]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/init.c
gimple.h: Remove all includes.
[thirdparty/gcc.git] / gcc / cp / init.c
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "cp-tree.h"
31 #include "flags.h"
32 #include "target.h"
33 #include "gimplify.h"
34
35 static bool begin_init_stmts (tree *, tree *);
36 static tree finish_init_stmts (bool, tree, tree);
37 static void construct_virtual_base (tree, tree);
38 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
39 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
40 static void perform_member_init (tree, tree);
41 static tree build_builtin_delete_call (tree);
42 static int member_init_ok_or_else (tree, tree, tree);
43 static void expand_virtual_init (tree, tree);
44 static tree sort_mem_initializers (tree, tree);
45 static tree initializing_context (tree);
46 static void expand_cleanup_for_base (tree, tree);
47 static tree dfs_initialize_vtbl_ptrs (tree, void *);
48 static tree build_field_list (tree, tree, int *);
49 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
50
51 /* We are about to generate some complex initialization code.
52 Conceptually, it is all a single expression. However, we may want
53 to include conditionals, loops, and other such statement-level
54 constructs. Therefore, we build the initialization code inside a
55 statement-expression. This function starts such an expression.
56 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
57 pass them back to finish_init_stmts when the expression is
58 complete. */
59
60 static bool
61 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
62 {
63 bool is_global = !building_stmt_list_p ();
64
65 *stmt_expr_p = begin_stmt_expr ();
66 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
67
68 return is_global;
69 }
70
71 /* Finish out the statement-expression begun by the previous call to
72 begin_init_stmts. Returns the statement-expression itself. */
73
74 static tree
75 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
76 {
77 finish_compound_stmt (compound_stmt);
78
79 stmt_expr = finish_stmt_expr (stmt_expr, true);
80
81 gcc_assert (!building_stmt_list_p () == is_global);
82
83 return stmt_expr;
84 }
85
86 /* Constructors */
87
88 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
89 which we want to initialize the vtable pointer for, DATA is
90 TREE_LIST whose TREE_VALUE is the this ptr expression. */
91
92 static tree
93 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
94 {
95 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
96 return dfs_skip_bases;
97
98 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
99 {
100 tree base_ptr = TREE_VALUE ((tree) data);
101
102 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
103 tf_warning_or_error);
104
105 expand_virtual_init (binfo, base_ptr);
106 }
107
108 return NULL_TREE;
109 }
110
111 /* Initialize all the vtable pointers in the object pointed to by
112 ADDR. */
113
114 void
115 initialize_vtbl_ptrs (tree addr)
116 {
117 tree list;
118 tree type;
119
120 type = TREE_TYPE (TREE_TYPE (addr));
121 list = build_tree_list (type, addr);
122
123 /* Walk through the hierarchy, initializing the vptr in each base
124 class. We do these in pre-order because we can't find the virtual
125 bases for a class until we've initialized the vtbl for that
126 class. */
127 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
128 }
129
130 /* Return an expression for the zero-initialization of an object with
131 type T. This expression will either be a constant (in the case
132 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
133 aggregate), or NULL (in the case that T does not require
134 initialization). In either case, the value can be used as
135 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
136 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
137 is the number of elements in the array. If STATIC_STORAGE_P is
138 TRUE, initializers are only generated for entities for which
139 zero-initialization does not simply mean filling the storage with
140 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
141 subfields with bit positions at or above that bit size shouldn't
142 be added. Note that this only works when the result is assigned
143 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
144 expand_assignment will end up clearing the full size of TYPE. */
145
146 static tree
147 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
148 tree field_size)
149 {
150 tree init = NULL_TREE;
151
152 /* [dcl.init]
153
154 To zero-initialize an object of type T means:
155
156 -- if T is a scalar type, the storage is set to the value of zero
157 converted to T.
158
159 -- if T is a non-union class type, the storage for each nonstatic
160 data member and each base-class subobject is zero-initialized.
161
162 -- if T is a union type, the storage for its first data member is
163 zero-initialized.
164
165 -- if T is an array type, the storage for each element is
166 zero-initialized.
167
168 -- if T is a reference type, no initialization is performed. */
169
170 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
171
172 if (type == error_mark_node)
173 ;
174 else if (static_storage_p && zero_init_p (type))
175 /* In order to save space, we do not explicitly build initializers
176 for items that do not need them. GCC's semantics are that
177 items with static storage duration that are not otherwise
178 initialized are initialized to zero. */
179 ;
180 else if (TYPE_PTR_OR_PTRMEM_P (type))
181 init = convert (type, nullptr_node);
182 else if (SCALAR_TYPE_P (type))
183 init = convert (type, integer_zero_node);
184 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
185 {
186 tree field;
187 vec<constructor_elt, va_gc> *v = NULL;
188
189 /* Iterate over the fields, building initializations. */
190 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
191 {
192 if (TREE_CODE (field) != FIELD_DECL)
193 continue;
194
195 /* Don't add virtual bases for base classes if they are beyond
196 the size of the current field, that means it is present
197 somewhere else in the object. */
198 if (field_size)
199 {
200 tree bitpos = bit_position (field);
201 if (TREE_CODE (bitpos) == INTEGER_CST
202 && !tree_int_cst_lt (bitpos, field_size))
203 continue;
204 }
205
206 /* Note that for class types there will be FIELD_DECLs
207 corresponding to base classes as well. Thus, iterating
208 over TYPE_FIELDs will result in correct initialization of
209 all of the subobjects. */
210 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
211 {
212 tree new_field_size
213 = (DECL_FIELD_IS_BASE (field)
214 && DECL_SIZE (field)
215 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
216 ? DECL_SIZE (field) : NULL_TREE;
217 tree value = build_zero_init_1 (TREE_TYPE (field),
218 /*nelts=*/NULL_TREE,
219 static_storage_p,
220 new_field_size);
221 if (value)
222 CONSTRUCTOR_APPEND_ELT(v, field, value);
223 }
224
225 /* For unions, only the first field is initialized. */
226 if (TREE_CODE (type) == UNION_TYPE)
227 break;
228 }
229
230 /* Build a constructor to contain the initializations. */
231 init = build_constructor (type, v);
232 }
233 else if (TREE_CODE (type) == ARRAY_TYPE)
234 {
235 tree max_index;
236 vec<constructor_elt, va_gc> *v = NULL;
237
238 /* Iterate over the array elements, building initializations. */
239 if (nelts)
240 max_index = fold_build2_loc (input_location,
241 MINUS_EXPR, TREE_TYPE (nelts),
242 nelts, integer_one_node);
243 else
244 max_index = array_type_nelts (type);
245
246 /* If we have an error_mark here, we should just return error mark
247 as we don't know the size of the array yet. */
248 if (max_index == error_mark_node)
249 return error_mark_node;
250 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
251
252 /* A zero-sized array, which is accepted as an extension, will
253 have an upper bound of -1. */
254 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
255 {
256 constructor_elt ce;
257
258 /* If this is a one element array, we just use a regular init. */
259 if (tree_int_cst_equal (size_zero_node, max_index))
260 ce.index = size_zero_node;
261 else
262 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
263 max_index);
264
265 ce.value = build_zero_init_1 (TREE_TYPE (type),
266 /*nelts=*/NULL_TREE,
267 static_storage_p, NULL_TREE);
268 if (ce.value)
269 {
270 vec_alloc (v, 1);
271 v->quick_push (ce);
272 }
273 }
274
275 /* Build a constructor to contain the initializations. */
276 init = build_constructor (type, v);
277 }
278 else if (TREE_CODE (type) == VECTOR_TYPE)
279 init = build_zero_cst (type);
280 else
281 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
282
283 /* In all cases, the initializer is a constant. */
284 if (init)
285 TREE_CONSTANT (init) = 1;
286
287 return init;
288 }
289
290 /* Return an expression for the zero-initialization of an object with
291 type T. This expression will either be a constant (in the case
292 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
293 aggregate), or NULL (in the case that T does not require
294 initialization). In either case, the value can be used as
295 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
296 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
297 is the number of elements in the array. If STATIC_STORAGE_P is
298 TRUE, initializers are only generated for entities for which
299 zero-initialization does not simply mean filling the storage with
300 zero bytes. */
301
302 tree
303 build_zero_init (tree type, tree nelts, bool static_storage_p)
304 {
305 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
306 }
307
308 /* Return a suitable initializer for value-initializing an object of type
309 TYPE, as described in [dcl.init]. */
310
311 tree
312 build_value_init (tree type, tsubst_flags_t complain)
313 {
314 /* [dcl.init]
315
316 To value-initialize an object of type T means:
317
318 - if T is a class type (clause 9) with either no default constructor
319 (12.1) or a default constructor that is user-provided or deleted,
320 then then the object is default-initialized;
321
322 - if T is a (possibly cv-qualified) class type without a user-provided
323 or deleted default constructor, then the object is zero-initialized
324 and the semantic constraints for default-initialization are checked,
325 and if T has a non-trivial default constructor, the object is
326 default-initialized;
327
328 - if T is an array type, then each element is value-initialized;
329
330 - otherwise, the object is zero-initialized.
331
332 A program that calls for default-initialization or
333 value-initialization of an entity of reference type is ill-formed. */
334
335 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
336 gcc_assert (!processing_template_decl
337 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
338
339 if (type_build_ctor_call (type))
340 {
341 tree ctor = build_aggr_init_expr
342 (type,
343 build_special_member_call (NULL_TREE, complete_ctor_identifier,
344 NULL, type, LOOKUP_NORMAL,
345 complain));
346 if (ctor == error_mark_node
347 || type_has_user_provided_default_constructor (type))
348 return ctor;
349 else if (TYPE_HAS_COMPLEX_DFLT (type))
350 {
351 /* This is a class that needs constructing, but doesn't have
352 a user-provided constructor. So we need to zero-initialize
353 the object and then call the implicitly defined ctor.
354 This will be handled in simplify_aggr_init_expr. */
355 AGGR_INIT_ZERO_FIRST (ctor) = 1;
356 return ctor;
357 }
358 }
359
360 /* Discard any access checking during subobject initialization;
361 the checks are implied by the call to the ctor which we have
362 verified is OK (cpp0x/defaulted46.C). */
363 push_deferring_access_checks (dk_deferred);
364 tree r = build_value_init_noctor (type, complain);
365 pop_deferring_access_checks ();
366 return r;
367 }
368
369 /* Like build_value_init, but don't call the constructor for TYPE. Used
370 for base initializers. */
371
372 tree
373 build_value_init_noctor (tree type, tsubst_flags_t complain)
374 {
375 if (!COMPLETE_TYPE_P (type))
376 {
377 if (complain & tf_error)
378 error ("value-initialization of incomplete type %qT", type);
379 return error_mark_node;
380 }
381 /* FIXME the class and array cases should just use digest_init once it is
382 SFINAE-enabled. */
383 if (CLASS_TYPE_P (type))
384 {
385 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type));
386
387 if (TREE_CODE (type) != UNION_TYPE)
388 {
389 tree field;
390 vec<constructor_elt, va_gc> *v = NULL;
391
392 /* Iterate over the fields, building initializations. */
393 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
394 {
395 tree ftype, value;
396
397 if (TREE_CODE (field) != FIELD_DECL)
398 continue;
399
400 ftype = TREE_TYPE (field);
401
402 /* We could skip vfields and fields of types with
403 user-defined constructors, but I think that won't improve
404 performance at all; it should be simpler in general just
405 to zero out the entire object than try to only zero the
406 bits that actually need it. */
407
408 /* Note that for class types there will be FIELD_DECLs
409 corresponding to base classes as well. Thus, iterating
410 over TYPE_FIELDs will result in correct initialization of
411 all of the subobjects. */
412 value = build_value_init (ftype, complain);
413
414 if (value == error_mark_node)
415 return error_mark_node;
416
417 if (value)
418 CONSTRUCTOR_APPEND_ELT(v, field, value);
419 }
420
421 /* Build a constructor to contain the zero- initializations. */
422 return build_constructor (type, v);
423 }
424 }
425 else if (TREE_CODE (type) == ARRAY_TYPE)
426 {
427 vec<constructor_elt, va_gc> *v = NULL;
428
429 /* Iterate over the array elements, building initializations. */
430 tree max_index = array_type_nelts (type);
431
432 /* If we have an error_mark here, we should just return error mark
433 as we don't know the size of the array yet. */
434 if (max_index == error_mark_node)
435 {
436 if (complain & tf_error)
437 error ("cannot value-initialize array of unknown bound %qT",
438 type);
439 return error_mark_node;
440 }
441 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
442
443 /* A zero-sized array, which is accepted as an extension, will
444 have an upper bound of -1. */
445 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
446 {
447 constructor_elt ce;
448
449 /* If this is a one element array, we just use a regular init. */
450 if (tree_int_cst_equal (size_zero_node, max_index))
451 ce.index = size_zero_node;
452 else
453 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
454
455 ce.value = build_value_init (TREE_TYPE (type), complain);
456 if (ce.value)
457 {
458 if (ce.value == error_mark_node)
459 return error_mark_node;
460
461 vec_alloc (v, 1);
462 v->quick_push (ce);
463
464 /* We shouldn't have gotten here for anything that would need
465 non-trivial initialization, and gimplify_init_ctor_preeval
466 would need to be fixed to allow it. */
467 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
468 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
469 }
470 }
471
472 /* Build a constructor to contain the initializations. */
473 return build_constructor (type, v);
474 }
475 else if (TREE_CODE (type) == FUNCTION_TYPE)
476 {
477 if (complain & tf_error)
478 error ("value-initialization of function type %qT", type);
479 return error_mark_node;
480 }
481 else if (TREE_CODE (type) == REFERENCE_TYPE)
482 {
483 if (complain & tf_error)
484 error ("value-initialization of reference type %qT", type);
485 return error_mark_node;
486 }
487
488 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
489 }
490
491 /* Initialize current class with INIT, a TREE_LIST of
492 arguments for a target constructor. If TREE_LIST is void_type_node,
493 an empty initializer list was given. */
494
495 static void
496 perform_target_ctor (tree init)
497 {
498 tree decl = current_class_ref;
499 tree type = current_class_type;
500
501 finish_expr_stmt (build_aggr_init (decl, init,
502 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
503 tf_warning_or_error));
504 if (type_build_dtor_call (type))
505 {
506 tree expr = build_delete (type, decl, sfk_complete_destructor,
507 LOOKUP_NORMAL
508 |LOOKUP_NONVIRTUAL
509 |LOOKUP_DESTRUCTOR,
510 0, tf_warning_or_error);
511 if (expr != error_mark_node
512 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
513 finish_eh_cleanup (expr);
514 }
515 }
516
517 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
518 arguments. If TREE_LIST is void_type_node, an empty initializer
519 list was given; if NULL_TREE no initializer was given. */
520
521 static void
522 perform_member_init (tree member, tree init)
523 {
524 tree decl;
525 tree type = TREE_TYPE (member);
526
527 /* Use the non-static data member initializer if there was no
528 mem-initializer for this field. */
529 if (init == NULL_TREE)
530 {
531 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
532 /* Do deferred instantiation of the NSDMI. */
533 init = (tsubst_copy_and_build
534 (DECL_INITIAL (DECL_TI_TEMPLATE (member)),
535 DECL_TI_ARGS (member),
536 tf_warning_or_error, member, /*function_p=*/false,
537 /*integral_constant_expression_p=*/false));
538 else
539 {
540 init = DECL_INITIAL (member);
541 if (init && TREE_CODE (init) == DEFAULT_ARG)
542 {
543 error ("constructor required before non-static data member "
544 "for %qD has been parsed", member);
545 init = NULL_TREE;
546 }
547 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
548 so the aggregate init code below will see a CONSTRUCTOR. */
549 if (init && TREE_CODE (init) == TARGET_EXPR
550 && !VOID_TYPE_P (TREE_TYPE (TARGET_EXPR_INITIAL (init))))
551 init = TARGET_EXPR_INITIAL (init);
552 init = break_out_target_exprs (init);
553 }
554 }
555
556 if (init == error_mark_node)
557 return;
558
559 /* Effective C++ rule 12 requires that all data members be
560 initialized. */
561 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
562 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
563 "%qD should be initialized in the member initialization list",
564 member);
565
566 /* Get an lvalue for the data member. */
567 decl = build_class_member_access_expr (current_class_ref, member,
568 /*access_path=*/NULL_TREE,
569 /*preserve_reference=*/true,
570 tf_warning_or_error);
