]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/parser.c
* parser.c (cp_parser_member_declaration): Fix comment typo.
[thirdparty/gcc.git] / gcc / cp / parser.c
1 /* C++ Parser.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Written by Mark Mitchell <mark@codesourcery.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "dyn-string.h"
27 #include "varray.h"
28 #include "cpplib.h"
29 #include "tree.h"
30 #include "cp-tree.h"
31 #include "c-pragma.h"
32 #include "decl.h"
33 #include "flags.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "target.h"
38
39 \f
40 /* The lexer. */
41
42 /* The cp_lexer_* routines mediate between the lexer proper (in libcpp
43 and c-lex.c) and the C++ parser. */
44
45 /* A C++ token. */
46
47 typedef struct cp_token GTY (())
48 {
49 /* The kind of token. */
50 ENUM_BITFIELD (cpp_ttype) type : 8;
51 /* If this token is a keyword, this value indicates which keyword.
52 Otherwise, this value is RID_MAX. */
53 ENUM_BITFIELD (rid) keyword : 8;
54 /* Token flags. */
55 unsigned char flags;
56 /* True if this token is from a system header. */
57 BOOL_BITFIELD in_system_header : 1;
58 /* True if this token is from a context where it is implicitly extern "C" */
59 BOOL_BITFIELD implicit_extern_c : 1;
60 /* The value associated with this token, if any. */
61 tree value;
62 /* The location at which this token was found. */
63 location_t location;
64 } cp_token;
65
66 /* We use a stack of token pointer for saving token sets. */
67 typedef struct cp_token *cp_token_position;
68 DEF_VEC_MALLOC_P (cp_token_position);
69
70 static const cp_token eof_token =
71 {
72 CPP_EOF, RID_MAX, 0, 0, 0, NULL_TREE,
73 #if USE_MAPPED_LOCATION
74 0
75 #else
76 {0, 0}
77 #endif
78 };
79
80 /* The cp_lexer structure represents the C++ lexer. It is responsible
81 for managing the token stream from the preprocessor and supplying
82 it to the parser. Tokens are never added to the cp_lexer after
83 it is created. */
84
85 typedef struct cp_lexer GTY (())
86 {
87 /* The memory allocated for the buffer. NULL if this lexer does not
88 own the token buffer. */
89 cp_token * GTY ((length ("%h.buffer_length"))) buffer;
90 /* If the lexer owns the buffer, this is the number of tokens in the
91 buffer. */
92 size_t buffer_length;
93
94 /* A pointer just past the last available token. The tokens
95 in this lexer are [buffer, last_token). */
96 cp_token_position GTY ((skip)) last_token;
97
98 /* The next available token. If NEXT_TOKEN is &eof_token, then there are
99 no more available tokens. */
100 cp_token_position GTY ((skip)) next_token;
101
102 /* A stack indicating positions at which cp_lexer_save_tokens was
103 called. The top entry is the most recent position at which we
104 began saving tokens. If the stack is non-empty, we are saving
105 tokens. */
106 VEC (cp_token_position) *GTY ((skip)) saved_tokens;
107
108 /* True if we should output debugging information. */
109 bool debugging_p;
110
111 /* The next lexer in a linked list of lexers. */
112 struct cp_lexer *next;
113 } cp_lexer;
114
115 /* cp_token_cache is a range of tokens. There is no need to represent
116 allocate heap memory for it, since tokens are never removed from the
117 lexer's array. There is also no need for the GC to walk through
118 a cp_token_cache, since everything in here is referenced through
119 a lexer. */
120
121 typedef struct cp_token_cache GTY(())
122 {
123 /* The beginning of the token range. */
124 cp_token * GTY((skip)) first;
125
126 /* Points immediately after the last token in the range. */
127 cp_token * GTY ((skip)) last;
128 } cp_token_cache;
129
130 /* Prototypes. */
131
132 static cp_lexer *cp_lexer_new_main
133 (void);
134 static cp_lexer *cp_lexer_new_from_tokens
135 (cp_token_cache *tokens);
136 static void cp_lexer_destroy
137 (cp_lexer *);
138 static int cp_lexer_saving_tokens
139 (const cp_lexer *);
140 static cp_token_position cp_lexer_token_position
141 (cp_lexer *, bool);
142 static cp_token *cp_lexer_token_at
143 (cp_lexer *, cp_token_position);
144 static void cp_lexer_get_preprocessor_token
145 (cp_lexer *, cp_token *);
146 static inline cp_token *cp_lexer_peek_token
147 (cp_lexer *);
148 static cp_token *cp_lexer_peek_nth_token
149 (cp_lexer *, size_t);
150 static inline bool cp_lexer_next_token_is
151 (cp_lexer *, enum cpp_ttype);
152 static bool cp_lexer_next_token_is_not
153 (cp_lexer *, enum cpp_ttype);
154 static bool cp_lexer_next_token_is_keyword
155 (cp_lexer *, enum rid);
156 static cp_token *cp_lexer_consume_token
157 (cp_lexer *);
158 static void cp_lexer_purge_token
159 (cp_lexer *);
160 static void cp_lexer_purge_tokens_after
161 (cp_lexer *, cp_token_position);
162 static void cp_lexer_handle_pragma
163 (cp_lexer *);
164 static void cp_lexer_save_tokens
165 (cp_lexer *);
166 static void cp_lexer_commit_tokens
167 (cp_lexer *);
168 static void cp_lexer_rollback_tokens
169 (cp_lexer *);
170 #ifdef ENABLE_CHECKING
171 static void cp_lexer_print_token
172 (FILE *, cp_token *);
173 static inline bool cp_lexer_debugging_p
174 (cp_lexer *);
175 static void cp_lexer_start_debugging
176 (cp_lexer *) ATTRIBUTE_UNUSED;
177 static void cp_lexer_stop_debugging
178 (cp_lexer *) ATTRIBUTE_UNUSED;
179 #else
180 /* If we define cp_lexer_debug_stream to NULL it will provoke warnings
181 about passing NULL to functions that require non-NULL arguments
182 (fputs, fprintf). It will never be used, so all we need is a value
183 of the right type that's guaranteed not to be NULL. */
184 #define cp_lexer_debug_stream stdout
185 #define cp_lexer_print_token(str, tok) (void) 0
186 #define cp_lexer_debugging_p(lexer) 0
187 #endif /* ENABLE_CHECKING */
188
189 static cp_token_cache *cp_token_cache_new
190 (cp_token *, cp_token *);
191
192 /* Manifest constants. */
193 #define CP_LEXER_BUFFER_SIZE 10000
194 #define CP_SAVED_TOKEN_STACK 5
195
196 /* A token type for keywords, as opposed to ordinary identifiers. */
197 #define CPP_KEYWORD ((enum cpp_ttype) (N_TTYPES + 1))
198
199 /* A token type for template-ids. If a template-id is processed while
200 parsing tentatively, it is replaced with a CPP_TEMPLATE_ID token;
201 the value of the CPP_TEMPLATE_ID is whatever was returned by
202 cp_parser_template_id. */
203 #define CPP_TEMPLATE_ID ((enum cpp_ttype) (CPP_KEYWORD + 1))
204
205 /* A token type for nested-name-specifiers. If a
206 nested-name-specifier is processed while parsing tentatively, it is
207 replaced with a CPP_NESTED_NAME_SPECIFIER token; the value of the
208 CPP_NESTED_NAME_SPECIFIER is whatever was returned by
209 cp_parser_nested_name_specifier_opt. */
210 #define CPP_NESTED_NAME_SPECIFIER ((enum cpp_ttype) (CPP_TEMPLATE_ID + 1))
211
212 /* A token type for tokens that are not tokens at all; these are used
213 to represent slots in the array where there used to be a token
214 that has now been deleted. */
215 #define CPP_PURGED ((enum cpp_ttype) (CPP_NESTED_NAME_SPECIFIER + 1))
216
217 /* The number of token types, including C++-specific ones. */
218 #define N_CP_TTYPES ((int) (CPP_PURGED + 1))
219
220 /* Variables. */
221
222 #ifdef ENABLE_CHECKING
223 /* The stream to which debugging output should be written. */
224 static FILE *cp_lexer_debug_stream;
225 #endif /* ENABLE_CHECKING */
226
227 /* Create a new main C++ lexer, the lexer that gets tokens from the
228 preprocessor. */
229
230 static cp_lexer *
231 cp_lexer_new_main (void)
232 {
233 cp_token first_token;
234 cp_lexer *lexer;
235 cp_token *pos;
236 size_t alloc;
237 size_t space;
238 cp_token *buffer;
239
240 /* Tell cpplib we want CPP_PRAGMA tokens. */
241 cpp_get_options (parse_in)->defer_pragmas = true;
242
243 /* Tell c_lex not to merge string constants. */
244 c_lex_return_raw_strings = true;
245
246 /* It's possible that lexing the first token will load a PCH file,
247 which is a GC collection point. So we have to grab the first
248 token before allocating any memory. */
249 cp_lexer_get_preprocessor_token (NULL, &first_token);
250 c_common_no_more_pch ();
251
252 /* Allocate the memory. */
253 lexer = GGC_CNEW (cp_lexer);
254
255 #ifdef ENABLE_CHECKING
256 /* Initially we are not debugging. */
257 lexer->debugging_p = false;
258 #endif /* ENABLE_CHECKING */
259 lexer->saved_tokens = VEC_alloc (cp_token_position, CP_SAVED_TOKEN_STACK);
260
261 /* Create the buffer. */
262 alloc = CP_LEXER_BUFFER_SIZE;
263 buffer = ggc_alloc (alloc * sizeof (cp_token));
264
265 /* Put the first token in the buffer. */
266 space = alloc;
267 pos = buffer;
268 *pos = first_token;
269
270 /* Get the remaining tokens from the preprocessor. */
271 while (pos->type != CPP_EOF)
272 {
273 pos++;
274 if (!--space)
275 {
276 space = alloc;
277 alloc *= 2;
278 buffer = ggc_realloc (buffer, alloc * sizeof (cp_token));
279 pos = buffer + space;
280 }
281 cp_lexer_get_preprocessor_token (lexer, pos);
282 }
283 lexer->buffer = buffer;
284 lexer->buffer_length = alloc - space;
285 lexer->last_token = pos;
286 lexer->next_token = lexer->buffer_length ? buffer : (cp_token *)&eof_token;
287
288 /* Pragma processing (via cpp_handle_deferred_pragma) may result in
289 direct calls to c_lex. Those callers all expect c_lex to do
290 string constant concatenation. */
291 c_lex_return_raw_strings = false;
292
293 gcc_assert (lexer->next_token->type != CPP_PURGED);
294 return lexer;
295 }
296
297 /* Create a new lexer whose token stream is primed with the tokens in
298 CACHE. When these tokens are exhausted, no new tokens will be read. */
299
300 static cp_lexer *
301 cp_lexer_new_from_tokens (cp_token_cache *cache)
302 {
303 cp_token *first = cache->first;
304 cp_token *last = cache->last;
305 cp_lexer *lexer = GGC_CNEW (cp_lexer);
306
307 /* We do not own the buffer. */
308 lexer->buffer = NULL;
309 lexer->buffer_length = 0;
310 lexer->next_token = first == last ? (cp_token *)&eof_token : first;
311 lexer->last_token = last;
312
313 lexer->saved_tokens = VEC_alloc (cp_token_position, CP_SAVED_TOKEN_STACK);
314
315 #ifdef ENABLE_CHECKING
316 /* Initially we are not debugging. */
317 lexer->debugging_p = false;
318 #endif
319
320 gcc_assert (lexer->next_token->type != CPP_PURGED);
321 return lexer;
322 }
323
324 /* Frees all resources associated with LEXER. */
325
326 static void
327 cp_lexer_destroy (cp_lexer *lexer)
328 {
329 if (lexer->buffer)
330 ggc_free (lexer->buffer);
331 VEC_free (cp_token_position, lexer->saved_tokens);
332 ggc_free (lexer);
333 }
334
335 /* Returns nonzero if debugging information should be output. */
336
337 #ifdef ENABLE_CHECKING
338
339 static inline bool
340 cp_lexer_debugging_p (cp_lexer *lexer)
341 {
342 return lexer->debugging_p;
343 }
344
345 #endif /* ENABLE_CHECKING */
346
347 static inline cp_token_position
348 cp_lexer_token_position (cp_lexer *lexer, bool previous_p)
349 {
350 gcc_assert (!previous_p || lexer->next_token != &eof_token);
351
352 return lexer->next_token - previous_p;
353 }
354
355 static inline cp_token *
356 cp_lexer_token_at (cp_lexer *lexer ATTRIBUTE_UNUSED, cp_token_position pos)
357 {
358 return pos;
359 }
360
361 /* nonzero if we are presently saving tokens. */
362
363 static inline int
364 cp_lexer_saving_tokens (const cp_lexer* lexer)
365 {
366 return VEC_length (cp_token_position, lexer->saved_tokens) != 0;
367 }
368
369 /* Store the next token from the preprocessor in *TOKEN. Return true
370 if we reach EOF. */
371
372 static void
373 cp_lexer_get_preprocessor_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
374 cp_token *token)
375 {
376 static int is_extern_c = 0;
377
378 /* Get a new token from the preprocessor. */
379 token->type = c_lex_with_flags (&token->value, &token->flags);
380 token->location = input_location;
381 token->in_system_header = in_system_header;
382
383 /* On some systems, some header files are surrounded by an
384 implicit extern "C" block. Set a flag in the token if it
385 comes from such a header. */
386 is_extern_c += pending_lang_change;
387 pending_lang_change = 0;
388 token->implicit_extern_c = is_extern_c > 0;
389
390 /* Check to see if this token is a keyword. */
391 if (token->type == CPP_NAME
392 && C_IS_RESERVED_WORD (token->value))
393 {
394 /* Mark this token as a keyword. */
395 token->type = CPP_KEYWORD;
396 /* Record which keyword. */
397 token->keyword = C_RID_CODE (token->value);
398 /* Update the value. Some keywords are mapped to particular
399 entities, rather than simply having the value of the
400 corresponding IDENTIFIER_NODE. For example, `__const' is
401 mapped to `const'. */
402 token->value = ridpointers[token->keyword];
403 }
404 else
405 token->keyword = RID_MAX;
406 }
407
408 /* Update the globals input_location and in_system_header from TOKEN. */
409 static inline void
410 cp_lexer_set_source_position_from_token (cp_token *token)
411 {
412 if (token->type != CPP_EOF)
413 {
414 input_location = token->location;
415 in_system_header = token->in_system_header;
416 }
417 }
418
419 /* Return a pointer to the next token in the token stream, but do not
420 consume it. */
421
422 static inline cp_token *
423 cp_lexer_peek_token (cp_lexer *lexer)
424 {
425 if (cp_lexer_debugging_p (lexer))
426 {
427 fputs ("cp_lexer: peeking at token: ", cp_lexer_debug_stream);
428 cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
429 putc ('\n', cp_lexer_debug_stream);
430 }
431 return lexer->next_token;
432 }
433
434 /* Return true if the next token has the indicated TYPE. */
435
436 static inline bool
437 cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
438 {
439 return cp_lexer_peek_token (lexer)->type == type;
440 }
441
442 /* Return true if the next token does not have the indicated TYPE. */
443
444 static inline bool
445 cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
446 {
447 return !cp_lexer_next_token_is (lexer, type);
448 }
449
450 /* Return true if the next token is the indicated KEYWORD. */
451
452 static inline bool
453 cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
454 {
455 cp_token *token;
456
457 /* Peek at the next token. */
458 token = cp_lexer_peek_token (lexer);
459 /* Check to see if it is the indicated keyword. */
460 return token->keyword == keyword;
461 }
462
463 /* Return a pointer to the Nth token in the token stream. If N is 1,
464 then this is precisely equivalent to cp_lexer_peek_token (except
465 that it is not inline). One would like to disallow that case, but
466 there is one case (cp_parser_nth_token_starts_template_id) where
467 the caller passes a variable for N and it might be 1. */
468
469 static cp_token *
470 cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
471 {
472 cp_token *token;
473
474 /* N is 1-based, not zero-based. */
475 gcc_assert (n > 0 && lexer->next_token != &eof_token);
476
477 if (cp_lexer_debugging_p (lexer))
478 fprintf (cp_lexer_debug_stream,
479 "cp_lexer: peeking ahead %ld at token: ", (long)n);
480
481 --n;
482 token = lexer->next_token;
483 while (n != 0)
484 {
485 ++token;
486 if (token == lexer->last_token)
487 {
488 token = (cp_token *)&eof_token;
489 break;
490 }
491
492 if (token->type != CPP_PURGED)
493 --n;
494 }
495
496 if (cp_lexer_debugging_p (lexer))
497 {
498 cp_lexer_print_token (cp_lexer_debug_stream, token);
499 putc ('\n', cp_lexer_debug_stream);
500 }
501
502 return token;
503 }
504
505 /* Return the next token, and advance the lexer's next_token pointer
506 to point to the next non-purged token. */
507
508 static cp_token *
509 cp_lexer_consume_token (cp_lexer* lexer)
510 {
511 cp_token *token = lexer->next_token;
512
513 gcc_assert (token != &eof_token);
514
515 do
516 {
517 lexer->next_token++;
518 if (lexer->next_token == lexer->last_token)
519 {
520 lexer->next_token = (cp_token *)&eof_token;
521 break;
522 }
523
524 }
525 while (lexer->next_token->type == CPP_PURGED);
526
527 cp_lexer_set_source_position_from_token (token);
528
529 /* Provide debugging output. */
530 if (cp_lexer_debugging_p (lexer))
531 {
532 fputs ("cp_lexer: consuming token: ", cp_lexer_debug_stream);
533 cp_lexer_print_token (cp_lexer_debug_stream, token);
534 putc ('\n', cp_lexer_debug_stream);
535 }
536
537 return token;
538 }
539
540 /* Permanently remove the next token from the token stream, and
541 advance the next_token pointer to refer to the next non-purged
542 token. */
543
544 static void
545 cp_lexer_purge_token (cp_lexer *lexer)
546 {
547 cp_token *tok = lexer->next_token;
548
549 gcc_assert (tok != &eof_token);
550 tok->type = CPP_PURGED;
551 tok->location = UNKNOWN_LOCATION;
552 tok->value = NULL_TREE;
553 tok->keyword = RID_MAX;
554
555 do
556 {
557 tok++;
558 if (tok == lexer->last_token)
559 {
560 tok = (cp_token *)&eof_token;
561 break;
562 }
563 }
564 while (tok->type == CPP_PURGED);
565 lexer->next_token = tok;
566 }
567
568 /* Permanently remove all tokens after TOK, up to, but not
569 including, the token that will be returned next by
570 cp_lexer_peek_token. */
571
572 static void
573 cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *tok)
574 {
575 cp_token *peek = lexer->next_token;
576
577 if (peek == &eof_token)
578 peek = lexer->last_token;
579
580 gcc_assert (tok < peek);
581
582 for ( tok += 1; tok != peek; tok += 1)
583 {
584 tok->type = CPP_PURGED;
585 tok->location = UNKNOWN_LOCATION;
586 tok->value = NULL_TREE;
587 tok->keyword = RID_MAX;
588 }
589 }
590
591 /* Consume and handle a pragma token. */
592 static void
593 cp_lexer_handle_pragma (cp_lexer *lexer)
594 {
595 cpp_string s;
596 cp_token *token = cp_lexer_consume_token (lexer);
597 gcc_assert (token->type == CPP_PRAGMA);
598 gcc_assert (token->value);
599
600 s.len = TREE_STRING_LENGTH (token->value);
601 s.text = (const unsigned char *) TREE_STRING_POINTER (token->value);
602
603 cpp_handle_deferred_pragma (parse_in, &s);
604
605 /* Clearing token->value here means that we will get an ICE if we
606 try to process this #pragma again (which should be impossible). */
607 token->value = NULL;
608 }
609
610 /* Begin saving tokens. All tokens consumed after this point will be
611 preserved. */
612
613 static void
614 cp_lexer_save_tokens (cp_lexer* lexer)
615 {
616 /* Provide debugging output. */
617 if (cp_lexer_debugging_p (lexer))
618 fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
619
620 VEC_safe_push (cp_token_position, lexer->saved_tokens, lexer->next_token);
621 }
622
623 /* Commit to the portion of the token stream most recently saved. */
624
625 static void
626 cp_lexer_commit_tokens (cp_lexer* lexer)
627 {
628 /* Provide debugging output. */
629 if (cp_lexer_debugging_p (lexer))
630 fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
631
632 VEC_pop (cp_token_position, lexer->saved_tokens);
633 }
634
635 /* Return all tokens saved since the last call to cp_lexer_save_tokens
636 to the token stream. Stop saving tokens. */
637
638 static void
639 cp_lexer_rollback_tokens (cp_lexer* lexer)
640 {
641 /* Provide debugging output. */
642 if (cp_lexer_debugging_p (lexer))
643 fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
644
645 lexer->next_token = VEC_pop (cp_token_position, lexer->saved_tokens);
646 }
647
648 /* Print a representation of the TOKEN on the STREAM. */
649
650 #ifdef ENABLE_CHECKING
651
652 static void
653 cp_lexer_print_token (FILE * stream, cp_token *token)
654 {
655 /* We don't use cpp_type2name here because the parser defines
656 a few tokens of its own. */
657 static const char *const token_names[] = {
658 /* cpplib-defined token types */
659 #define OP(e, s) #e,
660 #define TK(e, s) #e,
661 TTYPE_TABLE
662 #undef OP
663 #undef TK
664 /* C++ parser token types - see "Manifest constants", above. */
665 "KEYWORD",
666 "TEMPLATE_ID",
667 "NESTED_NAME_SPECIFIER",
668 "PURGED"
669 };
670
671 /* If we have a name for the token, print it out. Otherwise, we
672 simply give the numeric code. */
673 gcc_assert (token->type < ARRAY_SIZE(token_names));
674 fputs (token_names[token->type], stream);
675
676 /* For some tokens, print the associated data. */
677 switch (token->type)
678 {
679 case CPP_KEYWORD:
680 /* Some keywords have a value that is not an IDENTIFIER_NODE.
681 For example, `struct' is mapped to an INTEGER_CST. */
682 if (TREE_CODE (token->value) != IDENTIFIER_NODE)
683 break;
684 /* else fall through */
685 case CPP_NAME:
686 fputs (IDENTIFIER_POINTER (token->value), stream);
687 break;
688
689 case CPP_STRING:
690 case CPP_WSTRING:
691 case CPP_PRAGMA:
692 fprintf (stream, " \"%s\"", TREE_STRING_POINTER (token->value));
693 break;
694
695 default:
696 break;
697 }
698 }
699
700 /* Start emitting debugging information. */
701
702 static void
703 cp_lexer_start_debugging (cp_lexer* lexer)
704 {
705 ++lexer->debugging_p;
706 }
707
708 /* Stop emitting debugging information. */
709
710 static void
711 cp_lexer_stop_debugging (cp_lexer* lexer)
712 {
713 --lexer->debugging_p;
714 }
715
716 #endif /* ENABLE_CHECKING */
717
718 /* Create a new cp_token_cache, representing a range of tokens. */
719
720 static cp_token_cache *
721 cp_token_cache_new (cp_token *first, cp_token *last)
722 {
723 cp_token_cache *cache = GGC_NEW (cp_token_cache);
724 cache->first = first;
725 cache->last = last;
726 return cache;
727 }
728
729 \f
730 /* Decl-specifiers. */
731
732 static void clear_decl_specs
733 (cp_decl_specifier_seq *);
734
735 /* Set *DECL_SPECS to represent an empty decl-specifier-seq. */
736
737 static void
738 clear_decl_specs (cp_decl_specifier_seq *decl_specs)
739 {
740 memset (decl_specs, 0, sizeof (cp_decl_specifier_seq));
741 }
742
743 /* Declarators. */
744
745 /* Nothing other than the parser should be creating declarators;
746 declarators are a semi-syntactic representation of C++ entities.
747 Other parts of the front end that need to create entities (like
748 VAR_DECLs or FUNCTION_DECLs) should do that directly. */
749
750 static cp_declarator *make_id_declarator
751 (tree);
752 static cp_declarator *make_call_declarator
753 (cp_declarator *, cp_parameter_declarator *, cp_cv_quals, tree);
754 static cp_declarator *make_array_declarator
755 (cp_declarator *, tree);
756 static cp_declarator *make_pointer_declarator
757 (cp_cv_quals, cp_declarator *);
758 static cp_declarator *make_reference_declarator
759 (cp_cv_quals, cp_declarator *);
760 static cp_parameter_declarator *make_parameter_declarator
761 (cp_decl_specifier_seq *, cp_declarator *, tree);
762 static cp_declarator *make_ptrmem_declarator
763 (cp_cv_quals, tree, cp_declarator *);
764
765 cp_declarator *cp_error_declarator;
766
767 /* The obstack on which declarators and related data structures are
768 allocated. */
769 static struct obstack declarator_obstack;
770
771 /* Alloc BYTES from the declarator memory pool. */
772
773 static inline void *
774 alloc_declarator (size_t bytes)
775 {
776 return obstack_alloc (&declarator_obstack, bytes);
777 }
778
779 /* Allocate a declarator of the indicated KIND. Clear fields that are
780 common to all declarators. */
781
782 static cp_declarator *
783 make_declarator (cp_declarator_kind kind)
784 {
785 cp_declarator *declarator;
786
787 declarator = (cp_declarator *) alloc_declarator (sizeof (cp_declarator));
788 declarator->kind = kind;
789 declarator->attributes = NULL_TREE;
790 declarator->declarator = NULL;
791
792 return declarator;
793 }
794
795 /* Make a declarator for a generalized identifier. */
796
797 cp_declarator *
798 make_id_declarator (tree id)
799 {
800 cp_declarator *declarator;
801
802 declarator = make_declarator (cdk_id);
803 declarator->u.id.name = id;
804 declarator->u.id.sfk = sfk_none;
805
806 return declarator;
807 }
808
809 /* Make a declarator for a pointer to TARGET. CV_QUALIFIERS is a list
810 of modifiers such as const or volatile to apply to the pointer
811 type, represented as identifiers. */
812
813 cp_declarator *
814 make_pointer_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
815 {
816 cp_declarator *declarator;
817
818 declarator = make_declarator (cdk_pointer);
819 declarator->declarator = target;
820 declarator->u.pointer.qualifiers = cv_qualifiers;
821 declarator->u.pointer.class_type = NULL_TREE;
822
823 return declarator;
824 }
825
826 /* Like make_pointer_declarator -- but for references. */
827
828 cp_declarator *
829 make_reference_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
830 {
831 cp_declarator *declarator;
832
833 declarator = make_declarator (cdk_reference);
834 declarator->declarator = target;
835 declarator->u.pointer.qualifiers = cv_qualifiers;
836 declarator->u.pointer.class_type = NULL_TREE;
837
838 return declarator;
839 }
840
841 /* Like make_pointer_declarator -- but for a pointer to a non-static
842 member of CLASS_TYPE. */
843
844 cp_declarator *
845 make_ptrmem_declarator (cp_cv_quals cv_qualifiers, tree class_type,
846 cp_declarator *pointee)
847 {
848 cp_declarator *declarator;
849
850 declarator = make_declarator (cdk_ptrmem);
851 declarator->declarator = pointee;
852 declarator->u.pointer.qualifiers = cv_qualifiers;
853 declarator->u.pointer.class_type = class_type;
854
855 return declarator;
856 }
857
858 /* Make a declarator for the function given by TARGET, with the
859 indicated PARMS. The CV_QUALIFIERS aply to the function, as in
860 "const"-qualified member function. The EXCEPTION_SPECIFICATION
861 indicates what exceptions can be thrown. */
862
863 cp_declarator *
864 make_call_declarator (cp_declarator *target,
865 cp_parameter_declarator *parms,
866 cp_cv_quals cv_qualifiers,
867 tree exception_specification)
868 {
869 cp_declarator *declarator;
870
871 declarator = make_declarator (cdk_function);
872 declarator->declarator = target;
873 declarator->u.function.parameters = parms;
874 declarator->u.function.qualifiers = cv_qualifiers;
875 declarator->u.function.exception_specification = exception_specification;
876
877 return declarator;
878 }
879
880 /* Make a declarator for an array of BOUNDS elements, each of which is
881 defined by ELEMENT. */
882
883 cp_declarator *
884 make_array_declarator (cp_declarator *element, tree bounds)
885 {
886 cp_declarator *declarator;
887
888 declarator = make_declarator (cdk_array);
889 declarator->declarator = element;
890 declarator->u.array.bounds = bounds;
891
892 return declarator;
893 }
894
895 cp_parameter_declarator *no_parameters;
896
897 /* Create a parameter declarator with the indicated DECL_SPECIFIERS,
898 DECLARATOR and DEFAULT_ARGUMENT. */
899
900 cp_parameter_declarator *
901 make_parameter_declarator (cp_decl_specifier_seq *decl_specifiers,
902 cp_declarator *declarator,
903 tree default_argument)
904 {
905 cp_parameter_declarator *parameter;
906
907 parameter = ((cp_parameter_declarator *)
908 alloc_declarator (sizeof (cp_parameter_declarator)));
909 parameter->next = NULL;
910 if (decl_specifiers)
911 parameter->decl_specifiers = *decl_specifiers;
912 else
913 clear_decl_specs (&parameter->decl_specifiers);
914 parameter->declarator = declarator;
915 parameter->default_argument = default_argument;
916 parameter->ellipsis_p = false;
917
918 return parameter;
919 }
920
921 /* The parser. */
922
923 /* Overview
924 --------
925
926 A cp_parser parses the token stream as specified by the C++
927 grammar. Its job is purely parsing, not semantic analysis. For
928 example, the parser breaks the token stream into declarators,
929 expressions, statements, and other similar syntactic constructs.
930 It does not check that the types of the expressions on either side
931 of an assignment-statement are compatible, or that a function is
932 not declared with a parameter of type `void'.
933
934 The parser invokes routines elsewhere in the compiler to perform
935 semantic analysis and to build up the abstract syntax tree for the
936 code processed.
937
938 The parser (and the template instantiation code, which is, in a
939 way, a close relative of parsing) are the only parts of the
940 compiler that should be calling push_scope and pop_scope, or
941 related functions. The parser (and template instantiation code)
942 keeps track of what scope is presently active; everything else
943 should simply honor that. (The code that generates static
944 initializers may also need to set the scope, in order to check
945 access control correctly when emitting the initializers.)
946
947 Methodology
948 -----------
949
950 The parser is of the standard recursive-descent variety. Upcoming
951 tokens in the token stream are examined in order to determine which
952 production to use when parsing a non-terminal. Some C++ constructs
953 require arbitrary look ahead to disambiguate. For example, it is
954 impossible, in the general case, to tell whether a statement is an
955 expression or declaration without scanning the entire statement.
956 Therefore, the parser is capable of "parsing tentatively." When the
957 parser is not sure what construct comes next, it enters this mode.
958 Then, while we attempt to parse the construct, the parser queues up
959 error messages, rather than issuing them immediately, and saves the
960 tokens it consumes. If the construct is parsed successfully, the
961 parser "commits", i.e., it issues any queued error messages and
962 the tokens that were being preserved are permanently discarded.
963 If, however, the construct is not parsed successfully, the parser
964 rolls back its state completely so that it can resume parsing using
965 a different alternative.
966
967 Future Improvements
968 -------------------
969
970 The performance of the parser could probably be improved substantially.
971 We could often eliminate the need to parse tentatively by looking ahead
972 a little bit. In some places, this approach might not entirely eliminate
973 the need to parse tentatively, but it might still speed up the average
974 case. */
975
976 /* Flags that are passed to some parsing functions. These values can
977 be bitwise-ored together. */
978
979 typedef enum cp_parser_flags
980 {
981 /* No flags. */
982 CP_PARSER_FLAGS_NONE = 0x0,
983 /* The construct is optional. If it is not present, then no error
984 should be issued. */
985 CP_PARSER_FLAGS_OPTIONAL = 0x1,
986 /* When parsing a type-specifier, do not allow user-defined types. */
987 CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2
988 } cp_parser_flags;
989
990 /* The different kinds of declarators we want to parse. */
991
992 typedef enum cp_parser_declarator_kind
993 {
994 /* We want an abstract declarator. */
995 CP_PARSER_DECLARATOR_ABSTRACT,
996 /* We want a named declarator. */
997 CP_PARSER_DECLARATOR_NAMED,
998 /* We don't mind, but the name must be an unqualified-id. */
999 CP_PARSER_DECLARATOR_EITHER
1000 } cp_parser_declarator_kind;
1001
1002 /* The precedence values used to parse binary expressions. The minimum value
1003 of PREC must be 1, because zero is reserved to quickly discriminate
1004 binary operators from other tokens. */
1005
1006 enum cp_parser_prec
1007 {
1008 PREC_NOT_OPERATOR,
1009 PREC_LOGICAL_OR_EXPRESSION,
1010 PREC_LOGICAL_AND_EXPRESSION,
1011 PREC_INCLUSIVE_OR_EXPRESSION,
1012 PREC_EXCLUSIVE_OR_EXPRESSION,
1013 PREC_AND_EXPRESSION,
1014 PREC_EQUALITY_EXPRESSION,
1015 PREC_RELATIONAL_EXPRESSION,
1016 PREC_SHIFT_EXPRESSION,
1017 PREC_ADDITIVE_EXPRESSION,
1018 PREC_MULTIPLICATIVE_EXPRESSION,
1019 PREC_PM_EXPRESSION,
1020 NUM_PREC_VALUES = PREC_PM_EXPRESSION
1021 };
1022
1023 /* A mapping from a token type to a corresponding tree node type, with a
1024 precedence value. */
1025
1026 typedef struct cp_parser_binary_operations_map_node
1027 {
1028 /* The token type. */
1029 enum cpp_ttype token_type;
1030 /* The corresponding tree code. */
1031 enum tree_code tree_type;
1032 /* The precedence of this operator. */
1033 enum cp_parser_prec prec;
1034 } cp_parser_binary_operations_map_node;
1035
1036 /* The status of a tentative parse. */
1037
1038 typedef enum cp_parser_status_kind
1039 {
1040 /* No errors have occurred. */
1041 CP_PARSER_STATUS_KIND_NO_ERROR,
1042 /* An error has occurred. */
1043 CP_PARSER_STATUS_KIND_ERROR,
1044 /* We are committed to this tentative parse, whether or not an error
1045 has occurred. */
1046 CP_PARSER_STATUS_KIND_COMMITTED
1047 } cp_parser_status_kind;
1048
1049 typedef struct cp_parser_expression_stack_entry
1050 {
1051 tree lhs;
1052 enum tree_code tree_type;
1053 int prec;
1054 } cp_parser_expression_stack_entry;
1055
1056 /* The stack for storing partial expressions. We only need NUM_PREC_VALUES
1057 entries because precedence levels on the stack are monotonically
1058 increasing. */
1059 typedef struct cp_parser_expression_stack_entry
1060 cp_parser_expression_stack[NUM_PREC_VALUES];
1061
1062 /* Context that is saved and restored when parsing tentatively. */
1063 typedef struct cp_parser_context GTY (())
1064 {
1065 /* If this is a tentative parsing context, the status of the
1066 tentative parse. */
1067 enum cp_parser_status_kind status;
1068 /* If non-NULL, we have just seen a `x->' or `x.' expression. Names
1069 that are looked up in this context must be looked up both in the
1070 scope given by OBJECT_TYPE (the type of `x' or `*x') and also in
1071 the context of the containing expression. */
1072 tree object_type;
1073
1074 /* The next parsing context in the stack. */
1075 struct cp_parser_context *next;
1076 } cp_parser_context;
1077
1078 /* Prototypes. */
1079
1080 /* Constructors and destructors. */
1081
1082 static cp_parser_context *cp_parser_context_new
1083 (cp_parser_context *);
1084
1085 /* Class variables. */
1086
1087 static GTY((deletable)) cp_parser_context* cp_parser_context_free_list;
1088
1089 /* The operator-precedence table used by cp_parser_binary_expression.
1090 Transformed into an associative array (binops_by_token) by
1091 cp_parser_new. */
1092
1093 static const cp_parser_binary_operations_map_node binops[] = {
1094 { CPP_DEREF_STAR, MEMBER_REF, PREC_PM_EXPRESSION },
1095 { CPP_DOT_STAR, DOTSTAR_EXPR, PREC_PM_EXPRESSION },
1096
1097 { CPP_MULT, MULT_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1098 { CPP_DIV, TRUNC_DIV_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1099 { CPP_MOD, TRUNC_MOD_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1100
1101 { CPP_PLUS, PLUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1102 { CPP_MINUS, MINUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1103
1104 { CPP_LSHIFT, LSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1105 { CPP_RSHIFT, RSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1106
1107 { CPP_LESS, LT_EXPR, PREC_RELATIONAL_EXPRESSION },
1108 { CPP_GREATER, GT_EXPR, PREC_RELATIONAL_EXPRESSION },
1109 { CPP_LESS_EQ, LE_EXPR, PREC_RELATIONAL_EXPRESSION },
1110 { CPP_GREATER_EQ, GE_EXPR, PREC_RELATIONAL_EXPRESSION },
1111 { CPP_MIN, MIN_EXPR, PREC_RELATIONAL_EXPRESSION },
1112 { CPP_MAX, MAX_EXPR, PREC_RELATIONAL_EXPRESSION },
1113
1114 { CPP_EQ_EQ, EQ_EXPR, PREC_EQUALITY_EXPRESSION },
1115 { CPP_NOT_EQ, NE_EXPR, PREC_EQUALITY_EXPRESSION },
1116
1117 { CPP_AND, BIT_AND_EXPR, PREC_AND_EXPRESSION },
1118
1119 { CPP_XOR, BIT_XOR_EXPR, PREC_EXCLUSIVE_OR_EXPRESSION },
1120
1121 { CPP_OR, BIT_IOR_EXPR, PREC_INCLUSIVE_OR_EXPRESSION },
1122
1123 { CPP_AND_AND, TRUTH_ANDIF_EXPR, PREC_LOGICAL_AND_EXPRESSION },
1124
1125 { CPP_OR_OR, TRUTH_ORIF_EXPR, PREC_LOGICAL_OR_EXPRESSION }
1126 };
1127
1128 /* The same as binops, but initialized by cp_parser_new so that
1129 binops_by_token[N].token_type == N. Used in cp_parser_binary_expression
1130 for speed. */
1131 static cp_parser_binary_operations_map_node binops_by_token[N_CP_TTYPES];
1132
1133 /* Constructors and destructors. */
1134
1135 /* Construct a new context. The context below this one on the stack
1136 is given by NEXT. */
1137
1138 static cp_parser_context *
1139 cp_parser_context_new (cp_parser_context* next)
1140 {
1141 cp_parser_context *context;
1142
1143 /* Allocate the storage. */
1144 if (cp_parser_context_free_list != NULL)
1145 {
1146 /* Pull the first entry from the free list. */
1147 context = cp_parser_context_free_list;
1148 cp_parser_context_free_list = context->next;
1149 memset (context, 0, sizeof (*context));
1150 }
1151 else
1152 context = GGC_CNEW (cp_parser_context);
1153
1154 /* No errors have occurred yet in this context. */
1155 context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
1156 /* If this is not the bottomost context, copy information that we
1157 need from the previous context. */
1158 if (next)
1159 {
1160 /* If, in the NEXT context, we are parsing an `x->' or `x.'
1161 expression, then we are parsing one in this context, too. */
1162 context->object_type = next->object_type;
1163 /* Thread the stack. */
1164 context->next = next;
1165 }
1166
1167 return context;
1168 }
1169
1170 /* The cp_parser structure represents the C++ parser. */
1171
1172 typedef struct cp_parser GTY(())
1173 {
1174 /* The lexer from which we are obtaining tokens. */
1175 cp_lexer *lexer;
1176
1177 /* The scope in which names should be looked up. If NULL_TREE, then
1178 we look up names in the scope that is currently open in the
1179 source program. If non-NULL, this is either a TYPE or
1180 NAMESPACE_DECL for the scope in which we should look.
1181
1182 This value is not cleared automatically after a name is looked
1183 up, so we must be careful to clear it before starting a new look
1184 up sequence. (If it is not cleared, then `X::Y' followed by `Z'
1185 will look up `Z' in the scope of `X', rather than the current
1186 scope.) Unfortunately, it is difficult to tell when name lookup
1187 is complete, because we sometimes peek at a token, look it up,
1188 and then decide not to consume it. */
1189 tree scope;
1190
1191 /* OBJECT_SCOPE and QUALIFYING_SCOPE give the scopes in which the
1192 last lookup took place. OBJECT_SCOPE is used if an expression
1193 like "x->y" or "x.y" was used; it gives the type of "*x" or "x",
1194 respectively. QUALIFYING_SCOPE is used for an expression of the
1195 form "X::Y"; it refers to X. */
1196 tree object_scope;
1197 tree qualifying_scope;
1198
1199 /* A stack of parsing contexts. All but the bottom entry on the
1200 stack will be tentative contexts.
1201
1202 We parse tentatively in order to determine which construct is in
1203 use in some situations. For example, in order to determine
1204 whether a statement is an expression-statement or a
1205 declaration-statement we parse it tentatively as a
1206 declaration-statement. If that fails, we then reparse the same
1207 token stream as an expression-statement. */
1208 cp_parser_context *context;
1209
1210 /* True if we are parsing GNU C++. If this flag is not set, then
1211 GNU extensions are not recognized. */
1212 bool allow_gnu_extensions_p;
1213
1214 /* TRUE if the `>' token should be interpreted as the greater-than
1215 operator. FALSE if it is the end of a template-id or
1216 template-parameter-list. */
1217 bool greater_than_is_operator_p;
1218
1219 /* TRUE if default arguments are allowed within a parameter list
1220 that starts at this point. FALSE if only a gnu extension makes
1221 them permissible. */
1222 bool default_arg_ok_p;
1223
1224 /* TRUE if we are parsing an integral constant-expression. See
1225 [expr.const] for a precise definition. */
1226 bool integral_constant_expression_p;
1227
1228 /* TRUE if we are parsing an integral constant-expression -- but a
1229 non-constant expression should be permitted as well. This flag
1230 is used when parsing an array bound so that GNU variable-length
1231 arrays are tolerated. */
1232 bool allow_non_integral_constant_expression_p;
1233
1234 /* TRUE if ALLOW_NON_CONSTANT_EXPRESSION_P is TRUE and something has
1235 been seen that makes the expression non-constant. */
1236 bool non_integral_constant_expression_p;
1237
1238 /* TRUE if local variable names and `this' are forbidden in the
1239 current context. */
1240 bool local_variables_forbidden_p;
1241
1242 /* TRUE if the declaration we are parsing is part of a
1243 linkage-specification of the form `extern string-literal
1244 declaration'. */
1245 bool in_unbraced_linkage_specification_p;
1246
1247 /* TRUE if we are presently parsing a declarator, after the
1248 direct-declarator. */
1249 bool in_declarator_p;
1250
1251 /* TRUE if we are presently parsing a template-argument-list. */
1252 bool in_template_argument_list_p;
1253
1254 /* TRUE if we are presently parsing the body of an
1255 iteration-statement. */
1256 bool in_iteration_statement_p;
1257
1258 /* TRUE if we are presently parsing the body of a switch
1259 statement. */
1260 bool in_switch_statement_p;
1261
1262 /* TRUE if we are parsing a type-id in an expression context. In
1263 such a situation, both "type (expr)" and "type (type)" are valid
1264 alternatives. */
1265 bool in_type_id_in_expr_p;
1266
1267 /* TRUE if we are currently in a header file where declarations are
1268 implicitly extern "C". */
1269 bool implicit_extern_c;
1270
1271 /* TRUE if strings in expressions should be translated to the execution
1272 character set. */
1273 bool translate_strings_p;
1274
1275 /* If non-NULL, then we are parsing a construct where new type
1276 definitions are not permitted. The string stored here will be
1277 issued as an error message if a type is defined. */
1278 const char *type_definition_forbidden_message;
1279
1280 /* A list of lists. The outer list is a stack, used for member
1281 functions of local classes. At each level there are two sub-list,
1282 one on TREE_VALUE and one on TREE_PURPOSE. Each of those
1283 sub-lists has a FUNCTION_DECL or TEMPLATE_DECL on their
1284 TREE_VALUE's. The functions are chained in reverse declaration
1285 order.
1286
1287 The TREE_PURPOSE sublist contains those functions with default
1288 arguments that need post processing, and the TREE_VALUE sublist
1289 contains those functions with definitions that need post
1290 processing.
1291
1292 These lists can only be processed once the outermost class being
1293 defined is complete. */
1294 tree unparsed_functions_queues;
1295
1296 /* The number of classes whose definitions are currently in
1297 progress. */
1298 unsigned num_classes_being_defined;
1299
1300 /* The number of template parameter lists that apply directly to the
1301 current declaration. */
1302 unsigned num_template_parameter_lists;
1303 } cp_parser;
1304
1305 /* The type of a function that parses some kind of expression. */
1306 typedef tree (*cp_parser_expression_fn) (cp_parser *);
1307
1308 /* Prototypes. */
1309
1310 /* Constructors and destructors. */
1311
1312 static cp_parser *cp_parser_new
1313 (void);
1314
1315 /* Routines to parse various constructs.
1316
1317 Those that return `tree' will return the error_mark_node (rather
1318 than NULL_TREE) if a parse error occurs, unless otherwise noted.
1319 Sometimes, they will return an ordinary node if error-recovery was
1320 attempted, even though a parse error occurred. So, to check
1321 whether or not a parse error occurred, you should always use
1322 cp_parser_error_occurred. If the construct is optional (indicated
1323 either by an `_opt' in the name of the function that does the
1324 parsing or via a FLAGS parameter), then NULL_TREE is returned if
1325 the construct is not present. */
1326
1327 /* Lexical conventions [gram.lex] */
1328
1329 static tree cp_parser_identifier
1330 (cp_parser *);
1331 static tree cp_parser_string_literal
1332 (cp_parser *, bool, bool);
1333
1334 /* Basic concepts [gram.basic] */
1335
1336 static bool cp_parser_translation_unit
1337 (cp_parser *);
1338
1339 /* Expressions [gram.expr] */
1340
1341 static tree cp_parser_primary_expression
1342 (cp_parser *, cp_id_kind *, tree *);
1343 static tree cp_parser_id_expression
1344 (cp_parser *, bool, bool, bool *, bool);
1345 static tree cp_parser_unqualified_id
1346 (cp_parser *, bool, bool, bool);
1347 static tree cp_parser_nested_name_specifier_opt
1348 (cp_parser *, bool, bool, bool, bool);
1349 static tree cp_parser_nested_name_specifier
1350 (cp_parser *, bool, bool, bool, bool);
1351 static tree cp_parser_class_or_namespace_name
1352 (cp_parser *, bool, bool, bool, bool, bool);
1353 static tree cp_parser_postfix_expression
1354 (cp_parser *, bool);
1355 static tree cp_parser_postfix_open_square_expression
1356 (cp_parser *, tree, bool);
1357 static tree cp_parser_postfix_dot_deref_expression
1358 (cp_parser *, enum cpp_ttype, tree, bool, cp_id_kind *);
1359 static tree cp_parser_parenthesized_expression_list
1360 (cp_parser *, bool, bool *);
1361 static void cp_parser_pseudo_destructor_name
1362 (cp_parser *, tree *, tree *);
1363 static tree cp_parser_unary_expression
1364 (cp_parser *, bool);
1365 static enum tree_code cp_parser_unary_operator
1366 (cp_token *);
1367 static tree cp_parser_new_expression
1368 (cp_parser *);
1369 static tree cp_parser_new_placement
1370 (cp_parser *);
1371 static tree cp_parser_new_type_id
1372 (cp_parser *, tree *);
1373 static cp_declarator *cp_parser_new_declarator_opt
1374 (cp_parser *);
1375 static cp_declarator *cp_parser_direct_new_declarator
1376 (cp_parser *);
1377 static tree cp_parser_new_initializer
1378 (cp_parser *);
1379 static tree cp_parser_delete_expression
1380 (cp_parser *);
1381 static tree cp_parser_cast_expression
1382 (cp_parser *, bool);
1383 static tree cp_parser_binary_expression
1384 (cp_parser *);
1385 static tree cp_parser_question_colon_clause
1386 (cp_parser *, tree);
1387 static tree cp_parser_assignment_expression
1388 (cp_parser *);
1389 static enum tree_code cp_parser_assignment_operator_opt
1390 (cp_parser *);
1391 static tree cp_parser_expression
1392 (cp_parser *);
1393 static tree cp_parser_constant_expression
1394 (cp_parser *, bool, bool *);
1395 static tree cp_parser_builtin_offsetof
1396 (cp_parser *);
1397
1398 /* Statements [gram.stmt.stmt] */
1399
1400 static void cp_parser_statement
1401 (cp_parser *, tree);
1402 static tree cp_parser_labeled_statement
1403 (cp_parser *, tree);
1404 static tree cp_parser_expression_statement
1405 (cp_parser *, tree);
1406 static tree cp_parser_compound_statement
1407 (cp_parser *, tree, bool);
1408 static void cp_parser_statement_seq_opt
1409 (cp_parser *, tree);
1410 static tree cp_parser_selection_statement
1411 (cp_parser *);
1412 static tree cp_parser_condition
1413 (cp_parser *);
1414 static tree cp_parser_iteration_statement
1415 (cp_parser *);
1416 static void cp_parser_for_init_statement
1417 (cp_parser *);
1418 static tree cp_parser_jump_statement
1419 (cp_parser *);
1420 static void cp_parser_declaration_statement
1421 (cp_parser *);
1422
1423 static tree cp_parser_implicitly_scoped_statement
1424 (cp_parser *);
1425 static void cp_parser_already_scoped_statement
1426 (cp_parser *);
1427
1428 /* Declarations [gram.dcl.dcl] */
1429
1430 static void cp_parser_declaration_seq_opt
1431 (cp_parser *);
1432 static void cp_parser_declaration
1433 (cp_parser *);
1434 static void cp_parser_block_declaration
1435 (cp_parser *, bool);
1436 static void cp_parser_simple_declaration
1437 (cp_parser *, bool);
1438 static void cp_parser_decl_specifier_seq
1439 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, int *);
1440 static tree cp_parser_storage_class_specifier_opt
1441 (cp_parser *);
1442 static tree cp_parser_function_specifier_opt
1443 (cp_parser *, cp_decl_specifier_seq *);
1444 static tree cp_parser_type_specifier
1445 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, bool,
1446 int *, bool *);
1447 static tree cp_parser_simple_type_specifier
1448 (cp_parser *, cp_decl_specifier_seq *, cp_parser_flags);
1449 static tree cp_parser_type_name
1450 (cp_parser *);
1451 static tree cp_parser_elaborated_type_specifier
1452 (cp_parser *, bool, bool);
1453 static tree cp_parser_enum_specifier
1454 (cp_parser *);
1455 static void cp_parser_enumerator_list
1456 (cp_parser *, tree);
1457 static void cp_parser_enumerator_definition
1458 (cp_parser *, tree);
1459 static tree cp_parser_namespace_name
1460 (cp_parser *);
1461 static void cp_parser_namespace_definition
1462 (cp_parser *);
1463 static void cp_parser_namespace_body
1464 (cp_parser *);
1465 static tree cp_parser_qualified_namespace_specifier
1466 (cp_parser *);
1467 static void cp_parser_namespace_alias_definition
1468 (cp_parser *);
1469 static void cp_parser_using_declaration
1470 (cp_parser *);
1471 static void cp_parser_using_directive
1472 (cp_parser *);
1473 static void cp_parser_asm_definition
1474 (cp_parser *);
1475 static void cp_parser_linkage_specification
1476 (cp_parser *);
1477
1478 /* Declarators [gram.dcl.decl] */
1479
1480 static tree cp_parser_init_declarator
1481 (cp_parser *, cp_decl_specifier_seq *, bool, bool, int, bool *);
1482 static cp_declarator *cp_parser_declarator
1483 (cp_parser *, cp_parser_declarator_kind, int *, bool *, bool);
1484 static cp_declarator *cp_parser_direct_declarator
1485 (cp_parser *, cp_parser_declarator_kind, int *, bool);
1486 static enum tree_code cp_parser_ptr_operator
1487 (cp_parser *, tree *, cp_cv_quals *);
1488 static cp_cv_quals cp_parser_cv_qualifier_seq_opt
1489 (cp_parser *);
1490 static tree cp_parser_declarator_id
1491 (cp_parser *);
1492 static tree cp_parser_type_id
1493 (cp_parser *);
1494 static void cp_parser_type_specifier_seq
1495 (cp_parser *, cp_decl_specifier_seq *);
1496 static cp_parameter_declarator *cp_parser_parameter_declaration_clause
1497 (cp_parser *);
1498 static cp_parameter_declarator *cp_parser_parameter_declaration_list
1499 (cp_parser *, bool *);
1500 static cp_parameter_declarator *cp_parser_parameter_declaration
1501 (cp_parser *, bool, bool *);
1502 static void cp_parser_function_body
1503 (cp_parser *);
1504 static tree cp_parser_initializer
1505 (cp_parser *, bool *, bool *);
1506 static tree cp_parser_initializer_clause
1507 (cp_parser *, bool *);
1508 static tree cp_parser_initializer_list
1509 (cp_parser *, bool *);
1510
1511 static bool cp_parser_ctor_initializer_opt_and_function_body
1512 (cp_parser *);
1513
1514 /* Classes [gram.class] */
1515
1516 static tree cp_parser_class_name
1517 (cp_parser *, bool, bool, enum tag_types, bool, bool, bool);
1518 static tree cp_parser_class_specifier
1519 (cp_parser *);
1520 static tree cp_parser_class_head
1521 (cp_parser *, bool *, tree *);
1522 static enum tag_types cp_parser_class_key
1523 (cp_parser *);
1524 static void cp_parser_member_specification_opt
1525 (cp_parser *);
1526 static void cp_parser_member_declaration
1527 (cp_parser *);
1528 static tree cp_parser_pure_specifier
1529 (cp_parser *);
1530 static tree cp_parser_constant_initializer
1531 (cp_parser *);
1532
1533 /* Derived classes [gram.class.derived] */
1534
1535 static tree cp_parser_base_clause
1536 (cp_parser *);
1537 static tree cp_parser_base_specifier
1538 (cp_parser *);
1539
1540 /* Special member functions [gram.special] */
1541
1542 static tree cp_parser_conversion_function_id
1543 (cp_parser *);
1544 static tree cp_parser_conversion_type_id
1545 (cp_parser *);
1546 static cp_declarator *cp_parser_conversion_declarator_opt
1547 (cp_parser *);
1548 static bool cp_parser_ctor_initializer_opt
1549 (cp_parser *);
1550 static void cp_parser_mem_initializer_list
1551 (cp_parser *);
1552 static tree cp_parser_mem_initializer
1553 (cp_parser *);
1554 static tree cp_parser_mem_initializer_id
1555 (cp_parser *);
1556
1557 /* Overloading [gram.over] */
1558
1559 static tree cp_parser_operator_function_id
1560 (cp_parser *);
1561 static tree cp_parser_operator
1562 (cp_parser *);
1563
1564 /* Templates [gram.temp] */
1565
1566 static void cp_parser_template_declaration
1567 (cp_parser *, bool);
1568 static tree cp_parser_template_parameter_list
1569 (cp_parser *);
1570 static tree cp_parser_template_parameter
1571 (cp_parser *, bool *);
1572 static tree cp_parser_type_parameter
1573 (cp_parser *);
1574 static tree cp_parser_template_id
1575 (cp_parser *, bool, bool, bool);
1576 static tree cp_parser_template_name
1577 (cp_parser *, bool, bool, bool, bool *);
1578 static tree cp_parser_template_argument_list
1579 (cp_parser *);
1580 static tree cp_parser_template_argument
1581 (cp_parser *);
1582 static void cp_parser_explicit_instantiation
1583 (cp_parser *);
1584 static void cp_parser_explicit_specialization
1585 (cp_parser *);
1586
1587 /* Exception handling [gram.exception] */
1588
1589 static tree cp_parser_try_block
1590 (cp_parser *);
1591 static bool cp_parser_function_try_block
1592 (cp_parser *);
1593 static void cp_parser_handler_seq
1594 (cp_parser *);
1595 static void cp_parser_handler
1596 (cp_parser *);
1597 static tree cp_parser_exception_declaration
1598 (cp_parser *);
1599 static tree cp_parser_throw_expression
1600 (cp_parser *);
1601 static tree cp_parser_exception_specification_opt
1602 (cp_parser *);
1603 static tree cp_parser_type_id_list
1604 (cp_parser *);
1605
1606 /* GNU Extensions */
1607
1608 static tree cp_parser_asm_specification_opt
1609 (cp_parser *);
1610 static tree cp_parser_asm_operand_list
1611 (cp_parser *);
1612 static tree cp_parser_asm_clobber_list
1613 (cp_parser *);
1614 static tree cp_parser_attributes_opt
1615 (cp_parser *);
1616 static tree cp_parser_attribute_list
1617 (cp_parser *);
1618 static bool cp_parser_extension_opt
1619 (cp_parser *, int *);
1620 static void cp_parser_label_declaration
1621 (cp_parser *);
1622
1623 /* Utility Routines */
1624
1625 static tree cp_parser_lookup_name
1626 (cp_parser *, tree, enum tag_types, bool, bool, bool, bool *);
1627 static tree cp_parser_lookup_name_simple
1628 (cp_parser *, tree);
1629 static tree cp_parser_maybe_treat_template_as_class
1630 (tree, bool);
1631 static bool cp_parser_check_declarator_template_parameters
1632 (cp_parser *, cp_declarator *);
1633 static bool cp_parser_check_template_parameters
1634 (cp_parser *, unsigned);
1635 static tree cp_parser_simple_cast_expression
1636 (cp_parser *);
1637 static tree cp_parser_global_scope_opt
1638 (cp_parser *, bool);
1639 static bool cp_parser_constructor_declarator_p
1640 (cp_parser *, bool);
1641 static tree cp_parser_function_definition_from_specifiers_and_declarator
1642 (cp_parser *, cp_decl_specifier_seq *, tree, const cp_declarator *);
1643 static tree cp_parser_function_definition_after_declarator
1644 (cp_parser *, bool);
1645 static void cp_parser_template_declaration_after_export
1646 (cp_parser *, bool);
1647 static tree cp_parser_single_declaration
1648 (cp_parser *, bool, bool *);
1649 static tree cp_parser_functional_cast
1650 (cp_parser *, tree);
1651 static tree cp_parser_save_member_function_body
1652 (cp_parser *, cp_decl_specifier_seq *, cp_declarator *, tree);
1653 static tree cp_parser_enclosed_template_argument_list
1654 (cp_parser *);
1655 static void cp_parser_save_default_args
1656 (cp_parser *, tree);
1657 static void cp_parser_late_parsing_for_member
1658 (cp_parser *, tree);
1659 static void cp_parser_late_parsing_default_args
1660 (cp_parser *, tree);
1661 static tree cp_parser_sizeof_operand
1662 (cp_parser *, enum rid);
1663 static bool cp_parser_declares_only_class_p
1664 (cp_parser *);
1665 static void cp_parser_set_storage_class
1666 (cp_decl_specifier_seq *, cp_storage_class);
1667 static void cp_parser_set_decl_spec_type
1668 (cp_decl_specifier_seq *, tree, bool);
1669 static bool cp_parser_friend_p
1670 (const cp_decl_specifier_seq *);
1671 static cp_token *cp_parser_require
1672 (cp_parser *, enum cpp_ttype, const char *);
1673 static cp_token *cp_parser_require_keyword
1674 (cp_parser *, enum rid, const char *);
1675 static bool cp_parser_token_starts_function_definition_p
1676 (cp_token *);
1677 static bool cp_parser_next_token_starts_class_definition_p
1678 (cp_parser *);
1679 static bool cp_parser_next_token_ends_template_argument_p
1680 (cp_parser *);
1681 static bool cp_parser_nth_token_starts_template_argument_list_p
1682 (cp_parser *, size_t);
1683 static enum tag_types cp_parser_token_is_class_key
1684 (cp_token *);
1685 static void cp_parser_check_class_key
1686 (enum tag_types, tree type);
1687 static void cp_parser_check_access_in_redeclaration
1688 (tree type);
1689 static bool cp_parser_optional_template_keyword
1690 (cp_parser *);
1691 static void cp_parser_pre_parsed_nested_name_specifier
1692 (cp_parser *);
1693 static void cp_parser_cache_group
1694 (cp_parser *, enum cpp_ttype, unsigned);
1695 static void cp_parser_parse_tentatively
1696 (cp_parser *);
1697 static void cp_parser_commit_to_tentative_parse
1698 (cp_parser *);
1699 static void cp_parser_abort_tentative_parse
1700 (cp_parser *);
1701 static bool cp_parser_parse_definitely
1702 (cp_parser *);
1703 static inline bool cp_parser_parsing_tentatively
1704 (cp_parser *);
1705 static bool cp_parser_committed_to_tentative_parse
1706 (cp_parser *);
1707 static void cp_parser_error
1708 (cp_parser *, const char *);
1709 static void cp_parser_name_lookup_error
1710 (cp_parser *, tree, tree, const char *);
1711 static bool cp_parser_simulate_error
1712 (cp_parser *);
1713 static void cp_parser_check_type_definition
1714 (cp_parser *);
1715 static void cp_parser_check_for_definition_in_return_type
1716 (cp_declarator *, tree);
1717 static void cp_parser_check_for_invalid_template_id
1718 (cp_parser *, tree);
1719 static bool cp_parser_non_integral_constant_expression
1720 (cp_parser *, const char *);
1721 static void cp_parser_diagnose_invalid_type_name
1722 (cp_parser *, tree, tree);
1723 static bool cp_parser_parse_and_diagnose_invalid_type_name
1724 (cp_parser *);
1725 static int cp_parser_skip_to_closing_parenthesis
1726 (cp_parser *, bool, bool, bool);
1727 static void cp_parser_skip_to_end_of_statement
1728 (cp_parser *);
1729 static void cp_parser_consume_semicolon_at_end_of_statement
1730 (cp_parser *);
1731 static void cp_parser_skip_to_end_of_block_or_statement
1732 (cp_parser *);
1733 static void cp_parser_skip_to_closing_brace
1734 (cp_parser *);
1735 static void cp_parser_skip_until_found
1736 (cp_parser *, enum cpp_ttype, const char *);
1737 static bool cp_parser_error_occurred
1738 (cp_parser *);
1739 static bool cp_parser_allow_gnu_extensions_p
1740 (cp_parser *);
1741 static bool cp_parser_is_string_literal
1742 (cp_token *);
1743 static bool cp_parser_is_keyword
1744 (cp_token *, enum rid);
1745 static tree cp_parser_make_typename_type
1746 (cp_parser *, tree, tree);
1747
1748 /* Returns nonzero if we are parsing tentatively. */
1749
1750 static inline bool
1751 cp_parser_parsing_tentatively (cp_parser* parser)
1752 {
1753 return parser->context->next != NULL;
1754 }
1755
1756 /* Returns nonzero if TOKEN is a string literal. */
1757
1758 static bool
1759 cp_parser_is_string_literal (cp_token* token)
1760 {
1761 return (token->type == CPP_STRING || token->type == CPP_WSTRING);
1762 }
1763
1764 /* Returns nonzero if TOKEN is the indicated KEYWORD. */
1765
1766 static bool
1767 cp_parser_is_keyword (cp_token* token, enum rid keyword)
1768 {
1769 return token->keyword == keyword;
1770 }
1771
1772 /* If not parsing tentatively, issue a diagnostic of the form
1773 FILE:LINE: MESSAGE before TOKEN
1774 where TOKEN is the next token in the input stream. MESSAGE
1775 (specified by the caller) is usually of the form "expected
1776 OTHER-TOKEN". */
1777
1778 static void
1779 cp_parser_error (cp_parser* parser, const char* message)
1780 {
1781 if (!cp_parser_simulate_error (parser))
1782 {
1783 cp_token *token = cp_lexer_peek_token (parser->lexer);
1784 /* This diagnostic makes more sense if it is tagged to the line
1785 of the token we just peeked at. */
1786 cp_lexer_set_source_position_from_token (token);
1787 c_parse_error (message,
1788 /* Because c_parser_error does not understand
1789 CPP_KEYWORD, keywords are treated like
1790 identifiers. */
1791 (token->type == CPP_KEYWORD ? CPP_NAME : token->type),
1792 token->value);
1793 }
1794 }
1795
1796 /* Issue an error about name-lookup failing. NAME is the
1797 IDENTIFIER_NODE DECL is the result of
1798 the lookup (as returned from cp_parser_lookup_name). DESIRED is
1799 the thing that we hoped to find. */
1800
1801 static void
1802 cp_parser_name_lookup_error (cp_parser* parser,
1803 tree name,
1804 tree decl,
1805 const char* desired)
1806 {
1807 /* If name lookup completely failed, tell the user that NAME was not
1808 declared. */
1809 if (decl == error_mark_node)
1810 {
1811 if (parser->scope && parser->scope != global_namespace)
1812 error ("%<%D::%D%> has not been declared",
1813 parser->scope, name);
1814 else if (parser->scope == global_namespace)
1815 error ("%<::%D%> has not been declared", name);
1816 else if (parser->object_scope
1817 && !CLASS_TYPE_P (parser->object_scope))
1818 error ("request for member %qD in non-class type %qT",
1819 name, parser->object_scope);
1820 else if (parser->object_scope)
1821 error ("%<%T::%D%> has not been declared",
1822 parser->object_scope, name);
1823 else
1824 error ("%qD has not been declared", name);
1825 }
1826 else if (parser->scope && parser->scope != global_namespace)
1827 error ("%<%D::%D%> %s", parser->scope, name, desired);
1828 else if (parser->scope == global_namespace)
1829 error ("%<::%D%> %s", name, desired);
1830 else
1831 error ("%qD %s", name, desired);
1832 }
1833
1834 /* If we are parsing tentatively, remember that an error has occurred
1835 during this tentative parse. Returns true if the error was
1836 simulated; false if a message should be issued by the caller. */
1837
1838 static bool
1839 cp_parser_simulate_error (cp_parser* parser)
1840 {
1841 if (cp_parser_parsing_tentatively (parser)
1842 && !cp_parser_committed_to_tentative_parse (parser))
1843 {
1844 parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
1845 return true;
1846 }
1847 return false;
1848 }
1849
1850 /* This function is called when a type is defined. If type
1851 definitions are forbidden at this point, an error message is
1852 issued. */
1853
1854 static void
1855 cp_parser_check_type_definition (cp_parser* parser)
1856 {
1857 /* If types are forbidden here, issue a message. */
1858 if (parser->type_definition_forbidden_message)
1859 /* Use `%s' to print the string in case there are any escape
1860 characters in the message. */
1861 error ("%s", parser->type_definition_forbidden_message);
1862 }
1863
1864 /* This function is called when the DECLARATOR is processed. The TYPE
1865 was a type defined in the decl-specifiers. If it is invalid to
1866 define a type in the decl-specifiers for DECLARATOR, an error is
1867 issued. */
1868
1869 static void
1870 cp_parser_check_for_definition_in_return_type (cp_declarator *declarator,
1871 tree type)
1872 {
1873 /* [dcl.fct] forbids type definitions in return types.
