tsubst_flags_t complain)
4699 {
4700 tree expr;
4701
4702 if (addr == error_mark_node)
4703 return error_mark_node;
4704
4705 tree type = TYPE_MAIN_VARIANT (otype);
4706
4707 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
4708 set to `error_mark_node' before it gets properly cleaned up. */
4709 if (type == error_mark_node)
4710 return error_mark_node;
4711
4712 if (TYPE_PTR_P (type))
4713 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4714
4715 if (TREE_CODE (type) == ARRAY_TYPE)
4716 {
4717 if (TYPE_DOMAIN (type) == NULL_TREE)
4718 {
4719 if (complain & tf_error)
4720 error ("unknown array size in delete");
4721 return error_mark_node;
4722 }
4723 return build_vec_delete (addr, array_type_nelts (type),
4724 auto_delete, use_global_delete, complain);
4725 }
4726
4727 bool deleting = (auto_delete == sfk_deleting_destructor);
4728 gcc_assert (deleting == !(flags & LOOKUP_DESTRUCTOR));
4729
4730 if (TYPE_PTR_P (otype))
4731 {
4732 addr = mark_rvalue_use (addr);
4733
4734 /* We don't want to warn about delete of void*, only other
4735 incomplete types. Deleting other incomplete types
4736 invokes undefined behavior, but it is not ill-formed, so
4737 compile to something that would even do The Right Thing
4738 (TM) should the type have a trivial dtor and no delete
4739 operator. */
4740 if (!VOID_TYPE_P (type))
4741 {
4742 complete_type (type);
4743 if (!COMPLETE_TYPE_P (type))
4744 {
4745 if (complain & tf_warning)
4746 {
4747 auto_diagnostic_group d;
4748 if (warning (OPT_Wdelete_incomplete,
4749 "possible problem detected in invocation of "
4750 "delete operator:"))
4751 {
4752 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
4753 inform (input_location,
4754 "neither the destructor nor the class-specific "
4755 "operator delete will be called, even if they "
4756 "are declared when the class is defined");
4757 }
4758 }
4759 }
4760 else if (deleting && warn_delnonvdtor
4761 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4762 && TYPE_POLYMORPHIC_P (type))
4763 {
4764 tree dtor = CLASSTYPE_DESTRUCTOR (type);
4765 if (!dtor || !DECL_VINDEX (dtor))
4766 {
4767 if (CLASSTYPE_PURE_VIRTUALS (type))
4768 warning (OPT_Wdelete_non_virtual_dtor,
4769 "deleting object of abstract class type %qT"
4770 " which has non-virtual destructor"
4771 " will cause undefined behavior", type);
4772 else
4773 warning (OPT_Wdelete_non_virtual_dtor,
4774 "deleting object of polymorphic class type %qT"
4775 " which has non-virtual destructor"
4776 " might cause undefined behavior", type);
4777 }
4778 }
4779 }
4780
4781 /* Throw away const and volatile on target type of addr. */
4782 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4783 }
4784 else
4785 {
4786 /* Don't check PROTECT here; leave that decision to the
4787 destructor. If the destructor is accessible, call it,
4788 else report error. */
4789 addr = cp_build_addr_expr (addr, complain);
4790 if (addr == error_mark_node)
4791 return error_mark_node;
4792
4793 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4794 }
4795
4796 if (deleting)
4797 /* We will use ADDR multiple times so we must save it. */
4798 addr = save_expr (addr);
4799
4800 bool virtual_p = false;
4801 if (type_build_dtor_call (type))
4802 {
4803 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4804 lazily_declare_fn (sfk_destructor, type);
4805 virtual_p = DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTOR (type));
4806 }
4807
4808 tree head = NULL_TREE;
4809 tree do_delete = NULL_TREE;
4810 bool destroying_delete = false;
4811
4812 if (!deleting)
4813 {
4814 /* Leave do_delete null. */
4815 }
4816 /* For `::delete x', we must not use the deleting destructor
4817 since then we would not be sure to get the global `operator
4818 delete'. */
4819 else if (use_global_delete)
4820 {
4821 head = get_target_expr (build_headof (addr));
4822 /* Delete the object. */
4823 do_delete = build_op_delete_call (DELETE_EXPR,
4824 head,
4825 cxx_sizeof_nowarn (type),
4826 /*global_p=*/true,
4827 /*placement=*/NULL_TREE,
4828 /*alloc_fn=*/NULL_TREE,
4829 complain);
4830 /* Otherwise, treat this like a complete object destructor