571 if (decl == error_mark_node)
572 return;
573
574 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
575 && TREE_CHAIN (init) == NULL_TREE)
576 {
577 tree val = TREE_VALUE (init);
578 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
579 && TREE_OPERAND (val, 0) == current_class_ref)
580 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
581 OPT_Winit_self, "%qD is initialized with itself",
582 member);
583 }
584
585 if (init == void_type_node)
586 {
587 /* mem() means value-initialization. */
588 if (TREE_CODE (type) == ARRAY_TYPE)
589 {
590 init = build_vec_init_expr (type, init, tf_warning_or_error);
591 init = build2 (INIT_EXPR, type, decl, init);
592 finish_expr_stmt (init);
593 }
594 else
595 {
596 tree value = build_value_init (type, tf_warning_or_error);
597 if (value == error_mark_node)
598 return;
599 init = build2 (INIT_EXPR, type, decl, value);
600 finish_expr_stmt (init);
601 }
602 }
603 /* Deal with this here, as we will get confused if we try to call the
604 assignment op for an anonymous union. This can happen in a
605 synthesized copy constructor. */
606 else if (ANON_AGGR_TYPE_P (type))
607 {
608 if (init)
609 {
610 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
611 finish_expr_stmt (init);
612 }
613 }
614 else if (init
615 && (TREE_CODE (type) == REFERENCE_TYPE
616 /* Pre-digested NSDMI. */
617 || (((TREE_CODE (init) == CONSTRUCTOR
618 && TREE_TYPE (init) == type)
619 /* { } mem-initializer. */
620 || (TREE_CODE (init) == TREE_LIST
621 && TREE_CODE (TREE_VALUE (init)) == CONSTRUCTOR
622 && CONSTRUCTOR_IS_DIRECT_INIT (TREE_VALUE (init))))
623 && (CP_AGGREGATE_TYPE_P (type)
624 || is_std_init_list (type)))))
625 {
626 /* With references and list-initialization, we need to deal with
627 extending temporary lifetimes. 12.2p5: "A temporary bound to a
628 reference member in a constructor’s ctor-initializer (12.6.2)
629 persists until the constructor exits." */
630 unsigned i; tree t;
631 vec<tree, va_gc> *cleanups = make_tree_vector ();
632 if (TREE_CODE (init) == TREE_LIST)
633 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
634 tf_warning_or_error);
635 if (TREE_TYPE (init) != type)
636 {
637 if (BRACE_ENCLOSED_INITIALIZER_P (init)
638 && CP_AGGREGATE_TYPE_P (type))
639 init = reshape_init (type, init, tf_warning_or_error);
640 init = digest_init (type, init, tf_warning_or_error);
641 }
642 if (init == error_mark_node)
643 return;
644 /* A FIELD_DECL doesn't really have a suitable lifetime, but
645 make_temporary_var_for_ref_to_temp will treat it as automatic and
646 set_up_extended_ref_temp wants to use the decl in a warning. */
647 init = extend_ref_init_temps (member, init, &cleanups);
648 if (TREE_CODE (type) == ARRAY_TYPE
649 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
650 init = build_vec_init_expr (type, init, tf_warning_or_error);
651 init = build2 (INIT_EXPR, type, decl, init);
652 finish_expr_stmt (init);
653 FOR_EACH_VEC_ELT (*cleanups, i, t)
654 push_cleanup (decl, t, false);
655 release_tree_vector (cleanups);
656 }
657 else if (type_build_ctor_call (type)
658 || (init && CLASS_TYPE_P (strip_array_types (type))))
659 {
660 if (TREE_CODE (type) == ARRAY_TYPE)
661 {
662 if (init)
663 {
664 if (TREE_CHAIN (init))
665 init = error_mark_node;
666 else
667 init = TREE_VALUE (init);
668 if (BRACE_ENCLOSED_INITIALIZER_P (init))
669 init = digest_init (type, init, tf_warning_or_error);
670 }
671 if (init == NULL_TREE
672 || same_type_ignoring_top_level_qualifiers_p (type,
673 TREE_TYPE (init)))
674 {
675 init = build_vec_init_expr (type, init, tf_warning_or_error);
676 init = build2 (INIT_EXPR, type, decl, init);
677 finish_expr_stmt (init);
678 }
679 else
680 error ("invalid initializer for array member %q#D", member);
681 }
682 else
683 {
684 int flags = LOOKUP_NORMAL;
685 if (DECL_DEFAULTED_FN (current_function_decl))
686 flags |= LOOKUP_DEFAULTED;
687 if (CP_TYPE_CONST_P (type)
688 && init == NULL_TREE
689 && default_init_uninitialized_part (type))
690 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
691 vtable; still give this diagnostic. */
692 permerror (DECL_SOURCE_LOCATION (current_function_decl),
693 "uninitialized member %qD with %<const%> type %qT",
694 member, type);
695 finish_expr_stmt (build_aggr_init (decl, init, flags,
696 tf_warning_or_error));
697 }
698 }
699 else
700 {
701 if (init == NULL_TREE)
702 {
703 tree core_type;
704 /* member traversal: note it leaves init NULL */
705 if (TREE_CODE (type) == REFERENCE_TYPE)
706 permerror (DECL_SOURCE_LOCATION (current_function_decl),
707 "uninitialized reference member %qD",
708 member);
709 else if (CP_TYPE_CONST_P (type))
710 permerror (DECL_SOURCE_LOCATION (current_function_decl),
711 "uninitialized member %qD with %<const%> type %qT",
712 member, type);
713
714 core_type = strip_array_types (type);
715
716 if (CLASS_TYPE_P (core_type)
717 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
718 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
719 diagnose_uninitialized_cst_or_ref_member (core_type,
720 /*using_new=*/false,
721 /*complain=*/true);
722 }
723 else if (TREE_CODE (init) == TREE_LIST)
724 /* There was an explicit member initialization. Do some work
725 in that case. */
726 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
727 tf_warning_or_error);
728
729 if (init)
730 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
731 tf_warning_or_error));
732 }
733
734 if (type_build_dtor_call (type))
735 {
736 tree expr;
737
738 expr = build_class_member_access_expr (current_class_ref, member,
739 /*access_path=*/NULL_TREE,
740 /*preserve_reference=*/false,
741 tf_warning_or_error);
742 expr = build_delete (type, expr, sfk_complete_destructor,
743 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
744 tf_warning_or_error);
745
746 if (expr != error_mark_node
747 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
748 finish_eh_cleanup (expr);
749 }
750 }
751
752 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
753 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
754
755 static tree
756 build_field_list (tree t, tree list, int *uses_unions_p)
757 {
758 tree fields;
759
760 /* Note whether or not T is a union. */
761 if (TREE_CODE (t) == UNION_TYPE)
762 *uses_unions_p = 1;
763
764 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
765 {
766 tree fieldtype;
767
768 /* Skip CONST_DECLs for enumeration constants and so forth. */
769 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
770 continue;
771
772 fieldtype = TREE_TYPE (fields);
773 /* Keep track of whether or not any fields are unions. */
774 if (TREE_CODE (fieldtype) == UNION_TYPE)
775 *uses_unions_p = 1;
776
777 /* For an anonymous struct or union, we must recursively
778 consider the fields of the anonymous type. They can be
779 directly initialized from the constructor. */
780 if (ANON_AGGR_TYPE_P (fieldtype))
781 {
782 /* Add this field itself. Synthesized copy constructors
783 initialize the entire aggregate. */
784 list = tree_cons (fields, NULL_TREE, list);
785 /* And now add the fields in the anonymous aggregate. */
786 list = build_field_list (fieldtype, list, uses_unions_p);
787 }
788 /* Add this field. */
789 else if (DECL_NAME (fields))
790 list = tree_cons (fields, NULL_TREE, list);
791 }
792
793 return list;
794 }
795
796 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
797 a FIELD_DECL or BINFO in T that needs initialization. The
798 TREE_VALUE gives the initializer, or list of initializer arguments.
799
800 Return a TREE_LIST containing all of the initializations required
801 for T, in the order in which they should be performed. The output
802 list has the same format as the input. */
803
804 static tree
805 sort_mem_initializers (tree t, tree mem_inits)
806 {
807 tree init;
808 tree base, binfo, base_binfo;
809 tree sorted_inits;
810 tree next_subobject;
811 vec<tree, va_gc> *vbases;
812 int i;
813 int uses_unions_p = 0;
814
815 /* Build up a list of initializations. The TREE_PURPOSE of entry
816 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
817 TREE_VALUE will be the constructor arguments, or NULL if no
818 explicit initialization was provided. */
819 sorted_inits = NULL_TREE;
820
821 /* Process the virtual bases. */
822 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
823 vec_safe_iterate (vbases, i, &base); i++)
824 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
825
826 /* Process the direct bases. */
827 for (binfo = TYPE_BINFO (t), i = 0;
828 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
829 if (!BINFO_VIRTUAL_P (base_binfo))
830 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
831
832 /* Process the non-static data members. */
833 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_p);
834 /* Reverse the entire list of initializations, so that they are in
835 the order that they will actually be performed. */
836 sorted_inits = nreverse (sorted_inits);
837
838 /* If the user presented the initializers in an order different from
839 that in which they will actually occur, we issue a warning. Keep
840 track of the next subobject which can be explicitly initialized
841 without issuing a warning. */
842 next_subobject = sorted_inits;
843
844 /* Go through the explicit initializers, filling in TREE_PURPOSE in
845 the SORTED_INITS. */
846 for (init = mem_inits; init; init = TREE_CHAIN (init))
847 {
848 tree subobject;
849 tree subobject_init;
850
851 subobject = TREE_PURPOSE (init);
852
853 /* If the explicit initializers are in sorted order, then
854 SUBOBJECT will be NEXT_SUBOBJECT, or something following
855 it. */
856 for (subobject_init = next_subobject;
857 subobject_init;
858 subobject_init = TREE_CHAIN (subobject_init))
859 if (TREE_PURPOSE (subobject_init) == subobject)
860 break;
861
862 /* Issue a warning if the explicit initializer order does not
863 match that which will actually occur.
864 ??? Are all these on the correct lines? */
865 if (warn_reorder && !subobject_init)
866 {
867 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
868 warning (OPT_Wreorder, "%q+D will be initialized after",
869 TREE_PURPOSE (next_subobject));
870 else
871 warning (OPT_Wreorder, "base %qT will be initialized after",
872 TREE_PURPOSE (next_subobject));
873 if (TREE_CODE (subobject) == FIELD_DECL)
874 warning (OPT_Wreorder, " %q+#D", subobject);
875 else
876 warning (OPT_Wreorder, " base %qT", subobject);
877 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
878 OPT_Wreorder, " when initialized here");
879 }
880
881 /* Look again, from the beginning of the list. */
882 if (!subobject_init)
883 {
884 subobject_init = sorted_inits;
885 while (TREE_PURPOSE (subobject_init) != subobject)
886 subobject_init = TREE_CHAIN (subobject_init);
887 }
888
889 /* It is invalid to initialize the same subobject more than
890 once. */
891 if (TREE_VALUE (subobject_init))
892 {
893 if (TREE_CODE (subobject) == FIELD_DECL)
894 error_at (DECL_SOURCE_LOCATION (current_function_decl),
895 "multiple initializations given for %qD",
896 subobject);
897 else
898 error_at (DECL_SOURCE_LOCATION (current_function_decl),
899 "multiple initializations given for base %qT",
900 subobject);
901 }
902
903 /* Record the initialization. */
904 TREE_VALUE (subobject_init) = TREE_VALUE (init);
905 next_subobject = subobject_init;
906 }
907
908 /* [class.base.init]
909
910 If a ctor-initializer specifies more than one mem-initializer for
911 multiple members of the same union (including members of
912 anonymous unions), the ctor-initializer is ill-formed.
913
914 Here we also splice out uninitialized union members. */
915 if (uses_unions_p)
916 {
917 tree *last_p = NULL;
918 tree *p;
919 for (p = &sorted_inits; *p; )
920 {
921 tree field;
922 tree ctx;
923
924 init = *p;
925
926 field = TREE_PURPOSE (init);
927
928 /* Skip base classes. */
929 if (TREE_CODE (field) != FIELD_DECL)
930 goto next;
931
932 /* If this is an anonymous union with no explicit initializer,
933 splice it out. */
934 if (!TREE_VALUE (init) && ANON_UNION_TYPE_P (TREE_TYPE (field)))
935 goto splice;
936
937 /* See if this field is a member of a union, or a member of a
938 structure contained in a union, etc. */
939 for (ctx = DECL_CONTEXT (field);
940 !same_type_p (ctx, t);
941 ctx = TYPE_CONTEXT (ctx))
942 if (TREE_CODE (ctx) == UNION_TYPE
943 || !ANON_AGGR_TYPE_P (ctx))
944 break;
945 /* If this field is not a member of a union, skip it. */
946 if (TREE_CODE (ctx) != UNION_TYPE)
947 goto next;
948
949 /* If this union member has no explicit initializer and no NSDMI,
950 splice it out. */
951 if (TREE_VALUE (init) || DECL_INITIAL (field))
952 /* OK. */;
953 else
954 goto splice;
955
956 /* It's only an error if we have two initializers for the same
957 union type. */
958 if (!last_p)
959 {
960 last_p = p;
961 goto next;
962 }
963
964 /* See if LAST_FIELD and the field initialized by INIT are
965 members of the same union. If so, there's a problem,
966 unless they're actually members of the same structure
967 which is itself a member of a union. For example, given:
968
969 union { struct { int i; int j; }; };
970
971 initializing both `i' and `j' makes sense. */
972 ctx = common_enclosing_class (DECL_CONTEXT (field),
973 DECL_CONTEXT (TREE_PURPOSE (*last_p)));
974
975 if (ctx && TREE_CODE (ctx) == UNION_TYPE)
976 {
977 /* A mem-initializer hides an NSDMI. */
978 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
979 *last_p = TREE_CHAIN (*last_p);
980 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
981 goto splice;
982 else
983 {
984 error_at (DECL_SOURCE_LOCATION (current_function_decl),
985 "initializations for multiple members of %qT",
986 ctx);
987 goto splice;
988 }
989 }
990
991 last_p = p;
992
993 next:
994 p = &TREE_CHAIN (*p);
995 continue;
996 splice:
997 *p = TREE_CHAIN (*p);
998 continue;
999 }
1000 }
1001
1002 return sorted_inits;
1003 }
1004
1005 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1006 is a TREE_LIST giving the explicit mem-initializer-list for the
1007 constructor. The TREE_PURPOSE of each entry is a subobject (a
1008 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1009 is a TREE_LIST giving the arguments to the constructor or
1010 void_type_node for an empty list of arguments. */
1011
1012 void
1013 emit_mem_initializers (tree mem_inits)
1014 {
1015 int flags = LOOKUP_NORMAL;
1016
1017 /* We will already have issued an error message about the fact that
1018 the type is incomplete. */
1019 if (!COMPLETE_TYPE_P (current_class_type))
1020 return;
1021
1022 if (mem_inits
1023 && TYPE_P (TREE_PURPOSE (mem_inits))
1024 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1025 {
1026 /* Delegating constructor. */
1027 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1028 perform_target_ctor (TREE_VALUE (mem_inits));
1029 return;
1030 }
1031
1032 if (DECL_DEFAULTED_FN (current_function_decl)
1033 && ! DECL_INHERITED_CTOR_BASE (current_function_decl))
1034 flags |= LOOKUP_DEFAULTED;
1035
1036 /* Sort the mem-initializers into the order in which the
1037 initializations should be performed. */
1038 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1039
1040 in_base_initializer = 1;
1041
1042 /* Initialize base classes. */
1043 for (; (mem_inits
1044 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1045 mem_inits = TREE_CHAIN (mem_inits))
1046 {
1047 tree subobject = TREE_PURPOSE (mem_inits);
1048 tree arguments = TREE_VALUE (mem_inits);
1049
1050 /* We already have issued an error message. */
1051 if (arguments == error_mark_node)
1052 continue;
1053
1054 if (arguments == NULL_TREE)
1055 {
1056 /* If these initializations are taking place in a copy constructor,
1057 the base class should probably be explicitly initialized if there
1058 is a user-defined constructor in the base class (other than the
1059 default constructor, which will be called anyway). */
1060 if (extra_warnings
1061 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1062 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1063 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1064 OPT_Wextra, "base class %q#T should be explicitly "
1065 "initialized in the copy constructor",
1066 BINFO_TYPE (subobject));
1067 }
1068
1069 /* Initialize the base. */
1070 if (BINFO_VIRTUAL_P (subobject))
1071 construct_virtual_base (subobject, arguments);
1072 else
1073 {
1074 tree base_addr;
1075
1076 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1077 subobject, 1, tf_warning_or_error);
1078 expand_aggr_init_1 (subobject, NULL_TREE,
1079 cp_build_indirect_ref (base_addr, RO_NULL,
1080 tf_warning_or_error),
1081 arguments,
1082 flags,
1083 tf_warning_or_error);
1084 expand_cleanup_for_base (subobject, NULL_TREE);
1085 }
1086 }
1087 in_base_initializer = 0;
1088
1089 /* Initialize the vptrs. */
1090 initialize_vtbl_ptrs (current_class_ptr);
1091
1092 /* Initialize the data members. */
1093 while (mem_inits)
1094 {
1095 perform_member_init (TREE_PURPOSE (mem_inits),
1096 TREE_VALUE (mem_inits));
1097 mem_inits = TREE_CHAIN (mem_inits);
1098 }
1099 }
1100
1101 /* Returns the address of the vtable (i.e., the value that should be
1102 assigned to the vptr) for BINFO. */
1103
1104 tree
1105 build_vtbl_address (tree binfo)
1106 {
1107 tree binfo_for = binfo;
1108 tree vtbl;
1109
1110 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1111 /* If this is a virtual primary base, then the vtable we want to store
1112 is that for the base this is being used as the primary base of. We
1113 can't simply skip the initialization, because we may be expanding the
1114 inits of a subobject constructor where the virtual base layout
1115 can be different. */
1116 while (BINFO_PRIMARY_P (binfo_for))
1117 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1118
1119 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1120 used. */
1121 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1122 TREE_USED (vtbl) = 1;
1123
1124 /* Now compute the address to use when initializing the vptr. */
1125 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1126 if (VAR_P (vtbl))
1127 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1128
1129 return vtbl;
1130 }
1131
1132 /* This code sets up the virtual function tables appropriate for
1133 the pointer DECL. It is a one-ply initialization.