1874 Unfortunately, it's not easy to know whether or not we are
1875 processing a return type until after the fact. */
1876 while (declarator
1877 && (declarator->kind == cdk_pointer
1878 || declarator->kind == cdk_reference
1879 || declarator->kind == cdk_ptrmem))
1880 declarator = declarator->declarator;
1881 if (declarator
1882 && declarator->kind == cdk_function)
1883 {
1884 error ("new types may not be defined in a return type");
1885 inform ("(perhaps a semicolon is missing after the definition of %qT)",
1886 type);
1887 }
1888 }
1889
1890 /* A type-specifier (TYPE) has been parsed which cannot be followed by
1891 "<" in any valid C++ program. If the next token is indeed "<",
1892 issue a message warning the user about what appears to be an
1893 invalid attempt to form a template-id. */
1894
1895 static void
1896 cp_parser_check_for_invalid_template_id (cp_parser* parser,
1897 tree type)
1898 {
1899 cp_token_position start = 0;
1900
1901 if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
1902 {
1903 if (TYPE_P (type))
1904 error ("%qT is not a template", type);
1905 else if (TREE_CODE (type) == IDENTIFIER_NODE)
1906 error ("%qE is not a template", type);
1907 else
1908 error ("invalid template-id");
1909 /* Remember the location of the invalid "<". */
1910 if (cp_parser_parsing_tentatively (parser)
1911 && !cp_parser_committed_to_tentative_parse (parser))
1912 start = cp_lexer_token_position (parser->lexer, true);
1913 /* Consume the "<". */
1914 cp_lexer_consume_token (parser->lexer);
1915 /* Parse the template arguments. */
1916 cp_parser_enclosed_template_argument_list (parser);
1917 /* Permanently remove the invalid template arguments so that
1918 this error message is not issued again. */
1919 if (start)
1920 cp_lexer_purge_tokens_after (parser->lexer, start);
1921 }
1922 }
1923
1924 /* If parsing an integral constant-expression, issue an error message
1925 about the fact that THING appeared and return true. Otherwise,
1926 return false, marking the current expression as non-constant. */
1927
1928 static bool
1929 cp_parser_non_integral_constant_expression (cp_parser *parser,
1930 const char *thing)
1931 {
1932 if (parser->integral_constant_expression_p)
1933 {
1934 if (!parser->allow_non_integral_constant_expression_p)
1935 {
1936 error ("%s cannot appear in a constant-expression", thing);
1937 return true;
1938 }
1939 parser->non_integral_constant_expression_p = true;
1940 }
1941 return false;
1942 }
1943
1944 /* Emit a diagnostic for an invalid type name. Consider also if it is
1945 qualified or not and the result of a lookup, to provide a better
1946 message. */
1947
1948 static void
1949 cp_parser_diagnose_invalid_type_name (cp_parser *parser, tree scope, tree id)
1950 {
1951 tree decl, old_scope;
1952 /* Try to lookup the identifier. */
1953 old_scope = parser->scope;
1954 parser->scope = scope;
1955 decl = cp_parser_lookup_name_simple (parser, id);
1956 parser->scope = old_scope;
1957 /* If the lookup found a template-name, it means that the user forgot
1958 to specify an argument list. Emit an useful error message. */
1959 if (TREE_CODE (decl) == TEMPLATE_DECL)
1960 error ("invalid use of template-name %qE without an argument list",
1961 decl);
1962 else if (!parser->scope)
1963 {
1964 /* Issue an error message. */
1965 error ("%qE does not name a type", id);
1966 /* If we're in a template class, it's possible that the user was
1967 referring to a type from a base class. For example:
1968
1969 template <typename T> struct A { typedef T X; };
1970 template <typename T> struct B : public A<T> { X x; };
1971
1972 The user should have said "typename A<T>::X". */
1973 if (processing_template_decl && current_class_type)
1974 {
1975 tree b;
1976
1977 for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
1978 b;
1979 b = TREE_CHAIN (b))
1980 {
1981 tree base_type = BINFO_TYPE (b);
1982 if (CLASS_TYPE_P (base_type)
1983 && dependent_type_p (base_type))
1984 {
1985 tree field;
1986 /* Go from a particular instantiation of the
1987 template (which will have an empty TYPE_FIELDs),
1988 to the main version. */
1989 base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
1990 for (field = TYPE_FIELDS (base_type);
1991 field;
1992 field = TREE_CHAIN (field))
1993 if (TREE_CODE (field) == TYPE_DECL
1994 && DECL_NAME (field) == id)
1995 {
1996 inform ("(perhaps %<typename %T::%E%> was intended)",
1997 BINFO_TYPE (b), id);
1998 break;
1999 }
2000 if (field)
2001 break;
2002 }
2003 }
2004 }
2005 }
2006 /* Here we diagnose qualified-ids where the scope is actually correct,
2007 but the identifier does not resolve to a valid type name. */
2008 else
2009 {
2010 if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
2011 error ("%qE in namespace %qE does not name a type",
2012 id, parser->scope);
2013 else if (TYPE_P (parser->scope))
2014 error ("%qE in class %qT does not name a type", id, parser->scope);
2015 else
2016 gcc_unreachable ();
2017 }
2018 }
2019
2020 /* Check for a common situation where a type-name should be present,
2021 but is not, and issue a sensible error message. Returns true if an
2022 invalid type-name was detected.
2023
2024 The situation handled by this function are variable declarations of the
2025 form `ID a', where `ID' is an id-expression and `a' is a plain identifier.
2026 Usually, `ID' should name a type, but if we got here it means that it
2027 does not. We try to emit the best possible error message depending on
2028 how exactly the id-expression looks like.
2029 */
2030
2031 static bool
2032 cp_parser_parse_and_diagnose_invalid_type_name (cp_parser *parser)
2033 {
2034 tree id;
2035
2036 cp_parser_parse_tentatively (parser);
2037 id = cp_parser_id_expression (parser,
2038 /*template_keyword_p=*/false,
2039 /*check_dependency_p=*/true,
2040 /*template_p=*/NULL,
2041 /*declarator_p=*/true);
2042 /* After the id-expression, there should be a plain identifier,
2043 otherwise this is not a simple variable declaration. Also, if
2044 the scope is dependent, we cannot do much. */
2045 if (!cp_lexer_next_token_is (parser->lexer, CPP_NAME)
2046 || (parser->scope && TYPE_P (parser->scope)
2047 && dependent_type_p (parser->scope)))
2048 {
2049 cp_parser_abort_tentative_parse (parser);
2050 return false;
2051 }
2052 if (!cp_parser_parse_definitely (parser)
2053 || TREE_CODE (id) != IDENTIFIER_NODE)
2054 return false;
2055
2056 /* Emit a diagnostic for the invalid type. */
2057 cp_parser_diagnose_invalid_type_name (parser, parser->scope, id);
2058 /* Skip to the end of the declaration; there's no point in
2059 trying to process it. */
2060 cp_parser_skip_to_end_of_block_or_statement (parser);
2061 return true;
2062 }
2063
2064 /* Consume tokens up to, and including, the next non-nested closing `)'.
2065 Returns 1 iff we found a closing `)'. RECOVERING is true, if we
2066 are doing error recovery. Returns -1 if OR_COMMA is true and we
2067 found an unnested comma. */
2068
2069 static int
2070 cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
2071 bool recovering,
2072 bool or_comma,
2073 bool consume_paren)
2074 {
2075 unsigned paren_depth = 0;
2076 unsigned brace_depth = 0;
2077 int result;
2078
2079 if (recovering && !or_comma && cp_parser_parsing_tentatively (parser)
2080 && !cp_parser_committed_to_tentative_parse (parser))
2081 return 0;
2082
2083 while (true)
2084 {
2085 cp_token *token;
2086
2087 /* If we've run out of tokens, then there is no closing `)'. */
2088 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2089 {
2090 result = 0;
2091 break;
2092 }
2093
2094 token = cp_lexer_peek_token (parser->lexer);
2095
2096 /* This matches the processing in skip_to_end_of_statement. */
2097 if (token->type == CPP_SEMICOLON && !brace_depth)
2098 {
2099 result = 0;
2100 break;
2101 }
2102 if (token->type == CPP_OPEN_BRACE)
2103 ++brace_depth;
2104 if (token->type == CPP_CLOSE_BRACE)
2105 {
2106 if (!brace_depth--)
2107 {
2108 result = 0;
2109 break;
2110 }
2111 }
2112 if (recovering && or_comma && token->type == CPP_COMMA
2113 && !brace_depth && !paren_depth)
2114 {
2115 result = -1;
2116 break;
2117 }
2118
2119 if (!brace_depth)
2120 {
2121 /* If it is an `(', we have entered another level of nesting. */
2122 if (token->type == CPP_OPEN_PAREN)
2123 ++paren_depth;
2124 /* If it is a `)', then we might be done. */
2125 else if (token->type == CPP_CLOSE_PAREN && !paren_depth--)
2126 {
2127 if (consume_paren)
2128 cp_lexer_consume_token (parser->lexer);
2129 {
2130 result = 1;
2131 break;
2132 }
2133 }
2134 }
2135
2136 /* Consume the token. */
2137 cp_lexer_consume_token (parser->lexer);
2138 }
2139
2140 return result;
2141 }
2142
2143 /* Consume tokens until we reach the end of the current statement.
2144 Normally, that will be just before consuming a `;'. However, if a
2145 non-nested `}' comes first, then we stop before consuming that. */
2146
2147 static void
2148 cp_parser_skip_to_end_of_statement (cp_parser* parser)
2149 {
2150 unsigned nesting_depth = 0;
2151
2152 while (true)
2153 {
2154 cp_token *token;
2155
2156 /* Peek at the next token. */
2157 token = cp_lexer_peek_token (parser->lexer);
2158 /* If we've run out of tokens, stop. */
2159 if (token->type == CPP_EOF)
2160 break;
2161 /* If the next token is a `;', we have reached the end of the
2162 statement. */
2163 if (token->type == CPP_SEMICOLON && !nesting_depth)
2164 break;
2165 /* If the next token is a non-nested `}', then we have reached
2166 the end of the current block. */
2167 if (token->type == CPP_CLOSE_BRACE)
2168 {
2169 /* If this is a non-nested `}', stop before consuming it.
2170 That way, when confronted with something like:
2171
2172 { 3 + }
2173
2174 we stop before consuming the closing `}', even though we
2175 have not yet reached a `;'. */
2176 if (nesting_depth == 0)
2177 break;
2178 /* If it is the closing `}' for a block that we have
2179 scanned, stop -- but only after consuming the token.
2180 That way given:
2181
2182 void f g () { ... }
2183 typedef int I;
2184
2185 we will stop after the body of the erroneously declared
2186 function, but before consuming the following `typedef'
2187 declaration. */
2188 if (--nesting_depth == 0)
2189 {
2190 cp_lexer_consume_token (parser->lexer);
2191 break;
2192 }
2193 }
2194 /* If it the next token is a `{', then we are entering a new
2195 block. Consume the entire block. */
2196 else if (token->type == CPP_OPEN_BRACE)
2197 ++nesting_depth;
2198 /* Consume the token. */
2199 cp_lexer_consume_token (parser->lexer);
2200 }
2201 }
2202
2203 /* This function is called at the end of a statement or declaration.
2204 If the next token is a semicolon, it is consumed; otherwise, error
2205 recovery is attempted. */
2206
2207 static void
2208 cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
2209 {
2210 /* Look for the trailing `;'. */
2211 if (!cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
2212 {
2213 /* If there is additional (erroneous) input, skip to the end of
2214 the statement. */
2215 cp_parser_skip_to_end_of_statement (parser);
2216 /* If the next token is now a `;', consume it. */
2217 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
2218 cp_lexer_consume_token (parser->lexer);
2219 }
2220 }
2221
2222 /* Skip tokens until we have consumed an entire block, or until we
2223 have consumed a non-nested `;'. */
2224
2225 static void
2226 cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
2227 {
2228 unsigned nesting_depth = 0;
2229
2230 while (true)
2231 {
2232 cp_token *token;
2233
2234 /* Peek at the next token. */
2235 token = cp_lexer_peek_token (parser->lexer);
2236 /* If we've run out of tokens, stop. */
2237 if (token->type == CPP_EOF)
2238 break;
2239 /* If the next token is a `;', we have reached the end of the
2240 statement. */
2241 if (token->type == CPP_SEMICOLON && !nesting_depth)
2242 {
2243 /* Consume the `;'. */
2244 cp_lexer_consume_token (parser->lexer);
2245 break;
2246 }
2247 /* Consume the token. */
2248 token = cp_lexer_consume_token (parser->lexer);
2249 /* If the next token is a non-nested `}', then we have reached
2250 the end of the current block. */
2251 if (token->type == CPP_CLOSE_BRACE
2252 && (nesting_depth == 0 || --nesting_depth == 0))
2253 break;
2254 /* If it the next token is a `{', then we are entering a new
2255 block. Consume the entire block. */
2256 if (token->type == CPP_OPEN_BRACE)
2257 ++nesting_depth;
2258 }
2259 }
2260
2261 /* Skip tokens until a non-nested closing curly brace is the next
2262 token. */
2263
2264 static void
2265 cp_parser_skip_to_closing_brace (cp_parser *parser)
2266 {
2267 unsigned nesting_depth = 0;
2268
2269 while (true)
2270 {
2271 cp_token *token;
2272
2273 /* Peek at the next token. */
2274 token = cp_lexer_peek_token (parser->lexer);
2275 /* If we've run out of tokens, stop. */
2276 if (token->type == CPP_EOF)
2277 break;
2278 /* If the next token is a non-nested `}', then we have reached
2279 the end of the current block. */
2280 if (token->type == CPP_CLOSE_BRACE && nesting_depth-- == 0)
2281 break;
2282 /* If it the next token is a `{', then we are entering a new
2283 block. Consume the entire block. */
2284 else if (token->type == CPP_OPEN_BRACE)
2285 ++nesting_depth;
2286 /* Consume the token. */
2287 cp_lexer_consume_token (parser->lexer);
2288 }
2289 }
2290
2291 /* This is a simple wrapper around make_typename_type. When the id is
2292 an unresolved identifier node, we can provide a superior diagnostic
2293 using cp_parser_diagnose_invalid_type_name. */
2294
2295 static tree
2296 cp_parser_make_typename_type (cp_parser *parser, tree scope, tree id)
2297 {
2298 tree result;
2299 if (TREE_CODE (id) == IDENTIFIER_NODE)
2300 {
2301 result = make_typename_type (scope, id, typename_type,
2302 /*complain=*/0);
2303 if (result == error_mark_node)
2304 cp_parser_diagnose_invalid_type_name (parser, scope, id);
2305 return result;
2306 }
2307 return make_typename_type (scope, id, typename_type, tf_error);
2308 }
2309
2310
2311 /* Create a new C++ parser. */
2312
2313 static cp_parser *
2314 cp_parser_new (void)
2315 {
2316 cp_parser *parser;
2317 cp_lexer *lexer;
2318 unsigned i;
2319
2320 /* cp_lexer_new_main is called before calling ggc_alloc because
2321 cp_lexer_new_main might load a PCH file. */
2322 lexer = cp_lexer_new_main ();
2323
2324 /* Initialize the binops_by_token so that we can get the tree
2325 directly from the token. */
2326 for (i = 0; i < sizeof (binops) / sizeof (binops[0]); i++)
2327 binops_by_token[binops[i].token_type] = binops[i];
2328
2329 parser = GGC_CNEW (cp_parser);
2330 parser->lexer = lexer;
2331 parser->context = cp_parser_context_new (NULL);
2332
2333 /* For now, we always accept GNU extensions. */
2334 parser->allow_gnu_extensions_p = 1;
2335
2336 /* The `>' token is a greater-than operator, not the end of a
2337 template-id. */
2338 parser->greater_than_is_operator_p = true;
2339
2340 parser->default_arg_ok_p = true;
2341
2342 /* We are not parsing a constant-expression. */
2343 parser->integral_constant_expression_p = false;
2344 parser->allow_non_integral_constant_expression_p = false;
2345 parser->non_integral_constant_expression_p = false;
2346
2347 /* Local variable names are not forbidden. */
2348 parser->local_variables_forbidden_p = false;
2349
2350 /* We are not processing an `extern "C"' declaration. */
2351 parser->in_unbraced_linkage_specification_p = false;
2352
2353 /* We are not processing a declarator. */
2354 parser->in_declarator_p = false;
2355
2356 /* We are not processing a template-argument-list. */
2357 parser->in_template_argument_list_p = false;
2358
2359 /* We are not in an iteration statement. */
2360 parser->in_iteration_statement_p = false;
2361
2362 /* We are not in a switch statement. */
2363 parser->in_switch_statement_p = false;
2364
2365 /* We are not parsing a type-id inside an expression. */
2366 parser->in_type_id_in_expr_p = false;
2367
2368 /* Declarations aren't implicitly extern "C". */
2369 parser->implicit_extern_c = false;
2370
2371 /* String literals should be translated to the execution character set. */
2372 parser->translate_strings_p = true;
2373
2374 /* The unparsed function queue is empty. */
2375 parser->unparsed_functions_queues = build_tree_list (NULL_TREE, NULL_TREE);
2376
2377 /* There are no classes being defined. */
2378 parser->num_classes_being_defined = 0;
2379
2380 /* No template parameters apply. */
2381 parser->num_template_parameter_lists = 0;
2382
2383 return parser;
2384 }
2385
2386 /* Create a cp_lexer structure which will emit the tokens in CACHE
2387 and push it onto the parser's lexer stack. This is used for delayed
2388 parsing of in-class method bodies and default arguments, and should
2389 not be confused with tentative parsing. */
2390 static void
2391 cp_parser_push_lexer_for_tokens (cp_parser *parser, cp_token_cache *cache)
2392 {
2393 cp_lexer *lexer = cp_lexer_new_from_tokens (cache);
2394 lexer->next = parser->lexer;
2395 parser->lexer = lexer;
2396
2397 /* Move the current source position to that of the first token in the
2398 new lexer. */
2399 cp_lexer_set_source_position_from_token (lexer->next_token);
2400 }
2401
2402 /* Pop the top lexer off the parser stack. This is never used for the
2403 "main" lexer, only for those pushed by cp_parser_push_lexer_for_tokens. */
2404 static void
2405 cp_parser_pop_lexer (cp_parser *parser)
2406 {
2407 cp_lexer *lexer = parser->lexer;
2408 parser->lexer = lexer->next;
2409 cp_lexer_destroy (lexer);
2410
2411 /* Put the current source position back where it was before this
2412 lexer was pushed. */
2413 cp_lexer_set_source_position_from_token (parser->lexer->next_token);
2414 }
2415
2416 /* Lexical conventions [gram.lex] */
2417
2418 /* Parse an identifier. Returns an IDENTIFIER_NODE representing the
2419 identifier. */
2420
2421 static tree
2422 cp_parser_identifier (cp_parser* parser)
2423 {
2424 cp_token *token;
2425
2426 /* Look for the identifier. */
2427 token = cp_parser_require (parser, CPP_NAME, "identifier");
2428 /* Return the value. */
2429 return token ? token->value : error_mark_node;
2430 }
2431
2432 /* Parse a sequence of adjacent string constants. Returns a
2433 TREE_STRING representing the combined, nul-terminated string
2434 constant. If TRANSLATE is true, translate the string to the
2435 execution character set. If WIDE_OK is true, a wide string is
2436 invalid here.
2437
2438 C++98 [lex.string] says that if a narrow string literal token is
2439 adjacent to a wide string literal token, the behavior is undefined.
2440 However, C99 6.4.5p4 says that this results in a wide string literal.
2441 We follow C99 here, for consistency with the C front end.
2442
2443 This code is largely lifted from lex_string() in c-lex.c.
2444
2445 FUTURE: ObjC++ will need to handle @-strings here. */
2446 static tree
2447 cp_parser_string_literal (cp_parser *parser, bool translate, bool wide_ok)
2448 {
2449 tree value;
2450 bool wide = false;
2451 size_t count;
2452 struct obstack str_ob;
2453 cpp_string str, istr, *strs;
2454 cp_token *tok;
2455
2456 tok = cp_lexer_peek_token (parser->lexer);
2457 if (!cp_parser_is_string_literal (tok))
2458 {
2459 cp_parser_error (parser, "expected string-literal");
2460 return error_mark_node;
2461 }
2462
2463 /* Try to avoid the overhead of creating and destroying an obstack
2464 for the common case of just one string. */
2465 if (!cp_parser_is_string_literal
2466 (cp_lexer_peek_nth_token (parser->lexer, 2)))
2467 {
2468 cp_lexer_consume_token (parser->lexer);
2469
2470 str.text = (const unsigned char *)TREE_STRING_POINTER (tok->value);
2471 str.len = TREE_STRING_LENGTH (tok->value);
2472 count = 1;
2473 if (tok->type == CPP_WSTRING)
2474 wide = true;
2475
2476 strs = &str;
2477 }
2478 else
2479 {
2480 gcc_obstack_init (&str_ob);
2481 count = 0;
2482
2483 do
2484 {
2485 cp_lexer_consume_token (parser->lexer);
2486 count++;
2487 str.text = (unsigned char *)TREE_STRING_POINTER (tok->value);
2488 str.len = TREE_STRING_LENGTH (tok->value);
2489 if (tok->type == CPP_WSTRING)
2490 wide = true;
2491
2492 obstack_grow (&str_ob, &str, sizeof (cpp_string));
2493
2494 tok = cp_lexer_peek_token (parser->lexer);
2495 }
2496 while (cp_parser_is_string_literal (tok));
2497
2498 strs = (cpp_string *) obstack_finish (&str_ob);
2499 }
2500
2501 if (wide && !wide_ok)
2502 {
2503 cp_parser_error (parser, "a wide string is invalid in this context");
2504 wide = false;
2505 }
2506
2507 if ((translate ? cpp_interpret_string : cpp_interpret_string_notranslate)
2508 (parse_in, strs, count, &istr, wide))
2509 {
2510 value = build_string (istr.len, (char *)istr.text);
2511 free ((void *)istr.text);
2512
2513 TREE_TYPE (value) = wide ? wchar_array_type_node : char_array_type_node;
2514 value = fix_string_type (value);
2515 }
2516 else
2517 /* cpp_interpret_string has issued an error. */
2518 value = error_mark_node;
2519
2520 if (count > 1)
2521 obstack_free (&str_ob, 0);
2522
2523 return value;
2524 }
2525
2526
2527 /* Basic concepts [gram.basic] */
2528
2529 /* Parse a translation-unit.
2530
2531 translation-unit:
2532 declaration-seq [opt]
2533
2534 Returns TRUE if all went well. */
2535
2536 static bool
2537 cp_parser_translation_unit (cp_parser* parser)
2538 {
2539 /* The address of the first non-permanent object on the declarator
2540 obstack. */
2541 static void *declarator_obstack_base;
2542
2543 bool success;
2544
2545 /* Create the declarator obstack, if necessary. */
2546 if (!cp_error_declarator)
2547 {
2548 gcc_obstack_init (&declarator_obstack);
2549 /* Create the error declarator. */
2550 cp_error_declarator = make_declarator (cdk_error);
2551 /* Create the empty parameter list. */
2552 no_parameters = make_parameter_declarator (NULL, NULL, NULL_TREE);
2553 /* Remember where the base of the declarator obstack lies. */
2554 declarator_obstack_base = obstack_next_free (&declarator_obstack);
2555 }
2556
2557 while (true)
2558 {
2559 cp_parser_declaration_seq_opt (parser);
2560
2561 /* If there are no tokens left then all went well. */
2562 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2563 {
2564 /* Get rid of the token array; we don't need it any more. */
2565 cp_lexer_destroy (parser->lexer);
2566 parser->lexer = NULL;
2567
2568 /* This file might have been a context that's implicitly extern
2569 "C". If so, pop the lang context. (Only relevant for PCH.) */
2570 if (parser->implicit_extern_c)
2571 {
2572 pop_lang_context ();
2573 parser->implicit_extern_c = false;
2574 }
2575
2576 /* Finish up. */
2577 finish_translation_unit ();
2578
2579 success = true;
2580 break;
2581 }
2582 else
2583 {
2584 cp_parser_error (parser, "expected declaration");
2585 success = false;
2586 break;
2587 }
2588 }
2589
2590 /* Make sure the declarator obstack was fully cleaned up. */
2591 gcc_assert (obstack_next_free (&declarator_obstack)
2592 == declarator_obstack_base);
2593
2594 /* All went well. */
2595 return success;
2596 }
2597
2598 /* Expressions [gram.expr] */
2599
2600 /* Parse a primary-expression.
2601
2602 primary-expression:
2603 literal
2604 this
2605 ( expression )
2606 id-expression
2607
2608 GNU Extensions:
2609
2610 primary-expression:
2611 ( compound-statement )
2612 __builtin_va_arg ( assignment-expression , type-id )
2613
2614 literal:
2615 __null
2616
2617 Returns a representation of the expression.
2618
2619 *IDK indicates what kind of id-expression (if any) was present.
2620
2621 *QUALIFYING_CLASS is set to a non-NULL value if the id-expression can be
2622 used as the operand of a pointer-to-member. In that case,
2623 *QUALIFYING_CLASS gives the class that is used as the qualifying
2624 class in the pointer-to-member. */
2625
2626 static tree
2627 cp_parser_primary_expression (cp_parser *parser,
2628 cp_id_kind *idk,
2629 tree *qualifying_class)
2630 {
2631 cp_token *token;
2632
2633 /* Assume the primary expression is not an id-expression. */
2634 *idk = CP_ID_KIND_NONE;
2635 /* And that it cannot be used as pointer-to-member. */
2636 *qualifying_class = NULL_TREE;
2637
2638 /* Peek at the next token. */
2639 token = cp_lexer_peek_token (parser->lexer);
2640 switch (token->type)
2641 {
2642 /* literal:
2643 integer-literal
2644 character-literal
2645 floating-literal
2646 string-literal
2647 boolean-literal */
2648 case CPP_CHAR:
2649 case CPP_WCHAR:
2650 case CPP_NUMBER:
2651 token = cp_lexer_consume_token (parser->lexer);
2652 return token->value;
2653
2654 case CPP_STRING:
2655 case CPP_WSTRING:
2656 /* ??? Should wide strings be allowed when parser->translate_strings_p
2657 is false (i.e. in attributes)? If not, we can kill the third
2658 argument to cp_parser_string_literal. */
2659 return cp_parser_string_literal (parser,
2660 parser->translate_strings_p,
2661 true);
2662
2663 case CPP_OPEN_PAREN:
2664 {
2665 tree expr;
2666 bool saved_greater_than_is_operator_p;
2667
2668 /* Consume the `('. */
2669 cp_lexer_consume_token (parser->lexer);
2670 /* Within a parenthesized expression, a `>' token is always
2671 the greater-than operator. */
2672 saved_greater_than_is_operator_p
2673 = parser->greater_than_is_operator_p;
2674 parser->greater_than_is_operator_p = true;
2675 /* If we see `( { ' then we are looking at the beginning of
2676 a GNU statement-expression. */
2677 if (cp_parser_allow_gnu_extensions_p (parser)
2678 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
2679 {
2680 /* Statement-expressions are not allowed by the standard. */
2681 if (pedantic)
2682 pedwarn ("ISO C++ forbids braced-groups within expressions");
2683
2684 /* And they're not allowed outside of a function-body; you
2685 cannot, for example, write:
2686
2687 int i = ({ int j = 3; j + 1; });
2688
2689 at class or namespace scope. */
2690 if (!at_function_scope_p ())
2691 error ("statement-expressions are allowed only inside functions");
2692 /* Start the statement-expression. */
2693 expr = begin_stmt_expr ();
2694 /* Parse the compound-statement. */
2695 cp_parser_compound_statement (parser, expr, false);
2696 /* Finish up. */
2697 expr = finish_stmt_expr (expr, false);
2698 }
2699 else
2700 {
2701 /* Parse the parenthesized expression. */
2702 expr = cp_parser_expression (parser);
2703 /* Let the front end know that this expression was
2704 enclosed in parentheses. This matters in case, for
2705 example, the expression is of the form `A::B', since
2706 `&A::B' might be a pointer-to-member, but `&(A::B)' is
2707 not. */
2708 finish_parenthesized_expr (expr);
2709 }
2710 /* The `>' token might be the end of a template-id or
2711 template-parameter-list now. */
2712 parser->greater_than_is_operator_p
2713 = saved_greater_than_is_operator_p;
2714 /* Consume the `)'. */
2715 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
2716 cp_parser_skip_to_end_of_statement (parser);
2717
2718 return expr;
2719 }
2720
2721 case CPP_KEYWORD:
2722 switch (token->keyword)
2723 {
2724 /* These two are the boolean literals. */
2725 case RID_TRUE:
2726 cp_lexer_consume_token (parser->lexer);
2727 return boolean_true_node;
2728 case RID_FALSE:
2729 cp_lexer_consume_token (parser->lexer);
2730 return boolean_false_node;
2731
2732 /* The `__null' literal. */
2733 case RID_NULL:
2734 cp_lexer_consume_token (parser->lexer);
2735 return null_node;
2736
2737 /* Recognize the `this' keyword. */
2738 case RID_THIS:
2739 cp_lexer_consume_token (parser->lexer);
2740 if (parser->local_variables_forbidden_p)
2741 {
2742 error ("%<this%> may not be used in this context");
2743 return error_mark_node;
2744 }
2745 /* Pointers cannot appear in constant-expressions. */
2746 if (cp_parser_non_integral_constant_expression (parser,
2747 "`this'"))
2748 return error_mark_node;
2749 return finish_this_expr ();
2750
2751 /* The `operator' keyword can be the beginning of an
2752 id-expression. */
2753 case RID_OPERATOR:
2754 goto id_expression;
2755
2756 case RID_FUNCTION_NAME:
2757 case RID_PRETTY_FUNCTION_NAME:
2758 case RID_C99_FUNCTION_NAME:
2759 /* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
2760 __func__ are the names of variables -- but they are
2761 treated specially. Therefore, they are handled here,
2762 rather than relying on the generic id-expression logic
2763 below. Grammatically, these names are id-expressions.
2764
2765 Consume the token. */
2766 token = cp_lexer_consume_token (parser->lexer);
2767 /* Look up the name. */
2768 return finish_fname (token->value);
2769
2770 case RID_VA_ARG:
2771 {
2772 tree expression;
2773 tree type;
2774
2775 /* The `__builtin_va_arg' construct is used to handle
2776 `va_arg'. Consume the `__builtin_va_arg' token. */
2777 cp_lexer_consume_token (parser->lexer);
2778 /* Look for the opening `('. */
2779 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
2780 /* Now, parse the assignment-expression. */
2781 expression = cp_parser_assignment_expression (parser);
2782 /* Look for the `,'. */
2783 cp_parser_require (parser, CPP_COMMA, "`,'");
2784 /* Parse the type-id. */
2785 type = cp_parser_type_id (parser);
2786 /* Look for the closing `)'. */
2787 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
2788 /* Using `va_arg' in a constant-expression is not
2789 allowed. */
2790 if (cp_parser_non_integral_constant_expression (parser,
2791 "`va_arg'"))
2792 return error_mark_node;
2793 return build_x_va_arg (expression, type);
2794 }
2795
2796 case RID_OFFSETOF:
2797 return cp_parser_builtin_offsetof (parser);
2798
2799 default:
2800 cp_parser_error (parser, "expected primary-expression");
2801 return error_mark_node;
2802 }
2803
2804 /* An id-expression can start with either an identifier, a
2805 `::' as the beginning of a qualified-id, or the "operator"
2806 keyword. */
2807 case CPP_NAME:
2808 case CPP_SCOPE:
2809 case CPP_TEMPLATE_ID:
2810 case CPP_NESTED_NAME_SPECIFIER:
2811 {
2812 tree id_expression;
2813 tree decl;
2814 const char *error_msg;
2815
2816 id_expression:
2817 /* Parse the id-expression. */
2818 id_expression
2819 = cp_parser_id_expression (parser,
2820 /*template_keyword_p=*/false,
2821 /*check_dependency_p=*/true,
2822 /*template_p=*/NULL,
2823 /*declarator_p=*/false);
2824 if (id_expression == error_mark_node)
2825 return error_mark_node;
2826 /* If we have a template-id, then no further lookup is
2827 required. If the template-id was for a template-class, we
2828 will sometimes have a TYPE_DECL at this point. */
2829 else if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
2830 || TREE_CODE (id_expression) == TYPE_DECL)
2831 decl = id_expression;
2832 /* Look up the name. */
2833 else
2834 {
2835 bool ambiguous_p;
2836
2837 decl = cp_parser_lookup_name (parser, id_expression,
2838 none_type,
2839 /*is_template=*/false,
2840 /*is_namespace=*/false,
2841 /*check_dependency=*/true,
2842 &ambiguous_p);
2843 /* If the lookup was ambiguous, an error will already have
2844 been issued. */
2845 if (ambiguous_p)
2846 return error_mark_node;
2847 /* If name lookup gives us a SCOPE_REF, then the
2848 qualifying scope was dependent. Just propagate the
2849 name. */
2850 if (TREE_CODE (decl) == SCOPE_REF)
2851 {
2852 if (TYPE_P (TREE_OPERAND (decl, 0)))
2853 *qualifying_class = TREE_OPERAND (decl, 0);
2854 return decl;
2855 }
2856 /* Check to see if DECL is a local variable in a context
2857 where that is forbidden. */
2858 if (parser->local_variables_forbidden_p
2859 && local_variable_p (decl))
2860 {
2861 /* It might be that we only found DECL because we are
2862 trying to be generous with pre-ISO scoping rules.
2863 For example, consider:
2864
2865 int i;
2866 void g() {
2867 for (int i = 0; i < 10; ++i) {}
2868 extern void f(int j = i);
2869 }
2870
2871 Here, name look up will originally find the out
2872 of scope `i'. We need to issue a warning message,
2873 but then use the global `i'. */
2874 decl = check_for_out_of_scope_variable (decl);
2875 if (local_variable_p (decl))
2876 {
2877 error ("local variable %qD may not appear in this context",
2878 decl);
2879 return error_mark_node;
2880 }
2881 }
2882 }
2883
2884 decl = finish_id_expression (id_expression, decl, parser->scope,
2885 idk, qualifying_class,
2886 parser->integral_constant_expression_p,
2887 parser->allow_non_integral_constant_expression_p,
2888 &parser->non_integral_constant_expression_p,
2889 &error_msg);
2890 if (error_msg)
2891 cp_parser_error (parser, error_msg);
2892 return decl;
2893 }
2894
2895 /* Anything else is an error. */
2896 default:
2897 cp_parser_error (parser, "expected primary-expression");
2898 return error_mark_node;
2899 }
2900 }
2901
2902 /* Parse an id-expression.
2903
2904 id-expression:
2905 unqualified-id
2906 qualified-id
2907
2908 qualified-id:
2909 :: [opt] nested-name-specifier template [opt] unqualified-id
2910 :: identifier
2911 :: operator-function-id
2912 :: template-id
2913
2914 Return a representation of the unqualified portion of the
2915 identifier. Sets PARSER->SCOPE to the qualifying scope if there is
2916 a `::' or nested-name-specifier.
2917
2918 Often, if the id-expression was a qualified-id, the caller will
2919 want to make a SCOPE_REF to represent the qualified-id. This
2920 function does not do this in order to avoid wastefully creating
2921 SCOPE_REFs when they are not required.
2922
2923 If TEMPLATE_KEYWORD_P is true, then we have just seen the
2924 `template' keyword.
2925
2926 If CHECK_DEPENDENCY_P is false, then names are looked up inside
2927 uninstantiated templates.
2928
2929 If *TEMPLATE_P is non-NULL, it is set to true iff the
2930 `template' keyword is used to explicitly indicate that the entity
2931 named is a template.
2932
2933 If DECLARATOR_P is true, the id-expression is appearing as part of
2934 a declarator, rather than as part of an expression. */
2935
2936 static tree
2937 cp_parser_id_expression (cp_parser *parser,
2938 bool template_keyword_p,
2939 bool check_dependency_p,
2940 bool *template_p,
2941 bool declarator_p)
2942 {
2943 bool global_scope_p;
2944 bool nested_name_specifier_p;
2945
2946 /* Assume the `template' keyword was not used. */
2947 if (template_p)
2948 *template_p = false;
2949
2950 /* Look for the optional `::' operator. */
2951 global_scope_p
2952 = (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)
2953 != NULL_TREE);
2954 /* Look for the optional nested-name-specifier. */
2955 nested_name_specifier_p
2956 = (cp_parser_nested_name_specifier_opt (parser,
2957 /*typename_keyword_p=*/false,
2958 check_dependency_p,
2959 /*type_p=*/false,
2960 declarator_p)
2961 != NULL_TREE);
2962 /* If there is a nested-name-specifier, then we are looking at
2963 the first qualified-id production. */
2964 if (nested_name_specifier_p)
2965 {
2966 tree saved_scope;
2967 tree saved_object_scope;
2968 tree saved_qualifying_scope;
2969 tree unqualified_id;
2970 bool is_template;
2971
2972 /* See if the next token is the `template' keyword. */
2973 if (!template_p)
2974 template_p = &is_template;
2975 *template_p = cp_parser_optional_template_keyword (parser);
2976 /* Name lookup we do during the processing of the
2977 unqualified-id might obliterate SCOPE. */
2978 saved_scope = parser->scope;
2979 saved_object_scope = parser->object_scope;
2980 saved_qualifying_scope = parser->qualifying_scope;
2981 /* Process the final unqualified-id. */
2982 unqualified_id = cp_parser_unqualified_id (parser, *template_p,
2983 check_dependency_p,
2984 declarator_p);
2985 /* Restore the SAVED_SCOPE for our caller. */
2986 parser->scope = saved_scope;
2987 parser->object_scope = saved_object_scope;
2988 parser->qualifying_scope = saved_qualifying_scope;
2989
2990 return unqualified_id;
2991 }
2992 /* Otherwise, if we are in global scope, then we are looking at one
2993 of the other qualified-id productions. */
2994 else if (global_scope_p)
2995 {
2996 cp_token *token;
2997 tree id;
2998
2999 /* Peek at the next token. */
3000 token = cp_lexer_peek_token (parser->lexer);
3001
3002 /* If it's an identifier, and the next token is not a "<", then
3003 we can avoid the template-id case. This is an optimization
3004 for this common case. */
3005 if (token->type == CPP_NAME
3006 && !cp_parser_nth_token_starts_template_argument_list_p
3007 (parser, 2))
3008 return cp_parser_identifier (parser);
3009
3010 cp_parser_parse_tentatively (parser);
3011 /* Try a template-id. */
3012 id = cp_parser_template_id (parser,
3013 /*template_keyword_p=*/false,
3014 /*check_dependency_p=*/true,
3015 declarator_p);
3016 /* If that worked, we're done. */
3017 if (cp_parser_parse_definitely (parser))
3018 return id;
3019
3020 /* Peek at the next token. (Changes in the token buffer may
3021 have invalidated the pointer obtained above.) */
3022 token = cp_lexer_peek_token (parser->lexer);
3023
3024 switch (token->type)
3025 {
3026 case CPP_NAME:
3027 return cp_parser_identifier (parser);
3028
3029 case CPP_KEYWORD:
3030 if (token->keyword == RID_OPERATOR)
3031 return cp_parser_operator_function_id (parser);
3032 /* Fall through. */
3033
3034 default:
3035 cp_parser_error (parser, "expected id-expression");
3036 return error_mark_node;
3037 }
3038 }
3039 else
3040 return cp_parser_unqualified_id (parser, template_keyword_p,
3041 /*check_dependency_p=*/true,
3042 declarator_p);
3043 }
3044
3045 /* Parse an unqualified-id.
3046
3047 unqualified-id:
3048 identifier
3049 operator-function-id
3050 conversion-function-id
3051 ~ class-name
3052 template-id
3053
3054 If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
3055 keyword, in a construct like `A::template ...'.
3056
3057 Returns a representation of unqualified-id. For the `identifier'
3058 production, an IDENTIFIER_NODE is returned. For the `~ class-name'
3059 production a BIT_NOT_EXPR is returned; the operand of the
3060 BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the
3061 other productions, see the documentation accompanying the
3062 corresponding parsing functions. If CHECK_DEPENDENCY_P is false,
3063 names are looked up in uninstantiated templates. If DECLARATOR_P
3064 is true, the unqualified-id is appearing as part of a declarator,
3065 rather than as part of an expression. */
3066
3067 static tree
3068 cp_parser_unqualified_id (cp_parser* parser,
3069 bool template_keyword_p,
3070 bool check_dependency_p,
3071 bool declarator_p)
3072 {
3073 cp_token *token;
3074
3075 /* Peek at the next token. */
3076 token = cp_lexer_peek_token (parser->lexer);
3077
3078 switch (token->type)
3079 {
3080 case CPP_NAME:
3081 {
3082 tree id;
3083
3084 /* We don't know yet whether or not this will be a
3085 template-id. */
3086 cp_parser_parse_tentatively (parser);
3087 /* Try a template-id. */
3088 id = cp_parser_template_id (parser, template_keyword_p,
3089 check_dependency_p,
3090 declarator_p);
3091 /* If it worked, we're done. */
3092 if (cp_parser_parse_definitely (parser))
3093 return id;
3094 /* Otherwise, it's an ordinary identifier. */
3095 return cp_parser_identifier (parser);
3096 }
3097
3098 case CPP_TEMPLATE_ID:
3099 return cp_parser_template_id (parser, template_keyword_p,
3100 check_dependency_p,
3101 declarator_p);
3102
3103 case CPP_COMPL:
3104 {
3105 tree type_decl;
3106 tree qualifying_scope;
3107 tree object_scope;
3108 tree scope;
3109
3110 /* Consume the `~' token. */
3111 cp_lexer_consume_token (parser->lexer);
3112 /* Parse the class-name. The standard, as written, seems to
3113 say that:
3114
3115 template <typename T> struct S { ~S (); };
3116 template <typename T> S<T>::~S() {}
3117
3118 is invalid, since `~' must be followed by a class-name, but
3119 `S<T>' is dependent, and so not known to be a class.
3120 That's not right; we need to look in uninstantiated
3121 templates. A further complication arises from:
3122
3123 template <typename T> void f(T t) {
3124 t.T::~T();
3125 }
3126
3127 Here, it is not possible to look up `T' in the scope of `T'
3128 itself. We must look in both the current scope, and the
3129 scope of the containing complete expression.
3130
3131 Yet another issue is:
3132
3133 struct S {
3134 int S;
3135 ~S();
3136 };
3137
3138 S::~S() {}
3139
3140 The standard does not seem to say that the `S' in `~S'
3141 should refer to the type `S' and not the data member
3142 `S::S'. */
3143
3144 /* DR 244 says that we look up the name after the "~" in the
3145 same scope as we looked up the qualifying name. That idea
3146 isn't fully worked out; it's more complicated than that. */
3147 scope = parser->scope;
3148 object_scope = parser->object_scope;
3149 qualifying_scope = parser->qualifying_scope;
3150
3151 /* If the name is of the form "X::~X" it's OK. */
3152 if (scope && TYPE_P (scope)
3153 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3154 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3155 == CPP_OPEN_PAREN)
3156 && (cp_lexer_peek_token (parser->lexer)->value
3157 == TYPE_IDENTIFIER (scope)))
3158 {
3159 cp_lexer_consume_token (parser->lexer);
3160 return build_nt (BIT_NOT_EXPR, scope);
3161 }
3162
3163 /* If there was an explicit qualification (S::~T), first look
3164 in the scope given by the qualification (i.e., S). */
3165 if (scope)
3166 {
3167 cp_parser_parse_tentatively (parser);
3168 type_decl = cp_parser_class_name (parser,
3169 /*typename_keyword_p=*/false,
3170 /*template_keyword_p=*/false,
3171 none_type,
3172 /*check_dependency=*/false,
3173 /*class_head_p=*/false,
3174 declarator_p);
3175 if (cp_parser_parse_definitely (parser))
3176 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3177 }
3178 /* In "N::S::~S", look in "N" as well. */
3179 if (scope && qualifying_scope)
3180 {
3181 cp_parser_parse_tentatively (parser);
3182 parser->scope = qualifying_scope;
3183 parser->object_scope = NULL_TREE;
3184 parser->qualifying_scope = NULL_TREE;
3185 type_decl
3186 = cp_parser_class_name (parser,
3187 /*typename_keyword_p=*/false,
3188 /*template_keyword_p=*/false,
3189 none_type,
3190 /*check_dependency=*/false,
3191 /*class_head_p=*/false,
3192 declarator_p);
3193 if (cp_parser_parse_definitely (parser))
3194 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3195 }
3196 /* In "p->S::~T", look in the scope given by "*p" as well. */
3197 else if (object_scope)
3198 {
3199 cp_parser_parse_tentatively (parser);
3200 parser->scope = object_scope;
3201 parser->object_scope = NULL_TREE;
3202 parser->qualifying_scope = NULL_TREE;
3203 type_decl
3204 = cp_parser_class_name (parser,
3205 /*typename_keyword_p=*/false,
3206 /*template_keyword_p=*/false,
3207 none_type,
3208 /*check_dependency=*/false,
3209 /*class_head_p=*/false,
3210 declarator_p);
3211 if (cp_parser_parse_definitely (parser))
3212 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3213 }
3214 /* Look in the surrounding context. */
3215 parser->scope = NULL_TREE;
3216 parser->object_scope = NULL_TREE;
3217 parser->qualifying_scope = NULL_TREE;
3218 type_decl
3219 = cp_parser_class_name (parser,
3220 /*typename_keyword_p=*/false,
3221 /*template_keyword_p=*/false,
3222 none_type,
3223 /*check_dependency=*/false,
3224 /*class_head_p=*/false,
3225 declarator_p);
3226 /* If an error occurred, assume that the name of the
3227 destructor is the same as the name of the qualifying
3228 class. That allows us to keep parsing after running
3229 into ill-formed destructor names. */
3230 if (type_decl == error_mark_node && scope && TYPE_P (scope))
3231 return build_nt (BIT_NOT_EXPR, scope);
3232 else if (type_decl == error_mark_node)
3233 return error_mark_node;
3234
3235 /* [class.dtor]
3236
3237 A typedef-name that names a class shall not be used as the
3238 identifier in the declarator for a destructor declaration. */
3239 if (declarator_p
3240 && !DECL_IMPLICIT_TYPEDEF_P (type_decl)
3241 && !DECL_SELF_REFERENCE_P (type_decl))
3242 error ("typedef-name %qD used as destructor declarator",
3243 type_decl);
3244
3245 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3246 }
3247
3248 case CPP_KEYWORD:
3249 if (token->keyword == RID_OPERATOR)
3250 {
3251 tree id;
3252
3253 /* This could be a template-id, so we try that first. */
3254 cp_parser_parse_tentatively (parser);
3255 /* Try a template-id. */
3256 id = cp_parser_template_id (parser, template_keyword_p,
3257 /*check_dependency_p=*/true,
3258 declarator_p);
3259 /* If that worked, we're done. */
3260 if (cp_parser_parse_definitely (parser))
3261 return id;
3262 /* We still don't know whether we're looking at an
3263 operator-function-id or a conversion-function-id. */
3264 cp_parser_parse_tentatively (parser);
3265 /* Try an operator-function-id. */
3266 id = cp_parser_operator_function_id (parser);
3267 /* If that didn't work, try a conversion-function-id. */
3268 if (!cp_parser_parse_definitely (parser))
3269 id = cp_parser_conversion_function_id (parser);
3270
3271 return id;
3272 }
3273 /* Fall through. */
3274
3275 default:
3276 cp_parser_error (parser, "expected unqualified-id");
3277 return error_mark_node;
3278 }
3279 }
3280
3281 /* Parse an (optional) nested-name-specifier.
3282
3283 nested-name-specifier:
3284 class-or-namespace-name :: nested-name-specifier [opt]
3285 class-or-namespace-name :: template nested-name-specifier [opt]
3286
3287 PARSER->SCOPE should be set appropriately before this function is
3288 called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
3289 effect. TYPE_P is TRUE if we non-type bindings should be ignored
3290 in name lookups.
3291
3292 Sets PARSER->SCOPE to the class (TYPE) or namespace
3293 (NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
3294 it unchanged if there is no nested-name-specifier. Returns the new
3295 scope iff there is a nested-name-specifier, or NULL_TREE otherwise.
3296
3297 If IS_DECLARATION is TRUE, the nested-name-specifier is known to be
3298 part of a declaration and/or decl-specifier. */
3299
3300 static tree
3301 cp_parser_nested_name_specifier_opt (cp_parser *parser,
3302 bool typename_keyword_p,
3303 bool check_dependency_p,
3304 bool type_p,
3305 bool is_declaration)
3306 {
3307 bool success = false;
3308 tree access_check = NULL_TREE;
3309 cp_token_position start = 0;
3310 cp_token *token;
3311
3312 /* If the next token corresponds to a nested name specifier, there
3313 is no need to reparse it. However, if CHECK_DEPENDENCY_P is
3314 false, it may have been true before, in which case something
3315 like `A<X>::B<Y>::C' may have resulted in a nested-name-specifier
3316 of `A<X>::', where it should now be `A<X>::B<Y>::'. So, when
3317 CHECK_DEPENDENCY_P is false, we have to fall through into the
3318 main loop. */
3319 if (check_dependency_p
3320 && cp_lexer_next_token_is (parser->lexer, CPP_NESTED_NAME_SPECIFIER))
3321 {
3322 cp_parser_pre_parsed_nested_name_specifier (parser);
3323 return parser->scope;
3324 }
3325
3326 /* Remember where the nested-name-specifier starts. */
3327 if (cp_parser_parsing_tentatively (parser)
3328 && !cp_parser_committed_to_tentative_parse (parser))
3329 start = cp_lexer_token_position (parser->lexer, false);
3330
3331 push_deferring_access_checks (dk_deferred);
3332
3333 while (true)
3334 {
3335 tree new_scope;
3336 tree old_scope;
3337 tree saved_qualifying_scope;
3338 bool template_keyword_p;
3339
3340 /* Spot cases that cannot be the beginning of a
3341 nested-name-specifier. */
3342 token = cp_lexer_peek_token (parser->lexer);
3343
3344 /* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
3345 the already parsed nested-name-specifier. */
3346 if (token->type == CPP_NESTED_NAME_SPECIFIER)
3347 {
3348 /* Grab the nested-name-specifier and continue the loop. */
3349 cp_parser_pre_parsed_nested_name_specifier (parser);
3350 success = true;
3351 continue;
3352 }
3353
3354 /* Spot cases that cannot be the beginning of a
3355 nested-name-specifier. On the second and subsequent times
3356 through the loop, we look for the `template' keyword. */
3357 if (success && token->keyword == RID_TEMPLATE)
3358 ;
3359 /* A template-id can start a nested-name-specifier. */
3360 else if (token->type == CPP_TEMPLATE_ID)
3361 ;
3362 else
3363 {
3364 /* If the next token is not an identifier, then it is
3365 definitely not a class-or-namespace-name. */
3366 if (token->type != CPP_NAME)
3367 break;
3368 /* If the following token is neither a `<' (to begin a
3369 template-id), nor a `::', then we are not looking at a
3370 nested-name-specifier. */
3371 token = cp_lexer_peek_nth_token (parser->lexer, 2);
3372 if (token->type != CPP_SCOPE
3373 && !cp_parser_nth_token_starts_template_argument_list_p
3374 (parser, 2))
3375 break;
3376 }
3377
3378 /* The nested-name-specifier is optional, so we parse
3379 tentatively. */
3380 cp_parser_parse_tentatively (parser);
3381
3382 /* Look for the optional `template' keyword, if this isn't the
3383 first time through the loop. */
3384 if (success)
3385 template_keyword_p = cp_parser_optional_template_keyword (parser);
3386 else
3387 template_keyword_p = false;
3388
3389 /* Save the old scope since the name lookup we are about to do
3390 might destroy it. */
3391 old_scope = parser->scope;
3392 saved_qualifying_scope = parser->qualifying_scope;
3393 /* In a declarator-id like "X<T>::I::Y<T>" we must be able to
3394 look up names in "X<T>::I" in order to determine that "Y" is
3395 a template. So, if we have a typename at this point, we make
3396 an effort to look through it. */
3397 if (is_declaration
3398 && !typename_keyword_p
3399 && parser->scope
3400 && TREE_CODE (parser->scope) == TYPENAME_TYPE)
3401 parser->scope = resolve_typename_type (parser->scope,
3402 /*only_current_p=*/false);
3403 /* Parse the qualifying entity. */
3404 new_scope
3405 = cp_parser_class_or_namespace_name (parser,
3406 typename_keyword_p,
3407 template_keyword_p,
3408 check_dependency_p,
3409 type_p,
3410 is_declaration);
3411 /* Look for the `::' token. */
3412 cp_parser_require (parser, CPP_SCOPE, "`::'");
3413
3414 /* If we found what we wanted, we keep going; otherwise, we're
3415 done. */
3416 if (!cp_parser_parse_definitely (parser))
3417 {
3418 bool error_p = false;
3419
3420 /* Restore the OLD_SCOPE since it was valid before the
3421 failed attempt at finding the last
3422 class-or-namespace-name. */
3423 parser->scope = old_scope;
3424 parser->qualifying_scope = saved_qualifying_scope;
3425 /* If the next token is an identifier, and the one after
3426 that is a `::', then any valid interpretation would have
3427 found a class-or-namespace-name. */
3428 while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3429 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3430 == CPP_SCOPE)
3431 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
3432 != CPP_COMPL))
3433 {
3434 token = cp_lexer_consume_token (parser->lexer);
3435 if (!error_p)
3436 {
3437 tree decl;
3438
3439 decl = cp_parser_lookup_name_simple (parser, token->value);
3440 if (TREE_CODE (decl) == TEMPLATE_DECL)
3441 error ("%qD used without template parameters", decl);
3442 else
3443 cp_parser_name_lookup_error
3444 (parser, token->value, decl,
3445 "is not a class or namespace");
3446 parser->scope = NULL_TREE;
3447 error_p = true;
3448 /* Treat this as a successful nested-name-specifier
3449 due to:
3450
3451 [basic.lookup.qual]
3452
3453 If the name found is not a class-name (clause
3454 _class_) or namespace-name (_namespace.def_), the
3455 program is ill-formed. */
3456 success = true;
3457 }
3458 cp_lexer_consume_token (parser->lexer);
3459 }
3460 break;
3461 }
3462
3463 /* We've found one valid nested-name-specifier. */
3464 success = true;
3465 /* Make sure we look in the right scope the next time through
3466 the loop. */
3467 parser->scope = (TREE_CODE (new_scope) == TYPE_DECL
3468 ? TREE_TYPE (new_scope)
3469 : new_scope);
3470 /* If it is a class scope, try to complete it; we are about to
3471 be looking up names inside the class. */
3472 if (TYPE_P (parser->scope)
3473 /* Since checking types for dependency can be expensive,
3474 avoid doing it if the type is already complete. */
3475 && !COMPLETE_TYPE_P (parser->scope)
3476 /* Do not try to complete dependent types. */
3477 && !dependent_type_p (parser->scope))
3478 complete_type (parser->scope);
3479 }
3480
3481 /* Retrieve any deferred checks. Do not pop this access checks yet
3482 so the memory will not be reclaimed during token replacing below. */
3483 access_check = get_deferred_access_checks ();
3484
3485 /* If parsing tentatively, replace the sequence of tokens that makes
3486 up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
3487 token. That way, should we re-parse the token stream, we will
3488 not have to repeat the effort required to do the parse, nor will
3489 we issue duplicate error messages. */
3490 if (success && start)
3491 {
3492 cp_token *token = cp_lexer_token_at (parser->lexer, start);
3493
3494 /* Reset the contents of the START token. */
3495 token->type = CPP_NESTED_NAME_SPECIFIER;
3496 token->value = build_tree_list (access_check, parser->scope);
3497 TREE_TYPE (token->value) = parser->qualifying_scope;
3498 token->keyword = RID_MAX;
3499
3500 /* Purge all subsequent tokens. */
3501 cp_lexer_purge_tokens_after (parser->lexer, start);
3502 }
3503
3504 pop_deferring_access_checks ();
3505 return success ? parser->scope : NULL_TREE;
3506 }
3507
3508 /* Parse a nested-name-specifier. See
3509 cp_parser_nested_name_specifier_opt for details. This function
3510 behaves identically, except that it will an issue an error if no
3511 nested-name-specifier is present, and it will return
3512 ERROR_MARK_NODE, rather than NULL_TREE, if no nested-name-specifier
3513 is present. */
3514
3515 static tree
3516 cp_parser_nested_name_specifier (cp_parser *parser,
3517 bool typename_keyword_p,
3518 bool check_dependency_p,
3519 bool type_p,
3520 bool is_declaration)
3521 {
3522 tree scope;
3523
3524 /* Look for the nested-name-specifier. */
3525 scope = cp_parser_nested_name_specifier_opt (parser,
3526 typename_keyword_p,
3527 check_dependency_p,
3528 type_p,
3529 is_declaration);
3530 /* If it was not present, issue an error message. */
3531 if (!scope)
3532 {
3533 cp_parser_error (parser, "expected nested-name-specifier");
3534 parser->scope = NULL_TREE;
3535 return error_mark_node;
3536 }
3537
3538 return scope;
3539 }
3540
3541 /* Parse a class-or-namespace-name.
3542
3543 class-or-namespace-name:
3544 class-name
3545 namespace-name
3546
3547 TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
3548 TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
3549 CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
3550 TYPE_P is TRUE iff the next name should be taken as a class-name,
3551 even the same name is declared to be another entity in the same
3552 scope.
3553
3554 Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
3555 specified by the class-or-namespace-name. If neither is found the
3556 ERROR_MARK_NODE is returned. */
3557
3558 static tree
3559 cp_parser_class_or_namespace_name (cp_parser *parser,
3560 bool typename_keyword_p,
3561 bool template_keyword_p,
3562 bool check_dependency_p,
3563 bool type_p,
3564 bool is_declaration)
3565 {
3566 tree saved_scope;
3567 tree saved_qualifying_scope;
3568 tree saved_object_scope;
3569 tree scope;
3570 bool only_class_p;
3571
3572 /* Before we try to parse the class-name, we must save away the
3573 current PARSER->SCOPE since cp_parser_class_name will destroy
3574 it. */
3575 saved_scope = parser->scope;
3576 saved_qualifying_scope = parser->qualifying_scope;
3577 saved_object_scope = parser->object_scope;
3578 /* Try for a class-name first. If the SAVED_SCOPE is a type, then
3579 there is no need to look for a namespace-name. */
3580 only_class_p = template_keyword_p || (saved_scope && TYPE_P (saved_scope));
3581 if (!only_class_p)
3582 cp_parser_parse_tentatively (parser);
3583 scope = cp_parser_class_name (parser,
3584 typename_keyword_p,
3585 template_keyword_p,
3586 type_p ? class_type : none_type,
3587 check_dependency_p,
3588 /*class_head_p=*/false,
3589 is_declaration);
3590 /* If that didn't work, try for a namespace-name. */
3591 if (!only_class_p && !cp_parser_parse_definitely (parser))
3592 {
3593 /* Restore the saved scope. */
3594 parser->scope = saved_scope;
3595 parser->qualifying_scope = saved_qualifying_scope;
3596 parser->object_scope = saved_object_scope;
3597 /* If we are not looking at an identifier followed by the scope
3598 resolution operator, then this is not part of a
3599 nested-name-specifier. (Note that this function is only used
3600 to parse the components of a nested-name-specifier.) */
3601 if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
3602 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
3603 return error_mark_node;
3604 scope = cp_parser_namespace_name (parser);
3605 }
3606
3607 return scope;
3608 }
3609
3610 /* Parse a postfix-expression.
3611
3612 postfix-expression:
3613 primary-expression
3614 postfix-expression [ expression ]
3615 postfix-expression ( expression-list [opt] )
3616 simple-type-specifier ( expression-list [opt] )
3617 typename :: [opt] nested-name-specifier identifier
3618 ( expression-list [opt] )
3619 typename :: [opt] nested-name-specifier template [opt] template-id
3620 ( expression-list [opt] )
3621 postfix-expression . template [opt] id-expression
3622 postfix-expression -> template [opt] id-expression
3623 postfix-expression . pseudo-destructor-name
3624 postfix-expression -> pseudo-destructor-name
3625 postfix-expression ++
3626 postfix-expression --
3627 dynamic_cast < type-id > ( expression )
3628 static_cast < type-id > ( expression )
3629 reinterpret_cast < type-id > ( expression )
3630 const_cast < type-id > ( expression )
3631 typeid ( expression )
3632 typeid ( type-id )
3633
3634 GNU Extension:
3635
3636 postfix-expression:
3637 ( type-id ) { initializer-list , [opt] }
3638
3639 This extension is a GNU version of the C99 compound-literal
3640 construct. (The C99 grammar uses `type-name' instead of `type-id',
3641 but they are essentially the same concept.)
3642
3643 If ADDRESS_P is true, the postfix expression is the operand of the
3644 `&' operator.
3645
3646 Returns a representation of the expression. */
3647
3648 static tree
3649 cp_parser_postfix_expression (cp_parser *parser, bool address_p)
3650 {
3651 cp_token *token;
3652 enum rid keyword;
3653 cp_id_kind idk = CP_ID_KIND_NONE;
3654 tree postfix_expression = NULL_TREE;
3655 /* Non-NULL only if the current postfix-expression can be used to
3656 form a pointer-to-member. In that case, QUALIFYING_CLASS is the
3657 class used to qualify the member. */
3658 tree qualifying_class = NULL_TREE;
3659
3660 /* Peek at the next token. */
3661 token = cp_lexer_peek_token (parser->lexer);
3662 /* Some of the productions are determined by keywords. */
3663 keyword = token->keyword;
3664 switch (keyword)
3665 {
3666 case RID_DYNCAST:
3667 case RID_STATCAST:
3668 case RID_REINTCAST:
3669 case RID_CONSTCAST:
3670 {
3671 tree type;
3672 tree expression;
3673 const char *saved_message;
3674
3675 /* All of these can be handled in the same way from the point
3676 of view of parsing. Begin by consuming the token
3677 identifying the cast. */
3678 cp_lexer_consume_token (parser->lexer);
3679
3680 /* New types cannot be defined in the cast. */
3681 saved_message = parser->type_definition_forbidden_message;
3682 parser->type_definition_forbidden_message
3683 = "types may not be defined in casts";
3684
3685 /* Look for the opening `<'. */
3686 cp_parser_require (parser, CPP_LESS, "`<'");
3687 /* Parse the type to which we are casting. */
3688 type = cp_parser_type_id (parser);
3689 /* Look for the closing `>'. */
3690 cp_parser_require (parser, CPP_GREATER, "`>'");
3691 /* Restore the old message. */
3692 parser->type_definition_forbidden_message = saved_message;
3693
3694 /* And the expression which is being cast. */
3695 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3696 expression = cp_parser_expression (parser);
3697 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3698
3699 /* Only type conversions to integral or enumeration types
3700 can be used in constant-expressions. */
3701 if (parser->integral_constant_expression_p
3702 && !dependent_type_p (type)
3703 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
3704 && (cp_parser_non_integral_constant_expression
3705 (parser,
3706 "a cast to a type other than an integral or "
3707 "enumeration type")))
3708 return error_mark_node;
3709
3710 switch (keyword)
3711 {
3712 case RID_DYNCAST:
3713 postfix_expression
3714 = build_dynamic_cast (type, expression);
3715 break;
3716 case RID_STATCAST:
3717 postfix_expression
3718 = build_static_cast (type, expression);
3719 break;
3720 case RID_REINTCAST:
3721 postfix_expression
3722 = build_reinterpret_cast (type, expression);
3723 break;
3724 case RID_CONSTCAST:
3725 postfix_expression
3726 = build_const_cast (type, expression);
3727 break;
3728 default:
3729 gcc_unreachable ();
3730 }
3731 }
3732 break;
3733
3734 case RID_TYPEID:
3735 {
3736 tree type;
3737 const char *saved_message;
3738 bool saved_in_type_id_in_expr_p;
3739
3740 /* Consume the `typeid' token. */
3741 cp_lexer_consume_token (parser->lexer);
3742 /* Look for the `(' token. */
3743 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3744 /* Types cannot be defined in a `typeid' expression. */
3745 saved_message = parser->type_definition_forbidden_message;
3746 parser->type_definition_forbidden_message
3747 = "types may not be defined in a `typeid\' expression";
3748 /* We can't be sure yet whether we're looking at a type-id or an
3749 expression. */
3750 cp_parser_parse_tentatively (parser);
3751 /* Try a type-id first. */
3752 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3753 parser->in_type_id_in_expr_p = true;
3754 type = cp_parser_type_id (parser);
3755 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3756 /* Look for the `)' token. Otherwise, we can't be sure that
3757 we're not looking at an expression: consider `typeid (int
3758 (3))', for example. */
3759 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3760 /* If all went well, simply lookup the type-id. */
3761 if (cp_parser_parse_definitely (parser))
3762 postfix_expression = get_typeid (type);
3763 /* Otherwise, fall back to the expression variant. */
3764 else
3765 {
3766 tree expression;
3767
3768 /* Look for an expression. */
3769 expression = cp_parser_expression (parser);
3770 /* Compute its typeid. */
3771 postfix_expression = build_typeid (expression);
3772 /* Look for the `)' token. */
3773 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3774 }
3775 /* `typeid' may not appear in an integral constant expression. */
3776 if (cp_parser_non_integral_constant_expression(parser,
3777 "`typeid' operator"))
3778 return error_mark_node;
3779 /* Restore the saved message. */
3780 parser->type_definition_forbidden_message = saved_message;
3781 }
3782 break;
3783
3784 case RID_TYPENAME:
3785 {
3786 bool template_p = false;
3787 tree id;
3788 tree type;
3789
3790 /* Consume the `typename' token. */
3791 cp_lexer_consume_token (parser->lexer);
3792 /* Look for the optional `::' operator. */
3793 cp_parser_global_scope_opt (parser,
3794 /*current_scope_valid_p=*/false);
3795 /* Look for the nested-name-specifier. */
3796 cp_parser_nested_name_specifier (parser,
3797 /*typename_keyword_p=*/true,
3798 /*check_dependency_p=*/true,
3799 /*type_p=*/true,
3800 /*is_declaration=*/true);
3801 /* Look for the optional `template' keyword. */
3802 template_p = cp_parser_optional_template_keyword (parser);
3803 /* We don't know whether we're looking at a template-id or an
3804 identifier. */
3805 cp_parser_parse_tentatively (parser);
3806 /* Try a template-id. */
3807 id = cp_parser_template_id (parser, template_p,
3808 /*check_dependency_p=*/true,
3809 /*is_declaration=*/true);
3810 /* If that didn't work, try an identifier. */
3811 if (!cp_parser_parse_definitely (parser))
3812 id = cp_parser_identifier (parser);
3813 /* If we look up a template-id in a non-dependent qualifying
3814 scope, there's no need to create a dependent type. */
3815 if (TREE_CODE (id) == TYPE_DECL
3816 && !dependent_type_p (parser->scope))
3817 type = TREE_TYPE (id);
3818 /* Create a TYPENAME_TYPE to represent the type to which the
3819 functional cast is being performed. */
3820 else
3821 type = make_typename_type (parser->scope, id,
3822 typename_type,
3823 /*complain=*/1);
3824
3825 postfix_expression = cp_parser_functional_cast (parser, type);
3826 }
3827 break;
3828
3829 default:
3830 {
3831 tree type;
3832
3833 /* If the next thing is a simple-type-specifier, we may be
3834 looking at a functional cast. We could also be looking at
3835 an id-expression. So, we try the functional cast, and if
3836 that doesn't work we fall back to the primary-expression. */
3837 cp_parser_parse_tentatively (parser);
3838 /* Look for the simple-type-specifier. */
3839 type = cp_parser_simple_type_specifier (parser,
3840 /*decl_specs=*/NULL,
3841 CP_PARSER_FLAGS_NONE);
3842 /* Parse the cast itself. */
3843 if (!cp_parser_error_occurred (parser))
3844 postfix_expression
3845 = cp_parser_functional_cast (parser, type);
3846 /* If that worked, we're done. */
3847 if (cp_parser_parse_definitely (parser))
3848 break;
3849
3850 /* If the functional-cast didn't work out, try a
3851 compound-literal. */
3852 if (cp_parser_allow_gnu_extensions_p (parser)
3853 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
3854 {
3855 tree initializer_list = NULL_TREE;
3856 bool saved_in_type_id_in_expr_p;
3857
3858 cp_parser_parse_tentatively (parser);
3859 /* Consume the `('. */
3860 cp_lexer_consume_token (parser->lexer);
3861 /* Parse the type. */
3862 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3863 parser->in_type_id_in_expr_p = true;
3864 type = cp_parser_type_id (parser);
3865 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3866 /* Look for the `)'. */
3867 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3868 /* Look for the `{'. */
3869 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
3870 /* If things aren't going well, there's no need to
3871 keep going. */
3872 if (!cp_parser_error_occurred (parser))
3873 {
3874 bool non_constant_p;
3875 /* Parse the initializer-list. */
3876 initializer_list
3877 = cp_parser_initializer_list (parser, &non_constant_p);
3878 /* Allow a trailing `,'. */
3879 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
3880 cp_lexer_consume_token (parser->lexer);
3881 /* Look for the final `}'. */
3882 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
3883 }
3884 /* If that worked, we're definitely looking at a
3885 compound-literal expression. */
3886 if (cp_parser_parse_definitely (parser))
3887 {
3888 /* Warn the user that a compound literal is not
3889 allowed in standard C++. */
3890 if (pedantic)
3891 pedwarn ("ISO C++ forbids compound-literals");
3892 /* Form the representation of the compound-literal. */
3893 postfix_expression
3894 = finish_compound_literal (type, initializer_list);
3895 break;
3896 }
3897 }
3898
3899 /* It must be a primary-expression. */
3900 postfix_expression = cp_parser_primary_expression (parser,
3901 &idk,
3902 &qualifying_class);
3903 }
3904 break;
3905 }
3906
3907 /* If we were avoiding committing to the processing of a
3908 qualified-id until we knew whether or not we had a
3909 pointer-to-member, we now know. */
3910 if (qualifying_class)
3911 {
3912 bool done;
3913
3914 /* Peek at the next token. */
3915 token = cp_lexer_peek_token (parser->lexer);
3916 done = (token->type != CPP_OPEN_SQUARE
3917 && token->type != CPP_OPEN_PAREN
3918 && token->type != CPP_DOT
3919 && token->type != CPP_DEREF
3920 && token->type != CPP_PLUS_PLUS
3921 && token->type != CPP_MINUS_MINUS);
3922
3923 postfix_expression = finish_qualified_id_expr (qualifying_class,
3924 postfix_expression,
3925 done,
3926 address_p);
3927 if (done)
3928 return postfix_expression;
3929 }
3930
3931 /* Keep looping until the postfix-expression is complete. */
3932 while (true)
3933 {
3934 if (idk == CP_ID_KIND_UNQUALIFIED
3935 && TREE_CODE (postfix_expression) == IDENTIFIER_NODE
3936 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
3937 /* It is not a Koenig lookup function call. */
3938 postfix_expression
3939 = unqualified_name_lookup_error (postfix_expression);
3940
3941 /* Peek at the next token. */
3942 token = cp_lexer_peek_token (parser->lexer);
3943
3944 switch (token->type)
3945 {
3946 case CPP_OPEN_SQUARE:
3947 postfix_expression
3948 = cp_parser_postfix_open_square_expression (parser,
3949 postfix_expression,
3950 false);
3951 idk = CP_ID_KIND_NONE;
3952 break;
3953
3954 case CPP_OPEN_PAREN:
3955 /* postfix-expression ( expression-list [opt] ) */
3956 {
3957 bool koenig_p;
3958 tree args = (cp_parser_parenthesized_expression_list
3959 (parser, false, /*non_constant_p=*/NULL));
3960
3961 if (args == error_mark_node)
3962 {
3963 postfix_expression = error_mark_node;
3964 break;
3965 }
3966
3967 /* Function calls are not permitted in
3968 constant-expressions. */
3969 if (cp_parser_non_integral_constant_expression (parser,
3970 "a function call"))
3971 {
3972 postfix_expression = error_mark_node;
3973 break;
3974 }
3975
3976 koenig_p = false;
3977 if (idk == CP_ID_KIND_UNQUALIFIED)
3978 {
3979 if (TREE_CODE (postfix_expression) == IDENTIFIER_NODE)
3980 {
3981 if (args)
3982 {
3983 koenig_p = true;
3984 postfix_expression
3985 = perform_koenig_lookup (postfix_expression, args);
3986 }
3987 else
3988 postfix_expression
3989 = unqualified_fn_lookup_error (postfix_expression);
3990 }
3991 /* We do not perform argument-dependent lookup if
3992 normal lookup finds a non-function, in accordance
3993 with the expected resolution of DR 218. */
3994 else if (args && is_overloaded_fn (postfix_expression))
3995 {
3996 tree fn = get_first_fn (postfix_expression);
3997
3998 if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
3999 fn = OVL_CURRENT (TREE_OPERAND (fn, 0));
4000
4001 /* Only do argument dependent lookup if regular
4002 lookup does not find a set of member functions.
