]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/parser.c
re PR c++/18095 (ICE in cp_lexer_consume_token on missing ";")
[thirdparty/gcc.git] / gcc / cp / parser.c
1 /* C++ Parser.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Written by Mark Mitchell <mark@codesourcery.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "dyn-string.h"
27 #include "varray.h"
28 #include "cpplib.h"
29 #include "tree.h"
30 #include "cp-tree.h"
31 #include "c-pragma.h"
32 #include "decl.h"
33 #include "flags.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "target.h"
38
39 \f
40 /* The lexer. */
41
42 /* The cp_lexer_* routines mediate between the lexer proper (in libcpp
43 and c-lex.c) and the C++ parser. */
44
45 /* A C++ token. */
46
47 typedef struct cp_token GTY (())
48 {
49 /* The kind of token. */
50 ENUM_BITFIELD (cpp_ttype) type : 8;
51 /* If this token is a keyword, this value indicates which keyword.
52 Otherwise, this value is RID_MAX. */
53 ENUM_BITFIELD (rid) keyword : 8;
54 /* Token flags. */
55 unsigned char flags;
56 /* True if this token is from a system header. */
57 BOOL_BITFIELD in_system_header : 1;
58 /* True if this token is from a context where it is implicitly extern "C" */
59 BOOL_BITFIELD implicit_extern_c : 1;
60 /* The value associated with this token, if any. */
61 tree value;
62 /* The location at which this token was found. */
63 location_t location;
64 } cp_token;
65
66 /* We use a stack of token pointer for saving token sets. */
67 typedef struct cp_token *cp_token_position;
68 DEF_VEC_MALLOC_P (cp_token_position);
69
70 static const cp_token eof_token =
71 {
72 CPP_EOF, RID_MAX, 0, 0, 0, NULL_TREE,
73 #if USE_MAPPED_LOCATION
74 0
75 #else
76 {0, 0}
77 #endif
78 };
79
80 /* The cp_lexer structure represents the C++ lexer. It is responsible
81 for managing the token stream from the preprocessor and supplying
82 it to the parser. Tokens are never added to the cp_lexer after
83 it is created. */
84
85 typedef struct cp_lexer GTY (())
86 {
87 /* The memory allocated for the buffer. NULL if this lexer does not
88 own the token buffer. */
89 cp_token * GTY ((length ("%h.buffer_length"))) buffer;
90 /* If the lexer owns the buffer, this is the number of tokens in the
91 buffer. */
92 size_t buffer_length;
93
94 /* A pointer just past the last available token. The tokens
95 in this lexer are [buffer, last_token). */
96 cp_token_position GTY ((skip)) last_token;
97
98 /* The next available token. If NEXT_TOKEN is &eof_token, then there are
99 no more available tokens. */
100 cp_token_position GTY ((skip)) next_token;
101
102 /* A stack indicating positions at which cp_lexer_save_tokens was
103 called. The top entry is the most recent position at which we
104 began saving tokens. If the stack is non-empty, we are saving
105 tokens. */
106 VEC (cp_token_position) *GTY ((skip)) saved_tokens;
107
108 /* True if we should output debugging information. */
109 bool debugging_p;
110
111 /* The next lexer in a linked list of lexers. */
112 struct cp_lexer *next;
113 } cp_lexer;
114
115 /* cp_token_cache is a range of tokens. There is no need to represent
116 allocate heap memory for it, since tokens are never removed from the
117 lexer's array. There is also no need for the GC to walk through
118 a cp_token_cache, since everything in here is referenced through
119 a lexer. */
120
121 typedef struct cp_token_cache GTY(())
122 {
123 /* The beginning of the token range. */
124 cp_token * GTY((skip)) first;
125
126 /* Points immediately after the last token in the range. */
127 cp_token * GTY ((skip)) last;
128 } cp_token_cache;
129
130 /* Prototypes. */
131
132 static cp_lexer *cp_lexer_new_main
133 (void);
134 static cp_lexer *cp_lexer_new_from_tokens
135 (cp_token_cache *tokens);
136 static void cp_lexer_destroy
137 (cp_lexer *);
138 static int cp_lexer_saving_tokens
139 (const cp_lexer *);
140 static cp_token_position cp_lexer_token_position
141 (cp_lexer *, bool);
142 static cp_token *cp_lexer_token_at
143 (cp_lexer *, cp_token_position);
144 static void cp_lexer_get_preprocessor_token
145 (cp_lexer *, cp_token *);
146 static inline cp_token *cp_lexer_peek_token
147 (cp_lexer *);
148 static cp_token *cp_lexer_peek_nth_token
149 (cp_lexer *, size_t);
150 static inline bool cp_lexer_next_token_is
151 (cp_lexer *, enum cpp_ttype);
152 static bool cp_lexer_next_token_is_not
153 (cp_lexer *, enum cpp_ttype);
154 static bool cp_lexer_next_token_is_keyword
155 (cp_lexer *, enum rid);
156 static cp_token *cp_lexer_consume_token
157 (cp_lexer *);
158 static void cp_lexer_purge_token
159 (cp_lexer *);
160 static void cp_lexer_purge_tokens_after
161 (cp_lexer *, cp_token_position);
162 static void cp_lexer_handle_pragma
163 (cp_lexer *);
164 static void cp_lexer_save_tokens
165 (cp_lexer *);
166 static void cp_lexer_commit_tokens
167 (cp_lexer *);
168 static void cp_lexer_rollback_tokens
169 (cp_lexer *);
170 #ifdef ENABLE_CHECKING
171 static void cp_lexer_print_token
172 (FILE *, cp_token *);
173 static inline bool cp_lexer_debugging_p
174 (cp_lexer *);
175 static void cp_lexer_start_debugging
176 (cp_lexer *) ATTRIBUTE_UNUSED;
177 static void cp_lexer_stop_debugging
178 (cp_lexer *) ATTRIBUTE_UNUSED;
179 #else
180 /* If we define cp_lexer_debug_stream to NULL it will provoke warnings
181 about passing NULL to functions that require non-NULL arguments
182 (fputs, fprintf). It will never be used, so all we need is a value
183 of the right type that's guaranteed not to be NULL. */
184 #define cp_lexer_debug_stream stdout
185 #define cp_lexer_print_token(str, tok) (void) 0
186 #define cp_lexer_debugging_p(lexer) 0
187 #endif /* ENABLE_CHECKING */
188
189 static cp_token_cache *cp_token_cache_new
190 (cp_token *, cp_token *);
191
192 /* Manifest constants. */
193 #define CP_LEXER_BUFFER_SIZE 10000
194 #define CP_SAVED_TOKEN_STACK 5
195
196 /* A token type for keywords, as opposed to ordinary identifiers. */
197 #define CPP_KEYWORD ((enum cpp_ttype) (N_TTYPES + 1))
198
199 /* A token type for template-ids. If a template-id is processed while
200 parsing tentatively, it is replaced with a CPP_TEMPLATE_ID token;
201 the value of the CPP_TEMPLATE_ID is whatever was returned by
202 cp_parser_template_id. */
203 #define CPP_TEMPLATE_ID ((enum cpp_ttype) (CPP_KEYWORD + 1))
204
205 /* A token type for nested-name-specifiers. If a
206 nested-name-specifier is processed while parsing tentatively, it is
207 replaced with a CPP_NESTED_NAME_SPECIFIER token; the value of the
208 CPP_NESTED_NAME_SPECIFIER is whatever was returned by
209 cp_parser_nested_name_specifier_opt. */
210 #define CPP_NESTED_NAME_SPECIFIER ((enum cpp_ttype) (CPP_TEMPLATE_ID + 1))
211
212 /* A token type for tokens that are not tokens at all; these are used
213 to represent slots in the array where there used to be a token
214 that has now been deleted. */
215 #define CPP_PURGED ((enum cpp_ttype) (CPP_NESTED_NAME_SPECIFIER + 1))
216
217 /* The number of token types, including C++-specific ones. */
218 #define N_CP_TTYPES ((int) (CPP_PURGED + 1))
219
220 /* Variables. */
221
222 #ifdef ENABLE_CHECKING
223 /* The stream to which debugging output should be written. */
224 static FILE *cp_lexer_debug_stream;
225 #endif /* ENABLE_CHECKING */
226
227 /* Create a new main C++ lexer, the lexer that gets tokens from the
228 preprocessor. */
229
230 static cp_lexer *
231 cp_lexer_new_main (void)
232 {
233 cp_token first_token;
234 cp_lexer *lexer;
235 cp_token *pos;
236 size_t alloc;
237 size_t space;
238 cp_token *buffer;
239
240 /* Tell cpplib we want CPP_PRAGMA tokens. */
241 cpp_get_options (parse_in)->defer_pragmas = true;
242
243 /* Tell c_lex not to merge string constants. */
244 c_lex_return_raw_strings = true;
245
246 /* It's possible that lexing the first token will load a PCH file,
247 which is a GC collection point. So we have to grab the first
248 token before allocating any memory. */
249 cp_lexer_get_preprocessor_token (NULL, &first_token);
250 c_common_no_more_pch ();
251
252 /* Allocate the memory. */
253 lexer = GGC_CNEW (cp_lexer);
254
255 #ifdef ENABLE_CHECKING
256 /* Initially we are not debugging. */
257 lexer->debugging_p = false;
258 #endif /* ENABLE_CHECKING */
259 lexer->saved_tokens = VEC_alloc (cp_token_position, CP_SAVED_TOKEN_STACK);
260
261 /* Create the buffer. */
262 alloc = CP_LEXER_BUFFER_SIZE;
263 buffer = ggc_alloc (alloc * sizeof (cp_token));
264
265 /* Put the first token in the buffer. */
266 space = alloc;
267 pos = buffer;
268 *pos = first_token;
269
270 /* Get the remaining tokens from the preprocessor. */
271 while (pos->type != CPP_EOF)
272 {
273 pos++;
274 if (!--space)
275 {
276 space = alloc;
277 alloc *= 2;
278 buffer = ggc_realloc (buffer, alloc * sizeof (cp_token));
279 pos = buffer + space;
280 }
281 cp_lexer_get_preprocessor_token (lexer, pos);
282 }
283 lexer->buffer = buffer;
284 lexer->buffer_length = alloc - space;
285 lexer->last_token = pos;
286 lexer->next_token = lexer->buffer_length ? buffer : (cp_token *)&eof_token;
287
288 /* Pragma processing (via cpp_handle_deferred_pragma) may result in
289 direct calls to c_lex. Those callers all expect c_lex to do
290 string constant concatenation. */
291 c_lex_return_raw_strings = false;
292
293 gcc_assert (lexer->next_token->type != CPP_PURGED);
294 return lexer;
295 }
296
297 /* Create a new lexer whose token stream is primed with the tokens in
298 CACHE. When these tokens are exhausted, no new tokens will be read. */
299
300 static cp_lexer *
301 cp_lexer_new_from_tokens (cp_token_cache *cache)
302 {
303 cp_token *first = cache->first;
304 cp_token *last = cache->last;
305 cp_lexer *lexer = GGC_CNEW (cp_lexer);
306
307 /* We do not own the buffer. */
308 lexer->buffer = NULL;
309 lexer->buffer_length = 0;
310 lexer->next_token = first == last ? (cp_token *)&eof_token : first;
311 lexer->last_token = last;
312
313 lexer->saved_tokens = VEC_alloc (cp_token_position, CP_SAVED_TOKEN_STACK);
314
315 #ifdef ENABLE_CHECKING
316 /* Initially we are not debugging. */
317 lexer->debugging_p = false;
318 #endif
319
320 gcc_assert (lexer->next_token->type != CPP_PURGED);
321 return lexer;
322 }
323
324 /* Frees all resources associated with LEXER. */
325
326 static void
327 cp_lexer_destroy (cp_lexer *lexer)
328 {
329 if (lexer->buffer)
330 ggc_free (lexer->buffer);
331 VEC_free (cp_token_position, lexer->saved_tokens);
332 ggc_free (lexer);
333 }
334
335 /* Returns nonzero if debugging information should be output. */
336
337 #ifdef ENABLE_CHECKING
338
339 static inline bool
340 cp_lexer_debugging_p (cp_lexer *lexer)
341 {
342 return lexer->debugging_p;
343 }
344
345 #endif /* ENABLE_CHECKING */
346
347 static inline cp_token_position
348 cp_lexer_token_position (cp_lexer *lexer, bool previous_p)
349 {
350 gcc_assert (!previous_p || lexer->next_token != &eof_token);
351
352 return lexer->next_token - previous_p;
353 }
354
355 static inline cp_token *
356 cp_lexer_token_at (cp_lexer *lexer ATTRIBUTE_UNUSED, cp_token_position pos)
357 {
358 return pos;
359 }
360
361 /* nonzero if we are presently saving tokens. */
362
363 static inline int
364 cp_lexer_saving_tokens (const cp_lexer* lexer)
365 {
366 return VEC_length (cp_token_position, lexer->saved_tokens) != 0;
367 }
368
369 /* Store the next token from the preprocessor in *TOKEN. Return true
370 if we reach EOF. */
371
372 static void
373 cp_lexer_get_preprocessor_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
374 cp_token *token)
375 {
376 static int is_extern_c = 0;
377 bool done;
378
379 done = false;
380 /* Keep going until we get a token we like. */
381 while (!done)
382 {
383 /* Get a new token from the preprocessor. */
384 token->type = c_lex_with_flags (&token->value, &token->flags);
385 /* Issue messages about tokens we cannot process. */
386 switch (token->type)
387 {
388 case CPP_ATSIGN:
389 case CPP_HASH:
390 case CPP_PASTE:
391 error ("invalid token");
392 break;
393
394 default:
395 /* This is a good token, so we exit the loop. */
396 done = true;
397 break;
398 }
399 }
400 /* Now we've got our token. */
401 token->location = input_location;
402 token->in_system_header = in_system_header;
403
404 /* On some systems, some header files are surrounded by an
405 implicit extern "C" block. Set a flag in the token if it
406 comes from such a header. */
407 is_extern_c += pending_lang_change;
408 pending_lang_change = 0;
409 token->implicit_extern_c = is_extern_c > 0;
410
411 /* Check to see if this token is a keyword. */
412 if (token->type == CPP_NAME
413 && C_IS_RESERVED_WORD (token->value))
414 {
415 /* Mark this token as a keyword. */
416 token->type = CPP_KEYWORD;
417 /* Record which keyword. */
418 token->keyword = C_RID_CODE (token->value);
419 /* Update the value. Some keywords are mapped to particular
420 entities, rather than simply having the value of the
421 corresponding IDENTIFIER_NODE. For example, `__const' is
422 mapped to `const'. */
423 token->value = ridpointers[token->keyword];
424 }
425 else
426 token->keyword = RID_MAX;
427 }
428
429 /* Update the globals input_location and in_system_header from TOKEN. */
430 static inline void
431 cp_lexer_set_source_position_from_token (cp_token *token)
432 {
433 if (token->type != CPP_EOF)
434 {
435 input_location = token->location;
436 in_system_header = token->in_system_header;
437 }
438 }
439
440 /* Return a pointer to the next token in the token stream, but do not
441 consume it. */
442
443 static inline cp_token *
444 cp_lexer_peek_token (cp_lexer *lexer)
445 {
446 if (cp_lexer_debugging_p (lexer))
447 {
448 fputs ("cp_lexer: peeking at token: ", cp_lexer_debug_stream);
449 cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
450 putc ('\n', cp_lexer_debug_stream);
451 }
452 return lexer->next_token;
453 }
454
455 /* Return true if the next token has the indicated TYPE. */
456
457 static inline bool
458 cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
459 {
460 return cp_lexer_peek_token (lexer)->type == type;
461 }
462
463 /* Return true if the next token does not have the indicated TYPE. */
464
465 static inline bool
466 cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
467 {
468 return !cp_lexer_next_token_is (lexer, type);
469 }
470
471 /* Return true if the next token is the indicated KEYWORD. */
472
473 static inline bool
474 cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
475 {
476 cp_token *token;
477
478 /* Peek at the next token. */
479 token = cp_lexer_peek_token (lexer);
480 /* Check to see if it is the indicated keyword. */
481 return token->keyword == keyword;
482 }
483
484 /* Return a pointer to the Nth token in the token stream. If N is 1,
485 then this is precisely equivalent to cp_lexer_peek_token (except
486 that it is not inline). One would like to disallow that case, but
487 there is one case (cp_parser_nth_token_starts_template_id) where
488 the caller passes a variable for N and it might be 1. */
489
490 static cp_token *
491 cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
492 {
493 cp_token *token;
494
495 /* N is 1-based, not zero-based. */
496 gcc_assert (n > 0 && lexer->next_token != &eof_token);
497
498 if (cp_lexer_debugging_p (lexer))
499 fprintf (cp_lexer_debug_stream,
500 "cp_lexer: peeking ahead %ld at token: ", (long)n);
501
502 --n;
503 token = lexer->next_token;
504 while (n != 0)
505 {
506 ++token;
507 if (token == lexer->last_token)
508 {
509 token = (cp_token *)&eof_token;
510 break;
511 }
512
513 if (token->type != CPP_PURGED)
514 --n;
515 }
516
517 if (cp_lexer_debugging_p (lexer))
518 {
519 cp_lexer_print_token (cp_lexer_debug_stream, token);
520 putc ('\n', cp_lexer_debug_stream);
521 }
522
523 return token;
524 }
525
526 /* Return the next token, and advance the lexer's next_token pointer
527 to point to the next non-purged token. */
528
529 static cp_token *
530 cp_lexer_consume_token (cp_lexer* lexer)
531 {
532 cp_token *token = lexer->next_token;
533
534 gcc_assert (token != &eof_token);
535
536 do
537 {
538 lexer->next_token++;
539 if (lexer->next_token == lexer->last_token)
540 {
541 lexer->next_token = (cp_token *)&eof_token;
542 break;
543 }
544
545 }
546 while (lexer->next_token->type == CPP_PURGED);
547
548 cp_lexer_set_source_position_from_token (token);
549
550 /* Provide debugging output. */
551 if (cp_lexer_debugging_p (lexer))
552 {
553 fputs ("cp_lexer: consuming token: ", cp_lexer_debug_stream);
554 cp_lexer_print_token (cp_lexer_debug_stream, token);
555 putc ('\n', cp_lexer_debug_stream);
556 }
557
558 return token;
559 }
560
561 /* Permanently remove the next token from the token stream, and
562 advance the next_token pointer to refer to the next non-purged
563 token. */
564
565 static void
566 cp_lexer_purge_token (cp_lexer *lexer)
567 {
568 cp_token *tok = lexer->next_token;
569
570 gcc_assert (tok != &eof_token);
571 tok->type = CPP_PURGED;
572 tok->location = UNKNOWN_LOCATION;
573 tok->value = NULL_TREE;
574 tok->keyword = RID_MAX;
575
576 do
577 {
578 tok++;
579 if (tok == lexer->last_token)
580 {
581 tok = (cp_token *)&eof_token;
582 break;
583 }
584 }
585 while (tok->type == CPP_PURGED);
586 lexer->next_token = tok;
587 }
588
589 /* Permanently remove all tokens after TOK, up to, but not
590 including, the token that will be returned next by
591 cp_lexer_peek_token. */
592
593 static void
594 cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *tok)
595 {
596 cp_token *peek = lexer->next_token;
597
598 if (peek == &eof_token)
599 peek = lexer->last_token;
600
601 gcc_assert (tok < peek);
602
603 for ( tok += 1; tok != peek; tok += 1)
604 {
605 tok->type = CPP_PURGED;
606 tok->location = UNKNOWN_LOCATION;
607 tok->value = NULL_TREE;
608 tok->keyword = RID_MAX;
609 }
610 }
611
612 /* Consume and handle a pragma token. */
613 static void
614 cp_lexer_handle_pragma (cp_lexer *lexer)
615 {
616 cpp_string s;
617 cp_token *token = cp_lexer_consume_token (lexer);
618 gcc_assert (token->type == CPP_PRAGMA);
619 gcc_assert (token->value);
620
621 s.len = TREE_STRING_LENGTH (token->value);
622 s.text = (const unsigned char *) TREE_STRING_POINTER (token->value);
623
624 cpp_handle_deferred_pragma (parse_in, &s);
625
626 /* Clearing token->value here means that we will get an ICE if we
627 try to process this #pragma again (which should be impossible). */
628 token->value = NULL;
629 }
630
631 /* Begin saving tokens. All tokens consumed after this point will be
632 preserved. */
633
634 static void
635 cp_lexer_save_tokens (cp_lexer* lexer)
636 {
637 /* Provide debugging output. */
638 if (cp_lexer_debugging_p (lexer))
639 fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
640
641 VEC_safe_push (cp_token_position, lexer->saved_tokens, lexer->next_token);
642 }
643
644 /* Commit to the portion of the token stream most recently saved. */
645
646 static void
647 cp_lexer_commit_tokens (cp_lexer* lexer)
648 {
649 /* Provide debugging output. */
650 if (cp_lexer_debugging_p (lexer))
651 fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
652
653 VEC_pop (cp_token_position, lexer->saved_tokens);
654 }
655
656 /* Return all tokens saved since the last call to cp_lexer_save_tokens
657 to the token stream. Stop saving tokens. */
658
659 static void
660 cp_lexer_rollback_tokens (cp_lexer* lexer)
661 {
662 /* Provide debugging output. */
663 if (cp_lexer_debugging_p (lexer))
664 fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
665
666 lexer->next_token = VEC_pop (cp_token_position, lexer->saved_tokens);
667 }
668
669 /* Print a representation of the TOKEN on the STREAM. */
670
671 #ifdef ENABLE_CHECKING
672
673 static void
674 cp_lexer_print_token (FILE * stream, cp_token *token)
675 {
676 /* We don't use cpp_type2name here because the parser defines
677 a few tokens of its own. */
678 static const char *const token_names[] = {
679 /* cpplib-defined token types */
680 #define OP(e, s) #e,
681 #define TK(e, s) #e,
682 TTYPE_TABLE
683 #undef OP
684 #undef TK
685 /* C++ parser token types - see "Manifest constants", above. */
686 "KEYWORD",
687 "TEMPLATE_ID",
688 "NESTED_NAME_SPECIFIER",
689 "PURGED"
690 };
691
692 /* If we have a name for the token, print it out. Otherwise, we
693 simply give the numeric code. */
694 gcc_assert (token->type < ARRAY_SIZE(token_names));
695 fputs (token_names[token->type], stream);
696
697 /* For some tokens, print the associated data. */
698 switch (token->type)
699 {
700 case CPP_KEYWORD:
701 /* Some keywords have a value that is not an IDENTIFIER_NODE.
702 For example, `struct' is mapped to an INTEGER_CST. */
703 if (TREE_CODE (token->value) != IDENTIFIER_NODE)
704 break;
705 /* else fall through */
706 case CPP_NAME:
707 fputs (IDENTIFIER_POINTER (token->value), stream);
708 break;
709
710 case CPP_STRING:
711 case CPP_WSTRING:
712 case CPP_PRAGMA:
713 fprintf (stream, " \"%s\"", TREE_STRING_POINTER (token->value));
714 break;
715
716 default:
717 break;
718 }
719 }
720
721 /* Start emitting debugging information. */
722
723 static void
724 cp_lexer_start_debugging (cp_lexer* lexer)
725 {
726 ++lexer->debugging_p;
727 }
728
729 /* Stop emitting debugging information. */
730
731 static void
732 cp_lexer_stop_debugging (cp_lexer* lexer)
733 {
734 --lexer->debugging_p;
735 }
736
737 #endif /* ENABLE_CHECKING */
738
739 /* Create a new cp_token_cache, representing a range of tokens. */
740
741 static cp_token_cache *
742 cp_token_cache_new (cp_token *first, cp_token *last)
743 {
744 cp_token_cache *cache = GGC_NEW (cp_token_cache);
745 cache->first = first;
746 cache->last = last;
747 return cache;
748 }
749
750 \f
751 /* Decl-specifiers. */
752
753 static void clear_decl_specs
754 (cp_decl_specifier_seq *);
755
756 /* Set *DECL_SPECS to represent an empty decl-specifier-seq. */
757
758 static void
759 clear_decl_specs (cp_decl_specifier_seq *decl_specs)
760 {
761 memset (decl_specs, 0, sizeof (cp_decl_specifier_seq));
762 }
763
764 /* Declarators. */
765
766 /* Nothing other than the parser should be creating declarators;
767 declarators are a semi-syntactic representation of C++ entities.
768 Other parts of the front end that need to create entities (like
769 VAR_DECLs or FUNCTION_DECLs) should do that directly. */
770
771 static cp_declarator *make_id_declarator
772 (tree);
773 static cp_declarator *make_call_declarator
774 (cp_declarator *, cp_parameter_declarator *, cp_cv_quals, tree);
775 static cp_declarator *make_array_declarator
776 (cp_declarator *, tree);
777 static cp_declarator *make_pointer_declarator
778 (cp_cv_quals, cp_declarator *);
779 static cp_declarator *make_reference_declarator
780 (cp_cv_quals, cp_declarator *);
781 static cp_parameter_declarator *make_parameter_declarator
782 (cp_decl_specifier_seq *, cp_declarator *, tree);
783 static cp_declarator *make_ptrmem_declarator
784 (cp_cv_quals, tree, cp_declarator *);
785
786 cp_declarator *cp_error_declarator;
787
788 /* The obstack on which declarators and related data structures are
789 allocated. */
790 static struct obstack declarator_obstack;
791
792 /* Alloc BYTES from the declarator memory pool. */
793
794 static inline void *
795 alloc_declarator (size_t bytes)
796 {
797 return obstack_alloc (&declarator_obstack, bytes);
798 }
799
800 /* Allocate a declarator of the indicated KIND. Clear fields that are
801 common to all declarators. */
802
803 static cp_declarator *
804 make_declarator (cp_declarator_kind kind)
805 {
806 cp_declarator *declarator;
807
808 declarator = (cp_declarator *) alloc_declarator (sizeof (cp_declarator));
809 declarator->kind = kind;
810 declarator->attributes = NULL_TREE;
811 declarator->declarator = NULL;
812
813 return declarator;
814 }
815
816 /* Make a declarator for a generalized identifier. */
817
818 cp_declarator *
819 make_id_declarator (tree id)
820 {
821 cp_declarator *declarator;
822
823 declarator = make_declarator (cdk_id);
824 declarator->u.id.name = id;
825 declarator->u.id.sfk = sfk_none;
826
827 return declarator;
828 }
829
830 /* Make a declarator for a pointer to TARGET. CV_QUALIFIERS is a list
831 of modifiers such as const or volatile to apply to the pointer
832 type, represented as identifiers. */
833
834 cp_declarator *
835 make_pointer_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
836 {
837 cp_declarator *declarator;
838
839 declarator = make_declarator (cdk_pointer);
840 declarator->declarator = target;
841 declarator->u.pointer.qualifiers = cv_qualifiers;
842 declarator->u.pointer.class_type = NULL_TREE;
843
844 return declarator;
845 }
846
847 /* Like make_pointer_declarator -- but for references. */
848
849 cp_declarator *
850 make_reference_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
851 {
852 cp_declarator *declarator;
853
854 declarator = make_declarator (cdk_reference);
855 declarator->declarator = target;
856 declarator->u.pointer.qualifiers = cv_qualifiers;
857 declarator->u.pointer.class_type = NULL_TREE;
858
859 return declarator;
860 }
861
862 /* Like make_pointer_declarator -- but for a pointer to a non-static
863 member of CLASS_TYPE. */
864
865 cp_declarator *
866 make_ptrmem_declarator (cp_cv_quals cv_qualifiers, tree class_type,
867 cp_declarator *pointee)
868 {
869 cp_declarator *declarator;
870
871 declarator = make_declarator (cdk_ptrmem);
872 declarator->declarator = pointee;
873 declarator->u.pointer.qualifiers = cv_qualifiers;
874 declarator->u.pointer.class_type = class_type;
875
876 return declarator;
877 }
878
879 /* Make a declarator for the function given by TARGET, with the
880 indicated PARMS. The CV_QUALIFIERS aply to the function, as in
881 "const"-qualified member function. The EXCEPTION_SPECIFICATION
882 indicates what exceptions can be thrown. */
883
884 cp_declarator *
885 make_call_declarator (cp_declarator *target,
886 cp_parameter_declarator *parms,
887 cp_cv_quals cv_qualifiers,
888 tree exception_specification)
889 {
890 cp_declarator *declarator;
891
892 declarator = make_declarator (cdk_function);
893 declarator->declarator = target;
894 declarator->u.function.parameters = parms;
895 declarator->u.function.qualifiers = cv_qualifiers;
896 declarator->u.function.exception_specification = exception_specification;
897
898 return declarator;
899 }
900
901 /* Make a declarator for an array of BOUNDS elements, each of which is
902 defined by ELEMENT. */
903
904 cp_declarator *
905 make_array_declarator (cp_declarator *element, tree bounds)
906 {
907 cp_declarator *declarator;
908
909 declarator = make_declarator (cdk_array);
910 declarator->declarator = element;
911 declarator->u.array.bounds = bounds;
912
913 return declarator;
914 }
915
916 cp_parameter_declarator *no_parameters;
917
918 /* Create a parameter declarator with the indicated DECL_SPECIFIERS,
919 DECLARATOR and DEFAULT_ARGUMENT. */
920
921 cp_parameter_declarator *
922 make_parameter_declarator (cp_decl_specifier_seq *decl_specifiers,
923 cp_declarator *declarator,
924 tree default_argument)
925 {
926 cp_parameter_declarator *parameter;
927
928 parameter = ((cp_parameter_declarator *)
929 alloc_declarator (sizeof (cp_parameter_declarator)));
930 parameter->next = NULL;
931 if (decl_specifiers)
932 parameter->decl_specifiers = *decl_specifiers;
933 else
934 clear_decl_specs (&parameter->decl_specifiers);
935 parameter->declarator = declarator;
936 parameter->default_argument = default_argument;
937 parameter->ellipsis_p = false;
938
939 return parameter;
940 }
941
942 /* The parser. */
943
944 /* Overview
945 --------
946
947 A cp_parser parses the token stream as specified by the C++
948 grammar. Its job is purely parsing, not semantic analysis. For
949 example, the parser breaks the token stream into declarators,
950 expressions, statements, and other similar syntactic constructs.