1134
1135 BINFO is the exact type that DECL is supposed to be. In
1136 multiple inheritance, this might mean "C's A" if C : A, B. */
1137
1138 static void
1139 expand_virtual_init (tree binfo, tree decl)
1140 {
1141 tree vtbl, vtbl_ptr;
1142 tree vtt_index;
1143
1144 /* Compute the initializer for vptr. */
1145 vtbl = build_vtbl_address (binfo);
1146
1147 /* We may get this vptr from a VTT, if this is a subobject
1148 constructor or subobject destructor. */
1149 vtt_index = BINFO_VPTR_INDEX (binfo);
1150 if (vtt_index)
1151 {
1152 tree vtbl2;
1153 tree vtt_parm;
1154
1155 /* Compute the value to use, when there's a VTT. */
1156 vtt_parm = current_vtt_parm;
1157 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1158 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1159 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1160
1161 /* The actual initializer is the VTT value only in the subobject
1162 constructor. In maybe_clone_body we'll substitute NULL for
1163 the vtt_parm in the case of the non-subobject constructor. */
1164 vtbl = build3 (COND_EXPR,
1165 TREE_TYPE (vtbl),
1166 build2 (EQ_EXPR, boolean_type_node,
1167 current_in_charge_parm, integer_zero_node),
1168 vtbl2,
1169 vtbl);
1170 }
1171
1172 /* Compute the location of the vtpr. */
1173 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1174 tf_warning_or_error),
1175 TREE_TYPE (binfo));
1176 gcc_assert (vtbl_ptr != error_mark_node);
1177
1178 /* Assign the vtable to the vptr. */
1179 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1180 finish_expr_stmt (cp_build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl,
1181 tf_warning_or_error));
1182 }
1183
1184 /* If an exception is thrown in a constructor, those base classes already
1185 constructed must be destroyed. This function creates the cleanup
1186 for BINFO, which has just been constructed. If FLAG is non-NULL,
1187 it is a DECL which is nonzero when this base needs to be
1188 destroyed. */
1189
1190 static void
1191 expand_cleanup_for_base (tree binfo, tree flag)
1192 {
1193 tree expr;
1194
1195 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1196 return;
1197
1198 /* Call the destructor. */
1199 expr = build_special_member_call (current_class_ref,
1200 base_dtor_identifier,
1201 NULL,
1202 binfo,
1203 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1204 tf_warning_or_error);
1205
1206 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1207 return;
1208
1209 if (flag)
1210 expr = fold_build3_loc (input_location,
1211 COND_EXPR, void_type_node,
1212 c_common_truthvalue_conversion (input_location, flag),
1213 expr, integer_zero_node);
1214
1215 finish_eh_cleanup (expr);
1216 }
1217
1218 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1219 constructor. */
1220
1221 static void
1222 construct_virtual_base (tree vbase, tree arguments)
1223 {
1224 tree inner_if_stmt;
1225 tree exp;
1226 tree flag;
1227
1228 /* If there are virtual base classes with destructors, we need to
1229 emit cleanups to destroy them if an exception is thrown during
1230 the construction process. These exception regions (i.e., the
1231 period during which the cleanups must occur) begin from the time
1232 the construction is complete to the end of the function. If we
1233 create a conditional block in which to initialize the
1234 base-classes, then the cleanup region for the virtual base begins
1235 inside a block, and ends outside of that block. This situation
1236 confuses the sjlj exception-handling code. Therefore, we do not
1237 create a single conditional block, but one for each
1238 initialization. (That way the cleanup regions always begin
1239 in the outer block.) We trust the back end to figure out
1240 that the FLAG will not change across initializations, and
1241 avoid doing multiple tests. */
1242 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1243 inner_if_stmt = begin_if_stmt ();
1244 finish_if_stmt_cond (flag, inner_if_stmt);
1245
1246 /* Compute the location of the virtual base. If we're
1247 constructing virtual bases, then we must be the most derived
1248 class. Therefore, we don't have to look up the virtual base;
1249 we already know where it is. */
1250 exp = convert_to_base_statically (current_class_ref, vbase);
1251
1252 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1253 0, tf_warning_or_error);
1254 finish_then_clause (inner_if_stmt);
1255 finish_if_stmt (inner_if_stmt);
1256
1257 expand_cleanup_for_base (vbase, flag);
1258 }
1259
1260 /* Find the context in which this FIELD can be initialized. */
1261
1262 static tree
1263 initializing_context (tree field)
1264 {
1265 tree t = DECL_CONTEXT (field);
1266
1267 /* Anonymous union members can be initialized in the first enclosing
1268 non-anonymous union context. */
1269 while (t && ANON_AGGR_TYPE_P (t))
1270 t = TYPE_CONTEXT (t);
1271 return t;
1272 }
1273
1274 /* Function to give error message if member initialization specification
1275 is erroneous. FIELD is the member we decided to initialize.
1276 TYPE is the type for which the initialization is being performed.
1277 FIELD must be a member of TYPE.
1278
1279 MEMBER_NAME is the name of the member. */
1280
1281 static int
1282 member_init_ok_or_else (tree field, tree type, tree member_name)
1283 {
1284 if (field == error_mark_node)
1285 return 0;
1286 if (!field)
1287 {
1288 error ("class %qT does not have any field named %qD", type,
1289 member_name);
1290 return 0;
1291 }
1292 if (VAR_P (field))
1293 {
1294 error ("%q#D is a static data member; it can only be "
1295 "initialized at its definition",
1296 field);
1297 return 0;
1298 }
1299 if (TREE_CODE (field) != FIELD_DECL)
1300 {
1301 error ("%q#D is not a non-static data member of %qT",
1302 field, type);
1303 return 0;
1304 }
1305 if (initializing_context (field) != type)
1306 {
1307 error ("class %qT does not have any field named %qD", type,
1308 member_name);
1309 return 0;
1310 }
1311
1312 return 1;
1313 }
1314
1315 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1316 is a _TYPE node or TYPE_DECL which names a base for that type.
1317 Check the validity of NAME, and return either the base _TYPE, base
1318 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1319 NULL_TREE and issue a diagnostic.
1320
1321 An old style unnamed direct single base construction is permitted,
1322 where NAME is NULL. */
1323
1324 tree
1325 expand_member_init (tree name)
1326 {
1327 tree basetype;
1328 tree field;
1329
1330 if (!current_class_ref)
1331 return NULL_TREE;
1332
1333 if (!name)
1334 {
1335 /* This is an obsolete unnamed base class initializer. The
1336 parser will already have warned about its use. */
1337 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1338 {
1339 case 0:
1340 error ("unnamed initializer for %qT, which has no base classes",
1341 current_class_type);
1342 return NULL_TREE;
1343 case 1:
1344 basetype = BINFO_TYPE
1345 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1346 break;
1347 default:
1348 error ("unnamed initializer for %qT, which uses multiple inheritance",
1349 current_class_type);
1350 return NULL_TREE;
1351 }
1352 }
1353 else if (TYPE_P (name))
1354 {
1355 basetype = TYPE_MAIN_VARIANT (name);
1356 name = TYPE_NAME (name);
1357 }
1358 else if (TREE_CODE (name) == TYPE_DECL)
1359 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1360 else
1361 basetype = NULL_TREE;
1362
1363 if (basetype)
1364 {
1365 tree class_binfo;
1366 tree direct_binfo;
1367 tree virtual_binfo;
1368 int i;
1369
1370 if (current_template_parms
1371 || same_type_p (basetype, current_class_type))
1372 return basetype;
1373
1374 class_binfo = TYPE_BINFO (current_class_type);
1375 direct_binfo = NULL_TREE;
1376 virtual_binfo = NULL_TREE;
1377
1378 /* Look for a direct base. */
1379 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1380 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1381 break;
1382
1383 /* Look for a virtual base -- unless the direct base is itself
1384 virtual. */
1385 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1386 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1387
1388 /* [class.base.init]
1389
1390 If a mem-initializer-id is ambiguous because it designates
1391 both a direct non-virtual base class and an inherited virtual
1392 base class, the mem-initializer is ill-formed. */
1393 if (direct_binfo && virtual_binfo)
1394 {
1395 error ("%qD is both a direct base and an indirect virtual base",
1396 basetype);
1397 return NULL_TREE;
1398 }
1399
1400 if (!direct_binfo && !virtual_binfo)
1401 {
1402 if (CLASSTYPE_VBASECLASSES (current_class_type))
1403 error ("type %qT is not a direct or virtual base of %qT",
1404 basetype, current_class_type);
1405 else
1406 error ("type %qT is not a direct base of %qT",
1407 basetype, current_class_type);
1408 return NULL_TREE;
1409 }
1410
1411 return direct_binfo ? direct_binfo : virtual_binfo;
1412 }
1413 else
1414 {
1415 if (identifier_p (name))
1416 field = lookup_field (current_class_type, name, 1, false);
1417 else
1418 field = name;
1419
1420 if (member_init_ok_or_else (field, current_class_type, name))
1421 return field;
1422 }
1423
1424 return NULL_TREE;
1425 }
1426
1427 /* This is like `expand_member_init', only it stores one aggregate
1428 value into another.
1429
1430 INIT comes in two flavors: it is either a value which
1431 is to be stored in EXP, or it is a parameter list
1432 to go to a constructor, which will operate on EXP.
1433 If INIT is not a parameter list for a constructor, then set
1434 LOOKUP_ONLYCONVERTING.
1435 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1436 the initializer, if FLAGS is 0, then it is the (init) form.
1437 If `init' is a CONSTRUCTOR, then we emit a warning message,
1438 explaining that such initializations are invalid.
1439
1440 If INIT resolves to a CALL_EXPR which happens to return
1441 something of the type we are looking for, then we know
1442 that we can safely use that call to perform the
1443 initialization.
1444
1445 The virtual function table pointer cannot be set up here, because
1446 we do not really know its type.
1447
1448 This never calls operator=().
1449
1450 When initializing, nothing is CONST.
1451
1452 A default copy constructor may have to be used to perform the
1453 initialization.
1454
1455 A constructor or a conversion operator may have to be used to
1456 perform the initialization, but not both, as it would be ambiguous. */
1457
1458 tree
1459 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1460 {
1461 tree stmt_expr;
1462 tree compound_stmt;
1463 int destroy_temps;
1464 tree type = TREE_TYPE (exp);
1465 int was_const = TREE_READONLY (exp);
1466 int was_volatile = TREE_THIS_VOLATILE (exp);
1467 int is_global;
1468
1469 if (init == error_mark_node)
1470 return error_mark_node;
1471
1472 TREE_READONLY (exp) = 0;
1473 TREE_THIS_VOLATILE (exp) = 0;
1474
1475 if (init && init != void_type_node
1476 && TREE_CODE (init) != TREE_LIST
1477 && !(TREE_CODE (init) == TARGET_EXPR
1478 && TARGET_EXPR_DIRECT_INIT_P (init))
1479 && !(BRACE_ENCLOSED_INITIALIZER_P (init)
1480 && CONSTRUCTOR_IS_DIRECT_INIT (init)))
1481 flags |= LOOKUP_ONLYCONVERTING;
1482
1483 if (TREE_CODE (type) == ARRAY_TYPE)
1484 {
1485 tree itype;
1486
1487 /* An array may not be initialized use the parenthesized
1488 initialization form -- unless the initializer is "()". */
1489 if (init && TREE_CODE (init) == TREE_LIST)
1490 {
1491 if (complain & tf_error)
1492 error ("bad array initializer");
1493 return error_mark_node;
1494 }
1495 /* Must arrange to initialize each element of EXP
1496 from elements of INIT. */
1497 itype = init ? TREE_TYPE (init) : NULL_TREE;
1498 if (cv_qualified_p (type))
1499 TREE_TYPE (exp) = cv_unqualified (type);
1500 if (itype && cv_qualified_p (itype))
1501 TREE_TYPE (init) = cv_unqualified (itype);
1502 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1503 /*explicit_value_init_p=*/false,
1504 itype && same_type_p (TREE_TYPE (init),
1505 TREE_TYPE (exp)),
1506 complain);
1507 TREE_READONLY (exp) = was_const;
1508 TREE_THIS_VOLATILE (exp) = was_volatile;
1509 TREE_TYPE (exp) = type;
1510 if (init)
1511 TREE_TYPE (init) = itype;
1512 return stmt_expr;
1513 }
1514
1515 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1516 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1517 /* Just know that we've seen something for this node. */
1518 TREE_USED (exp) = 1;
1519
1520 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1521 destroy_temps = stmts_are_full_exprs_p ();
1522 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1523 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1524 init, LOOKUP_NORMAL|flags, complain);
1525 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1526 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1527 TREE_READONLY (exp) = was_const;
1528 TREE_THIS_VOLATILE (exp) = was_volatile;
1529
1530 return stmt_expr;
1531 }
1532
1533 static void
1534 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1535 tsubst_flags_t complain)
1536 {
1537 tree type = TREE_TYPE (exp);
1538 tree ctor_name;
1539
1540 /* It fails because there may not be a constructor which takes
1541 its own type as the first (or only parameter), but which does
1542 take other types via a conversion. So, if the thing initializing
1543 the expression is a unit element of type X, first try X(X&),
1544 followed by initialization by X. If neither of these work
1545 out, then look hard. */
1546 tree rval;
1547 vec<tree, va_gc> *parms;
1548
1549 /* If we have direct-initialization from an initializer list, pull
1550 it out of the TREE_LIST so the code below can see it. */
1551 if (init && TREE_CODE (init) == TREE_LIST
1552 && BRACE_ENCLOSED_INITIALIZER_P (TREE_VALUE (init))
1553 && CONSTRUCTOR_IS_DIRECT_INIT (TREE_VALUE (init)))
1554 {
1555 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1556 && TREE_CHAIN (init) == NULL_TREE);
1557 init = TREE_VALUE (init);
1558 }
1559
1560 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1561 && CP_AGGREGATE_TYPE_P (type))
1562 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1563 happen for direct-initialization, too. */
1564 init = digest_init (type, init, complain);
1565
1566 /* A CONSTRUCTOR of the target's type is a previously digested
1567 initializer, whether that happened just above or in
1568 cp_parser_late_parsing_nsdmi.
1569
1570 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1571 set represents the whole initialization, so we shouldn't build up
1572 another ctor call. */
1573 if (init
1574 && (TREE_CODE (init) == CONSTRUCTOR
1575 || (TREE_CODE (init) == TARGET_EXPR
1576 && (TARGET_EXPR_DIRECT_INIT_P (init)
1577 || TARGET_EXPR_LIST_INIT_P (init))))
1578 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1579 {
1580 /* Early initialization via a TARGET_EXPR only works for
1581 complete objects. */
1582 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1583
1584 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1585 TREE_SIDE_EFFECTS (init) = 1;
1586 finish_expr_stmt (init);
1587 return;
1588 }
1589
1590 if (init && TREE_CODE (init) != TREE_LIST
1591 && (flags & LOOKUP_ONLYCONVERTING))
1592 {
1593 /* Base subobjects should only get direct-initialization. */
1594 gcc_assert (true_exp == exp);
1595
1596 if (flags & DIRECT_BIND)
1597 /* Do nothing. We hit this in two cases: Reference initialization,
1598 where we aren't initializing a real variable, so we don't want
1599 to run a new constructor; and catching an exception, where we
1600 have already built up the constructor call so we could wrap it
1601 in an exception region. */;
1602 else
1603 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1604 flags, complain);
1605
1606 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1607 /* We need to protect the initialization of a catch parm with a
1608 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1609 around the TARGET_EXPR for the copy constructor. See
1610 initialize_handler_parm. */
1611 {
1612 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1613 TREE_OPERAND (init, 0));
1614 TREE_TYPE (init) = void_type_node;
1615 }
1616 else
1617 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1618 TREE_SIDE_EFFECTS (init) = 1;
1619 finish_expr_stmt (init);
1620 return;
1621 }
1622
1623 if (init == NULL_TREE)
1624 parms = NULL;
1625 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1626 {
1627 parms = make_tree_vector ();
1628 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1629 vec_safe_push (parms, TREE_VALUE (init));
1630 }
1631 else
1632 parms = make_tree_vector_single (init);
1633
1634 if (exp == current_class_ref && current_function_decl
1635 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1636 {
1637 /* Delegating constructor. */
1638 tree complete;
1639 tree base;
1640 tree elt; unsigned i;
1641
1642 /* Unshare the arguments for the second call. */
1643 vec<tree, va_gc> *parms2 = make_tree_vector ();
1644 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1645 {
1646 elt = break_out_target_exprs (elt);
1647 vec_safe_push (parms2, elt);
1648 }
1649 complete = build_special_member_call (exp, complete_ctor_identifier,
1650 &parms2, binfo, flags,
1651 complain);
1652 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1653 release_tree_vector (parms2);
1654
1655 base = build_special_member_call (exp, base_ctor_identifier,
1656 &parms, binfo, flags,
1657 complain);
1658 base = fold_build_cleanup_point_expr (void_type_node, base);
1659 rval = build3 (COND_EXPR, void_type_node,
1660 build2 (EQ_EXPR, boolean_type_node,
1661 current_in_charge_parm, integer_zero_node),
1662 base,
1663 complete);
1664 }
1665 else
1666 {
1667 if (true_exp == exp)
1668 ctor_name = complete_ctor_identifier;
1669 else
1670 ctor_name = base_ctor_identifier;
1671 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1672 complain);
1673 }
1674
1675 if (parms != NULL)
1676 release_tree_vector (parms);
1677
1678 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1679 {
1680 tree fn = get_callee_fndecl (rval);
1681 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1682 {
1683 tree e = maybe_constant_init (rval);
1684 if (TREE_CONSTANT (e))
1685 rval = build2 (INIT_EXPR, type, exp, e);
1686 }
1687 }
1688
1689 /* FIXME put back convert_to_void? */
1690 if (TREE_SIDE_EFFECTS (rval))
1691 finish_expr_stmt (rval);
1692 }
1693
1694 /* This function is responsible for initializing EXP with INIT
1695 (if any).