4003 [basic.lookup.koenig]/2a */
4004 if (!DECL_FUNCTION_MEMBER_P (fn))
4005 {
4006 koenig_p = true;
4007 postfix_expression
4008 = perform_koenig_lookup (postfix_expression, args);
4009 }
4010 }
4011 }
4012
4013 if (TREE_CODE (postfix_expression) == COMPONENT_REF)
4014 {
4015 tree instance = TREE_OPERAND (postfix_expression, 0);
4016 tree fn = TREE_OPERAND (postfix_expression, 1);
4017
4018 if (processing_template_decl
4019 && (type_dependent_expression_p (instance)
4020 || (!BASELINK_P (fn)
4021 && TREE_CODE (fn) != FIELD_DECL)
4022 || type_dependent_expression_p (fn)
4023 || any_type_dependent_arguments_p (args)))
4024 {
4025 postfix_expression
4026 = build_min_nt (CALL_EXPR, postfix_expression,
4027 args, NULL_TREE);
4028 break;
4029 }
4030
4031 if (BASELINK_P (fn))
4032 postfix_expression
4033 = (build_new_method_call
4034 (instance, fn, args, NULL_TREE,
4035 (idk == CP_ID_KIND_QUALIFIED
4036 ? LOOKUP_NONVIRTUAL : LOOKUP_NORMAL)));
4037 else
4038 postfix_expression
4039 = finish_call_expr (postfix_expression, args,
4040 /*disallow_virtual=*/false,
4041 /*koenig_p=*/false);
4042 }
4043 else if (TREE_CODE (postfix_expression) == OFFSET_REF
4044 || TREE_CODE (postfix_expression) == MEMBER_REF
4045 || TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
4046 postfix_expression = (build_offset_ref_call_from_tree
4047 (postfix_expression, args));
4048 else if (idk == CP_ID_KIND_QUALIFIED)
4049 /* A call to a static class member, or a namespace-scope
4050 function. */
4051 postfix_expression
4052 = finish_call_expr (postfix_expression, args,
4053 /*disallow_virtual=*/true,
4054 koenig_p);
4055 else
4056 /* All other function calls. */
4057 postfix_expression
4058 = finish_call_expr (postfix_expression, args,
4059 /*disallow_virtual=*/false,
4060 koenig_p);
4061
4062 /* The POSTFIX_EXPRESSION is certainly no longer an id. */
4063 idk = CP_ID_KIND_NONE;
4064 }
4065 break;
4066
4067 case CPP_DOT:
4068 case CPP_DEREF:
4069 /* postfix-expression . template [opt] id-expression
4070 postfix-expression . pseudo-destructor-name
4071 postfix-expression -> template [opt] id-expression
4072 postfix-expression -> pseudo-destructor-name */
4073
4074 /* Consume the `.' or `->' operator. */
4075 cp_lexer_consume_token (parser->lexer);
4076
4077 postfix_expression
4078 = cp_parser_postfix_dot_deref_expression (parser, token->type,
4079 postfix_expression,
4080 false, &idk);
4081 break;
4082
4083 case CPP_PLUS_PLUS:
4084 /* postfix-expression ++ */
4085 /* Consume the `++' token. */
4086 cp_lexer_consume_token (parser->lexer);
4087 /* Generate a representation for the complete expression. */
4088 postfix_expression
4089 = finish_increment_expr (postfix_expression,
4090 POSTINCREMENT_EXPR);
4091 /* Increments may not appear in constant-expressions. */
4092 if (cp_parser_non_integral_constant_expression (parser,
4093 "an increment"))
4094 postfix_expression = error_mark_node;
4095 idk = CP_ID_KIND_NONE;
4096 break;
4097
4098 case CPP_MINUS_MINUS:
4099 /* postfix-expression -- */
4100 /* Consume the `--' token. */
4101 cp_lexer_consume_token (parser->lexer);
4102 /* Generate a representation for the complete expression. */
4103 postfix_expression
4104 = finish_increment_expr (postfix_expression,
4105 POSTDECREMENT_EXPR);
4106 /* Decrements may not appear in constant-expressions. */
4107 if (cp_parser_non_integral_constant_expression (parser,
4108 "a decrement"))
4109 postfix_expression = error_mark_node;
4110 idk = CP_ID_KIND_NONE;
4111 break;
4112
4113 default:
4114 return postfix_expression;
4115 }
4116 }
4117
4118 /* We should never get here. */
4119 gcc_unreachable ();
4120 return error_mark_node;
4121 }
4122
4123 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4124 by cp_parser_builtin_offsetof. We're looking for
4125
4126 postfix-expression [ expression ]
4127
4128 FOR_OFFSETOF is set if we're being called in that context, which
4129 changes how we deal with integer constant expressions. */
4130
4131 static tree
4132 cp_parser_postfix_open_square_expression (cp_parser *parser,
4133 tree postfix_expression,
4134 bool for_offsetof)
4135 {
4136 tree index;
4137
4138 /* Consume the `[' token. */
4139 cp_lexer_consume_token (parser->lexer);
4140
4141 /* Parse the index expression. */
4142 /* ??? For offsetof, there is a question of what to allow here. If
4143 offsetof is not being used in an integral constant expression context,
4144 then we *could* get the right answer by computing the value at runtime.
4145 If we are in an integral constant expression context, then we might
4146 could accept any constant expression; hard to say without analysis.
4147 Rather than open the barn door too wide right away, allow only integer
4148 constant expressions here. */
4149 if (for_offsetof)
4150 index = cp_parser_constant_expression (parser, false, NULL);
4151 else
4152 index = cp_parser_expression (parser);
4153
4154 /* Look for the closing `]'. */
4155 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
4156
4157 /* Build the ARRAY_REF. */
4158 postfix_expression = grok_array_decl (postfix_expression, index);
4159
4160 /* When not doing offsetof, array references are not permitted in
4161 constant-expressions. */
4162 if (!for_offsetof
4163 && (cp_parser_non_integral_constant_expression
4164 (parser, "an array reference")))
4165 postfix_expression = error_mark_node;
4166
4167 return postfix_expression;
4168 }
4169
4170 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4171 by cp_parser_builtin_offsetof. We're looking for
4172
4173 postfix-expression . template [opt] id-expression
4174 postfix-expression . pseudo-destructor-name
4175 postfix-expression -> template [opt] id-expression
4176 postfix-expression -> pseudo-destructor-name
4177
4178 FOR_OFFSETOF is set if we're being called in that context. That sorta
4179 limits what of the above we'll actually accept, but nevermind.
4180 TOKEN_TYPE is the "." or "->" token, which will already have been
4181 removed from the stream. */
4182
4183 static tree
4184 cp_parser_postfix_dot_deref_expression (cp_parser *parser,
4185 enum cpp_ttype token_type,
4186 tree postfix_expression,
4187 bool for_offsetof, cp_id_kind *idk)
4188 {
4189 tree name;
4190 bool dependent_p;
4191 bool template_p;
4192 bool pseudo_destructor_p;
4193 tree scope = NULL_TREE;
4194
4195 /* If this is a `->' operator, dereference the pointer. */
4196 if (token_type == CPP_DEREF)
4197 postfix_expression = build_x_arrow (postfix_expression);
4198 /* Check to see whether or not the expression is type-dependent. */
4199 dependent_p = type_dependent_expression_p (postfix_expression);
4200 /* The identifier following the `->' or `.' is not qualified. */
4201 parser->scope = NULL_TREE;
4202 parser->qualifying_scope = NULL_TREE;
4203 parser->object_scope = NULL_TREE;
4204 *idk = CP_ID_KIND_NONE;
4205 /* Enter the scope corresponding to the type of the object
4206 given by the POSTFIX_EXPRESSION. */
4207 if (!dependent_p && TREE_TYPE (postfix_expression) != NULL_TREE)
4208 {
4209 scope = TREE_TYPE (postfix_expression);
4210 /* According to the standard, no expression should ever have
4211 reference type. Unfortunately, we do not currently match
4212 the standard in this respect in that our internal representation
4213 of an expression may have reference type even when the standard
4214 says it does not. Therefore, we have to manually obtain the
4215 underlying type here. */
4216 scope = non_reference (scope);
4217 /* The type of the POSTFIX_EXPRESSION must be complete. */
4218 scope = complete_type_or_else (scope, NULL_TREE);
4219 /* Let the name lookup machinery know that we are processing a
4220 class member access expression. */
4221 parser->context->object_type = scope;
4222 /* If something went wrong, we want to be able to discern that case,
4223 as opposed to the case where there was no SCOPE due to the type
4224 of expression being dependent. */
4225 if (!scope)
4226 scope = error_mark_node;
4227 /* If the SCOPE was erroneous, make the various semantic analysis
4228 functions exit quickly -- and without issuing additional error
4229 messages. */
4230 if (scope == error_mark_node)
4231 postfix_expression = error_mark_node;
4232 }
4233
4234 /* Assume this expression is not a pseudo-destructor access. */
4235 pseudo_destructor_p = false;
4236
4237 /* If the SCOPE is a scalar type, then, if this is a valid program,
4238 we must be looking at a pseudo-destructor-name. */
4239 if (scope && SCALAR_TYPE_P (scope))
4240 {
4241 tree s;
4242 tree type;
4243
4244 cp_parser_parse_tentatively (parser);
4245 /* Parse the pseudo-destructor-name. */
4246 s = NULL_TREE;
4247 cp_parser_pseudo_destructor_name (parser, &s, &type);
4248 if (cp_parser_parse_definitely (parser))
4249 {
4250 pseudo_destructor_p = true;
4251 postfix_expression
4252 = finish_pseudo_destructor_expr (postfix_expression,
4253 s, TREE_TYPE (type));
4254 }
4255 }
4256
4257 if (!pseudo_destructor_p)
4258 {
4259 /* If the SCOPE is not a scalar type, we are looking at an
4260 ordinary class member access expression, rather than a
4261 pseudo-destructor-name. */
4262 template_p = cp_parser_optional_template_keyword (parser);
4263 /* Parse the id-expression. */
4264 name = cp_parser_id_expression (parser, template_p,
4265 /*check_dependency_p=*/true,
4266 /*template_p=*/NULL,
4267 /*declarator_p=*/false);
4268 /* In general, build a SCOPE_REF if the member name is qualified.
4269 However, if the name was not dependent and has already been
4270 resolved; there is no need to build the SCOPE_REF. For example;
4271
4272 struct X { void f(); };
4273 template <typename T> void f(T* t) { t->X::f(); }
4274
4275 Even though "t" is dependent, "X::f" is not and has been resolved
4276 to a BASELINK; there is no need to include scope information. */
4277
4278 /* But we do need to remember that there was an explicit scope for
4279 virtual function calls. */
4280 if (parser->scope)
4281 *idk = CP_ID_KIND_QUALIFIED;
4282
4283 /* If the name is a template-id that names a type, we will get a
4284 TYPE_DECL here. That is invalid code. */
4285 if (TREE_CODE (name) == TYPE_DECL)
4286 {
4287 error ("invalid use of %qD", name);
4288 postfix_expression = error_mark_node;
4289 }
4290 else
4291 {
4292 if (name != error_mark_node && !BASELINK_P (name) && parser->scope)
4293 {
4294 name = build_nt (SCOPE_REF, parser->scope, name);
4295 parser->scope = NULL_TREE;
4296 parser->qualifying_scope = NULL_TREE;
4297 parser->object_scope = NULL_TREE;
4298 }
4299 if (scope && name && BASELINK_P (name))
4300 adjust_result_of_qualified_name_lookup
4301 (name, BINFO_TYPE (BASELINK_BINFO (name)), scope);
4302 postfix_expression
4303 = finish_class_member_access_expr (postfix_expression, name);
4304 }
4305 }
4306
4307 /* We no longer need to look up names in the scope of the object on
4308 the left-hand side of the `.' or `->' operator. */
4309 parser->context->object_type = NULL_TREE;
4310
4311 /* Outside of offsetof, these operators may not appear in
4312 constant-expressions. */
4313 if (!for_offsetof
4314 && (cp_parser_non_integral_constant_expression
4315 (parser, token_type == CPP_DEREF ? "'->'" : "`.'")))
4316 postfix_expression = error_mark_node;
4317
4318 return postfix_expression;
4319 }
4320
4321 /* Parse a parenthesized expression-list.
4322
4323 expression-list:
4324 assignment-expression
4325 expression-list, assignment-expression
4326
4327 attribute-list:
4328 expression-list
4329 identifier
4330 identifier, expression-list
4331
4332 Returns a TREE_LIST. The TREE_VALUE of each node is a
4333 representation of an assignment-expression. Note that a TREE_LIST
4334 is returned even if there is only a single expression in the list.
4335 error_mark_node is returned if the ( and or ) are
4336 missing. NULL_TREE is returned on no expressions. The parentheses
4337 are eaten. IS_ATTRIBUTE_LIST is true if this is really an attribute
4338 list being parsed. If NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P
4339 indicates whether or not all of the expressions in the list were
4340 constant. */
4341
4342 static tree
4343 cp_parser_parenthesized_expression_list (cp_parser* parser,
4344 bool is_attribute_list,
4345 bool *non_constant_p)
4346 {
4347 tree expression_list = NULL_TREE;
4348 bool fold_expr_p = is_attribute_list;
4349 tree identifier = NULL_TREE;
4350
4351 /* Assume all the expressions will be constant. */
4352 if (non_constant_p)
4353 *non_constant_p = false;
4354
4355 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
4356 return error_mark_node;
4357
4358 /* Consume expressions until there are no more. */
4359 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
4360 while (true)
4361 {
4362 tree expr;
4363
4364 /* At the beginning of attribute lists, check to see if the
4365 next token is an identifier. */
4366 if (is_attribute_list
4367 && cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
4368 {
4369 cp_token *token;
4370
4371 /* Consume the identifier. */
4372 token = cp_lexer_consume_token (parser->lexer);
4373 /* Save the identifier. */
4374 identifier = token->value;
4375 }
4376 else
4377 {
4378 /* Parse the next assignment-expression. */
4379 if (non_constant_p)
4380 {
4381 bool expr_non_constant_p;
4382 expr = (cp_parser_constant_expression
4383 (parser, /*allow_non_constant_p=*/true,
4384 &expr_non_constant_p));
4385 if (expr_non_constant_p)
4386 *non_constant_p = true;
4387 }
4388 else
4389 expr = cp_parser_assignment_expression (parser);
4390
4391 if (fold_expr_p)
4392 expr = fold_non_dependent_expr (expr);
4393
4394 /* Add it to the list. We add error_mark_node
4395 expressions to the list, so that we can still tell if
4396 the correct form for a parenthesized expression-list
4397 is found. That gives better errors. */
4398 expression_list = tree_cons (NULL_TREE, expr, expression_list);
4399
4400 if (expr == error_mark_node)
4401 goto skip_comma;
4402 }
4403
4404 /* After the first item, attribute lists look the same as
4405 expression lists. */
4406 is_attribute_list = false;
4407
4408 get_comma:;
4409 /* If the next token isn't a `,', then we are done. */
4410 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
4411 break;
4412
4413 /* Otherwise, consume the `,' and keep going. */
4414 cp_lexer_consume_token (parser->lexer);
4415 }
4416
4417 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
4418 {
4419 int ending;
4420
4421 skip_comma:;
4422 /* We try and resync to an unnested comma, as that will give the
4423 user better diagnostics. */
4424 ending = cp_parser_skip_to_closing_parenthesis (parser,
4425 /*recovering=*/true,
4426 /*or_comma=*/true,
4427 /*consume_paren=*/true);
4428 if (ending < 0)
4429 goto get_comma;
4430 if (!ending)
4431 return error_mark_node;
4432 }
4433
4434 /* We built up the list in reverse order so we must reverse it now. */
4435 expression_list = nreverse (expression_list);
4436 if (identifier)
4437 expression_list = tree_cons (NULL_TREE, identifier, expression_list);
4438
4439 return expression_list;
4440 }
4441
4442 /* Parse a pseudo-destructor-name.
4443
4444 pseudo-destructor-name:
4445 :: [opt] nested-name-specifier [opt] type-name :: ~ type-name
4446 :: [opt] nested-name-specifier template template-id :: ~ type-name
4447 :: [opt] nested-name-specifier [opt] ~ type-name
4448
4449 If either of the first two productions is used, sets *SCOPE to the
4450 TYPE specified before the final `::'. Otherwise, *SCOPE is set to
4451 NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name,
4452 or ERROR_MARK_NODE if the parse fails. */
4453
4454 static void
4455 cp_parser_pseudo_destructor_name (cp_parser* parser,
4456 tree* scope,
4457 tree* type)
4458 {
4459 bool nested_name_specifier_p;
4460
4461 /* Assume that things will not work out. */
4462 *type = error_mark_node;
4463
4464 /* Look for the optional `::' operator. */
4465 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
4466 /* Look for the optional nested-name-specifier. */
4467 nested_name_specifier_p
4468 = (cp_parser_nested_name_specifier_opt (parser,
4469 /*typename_keyword_p=*/false,
4470 /*check_dependency_p=*/true,
4471 /*type_p=*/false,
4472 /*is_declaration=*/true)
4473 != NULL_TREE);
4474 /* Now, if we saw a nested-name-specifier, we might be doing the
4475 second production. */
4476 if (nested_name_specifier_p
4477 && cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
4478 {
4479 /* Consume the `template' keyword. */
4480 cp_lexer_consume_token (parser->lexer);
4481 /* Parse the template-id. */
4482 cp_parser_template_id (parser,
4483 /*template_keyword_p=*/true,
4484 /*check_dependency_p=*/false,
4485 /*is_declaration=*/true);
4486 /* Look for the `::' token. */
4487 cp_parser_require (parser, CPP_SCOPE, "`::'");
4488 }
4489 /* If the next token is not a `~', then there might be some
4490 additional qualification. */
4491 else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
4492 {
4493 /* Look for the type-name. */
4494 *scope = TREE_TYPE (cp_parser_type_name (parser));
4495
4496 if (*scope == error_mark_node)
4497 return;
4498
4499 /* If we don't have ::~, then something has gone wrong. Since
4500 the only caller of this function is looking for something
4501 after `.' or `->' after a scalar type, most likely the
4502 program is trying to get a member of a non-aggregate
4503 type. */
4504 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE)
4505 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_COMPL)
4506 {
4507 cp_parser_error (parser, "request for member of non-aggregate type");
4508 return;
4509 }
4510
4511 /* Look for the `::' token. */
4512 cp_parser_require (parser, CPP_SCOPE, "`::'");
4513 }
4514 else
4515 *scope = NULL_TREE;
4516
4517 /* Look for the `~'. */
4518 cp_parser_require (parser, CPP_COMPL, "`~'");
4519 /* Look for the type-name again. We are not responsible for
4520 checking that it matches the first type-name. */
4521 *type = cp_parser_type_name (parser);
4522 }
4523
4524 /* Parse a unary-expression.
4525
4526 unary-expression:
4527 postfix-expression
4528 ++ cast-expression
4529 -- cast-expression
4530 unary-operator cast-expression
4531 sizeof unary-expression
4532 sizeof ( type-id )
4533 new-expression
4534 delete-expression
4535
4536 GNU Extensions:
4537
4538 unary-expression:
4539 __extension__ cast-expression
4540 __alignof__ unary-expression
4541 __alignof__ ( type-id )
4542 __real__ cast-expression
4543 __imag__ cast-expression
4544 && identifier
4545
4546 ADDRESS_P is true iff the unary-expression is appearing as the
4547 operand of the `&' operator.
4548
4549 Returns a representation of the expression. */
4550
4551 static tree
4552 cp_parser_unary_expression (cp_parser *parser, bool address_p)
4553 {
4554 cp_token *token;
4555 enum tree_code unary_operator;
4556
4557 /* Peek at the next token. */
4558 token = cp_lexer_peek_token (parser->lexer);
4559 /* Some keywords give away the kind of expression. */
4560 if (token->type == CPP_KEYWORD)
4561 {
4562 enum rid keyword = token->keyword;
4563
4564 switch (keyword)
4565 {
4566 case RID_ALIGNOF:
4567 case RID_SIZEOF:
4568 {
4569 tree operand;
4570 enum tree_code op;
4571
4572 op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
4573 /* Consume the token. */
4574 cp_lexer_consume_token (parser->lexer);
4575 /* Parse the operand. */
4576 operand = cp_parser_sizeof_operand (parser, keyword);
4577
4578 if (TYPE_P (operand))
4579 return cxx_sizeof_or_alignof_type (operand, op, true);
4580 else
4581 return cxx_sizeof_or_alignof_expr (operand, op);
4582 }
4583
4584 case RID_NEW:
4585 return cp_parser_new_expression (parser);
4586
4587 case RID_DELETE:
4588 return cp_parser_delete_expression (parser);
4589
4590 case RID_EXTENSION:
4591 {
4592 /* The saved value of the PEDANTIC flag. */
4593 int saved_pedantic;
4594 tree expr;
4595
4596 /* Save away the PEDANTIC flag. */
4597 cp_parser_extension_opt (parser, &saved_pedantic);
4598 /* Parse the cast-expression. */
4599 expr = cp_parser_simple_cast_expression (parser);
4600 /* Restore the PEDANTIC flag. */
4601 pedantic = saved_pedantic;
4602
4603 return expr;
4604 }
4605
4606 case RID_REALPART:
4607 case RID_IMAGPART:
4608 {
4609 tree expression;
4610
4611 /* Consume the `__real__' or `__imag__' token. */
4612 cp_lexer_consume_token (parser->lexer);
4613 /* Parse the cast-expression. */
4614 expression = cp_parser_simple_cast_expression (parser);
4615 /* Create the complete representation. */
4616 return build_x_unary_op ((keyword == RID_REALPART
4617 ? REALPART_EXPR : IMAGPART_EXPR),
4618 expression);
4619 }
4620 break;
4621
4622 default:
4623 break;
4624 }
4625 }
4626
4627 /* Look for the `:: new' and `:: delete', which also signal the
4628 beginning of a new-expression, or delete-expression,
4629 respectively. If the next token is `::', then it might be one of
4630 these. */
4631 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
4632 {
4633 enum rid keyword;
4634
4635 /* See if the token after the `::' is one of the keywords in
4636 which we're interested. */
4637 keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
4638 /* If it's `new', we have a new-expression. */
4639 if (keyword == RID_NEW)
4640 return cp_parser_new_expression (parser);
4641 /* Similarly, for `delete'. */
4642 else if (keyword == RID_DELETE)
4643 return cp_parser_delete_expression (parser);
4644 }
4645
4646 /* Look for a unary operator. */
4647 unary_operator = cp_parser_unary_operator (token);
4648 /* The `++' and `--' operators can be handled similarly, even though
4649 they are not technically unary-operators in the grammar. */
4650 if (unary_operator == ERROR_MARK)
4651 {
4652 if (token->type == CPP_PLUS_PLUS)
4653 unary_operator = PREINCREMENT_EXPR;
4654 else if (token->type == CPP_MINUS_MINUS)
4655 unary_operator = PREDECREMENT_EXPR;
4656 /* Handle the GNU address-of-label extension. */
4657 else if (cp_parser_allow_gnu_extensions_p (parser)
4658 && token->type == CPP_AND_AND)
4659 {
4660 tree identifier;
4661
4662 /* Consume the '&&' token. */
4663 cp_lexer_consume_token (parser->lexer);
4664 /* Look for the identifier. */
4665 identifier = cp_parser_identifier (parser);
4666 /* Create an expression representing the address. */
4667 return finish_label_address_expr (identifier);
4668 }
4669 }
4670 if (unary_operator != ERROR_MARK)
4671 {
4672 tree cast_expression;
4673 tree expression = error_mark_node;
4674 const char *non_constant_p = NULL;
4675
4676 /* Consume the operator token. */
4677 token = cp_lexer_consume_token (parser->lexer);
4678 /* Parse the cast-expression. */
4679 cast_expression
4680 = cp_parser_cast_expression (parser, unary_operator == ADDR_EXPR);
4681 /* Now, build an appropriate representation. */
4682 switch (unary_operator)
4683 {
4684 case INDIRECT_REF:
4685 non_constant_p = "`*'";
4686 expression = build_x_indirect_ref (cast_expression, "unary *");
4687 break;
4688
4689 case ADDR_EXPR:
4690 non_constant_p = "`&'";
4691 /* Fall through. */
4692 case BIT_NOT_EXPR:
4693 expression = build_x_unary_op (unary_operator, cast_expression);
4694 break;
4695
4696 case PREINCREMENT_EXPR:
4697 case PREDECREMENT_EXPR:
4698 non_constant_p = (unary_operator == PREINCREMENT_EXPR
4699 ? "`++'" : "`--'");
4700 /* Fall through. */
4701 case CONVERT_EXPR:
4702 case NEGATE_EXPR:
4703 case TRUTH_NOT_EXPR:
4704 expression = finish_unary_op_expr (unary_operator, cast_expression);
4705 break;
4706
4707 default:
4708 gcc_unreachable ();
4709 }
4710
4711 if (non_constant_p
4712 && cp_parser_non_integral_constant_expression (parser,
4713 non_constant_p))
4714 expression = error_mark_node;
4715
4716 return expression;
4717 }
4718
4719 return cp_parser_postfix_expression (parser, address_p);
4720 }
4721
4722 /* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a
4723 unary-operator, the corresponding tree code is returned. */
4724
4725 static enum tree_code
4726 cp_parser_unary_operator (cp_token* token)
4727 {
4728 switch (token->type)
4729 {
4730 case CPP_MULT:
4731 return INDIRECT_REF;
4732
4733 case CPP_AND:
4734 return ADDR_EXPR;
4735
4736 case CPP_PLUS:
4737 return CONVERT_EXPR;
4738
4739 case CPP_MINUS:
4740 return NEGATE_EXPR;
4741
4742 case CPP_NOT:
4743 return TRUTH_NOT_EXPR;
4744
4745 case CPP_COMPL:
4746 return BIT_NOT_EXPR;
4747
4748 default:
4749 return ERROR_MARK;
4750 }
4751 }
4752
4753 /* Parse a new-expression.
4754
4755 new-expression:
4756 :: [opt] new new-placement [opt] new-type-id new-initializer [opt]
4757 :: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
4758
4759 Returns a representation of the expression. */
4760
4761 static tree
4762 cp_parser_new_expression (cp_parser* parser)
4763 {
4764 bool global_scope_p;
4765 tree placement;
4766 tree type;
4767 tree initializer;
4768 tree nelts;
4769
4770 /* Look for the optional `::' operator. */
4771 global_scope_p
4772 = (cp_parser_global_scope_opt (parser,
4773 /*current_scope_valid_p=*/false)
4774 != NULL_TREE);
4775 /* Look for the `new' operator. */
4776 cp_parser_require_keyword (parser, RID_NEW, "`new'");
4777 /* There's no easy way to tell a new-placement from the
4778 `( type-id )' construct. */
4779 cp_parser_parse_tentatively (parser);
4780 /* Look for a new-placement. */
4781 placement = cp_parser_new_placement (parser);
4782 /* If that didn't work out, there's no new-placement. */
4783 if (!cp_parser_parse_definitely (parser))
4784 placement = NULL_TREE;
4785
4786 /* If the next token is a `(', then we have a parenthesized
4787 type-id. */
4788 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4789 {
4790 /* Consume the `('. */
4791 cp_lexer_consume_token (parser->lexer);
4792 /* Parse the type-id. */
4793 type = cp_parser_type_id (parser);
4794 /* Look for the closing `)'. */
4795 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4796 /* There should not be a direct-new-declarator in this production,
4797 but GCC used to allowed this, so we check and emit a sensible error
4798 message for this case. */
4799 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4800 {
4801 error ("array bound forbidden after parenthesized type-id");
4802 inform ("try removing the parentheses around the type-id");
4803 cp_parser_direct_new_declarator (parser);
4804 }
4805 nelts = NULL_TREE;
4806 }
4807 /* Otherwise, there must be a new-type-id. */
4808 else
4809 type = cp_parser_new_type_id (parser, &nelts);
4810
4811 /* If the next token is a `(', then we have a new-initializer. */
4812 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4813 initializer = cp_parser_new_initializer (parser);
4814 else
4815 initializer = NULL_TREE;
4816
4817 /* A new-expression may not appear in an integral constant
4818 expression. */
4819 if (cp_parser_non_integral_constant_expression (parser, "`new'"))
4820 return error_mark_node;
4821
4822 /* Create a representation of the new-expression. */
4823 return build_new (placement, type, nelts, initializer, global_scope_p);
4824 }
4825
4826 /* Parse a new-placement.
4827
4828 new-placement:
4829 ( expression-list )
4830
4831 Returns the same representation as for an expression-list. */
4832
4833 static tree
4834 cp_parser_new_placement (cp_parser* parser)
4835 {
4836 tree expression_list;
4837
4838 /* Parse the expression-list. */
4839 expression_list = (cp_parser_parenthesized_expression_list
4840 (parser, false, /*non_constant_p=*/NULL));
4841
4842 return expression_list;
4843 }
4844
4845 /* Parse a new-type-id.
4846
4847 new-type-id:
4848 type-specifier-seq new-declarator [opt]
4849
4850 Returns the TYPE allocated. If the new-type-id indicates an array
4851 type, *NELTS is set to the number of elements in the last array
4852 bound; the TYPE will not include the last array bound. */
4853
4854 static tree
4855 cp_parser_new_type_id (cp_parser* parser, tree *nelts)
4856 {
4857 cp_decl_specifier_seq type_specifier_seq;
4858 cp_declarator *new_declarator;
4859 cp_declarator *declarator;
4860 cp_declarator *outer_declarator;
4861 const char *saved_message;
4862 tree type;
4863
4864 /* The type-specifier sequence must not contain type definitions.
4865 (It cannot contain declarations of new types either, but if they
4866 are not definitions we will catch that because they are not
4867 complete.) */
4868 saved_message = parser->type_definition_forbidden_message;
4869 parser->type_definition_forbidden_message
4870 = "types may not be defined in a new-type-id";
4871 /* Parse the type-specifier-seq. */
4872 cp_parser_type_specifier_seq (parser, &type_specifier_seq);
4873 /* Restore the old message. */
4874 parser->type_definition_forbidden_message = saved_message;
4875 /* Parse the new-declarator. */
4876 new_declarator = cp_parser_new_declarator_opt (parser);
4877
4878 /* Determine the number of elements in the last array dimension, if
4879 any. */
4880 *nelts = NULL_TREE;
4881 /* Skip down to the last array dimension. */
4882 declarator = new_declarator;
4883 outer_declarator = NULL;
4884 while (declarator && (declarator->kind == cdk_pointer
4885 || declarator->kind == cdk_ptrmem))
4886 {
4887 outer_declarator = declarator;
4888 declarator = declarator->declarator;
4889 }
4890 while (declarator
4891 && declarator->kind == cdk_array
4892 && declarator->declarator
4893 && declarator->declarator->kind == cdk_array)
4894 {
4895 outer_declarator = declarator;
4896 declarator = declarator->declarator;
4897 }
4898
4899 if (declarator && declarator->kind == cdk_array)
4900 {
4901 *nelts = declarator->u.array.bounds;
4902 if (*nelts == error_mark_node)
4903 *nelts = integer_one_node;
4904
4905 if (outer_declarator)
4906 outer_declarator->declarator = declarator->declarator;
4907 else
4908 new_declarator = NULL;
4909 }
4910
4911 type = groktypename (&type_specifier_seq, new_declarator);
4912 if (TREE_CODE (type) == ARRAY_TYPE && *nelts == NULL_TREE)
4913 {
4914 *nelts = array_type_nelts_top (type);
4915 type = TREE_TYPE (type);
4916 }
4917 return type;
4918 }
4919
4920 /* Parse an (optional) new-declarator.
4921
4922 new-declarator:
4923 ptr-operator new-declarator [opt]
4924 direct-new-declarator
4925
4926 Returns the declarator. */
4927
4928 static cp_declarator *
4929 cp_parser_new_declarator_opt (cp_parser* parser)
4930 {
4931 enum tree_code code;
4932 tree type;
4933 cp_cv_quals cv_quals;
4934
4935 /* We don't know if there's a ptr-operator next, or not. */
4936 cp_parser_parse_tentatively (parser);
4937 /* Look for a ptr-operator. */
4938 code = cp_parser_ptr_operator (parser, &type, &cv_quals);
4939 /* If that worked, look for more new-declarators. */
4940 if (cp_parser_parse_definitely (parser))
4941 {
4942 cp_declarator *declarator;
4943
4944 /* Parse another optional declarator. */
4945 declarator = cp_parser_new_declarator_opt (parser);
4946
4947 /* Create the representation of the declarator. */
4948 if (type)
4949 declarator = make_ptrmem_declarator (cv_quals, type, declarator);
4950 else if (code == INDIRECT_REF)
4951 declarator = make_pointer_declarator (cv_quals, declarator);
4952 else
4953 declarator = make_reference_declarator (cv_quals, declarator);
4954
4955 return declarator;
4956 }
4957
4958 /* If the next token is a `[', there is a direct-new-declarator. */
4959 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4960 return cp_parser_direct_new_declarator (parser);
4961
4962 return NULL;
4963 }
4964
4965 /* Parse a direct-new-declarator.
4966
4967 direct-new-declarator:
4968 [ expression ]
4969 direct-new-declarator [constant-expression]
4970
4971 */
4972
4973 static cp_declarator *
4974 cp_parser_direct_new_declarator (cp_parser* parser)
4975 {
4976 cp_declarator *declarator = NULL;
4977
4978 while (true)
4979 {
4980 tree expression;
4981
4982 /* Look for the opening `['. */
4983 cp_parser_require (parser, CPP_OPEN_SQUARE, "`['");
4984 /* The first expression is not required to be constant. */
4985 if (!declarator)
4986 {
4987 expression = cp_parser_expression (parser);
4988 /* The standard requires that the expression have integral
4989 type. DR 74 adds enumeration types. We believe that the
4990 real intent is that these expressions be handled like the
4991 expression in a `switch' condition, which also allows
4992 classes with a single conversion to integral or
4993 enumeration type. */
4994 if (!processing_template_decl)
4995 {
4996 expression
4997 = build_expr_type_conversion (WANT_INT | WANT_ENUM,
4998 expression,
4999 /*complain=*/true);
5000 if (!expression)
5001 {
5002 error ("expression in new-declarator must have integral "
5003 "or enumeration type");
5004 expression = error_mark_node;
5005 }
5006 }
5007 }
5008 /* But all the other expressions must be. */
5009 else
5010 expression
5011 = cp_parser_constant_expression (parser,
5012 /*allow_non_constant=*/false,
5013 NULL);
5014 /* Look for the closing `]'. */
5015 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5016
5017 /* Add this bound to the declarator. */
5018 declarator = make_array_declarator (declarator, expression);
5019
5020 /* If the next token is not a `[', then there are no more
5021 bounds. */
5022 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
5023 break;
5024 }
5025
5026 return declarator;
5027 }
5028
5029 /* Parse a new-initializer.
5030
5031 new-initializer:
5032 ( expression-list [opt] )
5033
5034 Returns a representation of the expression-list. If there is no
5035 expression-list, VOID_ZERO_NODE is returned. */
5036
5037 static tree
5038 cp_parser_new_initializer (cp_parser* parser)
5039 {
5040 tree expression_list;
5041
5042 expression_list = (cp_parser_parenthesized_expression_list
5043 (parser, false, /*non_constant_p=*/NULL));
5044 if (!expression_list)
5045 expression_list = void_zero_node;
5046
5047 return expression_list;
5048 }
5049
5050 /* Parse a delete-expression.
5051
5052 delete-expression:
5053 :: [opt] delete cast-expression
5054 :: [opt] delete [ ] cast-expression
5055
5056 Returns a representation of the expression. */
5057
5058 static tree
5059 cp_parser_delete_expression (cp_parser* parser)
5060 {
5061 bool global_scope_p;
5062 bool array_p;
5063 tree expression;
5064
5065 /* Look for the optional `::' operator. */
5066 global_scope_p
5067 = (cp_parser_global_scope_opt (parser,
5068 /*current_scope_valid_p=*/false)
5069 != NULL_TREE);
5070 /* Look for the `delete' keyword. */
5071 cp_parser_require_keyword (parser, RID_DELETE, "`delete'");
5072 /* See if the array syntax is in use. */
5073 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
5074 {
5075 /* Consume the `[' token. */
5076 cp_lexer_consume_token (parser->lexer);
5077 /* Look for the `]' token. */
5078 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5079 /* Remember that this is the `[]' construct. */
5080 array_p = true;
5081 }
5082 else
5083 array_p = false;
5084
5085 /* Parse the cast-expression. */
5086 expression = cp_parser_simple_cast_expression (parser);
5087
5088 /* A delete-expression may not appear in an integral constant
5089 expression. */
5090 if (cp_parser_non_integral_constant_expression (parser, "`delete'"))
5091 return error_mark_node;
5092
5093 return delete_sanity (expression, NULL_TREE, array_p, global_scope_p);
5094 }
5095
5096 /* Parse a cast-expression.
5097
5098 cast-expression:
5099 unary-expression
5100 ( type-id ) cast-expression
5101
5102 Returns a representation of the expression. */
5103
5104 static tree
5105 cp_parser_cast_expression (cp_parser *parser, bool address_p)
5106 {
5107 /* If it's a `(', then we might be looking at a cast. */
5108 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
5109 {
5110 tree type = NULL_TREE;
5111 tree expr = NULL_TREE;
5112 bool compound_literal_p;
5113 const char *saved_message;
5114
5115 /* There's no way to know yet whether or not this is a cast.
5116 For example, `(int (3))' is a unary-expression, while `(int)
5117 3' is a cast. So, we resort to parsing tentatively. */
5118 cp_parser_parse_tentatively (parser);
5119 /* Types may not be defined in a cast. */
5120 saved_message = parser->type_definition_forbidden_message;
5121 parser->type_definition_forbidden_message
5122 = "types may not be defined in casts";
5123 /* Consume the `('. */
5124 cp_lexer_consume_token (parser->lexer);
5125 /* A very tricky bit is that `(struct S) { 3 }' is a
5126 compound-literal (which we permit in C++ as an extension).
5127 But, that construct is not a cast-expression -- it is a
5128 postfix-expression. (The reason is that `(struct S) { 3 }.i'
5129 is legal; if the compound-literal were a cast-expression,
5130 you'd need an extra set of parentheses.) But, if we parse
5131 the type-id, and it happens to be a class-specifier, then we
5132 will commit to the parse at that point, because we cannot
5133 undo the action that is done when creating a new class. So,
5134 then we cannot back up and do a postfix-expression.
5135
5136 Therefore, we scan ahead to the closing `)', and check to see
5137 if the token after the `)' is a `{'. If so, we are not
5138 looking at a cast-expression.
5139
5140 Save tokens so that we can put them back. */
5141 cp_lexer_save_tokens (parser->lexer);
5142 /* Skip tokens until the next token is a closing parenthesis.
5143 If we find the closing `)', and the next token is a `{', then
5144 we are looking at a compound-literal. */
5145 compound_literal_p
5146 = (cp_parser_skip_to_closing_parenthesis (parser, false, false,
5147 /*consume_paren=*/true)
5148 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
5149 /* Roll back the tokens we skipped. */
5150 cp_lexer_rollback_tokens (parser->lexer);
5151 /* If we were looking at a compound-literal, simulate an error
5152 so that the call to cp_parser_parse_definitely below will
5153 fail. */
5154 if (compound_literal_p)
5155 cp_parser_simulate_error (parser);
5156 else
5157 {
5158 bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
5159 parser->in_type_id_in_expr_p = true;
5160 /* Look for the type-id. */
5161 type = cp_parser_type_id (parser);
5162 /* Look for the closing `)'. */
5163 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5164 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
5165 }
5166
5167 /* Restore the saved message. */
5168 parser->type_definition_forbidden_message = saved_message;
5169
5170 /* If ok so far, parse the dependent expression. We cannot be
5171 sure it is a cast. Consider `(T ())'. It is a parenthesized
5172 ctor of T, but looks like a cast to function returning T
5173 without a dependent expression. */
5174 if (!cp_parser_error_occurred (parser))
5175 expr = cp_parser_simple_cast_expression (parser);
5176
5177 if (cp_parser_parse_definitely (parser))
5178 {
5179 /* Warn about old-style casts, if so requested. */
5180 if (warn_old_style_cast
5181 && !in_system_header
5182 && !VOID_TYPE_P (type)
5183 && current_lang_name != lang_name_c)
5184 warning ("use of old-style cast");
5185
5186 /* Only type conversions to integral or enumeration types
5187 can be used in constant-expressions. */
5188 if (parser->integral_constant_expression_p
5189 && !dependent_type_p (type)
5190 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
5191 && (cp_parser_non_integral_constant_expression
5192 (parser,
5193 "a cast to a type other than an integral or "
5194 "enumeration type")))
5195 return error_mark_node;
5196
5197 /* Perform the cast. */
5198 expr = build_c_cast (type, expr);
5199 return expr;
5200 }
5201 }
5202
5203 /* If we get here, then it's not a cast, so it must be a
5204 unary-expression. */
5205 return cp_parser_unary_expression (parser, address_p);
5206 }
5207
5208 /* Parse a binary expression of the general form:
5209
5210 pm-expression:
5211 cast-expression
5212 pm-expression .* cast-expression
5213 pm-expression ->* cast-expression
5214
5215 multiplicative-expression:
5216 pm-expression
5217 multiplicative-expression * pm-expression
5218 multiplicative-expression / pm-expression
5219 multiplicative-expression % pm-expression
5220
5221 additive-expression:
5222 multiplicative-expression
5223 additive-expression + multiplicative-expression
5224 additive-expression - multiplicative-expression
5225
5226 shift-expression:
5227 additive-expression
5228 shift-expression << additive-expression
5229 shift-expression >> additive-expression
5230
5231 relational-expression:
5232 shift-expression
5233 relational-expression < shift-expression
5234 relational-expression > shift-expression
5235 relational-expression <= shift-expression
5236 relational-expression >= shift-expression
5237
5238 GNU Extension:
5239
5240 relational-expression:
5241 relational-expression <? shift-expression
5242 relational-expression >? shift-expression
5243
5244 equality-expression:
5245 relational-expression
5246 equality-expression == relational-expression
5247 equality-expression != relational-expression
5248
5249 and-expression:
5250 equality-expression
5251 and-expression & equality-expression
5252
5253 exclusive-or-expression:
5254 and-expression
5255 exclusive-or-expression ^ and-expression
5256
5257 inclusive-or-expression:
5258 exclusive-or-expression
5259 inclusive-or-expression | exclusive-or-expression
5260
5261 logical-and-expression:
5262 inclusive-or-expression
5263 logical-and-expression && inclusive-or-expression
5264
5265 logical-or-expression:
5266 logical-and-expression
5267 logical-or-expression || logical-and-expression
5268
5269 All these are implemented with a single function like:
5270
5271 binary-expression:
5272 simple-cast-expression
5273 binary-expression <token> binary-expression
5274
5275 The binops_by_token map is used to get the tree codes for each <token> type.
5276 binary-expressions are associated according to a precedence table. */
5277
5278 #define TOKEN_PRECEDENCE(token) \
5279 ((token->type == CPP_GREATER && !parser->greater_than_is_operator_p) \
5280 ? PREC_NOT_OPERATOR \
5281 : binops_by_token[token->type].prec)
5282
5283 static tree
5284 cp_parser_binary_expression (cp_parser* parser)
5285 {
5286 cp_parser_expression_stack stack;
5287 cp_parser_expression_stack_entry *sp = &stack[0];
5288 tree lhs, rhs;
5289 cp_token *token;
5290 enum tree_code tree_type;
5291 enum cp_parser_prec prec = PREC_NOT_OPERATOR, new_prec, lookahead_prec;
5292 bool overloaded_p;
5293
5294 /* Parse the first expression. */
5295 lhs = cp_parser_simple_cast_expression (parser);
5296
5297 for (;;)
5298 {
5299 /* Get an operator token. */
5300 token = cp_lexer_peek_token (parser->lexer);
5301 new_prec = TOKEN_PRECEDENCE (token);
5302
5303 /* Popping an entry off the stack means we completed a subexpression:
5304 - either we found a token which is not an operator (`>' where it is not
5305 an operator, or prec == PREC_NOT_OPERATOR), in which case popping
5306 will happen repeatedly;
5307 - or, we found an operator which has lower priority. This is the case
5308 where the recursive descent *ascends*, as in `3 * 4 + 5' after
5309 parsing `3 * 4'. */
5310 if (new_prec <= prec)
5311 {
5312 if (sp == stack)
5313 break;
5314 else
5315 goto pop;
5316 }
5317
5318 get_rhs:
5319 tree_type = binops_by_token[token->type].tree_type;
5320
5321 /* We used the operator token. */
5322 cp_lexer_consume_token (parser->lexer);
5323
5324 /* Extract another operand. It may be the RHS of this expression
5325 or the LHS of a new, higher priority expression. */
5326 rhs = cp_parser_simple_cast_expression (parser);
5327
5328 /* Get another operator token. Look up its precedence to avoid
5329 building a useless (immediately popped) stack entry for common
5330 cases such as 3 + 4 + 5 or 3 * 4 + 5. */
5331 token = cp_lexer_peek_token (parser->lexer);
5332 lookahead_prec = TOKEN_PRECEDENCE (token);
5333 if (lookahead_prec > new_prec)
5334 {
5335 /* ... and prepare to parse the RHS of the new, higher priority
5336 expression. Since precedence levels on the stack are
5337 monotonically increasing, we do not have to care about
5338 stack overflows. */
5339 sp->prec = prec;
5340 sp->tree_type = tree_type;
5341 sp->lhs = lhs;
5342 sp++;
5343 lhs = rhs;
5344 prec = new_prec;
5345 new_prec = lookahead_prec;
5346 goto get_rhs;
5347
5348 pop:
5349 /* If the stack is not empty, we have parsed into LHS the right side
5350 (`4' in the example above) of an expression we had suspended.
5351 We can use the information on the stack to recover the LHS (`3')
5352 from the stack together with the tree code (`MULT_EXPR'), and
5353 the precedence of the higher level subexpression
5354 (`PREC_ADDITIVE_EXPRESSION'). TOKEN is the CPP_PLUS token,
5355 which will be used to actually build the additive expression. */
5356 --sp;
5357 prec = sp->prec;
5358 tree_type = sp->tree_type;
5359 rhs = lhs;
5360 lhs = sp->lhs;
5361 }
5362
5363 overloaded_p = false;
5364 lhs = build_x_binary_op (tree_type, lhs, rhs, &overloaded_p);
5365
5366 /* If the binary operator required the use of an overloaded operator,
5367 then this expression cannot be an integral constant-expression.
5368 An overloaded operator can be used even if both operands are
5369 otherwise permissible in an integral constant-expression if at
5370 least one of the operands is of enumeration type. */
5371
5372 if (overloaded_p
5373 && (cp_parser_non_integral_constant_expression
5374 (parser, "calls to overloaded operators")))
5375 return error_mark_node;
5376 }
5377
5378 return lhs;
5379 }
5380
5381
5382 /* Parse the `? expression : assignment-expression' part of a
5383 conditional-expression. The LOGICAL_OR_EXPR is the
5384 logical-or-expression that started the conditional-expression.
5385 Returns a representation of the entire conditional-expression.
5386
5387 This routine is used by cp_parser_assignment_expression.
5388
5389 ? expression : assignment-expression
5390
5391 GNU Extensions:
5392
5393 ? : assignment-expression */
5394
5395 static tree
5396 cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
5397 {
5398 tree expr;
5399 tree assignment_expr;
5400
5401 /* Consume the `?' token. */
5402 cp_lexer_consume_token (parser->lexer);
5403 if (cp_parser_allow_gnu_extensions_p (parser)
5404 && cp_lexer_next_token_is (parser->lexer, CPP_COLON))
5405 /* Implicit true clause. */
5406 expr = NULL_TREE;
5407 else
5408 /* Parse the expression. */
5409 expr = cp_parser_expression (parser);
5410
5411 /* The next token should be a `:'. */
5412 cp_parser_require (parser, CPP_COLON, "`:'");
5413 /* Parse the assignment-expression. */
5414 assignment_expr = cp_parser_assignment_expression (parser);
5415
5416 /* Build the conditional-expression. */
5417 return build_x_conditional_expr (logical_or_expr,
5418 expr,
5419 assignment_expr);
5420 }
5421
5422 /* Parse an assignment-expression.
5423
5424 assignment-expression:
5425 conditional-expression
5426 logical-or-expression assignment-operator assignment_expression
5427 throw-expression
5428
5429 Returns a representation for the expression. */
5430
5431 static tree
5432 cp_parser_assignment_expression (cp_parser* parser)
5433 {
5434 tree expr;
5435
5436 /* If the next token is the `throw' keyword, then we're looking at
5437 a throw-expression. */
5438 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
5439 expr = cp_parser_throw_expression (parser);
5440 /* Otherwise, it must be that we are looking at a
5441 logical-or-expression. */
5442 else
5443 {
5444 /* Parse the binary expressions (logical-or-expression). */
5445 expr = cp_parser_binary_expression (parser);
5446 /* If the next token is a `?' then we're actually looking at a
5447 conditional-expression. */
5448 if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
5449 return cp_parser_question_colon_clause (parser, expr);
5450 else
5451 {
5452 enum tree_code assignment_operator;
5453
5454 /* If it's an assignment-operator, we're using the second
5455 production. */
5456 assignment_operator
5457 = cp_parser_assignment_operator_opt (parser);
5458 if (assignment_operator != ERROR_MARK)
5459 {
5460 tree rhs;
5461
5462 /* Parse the right-hand side of the assignment. */
5463 rhs = cp_parser_assignment_expression (parser);
5464 /* An assignment may not appear in a
5465 constant-expression. */
5466 if (cp_parser_non_integral_constant_expression (parser,
5467 "an assignment"))
5468 return error_mark_node;
5469 /* Build the assignment expression. */
5470 expr = build_x_modify_expr (expr,
5471 assignment_operator,
5472 rhs);
5473 }
5474 }
5475 }
5476
5477 return expr;
5478 }
5479
5480 /* Parse an (optional) assignment-operator.
5481
5482 assignment-operator: one of
5483 = *= /= %= += -= >>= <<= &= ^= |=
5484
5485 GNU Extension:
5486
5487 assignment-operator: one of
5488 <?= >?=
5489
5490 If the next token is an assignment operator, the corresponding tree
5491 code is returned, and the token is consumed. For example, for
5492 `+=', PLUS_EXPR is returned. For `=' itself, the code returned is
5493 NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%',
5494 TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment
5495 operator, ERROR_MARK is returned. */
5496
5497 static enum tree_code
5498 cp_parser_assignment_operator_opt (cp_parser* parser)
5499 {
5500 enum tree_code op;
5501 cp_token *token;
5502
5503 /* Peek at the next toen. */
5504 token = cp_lexer_peek_token (parser->lexer);
5505
5506 switch (token->type)
5507 {
5508 case CPP_EQ:
5509 op = NOP_EXPR;
5510 break;
5511
5512 case CPP_MULT_EQ:
5513 op = MULT_EXPR;
5514 break;
5515
5516 case CPP_DIV_EQ:
5517 op = TRUNC_DIV_EXPR;
5518 break;
5519
5520 case CPP_MOD_EQ:
5521 op = TRUNC_MOD_EXPR;
5522 break;
5523
5524 case CPP_PLUS_EQ:
5525 op = PLUS_EXPR;
5526 break;
5527
5528 case CPP_MINUS_EQ:
5529 op = MINUS_EXPR;
5530 break;
5531
5532 case CPP_RSHIFT_EQ:
5533 op = RSHIFT_EXPR;
5534 break;
5535
5536 case CPP_LSHIFT_EQ:
5537 op = LSHIFT_EXPR;
5538 break;
5539
5540 case CPP_AND_EQ:
5541 op = BIT_AND_EXPR;
5542 break;
5543
5544 case CPP_XOR_EQ:
5545 op = BIT_XOR_EXPR;
5546 break;
5547
5548 case CPP_OR_EQ:
5549 op = BIT_IOR_EXPR;
5550 break;
5551
5552 case CPP_MIN_EQ:
5553 op = MIN_EXPR;
5554 break;
5555
5556 case CPP_MAX_EQ:
5557 op = MAX_EXPR;
5558 break;
5559
5560 default:
5561 /* Nothing else is an assignment operator. */
5562 op = ERROR_MARK;
5563 }
5564
5565 /* If it was an assignment operator, consume it. */
5566 if (op != ERROR_MARK)
5567 cp_lexer_consume_token (parser->lexer);
5568
5569 return op;
5570 }
5571
5572 /* Parse an expression.
5573
5574 expression:
5575 assignment-expression
5576 expression , assignment-expression
5577
5578 Returns a representation of the expression. */
5579
5580 static tree
5581 cp_parser_expression (cp_parser* parser)
5582 {
5583 tree expression = NULL_TREE;
5584
5585 while (true)
5586 {
5587 tree assignment_expression;
5588
5589 /* Parse the next assignment-expression. */
5590 assignment_expression
5591 = cp_parser_assignment_expression (parser);
5592 /* If this is the first assignment-expression, we can just
5593 save it away. */
5594 if (!expression)
5595 expression = assignment_expression;
5596 else
5597 expression = build_x_compound_expr (expression,
5598 assignment_expression);
5599 /* If the next token is not a comma, then we are done with the
5600 expression. */
5601 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
5602 break;
5603 /* Consume the `,'. */
5604 cp_lexer_consume_token (parser->lexer);
5605 /* A comma operator cannot appear in a constant-expression. */
5606 if (cp_parser_non_integral_constant_expression (parser,
5607 "a comma operator"))
5608 expression = error_mark_node;
5609 }
5610
5611 return expression;
5612 }
5613
5614 /* Parse a constant-expression.
5615
5616 constant-expression:
5617 conditional-expression
5618
5619 If ALLOW_NON_CONSTANT_P a non-constant expression is silently
5620 accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not
5621 constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P
5622 is false, NON_CONSTANT_P should be NULL. */
5623
5624 static tree
5625 cp_parser_constant_expression (cp_parser* parser,
5626 bool allow_non_constant_p,
5627 bool *non_constant_p)
5628 {
5629 bool saved_integral_constant_expression_p;
5630 bool saved_allow_non_integral_constant_expression_p;
5631 bool saved_non_integral_constant_expression_p;
5632 tree expression;
5633
5634 /* It might seem that we could simply parse the
5635 conditional-expression, and then check to see if it were
5636 TREE_CONSTANT. However, an expression that is TREE_CONSTANT is
5637 one that the compiler can figure out is constant, possibly after
5638 doing some simplifications or optimizations. The standard has a
5639 precise definition of constant-expression, and we must honor
5640 that, even though it is somewhat more restrictive.
5641
5642 For example:
5643
5644 int i[(2, 3)];
5645
5646 is not a legal declaration, because `(2, 3)' is not a
5647 constant-expression. The `,' operator is forbidden in a
5648 constant-expression. However, GCC's constant-folding machinery
5649 will fold this operation to an INTEGER_CST for `3'. */
5650
5651 /* Save the old settings. */
5652 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
5653 saved_allow_non_integral_constant_expression_p
5654 = parser->allow_non_integral_constant_expression_p;
5655 saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p;
5656 /* We are now parsing a constant-expression. */
5657 parser->integral_constant_expression_p = true;
5658 parser->allow_non_integral_constant_expression_p = allow_non_constant_p;
5659 parser->non_integral_constant_expression_p = false;
5660 /* Although the grammar says "conditional-expression", we parse an
5661 "assignment-expression", which also permits "throw-expression"
5662 and the use of assignment operators. In the case that
5663 ALLOW_NON_CONSTANT_P is false, we get better errors than we would
5664 otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is
5665 actually essential that we look for an assignment-expression.
5666 For example, cp_parser_initializer_clauses uses this function to
5667 determine whether a particular assignment-expression is in fact
5668 constant. */
5669 expression = cp_parser_assignment_expression (parser);
5670 /* Restore the old settings. */
5671 parser->integral_constant_expression_p = saved_integral_constant_expression_p;
5672 parser->allow_non_integral_constant_expression_p
5673 = saved_allow_non_integral_constant_expression_p;
5674 if (allow_non_constant_p)
5675 *non_constant_p = parser->non_integral_constant_expression_p;
5676 parser->non_integral_constant_expression_p = saved_non_integral_constant_expression_p;
5677
5678 return expression;
5679 }
5680
5681 /* Parse __builtin_offsetof.
5682
5683 offsetof-expression:
5684 "__builtin_offsetof" "(" type-id "," offsetof-member-designator ")"
5685
5686 offsetof-member-designator:
5687 id-expression
5688 | offsetof-member-designator "." id-expression
5689 | offsetof-member-designator "[" expression "]"
5690 */
5691
5692 static tree
5693 cp_parser_builtin_offsetof (cp_parser *parser)
5694 {
5695 int save_ice_p, save_non_ice_p;
5696 tree type, expr;
5697 cp_id_kind dummy;
5698
5699 /* We're about to accept non-integral-constant things, but will
5700 definitely yield an integral constant expression. Save and
5701 restore these values around our local parsing. */
5702 save_ice_p = parser->integral_constant_expression_p;
5703 save_non_ice_p = parser->non_integral_constant_expression_p;
5704
5705 /* Consume the "__builtin_offsetof" token. */
5706 cp_lexer_consume_token (parser->lexer);
5707 /* Consume the opening `('. */
5708 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
5709 /* Parse the type-id. */
5710 type = cp_parser_type_id (parser);
5711 /* Look for the `,'. */
5712 cp_parser_require (parser, CPP_COMMA, "`,'");
5713
5714 /* Build the (type *)null that begins the traditional offsetof macro. */
5715 expr = build_static_cast (build_pointer_type (type), null_pointer_node);
5716
5717 /* Parse the offsetof-member-designator. We begin as if we saw "expr->". */
5718 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DEREF, expr,
5719 true, &dummy);
5720 while (true)
5721 {
5722 cp_token *token = cp_lexer_peek_token (parser->lexer);
5723 switch (token->type)
5724 {
5725 case CPP_OPEN_SQUARE:
5726 /* offsetof-member-designator "[" expression "]" */
5727 expr = cp_parser_postfix_open_square_expression (parser, expr, true);
5728 break;
5729
5730 case CPP_DOT:
5731 /* offsetof-member-designator "." identifier */
5732 cp_lexer_consume_token (parser->lexer);
5733 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DOT, expr,
5734 true, &dummy);
5735 break;
5736
5737 case CPP_CLOSE_PAREN:
5738 /* Consume the ")" token. */
5739 cp_lexer_consume_token (parser->lexer);
5740 goto success;
5741
5742 default:
5743 /* Error. We know the following require will fail, but
5744 that gives the proper error message. */
5745 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5746 cp_parser_skip_to_closing_parenthesis (parser, true, false, true);
5747 expr = error_mark_node;
5748 goto failure;
5749 }
5750 }
5751
5752 success:
5753 /* If we're processing a template, we can't finish the semantics yet.
5754 Otherwise we can fold the entire expression now. */
5755 if (processing_template_decl)
5756 expr = build1 (OFFSETOF_EXPR, size_type_node, expr);
5757 else
5758 expr = fold_offsetof (expr);
5759
5760 failure:
5761 parser->integral_constant_expression_p = save_ice_p;
5762 parser->non_integral_constant_expression_p = save_non_ice_p;
5763
5764 return expr;
5765 }
5766
5767 /* Statements [gram.stmt.stmt] */
5768
5769 /* Parse a statement.
5770
5771 statement:
5772 labeled-statement
5773 expression-statement
5774 compound-statement
5775 selection-statement
5776 iteration-statement
5777 jump-statement
5778 declaration-statement
5779 try-block */
5780
5781 static void
5782 cp_parser_statement (cp_parser* parser, tree in_statement_expr)
5783 {
5784 tree statement;
5785 cp_token *token;
5786 location_t statement_location;
5787
5788 /* There is no statement yet. */
5789 statement = NULL_TREE;
5790 /* Peek at the next token. */
5791 token = cp_lexer_peek_token (parser->lexer);
5792 /* Remember the location of the first token in the statement. */
5793 statement_location = token->location;
5794 /* If this is a keyword, then that will often determine what kind of
5795 statement we have. */
5796 if (token->type == CPP_KEYWORD)
5797 {
5798 enum rid keyword = token->keyword;
5799
5800 switch (keyword)
5801 {
5802 case RID_CASE:
5803 case RID_DEFAULT:
5804 statement = cp_parser_labeled_statement (parser,
5805 in_statement_expr);
5806 break;
5807
5808 case RID_IF:
5809 case RID_SWITCH:
5810 statement = cp_parser_selection_statement (parser);
5811 break;
5812
5813 case RID_WHILE:
5814 case RID_DO:
5815 case RID_FOR:
5816 statement = cp_parser_iteration_statement (parser);
5817 break;
5818
5819 case RID_BREAK:
5820 case RID_CONTINUE:
5821 case RID_RETURN:
5822 case RID_GOTO:
5823 statement = cp_parser_jump_statement (parser);
5824 break;
5825
5826 case RID_TRY:
5827 statement = cp_parser_try_block (parser);
5828 break;
5829
5830 default:
5831 /* It might be a keyword like `int' that can start a
5832 declaration-statement. */
5833 break;
5834 }
5835 }
5836 else if (token->type == CPP_NAME)
5837 {
5838 /* If the next token is a `:', then we are looking at a
5839 labeled-statement. */
5840 token = cp_lexer_peek_nth_token (parser->lexer, 2);
5841 if (token->type == CPP_COLON)
5842 statement = cp_parser_labeled_statement (parser, in_statement_expr);
5843 }
5844 /* Anything that starts with a `{' must be a compound-statement. */
5845 else if (token->type == CPP_OPEN_BRACE)
5846 statement = cp_parser_compound_statement (parser, NULL, false);
5847 /* CPP_PRAGMA is a #pragma inside a function body, which constitutes
5848 a statement all its own. */
5849 else if (token->type == CPP_PRAGMA)
5850 {
5851 cp_lexer_handle_pragma (parser->lexer);
5852 return;
5853 }
5854
5855 /* Everything else must be a declaration-statement or an
5856 expression-statement. Try for the declaration-statement
5857 first, unless we are looking at a `;', in which case we know that
5858 we have an expression-statement. */
5859 if (!statement)
5860 {
5861 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
5862 {
5863 cp_parser_parse_tentatively (parser);
5864 /* Try to parse the declaration-statement. */
5865 cp_parser_declaration_statement (parser);
5866 /* If that worked, we're done. */
5867 if (cp_parser_parse_definitely (parser))
5868 return;
5869 }
5870 /* Look for an expression-statement instead. */
5871 statement = cp_parser_expression_statement (parser, in_statement_expr);
5872 }
5873
5874 /* Set the line number for the statement. */
5875 if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
5876 SET_EXPR_LOCATION (statement, statement_location);
5877 }
5878
5879 /* Parse a labeled-statement.