951 It does not check that the types of the expressions on either side
952 of an assignment-statement are compatible, or that a function is
953 not declared with a parameter of type `void'.
954
955 The parser invokes routines elsewhere in the compiler to perform
956 semantic analysis and to build up the abstract syntax tree for the
957 code processed.
958
959 The parser (and the template instantiation code, which is, in a
960 way, a close relative of parsing) are the only parts of the
961 compiler that should be calling push_scope and pop_scope, or
962 related functions. The parser (and template instantiation code)
963 keeps track of what scope is presently active; everything else
964 should simply honor that. (The code that generates static
965 initializers may also need to set the scope, in order to check
966 access control correctly when emitting the initializers.)
967
968 Methodology
969 -----------
970
971 The parser is of the standard recursive-descent variety. Upcoming
972 tokens in the token stream are examined in order to determine which
973 production to use when parsing a non-terminal. Some C++ constructs
974 require arbitrary look ahead to disambiguate. For example, it is
975 impossible, in the general case, to tell whether a statement is an
976 expression or declaration without scanning the entire statement.
977 Therefore, the parser is capable of "parsing tentatively." When the
978 parser is not sure what construct comes next, it enters this mode.
979 Then, while we attempt to parse the construct, the parser queues up
980 error messages, rather than issuing them immediately, and saves the
981 tokens it consumes. If the construct is parsed successfully, the
982 parser "commits", i.e., it issues any queued error messages and
983 the tokens that were being preserved are permanently discarded.
984 If, however, the construct is not parsed successfully, the parser
985 rolls back its state completely so that it can resume parsing using
986 a different alternative.
987
988 Future Improvements
989 -------------------
990
991 The performance of the parser could probably be improved substantially.
992 We could often eliminate the need to parse tentatively by looking ahead
993 a little bit. In some places, this approach might not entirely eliminate
994 the need to parse tentatively, but it might still speed up the average
995 case. */
996
997 /* Flags that are passed to some parsing functions. These values can
998 be bitwise-ored together. */
999
1000 typedef enum cp_parser_flags
1001 {
1002 /* No flags. */
1003 CP_PARSER_FLAGS_NONE = 0x0,
1004 /* The construct is optional. If it is not present, then no error
1005 should be issued. */
1006 CP_PARSER_FLAGS_OPTIONAL = 0x1,
1007 /* When parsing a type-specifier, do not allow user-defined types. */
1008 CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2
1009 } cp_parser_flags;
1010
1011 /* The different kinds of declarators we want to parse. */
1012
1013 typedef enum cp_parser_declarator_kind
1014 {
1015 /* We want an abstract declarator. */
1016 CP_PARSER_DECLARATOR_ABSTRACT,
1017 /* We want a named declarator. */
1018 CP_PARSER_DECLARATOR_NAMED,
1019 /* We don't mind, but the name must be an unqualified-id. */
1020 CP_PARSER_DECLARATOR_EITHER
1021 } cp_parser_declarator_kind;
1022
1023 /* The precedence values used to parse binary expressions. The minimum value
1024 of PREC must be 1, because zero is reserved to quickly discriminate
1025 binary operators from other tokens. */
1026
1027 enum cp_parser_prec
1028 {
1029 PREC_NOT_OPERATOR,
1030 PREC_LOGICAL_OR_EXPRESSION,
1031 PREC_LOGICAL_AND_EXPRESSION,
1032 PREC_INCLUSIVE_OR_EXPRESSION,
1033 PREC_EXCLUSIVE_OR_EXPRESSION,
1034 PREC_AND_EXPRESSION,
1035 PREC_EQUALITY_EXPRESSION,
1036 PREC_RELATIONAL_EXPRESSION,
1037 PREC_SHIFT_EXPRESSION,
1038 PREC_ADDITIVE_EXPRESSION,
1039 PREC_MULTIPLICATIVE_EXPRESSION,
1040 PREC_PM_EXPRESSION,
1041 NUM_PREC_VALUES = PREC_PM_EXPRESSION
1042 };
1043
1044 /* A mapping from a token type to a corresponding tree node type, with a
1045 precedence value. */
1046
1047 typedef struct cp_parser_binary_operations_map_node
1048 {
1049 /* The token type. */
1050 enum cpp_ttype token_type;
1051 /* The corresponding tree code. */
1052 enum tree_code tree_type;
1053 /* The precedence of this operator. */
1054 enum cp_parser_prec prec;
1055 } cp_parser_binary_operations_map_node;
1056
1057 /* The status of a tentative parse. */
1058
1059 typedef enum cp_parser_status_kind
1060 {
1061 /* No errors have occurred. */
1062 CP_PARSER_STATUS_KIND_NO_ERROR,
1063 /* An error has occurred. */
1064 CP_PARSER_STATUS_KIND_ERROR,
1065 /* We are committed to this tentative parse, whether or not an error
1066 has occurred. */
1067 CP_PARSER_STATUS_KIND_COMMITTED
1068 } cp_parser_status_kind;
1069
1070 typedef struct cp_parser_expression_stack_entry
1071 {
1072 tree lhs;
1073 enum tree_code tree_type;
1074 int prec;
1075 } cp_parser_expression_stack_entry;
1076
1077 /* The stack for storing partial expressions. We only need NUM_PREC_VALUES
1078 entries because precedence levels on the stack are monotonically
1079 increasing. */
1080 typedef struct cp_parser_expression_stack_entry
1081 cp_parser_expression_stack[NUM_PREC_VALUES];
1082
1083 /* Context that is saved and restored when parsing tentatively. */
1084 typedef struct cp_parser_context GTY (())
1085 {
1086 /* If this is a tentative parsing context, the status of the
1087 tentative parse. */
1088 enum cp_parser_status_kind status;
1089 /* If non-NULL, we have just seen a `x->' or `x.' expression. Names
1090 that are looked up in this context must be looked up both in the
1091 scope given by OBJECT_TYPE (the type of `x' or `*x') and also in
1092 the context of the containing expression. */
1093 tree object_type;
1094
1095 /* The next parsing context in the stack. */
1096 struct cp_parser_context *next;
1097 } cp_parser_context;
1098
1099 /* Prototypes. */
1100
1101 /* Constructors and destructors. */
1102
1103 static cp_parser_context *cp_parser_context_new
1104 (cp_parser_context *);
1105
1106 /* Class variables. */
1107
1108 static GTY((deletable)) cp_parser_context* cp_parser_context_free_list;
1109
1110 /* The operator-precedence table used by cp_parser_binary_expression.
1111 Transformed into an associative array (binops_by_token) by
1112 cp_parser_new. */
1113
1114 static const cp_parser_binary_operations_map_node binops[] = {
1115 { CPP_DEREF_STAR, MEMBER_REF, PREC_PM_EXPRESSION },
1116 { CPP_DOT_STAR, DOTSTAR_EXPR, PREC_PM_EXPRESSION },
1117
1118 { CPP_MULT, MULT_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1119 { CPP_DIV, TRUNC_DIV_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1120 { CPP_MOD, TRUNC_MOD_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1121
1122 { CPP_PLUS, PLUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1123 { CPP_MINUS, MINUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1124
1125 { CPP_LSHIFT, LSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1126 { CPP_RSHIFT, RSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1127
1128 { CPP_LESS, LT_EXPR, PREC_RELATIONAL_EXPRESSION },
1129 { CPP_GREATER, GT_EXPR, PREC_RELATIONAL_EXPRESSION },
1130 { CPP_LESS_EQ, LE_EXPR, PREC_RELATIONAL_EXPRESSION },
1131 { CPP_GREATER_EQ, GE_EXPR, PREC_RELATIONAL_EXPRESSION },
1132 { CPP_MIN, MIN_EXPR, PREC_RELATIONAL_EXPRESSION },
1133 { CPP_MAX, MAX_EXPR, PREC_RELATIONAL_EXPRESSION },
1134
1135 { CPP_EQ_EQ, EQ_EXPR, PREC_EQUALITY_EXPRESSION },
1136 { CPP_NOT_EQ, NE_EXPR, PREC_EQUALITY_EXPRESSION },
1137
1138 { CPP_AND, BIT_AND_EXPR, PREC_AND_EXPRESSION },
1139
1140 { CPP_XOR, BIT_XOR_EXPR, PREC_EXCLUSIVE_OR_EXPRESSION },
1141
1142 { CPP_OR, BIT_IOR_EXPR, PREC_INCLUSIVE_OR_EXPRESSION },
1143
1144 { CPP_AND_AND, TRUTH_ANDIF_EXPR, PREC_LOGICAL_AND_EXPRESSION },
1145
1146 { CPP_OR_OR, TRUTH_ORIF_EXPR, PREC_LOGICAL_OR_EXPRESSION }
1147 };
1148
1149 /* The same as binops, but initialized by cp_parser_new so that
1150 binops_by_token[N].token_type == N. Used in cp_parser_binary_expression
1151 for speed. */
1152 static cp_parser_binary_operations_map_node binops_by_token[N_CP_TTYPES];
1153
1154 /* Constructors and destructors. */
1155
1156 /* Construct a new context. The context below this one on the stack
1157 is given by NEXT. */
1158
1159 static cp_parser_context *
1160 cp_parser_context_new (cp_parser_context* next)
1161 {
1162 cp_parser_context *context;
1163
1164 /* Allocate the storage. */
1165 if (cp_parser_context_free_list != NULL)
1166 {
1167 /* Pull the first entry from the free list. */
1168 context = cp_parser_context_free_list;
1169 cp_parser_context_free_list = context->next;
1170 memset (context, 0, sizeof (*context));
1171 }
1172 else
1173 context = GGC_CNEW (cp_parser_context);
1174
1175 /* No errors have occurred yet in this context. */
1176 context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
1177 /* If this is not the bottomost context, copy information that we
1178 need from the previous context. */
1179 if (next)
1180 {
1181 /* If, in the NEXT context, we are parsing an `x->' or `x.'
1182 expression, then we are parsing one in this context, too. */
1183 context->object_type = next->object_type;
1184 /* Thread the stack. */
1185 context->next = next;
1186 }
1187
1188 return context;
1189 }
1190
1191 /* The cp_parser structure represents the C++ parser. */
1192
1193 typedef struct cp_parser GTY(())
1194 {
1195 /* The lexer from which we are obtaining tokens. */
1196 cp_lexer *lexer;
1197
1198 /* The scope in which names should be looked up. If NULL_TREE, then
1199 we look up names in the scope that is currently open in the
1200 source program. If non-NULL, this is either a TYPE or
1201 NAMESPACE_DECL for the scope in which we should look.
1202
1203 This value is not cleared automatically after a name is looked
1204 up, so we must be careful to clear it before starting a new look
1205 up sequence. (If it is not cleared, then `X::Y' followed by `Z'
1206 will look up `Z' in the scope of `X', rather than the current
1207 scope.) Unfortunately, it is difficult to tell when name lookup
1208 is complete, because we sometimes peek at a token, look it up,
1209 and then decide not to consume it. */
1210 tree scope;
1211
1212 /* OBJECT_SCOPE and QUALIFYING_SCOPE give the scopes in which the
1213 last lookup took place. OBJECT_SCOPE is used if an expression
1214 like "x->y" or "x.y" was used; it gives the type of "*x" or "x",
1215 respectively. QUALIFYING_SCOPE is used for an expression of the
1216 form "X::Y"; it refers to X. */
1217 tree object_scope;
1218 tree qualifying_scope;
1219
1220 /* A stack of parsing contexts. All but the bottom entry on the
1221 stack will be tentative contexts.
1222
1223 We parse tentatively in order to determine which construct is in
1224 use in some situations. For example, in order to determine
1225 whether a statement is an expression-statement or a
1226 declaration-statement we parse it tentatively as a
1227 declaration-statement. If that fails, we then reparse the same
1228 token stream as an expression-statement. */
1229 cp_parser_context *context;
1230
1231 /* True if we are parsing GNU C++. If this flag is not set, then
1232 GNU extensions are not recognized. */
1233 bool allow_gnu_extensions_p;
1234
1235 /* TRUE if the `>' token should be interpreted as the greater-than
1236 operator. FALSE if it is the end of a template-id or
1237 template-parameter-list. */
1238 bool greater_than_is_operator_p;
1239
1240 /* TRUE if default arguments are allowed within a parameter list
1241 that starts at this point. FALSE if only a gnu extension makes
1242 them permissible. */
1243 bool default_arg_ok_p;
1244
1245 /* TRUE if we are parsing an integral constant-expression. See
1246 [expr.const] for a precise definition. */
1247 bool integral_constant_expression_p;
1248
1249 /* TRUE if we are parsing an integral constant-expression -- but a
1250 non-constant expression should be permitted as well. This flag
1251 is used when parsing an array bound so that GNU variable-length
1252 arrays are tolerated. */
1253 bool allow_non_integral_constant_expression_p;
1254
1255 /* TRUE if ALLOW_NON_CONSTANT_EXPRESSION_P is TRUE and something has
1256 been seen that makes the expression non-constant. */
1257 bool non_integral_constant_expression_p;
1258
1259 /* TRUE if local variable names and `this' are forbidden in the
1260 current context. */
1261 bool local_variables_forbidden_p;
1262
1263 /* TRUE if the declaration we are parsing is part of a
1264 linkage-specification of the form `extern string-literal
1265 declaration'. */
1266 bool in_unbraced_linkage_specification_p;
1267
1268 /* TRUE if we are presently parsing a declarator, after the
1269 direct-declarator. */
1270 bool in_declarator_p;
1271
1272 /* TRUE if we are presently parsing a template-argument-list. */
1273 bool in_template_argument_list_p;
1274
1275 /* TRUE if we are presently parsing the body of an
1276 iteration-statement. */
1277 bool in_iteration_statement_p;
1278
1279 /* TRUE if we are presently parsing the body of a switch
1280 statement. */
1281 bool in_switch_statement_p;
1282
1283 /* TRUE if we are parsing a type-id in an expression context. In
1284 such a situation, both "type (expr)" and "type (type)" are valid
1285 alternatives. */
1286 bool in_type_id_in_expr_p;
1287
1288 /* TRUE if we are currently in a header file where declarations are
1289 implicitly extern "C". */
1290 bool implicit_extern_c;
1291
1292 /* TRUE if strings in expressions should be translated to the execution
1293 character set. */
1294 bool translate_strings_p;
1295
1296 /* If non-NULL, then we are parsing a construct where new type
1297 definitions are not permitted. The string stored here will be
1298 issued as an error message if a type is defined. */
1299 const char *type_definition_forbidden_message;
1300
1301 /* A list of lists. The outer list is a stack, used for member
1302 functions of local classes. At each level there are two sub-list,
1303 one on TREE_VALUE and one on TREE_PURPOSE. Each of those
1304 sub-lists has a FUNCTION_DECL or TEMPLATE_DECL on their
1305 TREE_VALUE's. The functions are chained in reverse declaration
1306 order.
1307
1308 The TREE_PURPOSE sublist contains those functions with default
1309 arguments that need post processing, and the TREE_VALUE sublist
1310 contains those functions with definitions that need post
1311 processing.
1312
1313 These lists can only be processed once the outermost class being
1314 defined is complete. */
1315 tree unparsed_functions_queues;
1316
1317 /* The number of classes whose definitions are currently in
1318 progress. */
1319 unsigned num_classes_being_defined;
1320
1321 /* The number of template parameter lists that apply directly to the
1322 current declaration. */
1323 unsigned num_template_parameter_lists;
1324 } cp_parser;
1325
1326 /* The type of a function that parses some kind of expression. */
1327 typedef tree (*cp_parser_expression_fn) (cp_parser *);
1328
1329 /* Prototypes. */
1330
1331 /* Constructors and destructors. */
1332
1333 static cp_parser *cp_parser_new
1334 (void);
1335
1336 /* Routines to parse various constructs.
1337
1338 Those that return `tree' will return the error_mark_node (rather
1339 than NULL_TREE) if a parse error occurs, unless otherwise noted.
1340 Sometimes, they will return an ordinary node if error-recovery was
1341 attempted, even though a parse error occurred. So, to check
1342 whether or not a parse error occurred, you should always use
1343 cp_parser_error_occurred. If the construct is optional (indicated
1344 either by an `_opt' in the name of the function that does the
1345 parsing or via a FLAGS parameter), then NULL_TREE is returned if
1346 the construct is not present. */
1347
1348 /* Lexical conventions [gram.lex] */
1349
1350 static tree cp_parser_identifier
1351 (cp_parser *);
1352 static tree cp_parser_string_literal
1353 (cp_parser *, bool, bool);
1354
1355 /* Basic concepts [gram.basic] */
1356
1357 static bool cp_parser_translation_unit
1358 (cp_parser *);
1359
1360 /* Expressions [gram.expr] */
1361
1362 static tree cp_parser_primary_expression
1363 (cp_parser *, cp_id_kind *, tree *);
1364 static tree cp_parser_id_expression
1365 (cp_parser *, bool, bool, bool *, bool);
1366 static tree cp_parser_unqualified_id
1367 (cp_parser *, bool, bool, bool);
1368 static tree cp_parser_nested_name_specifier_opt
1369 (cp_parser *, bool, bool, bool, bool);
1370 static tree cp_parser_nested_name_specifier
1371 (cp_parser *, bool, bool, bool, bool);
1372 static tree cp_parser_class_or_namespace_name
1373 (cp_parser *, bool, bool, bool, bool, bool);
1374 static tree cp_parser_postfix_expression
1375 (cp_parser *, bool);
1376 static tree cp_parser_postfix_open_square_expression
1377 (cp_parser *, tree, bool);
1378 static tree cp_parser_postfix_dot_deref_expression
1379 (cp_parser *, enum cpp_ttype, tree, bool, cp_id_kind *);
1380 static tree cp_parser_parenthesized_expression_list
1381 (cp_parser *, bool, bool *);
1382 static void cp_parser_pseudo_destructor_name
1383 (cp_parser *, tree *, tree *);
1384 static tree cp_parser_unary_expression
1385 (cp_parser *, bool);
1386 static enum tree_code cp_parser_unary_operator
1387 (cp_token *);
1388 static tree cp_parser_new_expression
1389 (cp_parser *);
1390 static tree cp_parser_new_placement
1391 (cp_parser *);
1392 static tree cp_parser_new_type_id
1393 (cp_parser *, tree *);
1394 static cp_declarator *cp_parser_new_declarator_opt
1395 (cp_parser *);
1396 static cp_declarator *cp_parser_direct_new_declarator
1397 (cp_parser *);
1398 static tree cp_parser_new_initializer
1399 (cp_parser *);
1400 static tree cp_parser_delete_expression
1401 (cp_parser *);
1402 static tree cp_parser_cast_expression
1403 (cp_parser *, bool);
1404 static tree cp_parser_binary_expression
1405 (cp_parser *);
1406 static tree cp_parser_question_colon_clause
1407 (cp_parser *, tree);
1408 static tree cp_parser_assignment_expression
1409 (cp_parser *);
1410 static enum tree_code cp_parser_assignment_operator_opt
1411 (cp_parser *);
1412 static tree cp_parser_expression
1413 (cp_parser *);
1414 static tree cp_parser_constant_expression
1415 (cp_parser *, bool, bool *);
1416 static tree cp_parser_builtin_offsetof
1417 (cp_parser *);
1418
1419 /* Statements [gram.stmt.stmt] */
1420
1421 static void cp_parser_statement
1422 (cp_parser *, tree);
1423 static tree cp_parser_labeled_statement
1424 (cp_parser *, tree);
1425 static tree cp_parser_expression_statement
1426 (cp_parser *, tree);
1427 static tree cp_parser_compound_statement
1428 (cp_parser *, tree, bool);
1429 static void cp_parser_statement_seq_opt
1430 (cp_parser *, tree);
1431 static tree cp_parser_selection_statement
1432 (cp_parser *);
1433 static tree cp_parser_condition
1434 (cp_parser *);
1435 static tree cp_parser_iteration_statement
1436 (cp_parser *);
1437 static void cp_parser_for_init_statement
1438 (cp_parser *);
1439 static tree cp_parser_jump_statement
1440 (cp_parser *);
1441 static void cp_parser_declaration_statement
1442 (cp_parser *);
1443
1444 static tree cp_parser_implicitly_scoped_statement
1445 (cp_parser *);
1446 static void cp_parser_already_scoped_statement
1447 (cp_parser *);
1448
1449 /* Declarations [gram.dcl.dcl] */
1450
1451 static void cp_parser_declaration_seq_opt
1452 (cp_parser *);
1453 static void cp_parser_declaration
1454 (cp_parser *);
1455 static void cp_parser_block_declaration
1456 (cp_parser *, bool);
1457 static void cp_parser_simple_declaration
1458 (cp_parser *, bool);
1459 static void cp_parser_decl_specifier_seq
1460 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, int *);
1461 static tree cp_parser_storage_class_specifier_opt
1462 (cp_parser *);
1463 static tree cp_parser_function_specifier_opt
1464 (cp_parser *, cp_decl_specifier_seq *);
1465 static tree cp_parser_type_specifier
1466 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, bool,
1467 int *, bool *);
1468 static tree cp_parser_simple_type_specifier
1469 (cp_parser *, cp_decl_specifier_seq *, cp_parser_flags);
1470 static tree cp_parser_type_name
1471 (cp_parser *);
1472 static tree cp_parser_elaborated_type_specifier
1473 (cp_parser *, bool, bool);
1474 static tree cp_parser_enum_specifier
1475 (cp_parser *);
1476 static void cp_parser_enumerator_list
1477 (cp_parser *, tree);
1478 static void cp_parser_enumerator_definition
1479 (cp_parser *, tree);
1480 static tree cp_parser_namespace_name
1481 (cp_parser *);
1482 static void cp_parser_namespace_definition
1483 (cp_parser *);
1484 static void cp_parser_namespace_body
1485 (cp_parser *);
1486 static tree cp_parser_qualified_namespace_specifier
1487 (cp_parser *);
1488 static void cp_parser_namespace_alias_definition
1489 (cp_parser *);
1490 static void cp_parser_using_declaration
1491 (cp_parser *);
1492 static void cp_parser_using_directive
1493 (cp_parser *);
1494 static void cp_parser_asm_definition
1495 (cp_parser *);
1496 static void cp_parser_linkage_specification
1497 (cp_parser *);
1498
1499 /* Declarators [gram.dcl.decl] */
1500
1501 static tree cp_parser_init_declarator
1502 (cp_parser *, cp_decl_specifier_seq *, bool, bool, int, bool *);
1503 static cp_declarator *cp_parser_declarator
1504 (cp_parser *, cp_parser_declarator_kind, int *, bool *, bool);
1505 static cp_declarator *cp_parser_direct_declarator
1506 (cp_parser *, cp_parser_declarator_kind, int *, bool);
1507 static enum tree_code cp_parser_ptr_operator
1508 (cp_parser *, tree *, cp_cv_quals *);
1509 static cp_cv_quals cp_parser_cv_qualifier_seq_opt
1510 (cp_parser *);
1511 static tree cp_parser_declarator_id
1512 (cp_parser *);
1513 static tree cp_parser_type_id
1514 (cp_parser *);
1515 static void cp_parser_type_specifier_seq
1516 (cp_parser *, cp_decl_specifier_seq *);
1517 static cp_parameter_declarator *cp_parser_parameter_declaration_clause
1518 (cp_parser *);
1519 static cp_parameter_declarator *cp_parser_parameter_declaration_list
1520 (cp_parser *, bool *);
1521 static cp_parameter_declarator *cp_parser_parameter_declaration
1522 (cp_parser *, bool, bool *);
1523 static void cp_parser_function_body
1524 (cp_parser *);
1525 static tree cp_parser_initializer
1526 (cp_parser *, bool *, bool *);
1527 static tree cp_parser_initializer_clause
1528 (cp_parser *, bool *);
1529 static tree cp_parser_initializer_list
1530 (cp_parser *, bool *);
1531
1532 static bool cp_parser_ctor_initializer_opt_and_function_body
1533 (cp_parser *);
1534
1535 /* Classes [gram.class] */
1536
1537 static tree cp_parser_class_name
1538 (cp_parser *, bool, bool, bool, bool, bool, bool);
1539 static tree cp_parser_class_specifier
1540 (cp_parser *);
1541 static tree cp_parser_class_head
1542 (cp_parser *, bool *, tree *);
1543 static enum tag_types cp_parser_class_key
1544 (cp_parser *);
1545 static void cp_parser_member_specification_opt
1546 (cp_parser *);
1547 static void cp_parser_member_declaration
1548 (cp_parser *);
1549 static tree cp_parser_pure_specifier
1550 (cp_parser *);
1551 static tree cp_parser_constant_initializer
1552 (cp_parser *);
1553
1554 /* Derived classes [gram.class.derived] */
1555
1556 static tree cp_parser_base_clause
1557 (cp_parser *);
1558 static tree cp_parser_base_specifier
1559 (cp_parser *);
1560
1561 /* Special member functions [gram.special] */
1562
1563 static tree cp_parser_conversion_function_id
1564 (cp_parser *);
1565 static tree cp_parser_conversion_type_id
1566 (cp_parser *);
1567 static cp_declarator *cp_parser_conversion_declarator_opt
1568 (cp_parser *);
1569 static bool cp_parser_ctor_initializer_opt
1570 (cp_parser *);
1571 static void cp_parser_mem_initializer_list
1572 (cp_parser *);
1573 static tree cp_parser_mem_initializer
1574 (cp_parser *);
1575 static tree cp_parser_mem_initializer_id
1576 (cp_parser *);
1577
1578 /* Overloading [gram.over] */
1579
1580 static tree cp_parser_operator_function_id
1581 (cp_parser *);
1582 static tree cp_parser_operator
1583 (cp_parser *);
1584
1585 /* Templates [gram.temp] */
1586
1587 static void cp_parser_template_declaration
1588 (cp_parser *, bool);
1589 static tree cp_parser_template_parameter_list
1590 (cp_parser *);
1591 static tree cp_parser_template_parameter
1592 (cp_parser *, bool *);
1593 static tree cp_parser_type_parameter
1594 (cp_parser *);
1595 static tree cp_parser_template_id
1596 (cp_parser *, bool, bool, bool);
1597 static tree cp_parser_template_name
1598 (cp_parser *, bool, bool, bool, bool *);
1599 static tree cp_parser_template_argument_list
1600 (cp_parser *);
1601 static tree cp_parser_template_argument
1602 (cp_parser *);
1603 static void cp_parser_explicit_instantiation
1604 (cp_parser *);
1605 static void cp_parser_explicit_specialization
1606 (cp_parser *);
1607
1608 /* Exception handling [gram.exception] */
1609
1610 static tree cp_parser_try_block
1611 (cp_parser *);
1612 static bool cp_parser_function_try_block
1613 (cp_parser *);
1614 static void cp_parser_handler_seq
1615 (cp_parser *);
1616 static void cp_parser_handler
1617 (cp_parser *);
1618 static tree cp_parser_exception_declaration
1619 (cp_parser *);
1620 static tree cp_parser_throw_expression
1621 (cp_parser *);
1622 static tree cp_parser_exception_specification_opt
1623 (cp_parser *);
1624 static tree cp_parser_type_id_list
1625 (cp_parser *);
1626
1627 /* GNU Extensions */
1628
1629 static tree cp_parser_asm_specification_opt
1630 (cp_parser *);
1631 static tree cp_parser_asm_operand_list
1632 (cp_parser *);
1633 static tree cp_parser_asm_clobber_list
1634 (cp_parser *);
1635 static tree cp_parser_attributes_opt
1636 (cp_parser *);
1637 static tree cp_parser_attribute_list
1638 (cp_parser *);
1639 static bool cp_parser_extension_opt
1640 (cp_parser *, int *);
1641 static void cp_parser_label_declaration
1642 (cp_parser *);
1643
1644 /* Utility Routines */
1645
1646 static tree cp_parser_lookup_name
1647 (cp_parser *, tree, bool, bool, bool, bool, bool *);
1648 static tree cp_parser_lookup_name_simple
1649 (cp_parser *, tree);
1650 static tree cp_parser_maybe_treat_template_as_class
1651 (tree, bool);
1652 static bool cp_parser_check_declarator_template_parameters
1653 (cp_parser *, cp_declarator *);
1654 static bool cp_parser_check_template_parameters
1655 (cp_parser *, unsigned);
1656 static tree cp_parser_simple_cast_expression
1657 (cp_parser *);
1658 static tree cp_parser_global_scope_opt
1659 (cp_parser *, bool);
1660 static bool cp_parser_constructor_declarator_p
1661 (cp_parser *, bool);
1662 static tree cp_parser_function_definition_from_specifiers_and_declarator
1663 (cp_parser *, cp_decl_specifier_seq *, tree, const cp_declarator *);
1664 static tree cp_parser_function_definition_after_declarator
1665 (cp_parser *, bool);
1666 static void cp_parser_template_declaration_after_export
1667 (cp_parser *, bool);
1668 static tree cp_parser_single_declaration
1669 (cp_parser *, bool, bool *);
1670 static tree cp_parser_functional_cast
1671 (cp_parser *, tree);
1672 static tree cp_parser_save_member_function_body
1673 (cp_parser *, cp_decl_specifier_seq *, cp_declarator *, tree);
1674 static tree cp_parser_enclosed_template_argument_list
1675 (cp_parser *);
1676 static void cp_parser_save_default_args
1677 (cp_parser *, tree);
1678 static void cp_parser_late_parsing_for_member
1679 (cp_parser *, tree);
1680 static void cp_parser_late_parsing_default_args
1681 (cp_parser *, tree);
1682 static tree cp_parser_sizeof_operand
1683 (cp_parser *, enum rid);
1684 static bool cp_parser_declares_only_class_p
1685 (cp_parser *);
1686 static void cp_parser_set_storage_class
1687 (cp_decl_specifier_seq *, cp_storage_class);
1688 static void cp_parser_set_decl_spec_type
1689 (cp_decl_specifier_seq *, tree, bool);
1690 static bool cp_parser_friend_p
1691 (const cp_decl_specifier_seq *);
1692 static cp_token *cp_parser_require
1693 (cp_parser *, enum cpp_ttype, const char *);
1694 static cp_token *cp_parser_require_keyword
1695 (cp_parser *, enum rid, const char *);
1696 static bool cp_parser_token_starts_function_definition_p
1697 (cp_token *);
1698 static bool cp_parser_next_token_starts_class_definition_p
1699 (cp_parser *);
1700 static bool cp_parser_next_token_ends_template_argument_p
1701 (cp_parser *);
1702 static bool cp_parser_nth_token_starts_template_argument_list_p
1703 (cp_parser *, size_t);
1704 static enum tag_types cp_parser_token_is_class_key
1705 (cp_token *);
1706 static void cp_parser_check_class_key
1707 (enum tag_types, tree type);
1708 static void cp_parser_check_access_in_redeclaration
1709 (tree type);
1710 static bool cp_parser_optional_template_keyword
1711 (cp_parser *);
1712 static void cp_parser_pre_parsed_nested_name_specifier
1713 (cp_parser *);
1714 static void cp_parser_cache_group
1715 (cp_parser *, enum cpp_ttype, unsigned);
1716 static void cp_parser_parse_tentatively
1717 (cp_parser *);
1718 static void cp_parser_commit_to_tentative_parse
1719 (cp_parser *);
1720 static void cp_parser_abort_tentative_parse
1721 (cp_parser *);
1722 static bool cp_parser_parse_definitely
1723 (cp_parser *);
1724 static inline bool cp_parser_parsing_tentatively
1725 (cp_parser *);
1726 static bool cp_parser_committed_to_tentative_parse
1727 (cp_parser *);
1728 static void cp_parser_error
1729 (cp_parser *, const char *);
1730 static void cp_parser_name_lookup_error
1731 (cp_parser *, tree, tree, const char *);
1732 static bool cp_parser_simulate_error
1733 (cp_parser *);
1734 static void cp_parser_check_type_definition
1735 (cp_parser *);
1736 static void cp_parser_check_for_definition_in_return_type
1737 (cp_declarator *, int);
1738 static void cp_parser_check_for_invalid_template_id
1739 (cp_parser *, tree);
1740 static bool cp_parser_non_integral_constant_expression
1741 (cp_parser *, const char *);
1742 static void cp_parser_diagnose_invalid_type_name
1743 (cp_parser *, tree, tree);
1744 static bool cp_parser_parse_and_diagnose_invalid_type_name
1745 (cp_parser *);
1746 static int cp_parser_skip_to_closing_parenthesis
1747 (cp_parser *, bool, bool, bool);
1748 static void cp_parser_skip_to_end_of_statement
1749 (cp_parser *);
1750 static void cp_parser_consume_semicolon_at_end_of_statement
1751 (cp_parser *);
1752 static void cp_parser_skip_to_end_of_block_or_statement
1753 (cp_parser *);
1754 static void cp_parser_skip_to_closing_brace
1755 (cp_parser *);
1756 static void cp_parser_skip_until_found
1757 (cp_parser *, enum cpp_ttype, const char *);
1758 static bool cp_parser_error_occurred
1759 (cp_parser *);
1760 static bool cp_parser_allow_gnu_extensions_p
1761 (cp_parser *);
1762 static bool cp_parser_is_string_literal
1763 (cp_token *);
1764 static bool cp_parser_is_keyword
1765 (cp_token *, enum rid);
1766 static tree cp_parser_make_typename_type
1767 (cp_parser *, tree, tree);
1768
1769 /* Returns nonzero if we are parsing tentatively. */
1770
1771 static inline bool
1772 cp_parser_parsing_tentatively (cp_parser* parser)
1773 {
1774 return parser->context->next != NULL;
1775 }
1776
1777 /* Returns nonzero if TOKEN is a string literal. */
1778
1779 static bool
1780 cp_parser_is_string_literal (cp_token* token)
1781 {
1782 return (token->type == CPP_STRING || token->type == CPP_WSTRING);
1783 }
1784
1785 /* Returns nonzero if TOKEN is the indicated KEYWORD. */
1786
1787 static bool
1788 cp_parser_is_keyword (cp_token* token, enum rid keyword)
1789 {
1790 return token->keyword == keyword;
1791 }
1792
1793 /* If not parsing tentatively, issue a diagnostic of the form
1794 FILE:LINE: MESSAGE before TOKEN
1795 where TOKEN is the next token in the input stream. MESSAGE
1796 (specified by the caller) is usually of the form "expected
1797 OTHER-TOKEN". */
1798
1799 static void
1800 cp_parser_error (cp_parser* parser, const char* message)
1801 {
1802 if (!cp_parser_simulate_error (parser))
1803 {
1804 cp_token *token = cp_lexer_peek_token (parser->lexer);
1805 /* This diagnostic makes more sense if it is tagged to the line
1806 of the token we just peeked at. */
1807 cp_lexer_set_source_position_from_token (token);
1808 c_parse_error (message,
1809 /* Because c_parser_error does not understand
1810 CPP_KEYWORD, keywords are treated like
1811 identifiers. */
1812 (token->type == CPP_KEYWORD ? CPP_NAME : token->type),
1813 token->value);
1814 }
1815 }
1816
1817 /* Issue an error about name-lookup failing. NAME is the
1818 IDENTIFIER_NODE DECL is the result of
1819 the lookup (as returned from cp_parser_lookup_name). DESIRED is
1820 the thing that we hoped to find. */
1821
1822 static void
1823 cp_parser_name_lookup_error (cp_parser* parser,
1824 tree name,
1825 tree decl,
1826 const char* desired)
1827 {
1828 /* If name lookup completely failed, tell the user that NAME was not
1829 declared. */
1830 if (decl == error_mark_node)
1831 {
1832 if (parser->scope && parser->scope != global_namespace)
1833 error ("%<%D::%D%> has not been declared",
1834 parser->scope, name);
1835 else if (parser->scope == global_namespace)
1836 error ("%<::%D%> has not been declared", name);
1837 else if (parser->object_scope
1838 && !CLASS_TYPE_P (parser->object_scope))
1839 error ("request for member %qD in non-class type %qT",
1840 name, parser->object_scope);
1841 else if (parser->object_scope)
1842 error ("%<%T::%D%> has not been declared",
1843 parser->object_scope, name);
1844 else
1845 error ("`%D' has not been declared", name);
1846 }
1847 else if (parser->scope && parser->scope != global_namespace)
1848 error ("%<%D::%D%> %s", parser->scope, name, desired);
1849 else if (parser->scope == global_namespace)
1850 error ("%<::%D%> %s", name, desired);
1851 else
1852 error ("%qD %s", name, desired);
1853 }
1854
1855 /* If we are parsing tentatively, remember that an error has occurred
1856 during this tentative parse. Returns true if the error was
1857 simulated; false if a message should be issued by the caller. */
1858
1859 static bool
1860 cp_parser_simulate_error (cp_parser* parser)
1861 {
1862 if (cp_parser_parsing_tentatively (parser)
1863 && !cp_parser_committed_to_tentative_parse (parser))
1864 {
1865 parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
1866 return true;
1867 }
1868 return false;
1869 }
1870
1871 /* This function is called when a type is defined. If type
1872 definitions are forbidden at this point, an error message is
1873 issued. */
1874
1875 static void
1876 cp_parser_check_type_definition (cp_parser* parser)
1877 {
1878 /* If types are forbidden here, issue a message. */
1879 if (parser->type_definition_forbidden_message)
1880 /* Use `%s' to print the string in case there are any escape
1881 characters in the message. */
1882 error ("%s", parser->type_definition_forbidden_message);
1883 }
1884
1885 /* This function is called when a declaration is parsed. If
1886 DECLARATOR is a function declarator and DECLARES_CLASS_OR_ENUM
1887 indicates that a type was defined in the decl-specifiers for DECL,
1888 then an error is issued. */
1889
1890 static void
1891 cp_parser_check_for_definition_in_return_type (cp_declarator *declarator,
1892 int declares_class_or_enum)
1893 {
1894 /* [dcl.fct] forbids type definitions in return types.