4831 call. */
4832 auto_delete = sfk_complete_destructor;
4833 }
4834 /* If the destructor is non-virtual, there is no deleting
4835 variant. Instead, we must explicitly call the appropriate
4836 `operator delete' here. */
4837 else if (!virtual_p)
4838 {
4839 /* Build the call. */
4840 do_delete = build_op_delete_call (DELETE_EXPR,
4841 addr,
4842 cxx_sizeof_nowarn (type),
4843 /*global_p=*/false,
4844 /*placement=*/NULL_TREE,
4845 /*alloc_fn=*/NULL_TREE,
4846 complain);
4847 /* Call the complete object destructor. */
4848 auto_delete = sfk_complete_destructor;
4849 if (do_delete != error_mark_node)
4850 {
4851 tree fn = get_callee_fndecl (do_delete);
4852 destroying_delete = destroying_delete_p (fn);
4853 }
4854 }
4855 else if (TYPE_GETS_REG_DELETE (type))
4856 {
4857 /* Make sure we have access to the member op delete, even though
4858 we'll actually be calling it from the destructor. */
4859 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4860 /*global_p=*/false,
4861 /*placement=*/NULL_TREE,
4862 /*alloc_fn=*/NULL_TREE,
4863 complain);
4864 }
4865
4866 if (!destroying_delete && type_build_dtor_call (type))
4867 expr = build_dtor_call (cp_build_fold_indirect_ref (addr),
4868 auto_delete, flags, complain);
4869 else
4870 expr = build_trivial_dtor_call (addr);
4871 if (expr == error_mark_node)
4872 return error_mark_node;
4873
4874 if (!deleting)
4875 return expr;
4876
4877 if (do_delete && !TREE_SIDE_EFFECTS (expr))
4878 expr = do_delete;
4879 else if (do_delete)
4880 /* The delete operator must be called, regardless of whether
4881 the destructor throws.
4882
4883 [expr.delete]/7 The deallocation function is called
4884 regardless of whether the destructor for the object or some
4885 element of the array throws an exception. */
4886 expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete);
4887
4888 /* We need to calculate this before the dtor changes the vptr. */
4889 if (head)
4890 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4891
4892 /* Handle deleting a null pointer. */
4893 warning_sentinel s (warn_address);
4894 tree ifexp = cp_build_binary_op (input_location, NE_EXPR, addr,
4895 nullptr_node, complain);
4896 ifexp = cp_fully_fold (ifexp);
4897
4898 if (ifexp == error_mark_node)
4899 return error_mark_node;
4900 /* This is a compiler generated comparison, don't emit
4901 e.g. -Wnonnull-compare warning for it. */
4902 else if (TREE_CODE (ifexp) == NE_EXPR)
4903 TREE_NO_WARNING (ifexp) = 1;
4904
4905 if (!integer_nonzerop (ifexp))
4906 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4907
4908 return expr;
4909 }
4910
4911 /* At the beginning of a destructor, push cleanups that will call the
4912 destructors for our base classes and members.
4913
4914 Called from begin_destructor_body. */
4915
4916 void
4917 push_base_cleanups (void)
4918 {
4919 tree binfo, base_binfo;
4920 int i;
4921 tree member;
4922 tree expr;
4923 vec<tree, va_gc> *vbases;
4924
4925 /* Run destructors for all virtual baseclasses. */
4926 if (!ABSTRACT_CLASS_TYPE_P (current_class_type)
4927 && CLASSTYPE_VBASECLASSES (current_class_type))
4928 {
4929 tree cond = (condition_conversion
4930 (build2 (BIT_AND_EXPR, integer_type_node,
4931 current_in_charge_parm,
4932 integer_two_node)));
4933
4934 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4935 order, which is also the right order for pushing cleanups. */
4936 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4937 vec_safe_iterate (vbases, i, &base_binfo); i++)
4938 {
4939 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4940 {
4941 expr = build_special_member_call (current_class_ref,
4942 base_dtor_identifier,
4943 NULL,
4944 base_binfo,
4945 (LOOKUP_NORMAL
4946 | LOOKUP_NONVIRTUAL),
4947 tf_warning_or_error);
4948 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4949 {
4950 expr = build3 (COND_EXPR, void_type_node, cond,
4951 expr, void_node);
4952 finish_decl_cleanup (NULL_TREE, expr);
4953 }
4954 }
4955 }
4956 }
4957
4958 /* Take care of the remaining baseclasses. */
4959 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4960 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4961 {