5880
5881 labeled-statement:
5882 identifier : statement
5883 case constant-expression : statement
5884 default : statement
5885
5886 GNU Extension:
5887
5888 labeled-statement:
5889 case constant-expression ... constant-expression : statement
5890
5891 Returns the new CASE_LABEL_EXPR, for a `case' or `default' label.
5892 For an ordinary label, returns a LABEL_EXPR. */
5893
5894 static tree
5895 cp_parser_labeled_statement (cp_parser* parser, tree in_statement_expr)
5896 {
5897 cp_token *token;
5898 tree statement = error_mark_node;
5899
5900 /* The next token should be an identifier. */
5901 token = cp_lexer_peek_token (parser->lexer);
5902 if (token->type != CPP_NAME
5903 && token->type != CPP_KEYWORD)
5904 {
5905 cp_parser_error (parser, "expected labeled-statement");
5906 return error_mark_node;
5907 }
5908
5909 switch (token->keyword)
5910 {
5911 case RID_CASE:
5912 {
5913 tree expr, expr_hi;
5914 cp_token *ellipsis;
5915
5916 /* Consume the `case' token. */
5917 cp_lexer_consume_token (parser->lexer);
5918 /* Parse the constant-expression. */
5919 expr = cp_parser_constant_expression (parser,
5920 /*allow_non_constant_p=*/false,
5921 NULL);
5922
5923 ellipsis = cp_lexer_peek_token (parser->lexer);
5924 if (ellipsis->type == CPP_ELLIPSIS)
5925 {
5926 /* Consume the `...' token. */
5927 cp_lexer_consume_token (parser->lexer);
5928 expr_hi =
5929 cp_parser_constant_expression (parser,
5930 /*allow_non_constant_p=*/false,
5931 NULL);
5932 /* We don't need to emit warnings here, as the common code
5933 will do this for us. */
5934 }
5935 else
5936 expr_hi = NULL_TREE;
5937
5938 if (!parser->in_switch_statement_p)
5939 error ("case label %qE not within a switch statement", expr);
5940 else
5941 statement = finish_case_label (expr, expr_hi);
5942 }
5943 break;
5944
5945 case RID_DEFAULT:
5946 /* Consume the `default' token. */
5947 cp_lexer_consume_token (parser->lexer);
5948 if (!parser->in_switch_statement_p)
5949 error ("case label not within a switch statement");
5950 else
5951 statement = finish_case_label (NULL_TREE, NULL_TREE);
5952 break;
5953
5954 default:
5955 /* Anything else must be an ordinary label. */
5956 statement = finish_label_stmt (cp_parser_identifier (parser));
5957 break;
5958 }
5959
5960 /* Require the `:' token. */
5961 cp_parser_require (parser, CPP_COLON, "`:'");
5962 /* Parse the labeled statement. */
5963 cp_parser_statement (parser, in_statement_expr);
5964
5965 /* Return the label, in the case of a `case' or `default' label. */
5966 return statement;
5967 }
5968
5969 /* Parse an expression-statement.
5970
5971 expression-statement:
5972 expression [opt] ;
5973
5974 Returns the new EXPR_STMT -- or NULL_TREE if the expression
5975 statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
5976 indicates whether this expression-statement is part of an
5977 expression statement. */
5978
5979 static tree
5980 cp_parser_expression_statement (cp_parser* parser, tree in_statement_expr)
5981 {
5982 tree statement = NULL_TREE;
5983
5984 /* If the next token is a ';', then there is no expression
5985 statement. */
5986 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
5987 statement = cp_parser_expression (parser);
5988
5989 /* Consume the final `;'. */
5990 cp_parser_consume_semicolon_at_end_of_statement (parser);
5991
5992 if (in_statement_expr
5993 && cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
5994 {
5995 /* This is the final expression statement of a statement
5996 expression. */
5997 statement = finish_stmt_expr_expr (statement, in_statement_expr);
5998 }
5999 else if (statement)
6000 statement = finish_expr_stmt (statement);
6001 else
6002 finish_stmt ();
6003
6004 return statement;
6005 }
6006
6007 /* Parse a compound-statement.
6008
6009 compound-statement:
6010 { statement-seq [opt] }
6011
6012 Returns a tree representing the statement. */
6013
6014 static tree
6015 cp_parser_compound_statement (cp_parser *parser, tree in_statement_expr,
6016 bool in_try)
6017 {
6018 tree compound_stmt;
6019
6020 /* Consume the `{'. */
6021 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
6022 return error_mark_node;
6023 /* Begin the compound-statement. */
6024 compound_stmt = begin_compound_stmt (in_try ? BCS_TRY_BLOCK : 0);
6025 /* Parse an (optional) statement-seq. */
6026 cp_parser_statement_seq_opt (parser, in_statement_expr);
6027 /* Finish the compound-statement. */
6028 finish_compound_stmt (compound_stmt);
6029 /* Consume the `}'. */
6030 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6031
6032 return compound_stmt;
6033 }
6034
6035 /* Parse an (optional) statement-seq.
6036
6037 statement-seq:
6038 statement
6039 statement-seq [opt] statement */
6040
6041 static void
6042 cp_parser_statement_seq_opt (cp_parser* parser, tree in_statement_expr)
6043 {
6044 /* Scan statements until there aren't any more. */
6045 while (true)
6046 {
6047 /* If we're looking at a `}', then we've run out of statements. */
6048 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)
6049 || cp_lexer_next_token_is (parser->lexer, CPP_EOF))
6050 break;
6051
6052 /* Parse the statement. */
6053 cp_parser_statement (parser, in_statement_expr);
6054 }
6055 }
6056
6057 /* Parse a selection-statement.
6058
6059 selection-statement:
6060 if ( condition ) statement
6061 if ( condition ) statement else statement
6062 switch ( condition ) statement
6063
6064 Returns the new IF_STMT or SWITCH_STMT. */
6065
6066 static tree
6067 cp_parser_selection_statement (cp_parser* parser)
6068 {
6069 cp_token *token;
6070 enum rid keyword;
6071
6072 /* Peek at the next token. */
6073 token = cp_parser_require (parser, CPP_KEYWORD, "selection-statement");
6074
6075 /* See what kind of keyword it is. */
6076 keyword = token->keyword;
6077 switch (keyword)
6078 {
6079 case RID_IF:
6080 case RID_SWITCH:
6081 {
6082 tree statement;
6083 tree condition;
6084
6085 /* Look for the `('. */
6086 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
6087 {
6088 cp_parser_skip_to_end_of_statement (parser);
6089 return error_mark_node;
6090 }
6091
6092 /* Begin the selection-statement. */
6093 if (keyword == RID_IF)
6094 statement = begin_if_stmt ();
6095 else
6096 statement = begin_switch_stmt ();
6097
6098 /* Parse the condition. */
6099 condition = cp_parser_condition (parser);
6100 /* Look for the `)'. */
6101 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
6102 cp_parser_skip_to_closing_parenthesis (parser, true, false,
6103 /*consume_paren=*/true);
6104
6105 if (keyword == RID_IF)
6106 {
6107 /* Add the condition. */
6108 finish_if_stmt_cond (condition, statement);
6109
6110 /* Parse the then-clause. */
6111 cp_parser_implicitly_scoped_statement (parser);
6112 finish_then_clause (statement);
6113
6114 /* If the next token is `else', parse the else-clause. */
6115 if (cp_lexer_next_token_is_keyword (parser->lexer,
6116 RID_ELSE))
6117 {
6118 /* Consume the `else' keyword. */
6119 cp_lexer_consume_token (parser->lexer);
6120 begin_else_clause (statement);
6121 /* Parse the else-clause. */
6122 cp_parser_implicitly_scoped_statement (parser);
6123 finish_else_clause (statement);
6124 }
6125
6126 /* Now we're all done with the if-statement. */
6127 finish_if_stmt (statement);
6128 }
6129 else
6130 {
6131 bool in_switch_statement_p;
6132
6133 /* Add the condition. */
6134 finish_switch_cond (condition, statement);
6135
6136 /* Parse the body of the switch-statement. */
6137 in_switch_statement_p = parser->in_switch_statement_p;
6138 parser->in_switch_statement_p = true;
6139 cp_parser_implicitly_scoped_statement (parser);
6140 parser->in_switch_statement_p = in_switch_statement_p;
6141
6142 /* Now we're all done with the switch-statement. */
6143 finish_switch_stmt (statement);
6144 }
6145
6146 return statement;
6147 }
6148 break;
6149
6150 default:
6151 cp_parser_error (parser, "expected selection-statement");
6152 return error_mark_node;
6153 }
6154 }
6155
6156 /* Parse a condition.
6157
6158 condition:
6159 expression
6160 type-specifier-seq declarator = assignment-expression
6161
6162 GNU Extension:
6163
6164 condition:
6165 type-specifier-seq declarator asm-specification [opt]
6166 attributes [opt] = assignment-expression
6167
6168 Returns the expression that should be tested. */
6169
6170 static tree
6171 cp_parser_condition (cp_parser* parser)
6172 {
6173 cp_decl_specifier_seq type_specifiers;
6174 const char *saved_message;
6175
6176 /* Try the declaration first. */
6177 cp_parser_parse_tentatively (parser);
6178 /* New types are not allowed in the type-specifier-seq for a
6179 condition. */
6180 saved_message = parser->type_definition_forbidden_message;
6181 parser->type_definition_forbidden_message
6182 = "types may not be defined in conditions";
6183 /* Parse the type-specifier-seq. */
6184 cp_parser_type_specifier_seq (parser, &type_specifiers);
6185 /* Restore the saved message. */
6186 parser->type_definition_forbidden_message = saved_message;
6187 /* If all is well, we might be looking at a declaration. */
6188 if (!cp_parser_error_occurred (parser))
6189 {
6190 tree decl;
6191 tree asm_specification;
6192 tree attributes;
6193 cp_declarator *declarator;
6194 tree initializer = NULL_TREE;
6195
6196 /* Parse the declarator. */
6197 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
6198 /*ctor_dtor_or_conv_p=*/NULL,
6199 /*parenthesized_p=*/NULL,
6200 /*member_p=*/false);
6201 /* Parse the attributes. */
6202 attributes = cp_parser_attributes_opt (parser);
6203 /* Parse the asm-specification. */
6204 asm_specification = cp_parser_asm_specification_opt (parser);
6205 /* If the next token is not an `=', then we might still be
6206 looking at an expression. For example:
6207
6208 if (A(a).x)
6209
6210 looks like a decl-specifier-seq and a declarator -- but then
6211 there is no `=', so this is an expression. */
6212 cp_parser_require (parser, CPP_EQ, "`='");
6213 /* If we did see an `=', then we are looking at a declaration
6214 for sure. */
6215 if (cp_parser_parse_definitely (parser))
6216 {
6217 bool pop_p;
6218
6219 /* Create the declaration. */
6220 decl = start_decl (declarator, &type_specifiers,
6221 /*initialized_p=*/true,
6222 attributes, /*prefix_attributes=*/NULL_TREE,
6223 &pop_p);
6224 /* Parse the assignment-expression. */
6225 initializer = cp_parser_assignment_expression (parser);
6226
6227 /* Process the initializer. */
6228 cp_finish_decl (decl,
6229 initializer,
6230 asm_specification,
6231 LOOKUP_ONLYCONVERTING);
6232
6233 if (pop_p)
6234 pop_scope (DECL_CONTEXT (decl));
6235
6236 return convert_from_reference (decl);
6237 }
6238 }
6239 /* If we didn't even get past the declarator successfully, we are
6240 definitely not looking at a declaration. */
6241 else
6242 cp_parser_abort_tentative_parse (parser);
6243
6244 /* Otherwise, we are looking at an expression. */
6245 return cp_parser_expression (parser);
6246 }
6247
6248 /* Parse an iteration-statement.
6249
6250 iteration-statement:
6251 while ( condition ) statement
6252 do statement while ( expression ) ;
6253 for ( for-init-statement condition [opt] ; expression [opt] )
6254 statement
6255
6256 Returns the new WHILE_STMT, DO_STMT, or FOR_STMT. */
6257
6258 static tree
6259 cp_parser_iteration_statement (cp_parser* parser)
6260 {
6261 cp_token *token;
6262 enum rid keyword;
6263 tree statement;
6264 bool in_iteration_statement_p;
6265
6266
6267 /* Peek at the next token. */
6268 token = cp_parser_require (parser, CPP_KEYWORD, "iteration-statement");
6269 if (!token)
6270 return error_mark_node;
6271
6272 /* Remember whether or not we are already within an iteration
6273 statement. */
6274 in_iteration_statement_p = parser->in_iteration_statement_p;
6275
6276 /* See what kind of keyword it is. */
6277 keyword = token->keyword;
6278 switch (keyword)
6279 {
6280 case RID_WHILE:
6281 {
6282 tree condition;
6283
6284 /* Begin the while-statement. */
6285 statement = begin_while_stmt ();
6286 /* Look for the `('. */
6287 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6288 /* Parse the condition. */
6289 condition = cp_parser_condition (parser);
6290 finish_while_stmt_cond (condition, statement);
6291 /* Look for the `)'. */
6292 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6293 /* Parse the dependent statement. */
6294 parser->in_iteration_statement_p = true;
6295 cp_parser_already_scoped_statement (parser);
6296 parser->in_iteration_statement_p = in_iteration_statement_p;
6297 /* We're done with the while-statement. */
6298 finish_while_stmt (statement);
6299 }
6300 break;
6301
6302 case RID_DO:
6303 {
6304 tree expression;
6305
6306 /* Begin the do-statement. */
6307 statement = begin_do_stmt ();
6308 /* Parse the body of the do-statement. */
6309 parser->in_iteration_statement_p = true;
6310 cp_parser_implicitly_scoped_statement (parser);
6311 parser->in_iteration_statement_p = in_iteration_statement_p;
6312 finish_do_body (statement);
6313 /* Look for the `while' keyword. */
6314 cp_parser_require_keyword (parser, RID_WHILE, "`while'");
6315 /* Look for the `('. */
6316 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6317 /* Parse the expression. */
6318 expression = cp_parser_expression (parser);
6319 /* We're done with the do-statement. */
6320 finish_do_stmt (expression, statement);
6321 /* Look for the `)'. */
6322 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6323 /* Look for the `;'. */
6324 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6325 }
6326 break;
6327
6328 case RID_FOR:
6329 {
6330 tree condition = NULL_TREE;
6331 tree expression = NULL_TREE;
6332
6333 /* Begin the for-statement. */
6334 statement = begin_for_stmt ();
6335 /* Look for the `('. */
6336 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6337 /* Parse the initialization. */
6338 cp_parser_for_init_statement (parser);
6339 finish_for_init_stmt (statement);
6340
6341 /* If there's a condition, process it. */
6342 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6343 condition = cp_parser_condition (parser);
6344 finish_for_cond (condition, statement);
6345 /* Look for the `;'. */
6346 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6347
6348 /* If there's an expression, process it. */
6349 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
6350 expression = cp_parser_expression (parser);
6351 finish_for_expr (expression, statement);
6352 /* Look for the `)'. */
6353 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6354
6355 /* Parse the body of the for-statement. */
6356 parser->in_iteration_statement_p = true;
6357 cp_parser_already_scoped_statement (parser);
6358 parser->in_iteration_statement_p = in_iteration_statement_p;
6359
6360 /* We're done with the for-statement. */
6361 finish_for_stmt (statement);
6362 }
6363 break;
6364
6365 default:
6366 cp_parser_error (parser, "expected iteration-statement");
6367 statement = error_mark_node;
6368 break;
6369 }
6370
6371 return statement;
6372 }
6373
6374 /* Parse a for-init-statement.
6375
6376 for-init-statement:
6377 expression-statement
6378 simple-declaration */
6379
6380 static void
6381 cp_parser_for_init_statement (cp_parser* parser)
6382 {
6383 /* If the next token is a `;', then we have an empty
6384 expression-statement. Grammatically, this is also a
6385 simple-declaration, but an invalid one, because it does not
6386 declare anything. Therefore, if we did not handle this case
6387 specially, we would issue an error message about an invalid
6388 declaration. */
6389 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6390 {
6391 /* We're going to speculatively look for a declaration, falling back
6392 to an expression, if necessary. */
6393 cp_parser_parse_tentatively (parser);
6394 /* Parse the declaration. */
6395 cp_parser_simple_declaration (parser,
6396 /*function_definition_allowed_p=*/false);
6397 /* If the tentative parse failed, then we shall need to look for an
6398 expression-statement. */
6399 if (cp_parser_parse_definitely (parser))
6400 return;
6401 }
6402
6403 cp_parser_expression_statement (parser, false);
6404 }
6405
6406 /* Parse a jump-statement.
6407
6408 jump-statement:
6409 break ;
6410 continue ;
6411 return expression [opt] ;
6412 goto identifier ;
6413
6414 GNU extension:
6415
6416 jump-statement:
6417 goto * expression ;
6418
6419 Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_EXPR, or GOTO_EXPR. */
6420
6421 static tree
6422 cp_parser_jump_statement (cp_parser* parser)
6423 {
6424 tree statement = error_mark_node;
6425 cp_token *token;
6426 enum rid keyword;
6427
6428 /* Peek at the next token. */
6429 token = cp_parser_require (parser, CPP_KEYWORD, "jump-statement");
6430 if (!token)
6431 return error_mark_node;
6432
6433 /* See what kind of keyword it is. */
6434 keyword = token->keyword;
6435 switch (keyword)
6436 {
6437 case RID_BREAK:
6438 if (!parser->in_switch_statement_p
6439 && !parser->in_iteration_statement_p)
6440 {
6441 error ("break statement not within loop or switch");
6442 statement = error_mark_node;
6443 }
6444 else
6445 statement = finish_break_stmt ();
6446 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6447 break;
6448
6449 case RID_CONTINUE:
6450 if (!parser->in_iteration_statement_p)
6451 {
6452 error ("continue statement not within a loop");
6453 statement = error_mark_node;
6454 }
6455 else
6456 statement = finish_continue_stmt ();
6457 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6458 break;
6459
6460 case RID_RETURN:
6461 {
6462 tree expr;
6463
6464 /* If the next token is a `;', then there is no
6465 expression. */
6466 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6467 expr = cp_parser_expression (parser);
6468 else
6469 expr = NULL_TREE;
6470 /* Build the return-statement. */
6471 statement = finish_return_stmt (expr);
6472 /* Look for the final `;'. */
6473 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6474 }
6475 break;
6476
6477 case RID_GOTO:
6478 /* Create the goto-statement. */
6479 if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
6480 {
6481 /* Issue a warning about this use of a GNU extension. */
6482 if (pedantic)
6483 pedwarn ("ISO C++ forbids computed gotos");
6484 /* Consume the '*' token. */
6485 cp_lexer_consume_token (parser->lexer);
6486 /* Parse the dependent expression. */
6487 finish_goto_stmt (cp_parser_expression (parser));
6488 }
6489 else
6490 finish_goto_stmt (cp_parser_identifier (parser));
6491 /* Look for the final `;'. */
6492 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6493 break;
6494
6495 default:
6496 cp_parser_error (parser, "expected jump-statement");
6497 break;
6498 }
6499
6500 return statement;
6501 }
6502
6503 /* Parse a declaration-statement.
6504
6505 declaration-statement:
6506 block-declaration */
6507
6508 static void
6509 cp_parser_declaration_statement (cp_parser* parser)
6510 {
6511 void *p;
6512
6513 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6514 p = obstack_alloc (&declarator_obstack, 0);
6515
6516 /* Parse the block-declaration. */
6517 cp_parser_block_declaration (parser, /*statement_p=*/true);
6518
6519 /* Free any declarators allocated. */
6520 obstack_free (&declarator_obstack, p);
6521
6522 /* Finish off the statement. */
6523 finish_stmt ();
6524 }
6525
6526 /* Some dependent statements (like `if (cond) statement'), are
6527 implicitly in their own scope. In other words, if the statement is
6528 a single statement (as opposed to a compound-statement), it is
6529 none-the-less treated as if it were enclosed in braces. Any
6530 declarations appearing in the dependent statement are out of scope
6531 after control passes that point. This function parses a statement,
6532 but ensures that is in its own scope, even if it is not a
6533 compound-statement.
6534
6535 Returns the new statement. */
6536
6537 static tree
6538 cp_parser_implicitly_scoped_statement (cp_parser* parser)
6539 {
6540 tree statement;
6541
6542 /* If the token is not a `{', then we must take special action. */
6543 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6544 {
6545 /* Create a compound-statement. */
6546 statement = begin_compound_stmt (0);
6547 /* Parse the dependent-statement. */
6548 cp_parser_statement (parser, false);
6549 /* Finish the dummy compound-statement. */
6550 finish_compound_stmt (statement);
6551 }
6552 /* Otherwise, we simply parse the statement directly. */
6553 else
6554 statement = cp_parser_compound_statement (parser, NULL, false);
6555
6556 /* Return the statement. */
6557 return statement;
6558 }
6559
6560 /* For some dependent statements (like `while (cond) statement'), we
6561 have already created a scope. Therefore, even if the dependent
6562 statement is a compound-statement, we do not want to create another
6563 scope. */
6564
6565 static void
6566 cp_parser_already_scoped_statement (cp_parser* parser)
6567 {
6568 /* If the token is a `{', then we must take special action. */
6569 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6570 cp_parser_statement (parser, false);
6571 else
6572 {
6573 /* Avoid calling cp_parser_compound_statement, so that we
6574 don't create a new scope. Do everything else by hand. */
6575 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
6576 cp_parser_statement_seq_opt (parser, false);
6577 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6578 }
6579 }
6580
6581 /* Declarations [gram.dcl.dcl] */
6582
6583 /* Parse an optional declaration-sequence.
6584
6585 declaration-seq:
6586 declaration
6587 declaration-seq declaration */
6588
6589 static void
6590 cp_parser_declaration_seq_opt (cp_parser* parser)
6591 {
6592 while (true)
6593 {
6594 cp_token *token;
6595
6596 token = cp_lexer_peek_token (parser->lexer);
6597
6598 if (token->type == CPP_CLOSE_BRACE
6599 || token->type == CPP_EOF)
6600 break;
6601
6602 if (token->type == CPP_SEMICOLON)
6603 {
6604 /* A declaration consisting of a single semicolon is
6605 invalid. Allow it unless we're being pedantic. */
6606 cp_lexer_consume_token (parser->lexer);
6607 if (pedantic && !in_system_header)
6608 pedwarn ("extra %<;%>");
6609 continue;
6610 }
6611
6612 /* If we're entering or exiting a region that's implicitly
6613 extern "C", modify the lang context appropriately. */
6614 if (!parser->implicit_extern_c && token->implicit_extern_c)
6615 {
6616 push_lang_context (lang_name_c);
6617 parser->implicit_extern_c = true;
6618 }
6619 else if (parser->implicit_extern_c && !token->implicit_extern_c)
6620 {
6621 pop_lang_context ();
6622 parser->implicit_extern_c = false;
6623 }
6624
6625 if (token->type == CPP_PRAGMA)
6626 {
6627 /* A top-level declaration can consist solely of a #pragma.
6628 A nested declaration cannot, so this is done here and not
6629 in cp_parser_declaration. (A #pragma at block scope is
6630 handled in cp_parser_statement.) */
6631 cp_lexer_handle_pragma (parser->lexer);
6632 continue;
6633 }
6634
6635 /* Parse the declaration itself. */
6636 cp_parser_declaration (parser);
6637 }
6638 }
6639
6640 /* Parse a declaration.
6641
6642 declaration:
6643 block-declaration
6644 function-definition
6645 template-declaration
6646 explicit-instantiation
6647 explicit-specialization
6648 linkage-specification
6649 namespace-definition
6650
6651 GNU extension:
6652
6653 declaration:
6654 __extension__ declaration */
6655
6656 static void
6657 cp_parser_declaration (cp_parser* parser)
6658 {
6659 cp_token token1;
6660 cp_token token2;
6661 int saved_pedantic;
6662 void *p;
6663
6664 /* Check for the `__extension__' keyword. */
6665 if (cp_parser_extension_opt (parser, &saved_pedantic))
6666 {
6667 /* Parse the qualified declaration. */
6668 cp_parser_declaration (parser);
6669 /* Restore the PEDANTIC flag. */
6670 pedantic = saved_pedantic;
6671
6672 return;
6673 }
6674
6675 /* Try to figure out what kind of declaration is present. */
6676 token1 = *cp_lexer_peek_token (parser->lexer);
6677
6678 if (token1.type != CPP_EOF)
6679 token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
6680
6681 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6682 p = obstack_alloc (&declarator_obstack, 0);
6683
6684 /* If the next token is `extern' and the following token is a string
6685 literal, then we have a linkage specification. */
6686 if (token1.keyword == RID_EXTERN
6687 && cp_parser_is_string_literal (&token2))
6688 cp_parser_linkage_specification (parser);
6689 /* If the next token is `template', then we have either a template
6690 declaration, an explicit instantiation, or an explicit
6691 specialization. */
6692 else if (token1.keyword == RID_TEMPLATE)
6693 {
6694 /* `template <>' indicates a template specialization. */
6695 if (token2.type == CPP_LESS
6696 && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
6697 cp_parser_explicit_specialization (parser);
6698 /* `template <' indicates a template declaration. */
6699 else if (token2.type == CPP_LESS)
6700 cp_parser_template_declaration (parser, /*member_p=*/false);
6701 /* Anything else must be an explicit instantiation. */
6702 else
6703 cp_parser_explicit_instantiation (parser);
6704 }
6705 /* If the next token is `export', then we have a template
6706 declaration. */
6707 else if (token1.keyword == RID_EXPORT)
6708 cp_parser_template_declaration (parser, /*member_p=*/false);
6709 /* If the next token is `extern', 'static' or 'inline' and the one
6710 after that is `template', we have a GNU extended explicit
6711 instantiation directive. */
6712 else if (cp_parser_allow_gnu_extensions_p (parser)
6713 && (token1.keyword == RID_EXTERN
6714 || token1.keyword == RID_STATIC
6715 || token1.keyword == RID_INLINE)
6716 && token2.keyword == RID_TEMPLATE)
6717 cp_parser_explicit_instantiation (parser);
6718 /* If the next token is `namespace', check for a named or unnamed
6719 namespace definition. */
6720 else if (token1.keyword == RID_NAMESPACE
6721 && (/* A named namespace definition. */
6722 (token2.type == CPP_NAME
6723 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
6724 == CPP_OPEN_BRACE))
6725 /* An unnamed namespace definition. */
6726 || token2.type == CPP_OPEN_BRACE))
6727 cp_parser_namespace_definition (parser);
6728 /* We must have either a block declaration or a function
6729 definition. */
6730 else
6731 /* Try to parse a block-declaration, or a function-definition. */
6732 cp_parser_block_declaration (parser, /*statement_p=*/false);
6733
6734 /* Free any declarators allocated. */
6735 obstack_free (&declarator_obstack, p);
6736 }
6737
6738 /* Parse a block-declaration.
6739
6740 block-declaration:
6741 simple-declaration
6742 asm-definition
6743 namespace-alias-definition
6744 using-declaration
6745 using-directive
6746
6747 GNU Extension:
6748
6749 block-declaration:
6750 __extension__ block-declaration
6751 label-declaration
6752
6753 If STATEMENT_P is TRUE, then this block-declaration is occurring as
6754 part of a declaration-statement. */
6755
6756 static void
6757 cp_parser_block_declaration (cp_parser *parser,
6758 bool statement_p)
6759 {
6760 cp_token *token1;
6761 int saved_pedantic;
6762
6763 /* Check for the `__extension__' keyword. */
6764 if (cp_parser_extension_opt (parser, &saved_pedantic))
6765 {
6766 /* Parse the qualified declaration. */
6767 cp_parser_block_declaration (parser, statement_p);
6768 /* Restore the PEDANTIC flag. */
6769 pedantic = saved_pedantic;
6770
6771 return;
6772 }
6773
6774 /* Peek at the next token to figure out which kind of declaration is
6775 present. */
6776 token1 = cp_lexer_peek_token (parser->lexer);
6777
6778 /* If the next keyword is `asm', we have an asm-definition. */
6779 if (token1->keyword == RID_ASM)
6780 {
6781 if (statement_p)
6782 cp_parser_commit_to_tentative_parse (parser);
6783 cp_parser_asm_definition (parser);
6784 }
6785 /* If the next keyword is `namespace', we have a
6786 namespace-alias-definition. */
6787 else if (token1->keyword == RID_NAMESPACE)
6788 cp_parser_namespace_alias_definition (parser);
6789 /* If the next keyword is `using', we have either a
6790 using-declaration or a using-directive. */
6791 else if (token1->keyword == RID_USING)
6792 {
6793 cp_token *token2;
6794
6795 if (statement_p)
6796 cp_parser_commit_to_tentative_parse (parser);
6797 /* If the token after `using' is `namespace', then we have a
6798 using-directive. */
6799 token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
6800 if (token2->keyword == RID_NAMESPACE)
6801 cp_parser_using_directive (parser);
6802 /* Otherwise, it's a using-declaration. */
6803 else
6804 cp_parser_using_declaration (parser);
6805 }
6806 /* If the next keyword is `__label__' we have a label declaration. */
6807 else if (token1->keyword == RID_LABEL)
6808 {
6809 if (statement_p)
6810 cp_parser_commit_to_tentative_parse (parser);
6811 cp_parser_label_declaration (parser);
6812 }
6813 /* Anything else must be a simple-declaration. */
6814 else
6815 cp_parser_simple_declaration (parser, !statement_p);
6816 }
6817
6818 /* Parse a simple-declaration.
6819
6820 simple-declaration:
6821 decl-specifier-seq [opt] init-declarator-list [opt] ;
6822
6823 init-declarator-list:
6824 init-declarator
6825 init-declarator-list , init-declarator
6826
6827 If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
6828 function-definition as a simple-declaration. */
6829
6830 static void
6831 cp_parser_simple_declaration (cp_parser* parser,
6832 bool function_definition_allowed_p)
6833 {
6834 cp_decl_specifier_seq decl_specifiers;
6835 int declares_class_or_enum;
6836 bool saw_declarator;
6837
6838 /* Defer access checks until we know what is being declared; the
6839 checks for names appearing in the decl-specifier-seq should be
6840 done as if we were in the scope of the thing being declared. */
6841 push_deferring_access_checks (dk_deferred);
6842
6843 /* Parse the decl-specifier-seq. We have to keep track of whether
6844 or not the decl-specifier-seq declares a named class or
6845 enumeration type, since that is the only case in which the
6846 init-declarator-list is allowed to be empty.
6847
6848 [dcl.dcl]
6849
6850 In a simple-declaration, the optional init-declarator-list can be
6851 omitted only when declaring a class or enumeration, that is when
6852 the decl-specifier-seq contains either a class-specifier, an
6853 elaborated-type-specifier, or an enum-specifier. */
6854 cp_parser_decl_specifier_seq (parser,
6855 CP_PARSER_FLAGS_OPTIONAL,
6856 &decl_specifiers,
6857 &declares_class_or_enum);
6858 /* We no longer need to defer access checks. */
6859 stop_deferring_access_checks ();
6860
6861 /* In a block scope, a valid declaration must always have a
6862 decl-specifier-seq. By not trying to parse declarators, we can
6863 resolve the declaration/expression ambiguity more quickly. */
6864 if (!function_definition_allowed_p
6865 && !decl_specifiers.any_specifiers_p)
6866 {
6867 cp_parser_error (parser, "expected declaration");
6868 goto done;
6869 }
6870
6871 /* If the next two tokens are both identifiers, the code is
6872 erroneous. The usual cause of this situation is code like:
6873
6874 T t;
6875
6876 where "T" should name a type -- but does not. */
6877 if (!decl_specifiers.type
6878 && cp_parser_parse_and_diagnose_invalid_type_name (parser))
6879 {
6880 /* If parsing tentatively, we should commit; we really are
6881 looking at a declaration. */
6882 cp_parser_commit_to_tentative_parse (parser);
6883 /* Give up. */
6884 goto done;
6885 }
6886
6887 /* If we have seen at least one decl-specifier, and the next token
6888 is not a parenthesis, then we must be looking at a declaration.
6889 (After "int (" we might be looking at a functional cast.) */
6890 if (decl_specifiers.any_specifiers_p
6891 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
6892 cp_parser_commit_to_tentative_parse (parser);
6893
6894 /* Keep going until we hit the `;' at the end of the simple
6895 declaration. */
6896 saw_declarator = false;
6897 while (cp_lexer_next_token_is_not (parser->lexer,
6898 CPP_SEMICOLON))
6899 {
6900 cp_token *token;
6901 bool function_definition_p;
6902 tree decl;
6903
6904 saw_declarator = true;
6905 /* Parse the init-declarator. */
6906 decl = cp_parser_init_declarator (parser, &decl_specifiers,
6907 function_definition_allowed_p,
6908 /*member_p=*/false,
6909 declares_class_or_enum,
6910 &function_definition_p);
6911 /* If an error occurred while parsing tentatively, exit quickly.
6912 (That usually happens when in the body of a function; each
6913 statement is treated as a declaration-statement until proven
6914 otherwise.) */
6915 if (cp_parser_error_occurred (parser))
6916 goto done;
6917 /* Handle function definitions specially. */
6918 if (function_definition_p)
6919 {
6920 /* If the next token is a `,', then we are probably
6921 processing something like:
6922
6923 void f() {}, *p;
6924
6925 which is erroneous. */
6926 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
6927 error ("mixing declarations and function-definitions is forbidden");
6928 /* Otherwise, we're done with the list of declarators. */
6929 else
6930 {
6931 pop_deferring_access_checks ();
6932 return;
6933 }
6934 }
6935 /* The next token should be either a `,' or a `;'. */
6936 token = cp_lexer_peek_token (parser->lexer);
6937 /* If it's a `,', there are more declarators to come. */
6938 if (token->type == CPP_COMMA)
6939 cp_lexer_consume_token (parser->lexer);
6940 /* If it's a `;', we are done. */
6941 else if (token->type == CPP_SEMICOLON)
6942 break;
6943 /* Anything else is an error. */
6944 else
6945 {
6946 /* If we have already issued an error message we don't need
6947 to issue another one. */
6948 if (decl != error_mark_node
6949 || (cp_parser_parsing_tentatively (parser)
6950 && !cp_parser_committed_to_tentative_parse (parser)))
6951 cp_parser_error (parser, "expected %<,%> or %<;%>");
6952 /* Skip tokens until we reach the end of the statement. */
6953 cp_parser_skip_to_end_of_statement (parser);
6954 /* If the next token is now a `;', consume it. */
6955 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
6956 cp_lexer_consume_token (parser->lexer);
6957 goto done;
6958 }
6959 /* After the first time around, a function-definition is not
6960 allowed -- even if it was OK at first. For example:
6961
6962 int i, f() {}
6963
6964 is not valid. */
6965 function_definition_allowed_p = false;
6966 }
6967
6968 /* Issue an error message if no declarators are present, and the
6969 decl-specifier-seq does not itself declare a class or
6970 enumeration. */
6971 if (!saw_declarator)
6972 {
6973 if (cp_parser_declares_only_class_p (parser))
6974 shadow_tag (&decl_specifiers);
6975 /* Perform any deferred access checks. */
6976 perform_deferred_access_checks ();
6977 }
6978
6979 /* Consume the `;'. */
6980 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6981
6982 done:
6983 pop_deferring_access_checks ();
6984 }
6985
6986 /* Parse a decl-specifier-seq.
6987
6988 decl-specifier-seq:
6989 decl-specifier-seq [opt] decl-specifier
6990
6991 decl-specifier:
6992 storage-class-specifier
6993 type-specifier
6994 function-specifier
6995 friend
6996 typedef
6997
6998 GNU Extension:
6999
7000 decl-specifier:
7001 attributes
7002
7003 Set *DECL_SPECS to a representation of the decl-specifier-seq.
7004
7005 The parser flags FLAGS is used to control type-specifier parsing.
7006
7007 *DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
7008 flags:
7009
7010 1: one of the decl-specifiers is an elaborated-type-specifier
7011 (i.e., a type declaration)
7012 2: one of the decl-specifiers is an enum-specifier or a
7013 class-specifier (i.e., a type definition)
7014
7015 */
7016
7017 static void
7018 cp_parser_decl_specifier_seq (cp_parser* parser,
7019 cp_parser_flags flags,
7020 cp_decl_specifier_seq *decl_specs,
7021 int* declares_class_or_enum)
7022 {
7023 bool constructor_possible_p = !parser->in_declarator_p;
7024
7025 /* Clear DECL_SPECS. */
7026 clear_decl_specs (decl_specs);
7027
7028 /* Assume no class or enumeration type is declared. */
7029 *declares_class_or_enum = 0;
7030
7031 /* Keep reading specifiers until there are no more to read. */
7032 while (true)
7033 {
7034 bool constructor_p;
7035 bool found_decl_spec;
7036 cp_token *token;
7037
7038 /* Peek at the next token. */
7039 token = cp_lexer_peek_token (parser->lexer);
7040 /* Handle attributes. */
7041 if (token->keyword == RID_ATTRIBUTE)
7042 {
7043 /* Parse the attributes. */
7044 decl_specs->attributes
7045 = chainon (decl_specs->attributes,
7046 cp_parser_attributes_opt (parser));
7047 continue;
7048 }
7049 /* Assume we will find a decl-specifier keyword. */
7050 found_decl_spec = true;
7051 /* If the next token is an appropriate keyword, we can simply
7052 add it to the list. */
7053 switch (token->keyword)
7054 {
7055 /* decl-specifier:
7056 friend */
7057 case RID_FRIEND:
7058 if (decl_specs->specs[(int) ds_friend]++)
7059 error ("duplicate %<friend%>");
7060 /* Consume the token. */
7061 cp_lexer_consume_token (parser->lexer);
7062 break;
7063
7064 /* function-specifier:
7065 inline
7066 virtual
7067 explicit */
7068 case RID_INLINE:
7069 case RID_VIRTUAL:
7070 case RID_EXPLICIT:
7071 cp_parser_function_specifier_opt (parser, decl_specs);
7072 break;
7073
7074 /* decl-specifier:
7075 typedef */
7076 case RID_TYPEDEF:
7077 ++decl_specs->specs[(int) ds_typedef];
7078 /* Consume the token. */
7079 cp_lexer_consume_token (parser->lexer);
7080 /* A constructor declarator cannot appear in a typedef. */
7081 constructor_possible_p = false;
7082 /* The "typedef" keyword can only occur in a declaration; we
7083 may as well commit at this point. */
7084 cp_parser_commit_to_tentative_parse (parser);
7085 break;
7086
7087 /* storage-class-specifier:
7088 auto
7089 register
7090 static
7091 extern
7092 mutable
7093
7094 GNU Extension:
7095 thread */
7096 case RID_AUTO:
7097 /* Consume the token. */
7098 cp_lexer_consume_token (parser->lexer);
7099 cp_parser_set_storage_class (decl_specs, sc_auto);
7100 break;
7101 case RID_REGISTER:
7102 /* Consume the token. */
7103 cp_lexer_consume_token (parser->lexer);
7104 cp_parser_set_storage_class (decl_specs, sc_register);
7105 break;
7106 case RID_STATIC:
7107 /* Consume the token. */
7108 cp_lexer_consume_token (parser->lexer);
7109 if (decl_specs->specs[(int) ds_thread])
7110 {
7111 error ("%<__thread%> before %<static%>");
7112 decl_specs->specs[(int) ds_thread] = 0;
7113 }
7114 cp_parser_set_storage_class (decl_specs, sc_static);
7115 break;
7116 case RID_EXTERN:
7117 /* Consume the token. */
7118 cp_lexer_consume_token (parser->lexer);
7119 if (decl_specs->specs[(int) ds_thread])
7120 {
7121 error ("%<__thread%> before %<extern%>");
7122 decl_specs->specs[(int) ds_thread] = 0;
7123 }
7124 cp_parser_set_storage_class (decl_specs, sc_extern);
7125 break;
7126 case RID_MUTABLE:
7127 /* Consume the token. */
7128 cp_lexer_consume_token (parser->lexer);
7129 cp_parser_set_storage_class (decl_specs, sc_mutable);
7130 break;
7131 case RID_THREAD:
7132 /* Consume the token. */
7133 cp_lexer_consume_token (parser->lexer);
7134 ++decl_specs->specs[(int) ds_thread];
7135 break;
7136
7137 default:
7138 /* We did not yet find a decl-specifier yet. */
7139 found_decl_spec = false;
7140 break;
7141 }
7142
7143 /* Constructors are a special case. The `S' in `S()' is not a
7144 decl-specifier; it is the beginning of the declarator. */
7145 constructor_p
7146 = (!found_decl_spec
7147 && constructor_possible_p
7148 && (cp_parser_constructor_declarator_p
7149 (parser, decl_specs->specs[(int) ds_friend] != 0)));
7150
7151 /* If we don't have a DECL_SPEC yet, then we must be looking at
7152 a type-specifier. */
7153 if (!found_decl_spec && !constructor_p)
7154 {
7155 int decl_spec_declares_class_or_enum;
7156 bool is_cv_qualifier;
7157 tree type_spec;
7158
7159 type_spec
7160 = cp_parser_type_specifier (parser, flags,
7161 decl_specs,
7162 /*is_declaration=*/true,
7163 &decl_spec_declares_class_or_enum,
7164 &is_cv_qualifier);
7165
7166 *declares_class_or_enum |= decl_spec_declares_class_or_enum;
7167
7168 /* If this type-specifier referenced a user-defined type
7169 (a typedef, class-name, etc.), then we can't allow any
7170 more such type-specifiers henceforth.
7171
7172 [dcl.spec]
7173
7174 The longest sequence of decl-specifiers that could
7175 possibly be a type name is taken as the
7176 decl-specifier-seq of a declaration. The sequence shall
7177 be self-consistent as described below.
7178
7179 [dcl.type]
7180
7181 As a general rule, at most one type-specifier is allowed
7182 in the complete decl-specifier-seq of a declaration. The
7183 only exceptions are the following:
7184
7185 -- const or volatile can be combined with any other
7186 type-specifier.
7187
7188 -- signed or unsigned can be combined with char, long,
7189 short, or int.
7190
7191 -- ..
7192
7193 Example:
7194
7195 typedef char* Pc;
7196 void g (const int Pc);
7197
7198 Here, Pc is *not* part of the decl-specifier seq; it's
7199 the declarator. Therefore, once we see a type-specifier
7200 (other than a cv-qualifier), we forbid any additional
7201 user-defined types. We *do* still allow things like `int
7202 int' to be considered a decl-specifier-seq, and issue the
7203 error message later. */
7204 if (type_spec && !is_cv_qualifier)
7205 flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
7206 /* A constructor declarator cannot follow a type-specifier. */
7207 if (type_spec)
7208 {
7209 constructor_possible_p = false;
7210 found_decl_spec = true;
7211 }
7212 }
7213
7214 /* If we still do not have a DECL_SPEC, then there are no more
7215 decl-specifiers. */
7216 if (!found_decl_spec)
7217 break;
7218
7219 decl_specs->any_specifiers_p = true;
7220 /* After we see one decl-specifier, further decl-specifiers are
7221 always optional. */
7222 flags |= CP_PARSER_FLAGS_OPTIONAL;
7223 }
7224
7225 /* Don't allow a friend specifier with a class definition. */
7226 if (decl_specs->specs[(int) ds_friend] != 0
7227 && (*declares_class_or_enum & 2))
7228 error ("class definition may not be declared a friend");
7229 }
7230
7231 /* Parse an (optional) storage-class-specifier.
7232
7233 storage-class-specifier:
7234 auto
7235 register
7236 static
7237 extern
7238 mutable
7239
7240 GNU Extension:
7241
7242 storage-class-specifier:
7243 thread
7244
7245 Returns an IDENTIFIER_NODE corresponding to the keyword used. */
7246
7247 static tree
7248 cp_parser_storage_class_specifier_opt (cp_parser* parser)
7249 {
7250 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7251 {
7252 case RID_AUTO:
7253 case RID_REGISTER:
7254 case RID_STATIC:
7255 case RID_EXTERN:
7256 case RID_MUTABLE:
7257 case RID_THREAD:
7258 /* Consume the token. */
7259 return cp_lexer_consume_token (parser->lexer)->value;
7260
7261 default:
7262 return NULL_TREE;
7263 }
7264 }
7265
7266 /* Parse an (optional) function-specifier.
7267
7268 function-specifier:
7269 inline
7270 virtual
7271 explicit
7272
7273 Returns an IDENTIFIER_NODE corresponding to the keyword used.
7274 Updates DECL_SPECS, if it is non-NULL. */
7275
7276 static tree
7277 cp_parser_function_specifier_opt (cp_parser* parser,
7278 cp_decl_specifier_seq *decl_specs)
7279 {
7280 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7281 {
7282 case RID_INLINE:
7283 if (decl_specs)
7284 ++decl_specs->specs[(int) ds_inline];
7285 break;
7286
7287 case RID_VIRTUAL:
7288 if (decl_specs)
7289 ++decl_specs->specs[(int) ds_virtual];
7290 break;
7291
7292 case RID_EXPLICIT:
7293 if (decl_specs)
7294 ++decl_specs->specs[(int) ds_explicit];
7295 break;
7296
7297 default:
7298 return NULL_TREE;
7299 }
7300
7301 /* Consume the token. */
7302 return cp_lexer_consume_token (parser->lexer)->value;
7303 }
7304
7305 /* Parse a linkage-specification.
7306
7307 linkage-specification:
7308 extern string-literal { declaration-seq [opt] }
7309 extern string-literal declaration */
7310
7311 static void
7312 cp_parser_linkage_specification (cp_parser* parser)
7313 {
7314 tree linkage;
7315
7316 /* Look for the `extern' keyword. */
7317 cp_parser_require_keyword (parser, RID_EXTERN, "`extern'");
7318
7319 /* Look for the string-literal. */
7320 linkage = cp_parser_string_literal (parser, false, false);
7321
7322 /* Transform the literal into an identifier. If the literal is a
7323 wide-character string, or contains embedded NULs, then we can't
7324 handle it as the user wants. */
7325 if (strlen (TREE_STRING_POINTER (linkage))
7326 != (size_t) (TREE_STRING_LENGTH (linkage) - 1))
7327 {
7328 cp_parser_error (parser, "invalid linkage-specification");
7329 /* Assume C++ linkage. */
7330 linkage = lang_name_cplusplus;
7331 }
7332 else
7333 linkage = get_identifier (TREE_STRING_POINTER (linkage));
7334
7335 /* We're now using the new linkage. */
7336 push_lang_context (linkage);
7337
7338 /* If the next token is a `{', then we're using the first
7339 production. */
7340 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
7341 {
7342 /* Consume the `{' token. */
7343 cp_lexer_consume_token (parser->lexer);
7344 /* Parse the declarations. */
7345 cp_parser_declaration_seq_opt (parser);
7346 /* Look for the closing `}'. */
7347 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
7348 }
7349 /* Otherwise, there's just one declaration. */
7350 else
7351 {
7352 bool saved_in_unbraced_linkage_specification_p;
7353
7354 saved_in_unbraced_linkage_specification_p
7355 = parser->in_unbraced_linkage_specification_p;
7356 parser->in_unbraced_linkage_specification_p = true;
7357 have_extern_spec = true;
7358 cp_parser_declaration (parser);
7359 have_extern_spec = false;
7360 parser->in_unbraced_linkage_specification_p
7361 = saved_in_unbraced_linkage_specification_p;
7362 }
7363
7364 /* We're done with the linkage-specification. */
7365 pop_lang_context ();
7366 }
7367
7368 /* Special member functions [gram.special] */
7369
7370 /* Parse a conversion-function-id.
7371
7372 conversion-function-id:
7373 operator conversion-type-id
7374
7375 Returns an IDENTIFIER_NODE representing the operator. */
7376
7377 static tree
7378 cp_parser_conversion_function_id (cp_parser* parser)
7379 {
7380 tree type;
7381 tree saved_scope;
7382 tree saved_qualifying_scope;
7383 tree saved_object_scope;
7384 bool pop_p = false;
7385
7386 /* Look for the `operator' token. */
7387 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7388 return error_mark_node;
7389 /* When we parse the conversion-type-id, the current scope will be
7390 reset. However, we need that information in able to look up the
7391 conversion function later, so we save it here. */
7392 saved_scope = parser->scope;
7393 saved_qualifying_scope = parser->qualifying_scope;
7394 saved_object_scope = parser->object_scope;
7395 /* We must enter the scope of the class so that the names of
7396 entities declared within the class are available in the
7397 conversion-type-id. For example, consider:
7398
7399 struct S {
7400 typedef int I;
7401 operator I();
7402 };
7403
7404 S::operator I() { ... }
7405
7406 In order to see that `I' is a type-name in the definition, we
7407 must be in the scope of `S'. */
7408 if (saved_scope)
7409 pop_p = push_scope (saved_scope);
7410 /* Parse the conversion-type-id. */
7411 type = cp_parser_conversion_type_id (parser);
7412 /* Leave the scope of the class, if any. */
7413 if (pop_p)
7414 pop_scope (saved_scope);
7415 /* Restore the saved scope. */
7416 parser->scope = saved_scope;
7417 parser->qualifying_scope = saved_qualifying_scope;
7418 parser->object_scope = saved_object_scope;
7419 /* If the TYPE is invalid, indicate failure. */
7420 if (type == error_mark_node)
7421 return error_mark_node;
7422 return mangle_conv_op_name_for_type (type);
7423 }
7424
7425 /* Parse a conversion-type-id:
7426
7427 conversion-type-id:
7428 type-specifier-seq conversion-declarator [opt]
7429
7430 Returns the TYPE specified. */
7431
7432 static tree
7433 cp_parser_conversion_type_id (cp_parser* parser)
7434 {
7435 tree attributes;
7436 cp_decl_specifier_seq type_specifiers;
7437 cp_declarator *declarator;
7438 tree type_specified;
7439
7440 /* Parse the attributes. */
7441 attributes = cp_parser_attributes_opt (parser);
7442 /* Parse the type-specifiers. */
7443 cp_parser_type_specifier_seq (parser, &type_specifiers);
7444 /* If that didn't work, stop. */
7445 if (type_specifiers.type == error_mark_node)
7446 return error_mark_node;
7447 /* Parse the conversion-declarator. */
7448 declarator = cp_parser_conversion_declarator_opt (parser);
7449
7450 type_specified = grokdeclarator (declarator, &type_specifiers, TYPENAME,
7451 /*initialized=*/0, &attributes);
7452 if (attributes)
7453 cplus_decl_attributes (&type_specified, attributes, /*flags=*/0);
7454 return type_specified;
7455 }
7456
7457 /* Parse an (optional) conversion-declarator.
7458
7459 conversion-declarator:
7460 ptr-operator conversion-declarator [opt]
7461
7462 */
7463
7464 static cp_declarator *
7465 cp_parser_conversion_declarator_opt (cp_parser* parser)
7466 {
7467 enum tree_code code;
7468 tree class_type;
7469 cp_cv_quals cv_quals;
7470
7471 /* We don't know if there's a ptr-operator next, or not. */
7472 cp_parser_parse_tentatively (parser);
7473 /* Try the ptr-operator. */
7474 code = cp_parser_ptr_operator (parser, &class_type, &cv_quals);
7475 /* If it worked, look for more conversion-declarators. */
7476 if (cp_parser_parse_definitely (parser))
7477 {
7478 cp_declarator *declarator;
7479
7480 /* Parse another optional declarator. */
7481 declarator = cp_parser_conversion_declarator_opt (parser);
7482
7483 /* Create the representation of the declarator. */
7484 if (class_type)
7485 declarator = make_ptrmem_declarator (cv_quals, class_type,
7486 declarator);
7487 else if (code == INDIRECT_REF)
7488 declarator = make_pointer_declarator (cv_quals, declarator);
7489 else
7490 declarator = make_reference_declarator (cv_quals, declarator);
7491
7492 return declarator;
7493 }
7494
7495 return NULL;
7496 }
7497
7498 /* Parse an (optional) ctor-initializer.
7499
7500 ctor-initializer:
7501 : mem-initializer-list
7502
7503 Returns TRUE iff the ctor-initializer was actually present. */
7504
7505 static bool
7506 cp_parser_ctor_initializer_opt (cp_parser* parser)
7507 {
7508 /* If the next token is not a `:', then there is no
7509 ctor-initializer. */
7510 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
7511 {
7512 /* Do default initialization of any bases and members. */
7513 if (DECL_CONSTRUCTOR_P (current_function_decl))
7514 finish_mem_initializers (NULL_TREE);
7515
7516 return false;
7517 }
7518
7519 /* Consume the `:' token. */
7520 cp_lexer_consume_token (parser->lexer);
7521 /* And the mem-initializer-list. */
7522 cp_parser_mem_initializer_list (parser);
7523
7524 return true;
7525 }
7526
7527 /* Parse a mem-initializer-list.
7528
7529 mem-initializer-list:
7530 mem-initializer
7531 mem-initializer , mem-initializer-list */
7532
7533 static void
7534 cp_parser_mem_initializer_list (cp_parser* parser)
7535 {
7536 tree mem_initializer_list = NULL_TREE;
7537
7538 /* Let the semantic analysis code know that we are starting the
7539 mem-initializer-list. */
7540 if (!DECL_CONSTRUCTOR_P (current_function_decl))
7541 error ("only constructors take base initializers");
7542
7543 /* Loop through the list. */
7544 while (true)
7545 {
7546 tree mem_initializer;
7547
7548 /* Parse the mem-initializer. */
7549 mem_initializer = cp_parser_mem_initializer (parser);
7550 /* Add it to the list, unless it was erroneous. */
7551 if (mem_initializer)
7552 {
7553 TREE_CHAIN (mem_initializer) = mem_initializer_list;
7554 mem_initializer_list = mem_initializer;
7555 }
7556 /* If the next token is not a `,', we're done. */
7557 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
7558 break;
7559 /* Consume the `,' token. */
7560 cp_lexer_consume_token (parser->lexer);
7561 }
7562
7563 /* Perform semantic analysis. */
7564 if (DECL_CONSTRUCTOR_P (current_function_decl))
7565 finish_mem_initializers (mem_initializer_list);
7566 }
7567
7568 /* Parse a mem-initializer.
7569
7570 mem-initializer:
7571 mem-initializer-id ( expression-list [opt] )
7572
7573 GNU extension:
7574
7575 mem-initializer:
7576 ( expression-list [opt] )
7577
7578 Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base
7579 class) or FIELD_DECL (for a non-static data member) to initialize;
7580 the TREE_VALUE is the expression-list. */
7581
7582 static tree
7583 cp_parser_mem_initializer (cp_parser* parser)
7584 {
7585 tree mem_initializer_id;
7586 tree expression_list;
7587 tree member;
7588
7589 /* Find out what is being initialized. */
7590 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
7591 {
7592 pedwarn ("anachronistic old-style base class initializer");
7593 mem_initializer_id = NULL_TREE;
7594 }
7595 else
7596 mem_initializer_id = cp_parser_mem_initializer_id (parser);
7597 member = expand_member_init (mem_initializer_id);
7598 if (member && !DECL_P (member))
7599 in_base_initializer = 1;
7600
7601 expression_list
7602 = cp_parser_parenthesized_expression_list (parser, false,
7603 /*non_constant_p=*/NULL);
7604 if (!expression_list)
7605 expression_list = void_type_node;
7606
7607 in_base_initializer = 0;
7608
7609 return member ? build_tree_list (member, expression_list) : NULL_TREE;
7610 }
7611
7612 /* Parse a mem-initializer-id.
7613
7614 mem-initializer-id:
7615 :: [opt] nested-name-specifier [opt] class-name
7616 identifier
7617
7618 Returns a TYPE indicating the class to be initializer for the first
7619 production. Returns an IDENTIFIER_NODE indicating the data member
7620 to be initialized for the second production. */
7621
7622 static tree
7623 cp_parser_mem_initializer_id (cp_parser* parser)
7624 {
7625 bool global_scope_p;
7626 bool nested_name_specifier_p;
7627 bool template_p = false;
7628 tree id;
7629
7630 /* `typename' is not allowed in this context ([temp.res]). */
7631 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
7632 {
7633 error ("keyword %<typename%> not allowed in this context (a qualified "
7634 "member initializer is implicitly a type)");
7635 cp_lexer_consume_token (parser->lexer);
7636 }
7637 /* Look for the optional `::' operator. */
7638 global_scope_p
7639 = (cp_parser_global_scope_opt (parser,
7640 /*current_scope_valid_p=*/false)
7641 != NULL_TREE);
7642 /* Look for the optional nested-name-specifier. The simplest way to
7643 implement:
7644
7645 [temp.res]
7646
7647 The keyword `typename' is not permitted in a base-specifier or
7648 mem-initializer; in these contexts a qualified name that
7649 depends on a template-parameter is implicitly assumed to be a
7650 type name.
7651
7652 is to assume that we have seen the `typename' keyword at this
7653 point. */
7654 nested_name_specifier_p
7655 = (cp_parser_nested_name_specifier_opt (parser,
7656 /*typename_keyword_p=*/true,
7657 /*check_dependency_p=*/true,
7658 /*type_p=*/true,
7659 /*is_declaration=*/true)
7660 != NULL_TREE);
7661 if (nested_name_specifier_p)
7662 template_p = cp_parser_optional_template_keyword (parser);
7663 /* If there is a `::' operator or a nested-name-specifier, then we
7664 are definitely looking for a class-name. */
7665 if (global_scope_p || nested_name_specifier_p)
7666 return cp_parser_class_name (parser,
7667 /*typename_keyword_p=*/true,
7668 /*template_keyword_p=*/template_p,
7669 none_type,
7670 /*check_dependency_p=*/true,
7671 /*class_head_p=*/false,
7672 /*is_declaration=*/true);
7673 /* Otherwise, we could also be looking for an ordinary identifier. */
7674 cp_parser_parse_tentatively (parser);
7675 /* Try a class-name. */
7676 id = cp_parser_class_name (parser,
7677 /*typename_keyword_p=*/true,
7678 /*template_keyword_p=*/false,
7679 none_type,
7680 /*check_dependency_p=*/true,
7681 /*class_head_p=*/false,
7682 /*is_declaration=*/true);
7683 /* If we found one, we're done. */
7684 if (cp_parser_parse_definitely (parser))
7685 return id;
7686 /* Otherwise, look for an ordinary identifier. */
7687 return cp_parser_identifier (parser);
7688 }
7689
7690 /* Overloading [gram.over] */
7691
7692 /* Parse an operator-function-id.
7693
7694 operator-function-id:
7695 operator operator
7696
7697 Returns an IDENTIFIER_NODE for the operator which is a
7698 human-readable spelling of the identifier, e.g., `operator +'. */
7699
7700 static tree
7701 cp_parser_operator_function_id (cp_parser* parser)
7702 {
7703 /* Look for the `operator' keyword. */
7704 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7705 return error_mark_node;
7706 /* And then the name of the operator itself. */
7707 return cp_parser_operator (parser);
7708 }
7709
7710 /* Parse an operator.
7711
7712 operator:
7713 new delete new[] delete[] + - * / % ^ & | ~ ! = < >
7714 += -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
7715 || ++ -- , ->* -> () []
7716
7717 GNU Extensions:
7718
7719 operator:
7720 <? >? <?= >?=
7721
7722 Returns an IDENTIFIER_NODE for the operator which is a
7723 human-readable spelling of the identifier, e.g., `operator +'. */
7724
7725 static tree
7726 cp_parser_operator (cp_parser* parser)
7727 {
7728 tree id = NULL_TREE;
7729 cp_token *token;
7730
7731 /* Peek at the next token. */
7732 token = cp_lexer_peek_token (parser->lexer);
7733 /* Figure out which operator we have. */
7734 switch (token->type)
7735 {
7736 case CPP_KEYWORD:
7737 {
7738 enum tree_code op;
7739
7740 /* The keyword should be either `new' or `delete'. */
7741 if (token->keyword == RID_NEW)
7742 op = NEW_EXPR;
7743 else if (token->keyword == RID_DELETE)
7744 op = DELETE_EXPR;
7745 else
7746 break;
7747
7748 /* Consume the `new' or `delete' token. */
7749 cp_lexer_consume_token (parser->lexer);
7750
7751 /* Peek at the next token. */
7752 token = cp_lexer_peek_token (parser->lexer);
7753 /* If it's a `[' token then this is the array variant of the
7754 operator. */
7755 if (token->type == CPP_OPEN_SQUARE)
7756 {
7757 /* Consume the `[' token. */
7758 cp_lexer_consume_token (parser->lexer);
7759 /* Look for the `]' token. */
7760 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
7761 id = ansi_opname (op == NEW_EXPR
7762 ? VEC_NEW_EXPR : VEC_DELETE_EXPR);
7763 }
7764 /* Otherwise, we have the non-array variant. */
7765 else
7766 id = ansi_opname (op);
7767
7768 return id;
7769 }
7770
7771 case CPP_PLUS:
7772 id = ansi_opname (PLUS_EXPR);
7773 break;
7774
7775 case CPP_MINUS:
7776 id = ansi_opname (MINUS_EXPR);
7777 break;
7778
7779 case CPP_MULT:
7780 id = ansi_opname (MULT_EXPR);
7781 break;
7782
7783 case CPP_DIV:
7784 id = ansi_opname (TRUNC_DIV_EXPR);
7785 break;
7786
7787 case CPP_MOD:
7788 id = ansi_opname (TRUNC_MOD_EXPR);
7789 break;
7790
7791 case CPP_XOR:
7792 id = ansi_opname (BIT_XOR_EXPR);
7793 break;
7794
7795 case CPP_AND:
7796 id = ansi_opname (BIT_AND_EXPR);
7797 break;
7798
7799 case CPP_OR:
7800 id = ansi_opname (BIT_IOR_EXPR);
7801 break;
7802
7803 case CPP_COMPL:
7804 id = ansi_opname (BIT_NOT_EXPR);
7805 break;
7806
7807 case CPP_NOT:
7808 id = ansi_opname (TRUTH_NOT_EXPR);
7809 break;
7810
7811 case CPP_EQ:
7812 id = ansi_assopname (NOP_EXPR);
7813 break;
7814
7815 case CPP_LESS:
7816 id = ansi_opname (LT_EXPR);
7817 break;
7818
7819 case CPP_GREATER:
7820 id = ansi_opname (GT_EXPR);
7821 break;
7822
7823 case CPP_PLUS_EQ:
7824 id = ansi_assopname (PLUS_EXPR);
7825 break;
7826
7827 case CPP_MINUS_EQ:
7828 id = ansi_assopname (MINUS_EXPR);
7829 break;
7830
7831 case CPP_MULT_EQ:
7832 id = ansi_assopname (MULT_EXPR);
7833 break;
7834
7835 case CPP_DIV_EQ:
7836 id = ansi_assopname (TRUNC_DIV_EXPR);
7837 break;
7838
7839 case CPP_MOD_EQ:
7840 id = ansi_assopname (TRUNC_MOD_EXPR);
7841 break;
7842
7843 case CPP_XOR_EQ:
7844 id = ansi_assopname (BIT_XOR_EXPR);
7845 break;
7846
7847 case CPP_AND_EQ:
7848 id = ansi_assopname (BIT_AND_EXPR);
7849 break;
7850
7851 case CPP_OR_EQ:
7852 id = ansi_assopname (BIT_IOR_EXPR);
7853 break;
7854
7855 case CPP_LSHIFT:
7856 id = ansi_opname (LSHIFT_EXPR);
7857 break;
7858
7859 case CPP_RSHIFT:
7860 id = ansi_opname (RSHIFT_EXPR);
7861 break;
7862
7863 case CPP_LSHIFT_EQ:
7864 id = ansi_assopname (LSHIFT_EXPR);
7865 break;
7866
7867 case CPP_RSHIFT_EQ:
7868 id = ansi_assopname (RSHIFT_EXPR);
7869 break;
7870
7871 case CPP_EQ_EQ:
7872 id = ansi_opname (EQ_EXPR);
7873 break;
7874
7875 case CPP_NOT_EQ:
7876 id = ansi_opname (NE_EXPR);
7877 break;
7878
7879 case CPP_LESS_EQ:
7880 id = ansi_opname (LE_EXPR);
7881 break;
7882
7883 case CPP_GREATER_EQ:
7884 id = ansi_opname (GE_EXPR);
7885 break;
7886
7887 case CPP_AND_AND:
7888 id = ansi_opname (TRUTH_ANDIF_EXPR);
7889 break;
7890
7891 case CPP_OR_OR:
7892 id = ansi_opname (TRUTH_ORIF_EXPR);
7893 break;
7894
7895 case CPP_PLUS_PLUS:
7896 id = ansi_opname (POSTINCREMENT_EXPR);
7897 break;
7898
7899 case CPP_MINUS_MINUS:
7900 id = ansi_opname (PREDECREMENT_EXPR);
7901 break;
7902
7903 case CPP_COMMA:
7904 id = ansi_opname (COMPOUND_EXPR);
7905 break;
7906
7907 case CPP_DEREF_STAR:
7908 id = ansi_opname (MEMBER_REF);
7909 break;
7910
7911 case CPP_DEREF:
7912 id = ansi_opname (COMPONENT_REF);
7913 break;
7914
7915 case CPP_OPEN_PAREN:
7916 /* Consume the `('. */
7917 cp_lexer_consume_token (parser->lexer);
7918 /* Look for the matching `)'. */
7919 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
7920 return ansi_opname (CALL_EXPR);
7921
7922 case CPP_OPEN_SQUARE:
7923 /* Consume the `['. */
7924 cp_lexer_consume_token (parser->lexer);
7925 /* Look for the matching `]'. */
7926 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
7927 return ansi_opname (ARRAY_REF);
7928
7929 /* Extensions. */
7930 case CPP_MIN:
7931 id = ansi_opname (MIN_EXPR);
7932 break;
7933
7934 case CPP_MAX:
7935 id = ansi_opname (MAX_EXPR);
7936 break;
7937
7938 case CPP_MIN_EQ:
7939 id = ansi_assopname (MIN_EXPR);
7940 break;
7941
7942 case CPP_MAX_EQ:
7943 id = ansi_assopname (MAX_EXPR);
7944 break;
7945
7946 default:
7947 /* Anything else is an error. */
7948 break;
7949 }
7950
7951 /* If we have selected an identifier, we need to consume the
7952 operator token. */
7953 if (id)
7954 cp_lexer_consume_token (parser->lexer);
7955 /* Otherwise, no valid operator name was present. */
7956 else
7957 {
7958 cp_parser_error (parser, "expected operator");
7959 id = error_mark_node;
7960 }
7961
7962 return id;
7963 }
7964
7965 /* Parse a template-declaration.