1696
1697 BINFO is the binfo of the type for who we are performing the
1698 initialization. For example, if W is a virtual base class of A and B,
1699 and C : A, B.
1700 If we are initializing B, then W must contain B's W vtable, whereas
1701 were we initializing C, W must contain C's W vtable.
1702
1703 TRUE_EXP is nonzero if it is the true expression being initialized.
1704 In this case, it may be EXP, or may just contain EXP. The reason we
1705 need this is because if EXP is a base element of TRUE_EXP, we
1706 don't necessarily know by looking at EXP where its virtual
1707 baseclass fields should really be pointing. But we do know
1708 from TRUE_EXP. In constructors, we don't know anything about
1709 the value being initialized.
1710
1711 FLAGS is just passed to `build_new_method_call'. See that function
1712 for its description. */
1713
1714 static void
1715 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1716 tsubst_flags_t complain)
1717 {
1718 tree type = TREE_TYPE (exp);
1719
1720 gcc_assert (init != error_mark_node && type != error_mark_node);
1721 gcc_assert (building_stmt_list_p ());
1722
1723 /* Use a function returning the desired type to initialize EXP for us.
1724 If the function is a constructor, and its first argument is
1725 NULL_TREE, know that it was meant for us--just slide exp on
1726 in and expand the constructor. Constructors now come
1727 as TARGET_EXPRs. */
1728
1729 if (init && VAR_P (exp)
1730 && COMPOUND_LITERAL_P (init))
1731 {
1732 vec<tree, va_gc> *cleanups = NULL;
1733 /* If store_init_value returns NULL_TREE, the INIT has been
1734 recorded as the DECL_INITIAL for EXP. That means there's
1735 nothing more we have to do. */
1736 init = store_init_value (exp, init, &cleanups, flags);
1737 if (init)
1738 finish_expr_stmt (init);
1739 gcc_assert (!cleanups);
1740 return;
1741 }
1742
1743 /* If an explicit -- but empty -- initializer list was present,
1744 that's value-initialization. */
1745 if (init == void_type_node)
1746 {
1747 /* If the type has data but no user-provided ctor, we need to zero
1748 out the object. */
1749 if (!type_has_user_provided_constructor (type)
1750 && !is_really_empty_class (type))
1751 {
1752 tree field_size = NULL_TREE;
1753 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1754 /* Don't clobber already initialized virtual bases. */
1755 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1756 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1757 field_size);
1758 init = build2 (INIT_EXPR, type, exp, init);
1759 finish_expr_stmt (init);
1760 }
1761
1762 /* If we don't need to mess with the constructor at all,
1763 then we're done. */
1764 if (! type_build_ctor_call (type))
1765 return;
1766
1767 /* Otherwise fall through and call the constructor. */
1768 init = NULL_TREE;
1769 }
1770
1771 /* We know that expand_default_init can handle everything we want
1772 at this point. */
1773 expand_default_init (binfo, true_exp, exp, init, flags, complain);
1774 }
1775
1776 /* Report an error if TYPE is not a user-defined, class type. If
1777 OR_ELSE is nonzero, give an error message. */
1778
1779 int
1780 is_class_type (tree type, int or_else)
1781 {
1782 if (type == error_mark_node)
1783 return 0;
1784
1785 if (! CLASS_TYPE_P (type))
1786 {
1787 if (or_else)
1788 error ("%qT is not a class type", type);
1789 return 0;
1790 }
1791 return 1;
1792 }
1793
1794 tree
1795 get_type_value (tree name)
1796 {
1797 if (name == error_mark_node)
1798 return NULL_TREE;
1799
1800 if (IDENTIFIER_HAS_TYPE_VALUE (name))
1801 return IDENTIFIER_TYPE_VALUE (name);
1802 else
1803 return NULL_TREE;
1804 }
1805
1806 /* Build a reference to a member of an aggregate. This is not a C++
1807 `&', but really something which can have its address taken, and
1808 then act as a pointer to member, for example TYPE :: FIELD can have
1809 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
1810 this expression is the operand of "&".
1811
1812 @@ Prints out lousy diagnostics for operator <typename>
1813 @@ fields.
1814
1815 @@ This function should be rewritten and placed in search.c. */
1816
1817 tree
1818 build_offset_ref (tree type, tree member, bool address_p,
1819 tsubst_flags_t complain)
1820 {
1821 tree decl;
1822 tree basebinfo = NULL_TREE;
1823
1824 /* class templates can come in as TEMPLATE_DECLs here. */
1825 if (TREE_CODE (member) == TEMPLATE_DECL)
1826 return member;
1827
1828 if (dependent_scope_p (type) || type_dependent_expression_p (member))
1829 return build_qualified_name (NULL_TREE, type, member,
1830 /*template_p=*/false);
1831
1832 gcc_assert (TYPE_P (type));
1833 if (! is_class_type (type, 1))
1834 return error_mark_node;
1835
1836 gcc_assert (DECL_P (member) || BASELINK_P (member));
1837 /* Callers should call mark_used before this point. */
1838 gcc_assert (!DECL_P (member) || TREE_USED (member));
1839
1840 type = TYPE_MAIN_VARIANT (type);
1841 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
1842 {
1843 if (complain & tf_error)
1844 error ("incomplete type %qT does not have member %qD", type, member);
1845 return error_mark_node;
1846 }
1847
1848 /* Entities other than non-static members need no further
1849 processing. */
1850 if (TREE_CODE (member) == TYPE_DECL)
1851 return member;
1852 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
1853 return convert_from_reference (member);
1854
1855 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
1856 {
1857 if (complain & tf_error)
1858 error ("invalid pointer to bit-field %qD", member);
1859 return error_mark_node;
1860 }
1861
1862 /* Set up BASEBINFO for member lookup. */
1863 decl = maybe_dummy_object (type, &basebinfo);
1864
1865 /* A lot of this logic is now handled in lookup_member. */
1866 if (BASELINK_P (member))
1867 {
1868 /* Go from the TREE_BASELINK to the member function info. */
1869 tree t = BASELINK_FUNCTIONS (member);
1870
1871 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
1872 {
1873 /* Get rid of a potential OVERLOAD around it. */
1874 t = OVL_CURRENT (t);
1875
1876 /* Unique functions are handled easily. */
1877
1878 /* For non-static member of base class, we need a special rule
1879 for access checking [class.protected]:
1880
1881 If the access is to form a pointer to member, the
1882 nested-name-specifier shall name the derived class
1883 (or any class derived from that class). */
1884 if (address_p && DECL_P (t)
1885 && DECL_NONSTATIC_MEMBER_P (t))
1886 perform_or_defer_access_check (TYPE_BINFO (type), t, t,
1887 complain);
1888 else
1889 perform_or_defer_access_check (basebinfo, t, t,
1890 complain);
1891
1892 if (DECL_STATIC_FUNCTION_P (t))
1893 return t;
1894 member = t;
1895 }
1896 else
1897 TREE_TYPE (member) = unknown_type_node;
1898 }
1899 else if (address_p && TREE_CODE (member) == FIELD_DECL)
1900 /* We need additional test besides the one in
1901 check_accessibility_of_qualified_id in case it is
1902 a pointer to non-static member. */
1903 perform_or_defer_access_check (TYPE_BINFO (type), member, member,
1904 complain);
1905
1906 if (!address_p)
1907 {
1908 /* If MEMBER is non-static, then the program has fallen afoul of
1909 [expr.prim]:
1910
1911 An id-expression that denotes a nonstatic data member or
1912 nonstatic member function of a class can only be used:
1913
1914 -- as part of a class member access (_expr.ref_) in which the
1915 object-expression refers to the member's class or a class
1916 derived from that class, or
1917
1918 -- to form a pointer to member (_expr.unary.op_), or
1919
1920 -- in the body of a nonstatic member function of that class or
1921 of a class derived from that class (_class.mfct.nonstatic_), or
1922
1923 -- in a mem-initializer for a constructor for that class or for
1924 a class derived from that class (_class.base.init_). */
1925 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
1926 {
1927 /* Build a representation of the qualified name suitable
1928 for use as the operand to "&" -- even though the "&" is
1929 not actually present. */
1930 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1931 /* In Microsoft mode, treat a non-static member function as if
1932 it were a pointer-to-member. */
1933 if (flag_ms_extensions)
1934 {
1935 PTRMEM_OK_P (member) = 1;
1936 return cp_build_addr_expr (member, complain);
1937 }
1938 if (complain & tf_error)
1939 error ("invalid use of non-static member function %qD",
1940 TREE_OPERAND (member, 1));
1941 return error_mark_node;
1942 }
1943 else if (TREE_CODE (member) == FIELD_DECL)
1944 {
1945 if (complain & tf_error)
1946 error ("invalid use of non-static data member %qD", member);
1947 return error_mark_node;
1948 }
1949 return member;
1950 }
1951
1952 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
1953 PTRMEM_OK_P (member) = 1;
1954 return member;
1955 }
1956
1957 /* If DECL is a scalar enumeration constant or variable with a
1958 constant initializer, return the initializer (or, its initializers,
1959 recursively); otherwise, return DECL. If INTEGRAL_P, the
1960 initializer is only returned if DECL is an integral
1961 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
1962 return an aggregate constant. */
1963
1964 static tree
1965 constant_value_1 (tree decl, bool integral_p, bool return_aggregate_cst_ok_p)
1966 {
1967 while (TREE_CODE (decl) == CONST_DECL
1968 || (integral_p
1969 ? decl_constant_var_p (decl)
1970 : (VAR_P (decl)
1971 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl)))))
1972 {
1973 tree init;
1974 /* If DECL is a static data member in a template
1975 specialization, we must instantiate it here. The
1976 initializer for the static data member is not processed
1977 until needed; we need it now. */
1978 mark_used (decl);
1979 mark_rvalue_use (decl);
1980 init = DECL_INITIAL (decl);
1981 if (init == error_mark_node)
1982 {
1983 if (DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
1984 /* Treat the error as a constant to avoid cascading errors on
1985 excessively recursive template instantiation (c++/9335). */
1986 return init;
1987 else
1988 return decl;
1989 }
1990 /* Initializers in templates are generally expanded during
1991 instantiation, so before that for const int i(2)
1992 INIT is a TREE_LIST with the actual initializer as
1993 TREE_VALUE. */
1994 if (processing_template_decl
1995 && init
1996 && TREE_CODE (init) == TREE_LIST
1997 && TREE_CHAIN (init) == NULL_TREE)
1998 init = TREE_VALUE (init);
1999 if (!init
2000 || !TREE_TYPE (init)
2001 || !TREE_CONSTANT (init)
2002 || (!integral_p && !return_aggregate_cst_ok_p
2003 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2004 return an aggregate constant (of which string
2005 literals are a special case), as we do not want
2006 to make inadvertent copies of such entities, and
2007 we must be sure that their addresses are the
2008 same everywhere. */
2009 && (TREE_CODE (init) == CONSTRUCTOR
2010 || TREE_CODE (init) == STRING_CST)))
2011 break;
2012 decl = unshare_expr (init);
2013 }
2014 return decl;
2015 }
2016
2017 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by
2018 constant of integral or enumeration type, then return that value.
2019 These are those variables permitted in constant expressions by
2020 [5.19/1]. */
2021
2022 tree
2023 integral_constant_value (tree decl)
2024 {
2025 return constant_value_1 (decl, /*integral_p=*/true,
2026 /*return_aggregate_cst_ok_p=*/false);
2027 }
2028
2029 /* A more relaxed version of integral_constant_value, used by the
2030 common C/C++ code. */
2031
2032 tree
2033 decl_constant_value (tree decl)
2034 {
2035 return constant_value_1 (decl, /*integral_p=*/processing_template_decl,
2036 /*return_aggregate_cst_ok_p=*/true);
2037 }
2038
2039 /* A version of integral_constant_value used by the C++ front end for
2040 optimization purposes. */
2041
2042 tree
2043 decl_constant_value_safe (tree decl)
2044 {
2045 return constant_value_1 (decl, /*integral_p=*/processing_template_decl,
2046 /*return_aggregate_cst_ok_p=*/false);
2047 }
2048 \f
2049 /* Common subroutines of build_new and build_vec_delete. */
2050
2051 /* Call the global __builtin_delete to delete ADDR. */
2052
2053 static tree
2054 build_builtin_delete_call (tree addr)
2055 {
2056 mark_used (global_delete_fndecl);
2057 return build_call_n (global_delete_fndecl, 1, addr);
2058 }
2059 \f
2060 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2061 the type of the object being allocated; otherwise, it's just TYPE.