1895 Unfortunately, it's not easy to know whether or not we are
1896 processing a return type until after the fact. */
1897 while (declarator
1898 && (declarator->kind == cdk_pointer
1899 || declarator->kind == cdk_reference
1900 || declarator->kind == cdk_ptrmem))
1901 declarator = declarator->declarator;
1902 if (declarator
1903 && declarator->kind == cdk_function
1904 && declares_class_or_enum & 2)
1905 error ("new types may not be defined in a return type");
1906 }
1907
1908 /* A type-specifier (TYPE) has been parsed which cannot be followed by
1909 "<" in any valid C++ program. If the next token is indeed "<",
1910 issue a message warning the user about what appears to be an
1911 invalid attempt to form a template-id. */
1912
1913 static void
1914 cp_parser_check_for_invalid_template_id (cp_parser* parser,
1915 tree type)
1916 {
1917 cp_token_position start = 0;
1918
1919 if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
1920 {
1921 if (TYPE_P (type))
1922 error ("%qT is not a template", type);
1923 else if (TREE_CODE (type) == IDENTIFIER_NODE)
1924 error ("%qE is not a template", type);
1925 else
1926 error ("invalid template-id");
1927 /* Remember the location of the invalid "<". */
1928 if (cp_parser_parsing_tentatively (parser)
1929 && !cp_parser_committed_to_tentative_parse (parser))
1930 start = cp_lexer_token_position (parser->lexer, true);
1931 /* Consume the "<". */
1932 cp_lexer_consume_token (parser->lexer);
1933 /* Parse the template arguments. */
1934 cp_parser_enclosed_template_argument_list (parser);
1935 /* Permanently remove the invalid template arguments so that
1936 this error message is not issued again. */
1937 if (start)
1938 cp_lexer_purge_tokens_after (parser->lexer, start);
1939 }
1940 }
1941
1942 /* If parsing an integral constant-expression, issue an error message
1943 about the fact that THING appeared and return true. Otherwise,
1944 return false, marking the current expression as non-constant. */
1945
1946 static bool
1947 cp_parser_non_integral_constant_expression (cp_parser *parser,
1948 const char *thing)
1949 {
1950 if (parser->integral_constant_expression_p)
1951 {
1952 if (!parser->allow_non_integral_constant_expression_p)
1953 {
1954 error ("%s cannot appear in a constant-expression", thing);
1955 return true;
1956 }
1957 parser->non_integral_constant_expression_p = true;
1958 }
1959 return false;
1960 }
1961
1962 /* Emit a diagnostic for an invalid type name. Consider also if it is
1963 qualified or not and the result of a lookup, to provide a better
1964 message. */
1965
1966 static void
1967 cp_parser_diagnose_invalid_type_name (cp_parser *parser, tree scope, tree id)
1968 {
1969 tree decl, old_scope;
1970 /* Try to lookup the identifier. */
1971 old_scope = parser->scope;
1972 parser->scope = scope;
1973 decl = cp_parser_lookup_name_simple (parser, id);
1974 parser->scope = old_scope;
1975 /* If the lookup found a template-name, it means that the user forgot
1976 to specify an argument list. Emit an useful error message. */
1977 if (TREE_CODE (decl) == TEMPLATE_DECL)
1978 error ("invalid use of template-name %qE without an argument list",
1979 decl);
1980 else if (!parser->scope)
1981 {
1982 /* Issue an error message. */
1983 error ("%qE does not name a type", id);
1984 /* If we're in a template class, it's possible that the user was
1985 referring to a type from a base class. For example:
1986
1987 template <typename T> struct A { typedef T X; };
1988 template <typename T> struct B : public A<T> { X x; };
1989
1990 The user should have said "typename A<T>::X". */
1991 if (processing_template_decl && current_class_type)
1992 {
1993 tree b;
1994
1995 for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
1996 b;
1997 b = TREE_CHAIN (b))
1998 {
1999 tree base_type = BINFO_TYPE (b);
2000 if (CLASS_TYPE_P (base_type)
2001 && dependent_type_p (base_type))
2002 {
2003 tree field;
2004 /* Go from a particular instantiation of the
2005 template (which will have an empty TYPE_FIELDs),
2006 to the main version. */
2007 base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
2008 for (field = TYPE_FIELDS (base_type);
2009 field;
2010 field = TREE_CHAIN (field))
2011 if (TREE_CODE (field) == TYPE_DECL
2012 && DECL_NAME (field) == id)
2013 {
2014 inform ("(perhaps `typename %T::%E' was intended)",
2015 BINFO_TYPE (b), id);
2016 break;
2017 }
2018 if (field)
2019 break;
2020 }
2021 }
2022 }
2023 }
2024 /* Here we diagnose qualified-ids where the scope is actually correct,
2025 but the identifier does not resolve to a valid type name. */
2026 else
2027 {
2028 if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
2029 error ("%qE in namespace %qE does not name a type",
2030 id, parser->scope);
2031 else if (TYPE_P (parser->scope))
2032 error ("q%E in class %qT does not name a type", id, parser->scope);
2033 else
2034 gcc_unreachable ();
2035 }
2036 }
2037
2038 /* Check for a common situation where a type-name should be present,
2039 but is not, and issue a sensible error message. Returns true if an
2040 invalid type-name was detected.
2041
2042 The situation handled by this function are variable declarations of the
2043 form `ID a', where `ID' is an id-expression and `a' is a plain identifier.
2044 Usually, `ID' should name a type, but if we got here it means that it
2045 does not. We try to emit the best possible error message depending on
2046 how exactly the id-expression looks like.
2047 */
2048
2049 static bool
2050 cp_parser_parse_and_diagnose_invalid_type_name (cp_parser *parser)
2051 {
2052 tree id;
2053
2054 cp_parser_parse_tentatively (parser);
2055 id = cp_parser_id_expression (parser,
2056 /*template_keyword_p=*/false,
2057 /*check_dependency_p=*/true,
2058 /*template_p=*/NULL,
2059 /*declarator_p=*/true);
2060 /* After the id-expression, there should be a plain identifier,
2061 otherwise this is not a simple variable declaration. Also, if
2062 the scope is dependent, we cannot do much. */
2063 if (!cp_lexer_next_token_is (parser->lexer, CPP_NAME)
2064 || (parser->scope && TYPE_P (parser->scope)
2065 && dependent_type_p (parser->scope)))
2066 {
2067 cp_parser_abort_tentative_parse (parser);
2068 return false;
2069 }
2070 if (!cp_parser_parse_definitely (parser)
2071 || TREE_CODE (id) != IDENTIFIER_NODE)
2072 return false;
2073
2074 /* Emit a diagnostic for the invalid type. */
2075 cp_parser_diagnose_invalid_type_name (parser, parser->scope, id);
2076 /* Skip to the end of the declaration; there's no point in
2077 trying to process it. */
2078 cp_parser_skip_to_end_of_block_or_statement (parser);
2079 return true;
2080 }
2081
2082 /* Consume tokens up to, and including, the next non-nested closing `)'.
2083 Returns 1 iff we found a closing `)'. RECOVERING is true, if we
2084 are doing error recovery. Returns -1 if OR_COMMA is true and we
2085 found an unnested comma. */
2086
2087 static int
2088 cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
2089 bool recovering,
2090 bool or_comma,
2091 bool consume_paren)
2092 {
2093 unsigned paren_depth = 0;
2094 unsigned brace_depth = 0;
2095 int result;
2096
2097 if (recovering && !or_comma && cp_parser_parsing_tentatively (parser)
2098 && !cp_parser_committed_to_tentative_parse (parser))
2099 return 0;
2100
2101 while (true)
2102 {
2103 cp_token *token;
2104
2105 /* If we've run out of tokens, then there is no closing `)'. */
2106 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2107 {
2108 result = 0;
2109 break;
2110 }
2111
2112 token = cp_lexer_peek_token (parser->lexer);
2113
2114 /* This matches the processing in skip_to_end_of_statement. */
2115 if (token->type == CPP_SEMICOLON && !brace_depth)
2116 {
2117 result = 0;
2118 break;
2119 }
2120 if (token->type == CPP_OPEN_BRACE)
2121 ++brace_depth;
2122 if (token->type == CPP_CLOSE_BRACE)
2123 {
2124 if (!brace_depth--)
2125 {
2126 result = 0;
2127 break;
2128 }
2129 }
2130 if (recovering && or_comma && token->type == CPP_COMMA
2131 && !brace_depth && !paren_depth)
2132 {
2133 result = -1;
2134 break;
2135 }
2136
2137 if (!brace_depth)
2138 {
2139 /* If it is an `(', we have entered another level of nesting. */
2140 if (token->type == CPP_OPEN_PAREN)
2141 ++paren_depth;
2142 /* If it is a `)', then we might be done. */
2143 else if (token->type == CPP_CLOSE_PAREN && !paren_depth--)
2144 {
2145 if (consume_paren)
2146 cp_lexer_consume_token (parser->lexer);
2147 {
2148 result = 1;
2149 break;
2150 }
2151 }
2152 }
2153
2154 /* Consume the token. */
2155 cp_lexer_consume_token (parser->lexer);
2156 }
2157
2158 return result;
2159 }
2160
2161 /* Consume tokens until we reach the end of the current statement.
2162 Normally, that will be just before consuming a `;'. However, if a
2163 non-nested `}' comes first, then we stop before consuming that. */
2164
2165 static void
2166 cp_parser_skip_to_end_of_statement (cp_parser* parser)
2167 {
2168 unsigned nesting_depth = 0;
2169
2170 while (true)
2171 {
2172 cp_token *token;
2173
2174 /* Peek at the next token. */
2175 token = cp_lexer_peek_token (parser->lexer);
2176 /* If we've run out of tokens, stop. */
2177 if (token->type == CPP_EOF)
2178 break;
2179 /* If the next token is a `;', we have reached the end of the
2180 statement. */
2181 if (token->type == CPP_SEMICOLON && !nesting_depth)
2182 break;
2183 /* If the next token is a non-nested `}', then we have reached
2184 the end of the current block. */
2185 if (token->type == CPP_CLOSE_BRACE)
2186 {
2187 /* If this is a non-nested `}', stop before consuming it.
2188 That way, when confronted with something like:
2189
2190 { 3 + }
2191
2192 we stop before consuming the closing `}', even though we
2193 have not yet reached a `;'. */
2194 if (nesting_depth == 0)
2195 break;
2196 /* If it is the closing `}' for a block that we have
2197 scanned, stop -- but only after consuming the token.
2198 That way given:
2199
2200 void f g () { ... }
2201 typedef int I;
2202
2203 we will stop after the body of the erroneously declared
2204 function, but before consuming the following `typedef'
2205 declaration. */
2206 if (--nesting_depth == 0)
2207 {
2208 cp_lexer_consume_token (parser->lexer);
2209 break;
2210 }
2211 }
2212 /* If it the next token is a `{', then we are entering a new
2213 block. Consume the entire block. */
2214 else if (token->type == CPP_OPEN_BRACE)
2215 ++nesting_depth;
2216 /* Consume the token. */
2217 cp_lexer_consume_token (parser->lexer);
2218 }
2219 }
2220
2221 /* This function is called at the end of a statement or declaration.
2222 If the next token is a semicolon, it is consumed; otherwise, error
2223 recovery is attempted. */
2224
2225 static void
2226 cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
2227 {
2228 /* Look for the trailing `;'. */
2229 if (!cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
2230 {
2231 /* If there is additional (erroneous) input, skip to the end of
2232 the statement. */
2233 cp_parser_skip_to_end_of_statement (parser);
2234 /* If the next token is now a `;', consume it. */
2235 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
2236 cp_lexer_consume_token (parser->lexer);
2237 }
2238 }
2239
2240 /* Skip tokens until we have consumed an entire block, or until we
2241 have consumed a non-nested `;'. */
2242
2243 static void
2244 cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
2245 {
2246 unsigned nesting_depth = 0;
2247
2248 while (true)
2249 {
2250 cp_token *token;
2251
2252 /* Peek at the next token. */
2253 token = cp_lexer_peek_token (parser->lexer);
2254 /* If we've run out of tokens, stop. */
2255 if (token->type == CPP_EOF)
2256 break;
2257 /* If the next token is a `;', we have reached the end of the
2258 statement. */
2259 if (token->type == CPP_SEMICOLON && !nesting_depth)
2260 {
2261 /* Consume the `;'. */
2262 cp_lexer_consume_token (parser->lexer);
2263 break;
2264 }
2265 /* Consume the token. */
2266 token = cp_lexer_consume_token (parser->lexer);
2267 /* If the next token is a non-nested `}', then we have reached
2268 the end of the current block. */
2269 if (token->type == CPP_CLOSE_BRACE
2270 && (nesting_depth == 0 || --nesting_depth == 0))
2271 break;
2272 /* If it the next token is a `{', then we are entering a new
2273 block. Consume the entire block. */
2274 if (token->type == CPP_OPEN_BRACE)
2275 ++nesting_depth;
2276 }
2277 }
2278
2279 /* Skip tokens until a non-nested closing curly brace is the next
2280 token. */
2281
2282 static void
2283 cp_parser_skip_to_closing_brace (cp_parser *parser)
2284 {
2285 unsigned nesting_depth = 0;
2286
2287 while (true)
2288 {
2289 cp_token *token;
2290
2291 /* Peek at the next token. */
2292 token = cp_lexer_peek_token (parser->lexer);
2293 /* If we've run out of tokens, stop. */
2294 if (token->type == CPP_EOF)
2295 break;
2296 /* If the next token is a non-nested `}', then we have reached
2297 the end of the current block. */
2298 if (token->type == CPP_CLOSE_BRACE && nesting_depth-- == 0)
2299 break;
2300 /* If it the next token is a `{', then we are entering a new
2301 block. Consume the entire block. */
2302 else if (token->type == CPP_OPEN_BRACE)
2303 ++nesting_depth;
2304 /* Consume the token. */
2305 cp_lexer_consume_token (parser->lexer);
2306 }
2307 }
2308
2309 /* This is a simple wrapper around make_typename_type. When the id is
2310 an unresolved identifier node, we can provide a superior diagnostic
2311 using cp_parser_diagnose_invalid_type_name. */
2312
2313 static tree
2314 cp_parser_make_typename_type (cp_parser *parser, tree scope, tree id)
2315 {
2316 tree result;
2317 if (TREE_CODE (id) == IDENTIFIER_NODE)
2318 {
2319 result = make_typename_type (scope, id, /*complain=*/0);
2320 if (result == error_mark_node)
2321 cp_parser_diagnose_invalid_type_name (parser, scope, id);
2322 return result;
2323 }
2324 return make_typename_type (scope, id, tf_error);
2325 }
2326
2327
2328 /* Create a new C++ parser. */
2329
2330 static cp_parser *
2331 cp_parser_new (void)
2332 {
2333 cp_parser *parser;
2334 cp_lexer *lexer;
2335 unsigned i;
2336
2337 /* cp_lexer_new_main is called before calling ggc_alloc because
2338 cp_lexer_new_main might load a PCH file. */
2339 lexer = cp_lexer_new_main ();
2340
2341 /* Initialize the binops_by_token so that we can get the tree
2342 directly from the token. */
2343 for (i = 0; i < sizeof (binops) / sizeof (binops[0]); i++)
2344 binops_by_token[binops[i].token_type] = binops[i];
2345
2346 parser = GGC_CNEW (cp_parser);
2347 parser->lexer = lexer;
2348 parser->context = cp_parser_context_new (NULL);
2349
2350 /* For now, we always accept GNU extensions. */
2351 parser->allow_gnu_extensions_p = 1;
2352
2353 /* The `>' token is a greater-than operator, not the end of a
2354 template-id. */
2355 parser->greater_than_is_operator_p = true;
2356
2357 parser->default_arg_ok_p = true;
2358
2359 /* We are not parsing a constant-expression. */
2360 parser->integral_constant_expression_p = false;
2361 parser->allow_non_integral_constant_expression_p = false;
2362 parser->non_integral_constant_expression_p = false;
2363
2364 /* Local variable names are not forbidden. */
2365 parser->local_variables_forbidden_p = false;
2366
2367 /* We are not processing an `extern "C"' declaration. */
2368 parser->in_unbraced_linkage_specification_p = false;
2369
2370 /* We are not processing a declarator. */
2371 parser->in_declarator_p = false;
2372
2373 /* We are not processing a template-argument-list. */
2374 parser->in_template_argument_list_p = false;
2375
2376 /* We are not in an iteration statement. */
2377 parser->in_iteration_statement_p = false;
2378
2379 /* We are not in a switch statement. */
2380 parser->in_switch_statement_p = false;
2381
2382 /* We are not parsing a type-id inside an expression. */
2383 parser->in_type_id_in_expr_p = false;
2384
2385 /* Declarations aren't implicitly extern "C". */
2386 parser->implicit_extern_c = false;
2387
2388 /* String literals should be translated to the execution character set. */
2389 parser->translate_strings_p = true;
2390
2391 /* The unparsed function queue is empty. */
2392 parser->unparsed_functions_queues = build_tree_list (NULL_TREE, NULL_TREE);
2393
2394 /* There are no classes being defined. */
2395 parser->num_classes_being_defined = 0;
2396
2397 /* No template parameters apply. */
2398 parser->num_template_parameter_lists = 0;
2399
2400 return parser;
2401 }
2402
2403 /* Create a cp_lexer structure which will emit the tokens in CACHE
2404 and push it onto the parser's lexer stack. This is used for delayed
2405 parsing of in-class method bodies and default arguments, and should
2406 not be confused with tentative parsing. */
2407 static void
2408 cp_parser_push_lexer_for_tokens (cp_parser *parser, cp_token_cache *cache)
2409 {
2410 cp_lexer *lexer = cp_lexer_new_from_tokens (cache);
2411 lexer->next = parser->lexer;
2412 parser->lexer = lexer;
2413
2414 /* Move the current source position to that of the first token in the
2415 new lexer. */
2416 cp_lexer_set_source_position_from_token (lexer->next_token);
2417 }
2418
2419 /* Pop the top lexer off the parser stack. This is never used for the
2420 "main" lexer, only for those pushed by cp_parser_push_lexer_for_tokens. */
2421 static void
2422 cp_parser_pop_lexer (cp_parser *parser)
2423 {
2424 cp_lexer *lexer = parser->lexer;
2425 parser->lexer = lexer->next;
2426 cp_lexer_destroy (lexer);
2427
2428 /* Put the current source position back where it was before this
2429 lexer was pushed. */
2430 cp_lexer_set_source_position_from_token (parser->lexer->next_token);
2431 }
2432
2433 /* Lexical conventions [gram.lex] */
2434
2435 /* Parse an identifier. Returns an IDENTIFIER_NODE representing the
2436 identifier. */
2437
2438 static tree
2439 cp_parser_identifier (cp_parser* parser)
2440 {
2441 cp_token *token;
2442
2443 /* Look for the identifier. */
2444 token = cp_parser_require (parser, CPP_NAME, "identifier");
2445 /* Return the value. */
2446 return token ? token->value : error_mark_node;
2447 }
2448
2449 /* Parse a sequence of adjacent string constants. Returns a
2450 TREE_STRING representing the combined, nul-terminated string
2451 constant. If TRANSLATE is true, translate the string to the
2452 execution character set. If WIDE_OK is true, a wide string is
2453 invalid here.
2454
2455 C++98 [lex.string] says that if a narrow string literal token is
2456 adjacent to a wide string literal token, the behavior is undefined.
2457 However, C99 6.4.5p4 says that this results in a wide string literal.
2458 We follow C99 here, for consistency with the C front end.
2459
2460 This code is largely lifted from lex_string() in c-lex.c.
2461
2462 FUTURE: ObjC++ will need to handle @-strings here. */
2463 static tree
2464 cp_parser_string_literal (cp_parser *parser, bool translate, bool wide_ok)
2465 {
2466 tree value;
2467 bool wide = false;
2468 size_t count;
2469 struct obstack str_ob;
2470 cpp_string str, istr, *strs;
2471 cp_token *tok;
2472
2473 tok = cp_lexer_peek_token (parser->lexer);
2474 if (!cp_parser_is_string_literal (tok))
2475 {
2476 cp_parser_error (parser, "expected string-literal");
2477 return error_mark_node;
2478 }
2479
2480 /* Try to avoid the overhead of creating and destroying an obstack
2481 for the common case of just one string. */
2482 if (!cp_parser_is_string_literal
2483 (cp_lexer_peek_nth_token (parser->lexer, 2)))
2484 {
2485 cp_lexer_consume_token (parser->lexer);
2486
2487 str.text = (const unsigned char *)TREE_STRING_POINTER (tok->value);
2488 str.len = TREE_STRING_LENGTH (tok->value);
2489 count = 1;
2490 if (tok->type == CPP_WSTRING)
2491 wide = true;
2492
2493 strs = &str;
2494 }
2495 else
2496 {
2497 gcc_obstack_init (&str_ob);
2498 count = 0;
2499
2500 do
2501 {
2502 cp_lexer_consume_token (parser->lexer);
2503 count++;
2504 str.text = (unsigned char *)TREE_STRING_POINTER (tok->value);
2505 str.len = TREE_STRING_LENGTH (tok->value);
2506 if (tok->type == CPP_WSTRING)
2507 wide = true;
2508
2509 obstack_grow (&str_ob, &str, sizeof (cpp_string));
2510
2511 tok = cp_lexer_peek_token (parser->lexer);
2512 }
2513 while (cp_parser_is_string_literal (tok));
2514
2515 strs = (cpp_string *) obstack_finish (&str_ob);
2516 }
2517
2518 if (wide && !wide_ok)
2519 {
2520 cp_parser_error (parser, "a wide string is invalid in this context");
2521 wide = false;
2522 }
2523
2524 if ((translate ? cpp_interpret_string : cpp_interpret_string_notranslate)
2525 (parse_in, strs, count, &istr, wide))
2526 {
2527 value = build_string (istr.len, (char *)istr.text);
2528 free ((void *)istr.text);
2529
2530 TREE_TYPE (value) = wide ? wchar_array_type_node : char_array_type_node;
2531 value = fix_string_type (value);
2532 }
2533 else
2534 /* cpp_interpret_string has issued an error. */
2535 value = error_mark_node;
2536
2537 if (count > 1)
2538 obstack_free (&str_ob, 0);
2539
2540 return value;
2541 }
2542
2543
2544 /* Basic concepts [gram.basic] */
2545
2546 /* Parse a translation-unit.