7966
7967 template-declaration:
7968 export [opt] template < template-parameter-list > declaration
7969
7970 If MEMBER_P is TRUE, this template-declaration occurs within a
7971 class-specifier.
7972
7973 The grammar rule given by the standard isn't correct. What
7974 is really meant is:
7975
7976 template-declaration:
7977 export [opt] template-parameter-list-seq
7978 decl-specifier-seq [opt] init-declarator [opt] ;
7979 export [opt] template-parameter-list-seq
7980 function-definition
7981
7982 template-parameter-list-seq:
7983 template-parameter-list-seq [opt]
7984 template < template-parameter-list > */
7985
7986 static void
7987 cp_parser_template_declaration (cp_parser* parser, bool member_p)
7988 {
7989 /* Check for `export'. */
7990 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
7991 {
7992 /* Consume the `export' token. */
7993 cp_lexer_consume_token (parser->lexer);
7994 /* Warn that we do not support `export'. */
7995 warning ("keyword %<export%> not implemented, and will be ignored");
7996 }
7997
7998 cp_parser_template_declaration_after_export (parser, member_p);
7999 }
8000
8001 /* Parse a template-parameter-list.
8002
8003 template-parameter-list:
8004 template-parameter
8005 template-parameter-list , template-parameter
8006
8007 Returns a TREE_LIST. Each node represents a template parameter.
8008 The nodes are connected via their TREE_CHAINs. */
8009
8010 static tree
8011 cp_parser_template_parameter_list (cp_parser* parser)
8012 {
8013 tree parameter_list = NULL_TREE;
8014
8015 while (true)
8016 {
8017 tree parameter;
8018 cp_token *token;
8019 bool is_non_type;
8020
8021 /* Parse the template-parameter. */
8022 parameter = cp_parser_template_parameter (parser, &is_non_type);
8023 /* Add it to the list. */
8024 parameter_list = process_template_parm (parameter_list,
8025 parameter,
8026 is_non_type);
8027 /* Peek at the next token. */
8028 token = cp_lexer_peek_token (parser->lexer);
8029 /* If it's not a `,', we're done. */
8030 if (token->type != CPP_COMMA)
8031 break;
8032 /* Otherwise, consume the `,' token. */
8033 cp_lexer_consume_token (parser->lexer);
8034 }
8035
8036 return parameter_list;
8037 }
8038
8039 /* Parse a template-parameter.
8040
8041 template-parameter:
8042 type-parameter
8043 parameter-declaration
8044
8045 Returns a TREE_LIST. The TREE_VALUE represents the parameter. The
8046 TREE_PURPOSE is the default value, if any. *IS_NON_TYPE is set to
8047 true iff this parameter is a non-type parameter. */
8048
8049 static tree
8050 cp_parser_template_parameter (cp_parser* parser, bool *is_non_type)
8051 {
8052 cp_token *token;
8053 cp_parameter_declarator *parameter_declarator;
8054
8055 /* Assume it is a type parameter or a template parameter. */
8056 *is_non_type = false;
8057 /* Peek at the next token. */
8058 token = cp_lexer_peek_token (parser->lexer);
8059 /* If it is `class' or `template', we have a type-parameter. */
8060 if (token->keyword == RID_TEMPLATE)
8061 return cp_parser_type_parameter (parser);
8062 /* If it is `class' or `typename' we do not know yet whether it is a
8063 type parameter or a non-type parameter. Consider:
8064
8065 template <typename T, typename T::X X> ...
8066
8067 or:
8068
8069 template <class C, class D*> ...
8070
8071 Here, the first parameter is a type parameter, and the second is
8072 a non-type parameter. We can tell by looking at the token after
8073 the identifier -- if it is a `,', `=', or `>' then we have a type
8074 parameter. */
8075 if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
8076 {
8077 /* Peek at the token after `class' or `typename'. */
8078 token = cp_lexer_peek_nth_token (parser->lexer, 2);
8079 /* If it's an identifier, skip it. */
8080 if (token->type == CPP_NAME)
8081 token = cp_lexer_peek_nth_token (parser->lexer, 3);
8082 /* Now, see if the token looks like the end of a template
8083 parameter. */
8084 if (token->type == CPP_COMMA
8085 || token->type == CPP_EQ
8086 || token->type == CPP_GREATER)
8087 return cp_parser_type_parameter (parser);
8088 }
8089
8090 /* Otherwise, it is a non-type parameter.
8091
8092 [temp.param]
8093
8094 When parsing a default template-argument for a non-type
8095 template-parameter, the first non-nested `>' is taken as the end
8096 of the template parameter-list rather than a greater-than
8097 operator. */
8098 *is_non_type = true;
8099 parameter_declarator
8100 = cp_parser_parameter_declaration (parser, /*template_parm_p=*/true,
8101 /*parenthesized_p=*/NULL);
8102 return (build_tree_list
8103 (parameter_declarator->default_argument,
8104 grokdeclarator (parameter_declarator->declarator,
8105 &parameter_declarator->decl_specifiers,
8106 PARM, /*initialized=*/0,
8107 /*attrlist=*/NULL)));
8108 }
8109
8110 /* Parse a type-parameter.
8111
8112 type-parameter:
8113 class identifier [opt]
8114 class identifier [opt] = type-id
8115 typename identifier [opt]
8116 typename identifier [opt] = type-id
8117 template < template-parameter-list > class identifier [opt]
8118 template < template-parameter-list > class identifier [opt]
8119 = id-expression
8120
8121 Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The
8122 TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is
8123 the declaration of the parameter. */
8124
8125 static tree
8126 cp_parser_type_parameter (cp_parser* parser)
8127 {
8128 cp_token *token;
8129 tree parameter;
8130
8131 /* Look for a keyword to tell us what kind of parameter this is. */
8132 token = cp_parser_require (parser, CPP_KEYWORD,
8133 "`class', `typename', or `template'");
8134 if (!token)
8135 return error_mark_node;
8136
8137 switch (token->keyword)
8138 {
8139 case RID_CLASS:
8140 case RID_TYPENAME:
8141 {
8142 tree identifier;
8143 tree default_argument;
8144
8145 /* If the next token is an identifier, then it names the
8146 parameter. */
8147 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8148 identifier = cp_parser_identifier (parser);
8149 else
8150 identifier = NULL_TREE;
8151
8152 /* Create the parameter. */
8153 parameter = finish_template_type_parm (class_type_node, identifier);
8154
8155 /* If the next token is an `=', we have a default argument. */
8156 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8157 {
8158 /* Consume the `=' token. */
8159 cp_lexer_consume_token (parser->lexer);
8160 /* Parse the default-argument. */
8161 default_argument = cp_parser_type_id (parser);
8162 }
8163 else
8164 default_argument = NULL_TREE;
8165
8166 /* Create the combined representation of the parameter and the
8167 default argument. */
8168 parameter = build_tree_list (default_argument, parameter);
8169 }
8170 break;
8171
8172 case RID_TEMPLATE:
8173 {
8174 tree parameter_list;
8175 tree identifier;
8176 tree default_argument;
8177
8178 /* Look for the `<'. */
8179 cp_parser_require (parser, CPP_LESS, "`<'");
8180 /* Parse the template-parameter-list. */
8181 begin_template_parm_list ();
8182 parameter_list
8183 = cp_parser_template_parameter_list (parser);
8184 parameter_list = end_template_parm_list (parameter_list);
8185 /* Look for the `>'. */
8186 cp_parser_require (parser, CPP_GREATER, "`>'");
8187 /* Look for the `class' keyword. */
8188 cp_parser_require_keyword (parser, RID_CLASS, "`class'");
8189 /* If the next token is an `=', then there is a
8190 default-argument. If the next token is a `>', we are at
8191 the end of the parameter-list. If the next token is a `,',
8192 then we are at the end of this parameter. */
8193 if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
8194 && cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
8195 && cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
8196 {
8197 identifier = cp_parser_identifier (parser);
8198 /* Treat invalid names as if the parameter were nameless. */
8199 if (identifier == error_mark_node)
8200 identifier = NULL_TREE;
8201 }
8202 else
8203 identifier = NULL_TREE;
8204
8205 /* Create the template parameter. */
8206 parameter = finish_template_template_parm (class_type_node,
8207 identifier);
8208
8209 /* If the next token is an `=', then there is a
8210 default-argument. */
8211 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8212 {
8213 bool is_template;
8214
8215 /* Consume the `='. */
8216 cp_lexer_consume_token (parser->lexer);
8217 /* Parse the id-expression. */
8218 default_argument
8219 = cp_parser_id_expression (parser,
8220 /*template_keyword_p=*/false,
8221 /*check_dependency_p=*/true,
8222 /*template_p=*/&is_template,
8223 /*declarator_p=*/false);
8224 if (TREE_CODE (default_argument) == TYPE_DECL)
8225 /* If the id-expression was a template-id that refers to
8226 a template-class, we already have the declaration here,
8227 so no further lookup is needed. */
8228 ;
8229 else
8230 /* Look up the name. */
8231 default_argument
8232 = cp_parser_lookup_name (parser, default_argument,
8233 none_type,
8234 /*is_template=*/is_template,
8235 /*is_namespace=*/false,
8236 /*check_dependency=*/true,
8237 /*ambiguous_p=*/NULL);
8238 /* See if the default argument is valid. */
8239 default_argument
8240 = check_template_template_default_arg (default_argument);
8241 }
8242 else
8243 default_argument = NULL_TREE;
8244
8245 /* Create the combined representation of the parameter and the
8246 default argument. */
8247 parameter = build_tree_list (default_argument, parameter);
8248 }
8249 break;
8250
8251 default:
8252 gcc_unreachable ();
8253 break;
8254 }
8255
8256 return parameter;
8257 }
8258
8259 /* Parse a template-id.
8260
8261 template-id:
8262 template-name < template-argument-list [opt] >
8263
8264 If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
8265 `template' keyword. In this case, a TEMPLATE_ID_EXPR will be
8266 returned. Otherwise, if the template-name names a function, or set
8267 of functions, returns a TEMPLATE_ID_EXPR. If the template-name
8268 names a class, returns a TYPE_DECL for the specialization.
8269
8270 If CHECK_DEPENDENCY_P is FALSE, names are looked up in
8271 uninstantiated templates. */
8272
8273 static tree
8274 cp_parser_template_id (cp_parser *parser,
8275 bool template_keyword_p,
8276 bool check_dependency_p,
8277 bool is_declaration)
8278 {
8279 tree template;
8280 tree arguments;
8281 tree template_id;
8282 cp_token_position start_of_id = 0;
8283 tree access_check = NULL_TREE;
8284 cp_token *next_token, *next_token_2;
8285 bool is_identifier;
8286
8287 /* If the next token corresponds to a template-id, there is no need
8288 to reparse it. */
8289 next_token = cp_lexer_peek_token (parser->lexer);
8290 if (next_token->type == CPP_TEMPLATE_ID)
8291 {
8292 tree value;
8293 tree check;
8294
8295 /* Get the stored value. */
8296 value = cp_lexer_consume_token (parser->lexer)->value;
8297 /* Perform any access checks that were deferred. */
8298 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
8299 perform_or_defer_access_check (TREE_PURPOSE (check),
8300 TREE_VALUE (check));
8301 /* Return the stored value. */
8302 return TREE_VALUE (value);
8303 }
8304
8305 /* Avoid performing name lookup if there is no possibility of
8306 finding a template-id. */
8307 if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR)
8308 || (next_token->type == CPP_NAME
8309 && !cp_parser_nth_token_starts_template_argument_list_p
8310 (parser, 2)))
8311 {
8312 cp_parser_error (parser, "expected template-id");
8313 return error_mark_node;
8314 }
8315
8316 /* Remember where the template-id starts. */
8317 if (cp_parser_parsing_tentatively (parser)
8318 && !cp_parser_committed_to_tentative_parse (parser))
8319 start_of_id = cp_lexer_token_position (parser->lexer, false);
8320
8321 push_deferring_access_checks (dk_deferred);
8322
8323 /* Parse the template-name. */
8324 is_identifier = false;
8325 template = cp_parser_template_name (parser, template_keyword_p,
8326 check_dependency_p,
8327 is_declaration,
8328 &is_identifier);
8329 if (template == error_mark_node || is_identifier)
8330 {
8331 pop_deferring_access_checks ();
8332 return template;
8333 }
8334
8335 /* If we find the sequence `[:' after a template-name, it's probably
8336 a digraph-typo for `< ::'. Substitute the tokens and check if we can
8337 parse correctly the argument list. */
8338 next_token = cp_lexer_peek_token (parser->lexer);
8339 next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2);
8340 if (next_token->type == CPP_OPEN_SQUARE
8341 && next_token->flags & DIGRAPH
8342 && next_token_2->type == CPP_COLON
8343 && !(next_token_2->flags & PREV_WHITE))
8344 {
8345 cp_parser_parse_tentatively (parser);
8346 /* Change `:' into `::'. */
8347 next_token_2->type = CPP_SCOPE;
8348 /* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is
8349 CPP_LESS. */
8350 cp_lexer_consume_token (parser->lexer);
8351 /* Parse the arguments. */
8352 arguments = cp_parser_enclosed_template_argument_list (parser);
8353 if (!cp_parser_parse_definitely (parser))
8354 {
8355 /* If we couldn't parse an argument list, then we revert our changes
8356 and return simply an error. Maybe this is not a template-id
8357 after all. */
8358 next_token_2->type = CPP_COLON;
8359 cp_parser_error (parser, "expected %<<%>");
8360 pop_deferring_access_checks ();
8361 return error_mark_node;
8362 }
8363 /* Otherwise, emit an error about the invalid digraph, but continue
8364 parsing because we got our argument list. */
8365 pedwarn ("%<<::%> cannot begin a template-argument list");
8366 inform ("%<<:%> is an alternate spelling for %<[%>. Insert whitespace "
8367 "between %<<%> and %<::%>");
8368 if (!flag_permissive)
8369 {
8370 static bool hint;
8371 if (!hint)
8372 {
8373 inform ("(if you use -fpermissive G++ will accept your code)");
8374 hint = true;
8375 }
8376 }
8377 }
8378 else
8379 {
8380 /* Look for the `<' that starts the template-argument-list. */
8381 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
8382 {
8383 pop_deferring_access_checks ();
8384 return error_mark_node;
8385 }
8386 /* Parse the arguments. */
8387 arguments = cp_parser_enclosed_template_argument_list (parser);
8388 }
8389
8390 /* Build a representation of the specialization. */
8391 if (TREE_CODE (template) == IDENTIFIER_NODE)
8392 template_id = build_min_nt (TEMPLATE_ID_EXPR, template, arguments);
8393 else if (DECL_CLASS_TEMPLATE_P (template)
8394 || DECL_TEMPLATE_TEMPLATE_PARM_P (template))
8395 template_id
8396 = finish_template_type (template, arguments,
8397 cp_lexer_next_token_is (parser->lexer,
8398 CPP_SCOPE));
8399 else
8400 {
8401 /* If it's not a class-template or a template-template, it should be
8402 a function-template. */
8403 gcc_assert ((DECL_FUNCTION_TEMPLATE_P (template)
8404 || TREE_CODE (template) == OVERLOAD
8405 || BASELINK_P (template)));
8406
8407 template_id = lookup_template_function (template, arguments);
8408 }
8409
8410 /* Retrieve any deferred checks. Do not pop this access checks yet
8411 so the memory will not be reclaimed during token replacing below. */
8412 access_check = get_deferred_access_checks ();
8413
8414 /* If parsing tentatively, replace the sequence of tokens that makes
8415 up the template-id with a CPP_TEMPLATE_ID token. That way,
8416 should we re-parse the token stream, we will not have to repeat
8417 the effort required to do the parse, nor will we issue duplicate
8418 error messages about problems during instantiation of the
8419 template. Do so only if parsing succeeded, otherwise we may
8420 silently accept template arguments with syntax errors. */
8421 if (start_of_id && !cp_parser_error_occurred (parser))
8422 {
8423 cp_token *token = cp_lexer_token_at (parser->lexer, start_of_id);
8424
8425 /* Reset the contents of the START_OF_ID token. */
8426 token->type = CPP_TEMPLATE_ID;
8427 token->value = build_tree_list (access_check, template_id);
8428 token->keyword = RID_MAX;
8429
8430 /* Purge all subsequent tokens. */
8431 cp_lexer_purge_tokens_after (parser->lexer, start_of_id);
8432 }
8433
8434 pop_deferring_access_checks ();
8435 return template_id;
8436 }
8437
8438 /* Parse a template-name.
8439
8440 template-name:
8441 identifier
8442
8443 The standard should actually say:
8444
8445 template-name:
8446 identifier
8447 operator-function-id
8448
8449 A defect report has been filed about this issue.
8450
8451 A conversion-function-id cannot be a template name because they cannot
8452 be part of a template-id. In fact, looking at this code:
8453
8454 a.operator K<int>()
8455
8456 the conversion-function-id is "operator K<int>", and K<int> is a type-id.
8457 It is impossible to call a templated conversion-function-id with an
8458 explicit argument list, since the only allowed template parameter is
8459 the type to which it is converting.
8460
8461 If TEMPLATE_KEYWORD_P is true, then we have just seen the
8462 `template' keyword, in a construction like:
8463
8464 T::template f<3>()
8465
8466 In that case `f' is taken to be a template-name, even though there
8467 is no way of knowing for sure.
8468
8469 Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
8470 name refers to a set of overloaded functions, at least one of which
8471 is a template, or an IDENTIFIER_NODE with the name of the template,
8472 if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE,
8473 names are looked up inside uninstantiated templates. */
8474
8475 static tree
8476 cp_parser_template_name (cp_parser* parser,
8477 bool template_keyword_p,
8478 bool check_dependency_p,
8479 bool is_declaration,
8480 bool *is_identifier)
8481 {
8482 tree identifier;
8483 tree decl;
8484 tree fns;
8485
8486 /* If the next token is `operator', then we have either an
8487 operator-function-id or a conversion-function-id. */
8488 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
8489 {
8490 /* We don't know whether we're looking at an
8491 operator-function-id or a conversion-function-id. */
8492 cp_parser_parse_tentatively (parser);
8493 /* Try an operator-function-id. */
8494 identifier = cp_parser_operator_function_id (parser);
8495 /* If that didn't work, try a conversion-function-id. */
8496 if (!cp_parser_parse_definitely (parser))
8497 {
8498 cp_parser_error (parser, "expected template-name");
8499 return error_mark_node;
8500 }
8501 }
8502 /* Look for the identifier. */
8503 else
8504 identifier = cp_parser_identifier (parser);
8505
8506 /* If we didn't find an identifier, we don't have a template-id. */
8507 if (identifier == error_mark_node)
8508 return error_mark_node;
8509
8510 /* If the name immediately followed the `template' keyword, then it
8511 is a template-name. However, if the next token is not `<', then
8512 we do not treat it as a template-name, since it is not being used
8513 as part of a template-id. This enables us to handle constructs
8514 like:
8515
8516 template <typename T> struct S { S(); };
8517 template <typename T> S<T>::S();
8518
8519 correctly. We would treat `S' as a template -- if it were `S<T>'
8520 -- but we do not if there is no `<'. */
8521
8522 if (processing_template_decl
8523 && cp_parser_nth_token_starts_template_argument_list_p (parser, 1))
8524 {
8525 /* In a declaration, in a dependent context, we pretend that the
8526 "template" keyword was present in order to improve error
8527 recovery. For example, given:
8528
8529 template <typename T> void f(T::X<int>);
8530
8531 we want to treat "X<int>" as a template-id. */
8532 if (is_declaration
8533 && !template_keyword_p
8534 && parser->scope && TYPE_P (parser->scope)
8535 && check_dependency_p
8536 && dependent_type_p (parser->scope)
8537 /* Do not do this for dtors (or ctors), since they never
8538 need the template keyword before their name. */
8539 && !constructor_name_p (identifier, parser->scope))
8540 {
8541 cp_token_position start = 0;
8542
8543 /* Explain what went wrong. */
8544 error ("non-template %qD used as template", identifier);
8545 inform ("use %<%T::template %D%> to indicate that it is a template",
8546 parser->scope, identifier);
8547 /* If parsing tentatively, find the location of the "<"
8548 token. */
8549 if (cp_parser_parsing_tentatively (parser)
8550 && !cp_parser_committed_to_tentative_parse (parser))
8551 {
8552 cp_parser_simulate_error (parser);
8553 start = cp_lexer_token_position (parser->lexer, true);
8554 }
8555 /* Parse the template arguments so that we can issue error
8556 messages about them. */
8557 cp_lexer_consume_token (parser->lexer);
8558 cp_parser_enclosed_template_argument_list (parser);
8559 /* Skip tokens until we find a good place from which to
8560 continue parsing. */
8561 cp_parser_skip_to_closing_parenthesis (parser,
8562 /*recovering=*/true,
8563 /*or_comma=*/true,
8564 /*consume_paren=*/false);
8565 /* If parsing tentatively, permanently remove the
8566 template argument list. That will prevent duplicate
8567 error messages from being issued about the missing
8568 "template" keyword. */
8569 if (start)
8570 cp_lexer_purge_tokens_after (parser->lexer, start);
8571 if (is_identifier)
8572 *is_identifier = true;
8573 return identifier;
8574 }
8575
8576 /* If the "template" keyword is present, then there is generally
8577 no point in doing name-lookup, so we just return IDENTIFIER.
8578 But, if the qualifying scope is non-dependent then we can
8579 (and must) do name-lookup normally. */
8580 if (template_keyword_p
8581 && (!parser->scope
8582 || (TYPE_P (parser->scope)
8583 && dependent_type_p (parser->scope))))
8584 return identifier;
8585 }
8586
8587 /* Look up the name. */
8588 decl = cp_parser_lookup_name (parser, identifier,
8589 none_type,
8590 /*is_template=*/false,
8591 /*is_namespace=*/false,
8592 check_dependency_p,
8593 /*ambiguous_p=*/NULL);
8594 decl = maybe_get_template_decl_from_type_decl (decl);
8595
8596 /* If DECL is a template, then the name was a template-name. */
8597 if (TREE_CODE (decl) == TEMPLATE_DECL)
8598 ;
8599 else
8600 {
8601 /* The standard does not explicitly indicate whether a name that
8602 names a set of overloaded declarations, some of which are
8603 templates, is a template-name. However, such a name should
8604 be a template-name; otherwise, there is no way to form a
8605 template-id for the overloaded templates. */
8606 fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl;
8607 if (TREE_CODE (fns) == OVERLOAD)
8608 {
8609 tree fn;
8610
8611 for (fn = fns; fn; fn = OVL_NEXT (fn))
8612 if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL)
8613 break;
8614 }
8615 else
8616 {
8617 /* Otherwise, the name does not name a template. */
8618 cp_parser_error (parser, "expected template-name");
8619 return error_mark_node;
8620 }
8621 }
8622
8623 /* If DECL is dependent, and refers to a function, then just return
8624 its name; we will look it up again during template instantiation. */
8625 if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl))
8626 {
8627 tree scope = CP_DECL_CONTEXT (get_first_fn (decl));
8628 if (TYPE_P (scope) && dependent_type_p (scope))
8629 return identifier;
8630 }
8631
8632 return decl;
8633 }
8634
8635 /* Parse a template-argument-list.
8636
8637 template-argument-list:
8638 template-argument
8639 template-argument-list , template-argument
8640
8641 Returns a TREE_VEC containing the arguments. */
8642
8643 static tree
8644 cp_parser_template_argument_list (cp_parser* parser)
8645 {
8646 tree fixed_args[10];
8647 unsigned n_args = 0;
8648 unsigned alloced = 10;
8649 tree *arg_ary = fixed_args;
8650 tree vec;
8651 bool saved_in_template_argument_list_p;
8652
8653 saved_in_template_argument_list_p = parser->in_template_argument_list_p;
8654 parser->in_template_argument_list_p = true;
8655 do
8656 {
8657 tree argument;
8658
8659 if (n_args)
8660 /* Consume the comma. */
8661 cp_lexer_consume_token (parser->lexer);
8662
8663 /* Parse the template-argument. */
8664 argument = cp_parser_template_argument (parser);
8665 if (n_args == alloced)
8666 {
8667 alloced *= 2;
8668
8669 if (arg_ary == fixed_args)
8670 {
8671 arg_ary = xmalloc (sizeof (tree) * alloced);
8672 memcpy (arg_ary, fixed_args, sizeof (tree) * n_args);
8673 }
8674 else
8675 arg_ary = xrealloc (arg_ary, sizeof (tree) * alloced);
8676 }
8677 arg_ary[n_args++] = argument;
8678 }
8679 while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
8680
8681 vec = make_tree_vec (n_args);
8682
8683 while (n_args--)
8684 TREE_VEC_ELT (vec, n_args) = arg_ary[n_args];
8685
8686 if (arg_ary != fixed_args)
8687 free (arg_ary);
8688 parser->in_template_argument_list_p = saved_in_template_argument_list_p;
8689 return vec;
8690 }
8691
8692 /* Parse a template-argument.
8693
8694 template-argument:
8695 assignment-expression
8696 type-id
8697 id-expression
8698
8699 The representation is that of an assignment-expression, type-id, or
8700 id-expression -- except that the qualified id-expression is
8701 evaluated, so that the value returned is either a DECL or an
8702 OVERLOAD.
8703
8704 Although the standard says "assignment-expression", it forbids
8705 throw-expressions or assignments in the template argument.
8706 Therefore, we use "conditional-expression" instead. */
8707
8708 static tree
8709 cp_parser_template_argument (cp_parser* parser)
8710 {
8711 tree argument;
8712 bool template_p;
8713 bool address_p;
8714 bool maybe_type_id = false;
8715 cp_token *token;
8716 cp_id_kind idk;
8717 tree qualifying_class;
8718
8719 /* There's really no way to know what we're looking at, so we just
8720 try each alternative in order.
8721
8722 [temp.arg]
8723
8724 In a template-argument, an ambiguity between a type-id and an
8725 expression is resolved to a type-id, regardless of the form of
8726 the corresponding template-parameter.
8727
8728 Therefore, we try a type-id first. */
8729 cp_parser_parse_tentatively (parser);
8730 argument = cp_parser_type_id (parser);
8731 /* If there was no error parsing the type-id but the next token is a '>>',
8732 we probably found a typo for '> >'. But there are type-id which are
8733 also valid expressions. For instance:
8734
8735 struct X { int operator >> (int); };
8736 template <int V> struct Foo {};
8737 Foo<X () >> 5> r;
8738
8739 Here 'X()' is a valid type-id of a function type, but the user just
8740 wanted to write the expression "X() >> 5". Thus, we remember that we
8741 found a valid type-id, but we still try to parse the argument as an
8742 expression to see what happens. */
8743 if (!cp_parser_error_occurred (parser)
8744 && cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
8745 {
8746 maybe_type_id = true;
8747 cp_parser_abort_tentative_parse (parser);
8748 }
8749 else
8750 {
8751 /* If the next token isn't a `,' or a `>', then this argument wasn't
8752 really finished. This means that the argument is not a valid
8753 type-id. */
8754 if (!cp_parser_next_token_ends_template_argument_p (parser))
8755 cp_parser_error (parser, "expected template-argument");
8756 /* If that worked, we're done. */
8757 if (cp_parser_parse_definitely (parser))
8758 return argument;
8759 }
8760 /* We're still not sure what the argument will be. */
8761 cp_parser_parse_tentatively (parser);
8762 /* Try a template. */
8763 argument = cp_parser_id_expression (parser,
8764 /*template_keyword_p=*/false,
8765 /*check_dependency_p=*/true,
8766 &template_p,
8767 /*declarator_p=*/false);
8768 /* If the next token isn't a `,' or a `>', then this argument wasn't
8769 really finished. */
8770 if (!cp_parser_next_token_ends_template_argument_p (parser))
8771 cp_parser_error (parser, "expected template-argument");
8772 if (!cp_parser_error_occurred (parser))
8773 {
8774 /* Figure out what is being referred to. If the id-expression
8775 was for a class template specialization, then we will have a
8776 TYPE_DECL at this point. There is no need to do name lookup
8777 at this point in that case. */
8778 if (TREE_CODE (argument) != TYPE_DECL)
8779 argument = cp_parser_lookup_name (parser, argument,
8780 none_type,
8781 /*is_template=*/template_p,
8782 /*is_namespace=*/false,
8783 /*check_dependency=*/true,
8784 /*ambiguous_p=*/NULL);
8785 if (TREE_CODE (argument) != TEMPLATE_DECL
8786 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
8787 cp_parser_error (parser, "expected template-name");
8788 }
8789 if (cp_parser_parse_definitely (parser))
8790 return argument;
8791 /* It must be a non-type argument. There permitted cases are given
8792 in [temp.arg.nontype]:
8793
8794 -- an integral constant-expression of integral or enumeration
8795 type; or
8796
8797 -- the name of a non-type template-parameter; or
8798
8799 -- the name of an object or function with external linkage...
8800
8801 -- the address of an object or function with external linkage...
8802
8803 -- a pointer to member... */
8804 /* Look for a non-type template parameter. */
8805 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8806 {
8807 cp_parser_parse_tentatively (parser);
8808 argument = cp_parser_primary_expression (parser,
8809 &idk,
8810 &qualifying_class);
8811 if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX
8812 || !cp_parser_next_token_ends_template_argument_p (parser))
8813 cp_parser_simulate_error (parser);
8814 if (cp_parser_parse_definitely (parser))
8815 return argument;
8816 }
8817
8818 /* If the next token is "&", the argument must be the address of an
8819 object or function with external linkage. */
8820 address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND);
8821 if (address_p)
8822 cp_lexer_consume_token (parser->lexer);
8823 /* See if we might have an id-expression. */
8824 token = cp_lexer_peek_token (parser->lexer);
8825 if (token->type == CPP_NAME
8826 || token->keyword == RID_OPERATOR
8827 || token->type == CPP_SCOPE
8828 || token->type == CPP_TEMPLATE_ID
8829 || token->type == CPP_NESTED_NAME_SPECIFIER)
8830 {
8831 cp_parser_parse_tentatively (parser);
8832 argument = cp_parser_primary_expression (parser,
8833 &idk,
8834 &qualifying_class);
8835 if (cp_parser_error_occurred (parser)
8836 || !cp_parser_next_token_ends_template_argument_p (parser))
8837 cp_parser_abort_tentative_parse (parser);
8838 else
8839 {
8840 if (TREE_CODE (argument) == INDIRECT_REF)
8841 {
8842 gcc_assert (REFERENCE_REF_P (argument));
8843 argument = TREE_OPERAND (argument, 0);
8844 }
8845
8846 if (qualifying_class)
8847 argument = finish_qualified_id_expr (qualifying_class,
8848 argument,
8849 /*done=*/true,
8850 address_p);
8851 if (TREE_CODE (argument) == VAR_DECL)
8852 {
8853 /* A variable without external linkage might still be a
8854 valid constant-expression, so no error is issued here
8855 if the external-linkage check fails. */
8856 if (!DECL_EXTERNAL_LINKAGE_P (argument))
8857 cp_parser_simulate_error (parser);
8858 }
8859 else if (is_overloaded_fn (argument))
8860 /* All overloaded functions are allowed; if the external
8861 linkage test does not pass, an error will be issued
8862 later. */
8863 ;
8864 else if (address_p
8865 && (TREE_CODE (argument) == OFFSET_REF
8866 || TREE_CODE (argument) == SCOPE_REF))
8867 /* A pointer-to-member. */
8868 ;
8869 else if (TREE_CODE (argument) == TEMPLATE_PARM_INDEX)
8870 ;
8871 else
8872 cp_parser_simulate_error (parser);
8873
8874 if (cp_parser_parse_definitely (parser))
8875 {
8876 if (address_p)
8877 argument = build_x_unary_op (ADDR_EXPR, argument);
8878 return argument;
8879 }
8880 }
8881 }
8882 /* If the argument started with "&", there are no other valid
8883 alternatives at this point. */
8884 if (address_p)
8885 {
8886 cp_parser_error (parser, "invalid non-type template argument");
8887 return error_mark_node;
8888 }
8889
8890 /* If the argument wasn't successfully parsed as a type-id followed
8891 by '>>', the argument can only be a constant expression now.
8892 Otherwise, we try parsing the constant-expression tentatively,
8893 because the argument could really be a type-id. */
8894 if (maybe_type_id)
8895 cp_parser_parse_tentatively (parser);
8896 argument = cp_parser_constant_expression (parser,
8897 /*allow_non_constant_p=*/false,
8898 /*non_constant_p=*/NULL);
8899 argument = fold_non_dependent_expr (argument);
8900 if (!maybe_type_id)
8901 return argument;
8902 if (!cp_parser_next_token_ends_template_argument_p (parser))
8903 cp_parser_error (parser, "expected template-argument");
8904 if (cp_parser_parse_definitely (parser))
8905 return argument;
8906 /* We did our best to parse the argument as a non type-id, but that
8907 was the only alternative that matched (albeit with a '>' after
8908 it). We can assume it's just a typo from the user, and a
8909 diagnostic will then be issued. */
8910 return cp_parser_type_id (parser);
8911 }
8912
8913 /* Parse an explicit-instantiation.
8914
8915 explicit-instantiation:
8916 template declaration
8917
8918 Although the standard says `declaration', what it really means is:
8919
8920 explicit-instantiation:
8921 template decl-specifier-seq [opt] declarator [opt] ;
8922
8923 Things like `template int S<int>::i = 5, int S<double>::j;' are not
8924 supposed to be allowed. A defect report has been filed about this
8925 issue.
8926
8927 GNU Extension:
8928
8929 explicit-instantiation:
8930 storage-class-specifier template
8931 decl-specifier-seq [opt] declarator [opt] ;
8932 function-specifier template
8933 decl-specifier-seq [opt] declarator [opt] ; */
8934
8935 static void
8936 cp_parser_explicit_instantiation (cp_parser* parser)
8937 {
8938 int declares_class_or_enum;
8939 cp_decl_specifier_seq decl_specifiers;
8940 tree extension_specifier = NULL_TREE;
8941
8942 /* Look for an (optional) storage-class-specifier or
8943 function-specifier. */
8944 if (cp_parser_allow_gnu_extensions_p (parser))
8945 {
8946 extension_specifier
8947 = cp_parser_storage_class_specifier_opt (parser);
8948 if (!extension_specifier)
8949 extension_specifier
8950 = cp_parser_function_specifier_opt (parser,
8951 /*decl_specs=*/NULL);
8952 }
8953
8954 /* Look for the `template' keyword. */
8955 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
8956 /* Let the front end know that we are processing an explicit
8957 instantiation. */
8958 begin_explicit_instantiation ();
8959 /* [temp.explicit] says that we are supposed to ignore access
8960 control while processing explicit instantiation directives. */
8961 push_deferring_access_checks (dk_no_check);
8962 /* Parse a decl-specifier-seq. */
8963 cp_parser_decl_specifier_seq (parser,
8964 CP_PARSER_FLAGS_OPTIONAL,
8965 &decl_specifiers,
8966 &declares_class_or_enum);
8967 /* If there was exactly one decl-specifier, and it declared a class,
8968 and there's no declarator, then we have an explicit type
8969 instantiation. */
8970 if (declares_class_or_enum && cp_parser_declares_only_class_p (parser))
8971 {
8972 tree type;
8973
8974 type = check_tag_decl (&decl_specifiers);
8975 /* Turn access control back on for names used during
8976 template instantiation. */
8977 pop_deferring_access_checks ();
8978 if (type)
8979 do_type_instantiation (type, extension_specifier, /*complain=*/1);
8980 }
8981 else
8982 {
8983 cp_declarator *declarator;
8984 tree decl;
8985
8986 /* Parse the declarator. */
8987 declarator
8988 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
8989 /*ctor_dtor_or_conv_p=*/NULL,
8990 /*parenthesized_p=*/NULL,
8991 /*member_p=*/false);
8992 if (declares_class_or_enum & 2)
8993 cp_parser_check_for_definition_in_return_type (declarator,
8994 decl_specifiers.type);
8995 if (declarator != cp_error_declarator)
8996 {
8997 decl = grokdeclarator (declarator, &decl_specifiers,
8998 NORMAL, 0, NULL);
8999 /* Turn access control back on for names used during
9000 template instantiation. */
9001 pop_deferring_access_checks ();
9002 /* Do the explicit instantiation. */
9003 do_decl_instantiation (decl, extension_specifier);
9004 }
9005 else
9006 {
9007 pop_deferring_access_checks ();
9008 /* Skip the body of the explicit instantiation. */
9009 cp_parser_skip_to_end_of_statement (parser);
9010 }
9011 }
9012 /* We're done with the instantiation. */
9013 end_explicit_instantiation ();
9014
9015 cp_parser_consume_semicolon_at_end_of_statement (parser);
9016 }
9017
9018 /* Parse an explicit-specialization.
9019
9020 explicit-specialization:
9021 template < > declaration
9022
9023 Although the standard says `declaration', what it really means is:
9024
9025 explicit-specialization:
9026 template <> decl-specifier [opt] init-declarator [opt] ;
9027 template <> function-definition
9028 template <> explicit-specialization
9029 template <> template-declaration */
9030
9031 static void
9032 cp_parser_explicit_specialization (cp_parser* parser)
9033 {
9034 /* Look for the `template' keyword. */
9035 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
9036 /* Look for the `<'. */
9037 cp_parser_require (parser, CPP_LESS, "`<'");
9038 /* Look for the `>'. */
9039 cp_parser_require (parser, CPP_GREATER, "`>'");
9040 /* We have processed another parameter list. */
9041 ++parser->num_template_parameter_lists;
9042 /* Let the front end know that we are beginning a specialization. */
9043 begin_specialization ();
9044
9045 /* If the next keyword is `template', we need to figure out whether
9046 or not we're looking a template-declaration. */
9047 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
9048 {
9049 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
9050 && cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER)
9051 cp_parser_template_declaration_after_export (parser,
9052 /*member_p=*/false);
9053 else
9054 cp_parser_explicit_specialization (parser);
9055 }
9056 else
9057 /* Parse the dependent declaration. */
9058 cp_parser_single_declaration (parser,
9059 /*member_p=*/false,
9060 /*friend_p=*/NULL);
9061
9062 /* We're done with the specialization. */
9063 end_specialization ();
9064 /* We're done with this parameter list. */
9065 --parser->num_template_parameter_lists;
9066 }
9067
9068 /* Parse a type-specifier.
9069
9070 type-specifier:
9071 simple-type-specifier
9072 class-specifier
9073 enum-specifier
9074 elaborated-type-specifier
9075 cv-qualifier
9076
9077 GNU Extension:
9078
9079 type-specifier:
9080 __complex__
9081
9082 Returns a representation of the type-specifier. For a
9083 class-specifier, enum-specifier, or elaborated-type-specifier, a
9084 TREE_TYPE is returned; otherwise, a TYPE_DECL is returned.
9085
9086 The parser flags FLAGS is used to control type-specifier parsing.
9087
9088 If IS_DECLARATION is TRUE, then this type-specifier is appearing
9089 in a decl-specifier-seq.
9090
9091 If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a
9092 class-specifier, enum-specifier, or elaborated-type-specifier, then
9093 *DECLARES_CLASS_OR_ENUM is set to a nonzero value. The value is 1
9094 if a type is declared; 2 if it is defined. Otherwise, it is set to
9095 zero.
9096
9097 If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a
9098 cv-qualifier, then IS_CV_QUALIFIER is set to TRUE. Otherwise, it
9099 is set to FALSE. */
9100
9101 static tree
9102 cp_parser_type_specifier (cp_parser* parser,
9103 cp_parser_flags flags,
9104 cp_decl_specifier_seq *decl_specs,
9105 bool is_declaration,
9106 int* declares_class_or_enum,
9107 bool* is_cv_qualifier)
9108 {
9109 tree type_spec = NULL_TREE;
9110 cp_token *token;
9111 enum rid keyword;
9112 cp_decl_spec ds = ds_last;
9113
9114 /* Assume this type-specifier does not declare a new type. */
9115 if (declares_class_or_enum)
9116 *declares_class_or_enum = 0;
9117 /* And that it does not specify a cv-qualifier. */
9118 if (is_cv_qualifier)
9119 *is_cv_qualifier = false;
9120 /* Peek at the next token. */
9121 token = cp_lexer_peek_token (parser->lexer);
9122
9123 /* If we're looking at a keyword, we can use that to guide the
9124 production we choose. */
9125 keyword = token->keyword;
9126 switch (keyword)
9127 {
9128 case RID_ENUM:
9129 /* 'enum' [identifier] '{' introduces an enum-specifier;
9130 'enum' <anything else> introduces an elaborated-type-specifier. */
9131 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_OPEN_BRACE
9132 || (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_NAME
9133 && cp_lexer_peek_nth_token (parser->lexer, 3)->type
9134 == CPP_OPEN_BRACE))
9135 {
9136 if (parser->num_template_parameter_lists)
9137 {
9138 error ("template declaration of %qs", "enum");
9139 cp_parser_skip_to_end_of_block_or_statement (parser);
9140 type_spec = error_mark_node;
9141 }
9142 else
9143 type_spec = cp_parser_enum_specifier (parser);
9144
9145 if (declares_class_or_enum)
9146 *declares_class_or_enum = 2;
9147 if (decl_specs)
9148 cp_parser_set_decl_spec_type (decl_specs,
9149 type_spec,
9150 /*user_defined_p=*/true);
9151 return type_spec;
9152 }
9153 else
9154 goto elaborated_type_specifier;
9155
9156 /* Any of these indicate either a class-specifier, or an
9157 elaborated-type-specifier. */
9158 case RID_CLASS:
9159 case RID_STRUCT:
9160 case RID_UNION:
9161 /* Parse tentatively so that we can back up if we don't find a
9162 class-specifier. */
9163 cp_parser_parse_tentatively (parser);
9164 /* Look for the class-specifier. */
9165 type_spec = cp_parser_class_specifier (parser);
9166 /* If that worked, we're done. */
9167 if (cp_parser_parse_definitely (parser))
9168 {
9169 if (declares_class_or_enum)
9170 *declares_class_or_enum = 2;
9171 if (decl_specs)
9172 cp_parser_set_decl_spec_type (decl_specs,
9173 type_spec,
9174 /*user_defined_p=*/true);
9175 return type_spec;
9176 }
9177
9178 /* Fall through. */
9179 elaborated_type_specifier:
9180 /* We're declaring (not defining) a class or enum. */
9181 if (declares_class_or_enum)
9182 *declares_class_or_enum = 1;
9183
9184 /* Fall through. */
9185 case RID_TYPENAME:
9186 /* Look for an elaborated-type-specifier. */
9187 type_spec
9188 = (cp_parser_elaborated_type_specifier
9189 (parser,
9190 decl_specs && decl_specs->specs[(int) ds_friend],
9191 is_declaration));
9192 if (decl_specs)
9193 cp_parser_set_decl_spec_type (decl_specs,
9194 type_spec,
9195 /*user_defined_p=*/true);
9196 return type_spec;
9197
9198 case RID_CONST:
9199 ds = ds_const;
9200 if (is_cv_qualifier)
9201 *is_cv_qualifier = true;
9202 break;
9203
9204 case RID_VOLATILE:
9205 ds = ds_volatile;
9206 if (is_cv_qualifier)
9207 *is_cv_qualifier = true;
9208 break;
9209
9210 case RID_RESTRICT:
9211 ds = ds_restrict;
9212 if (is_cv_qualifier)
9213 *is_cv_qualifier = true;
9214 break;
9215
9216 case RID_COMPLEX:
9217 /* The `__complex__' keyword is a GNU extension. */
9218 ds = ds_complex;
9219 break;
9220
9221 default:
9222 break;
9223 }
9224
9225 /* Handle simple keywords. */
9226 if (ds != ds_last)
9227 {
9228 if (decl_specs)
9229 {
9230 ++decl_specs->specs[(int)ds];
9231 decl_specs->any_specifiers_p = true;
9232 }
9233 return cp_lexer_consume_token (parser->lexer)->value;
9234 }
9235
9236 /* If we do not already have a type-specifier, assume we are looking
9237 at a simple-type-specifier. */
9238 type_spec = cp_parser_simple_type_specifier (parser,
9239 decl_specs,
9240 flags);
9241
9242 /* If we didn't find a type-specifier, and a type-specifier was not
9243 optional in this context, issue an error message. */
9244 if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9245 {
9246 cp_parser_error (parser, "expected type specifier");
9247 return error_mark_node;
9248 }
9249
9250 return type_spec;
9251 }
9252
9253 /* Parse a simple-type-specifier.
9254
9255 simple-type-specifier:
9256 :: [opt] nested-name-specifier [opt] type-name
9257 :: [opt] nested-name-specifier template template-id
9258 char
9259 wchar_t
9260 bool
9261 short
9262 int
9263 long
9264 signed
9265 unsigned
9266 float
9267 double
9268 void
9269
9270 GNU Extension:
9271
9272 simple-type-specifier:
9273 __typeof__ unary-expression
9274 __typeof__ ( type-id )
9275
9276 Returns the indicated TYPE_DECL. If DECL_SPECS is not NULL, it is
9277 appropriately updated. */
9278
9279 static tree
9280 cp_parser_simple_type_specifier (cp_parser* parser,
9281 cp_decl_specifier_seq *decl_specs,
9282 cp_parser_flags flags)
9283 {
9284 tree type = NULL_TREE;
9285 cp_token *token;
9286
9287 /* Peek at the next token. */
9288 token = cp_lexer_peek_token (parser->lexer);
9289
9290 /* If we're looking at a keyword, things are easy. */
9291 switch (token->keyword)
9292 {
9293 case RID_CHAR:
9294 if (decl_specs)
9295 decl_specs->explicit_char_p = true;
9296 type = char_type_node;
9297 break;
9298 case RID_WCHAR:
9299 type = wchar_type_node;
9300 break;
9301 case RID_BOOL:
9302 type = boolean_type_node;
9303 break;
9304 case RID_SHORT:
9305 if (decl_specs)
9306 ++decl_specs->specs[(int) ds_short];
9307 type = short_integer_type_node;
9308 break;
9309 case RID_INT:
9310 if (decl_specs)
9311 decl_specs->explicit_int_p = true;
9312 type = integer_type_node;
9313 break;
9314 case RID_LONG:
9315 if (decl_specs)
9316 ++decl_specs->specs[(int) ds_long];
9317 type = long_integer_type_node;
9318 break;
9319 case RID_SIGNED:
9320 if (decl_specs)
9321 ++decl_specs->specs[(int) ds_signed];
9322 type = integer_type_node;
9323 break;
9324 case RID_UNSIGNED:
9325 if (decl_specs)
9326 ++decl_specs->specs[(int) ds_unsigned];
9327 type = unsigned_type_node;
9328 break;
9329 case RID_FLOAT:
9330 type = float_type_node;
9331 break;
9332 case RID_DOUBLE:
9333 type = double_type_node;
9334 break;
9335 case RID_VOID:
9336 type = void_type_node;
9337 break;
9338
9339 case RID_TYPEOF:
9340 /* Consume the `typeof' token. */
9341 cp_lexer_consume_token (parser->lexer);
9342 /* Parse the operand to `typeof'. */
9343 type = cp_parser_sizeof_operand (parser, RID_TYPEOF);
9344 /* If it is not already a TYPE, take its type. */
9345 if (!TYPE_P (type))
9346 type = finish_typeof (type);
9347
9348 if (decl_specs)
9349 cp_parser_set_decl_spec_type (decl_specs, type,
9350 /*user_defined_p=*/true);
9351
9352 return type;
9353
9354 default:
9355 break;
9356 }
9357
9358 /* If the type-specifier was for a built-in type, we're done. */
9359 if (type)
9360 {
9361 tree id;
9362
9363 /* Record the type. */
9364 if (decl_specs
9365 && (token->keyword != RID_SIGNED
9366 && token->keyword != RID_UNSIGNED
9367 && token->keyword != RID_SHORT
9368 && token->keyword != RID_LONG))
9369 cp_parser_set_decl_spec_type (decl_specs,
9370 type,
9371 /*user_defined=*/false);
9372 if (decl_specs)
9373 decl_specs->any_specifiers_p = true;
9374
9375 /* Consume the token. */
9376 id = cp_lexer_consume_token (parser->lexer)->value;
9377
9378 /* There is no valid C++ program where a non-template type is
9379 followed by a "<". That usually indicates that the user thought
9380 that the type was a template. */
9381 cp_parser_check_for_invalid_template_id (parser, type);
9382
9383 return TYPE_NAME (type);
9384 }
9385
9386 /* The type-specifier must be a user-defined type. */
9387 if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES))
9388 {
9389 bool qualified_p;
9390 bool global_p;
9391
9392 /* Don't gobble tokens or issue error messages if this is an
9393 optional type-specifier. */
9394 if (flags & CP_PARSER_FLAGS_OPTIONAL)
9395 cp_parser_parse_tentatively (parser);
9396
9397 /* Look for the optional `::' operator. */
9398 global_p
9399 = (cp_parser_global_scope_opt (parser,
9400 /*current_scope_valid_p=*/false)
9401 != NULL_TREE);
9402 /* Look for the nested-name specifier. */
9403 qualified_p
9404 = (cp_parser_nested_name_specifier_opt (parser,
9405 /*typename_keyword_p=*/false,
9406 /*check_dependency_p=*/true,
9407 /*type_p=*/false,
9408 /*is_declaration=*/false)
9409 != NULL_TREE);
9410 /* If we have seen a nested-name-specifier, and the next token
9411 is `template', then we are using the template-id production. */
9412 if (parser->scope
9413 && cp_parser_optional_template_keyword (parser))
9414 {
9415 /* Look for the template-id. */
9416 type = cp_parser_template_id (parser,
9417 /*template_keyword_p=*/true,
9418 /*check_dependency_p=*/true,
9419 /*is_declaration=*/false);
9420 /* If the template-id did not name a type, we are out of
9421 luck. */
9422 if (TREE_CODE (type) != TYPE_DECL)
9423 {
9424 cp_parser_error (parser, "expected template-id for type");
9425 type = NULL_TREE;
9426 }
9427 }
9428 /* Otherwise, look for a type-name. */
9429 else
9430 type = cp_parser_type_name (parser);
9431 /* Keep track of all name-lookups performed in class scopes. */
9432 if (type
9433 && !global_p
9434 && !qualified_p
9435 && TREE_CODE (type) == TYPE_DECL
9436 && TREE_CODE (DECL_NAME (type)) == IDENTIFIER_NODE)
9437 maybe_note_name_used_in_class (DECL_NAME (type), type);
9438 /* If it didn't work out, we don't have a TYPE. */
9439 if ((flags & CP_PARSER_FLAGS_OPTIONAL)
9440 && !cp_parser_parse_definitely (parser))
9441 type = NULL_TREE;
9442 if (type && decl_specs)
9443 cp_parser_set_decl_spec_type (decl_specs, type,
9444 /*user_defined=*/true);
9445 }
9446
9447 /* If we didn't get a type-name, issue an error message. */
9448 if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9449 {
9450 cp_parser_error (parser, "expected type-name");
9451 return error_mark_node;
9452 }
9453
9454 /* There is no valid C++ program where a non-template type is
9455 followed by a "<". That usually indicates that the user thought
9456 that the type was a template. */
9457 if (type && type != error_mark_node)
9458 cp_parser_check_for_invalid_template_id (parser, TREE_TYPE (type));
9459
9460 return type;
9461 }
9462
9463 /* Parse a type-name.
9464
9465 type-name:
9466 class-name
9467 enum-name
9468 typedef-name
9469
9470 enum-name:
9471 identifier
9472
9473 typedef-name:
9474 identifier
9475
9476 Returns a TYPE_DECL for the the type. */
9477
9478 static tree
9479 cp_parser_type_name (cp_parser* parser)
9480 {
9481 tree type_decl;
9482 tree identifier;
9483
9484 /* We can't know yet whether it is a class-name or not. */
9485 cp_parser_parse_tentatively (parser);
9486 /* Try a class-name. */
9487 type_decl = cp_parser_class_name (parser,
9488 /*typename_keyword_p=*/false,
9489 /*template_keyword_p=*/false,
9490 none_type,
9491 /*check_dependency_p=*/true,
9492 /*class_head_p=*/false,
9493 /*is_declaration=*/false);
9494 /* If it's not a class-name, keep looking. */
9495 if (!cp_parser_parse_definitely (parser))
9496 {
9497 /* It must be a typedef-name or an enum-name. */
9498 identifier = cp_parser_identifier (parser);
9499 if (identifier == error_mark_node)
9500 return error_mark_node;
9501
9502 /* Look up the type-name. */
9503 type_decl = cp_parser_lookup_name_simple (parser, identifier);
9504 /* Issue an error if we did not find a type-name. */
9505 if (TREE_CODE (type_decl) != TYPE_DECL)
9506 {
9507 if (!cp_parser_simulate_error (parser))
9508 cp_parser_name_lookup_error (parser, identifier, type_decl,
9509 "is not a type");
9510 type_decl = error_mark_node;
9511 }
9512 /* Remember that the name was used in the definition of the
9513 current class so that we can check later to see if the
9514 meaning would have been different after the class was
9515 entirely defined. */
9516 else if (type_decl != error_mark_node
9517 && !parser->scope)
9518 maybe_note_name_used_in_class (identifier, type_decl);
9519 }
9520
9521 return type_decl;
9522 }
9523
9524
9525 /* Parse an elaborated-type-specifier. Note that the grammar given
9526 here incorporates the resolution to DR68.
9527
9528 elaborated-type-specifier:
9529 class-key :: [opt] nested-name-specifier [opt] identifier
9530 class-key :: [opt] nested-name-specifier [opt] template [opt] template-id
9531 enum :: [opt] nested-name-specifier [opt] identifier
9532 typename :: [opt] nested-name-specifier identifier
9533 typename :: [opt] nested-name-specifier template [opt]
9534 template-id
9535
9536 GNU extension:
9537
9538 elaborated-type-specifier:
9539 class-key attributes :: [opt] nested-name-specifier [opt] identifier
9540 class-key attributes :: [opt] nested-name-specifier [opt]
9541 template [opt] template-id
9542 enum attributes :: [opt] nested-name-specifier [opt] identifier
9543
9544 If IS_FRIEND is TRUE, then this elaborated-type-specifier is being
9545 declared `friend'. If IS_DECLARATION is TRUE, then this
9546 elaborated-type-specifier appears in a decl-specifiers-seq, i.e.,
9547 something is being declared.
9548
9549 Returns the TYPE specified. */
9550
9551 static tree
9552 cp_parser_elaborated_type_specifier (cp_parser* parser,
9553 bool is_friend,
9554 bool is_declaration)
9555 {
9556 enum tag_types tag_type;
9557 tree identifier;
9558 tree type = NULL_TREE;
9559 tree attributes = NULL_TREE;
9560
9561 /* See if we're looking at the `enum' keyword. */
9562 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM))
9563 {
9564 /* Consume the `enum' token. */
9565 cp_lexer_consume_token (parser->lexer);
9566 /* Remember that it's an enumeration type. */
9567 tag_type = enum_type;
9568 /* Parse the attributes. */
9569 attributes = cp_parser_attributes_opt (parser);
9570 }
9571 /* Or, it might be `typename'. */
9572 else if (cp_lexer_next_token_is_keyword (parser->lexer,
9573 RID_TYPENAME))
9574 {
9575 /* Consume the `typename' token. */
9576 cp_lexer_consume_token (parser->lexer);
9577 /* Remember that it's a `typename' type. */
9578 tag_type = typename_type;
9579 /* The `typename' keyword is only allowed in templates. */
9580 if (!processing_template_decl)
9581 pedwarn ("using %<typename%> outside of template");
9582 }
9583 /* Otherwise it must be a class-key. */
9584 else
9585 {
9586 tag_type = cp_parser_class_key (parser);
9587 if (tag_type == none_type)
9588 return error_mark_node;
9589 /* Parse the attributes. */
9590 attributes = cp_parser_attributes_opt (parser);
9591 }
9592
9593 /* Look for the `::' operator. */
9594 cp_parser_global_scope_opt (parser,
9595 /*current_scope_valid_p=*/false);
9596 /* Look for the nested-name-specifier. */
9597 if (tag_type == typename_type)
9598 {
9599 if (cp_parser_nested_name_specifier (parser,
9600 /*typename_keyword_p=*/true,
9601 /*check_dependency_p=*/true,
9602 /*type_p=*/true,
9603 is_declaration)
9604 == error_mark_node)
9605 return error_mark_node;
9606 }
9607 else
9608 /* Even though `typename' is not present, the proposed resolution
9609 to Core Issue 180 says that in `class A<T>::B', `B' should be
9610 considered a type-name, even if `A<T>' is dependent. */
9611 cp_parser_nested_name_specifier_opt (parser,
9612 /*typename_keyword_p=*/true,
9613 /*check_dependency_p=*/true,
9614 /*type_p=*/true,
9615 is_declaration);
9616 /* For everything but enumeration types, consider a template-id. */
9617 if (tag_type != enum_type)
9618 {
9619 bool template_p = false;
9620 tree decl;
9621
9622 /* Allow the `template' keyword. */
9623 template_p = cp_parser_optional_template_keyword (parser);
9624 /* If we didn't see `template', we don't know if there's a
9625 template-id or not. */
9626 if (!template_p)
9627 cp_parser_parse_tentatively (parser);
9628 /* Parse the template-id. */
9629 decl = cp_parser_template_id (parser, template_p,
9630 /*check_dependency_p=*/true,
9631 is_declaration);
9632 /* If we didn't find a template-id, look for an ordinary
9633 identifier. */
9634 if (!template_p && !cp_parser_parse_definitely (parser))
9635 ;
9636 /* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is
9637 in effect, then we must assume that, upon instantiation, the
9638 template will correspond to a class. */
9639 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
9640 && tag_type == typename_type)
9641 type = make_typename_type (parser->scope, decl,
9642 typename_type,
9643 /*complain=*/1);
9644 else
9645 type = TREE_TYPE (decl);
9646 }
9647
9648 /* For an enumeration type, consider only a plain identifier. */
9649 if (!type)
9650 {
9651 identifier = cp_parser_identifier (parser);
9652
9653 if (identifier == error_mark_node)
9654 {
9655 parser->scope = NULL_TREE;
9656 return error_mark_node;
9657 }
9658
9659 /* For a `typename', we needn't call xref_tag. */
9660 if (tag_type == typename_type)
9661 return cp_parser_make_typename_type (parser, parser->scope,
9662 identifier);
9663 /* Look up a qualified name in the usual way. */
9664 if (parser->scope)
9665 {
9666 tree decl;
9667
9668 /* In an elaborated-type-specifier, names are assumed to name
9669 types, so we set IS_TYPE to TRUE when calling
9670 cp_parser_lookup_name. */
9671 decl = cp_parser_lookup_name (parser, identifier,
9672 tag_type,
9673 /*is_template=*/false,
9674 /*is_namespace=*/false,
9675 /*check_dependency=*/true,
9676 /*ambiguous_p=*/NULL);
9677
9678 /* If we are parsing friend declaration, DECL may be a
9679 TEMPLATE_DECL tree node here. However, we need to check
9680 whether this TEMPLATE_DECL results in valid code. Consider
9681 the following example:
9682
9683 namespace N {
9684 template <class T> class C {};
9685 }
9686 class X {
9687 template <class T> friend class N::C; // #1, valid code
9688 };
9689 template <class T> class Y {
9690 friend class N::C; // #2, invalid code
9691 };
9692
9693 For both case #1 and #2, we arrive at a TEMPLATE_DECL after
9694 name lookup of `N::C'. We see that friend declaration must
9695 be template for the code to be valid. Note that
9696 processing_template_decl does not work here since it is
9697 always 1 for the above two cases. */
9698
9699 decl = (cp_parser_maybe_treat_template_as_class
9700 (decl, /*tag_name_p=*/is_friend
9701 && parser->num_template_parameter_lists));
9702
9703 if (TREE_CODE (decl) != TYPE_DECL)
9704 {
9705 error ("expected type-name");
9706 return error_mark_node;
9707 }
9708
9709 if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
9710 check_elaborated_type_specifier
9711 (tag_type, decl,
9712 (parser->num_template_parameter_lists
9713 || DECL_SELF_REFERENCE_P (decl)));
9714
9715 type = TREE_TYPE (decl);
9716 }
9717 else
9718 {
9719 /* An elaborated-type-specifier sometimes introduces a new type and
9720 sometimes names an existing type. Normally, the rule is that it
9721 introduces a new type only if there is not an existing type of
9722 the same name already in scope. For example, given:
9723
9724 struct S {};
9725 void f() { struct S s; }
9726
9727 the `struct S' in the body of `f' is the same `struct S' as in
9728 the global scope; the existing definition is used. However, if
9729 there were no global declaration, this would introduce a new
9730 local class named `S'.
9731
9732 An exception to this rule applies to the following code:
9733
9734 namespace N { struct S; }
9735
9736 Here, the elaborated-type-specifier names a new type
9737 unconditionally; even if there is already an `S' in the
9738 containing scope this declaration names a new type.
9739 This exception only applies if the elaborated-type-specifier
9740 forms the complete declaration:
9741
9742 [class.name]
9743
9744 A declaration consisting solely of `class-key identifier ;' is
9745 either a redeclaration of the name in the current scope or a
9746 forward declaration of the identifier as a class name. It
9747 introduces the name into the current scope.
9748
9749 We are in this situation precisely when the next token is a `;'.
9750
9751 An exception to the exception is that a `friend' declaration does
9752 *not* name a new type; i.e., given:
9753
9754 struct S { friend struct T; };
9755
9756 `T' is not a new type in the scope of `S'.
9757
9758 Also, `new struct S' or `sizeof (struct S)' never results in the
9759 definition of a new type; a new type can only be declared in a
9760 declaration context. */
9761
9762 tag_scope ts;
9763 if (is_friend)
9764 /* Friends have special name lookup rules. */
9765 ts = ts_within_enclosing_non_class;
9766 else if (is_declaration
9767 && cp_lexer_next_token_is (parser->lexer,
9768 CPP_SEMICOLON))
9769 /* This is a `class-key identifier ;' */
9770 ts = ts_current;
9771 else
9772 ts = ts_global;
9773
9774 /* Warn about attributes. They are ignored. */
9775 if (attributes)
9776 warning ("type attributes are honored only at type definition");
9777
9778 type = xref_tag (tag_type, identifier, ts,
9779 parser->num_template_parameter_lists);
9780 }
9781 }
9782 if (tag_type != enum_type)
9783 cp_parser_check_class_key (tag_type, type);
9784
9785 /* A "<" cannot follow an elaborated type specifier. If that
9786 happens, the user was probably trying to form a template-id. */
9787 cp_parser_check_for_invalid_template_id (parser, type);
9788
9789 return type;
9790 }
9791
9792 /* Parse an enum-specifier.
9793
9794 enum-specifier:
9795 enum identifier [opt] { enumerator-list [opt] }
9796
9797 GNU Extensions:
9798 enum identifier [opt] { enumerator-list [opt] } attributes
9799
9800 Returns an ENUM_TYPE representing the enumeration. */
9801
9802 static tree
9803 cp_parser_enum_specifier (cp_parser* parser)
9804 {
9805 tree identifier;
9806 tree type;
9807
9808 /* Caller guarantees that the current token is 'enum', an identifier
9809 possibly follows, and the token after that is an opening brace.
9810 If we don't have an identifier, fabricate an anonymous name for
9811 the enumeration being defined. */
9812 cp_lexer_consume_token (parser->lexer);
9813
9814 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
9815 identifier = cp_parser_identifier (parser);
9816 else
9817 identifier = make_anon_name ();
9818
9819 /* Issue an error message if type-definitions are forbidden here. */
9820 cp_parser_check_type_definition (parser);
9821
9822 /* Create the new type. We do this before consuming the opening brace
9823 so the enum will be recorded as being on the line of its tag (or the
9824 'enum' keyword, if there is no tag). */
9825 type = start_enum (identifier);
9826
9827 /* Consume the opening brace. */
9828 cp_lexer_consume_token (parser->lexer);
9829
9830 /* If the next token is not '}', then there are some enumerators. */
9831 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
9832 cp_parser_enumerator_list (parser, type);
9833
9834 /* Consume the final '}'. */
9835 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
9836
9837 /* Look for trailing attributes to apply to this enumeration, and
9838 apply them if appropriate. */
9839 if (cp_parser_allow_gnu_extensions_p (parser))
9840 {
9841 tree trailing_attr = cp_parser_attributes_opt (parser);
9842 cplus_decl_attributes (&type,
9843 trailing_attr,
9844 (int) ATTR_FLAG_TYPE_IN_PLACE);
9845 }
9846
9847 /* Finish up the enumeration. */
9848 finish_enum (type);
9849
9850 return type;
9851 }
9852
9853 /* Parse an enumerator-list. The enumerators all have the indicated
9854 TYPE.
9855
9856 enumerator-list:
9857 enumerator-definition
9858 enumerator-list , enumerator-definition */
9859
9860 static void
9861 cp_parser_enumerator_list (cp_parser* parser, tree type)
9862 {
9863 while (true)
9864 {
9865 /* Parse an enumerator-definition. */
9866 cp_parser_enumerator_definition (parser, type);
9867
9868 /* If the next token is not a ',', we've reached the end of
9869 the list. */
9870 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
9871 break;
9872 /* Otherwise, consume the `,' and keep going. */
9873 cp_lexer_consume_token (parser->lexer);
9874 /* If the next token is a `}', there is a trailing comma. */
9875 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
9876 {
9877 if (pedantic && !in_system_header)
9878 pedwarn ("comma at end of enumerator list");
9879 break;
9880 }
9881 }
9882 }
9883
9884 /* Parse an enumerator-definition. The enumerator has the indicated
9885 TYPE.
9886
9887 enumerator-definition:
9888 enumerator
9889 enumerator = constant-expression
9890
9891 enumerator:
9892 identifier */
9893
9894 static void
9895 cp_parser_enumerator_definition (cp_parser* parser, tree type)
9896 {
9897 tree identifier;
9898 tree value;
9899
9900 /* Look for the identifier. */
9901 identifier = cp_parser_identifier (parser);
9902 if (identifier == error_mark_node)
9903 return;
9904
9905 /* If the next token is an '=', then there is an explicit value. */
9906 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
9907 {
9908 /* Consume the `=' token. */
9909 cp_lexer_consume_token (parser->lexer);
9910 /* Parse the value. */
9911 value = cp_parser_constant_expression (parser,
9912 /*allow_non_constant_p=*/false,
9913 NULL);
9914 }
9915 else
9916 value = NULL_TREE;
9917
9918 /* Create the enumerator. */
9919 build_enumerator (identifier, value, type);
9920 }
9921
9922 /* Parse a namespace-name.
9923
9924 namespace-name:
9925 original-namespace-name
9926 namespace-alias
9927
9928 Returns the NAMESPACE_DECL for the namespace. */
9929
9930 static tree
9931 cp_parser_namespace_name (cp_parser* parser)
9932 {
9933 tree identifier;
9934 tree namespace_decl;
9935
9936 /* Get the name of the namespace. */
9937 identifier = cp_parser_identifier (parser);
9938 if (identifier == error_mark_node)
9939 return error_mark_node;
9940
9941 /* Look up the identifier in the currently active scope. Look only
9942 for namespaces, due to:
9943
9944 [basic.lookup.udir]
9945
9946 When looking up a namespace-name in a using-directive or alias
9947 definition, only namespace names are considered.