2062 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2063 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2064 a vector of arguments to be provided as arguments to a placement
2065 new operator. This routine performs no semantic checks; it just
2066 creates and returns a NEW_EXPR. */
2067
2068 static tree
2069 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2070 vec<tree, va_gc> *init, int use_global_new)
2071 {
2072 tree init_list;
2073 tree new_expr;
2074
2075 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2076 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2077 permits us to distinguish the case of a missing initializer "new
2078 int" from an empty initializer "new int()". */
2079 if (init == NULL)
2080 init_list = NULL_TREE;
2081 else if (init->is_empty ())
2082 init_list = void_zero_node;
2083 else
2084 init_list = build_tree_list_vec (init);
2085
2086 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2087 build_tree_list_vec (placement), type, nelts,
2088 init_list);
2089 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2090 TREE_SIDE_EFFECTS (new_expr) = 1;
2091
2092 return new_expr;
2093 }
2094
2095 /* Diagnose uninitialized const members or reference members of type
2096 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2097 new expression without a new-initializer and a declaration. Returns
2098 the error count. */
2099
2100 static int
2101 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2102 bool using_new, bool complain)
2103 {
2104 tree field;
2105 int error_count = 0;
2106
2107 if (type_has_user_provided_constructor (type))
2108 return 0;
2109
2110 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2111 {
2112 tree field_type;
2113
2114 if (TREE_CODE (field) != FIELD_DECL)
2115 continue;
2116
2117 field_type = strip_array_types (TREE_TYPE (field));
2118
2119 if (type_has_user_provided_constructor (field_type))
2120 continue;
2121
2122 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2123 {
2124 ++ error_count;
2125 if (complain)
2126 {
2127 if (DECL_CONTEXT (field) == origin)
2128 {
2129 if (using_new)
2130 error ("uninitialized reference member in %q#T "
2131 "using %<new%> without new-initializer", origin);
2132 else
2133 error ("uninitialized reference member in %q#T", origin);
2134 }
2135 else
2136 {
2137 if (using_new)
2138 error ("uninitialized reference member in base %q#T "
2139 "of %q#T using %<new%> without new-initializer",
2140 DECL_CONTEXT (field), origin);
2141 else
2142 error ("uninitialized reference member in base %q#T "
2143 "of %q#T", DECL_CONTEXT (field), origin);
2144 }
2145 inform (DECL_SOURCE_LOCATION (field),
2146 "%qD should be initialized", field);
2147 }
2148 }
2149
2150 if (CP_TYPE_CONST_P (field_type))
2151 {
2152 ++ error_count;
2153 if (complain)
2154 {
2155 if (DECL_CONTEXT (field) == origin)
2156 {
2157 if (using_new)
2158 error ("uninitialized const member in %q#T "
2159 "using %<new%> without new-initializer", origin);
2160 else
2161 error ("uninitialized const member in %q#T", origin);
2162 }
2163 else
2164 {
2165 if (using_new)
2166 error ("uninitialized const member in base %q#T "
2167 "of %q#T using %<new%> without new-initializer",
2168 DECL_CONTEXT (field), origin);
2169 else
2170 error ("uninitialized const member in base %q#T "
2171 "of %q#T", DECL_CONTEXT (field), origin);
2172 }
2173 inform (DECL_SOURCE_LOCATION (field),
2174 "%qD should be initialized", field);
2175 }
2176 }
2177
2178 if (CLASS_TYPE_P (field_type))
2179 error_count
2180 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2181 using_new, complain);
2182 }
2183 return error_count;
2184 }
2185
2186 int
2187 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2188 {
2189 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2190 }
2191
2192 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2193 overflowed. Pretend it returns sizetype so that it plays nicely in the
2194 COND_EXPR. */
2195
2196 tree
2197 throw_bad_array_new_length (void)
2198 {
2199 tree fn = get_identifier ("__cxa_throw_bad_array_new_length");
2200 if (!get_global_value_if_present (fn, &fn))
2201 fn = push_throw_library_fn (fn, build_function_type_list (sizetype,
2202 NULL_TREE));
2203
2204 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2205 }
2206
2207 /* Call __cxa_bad_array_length to indicate that there were too many
2208 initializers. */
2209
2210 tree
2211 throw_bad_array_length (void)
2212 {
2213 tree fn = get_identifier ("__cxa_throw_bad_array_length");
2214 if (!get_global_value_if_present (fn, &fn))
2215 fn = push_throw_library_fn (fn, build_function_type_list (void_type_node,
2216 NULL_TREE));
2217
2218 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2219 }
2220
2221 /* Generate code for a new-expression, including calling the "operator
2222 new" function, initializing the object, and, if an exception occurs
2223 during construction, cleaning up. The arguments are as for
2224 build_raw_new_expr. This may change PLACEMENT and INIT. */
2225
2226 static tree
2227 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2228 vec<tree, va_gc> **init, bool globally_qualified_p,
2229 tsubst_flags_t complain)
2230 {
2231 tree size, rval;
2232 /* True iff this is a call to "operator new[]" instead of just
2233 "operator new". */
2234 bool array_p = false;
2235 /* If ARRAY_P is true, the element type of the array. This is never
2236 an ARRAY_TYPE; for something like "new int[3][4]", the
2237 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2238 TYPE. */
2239 tree elt_type;
2240 /* The type of the new-expression. (This type is always a pointer
2241 type.) */
2242 tree pointer_type;
2243 tree non_const_pointer_type;
2244 tree outer_nelts = NULL_TREE;
2245 /* For arrays, a bounds checks on the NELTS parameter. */
2246 tree outer_nelts_check = NULL_TREE;
2247 bool outer_nelts_from_type = false;
2248 double_int inner_nelts_count = double_int_one;
2249 tree alloc_call, alloc_expr;
2250 /* Size of the inner array elements. */
2251 double_int inner_size;
2252 /* The address returned by the call to "operator new". This node is
2253 a VAR_DECL and is therefore reusable. */
2254 tree alloc_node;
2255 tree alloc_fn;
2256 tree cookie_expr, init_expr;
2257 int nothrow, check_new;
2258 int use_java_new = 0;
2259 /* If non-NULL, the number of extra bytes to allocate at the
2260 beginning of the storage allocated for an array-new expression in
2261 order to store the number of elements. */
2262 tree cookie_size = NULL_TREE;
2263 tree placement_first;
2264 tree placement_expr = NULL_TREE;
2265 /* True if the function we are calling is a placement allocation
2266 function. */
2267 bool placement_allocation_fn_p;
2268 /* True if the storage must be initialized, either by a constructor
2269 or due to an explicit new-initializer. */
2270 bool is_initialized;
2271 /* The address of the thing allocated, not including any cookie. In
2272 particular, if an array cookie is in use, DATA_ADDR is the
2273 address of the first array element. This node is a VAR_DECL, and
2274 is therefore reusable. */
2275 tree data_addr;
2276 tree init_preeval_expr = NULL_TREE;
2277
2278 if (nelts)
2279 {
2280 outer_nelts = nelts;
2281 array_p = true;
2282 }
2283 else if (TREE_CODE (type) == ARRAY_TYPE)
2284 {
2285 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2286 extension for variable N. (This also covers new T where T is
2287 a VLA typedef.) */
2288 array_p = true;
2289 nelts = array_type_nelts_top (type);
2290 outer_nelts = nelts;
2291 type = TREE_TYPE (type);
2292 outer_nelts_from_type = true;
2293 }
2294
2295 /* If our base type is an array, then make sure we know how many elements
2296 it has. */
2297 for (elt_type = type;
2298 TREE_CODE (elt_type) == ARRAY_TYPE;
2299 elt_type = TREE_TYPE (elt_type))
2300 {
2301 tree inner_nelts = array_type_nelts_top (elt_type);
2302 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2303 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2304 {
2305 bool overflow;
2306 double_int result = TREE_INT_CST (inner_nelts_cst)
2307 .mul_with_sign (inner_nelts_count,
2308 false, &overflow);
2309 if (overflow)
2310 {
2311 if (complain & tf_error)
2312 error ("integer overflow in array size");
2313 nelts = error_mark_node;
2314 }
2315 inner_nelts_count = result;
2316 }
2317 else
2318 {
2319 if (complain & tf_error)
2320 {
2321 error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2322 "array size in operator new must be constant");
2323 cxx_constant_value(inner_nelts);
2324 }
2325 nelts = error_mark_node;
2326 }
2327 if (nelts != error_mark_node)
2328 nelts = cp_build_binary_op (input_location,
2329 MULT_EXPR, nelts,
2330 inner_nelts_cst,
2331 complain);
2332 }
2333
2334 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2335 {
2336 error ("variably modified type not allowed in operator new");
2337 return error_mark_node;
2338 }
2339
2340 if (nelts == error_mark_node)
2341 return error_mark_node;
2342
2343 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2344 variable. */
2345 if (outer_nelts_from_type
2346 && !TREE_CONSTANT (maybe_constant_value (outer_nelts)))
2347 {
2348 if (complain & tf_warning_or_error)
2349 pedwarn(EXPR_LOC_OR_LOC (outer_nelts, input_location), OPT_Wvla,
2350 "ISO C++ does not support variable-length array types");
2351 else
2352 return error_mark_node;
2353 }
2354
2355 if (VOID_TYPE_P (elt_type))
2356 {
2357 if (complain & tf_error)
2358 error ("invalid type %<void%> for new");
2359 return error_mark_node;
2360 }
2361
2362 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2363 return error_mark_node;
2364
2365 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2366
2367 if (*init == NULL && cxx_dialect < cxx11)
2368 {
2369 bool maybe_uninitialized_error = false;
2370 /* A program that calls for default-initialization [...] of an
2371 entity of reference type is ill-formed. */
2372 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2373 maybe_uninitialized_error = true;
2374
2375 /* A new-expression that creates an object of type T initializes
2376 that object as follows:
2377 - If the new-initializer is omitted:
2378 -- If T is a (possibly cv-qualified) non-POD class type
2379 (or array thereof), the object is default-initialized (8.5).
2380 [...]
2381 -- Otherwise, the object created has indeterminate
2382 value. If T is a const-qualified type, or a (possibly
2383 cv-qualified) POD class type (or array thereof)
2384 containing (directly or indirectly) a member of
2385 const-qualified type, the program is ill-formed; */
2386
2387 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2388 maybe_uninitialized_error = true;
2389
2390 if (maybe_uninitialized_error
2391 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2392 /*using_new=*/true,
2393 complain & tf_error))
2394 return error_mark_node;
2395 }
2396
2397 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2398 && default_init_uninitialized_part (elt_type))
2399 {
2400 if (complain & tf_error)
2401 error ("uninitialized const in %<new%> of %q#T", elt_type);
2402 return error_mark_node;
2403 }
2404
2405 size = size_in_bytes (elt_type);
2406 if (array_p)
2407 {
2408 /* Maximum available size in bytes. Half of the address space
2409 minus the cookie size. */
2410 double_int max_size
2411 = double_int_one.llshift (TYPE_PRECISION (sizetype) - 1,
2412 HOST_BITS_PER_DOUBLE_INT);
2413 /* Maximum number of outer elements which can be allocated. */
2414 double_int max_outer_nelts;
2415 tree max_outer_nelts_tree;
2416
2417 gcc_assert (TREE_CODE (size) == INTEGER_CST);
2418 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2419 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2420 gcc_checking_assert (TREE_INT_CST (cookie_size).ult (max_size));
2421 /* Unconditionally subtract the cookie size. This decreases the
2422 maximum object size and is safe even if we choose not to use
2423 a cookie after all. */
2424 max_size -= TREE_INT_CST (cookie_size);
2425 bool overflow;
2426 inner_size = TREE_INT_CST (size)
2427 .mul_with_sign (inner_nelts_count, false, &overflow);
2428 if (overflow || inner_size.ugt (max_size))
2429 {
2430 if (complain & tf_error)
2431 error ("size of array is too large");
2432 return error_mark_node;
2433 }
2434 max_outer_nelts = max_size.udiv (inner_size, TRUNC_DIV_EXPR);
2435 /* Only keep the top-most seven bits, to simplify encoding the
2436 constant in the instruction stream. */
2437 {
2438 unsigned shift = HOST_BITS_PER_DOUBLE_INT - 7
2439 - (max_outer_nelts.high ? clz_hwi (max_outer_nelts.high)
2440 : (HOST_BITS_PER_WIDE_INT + clz_hwi (max_outer_nelts.low)));
2441 max_outer_nelts
2442 = max_outer_nelts.lrshift (shift, HOST_BITS_PER_DOUBLE_INT)
2443 .llshift (shift, HOST_BITS_PER_DOUBLE_INT);
2444 }
2445 max_outer_nelts_tree = double_int_to_tree (sizetype, max_outer_nelts);
2446
2447 size = size_binop (MULT_EXPR, size, convert (sizetype, nelts));
2448 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
2449 outer_nelts,
2450 max_outer_nelts_tree);
2451 }
2452
2453 alloc_fn = NULL_TREE;
2454
2455 /* If PLACEMENT is a single simple pointer type not passed by
2456 reference, prepare to capture it in a temporary variable. Do
2457 this now, since PLACEMENT will change in the calls below. */
2458 placement_first = NULL_TREE;
2459 if (vec_safe_length (*placement) == 1
2460 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
2461 placement_first = (**placement)[0];
2462
2463 /* Allocate the object. */
2464 if (vec_safe_is_empty (*placement) && TYPE_FOR_JAVA (elt_type))
2465 {
2466 tree class_addr;
2467 tree class_decl;
2468 static const char alloc_name[] = "_Jv_AllocObject";
2469
2470 if (!MAYBE_CLASS_TYPE_P (elt_type))
2471 {
2472 error ("%qT isn%'t a valid Java class type", elt_type);
2473 return error_mark_node;
2474 }
2475
2476 class_decl = build_java_class_ref (elt_type);
2477 if (class_decl == error_mark_node)
2478 return error_mark_node;
2479
2480 use_java_new = 1;
2481 if (!get_global_value_if_present (get_identifier (alloc_name),
2482 &alloc_fn))
2483 {
2484 if (complain & tf_error)
2485 error ("call to Java constructor with %qs undefined", alloc_name);
2486 return error_mark_node;
2487 }
2488 else if (really_overloaded_fn (alloc_fn))
2489 {
2490 if (complain & tf_error)
2491 error ("%qD should never be overloaded", alloc_fn);
2492 return error_mark_node;
2493 }
2494 alloc_fn = OVL_CURRENT (alloc_fn);
2495 class_addr = build1 (ADDR_EXPR, jclass_node, class_decl);
2496 alloc_call = cp_build_function_call_nary (alloc_fn, complain,
2497 class_addr, NULL_TREE);
2498 }
2499 else if (TYPE_FOR_JAVA (elt_type) && MAYBE_CLASS_TYPE_P (elt_type))
2500 {
2501 error ("Java class %q#T object allocated using placement new", elt_type);
2502 return error_mark_node;
2503 }
2504 else
2505 {
2506 tree fnname;
2507 tree fns;
2508
2509 fnname = ansi_opname (array_p ? VEC_NEW_EXPR : NEW_EXPR);
2510
2511 if (!globally_qualified_p
2512 && CLASS_TYPE_P (elt_type)
2513 && (array_p
2514 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
2515 : TYPE_HAS_NEW_OPERATOR (elt_type)))
2516 {
2517 /* Use a class-specific operator new. */
2518 /* If a cookie is required, add some extra space. */
2519 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
2520 size = size_binop (PLUS_EXPR, size, cookie_size);
2521 else
2522 {
2523 cookie_size = NULL_TREE;
2524 /* No size arithmetic necessary, so the size check is
2525 not needed. */
2526 if (outer_nelts_check != NULL && inner_size.is_one ())
2527 outer_nelts_check = NULL_TREE;
2528 }
2529 /* Perform the overflow check. */
2530 tree errval = TYPE_MAX_VALUE (sizetype);
2531 if (cxx_dialect >= cxx11)
2532 errval = throw_bad_array_new_length ();
2533 if (outer_nelts_check != NULL_TREE)
2534 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
2535 size, errval);
2536 /* Create the argument list. */
2537 vec_safe_insert (*placement, 0, size);
2538 /* Do name-lookup to find the appropriate operator. */
2539 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
2540 if (fns == NULL_TREE)
2541 {
2542 if (complain & tf_error)
2543 error ("no suitable %qD found in class %qT", fnname, elt_type);
2544 return error_mark_node;
2545 }
2546 if (TREE_CODE (fns) == TREE_LIST)
2547 {
2548 if (complain & tf_error)
2549 {
2550 error ("request for member %qD is ambiguous", fnname);
2551 print_candidates (fns);
2552 }
2553 return error_mark_node;
2554 }
2555 alloc_call = build_new_method_call (build_dummy_object (elt_type),
2556 fns, placement,
2557 /*conversion_path=*/NULL_TREE,
2558 LOOKUP_NORMAL,
2559 &alloc_fn,
2560 complain);
2561 }
2562 else
2563 {
2564 /* Use a global operator new. */
2565 /* See if a cookie might be required. */
2566 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
2567 {
2568 cookie_size = NULL_TREE;
2569 /* No size arithmetic necessary, so the size check is
2570 not needed. */
2571 if (outer_nelts_check != NULL && inner_size.is_one ())
2572 outer_nelts_check = NULL_TREE;
2573 }
2574
2575 alloc_call = build_operator_new_call (fnname, placement,
2576 &size, &cookie_size,
2577 outer_nelts_check,
2578 &alloc_fn, complain);
2579 }
2580 }
2581
2582 if (alloc_call == error_mark_node)
2583 return error_mark_node;
2584
2585 gcc_assert (alloc_fn != NULL_TREE);
2586
2587 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
2588 into a temporary variable. */
2589 if (!processing_template_decl
2590 && placement_first != NULL_TREE
2591 && TREE_CODE (alloc_call) == CALL_EXPR
2592 && call_expr_nargs (alloc_call) == 2
2593 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
2594 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
2595 {
2596 tree placement_arg = CALL_EXPR_ARG (alloc_call, 1);
2597
2598 if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg)))
2599 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement_arg))))
2600 {
2601 placement_expr = get_target_expr (placement_first);
2602 CALL_EXPR_ARG (alloc_call, 1)
2603 = convert (TREE_TYPE (placement_arg), placement_expr);
2604 }
2605 }
2606
2607 /* In the simple case, we can stop now. */
2608 pointer_type = build_pointer_type (type);
2609 if (!cookie_size && !is_initialized)
2610 return build_nop (pointer_type, alloc_call);
2611
2612 /* Store the result of the allocation call in a variable so that we can
2613 use it more than once. */
2614 alloc_expr = get_target_expr (alloc_call);
2615 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
2616
2617 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
2618 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
2619 alloc_call = TREE_OPERAND (alloc_call, 1);
2620
2621 /* Now, check to see if this function is actually a placement
2622 allocation function. This can happen even when PLACEMENT is NULL
2623 because we might have something like:
2624
2625 struct S { void* operator new (size_t, int i = 0); };
2626
2627 A call to `new S' will get this allocation function, even though
2628 there is no explicit placement argument. If there is more than
2629 one argument, or there are variable arguments, then this is a
2630 placement allocation function. */
2631 placement_allocation_fn_p
2632 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
2633 || varargs_function_p (alloc_fn));
2634
2635 /* Preevaluate the placement args so that we don't reevaluate them for a
2636 placement delete. */
2637 if (placement_allocation_fn_p)
2638 {
2639 tree inits;
2640 stabilize_call (alloc_call, &inits);
2641 if (inits)
2642 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
2643 alloc_expr);
2644 }
2645
2646 /* unless an allocation function is declared with an empty excep-
2647 tion-specification (_except.spec_), throw(), it indicates failure to
2648 allocate storage by throwing a bad_alloc exception (clause _except_,
2649 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
2650 cation function is declared with an empty exception-specification,
2651 throw(), it returns null to indicate failure to allocate storage and a
2652 non-null pointer otherwise.