2547
2548 translation-unit:
2549 declaration-seq [opt]
2550
2551 Returns TRUE if all went well. */
2552
2553 static bool
2554 cp_parser_translation_unit (cp_parser* parser)
2555 {
2556 /* The address of the first non-permanent object on the declarator
2557 obstack. */
2558 static void *declarator_obstack_base;
2559
2560 bool success;
2561
2562 /* Create the declarator obstack, if necessary. */
2563 if (!cp_error_declarator)
2564 {
2565 gcc_obstack_init (&declarator_obstack);
2566 /* Create the error declarator. */
2567 cp_error_declarator = make_declarator (cdk_error);
2568 /* Create the empty parameter list. */
2569 no_parameters = make_parameter_declarator (NULL, NULL, NULL_TREE);
2570 /* Remember where the base of the declarator obstack lies. */
2571 declarator_obstack_base = obstack_next_free (&declarator_obstack);
2572 }
2573
2574 while (true)
2575 {
2576 cp_parser_declaration_seq_opt (parser);
2577
2578 /* If there are no tokens left then all went well. */
2579 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2580 {
2581 /* Get rid of the token array; we don't need it any more. */
2582 cp_lexer_destroy (parser->lexer);
2583 parser->lexer = NULL;
2584
2585 /* This file might have been a context that's implicitly extern
2586 "C". If so, pop the lang context. (Only relevant for PCH.) */
2587 if (parser->implicit_extern_c)
2588 {
2589 pop_lang_context ();
2590 parser->implicit_extern_c = false;
2591 }
2592
2593 /* Finish up. */
2594 finish_translation_unit ();
2595
2596 success = true;
2597 break;
2598 }
2599 else
2600 {
2601 cp_parser_error (parser, "expected declaration");
2602 success = false;
2603 break;
2604 }
2605 }
2606
2607 /* Make sure the declarator obstack was fully cleaned up. */
2608 gcc_assert (obstack_next_free (&declarator_obstack)
2609 == declarator_obstack_base);
2610
2611 /* All went well. */
2612 return success;
2613 }
2614
2615 /* Expressions [gram.expr] */
2616
2617 /* Parse a primary-expression.
2618
2619 primary-expression:
2620 literal
2621 this
2622 ( expression )
2623 id-expression
2624
2625 GNU Extensions:
2626
2627 primary-expression:
2628 ( compound-statement )
2629 __builtin_va_arg ( assignment-expression , type-id )
2630
2631 literal:
2632 __null
2633
2634 Returns a representation of the expression.
2635
2636 *IDK indicates what kind of id-expression (if any) was present.
2637
2638 *QUALIFYING_CLASS is set to a non-NULL value if the id-expression can be
2639 used as the operand of a pointer-to-member. In that case,
2640 *QUALIFYING_CLASS gives the class that is used as the qualifying
2641 class in the pointer-to-member. */
2642
2643 static tree
2644 cp_parser_primary_expression (cp_parser *parser,
2645 cp_id_kind *idk,
2646 tree *qualifying_class)
2647 {
2648 cp_token *token;
2649
2650 /* Assume the primary expression is not an id-expression. */
2651 *idk = CP_ID_KIND_NONE;
2652 /* And that it cannot be used as pointer-to-member. */
2653 *qualifying_class = NULL_TREE;
2654
2655 /* Peek at the next token. */
2656 token = cp_lexer_peek_token (parser->lexer);
2657 switch (token->type)
2658 {
2659 /* literal:
2660 integer-literal
2661 character-literal
2662 floating-literal
2663 string-literal
2664 boolean-literal */
2665 case CPP_CHAR:
2666 case CPP_WCHAR:
2667 case CPP_NUMBER:
2668 token = cp_lexer_consume_token (parser->lexer);
2669 return token->value;
2670
2671 case CPP_STRING:
2672 case CPP_WSTRING:
2673 /* ??? Should wide strings be allowed when parser->translate_strings_p
2674 is false (i.e. in attributes)? If not, we can kill the third
2675 argument to cp_parser_string_literal. */
2676 return cp_parser_string_literal (parser,
2677 parser->translate_strings_p,
2678 true);
2679
2680 case CPP_OPEN_PAREN:
2681 {
2682 tree expr;
2683 bool saved_greater_than_is_operator_p;
2684
2685 /* Consume the `('. */
2686 cp_lexer_consume_token (parser->lexer);
2687 /* Within a parenthesized expression, a `>' token is always
2688 the greater-than operator. */
2689 saved_greater_than_is_operator_p
2690 = parser->greater_than_is_operator_p;
2691 parser->greater_than_is_operator_p = true;
2692 /* If we see `( { ' then we are looking at the beginning of
2693 a GNU statement-expression. */
2694 if (cp_parser_allow_gnu_extensions_p (parser)
2695 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
2696 {
2697 /* Statement-expressions are not allowed by the standard. */
2698 if (pedantic)
2699 pedwarn ("ISO C++ forbids braced-groups within expressions");
2700
2701 /* And they're not allowed outside of a function-body; you
2702 cannot, for example, write:
2703
2704 int i = ({ int j = 3; j + 1; });
2705
2706 at class or namespace scope. */
2707 if (!at_function_scope_p ())
2708 error ("statement-expressions are allowed only inside functions");
2709 /* Start the statement-expression. */
2710 expr = begin_stmt_expr ();
2711 /* Parse the compound-statement. */
2712 cp_parser_compound_statement (parser, expr, false);
2713 /* Finish up. */
2714 expr = finish_stmt_expr (expr, false);
2715 }
2716 else
2717 {
2718 /* Parse the parenthesized expression. */
2719 expr = cp_parser_expression (parser);
2720 /* Let the front end know that this expression was
2721 enclosed in parentheses. This matters in case, for
2722 example, the expression is of the form `A::B', since
2723 `&A::B' might be a pointer-to-member, but `&(A::B)' is
2724 not. */
2725 finish_parenthesized_expr (expr);
2726 }
2727 /* The `>' token might be the end of a template-id or
2728 template-parameter-list now. */
2729 parser->greater_than_is_operator_p
2730 = saved_greater_than_is_operator_p;
2731 /* Consume the `)'. */
2732 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
2733 cp_parser_skip_to_end_of_statement (parser);
2734
2735 return expr;
2736 }
2737
2738 case CPP_KEYWORD:
2739 switch (token->keyword)
2740 {
2741 /* These two are the boolean literals. */
2742 case RID_TRUE:
2743 cp_lexer_consume_token (parser->lexer);
2744 return boolean_true_node;
2745 case RID_FALSE:
2746 cp_lexer_consume_token (parser->lexer);
2747 return boolean_false_node;
2748
2749 /* The `__null' literal. */
2750 case RID_NULL:
2751 cp_lexer_consume_token (parser->lexer);
2752 return null_node;
2753
2754 /* Recognize the `this' keyword. */
2755 case RID_THIS:
2756 cp_lexer_consume_token (parser->lexer);
2757 if (parser->local_variables_forbidden_p)
2758 {
2759 error ("%<this%> may not be used in this context");
2760 return error_mark_node;
2761 }
2762 /* Pointers cannot appear in constant-expressions. */
2763 if (cp_parser_non_integral_constant_expression (parser,
2764 "`this'"))
2765 return error_mark_node;
2766 return finish_this_expr ();
2767
2768 /* The `operator' keyword can be the beginning of an
2769 id-expression. */
2770 case RID_OPERATOR:
2771 goto id_expression;
2772
2773 case RID_FUNCTION_NAME:
2774 case RID_PRETTY_FUNCTION_NAME:
2775 case RID_C99_FUNCTION_NAME:
2776 /* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
2777 __func__ are the names of variables -- but they are
2778 treated specially. Therefore, they are handled here,
2779 rather than relying on the generic id-expression logic
2780 below. Grammatically, these names are id-expressions.
2781
2782 Consume the token. */
2783 token = cp_lexer_consume_token (parser->lexer);
2784 /* Look up the name. */
2785 return finish_fname (token->value);
2786
2787 case RID_VA_ARG:
2788 {
2789 tree expression;
2790 tree type;
2791
2792 /* The `__builtin_va_arg' construct is used to handle
2793 `va_arg'. Consume the `__builtin_va_arg' token. */
2794 cp_lexer_consume_token (parser->lexer);
2795 /* Look for the opening `('. */
2796 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
2797 /* Now, parse the assignment-expression. */
2798 expression = cp_parser_assignment_expression (parser);
2799 /* Look for the `,'. */
2800 cp_parser_require (parser, CPP_COMMA, "`,'");
2801 /* Parse the type-id. */
2802 type = cp_parser_type_id (parser);
2803 /* Look for the closing `)'. */
2804 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
2805 /* Using `va_arg' in a constant-expression is not
2806 allowed. */
2807 if (cp_parser_non_integral_constant_expression (parser,
2808 "`va_arg'"))
2809 return error_mark_node;
2810 return build_x_va_arg (expression, type);
2811 }
2812
2813 case RID_OFFSETOF:
2814 return cp_parser_builtin_offsetof (parser);
2815
2816 default:
2817 cp_parser_error (parser, "expected primary-expression");
2818 return error_mark_node;
2819 }
2820
2821 /* An id-expression can start with either an identifier, a
2822 `::' as the beginning of a qualified-id, or the "operator"
2823 keyword. */
2824 case CPP_NAME:
2825 case CPP_SCOPE:
2826 case CPP_TEMPLATE_ID:
2827 case CPP_NESTED_NAME_SPECIFIER:
2828 {
2829 tree id_expression;
2830 tree decl;
2831 const char *error_msg;
2832
2833 id_expression:
2834 /* Parse the id-expression. */
2835 id_expression
2836 = cp_parser_id_expression (parser,
2837 /*template_keyword_p=*/false,
2838 /*check_dependency_p=*/true,
2839 /*template_p=*/NULL,
2840 /*declarator_p=*/false);
2841 if (id_expression == error_mark_node)
2842 return error_mark_node;
2843 /* If we have a template-id, then no further lookup is
2844 required. If the template-id was for a template-class, we
2845 will sometimes have a TYPE_DECL at this point. */
2846 else if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
2847 || TREE_CODE (id_expression) == TYPE_DECL)
2848 decl = id_expression;
2849 /* Look up the name. */
2850 else
2851 {
2852 bool ambiguous_p;
2853
2854 decl = cp_parser_lookup_name (parser, id_expression,
2855 /*is_type=*/false,
2856 /*is_template=*/false,
2857 /*is_namespace=*/false,
2858 /*check_dependency=*/true,
2859 &ambiguous_p);
2860 /* If the lookup was ambiguous, an error will already have
2861 been issued. */
2862 if (ambiguous_p)
2863 return error_mark_node;
2864 /* If name lookup gives us a SCOPE_REF, then the
2865 qualifying scope was dependent. Just propagate the
2866 name. */
2867 if (TREE_CODE (decl) == SCOPE_REF)
2868 {
2869 if (TYPE_P (TREE_OPERAND (decl, 0)))
2870 *qualifying_class = TREE_OPERAND (decl, 0);
2871 return decl;
2872 }
2873 /* Check to see if DECL is a local variable in a context
2874 where that is forbidden. */
2875 if (parser->local_variables_forbidden_p
2876 && local_variable_p (decl))
2877 {
2878 /* It might be that we only found DECL because we are
2879 trying to be generous with pre-ISO scoping rules.
2880 For example, consider:
2881
2882 int i;
2883 void g() {
2884 for (int i = 0; i < 10; ++i) {}
2885 extern void f(int j = i);
2886 }
2887
2888 Here, name look up will originally find the out
2889 of scope `i'. We need to issue a warning message,
2890 but then use the global `i'. */
2891 decl = check_for_out_of_scope_variable (decl);
2892 if (local_variable_p (decl))
2893 {
2894 error ("local variable %qD may not appear in this context",
2895 decl);
2896 return error_mark_node;
2897 }
2898 }
2899 }
2900
2901 decl = finish_id_expression (id_expression, decl, parser->scope,
2902 idk, qualifying_class,
2903 parser->integral_constant_expression_p,
2904 parser->allow_non_integral_constant_expression_p,
2905 &parser->non_integral_constant_expression_p,
2906 &error_msg);
2907 if (error_msg)
2908 cp_parser_error (parser, error_msg);
2909 return decl;
2910 }
2911
2912 /* Anything else is an error. */
2913 default:
2914 cp_parser_error (parser, "expected primary-expression");
2915 return error_mark_node;
2916 }
2917 }
2918
2919 /* Parse an id-expression.
2920
2921 id-expression:
2922 unqualified-id
2923 qualified-id
2924
2925 qualified-id:
2926 :: [opt] nested-name-specifier template [opt] unqualified-id
2927 :: identifier
2928 :: operator-function-id
2929 :: template-id
2930
2931 Return a representation of the unqualified portion of the
2932 identifier. Sets PARSER->SCOPE to the qualifying scope if there is
2933 a `::' or nested-name-specifier.
2934
2935 Often, if the id-expression was a qualified-id, the caller will
2936 want to make a SCOPE_REF to represent the qualified-id. This
2937 function does not do this in order to avoid wastefully creating
2938 SCOPE_REFs when they are not required.
2939
2940 If TEMPLATE_KEYWORD_P is true, then we have just seen the
2941 `template' keyword.
2942
2943 If CHECK_DEPENDENCY_P is false, then names are looked up inside
2944 uninstantiated templates.
2945
2946 If *TEMPLATE_P is non-NULL, it is set to true iff the
2947 `template' keyword is used to explicitly indicate that the entity
2948 named is a template.
2949
2950 If DECLARATOR_P is true, the id-expression is appearing as part of
2951 a declarator, rather than as part of an expression. */
2952
2953 static tree
2954 cp_parser_id_expression (cp_parser *parser,
2955 bool template_keyword_p,
2956 bool check_dependency_p,
2957 bool *template_p,
2958 bool declarator_p)
2959 {
2960 bool global_scope_p;
2961 bool nested_name_specifier_p;
2962
2963 /* Assume the `template' keyword was not used. */
2964 if (template_p)
2965 *template_p = false;
2966
2967 /* Look for the optional `::' operator. */
2968 global_scope_p
2969 = (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)
2970 != NULL_TREE);
2971 /* Look for the optional nested-name-specifier. */
2972 nested_name_specifier_p
2973 = (cp_parser_nested_name_specifier_opt (parser,
2974 /*typename_keyword_p=*/false,
2975 check_dependency_p,
2976 /*type_p=*/false,
2977 declarator_p)
2978 != NULL_TREE);
2979 /* If there is a nested-name-specifier, then we are looking at
2980 the first qualified-id production. */
2981 if (nested_name_specifier_p)
2982 {
2983 tree saved_scope;
2984 tree saved_object_scope;
2985 tree saved_qualifying_scope;
2986 tree unqualified_id;
2987 bool is_template;
2988
2989 /* See if the next token is the `template' keyword. */
2990 if (!template_p)
2991 template_p = &is_template;
2992 *template_p = cp_parser_optional_template_keyword (parser);
2993 /* Name lookup we do during the processing of the
2994 unqualified-id might obliterate SCOPE. */
2995 saved_scope = parser->scope;
2996 saved_object_scope = parser->object_scope;
2997 saved_qualifying_scope = parser->qualifying_scope;
2998 /* Process the final unqualified-id. */
2999 unqualified_id = cp_parser_unqualified_id (parser, *template_p,
3000 check_dependency_p,
3001 declarator_p);
3002 /* Restore the SAVED_SCOPE for our caller. */
3003 parser->scope = saved_scope;
3004 parser->object_scope = saved_object_scope;
3005 parser->qualifying_scope = saved_qualifying_scope;
3006
3007 return unqualified_id;
3008 }
3009 /* Otherwise, if we are in global scope, then we are looking at one
3010 of the other qualified-id productions. */
3011 else if (global_scope_p)
3012 {
3013 cp_token *token;
3014 tree id;
3015
3016 /* Peek at the next token. */
3017 token = cp_lexer_peek_token (parser->lexer);
3018
3019 /* If it's an identifier, and the next token is not a "<", then
3020 we can avoid the template-id case. This is an optimization
3021 for this common case. */
3022 if (token->type == CPP_NAME
3023 && !cp_parser_nth_token_starts_template_argument_list_p
3024 (parser, 2))
3025 return cp_parser_identifier (parser);
3026
3027 cp_parser_parse_tentatively (parser);
3028 /* Try a template-id. */
3029 id = cp_parser_template_id (parser,
3030 /*template_keyword_p=*/false,
3031 /*check_dependency_p=*/true,
3032 declarator_p);
3033 /* If that worked, we're done. */
3034 if (cp_parser_parse_definitely (parser))
3035 return id;
3036
3037 /* Peek at the next token. (Changes in the token buffer may
3038 have invalidated the pointer obtained above.) */
3039 token = cp_lexer_peek_token (parser->lexer);
3040
3041 switch (token->type)
3042 {
3043 case CPP_NAME:
3044 return cp_parser_identifier (parser);
3045
3046 case CPP_KEYWORD:
3047 if (token->keyword == RID_OPERATOR)
3048 return cp_parser_operator_function_id (parser);
3049 /* Fall through. */
3050
3051 default:
3052 cp_parser_error (parser, "expected id-expression");
3053 return error_mark_node;
3054 }
3055 }
3056 else
3057 return cp_parser_unqualified_id (parser, template_keyword_p,
3058 /*check_dependency_p=*/true,
3059 declarator_p);
3060 }
3061
3062 /* Parse an unqualified-id.
3063
3064 unqualified-id:
3065 identifier
3066 operator-function-id
3067 conversion-function-id
3068 ~ class-name
3069 template-id
3070
3071 If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
3072 keyword, in a construct like `A::template ...'.
3073
3074 Returns a representation of unqualified-id. For the `identifier'
3075 production, an IDENTIFIER_NODE is returned. For the `~ class-name'
3076 production a BIT_NOT_EXPR is returned; the operand of the
3077 BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the
3078 other productions, see the documentation accompanying the
3079 corresponding parsing functions. If CHECK_DEPENDENCY_P is false,
3080 names are looked up in uninstantiated templates. If DECLARATOR_P
3081 is true, the unqualified-id is appearing as part of a declarator,
3082 rather than as part of an expression. */
3083
3084 static tree
3085 cp_parser_unqualified_id (cp_parser* parser,
3086 bool template_keyword_p,
3087 bool check_dependency_p,
3088 bool declarator_p)
3089 {
3090 cp_token *token;
3091
3092 /* Peek at the next token. */
3093 token = cp_lexer_peek_token (parser->lexer);
3094
3095 switch (token->type)
3096 {
3097 case CPP_NAME:
3098 {
3099 tree id;
3100
3101 /* We don't know yet whether or not this will be a
3102 template-id. */
3103 cp_parser_parse_tentatively (parser);
3104 /* Try a template-id. */
3105 id = cp_parser_template_id (parser, template_keyword_p,
3106 check_dependency_p,
3107 declarator_p);
3108 /* If it worked, we're done. */
3109 if (cp_parser_parse_definitely (parser))
3110 return id;
3111 /* Otherwise, it's an ordinary identifier. */
3112 return cp_parser_identifier (parser);
3113 }
3114
3115 case CPP_TEMPLATE_ID:
3116 return cp_parser_template_id (parser, template_keyword_p,
3117 check_dependency_p,
3118 declarator_p);
3119
3120 case CPP_COMPL:
3121 {
3122 tree type_decl;
3123 tree qualifying_scope;
3124 tree object_scope;
3125 tree scope;
3126
3127 /* Consume the `~' token. */
3128 cp_lexer_consume_token (parser->lexer);
3129 /* Parse the class-name. The standard, as written, seems to
3130 say that:
3131
3132 template <typename T> struct S { ~S (); };
3133 template <typename T> S<T>::~S() {}
3134
3135 is invalid, since `~' must be followed by a class-name, but
3136 `S<T>' is dependent, and so not known to be a class.
3137 That's not right; we need to look in uninstantiated
3138 templates. A further complication arises from:
3139
3140 template <typename T> void f(T t) {
3141 t.T::~T();
3142 }
3143
3144 Here, it is not possible to look up `T' in the scope of `T'
3145 itself. We must look in both the current scope, and the
3146 scope of the containing complete expression.
3147
3148 Yet another issue is:
3149
3150 struct S {
3151 int S;
3152 ~S();
3153 };
3154
3155 S::~S() {}
3156
3157 The standard does not seem to say that the `S' in `~S'
3158 should refer to the type `S' and not the data member
3159 `S::S'. */
3160
3161 /* DR 244 says that we look up the name after the "~" in the
3162 same scope as we looked up the qualifying name. That idea
3163 isn't fully worked out; it's more complicated than that. */
3164 scope = parser->scope;
3165 object_scope = parser->object_scope;
3166 qualifying_scope = parser->qualifying_scope;
3167
3168 /* If the name is of the form "X::~X" it's OK. */
3169 if (scope && TYPE_P (scope)
3170 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3171 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3172 == CPP_OPEN_PAREN)
3173 && (cp_lexer_peek_token (parser->lexer)->value
3174 == TYPE_IDENTIFIER (scope)))
3175 {
3176 cp_lexer_consume_token (parser->lexer);
3177 return build_nt (BIT_NOT_EXPR, scope);
3178 }
3179
3180 /* If there was an explicit qualification (S::~T), first look
3181 in the scope given by the qualification (i.e., S). */
3182 if (scope)
3183 {
3184 cp_parser_parse_tentatively (parser);
3185 type_decl = cp_parser_class_name (parser,
3186 /*typename_keyword_p=*/false,
3187 /*template_keyword_p=*/false,
3188 /*type_p=*/false,
3189 /*check_dependency=*/false,
3190 /*class_head_p=*/false,
3191 declarator_p);
3192 if (cp_parser_parse_definitely (parser))
3193 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3194 }
3195 /* In "N::S::~S", look in "N" as well. */
3196 if (scope && qualifying_scope)
3197 {
3198 cp_parser_parse_tentatively (parser);
3199 parser->scope = qualifying_scope;
3200 parser->object_scope = NULL_TREE;
3201 parser->qualifying_scope = NULL_TREE;
3202 type_decl
3203 = cp_parser_class_name (parser,
3204 /*typename_keyword_p=*/false,
3205 /*template_keyword_p=*/false,
3206 /*type_p=*/false,
3207 /*check_dependency=*/false,
3208 /*class_head_p=*/false,
3209 declarator_p);
3210 if (cp_parser_parse_definitely (parser))
3211 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3212 }
3213 /* In "p->S::~T", look in the scope given by "*p" as well. */
3214 else if (object_scope)
3215 {
3216 cp_parser_parse_tentatively (parser);
3217 parser->scope = object_scope;
3218 parser->object_scope = NULL_TREE;
3219 parser->qualifying_scope = NULL_TREE;
3220 type_decl
3221 = cp_parser_class_name (parser,
3222 /*typename_keyword_p=*/false,
3223 /*template_keyword_p=*/false,
3224 /*type_p=*/false,
3225 /*check_dependency=*/false,
3226 /*class_head_p=*/false,
3227 declarator_p);
3228 if (cp_parser_parse_definitely (parser))
3229 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3230 }
3231 /* Look in the surrounding context. */
3232 parser->scope = NULL_TREE;
3233 parser->object_scope = NULL_TREE;
3234 parser->qualifying_scope = NULL_TREE;
3235 type_decl
3236 = cp_parser_class_name (parser,
3237 /*typename_keyword_p=*/false,
3238 /*template_keyword_p=*/false,
3239 /*type_p=*/false,
3240 /*check_dependency=*/false,
3241 /*class_head_p=*/false,
3242 declarator_p);
3243 /* If an error occurred, assume that the name of the
3244 destructor is the same as the name of the qualifying
3245 class. That allows us to keep parsing after running
3246 into ill-formed destructor names. */
3247 if (type_decl == error_mark_node && scope && TYPE_P (scope))
3248 return build_nt (BIT_NOT_EXPR, scope);
3249 else if (type_decl == error_mark_node)
3250 return error_mark_node;
3251
3252 /* [class.dtor]
3253
3254 A typedef-name that names a class shall not be used as the
3255 identifier in the declarator for a destructor declaration. */
3256 if (declarator_p
3257 && !DECL_IMPLICIT_TYPEDEF_P (type_decl)
3258 && !DECL_SELF_REFERENCE_P (type_decl))
3259 error ("typedef-name %qD used as destructor declarator",
3260 type_decl);
3261
3262 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3263 }
3264
3265 case CPP_KEYWORD:
3266 if (token->keyword == RID_OPERATOR)
3267 {
3268 tree id;
3269
3270 /* This could be a template-id, so we try that first. */
3271 cp_parser_parse_tentatively (parser);
3272 /* Try a template-id. */
3273 id = cp_parser_template_id (parser, template_keyword_p,
3274 /*check_dependency_p=*/true,
3275 declarator_p);
3276 /* If that worked, we're done. */
3277 if (cp_parser_parse_definitely (parser))
3278 return id;
3279 /* We still don't know whether we're looking at an
3280 operator-function-id or a conversion-function-id. */
3281 cp_parser_parse_tentatively (parser);
3282 /* Try an operator-function-id. */
3283 id = cp_parser_operator_function_id (parser);
3284 /* If that didn't work, try a conversion-function-id. */
3285 if (!cp_parser_parse_definitely (parser))
3286 id = cp_parser_conversion_function_id (parser);
3287
3288 return id;
3289 }
3290 /* Fall through. */
3291
3292 default:
3293 cp_parser_error (parser, "expected unqualified-id");
3294 return error_mark_node;
3295 }
3296 }
3297
3298 /* Parse an (optional) nested-name-specifier.
3299
3300 nested-name-specifier:
3301 class-or-namespace-name :: nested-name-specifier [opt]
3302 class-or-namespace-name :: template nested-name-specifier [opt]
3303
3304 PARSER->SCOPE should be set appropriately before this function is
3305 called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
3306 effect. TYPE_P is TRUE if we non-type bindings should be ignored
3307 in name lookups.
3308
3309 Sets PARSER->SCOPE to the class (TYPE) or namespace
3310 (NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
3311 it unchanged if there is no nested-name-specifier. Returns the new
3312 scope iff there is a nested-name-specifier, or NULL_TREE otherwise.