9948
9949 And:
9950
9951 [basic.lookup.qual]
9952
9953 During the lookup of a name preceding the :: scope resolution
9954 operator, object, function, and enumerator names are ignored.
9955
9956 (Note that cp_parser_class_or_namespace_name only calls this
9957 function if the token after the name is the scope resolution
9958 operator.) */
9959 namespace_decl = cp_parser_lookup_name (parser, identifier,
9960 none_type,
9961 /*is_template=*/false,
9962 /*is_namespace=*/true,
9963 /*check_dependency=*/true,
9964 /*ambiguous_p=*/NULL);
9965 /* If it's not a namespace, issue an error. */
9966 if (namespace_decl == error_mark_node
9967 || TREE_CODE (namespace_decl) != NAMESPACE_DECL)
9968 {
9969 cp_parser_error (parser, "expected namespace-name");
9970 namespace_decl = error_mark_node;
9971 }
9972
9973 return namespace_decl;
9974 }
9975
9976 /* Parse a namespace-definition.
9977
9978 namespace-definition:
9979 named-namespace-definition
9980 unnamed-namespace-definition
9981
9982 named-namespace-definition:
9983 original-namespace-definition
9984 extension-namespace-definition
9985
9986 original-namespace-definition:
9987 namespace identifier { namespace-body }
9988
9989 extension-namespace-definition:
9990 namespace original-namespace-name { namespace-body }
9991
9992 unnamed-namespace-definition:
9993 namespace { namespace-body } */
9994
9995 static void
9996 cp_parser_namespace_definition (cp_parser* parser)
9997 {
9998 tree identifier;
9999
10000 /* Look for the `namespace' keyword. */
10001 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10002
10003 /* Get the name of the namespace. We do not attempt to distinguish
10004 between an original-namespace-definition and an
10005 extension-namespace-definition at this point. The semantic
10006 analysis routines are responsible for that. */
10007 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
10008 identifier = cp_parser_identifier (parser);
10009 else
10010 identifier = NULL_TREE;
10011
10012 /* Look for the `{' to start the namespace. */
10013 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
10014 /* Start the namespace. */
10015 push_namespace (identifier);
10016 /* Parse the body of the namespace. */
10017 cp_parser_namespace_body (parser);
10018 /* Finish the namespace. */
10019 pop_namespace ();
10020 /* Look for the final `}'. */
10021 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
10022 }
10023
10024 /* Parse a namespace-body.
10025
10026 namespace-body:
10027 declaration-seq [opt] */
10028
10029 static void
10030 cp_parser_namespace_body (cp_parser* parser)
10031 {
10032 cp_parser_declaration_seq_opt (parser);
10033 }
10034
10035 /* Parse a namespace-alias-definition.
10036
10037 namespace-alias-definition:
10038 namespace identifier = qualified-namespace-specifier ; */
10039
10040 static void
10041 cp_parser_namespace_alias_definition (cp_parser* parser)
10042 {
10043 tree identifier;
10044 tree namespace_specifier;
10045
10046 /* Look for the `namespace' keyword. */
10047 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10048 /* Look for the identifier. */
10049 identifier = cp_parser_identifier (parser);
10050 if (identifier == error_mark_node)
10051 return;
10052 /* Look for the `=' token. */
10053 cp_parser_require (parser, CPP_EQ, "`='");
10054 /* Look for the qualified-namespace-specifier. */
10055 namespace_specifier
10056 = cp_parser_qualified_namespace_specifier (parser);
10057 /* Look for the `;' token. */
10058 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10059
10060 /* Register the alias in the symbol table. */
10061 do_namespace_alias (identifier, namespace_specifier);
10062 }
10063
10064 /* Parse a qualified-namespace-specifier.
10065
10066 qualified-namespace-specifier:
10067 :: [opt] nested-name-specifier [opt] namespace-name
10068
10069 Returns a NAMESPACE_DECL corresponding to the specified
10070 namespace. */
10071
10072 static tree
10073 cp_parser_qualified_namespace_specifier (cp_parser* parser)
10074 {
10075 /* Look for the optional `::'. */
10076 cp_parser_global_scope_opt (parser,
10077 /*current_scope_valid_p=*/false);
10078
10079 /* Look for the optional nested-name-specifier. */
10080 cp_parser_nested_name_specifier_opt (parser,
10081 /*typename_keyword_p=*/false,
10082 /*check_dependency_p=*/true,
10083 /*type_p=*/false,
10084 /*is_declaration=*/true);
10085
10086 return cp_parser_namespace_name (parser);
10087 }
10088
10089 /* Parse a using-declaration.
10090
10091 using-declaration:
10092 using typename [opt] :: [opt] nested-name-specifier unqualified-id ;
10093 using :: unqualified-id ; */
10094
10095 static void
10096 cp_parser_using_declaration (cp_parser* parser)
10097 {
10098 cp_token *token;
10099 bool typename_p = false;
10100 bool global_scope_p;
10101 tree decl;
10102 tree identifier;
10103 tree qscope;
10104
10105 /* Look for the `using' keyword. */
10106 cp_parser_require_keyword (parser, RID_USING, "`using'");
10107
10108 /* Peek at the next token. */
10109 token = cp_lexer_peek_token (parser->lexer);
10110 /* See if it's `typename'. */
10111 if (token->keyword == RID_TYPENAME)
10112 {
10113 /* Remember that we've seen it. */
10114 typename_p = true;
10115 /* Consume the `typename' token. */
10116 cp_lexer_consume_token (parser->lexer);
10117 }
10118
10119 /* Look for the optional global scope qualification. */
10120 global_scope_p
10121 = (cp_parser_global_scope_opt (parser,
10122 /*current_scope_valid_p=*/false)
10123 != NULL_TREE);
10124
10125 /* If we saw `typename', or didn't see `::', then there must be a
10126 nested-name-specifier present. */
10127 if (typename_p || !global_scope_p)
10128 qscope = cp_parser_nested_name_specifier (parser, typename_p,
10129 /*check_dependency_p=*/true,
10130 /*type_p=*/false,
10131 /*is_declaration=*/true);
10132 /* Otherwise, we could be in either of the two productions. In that
10133 case, treat the nested-name-specifier as optional. */
10134 else
10135 qscope = cp_parser_nested_name_specifier_opt (parser,
10136 /*typename_keyword_p=*/false,
10137 /*check_dependency_p=*/true,
10138 /*type_p=*/false,
10139 /*is_declaration=*/true);
10140 if (!qscope)
10141 qscope = global_namespace;
10142
10143 /* Parse the unqualified-id. */
10144 identifier = cp_parser_unqualified_id (parser,
10145 /*template_keyword_p=*/false,
10146 /*check_dependency_p=*/true,
10147 /*declarator_p=*/true);
10148
10149 /* The function we call to handle a using-declaration is different
10150 depending on what scope we are in. */
10151 if (identifier == error_mark_node)
10152 ;
10153 else if (TREE_CODE (identifier) != IDENTIFIER_NODE
10154 && TREE_CODE (identifier) != BIT_NOT_EXPR)
10155 /* [namespace.udecl]
10156
10157 A using declaration shall not name a template-id. */
10158 error ("a template-id may not appear in a using-declaration");
10159 else
10160 {
10161 if (at_class_scope_p ())
10162 {
10163 /* Create the USING_DECL. */
10164 decl = do_class_using_decl (build_nt (SCOPE_REF,
10165 parser->scope,
10166 identifier));
10167 /* Add it to the list of members in this class. */
10168 finish_member_declaration (decl);
10169 }
10170 else
10171 {
10172 decl = cp_parser_lookup_name_simple (parser, identifier);
10173 if (decl == error_mark_node)
10174 cp_parser_name_lookup_error (parser, identifier, decl, NULL);
10175 else if (!at_namespace_scope_p ())
10176 do_local_using_decl (decl, qscope, identifier);
10177 else
10178 do_toplevel_using_decl (decl, qscope, identifier);
10179 }
10180 }
10181
10182 /* Look for the final `;'. */
10183 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10184 }
10185
10186 /* Parse a using-directive.
10187
10188 using-directive:
10189 using namespace :: [opt] nested-name-specifier [opt]
10190 namespace-name ; */
10191
10192 static void
10193 cp_parser_using_directive (cp_parser* parser)
10194 {
10195 tree namespace_decl;
10196 tree attribs;
10197
10198 /* Look for the `using' keyword. */
10199 cp_parser_require_keyword (parser, RID_USING, "`using'");
10200 /* And the `namespace' keyword. */
10201 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10202 /* Look for the optional `::' operator. */
10203 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
10204 /* And the optional nested-name-specifier. */
10205 cp_parser_nested_name_specifier_opt (parser,
10206 /*typename_keyword_p=*/false,
10207 /*check_dependency_p=*/true,
10208 /*type_p=*/false,
10209 /*is_declaration=*/true);
10210 /* Get the namespace being used. */
10211 namespace_decl = cp_parser_namespace_name (parser);
10212 /* And any specified attributes. */
10213 attribs = cp_parser_attributes_opt (parser);
10214 /* Update the symbol table. */
10215 parse_using_directive (namespace_decl, attribs);
10216 /* Look for the final `;'. */
10217 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10218 }
10219
10220 /* Parse an asm-definition.
10221
10222 asm-definition:
10223 asm ( string-literal ) ;
10224
10225 GNU Extension:
10226
10227 asm-definition:
10228 asm volatile [opt] ( string-literal ) ;
10229 asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ;
10230 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10231 : asm-operand-list [opt] ) ;
10232 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10233 : asm-operand-list [opt]
10234 : asm-operand-list [opt] ) ; */
10235
10236 static void
10237 cp_parser_asm_definition (cp_parser* parser)
10238 {
10239 tree string;
10240 tree outputs = NULL_TREE;
10241 tree inputs = NULL_TREE;
10242 tree clobbers = NULL_TREE;
10243 tree asm_stmt;
10244 bool volatile_p = false;
10245 bool extended_p = false;
10246
10247 /* Look for the `asm' keyword. */
10248 cp_parser_require_keyword (parser, RID_ASM, "`asm'");
10249 /* See if the next token is `volatile'. */
10250 if (cp_parser_allow_gnu_extensions_p (parser)
10251 && cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE))
10252 {
10253 /* Remember that we saw the `volatile' keyword. */
10254 volatile_p = true;
10255 /* Consume the token. */
10256 cp_lexer_consume_token (parser->lexer);
10257 }
10258 /* Look for the opening `('. */
10259 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
10260 return;
10261 /* Look for the string. */
10262 string = cp_parser_string_literal (parser, false, false);
10263 if (string == error_mark_node)
10264 {
10265 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10266 /*consume_paren=*/true);
10267 return;
10268 }
10269
10270 /* If we're allowing GNU extensions, check for the extended assembly
10271 syntax. Unfortunately, the `:' tokens need not be separated by
10272 a space in C, and so, for compatibility, we tolerate that here
10273 too. Doing that means that we have to treat the `::' operator as
10274 two `:' tokens. */
10275 if (cp_parser_allow_gnu_extensions_p (parser)
10276 && at_function_scope_p ()
10277 && (cp_lexer_next_token_is (parser->lexer, CPP_COLON)
10278 || cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)))
10279 {
10280 bool inputs_p = false;
10281 bool clobbers_p = false;
10282
10283 /* The extended syntax was used. */
10284 extended_p = true;
10285
10286 /* Look for outputs. */
10287 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10288 {
10289 /* Consume the `:'. */
10290 cp_lexer_consume_token (parser->lexer);
10291 /* Parse the output-operands. */
10292 if (cp_lexer_next_token_is_not (parser->lexer,
10293 CPP_COLON)
10294 && cp_lexer_next_token_is_not (parser->lexer,
10295 CPP_SCOPE)
10296 && cp_lexer_next_token_is_not (parser->lexer,
10297 CPP_CLOSE_PAREN))
10298 outputs = cp_parser_asm_operand_list (parser);
10299 }
10300 /* If the next token is `::', there are no outputs, and the
10301 next token is the beginning of the inputs. */
10302 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10303 /* The inputs are coming next. */
10304 inputs_p = true;
10305
10306 /* Look for inputs. */
10307 if (inputs_p
10308 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10309 {
10310 /* Consume the `:' or `::'. */
10311 cp_lexer_consume_token (parser->lexer);
10312 /* Parse the output-operands. */
10313 if (cp_lexer_next_token_is_not (parser->lexer,
10314 CPP_COLON)
10315 && cp_lexer_next_token_is_not (parser->lexer,
10316 CPP_CLOSE_PAREN))
10317 inputs = cp_parser_asm_operand_list (parser);
10318 }
10319 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10320 /* The clobbers are coming next. */
10321 clobbers_p = true;
10322
10323 /* Look for clobbers. */
10324 if (clobbers_p
10325 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10326 {
10327 /* Consume the `:' or `::'. */
10328 cp_lexer_consume_token (parser->lexer);
10329 /* Parse the clobbers. */
10330 if (cp_lexer_next_token_is_not (parser->lexer,
10331 CPP_CLOSE_PAREN))
10332 clobbers = cp_parser_asm_clobber_list (parser);
10333 }
10334 }
10335 /* Look for the closing `)'. */
10336 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
10337 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10338 /*consume_paren=*/true);
10339 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10340
10341 /* Create the ASM_EXPR. */
10342 if (at_function_scope_p ())
10343 {
10344 asm_stmt = finish_asm_stmt (volatile_p, string, outputs,
10345 inputs, clobbers);
10346 /* If the extended syntax was not used, mark the ASM_EXPR. */
10347 if (!extended_p)
10348 {
10349 tree temp = asm_stmt;
10350 if (TREE_CODE (temp) == CLEANUP_POINT_EXPR)
10351 temp = TREE_OPERAND (temp, 0);
10352
10353 ASM_INPUT_P (temp) = 1;
10354 }
10355 }
10356 else
10357 assemble_asm (string);
10358 }
10359
10360 /* Declarators [gram.dcl.decl] */
10361
10362 /* Parse an init-declarator.
10363
10364 init-declarator:
10365 declarator initializer [opt]
10366
10367 GNU Extension:
10368
10369 init-declarator:
10370 declarator asm-specification [opt] attributes [opt] initializer [opt]
10371
10372 function-definition:
10373 decl-specifier-seq [opt] declarator ctor-initializer [opt]
10374 function-body
10375 decl-specifier-seq [opt] declarator function-try-block
10376
10377 GNU Extension:
10378
10379 function-definition:
10380 __extension__ function-definition
10381
10382 The DECL_SPECIFIERS and PREFIX_ATTRIBUTES apply to this declarator.
10383 Returns a representation of the entity declared. If MEMBER_P is TRUE,
10384 then this declarator appears in a class scope. The new DECL created
10385 by this declarator is returned.
10386
10387 If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and
10388 for a function-definition here as well. If the declarator is a
10389 declarator for a function-definition, *FUNCTION_DEFINITION_P will
10390 be TRUE upon return. By that point, the function-definition will
10391 have been completely parsed.
10392
10393 FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P
10394 is FALSE. */
10395
10396 static tree
10397 cp_parser_init_declarator (cp_parser* parser,
10398 cp_decl_specifier_seq *decl_specifiers,
10399 bool function_definition_allowed_p,
10400 bool member_p,
10401 int declares_class_or_enum,
10402 bool* function_definition_p)
10403 {
10404 cp_token *token;
10405 cp_declarator *declarator;
10406 tree prefix_attributes;
10407 tree attributes;
10408 tree asm_specification;
10409 tree initializer;
10410 tree decl = NULL_TREE;
10411 tree scope;
10412 bool is_initialized;
10413 bool is_parenthesized_init;
10414 bool is_non_constant_init;
10415 int ctor_dtor_or_conv_p;
10416 bool friend_p;
10417 bool pop_p = false;
10418
10419 /* Gather the attributes that were provided with the
10420 decl-specifiers. */
10421 prefix_attributes = decl_specifiers->attributes;
10422
10423 /* Assume that this is not the declarator for a function
10424 definition. */
10425 if (function_definition_p)
10426 *function_definition_p = false;
10427
10428 /* Defer access checks while parsing the declarator; we cannot know
10429 what names are accessible until we know what is being
10430 declared. */
10431 resume_deferring_access_checks ();
10432
10433 /* Parse the declarator. */
10434 declarator
10435 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
10436 &ctor_dtor_or_conv_p,
10437 /*parenthesized_p=*/NULL,
10438 /*member_p=*/false);
10439 /* Gather up the deferred checks. */
10440 stop_deferring_access_checks ();
10441
10442 /* If the DECLARATOR was erroneous, there's no need to go
10443 further. */
10444 if (declarator == cp_error_declarator)
10445 return error_mark_node;
10446
10447 if (declares_class_or_enum & 2)
10448 cp_parser_check_for_definition_in_return_type (declarator,
10449 decl_specifiers->type);
10450
10451 /* Figure out what scope the entity declared by the DECLARATOR is
10452 located in. `grokdeclarator' sometimes changes the scope, so
10453 we compute it now. */
10454 scope = get_scope_of_declarator (declarator);
10455
10456 /* If we're allowing GNU extensions, look for an asm-specification
10457 and attributes. */
10458 if (cp_parser_allow_gnu_extensions_p (parser))
10459 {
10460 /* Look for an asm-specification. */
10461 asm_specification = cp_parser_asm_specification_opt (parser);
10462 /* And attributes. */
10463 attributes = cp_parser_attributes_opt (parser);
10464 }
10465 else
10466 {
10467 asm_specification = NULL_TREE;
10468 attributes = NULL_TREE;
10469 }
10470
10471 /* Peek at the next token. */
10472 token = cp_lexer_peek_token (parser->lexer);
10473 /* Check to see if the token indicates the start of a
10474 function-definition. */
10475 if (cp_parser_token_starts_function_definition_p (token))
10476 {
10477 if (!function_definition_allowed_p)
10478 {
10479 /* If a function-definition should not appear here, issue an
10480 error message. */
10481 cp_parser_error (parser,
10482 "a function-definition is not allowed here");
10483 return error_mark_node;
10484 }
10485 else
10486 {
10487 /* Neither attributes nor an asm-specification are allowed
10488 on a function-definition. */
10489 if (asm_specification)
10490 error ("an asm-specification is not allowed on a function-definition");
10491 if (attributes)
10492 error ("attributes are not allowed on a function-definition");
10493 /* This is a function-definition. */
10494 *function_definition_p = true;
10495
10496 /* Parse the function definition. */
10497 if (member_p)
10498 decl = cp_parser_save_member_function_body (parser,
10499 decl_specifiers,
10500 declarator,
10501 prefix_attributes);
10502 else
10503 decl
10504 = (cp_parser_function_definition_from_specifiers_and_declarator
10505 (parser, decl_specifiers, prefix_attributes, declarator));
10506
10507 return decl;
10508 }
10509 }
10510
10511 /* [dcl.dcl]
10512
10513 Only in function declarations for constructors, destructors, and
10514 type conversions can the decl-specifier-seq be omitted.
10515
10516 We explicitly postpone this check past the point where we handle
10517 function-definitions because we tolerate function-definitions
10518 that are missing their return types in some modes. */
10519 if (!decl_specifiers->any_specifiers_p && ctor_dtor_or_conv_p <= 0)
10520 {
10521 cp_parser_error (parser,
10522 "expected constructor, destructor, or type conversion");
10523 return error_mark_node;
10524 }
10525
10526 /* An `=' or an `(' indicates an initializer. */
10527 is_initialized = (token->type == CPP_EQ
10528 || token->type == CPP_OPEN_PAREN);
10529 /* If the init-declarator isn't initialized and isn't followed by a
10530 `,' or `;', it's not a valid init-declarator. */
10531 if (!is_initialized
10532 && token->type != CPP_COMMA
10533 && token->type != CPP_SEMICOLON)
10534 {
10535 cp_parser_error (parser, "expected initializer");
10536 return error_mark_node;
10537 }
10538
10539 /* Because start_decl has side-effects, we should only call it if we
10540 know we're going ahead. By this point, we know that we cannot
10541 possibly be looking at any other construct. */
10542 cp_parser_commit_to_tentative_parse (parser);
10543
10544 /* If the decl specifiers were bad, issue an error now that we're
10545 sure this was intended to be a declarator. Then continue
10546 declaring the variable(s), as int, to try to cut down on further
10547 errors. */
10548 if (decl_specifiers->any_specifiers_p
10549 && decl_specifiers->type == error_mark_node)
10550 {
10551 cp_parser_error (parser, "invalid type in declaration");
10552 decl_specifiers->type = integer_type_node;
10553 }
10554
10555 /* Check to see whether or not this declaration is a friend. */
10556 friend_p = cp_parser_friend_p (decl_specifiers);
10557
10558 /* Check that the number of template-parameter-lists is OK. */
10559 if (!cp_parser_check_declarator_template_parameters (parser, declarator))
10560 return error_mark_node;
10561
10562 /* Enter the newly declared entry in the symbol table. If we're
10563 processing a declaration in a class-specifier, we wait until
10564 after processing the initializer. */
10565 if (!member_p)
10566 {
10567 if (parser->in_unbraced_linkage_specification_p)
10568 {
10569 decl_specifiers->storage_class = sc_extern;
10570 have_extern_spec = false;
10571 }
10572 decl = start_decl (declarator, decl_specifiers,
10573 is_initialized, attributes, prefix_attributes,
10574 &pop_p);
10575 }
10576 else if (scope)
10577 /* Enter the SCOPE. That way unqualified names appearing in the
10578 initializer will be looked up in SCOPE. */
10579 pop_p = push_scope (scope);
10580
10581 /* Perform deferred access control checks, now that we know in which
10582 SCOPE the declared entity resides. */
10583 if (!member_p && decl)
10584 {
10585 tree saved_current_function_decl = NULL_TREE;
10586
10587 /* If the entity being declared is a function, pretend that we
10588 are in its scope. If it is a `friend', it may have access to
10589 things that would not otherwise be accessible. */
10590 if (TREE_CODE (decl) == FUNCTION_DECL)
10591 {
10592 saved_current_function_decl = current_function_decl;
10593 current_function_decl = decl;
10594 }
10595
10596 /* Perform the access control checks for the declarator and the
10597 the decl-specifiers. */
10598 perform_deferred_access_checks ();
10599
10600 /* Restore the saved value. */
10601 if (TREE_CODE (decl) == FUNCTION_DECL)
10602 current_function_decl = saved_current_function_decl;
10603 }
10604
10605 /* Parse the initializer. */
10606 if (is_initialized)
10607 initializer = cp_parser_initializer (parser,
10608 &is_parenthesized_init,
10609 &is_non_constant_init);
10610 else
10611 {
10612 initializer = NULL_TREE;
10613 is_parenthesized_init = false;
10614 is_non_constant_init = true;
10615 }
10616
10617 /* The old parser allows attributes to appear after a parenthesized
10618 initializer. Mark Mitchell proposed removing this functionality
10619 on the GCC mailing lists on 2002-08-13. This parser accepts the
10620 attributes -- but ignores them. */
10621 if (cp_parser_allow_gnu_extensions_p (parser) && is_parenthesized_init)
10622 if (cp_parser_attributes_opt (parser))
10623 warning ("attributes after parenthesized initializer ignored");
10624
10625 /* For an in-class declaration, use `grokfield' to create the
10626 declaration. */
10627 if (member_p)
10628 {
10629 if (pop_p)
10630 {
10631 pop_scope (scope);
10632 pop_p = false;
10633 }
10634 decl = grokfield (declarator, decl_specifiers,
10635 initializer, /*asmspec=*/NULL_TREE,
10636 /*attributes=*/NULL_TREE);
10637 if (decl && TREE_CODE (decl) == FUNCTION_DECL)
10638 cp_parser_save_default_args (parser, decl);
10639 }
10640
10641 /* Finish processing the declaration. But, skip friend
10642 declarations. */
10643 if (!friend_p && decl && decl != error_mark_node)
10644 {
10645 cp_finish_decl (decl,
10646 initializer,
10647 asm_specification,
10648 /* If the initializer is in parentheses, then this is
10649 a direct-initialization, which means that an
10650 `explicit' constructor is OK. Otherwise, an
10651 `explicit' constructor cannot be used. */
10652 ((is_parenthesized_init || !is_initialized)
10653 ? 0 : LOOKUP_ONLYCONVERTING));
10654 if (pop_p)
10655 pop_scope (DECL_CONTEXT (decl));
10656 }
10657
10658 /* Remember whether or not variables were initialized by
10659 constant-expressions. */
10660 if (decl && TREE_CODE (decl) == VAR_DECL
10661 && is_initialized && !is_non_constant_init)
10662 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = true;
10663
10664 return decl;
10665 }
10666
10667 /* Parse a declarator.
10668
10669 declarator:
10670 direct-declarator
10671 ptr-operator declarator
10672
10673 abstract-declarator:
10674 ptr-operator abstract-declarator [opt]
10675 direct-abstract-declarator
10676
10677 GNU Extensions:
10678
10679 declarator:
10680 attributes [opt] direct-declarator
10681 attributes [opt] ptr-operator declarator
10682
10683 abstract-declarator:
10684 attributes [opt] ptr-operator abstract-declarator [opt]
10685 attributes [opt] direct-abstract-declarator
10686
10687 If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to
10688 detect constructor, destructor or conversion operators. It is set
10689 to -1 if the declarator is a name, and +1 if it is a
10690 function. Otherwise it is set to zero. Usually you just want to
10691 test for >0, but internally the negative value is used.
10692
10693 (The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have
10694 a decl-specifier-seq unless it declares a constructor, destructor,
10695 or conversion. It might seem that we could check this condition in
10696 semantic analysis, rather than parsing, but that makes it difficult
10697 to handle something like `f()'. We want to notice that there are
10698 no decl-specifiers, and therefore realize that this is an
10699 expression, not a declaration.)
10700
10701 If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
10702 the declarator is a direct-declarator of the form "(...)".
10703
10704 MEMBER_P is true iff this declarator is a member-declarator. */
10705
10706 static cp_declarator *
10707 cp_parser_declarator (cp_parser* parser,
10708 cp_parser_declarator_kind dcl_kind,
10709 int* ctor_dtor_or_conv_p,
10710 bool* parenthesized_p,
10711 bool member_p)
10712 {
10713 cp_token *token;
10714 cp_declarator *declarator;
10715 enum tree_code code;
10716 cp_cv_quals cv_quals;
10717 tree class_type;
10718 tree attributes = NULL_TREE;
10719
10720 /* Assume this is not a constructor, destructor, or type-conversion
10721 operator. */
10722 if (ctor_dtor_or_conv_p)
10723 *ctor_dtor_or_conv_p = 0;
10724
10725 if (cp_parser_allow_gnu_extensions_p (parser))
10726 attributes = cp_parser_attributes_opt (parser);
10727
10728 /* Peek at the next token. */
10729 token = cp_lexer_peek_token (parser->lexer);
10730
10731 /* Check for the ptr-operator production. */
10732 cp_parser_parse_tentatively (parser);
10733 /* Parse the ptr-operator. */
10734 code = cp_parser_ptr_operator (parser,
10735 &class_type,
10736 &cv_quals);
10737 /* If that worked, then we have a ptr-operator. */
10738 if (cp_parser_parse_definitely (parser))
10739 {
10740 /* If a ptr-operator was found, then this declarator was not
10741 parenthesized. */
10742 if (parenthesized_p)
10743 *parenthesized_p = true;
10744 /* The dependent declarator is optional if we are parsing an
10745 abstract-declarator. */
10746 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10747 cp_parser_parse_tentatively (parser);
10748
10749 /* Parse the dependent declarator. */
10750 declarator = cp_parser_declarator (parser, dcl_kind,
10751 /*ctor_dtor_or_conv_p=*/NULL,
10752 /*parenthesized_p=*/NULL,
10753 /*member_p=*/false);
10754
10755 /* If we are parsing an abstract-declarator, we must handle the
10756 case where the dependent declarator is absent. */
10757 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED
10758 && !cp_parser_parse_definitely (parser))
10759 declarator = NULL;
10760
10761 /* Build the representation of the ptr-operator. */
10762 if (class_type)
10763 declarator = make_ptrmem_declarator (cv_quals,
10764 class_type,
10765 declarator);
10766 else if (code == INDIRECT_REF)
10767 declarator = make_pointer_declarator (cv_quals, declarator);
10768 else
10769 declarator = make_reference_declarator (cv_quals, declarator);
10770 }
10771 /* Everything else is a direct-declarator. */
10772 else
10773 {
10774 if (parenthesized_p)
10775 *parenthesized_p = cp_lexer_next_token_is (parser->lexer,
10776 CPP_OPEN_PAREN);
10777 declarator = cp_parser_direct_declarator (parser, dcl_kind,
10778 ctor_dtor_or_conv_p,
10779 member_p);
10780 }
10781
10782 if (attributes && declarator != cp_error_declarator)
10783 declarator->attributes = attributes;
10784
10785 return declarator;
10786 }
10787
10788 /* Parse a direct-declarator or direct-abstract-declarator.
10789
10790 direct-declarator:
10791 declarator-id
10792 direct-declarator ( parameter-declaration-clause )
10793 cv-qualifier-seq [opt]
10794 exception-specification [opt]
10795 direct-declarator [ constant-expression [opt] ]
10796 ( declarator )
10797
10798 direct-abstract-declarator:
10799 direct-abstract-declarator [opt]
10800 ( parameter-declaration-clause )
10801 cv-qualifier-seq [opt]
10802 exception-specification [opt]
10803 direct-abstract-declarator [opt] [ constant-expression [opt] ]
10804 ( abstract-declarator )
10805
10806 Returns a representation of the declarator. DCL_KIND is
10807 CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a
10808 direct-abstract-declarator. It is CP_PARSER_DECLARATOR_NAMED, if
10809 we are parsing a direct-declarator. It is
10810 CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case
10811 of ambiguity we prefer an abstract declarator, as per
10812 [dcl.ambig.res]. CTOR_DTOR_OR_CONV_P and MEMBER_P are as for
10813 cp_parser_declarator. */
10814
10815 static cp_declarator *
10816 cp_parser_direct_declarator (cp_parser* parser,
10817 cp_parser_declarator_kind dcl_kind,
10818 int* ctor_dtor_or_conv_p,
10819 bool member_p)
10820 {
10821 cp_token *token;
10822 cp_declarator *declarator = NULL;
10823 tree scope = NULL_TREE;
10824 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
10825 bool saved_in_declarator_p = parser->in_declarator_p;
10826 bool first = true;
10827 bool pop_p = false;
10828
10829 while (true)
10830 {
10831 /* Peek at the next token. */
10832 token = cp_lexer_peek_token (parser->lexer);
10833 if (token->type == CPP_OPEN_PAREN)
10834 {
10835 /* This is either a parameter-declaration-clause, or a
10836 parenthesized declarator. When we know we are parsing a
10837 named declarator, it must be a parenthesized declarator
10838 if FIRST is true. For instance, `(int)' is a
10839 parameter-declaration-clause, with an omitted
10840 direct-abstract-declarator. But `((*))', is a
10841 parenthesized abstract declarator. Finally, when T is a
10842 template parameter `(T)' is a
10843 parameter-declaration-clause, and not a parenthesized
10844 named declarator.
10845
10846 We first try and parse a parameter-declaration-clause,
10847 and then try a nested declarator (if FIRST is true).
10848
10849 It is not an error for it not to be a
10850 parameter-declaration-clause, even when FIRST is
10851 false. Consider,
10852
10853 int i (int);
10854 int i (3);
10855
10856 The first is the declaration of a function while the
10857 second is a the definition of a variable, including its
10858 initializer.
10859
10860 Having seen only the parenthesis, we cannot know which of
10861 these two alternatives should be selected. Even more
10862 complex are examples like:
10863
10864 int i (int (a));
10865 int i (int (3));
10866
10867 The former is a function-declaration; the latter is a
10868 variable initialization.
10869
10870 Thus again, we try a parameter-declaration-clause, and if
10871 that fails, we back out and return. */
10872
10873 if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10874 {
10875 cp_parameter_declarator *params;
10876 unsigned saved_num_template_parameter_lists;
10877
10878 /* In a member-declarator, the only valid interpretation
10879 of a parenthesis is the start of a
10880 parameter-declaration-clause. (It is invalid to
10881 initialize a static data member with a parenthesized
10882 initializer; only the "=" form of initialization is
10883 permitted.) */
10884 if (!member_p)
10885 cp_parser_parse_tentatively (parser);
10886
10887 /* Consume the `('. */
10888 cp_lexer_consume_token (parser->lexer);
10889 if (first)
10890 {
10891 /* If this is going to be an abstract declarator, we're
10892 in a declarator and we can't have default args. */
10893 parser->default_arg_ok_p = false;
10894 parser->in_declarator_p = true;
10895 }
10896
10897 /* Inside the function parameter list, surrounding
10898 template-parameter-lists do not apply. */
10899 saved_num_template_parameter_lists
10900 = parser->num_template_parameter_lists;
10901 parser->num_template_parameter_lists = 0;
10902
10903 /* Parse the parameter-declaration-clause. */
10904 params = cp_parser_parameter_declaration_clause (parser);
10905
10906 parser->num_template_parameter_lists
10907 = saved_num_template_parameter_lists;
10908
10909 /* If all went well, parse the cv-qualifier-seq and the
10910 exception-specification. */
10911 if (member_p || cp_parser_parse_definitely (parser))
10912 {
10913 cp_cv_quals cv_quals;
10914 tree exception_specification;
10915
10916 if (ctor_dtor_or_conv_p)
10917 *ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0;
10918 first = false;
10919 /* Consume the `)'. */
10920 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
10921
10922 /* Parse the cv-qualifier-seq. */
10923 cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
10924 /* And the exception-specification. */
10925 exception_specification
10926 = cp_parser_exception_specification_opt (parser);
10927
10928 /* Create the function-declarator. */
10929 declarator = make_call_declarator (declarator,
10930 params,
10931 cv_quals,
10932 exception_specification);
10933 /* Any subsequent parameter lists are to do with
10934 return type, so are not those of the declared
10935 function. */
10936 parser->default_arg_ok_p = false;
10937
10938 /* Repeat the main loop. */
10939 continue;
10940 }
10941 }
10942
10943 /* If this is the first, we can try a parenthesized
10944 declarator. */
10945 if (first)
10946 {
10947 bool saved_in_type_id_in_expr_p;
10948
10949 parser->default_arg_ok_p = saved_default_arg_ok_p;
10950 parser->in_declarator_p = saved_in_declarator_p;
10951
10952 /* Consume the `('. */
10953 cp_lexer_consume_token (parser->lexer);
10954 /* Parse the nested declarator. */
10955 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
10956 parser->in_type_id_in_expr_p = true;
10957 declarator
10958 = cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p,
10959 /*parenthesized_p=*/NULL,
10960 member_p);
10961 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
10962 first = false;
10963 /* Expect a `)'. */
10964 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
10965 declarator = cp_error_declarator;
10966 if (declarator == cp_error_declarator)
10967 break;
10968
10969 goto handle_declarator;
10970 }
10971 /* Otherwise, we must be done. */
10972 else
10973 break;
10974 }
10975 else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10976 && token->type == CPP_OPEN_SQUARE)
10977 {
10978 /* Parse an array-declarator. */
10979 tree bounds;
10980
10981 if (ctor_dtor_or_conv_p)
10982 *ctor_dtor_or_conv_p = 0;
10983
10984 first = false;
10985 parser->default_arg_ok_p = false;
10986 parser->in_declarator_p = true;
10987 /* Consume the `['. */
10988 cp_lexer_consume_token (parser->lexer);
10989 /* Peek at the next token. */
10990 token = cp_lexer_peek_token (parser->lexer);
10991 /* If the next token is `]', then there is no
10992 constant-expression. */
10993 if (token->type != CPP_CLOSE_SQUARE)
10994 {
10995 bool non_constant_p;
10996
10997 bounds
10998 = cp_parser_constant_expression (parser,
10999 /*allow_non_constant=*/true,
11000 &non_constant_p);
11001 if (!non_constant_p)
11002 bounds = fold_non_dependent_expr (bounds);
11003 else if (!at_function_scope_p ())
11004 {
11005 error ("array bound is not an integer constant");
11006 bounds = error_mark_node;
11007 }
11008 }
11009 else
11010 bounds = NULL_TREE;
11011 /* Look for the closing `]'. */
11012 if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'"))
11013 {
11014 declarator = cp_error_declarator;
11015 break;
11016 }
11017
11018 declarator = make_array_declarator (declarator, bounds);
11019 }
11020 else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT)
11021 {
11022 tree id;
11023
11024 /* Parse a declarator-id */
11025 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
11026 cp_parser_parse_tentatively (parser);
11027 id = cp_parser_declarator_id (parser);
11028 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
11029 {
11030 if (!cp_parser_parse_definitely (parser))
11031 id = error_mark_node;
11032 else if (TREE_CODE (id) != IDENTIFIER_NODE)
11033 {
11034 cp_parser_error (parser, "expected unqualified-id");
11035 id = error_mark_node;
11036 }
11037 }
11038
11039 if (id == error_mark_node)
11040 {
11041 declarator = cp_error_declarator;
11042 break;
11043 }
11044
11045 if (TREE_CODE (id) == SCOPE_REF && at_namespace_scope_p ())
11046 {
11047 tree scope = TREE_OPERAND (id, 0);
11048
11049 /* In the declaration of a member of a template class
11050 outside of the class itself, the SCOPE will sometimes
11051 be a TYPENAME_TYPE. For example, given:
11052
11053 template <typename T>
11054 int S<T>::R::i = 3;
11055
11056 the SCOPE will be a TYPENAME_TYPE for `S<T>::R'. In
11057 this context, we must resolve S<T>::R to an ordinary
11058 type, rather than a typename type.
11059
11060 The reason we normally avoid resolving TYPENAME_TYPEs
11061 is that a specialization of `S' might render
11062 `S<T>::R' not a type. However, if `S' is
11063 specialized, then this `i' will not be used, so there
11064 is no harm in resolving the types here. */
11065 if (TREE_CODE (scope) == TYPENAME_TYPE)
11066 {
11067 tree type;
11068
11069 /* Resolve the TYPENAME_TYPE. */
11070 type = resolve_typename_type (scope,
11071 /*only_current_p=*/false);
11072 /* If that failed, the declarator is invalid. */
11073 if (type == error_mark_node)
11074 error ("%<%T::%D%> is not a type",
11075 TYPE_CONTEXT (scope),
11076 TYPE_IDENTIFIER (scope));
11077 /* Build a new DECLARATOR. */
11078 id = build_nt (SCOPE_REF, type, TREE_OPERAND (id, 1));
11079 }
11080 }
11081
11082 declarator = make_id_declarator (id);
11083 if (id)
11084 {
11085 tree class_type;
11086 tree unqualified_name;
11087
11088 if (TREE_CODE (id) == SCOPE_REF
11089 && CLASS_TYPE_P (TREE_OPERAND (id, 0)))
11090 {
11091 class_type = TREE_OPERAND (id, 0);
11092 unqualified_name = TREE_OPERAND (id, 1);
11093 }
11094 else
11095 {
11096 class_type = current_class_type;
11097 unqualified_name = id;
11098 }
11099
11100 if (class_type)
11101 {
11102 if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR)
11103 declarator->u.id.sfk = sfk_destructor;
11104 else if (IDENTIFIER_TYPENAME_P (unqualified_name))
11105 declarator->u.id.sfk = sfk_conversion;
11106 else if (constructor_name_p (unqualified_name,
11107 class_type)
11108 || (TREE_CODE (unqualified_name) == TYPE_DECL
11109 && same_type_p (TREE_TYPE (unqualified_name),
11110 class_type)))
11111 declarator->u.id.sfk = sfk_constructor;
11112
11113 if (ctor_dtor_or_conv_p && declarator->u.id.sfk != sfk_none)
11114 *ctor_dtor_or_conv_p = -1;
11115 if (TREE_CODE (id) == SCOPE_REF
11116 && TREE_CODE (unqualified_name) == TYPE_DECL
11117 && CLASSTYPE_USE_TEMPLATE (TREE_TYPE (unqualified_name)))
11118 {
11119 error ("invalid use of constructor as a template");
11120 inform ("use %<%T::%D%> instead of %<%T::%T%> to name "
11121 "the constructor in a qualified name",
11122 class_type,
11123 DECL_NAME (TYPE_TI_TEMPLATE (class_type)),
11124 class_type, class_type);
11125 }
11126 }
11127 }
11128
11129 handle_declarator:;
11130 scope = get_scope_of_declarator (declarator);
11131 if (scope)
11132 /* Any names that appear after the declarator-id for a
11133 member are looked up in the containing scope. */
11134 pop_p = push_scope (scope);
11135 parser->in_declarator_p = true;
11136 if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p)
11137 || (declarator && declarator->kind == cdk_id))
11138 /* Default args are only allowed on function
11139 declarations. */
11140 parser->default_arg_ok_p = saved_default_arg_ok_p;
11141 else
11142 parser->default_arg_ok_p = false;
11143
11144 first = false;
11145 }
11146 /* We're done. */
11147 else
11148 break;
11149 }
11150
11151 /* For an abstract declarator, we might wind up with nothing at this
11152 point. That's an error; the declarator is not optional. */
11153 if (!declarator)
11154 cp_parser_error (parser, "expected declarator");
11155
11156 /* If we entered a scope, we must exit it now. */
11157 if (pop_p)
11158 pop_scope (scope);
11159
11160 parser->default_arg_ok_p = saved_default_arg_ok_p;
11161 parser->in_declarator_p = saved_in_declarator_p;
11162
11163 return declarator;
11164 }
11165
11166 /* Parse a ptr-operator.
11167
11168 ptr-operator:
11169 * cv-qualifier-seq [opt]
11170 &
11171 :: [opt] nested-name-specifier * cv-qualifier-seq [opt]
11172
11173 GNU Extension:
11174
11175 ptr-operator:
11176 & cv-qualifier-seq [opt]
11177
11178 Returns INDIRECT_REF if a pointer, or pointer-to-member, was used.
11179 Returns ADDR_EXPR if a reference was used. In the case of a
11180 pointer-to-member, *TYPE is filled in with the TYPE containing the
11181 member. *CV_QUALS is filled in with the cv-qualifier-seq, or
11182 TYPE_UNQUALIFIED, if there are no cv-qualifiers. Returns
11183 ERROR_MARK if an error occurred. */
11184
11185 static enum tree_code
11186 cp_parser_ptr_operator (cp_parser* parser,
11187 tree* type,
11188 cp_cv_quals *cv_quals)
11189 {
11190 enum tree_code code = ERROR_MARK;
11191 cp_token *token;
11192
11193 /* Assume that it's not a pointer-to-member. */
11194 *type = NULL_TREE;
11195 /* And that there are no cv-qualifiers. */
11196 *cv_quals = TYPE_UNQUALIFIED;
11197
11198 /* Peek at the next token. */
11199 token = cp_lexer_peek_token (parser->lexer);
11200 /* If it's a `*' or `&' we have a pointer or reference. */
11201 if (token->type == CPP_MULT || token->type == CPP_AND)
11202 {
11203 /* Remember which ptr-operator we were processing. */
11204 code = (token->type == CPP_AND ? ADDR_EXPR : INDIRECT_REF);
11205
11206 /* Consume the `*' or `&'. */
11207 cp_lexer_consume_token (parser->lexer);
11208
11209 /* A `*' can be followed by a cv-qualifier-seq, and so can a
11210 `&', if we are allowing GNU extensions. (The only qualifier
11211 that can legally appear after `&' is `restrict', but that is
11212 enforced during semantic analysis. */
11213 if (code == INDIRECT_REF
11214 || cp_parser_allow_gnu_extensions_p (parser))
11215 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11216 }
11217 else
11218 {
11219 /* Try the pointer-to-member case. */
11220 cp_parser_parse_tentatively (parser);
11221 /* Look for the optional `::' operator. */
11222 cp_parser_global_scope_opt (parser,
11223 /*current_scope_valid_p=*/false);
11224 /* Look for the nested-name specifier. */
11225 cp_parser_nested_name_specifier (parser,
11226 /*typename_keyword_p=*/false,
11227 /*check_dependency_p=*/true,
11228 /*type_p=*/false,
11229 /*is_declaration=*/false);
11230 /* If we found it, and the next token is a `*', then we are
11231 indeed looking at a pointer-to-member operator. */
11232 if (!cp_parser_error_occurred (parser)
11233 && cp_parser_require (parser, CPP_MULT, "`*'"))
11234 {
11235 /* The type of which the member is a member is given by the
11236 current SCOPE. */
11237 *type = parser->scope;
11238 /* The next name will not be qualified. */
11239 parser->scope = NULL_TREE;
11240 parser->qualifying_scope = NULL_TREE;
11241 parser->object_scope = NULL_TREE;
11242 /* Indicate that the `*' operator was used. */
11243 code = INDIRECT_REF;
11244 /* Look for the optional cv-qualifier-seq. */
11245 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11246 }
11247 /* If that didn't work we don't have a ptr-operator. */
11248 if (!cp_parser_parse_definitely (parser))
11249 cp_parser_error (parser, "expected ptr-operator");
11250 }
11251
11252 return code;
11253 }
11254
11255 /* Parse an (optional) cv-qualifier-seq.
11256
11257 cv-qualifier-seq:
11258 cv-qualifier cv-qualifier-seq [opt]
11259
11260 cv-qualifier:
11261 const
11262 volatile
11263
11264 GNU Extension:
11265
11266 cv-qualifier:
11267 __restrict__
11268
11269 Returns a bitmask representing the cv-qualifiers. */
11270
11271 static cp_cv_quals
11272 cp_parser_cv_qualifier_seq_opt (cp_parser* parser)
11273 {
11274 cp_cv_quals cv_quals = TYPE_UNQUALIFIED;
11275
11276 while (true)
11277 {
11278 cp_token *token;
11279 cp_cv_quals cv_qualifier;
11280
11281 /* Peek at the next token. */
11282 token = cp_lexer_peek_token (parser->lexer);
11283 /* See if it's a cv-qualifier. */
11284 switch (token->keyword)
11285 {
11286 case RID_CONST:
11287 cv_qualifier = TYPE_QUAL_CONST;
11288 break;
11289
11290 case RID_VOLATILE:
11291 cv_qualifier = TYPE_QUAL_VOLATILE;
11292 break;
11293
11294 case RID_RESTRICT:
11295 cv_qualifier = TYPE_QUAL_RESTRICT;
11296 break;
11297
11298 default:
11299 cv_qualifier = TYPE_UNQUALIFIED;
11300 break;
11301 }
11302
11303 if (!cv_qualifier)
11304 break;
11305
11306 if (cv_quals & cv_qualifier)
11307 {
11308 error ("duplicate cv-qualifier");
11309 cp_lexer_purge_token (parser->lexer);
11310 }
11311 else
11312 {
11313 cp_lexer_consume_token (parser->lexer);
11314 cv_quals |= cv_qualifier;
11315 }
11316 }
11317
11318 return cv_quals;
11319 }
11320
11321 /* Parse a declarator-id.
11322
11323 declarator-id:
11324 id-expression
11325 :: [opt] nested-name-specifier [opt] type-name
11326
11327 In the `id-expression' case, the value returned is as for
11328 cp_parser_id_expression if the id-expression was an unqualified-id.
11329 If the id-expression was a qualified-id, then a SCOPE_REF is
11330 returned. The first operand is the scope (either a NAMESPACE_DECL
11331 or TREE_TYPE), but the second is still just a representation of an
11332 unqualified-id. */
11333
11334 static tree
11335 cp_parser_declarator_id (cp_parser* parser)
11336 {
11337 tree id_expression;
11338
11339 /* The expression must be an id-expression. Assume that qualified
11340 names are the names of types so that:
11341
11342 template <class T>
11343 int S<T>::R::i = 3;
11344
11345 will work; we must treat `S<T>::R' as the name of a type.
11346 Similarly, assume that qualified names are templates, where
11347 required, so that:
11348
11349 template <class T>
11350 int S<T>::R<T>::i = 3;
11351
11352 will work, too. */
11353 id_expression = cp_parser_id_expression (parser,
11354 /*template_keyword_p=*/false,
11355 /*check_dependency_p=*/false,
11356 /*template_p=*/NULL,
11357 /*declarator_p=*/true);
11358 /* If the name was qualified, create a SCOPE_REF to represent
11359 that. */
11360 if (parser->scope)
11361 {
11362 id_expression = build_nt (SCOPE_REF, parser->scope, id_expression);
11363 parser->scope = NULL_TREE;
11364 }
11365
11366 return id_expression;
11367 }
11368
11369 /* Parse a type-id.
11370
11371 type-id:
11372 type-specifier-seq abstract-declarator [opt]
11373
11374 Returns the TYPE specified. */
11375
11376 static tree
11377 cp_parser_type_id (cp_parser* parser)
11378 {
11379 cp_decl_specifier_seq type_specifier_seq;
11380 cp_declarator *abstract_declarator;
11381
11382 /* Parse the type-specifier-seq. */
11383 cp_parser_type_specifier_seq (parser, &type_specifier_seq);
11384 if (type_specifier_seq.type == error_mark_node)
11385 return error_mark_node;
11386
11387 /* There might or might not be an abstract declarator. */
11388 cp_parser_parse_tentatively (parser);
11389 /* Look for the declarator. */
11390 abstract_declarator
11391 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL,
11392 /*parenthesized_p=*/NULL,
11393 /*member_p=*/false);
11394 /* Check to see if there really was a declarator. */
11395 if (!cp_parser_parse_definitely (parser))
11396 abstract_declarator = NULL;
11397
11398 return groktypename (&type_specifier_seq, abstract_declarator);
11399 }
11400
11401 /* Parse a type-specifier-seq.
11402
11403 type-specifier-seq:
11404 type-specifier type-specifier-seq [opt]
11405
11406 GNU extension:
11407
11408 type-specifier-seq:
11409 attributes type-specifier-seq [opt]
11410
11411 Sets *TYPE_SPECIFIER_SEQ to represent the sequence. */
11412
11413 static void
11414 cp_parser_type_specifier_seq (cp_parser* parser,
11415 cp_decl_specifier_seq *type_specifier_seq)
11416 {
11417 bool seen_type_specifier = false;
11418
11419 /* Clear the TYPE_SPECIFIER_SEQ. */
11420 clear_decl_specs (type_specifier_seq);
11421
11422 /* Parse the type-specifiers and attributes. */
11423 while (true)
11424 {
11425 tree type_specifier;
11426
11427 /* Check for attributes first. */
11428 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
11429 {
11430 type_specifier_seq->attributes =
11431 chainon (type_specifier_seq->attributes,
11432 cp_parser_attributes_opt (parser));
11433 continue;
11434 }
11435
11436 /* Look for the type-specifier. */
11437 type_specifier = cp_parser_type_specifier (parser,
11438 CP_PARSER_FLAGS_OPTIONAL,
11439 type_specifier_seq,
11440 /*is_declaration=*/false,
11441 NULL,
11442 NULL);
11443 /* If the first type-specifier could not be found, this is not a
11444 type-specifier-seq at all. */
11445 if (!seen_type_specifier && !type_specifier)
11446 {
11447 cp_parser_error (parser, "expected type-specifier");
11448 type_specifier_seq->type = error_mark_node;
11449 return;
11450 }
11451 /* If subsequent type-specifiers could not be found, the
11452 type-specifier-seq is complete. */
11453 else if (seen_type_specifier && !type_specifier)
11454 break;
11455
11456 seen_type_specifier = true;
11457 }
11458
11459 return;
11460 }
11461
11462 /* Parse a parameter-declaration-clause.
11463
11464 parameter-declaration-clause:
11465 parameter-declaration-list [opt] ... [opt]
11466 parameter-declaration-list , ...
11467
11468 Returns a representation for the parameter declarations. A return
11469 value of NULL indicates a parameter-declaration-clause consisting
11470 only of an ellipsis. */
11471
11472 static cp_parameter_declarator *
11473 cp_parser_parameter_declaration_clause (cp_parser* parser)
11474 {
11475 cp_parameter_declarator *parameters;
11476 cp_token *token;
11477 bool ellipsis_p;
11478 bool is_error;
11479
11480 /* Peek at the next token. */
11481 token = cp_lexer_peek_token (parser->lexer);
11482 /* Check for trivial parameter-declaration-clauses. */
11483 if (token->type == CPP_ELLIPSIS)
11484 {
11485 /* Consume the `...' token. */
11486 cp_lexer_consume_token (parser->lexer);
11487 return NULL;
11488 }
11489 else if (token->type == CPP_CLOSE_PAREN)
11490 /* There are no parameters. */
11491 {
11492 #ifndef NO_IMPLICIT_EXTERN_C
11493 if (in_system_header && current_class_type == NULL
11494 && current_lang_name == lang_name_c)
11495 return NULL;
11496 else
11497 #endif
11498 return no_parameters;
11499 }
11500 /* Check for `(void)', too, which is a special case. */
11501 else if (token->keyword == RID_VOID
11502 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
11503 == CPP_CLOSE_PAREN))
11504 {
11505 /* Consume the `void' token. */
11506 cp_lexer_consume_token (parser->lexer);
11507 /* There are no parameters. */
11508 return no_parameters;
11509 }
11510
11511 /* Parse the parameter-declaration-list. */
11512 parameters = cp_parser_parameter_declaration_list (parser, &is_error);
11513 /* If a parse error occurred while parsing the
11514 parameter-declaration-list, then the entire
11515 parameter-declaration-clause is erroneous. */
11516 if (is_error)
11517 return NULL;
11518
11519 /* Peek at the next token. */
11520 token = cp_lexer_peek_token (parser->lexer);
11521 /* If it's a `,', the clause should terminate with an ellipsis. */
11522 if (token->type == CPP_COMMA)
11523 {
11524 /* Consume the `,'. */
11525 cp_lexer_consume_token (parser->lexer);
11526 /* Expect an ellipsis. */
11527 ellipsis_p
11528 = (cp_parser_require (parser, CPP_ELLIPSIS, "`...'") != NULL);
11529 }
11530 /* It might also be `...' if the optional trailing `,' was
11531 omitted. */
11532 else if (token->type == CPP_ELLIPSIS)
11533 {
11534 /* Consume the `...' token. */
11535 cp_lexer_consume_token (parser->lexer);
11536 /* And remember that we saw it. */
11537 ellipsis_p = true;
11538 }
11539 else
11540 ellipsis_p = false;
11541
11542 /* Finish the parameter list. */
11543 if (parameters && ellipsis_p)
11544 parameters->ellipsis_p = true;
11545
11546 return parameters;
11547 }
11548
11549 /* Parse a parameter-declaration-list.
11550
11551 parameter-declaration-list:
11552 parameter-declaration
11553 parameter-declaration-list , parameter-declaration
11554
11555 Returns a representation of the parameter-declaration-list, as for
11556 cp_parser_parameter_declaration_clause. However, the
11557 `void_list_node' is never appended to the list. Upon return,
11558 *IS_ERROR will be true iff an error occurred. */
11559
11560 static cp_parameter_declarator *
11561 cp_parser_parameter_declaration_list (cp_parser* parser, bool *is_error)
11562 {
11563 cp_parameter_declarator *parameters = NULL;
11564 cp_parameter_declarator **tail = &parameters;
11565
11566 /* Assume all will go well. */
11567 *is_error = false;
11568
11569 /* Look for more parameters. */
11570 while (true)
11571 {
11572 cp_parameter_declarator *parameter;
11573 bool parenthesized_p;
11574 /* Parse the parameter. */
11575 parameter
11576 = cp_parser_parameter_declaration (parser,
11577 /*template_parm_p=*/false,
11578 &parenthesized_p);
11579
11580 /* If a parse error occurred parsing the parameter declaration,
11581 then the entire parameter-declaration-list is erroneous. */
11582 if (!parameter)
11583 {
11584 *is_error = true;
11585 parameters = NULL;
11586 break;
11587 }
11588 /* Add the new parameter to the list. */
11589 *tail = parameter;
11590 tail = &parameter->next;
11591
11592 /* Peek at the next token. */
11593 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
11594 || cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
11595 /* The parameter-declaration-list is complete. */
11596 break;
11597 else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
11598 {
11599 cp_token *token;
11600
11601 /* Peek at the next token. */
11602 token = cp_lexer_peek_nth_token (parser->lexer, 2);
11603 /* If it's an ellipsis, then the list is complete. */
11604 if (token->type == CPP_ELLIPSIS)
11605 break;
11606 /* Otherwise, there must be more parameters. Consume the
11607 `,'. */
11608 cp_lexer_consume_token (parser->lexer);
11609 /* When parsing something like:
11610
11611 int i(float f, double d)
11612
11613 we can tell after seeing the declaration for "f" that we
11614 are not looking at an initialization of a variable "i",
11615 but rather at the declaration of a function "i".
11616
11617 Due to the fact that the parsing of template arguments
11618 (as specified to a template-id) requires backtracking we
11619 cannot use this technique when inside a template argument
11620 list. */
11621 if (!parser->in_template_argument_list_p
11622 && !parser->in_type_id_in_expr_p
11623 && cp_parser_parsing_tentatively (parser)
11624 && !cp_parser_committed_to_tentative_parse (parser)
11625 /* However, a parameter-declaration of the form
11626 "foat(f)" (which is a valid declaration of a
11627 parameter "f") can also be interpreted as an
11628 expression (the conversion of "f" to "float"). */
11629 && !parenthesized_p)
11630 cp_parser_commit_to_tentative_parse (parser);
11631 }
11632 else
11633 {
11634 cp_parser_error (parser, "expected %<,%> or %<...%>");
11635 if (!cp_parser_parsing_tentatively (parser)
11636 || cp_parser_committed_to_tentative_parse (parser))
11637 cp_parser_skip_to_closing_parenthesis (parser,
11638 /*recovering=*/true,
11639 /*or_comma=*/false,
11640 /*consume_paren=*/false);
11641 break;
11642 }
11643 }
11644
11645 return parameters;
11646 }
11647
11648 /* Parse a parameter declaration.
11649
11650 parameter-declaration:
11651 decl-specifier-seq declarator
11652 decl-specifier-seq declarator = assignment-expression
11653 decl-specifier-seq abstract-declarator [opt]
11654 decl-specifier-seq abstract-declarator [opt] = assignment-expression
11655
11656 If TEMPLATE_PARM_P is TRUE, then this parameter-declaration
11657 declares a template parameter. (In that case, a non-nested `>'
11658 token encountered during the parsing of the assignment-expression
11659 is not interpreted as a greater-than operator.)
11660
11661 Returns a representation of the parameter, or NULL if an error
11662 occurs. If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to
11663 true iff the declarator is of the form "(p)". */
11664
11665 static cp_parameter_declarator *
11666 cp_parser_parameter_declaration (cp_parser *parser,
11667 bool template_parm_p,
11668 bool *parenthesized_p)
11669 {
11670 int declares_class_or_enum;
11671 bool greater_than_is_operator_p;
11672 cp_decl_specifier_seq decl_specifiers;
11673 cp_declarator *declarator;
11674 tree default_argument;
11675 cp_token *token;
11676 const char *saved_message;
11677
11678 /* In a template parameter, `>' is not an operator.
11679
11680 [temp.param]
11681
11682 When parsing a default template-argument for a non-type
11683 template-parameter, the first non-nested `>' is taken as the end
11684 of the template parameter-list rather than a greater-than
11685 operator. */
11686 greater_than_is_operator_p = !template_parm_p;
11687
11688 /* Type definitions may not appear in parameter types. */
11689 saved_message = parser->type_definition_forbidden_message;
11690 parser->type_definition_forbidden_message
11691 = "types may not be defined in parameter types";
11692
11693 /* Parse the declaration-specifiers. */
11694 cp_parser_decl_specifier_seq (parser,
11695 CP_PARSER_FLAGS_NONE,
11696 &decl_specifiers,
11697 &declares_class_or_enum);
11698 /* If an error occurred, there's no reason to attempt to parse the
11699 rest of the declaration. */
11700 if (cp_parser_error_occurred (parser))
11701 {
11702 parser->type_definition_forbidden_message = saved_message;
11703 return NULL;
11704 }
11705
11706 /* Peek at the next token. */
11707 token = cp_lexer_peek_token (parser->lexer);
11708 /* If the next token is a `)', `,', `=', `>', or `...', then there
11709 is no declarator. */
11710 if (token->type == CPP_CLOSE_PAREN
11711 || token->type == CPP_COMMA
11712 || token->type == CPP_EQ
11713 || token->type == CPP_ELLIPSIS
11714 || token->type == CPP_GREATER)
11715 {
11716 declarator = NULL;
11717 if (parenthesized_p)
11718 *parenthesized_p = false;
11719 }
11720 /* Otherwise, there should be a declarator. */
11721 else
11722 {
11723 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
11724 parser->default_arg_ok_p = false;
11725
11726 /* After seeing a decl-specifier-seq, if the next token is not a
11727 "(", there is no possibility that the code is a valid
11728 expression. Therefore, if parsing tentatively, we commit at
11729 this point. */
11730 if (!parser->in_template_argument_list_p
11731 /* In an expression context, having seen:
11732
11733 (int((char ...
11734
11735 we cannot be sure whether we are looking at a
11736 function-type (taking a "char" as a parameter) or a cast
11737 of some object of type "char" to "int". */
11738 && !parser->in_type_id_in_expr_p
11739 && cp_parser_parsing_tentatively (parser)
11740 && !cp_parser_committed_to_tentative_parse (parser)
11741 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
11742 cp_parser_commit_to_tentative_parse (parser);
11743 /* Parse the declarator. */
11744 declarator = cp_parser_declarator (parser,
11745 CP_PARSER_DECLARATOR_EITHER,
11746 /*ctor_dtor_or_conv_p=*/NULL,
11747 parenthesized_p,
11748 /*member_p=*/false);
11749 parser->default_arg_ok_p = saved_default_arg_ok_p;
11750 /* After the declarator, allow more attributes. */
11751 decl_specifiers.attributes
11752 = chainon (decl_specifiers.attributes,
11753 cp_parser_attributes_opt (parser));
11754 }
11755
11756 /* The restriction on defining new types applies only to the type
11757 of the parameter, not to the default argument. */
11758 parser->type_definition_forbidden_message = saved_message;
11759
11760 /* If the next token is `=', then process a default argument. */
11761 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
11762 {
11763 bool saved_greater_than_is_operator_p;
11764 /* Consume the `='. */
11765 cp_lexer_consume_token (parser->lexer);
11766
11767 /* If we are defining a class, then the tokens that make up the
11768 default argument must be saved and processed later. */
11769 if (!template_parm_p && at_class_scope_p ()
11770 && TYPE_BEING_DEFINED (current_class_type))
11771 {
11772 unsigned depth = 0;
11773 cp_token *first_token;
11774 cp_token *token;
11775
11776 /* Add tokens until we have processed the entire default
11777 argument. We add the range [first_token, token). */
11778 first_token = cp_lexer_peek_token (parser->lexer);
11779 while (true)
11780 {
11781 bool done = false;
11782
11783 /* Peek at the next token. */
11784 token = cp_lexer_peek_token (parser->lexer);
11785 /* What we do depends on what token we have. */
11786 switch (token->type)
11787 {
11788 /* In valid code, a default argument must be
11789 immediately followed by a `,' `)', or `...'. */
11790 case CPP_COMMA:
11791 case CPP_CLOSE_PAREN:
11792 case CPP_ELLIPSIS:
11793 /* If we run into a non-nested `;', `}', or `]',
11794 then the code is invalid -- but the default
11795 argument is certainly over. */
11796 case CPP_SEMICOLON:
11797 case CPP_CLOSE_BRACE:
11798 case CPP_CLOSE_SQUARE:
11799 if (depth == 0)
11800 done = true;
11801 /* Update DEPTH, if necessary. */
11802 else if (token->type == CPP_CLOSE_PAREN
11803 || token->type == CPP_CLOSE_BRACE
11804 || token->type == CPP_CLOSE_SQUARE)
11805 --depth;
11806 break;
11807
11808 case CPP_OPEN_PAREN:
11809 case CPP_OPEN_SQUARE:
11810 case CPP_OPEN_BRACE:
11811 ++depth;
11812 break;
11813
11814 case CPP_GREATER:
11815 /* If we see a non-nested `>', and `>' is not an
11816 operator, then it marks the end of the default
11817 argument. */
11818 if (!depth && !greater_than_is_operator_p)
11819 done = true;
11820 break;
11821
11822 /* If we run out of tokens, issue an error message. */
11823 case CPP_EOF:
11824 error ("file ends in default argument");
11825 done = true;
11826 break;
11827
11828 case CPP_NAME:
11829 case CPP_SCOPE:
11830 /* In these cases, we should look for template-ids.
11831 For example, if the default argument is
11832 `X<int, double>()', we need to do name lookup to
11833 figure out whether or not `X' is a template; if
11834 so, the `,' does not end the default argument.
11835
11836 That is not yet done. */
11837 break;
11838
11839 default:
11840 break;
11841 }
11842
11843 /* If we've reached the end, stop. */
11844 if (done)
11845 break;
11846
11847 /* Add the token to the token block. */
11848 token = cp_lexer_consume_token (parser->lexer);
11849 }
11850
11851 /* Create a DEFAULT_ARG to represented the unparsed default
11852 argument. */
11853 default_argument = make_node (DEFAULT_ARG);
11854 DEFARG_TOKENS (default_argument)
11855 = cp_token_cache_new (first_token, token);
11856 }
11857 /* Outside of a class definition, we can just parse the
11858 assignment-expression. */
11859 else
11860 {
11861 bool saved_local_variables_forbidden_p;
11862
11863 /* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is
11864 set correctly. */
11865 saved_greater_than_is_operator_p
11866 = parser->greater_than_is_operator_p;
11867 parser->greater_than_is_operator_p = greater_than_is_operator_p;
11868 /* Local variable names (and the `this' keyword) may not
11869 appear in a default argument. */
11870 saved_local_variables_forbidden_p
11871 = parser->local_variables_forbidden_p;
11872 parser->local_variables_forbidden_p = true;
11873 /* Parse the assignment-expression. */
11874 default_argument = cp_parser_assignment_expression (parser);
11875 /* Restore saved state. */
11876 parser->greater_than_is_operator_p
11877 = saved_greater_than_is_operator_p;
11878 parser->local_variables_forbidden_p
11879 = saved_local_variables_forbidden_p;
11880 }
11881 if (!parser->default_arg_ok_p)
11882 {
11883 if (!flag_pedantic_errors)
11884 warning ("deprecated use of default argument for parameter of non-function");
11885 else
11886 {
11887 error ("default arguments are only permitted for function parameters");
11888 default_argument = NULL_TREE;
11889 }
11890 }
11891 }
11892 else
11893 default_argument = NULL_TREE;
11894
11895 return make_parameter_declarator (&decl_specifiers,
11896 declarator,
11897 default_argument);
11898 }
11899
11900 /* Parse a function-body.
11901
11902 function-body:
11903 compound_statement */
11904
11905 static void
11906 cp_parser_function_body (cp_parser *parser)
11907 {
11908 cp_parser_compound_statement (parser, NULL, false);
11909 }
11910
11911 /* Parse a ctor-initializer-opt followed by a function-body. Return
11912 true if a ctor-initializer was present. */
11913
11914 static bool
11915 cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser)
11916 {
11917 tree body;
11918 bool ctor_initializer_p;
11919
11920 /* Begin the function body. */
11921 body = begin_function_body ();
11922 /* Parse the optional ctor-initializer. */
11923 ctor_initializer_p = cp_parser_ctor_initializer_opt (parser);
11924 /* Parse the function-body. */
11925 cp_parser_function_body (parser);
11926 /* Finish the function body. */
11927 finish_function_body (body);
11928
11929 return ctor_initializer_p;
11930 }
11931
11932 /* Parse an initializer.