2653
2654 So check for a null exception spec on the op new we just called. */
2655
2656 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
2657 check_new = (flag_check_new || nothrow) && ! use_java_new;
2658
2659 if (cookie_size)
2660 {
2661 tree cookie;
2662 tree cookie_ptr;
2663 tree size_ptr_type;
2664
2665 /* Adjust so we're pointing to the start of the object. */
2666 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
2667
2668 /* Store the number of bytes allocated so that we can know how
2669 many elements to destroy later. We use the last sizeof
2670 (size_t) bytes to store the number of elements. */
2671 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
2672 cookie_ptr = fold_build_pointer_plus_loc (input_location,
2673 alloc_node, cookie_ptr);
2674 size_ptr_type = build_pointer_type (sizetype);
2675 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
2676 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2677
2678 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
2679
2680 if (targetm.cxx.cookie_has_size ())
2681 {
2682 /* Also store the element size. */
2683 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
2684 fold_build1_loc (input_location,
2685 NEGATE_EXPR, sizetype,
2686 size_in_bytes (sizetype)));
2687
2688 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
2689 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
2690 size_in_bytes (elt_type));
2691 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
2692 cookie, cookie_expr);
2693 }
2694 }
2695 else
2696 {
2697 cookie_expr = NULL_TREE;
2698 data_addr = alloc_node;
2699 }
2700
2701 /* Now use a pointer to the type we've actually allocated. */
2702
2703 /* But we want to operate on a non-const version to start with,
2704 since we'll be modifying the elements. */
2705 non_const_pointer_type = build_pointer_type
2706 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
2707
2708 data_addr = fold_convert (non_const_pointer_type, data_addr);
2709 /* Any further uses of alloc_node will want this type, too. */
2710 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
2711
2712 /* Now initialize the allocated object. Note that we preevaluate the
2713 initialization expression, apart from the actual constructor call or
2714 assignment--we do this because we want to delay the allocation as long
2715 as possible in order to minimize the size of the exception region for
2716 placement delete. */
2717 if (is_initialized)
2718 {
2719 bool stable;
2720 bool explicit_value_init_p = false;
2721
2722 if (*init != NULL && (*init)->is_empty ())
2723 {
2724 *init = NULL;
2725 explicit_value_init_p = true;
2726 }
2727
2728 if (processing_template_decl && explicit_value_init_p)
2729 {
2730 /* build_value_init doesn't work in templates, and we don't need
2731 the initializer anyway since we're going to throw it away and
2732 rebuild it at instantiation time, so just build up a single
2733 constructor call to get any appropriate diagnostics. */
2734 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2735 if (type_build_ctor_call (elt_type))
2736 init_expr = build_special_member_call (init_expr,
2737 complete_ctor_identifier,
2738 init, elt_type,
2739 LOOKUP_NORMAL,
2740 complain);
2741 stable = stabilize_init (init_expr, &init_preeval_expr);
2742 }
2743 else if (array_p)
2744 {
2745 tree vecinit = NULL_TREE;
2746 if (vec_safe_length (*init) == 1
2747 && BRACE_ENCLOSED_INITIALIZER_P ((**init)[0])
2748 && CONSTRUCTOR_IS_DIRECT_INIT ((**init)[0]))
2749 {
2750 vecinit = (**init)[0];
2751 if (CONSTRUCTOR_NELTS (vecinit) == 0)
2752 /* List-value-initialization, leave it alone. */;
2753 else
2754 {
2755 tree arraytype, domain;
2756 if (TREE_CONSTANT (nelts))
2757 domain = compute_array_index_type (NULL_TREE, nelts,
2758 complain);
2759 else
2760 /* We'll check the length at runtime. */
2761 domain = NULL_TREE;
2762 arraytype = build_cplus_array_type (type, domain);
2763 vecinit = digest_init (arraytype, vecinit, complain);
2764 }
2765 }
2766 else if (*init)
2767 {
2768 if (complain & tf_error)
2769 permerror (input_location,
2770 "parenthesized initializer in array new");
2771 else
2772 return error_mark_node;
2773 vecinit = build_tree_list_vec (*init);
2774 }
2775 init_expr
2776 = build_vec_init (data_addr,
2777 cp_build_binary_op (input_location,
2778 MINUS_EXPR, outer_nelts,
2779 integer_one_node,
2780 complain),
2781 vecinit,
2782 explicit_value_init_p,
2783 /*from_array=*/0,
2784 complain);
2785
2786 /* An array initialization is stable because the initialization
2787 of each element is a full-expression, so the temporaries don't
2788 leak out. */
2789 stable = true;
2790 }
2791 else
2792 {
2793 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
2794
2795 if (type_build_ctor_call (type) && !explicit_value_init_p)
2796 {
2797 init_expr = build_special_member_call (init_expr,
2798 complete_ctor_identifier,
2799 init, elt_type,
2800 LOOKUP_NORMAL,
2801 complain);
2802 }
2803 else if (explicit_value_init_p)
2804 {
2805 /* Something like `new int()'. */
2806 tree val = build_value_init (type, complain);
2807 if (val == error_mark_node)
2808 return error_mark_node;
2809 init_expr = build2 (INIT_EXPR, type, init_expr, val);
2810 }
2811 else
2812 {
2813 tree ie;
2814
2815 /* We are processing something like `new int (10)', which
2816 means allocate an int, and initialize it with 10. */
2817
2818 ie = build_x_compound_expr_from_vec (*init, "new initializer",
2819 complain);
2820 init_expr = cp_build_modify_expr (init_expr, INIT_EXPR, ie,
2821 complain);
2822 }
2823 stable = stabilize_init (init_expr, &init_preeval_expr);
2824 }
2825
2826 if (init_expr == error_mark_node)
2827 return error_mark_node;
2828
2829 /* If any part of the object initialization terminates by throwing an
2830 exception and a suitable deallocation function can be found, the
2831 deallocation function is called to free the memory in which the
2832 object was being constructed, after which the exception continues
2833 to propagate in the context of the new-expression. If no
2834 unambiguous matching deallocation function can be found,
2835 propagating the exception does not cause the object's memory to be
2836 freed. */
2837 if (flag_exceptions && ! use_java_new)
2838 {
2839 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
2840 tree cleanup;
2841
2842 /* The Standard is unclear here, but the right thing to do
2843 is to use the same method for finding deallocation
2844 functions that we use for finding allocation functions. */
2845 cleanup = (build_op_delete_call
2846 (dcode,
2847 alloc_node,
2848 size,
2849 globally_qualified_p,
2850 placement_allocation_fn_p ? alloc_call : NULL_TREE,
2851 alloc_fn,
2852 complain));
2853
2854 if (!cleanup)
2855 /* We're done. */;
2856 else if (stable)
2857 /* This is much simpler if we were able to preevaluate all of
2858 the arguments to the constructor call. */
2859 {
2860 /* CLEANUP is compiler-generated, so no diagnostics. */
2861 TREE_NO_WARNING (cleanup) = true;
2862 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
2863 init_expr, cleanup);
2864 /* Likewise, this try-catch is compiler-generated. */
2865 TREE_NO_WARNING (init_expr) = true;
2866 }
2867 else
2868 /* Ack! First we allocate the memory. Then we set our sentry
2869 variable to true, and expand a cleanup that deletes the
2870 memory if sentry is true. Then we run the constructor, and
2871 finally clear the sentry.
2872
2873 We need to do this because we allocate the space first, so
2874 if there are any temporaries with cleanups in the
2875 constructor args and we weren't able to preevaluate them, we
2876 need this EH region to extend until end of full-expression
2877 to preserve nesting. */
2878 {
2879 tree end, sentry, begin;
2880
2881 begin = get_target_expr (boolean_true_node);
2882 CLEANUP_EH_ONLY (begin) = 1;
2883
2884 sentry = TARGET_EXPR_SLOT (begin);
2885
2886 /* CLEANUP is compiler-generated, so no diagnostics. */
2887 TREE_NO_WARNING (cleanup) = true;
2888
2889 TARGET_EXPR_CLEANUP (begin)
2890 = build3 (COND_EXPR, void_type_node, sentry,
2891 cleanup, void_zero_node);
2892
2893 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
2894 sentry, boolean_false_node);
2895
2896 init_expr
2897 = build2 (COMPOUND_EXPR, void_type_node, begin,
2898 build2 (COMPOUND_EXPR, void_type_node, init_expr,
2899 end));
2900 /* Likewise, this is compiler-generated. */
2901 TREE_NO_WARNING (init_expr) = true;
2902 }
2903 }
2904 }
2905 else
2906 init_expr = NULL_TREE;
2907
2908 /* Now build up the return value in reverse order. */
2909
2910 rval = data_addr;
2911
2912 if (init_expr)
2913 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
2914 if (cookie_expr)
2915 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
2916
2917 if (rval == data_addr)
2918 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
2919 and return the call (which doesn't need to be adjusted). */
2920 rval = TARGET_EXPR_INITIAL (alloc_expr);
2921 else
2922 {
2923 if (check_new)
2924 {
2925 tree ifexp = cp_build_binary_op (input_location,
2926 NE_EXPR, alloc_node,
2927 nullptr_node,
2928 complain);
2929 rval = build_conditional_expr (input_location, ifexp, rval,
2930 alloc_node, complain);
2931 }
2932
2933 /* Perform the allocation before anything else, so that ALLOC_NODE
2934 has been initialized before we start using it. */
2935 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
2936 }
2937
2938 if (init_preeval_expr)
2939 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
2940
2941 /* A new-expression is never an lvalue. */
2942 gcc_assert (!lvalue_p (rval));
2943
2944 return convert (pointer_type, rval);
2945 }
2946
2947 /* Generate a representation for a C++ "new" expression. *PLACEMENT
2948 is a vector of placement-new arguments (or NULL if none). If NELTS
2949 is NULL, TYPE is the type of the storage to be allocated. If NELTS
2950 is not NULL, then this is an array-new allocation; TYPE is the type
2951 of the elements in the array and NELTS is the number of elements in
2952 the array. *INIT, if non-NULL, is the initializer for the new
2953 object, or an empty vector to indicate an initializer of "()". If
2954 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
2955 rather than just "new". This may change PLACEMENT and INIT. */
2956
2957 tree
2958 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
2959 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
2960 {
2961 tree rval;
2962 vec<tree, va_gc> *orig_placement = NULL;
2963 tree orig_nelts = NULL_TREE;
2964 vec<tree, va_gc> *orig_init = NULL;
2965
2966 if (type == error_mark_node)
2967 return error_mark_node;
2968
2969 if (nelts == NULL_TREE && vec_safe_length (*init) == 1
2970 /* Don't do auto deduction where it might affect mangling. */
2971 && (!processing_template_decl || at_function_scope_p ()))
2972 {
2973 tree auto_node = type_uses_auto (type);
2974 if (auto_node)
2975 {
2976 tree d_init = (**init)[0];
2977 d_init = resolve_nondeduced_context (d_init);
2978 type = do_auto_deduction (type, d_init, auto_node);
2979 }
2980 }
2981
2982 if (processing_template_decl)
2983 {
2984 if (dependent_type_p (type)
2985 || any_type_dependent_arguments_p (*placement)
2986 || (nelts && type_dependent_expression_p (nelts))
2987 || (nelts && *init)
2988 || any_type_dependent_arguments_p (*init))
2989 return build_raw_new_expr (*placement, type, nelts, *init,
2990 use_global_new);
2991
2992 orig_placement = make_tree_vector_copy (*placement);
2993 orig_nelts = nelts;
2994 if (*init)
2995 orig_init = make_tree_vector_copy (*init);
2996
2997 make_args_non_dependent (*placement);
2998 if (nelts)
2999 nelts = build_non_dependent_expr (nelts);
3000 make_args_non_dependent (*init);
3001 }
3002
3003 if (nelts)
3004 {
3005 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3006 {
3007 if (complain & tf_error)
3008 permerror (input_location, "size in array new must have integral type");
3009 else
3010 return error_mark_node;
3011 }
3012 nelts = mark_rvalue_use (nelts);
3013 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3014 }
3015
3016 /* ``A reference cannot be created by the new operator. A reference
3017 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3018 returned by new.'' ARM 5.3.3 */
3019 if (TREE_CODE (type) == REFERENCE_TYPE)
3020 {
3021 if (complain & tf_error)
3022 error ("new cannot be applied to a reference type");
3023 else
3024 return error_mark_node;
3025 type = TREE_TYPE (type);
3026 }
3027
3028 if (TREE_CODE (type) == FUNCTION_TYPE)
3029 {
3030 if (complain & tf_error)
3031 error ("new cannot be applied to a function type");
3032 return error_mark_node;
3033 }
3034
3035 /* The type allocated must be complete. If the new-type-id was
3036 "T[N]" then we are just checking that "T" is complete here, but
3037 that is equivalent, since the value of "N" doesn't matter. */
3038 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3039 return error_mark_node;
3040
3041 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3042 if (rval == error_mark_node)
3043 return error_mark_node;
3044
3045 if (processing_template_decl)
3046 {
3047 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3048 orig_init, use_global_new);
3049 release_tree_vector (orig_placement);
3050 release_tree_vector (orig_init);
3051 return ret;
3052 }
3053
3054 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3055 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3056 TREE_NO_WARNING (rval) = 1;
3057
3058 return rval;
3059 }
3060
3061 /* Given a Java class, return a decl for the corresponding java.lang.Class. */
3062
3063 tree
3064 build_java_class_ref (tree type)
3065 {
3066 tree name = NULL_TREE, class_decl;
3067 static tree CL_suffix = NULL_TREE;
3068 if (CL_suffix == NULL_TREE)
3069 CL_suffix = get_identifier("class$");
3070 if (jclass_node == NULL_TREE)
3071 {
3072 jclass_node = IDENTIFIER_GLOBAL_VALUE (get_identifier ("jclass"));
3073 if (jclass_node == NULL_TREE)
3074 {
3075 error ("call to Java constructor, while %<jclass%> undefined");
3076 return error_mark_node;
3077 }
3078 jclass_node = TREE_TYPE (jclass_node);
3079 }
3080
3081 /* Mangle the class$ field. */
3082 {
3083 tree field;
3084 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
3085 if (DECL_NAME (field) == CL_suffix)
3086 {
3087 mangle_decl (field);
3088 name = DECL_ASSEMBLER_NAME (field);
3089 break;
3090 }
3091 if (!field)
3092 {
3093 error ("can%'t find %<class$%> in %qT", type);
3094 return error_mark_node;
3095 }
3096 }
3097
3098 class_decl = IDENTIFIER_GLOBAL_VALUE (name);
3099 if (class_decl == NULL_TREE)
3100 {
3101 class_decl = build_decl (input_location,
3102 VAR_DECL, name, TREE_TYPE (jclass_node));
3103 TREE_STATIC (class_decl) = 1;
3104 DECL_EXTERNAL (class_decl) = 1;
3105 TREE_PUBLIC (class_decl) = 1;
3106 DECL_ARTIFICIAL (class_decl) = 1;
3107 DECL_IGNORED_P (class_decl) = 1;
3108 pushdecl_top_level (class_decl);
3109 make_decl_rtl (class_decl);
3110 }
3111 return class_decl;
3112 }
3113 \f
3114 static tree
3115 build_vec_delete_1 (tree base, tree maxindex, tree type,
3116 special_function_kind auto_delete_vec,
3117 int use_global_delete, tsubst_flags_t complain)
3118 {
3119 tree virtual_size;
3120 tree ptype = build_pointer_type (type = complete_type (type));
3121 tree size_exp;
3122
3123 /* Temporary variables used by the loop. */
3124 tree tbase, tbase_init;
3125
3126 /* This is the body of the loop that implements the deletion of a
3127 single element, and moves temp variables to next elements. */
3128 tree body;
3129
3130 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3131 tree loop = 0;
3132
3133 /* This is the thing that governs what to do after the loop has run. */
3134 tree deallocate_expr = 0;
3135
3136 /* This is the BIND_EXPR which holds the outermost iterator of the
3137 loop. It is convenient to set this variable up and test it before
3138 executing any other code in the loop.