3313
3314 If IS_DECLARATION is TRUE, the nested-name-specifier is known to be
3315 part of a declaration and/or decl-specifier. */
3316
3317 static tree
3318 cp_parser_nested_name_specifier_opt (cp_parser *parser,
3319 bool typename_keyword_p,
3320 bool check_dependency_p,
3321 bool type_p,
3322 bool is_declaration)
3323 {
3324 bool success = false;
3325 tree access_check = NULL_TREE;
3326 cp_token_position start = 0;
3327 cp_token *token;
3328
3329 /* If the next token corresponds to a nested name specifier, there
3330 is no need to reparse it. However, if CHECK_DEPENDENCY_P is
3331 false, it may have been true before, in which case something
3332 like `A<X>::B<Y>::C' may have resulted in a nested-name-specifier
3333 of `A<X>::', where it should now be `A<X>::B<Y>::'. So, when
3334 CHECK_DEPENDENCY_P is false, we have to fall through into the
3335 main loop. */
3336 if (check_dependency_p
3337 && cp_lexer_next_token_is (parser->lexer, CPP_NESTED_NAME_SPECIFIER))
3338 {
3339 cp_parser_pre_parsed_nested_name_specifier (parser);
3340 return parser->scope;
3341 }
3342
3343 /* Remember where the nested-name-specifier starts. */
3344 if (cp_parser_parsing_tentatively (parser)
3345 && !cp_parser_committed_to_tentative_parse (parser))
3346 start = cp_lexer_token_position (parser->lexer, false);
3347
3348 push_deferring_access_checks (dk_deferred);
3349
3350 while (true)
3351 {
3352 tree new_scope;
3353 tree old_scope;
3354 tree saved_qualifying_scope;
3355 bool template_keyword_p;
3356
3357 /* Spot cases that cannot be the beginning of a
3358 nested-name-specifier. */
3359 token = cp_lexer_peek_token (parser->lexer);
3360
3361 /* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
3362 the already parsed nested-name-specifier. */
3363 if (token->type == CPP_NESTED_NAME_SPECIFIER)
3364 {
3365 /* Grab the nested-name-specifier and continue the loop. */
3366 cp_parser_pre_parsed_nested_name_specifier (parser);
3367 success = true;
3368 continue;
3369 }
3370
3371 /* Spot cases that cannot be the beginning of a
3372 nested-name-specifier. On the second and subsequent times
3373 through the loop, we look for the `template' keyword. */
3374 if (success && token->keyword == RID_TEMPLATE)
3375 ;
3376 /* A template-id can start a nested-name-specifier. */
3377 else if (token->type == CPP_TEMPLATE_ID)
3378 ;
3379 else
3380 {
3381 /* If the next token is not an identifier, then it is
3382 definitely not a class-or-namespace-name. */
3383 if (token->type != CPP_NAME)
3384 break;
3385 /* If the following token is neither a `<' (to begin a
3386 template-id), nor a `::', then we are not looking at a
3387 nested-name-specifier. */
3388 token = cp_lexer_peek_nth_token (parser->lexer, 2);
3389 if (token->type != CPP_SCOPE
3390 && !cp_parser_nth_token_starts_template_argument_list_p
3391 (parser, 2))
3392 break;
3393 }
3394
3395 /* The nested-name-specifier is optional, so we parse
3396 tentatively. */
3397 cp_parser_parse_tentatively (parser);
3398
3399 /* Look for the optional `template' keyword, if this isn't the
3400 first time through the loop. */
3401 if (success)
3402 template_keyword_p = cp_parser_optional_template_keyword (parser);
3403 else
3404 template_keyword_p = false;
3405
3406 /* Save the old scope since the name lookup we are about to do
3407 might destroy it. */
3408 old_scope = parser->scope;
3409 saved_qualifying_scope = parser->qualifying_scope;
3410 /* In a declarator-id like "X<T>::I::Y<T>" we must be able to
3411 look up names in "X<T>::I" in order to determine that "Y" is
3412 a template. So, if we have a typename at this point, we make
3413 an effort to look through it. */
3414 if (is_declaration
3415 && !typename_keyword_p
3416 && parser->scope
3417 && TREE_CODE (parser->scope) == TYPENAME_TYPE)
3418 parser->scope = resolve_typename_type (parser->scope,
3419 /*only_current_p=*/false);
3420 /* Parse the qualifying entity. */
3421 new_scope
3422 = cp_parser_class_or_namespace_name (parser,
3423 typename_keyword_p,
3424 template_keyword_p,
3425 check_dependency_p,
3426 type_p,
3427 is_declaration);
3428 /* Look for the `::' token. */
3429 cp_parser_require (parser, CPP_SCOPE, "`::'");
3430
3431 /* If we found what we wanted, we keep going; otherwise, we're
3432 done. */
3433 if (!cp_parser_parse_definitely (parser))
3434 {
3435 bool error_p = false;
3436
3437 /* Restore the OLD_SCOPE since it was valid before the
3438 failed attempt at finding the last
3439 class-or-namespace-name. */
3440 parser->scope = old_scope;
3441 parser->qualifying_scope = saved_qualifying_scope;
3442 /* If the next token is an identifier, and the one after
3443 that is a `::', then any valid interpretation would have
3444 found a class-or-namespace-name. */
3445 while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3446 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3447 == CPP_SCOPE)
3448 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
3449 != CPP_COMPL))
3450 {
3451 token = cp_lexer_consume_token (parser->lexer);
3452 if (!error_p)
3453 {
3454 tree decl;
3455
3456 decl = cp_parser_lookup_name_simple (parser, token->value);
3457 if (TREE_CODE (decl) == TEMPLATE_DECL)
3458 error ("%qD used without template parameters", decl);
3459 else
3460 cp_parser_name_lookup_error
3461 (parser, token->value, decl,
3462 "is not a class or namespace");
3463 parser->scope = NULL_TREE;
3464 error_p = true;
3465 /* Treat this as a successful nested-name-specifier
3466 due to:
3467
3468 [basic.lookup.qual]
3469
3470 If the name found is not a class-name (clause
3471 _class_) or namespace-name (_namespace.def_), the
3472 program is ill-formed. */
3473 success = true;
3474 }
3475 cp_lexer_consume_token (parser->lexer);
3476 }
3477 break;
3478 }
3479
3480 /* We've found one valid nested-name-specifier. */
3481 success = true;
3482 /* Make sure we look in the right scope the next time through
3483 the loop. */
3484 parser->scope = (TREE_CODE (new_scope) == TYPE_DECL
3485 ? TREE_TYPE (new_scope)
3486 : new_scope);
3487 /* If it is a class scope, try to complete it; we are about to
3488 be looking up names inside the class. */
3489 if (TYPE_P (parser->scope)
3490 /* Since checking types for dependency can be expensive,
3491 avoid doing it if the type is already complete. */
3492 && !COMPLETE_TYPE_P (parser->scope)
3493 /* Do not try to complete dependent types. */
3494 && !dependent_type_p (parser->scope))
3495 complete_type (parser->scope);
3496 }
3497
3498 /* Retrieve any deferred checks. Do not pop this access checks yet
3499 so the memory will not be reclaimed during token replacing below. */
3500 access_check = get_deferred_access_checks ();
3501
3502 /* If parsing tentatively, replace the sequence of tokens that makes
3503 up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
3504 token. That way, should we re-parse the token stream, we will
3505 not have to repeat the effort required to do the parse, nor will
3506 we issue duplicate error messages. */
3507 if (success && start)
3508 {
3509 cp_token *token = cp_lexer_token_at (parser->lexer, start);
3510
3511 /* Reset the contents of the START token. */
3512 token->type = CPP_NESTED_NAME_SPECIFIER;
3513 token->value = build_tree_list (access_check, parser->scope);
3514 TREE_TYPE (token->value) = parser->qualifying_scope;
3515 token->keyword = RID_MAX;
3516
3517 /* Purge all subsequent tokens. */
3518 cp_lexer_purge_tokens_after (parser->lexer, start);
3519 }
3520
3521 pop_deferring_access_checks ();
3522 return success ? parser->scope : NULL_TREE;
3523 }
3524
3525 /* Parse a nested-name-specifier. See
3526 cp_parser_nested_name_specifier_opt for details. This function
3527 behaves identically, except that it will an issue an error if no
3528 nested-name-specifier is present, and it will return
3529 ERROR_MARK_NODE, rather than NULL_TREE, if no nested-name-specifier
3530 is present. */
3531
3532 static tree
3533 cp_parser_nested_name_specifier (cp_parser *parser,
3534 bool typename_keyword_p,
3535 bool check_dependency_p,
3536 bool type_p,
3537 bool is_declaration)
3538 {
3539 tree scope;
3540
3541 /* Look for the nested-name-specifier. */
3542 scope = cp_parser_nested_name_specifier_opt (parser,
3543 typename_keyword_p,
3544 check_dependency_p,
3545 type_p,
3546 is_declaration);
3547 /* If it was not present, issue an error message. */
3548 if (!scope)
3549 {
3550 cp_parser_error (parser, "expected nested-name-specifier");
3551 parser->scope = NULL_TREE;
3552 return error_mark_node;
3553 }
3554
3555 return scope;
3556 }
3557
3558 /* Parse a class-or-namespace-name.
3559
3560 class-or-namespace-name:
3561 class-name
3562 namespace-name
3563
3564 TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
3565 TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
3566 CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
3567 TYPE_P is TRUE iff the next name should be taken as a class-name,
3568 even the same name is declared to be another entity in the same
3569 scope.
3570
3571 Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
3572 specified by the class-or-namespace-name. If neither is found the
3573 ERROR_MARK_NODE is returned. */
3574
3575 static tree
3576 cp_parser_class_or_namespace_name (cp_parser *parser,
3577 bool typename_keyword_p,
3578 bool template_keyword_p,
3579 bool check_dependency_p,
3580 bool type_p,
3581 bool is_declaration)
3582 {
3583 tree saved_scope;
3584 tree saved_qualifying_scope;
3585 tree saved_object_scope;
3586 tree scope;
3587 bool only_class_p;
3588
3589 /* Before we try to parse the class-name, we must save away the
3590 current PARSER->SCOPE since cp_parser_class_name will destroy
3591 it. */
3592 saved_scope = parser->scope;
3593 saved_qualifying_scope = parser->qualifying_scope;
3594 saved_object_scope = parser->object_scope;
3595 /* Try for a class-name first. If the SAVED_SCOPE is a type, then
3596 there is no need to look for a namespace-name. */
3597 only_class_p = template_keyword_p || (saved_scope && TYPE_P (saved_scope));
3598 if (!only_class_p)
3599 cp_parser_parse_tentatively (parser);
3600 scope = cp_parser_class_name (parser,
3601 typename_keyword_p,
3602 template_keyword_p,
3603 type_p,
3604 check_dependency_p,
3605 /*class_head_p=*/false,
3606 is_declaration);
3607 /* If that didn't work, try for a namespace-name. */
3608 if (!only_class_p && !cp_parser_parse_definitely (parser))
3609 {
3610 /* Restore the saved scope. */
3611 parser->scope = saved_scope;
3612 parser->qualifying_scope = saved_qualifying_scope;
3613 parser->object_scope = saved_object_scope;
3614 /* If we are not looking at an identifier followed by the scope
3615 resolution operator, then this is not part of a
3616 nested-name-specifier. (Note that this function is only used
3617 to parse the components of a nested-name-specifier.) */
3618 if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
3619 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
3620 return error_mark_node;
3621 scope = cp_parser_namespace_name (parser);
3622 }
3623
3624 return scope;
3625 }
3626
3627 /* Parse a postfix-expression.
3628
3629 postfix-expression:
3630 primary-expression
3631 postfix-expression [ expression ]
3632 postfix-expression ( expression-list [opt] )
3633 simple-type-specifier ( expression-list [opt] )
3634 typename :: [opt] nested-name-specifier identifier
3635 ( expression-list [opt] )
3636 typename :: [opt] nested-name-specifier template [opt] template-id
3637 ( expression-list [opt] )
3638 postfix-expression . template [opt] id-expression
3639 postfix-expression -> template [opt] id-expression
3640 postfix-expression . pseudo-destructor-name
3641 postfix-expression -> pseudo-destructor-name
3642 postfix-expression ++
3643 postfix-expression --
3644 dynamic_cast < type-id > ( expression )
3645 static_cast < type-id > ( expression )
3646 reinterpret_cast < type-id > ( expression )
3647 const_cast < type-id > ( expression )
3648 typeid ( expression )
3649 typeid ( type-id )
3650
3651 GNU Extension:
3652
3653 postfix-expression:
3654 ( type-id ) { initializer-list , [opt] }
3655
3656 This extension is a GNU version of the C99 compound-literal
3657 construct. (The C99 grammar uses `type-name' instead of `type-id',
3658 but they are essentially the same concept.)
3659
3660 If ADDRESS_P is true, the postfix expression is the operand of the
3661 `&' operator.
3662
3663 Returns a representation of the expression. */
3664
3665 static tree
3666 cp_parser_postfix_expression (cp_parser *parser, bool address_p)
3667 {
3668 cp_token *token;
3669 enum rid keyword;
3670 cp_id_kind idk = CP_ID_KIND_NONE;
3671 tree postfix_expression = NULL_TREE;
3672 /* Non-NULL only if the current postfix-expression can be used to
3673 form a pointer-to-member. In that case, QUALIFYING_CLASS is the
3674 class used to qualify the member. */
3675 tree qualifying_class = NULL_TREE;
3676
3677 /* Peek at the next token. */
3678 token = cp_lexer_peek_token (parser->lexer);
3679 /* Some of the productions are determined by keywords. */
3680 keyword = token->keyword;
3681 switch (keyword)
3682 {
3683 case RID_DYNCAST:
3684 case RID_STATCAST:
3685 case RID_REINTCAST:
3686 case RID_CONSTCAST:
3687 {
3688 tree type;
3689 tree expression;
3690 const char *saved_message;
3691
3692 /* All of these can be handled in the same way from the point
3693 of view of parsing. Begin by consuming the token
3694 identifying the cast. */
3695 cp_lexer_consume_token (parser->lexer);
3696
3697 /* New types cannot be defined in the cast. */
3698 saved_message = parser->type_definition_forbidden_message;
3699 parser->type_definition_forbidden_message
3700 = "types may not be defined in casts";
3701
3702 /* Look for the opening `<'. */
3703 cp_parser_require (parser, CPP_LESS, "`<'");
3704 /* Parse the type to which we are casting. */
3705 type = cp_parser_type_id (parser);
3706 /* Look for the closing `>'. */
3707 cp_parser_require (parser, CPP_GREATER, "`>'");
3708 /* Restore the old message. */
3709 parser->type_definition_forbidden_message = saved_message;
3710
3711 /* And the expression which is being cast. */
3712 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3713 expression = cp_parser_expression (parser);
3714 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3715
3716 /* Only type conversions to integral or enumeration types
3717 can be used in constant-expressions. */
3718 if (parser->integral_constant_expression_p
3719 && !dependent_type_p (type)
3720 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
3721 && (cp_parser_non_integral_constant_expression
3722 (parser,
3723 "a cast to a type other than an integral or "
3724 "enumeration type")))
3725 return error_mark_node;
3726
3727 switch (keyword)
3728 {
3729 case RID_DYNCAST:
3730 postfix_expression
3731 = build_dynamic_cast (type, expression);
3732 break;
3733 case RID_STATCAST:
3734 postfix_expression
3735 = build_static_cast (type, expression);
3736 break;
3737 case RID_REINTCAST:
3738 postfix_expression
3739 = build_reinterpret_cast (type, expression);
3740 break;
3741 case RID_CONSTCAST:
3742 postfix_expression
3743 = build_const_cast (type, expression);
3744 break;
3745 default:
3746 gcc_unreachable ();
3747 }
3748 }
3749 break;
3750
3751 case RID_TYPEID:
3752 {
3753 tree type;
3754 const char *saved_message;
3755 bool saved_in_type_id_in_expr_p;
3756
3757 /* Consume the `typeid' token. */
3758 cp_lexer_consume_token (parser->lexer);
3759 /* Look for the `(' token. */
3760 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3761 /* Types cannot be defined in a `typeid' expression. */
3762 saved_message = parser->type_definition_forbidden_message;
3763 parser->type_definition_forbidden_message
3764 = "types may not be defined in a `typeid\' expression";
3765 /* We can't be sure yet whether we're looking at a type-id or an
3766 expression. */
3767 cp_parser_parse_tentatively (parser);
3768 /* Try a type-id first. */
3769 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3770 parser->in_type_id_in_expr_p = true;
3771 type = cp_parser_type_id (parser);
3772 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3773 /* Look for the `)' token. Otherwise, we can't be sure that
3774 we're not looking at an expression: consider `typeid (int
3775 (3))', for example. */
3776 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3777 /* If all went well, simply lookup the type-id. */
3778 if (cp_parser_parse_definitely (parser))
3779 postfix_expression = get_typeid (type);
3780 /* Otherwise, fall back to the expression variant. */
3781 else
3782 {
3783 tree expression;
3784
3785 /* Look for an expression. */
3786 expression = cp_parser_expression (parser);
3787 /* Compute its typeid. */
3788 postfix_expression = build_typeid (expression);
3789 /* Look for the `)' token. */
3790 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3791 }
3792 /* `typeid' may not appear in an integral constant expression. */
3793 if (cp_parser_non_integral_constant_expression(parser,
3794 "`typeid' operator"))
3795 return error_mark_node;
3796 /* Restore the saved message. */
3797 parser->type_definition_forbidden_message = saved_message;
3798 }
3799 break;
3800
3801 case RID_TYPENAME:
3802 {
3803 bool template_p = false;
3804 tree id;
3805 tree type;
3806
3807 /* Consume the `typename' token. */
3808 cp_lexer_consume_token (parser->lexer);
3809 /* Look for the optional `::' operator. */
3810 cp_parser_global_scope_opt (parser,
3811 /*current_scope_valid_p=*/false);
3812 /* Look for the nested-name-specifier. */
3813 cp_parser_nested_name_specifier (parser,
3814 /*typename_keyword_p=*/true,
3815 /*check_dependency_p=*/true,
3816 /*type_p=*/true,
3817 /*is_declaration=*/true);
3818 /* Look for the optional `template' keyword. */
3819 template_p = cp_parser_optional_template_keyword (parser);
3820 /* We don't know whether we're looking at a template-id or an
3821 identifier. */
3822 cp_parser_parse_tentatively (parser);
3823 /* Try a template-id. */
3824 id = cp_parser_template_id (parser, template_p,
3825 /*check_dependency_p=*/true,
3826 /*is_declaration=*/true);
3827 /* If that didn't work, try an identifier. */
3828 if (!cp_parser_parse_definitely (parser))
3829 id = cp_parser_identifier (parser);
3830 /* If we look up a template-id in a non-dependent qualifying
3831 scope, there's no need to create a dependent type. */
3832 if (TREE_CODE (id) == TYPE_DECL
3833 && !dependent_type_p (parser->scope))
3834 type = TREE_TYPE (id);
3835 /* Create a TYPENAME_TYPE to represent the type to which the
3836 functional cast is being performed. */
3837 else
3838 type = make_typename_type (parser->scope, id,
3839 /*complain=*/1);
3840
3841 postfix_expression = cp_parser_functional_cast (parser, type);
3842 }
3843 break;
3844
3845 default:
3846 {
3847 tree type;
3848
3849 /* If the next thing is a simple-type-specifier, we may be
3850 looking at a functional cast. We could also be looking at
3851 an id-expression. So, we try the functional cast, and if
3852 that doesn't work we fall back to the primary-expression. */
3853 cp_parser_parse_tentatively (parser);
3854 /* Look for the simple-type-specifier. */
3855 type = cp_parser_simple_type_specifier (parser,
3856 /*decl_specs=*/NULL,
3857 CP_PARSER_FLAGS_NONE);
3858 /* Parse the cast itself. */
3859 if (!cp_parser_error_occurred (parser))
3860 postfix_expression
3861 = cp_parser_functional_cast (parser, type);
3862 /* If that worked, we're done. */
3863 if (cp_parser_parse_definitely (parser))
3864 break;
3865
3866 /* If the functional-cast didn't work out, try a
3867 compound-literal. */
3868 if (cp_parser_allow_gnu_extensions_p (parser)
3869 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
3870 {
3871 tree initializer_list = NULL_TREE;
3872 bool saved_in_type_id_in_expr_p;
3873
3874 cp_parser_parse_tentatively (parser);
3875 /* Consume the `('. */
3876 cp_lexer_consume_token (parser->lexer);
3877 /* Parse the type. */
3878 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3879 parser->in_type_id_in_expr_p = true;
3880 type = cp_parser_type_id (parser);
3881 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3882 /* Look for the `)'. */
3883 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3884 /* Look for the `{'. */
3885 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
3886 /* If things aren't going well, there's no need to
3887 keep going. */
3888 if (!cp_parser_error_occurred (parser))
3889 {
3890 bool non_constant_p;
3891 /* Parse the initializer-list. */
3892 initializer_list
3893 = cp_parser_initializer_list (parser, &non_constant_p);
3894 /* Allow a trailing `,'. */
3895 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
3896 cp_lexer_consume_token (parser->lexer);
3897 /* Look for the final `}'. */
3898 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
3899 }
3900 /* If that worked, we're definitely looking at a
3901 compound-literal expression. */
3902 if (cp_parser_parse_definitely (parser))
3903 {
3904 /* Warn the user that a compound literal is not
3905 allowed in standard C++. */
3906 if (pedantic)
3907 pedwarn ("ISO C++ forbids compound-literals");
3908 /* Form the representation of the compound-literal. */
3909 postfix_expression
3910 = finish_compound_literal (type, initializer_list);
3911 break;
3912 }
3913 }
3914
3915 /* It must be a primary-expression. */
3916 postfix_expression = cp_parser_primary_expression (parser,
3917 &idk,
3918 &qualifying_class);
3919 }
3920 break;
3921 }
3922
3923 /* If we were avoiding committing to the processing of a
3924 qualified-id until we knew whether or not we had a
3925 pointer-to-member, we now know. */
3926 if (qualifying_class)
3927 {
3928 bool done;
3929
3930 /* Peek at the next token. */
3931 token = cp_lexer_peek_token (parser->lexer);
3932 done = (token->type != CPP_OPEN_SQUARE
3933 && token->type != CPP_OPEN_PAREN
3934 && token->type != CPP_DOT
3935 && token->type != CPP_DEREF
3936 && token->type != CPP_PLUS_PLUS
3937 && token->type != CPP_MINUS_MINUS);
3938
3939 postfix_expression = finish_qualified_id_expr (qualifying_class,
3940 postfix_expression,
3941 done,
3942 address_p);
3943 if (done)
3944 return postfix_expression;
3945 }
3946
3947 /* Keep looping until the postfix-expression is complete. */
3948 while (true)
3949 {
3950 if (idk == CP_ID_KIND_UNQUALIFIED
3951 && TREE_CODE (postfix_expression) == IDENTIFIER_NODE
3952 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
3953 /* It is not a Koenig lookup function call. */
3954 postfix_expression
3955 = unqualified_name_lookup_error (postfix_expression);
3956
3957 /* Peek at the next token. */
3958 token = cp_lexer_peek_token (parser->lexer);
3959
3960 switch (token->type)
3961 {
3962 case CPP_OPEN_SQUARE:
3963 postfix_expression
3964 = cp_parser_postfix_open_square_expression (parser,
3965 postfix_expression,
3966 false);
3967 idk = CP_ID_KIND_NONE;
3968 break;
3969
3970 case CPP_OPEN_PAREN:
3971 /* postfix-expression ( expression-list [opt] ) */
3972 {
3973 bool koenig_p;
3974 tree args = (cp_parser_parenthesized_expression_list
3975 (parser, false, /*non_constant_p=*/NULL));
3976
3977 if (args == error_mark_node)
3978 {
3979 postfix_expression = error_mark_node;
3980 break;
3981 }
3982
3983 /* Function calls are not permitted in
3984 constant-expressions. */
3985 if (cp_parser_non_integral_constant_expression (parser,
3986 "a function call"))
3987 {
3988 postfix_expression = error_mark_node;
3989 break;
3990 }
3991
3992 koenig_p = false;
3993 if (idk == CP_ID_KIND_UNQUALIFIED)
3994 {
3995 if (TREE_CODE (postfix_expression) == IDENTIFIER_NODE)
3996 {
3997 if (args)
3998 {
3999 koenig_p = true;
4000 postfix_expression
4001 = perform_koenig_lookup (postfix_expression, args);
4002 }
4003 else
4004 postfix_expression
4005 = unqualified_fn_lookup_error (postfix_expression);
4006 }
4007 /* We do not perform argument-dependent lookup if
4008 normal lookup finds a non-function, in accordance
4009 with the expected resolution of DR 218. */
4010 else if (args && is_overloaded_fn (postfix_expression))
4011 {
4012 tree fn = get_first_fn (postfix_expression);
4013
4014 if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
4015 fn = OVL_CURRENT (TREE_OPERAND (fn, 0));
4016
4017 /* Only do argument dependent lookup if regular
4018 lookup does not find a set of member functions.
4019 [basic.lookup.koenig]/2a */
4020 if (!DECL_FUNCTION_MEMBER_P (fn))
4021 {
4022 koenig_p = true;
4023 postfix_expression
4024 = perform_koenig_lookup (postfix_expression, args);
4025 }
4026 }
4027 }
4028
4029 if (TREE_CODE (postfix_expression) == COMPONENT_REF)
4030 {
4031 tree instance = TREE_OPERAND (postfix_expression, 0);
4032 tree fn = TREE_OPERAND (postfix_expression, 1);
4033
4034 if (processing_template_decl
4035 && (type_dependent_expression_p (instance)
4036 || (!BASELINK_P (fn)
4037 && TREE_CODE (fn) != FIELD_DECL)
4038 || type_dependent_expression_p (fn)
4039 || any_type_dependent_arguments_p (args)))
4040 {
4041 postfix_expression
4042 = build_min_nt (CALL_EXPR, postfix_expression,
4043 args, NULL_TREE);
4044 break;
4045 }
4046
4047 if (BASELINK_P (fn))
4048 postfix_expression
4049 = (build_new_method_call
4050 (instance, fn, args, NULL_TREE,
4051 (idk == CP_ID_KIND_QUALIFIED
4052 ? LOOKUP_NONVIRTUAL : LOOKUP_NORMAL)));
4053 else
4054 postfix_expression
4055 = finish_call_expr (postfix_expression, args,
4056 /*disallow_virtual=*/false,
4057 /*koenig_p=*/false);
4058 }
4059 else if (TREE_CODE (postfix_expression) == OFFSET_REF
4060 || TREE_CODE (postfix_expression) == MEMBER_REF
4061 || TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
4062 postfix_expression = (build_offset_ref_call_from_tree
4063 (postfix_expression, args));
4064 else if (idk == CP_ID_KIND_QUALIFIED)
4065 /* A call to a static class member, or a namespace-scope
4066 function. */
4067 postfix_expression
4068 = finish_call_expr (postfix_expression, args,
4069 /*disallow_virtual=*/true,
4070 koenig_p);
4071 else
4072 /* All other function calls. */
4073 postfix_expression
4074 = finish_call_expr (postfix_expression, args,
4075 /*disallow_virtual=*/false,
4076 koenig_p);
4077
4078 /* The POSTFIX_EXPRESSION is certainly no longer an id. */
4079 idk = CP_ID_KIND_NONE;
4080 }
4081 break;
4082
4083 case CPP_DOT:
4084 case CPP_DEREF:
4085 /* postfix-expression . template [opt] id-expression
4086 postfix-expression . pseudo-destructor-name
4087 postfix-expression -> template [opt] id-expression
4088 postfix-expression -> pseudo-destructor-name */
4089
4090 /* Consume the `.' or `->' operator. */
4091 cp_lexer_consume_token (parser->lexer);
4092
4093 postfix_expression
4094 = cp_parser_postfix_dot_deref_expression (parser, token->type,
4095 postfix_expression,
4096 false, &idk);
4097 break;
4098
4099 case CPP_PLUS_PLUS:
4100 /* postfix-expression ++ */
4101 /* Consume the `++' token. */
4102 cp_lexer_consume_token (parser->lexer);
4103 /* Generate a representation for the complete expression. */
4104 postfix_expression
4105 = finish_increment_expr (postfix_expression,
4106 POSTINCREMENT_EXPR);
4107 /* Increments may not appear in constant-expressions. */
4108 if (cp_parser_non_integral_constant_expression (parser,
4109 "an increment"))
4110 postfix_expression = error_mark_node;
4111 idk = CP_ID_KIND_NONE;
4112 break;
4113
4114 case CPP_MINUS_MINUS:
4115 /* postfix-expression -- */
4116 /* Consume the `--' token. */
4117 cp_lexer_consume_token (parser->lexer);
4118 /* Generate a representation for the complete expression. */
4119 postfix_expression
4120 = finish_increment_expr (postfix_expression,
4121 POSTDECREMENT_EXPR);
4122 /* Decrements may not appear in constant-expressions. */
4123 if (cp_parser_non_integral_constant_expression (parser,
4124 "a decrement"))
4125 postfix_expression = error_mark_node;
4126 idk = CP_ID_KIND_NONE;
4127 break;
4128
4129 default:
4130 return postfix_expression;
4131 }
4132 }
4133
4134 /* We should never get here. */
4135 gcc_unreachable ();
4136 return error_mark_node;
4137 }
4138
4139 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4140 by cp_parser_builtin_offsetof. We're looking for
4141
4142 postfix-expression [ expression ]
4143
4144 FOR_OFFSETOF is set if we're being called in that context, which
4145 changes how we deal with integer constant expressions. */
4146
4147 static tree
4148 cp_parser_postfix_open_square_expression (cp_parser *parser,
4149 tree postfix_expression,
4150 bool for_offsetof)
4151 {
4152 tree index;
4153
4154 /* Consume the `[' token. */
4155 cp_lexer_consume_token (parser->lexer);
4156
4157 /* Parse the index expression. */
4158 /* ??? For offsetof, there is a question of what to allow here. If
4159 offsetof is not being used in an integral constant expression context,
4160 then we *could* get the right answer by computing the value at runtime.
4161 If we are in an integral constant expression context, then we might
4162 could accept any constant expression; hard to say without analysis.
4163 Rather than open the barn door too wide right away, allow only integer
4164 constant expressions here. */
4165 if (for_offsetof)
4166 index = cp_parser_constant_expression (parser, false, NULL);
4167 else
4168 index = cp_parser_expression (parser);
4169
4170 /* Look for the closing `]'. */
4171 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
4172
4173 /* Build the ARRAY_REF. */
4174 postfix_expression = grok_array_decl (postfix_expression, index);
4175
4176 /* When not doing offsetof, array references are not permitted in
4177 constant-expressions. */
4178 if (!for_offsetof
4179 && (cp_parser_non_integral_constant_expression
4180 (parser, "an array reference")))
4181 postfix_expression = error_mark_node;
4182
4183 return postfix_expression;
4184 }
4185
4186 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4187 by cp_parser_builtin_offsetof. We're looking for
4188
4189 postfix-expression . template [opt] id-expression
4190 postfix-expression . pseudo-destructor-name
4191 postfix-expression -> template [opt] id-expression
4192 postfix-expression -> pseudo-destructor-name
4193
4194 FOR_OFFSETOF is set if we're being called in that context. That sorta
4195 limits what of the above we'll actually accept, but nevermind.
4196 TOKEN_TYPE is the "." or "->" token, which will already have been
4197 removed from the stream. */
4198
4199 static tree
4200 cp_parser_postfix_dot_deref_expression (cp_parser *parser,
4201 enum cpp_ttype token_type,
4202 tree postfix_expression,
4203 bool for_offsetof, cp_id_kind *idk)
4204 {
4205 tree name;
4206 bool dependent_p;
4207 bool template_p;
4208 bool pseudo_destructor_p;
4209 tree scope = NULL_TREE;
4210
4211 /* If this is a `->' operator, dereference the pointer. */
4212 if (token_type == CPP_DEREF)
4213 postfix_expression = build_x_arrow (postfix_expression);
4214 /* Check to see whether or not the expression is type-dependent. */
4215 dependent_p = type_dependent_expression_p (postfix_expression);
4216 /* The identifier following the `->' or `.' is not qualified. */
4217 parser->scope = NULL_TREE;
4218 parser->qualifying_scope = NULL_TREE;
4219 parser->object_scope = NULL_TREE;
4220 *idk = CP_ID_KIND_NONE;
4221 /* Enter the scope corresponding to the type of the object
4222 given by the POSTFIX_EXPRESSION. */
4223 if (!dependent_p && TREE_TYPE (postfix_expression) != NULL_TREE)
4224 {
4225 scope = TREE_TYPE (postfix_expression);
4226 /* According to the standard, no expression should ever have
4227 reference type. Unfortunately, we do not currently match
4228 the standard in this respect in that our internal representation
4229 of an expression may have reference type even when the standard
4230 says it does not. Therefore, we have to manually obtain the
4231 underlying type here. */
4232 scope = non_reference (scope);
4233 /* The type of the POSTFIX_EXPRESSION must be complete. */
4234 scope = complete_type_or_else (scope, NULL_TREE);
4235 /* Let the name lookup machinery know that we are processing a
4236 class member access expression. */
4237 parser->context->object_type = scope;
4238 /* If something went wrong, we want to be able to discern that case,
4239 as opposed to the case where there was no SCOPE due to the type
4240 of expression being dependent. */
4241 if (!scope)
4242 scope = error_mark_node;
4243 /* If the SCOPE was erroneous, make the various semantic analysis
4244 functions exit quickly -- and without issuing additional error
4245 messages. */
4246 if (scope == error_mark_node)
4247 postfix_expression = error_mark_node;
4248 }
4249
4250 /* Assume this expression is not a pseudo-destructor access. */
4251 pseudo_destructor_p = false;
4252
4253 /* If the SCOPE is a scalar type, then, if this is a valid program,
4254 we must be looking at a pseudo-destructor-name. */
4255 if (scope && SCALAR_TYPE_P (scope))
4256 {
4257 tree s;
4258 tree type;
4259
4260 cp_parser_parse_tentatively (parser);
4261 /* Parse the pseudo-destructor-name. */
4262 s = NULL_TREE;
4263 cp_parser_pseudo_destructor_name (parser, &s, &type);
4264 if (cp_parser_parse_definitely (parser))
4265 {
4266 pseudo_destructor_p = true;
4267 postfix_expression
4268 = finish_pseudo_destructor_expr (postfix_expression,
4269 s, TREE_TYPE (type));
4270 }
4271 }
4272
4273 if (!pseudo_destructor_p)
4274 {
4275 /* If the SCOPE is not a scalar type, we are looking at an
4276 ordinary class member access expression, rather than a
4277 pseudo-destructor-name. */
4278 template_p = cp_parser_optional_template_keyword (parser);
4279 /* Parse the id-expression. */
4280 name = cp_parser_id_expression (parser, template_p,
4281 /*check_dependency_p=*/true,
4282 /*template_p=*/NULL,
4283 /*declarator_p=*/false);
4284 /* In general, build a SCOPE_REF if the member name is qualified.