11933
11934 initializer:
11935 = initializer-clause
11936 ( expression-list )
11937
11938 Returns a expression representing the initializer. If no
11939 initializer is present, NULL_TREE is returned.
11940
11941 *IS_PARENTHESIZED_INIT is set to TRUE if the `( expression-list )'
11942 production is used, and zero otherwise. *IS_PARENTHESIZED_INIT is
11943 set to FALSE if there is no initializer present. If there is an
11944 initializer, and it is not a constant-expression, *NON_CONSTANT_P
11945 is set to true; otherwise it is set to false. */
11946
11947 static tree
11948 cp_parser_initializer (cp_parser* parser, bool* is_parenthesized_init,
11949 bool* non_constant_p)
11950 {
11951 cp_token *token;
11952 tree init;
11953
11954 /* Peek at the next token. */
11955 token = cp_lexer_peek_token (parser->lexer);
11956
11957 /* Let our caller know whether or not this initializer was
11958 parenthesized. */
11959 *is_parenthesized_init = (token->type == CPP_OPEN_PAREN);
11960 /* Assume that the initializer is constant. */
11961 *non_constant_p = false;
11962
11963 if (token->type == CPP_EQ)
11964 {
11965 /* Consume the `='. */
11966 cp_lexer_consume_token (parser->lexer);
11967 /* Parse the initializer-clause. */
11968 init = cp_parser_initializer_clause (parser, non_constant_p);
11969 }
11970 else if (token->type == CPP_OPEN_PAREN)
11971 init = cp_parser_parenthesized_expression_list (parser, false,
11972 non_constant_p);
11973 else
11974 {
11975 /* Anything else is an error. */
11976 cp_parser_error (parser, "expected initializer");
11977 init = error_mark_node;
11978 }
11979
11980 return init;
11981 }
11982
11983 /* Parse an initializer-clause.
11984
11985 initializer-clause:
11986 assignment-expression
11987 { initializer-list , [opt] }
11988 { }
11989
11990 Returns an expression representing the initializer.
11991
11992 If the `assignment-expression' production is used the value
11993 returned is simply a representation for the expression.
11994
11995 Otherwise, a CONSTRUCTOR is returned. The CONSTRUCTOR_ELTS will be
11996 the elements of the initializer-list (or NULL_TREE, if the last
11997 production is used). The TREE_TYPE for the CONSTRUCTOR will be
11998 NULL_TREE. There is no way to detect whether or not the optional
11999 trailing `,' was provided. NON_CONSTANT_P is as for
12000 cp_parser_initializer. */
12001
12002 static tree
12003 cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p)
12004 {
12005 tree initializer;
12006
12007 /* If it is not a `{', then we are looking at an
12008 assignment-expression. */
12009 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
12010 {
12011 initializer
12012 = cp_parser_constant_expression (parser,
12013 /*allow_non_constant_p=*/true,
12014 non_constant_p);
12015 if (!*non_constant_p)
12016 initializer = fold_non_dependent_expr (initializer);
12017 }
12018 else
12019 {
12020 /* Consume the `{' token. */
12021 cp_lexer_consume_token (parser->lexer);
12022 /* Create a CONSTRUCTOR to represent the braced-initializer. */
12023 initializer = make_node (CONSTRUCTOR);
12024 /* If it's not a `}', then there is a non-trivial initializer. */
12025 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
12026 {
12027 /* Parse the initializer list. */
12028 CONSTRUCTOR_ELTS (initializer)
12029 = cp_parser_initializer_list (parser, non_constant_p);
12030 /* A trailing `,' token is allowed. */
12031 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
12032 cp_lexer_consume_token (parser->lexer);
12033 }
12034 /* Now, there should be a trailing `}'. */
12035 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12036 }
12037
12038 return initializer;
12039 }
12040
12041 /* Parse an initializer-list.
12042
12043 initializer-list:
12044 initializer-clause
12045 initializer-list , initializer-clause
12046
12047 GNU Extension:
12048
12049 initializer-list:
12050 identifier : initializer-clause
12051 initializer-list, identifier : initializer-clause
12052
12053 Returns a TREE_LIST. The TREE_VALUE of each node is an expression
12054 for the initializer. If the TREE_PURPOSE is non-NULL, it is the
12055 IDENTIFIER_NODE naming the field to initialize. NON_CONSTANT_P is
12056 as for cp_parser_initializer. */
12057
12058 static tree
12059 cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p)
12060 {
12061 tree initializers = NULL_TREE;
12062
12063 /* Assume all of the expressions are constant. */
12064 *non_constant_p = false;
12065
12066 /* Parse the rest of the list. */
12067 while (true)
12068 {
12069 cp_token *token;
12070 tree identifier;
12071 tree initializer;
12072 bool clause_non_constant_p;
12073
12074 /* If the next token is an identifier and the following one is a
12075 colon, we are looking at the GNU designated-initializer
12076 syntax. */
12077 if (cp_parser_allow_gnu_extensions_p (parser)
12078 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
12079 && cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
12080 {
12081 /* Consume the identifier. */
12082 identifier = cp_lexer_consume_token (parser->lexer)->value;
12083 /* Consume the `:'. */
12084 cp_lexer_consume_token (parser->lexer);
12085 }
12086 else
12087 identifier = NULL_TREE;
12088
12089 /* Parse the initializer. */
12090 initializer = cp_parser_initializer_clause (parser,
12091 &clause_non_constant_p);
12092 /* If any clause is non-constant, so is the entire initializer. */
12093 if (clause_non_constant_p)
12094 *non_constant_p = true;
12095 /* Add it to the list. */
12096 initializers = tree_cons (identifier, initializer, initializers);
12097
12098 /* If the next token is not a comma, we have reached the end of
12099 the list. */
12100 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
12101 break;
12102
12103 /* Peek at the next token. */
12104 token = cp_lexer_peek_nth_token (parser->lexer, 2);
12105 /* If the next token is a `}', then we're still done. An
12106 initializer-clause can have a trailing `,' after the
12107 initializer-list and before the closing `}'. */
12108 if (token->type == CPP_CLOSE_BRACE)
12109 break;
12110
12111 /* Consume the `,' token. */
12112 cp_lexer_consume_token (parser->lexer);
12113 }
12114
12115 /* The initializers were built up in reverse order, so we need to
12116 reverse them now. */
12117 return nreverse (initializers);
12118 }
12119
12120 /* Classes [gram.class] */
12121
12122 /* Parse a class-name.
12123
12124 class-name:
12125 identifier
12126 template-id
12127
12128 TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used
12129 to indicate that names looked up in dependent types should be
12130 assumed to be types. TEMPLATE_KEYWORD_P is true iff the `template'
12131 keyword has been used to indicate that the name that appears next
12132 is a template. TAG_TYPE indicates the explicit tag given before
12133 the type name, if any. If CHECK_DEPENDENCY_P is FALSE, names are
12134 looked up in dependent scopes. If CLASS_HEAD_P is TRUE, this class
12135 is the class being defined in a class-head.
12136
12137 Returns the TYPE_DECL representing the class. */
12138
12139 static tree
12140 cp_parser_class_name (cp_parser *parser,
12141 bool typename_keyword_p,
12142 bool template_keyword_p,
12143 enum tag_types tag_type,
12144 bool check_dependency_p,
12145 bool class_head_p,
12146 bool is_declaration)
12147 {
12148 tree decl;
12149 tree scope;
12150 bool typename_p;
12151 cp_token *token;
12152
12153 /* All class-names start with an identifier. */
12154 token = cp_lexer_peek_token (parser->lexer);
12155 if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID)
12156 {
12157 cp_parser_error (parser, "expected class-name");
12158 return error_mark_node;
12159 }
12160
12161 /* PARSER->SCOPE can be cleared when parsing the template-arguments
12162 to a template-id, so we save it here. */
12163 scope = parser->scope;
12164 if (scope == error_mark_node)
12165 return error_mark_node;
12166
12167 /* Any name names a type if we're following the `typename' keyword
12168 in a qualified name where the enclosing scope is type-dependent. */
12169 typename_p = (typename_keyword_p && scope && TYPE_P (scope)
12170 && dependent_type_p (scope));
12171 /* Handle the common case (an identifier, but not a template-id)
12172 efficiently. */
12173 if (token->type == CPP_NAME
12174 && !cp_parser_nth_token_starts_template_argument_list_p (parser, 2))
12175 {
12176 tree identifier;
12177
12178 /* Look for the identifier. */
12179 identifier = cp_parser_identifier (parser);
12180 /* If the next token isn't an identifier, we are certainly not
12181 looking at a class-name. */
12182 if (identifier == error_mark_node)
12183 decl = error_mark_node;
12184 /* If we know this is a type-name, there's no need to look it
12185 up. */
12186 else if (typename_p)
12187 decl = identifier;
12188 else
12189 {
12190 /* If the next token is a `::', then the name must be a type
12191 name.
12192
12193 [basic.lookup.qual]
12194
12195 During the lookup for a name preceding the :: scope
12196 resolution operator, object, function, and enumerator
12197 names are ignored. */
12198 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12199 tag_type = typename_type;
12200 /* Look up the name. */
12201 decl = cp_parser_lookup_name (parser, identifier,
12202 tag_type,
12203 /*is_template=*/false,
12204 /*is_namespace=*/false,
12205 check_dependency_p,
12206 /*ambiguous_p=*/NULL);
12207 }
12208 }
12209 else
12210 {
12211 /* Try a template-id. */
12212 decl = cp_parser_template_id (parser, template_keyword_p,
12213 check_dependency_p,
12214 is_declaration);
12215 if (decl == error_mark_node)
12216 return error_mark_node;
12217 }
12218
12219 decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p);
12220
12221 /* If this is a typename, create a TYPENAME_TYPE. */
12222 if (typename_p && decl != error_mark_node)
12223 {
12224 decl = make_typename_type (scope, decl, typename_type, /*complain=*/1);
12225 if (decl != error_mark_node)
12226 decl = TYPE_NAME (decl);
12227 }
12228
12229 /* Check to see that it is really the name of a class. */
12230 if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
12231 && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE
12232 && cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12233 /* Situations like this:
12234
12235 template <typename T> struct A {
12236 typename T::template X<int>::I i;
12237 };
12238
12239 are problematic. Is `T::template X<int>' a class-name? The
12240 standard does not seem to be definitive, but there is no other
12241 valid interpretation of the following `::'. Therefore, those
12242 names are considered class-names. */
12243 decl = TYPE_NAME (make_typename_type (scope, decl, tag_type, tf_error));
12244 else if (decl == error_mark_node
12245 || TREE_CODE (decl) != TYPE_DECL
12246 || TREE_TYPE (decl) == error_mark_node
12247 || !IS_AGGR_TYPE (TREE_TYPE (decl)))
12248 {
12249 cp_parser_error (parser, "expected class-name");
12250 return error_mark_node;
12251 }
12252
12253 return decl;
12254 }
12255
12256 /* Parse a class-specifier.
12257
12258 class-specifier:
12259 class-head { member-specification [opt] }
12260
12261 Returns the TREE_TYPE representing the class. */
12262
12263 static tree
12264 cp_parser_class_specifier (cp_parser* parser)
12265 {
12266 cp_token *token;
12267 tree type;
12268 tree attributes = NULL_TREE;
12269 int has_trailing_semicolon;
12270 bool nested_name_specifier_p;
12271 unsigned saved_num_template_parameter_lists;
12272 tree old_scope = NULL_TREE;
12273 tree scope = NULL_TREE;
12274
12275 push_deferring_access_checks (dk_no_deferred);
12276
12277 /* Parse the class-head. */
12278 type = cp_parser_class_head (parser,
12279 &nested_name_specifier_p,
12280 &attributes);
12281 /* If the class-head was a semantic disaster, skip the entire body
12282 of the class. */
12283 if (!type)
12284 {
12285 cp_parser_skip_to_end_of_block_or_statement (parser);
12286 pop_deferring_access_checks ();
12287 return error_mark_node;
12288 }
12289
12290 /* Look for the `{'. */
12291 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
12292 {
12293 pop_deferring_access_checks ();
12294 return error_mark_node;
12295 }
12296
12297 /* Issue an error message if type-definitions are forbidden here. */
12298 cp_parser_check_type_definition (parser);
12299 /* Remember that we are defining one more class. */
12300 ++parser->num_classes_being_defined;
12301 /* Inside the class, surrounding template-parameter-lists do not
12302 apply. */
12303 saved_num_template_parameter_lists
12304 = parser->num_template_parameter_lists;
12305 parser->num_template_parameter_lists = 0;
12306
12307 /* Start the class. */
12308 if (nested_name_specifier_p)
12309 {
12310 scope = CP_DECL_CONTEXT (TYPE_MAIN_DECL (type));
12311 old_scope = push_inner_scope (scope);
12312 }
12313 type = begin_class_definition (type);
12314
12315 if (type == error_mark_node)
12316 /* If the type is erroneous, skip the entire body of the class. */
12317 cp_parser_skip_to_closing_brace (parser);
12318 else
12319 /* Parse the member-specification. */
12320 cp_parser_member_specification_opt (parser);
12321
12322 /* Look for the trailing `}'. */
12323 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12324 /* We get better error messages by noticing a common problem: a
12325 missing trailing `;'. */
12326 token = cp_lexer_peek_token (parser->lexer);
12327 has_trailing_semicolon = (token->type == CPP_SEMICOLON);
12328 /* Look for trailing attributes to apply to this class. */
12329 if (cp_parser_allow_gnu_extensions_p (parser))
12330 {
12331 tree sub_attr = cp_parser_attributes_opt (parser);
12332 attributes = chainon (attributes, sub_attr);
12333 }
12334 if (type != error_mark_node)
12335 type = finish_struct (type, attributes);
12336 if (nested_name_specifier_p)
12337 pop_inner_scope (old_scope, scope);
12338 /* If this class is not itself within the scope of another class,
12339 then we need to parse the bodies of all of the queued function
12340 definitions. Note that the queued functions defined in a class
12341 are not always processed immediately following the
12342 class-specifier for that class. Consider:
12343
12344 struct A {
12345 struct B { void f() { sizeof (A); } };
12346 };
12347
12348 If `f' were processed before the processing of `A' were
12349 completed, there would be no way to compute the size of `A'.
12350 Note that the nesting we are interested in here is lexical --
12351 not the semantic nesting given by TYPE_CONTEXT. In particular,
12352 for:
12353
12354 struct A { struct B; };
12355 struct A::B { void f() { } };
12356
12357 there is no need to delay the parsing of `A::B::f'. */
12358 if (--parser->num_classes_being_defined == 0)
12359 {
12360 tree queue_entry;
12361 tree fn;
12362 tree class_type;
12363 bool pop_p;
12364
12365 /* In a first pass, parse default arguments to the functions.
12366 Then, in a second pass, parse the bodies of the functions.
12367 This two-phased approach handles cases like:
12368
12369 struct S {
12370 void f() { g(); }
12371 void g(int i = 3);
12372 };
12373
12374 */
12375 class_type = NULL_TREE;
12376 pop_p = false;
12377 for (TREE_PURPOSE (parser->unparsed_functions_queues)
12378 = nreverse (TREE_PURPOSE (parser->unparsed_functions_queues));
12379 (queue_entry = TREE_PURPOSE (parser->unparsed_functions_queues));
12380 TREE_PURPOSE (parser->unparsed_functions_queues)
12381 = TREE_CHAIN (TREE_PURPOSE (parser->unparsed_functions_queues)))
12382 {
12383 fn = TREE_VALUE (queue_entry);
12384 /* If there are default arguments that have not yet been processed,
12385 take care of them now. */
12386 if (class_type != TREE_PURPOSE (queue_entry))
12387 {
12388 if (pop_p)
12389 pop_scope (class_type);
12390 class_type = TREE_PURPOSE (queue_entry);
12391 pop_p = push_scope (class_type);
12392 }
12393 /* Make sure that any template parameters are in scope. */
12394 maybe_begin_member_template_processing (fn);
12395 /* Parse the default argument expressions. */
12396 cp_parser_late_parsing_default_args (parser, fn);
12397 /* Remove any template parameters from the symbol table. */
12398 maybe_end_member_template_processing ();
12399 }
12400 if (pop_p)
12401 pop_scope (class_type);
12402 /* Now parse the body of the functions. */
12403 for (TREE_VALUE (parser->unparsed_functions_queues)
12404 = nreverse (TREE_VALUE (parser->unparsed_functions_queues));
12405 (queue_entry = TREE_VALUE (parser->unparsed_functions_queues));
12406 TREE_VALUE (parser->unparsed_functions_queues)
12407 = TREE_CHAIN (TREE_VALUE (parser->unparsed_functions_queues)))
12408 {
12409 /* Figure out which function we need to process. */
12410 fn = TREE_VALUE (queue_entry);
12411
12412 /* A hack to prevent garbage collection. */
12413 function_depth++;
12414
12415 /* Parse the function. */
12416 cp_parser_late_parsing_for_member (parser, fn);
12417 function_depth--;
12418 }
12419 }
12420
12421 /* Put back any saved access checks. */
12422 pop_deferring_access_checks ();
12423
12424 /* Restore the count of active template-parameter-lists. */
12425 parser->num_template_parameter_lists
12426 = saved_num_template_parameter_lists;
12427
12428 return type;
12429 }
12430
12431 /* Parse a class-head.
12432
12433 class-head:
12434 class-key identifier [opt] base-clause [opt]
12435 class-key nested-name-specifier identifier base-clause [opt]
12436 class-key nested-name-specifier [opt] template-id
12437 base-clause [opt]
12438
12439 GNU Extensions:
12440 class-key attributes identifier [opt] base-clause [opt]
12441 class-key attributes nested-name-specifier identifier base-clause [opt]
12442 class-key attributes nested-name-specifier [opt] template-id
12443 base-clause [opt]
12444
12445 Returns the TYPE of the indicated class. Sets
12446 *NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions
12447 involving a nested-name-specifier was used, and FALSE otherwise.
12448
12449 Returns error_mark_node if this is not a class-head.
12450
12451 Returns NULL_TREE if the class-head is syntactically valid, but
12452 semantically invalid in a way that means we should skip the entire
12453 body of the class. */
12454
12455 static tree
12456 cp_parser_class_head (cp_parser* parser,
12457 bool* nested_name_specifier_p,
12458 tree *attributes_p)
12459 {
12460 tree nested_name_specifier;
12461 enum tag_types class_key;
12462 tree id = NULL_TREE;
12463 tree type = NULL_TREE;
12464 tree attributes;
12465 bool template_id_p = false;
12466 bool qualified_p = false;
12467 bool invalid_nested_name_p = false;
12468 bool invalid_explicit_specialization_p = false;
12469 bool pop_p = false;
12470 unsigned num_templates;
12471 tree bases;
12472
12473 /* Assume no nested-name-specifier will be present. */
12474 *nested_name_specifier_p = false;
12475 /* Assume no template parameter lists will be used in defining the
12476 type. */
12477 num_templates = 0;
12478
12479 /* Look for the class-key. */
12480 class_key = cp_parser_class_key (parser);
12481 if (class_key == none_type)
12482 return error_mark_node;
12483
12484 /* Parse the attributes. */
12485 attributes = cp_parser_attributes_opt (parser);
12486
12487 /* If the next token is `::', that is invalid -- but sometimes
12488 people do try to write:
12489
12490 struct ::S {};
12491
12492 Handle this gracefully by accepting the extra qualifier, and then
12493 issuing an error about it later if this really is a
12494 class-head. If it turns out just to be an elaborated type
12495 specifier, remain silent. */
12496 if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false))
12497 qualified_p = true;
12498
12499 push_deferring_access_checks (dk_no_check);
12500
12501 /* Determine the name of the class. Begin by looking for an
12502 optional nested-name-specifier. */
12503 nested_name_specifier
12504 = cp_parser_nested_name_specifier_opt (parser,
12505 /*typename_keyword_p=*/false,
12506 /*check_dependency_p=*/false,
12507 /*type_p=*/false,
12508 /*is_declaration=*/false);
12509 /* If there was a nested-name-specifier, then there *must* be an
12510 identifier. */
12511 if (nested_name_specifier)
12512 {
12513 /* Although the grammar says `identifier', it really means
12514 `class-name' or `template-name'. You are only allowed to
12515 define a class that has already been declared with this
12516 syntax.
12517
12518 The proposed resolution for Core Issue 180 says that whever
12519 you see `class T::X' you should treat `X' as a type-name.
12520
12521 It is OK to define an inaccessible class; for example:
12522
12523 class A { class B; };
12524 class A::B {};
12525
12526 We do not know if we will see a class-name, or a
12527 template-name. We look for a class-name first, in case the
12528 class-name is a template-id; if we looked for the
12529 template-name first we would stop after the template-name. */
12530 cp_parser_parse_tentatively (parser);
12531 type = cp_parser_class_name (parser,
12532 /*typename_keyword_p=*/false,
12533 /*template_keyword_p=*/false,
12534 class_type,
12535 /*check_dependency_p=*/false,
12536 /*class_head_p=*/true,
12537 /*is_declaration=*/false);
12538 /* If that didn't work, ignore the nested-name-specifier. */
12539 if (!cp_parser_parse_definitely (parser))
12540 {
12541 invalid_nested_name_p = true;
12542 id = cp_parser_identifier (parser);
12543 if (id == error_mark_node)
12544 id = NULL_TREE;
12545 }
12546 /* If we could not find a corresponding TYPE, treat this
12547 declaration like an unqualified declaration. */
12548 if (type == error_mark_node)
12549 nested_name_specifier = NULL_TREE;
12550 /* Otherwise, count the number of templates used in TYPE and its
12551 containing scopes. */
12552 else
12553 {
12554 tree scope;
12555
12556 for (scope = TREE_TYPE (type);
12557 scope && TREE_CODE (scope) != NAMESPACE_DECL;
12558 scope = (TYPE_P (scope)
12559 ? TYPE_CONTEXT (scope)
12560 : DECL_CONTEXT (scope)))
12561 if (TYPE_P (scope)
12562 && CLASS_TYPE_P (scope)
12563 && CLASSTYPE_TEMPLATE_INFO (scope)
12564 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))
12565 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (scope))
12566 ++num_templates;
12567 }
12568 }
12569 /* Otherwise, the identifier is optional. */
12570 else
12571 {
12572 /* We don't know whether what comes next is a template-id,
12573 an identifier, or nothing at all. */
12574 cp_parser_parse_tentatively (parser);
12575 /* Check for a template-id. */
12576 id = cp_parser_template_id (parser,
12577 /*template_keyword_p=*/false,
12578 /*check_dependency_p=*/true,
12579 /*is_declaration=*/true);
12580 /* If that didn't work, it could still be an identifier. */
12581 if (!cp_parser_parse_definitely (parser))
12582 {
12583 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
12584 id = cp_parser_identifier (parser);
12585 else
12586 id = NULL_TREE;
12587 }
12588 else
12589 {
12590 template_id_p = true;
12591 ++num_templates;
12592 }
12593 }
12594
12595 pop_deferring_access_checks ();
12596
12597 if (id)
12598 cp_parser_check_for_invalid_template_id (parser, id);
12599
12600 /* If it's not a `:' or a `{' then we can't really be looking at a
12601 class-head, since a class-head only appears as part of a
12602 class-specifier. We have to detect this situation before calling
12603 xref_tag, since that has irreversible side-effects. */
12604 if (!cp_parser_next_token_starts_class_definition_p (parser))
12605 {
12606 cp_parser_error (parser, "expected %<{%> or %<:%>");
12607 return error_mark_node;
12608 }
12609
12610 /* At this point, we're going ahead with the class-specifier, even
12611 if some other problem occurs. */
12612 cp_parser_commit_to_tentative_parse (parser);
12613 /* Issue the error about the overly-qualified name now. */
12614 if (qualified_p)
12615 cp_parser_error (parser,
12616 "global qualification of class name is invalid");
12617 else if (invalid_nested_name_p)
12618 cp_parser_error (parser,
12619 "qualified name does not name a class");
12620 else if (nested_name_specifier)
12621 {
12622 tree scope;
12623 /* Figure out in what scope the declaration is being placed. */
12624 scope = current_scope ();
12625 /* If that scope does not contain the scope in which the
12626 class was originally declared, the program is invalid. */
12627 if (scope && !is_ancestor (scope, nested_name_specifier))
12628 {
12629 error ("declaration of %qD in %qD which does not enclose %qD",
12630 type, scope, nested_name_specifier);
12631 type = NULL_TREE;
12632 goto done;
12633 }
12634 /* [dcl.meaning]
12635
12636 A declarator-id shall not be qualified exception of the
12637 definition of a ... nested class outside of its class
12638 ... [or] a the definition or explicit instantiation of a
12639 class member of a namespace outside of its namespace. */
12640 if (scope == nested_name_specifier)
12641 {
12642 pedwarn ("extra qualification ignored");
12643 nested_name_specifier = NULL_TREE;
12644 num_templates = 0;
12645 }
12646 }
12647 /* An explicit-specialization must be preceded by "template <>". If
12648 it is not, try to recover gracefully. */
12649 if (at_namespace_scope_p ()
12650 && parser->num_template_parameter_lists == 0
12651 && template_id_p)
12652 {
12653 error ("an explicit specialization must be preceded by %<template <>%>");
12654 invalid_explicit_specialization_p = true;
12655 /* Take the same action that would have been taken by
12656 cp_parser_explicit_specialization. */
12657 ++parser->num_template_parameter_lists;
12658 begin_specialization ();
12659 }
12660 /* There must be no "return" statements between this point and the
12661 end of this function; set "type "to the correct return value and
12662 use "goto done;" to return. */
12663 /* Make sure that the right number of template parameters were
12664 present. */
12665 if (!cp_parser_check_template_parameters (parser, num_templates))
12666 {
12667 /* If something went wrong, there is no point in even trying to
12668 process the class-definition. */
12669 type = NULL_TREE;
12670 goto done;
12671 }
12672
12673 /* Look up the type. */
12674 if (template_id_p)
12675 {
12676 type = TREE_TYPE (id);
12677 maybe_process_partial_specialization (type);
12678 }
12679 else if (!nested_name_specifier)
12680 {
12681 /* If the class was unnamed, create a dummy name. */
12682 if (!id)
12683 id = make_anon_name ();
12684 type = xref_tag (class_key, id, /*tag_scope=*/ts_current,
12685 parser->num_template_parameter_lists);
12686 }
12687 else
12688 {
12689 tree class_type;
12690 bool pop_p = false;
12691
12692 /* Given:
12693
12694 template <typename T> struct S { struct T };
12695 template <typename T> struct S<T>::T { };
12696
12697 we will get a TYPENAME_TYPE when processing the definition of
12698 `S::T'. We need to resolve it to the actual type before we
12699 try to define it. */
12700 if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE)
12701 {
12702 class_type = resolve_typename_type (TREE_TYPE (type),
12703 /*only_current_p=*/false);
12704 if (class_type != error_mark_node)
12705 type = TYPE_NAME (class_type);
12706 else
12707 {
12708 cp_parser_error (parser, "could not resolve typename type");
12709 type = error_mark_node;
12710 }
12711 }
12712
12713 maybe_process_partial_specialization (TREE_TYPE (type));
12714 class_type = current_class_type;
12715 /* Enter the scope indicated by the nested-name-specifier. */
12716 if (nested_name_specifier)
12717 pop_p = push_scope (nested_name_specifier);
12718 /* Get the canonical version of this type. */
12719 type = TYPE_MAIN_DECL (TREE_TYPE (type));
12720 if (PROCESSING_REAL_TEMPLATE_DECL_P ()
12721 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type)))
12722 {
12723 type = push_template_decl (type);
12724 if (type == error_mark_node)
12725 {
12726 type = NULL_TREE;
12727 goto done;
12728 }
12729 }
12730
12731 type = TREE_TYPE (type);
12732 if (nested_name_specifier)
12733 {
12734 *nested_name_specifier_p = true;
12735 if (pop_p)
12736 pop_scope (nested_name_specifier);
12737 }
12738 }
12739 /* Indicate whether this class was declared as a `class' or as a
12740 `struct'. */
12741 if (TREE_CODE (type) == RECORD_TYPE)
12742 CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type);
12743 cp_parser_check_class_key (class_key, type);
12744
12745 /* Enter the scope containing the class; the names of base classes
12746 should be looked up in that context. For example, given:
12747
12748 struct A { struct B {}; struct C; };
12749 struct A::C : B {};
12750
12751 is valid. */
12752 if (nested_name_specifier)
12753 pop_p = push_scope (nested_name_specifier);
12754
12755 bases = NULL_TREE;
12756
12757 /* Get the list of base-classes, if there is one. */
12758 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
12759 bases = cp_parser_base_clause (parser);
12760
12761 /* Process the base classes. */
12762 xref_basetypes (type, bases);
12763
12764 /* Leave the scope given by the nested-name-specifier. We will
12765 enter the class scope itself while processing the members. */
12766 if (pop_p)
12767 pop_scope (nested_name_specifier);
12768
12769 done:
12770 if (invalid_explicit_specialization_p)
12771 {
12772 end_specialization ();
12773 --parser->num_template_parameter_lists;
12774 }
12775 *attributes_p = attributes;
12776 return type;
12777 }
12778
12779 /* Parse a class-key.
12780
12781 class-key:
12782 class
12783 struct
12784 union
12785
12786 Returns the kind of class-key specified, or none_type to indicate
12787 error. */
12788
12789 static enum tag_types
12790 cp_parser_class_key (cp_parser* parser)
12791 {
12792 cp_token *token;
12793 enum tag_types tag_type;
12794
12795 /* Look for the class-key. */
12796 token = cp_parser_require (parser, CPP_KEYWORD, "class-key");
12797 if (!token)
12798 return none_type;
12799
12800 /* Check to see if the TOKEN is a class-key. */
12801 tag_type = cp_parser_token_is_class_key (token);
12802 if (!tag_type)
12803 cp_parser_error (parser, "expected class-key");
12804 return tag_type;
12805 }
12806
12807 /* Parse an (optional) member-specification.
12808
12809 member-specification:
12810 member-declaration member-specification [opt]
12811 access-specifier : member-specification [opt] */
12812
12813 static void
12814 cp_parser_member_specification_opt (cp_parser* parser)
12815 {
12816 while (true)
12817 {
12818 cp_token *token;
12819 enum rid keyword;
12820
12821 /* Peek at the next token. */
12822 token = cp_lexer_peek_token (parser->lexer);
12823 /* If it's a `}', or EOF then we've seen all the members. */
12824 if (token->type == CPP_CLOSE_BRACE || token->type == CPP_EOF)
12825 break;
12826
12827 /* See if this token is a keyword. */
12828 keyword = token->keyword;
12829 switch (keyword)
12830 {
12831 case RID_PUBLIC:
12832 case RID_PROTECTED:
12833 case RID_PRIVATE:
12834 /* Consume the access-specifier. */
12835 cp_lexer_consume_token (parser->lexer);
12836 /* Remember which access-specifier is active. */
12837 current_access_specifier = token->value;
12838 /* Look for the `:'. */
12839 cp_parser_require (parser, CPP_COLON, "`:'");
12840 break;
12841
12842 default:
12843 /* Accept #pragmas at class scope. */
12844 if (token->type == CPP_PRAGMA)
12845 {
12846 cp_lexer_handle_pragma (parser->lexer);
12847 break;
12848 }
12849
12850 /* Otherwise, the next construction must be a
12851 member-declaration. */
12852 cp_parser_member_declaration (parser);
12853 }
12854 }
12855 }
12856
12857 /* Parse a member-declaration.
12858
12859 member-declaration:
12860 decl-specifier-seq [opt] member-declarator-list [opt] ;
12861 function-definition ; [opt]
12862 :: [opt] nested-name-specifier template [opt] unqualified-id ;
12863 using-declaration
12864 template-declaration
12865
12866 member-declarator-list:
12867 member-declarator
12868 member-declarator-list , member-declarator
12869
12870 member-declarator:
12871 declarator pure-specifier [opt]
12872 declarator constant-initializer [opt]
12873 identifier [opt] : constant-expression
12874
12875 GNU Extensions:
12876
12877 member-declaration:
12878 __extension__ member-declaration
12879
12880 member-declarator:
12881 declarator attributes [opt] pure-specifier [opt]
12882 declarator attributes [opt] constant-initializer [opt]
12883 identifier [opt] attributes [opt] : constant-expression */
12884
12885 static void
12886 cp_parser_member_declaration (cp_parser* parser)
12887 {
12888 cp_decl_specifier_seq decl_specifiers;
12889 tree prefix_attributes;
12890 tree decl;
12891 int declares_class_or_enum;
12892 bool friend_p;
12893 cp_token *token;
12894 int saved_pedantic;
12895
12896 /* Check for the `__extension__' keyword. */
12897 if (cp_parser_extension_opt (parser, &saved_pedantic))
12898 {
12899 /* Recurse. */
12900 cp_parser_member_declaration (parser);
12901 /* Restore the old value of the PEDANTIC flag. */
12902 pedantic = saved_pedantic;
12903
12904 return;
12905 }
12906
12907 /* Check for a template-declaration. */
12908 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
12909 {
12910 /* Parse the template-declaration. */
12911 cp_parser_template_declaration (parser, /*member_p=*/true);
12912
12913 return;
12914 }
12915
12916 /* Check for a using-declaration. */
12917 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
12918 {
12919 /* Parse the using-declaration. */
12920 cp_parser_using_declaration (parser);
12921
12922 return;
12923 }
12924
12925 /* Parse the decl-specifier-seq. */
12926 cp_parser_decl_specifier_seq (parser,
12927 CP_PARSER_FLAGS_OPTIONAL,
12928 &decl_specifiers,
12929 &declares_class_or_enum);
12930 prefix_attributes = decl_specifiers.attributes;
12931 decl_specifiers.attributes = NULL_TREE;
12932 /* Check for an invalid type-name. */
12933 if (!decl_specifiers.type
12934 && cp_parser_parse_and_diagnose_invalid_type_name (parser))
12935 return;
12936 /* If there is no declarator, then the decl-specifier-seq should
12937 specify a type. */
12938 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
12939 {
12940 /* If there was no decl-specifier-seq, and the next token is a
12941 `;', then we have something like:
12942
12943 struct S { ; };
12944
12945 [class.mem]
12946
12947 Each member-declaration shall declare at least one member
12948 name of the class. */
12949 if (!decl_specifiers.any_specifiers_p)
12950 {
12951 cp_token *token = cp_lexer_peek_token (parser->lexer);
12952 if (pedantic && !token->in_system_header)
12953 pedwarn ("%Hextra %<;%>", &token->location);
12954 }
12955 else
12956 {
12957 tree type;
12958
12959 /* See if this declaration is a friend. */
12960 friend_p = cp_parser_friend_p (&decl_specifiers);
12961 /* If there were decl-specifiers, check to see if there was
12962 a class-declaration. */
12963 type = check_tag_decl (&decl_specifiers);
12964 /* Nested classes have already been added to the class, but
12965 a `friend' needs to be explicitly registered. */
12966 if (friend_p)
12967 {
12968 /* If the `friend' keyword was present, the friend must
12969 be introduced with a class-key. */
12970 if (!declares_class_or_enum)
12971 error ("a class-key must be used when declaring a friend");
12972 /* In this case:
12973
12974 template <typename T> struct A {
12975 friend struct A<T>::B;
12976 };
12977
12978 A<T>::B will be represented by a TYPENAME_TYPE, and
12979 therefore not recognized by check_tag_decl. */
12980 if (!type
12981 && decl_specifiers.type
12982 && TYPE_P (decl_specifiers.type))
12983 type = decl_specifiers.type;
12984 if (!type || !TYPE_P (type))
12985 error ("friend declaration does not name a class or "
12986 "function");
12987 else
12988 make_friend_class (current_class_type, type,
12989 /*complain=*/true);
12990 }
12991 /* If there is no TYPE, an error message will already have
12992 been issued. */
12993 else if (!type || type == error_mark_node)
12994 ;
12995 /* An anonymous aggregate has to be handled specially; such
12996 a declaration really declares a data member (with a
12997 particular type), as opposed to a nested class. */
12998 else if (ANON_AGGR_TYPE_P (type))
12999 {
13000 /* Remove constructors and such from TYPE, now that we
13001 know it is an anonymous aggregate. */
13002 fixup_anonymous_aggr (type);
13003 /* And make the corresponding data member. */
13004 decl = build_decl (FIELD_DECL, NULL_TREE, type);
13005 /* Add it to the class. */
13006 finish_member_declaration (decl);
13007 }
13008 else
13009 cp_parser_check_access_in_redeclaration (TYPE_NAME (type));
13010 }
13011 }
13012 else
13013 {
13014 /* See if these declarations will be friends. */
13015 friend_p = cp_parser_friend_p (&decl_specifiers);
13016
13017 /* Keep going until we hit the `;' at the end of the
13018 declaration. */
13019 while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
13020 {
13021 tree attributes = NULL_TREE;
13022 tree first_attribute;
13023
13024 /* Peek at the next token. */
13025 token = cp_lexer_peek_token (parser->lexer);
13026
13027 /* Check for a bitfield declaration. */
13028 if (token->type == CPP_COLON
13029 || (token->type == CPP_NAME
13030 && cp_lexer_peek_nth_token (parser->lexer, 2)->type
13031 == CPP_COLON))
13032 {
13033 tree identifier;
13034 tree width;
13035
13036 /* Get the name of the bitfield. Note that we cannot just
13037 check TOKEN here because it may have been invalidated by
13038 the call to cp_lexer_peek_nth_token above. */
13039 if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
13040 identifier = cp_parser_identifier (parser);
13041 else
13042 identifier = NULL_TREE;
13043
13044 /* Consume the `:' token. */
13045 cp_lexer_consume_token (parser->lexer);
13046 /* Get the width of the bitfield. */
13047 width
13048 = cp_parser_constant_expression (parser,
13049 /*allow_non_constant=*/false,
13050 NULL);
13051
13052 /* Look for attributes that apply to the bitfield. */
13053 attributes = cp_parser_attributes_opt (parser);
13054 /* Remember which attributes are prefix attributes and
13055 which are not. */
13056 first_attribute = attributes;
13057 /* Combine the attributes. */
13058 attributes = chainon (prefix_attributes, attributes);
13059
13060 /* Create the bitfield declaration. */
13061 decl = grokbitfield (identifier
13062 ? make_id_declarator (identifier)
13063 : NULL,
13064 &decl_specifiers,
13065 width);
13066 /* Apply the attributes. */
13067 cplus_decl_attributes (&decl, attributes, /*flags=*/0);
13068 }
13069 else
13070 {
13071 cp_declarator *declarator;
13072 tree initializer;
13073 tree asm_specification;
13074 int ctor_dtor_or_conv_p;
13075
13076 /* Parse the declarator. */
13077 declarator
13078 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
13079 &ctor_dtor_or_conv_p,
13080 /*parenthesized_p=*/NULL,
13081 /*member_p=*/true);
13082
13083 /* If something went wrong parsing the declarator, make sure
13084 that we at least consume some tokens. */
13085 if (declarator == cp_error_declarator)
13086 {
13087 /* Skip to the end of the statement. */
13088 cp_parser_skip_to_end_of_statement (parser);
13089 /* If the next token is not a semicolon, that is
13090 probably because we just skipped over the body of
13091 a function. So, we consume a semicolon if
13092 present, but do not issue an error message if it
13093 is not present. */
13094 if (cp_lexer_next_token_is (parser->lexer,
13095 CPP_SEMICOLON))
13096 cp_lexer_consume_token (parser->lexer);
13097 return;
13098 }
13099
13100 if (declares_class_or_enum & 2)
13101 cp_parser_check_for_definition_in_return_type
13102 (declarator, decl_specifiers.type);
13103
13104 /* Look for an asm-specification. */
13105 asm_specification = cp_parser_asm_specification_opt (parser);
13106 /* Look for attributes that apply to the declaration. */
13107 attributes = cp_parser_attributes_opt (parser);
13108 /* Remember which attributes are prefix attributes and
13109 which are not. */
13110 first_attribute = attributes;
13111 /* Combine the attributes. */
13112 attributes = chainon (prefix_attributes, attributes);
13113
13114 /* If it's an `=', then we have a constant-initializer or a
13115 pure-specifier. It is not correct to parse the
13116 initializer before registering the member declaration
13117 since the member declaration should be in scope while
13118 its initializer is processed. However, the rest of the
13119 front end does not yet provide an interface that allows
13120 us to handle this correctly. */
13121 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
13122 {
13123 /* In [class.mem]:
13124
13125 A pure-specifier shall be used only in the declaration of
13126 a virtual function.
13127
13128 A member-declarator can contain a constant-initializer
13129 only if it declares a static member of integral or
13130 enumeration type.
13131
13132 Therefore, if the DECLARATOR is for a function, we look
13133 for a pure-specifier; otherwise, we look for a
13134 constant-initializer. When we call `grokfield', it will
13135 perform more stringent semantics checks. */
13136 if (declarator->kind == cdk_function)
13137 initializer = cp_parser_pure_specifier (parser);
13138 else
13139 /* Parse the initializer. */
13140 initializer = cp_parser_constant_initializer (parser);
13141 }
13142 /* Otherwise, there is no initializer. */
13143 else
13144 initializer = NULL_TREE;
13145
13146 /* See if we are probably looking at a function
13147 definition. We are certainly not looking at a
13148 member-declarator. Calling `grokfield' has
13149 side-effects, so we must not do it unless we are sure
13150 that we are looking at a member-declarator. */
13151 if (cp_parser_token_starts_function_definition_p
13152 (cp_lexer_peek_token (parser->lexer)))
13153 {
13154 /* The grammar does not allow a pure-specifier to be
13155 used when a member function is defined. (It is
13156 possible that this fact is an oversight in the
13157 standard, since a pure function may be defined
13158 outside of the class-specifier. */
13159 if (initializer)
13160 error ("pure-specifier on function-definition");
13161 decl = cp_parser_save_member_function_body (parser,
13162 &decl_specifiers,
13163 declarator,
13164 attributes);
13165 /* If the member was not a friend, declare it here. */
13166 if (!friend_p)
13167 finish_member_declaration (decl);
13168 /* Peek at the next token. */
13169 token = cp_lexer_peek_token (parser->lexer);
13170 /* If the next token is a semicolon, consume it. */
13171 if (token->type == CPP_SEMICOLON)
13172 cp_lexer_consume_token (parser->lexer);
13173 return;
13174 }
13175 else
13176 {
13177 /* Create the declaration. */
13178 decl = grokfield (declarator, &decl_specifiers,
13179 initializer, asm_specification,
13180 attributes);
13181 /* Any initialization must have been from a
13182 constant-expression. */
13183 if (decl && TREE_CODE (decl) == VAR_DECL && initializer)
13184 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
13185 }
13186 }
13187
13188 /* Reset PREFIX_ATTRIBUTES. */
13189 while (attributes && TREE_CHAIN (attributes) != first_attribute)
13190 attributes = TREE_CHAIN (attributes);
13191 if (attributes)
13192 TREE_CHAIN (attributes) = NULL_TREE;
13193
13194 /* If there is any qualification still in effect, clear it
13195 now; we will be starting fresh with the next declarator. */
13196 parser->scope = NULL_TREE;
13197 parser->qualifying_scope = NULL_TREE;
13198 parser->object_scope = NULL_TREE;
13199 /* If it's a `,', then there are more declarators. */
13200 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
13201 cp_lexer_consume_token (parser->lexer);
13202 /* If the next token isn't a `;', then we have a parse error. */
13203 else if (cp_lexer_next_token_is_not (parser->lexer,
13204 CPP_SEMICOLON))
13205 {
13206 cp_parser_error (parser, "expected %<;%>");
13207 /* Skip tokens until we find a `;'. */
13208 cp_parser_skip_to_end_of_statement (parser);
13209
13210 break;
13211 }
13212
13213 if (decl)
13214 {
13215 /* Add DECL to the list of members. */
13216 if (!friend_p)
13217 finish_member_declaration (decl);
13218
13219 if (TREE_CODE (decl) == FUNCTION_DECL)
13220 cp_parser_save_default_args (parser, decl);
13221 }
13222 }
13223 }
13224
13225 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
13226 }
13227
13228 /* Parse a pure-specifier.
13229
13230 pure-specifier:
13231 = 0
13232
13233 Returns INTEGER_ZERO_NODE if a pure specifier is found.
13234 Otherwise, ERROR_MARK_NODE is returned. */
13235
13236 static tree
13237 cp_parser_pure_specifier (cp_parser* parser)
13238 {
13239 cp_token *token;
13240
13241 /* Look for the `=' token. */
13242 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13243 return error_mark_node;
13244 /* Look for the `0' token. */
13245 token = cp_parser_require (parser, CPP_NUMBER, "`0'");
13246 /* Unfortunately, this will accept `0L' and `0x00' as well. We need
13247 to get information from the lexer about how the number was
13248 spelled in order to fix this problem. */
13249 if (!token || !integer_zerop (token->value))
13250 return error_mark_node;
13251
13252 return integer_zero_node;
13253 }
13254
13255 /* Parse a constant-initializer.
13256
13257 constant-initializer:
13258 = constant-expression
13259
13260 Returns a representation of the constant-expression. */
13261
13262 static tree
13263 cp_parser_constant_initializer (cp_parser* parser)
13264 {
13265 /* Look for the `=' token. */
13266 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13267 return error_mark_node;
13268
13269 /* It is invalid to write:
13270
13271 struct S { static const int i = { 7 }; };
13272
13273 */
13274 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
13275 {
13276 cp_parser_error (parser,
13277 "a brace-enclosed initializer is not allowed here");
13278 /* Consume the opening brace. */
13279 cp_lexer_consume_token (parser->lexer);
13280 /* Skip the initializer. */
13281 cp_parser_skip_to_closing_brace (parser);
13282 /* Look for the trailing `}'. */
13283 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
13284
13285 return error_mark_node;
13286 }
13287
13288 return cp_parser_constant_expression (parser,
13289 /*allow_non_constant=*/false,
13290 NULL);
13291 }
13292
13293 /* Derived classes [gram.class.derived] */
13294
13295 /* Parse a base-clause.
13296
13297 base-clause:
13298 : base-specifier-list
13299
13300 base-specifier-list:
13301 base-specifier
13302 base-specifier-list , base-specifier
13303
13304 Returns a TREE_LIST representing the base-classes, in the order in
13305 which they were declared. The representation of each node is as
13306 described by cp_parser_base_specifier.
13307
13308 In the case that no bases are specified, this function will return
13309 NULL_TREE, not ERROR_MARK_NODE. */
13310
13311 static tree
13312 cp_parser_base_clause (cp_parser* parser)
13313 {
13314 tree bases = NULL_TREE;
13315
13316 /* Look for the `:' that begins the list. */
13317 cp_parser_require (parser, CPP_COLON, "`:'");
13318
13319 /* Scan the base-specifier-list. */
13320 while (true)
13321 {
13322 cp_token *token;
13323 tree base;
13324
13325 /* Look for the base-specifier. */
13326 base = cp_parser_base_specifier (parser);
13327 /* Add BASE to the front of the list. */
13328 if (base != error_mark_node)
13329 {
13330 TREE_CHAIN (base) = bases;
13331 bases = base;
13332 }
13333 /* Peek at the next token. */
13334 token = cp_lexer_peek_token (parser->lexer);
13335 /* If it's not a comma, then the list is complete. */
13336 if (token->type != CPP_COMMA)
13337 break;
13338 /* Consume the `,'. */
13339 cp_lexer_consume_token (parser->lexer);
13340 }
13341
13342 /* PARSER->SCOPE may still be non-NULL at this point, if the last
13343 base class had a qualified name. However, the next name that
13344 appears is certainly not qualified. */
13345 parser->scope = NULL_TREE;
13346 parser->qualifying_scope = NULL_TREE;
13347 parser->object_scope = NULL_TREE;
13348
13349 return nreverse (bases);
13350 }
13351
13352 /* Parse a base-specifier.
13353
13354 base-specifier:
13355 :: [opt] nested-name-specifier [opt] class-name
13356 virtual access-specifier [opt] :: [opt] nested-name-specifier
13357 [opt] class-name
13358 access-specifier virtual [opt] :: [opt] nested-name-specifier
13359 [opt] class-name
13360
13361 Returns a TREE_LIST. The TREE_PURPOSE will be one of
13362 ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to
13363 indicate the specifiers provided. The TREE_VALUE will be a TYPE
13364 (or the ERROR_MARK_NODE) indicating the type that was specified. */
13365
13366 static tree
13367 cp_parser_base_specifier (cp_parser* parser)
13368 {
13369 cp_token *token;
13370 bool done = false;
13371 bool virtual_p = false;
13372 bool duplicate_virtual_error_issued_p = false;
13373 bool duplicate_access_error_issued_p = false;
13374 bool class_scope_p, template_p;
13375 tree access = access_default_node;
13376 tree type;
13377
13378 /* Process the optional `virtual' and `access-specifier'. */
13379 while (!done)
13380 {
13381 /* Peek at the next token. */
13382 token = cp_lexer_peek_token (parser->lexer);
13383 /* Process `virtual'. */
13384 switch (token->keyword)
13385 {
13386 case RID_VIRTUAL:
13387 /* If `virtual' appears more than once, issue an error. */
13388 if (virtual_p && !duplicate_virtual_error_issued_p)
13389 {
13390 cp_parser_error (parser,
13391 "%<virtual%> specified more than once in base-specified");
13392 duplicate_virtual_error_issued_p = true;
13393 }
13394
13395 virtual_p = true;
13396
13397 /* Consume the `virtual' token. */
13398 cp_lexer_consume_token (parser->lexer);
13399
13400 break;
13401
13402 case RID_PUBLIC:
13403 case RID_PROTECTED:
13404 case RID_PRIVATE:
13405 /* If more than one access specifier appears, issue an
13406 error. */
13407 if (access != access_default_node
13408 && !duplicate_access_error_issued_p)
13409 {
13410 cp_parser_error (parser,
13411 "more than one access specifier in base-specified");
13412 duplicate_access_error_issued_p = true;
13413 }
13414
13415 access = ridpointers[(int) token->keyword];
13416
13417 /* Consume the access-specifier. */
13418 cp_lexer_consume_token (parser->lexer);
13419
13420 break;
13421
13422 default:
13423 done = true;
13424 break;
13425 }
13426 }
13427 /* It is not uncommon to see programs mechanically, erroneously, use
13428 the 'typename' keyword to denote (dependent) qualified types
13429 as base classes. */
13430 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
13431 {
13432 if (!processing_template_decl)
13433 error ("keyword %<typename%> not allowed outside of templates");
13434 else
13435 error ("keyword %<typename%> not allowed in this context "
13436 "(the base class is implicitly a type)");
13437 cp_lexer_consume_token (parser->lexer);
13438 }
13439
13440 /* Look for the optional `::' operator. */
13441 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
13442 /* Look for the nested-name-specifier. The simplest way to
13443 implement:
13444
13445 [temp.res]
13446
13447 The keyword `typename' is not permitted in a base-specifier or
13448 mem-initializer; in these contexts a qualified name that
13449 depends on a template-parameter is implicitly assumed to be a
13450 type name.
13451
13452 is to pretend that we have seen the `typename' keyword at this
13453 point. */
13454 cp_parser_nested_name_specifier_opt (parser,
13455 /*typename_keyword_p=*/true,
13456 /*check_dependency_p=*/true,
13457 typename_type,
13458 /*is_declaration=*/true);
13459 /* If the base class is given by a qualified name, assume that names
13460 we see are type names or templates, as appropriate. */
13461 class_scope_p = (parser->scope && TYPE_P (parser->scope));
13462 template_p = class_scope_p && cp_parser_optional_template_keyword (parser);
13463
13464 /* Finally, look for the class-name. */
13465 type = cp_parser_class_name (parser,
13466 class_scope_p,
13467 template_p,
13468 typename_type,
13469 /*check_dependency_p=*/true,
13470 /*class_head_p=*/false,
13471 /*is_declaration=*/true);
13472
13473 if (type == error_mark_node)
13474 return error_mark_node;
13475
13476 return finish_base_specifier (TREE_TYPE (type), access, virtual_p);
13477 }
13478
13479 /* Exception handling [gram.exception] */
13480
13481 /* Parse an (optional) exception-specification.
13482
13483 exception-specification:
13484 throw ( type-id-list [opt] )
13485
13486 Returns a TREE_LIST representing the exception-specification. The
13487 TREE_VALUE of each node is a type. */
13488
13489 static tree
13490 cp_parser_exception_specification_opt (cp_parser* parser)
13491 {
13492 cp_token *token;
13493 tree type_id_list;
13494
13495 /* Peek at the next token. */
13496 token = cp_lexer_peek_token (parser->lexer);
13497 /* If it's not `throw', then there's no exception-specification. */
13498 if (!cp_parser_is_keyword (token, RID_THROW))
13499 return NULL_TREE;
13500
13501 /* Consume the `throw'. */
13502 cp_lexer_consume_token (parser->lexer);
13503
13504 /* Look for the `('. */
13505 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13506
13507 /* Peek at the next token. */
13508 token = cp_lexer_peek_token (parser->lexer);
13509 /* If it's not a `)', then there is a type-id-list. */
13510 if (token->type != CPP_CLOSE_PAREN)
13511 {
13512 const char *saved_message;
13513
13514 /* Types may not be defined in an exception-specification. */
13515 saved_message = parser->type_definition_forbidden_message;
13516 parser->type_definition_forbidden_message
13517 = "types may not be defined in an exception-specification";
13518 /* Parse the type-id-list. */
13519 type_id_list = cp_parser_type_id_list (parser);
13520 /* Restore the saved message. */
13521 parser->type_definition_forbidden_message = saved_message;
13522 }
13523 else
13524 type_id_list = empty_except_spec;
13525
13526 /* Look for the `)'. */
13527 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13528
13529 return type_id_list;
13530 }
13531
13532 /* Parse an (optional) type-id-list.
13533
13534 type-id-list:
13535 type-id
13536 type-id-list , type-id
13537
13538 Returns a TREE_LIST. The TREE_VALUE of each node is a TYPE,
13539 in the order that the types were presented. */
13540
13541 static tree
13542 cp_parser_type_id_list (cp_parser* parser)
13543 {
13544 tree types = NULL_TREE;
13545
13546 while (true)
13547 {
13548 cp_token *token;
13549 tree type;
13550
13551 /* Get the next type-id. */
13552 type = cp_parser_type_id (parser);
13553 /* Add it to the list. */
13554 types = add_exception_specifier (types, type, /*complain=*/1);
13555 /* Peek at the next token. */
13556 token = cp_lexer_peek_token (parser->lexer);
13557 /* If it is not a `,', we are done. */
13558 if (token->type != CPP_COMMA)
13559 break;
13560 /* Consume the `,'. */
13561 cp_lexer_consume_token (parser->lexer);
13562 }
13563
13564 return nreverse (types);
13565 }
13566
13567 /* Parse a try-block.
13568
13569 try-block:
13570 try compound-statement handler-seq */
13571
13572 static tree
13573 cp_parser_try_block (cp_parser* parser)
13574 {
13575 tree try_block;
13576
13577 cp_parser_require_keyword (parser, RID_TRY, "`try'");
13578 try_block = begin_try_block ();
13579 cp_parser_compound_statement (parser, NULL, true);
13580 finish_try_block (try_block);
13581 cp_parser_handler_seq (parser);
13582 finish_handler_sequence (try_block);
13583
13584 return try_block;
13585 }
13586
13587 /* Parse a function-try-block.
13588
13589 function-try-block:
13590 try ctor-initializer [opt] function-body handler-seq */
13591
13592 static bool
13593 cp_parser_function_try_block (cp_parser* parser)
13594 {
13595 tree try_block;
13596 bool ctor_initializer_p;
13597
13598 /* Look for the `try' keyword. */
13599 if (!cp_parser_require_keyword (parser, RID_TRY, "`try'"))
13600 return false;
13601 /* Let the rest of the front-end know where we are. */
13602 try_block = begin_function_try_block ();
13603 /* Parse the function-body. */
13604 ctor_initializer_p
13605 = cp_parser_ctor_initializer_opt_and_function_body (parser);
13606 /* We're done with the `try' part. */
13607 finish_function_try_block (try_block);
13608 /* Parse the handlers. */
13609 cp_parser_handler_seq (parser);
13610 /* We're done with the handlers. */
13611 finish_function_handler_sequence (try_block);
13612
13613 return ctor_initializer_p;
13614 }
13615
13616 /* Parse a handler-seq.
13617
13618 handler-seq:
13619 handler handler-seq [opt] */
13620
13621 static void
13622 cp_parser_handler_seq (cp_parser* parser)
13623 {
13624 while (true)
13625 {
13626 cp_token *token;
13627
13628 /* Parse the handler. */
13629 cp_parser_handler (parser);
13630 /* Peek at the next token. */
13631 token = cp_lexer_peek_token (parser->lexer);
13632 /* If it's not `catch' then there are no more handlers. */
13633 if (!cp_parser_is_keyword (token, RID_CATCH))
13634 break;
13635 }
13636 }
13637
13638 /* Parse a handler.
13639
13640 handler:
13641 catch ( exception-declaration ) compound-statement */
13642
13643 static void
13644 cp_parser_handler (cp_parser* parser)
13645 {
13646 tree handler;
13647 tree declaration;
13648
13649 cp_parser_require_keyword (parser, RID_CATCH, "`catch'");
13650 handler = begin_handler ();
13651 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13652 declaration = cp_parser_exception_declaration (parser);
13653 finish_handler_parms (declaration, handler);
13654 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13655 cp_parser_compound_statement (parser, NULL, false);
13656 finish_handler (handler);
13657 }
13658
13659 /* Parse an exception-declaration.
13660
13661 exception-declaration:
13662 type-specifier-seq declarator
13663 type-specifier-seq abstract-declarator
13664 type-specifier-seq
13665 ...
13666
13667 Returns a VAR_DECL for the declaration, or NULL_TREE if the
13668 ellipsis variant is used. */
13669
13670 static tree
13671 cp_parser_exception_declaration (cp_parser* parser)
13672 {
13673 tree decl;
13674 cp_decl_specifier_seq type_specifiers;
13675 cp_declarator *declarator;
13676 const char *saved_message;
13677
13678 /* If it's an ellipsis, it's easy to handle. */
13679 if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
13680 {
13681 /* Consume the `...' token. */
13682 cp_lexer_consume_token (parser->lexer);
13683 return NULL_TREE;
13684 }
13685
13686 /* Types may not be defined in exception-declarations. */
13687 saved_message = parser->type_definition_forbidden_message;
13688 parser->type_definition_forbidden_message
13689 = "types may not be defined in exception-declarations";
13690
13691 /* Parse the type-specifier-seq. */
13692 cp_parser_type_specifier_seq (parser, &type_specifiers);
13693 /* If it's a `)', then there is no declarator. */
13694 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
13695 declarator = NULL;
13696 else
13697 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER,
13698 /*ctor_dtor_or_conv_p=*/NULL,
13699 /*parenthesized_p=*/NULL,
13700 /*member_p=*/false);
13701
13702 /* Restore the saved message. */
13703 parser->type_definition_forbidden_message = saved_message;
13704
13705 if (type_specifiers.any_specifiers_p)
13706 {
13707 decl = grokdeclarator (declarator, &type_specifiers, CATCHPARM, 1, NULL);
13708 if (decl == NULL_TREE)
13709 error ("invalid catch parameter");
13710 }
13711 else
13712 decl = NULL_TREE;
13713
13714 return decl;
13715 }
13716
13717 /* Parse a throw-expression.
13718
13719 throw-expression:
13720 throw assignment-expression [opt]
13721
13722 Returns a THROW_EXPR representing the throw-expression. */
13723
13724 static tree
13725 cp_parser_throw_expression (cp_parser* parser)
13726 {
13727 tree expression;
13728 cp_token* token;
13729
13730 cp_parser_require_keyword (parser, RID_THROW, "`throw'");
13731 token = cp_lexer_peek_token (parser->lexer);
13732 /* Figure out whether or not there is an assignment-expression
13733 following the "throw" keyword. */
13734 if (token->type == CPP_COMMA
13735 || token->type == CPP_SEMICOLON
13736 || token->type == CPP_CLOSE_PAREN
13737 || token->type == CPP_CLOSE_SQUARE
13738 || token->type == CPP_CLOSE_BRACE
13739 || token->type == CPP_COLON)
13740 expression = NULL_TREE;
13741 else
13742 expression = cp_parser_assignment_expression (parser);
13743
13744 return build_throw (expression);
13745 }
13746
13747 /* GNU Extensions */
13748
13749 /* Parse an (optional) asm-specification.
13750
13751 asm-specification:
13752 asm ( string-literal )
13753
13754 If the asm-specification is present, returns a STRING_CST
13755 corresponding to the string-literal. Otherwise, returns
13756 NULL_TREE. */
13757
13758 static tree
13759 cp_parser_asm_specification_opt (cp_parser* parser)
13760 {
13761 cp_token *token;
13762 tree asm_specification;
13763
13764 /* Peek at the next token. */
13765 token = cp_lexer_peek_token (parser->lexer);
13766 /* If the next token isn't the `asm' keyword, then there's no
13767 asm-specification. */
13768 if (!cp_parser_is_keyword (token, RID_ASM))
13769 return NULL_TREE;
13770
13771 /* Consume the `asm' token. */
13772 cp_lexer_consume_token (parser->lexer);
13773 /* Look for the `('. */
13774 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13775
13776 /* Look for the string-literal. */
13777 asm_specification = cp_parser_string_literal (parser, false, false);
13778
13779 /* Look for the `)'. */
13780 cp_parser_require (parser, CPP_CLOSE_PAREN, "`('");
13781
13782 return asm_specification;
13783 }
13784
13785 /* Parse an asm-operand-list.
13786
13787 asm-operand-list:
13788 asm-operand
13789 asm-operand-list , asm-operand
13790
13791 asm-operand:
13792 string-literal ( expression )
13793 [ string-literal ] string-literal ( expression )
13794
13795 Returns a TREE_LIST representing the operands. The TREE_VALUE of
13796 each node is the expression. The TREE_PURPOSE is itself a
13797 TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed
13798 string-literal (or NULL_TREE if not present) and whose TREE_VALUE
13799 is a STRING_CST for the string literal before the parenthesis. */
13800
13801 static tree
13802 cp_parser_asm_operand_list (cp_parser* parser)
13803 {
13804 tree asm_operands = NULL_TREE;
13805
13806 while (true)
13807 {
13808 tree string_literal;
13809 tree expression;
13810 tree name;
13811
13812 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
13813 {
13814 /* Consume the `[' token. */
13815 cp_lexer_consume_token (parser->lexer);
13816 /* Read the operand name. */
13817 name = cp_parser_identifier (parser);
13818 if (name != error_mark_node)
13819 name = build_string (IDENTIFIER_LENGTH (name),
13820 IDENTIFIER_POINTER (name));
13821 /* Look for the closing `]'. */
13822 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
13823 }
13824 else
13825 name = NULL_TREE;
13826 /* Look for the string-literal. */
13827 string_literal = cp_parser_string_literal (parser, false, false);
13828
13829 /* Look for the `('. */
13830 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13831 /* Parse the expression. */
13832 expression = cp_parser_expression (parser);
13833 /* Look for the `)'. */
13834 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13835
13836 /* Add this operand to the list. */
13837 asm_operands = tree_cons (build_tree_list (name, string_literal),
13838 expression,
13839 asm_operands);
13840 /* If the next token is not a `,', there are no more
13841 operands. */
13842 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
13843 break;
13844 /* Consume the `,'. */
13845 cp_lexer_consume_token (parser->lexer);
13846 }
13847
13848 return nreverse (asm_operands);
13849 }
13850
13851 /* Parse an asm-clobber-list.
13852
13853 asm-clobber-list:
13854 string-literal
13855 asm-clobber-list , string-literal
13856
13857 Returns a TREE_LIST, indicating the clobbers in the order that they
13858 appeared. The TREE_VALUE of each node is a STRING_CST. */
13859
13860 static tree
13861 cp_parser_asm_clobber_list (cp_parser* parser)
13862 {
13863 tree clobbers = NULL_TREE;
13864
13865 while (true)
13866 {
13867 tree string_literal;
13868
13869 /* Look for the string literal. */
13870 string_literal = cp_parser_string_literal (parser, false, false);
13871 /* Add it to the list. */
13872 clobbers = tree_cons (NULL_TREE, string_literal, clobbers);
13873 /* If the next token is not a `,', then the list is
13874 complete. */
13875 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
13876 break;
13877 /* Consume the `,' token. */
13878 cp_lexer_consume_token (parser->lexer);
13879 }
13880
13881 return clobbers;
13882 }
13883
13884 /* Parse an (optional) series of attributes.
13885
13886 attributes:
13887 attributes attribute
13888
13889 attribute:
13890 __attribute__ (( attribute-list [opt] ))
13891
13892 The return value is as for cp_parser_attribute_list. */
13893
13894 static tree
13895 cp_parser_attributes_opt (cp_parser* parser)
13896 {
13897 tree attributes = NULL_TREE;
13898
13899 while (true)
13900 {
13901 cp_token *token;
13902 tree attribute_list;
13903
13904 /* Peek at the next token. */
13905 token = cp_lexer_peek_token (parser->lexer);
13906 /* If it's not `__attribute__', then we're done. */
13907 if (token->keyword != RID_ATTRIBUTE)
13908 break;
13909
13910 /* Consume the `__attribute__' keyword. */
13911 cp_lexer_consume_token (parser->lexer);
13912 /* Look for the two `(' tokens. */
13913 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13914 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13915
13916 /* Peek at the next token. */
13917 token = cp_lexer_peek_token (parser->lexer);
13918 if (token->type != CPP_CLOSE_PAREN)
13919 /* Parse the attribute-list. */
13920 attribute_list = cp_parser_attribute_list (parser);
13921 else
13922 /* If the next token is a `)', then there is no attribute
13923 list. */
13924 attribute_list = NULL;
13925
13926 /* Look for the two `)' tokens. */
13927 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13928 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13929
13930 /* Add these new attributes to the list. */
13931 attributes = chainon (attributes, attribute_list);
13932 }
13933
13934 return attributes;
13935 }
13936
13937 /* Parse an attribute-list.