3139 This is also the containing expression returned by this function. */
3140 tree controller = NULL_TREE;
3141 tree tmp;
3142
3143 /* We should only have 1-D arrays here. */
3144 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3145
3146 if (base == error_mark_node || maxindex == error_mark_node)
3147 return error_mark_node;
3148
3149 if (!COMPLETE_TYPE_P (type))
3150 {
3151 if ((complain & tf_warning)
3152 && warning (OPT_Wdelete_incomplete,
3153 "possible problem detected in invocation of "
3154 "delete [] operator:"))
3155 {
3156 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3157 inform (input_location, "neither the destructor nor the "
3158 "class-specific operator delete [] will be called, "
3159 "even if they are declared when the class is defined");
3160 }
3161 return build_builtin_delete_call (base);
3162 }
3163
3164 size_exp = size_in_bytes (type);
3165
3166 if (! MAYBE_CLASS_TYPE_P (type))
3167 goto no_destructor;
3168 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3169 {
3170 /* Make sure the destructor is callable. */
3171 if (type_build_dtor_call (type))
3172 {
3173 tmp = build_delete (ptype, base, sfk_complete_destructor,
3174 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3175 complain);
3176 if (tmp == error_mark_node)
3177 return error_mark_node;
3178 }
3179 goto no_destructor;
3180 }
3181
3182 /* The below is short by the cookie size. */
3183 virtual_size = size_binop (MULT_EXPR, size_exp,
3184 convert (sizetype, maxindex));
3185
3186 tbase = create_temporary_var (ptype);
3187 tbase_init
3188 = cp_build_modify_expr (tbase, NOP_EXPR,
3189 fold_build_pointer_plus_loc (input_location,
3190 fold_convert (ptype,
3191 base),
3192 virtual_size),
3193 complain);
3194 if (tbase_init == error_mark_node)
3195 return error_mark_node;
3196 controller = build3 (BIND_EXPR, void_type_node, tbase,
3197 NULL_TREE, NULL_TREE);
3198 TREE_SIDE_EFFECTS (controller) = 1;
3199
3200 body = build1 (EXIT_EXPR, void_type_node,
3201 build2 (EQ_EXPR, boolean_type_node, tbase,
3202 fold_convert (ptype, base)));
3203 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3204 tmp = fold_build_pointer_plus (tbase, tmp);
3205 tmp = cp_build_modify_expr (tbase, NOP_EXPR, tmp, complain);
3206 if (tmp == error_mark_node)
3207 return error_mark_node;
3208 body = build_compound_expr (input_location, body, tmp);
3209 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3210 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3211 complain);
3212 if (tmp == error_mark_node)
3213 return error_mark_node;
3214 body = build_compound_expr (input_location, body, tmp);
3215
3216 loop = build1 (LOOP_EXPR, void_type_node, body);
3217 loop = build_compound_expr (input_location, tbase_init, loop);
3218
3219 no_destructor:
3220 /* Delete the storage if appropriate. */
3221 if (auto_delete_vec == sfk_deleting_destructor)
3222 {
3223 tree base_tbd;
3224
3225 /* The below is short by the cookie size. */
3226 virtual_size = size_binop (MULT_EXPR, size_exp,
3227 convert (sizetype, maxindex));
3228
3229 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3230 /* no header */
3231 base_tbd = base;
3232 else
3233 {
3234 tree cookie_size;
3235
3236 cookie_size = targetm.cxx.get_cookie_size (type);
3237 base_tbd = cp_build_binary_op (input_location,
3238 MINUS_EXPR,
3239 cp_convert (string_type_node,
3240 base, complain),
3241 cookie_size,
3242 complain);
3243 if (base_tbd == error_mark_node)
3244 return error_mark_node;
3245 base_tbd = cp_convert (ptype, base_tbd, complain);
3246 /* True size with header. */
3247 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3248 }
3249
3250 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3251 base_tbd, virtual_size,
3252 use_global_delete & 1,
3253 /*placement=*/NULL_TREE,
3254 /*alloc_fn=*/NULL_TREE,
3255 complain);
3256 }
3257
3258 body = loop;
3259 if (!deallocate_expr)
3260 ;
3261 else if (!body)
3262 body = deallocate_expr;
3263 else
3264 body = build_compound_expr (input_location, body, deallocate_expr);
3265
3266 if (!body)
3267 body = integer_zero_node;
3268
3269 /* Outermost wrapper: If pointer is null, punt. */
3270 body = fold_build3_loc (input_location, COND_EXPR, void_type_node,
3271 fold_build2_loc (input_location,
3272 NE_EXPR, boolean_type_node, base,
3273 convert (TREE_TYPE (base),
3274 nullptr_node)),
3275 body, integer_zero_node);
3276 body = build1 (NOP_EXPR, void_type_node, body);
3277
3278 if (controller)
3279 {
3280 TREE_OPERAND (controller, 1) = body;
3281 body = controller;
3282 }
3283
3284 if (TREE_CODE (base) == SAVE_EXPR)
3285 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3286 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3287
3288 return convert_to_void (body, ICV_CAST, complain);
3289 }
3290
3291 /* Create an unnamed variable of the indicated TYPE. */
3292
3293 tree
3294 create_temporary_var (tree type)
3295 {
3296 tree decl;
3297
3298 decl = build_decl (input_location,
3299 VAR_DECL, NULL_TREE, type);
3300 TREE_USED (decl) = 1;
3301 DECL_ARTIFICIAL (decl) = 1;
3302 DECL_IGNORED_P (decl) = 1;
3303 DECL_CONTEXT (decl) = current_function_decl;
3304
3305 return decl;
3306 }
3307
3308 /* Create a new temporary variable of the indicated TYPE, initialized
3309 to INIT.
3310
3311 It is not entered into current_binding_level, because that breaks
3312 things when it comes time to do final cleanups (which take place
3313 "outside" the binding contour of the function). */
3314
3315 tree
3316 get_temp_regvar (tree type, tree init)
3317 {
3318 tree decl;
3319
3320 decl = create_temporary_var (type);
3321 add_decl_expr (decl);
3322
3323 finish_expr_stmt (cp_build_modify_expr (decl, INIT_EXPR, init,
3324 tf_warning_or_error));
3325
3326 return decl;
3327 }
3328
3329 /* `build_vec_init' returns tree structure that performs
3330 initialization of a vector of aggregate types.
3331
3332 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3333 to the first element, of POINTER_TYPE.
3334 MAXINDEX is the maximum index of the array (one less than the
3335 number of elements). It is only used if BASE is a pointer or
3336 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3337
3338 INIT is the (possibly NULL) initializer.
3339
3340 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3341 elements in the array are value-initialized.
3342
3343 FROM_ARRAY is 0 if we should init everything with INIT
3344 (i.e., every element initialized from INIT).
3345 FROM_ARRAY is 1 if we should index into INIT in parallel
3346 with initialization of DECL.
3347 FROM_ARRAY is 2 if we should index into INIT in parallel,
3348 but use assignment instead of initialization. */
3349
3350 tree
3351 build_vec_init (tree base, tree maxindex, tree init,
3352 bool explicit_value_init_p,
3353 int from_array, tsubst_flags_t complain)
3354 {
3355 tree rval;
3356 tree base2 = NULL_TREE;
3357 tree itype = NULL_TREE;
3358 tree iterator;
3359 /* The type of BASE. */
3360 tree atype = TREE_TYPE (base);
3361 /* The type of an element in the array. */
3362 tree type = TREE_TYPE (atype);
3363 /* The element type reached after removing all outer array
3364 types. */
3365 tree inner_elt_type;
3366 /* The type of a pointer to an element in the array. */
3367 tree ptype;
3368 tree stmt_expr;
3369 tree compound_stmt;
3370 int destroy_temps;
3371 tree try_block = NULL_TREE;
3372 int num_initialized_elts = 0;
3373 bool is_global;
3374 tree const_init = NULL_TREE;
3375 tree obase = base;
3376 bool xvalue = false;
3377 bool errors = false;
3378 tree length_check = NULL_TREE;
3379
3380 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
3381 maxindex = array_type_nelts (atype);
3382
3383 if (maxindex == NULL_TREE || maxindex == error_mark_node)
3384 return error_mark_node;
3385
3386 if (explicit_value_init_p)
3387 gcc_assert (!init);
3388
3389 inner_elt_type = strip_array_types (type);
3390
3391 /* Look through the TARGET_EXPR around a compound literal. */
3392 if (init && TREE_CODE (init) == TARGET_EXPR
3393 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
3394 && from_array != 2)
3395 init = TARGET_EXPR_INITIAL (init);
3396
3397 /* If we have a braced-init-list, make sure that the array
3398 is big enough for all the initializers. */
3399 if (init && TREE_CODE (init) == CONSTRUCTOR
3400 && CONSTRUCTOR_NELTS (init) > 0
3401 && !TREE_CONSTANT (maxindex))
3402 length_check = fold_build2 (LT_EXPR, boolean_type_node, maxindex,
3403 size_int (CONSTRUCTOR_NELTS (init) - 1));
3404
3405 if (init
3406 && TREE_CODE (atype) == ARRAY_TYPE
3407 && TREE_CONSTANT (maxindex)
3408 && (from_array == 2
3409 ? (!CLASS_TYPE_P (inner_elt_type)
3410 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (inner_elt_type))
3411 : !TYPE_NEEDS_CONSTRUCTING (type))
3412 && ((TREE_CODE (init) == CONSTRUCTOR
3413 /* Don't do this if the CONSTRUCTOR might contain something
3414 that might throw and require us to clean up. */
3415 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
3416 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
3417 || from_array))
3418 {
3419 /* Do non-default initialization of trivial arrays resulting from
3420 brace-enclosed initializers. In this case, digest_init and
3421 store_constructor will handle the semantics for us. */
3422
3423 stmt_expr = build2 (INIT_EXPR, atype, base, init);
3424 if (length_check)
3425 stmt_expr = build3 (COND_EXPR, atype, length_check,
3426 throw_bad_array_length (),
3427 stmt_expr);
3428 return stmt_expr;
3429 }
3430
3431 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
3432 if (TREE_CODE (atype) == ARRAY_TYPE)
3433 {
3434 ptype = build_pointer_type (type);
3435 base = decay_conversion (base, complain);
3436 if (base == error_mark_node)
3437 return error_mark_node;
3438 base = cp_convert (ptype, base, complain);
3439 }
3440 else
3441 ptype = atype;
3442
3443 /* The code we are generating looks like:
3444 ({
3445 T* t1 = (T*) base;
3446 T* rval = t1;
3447 ptrdiff_t iterator = maxindex;
3448 try {
3449 for (; iterator != -1; --iterator) {
3450 ... initialize *t1 ...
3451 ++t1;
3452 }
3453 } catch (...) {
3454 ... destroy elements that were constructed ...
3455 }
3456 rval;
3457 })
3458
3459 We can omit the try and catch blocks if we know that the
3460 initialization will never throw an exception, or if the array
3461 elements do not have destructors. We can omit the loop completely if
3462 the elements of the array do not have constructors.
3463
3464 We actually wrap the entire body of the above in a STMT_EXPR, for
3465 tidiness.
3466
3467 When copying from array to another, when the array elements have
3468 only trivial copy constructors, we should use __builtin_memcpy
3469 rather than generating a loop. That way, we could take advantage
3470 of whatever cleverness the back end has for dealing with copies
3471 of blocks of memory. */
3472
3473 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
3474 destroy_temps = stmts_are_full_exprs_p ();
3475 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3476 rval = get_temp_regvar (ptype, base);
3477 base = get_temp_regvar (ptype, rval);
3478 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
3479
3480 /* If initializing one array from another, initialize element by
3481 element. We rely upon the below calls to do the argument
3482 checking. Evaluate the initializer before entering the try block. */
3483 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
3484 {
3485 if (lvalue_kind (init) & clk_rvalueref)
3486 xvalue = true;
3487 base2 = decay_conversion (init, complain);
3488 if (base2 == error_mark_node)
3489 return error_mark_node;
3490 itype = TREE_TYPE (base2);
3491 base2 = get_temp_regvar (itype, base2);
3492 itype = TREE_TYPE (itype);
3493 }
3494
3495 /* Protect the entire array initialization so that we can destroy
3496 the partially constructed array if an exception is thrown.
3497 But don't do this if we're assigning. */
3498 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3499 && from_array != 2)
3500 {
3501 try_block = begin_try_block ();
3502 }
3503
3504 /* If the initializer is {}, then all elements are initialized from {}.
3505 But for non-classes, that's the same as value-initialization. */
3506 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
3507 && CONSTRUCTOR_NELTS (init) == 0)
3508 {
3509 if (CLASS_TYPE_P (type))
3510 /* Leave init alone. */;
3511 else
3512 {
3513 init = NULL_TREE;
3514 explicit_value_init_p = true;
3515 }
3516 }
3517
3518 /* Maybe pull out constant value when from_array? */
3519
3520 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
3521 {
3522 /* Do non-default initialization of non-trivial arrays resulting from
3523 brace-enclosed initializers. */
3524 unsigned HOST_WIDE_INT idx;
3525 tree field, elt;
3526 /* Should we try to create a constant initializer? */
3527 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
3528 && TREE_CONSTANT (maxindex)
3529 && (literal_type_p (inner_elt_type)
3530 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
3531 /* If the constructor already has the array type, it's been through
3532 digest_init, so we shouldn't try to do anything more. */
3533 bool digested = same_type_p (atype, TREE_TYPE (init));
3534 bool saw_non_const = false;
3535 bool saw_const = false;
3536 /* If we're initializing a static array, we want to do static
3537 initialization of any elements with constant initializers even if
3538 some are non-constant. */
3539 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
3540 vec<constructor_elt, va_gc> *new_vec;
3541 from_array = 0;
3542
3543 if (length_check)
3544 {
3545 tree throw_call;
3546 if (array_of_runtime_bound_p (atype))
3547 throw_call = throw_bad_array_length ();
3548 else
3549 throw_call = throw_bad_array_new_length ();
3550 length_check = build3 (COND_EXPR, void_type_node, length_check,
3551 throw_call, void_zero_node);
3552 finish_expr_stmt (length_check);
3553 }
3554
3555 if (try_const)
3556 vec_alloc (new_vec, CONSTRUCTOR_NELTS (init));
3557 else
3558 new_vec = NULL;
3559
3560 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
3561 {
3562 tree baseref = build1 (INDIRECT_REF, type, base);
3563 tree one_init;
3564
3565 num_initialized_elts++;
3566
3567 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3568 if (digested)
3569 one_init = build2 (INIT_EXPR, type, baseref, elt);
3570 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
3571 one_init = build_aggr_init (baseref, elt, 0, complain);
3572 else
3573 one_init = cp_build_modify_expr (baseref, NOP_EXPR,
3574 elt, complain);
3575 if (one_init == error_mark_node)
3576 errors = true;
3577 if (try_const)
3578 {
3579 tree e = one_init;
3580 if (TREE_CODE (e) == EXPR_STMT)
3581 e = TREE_OPERAND (e, 0);
3582 if (TREE_CODE (e) == CONVERT_EXPR
3583 && VOID_TYPE_P (TREE_TYPE (e)))
3584 e = TREE_OPERAND (e, 0);
3585 e = maybe_constant_init (e);
3586 if (reduced_constant_expression_p (e))
3587 {
3588 CONSTRUCTOR_APPEND_ELT (new_vec, field, e);
3589 if (do_static_init)
3590 one_init = NULL_TREE;
3591 else
3592 one_init = build2 (INIT_EXPR, type, baseref, e);
3593 saw_const = true;
3594 }
3595 else
3596 {
3597 if (do_static_init)
3598 {
3599 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
3600 true);
3601 if (value)
3602 CONSTRUCTOR_APPEND_ELT (new_vec, field, value);
3603 }
3604 saw_non_const = true;
3605 }
3606 }
3607
3608 if (one_init)
3609 finish_expr_stmt (one_init);
3610 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3611
3612 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, 0, complain);
3613 if (one_init == error_mark_node)
3614 errors = true;
3615 else
3616 finish_expr_stmt (one_init);
3617
3618 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3619 complain);
3620 if (one_init == error_mark_node)
3621 errors = true;
3622 else
3623 finish_expr_stmt (one_init);
3624 }
3625
3626 if (try_const)
3627 {
3628 if (!saw_non_const)
3629 const_init = build_constructor (atype, new_vec);
3630 else if (do_static_init && saw_const)
3631 DECL_INITIAL (obase) = build_constructor (atype, new_vec);
3632 else
3633 vec_free (new_vec);
3634 }
3635
3636 /* Any elements without explicit initializers get {}. */
3637 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
3638 init = build_constructor (init_list_type_node, NULL);
3639 else
3640 {
3641 init = NULL_TREE;
3642 explicit_value_init_p = true;
3643 }
3644 }
3645 else if (from_array)
3646 {
3647 if (init)
3648 /* OK, we set base2 above. */;
3649 else if (CLASS_TYPE_P (type)
3650 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
3651 {
3652 if (complain & tf_error)
3653 error ("initializer ends prematurely");
3654 errors = true;
3655 }
3656 }
3657
3658 /* Now, default-initialize any remaining elements. We don't need to
3659 do that if a) the type does not need constructing, or b) we've
3660 already initialized all the elements.