4285 However, if the name was not dependent and has already been
4286 resolved; there is no need to build the SCOPE_REF. For example;
4287
4288 struct X { void f(); };
4289 template <typename T> void f(T* t) { t->X::f(); }
4290
4291 Even though "t" is dependent, "X::f" is not and has been resolved
4292 to a BASELINK; there is no need to include scope information. */
4293
4294 /* But we do need to remember that there was an explicit scope for
4295 virtual function calls. */
4296 if (parser->scope)
4297 *idk = CP_ID_KIND_QUALIFIED;
4298
4299 if (name != error_mark_node && !BASELINK_P (name) && parser->scope)
4300 {
4301 name = build_nt (SCOPE_REF, parser->scope, name);
4302 parser->scope = NULL_TREE;
4303 parser->qualifying_scope = NULL_TREE;
4304 parser->object_scope = NULL_TREE;
4305 }
4306 if (scope && name && BASELINK_P (name))
4307 adjust_result_of_qualified_name_lookup
4308 (name, BINFO_TYPE (BASELINK_BINFO (name)), scope);
4309 postfix_expression
4310 = finish_class_member_access_expr (postfix_expression, name);
4311 }
4312
4313 /* We no longer need to look up names in the scope of the object on
4314 the left-hand side of the `.' or `->' operator. */
4315 parser->context->object_type = NULL_TREE;
4316
4317 /* Outside of offsetof, these operators may not appear in
4318 constant-expressions. */
4319 if (!for_offsetof
4320 && (cp_parser_non_integral_constant_expression
4321 (parser, token_type == CPP_DEREF ? "'->'" : "`.'")))
4322 postfix_expression = error_mark_node;
4323
4324 return postfix_expression;
4325 }
4326
4327 /* Parse a parenthesized expression-list.
4328
4329 expression-list:
4330 assignment-expression
4331 expression-list, assignment-expression
4332
4333 attribute-list:
4334 expression-list
4335 identifier
4336 identifier, expression-list
4337
4338 Returns a TREE_LIST. The TREE_VALUE of each node is a
4339 representation of an assignment-expression. Note that a TREE_LIST
4340 is returned even if there is only a single expression in the list.
4341 error_mark_node is returned if the ( and or ) are
4342 missing. NULL_TREE is returned on no expressions. The parentheses
4343 are eaten. IS_ATTRIBUTE_LIST is true if this is really an attribute
4344 list being parsed. If NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P
4345 indicates whether or not all of the expressions in the list were
4346 constant. */
4347
4348 static tree
4349 cp_parser_parenthesized_expression_list (cp_parser* parser,
4350 bool is_attribute_list,
4351 bool *non_constant_p)
4352 {
4353 tree expression_list = NULL_TREE;
4354 bool fold_expr_p = is_attribute_list;
4355 tree identifier = NULL_TREE;
4356
4357 /* Assume all the expressions will be constant. */
4358 if (non_constant_p)
4359 *non_constant_p = false;
4360
4361 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
4362 return error_mark_node;
4363
4364 /* Consume expressions until there are no more. */
4365 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
4366 while (true)
4367 {
4368 tree expr;
4369
4370 /* At the beginning of attribute lists, check to see if the
4371 next token is an identifier. */
4372 if (is_attribute_list
4373 && cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
4374 {
4375 cp_token *token;
4376
4377 /* Consume the identifier. */
4378 token = cp_lexer_consume_token (parser->lexer);
4379 /* Save the identifier. */
4380 identifier = token->value;
4381 }
4382 else
4383 {
4384 /* Parse the next assignment-expression. */
4385 if (non_constant_p)
4386 {
4387 bool expr_non_constant_p;
4388 expr = (cp_parser_constant_expression
4389 (parser, /*allow_non_constant_p=*/true,
4390 &expr_non_constant_p));
4391 if (expr_non_constant_p)
4392 *non_constant_p = true;
4393 }
4394 else
4395 expr = cp_parser_assignment_expression (parser);
4396
4397 if (fold_expr_p)
4398 expr = fold_non_dependent_expr (expr);
4399
4400 /* Add it to the list. We add error_mark_node
4401 expressions to the list, so that we can still tell if
4402 the correct form for a parenthesized expression-list
4403 is found. That gives better errors. */
4404 expression_list = tree_cons (NULL_TREE, expr, expression_list);
4405
4406 if (expr == error_mark_node)
4407 goto skip_comma;
4408 }
4409
4410 /* After the first item, attribute lists look the same as
4411 expression lists. */
4412 is_attribute_list = false;
4413
4414 get_comma:;
4415 /* If the next token isn't a `,', then we are done. */
4416 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
4417 break;
4418
4419 /* Otherwise, consume the `,' and keep going. */
4420 cp_lexer_consume_token (parser->lexer);
4421 }
4422
4423 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
4424 {
4425 int ending;
4426
4427 skip_comma:;
4428 /* We try and resync to an unnested comma, as that will give the
4429 user better diagnostics. */
4430 ending = cp_parser_skip_to_closing_parenthesis (parser,
4431 /*recovering=*/true,
4432 /*or_comma=*/true,
4433 /*consume_paren=*/true);
4434 if (ending < 0)
4435 goto get_comma;
4436 if (!ending)
4437 return error_mark_node;
4438 }
4439
4440 /* We built up the list in reverse order so we must reverse it now. */
4441 expression_list = nreverse (expression_list);
4442 if (identifier)
4443 expression_list = tree_cons (NULL_TREE, identifier, expression_list);
4444
4445 return expression_list;
4446 }
4447
4448 /* Parse a pseudo-destructor-name.
4449
4450 pseudo-destructor-name:
4451 :: [opt] nested-name-specifier [opt] type-name :: ~ type-name
4452 :: [opt] nested-name-specifier template template-id :: ~ type-name
4453 :: [opt] nested-name-specifier [opt] ~ type-name
4454
4455 If either of the first two productions is used, sets *SCOPE to the
4456 TYPE specified before the final `::'. Otherwise, *SCOPE is set to
4457 NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name,
4458 or ERROR_MARK_NODE if the parse fails. */
4459
4460 static void
4461 cp_parser_pseudo_destructor_name (cp_parser* parser,
4462 tree* scope,
4463 tree* type)
4464 {
4465 bool nested_name_specifier_p;
4466
4467 /* Assume that things will not work out. */
4468 *type = error_mark_node;
4469
4470 /* Look for the optional `::' operator. */
4471 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
4472 /* Look for the optional nested-name-specifier. */
4473 nested_name_specifier_p
4474 = (cp_parser_nested_name_specifier_opt (parser,
4475 /*typename_keyword_p=*/false,
4476 /*check_dependency_p=*/true,
4477 /*type_p=*/false,
4478 /*is_declaration=*/true)
4479 != NULL_TREE);
4480 /* Now, if we saw a nested-name-specifier, we might be doing the
4481 second production. */
4482 if (nested_name_specifier_p
4483 && cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
4484 {
4485 /* Consume the `template' keyword. */
4486 cp_lexer_consume_token (parser->lexer);
4487 /* Parse the template-id. */
4488 cp_parser_template_id (parser,
4489 /*template_keyword_p=*/true,
4490 /*check_dependency_p=*/false,
4491 /*is_declaration=*/true);
4492 /* Look for the `::' token. */
4493 cp_parser_require (parser, CPP_SCOPE, "`::'");
4494 }
4495 /* If the next token is not a `~', then there might be some
4496 additional qualification. */
4497 else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
4498 {
4499 /* Look for the type-name. */
4500 *scope = TREE_TYPE (cp_parser_type_name (parser));
4501
4502 if (*scope == error_mark_node)
4503 return;
4504
4505 /* If we don't have ::~, then something has gone wrong. Since
4506 the only caller of this function is looking for something
4507 after `.' or `->' after a scalar type, most likely the
4508 program is trying to get a member of a non-aggregate
4509 type. */
4510 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE)
4511 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_COMPL)
4512 {
4513 cp_parser_error (parser, "request for member of non-aggregate type");
4514 return;
4515 }
4516
4517 /* Look for the `::' token. */
4518 cp_parser_require (parser, CPP_SCOPE, "`::'");
4519 }
4520 else
4521 *scope = NULL_TREE;
4522
4523 /* Look for the `~'. */
4524 cp_parser_require (parser, CPP_COMPL, "`~'");
4525 /* Look for the type-name again. We are not responsible for
4526 checking that it matches the first type-name. */
4527 *type = cp_parser_type_name (parser);
4528 }
4529
4530 /* Parse a unary-expression.
4531
4532 unary-expression:
4533 postfix-expression
4534 ++ cast-expression
4535 -- cast-expression
4536 unary-operator cast-expression
4537 sizeof unary-expression
4538 sizeof ( type-id )
4539 new-expression
4540 delete-expression
4541
4542 GNU Extensions:
4543
4544 unary-expression:
4545 __extension__ cast-expression
4546 __alignof__ unary-expression
4547 __alignof__ ( type-id )
4548 __real__ cast-expression
4549 __imag__ cast-expression
4550 && identifier
4551
4552 ADDRESS_P is true iff the unary-expression is appearing as the
4553 operand of the `&' operator.
4554
4555 Returns a representation of the expression. */
4556
4557 static tree
4558 cp_parser_unary_expression (cp_parser *parser, bool address_p)
4559 {
4560 cp_token *token;
4561 enum tree_code unary_operator;
4562
4563 /* Peek at the next token. */
4564 token = cp_lexer_peek_token (parser->lexer);
4565 /* Some keywords give away the kind of expression. */
4566 if (token->type == CPP_KEYWORD)
4567 {
4568 enum rid keyword = token->keyword;
4569
4570 switch (keyword)
4571 {
4572 case RID_ALIGNOF:
4573 case RID_SIZEOF:
4574 {
4575 tree operand;
4576 enum tree_code op;
4577
4578 op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
4579 /* Consume the token. */
4580 cp_lexer_consume_token (parser->lexer);
4581 /* Parse the operand. */
4582 operand = cp_parser_sizeof_operand (parser, keyword);
4583
4584 if (TYPE_P (operand))
4585 return cxx_sizeof_or_alignof_type (operand, op, true);
4586 else
4587 return cxx_sizeof_or_alignof_expr (operand, op);
4588 }
4589
4590 case RID_NEW:
4591 return cp_parser_new_expression (parser);
4592
4593 case RID_DELETE:
4594 return cp_parser_delete_expression (parser);
4595
4596 case RID_EXTENSION:
4597 {
4598 /* The saved value of the PEDANTIC flag. */
4599 int saved_pedantic;
4600 tree expr;
4601
4602 /* Save away the PEDANTIC flag. */
4603 cp_parser_extension_opt (parser, &saved_pedantic);
4604 /* Parse the cast-expression. */
4605 expr = cp_parser_simple_cast_expression (parser);
4606 /* Restore the PEDANTIC flag. */
4607 pedantic = saved_pedantic;
4608
4609 return expr;
4610 }
4611
4612 case RID_REALPART:
4613 case RID_IMAGPART:
4614 {
4615 tree expression;
4616
4617 /* Consume the `__real__' or `__imag__' token. */
4618 cp_lexer_consume_token (parser->lexer);
4619 /* Parse the cast-expression. */
4620 expression = cp_parser_simple_cast_expression (parser);
4621 /* Create the complete representation. */
4622 return build_x_unary_op ((keyword == RID_REALPART
4623 ? REALPART_EXPR : IMAGPART_EXPR),
4624 expression);
4625 }
4626 break;
4627
4628 default:
4629 break;
4630 }
4631 }
4632
4633 /* Look for the `:: new' and `:: delete', which also signal the
4634 beginning of a new-expression, or delete-expression,
4635 respectively. If the next token is `::', then it might be one of
4636 these. */
4637 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
4638 {
4639 enum rid keyword;
4640
4641 /* See if the token after the `::' is one of the keywords in
4642 which we're interested. */
4643 keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
4644 /* If it's `new', we have a new-expression. */
4645 if (keyword == RID_NEW)
4646 return cp_parser_new_expression (parser);
4647 /* Similarly, for `delete'. */
4648 else if (keyword == RID_DELETE)
4649 return cp_parser_delete_expression (parser);
4650 }
4651
4652 /* Look for a unary operator. */
4653 unary_operator = cp_parser_unary_operator (token);
4654 /* The `++' and `--' operators can be handled similarly, even though
4655 they are not technically unary-operators in the grammar. */
4656 if (unary_operator == ERROR_MARK)
4657 {
4658 if (token->type == CPP_PLUS_PLUS)
4659 unary_operator = PREINCREMENT_EXPR;
4660 else if (token->type == CPP_MINUS_MINUS)
4661 unary_operator = PREDECREMENT_EXPR;
4662 /* Handle the GNU address-of-label extension. */
4663 else if (cp_parser_allow_gnu_extensions_p (parser)
4664 && token->type == CPP_AND_AND)
4665 {
4666 tree identifier;
4667
4668 /* Consume the '&&' token. */
4669 cp_lexer_consume_token (parser->lexer);
4670 /* Look for the identifier. */
4671 identifier = cp_parser_identifier (parser);
4672 /* Create an expression representing the address. */
4673 return finish_label_address_expr (identifier);
4674 }
4675 }
4676 if (unary_operator != ERROR_MARK)
4677 {
4678 tree cast_expression;
4679 tree expression = error_mark_node;
4680 const char *non_constant_p = NULL;
4681
4682 /* Consume the operator token. */
4683 token = cp_lexer_consume_token (parser->lexer);
4684 /* Parse the cast-expression. */
4685 cast_expression
4686 = cp_parser_cast_expression (parser, unary_operator == ADDR_EXPR);
4687 /* Now, build an appropriate representation. */
4688 switch (unary_operator)
4689 {
4690 case INDIRECT_REF:
4691 non_constant_p = "`*'";
4692 expression = build_x_indirect_ref (cast_expression, "unary *");
4693 break;
4694
4695 case ADDR_EXPR:
4696 non_constant_p = "`&'";
4697 /* Fall through. */
4698 case BIT_NOT_EXPR:
4699 expression = build_x_unary_op (unary_operator, cast_expression);
4700 break;
4701
4702 case PREINCREMENT_EXPR:
4703 case PREDECREMENT_EXPR:
4704 non_constant_p = (unary_operator == PREINCREMENT_EXPR
4705 ? "`++'" : "`--'");
4706 /* Fall through. */
4707 case CONVERT_EXPR:
4708 case NEGATE_EXPR:
4709 case TRUTH_NOT_EXPR:
4710 expression = finish_unary_op_expr (unary_operator, cast_expression);
4711 break;
4712
4713 default:
4714 gcc_unreachable ();
4715 }
4716
4717 if (non_constant_p
4718 && cp_parser_non_integral_constant_expression (parser,
4719 non_constant_p))
4720 expression = error_mark_node;
4721
4722 return expression;
4723 }
4724
4725 return cp_parser_postfix_expression (parser, address_p);
4726 }
4727
4728 /* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a
4729 unary-operator, the corresponding tree code is returned. */
4730
4731 static enum tree_code
4732 cp_parser_unary_operator (cp_token* token)
4733 {
4734 switch (token->type)
4735 {
4736 case CPP_MULT:
4737 return INDIRECT_REF;
4738
4739 case CPP_AND:
4740 return ADDR_EXPR;
4741
4742 case CPP_PLUS:
4743 return CONVERT_EXPR;
4744
4745 case CPP_MINUS:
4746 return NEGATE_EXPR;
4747
4748 case CPP_NOT:
4749 return TRUTH_NOT_EXPR;
4750
4751 case CPP_COMPL:
4752 return BIT_NOT_EXPR;
4753
4754 default:
4755 return ERROR_MARK;
4756 }
4757 }
4758
4759 /* Parse a new-expression.
4760
4761 new-expression:
4762 :: [opt] new new-placement [opt] new-type-id new-initializer [opt]
4763 :: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
4764
4765 Returns a representation of the expression. */
4766
4767 static tree
4768 cp_parser_new_expression (cp_parser* parser)
4769 {
4770 bool global_scope_p;
4771 tree placement;
4772 tree type;
4773 tree initializer;
4774 tree nelts;
4775
4776 /* Look for the optional `::' operator. */
4777 global_scope_p
4778 = (cp_parser_global_scope_opt (parser,
4779 /*current_scope_valid_p=*/false)
4780 != NULL_TREE);
4781 /* Look for the `new' operator. */
4782 cp_parser_require_keyword (parser, RID_NEW, "`new'");
4783 /* There's no easy way to tell a new-placement from the
4784 `( type-id )' construct. */
4785 cp_parser_parse_tentatively (parser);
4786 /* Look for a new-placement. */
4787 placement = cp_parser_new_placement (parser);
4788 /* If that didn't work out, there's no new-placement. */
4789 if (!cp_parser_parse_definitely (parser))
4790 placement = NULL_TREE;
4791
4792 /* If the next token is a `(', then we have a parenthesized
4793 type-id. */
4794 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4795 {
4796 /* Consume the `('. */
4797 cp_lexer_consume_token (parser->lexer);
4798 /* Parse the type-id. */
4799 type = cp_parser_type_id (parser);
4800 /* Look for the closing `)'. */
4801 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4802 /* There should not be a direct-new-declarator in this production,
4803 but GCC used to allowed this, so we check and emit a sensible error
4804 message for this case. */
4805 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4806 {
4807 error ("array bound forbidden after parenthesized type-id");
4808 inform ("try removing the parentheses around the type-id");
4809 cp_parser_direct_new_declarator (parser);
4810 }
4811 nelts = NULL_TREE;
4812 }
4813 /* Otherwise, there must be a new-type-id. */
4814 else
4815 type = cp_parser_new_type_id (parser, &nelts);
4816
4817 /* If the next token is a `(', then we have a new-initializer. */
4818 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4819 initializer = cp_parser_new_initializer (parser);
4820 else
4821 initializer = NULL_TREE;
4822
4823 /* A new-expression may not appear in an integral constant
4824 expression. */
4825 if (cp_parser_non_integral_constant_expression (parser, "`new'"))
4826 return error_mark_node;
4827
4828 /* Create a representation of the new-expression. */
4829 return build_new (placement, type, nelts, initializer, global_scope_p);
4830 }
4831
4832 /* Parse a new-placement.
4833
4834 new-placement:
4835 ( expression-list )
4836
4837 Returns the same representation as for an expression-list. */
4838
4839 static tree
4840 cp_parser_new_placement (cp_parser* parser)
4841 {
4842 tree expression_list;
4843
4844 /* Parse the expression-list. */
4845 expression_list = (cp_parser_parenthesized_expression_list
4846 (parser, false, /*non_constant_p=*/NULL));
4847
4848 return expression_list;
4849 }
4850
4851 /* Parse a new-type-id.
4852
4853 new-type-id:
4854 type-specifier-seq new-declarator [opt]
4855
4856 Returns the TYPE allocated. If the new-type-id indicates an array
4857 type, *NELTS is set to the number of elements in the last array
4858 bound; the TYPE will not include the last array bound. */
4859
4860 static tree
4861 cp_parser_new_type_id (cp_parser* parser, tree *nelts)
4862 {
4863 cp_decl_specifier_seq type_specifier_seq;
4864 cp_declarator *new_declarator;
4865 cp_declarator *declarator;
4866 cp_declarator *outer_declarator;
4867 const char *saved_message;
4868 tree type;
4869
4870 /* The type-specifier sequence must not contain type definitions.
4871 (It cannot contain declarations of new types either, but if they
4872 are not definitions we will catch that because they are not
4873 complete.) */
4874 saved_message = parser->type_definition_forbidden_message;
4875 parser->type_definition_forbidden_message
4876 = "types may not be defined in a new-type-id";
4877 /* Parse the type-specifier-seq. */
4878 cp_parser_type_specifier_seq (parser, &type_specifier_seq);
4879 /* Restore the old message. */
4880 parser->type_definition_forbidden_message = saved_message;
4881 /* Parse the new-declarator. */
4882 new_declarator = cp_parser_new_declarator_opt (parser);
4883
4884 /* Determine the number of elements in the last array dimension, if
4885 any. */
4886 *nelts = NULL_TREE;
4887 /* Skip down to the last array dimension. */
4888 declarator = new_declarator;
4889 outer_declarator = NULL;
4890 while (declarator && (declarator->kind == cdk_pointer
4891 || declarator->kind == cdk_ptrmem))
4892 {
4893 outer_declarator = declarator;
4894 declarator = declarator->declarator;
4895 }
4896 while (declarator
4897 && declarator->kind == cdk_array
4898 && declarator->declarator
4899 && declarator->declarator->kind == cdk_array)
4900 {
4901 outer_declarator = declarator;
4902 declarator = declarator->declarator;
4903 }
4904
4905 if (declarator && declarator->kind == cdk_array)
4906 {
4907 *nelts = declarator->u.array.bounds;
4908 if (*nelts == error_mark_node)
4909 *nelts = integer_one_node;
4910 else if (!processing_template_decl)
4911 {
4912 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, *nelts,
4913 false))
4914 pedwarn ("size in array new must have integral type");
4915 *nelts = save_expr (cp_convert (sizetype, *nelts));
4916 if (*nelts == integer_zero_node)
4917 warning ("zero size array reserves no space");
4918 }
4919 if (outer_declarator)
4920 outer_declarator->declarator = declarator->declarator;
4921 else
4922 new_declarator = NULL;
4923 }
4924
4925 type = groktypename (&type_specifier_seq, new_declarator);
4926 if (TREE_CODE (type) == ARRAY_TYPE && *nelts == NULL_TREE)
4927 {
4928 *nelts = array_type_nelts_top (type);
4929 type = TREE_TYPE (type);
4930 }
4931 return type;
4932 }
4933
4934 /* Parse an (optional) new-declarator.
4935
4936 new-declarator:
4937 ptr-operator new-declarator [opt]
4938 direct-new-declarator
4939
4940 Returns the declarator. */
4941
4942 static cp_declarator *
4943 cp_parser_new_declarator_opt (cp_parser* parser)
4944 {
4945 enum tree_code code;
4946 tree type;
4947 cp_cv_quals cv_quals;
4948
4949 /* We don't know if there's a ptr-operator next, or not. */
4950 cp_parser_parse_tentatively (parser);
4951 /* Look for a ptr-operator. */
4952 code = cp_parser_ptr_operator (parser, &type, &cv_quals);
4953 /* If that worked, look for more new-declarators. */
4954 if (cp_parser_parse_definitely (parser))
4955 {
4956 cp_declarator *declarator;
4957
4958 /* Parse another optional declarator. */
4959 declarator = cp_parser_new_declarator_opt (parser);
4960
4961 /* Create the representation of the declarator. */
4962 if (type)
4963 declarator = make_ptrmem_declarator (cv_quals, type, declarator);
4964 else if (code == INDIRECT_REF)
4965 declarator = make_pointer_declarator (cv_quals, declarator);
4966 else
4967 declarator = make_reference_declarator (cv_quals, declarator);
4968
4969 return declarator;
4970 }
4971
4972 /* If the next token is a `[', there is a direct-new-declarator. */
4973 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4974 return cp_parser_direct_new_declarator (parser);
4975
4976 return NULL;
4977 }
4978
4979 /* Parse a direct-new-declarator.
4980
4981 direct-new-declarator:
4982 [ expression ]
4983 direct-new-declarator [constant-expression]
4984
4985 */
4986
4987 static cp_declarator *
4988 cp_parser_direct_new_declarator (cp_parser* parser)
4989 {
4990 cp_declarator *declarator = NULL;
4991
4992 while (true)
4993 {
4994 tree expression;
4995
4996 /* Look for the opening `['. */
4997 cp_parser_require (parser, CPP_OPEN_SQUARE, "`['");
4998 /* The first expression is not required to be constant. */
4999 if (!declarator)
5000 {
5001 expression = cp_parser_expression (parser);
5002 /* The standard requires that the expression have integral
5003 type. DR 74 adds enumeration types. We believe that the
5004 real intent is that these expressions be handled like the
5005 expression in a `switch' condition, which also allows
5006 classes with a single conversion to integral or
5007 enumeration type. */
5008 if (!processing_template_decl)
5009 {
5010 expression
5011 = build_expr_type_conversion (WANT_INT | WANT_ENUM,
5012 expression,
5013 /*complain=*/true);
5014 if (!expression)
5015 {
5016 error ("expression in new-declarator must have integral "
5017 "or enumeration type");
5018 expression = error_mark_node;
5019 }
5020 }
5021 }
5022 /* But all the other expressions must be. */
5023 else
5024 expression
5025 = cp_parser_constant_expression (parser,
5026 /*allow_non_constant=*/false,
5027 NULL);
5028 /* Look for the closing `]'. */
5029 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5030
5031 /* Add this bound to the declarator. */
5032 declarator = make_array_declarator (declarator, expression);
5033
5034 /* If the next token is not a `[', then there are no more
5035 bounds. */
5036 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
5037 break;
5038 }
5039
5040 return declarator;
5041 }
5042
5043 /* Parse a new-initializer.
5044
5045 new-initializer:
5046 ( expression-list [opt] )
5047
5048 Returns a representation of the expression-list. If there is no
5049 expression-list, VOID_ZERO_NODE is returned. */
5050
5051 static tree
5052 cp_parser_new_initializer (cp_parser* parser)
5053 {
5054 tree expression_list;
5055
5056 expression_list = (cp_parser_parenthesized_expression_list
5057 (parser, false, /*non_constant_p=*/NULL));
5058 if (!expression_list)
5059 expression_list = void_zero_node;
5060
5061 return expression_list;
5062 }
5063
5064 /* Parse a delete-expression.
5065
5066 delete-expression:
5067 :: [opt] delete cast-expression
5068 :: [opt] delete [ ] cast-expression
5069
5070 Returns a representation of the expression. */
5071
5072 static tree
5073 cp_parser_delete_expression (cp_parser* parser)
5074 {
5075 bool global_scope_p;
5076 bool array_p;
5077 tree expression;
5078
5079 /* Look for the optional `::' operator. */
5080 global_scope_p
5081 = (cp_parser_global_scope_opt (parser,
5082 /*current_scope_valid_p=*/false)
5083 != NULL_TREE);
5084 /* Look for the `delete' keyword. */
5085 cp_parser_require_keyword (parser, RID_DELETE, "`delete'");
5086 /* See if the array syntax is in use. */
5087 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
5088 {
5089 /* Consume the `[' token. */
5090 cp_lexer_consume_token (parser->lexer);
5091 /* Look for the `]' token. */
5092 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5093 /* Remember that this is the `[]' construct. */
5094 array_p = true;
5095 }
5096 else
5097 array_p = false;
5098
5099 /* Parse the cast-expression. */
5100 expression = cp_parser_simple_cast_expression (parser);
5101
5102 /* A delete-expression may not appear in an integral constant
5103 expression. */
5104 if (cp_parser_non_integral_constant_expression (parser, "`delete'"))
5105 return error_mark_node;
5106
5107 return delete_sanity (expression, NULL_TREE, array_p, global_scope_p);
5108 }
5109
5110 /* Parse a cast-expression.
5111
5112 cast-expression:
5113 unary-expression
5114 ( type-id ) cast-expression
5115
5116 Returns a representation of the expression. */
5117
5118 static tree
5119 cp_parser_cast_expression (cp_parser *parser, bool address_p)
5120 {
5121 /* If it's a `(', then we might be looking at a cast. */
5122 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
5123 {
5124 tree type = NULL_TREE;
5125 tree expr = NULL_TREE;
5126 bool compound_literal_p;
5127 const char *saved_message;
5128
5129 /* There's no way to know yet whether or not this is a cast.
5130 For example, `(int (3))' is a unary-expression, while `(int)
5131 3' is a cast. So, we resort to parsing tentatively. */
5132 cp_parser_parse_tentatively (parser);
5133 /* Types may not be defined in a cast. */
5134 saved_message = parser->type_definition_forbidden_message;
5135 parser->type_definition_forbidden_message
5136 = "types may not be defined in casts";
5137 /* Consume the `('. */
5138 cp_lexer_consume_token (parser->lexer);
5139 /* A very tricky bit is that `(struct S) { 3 }' is a
5140 compound-literal (which we permit in C++ as an extension).
5141 But, that construct is not a cast-expression -- it is a
5142 postfix-expression. (The reason is that `(struct S) { 3 }.i'
5143 is legal; if the compound-literal were a cast-expression,
5144 you'd need an extra set of parentheses.) But, if we parse
5145 the type-id, and it happens to be a class-specifier, then we
5146 will commit to the parse at that point, because we cannot
5147 undo the action that is done when creating a new class. So,
5148 then we cannot back up and do a postfix-expression.
5149
5150 Therefore, we scan ahead to the closing `)', and check to see
5151 if the token after the `)' is a `{'. If so, we are not
5152 looking at a cast-expression.
5153
5154 Save tokens so that we can put them back. */
5155 cp_lexer_save_tokens (parser->lexer);
5156 /* Skip tokens until the next token is a closing parenthesis.