13938
13939 attribute-list:
13940 attribute
13941 attribute-list , attribute
13942
13943 attribute:
13944 identifier
13945 identifier ( identifier )
13946 identifier ( identifier , expression-list )
13947 identifier ( expression-list )
13948
13949 Returns a TREE_LIST. Each node corresponds to an attribute. THe
13950 TREE_PURPOSE of each node is the identifier indicating which
13951 attribute is in use. The TREE_VALUE represents the arguments, if
13952 any. */
13953
13954 static tree
13955 cp_parser_attribute_list (cp_parser* parser)
13956 {
13957 tree attribute_list = NULL_TREE;
13958 bool save_translate_strings_p = parser->translate_strings_p;
13959
13960 parser->translate_strings_p = false;
13961 while (true)
13962 {
13963 cp_token *token;
13964 tree identifier;
13965 tree attribute;
13966
13967 /* Look for the identifier. We also allow keywords here; for
13968 example `__attribute__ ((const))' is legal. */
13969 token = cp_lexer_peek_token (parser->lexer);
13970 if (token->type != CPP_NAME
13971 && token->type != CPP_KEYWORD)
13972 return error_mark_node;
13973 /* Consume the token. */
13974 token = cp_lexer_consume_token (parser->lexer);
13975
13976 /* Save away the identifier that indicates which attribute this is. */
13977 identifier = token->value;
13978 attribute = build_tree_list (identifier, NULL_TREE);
13979
13980 /* Peek at the next token. */
13981 token = cp_lexer_peek_token (parser->lexer);
13982 /* If it's an `(', then parse the attribute arguments. */
13983 if (token->type == CPP_OPEN_PAREN)
13984 {
13985 tree arguments;
13986
13987 arguments = (cp_parser_parenthesized_expression_list
13988 (parser, true, /*non_constant_p=*/NULL));
13989 /* Save the identifier and arguments away. */
13990 TREE_VALUE (attribute) = arguments;
13991 }
13992
13993 /* Add this attribute to the list. */
13994 TREE_CHAIN (attribute) = attribute_list;
13995 attribute_list = attribute;
13996
13997 /* Now, look for more attributes. */
13998 token = cp_lexer_peek_token (parser->lexer);
13999 /* If the next token isn't a `,', we're done. */
14000 if (token->type != CPP_COMMA)
14001 break;
14002
14003 /* Consume the comma and keep going. */
14004 cp_lexer_consume_token (parser->lexer);
14005 }
14006 parser->translate_strings_p = save_translate_strings_p;
14007
14008 /* We built up the list in reverse order. */
14009 return nreverse (attribute_list);
14010 }
14011
14012 /* Parse an optional `__extension__' keyword. Returns TRUE if it is
14013 present, and FALSE otherwise. *SAVED_PEDANTIC is set to the
14014 current value of the PEDANTIC flag, regardless of whether or not
14015 the `__extension__' keyword is present. The caller is responsible
14016 for restoring the value of the PEDANTIC flag. */
14017
14018 static bool
14019 cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic)
14020 {
14021 /* Save the old value of the PEDANTIC flag. */
14022 *saved_pedantic = pedantic;
14023
14024 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION))
14025 {
14026 /* Consume the `__extension__' token. */
14027 cp_lexer_consume_token (parser->lexer);
14028 /* We're not being pedantic while the `__extension__' keyword is
14029 in effect. */
14030 pedantic = 0;
14031
14032 return true;
14033 }
14034
14035 return false;
14036 }
14037
14038 /* Parse a label declaration.
14039
14040 label-declaration:
14041 __label__ label-declarator-seq ;
14042
14043 label-declarator-seq:
14044 identifier , label-declarator-seq
14045 identifier */
14046
14047 static void
14048 cp_parser_label_declaration (cp_parser* parser)
14049 {
14050 /* Look for the `__label__' keyword. */
14051 cp_parser_require_keyword (parser, RID_LABEL, "`__label__'");
14052
14053 while (true)
14054 {
14055 tree identifier;
14056
14057 /* Look for an identifier. */
14058 identifier = cp_parser_identifier (parser);
14059 /* Declare it as a lobel. */
14060 finish_label_decl (identifier);
14061 /* If the next token is a `;', stop. */
14062 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
14063 break;
14064 /* Look for the `,' separating the label declarations. */
14065 cp_parser_require (parser, CPP_COMMA, "`,'");
14066 }
14067
14068 /* Look for the final `;'. */
14069 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
14070 }
14071
14072 /* Support Functions */
14073
14074 /* Looks up NAME in the current scope, as given by PARSER->SCOPE.
14075 NAME should have one of the representations used for an
14076 id-expression. If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE
14077 is returned. If PARSER->SCOPE is a dependent type, then a
14078 SCOPE_REF is returned.
14079
14080 If NAME is a TEMPLATE_ID_EXPR, then it will be immediately
14081 returned; the name was already resolved when the TEMPLATE_ID_EXPR
14082 was formed. Abstractly, such entities should not be passed to this
14083 function, because they do not need to be looked up, but it is
14084 simpler to check for this special case here, rather than at the
14085 call-sites.
14086
14087 In cases not explicitly covered above, this function returns a
14088 DECL, OVERLOAD, or baselink representing the result of the lookup.
14089 If there was no entity with the indicated NAME, the ERROR_MARK_NODE
14090 is returned.
14091
14092 If TAG_TYPE is not NONE_TYPE, it indicates an explicit type keyword
14093 (e.g., "struct") that was used. In that case bindings that do not
14094 refer to types are ignored.
14095
14096 If IS_TEMPLATE is TRUE, bindings that do not refer to templates are
14097 ignored.
14098
14099 If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces
14100 are ignored.
14101
14102 If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent
14103 types.
14104
14105 If AMBIGUOUS_P is non-NULL, it is set to true if name-lookup
14106 results in an ambiguity, and false otherwise. */
14107
14108 static tree
14109 cp_parser_lookup_name (cp_parser *parser, tree name,
14110 enum tag_types tag_type,
14111 bool is_template, bool is_namespace,
14112 bool check_dependency,
14113 bool *ambiguous_p)
14114 {
14115 tree decl;
14116 tree object_type = parser->context->object_type;
14117
14118 /* Assume that the lookup will be unambiguous. */
14119 if (ambiguous_p)
14120 *ambiguous_p = false;
14121
14122 /* Now that we have looked up the name, the OBJECT_TYPE (if any) is
14123 no longer valid. Note that if we are parsing tentatively, and
14124 the parse fails, OBJECT_TYPE will be automatically restored. */
14125 parser->context->object_type = NULL_TREE;
14126
14127 if (name == error_mark_node)
14128 return error_mark_node;
14129
14130 /* A template-id has already been resolved; there is no lookup to
14131 do. */
14132 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
14133 return name;
14134 if (BASELINK_P (name))
14135 {
14136 gcc_assert (TREE_CODE (BASELINK_FUNCTIONS (name))
14137 == TEMPLATE_ID_EXPR);
14138 return name;
14139 }
14140
14141 /* A BIT_NOT_EXPR is used to represent a destructor. By this point,
14142 it should already have been checked to make sure that the name
14143 used matches the type being destroyed. */
14144 if (TREE_CODE (name) == BIT_NOT_EXPR)
14145 {
14146 tree type;
14147
14148 /* Figure out to which type this destructor applies. */
14149 if (parser->scope)
14150 type = parser->scope;
14151 else if (object_type)
14152 type = object_type;
14153 else
14154 type = current_class_type;
14155 /* If that's not a class type, there is no destructor. */
14156 if (!type || !CLASS_TYPE_P (type))
14157 return error_mark_node;
14158 if (!CLASSTYPE_DESTRUCTORS (type))
14159 return error_mark_node;
14160 /* If it was a class type, return the destructor. */
14161 return CLASSTYPE_DESTRUCTORS (type);
14162 }
14163
14164 /* By this point, the NAME should be an ordinary identifier. If
14165 the id-expression was a qualified name, the qualifying scope is
14166 stored in PARSER->SCOPE at this point. */
14167 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
14168
14169 /* Perform the lookup. */
14170 if (parser->scope)
14171 {
14172 bool dependent_p;
14173
14174 if (parser->scope == error_mark_node)
14175 return error_mark_node;
14176
14177 /* If the SCOPE is dependent, the lookup must be deferred until
14178 the template is instantiated -- unless we are explicitly
14179 looking up names in uninstantiated templates. Even then, we
14180 cannot look up the name if the scope is not a class type; it
14181 might, for example, be a template type parameter. */
14182 dependent_p = (TYPE_P (parser->scope)
14183 && !(parser->in_declarator_p
14184 && currently_open_class (parser->scope))
14185 && dependent_type_p (parser->scope));
14186 if ((check_dependency || !CLASS_TYPE_P (parser->scope))
14187 && dependent_p)
14188 {
14189 if (tag_type)
14190 {
14191 tree type;
14192
14193 /* The resolution to Core Issue 180 says that `struct
14194 A::B' should be considered a type-name, even if `A'
14195 is dependent. */
14196 type = make_typename_type (parser->scope, name, tag_type,
14197 /*complain=*/1);
14198 if (tag_type == enum_type)
14199 TYPENAME_IS_ENUM_P (type) = 1;
14200 else if (tag_type != typename_type)
14201 TYPENAME_IS_CLASS_P (type) = 1;
14202 decl = TYPE_NAME (type);
14203 }
14204 else if (is_template)
14205 decl = make_unbound_class_template (parser->scope,
14206 name, NULL_TREE,
14207 /*complain=*/1);
14208 else
14209 decl = build_nt (SCOPE_REF, parser->scope, name);
14210 }
14211 else
14212 {
14213 bool pop_p = false;
14214
14215 /* If PARSER->SCOPE is a dependent type, then it must be a
14216 class type, and we must not be checking dependencies;
14217 otherwise, we would have processed this lookup above. So
14218 that PARSER->SCOPE is not considered a dependent base by
14219 lookup_member, we must enter the scope here. */
14220 if (dependent_p)
14221 pop_p = push_scope (parser->scope);
14222 /* If the PARSER->SCOPE is a a template specialization, it
14223 may be instantiated during name lookup. In that case,
14224 errors may be issued. Even if we rollback the current
14225 tentative parse, those errors are valid. */
14226 decl = lookup_qualified_name (parser->scope, name,
14227 tag_type != none_type,
14228 /*complain=*/true);
14229 if (pop_p)
14230 pop_scope (parser->scope);
14231 }
14232 parser->qualifying_scope = parser->scope;
14233 parser->object_scope = NULL_TREE;
14234 }
14235 else if (object_type)
14236 {
14237 tree object_decl = NULL_TREE;
14238 /* Look up the name in the scope of the OBJECT_TYPE, unless the
14239 OBJECT_TYPE is not a class. */
14240 if (CLASS_TYPE_P (object_type))
14241 /* If the OBJECT_TYPE is a template specialization, it may
14242 be instantiated during name lookup. In that case, errors
14243 may be issued. Even if we rollback the current tentative
14244 parse, those errors are valid. */
14245 object_decl = lookup_member (object_type,
14246 name,
14247 /*protect=*/0,
14248 tag_type != none_type);
14249 /* Look it up in the enclosing context, too. */
14250 decl = lookup_name_real (name, tag_type != none_type,
14251 /*nonclass=*/0,
14252 /*block_p=*/true, is_namespace,
14253 /*flags=*/0);
14254 parser->object_scope = object_type;
14255 parser->qualifying_scope = NULL_TREE;
14256 if (object_decl)
14257 decl = object_decl;
14258 }
14259 else
14260 {
14261 decl = lookup_name_real (name, tag_type != none_type,
14262 /*nonclass=*/0,
14263 /*block_p=*/true, is_namespace,
14264 /*flags=*/0);
14265 parser->qualifying_scope = NULL_TREE;
14266 parser->object_scope = NULL_TREE;
14267 }
14268
14269 /* If the lookup failed, let our caller know. */
14270 if (!decl
14271 || decl == error_mark_node
14272 || (TREE_CODE (decl) == FUNCTION_DECL
14273 && DECL_ANTICIPATED (decl)))
14274 return error_mark_node;
14275
14276 /* If it's a TREE_LIST, the result of the lookup was ambiguous. */
14277 if (TREE_CODE (decl) == TREE_LIST)
14278 {
14279 if (ambiguous_p)
14280 *ambiguous_p = true;
14281 /* The error message we have to print is too complicated for
14282 cp_parser_error, so we incorporate its actions directly. */
14283 if (!cp_parser_simulate_error (parser))
14284 {
14285 error ("reference to %qD is ambiguous", name);
14286 print_candidates (decl);
14287 }
14288 return error_mark_node;
14289 }
14290
14291 gcc_assert (DECL_P (decl)
14292 || TREE_CODE (decl) == OVERLOAD
14293 || TREE_CODE (decl) == SCOPE_REF
14294 || TREE_CODE (decl) == UNBOUND_CLASS_TEMPLATE
14295 || BASELINK_P (decl));
14296
14297 /* If we have resolved the name of a member declaration, check to
14298 see if the declaration is accessible. When the name resolves to
14299 set of overloaded functions, accessibility is checked when
14300 overload resolution is done.
14301
14302 During an explicit instantiation, access is not checked at all,
14303 as per [temp.explicit]. */
14304 if (DECL_P (decl))
14305 check_accessibility_of_qualified_id (decl, object_type, parser->scope);
14306
14307 return decl;
14308 }
14309
14310 /* Like cp_parser_lookup_name, but for use in the typical case where
14311 CHECK_ACCESS is TRUE, IS_TYPE is FALSE, IS_TEMPLATE is FALSE,
14312 IS_NAMESPACE is FALSE, and CHECK_DEPENDENCY is TRUE. */
14313
14314 static tree
14315 cp_parser_lookup_name_simple (cp_parser* parser, tree name)
14316 {
14317 return cp_parser_lookup_name (parser, name,
14318 none_type,
14319 /*is_template=*/false,
14320 /*is_namespace=*/false,
14321 /*check_dependency=*/true,
14322 /*ambiguous_p=*/NULL);
14323 }
14324
14325 /* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in
14326 the current context, return the TYPE_DECL. If TAG_NAME_P is
14327 true, the DECL indicates the class being defined in a class-head,
14328 or declared in an elaborated-type-specifier.
14329
14330 Otherwise, return DECL. */
14331
14332 static tree
14333 cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p)
14334 {
14335 /* If the TEMPLATE_DECL is being declared as part of a class-head,
14336 the translation from TEMPLATE_DECL to TYPE_DECL occurs:
14337
14338 struct A {
14339 template <typename T> struct B;
14340 };
14341
14342 template <typename T> struct A::B {};
14343
14344 Similarly, in a elaborated-type-specifier:
14345
14346 namespace N { struct X{}; }
14347
14348 struct A {
14349 template <typename T> friend struct N::X;
14350 };
14351
14352 However, if the DECL refers to a class type, and we are in
14353 the scope of the class, then the name lookup automatically
14354 finds the TYPE_DECL created by build_self_reference rather
14355 than a TEMPLATE_DECL. For example, in:
14356
14357 template <class T> struct S {
14358 S s;
14359 };
14360
14361 there is no need to handle such case. */
14362
14363 if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p)
14364 return DECL_TEMPLATE_RESULT (decl);
14365
14366 return decl;
14367 }
14368
14369 /* If too many, or too few, template-parameter lists apply to the
14370 declarator, issue an error message. Returns TRUE if all went well,
14371 and FALSE otherwise. */
14372
14373 static bool
14374 cp_parser_check_declarator_template_parameters (cp_parser* parser,
14375 cp_declarator *declarator)
14376 {
14377 unsigned num_templates;
14378
14379 /* We haven't seen any classes that involve template parameters yet. */
14380 num_templates = 0;
14381
14382 switch (declarator->kind)
14383 {
14384 case cdk_id:
14385 if (TREE_CODE (declarator->u.id.name) == SCOPE_REF)
14386 {
14387 tree scope;
14388 tree member;
14389
14390 scope = TREE_OPERAND (declarator->u.id.name, 0);
14391 member = TREE_OPERAND (declarator->u.id.name, 1);
14392
14393 while (scope && CLASS_TYPE_P (scope))
14394 {
14395 /* You're supposed to have one `template <...>'
14396 for every template class, but you don't need one
14397 for a full specialization. For example:
14398
14399 template <class T> struct S{};
14400 template <> struct S<int> { void f(); };
14401 void S<int>::f () {}
14402
14403 is correct; there shouldn't be a `template <>' for
14404 the definition of `S<int>::f'. */
14405 if (CLASSTYPE_TEMPLATE_INFO (scope)
14406 && (CLASSTYPE_TEMPLATE_INSTANTIATION (scope)
14407 || uses_template_parms (CLASSTYPE_TI_ARGS (scope)))
14408 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope)))
14409 ++num_templates;
14410
14411 scope = TYPE_CONTEXT (scope);
14412 }
14413 }
14414
14415 /* If the DECLARATOR has the form `X<y>' then it uses one
14416 additional level of template parameters. */
14417 if (TREE_CODE (declarator->u.id.name) == TEMPLATE_ID_EXPR)
14418 ++num_templates;
14419
14420 return cp_parser_check_template_parameters (parser,
14421 num_templates);
14422
14423 case cdk_function:
14424 case cdk_array:
14425 case cdk_pointer:
14426 case cdk_reference:
14427 case cdk_ptrmem:
14428 return (cp_parser_check_declarator_template_parameters
14429 (parser, declarator->declarator));
14430
14431 case cdk_error:
14432 return true;
14433
14434 default:
14435 gcc_unreachable ();
14436 }
14437 return false;
14438 }
14439
14440 /* NUM_TEMPLATES were used in the current declaration. If that is
14441 invalid, return FALSE and issue an error messages. Otherwise,
14442 return TRUE. */
14443
14444 static bool
14445 cp_parser_check_template_parameters (cp_parser* parser,
14446 unsigned num_templates)
14447 {
14448 /* If there are more template classes than parameter lists, we have
14449 something like:
14450
14451 template <class T> void S<T>::R<T>::f (); */
14452 if (parser->num_template_parameter_lists < num_templates)
14453 {
14454 error ("too few template-parameter-lists");
14455 return false;
14456 }
14457 /* If there are the same number of template classes and parameter
14458 lists, that's OK. */
14459 if (parser->num_template_parameter_lists == num_templates)
14460 return true;
14461 /* If there are more, but only one more, then we are referring to a
14462 member template. That's OK too. */
14463 if (parser->num_template_parameter_lists == num_templates + 1)
14464 return true;
14465 /* Otherwise, there are too many template parameter lists. We have
14466 something like:
14467
14468 template <class T> template <class U> void S::f(); */
14469 error ("too many template-parameter-lists");
14470 return false;
14471 }
14472
14473 /* Parse an optional `::' token indicating that the following name is
14474 from the global namespace. If so, PARSER->SCOPE is set to the
14475 GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE,
14476 unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone.
14477 Returns the new value of PARSER->SCOPE, if the `::' token is
14478 present, and NULL_TREE otherwise. */
14479
14480 static tree
14481 cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p)
14482 {
14483 cp_token *token;
14484
14485 /* Peek at the next token. */
14486 token = cp_lexer_peek_token (parser->lexer);
14487 /* If we're looking at a `::' token then we're starting from the
14488 global namespace, not our current location. */
14489 if (token->type == CPP_SCOPE)
14490 {
14491 /* Consume the `::' token. */
14492 cp_lexer_consume_token (parser->lexer);
14493 /* Set the SCOPE so that we know where to start the lookup. */
14494 parser->scope = global_namespace;
14495 parser->qualifying_scope = global_namespace;
14496 parser->object_scope = NULL_TREE;
14497
14498 return parser->scope;
14499 }
14500 else if (!current_scope_valid_p)
14501 {
14502 parser->scope = NULL_TREE;
14503 parser->qualifying_scope = NULL_TREE;
14504 parser->object_scope = NULL_TREE;
14505 }
14506
14507 return NULL_TREE;
14508 }
14509
14510 /* Returns TRUE if the upcoming token sequence is the start of a
14511 constructor declarator. If FRIEND_P is true, the declarator is
14512 preceded by the `friend' specifier. */
14513
14514 static bool
14515 cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p)
14516 {
14517 bool constructor_p;
14518 tree type_decl = NULL_TREE;
14519 bool nested_name_p;
14520 cp_token *next_token;
14521
14522 /* The common case is that this is not a constructor declarator, so
14523 try to avoid doing lots of work if at all possible. It's not
14524 valid declare a constructor at function scope. */
14525 if (at_function_scope_p ())
14526 return false;
14527 /* And only certain tokens can begin a constructor declarator. */
14528 next_token = cp_lexer_peek_token (parser->lexer);
14529 if (next_token->type != CPP_NAME
14530 && next_token->type != CPP_SCOPE
14531 && next_token->type != CPP_NESTED_NAME_SPECIFIER
14532 && next_token->type != CPP_TEMPLATE_ID)
14533 return false;
14534
14535 /* Parse tentatively; we are going to roll back all of the tokens
14536 consumed here. */
14537 cp_parser_parse_tentatively (parser);
14538 /* Assume that we are looking at a constructor declarator. */
14539 constructor_p = true;
14540
14541 /* Look for the optional `::' operator. */
14542 cp_parser_global_scope_opt (parser,
14543 /*current_scope_valid_p=*/false);
14544 /* Look for the nested-name-specifier. */
14545 nested_name_p
14546 = (cp_parser_nested_name_specifier_opt (parser,
14547 /*typename_keyword_p=*/false,
14548 /*check_dependency_p=*/false,
14549 /*type_p=*/false,
14550 /*is_declaration=*/false)
14551 != NULL_TREE);
14552 /* Outside of a class-specifier, there must be a
14553 nested-name-specifier. */
14554 if (!nested_name_p &&
14555 (!at_class_scope_p () || !TYPE_BEING_DEFINED (current_class_type)
14556 || friend_p))
14557 constructor_p = false;
14558 /* If we still think that this might be a constructor-declarator,
14559 look for a class-name. */
14560 if (constructor_p)
14561 {
14562 /* If we have:
14563
14564 template <typename T> struct S { S(); };
14565 template <typename T> S<T>::S ();
14566
14567 we must recognize that the nested `S' names a class.
14568 Similarly, for:
14569
14570 template <typename T> S<T>::S<T> ();
14571
14572 we must recognize that the nested `S' names a template. */
14573 type_decl = cp_parser_class_name (parser,
14574 /*typename_keyword_p=*/false,
14575 /*template_keyword_p=*/false,
14576 none_type,
14577 /*check_dependency_p=*/false,
14578 /*class_head_p=*/false,
14579 /*is_declaration=*/false);
14580 /* If there was no class-name, then this is not a constructor. */
14581 constructor_p = !cp_parser_error_occurred (parser);
14582 }
14583
14584 /* If we're still considering a constructor, we have to see a `(',
14585 to begin the parameter-declaration-clause, followed by either a
14586 `)', an `...', or a decl-specifier. We need to check for a
14587 type-specifier to avoid being fooled into thinking that:
14588
14589 S::S (f) (int);
14590
14591 is a constructor. (It is actually a function named `f' that
14592 takes one parameter (of type `int') and returns a value of type
14593 `S::S'. */
14594 if (constructor_p
14595 && cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
14596 {
14597 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)
14598 && cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS)
14599 /* A parameter declaration begins with a decl-specifier,
14600 which is either the "attribute" keyword, a storage class
14601 specifier, or (usually) a type-specifier. */
14602 && !cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE)
14603 && !cp_parser_storage_class_specifier_opt (parser))
14604 {
14605 tree type;
14606 bool pop_p = false;
14607 unsigned saved_num_template_parameter_lists;
14608
14609 /* Names appearing in the type-specifier should be looked up
14610 in the scope of the class. */
14611 if (current_class_type)
14612 type = NULL_TREE;
14613 else
14614 {
14615 type = TREE_TYPE (type_decl);
14616 if (TREE_CODE (type) == TYPENAME_TYPE)
14617 {
14618 type = resolve_typename_type (type,
14619 /*only_current_p=*/false);
14620 if (type == error_mark_node)
14621 {
14622 cp_parser_abort_tentative_parse (parser);
14623 return false;
14624 }
14625 }
14626 pop_p = push_scope (type);
14627 }
14628
14629 /* Inside the constructor parameter list, surrounding
14630 template-parameter-lists do not apply. */
14631 saved_num_template_parameter_lists
14632 = parser->num_template_parameter_lists;
14633 parser->num_template_parameter_lists = 0;
14634
14635 /* Look for the type-specifier. */
14636 cp_parser_type_specifier (parser,
14637 CP_PARSER_FLAGS_NONE,
14638 /*decl_specs=*/NULL,
14639 /*is_declarator=*/true,
14640 /*declares_class_or_enum=*/NULL,
14641 /*is_cv_qualifier=*/NULL);
14642
14643 parser->num_template_parameter_lists
14644 = saved_num_template_parameter_lists;
14645
14646 /* Leave the scope of the class. */
14647 if (pop_p)
14648 pop_scope (type);
14649
14650 constructor_p = !cp_parser_error_occurred (parser);
14651 }
14652 }
14653 else
14654 constructor_p = false;
14655 /* We did not really want to consume any tokens. */
14656 cp_parser_abort_tentative_parse (parser);
14657
14658 return constructor_p;
14659 }
14660
14661 /* Parse the definition of the function given by the DECL_SPECIFIERS,
14662 ATTRIBUTES, and DECLARATOR. The access checks have been deferred;
14663 they must be performed once we are in the scope of the function.
14664
14665 Returns the function defined. */
14666
14667 static tree
14668 cp_parser_function_definition_from_specifiers_and_declarator
14669 (cp_parser* parser,
14670 cp_decl_specifier_seq *decl_specifiers,
14671 tree attributes,
14672 const cp_declarator *declarator)
14673 {
14674 tree fn;
14675 bool success_p;
14676
14677 /* Begin the function-definition. */
14678 success_p = start_function (decl_specifiers, declarator, attributes);
14679
14680 /* The things we're about to see are not directly qualified by any
14681 template headers we've seen thus far. */
14682 reset_specialization ();
14683
14684 /* If there were names looked up in the decl-specifier-seq that we
14685 did not check, check them now. We must wait until we are in the
14686 scope of the function to perform the checks, since the function
14687 might be a friend. */
14688 perform_deferred_access_checks ();
14689
14690 if (!success_p)
14691 {
14692 /* Skip the entire function. */
14693 error ("invalid function declaration");
14694 cp_parser_skip_to_end_of_block_or_statement (parser);
14695 fn = error_mark_node;
14696 }
14697 else
14698 fn = cp_parser_function_definition_after_declarator (parser,
14699 /*inline_p=*/false);
14700
14701 return fn;
14702 }
14703
14704 /* Parse the part of a function-definition that follows the
14705 declarator. INLINE_P is TRUE iff this function is an inline
14706 function defined with a class-specifier.
14707
14708 Returns the function defined. */
14709
14710 static tree
14711 cp_parser_function_definition_after_declarator (cp_parser* parser,
14712 bool inline_p)
14713 {
14714 tree fn;
14715 bool ctor_initializer_p = false;
14716 bool saved_in_unbraced_linkage_specification_p;
14717 unsigned saved_num_template_parameter_lists;
14718
14719 /* If the next token is `return', then the code may be trying to
14720 make use of the "named return value" extension that G++ used to
14721 support. */
14722 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN))
14723 {
14724 /* Consume the `return' keyword. */
14725 cp_lexer_consume_token (parser->lexer);
14726 /* Look for the identifier that indicates what value is to be
14727 returned. */
14728 cp_parser_identifier (parser);
14729 /* Issue an error message. */
14730 error ("named return values are no longer supported");
14731 /* Skip tokens until we reach the start of the function body. */
14732 while (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)
14733 && cp_lexer_next_token_is_not (parser->lexer, CPP_EOF))
14734 cp_lexer_consume_token (parser->lexer);
14735 }
14736 /* The `extern' in `extern "C" void f () { ... }' does not apply to
14737 anything declared inside `f'. */
14738 saved_in_unbraced_linkage_specification_p
14739 = parser->in_unbraced_linkage_specification_p;
14740 parser->in_unbraced_linkage_specification_p = false;
14741 /* Inside the function, surrounding template-parameter-lists do not
14742 apply. */
14743 saved_num_template_parameter_lists
14744 = parser->num_template_parameter_lists;
14745 parser->num_template_parameter_lists = 0;
14746 /* If the next token is `try', then we are looking at a
14747 function-try-block. */
14748 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
14749 ctor_initializer_p = cp_parser_function_try_block (parser);
14750 /* A function-try-block includes the function-body, so we only do
14751 this next part if we're not processing a function-try-block. */
14752 else
14753 ctor_initializer_p
14754 = cp_parser_ctor_initializer_opt_and_function_body (parser);
14755
14756 /* Finish the function. */
14757 fn = finish_function ((ctor_initializer_p ? 1 : 0) |
14758 (inline_p ? 2 : 0));
14759 /* Generate code for it, if necessary. */
14760 expand_or_defer_fn (fn);
14761 /* Restore the saved values. */
14762 parser->in_unbraced_linkage_specification_p
14763 = saved_in_unbraced_linkage_specification_p;
14764 parser->num_template_parameter_lists
14765 = saved_num_template_parameter_lists;
14766
14767 return fn;
14768 }
14769
14770 /* Parse a template-declaration, assuming that the `export' (and
14771 `extern') keywords, if present, has already been scanned. MEMBER_P
14772 is as for cp_parser_template_declaration. */
14773
14774 static void
14775 cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
14776 {
14777 tree decl = NULL_TREE;
14778 tree parameter_list;
14779 bool friend_p = false;
14780
14781 /* Look for the `template' keyword. */
14782 if (!cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'"))
14783 return;
14784
14785 /* And the `<'. */
14786 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
14787 return;
14788
14789 /* If the next token is `>', then we have an invalid
14790 specialization. Rather than complain about an invalid template
14791 parameter, issue an error message here. */
14792 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
14793 {
14794 cp_parser_error (parser, "invalid explicit specialization");
14795 begin_specialization ();
14796 parameter_list = NULL_TREE;
14797 }
14798 else
14799 {
14800 /* Parse the template parameters. */
14801 begin_template_parm_list ();
14802 parameter_list = cp_parser_template_parameter_list (parser);
14803 parameter_list = end_template_parm_list (parameter_list);
14804 }
14805
14806 /* Look for the `>'. */
14807 cp_parser_skip_until_found (parser, CPP_GREATER, "`>'");
14808 /* We just processed one more parameter list. */
14809 ++parser->num_template_parameter_lists;
14810 /* If the next token is `template', there are more template
14811 parameters. */
14812 if (cp_lexer_next_token_is_keyword (parser->lexer,
14813 RID_TEMPLATE))
14814 cp_parser_template_declaration_after_export (parser, member_p);
14815 else
14816 {
14817 /* There are no access checks when parsing a template, as we do not
14818 know if a specialization will be a friend. */
14819 push_deferring_access_checks (dk_no_check);
14820
14821 decl = cp_parser_single_declaration (parser,
14822 member_p,
14823 &friend_p);
14824
14825 pop_deferring_access_checks ();
14826
14827 /* If this is a member template declaration, let the front
14828 end know. */
14829 if (member_p && !friend_p && decl)
14830 {
14831 if (TREE_CODE (decl) == TYPE_DECL)
14832 cp_parser_check_access_in_redeclaration (decl);
14833
14834 decl = finish_member_template_decl (decl);
14835 }
14836 else if (friend_p && decl && TREE_CODE (decl) == TYPE_DECL)
14837 make_friend_class (current_class_type, TREE_TYPE (decl),
14838 /*complain=*/true);
14839 }
14840 /* We are done with the current parameter list. */
14841 --parser->num_template_parameter_lists;
14842
14843 /* Finish up. */
14844 finish_template_decl (parameter_list);
14845
14846 /* Register member declarations. */
14847 if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
14848 finish_member_declaration (decl);
14849
14850 /* If DECL is a function template, we must return to parse it later.
14851 (Even though there is no definition, there might be default
14852 arguments that need handling.) */
14853 if (member_p && decl
14854 && (TREE_CODE (decl) == FUNCTION_DECL
14855 || DECL_FUNCTION_TEMPLATE_P (decl)))
14856 TREE_VALUE (parser->unparsed_functions_queues)
14857 = tree_cons (NULL_TREE, decl,
14858 TREE_VALUE (parser->unparsed_functions_queues));
14859 }
14860
14861 /* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or
14862 `function-definition' sequence. MEMBER_P is true, this declaration
14863 appears in a class scope.
14864
14865 Returns the DECL for the declared entity. If FRIEND_P is non-NULL,
14866 *FRIEND_P is set to TRUE iff the declaration is a friend. */
14867
14868 static tree
14869 cp_parser_single_declaration (cp_parser* parser,
14870 bool member_p,
14871 bool* friend_p)
14872 {
14873 int declares_class_or_enum;
14874 tree decl = NULL_TREE;
14875 cp_decl_specifier_seq decl_specifiers;
14876 bool function_definition_p = false;
14877
14878 /* This function is only used when processing a template
14879 declaration. */
14880 gcc_assert (innermost_scope_kind () == sk_template_parms
14881 || innermost_scope_kind () == sk_template_spec);
14882
14883 /* Defer access checks until we know what is being declared. */
14884 push_deferring_access_checks (dk_deferred);
14885
14886 /* Try the `decl-specifier-seq [opt] init-declarator [opt]'
14887 alternative. */
14888 cp_parser_decl_specifier_seq (parser,
14889 CP_PARSER_FLAGS_OPTIONAL,
14890 &decl_specifiers,
14891 &declares_class_or_enum);
14892 if (friend_p)
14893 *friend_p = cp_parser_friend_p (&decl_specifiers);
14894
14895 /* There are no template typedefs. */
14896 if (decl_specifiers.specs[(int) ds_typedef])
14897 {
14898 error ("template declaration of %qs", "typedef");
14899 decl = error_mark_node;
14900 }
14901
14902 /* Gather up the access checks that occurred the
14903 decl-specifier-seq. */
14904 stop_deferring_access_checks ();
14905
14906 /* Check for the declaration of a template class. */
14907 if (declares_class_or_enum)
14908 {
14909 if (cp_parser_declares_only_class_p (parser))
14910 {
14911 decl = shadow_tag (&decl_specifiers);
14912
14913 /* In this case:
14914
14915 struct C {
14916 friend template <typename T> struct A<T>::B;
14917 };
14918
14919 A<T>::B will be represented by a TYPENAME_TYPE, and
14920 therefore not recognized by shadow_tag. */
14921 if (friend_p && *friend_p
14922 && !decl
14923 && decl_specifiers.type
14924 && TYPE_P (decl_specifiers.type))
14925 decl = decl_specifiers.type;
14926
14927 if (decl && decl != error_mark_node)
14928 decl = TYPE_NAME (decl);
14929 else
14930 decl = error_mark_node;
14931 }
14932 }
14933 /* If it's not a template class, try for a template function. If
14934 the next token is a `;', then this declaration does not declare
14935 anything. But, if there were errors in the decl-specifiers, then
14936 the error might well have come from an attempted class-specifier.
14937 In that case, there's no need to warn about a missing declarator. */
14938 if (!decl
14939 && (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
14940 || decl_specifiers.type != error_mark_node))
14941 decl = cp_parser_init_declarator (parser,
14942 &decl_specifiers,
14943 /*function_definition_allowed_p=*/true,
14944 member_p,
14945 declares_class_or_enum,
14946 &function_definition_p);
14947
14948 pop_deferring_access_checks ();
14949
14950 /* Clear any current qualification; whatever comes next is the start
14951 of something new. */
14952 parser->scope = NULL_TREE;
14953 parser->qualifying_scope = NULL_TREE;
14954 parser->object_scope = NULL_TREE;
14955 /* Look for a trailing `;' after the declaration. */
14956 if (!function_definition_p
14957 && (decl == error_mark_node
14958 || !cp_parser_require (parser, CPP_SEMICOLON, "`;'")))
14959 cp_parser_skip_to_end_of_block_or_statement (parser);
14960
14961 return decl;
14962 }
14963
14964 /* Parse a cast-expression that is not the operand of a unary "&". */
14965
14966 static tree
14967 cp_parser_simple_cast_expression (cp_parser *parser)
14968 {
14969 return cp_parser_cast_expression (parser, /*address_p=*/false);
14970 }
14971
14972 /* Parse a functional cast to TYPE. Returns an expression
14973 representing the cast. */
14974
14975 static tree
14976 cp_parser_functional_cast (cp_parser* parser, tree type)
14977 {
14978 tree expression_list;
14979 tree cast;
14980
14981 expression_list
14982 = cp_parser_parenthesized_expression_list (parser, false,
14983 /*non_constant_p=*/NULL);
14984
14985 cast = build_functional_cast (type, expression_list);
14986 /* [expr.const]/1: In an integral constant expression "only type
14987 conversions to integral or enumeration type can be used". */
14988 if (cast != error_mark_node && !type_dependent_expression_p (type)
14989 && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (type)))
14990 {
14991 if (cp_parser_non_integral_constant_expression
14992 (parser, "a call to a constructor"))
14993 return error_mark_node;
14994 }
14995 return cast;
14996 }
14997
14998 /* Save the tokens that make up the body of a member function defined
14999 in a class-specifier. The DECL_SPECIFIERS and DECLARATOR have
15000 already been parsed. The ATTRIBUTES are any GNU "__attribute__"
15001 specifiers applied to the declaration. Returns the FUNCTION_DECL
15002 for the member function. */
15003
15004 static tree
15005 cp_parser_save_member_function_body (cp_parser* parser,
15006 cp_decl_specifier_seq *decl_specifiers,
15007 cp_declarator *declarator,
15008 tree attributes)
15009 {
15010 cp_token *first;
15011 cp_token *last;
15012 tree fn;
15013
15014 /* Create the function-declaration. */
15015 fn = start_method (decl_specifiers, declarator, attributes);
15016 /* If something went badly wrong, bail out now. */
15017 if (fn == error_mark_node)
15018 {
15019 /* If there's a function-body, skip it. */
15020 if (cp_parser_token_starts_function_definition_p
15021 (cp_lexer_peek_token (parser->lexer)))
15022 cp_parser_skip_to_end_of_block_or_statement (parser);
15023 return error_mark_node;
15024 }
15025
15026 /* Remember it, if there default args to post process. */
15027 cp_parser_save_default_args (parser, fn);
15028
15029 /* Save away the tokens that make up the body of the
15030 function. */
15031 first = parser->lexer->next_token;
15032 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
15033 /* Handle function try blocks. */
15034 while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH))
15035 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
15036 last = parser->lexer->next_token;
15037
15038 /* Save away the inline definition; we will process it when the
15039 class is complete. */
15040 DECL_PENDING_INLINE_INFO (fn) = cp_token_cache_new (first, last);
15041 DECL_PENDING_INLINE_P (fn) = 1;
15042
15043 /* We need to know that this was defined in the class, so that
15044 friend templates are handled correctly. */
15045 DECL_INITIALIZED_IN_CLASS_P (fn) = 1;
15046
15047 /* We're done with the inline definition. */
15048 finish_method (fn);
15049
15050 /* Add FN to the queue of functions to be parsed later. */
15051 TREE_VALUE (parser->unparsed_functions_queues)
15052 = tree_cons (NULL_TREE, fn,
15053 TREE_VALUE (parser->unparsed_functions_queues));
15054
15055 return fn;
15056 }
15057
15058 /* Parse a template-argument-list, as well as the trailing ">" (but
15059 not the opening ">"). See cp_parser_template_argument_list for the
15060 return value. */
15061
15062 static tree
15063 cp_parser_enclosed_template_argument_list (cp_parser* parser)
15064 {
15065 tree arguments;
15066 tree saved_scope;
15067 tree saved_qualifying_scope;
15068 tree saved_object_scope;
15069 bool saved_greater_than_is_operator_p;
15070
15071 /* [temp.names]
15072
15073 When parsing a template-id, the first non-nested `>' is taken as
15074 the end of the template-argument-list rather than a greater-than
15075 operator. */
15076 saved_greater_than_is_operator_p
15077 = parser->greater_than_is_operator_p;
15078 parser->greater_than_is_operator_p = false;
15079 /* Parsing the argument list may modify SCOPE, so we save it
15080 here. */
15081 saved_scope = parser->scope;
15082 saved_qualifying_scope = parser->qualifying_scope;
15083 saved_object_scope = parser->object_scope;
15084 /* Parse the template-argument-list itself. */
15085 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15086 arguments = NULL_TREE;
15087 else
15088 arguments = cp_parser_template_argument_list (parser);
15089 /* Look for the `>' that ends the template-argument-list. If we find
15090 a '>>' instead, it's probably just a typo. */
15091 if (cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
15092 {
15093 if (!saved_greater_than_is_operator_p)
15094 {
15095 /* If we're in a nested template argument list, the '>>' has
15096 to be a typo for '> >'. We emit the error message, but we
15097 continue parsing and we push a '>' as next token, so that
15098 the argument list will be parsed correctly. Note that the
15099 global source location is still on the token before the
15100 '>>', so we need to say explicitly where we want it. */
15101 cp_token *token = cp_lexer_peek_token (parser->lexer);
15102 error ("%H%<>>%> should be %<> >%> "
15103 "within a nested template argument list",
15104 &token->location);
15105
15106 /* ??? Proper recovery should terminate two levels of
15107 template argument list here. */
15108 token->type = CPP_GREATER;
15109 }
15110 else
15111 {
15112 /* If this is not a nested template argument list, the '>>'
15113 is a typo for '>'. Emit an error message and continue.
15114 Same deal about the token location, but here we can get it
15115 right by consuming the '>>' before issuing the diagnostic. */
15116 cp_lexer_consume_token (parser->lexer);
15117 error ("spurious %<>>%>, use %<>%> to terminate "
15118 "a template argument list");
15119 }
15120 }
15121 else if (!cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15122 error ("missing %<>%> to terminate the template argument list");
15123 else
15124 /* It's what we want, a '>'; consume it. */
15125 cp_lexer_consume_token (parser->lexer);
15126 /* The `>' token might be a greater-than operator again now. */
15127 parser->greater_than_is_operator_p
15128 = saved_greater_than_is_operator_p;
15129 /* Restore the SAVED_SCOPE. */
15130 parser->scope = saved_scope;
15131 parser->qualifying_scope = saved_qualifying_scope;
15132 parser->object_scope = saved_object_scope;
15133
15134 return arguments;
15135 }
15136
15137 /* MEMBER_FUNCTION is a member function, or a friend. If default
15138 arguments, or the body of the function have not yet been parsed,
15139 parse them now. */
15140
15141 static void
15142 cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function)
15143 {
15144 /* If this member is a template, get the underlying
15145 FUNCTION_DECL. */
15146 if (DECL_FUNCTION_TEMPLATE_P (member_function))
15147 member_function = DECL_TEMPLATE_RESULT (member_function);
15148
15149 /* There should not be any class definitions in progress at this
15150 point; the bodies of members are only parsed outside of all class
15151 definitions. */
15152 gcc_assert (parser->num_classes_being_defined == 0);
15153 /* While we're parsing the member functions we might encounter more
15154 classes. We want to handle them right away, but we don't want
15155 them getting mixed up with functions that are currently in the
15156 queue. */
15157 parser->unparsed_functions_queues
15158 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15159
15160 /* Make sure that any template parameters are in scope. */
15161 maybe_begin_member_template_processing (member_function);
15162
15163 /* If the body of the function has not yet been parsed, parse it
15164 now. */
15165 if (DECL_PENDING_INLINE_P (member_function))
15166 {
15167 tree function_scope;
15168 cp_token_cache *tokens;
15169
15170 /* The function is no longer pending; we are processing it. */
15171 tokens = DECL_PENDING_INLINE_INFO (member_function);
15172 DECL_PENDING_INLINE_INFO (member_function) = NULL;
15173 DECL_PENDING_INLINE_P (member_function) = 0;
15174 /* If this was an inline function in a local class, enter the scope
15175 of the containing function. */
15176 function_scope = decl_function_context (member_function);
15177 if (function_scope)
15178 push_function_context_to (function_scope);
15179
15180 /* Push the body of the function onto the lexer stack. */
15181 cp_parser_push_lexer_for_tokens (parser, tokens);
15182
15183 /* Let the front end know that we going to be defining this
15184 function. */
15185 start_preparsed_function (member_function, NULL_TREE,
15186 SF_PRE_PARSED | SF_INCLASS_INLINE);
15187
15188 /* Now, parse the body of the function. */
15189 cp_parser_function_definition_after_declarator (parser,
15190 /*inline_p=*/true);
15191
15192 /* Leave the scope of the containing function. */
15193 if (function_scope)
15194 pop_function_context_from (function_scope);
15195 cp_parser_pop_lexer (parser);
15196 }
15197
15198 /* Remove any template parameters from the symbol table. */
15199 maybe_end_member_template_processing ();
15200
15201 /* Restore the queue. */
15202 parser->unparsed_functions_queues
15203 = TREE_CHAIN (parser->unparsed_functions_queues);
15204 }
15205
15206 /* If DECL contains any default args, remember it on the unparsed
15207 functions queue. */
15208
15209 static void
15210 cp_parser_save_default_args (cp_parser* parser, tree decl)
15211 {
15212 tree probe;
15213
15214 for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl));
15215 probe;
15216 probe = TREE_CHAIN (probe))
15217 if (TREE_PURPOSE (probe))
15218 {
15219 TREE_PURPOSE (parser->unparsed_functions_queues)
15220 = tree_cons (current_class_type, decl,
15221 TREE_PURPOSE (parser->unparsed_functions_queues));
15222 break;
15223 }
15224 return;
15225 }
15226
15227 /* FN is a FUNCTION_DECL which may contains a parameter with an
15228 unparsed DEFAULT_ARG. Parse the default args now. This function
15229 assumes that the current scope is the scope in which the default
15230 argument should be processed. */
15231
15232 static void
15233 cp_parser_late_parsing_default_args (cp_parser *parser, tree fn)
15234 {
15235 bool saved_local_variables_forbidden_p;
15236 tree parm;
15237
15238 /* While we're parsing the default args, we might (due to the
15239 statement expression extension) encounter more classes. We want
15240 to handle them right away, but we don't want them getting mixed
15241 up with default args that are currently in the queue. */
15242 parser->unparsed_functions_queues
15243 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15244
15245 /* Local variable names (and the `this' keyword) may not appear
15246 in a default argument. */
15247 saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
15248 parser->local_variables_forbidden_p = true;
15249
15250 for (parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
15251 parm;
15252 parm = TREE_CHAIN (parm))
15253 {
15254 cp_token_cache *tokens;
15255
15256 if (!TREE_PURPOSE (parm)
15257 || TREE_CODE (TREE_PURPOSE (parm)) != DEFAULT_ARG)
15258 continue;
15259
15260 /* Push the saved tokens for the default argument onto the parser's
15261 lexer stack. */
15262 tokens = DEFARG_TOKENS (TREE_PURPOSE (parm));
15263 cp_parser_push_lexer_for_tokens (parser, tokens);
15264
15265 /* Parse the assignment-expression. */
15266 TREE_PURPOSE (parm) = cp_parser_assignment_expression (parser);
15267
15268 /* If the token stream has not been completely used up, then
15269 there was extra junk after the end of the default
15270 argument. */
15271 if (!cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15272 cp_parser_error (parser, "expected %<,%>");
15273
15274 /* Revert to the main lexer. */
15275 cp_parser_pop_lexer (parser);
15276 }
15277
15278 /* Restore the state of local_variables_forbidden_p. */
15279 parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
15280
15281 /* Restore the queue. */
15282 parser->unparsed_functions_queues
15283 = TREE_CHAIN (parser->unparsed_functions_queues);
15284 }
15285
15286 /* Parse the operand of `sizeof' (or a similar operator). Returns
15287 either a TYPE or an expression, depending on the form of the
15288 input. The KEYWORD indicates which kind of expression we have
15289 encountered. */
15290
15291 static tree
15292 cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword)
15293 {
15294 static const char *format;
15295 tree expr = NULL_TREE;
15296 const char *saved_message;
15297 bool saved_integral_constant_expression_p;
15298
15299 /* Initialize FORMAT the first time we get here. */
15300 if (!format)
15301 format = "types may not be defined in '%s' expressions";
15302
15303 /* Types cannot be defined in a `sizeof' expression. Save away the
15304 old message. */
15305 saved_message = parser->type_definition_forbidden_message;
15306 /* And create the new one. */
15307 parser->type_definition_forbidden_message
15308 = xmalloc (strlen (format)
15309 + strlen (IDENTIFIER_POINTER (ridpointers[keyword]))
15310 + 1 /* `\0' */);
15311 sprintf ((char *) parser->type_definition_forbidden_message,
15312 format, IDENTIFIER_POINTER (ridpointers[keyword]));
15313
15314 /* The restrictions on constant-expressions do not apply inside
15315 sizeof expressions. */
15316 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
15317 parser->integral_constant_expression_p = false;
15318
15319 /* Do not actually evaluate the expression. */
15320 ++skip_evaluation;
15321 /* If it's a `(', then we might be looking at the type-id
15322 construction. */
15323 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
15324 {
15325 tree type;
15326 bool saved_in_type_id_in_expr_p;
15327
15328 /* We can't be sure yet whether we're looking at a type-id or an
15329 expression. */
15330 cp_parser_parse_tentatively (parser);
15331 /* Consume the `('. */
15332 cp_lexer_consume_token (parser->lexer);
15333 /* Parse the type-id. */
15334 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
15335 parser->in_type_id_in_expr_p = true;
15336 type = cp_parser_type_id (parser);
15337 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
15338 /* Now, look for the trailing `)'. */
15339 cp_parser_require (parser, CPP_CLOSE_PAREN, "%<)%>");
15340 /* If all went well, then we're done. */
15341 if (cp_parser_parse_definitely (parser))
15342 {
15343 cp_decl_specifier_seq decl_specs;
15344
15345 /* Build a trivial decl-specifier-seq. */
15346 clear_decl_specs (&decl_specs);
15347 decl_specs.type = type;
15348
15349 /* Call grokdeclarator to figure out what type this is. */
15350 expr = grokdeclarator (NULL,
15351 &decl_specs,
15352 TYPENAME,
15353 /*initialized=*/0,
15354 /*attrlist=*/NULL);
15355 }
15356 }
15357
15358 /* If the type-id production did not work out, then we must be
15359 looking at the unary-expression production. */
15360 if (!expr)
15361 expr = cp_parser_unary_expression (parser, /*address_p=*/false);
15362 /* Go back to evaluating expressions. */
15363 --skip_evaluation;
15364
15365 /* Free the message we created. */
15366 free ((char *) parser->type_definition_forbidden_message);
15367 /* And restore the old one. */
15368 parser->type_definition_forbidden_message = saved_message;
15369 parser->integral_constant_expression_p = saved_integral_constant_expression_p;
15370
15371 return expr;
15372 }
15373
15374 /* If the current declaration has no declarator, return true. */
15375
15376 static bool
15377 cp_parser_declares_only_class_p (cp_parser *parser)
15378 {
15379 /* If the next token is a `;' or a `,' then there is no
15380 declarator. */
15381 return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
15382 || cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
15383 }
15384
15385 /* Update the DECL_SPECS to reflect the STORAGE_CLASS. */
15386
15387 static void
15388 cp_parser_set_storage_class (cp_decl_specifier_seq *decl_specs,
15389 cp_storage_class storage_class)
15390 {
15391 if (decl_specs->storage_class != sc_none)
15392 decl_specs->multiple_storage_classes_p = true;
15393 else
15394 decl_specs->storage_class = storage_class;
15395 }
15396
15397 /* Update the DECL_SPECS to reflect the TYPE_SPEC. If USER_DEFINED_P
15398 is true, the type is a user-defined type; otherwise it is a
15399 built-in type specified by a keyword. */
15400
15401 static void
15402 cp_parser_set_decl_spec_type (cp_decl_specifier_seq *decl_specs,
15403 tree type_spec,
15404 bool user_defined_p)
15405 {
15406 decl_specs->any_specifiers_p = true;
15407
15408 /* If the user tries to redeclare bool or wchar_t (with, for
15409 example, in "typedef int wchar_t;") we remember that this is what
15410 happened. In system headers, we ignore these declarations so
15411 that G++ can work with system headers that are not C++-safe. */
15412 if (decl_specs->specs[(int) ds_typedef]
15413 && !user_defined_p
15414 && (type_spec == boolean_type_node
15415 || type_spec == wchar_type_node)
15416 && (decl_specs->type
15417 || decl_specs->specs[(int) ds_long]
15418 || decl_specs->specs[(int) ds_short]
15419 || decl_specs->specs[(int) ds_unsigned]
15420 || decl_specs->specs[(int) ds_signed]))
15421 {
15422 decl_specs->redefined_builtin_type = type_spec;
15423 if (!decl_specs->type)
15424 {
15425 decl_specs->type = type_spec;
15426 decl_specs->user_defined_type_p = false;
15427 }
15428 }
15429 else if (decl_specs->type)
15430 decl_specs->multiple_types_p = true;
15431 else
15432 {
15433 decl_specs->type = type_spec;
15434 decl_specs->user_defined_type_p = user_defined_p;
15435 decl_specs->redefined_builtin_type = NULL_TREE;
15436 }
15437 }
15438
15439 /* DECL_SPECIFIERS is the representation of a decl-specifier-seq.
15440 Returns TRUE iff `friend' appears among the DECL_SPECIFIERS. */
15441
15442 static bool
15443 cp_parser_friend_p (const cp_decl_specifier_seq *decl_specifiers)
15444 {
15445 return decl_specifiers->specs[(int) ds_friend] != 0;
15446 }
15447
15448 /* If the next token is of the indicated TYPE, consume it. Otherwise,
15449 issue an error message indicating that TOKEN_DESC was expected.
15450
15451 Returns the token consumed, if the token had the appropriate type.
15452 Otherwise, returns NULL. */
15453
15454 static cp_token *
15455 cp_parser_require (cp_parser* parser,
15456 enum cpp_ttype type,
15457 const char* token_desc)
15458 {
15459 if (cp_lexer_next_token_is (parser->lexer, type))
15460 return cp_lexer_consume_token (parser->lexer);
15461 else
15462 {
15463 /* Output the MESSAGE -- unless we're parsing tentatively. */
15464 if (!cp_parser_simulate_error (parser))
15465 {
15466 char *message = concat ("expected ", token_desc, NULL);
15467 cp_parser_error (parser, message);
15468 free (message);
15469 }
15470 return NULL;
15471 }
15472 }
15473
15474 /* Like cp_parser_require, except that tokens will be skipped until
15475 the desired token is found. An error message is still produced if
15476 the next token is not as expected. */
15477
15478 static void
15479 cp_parser_skip_until_found (cp_parser* parser,
15480 enum cpp_ttype type,
15481 const char* token_desc)
15482 {
15483 cp_token *token;
15484 unsigned nesting_depth = 0;
15485
15486 if (cp_parser_require (parser, type, token_desc))
15487 return;
15488
15489 /* Skip tokens until the desired token is found. */
15490 while (true)
15491 {
15492 /* Peek at the next token. */
15493 token = cp_lexer_peek_token (parser->lexer);
15494 /* If we've reached the token we want, consume it and
15495 stop. */
15496 if (token->type == type && !nesting_depth)
15497 {
15498 cp_lexer_consume_token (parser->lexer);
15499 return;
15500 }
15501 /* If we've run out of tokens, stop. */
15502 if (token->type == CPP_EOF)
15503 return;
15504 if (token->type == CPP_OPEN_BRACE
15505 || token->type == CPP_OPEN_PAREN
15506 || token->type == CPP_OPEN_SQUARE)
15507 ++nesting_depth;
15508 else if (token->type == CPP_CLOSE_BRACE
15509 || token->type == CPP_CLOSE_PAREN
15510 || token->type == CPP_CLOSE_SQUARE)
15511 {
15512 if (nesting_depth-- == 0)
15513 return;
15514 }
15515 /* Consume this token. */
15516 cp_lexer_consume_token (parser->lexer);
15517 }
15518 }
15519
15520 /* If the next token is the indicated keyword, consume it. Otherwise,
15521 issue an error message indicating that TOKEN_DESC was expected.
15522
15523 Returns the token consumed, if the token had the appropriate type.
15524 Otherwise, returns NULL. */
15525
15526 static cp_token *
15527 cp_parser_require_keyword (cp_parser* parser,
15528 enum rid keyword,
15529 const char* token_desc)
15530 {
15531 cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc);
15532
15533 if (token && token->keyword != keyword)
15534 {
15535 dyn_string_t error_msg;
15536
15537 /* Format the error message. */
15538 error_msg = dyn_string_new (0);
15539 dyn_string_append_cstr (error_msg, "expected ");
15540 dyn_string_append_cstr (error_msg, token_desc);
15541 cp_parser_error (parser, error_msg->s);
15542 dyn_string_delete (error_msg);
15543 return NULL;
15544 }
15545
15546 return token;
15547 }
15548
15549 /* Returns TRUE iff TOKEN is a token that can begin the body of a
15550 function-definition. */
15551
15552 static bool
15553 cp_parser_token_starts_function_definition_p (cp_token* token)
15554 {
15555 return (/* An ordinary function-body begins with an `{'. */
15556 token->type == CPP_OPEN_BRACE
15557 /* A ctor-initializer begins with a `:'. */
15558 || token->type == CPP_COLON
15559 /* A function-try-block begins with `try'. */
15560 || token->keyword == RID_TRY
15561 /* The named return value extension begins with `return'. */
15562 || token->keyword == RID_RETURN);
15563 }
15564
15565 /* Returns TRUE iff the next token is the ":" or "{" beginning a class
15566 definition. */
15567
15568 static bool
15569 cp_parser_next_token_starts_class_definition_p (cp_parser *parser)
15570 {
15571 cp_token *token;
15572
15573 token = cp_lexer_peek_token (parser->lexer);
15574 return (token->type == CPP_OPEN_BRACE || token->type == CPP_COLON);
15575 }
15576
15577 /* Returns TRUE iff the next token is the "," or ">" ending a
15578 template-argument. */
15579
15580 static bool
15581 cp_parser_next_token_ends_template_argument_p (cp_parser *parser)
15582 {
15583 cp_token *token;
15584
15585 token = cp_lexer_peek_token (parser->lexer);
15586 return (token->type == CPP_COMMA || token->type == CPP_GREATER);
15587 }
15588
15589 /* Returns TRUE iff the n-th token is a ">", or the n-th is a "[" and the
15590 (n+1)-th is a ":" (which is a possible digraph typo for "< ::"). */
15591
15592 static bool
15593 cp_parser_nth_token_starts_template_argument_list_p (cp_parser * parser,
15594 size_t n)
15595 {
15596 cp_token *token;
15597
15598 token = cp_lexer_peek_nth_token (parser->lexer, n);
15599 if (token->type == CPP_LESS)
15600 return true;
15601 /* Check for the sequence `<::' in the original code. It would be lexed as
15602 `[:', where `[' is a digraph, and there is no whitespace before
15603 `:'. */
15604 if (token->type == CPP_OPEN_SQUARE && token->flags & DIGRAPH)
15605 {
15606 cp_token *token2;
15607 token2 = cp_lexer_peek_nth_token (parser->lexer, n+1);
15608 if (token2->type == CPP_COLON && !(token2->flags & PREV_WHITE))
15609 return true;
15610 }
15611 return false;
15612 }
15613
15614 /* Returns the kind of tag indicated by TOKEN, if it is a class-key,
15615 or none_type otherwise. */
15616
15617 static enum tag_types
15618 cp_parser_token_is_class_key (cp_token* token)
15619 {
15620 switch (token->keyword)
15621 {
15622 case RID_CLASS:
15623 return class_type;
15624 case RID_STRUCT:
15625 return record_type;
15626 case RID_UNION:
15627 return union_type;
15628
15629 default:
15630 return none_type;
15631 }
15632 }
15633
15634 /* Issue an error message if the CLASS_KEY does not match the TYPE. */
15635
15636 static void
15637 cp_parser_check_class_key (enum tag_types class_key, tree type)
15638 {
15639 if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type))
15640 pedwarn ("%qs tag used in naming %q#T",
15641 class_key == union_type ? "union"
15642 : class_key == record_type ? "struct" : "class",
15643 type);
15644 }
15645
15646 /* Issue an error message if DECL is redeclared with different
15647 access than its original declaration [class.access.spec/3].
15648 This applies to nested classes and nested class templates.
15649 [class.mem/1]. */
15650
15651 static void
15652 cp_parser_check_access_in_redeclaration (tree decl)
15653 {
15654 if (!CLASS_TYPE_P (TREE_TYPE (decl)))
15655 return;
15656
15657 if ((TREE_PRIVATE (decl)
15658 != (current_access_specifier == access_private_node))
15659 || (TREE_PROTECTED (decl)
15660 != (current_access_specifier == access_protected_node)))
15661 error ("%qD redeclared with different access", decl);
15662 }
15663
15664 /* Look for the `template' keyword, as a syntactic disambiguator.
15665 Return TRUE iff it is present, in which case it will be
15666 consumed. */
15667
15668 static bool
15669 cp_parser_optional_template_keyword (cp_parser *parser)
15670 {
15671 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
15672 {
15673 /* The `template' keyword can only be used within templates;
15674 outside templates the parser can always figure out what is a
15675 template and what is not. */
15676 if (!processing_template_decl)
15677 {
15678 error ("%<template%> (as a disambiguator) is only allowed "
15679 "within templates");
15680 /* If this part of the token stream is rescanned, the same
15681 error message would be generated. So, we purge the token
15682 from the stream. */
15683 cp_lexer_purge_token (parser->lexer);
15684 return false;
15685 }
15686 else
15687 {
15688 /* Consume the `template' keyword. */
15689 cp_lexer_consume_token (parser->lexer);
15690 return true;
15691 }
15692 }
15693
15694 return false;
15695 }
15696
15697 /* The next token is a CPP_NESTED_NAME_SPECIFIER. Consume the token,
15698 set PARSER->SCOPE, and perform other related actions. */
15699
15700 static void
15701 cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser)
15702 {
15703 tree value;
15704 tree check;
15705
15706 /* Get the stored value. */
15707 value = cp_lexer_consume_token (parser->lexer)->value;
15708 /* Perform any access checks that were deferred. */
15709 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
15710 perform_or_defer_access_check (TREE_PURPOSE (check), TREE_VALUE (check));
15711 /* Set the scope from the stored value. */
15712 parser->scope = TREE_VALUE (value);
15713 parser->qualifying_scope = TREE_TYPE (value);
15714 parser->object_scope = NULL_TREE;
15715 }
15716
15717 /* Consume tokens up through a non-nested END token. */
15718
15719 static void
15720 cp_parser_cache_group (cp_parser *parser,
15721 enum cpp_ttype end,
15722 unsigned depth)
15723 {
15724 while (true)
15725 {
15726 cp_token *token;
15727
15728 /* Abort a parenthesized expression if we encounter a brace. */
15729 if ((end == CPP_CLOSE_PAREN || depth == 0)
15730 && cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
15731 return;
15732 /* If we've reached the end of the file, stop. */
15733 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15734 return;
15735 /* Consume the next token. */
15736 token = cp_lexer_consume_token (parser->lexer);
15737 /* See if it starts a new group. */
15738 if (token->type == CPP_OPEN_BRACE)
15739 {
15740 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, depth + 1);
15741 if (depth == 0)
15742 return;
15743 }
15744 else if (token->type == CPP_OPEN_PAREN)
15745 cp_parser_cache_group (parser, CPP_CLOSE_PAREN, depth + 1);
15746 else if (token->type == end)
15747 return;
15748 }
15749 }
15750
15751 /* Begin parsing tentatively. We always save tokens while parsing
15752 tentatively so that if the tentative parsing fails we can restore the
15753 tokens. */
15754
15755 static void
15756 cp_parser_parse_tentatively (cp_parser* parser)
15757 {
15758 /* Enter a new parsing context. */
15759 parser->context = cp_parser_context_new (parser->context);
15760 /* Begin saving tokens. */
15761 cp_lexer_save_tokens (parser->lexer);
15762 /* In order to avoid repetitive access control error messages,
15763 access checks are queued up until we are no longer parsing
15764 tentatively. */
15765 push_deferring_access_checks (dk_deferred);
15766 }
15767
15768 /* Commit to the currently active tentative parse. */
15769
15770 static void
15771 cp_parser_commit_to_tentative_parse (cp_parser* parser)
15772 {
15773 cp_parser_context *context;
15774 cp_lexer *lexer;
15775
15776 /* Mark all of the levels as committed. */
15777 lexer = parser->lexer;
15778 for (context = parser->context; context->next; context = context->next)
15779 {
15780 if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
15781 break;
15782 context->status = CP_PARSER_STATUS_KIND_COMMITTED;
15783 while (!cp_lexer_saving_tokens (lexer))
15784 lexer = lexer->next;
15785 cp_lexer_commit_tokens (lexer);
15786 }
15787 }
15788
15789 /* Abort the currently active tentative parse. All consumed tokens
15790 will be rolled back, and no diagnostics will be issued. */
15791
15792 static void
15793 cp_parser_abort_tentative_parse (cp_parser* parser)
15794 {
15795 cp_parser_simulate_error (parser);
15796 /* Now, pretend that we want to see if the construct was
15797 successfully parsed. */
15798 cp_parser_parse_definitely (parser);
15799 }
15800
15801 /* Stop parsing tentatively. If a parse error has occurred, restore the
15802 token stream. Otherwise, commit to the tokens we have consumed.
15803 Returns true if no error occurred; false otherwise. */
15804
15805 static bool
15806 cp_parser_parse_definitely (cp_parser* parser)
15807 {
15808 bool error_occurred;
15809 cp_parser_context *context;
15810
15811 /* Remember whether or not an error occurred, since we are about to
15812 destroy that information. */
15813 error_occurred = cp_parser_error_occurred (parser);
15814 /* Remove the topmost context from the stack. */
15815 context = parser->context;
15816 parser->context = context->next;
15817 /* If no parse errors occurred, commit to the tentative parse. */
15818 if (!error_occurred)
15819 {
15820 /* Commit to the tokens read tentatively, unless that was
15821 already done. */
15822 if (context->status != CP_PARSER_STATUS_KIND_COMMITTED)
15823 cp_lexer_commit_tokens (parser->lexer);
15824
15825 pop_to_parent_deferring_access_checks ();
15826 }
15827 /* Otherwise, if errors occurred, roll back our state so that things
15828 are just as they were before we began the tentative parse. */
15829 else
15830 {
15831 cp_lexer_rollback_tokens (parser->lexer);
15832 pop_deferring_access_checks ();
15833 }
15834 /* Add the context to the front of the free list. */
15835 context->next = cp_parser_context_free_list;
15836 cp_parser_context_free_list = context;
15837
15838 return !error_occurred;
15839 }
15840
15841 /* Returns true if we are parsing tentatively -- but have decided that
15842 we will stick with this tentative parse, even if errors occur. */
15843
15844 static bool
15845 cp_parser_committed_to_tentative_parse (cp_parser* parser)
15846 {
15847 return (cp_parser_parsing_tentatively (parser)
15848 && parser->context->status == CP_PARSER_STATUS_KIND_COMMITTED);
15849 }
15850
15851 /* Returns nonzero iff an error has occurred during the most recent
15852 tentative parse. */
15853
15854 static bool
15855 cp_parser_error_occurred (cp_parser* parser)
15856 {
15857 return (cp_parser_parsing_tentatively (parser)
15858 && parser->context->status == CP_PARSER_STATUS_KIND_ERROR);
15859 }
15860
15861 /* Returns nonzero if GNU extensions are allowed. */
15862
15863 static bool
15864 cp_parser_allow_gnu_extensions_p (cp_parser* parser)
15865 {
15866 return parser->allow_gnu_extensions_p;
15867 }
15868
15869 \f
15870 /* The parser. */
15871
15872 static GTY (()) cp_parser *the_parser;
15873
15874 /* External interface. */
15875
15876 /* Parse one entire translation unit. */
15877
15878 void
15879 c_parse_file (void)
15880 {
15881 bool error_occurred;
15882 static bool already_called = false;
15883
15884 if (already_called)
15885 {
15886 sorry ("inter-module optimizations not implemented for C++");
15887 return;
15888 }
15889 already_called = true;
15890
15891 the_parser = cp_parser_new ();
15892 push_deferring_access_checks (flag_access_control
15893 ? dk_no_deferred : dk_no_check);
15894 error_occurred = cp_parser_translation_unit (the_parser);
15895 the_parser = NULL;
15896 }
15897
15898 /* This variable must be provided by every front end. */
15899
15900 int yydebug;
15901
15902 #include "gt-cp-parser.h"