3661
3662 We do need to keep going if we're copying an array. */
3663
3664 if (from_array
3665 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
3666 && ! (tree_fits_shwi_p (maxindex)
3667 && (num_initialized_elts
3668 == tree_to_shwi (maxindex) + 1))))
3669 {
3670 /* If the ITERATOR is equal to -1, then we don't have to loop;
3671 we've already initialized all the elements. */
3672 tree for_stmt;
3673 tree elt_init;
3674 tree to;
3675
3676 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
3677 finish_for_init_stmt (for_stmt);
3678 finish_for_cond (build2 (NE_EXPR, boolean_type_node, iterator,
3679 build_int_cst (TREE_TYPE (iterator), -1)),
3680 for_stmt, false);
3681 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, 0,
3682 complain);
3683 if (elt_init == error_mark_node)
3684 errors = true;
3685 finish_for_expr (elt_init, for_stmt);
3686
3687 to = build1 (INDIRECT_REF, type, base);
3688
3689 if (from_array)
3690 {
3691 tree from;
3692
3693 if (base2)
3694 {
3695 from = build1 (INDIRECT_REF, itype, base2);
3696 if (xvalue)
3697 from = move (from);
3698 }
3699 else
3700 from = NULL_TREE;
3701
3702 if (from_array == 2)
3703 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3704 complain);
3705 else if (type_build_ctor_call (type))
3706 elt_init = build_aggr_init (to, from, 0, complain);
3707 else if (from)
3708 elt_init = cp_build_modify_expr (to, NOP_EXPR, from,
3709 complain);
3710 else
3711 gcc_unreachable ();
3712 }
3713 else if (TREE_CODE (type) == ARRAY_TYPE)
3714 {
3715 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
3716 sorry
3717 ("cannot initialize multi-dimensional array with initializer");
3718 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
3719 0, init,
3720 explicit_value_init_p,
3721 0, complain);
3722 }
3723 else if (explicit_value_init_p)
3724 {
3725 elt_init = build_value_init (type, complain);
3726 if (elt_init != error_mark_node)
3727 elt_init = build2 (INIT_EXPR, type, to, elt_init);
3728 }
3729 else
3730 {
3731 gcc_assert (type_build_ctor_call (type) || init);
3732 if (CLASS_TYPE_P (type))
3733 elt_init = build_aggr_init (to, init, 0, complain);
3734 else
3735 {
3736 if (TREE_CODE (init) == TREE_LIST)
3737 init = build_x_compound_expr_from_list (init, ELK_INIT,
3738 complain);
3739 elt_init = build2 (INIT_EXPR, type, to, init);
3740 }
3741 }
3742
3743 if (elt_init == error_mark_node)
3744 errors = true;
3745
3746 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
3747 finish_expr_stmt (elt_init);
3748 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
3749
3750 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, 0,
3751 complain));
3752 if (base2)
3753 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, 0,
3754 complain));
3755
3756 finish_for_stmt (for_stmt);
3757 }
3758
3759 /* Make sure to cleanup any partially constructed elements. */
3760 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
3761 && from_array != 2)
3762 {
3763 tree e;
3764 tree m = cp_build_binary_op (input_location,
3765 MINUS_EXPR, maxindex, iterator,
3766 complain);
3767
3768 /* Flatten multi-dimensional array since build_vec_delete only
3769 expects one-dimensional array. */
3770 if (TREE_CODE (type) == ARRAY_TYPE)
3771 m = cp_build_binary_op (input_location,
3772 MULT_EXPR, m,
3773 /* Avoid mixing signed and unsigned. */
3774 convert (TREE_TYPE (m),
3775 array_type_nelts_total (type)),
3776 complain);
3777
3778 finish_cleanup_try_block (try_block);
3779 e = build_vec_delete_1 (rval, m,
3780 inner_elt_type, sfk_complete_destructor,
3781 /*use_global_delete=*/0, complain);
3782 if (e == error_mark_node)
3783 errors = true;
3784 finish_cleanup (e, try_block);
3785 }
3786
3787 /* The value of the array initialization is the array itself, RVAL
3788 is a pointer to the first element. */
3789 finish_stmt_expr_expr (rval, stmt_expr);
3790
3791 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
3792
3793 /* Now make the result have the correct type. */
3794 if (TREE_CODE (atype) == ARRAY_TYPE)
3795 {
3796 atype = build_pointer_type (atype);
3797 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
3798 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
3799 TREE_NO_WARNING (stmt_expr) = 1;
3800 }
3801
3802 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
3803
3804 if (const_init)
3805 return build2 (INIT_EXPR, atype, obase, const_init);
3806 if (errors)
3807 return error_mark_node;
3808 return stmt_expr;
3809 }
3810
3811 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
3812 build_delete. */
3813
3814 static tree
3815 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
3816 tsubst_flags_t complain)
3817 {
3818 tree name;
3819 tree fn;
3820 switch (dtor_kind)
3821 {
3822 case sfk_complete_destructor:
3823 name = complete_dtor_identifier;
3824 break;
3825
3826 case sfk_base_destructor:
3827 name = base_dtor_identifier;
3828 break;
3829
3830 case sfk_deleting_destructor:
3831 name = deleting_dtor_identifier;
3832 break;
3833
3834 default:
3835 gcc_unreachable ();
3836 }
3837 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
3838 return build_new_method_call (exp, fn,
3839 /*args=*/NULL,
3840 /*conversion_path=*/NULL_TREE,
3841 flags,
3842 /*fn_p=*/NULL,
3843 complain);
3844 }
3845
3846 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
3847 ADDR is an expression which yields the store to be destroyed.
3848 AUTO_DELETE is the name of the destructor to call, i.e., either
3849 sfk_complete_destructor, sfk_base_destructor, or
3850 sfk_deleting_destructor.
3851
3852 FLAGS is the logical disjunction of zero or more LOOKUP_
3853 flags. See cp-tree.h for more info. */
3854
3855 tree
3856 build_delete (tree otype, tree addr, special_function_kind auto_delete,
3857 int flags, int use_global_delete, tsubst_flags_t complain)
3858 {
3859 tree expr;
3860
3861 if (addr == error_mark_node)
3862 return error_mark_node;
3863
3864 tree type = TYPE_MAIN_VARIANT (otype);
3865
3866 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
3867 set to `error_mark_node' before it gets properly cleaned up. */
3868 if (type == error_mark_node)
3869 return error_mark_node;
3870
3871 if (TREE_CODE (type) == POINTER_TYPE)
3872 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
3873
3874 if (TREE_CODE (type) == ARRAY_TYPE)
3875 {
3876 if (TYPE_DOMAIN (type) == NULL_TREE)
3877 {
3878 if (complain & tf_error)
3879 error ("unknown array size in delete");
3880 return error_mark_node;
3881 }
3882 return build_vec_delete (addr, array_type_nelts (type),
3883 auto_delete, use_global_delete, complain);
3884 }
3885
3886 if (TYPE_PTR_P (otype))
3887 {
3888 bool complete_p = true;
3889
3890 addr = mark_rvalue_use (addr);
3891
3892 /* We don't want to warn about delete of void*, only other
3893 incomplete types. Deleting other incomplete types
3894 invokes undefined behavior, but it is not ill-formed, so
3895 compile to something that would even do The Right Thing
3896 (TM) should the type have a trivial dtor and no delete
3897 operator. */
3898 if (!VOID_TYPE_P (type))
3899 {
3900 complete_type (type);
3901 if (!COMPLETE_TYPE_P (type))
3902 {
3903 if ((complain & tf_warning)
3904 && warning (OPT_Wdelete_incomplete,
3905 "possible problem detected in invocation of "
3906 "delete operator:"))
3907 {
3908 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
3909 inform (input_location,
3910 "neither the destructor nor the class-specific "
3911 "operator delete will be called, even if they are "
3912 "declared when the class is defined");
3913 }
3914 complete_p = false;
3915 }
3916 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
3917 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
3918 && TYPE_POLYMORPHIC_P (type))
3919 {
3920 tree dtor;
3921 dtor = CLASSTYPE_DESTRUCTORS (type);
3922 if (!dtor || !DECL_VINDEX (dtor))
3923 {
3924 if (CLASSTYPE_PURE_VIRTUALS (type))
3925 warning (OPT_Wdelete_non_virtual_dtor,
3926 "deleting object of abstract class type %qT"
3927 " which has non-virtual destructor"
3928 " will cause undefined behaviour", type);
3929 else
3930 warning (OPT_Wdelete_non_virtual_dtor,
3931 "deleting object of polymorphic class type %qT"
3932 " which has non-virtual destructor"
3933 " might cause undefined behaviour", type);
3934 }
3935 }
3936 }
3937 if (VOID_TYPE_P (type) || !complete_p || !MAYBE_CLASS_TYPE_P (type))
3938 /* Call the builtin operator delete. */
3939 return build_builtin_delete_call (addr);
3940 if (TREE_SIDE_EFFECTS (addr))
3941 addr = save_expr (addr);
3942
3943 /* Throw away const and volatile on target type of addr. */
3944 addr = convert_force (build_pointer_type (type), addr, 0, complain);
3945 }
3946 else
3947 {
3948 /* Don't check PROTECT here; leave that decision to the
3949 destructor. If the destructor is accessible, call it,
3950 else report error. */
3951 addr = cp_build_addr_expr (addr, complain);
3952 if (addr == error_mark_node)
3953 return error_mark_node;
3954 if (TREE_SIDE_EFFECTS (addr))
3955 addr = save_expr (addr);
3956
3957 addr = convert_force (build_pointer_type (type), addr, 0, complain);
3958 }
3959
3960 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3961 {
3962 /* Make sure the destructor is callable. */
3963 if (type_build_dtor_call (type))
3964 {
3965 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
3966 complain),
3967 sfk_complete_destructor, flags, complain);
3968 if (expr == error_mark_node)
3969 return error_mark_node;
3970 }
3971
3972 if (auto_delete != sfk_deleting_destructor)
3973 return void_zero_node;
3974
3975 return build_op_delete_call (DELETE_EXPR, addr,
3976 cxx_sizeof_nowarn (type),
3977 use_global_delete,
3978 /*placement=*/NULL_TREE,
3979 /*alloc_fn=*/NULL_TREE,
3980 complain);
3981 }
3982 else
3983 {
3984 tree head = NULL_TREE;
3985 tree do_delete = NULL_TREE;
3986 tree ifexp;
3987
3988 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
3989 lazily_declare_fn (sfk_destructor, type);
3990
3991 /* For `::delete x', we must not use the deleting destructor
3992 since then we would not be sure to get the global `operator
3993 delete'. */
3994 if (use_global_delete && auto_delete == sfk_deleting_destructor)
3995 {
3996 /* We will use ADDR multiple times so we must save it. */
3997 addr = save_expr (addr);
3998 head = get_target_expr (build_headof (addr));
3999 /* Delete the object. */
4000 do_delete = build_builtin_delete_call (head);
4001 /* Otherwise, treat this like a complete object destructor
4002 call. */
4003 auto_delete = sfk_complete_destructor;
4004 }
4005 /* If the destructor is non-virtual, there is no deleting
4006 variant. Instead, we must explicitly call the appropriate
4007 `operator delete' here. */
4008 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTORS (type))
4009 && auto_delete == sfk_deleting_destructor)
4010 {
4011 /* We will use ADDR multiple times so we must save it. */
4012 addr = save_expr (addr);
4013 /* Build the call. */
4014 do_delete = build_op_delete_call (DELETE_EXPR,
4015 addr,
4016 cxx_sizeof_nowarn (type),
4017 /*global_p=*/false,
4018 /*placement=*/NULL_TREE,
4019 /*alloc_fn=*/NULL_TREE,
4020 complain);
4021 /* Call the complete object destructor. */
4022 auto_delete = sfk_complete_destructor;
4023 }
4024 else if (auto_delete == sfk_deleting_destructor
4025 && TYPE_GETS_REG_DELETE (type))
4026 {
4027 /* Make sure we have access to the member op delete, even though
4028 we'll actually be calling it from the destructor. */
4029 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4030 /*global_p=*/false,
4031 /*placement=*/NULL_TREE,
4032 /*alloc_fn=*/NULL_TREE,
4033 complain);
4034 }
4035
4036 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4037 auto_delete, flags, complain);
4038 if (expr == error_mark_node)
4039 return error_mark_node;
4040 if (do_delete)
4041 expr = build2 (COMPOUND_EXPR, void_type_node, expr, do_delete);
4042
4043 /* We need to calculate this before the dtor changes the vptr. */
4044 if (head)
4045 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4046
4047 if (flags & LOOKUP_DESTRUCTOR)
4048 /* Explicit destructor call; don't check for null pointer. */
4049 ifexp = integer_one_node;
4050 else
4051 {
4052 /* Handle deleting a null pointer. */
4053 ifexp = fold (cp_build_binary_op (input_location,
4054 NE_EXPR, addr, nullptr_node,
4055 complain));
4056 if (ifexp == error_mark_node)
4057 return error_mark_node;
4058 }
4059
4060 if (ifexp != integer_one_node)
4061 expr = build3 (COND_EXPR, void_type_node,
4062 ifexp, expr, void_zero_node);
4063
4064 return expr;
4065 }
4066 }
4067
4068 /* At the beginning of a destructor, push cleanups that will call the
4069 destructors for our base classes and members.
4070
4071 Called from begin_destructor_body. */
4072
4073 void
4074 push_base_cleanups (void)
4075 {
4076 tree binfo, base_binfo;
4077 int i;
4078 tree member;
4079 tree expr;
4080 vec<tree, va_gc> *vbases;
4081
4082 /* Run destructors for all virtual baseclasses. */
4083 if (CLASSTYPE_VBASECLASSES (current_class_type))
4084 {
4085 tree cond = (condition_conversion
4086 (build2 (BIT_AND_EXPR, integer_type_node,
4087 current_in_charge_parm,
4088 integer_two_node)));
4089
4090 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4091 order, which is also the right order for pushing cleanups. */
4092 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4093 vec_safe_iterate (vbases, i, &base_binfo); i++)
4094 {
4095 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4096 {
4097 expr = build_special_member_call (current_class_ref,
4098 base_dtor_identifier,
4099 NULL,
4100 base_binfo,
4101 (LOOKUP_NORMAL
4102 | LOOKUP_NONVIRTUAL),
4103 tf_warning_or_error);
4104 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4105 {
4106 expr = build3 (COND_EXPR, void_type_node, cond,
4107 expr, void_zero_node);
4108 finish_decl_cleanup (NULL_TREE, expr);
4109 }
4110 }
4111 }
4112 }
4113
4114 /* Take care of the remaining baseclasses. */
4115 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4116 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4117 {
4118 if (BINFO_VIRTUAL_P (base_binfo)
4119 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4120 continue;
4121
4122 expr = build_special_member_call (current_class_ref,
4123 base_dtor_identifier,
4124 NULL, base_binfo,
4125 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4126 tf_warning_or_error);
4127 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4128 finish_decl_cleanup (NULL_TREE, expr);
4129 }
4130
4131 /* Don't automatically destroy union members. */
4132 if (TREE_CODE (current_class_type) == UNION_TYPE)
4133 return;
4134
4135 for (member = TYPE_FIELDS (current_class_type); member;
4136 member = DECL_CHAIN (member))
4137 {
4138 tree this_type = TREE_TYPE (member);
4139 if (this_type == error_mark_node
4140 || TREE_CODE (member) != FIELD_DECL
4141 || DECL_ARTIFICIAL (member))
4142 continue;
4143 if (ANON_AGGR_TYPE_P (this_type))
4144 continue;
4145 if (type_build_dtor_call (this_type))
4146 {
4147 tree this_member = (build_class_member_access_expr
4148 (current_class_ref, member,
4149 /*access_path=*/NULL_TREE,
4150 /*preserve_reference=*/false,
4151 tf_warning_or_error));
4152 expr = build_delete (this_type, this_member,
4153 sfk_complete_destructor,
4154 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4155 0, tf_warning_or_error);
4156 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4157 finish_decl_cleanup (NULL_TREE, expr);
4158 }
4159 }
4160 }
4161
4162 /* Build a C++ vector delete expression.
4163 MAXINDEX is the number of elements to be deleted.
4164 ELT_SIZE is the nominal size of each element in the vector.
4165 BASE is the expression that should yield the store to be deleted.
4166 This function expands (or synthesizes) these calls itself.
4167 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4168
4169 This also calls delete for virtual baseclasses of elements of the vector.
4170
4171 Update: MAXINDEX is no longer needed. The size can be extracted from the
4172 start of the vector for pointers, and from the type for arrays. We still
4173 use MAXINDEX for arrays because it happens to already have one of the
4174 values we'd have to extract. (We could use MAXINDEX with pointers to
4175 confirm the size, and trap if the numbers differ; not clear that it'd
4176 be worth bothering.) */
4177
4178 tree
4179 build_vec_delete (tree base, tree maxindex,
4180 special_function_kind auto_delete_vec,
4181 int use_global_delete, tsubst_flags_t complain)
4182 {
4183 tree type;
4184 tree rval;
4185 tree base_init = NULL_TREE;
4186
4187 type = TREE_TYPE (base);
4188
4189 if (TYPE_PTR_P (type))
4190 {
4191 /* Step back one from start of vector, and read dimension. */
4192 tree cookie_addr;
4193 tree size_ptr_type = build_pointer_type (sizetype);
4194
4195 base = mark_rvalue_use (base);
4196 if (TREE_SIDE_EFFECTS (base))
4197 {
4198 base_init = get_target_expr (base);
4199 base = TARGET_EXPR_SLOT (base_init);
4200 }
4201 type = strip_array_types (TREE_TYPE (type));
4202 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4203 sizetype, TYPE_SIZE_UNIT (sizetype));
4204 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4205 cookie_addr);
4206 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4207 }
4208 else if (TREE_CODE (type) == ARRAY_TYPE)
4209 {
4210 /* Get the total number of things in the array, maxindex is a
4211 bad name. */
4212 maxindex = array_type_nelts_total (type);
4213 type = strip_array_types (type);
4214 base = decay_conversion (base, complain);
4215 if (base == error_mark_node)
4216 return error_mark_node;
4217 if (TREE_SIDE_EFFECTS (base))
4218 {
4219 base_init = get_target_expr (base);
4220 base = TARGET_EXPR_SLOT (base_init);
4221 }
4222 }
4223 else
4224 {
4225 if (base != error_mark_node && !(complain & tf_error))
4226 error ("type to vector delete is neither pointer or array type");
4227 return error_mark_node;
4228 }
4229
4230 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4231 use_global_delete, complain);
4232 if (base_init && rval != error_mark_node)
4233 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4234
4235 return rval;
4236 }