5157 If we find the closing `)', and the next token is a `{', then
5158 we are looking at a compound-literal. */
5159 compound_literal_p
5160 = (cp_parser_skip_to_closing_parenthesis (parser, false, false,
5161 /*consume_paren=*/true)
5162 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
5163 /* Roll back the tokens we skipped. */
5164 cp_lexer_rollback_tokens (parser->lexer);
5165 /* If we were looking at a compound-literal, simulate an error
5166 so that the call to cp_parser_parse_definitely below will
5167 fail. */
5168 if (compound_literal_p)
5169 cp_parser_simulate_error (parser);
5170 else
5171 {
5172 bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
5173 parser->in_type_id_in_expr_p = true;
5174 /* Look for the type-id. */
5175 type = cp_parser_type_id (parser);
5176 /* Look for the closing `)'. */
5177 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5178 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
5179 }
5180
5181 /* Restore the saved message. */
5182 parser->type_definition_forbidden_message = saved_message;
5183
5184 /* If ok so far, parse the dependent expression. We cannot be
5185 sure it is a cast. Consider `(T ())'. It is a parenthesized
5186 ctor of T, but looks like a cast to function returning T
5187 without a dependent expression. */
5188 if (!cp_parser_error_occurred (parser))
5189 expr = cp_parser_simple_cast_expression (parser);
5190
5191 if (cp_parser_parse_definitely (parser))
5192 {
5193 /* Warn about old-style casts, if so requested. */
5194 if (warn_old_style_cast
5195 && !in_system_header
5196 && !VOID_TYPE_P (type)
5197 && current_lang_name != lang_name_c)
5198 warning ("use of old-style cast");
5199
5200 /* Only type conversions to integral or enumeration types
5201 can be used in constant-expressions. */
5202 if (parser->integral_constant_expression_p
5203 && !dependent_type_p (type)
5204 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
5205 && (cp_parser_non_integral_constant_expression
5206 (parser,
5207 "a cast to a type other than an integral or "
5208 "enumeration type")))
5209 return error_mark_node;
5210
5211 /* Perform the cast. */
5212 expr = build_c_cast (type, expr);
5213 return expr;
5214 }
5215 }
5216
5217 /* If we get here, then it's not a cast, so it must be a
5218 unary-expression. */
5219 return cp_parser_unary_expression (parser, address_p);
5220 }
5221
5222 /* Parse a binary expression of the general form:
5223
5224 pm-expression:
5225 cast-expression
5226 pm-expression .* cast-expression
5227 pm-expression ->* cast-expression
5228
5229 multiplicative-expression:
5230 pm-expression
5231 multiplicative-expression * pm-expression
5232 multiplicative-expression / pm-expression
5233 multiplicative-expression % pm-expression
5234
5235 additive-expression:
5236 multiplicative-expression
5237 additive-expression + multiplicative-expression
5238 additive-expression - multiplicative-expression
5239
5240 shift-expression:
5241 additive-expression
5242 shift-expression << additive-expression
5243 shift-expression >> additive-expression
5244
5245 relational-expression:
5246 shift-expression
5247 relational-expression < shift-expression
5248 relational-expression > shift-expression
5249 relational-expression <= shift-expression
5250 relational-expression >= shift-expression
5251
5252 GNU Extension:
5253
5254 relational-expression:
5255 relational-expression <? shift-expression
5256 relational-expression >? shift-expression
5257
5258 equality-expression:
5259 relational-expression
5260 equality-expression == relational-expression
5261 equality-expression != relational-expression
5262
5263 and-expression:
5264 equality-expression
5265 and-expression & equality-expression
5266
5267 exclusive-or-expression:
5268 and-expression
5269 exclusive-or-expression ^ and-expression
5270
5271 inclusive-or-expression:
5272 exclusive-or-expression
5273 inclusive-or-expression | exclusive-or-expression
5274
5275 logical-and-expression:
5276 inclusive-or-expression
5277 logical-and-expression && inclusive-or-expression
5278
5279 logical-or-expression:
5280 logical-and-expression
5281 logical-or-expression || logical-and-expression
5282
5283 All these are implemented with a single function like:
5284
5285 binary-expression:
5286 simple-cast-expression
5287 binary-expression <token> binary-expression
5288
5289 The binops_by_token map is used to get the tree codes for each <token> type.
5290 binary-expressions are associated according to a precedence table. */
5291
5292 #define TOKEN_PRECEDENCE(token) \
5293 ((token->type == CPP_GREATER && !parser->greater_than_is_operator_p) \
5294 ? PREC_NOT_OPERATOR \
5295 : binops_by_token[token->type].prec)
5296
5297 static tree
5298 cp_parser_binary_expression (cp_parser* parser)
5299 {
5300 cp_parser_expression_stack stack;
5301 cp_parser_expression_stack_entry *sp = &stack[0];
5302 tree lhs, rhs;
5303 cp_token *token;
5304 enum tree_code tree_type;
5305 enum cp_parser_prec prec = PREC_NOT_OPERATOR, new_prec, lookahead_prec;
5306 bool overloaded_p;
5307
5308 /* Parse the first expression. */
5309 lhs = cp_parser_simple_cast_expression (parser);
5310
5311 for (;;)
5312 {
5313 /* Get an operator token. */
5314 token = cp_lexer_peek_token (parser->lexer);
5315 new_prec = TOKEN_PRECEDENCE (token);
5316
5317 /* Popping an entry off the stack means we completed a subexpression:
5318 - either we found a token which is not an operator (`>' where it is not
5319 an operator, or prec == PREC_NOT_OPERATOR), in which case popping
5320 will happen repeatedly;
5321 - or, we found an operator which has lower priority. This is the case
5322 where the recursive descent *ascends*, as in `3 * 4 + 5' after
5323 parsing `3 * 4'. */
5324 if (new_prec <= prec)
5325 {
5326 if (sp == stack)
5327 break;
5328 else
5329 goto pop;
5330 }
5331
5332 get_rhs:
5333 tree_type = binops_by_token[token->type].tree_type;
5334
5335 /* We used the operator token. */
5336 cp_lexer_consume_token (parser->lexer);
5337
5338 /* Extract another operand. It may be the RHS of this expression
5339 or the LHS of a new, higher priority expression. */
5340 rhs = cp_parser_simple_cast_expression (parser);
5341
5342 /* Get another operator token. Look up its precedence to avoid
5343 building a useless (immediately popped) stack entry for common
5344 cases such as 3 + 4 + 5 or 3 * 4 + 5. */
5345 token = cp_lexer_peek_token (parser->lexer);
5346 lookahead_prec = TOKEN_PRECEDENCE (token);
5347 if (lookahead_prec > new_prec)
5348 {
5349 /* ... and prepare to parse the RHS of the new, higher priority
5350 expression. Since precedence levels on the stack are
5351 monotonically increasing, we do not have to care about
5352 stack overflows. */
5353 sp->prec = prec;
5354 sp->tree_type = tree_type;
5355 sp->lhs = lhs;
5356 sp++;
5357 lhs = rhs;
5358 prec = new_prec;
5359 new_prec = lookahead_prec;
5360 goto get_rhs;
5361
5362 pop:
5363 /* If the stack is not empty, we have parsed into LHS the right side
5364 (`4' in the example above) of an expression we had suspended.
5365 We can use the information on the stack to recover the LHS (`3')
5366 from the stack together with the tree code (`MULT_EXPR'), and
5367 the precedence of the higher level subexpression
5368 (`PREC_ADDITIVE_EXPRESSION'). TOKEN is the CPP_PLUS token,
5369 which will be used to actually build the additive expression. */
5370 --sp;
5371 prec = sp->prec;
5372 tree_type = sp->tree_type;
5373 rhs = lhs;
5374 lhs = sp->lhs;
5375 }
5376
5377 overloaded_p = false;
5378 lhs = build_x_binary_op (tree_type, lhs, rhs, &overloaded_p);
5379
5380 /* If the binary operator required the use of an overloaded operator,
5381 then this expression cannot be an integral constant-expression.
5382 An overloaded operator can be used even if both operands are
5383 otherwise permissible in an integral constant-expression if at
5384 least one of the operands is of enumeration type. */
5385
5386 if (overloaded_p
5387 && (cp_parser_non_integral_constant_expression
5388 (parser, "calls to overloaded operators")))
5389 return error_mark_node;
5390 }
5391
5392 return lhs;
5393 }
5394
5395
5396 /* Parse the `? expression : assignment-expression' part of a
5397 conditional-expression. The LOGICAL_OR_EXPR is the
5398 logical-or-expression that started the conditional-expression.
5399 Returns a representation of the entire conditional-expression.
5400
5401 This routine is used by cp_parser_assignment_expression.
5402
5403 ? expression : assignment-expression
5404
5405 GNU Extensions:
5406
5407 ? : assignment-expression */
5408
5409 static tree
5410 cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
5411 {
5412 tree expr;
5413 tree assignment_expr;
5414
5415 /* Consume the `?' token. */
5416 cp_lexer_consume_token (parser->lexer);
5417 if (cp_parser_allow_gnu_extensions_p (parser)
5418 && cp_lexer_next_token_is (parser->lexer, CPP_COLON))
5419 /* Implicit true clause. */
5420 expr = NULL_TREE;
5421 else
5422 /* Parse the expression. */
5423 expr = cp_parser_expression (parser);
5424
5425 /* The next token should be a `:'. */
5426 cp_parser_require (parser, CPP_COLON, "`:'");
5427 /* Parse the assignment-expression. */
5428 assignment_expr = cp_parser_assignment_expression (parser);
5429
5430 /* Build the conditional-expression. */
5431 return build_x_conditional_expr (logical_or_expr,
5432 expr,
5433 assignment_expr);
5434 }
5435
5436 /* Parse an assignment-expression.
5437
5438 assignment-expression:
5439 conditional-expression
5440 logical-or-expression assignment-operator assignment_expression
5441 throw-expression
5442
5443 Returns a representation for the expression. */
5444
5445 static tree
5446 cp_parser_assignment_expression (cp_parser* parser)
5447 {
5448 tree expr;
5449
5450 /* If the next token is the `throw' keyword, then we're looking at
5451 a throw-expression. */
5452 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
5453 expr = cp_parser_throw_expression (parser);
5454 /* Otherwise, it must be that we are looking at a
5455 logical-or-expression. */
5456 else
5457 {
5458 /* Parse the binary expressions (logical-or-expression). */
5459 expr = cp_parser_binary_expression (parser);
5460 /* If the next token is a `?' then we're actually looking at a
5461 conditional-expression. */
5462 if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
5463 return cp_parser_question_colon_clause (parser, expr);
5464 else
5465 {
5466 enum tree_code assignment_operator;
5467
5468 /* If it's an assignment-operator, we're using the second
5469 production. */
5470 assignment_operator
5471 = cp_parser_assignment_operator_opt (parser);
5472 if (assignment_operator != ERROR_MARK)
5473 {
5474 tree rhs;
5475
5476 /* Parse the right-hand side of the assignment. */
5477 rhs = cp_parser_assignment_expression (parser);
5478 /* An assignment may not appear in a
5479 constant-expression. */
5480 if (cp_parser_non_integral_constant_expression (parser,
5481 "an assignment"))
5482 return error_mark_node;
5483 /* Build the assignment expression. */
5484 expr = build_x_modify_expr (expr,
5485 assignment_operator,
5486 rhs);
5487 }
5488 }
5489 }
5490
5491 return expr;
5492 }
5493
5494 /* Parse an (optional) assignment-operator.
5495
5496 assignment-operator: one of
5497 = *= /= %= += -= >>= <<= &= ^= |=
5498
5499 GNU Extension:
5500
5501 assignment-operator: one of
5502 <?= >?=
5503
5504 If the next token is an assignment operator, the corresponding tree
5505 code is returned, and the token is consumed. For example, for
5506 `+=', PLUS_EXPR is returned. For `=' itself, the code returned is
5507 NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%',
5508 TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment
5509 operator, ERROR_MARK is returned. */
5510
5511 static enum tree_code
5512 cp_parser_assignment_operator_opt (cp_parser* parser)
5513 {
5514 enum tree_code op;
5515 cp_token *token;
5516
5517 /* Peek at the next toen. */
5518 token = cp_lexer_peek_token (parser->lexer);
5519
5520 switch (token->type)
5521 {
5522 case CPP_EQ:
5523 op = NOP_EXPR;
5524 break;
5525
5526 case CPP_MULT_EQ:
5527 op = MULT_EXPR;
5528 break;
5529
5530 case CPP_DIV_EQ:
5531 op = TRUNC_DIV_EXPR;
5532 break;
5533
5534 case CPP_MOD_EQ:
5535 op = TRUNC_MOD_EXPR;
5536 break;
5537
5538 case CPP_PLUS_EQ:
5539 op = PLUS_EXPR;
5540 break;
5541
5542 case CPP_MINUS_EQ:
5543 op = MINUS_EXPR;
5544 break;
5545
5546 case CPP_RSHIFT_EQ:
5547 op = RSHIFT_EXPR;
5548 break;
5549
5550 case CPP_LSHIFT_EQ:
5551 op = LSHIFT_EXPR;
5552 break;
5553
5554 case CPP_AND_EQ:
5555 op = BIT_AND_EXPR;
5556 break;
5557
5558 case CPP_XOR_EQ:
5559 op = BIT_XOR_EXPR;
5560 break;
5561
5562 case CPP_OR_EQ:
5563 op = BIT_IOR_EXPR;
5564 break;
5565
5566 case CPP_MIN_EQ:
5567 op = MIN_EXPR;
5568 break;
5569
5570 case CPP_MAX_EQ:
5571 op = MAX_EXPR;
5572 break;
5573
5574 default:
5575 /* Nothing else is an assignment operator. */
5576 op = ERROR_MARK;
5577 }
5578
5579 /* If it was an assignment operator, consume it. */
5580 if (op != ERROR_MARK)
5581 cp_lexer_consume_token (parser->lexer);
5582
5583 return op;
5584 }
5585
5586 /* Parse an expression.
5587
5588 expression:
5589 assignment-expression
5590 expression , assignment-expression
5591
5592 Returns a representation of the expression. */
5593
5594 static tree
5595 cp_parser_expression (cp_parser* parser)
5596 {
5597 tree expression = NULL_TREE;
5598
5599 while (true)
5600 {
5601 tree assignment_expression;
5602
5603 /* Parse the next assignment-expression. */
5604 assignment_expression
5605 = cp_parser_assignment_expression (parser);
5606 /* If this is the first assignment-expression, we can just
5607 save it away. */
5608 if (!expression)
5609 expression = assignment_expression;
5610 else
5611 expression = build_x_compound_expr (expression,
5612 assignment_expression);
5613 /* If the next token is not a comma, then we are done with the
5614 expression. */
5615 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
5616 break;
5617 /* Consume the `,'. */
5618 cp_lexer_consume_token (parser->lexer);
5619 /* A comma operator cannot appear in a constant-expression. */
5620 if (cp_parser_non_integral_constant_expression (parser,
5621 "a comma operator"))
5622 expression = error_mark_node;
5623 }
5624
5625 return expression;
5626 }
5627
5628 /* Parse a constant-expression.
5629
5630 constant-expression:
5631 conditional-expression
5632
5633 If ALLOW_NON_CONSTANT_P a non-constant expression is silently
5634 accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not
5635 constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P
5636 is false, NON_CONSTANT_P should be NULL. */
5637
5638 static tree
5639 cp_parser_constant_expression (cp_parser* parser,
5640 bool allow_non_constant_p,
5641 bool *non_constant_p)
5642 {
5643 bool saved_integral_constant_expression_p;
5644 bool saved_allow_non_integral_constant_expression_p;
5645 bool saved_non_integral_constant_expression_p;
5646 tree expression;
5647
5648 /* It might seem that we could simply parse the
5649 conditional-expression, and then check to see if it were
5650 TREE_CONSTANT. However, an expression that is TREE_CONSTANT is
5651 one that the compiler can figure out is constant, possibly after
5652 doing some simplifications or optimizations. The standard has a
5653 precise definition of constant-expression, and we must honor
5654 that, even though it is somewhat more restrictive.
5655
5656 For example:
5657
5658 int i[(2, 3)];
5659
5660 is not a legal declaration, because `(2, 3)' is not a
5661 constant-expression. The `,' operator is forbidden in a
5662 constant-expression. However, GCC's constant-folding machinery
5663 will fold this operation to an INTEGER_CST for `3'. */
5664
5665 /* Save the old settings. */
5666 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
5667 saved_allow_non_integral_constant_expression_p
5668 = parser->allow_non_integral_constant_expression_p;
5669 saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p;
5670 /* We are now parsing a constant-expression. */
5671 parser->integral_constant_expression_p = true;
5672 parser->allow_non_integral_constant_expression_p = allow_non_constant_p;
5673 parser->non_integral_constant_expression_p = false;
5674 /* Although the grammar says "conditional-expression", we parse an
5675 "assignment-expression", which also permits "throw-expression"
5676 and the use of assignment operators. In the case that
5677 ALLOW_NON_CONSTANT_P is false, we get better errors than we would
5678 otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is
5679 actually essential that we look for an assignment-expression.
5680 For example, cp_parser_initializer_clauses uses this function to
5681 determine whether a particular assignment-expression is in fact
5682 constant. */
5683 expression = cp_parser_assignment_expression (parser);
5684 /* Restore the old settings. */
5685 parser->integral_constant_expression_p = saved_integral_constant_expression_p;
5686 parser->allow_non_integral_constant_expression_p
5687 = saved_allow_non_integral_constant_expression_p;
5688 if (allow_non_constant_p)
5689 *non_constant_p = parser->non_integral_constant_expression_p;
5690 parser->non_integral_constant_expression_p = saved_non_integral_constant_expression_p;
5691
5692 return expression;
5693 }
5694
5695 /* Parse __builtin_offsetof.
5696
5697 offsetof-expression:
5698 "__builtin_offsetof" "(" type-id "," offsetof-member-designator ")"
5699
5700 offsetof-member-designator:
5701 id-expression
5702 | offsetof-member-designator "." id-expression
5703 | offsetof-member-designator "[" expression "]"
5704 */
5705
5706 static tree
5707 cp_parser_builtin_offsetof (cp_parser *parser)
5708 {
5709 int save_ice_p, save_non_ice_p;
5710 tree type, expr;
5711 cp_id_kind dummy;
5712
5713 /* We're about to accept non-integral-constant things, but will
5714 definitely yield an integral constant expression. Save and
5715 restore these values around our local parsing. */
5716 save_ice_p = parser->integral_constant_expression_p;
5717 save_non_ice_p = parser->non_integral_constant_expression_p;
5718
5719 /* Consume the "__builtin_offsetof" token. */
5720 cp_lexer_consume_token (parser->lexer);
5721 /* Consume the opening `('. */
5722 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
5723 /* Parse the type-id. */
5724 type = cp_parser_type_id (parser);
5725 /* Look for the `,'. */
5726 cp_parser_require (parser, CPP_COMMA, "`,'");
5727
5728 /* Build the (type *)null that begins the traditional offsetof macro. */
5729 expr = build_static_cast (build_pointer_type (type), null_pointer_node);
5730
5731 /* Parse the offsetof-member-designator. We begin as if we saw "expr->". */
5732 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DEREF, expr,
5733 true, &dummy);
5734 while (true)
5735 {
5736 cp_token *token = cp_lexer_peek_token (parser->lexer);
5737 switch (token->type)
5738 {
5739 case CPP_OPEN_SQUARE:
5740 /* offsetof-member-designator "[" expression "]" */
5741 expr = cp_parser_postfix_open_square_expression (parser, expr, true);
5742 break;
5743
5744 case CPP_DOT:
5745 /* offsetof-member-designator "." identifier */
5746 cp_lexer_consume_token (parser->lexer);
5747 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DOT, expr,
5748 true, &dummy);
5749 break;
5750
5751 case CPP_CLOSE_PAREN:
5752 /* Consume the ")" token. */
5753 cp_lexer_consume_token (parser->lexer);
5754 goto success;
5755
5756 default:
5757 /* Error. We know the following require will fail, but
5758 that gives the proper error message. */
5759 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5760 cp_parser_skip_to_closing_parenthesis (parser, true, false, true);
5761 expr = error_mark_node;
5762 goto failure;
5763 }
5764 }
5765
5766 success:
5767 /* If we're processing a template, we can't finish the semantics yet.
5768 Otherwise we can fold the entire expression now. */
5769 if (processing_template_decl)
5770 expr = build1 (OFFSETOF_EXPR, size_type_node, expr);
5771 else
5772 expr = fold_offsetof (expr);
5773
5774 failure:
5775 parser->integral_constant_expression_p = save_ice_p;
5776 parser->non_integral_constant_expression_p = save_non_ice_p;
5777
5778 return expr;
5779 }
5780
5781 /* Statements [gram.stmt.stmt] */
5782
5783 /* Parse a statement.
5784
5785 statement:
5786 labeled-statement
5787 expression-statement
5788 compound-statement
5789 selection-statement
5790 iteration-statement
5791 jump-statement
5792 declaration-statement
5793 try-block */
5794
5795 static void
5796 cp_parser_statement (cp_parser* parser, tree in_statement_expr)
5797 {
5798 tree statement;
5799 cp_token *token;
5800 location_t statement_location;
5801
5802 /* There is no statement yet. */
5803 statement = NULL_TREE;
5804 /* Peek at the next token. */
5805 token = cp_lexer_peek_token (parser->lexer);
5806 /* Remember the location of the first token in the statement. */
5807 statement_location = token->location;
5808 /* If this is a keyword, then that will often determine what kind of
5809 statement we have. */
5810 if (token->type == CPP_KEYWORD)
5811 {
5812 enum rid keyword = token->keyword;
5813
5814 switch (keyword)
5815 {
5816 case RID_CASE:
5817 case RID_DEFAULT:
5818 statement = cp_parser_labeled_statement (parser,
5819 in_statement_expr);
5820 break;
5821
5822 case RID_IF:
5823 case RID_SWITCH:
5824 statement = cp_parser_selection_statement (parser);
5825 break;
5826
5827 case RID_WHILE:
5828 case RID_DO:
5829 case RID_FOR:
5830 statement = cp_parser_iteration_statement (parser);
5831 break;
5832
5833 case RID_BREAK:
5834 case RID_CONTINUE:
5835 case RID_RETURN:
5836 case RID_GOTO:
5837 statement = cp_parser_jump_statement (parser);
5838 break;
5839
5840 case RID_TRY:
5841 statement = cp_parser_try_block (parser);
5842 break;
5843
5844 default:
5845 /* It might be a keyword like `int' that can start a
5846 declaration-statement. */
5847 break;
5848 }
5849 }
5850 else if (token->type == CPP_NAME)
5851 {
5852 /* If the next token is a `:', then we are looking at a
5853 labeled-statement. */
5854 token = cp_lexer_peek_nth_token (parser->lexer, 2);
5855 if (token->type == CPP_COLON)
5856 statement = cp_parser_labeled_statement (parser, in_statement_expr);
5857 }
5858 /* Anything that starts with a `{' must be a compound-statement. */
5859 else if (token->type == CPP_OPEN_BRACE)
5860 statement = cp_parser_compound_statement (parser, NULL, false);
5861 /* CPP_PRAGMA is a #pragma inside a function body, which constitutes
5862 a statement all its own. */
5863 else if (token->type == CPP_PRAGMA)
5864 {
5865 cp_lexer_handle_pragma (parser->lexer);
5866 return;
5867 }
5868
5869 /* Everything else must be a declaration-statement or an
5870 expression-statement. Try for the declaration-statement
5871 first, unless we are looking at a `;', in which case we know that
5872 we have an expression-statement. */
5873 if (!statement)
5874 {
5875 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
5876 {
5877 cp_parser_parse_tentatively (parser);
5878 /* Try to parse the declaration-statement. */
5879 cp_parser_declaration_statement (parser);
5880 /* If that worked, we're done. */
5881 if (cp_parser_parse_definitely (parser))
5882 return;
5883 }
5884 /* Look for an expression-statement instead. */
5885 statement = cp_parser_expression_statement (parser, in_statement_expr);
5886 }
5887
5888 /* Set the line number for the statement. */
5889 if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
5890 SET_EXPR_LOCATION (statement, statement_location);
5891 }
5892
5893 /* Parse a labeled-statement.
5894
5895 labeled-statement:
5896 identifier : statement
5897 case constant-expression : statement
5898 default : statement
5899
5900 GNU Extension:
5901
5902 labeled-statement:
5903 case constant-expression ... constant-expression : statement
5904
5905 Returns the new CASE_LABEL_EXPR, for a `case' or `default' label.
5906 For an ordinary label, returns a LABEL_EXPR. */
5907
5908 static tree
5909 cp_parser_labeled_statement (cp_parser* parser, tree in_statement_expr)
5910 {
5911 cp_token *token;
5912 tree statement = error_mark_node;
5913
5914 /* The next token should be an identifier. */
5915 token = cp_lexer_peek_token (parser->lexer);
5916 if (token->type != CPP_NAME
5917 && token->type != CPP_KEYWORD)
5918 {
5919 cp_parser_error (parser, "expected labeled-statement");
5920 return error_mark_node;
5921 }
5922
5923 switch (token->keyword)
5924 {
5925 case RID_CASE:
5926 {
5927 tree expr, expr_hi;
5928 cp_token *ellipsis;
5929
5930 /* Consume the `case' token. */
5931 cp_lexer_consume_token (parser->lexer);
5932 /* Parse the constant-expression. */
5933 expr = cp_parser_constant_expression (parser,
5934 /*allow_non_constant_p=*/false,
5935 NULL);
5936
5937 ellipsis = cp_lexer_peek_token (parser->lexer);
5938 if (ellipsis->type == CPP_ELLIPSIS)
5939 {
5940 /* Consume the `...' token. */
5941 cp_lexer_consume_token (parser->lexer);
5942 expr_hi =
5943 cp_parser_constant_expression (parser,
5944 /*allow_non_constant_p=*/false,
5945 NULL);
5946 /* We don't need to emit warnings here, as the common code
5947 will do this for us. */
5948 }
5949 else
5950 expr_hi = NULL_TREE;
5951
5952 if (!parser->in_switch_statement_p)
5953 error ("case label %qE not within a switch statement", expr);
5954 else
5955 statement = finish_case_label (expr, expr_hi);
5956 }
5957 break;
5958
5959 case RID_DEFAULT:
5960 /* Consume the `default' token. */
5961 cp_lexer_consume_token (parser->lexer);
5962 if (!parser->in_switch_statement_p)
5963 error ("case label not within a switch statement");
5964 else
5965 statement = finish_case_label (NULL_TREE, NULL_TREE);
5966 break;
5967
5968 default:
5969 /* Anything else must be an ordinary label. */
5970 statement = finish_label_stmt (cp_parser_identifier (parser));
5971 break;
5972 }
5973
5974 /* Require the `:' token. */
5975 cp_parser_require (parser, CPP_COLON, "`:'");
5976 /* Parse the labeled statement. */
5977 cp_parser_statement (parser, in_statement_expr);
5978
5979 /* Return the label, in the case of a `case' or `default' label. */
5980 return statement;
5981 }
5982
5983 /* Parse an expression-statement.
5984
5985 expression-statement:
5986 expression [opt] ;
5987
5988 Returns the new EXPR_STMT -- or NULL_TREE if the expression
5989 statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
5990 indicates whether this expression-statement is part of an
5991 expression statement. */
5992
5993 static tree
5994 cp_parser_expression_statement (cp_parser* parser, tree in_statement_expr)
5995 {
5996 tree statement = NULL_TREE;
5997
5998 /* If the next token is a ';', then there is no expression
5999 statement. */
6000 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6001 statement = cp_parser_expression (parser);
6002
6003 /* Consume the final `;'. */
6004 cp_parser_consume_semicolon_at_end_of_statement (parser);
6005
6006 if (in_statement_expr
6007 && cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
6008 {
6009 /* This is the final expression statement of a statement
6010 expression. */
6011 statement = finish_stmt_expr_expr (statement, in_statement_expr);
6012 }
6013 else if (statement)
6014 statement = finish_expr_stmt (statement);
6015 else
6016 finish_stmt ();
6017
6018 return statement;
6019 }
6020
6021 /* Parse a compound-statement.
6022
6023 compound-statement:
6024 { statement-seq [opt] }
6025
6026 Returns a tree representing the statement. */
6027
6028 static tree
6029 cp_parser_compound_statement (cp_parser *parser, tree in_statement_expr,
6030 bool in_try)
6031 {
6032 tree compound_stmt;
6033
6034 /* Consume the `{'. */
6035 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
6036 return error_mark_node;
6037 /* Begin the compound-statement. */
6038 compound_stmt = begin_compound_stmt (in_try ? BCS_TRY_BLOCK : 0);
6039 /* Parse an (optional) statement-seq. */
6040 cp_parser_statement_seq_opt (parser, in_statement_expr);
6041 /* Finish the compound-statement. */
6042 finish_compound_stmt (compound_stmt);
6043 /* Consume the `}'. */
6044 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6045
6046 return compound_stmt;
6047 }
6048
6049 /* Parse an (optional) statement-seq.
6050
6051 statement-seq:
6052 statement
6053 statement-seq [opt] statement */
6054
6055 static void
6056 cp_parser_statement_seq_opt (cp_parser* parser, tree in_statement_expr)
6057 {
6058 /* Scan statements until there aren't any more. */
6059 while (true)
6060 {
6061 /* If we're looking at a `}', then we've run out of statements. */
6062 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)
6063 || cp_lexer_next_token_is (parser->lexer, CPP_EOF))
6064 break;
6065
6066 /* Parse the statement. */
6067 cp_parser_statement (parser, in_statement_expr);
6068 }
6069 }
6070
6071 /* Parse a selection-statement.