4962 if (BINFO_VIRTUAL_P (base_binfo)
4963 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4964 continue;
4965
4966 expr = build_special_member_call (current_class_ref,
4967 base_dtor_identifier,
4968 NULL, base_binfo,
4969 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4970 tf_warning_or_error);
4971 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4972 finish_decl_cleanup (NULL_TREE, expr);
4973 }
4974
4975 /* Don't automatically destroy union members. */
4976 if (TREE_CODE (current_class_type) == UNION_TYPE)
4977 return;
4978
4979 for (member = TYPE_FIELDS (current_class_type); member;
4980 member = DECL_CHAIN (member))
4981 {
4982 tree this_type = TREE_TYPE (member);
4983 if (this_type == error_mark_node
4984 || TREE_CODE (member) != FIELD_DECL
4985 || DECL_ARTIFICIAL (member))
4986 continue;
4987 if (ANON_AGGR_TYPE_P (this_type))
4988 continue;
4989 if (type_build_dtor_call (this_type))
4990 {
4991 tree this_member = (build_class_member_access_expr
4992 (current_class_ref, member,
4993 /*access_path=*/NULL_TREE,
4994 /*preserve_reference=*/false,
4995 tf_warning_or_error));
4996 expr = build_delete (this_type, this_member,
4997 sfk_complete_destructor,
4998 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4999 0, tf_warning_or_error);
5000 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
5001 finish_decl_cleanup (NULL_TREE, expr);
5002 }
5003 }
5004 }
5005
5006 /* Build a C++ vector delete expression.
5007 MAXINDEX is the number of elements to be deleted.
5008 ELT_SIZE is the nominal size of each element in the vector.
5009 BASE is the expression that should yield the store to be deleted.
5010 This function expands (or synthesizes) these calls itself.
5011 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
5012
5013 This also calls delete for virtual baseclasses of elements of the vector.
5014
5015 Update: MAXINDEX is no longer needed. The size can be extracted from the
5016 start of the vector for pointers, and from the type for arrays. We still
5017 use MAXINDEX for arrays because it happens to already have one of the
5018 values we'd have to extract. (We could use MAXINDEX with pointers to
5019 confirm the size, and trap if the numbers differ; not clear that it'd
5020 be worth bothering.) */
5021
5022 tree
5023 build_vec_delete (tree base, tree maxindex,
5024 special_function_kind auto_delete_vec,
5025 int use_global_delete, tsubst_flags_t complain)
5026 {
5027 tree type;
5028 tree rval;
5029 tree base_init = NULL_TREE;
5030
5031 type = TREE_TYPE (base);
5032
5033 if (TYPE_PTR_P (type))
5034 {
5035 /* Step back one from start of vector, and read dimension. */
5036 tree cookie_addr;
5037 tree size_ptr_type = build_pointer_type (sizetype);
5038
5039 base = mark_rvalue_use (base);
5040 if (TREE_SIDE_EFFECTS (base))
5041 {
5042 base_init = get_target_expr (base);
5043 base = TARGET_EXPR_SLOT (base_init);
5044 }
5045 type = strip_array_types (TREE_TYPE (type));
5046 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
5047 sizetype, TYPE_SIZE_UNIT (sizetype));
5048 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
5049 cookie_addr);
5050 maxindex = cp_build_fold_indirect_ref (cookie_addr);
5051 }
5052 else if (TREE_CODE (type) == ARRAY_TYPE)
5053 {
5054 /* Get the total number of things in the array, maxindex is a
5055 bad name. */
5056 maxindex = array_type_nelts_total (type);
5057 type = strip_array_types (type);
5058 base = decay_conversion (base, complain);
5059 if (base == error_mark_node)
5060 return error_mark_node;
5061 if (TREE_SIDE_EFFECTS (base))
5062 {
5063 base_init = get_target_expr (base);
5064 base = TARGET_EXPR_SLOT (base_init);
5065 }
5066 }
5067 else
5068 {
5069 if (base != error_mark_node && !(complain & tf_error))
5070 error ("type to vector delete is neither pointer or array type");
5071 return error_mark_node;
5072 }
5073
5074 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
5075 use_global_delete, complain);
5076 if (base_init && rval != error_mark_node)
5077 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
5078
5079 return rval;
5080 }
5081
5082 #include "gt-cp-init.h"