6072
6073 selection-statement:
6074 if ( condition ) statement
6075 if ( condition ) statement else statement
6076 switch ( condition ) statement
6077
6078 Returns the new IF_STMT or SWITCH_STMT. */
6079
6080 static tree
6081 cp_parser_selection_statement (cp_parser* parser)
6082 {
6083 cp_token *token;
6084 enum rid keyword;
6085
6086 /* Peek at the next token. */
6087 token = cp_parser_require (parser, CPP_KEYWORD, "selection-statement");
6088
6089 /* See what kind of keyword it is. */
6090 keyword = token->keyword;
6091 switch (keyword)
6092 {
6093 case RID_IF:
6094 case RID_SWITCH:
6095 {
6096 tree statement;
6097 tree condition;
6098
6099 /* Look for the `('. */
6100 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
6101 {
6102 cp_parser_skip_to_end_of_statement (parser);
6103 return error_mark_node;
6104 }
6105
6106 /* Begin the selection-statement. */
6107 if (keyword == RID_IF)
6108 statement = begin_if_stmt ();
6109 else
6110 statement = begin_switch_stmt ();
6111
6112 /* Parse the condition. */
6113 condition = cp_parser_condition (parser);
6114 /* Look for the `)'. */
6115 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
6116 cp_parser_skip_to_closing_parenthesis (parser, true, false,
6117 /*consume_paren=*/true);
6118
6119 if (keyword == RID_IF)
6120 {
6121 /* Add the condition. */
6122 finish_if_stmt_cond (condition, statement);
6123
6124 /* Parse the then-clause. */
6125 cp_parser_implicitly_scoped_statement (parser);
6126 finish_then_clause (statement);
6127
6128 /* If the next token is `else', parse the else-clause. */
6129 if (cp_lexer_next_token_is_keyword (parser->lexer,
6130 RID_ELSE))
6131 {
6132 /* Consume the `else' keyword. */
6133 cp_lexer_consume_token (parser->lexer);
6134 begin_else_clause (statement);
6135 /* Parse the else-clause. */
6136 cp_parser_implicitly_scoped_statement (parser);
6137 finish_else_clause (statement);
6138 }
6139
6140 /* Now we're all done with the if-statement. */
6141 finish_if_stmt (statement);
6142 }
6143 else
6144 {
6145 bool in_switch_statement_p;
6146
6147 /* Add the condition. */
6148 finish_switch_cond (condition, statement);
6149
6150 /* Parse the body of the switch-statement. */
6151 in_switch_statement_p = parser->in_switch_statement_p;
6152 parser->in_switch_statement_p = true;
6153 cp_parser_implicitly_scoped_statement (parser);
6154 parser->in_switch_statement_p = in_switch_statement_p;
6155
6156 /* Now we're all done with the switch-statement. */
6157 finish_switch_stmt (statement);
6158 }
6159
6160 return statement;
6161 }
6162 break;
6163
6164 default:
6165 cp_parser_error (parser, "expected selection-statement");
6166 return error_mark_node;
6167 }
6168 }
6169
6170 /* Parse a condition.
6171
6172 condition:
6173 expression
6174 type-specifier-seq declarator = assignment-expression
6175
6176 GNU Extension:
6177
6178 condition:
6179 type-specifier-seq declarator asm-specification [opt]
6180 attributes [opt] = assignment-expression
6181
6182 Returns the expression that should be tested. */
6183
6184 static tree
6185 cp_parser_condition (cp_parser* parser)
6186 {
6187 cp_decl_specifier_seq type_specifiers;
6188 const char *saved_message;
6189
6190 /* Try the declaration first. */
6191 cp_parser_parse_tentatively (parser);
6192 /* New types are not allowed in the type-specifier-seq for a
6193 condition. */
6194 saved_message = parser->type_definition_forbidden_message;
6195 parser->type_definition_forbidden_message
6196 = "types may not be defined in conditions";
6197 /* Parse the type-specifier-seq. */
6198 cp_parser_type_specifier_seq (parser, &type_specifiers);
6199 /* Restore the saved message. */
6200 parser->type_definition_forbidden_message = saved_message;
6201 /* If all is well, we might be looking at a declaration. */
6202 if (!cp_parser_error_occurred (parser))
6203 {
6204 tree decl;
6205 tree asm_specification;
6206 tree attributes;
6207 cp_declarator *declarator;
6208 tree initializer = NULL_TREE;
6209
6210 /* Parse the declarator. */
6211 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
6212 /*ctor_dtor_or_conv_p=*/NULL,
6213 /*parenthesized_p=*/NULL,
6214 /*member_p=*/false);
6215 /* Parse the attributes. */
6216 attributes = cp_parser_attributes_opt (parser);
6217 /* Parse the asm-specification. */
6218 asm_specification = cp_parser_asm_specification_opt (parser);
6219 /* If the next token is not an `=', then we might still be
6220 looking at an expression. For example:
6221
6222 if (A(a).x)
6223
6224 looks like a decl-specifier-seq and a declarator -- but then
6225 there is no `=', so this is an expression. */
6226 cp_parser_require (parser, CPP_EQ, "`='");
6227 /* If we did see an `=', then we are looking at a declaration
6228 for sure. */
6229 if (cp_parser_parse_definitely (parser))
6230 {
6231 bool pop_p;
6232
6233 /* Create the declaration. */
6234 decl = start_decl (declarator, &type_specifiers,
6235 /*initialized_p=*/true,
6236 attributes, /*prefix_attributes=*/NULL_TREE,
6237 &pop_p);
6238 /* Parse the assignment-expression. */
6239 initializer = cp_parser_assignment_expression (parser);
6240
6241 /* Process the initializer. */
6242 cp_finish_decl (decl,
6243 initializer,
6244 asm_specification,
6245 LOOKUP_ONLYCONVERTING);
6246
6247 if (pop_p)
6248 pop_scope (DECL_CONTEXT (decl));
6249
6250 return convert_from_reference (decl);
6251 }
6252 }
6253 /* If we didn't even get past the declarator successfully, we are
6254 definitely not looking at a declaration. */
6255 else
6256 cp_parser_abort_tentative_parse (parser);
6257
6258 /* Otherwise, we are looking at an expression. */
6259 return cp_parser_expression (parser);
6260 }
6261
6262 /* Parse an iteration-statement.
6263
6264 iteration-statement:
6265 while ( condition ) statement
6266 do statement while ( expression ) ;
6267 for ( for-init-statement condition [opt] ; expression [opt] )
6268 statement
6269
6270 Returns the new WHILE_STMT, DO_STMT, or FOR_STMT. */
6271
6272 static tree
6273 cp_parser_iteration_statement (cp_parser* parser)
6274 {
6275 cp_token *token;
6276 enum rid keyword;
6277 tree statement;
6278 bool in_iteration_statement_p;
6279
6280
6281 /* Peek at the next token. */
6282 token = cp_parser_require (parser, CPP_KEYWORD, "iteration-statement");
6283 if (!token)
6284 return error_mark_node;
6285
6286 /* Remember whether or not we are already within an iteration
6287 statement. */
6288 in_iteration_statement_p = parser->in_iteration_statement_p;
6289
6290 /* See what kind of keyword it is. */
6291 keyword = token->keyword;
6292 switch (keyword)
6293 {
6294 case RID_WHILE:
6295 {
6296 tree condition;
6297
6298 /* Begin the while-statement. */
6299 statement = begin_while_stmt ();
6300 /* Look for the `('. */
6301 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6302 /* Parse the condition. */
6303 condition = cp_parser_condition (parser);
6304 finish_while_stmt_cond (condition, statement);
6305 /* Look for the `)'. */
6306 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6307 /* Parse the dependent statement. */
6308 parser->in_iteration_statement_p = true;
6309 cp_parser_already_scoped_statement (parser);
6310 parser->in_iteration_statement_p = in_iteration_statement_p;
6311 /* We're done with the while-statement. */
6312 finish_while_stmt (statement);
6313 }
6314 break;
6315
6316 case RID_DO:
6317 {
6318 tree expression;
6319
6320 /* Begin the do-statement. */
6321 statement = begin_do_stmt ();
6322 /* Parse the body of the do-statement. */
6323 parser->in_iteration_statement_p = true;
6324 cp_parser_implicitly_scoped_statement (parser);
6325 parser->in_iteration_statement_p = in_iteration_statement_p;
6326 finish_do_body (statement);
6327 /* Look for the `while' keyword. */
6328 cp_parser_require_keyword (parser, RID_WHILE, "`while'");
6329 /* Look for the `('. */
6330 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6331 /* Parse the expression. */
6332 expression = cp_parser_expression (parser);
6333 /* We're done with the do-statement. */
6334 finish_do_stmt (expression, statement);
6335 /* Look for the `)'. */
6336 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6337 /* Look for the `;'. */
6338 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6339 }
6340 break;
6341
6342 case RID_FOR:
6343 {
6344 tree condition = NULL_TREE;
6345 tree expression = NULL_TREE;
6346
6347 /* Begin the for-statement. */
6348 statement = begin_for_stmt ();
6349 /* Look for the `('. */
6350 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6351 /* Parse the initialization. */
6352 cp_parser_for_init_statement (parser);
6353 finish_for_init_stmt (statement);
6354
6355 /* If there's a condition, process it. */
6356 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6357 condition = cp_parser_condition (parser);
6358 finish_for_cond (condition, statement);
6359 /* Look for the `;'. */
6360 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6361
6362 /* If there's an expression, process it. */
6363 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
6364 expression = cp_parser_expression (parser);
6365 finish_for_expr (expression, statement);
6366 /* Look for the `)'. */
6367 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6368
6369 /* Parse the body of the for-statement. */
6370 parser->in_iteration_statement_p = true;
6371 cp_parser_already_scoped_statement (parser);
6372 parser->in_iteration_statement_p = in_iteration_statement_p;
6373
6374 /* We're done with the for-statement. */
6375 finish_for_stmt (statement);
6376 }
6377 break;
6378
6379 default:
6380 cp_parser_error (parser, "expected iteration-statement");
6381 statement = error_mark_node;
6382 break;
6383 }
6384
6385 return statement;
6386 }
6387
6388 /* Parse a for-init-statement.
6389
6390 for-init-statement:
6391 expression-statement
6392 simple-declaration */
6393
6394 static void
6395 cp_parser_for_init_statement (cp_parser* parser)
6396 {
6397 /* If the next token is a `;', then we have an empty
6398 expression-statement. Grammatically, this is also a
6399 simple-declaration, but an invalid one, because it does not
6400 declare anything. Therefore, if we did not handle this case
6401 specially, we would issue an error message about an invalid
6402 declaration. */
6403 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6404 {
6405 /* We're going to speculatively look for a declaration, falling back
6406 to an expression, if necessary. */
6407 cp_parser_parse_tentatively (parser);
6408 /* Parse the declaration. */
6409 cp_parser_simple_declaration (parser,
6410 /*function_definition_allowed_p=*/false);
6411 /* If the tentative parse failed, then we shall need to look for an
6412 expression-statement. */
6413 if (cp_parser_parse_definitely (parser))
6414 return;
6415 }
6416
6417 cp_parser_expression_statement (parser, false);
6418 }
6419
6420 /* Parse a jump-statement.
6421
6422 jump-statement:
6423 break ;
6424 continue ;
6425 return expression [opt] ;
6426 goto identifier ;
6427
6428 GNU extension:
6429
6430 jump-statement:
6431 goto * expression ;
6432
6433 Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_EXPR, or GOTO_EXPR. */
6434
6435 static tree
6436 cp_parser_jump_statement (cp_parser* parser)
6437 {
6438 tree statement = error_mark_node;
6439 cp_token *token;
6440 enum rid keyword;
6441
6442 /* Peek at the next token. */
6443 token = cp_parser_require (parser, CPP_KEYWORD, "jump-statement");
6444 if (!token)
6445 return error_mark_node;
6446
6447 /* See what kind of keyword it is. */
6448 keyword = token->keyword;
6449 switch (keyword)
6450 {
6451 case RID_BREAK:
6452 if (!parser->in_switch_statement_p
6453 && !parser->in_iteration_statement_p)
6454 {
6455 error ("break statement not within loop or switch");
6456 statement = error_mark_node;
6457 }
6458 else
6459 statement = finish_break_stmt ();
6460 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6461 break;
6462
6463 case RID_CONTINUE:
6464 if (!parser->in_iteration_statement_p)
6465 {
6466 error ("continue statement not within a loop");
6467 statement = error_mark_node;
6468 }
6469 else
6470 statement = finish_continue_stmt ();
6471 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6472 break;
6473
6474 case RID_RETURN:
6475 {
6476 tree expr;
6477
6478 /* If the next token is a `;', then there is no
6479 expression. */
6480 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6481 expr = cp_parser_expression (parser);
6482 else
6483 expr = NULL_TREE;
6484 /* Build the return-statement. */
6485 statement = finish_return_stmt (expr);
6486 /* Look for the final `;'. */
6487 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6488 }
6489 break;
6490
6491 case RID_GOTO:
6492 /* Create the goto-statement. */
6493 if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
6494 {
6495 /* Issue a warning about this use of a GNU extension. */
6496 if (pedantic)
6497 pedwarn ("ISO C++ forbids computed gotos");
6498 /* Consume the '*' token. */
6499 cp_lexer_consume_token (parser->lexer);
6500 /* Parse the dependent expression. */
6501 finish_goto_stmt (cp_parser_expression (parser));
6502 }
6503 else
6504 finish_goto_stmt (cp_parser_identifier (parser));
6505 /* Look for the final `;'. */
6506 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6507 break;
6508
6509 default:
6510 cp_parser_error (parser, "expected jump-statement");
6511 break;
6512 }
6513
6514 return statement;
6515 }
6516
6517 /* Parse a declaration-statement.
6518
6519 declaration-statement:
6520 block-declaration */
6521
6522 static void
6523 cp_parser_declaration_statement (cp_parser* parser)
6524 {
6525 void *p;
6526
6527 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6528 p = obstack_alloc (&declarator_obstack, 0);
6529
6530 /* Parse the block-declaration. */
6531 cp_parser_block_declaration (parser, /*statement_p=*/true);
6532
6533 /* Free any declarators allocated. */
6534 obstack_free (&declarator_obstack, p);
6535
6536 /* Finish off the statement. */
6537 finish_stmt ();
6538 }
6539
6540 /* Some dependent statements (like `if (cond) statement'), are
6541 implicitly in their own scope. In other words, if the statement is
6542 a single statement (as opposed to a compound-statement), it is
6543 none-the-less treated as if it were enclosed in braces. Any
6544 declarations appearing in the dependent statement are out of scope
6545 after control passes that point. This function parses a statement,
6546 but ensures that is in its own scope, even if it is not a
6547 compound-statement.
6548
6549 Returns the new statement. */
6550
6551 static tree
6552 cp_parser_implicitly_scoped_statement (cp_parser* parser)
6553 {
6554 tree statement;
6555
6556 /* If the token is not a `{', then we must take special action. */
6557 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6558 {
6559 /* Create a compound-statement. */
6560 statement = begin_compound_stmt (0);
6561 /* Parse the dependent-statement. */
6562 cp_parser_statement (parser, false);
6563 /* Finish the dummy compound-statement. */
6564 finish_compound_stmt (statement);
6565 }
6566 /* Otherwise, we simply parse the statement directly. */
6567 else
6568 statement = cp_parser_compound_statement (parser, NULL, false);
6569
6570 /* Return the statement. */
6571 return statement;
6572 }
6573
6574 /* For some dependent statements (like `while (cond) statement'), we
6575 have already created a scope. Therefore, even if the dependent
6576 statement is a compound-statement, we do not want to create another
6577 scope. */
6578
6579 static void
6580 cp_parser_already_scoped_statement (cp_parser* parser)
6581 {
6582 /* If the token is a `{', then we must take special action. */
6583 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6584 cp_parser_statement (parser, false);
6585 else
6586 {
6587 /* Avoid calling cp_parser_compound_statement, so that we
6588 don't create a new scope. Do everything else by hand. */
6589 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
6590 cp_parser_statement_seq_opt (parser, false);
6591 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6592 }
6593 }
6594
6595 /* Declarations [gram.dcl.dcl] */
6596
6597 /* Parse an optional declaration-sequence.
6598
6599 declaration-seq:
6600 declaration
6601 declaration-seq declaration */
6602
6603 static void
6604 cp_parser_declaration_seq_opt (cp_parser* parser)
6605 {
6606 while (true)
6607 {
6608 cp_token *token;
6609
6610 token = cp_lexer_peek_token (parser->lexer);
6611
6612 if (token->type == CPP_CLOSE_BRACE
6613 || token->type == CPP_EOF)
6614 break;
6615
6616 if (token->type == CPP_SEMICOLON)
6617 {
6618 /* A declaration consisting of a single semicolon is
6619 invalid. Allow it unless we're being pedantic. */
6620 cp_lexer_consume_token (parser->lexer);
6621 if (pedantic && !in_system_header)
6622 pedwarn ("extra %<;%>");
6623 continue;
6624 }
6625
6626 /* If we're entering or exiting a region that's implicitly
6627 extern "C", modify the lang context appropriately. */
6628 if (!parser->implicit_extern_c && token->implicit_extern_c)
6629 {
6630 push_lang_context (lang_name_c);
6631 parser->implicit_extern_c = true;
6632 }
6633 else if (parser->implicit_extern_c && !token->implicit_extern_c)
6634 {
6635 pop_lang_context ();
6636 parser->implicit_extern_c = false;
6637 }
6638
6639 if (token->type == CPP_PRAGMA)
6640 {
6641 /* A top-level declaration can consist solely of a #pragma.
6642 A nested declaration cannot, so this is done here and not
6643 in cp_parser_declaration. (A #pragma at block scope is
6644 handled in cp_parser_statement.) */
6645 cp_lexer_handle_pragma (parser->lexer);
6646 continue;
6647 }
6648
6649 /* Parse the declaration itself. */
6650 cp_parser_declaration (parser);
6651 }
6652 }
6653
6654 /* Parse a declaration.
6655
6656 declaration:
6657 block-declaration
6658 function-definition
6659 template-declaration
6660 explicit-instantiation
6661 explicit-specialization
6662 linkage-specification
6663 namespace-definition
6664
6665 GNU extension:
6666
6667 declaration:
6668 __extension__ declaration */
6669
6670 static void
6671 cp_parser_declaration (cp_parser* parser)
6672 {
6673 cp_token token1;
6674 cp_token token2;
6675 int saved_pedantic;
6676 void *p;
6677
6678 /* Check for the `__extension__' keyword. */
6679 if (cp_parser_extension_opt (parser, &saved_pedantic))
6680 {
6681 /* Parse the qualified declaration. */
6682 cp_parser_declaration (parser);
6683 /* Restore the PEDANTIC flag. */
6684 pedantic = saved_pedantic;
6685
6686 return;
6687 }
6688
6689 /* Try to figure out what kind of declaration is present. */
6690 token1 = *cp_lexer_peek_token (parser->lexer);
6691
6692 if (token1.type != CPP_EOF)
6693 token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
6694
6695 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6696 p = obstack_alloc (&declarator_obstack, 0);
6697
6698 /* If the next token is `extern' and the following token is a string
6699 literal, then we have a linkage specification. */
6700 if (token1.keyword == RID_EXTERN
6701 && cp_parser_is_string_literal (&token2))
6702 cp_parser_linkage_specification (parser);
6703 /* If the next token is `template', then we have either a template
6704 declaration, an explicit instantiation, or an explicit
6705 specialization. */
6706 else if (token1.keyword == RID_TEMPLATE)
6707 {
6708 /* `template <>' indicates a template specialization. */
6709 if (token2.type == CPP_LESS
6710 && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
6711 cp_parser_explicit_specialization (parser);
6712 /* `template <' indicates a template declaration. */
6713 else if (token2.type == CPP_LESS)
6714 cp_parser_template_declaration (parser, /*member_p=*/false);
6715 /* Anything else must be an explicit instantiation. */
6716 else
6717 cp_parser_explicit_instantiation (parser);
6718 }
6719 /* If the next token is `export', then we have a template
6720 declaration. */
6721 else if (token1.keyword == RID_EXPORT)
6722 cp_parser_template_declaration (parser, /*member_p=*/false);
6723 /* If the next token is `extern', 'static' or 'inline' and the one
6724 after that is `template', we have a GNU extended explicit
6725 instantiation directive. */
6726 else if (cp_parser_allow_gnu_extensions_p (parser)
6727 && (token1.keyword == RID_EXTERN
6728 || token1.keyword == RID_STATIC
6729 || token1.keyword == RID_INLINE)
6730 && token2.keyword == RID_TEMPLATE)
6731 cp_parser_explicit_instantiation (parser);
6732 /* If the next token is `namespace', check for a named or unnamed
6733 namespace definition. */
6734 else if (token1.keyword == RID_NAMESPACE
6735 && (/* A named namespace definition. */
6736 (token2.type == CPP_NAME
6737 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
6738 == CPP_OPEN_BRACE))
6739 /* An unnamed namespace definition. */
6740 || token2.type == CPP_OPEN_BRACE))
6741 cp_parser_namespace_definition (parser);
6742 /* We must have either a block declaration or a function
6743 definition. */
6744 else
6745 /* Try to parse a block-declaration, or a function-definition. */
6746 cp_parser_block_declaration (parser, /*statement_p=*/false);
6747
6748 /* Free any declarators allocated. */
6749 obstack_free (&declarator_obstack, p);
6750 }
6751
6752 /* Parse a block-declaration.
6753
6754 block-declaration:
6755 simple-declaration
6756 asm-definition
6757 namespace-alias-definition
6758 using-declaration
6759 using-directive
6760
6761 GNU Extension:
6762
6763 block-declaration:
6764 __extension__ block-declaration
6765 label-declaration
6766
6767 If STATEMENT_P is TRUE, then this block-declaration is occurring as
6768 part of a declaration-statement. */
6769
6770 static void
6771 cp_parser_block_declaration (cp_parser *parser,
6772 bool statement_p)
6773 {
6774 cp_token *token1;
6775 int saved_pedantic;
6776
6777 /* Check for the `__extension__' keyword. */
6778 if (cp_parser_extension_opt (parser, &saved_pedantic))
6779 {
6780 /* Parse the qualified declaration. */
6781 cp_parser_block_declaration (parser, statement_p);
6782 /* Restore the PEDANTIC flag. */
6783 pedantic = saved_pedantic;
6784
6785 return;
6786 }
6787
6788 /* Peek at the next token to figure out which kind of declaration is
6789 present. */
6790 token1 = cp_lexer_peek_token (parser->lexer);
6791
6792 /* If the next keyword is `asm', we have an asm-definition. */
6793 if (token1->keyword == RID_ASM)
6794 {
6795 if (statement_p)
6796 cp_parser_commit_to_tentative_parse (parser);
6797 cp_parser_asm_definition (parser);
6798 }
6799 /* If the next keyword is `namespace', we have a
6800 namespace-alias-definition. */
6801 else if (token1->keyword == RID_NAMESPACE)
6802 cp_parser_namespace_alias_definition (parser);
6803 /* If the next keyword is `using', we have either a
6804 using-declaration or a using-directive. */
6805 else if (token1->keyword == RID_USING)
6806 {
6807 cp_token *token2;
6808
6809 if (statement_p)
6810 cp_parser_commit_to_tentative_parse (parser);
6811 /* If the token after `using' is `namespace', then we have a
6812 using-directive. */
6813 token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
6814 if (token2->keyword == RID_NAMESPACE)
6815 cp_parser_using_directive (parser);
6816 /* Otherwise, it's a using-declaration. */
6817 else
6818 cp_parser_using_declaration (parser);
6819 }
6820 /* If the next keyword is `__label__' we have a label declaration. */
6821 else if (token1->keyword == RID_LABEL)
6822 {
6823 if (statement_p)
6824 cp_parser_commit_to_tentative_parse (parser);
6825 cp_parser_label_declaration (parser);
6826 }
6827 /* Anything else must be a simple-declaration. */
6828 else
6829 cp_parser_simple_declaration (parser, !statement_p);
6830 }
6831
6832 /* Parse a simple-declaration.
6833
6834 simple-declaration:
6835 decl-specifier-seq [opt] init-declarator-list [opt] ;
6836
6837 init-declarator-list:
6838 init-declarator
6839 init-declarator-list , init-declarator
6840
6841 If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
6842 function-definition as a simple-declaration. */
6843
6844 static void
6845 cp_parser_simple_declaration (cp_parser* parser,
6846 bool function_definition_allowed_p)
6847 {
6848 cp_decl_specifier_seq decl_specifiers;
6849 int declares_class_or_enum;
6850 bool saw_declarator;
6851
6852 /* Defer access checks until we know what is being declared; the
6853 checks for names appearing in the decl-specifier-seq should be
6854 done as if we were in the scope of the thing being declared. */
6855 push_deferring_access_checks (dk_deferred);
6856
6857 /* Parse the decl-specifier-seq. We have to keep track of whether
6858 or not the decl-specifier-seq declares a named class or
6859 enumeration type, since that is the only case in which the
6860 init-declarator-list is allowed to be empty.
6861
6862 [dcl.dcl]
6863
6864 In a simple-declaration, the optional init-declarator-list can be
6865 omitted only when declaring a class or enumeration, that is when
6866 the decl-specifier-seq contains either a class-specifier, an
6867 elaborated-type-specifier, or an enum-specifier. */
6868 cp_parser_decl_specifier_seq (parser,
6869 CP_PARSER_FLAGS_OPTIONAL,
6870 &decl_specifiers,
6871 &declares_class_or_enum);
6872 /* We no longer need to defer access checks. */
6873 stop_deferring_access_checks ();
6874
6875 /* In a block scope, a valid declaration must always have a
6876 decl-specifier-seq. By not trying to parse declarators, we can
6877 resolve the declaration/expression ambiguity more quickly. */
6878 if (!function_definition_allowed_p
6879 && !decl_specifiers.any_specifiers_p)
6880 {
6881 cp_parser_error (parser, "expected declaration");
6882 goto done;
6883 }
6884
6885 /* If the next two tokens are both identifiers, the code is
6886 erroneous. The usual cause of this situation is code like:
6887
6888 T t;
6889
6890 where "T" should name a type -- but does not. */
6891 if (!decl_specifiers.type
6892 && cp_parser_parse_and_diagnose_invalid_type_name (parser))
6893 {
6894 /* If parsing tentatively, we should commit; we really are
6895 looking at a declaration. */
6896 cp_parser_commit_to_tentative_parse (parser);
6897 /* Give up. */
6898 goto done;
6899 }
6900
6901 /* If we have seen at least one decl-specifier, and the next token
6902 is not a parenthesis, then we must be looking at a declaration.
6903 (After "int (" we might be looking at a functional cast.) */
6904 if (decl_specifiers.any_specifiers_p
6905 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
6906 cp_parser_commit_to_tentative_parse (parser);
6907
6908 /* Keep going until we hit the `;' at the end of the simple
6909 declaration. */
6910 saw_declarator = false;
6911 while (cp_lexer_next_token_is_not (parser->lexer,
6912 CPP_SEMICOLON))
6913 {
6914 cp_token *token;
6915 bool function_definition_p;
6916 tree decl;
6917
6918 saw_declarator = true;
6919 /* Parse the init-declarator. */
6920 decl = cp_parser_init_declarator (parser, &decl_specifiers,
6921 function_definition_allowed_p,
6922 /*member_p=*/false,
6923 declares_class_or_enum,
6924 &function_definition_p);
6925 /* If an error occurred while parsing tentatively, exit quickly.
6926 (That usually happens when in the body of a function; each
6927 statement is treated as a declaration-statement until proven
6928 otherwise.) */
6929 if (cp_parser_error_occurred (parser))
6930 goto done;
6931 /* Handle function definitions specially. */
6932 if (function_definition_p)
6933 {
6934 /* If the next token is a `,', then we are probably
6935 processing something like:
6936
6937 void f() {}, *p;
6938
6939 which is erroneous. */
6940 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
6941 error ("mixing declarations and function-definitions is forbidden");
6942 /* Otherwise, we're done with the list of declarators. */
6943 else
6944 {
6945 pop_deferring_access_checks ();
6946 return;
6947 }
6948 }
6949 /* The next token should be either a `,' or a `;'. */
6950 token = cp_lexer_peek_token (parser->lexer);
6951 /* If it's a `,', there are more declarators to come. */
6952 if (token->type == CPP_COMMA)
6953 cp_lexer_consume_token (parser->lexer);
6954 /* If it's a `;', we are done. */
6955 else if (token->type == CPP_SEMICOLON)
6956 break;
6957 /* Anything else is an error. */
6958 else
6959 {
6960 /* If we have already issued an error message we don't need
6961 to issue another one. */
6962 if (decl != error_mark_node
6963 || (cp_parser_parsing_tentatively (parser)
6964 && !cp_parser_committed_to_tentative_parse (parser)))
6965 cp_parser_error (parser, "expected %<,%> or %<;%>");
6966 /* Skip tokens until we reach the end of the statement. */
6967 cp_parser_skip_to_end_of_statement (parser);
6968 /* If the next token is now a `;', consume it. */
6969 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
6970 cp_lexer_consume_token (parser->lexer);
6971 goto done;
6972 }
6973 /* After the first time around, a function-definition is not
6974 allowed -- even if it was OK at first. For example:
6975
6976 int i, f() {}
6977
6978 is not valid. */
6979 function_definition_allowed_p = false;
6980 }
6981
6982 /* Issue an error message if no declarators are present, and the
6983 decl-specifier-seq does not itself declare a class or
6984 enumeration. */
6985 if (!saw_declarator)
6986 {
6987 if (cp_parser_declares_only_class_p (parser))
6988 shadow_tag (&decl_specifiers);
6989 /* Perform any deferred access checks. */
6990 perform_deferred_access_checks ();
6991 }
6992
6993 /* Consume the `;'. */
6994 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6995
6996 done:
6997 pop_deferring_access_checks ();
6998 }
6999
7000 /* Parse a decl-specifier-seq.
7001
7002 decl-specifier-seq:
7003 decl-specifier-seq [opt] decl-specifier
7004
7005 decl-specifier:
7006 storage-class-specifier
7007 type-specifier
7008 function-specifier
7009 friend
7010 typedef
7011
7012 GNU Extension:
7013
7014 decl-specifier:
7015 attributes
7016
7017 Set *DECL_SPECS to a representation of the decl-specifier-seq.
7018
7019 The parser flags FLAGS is used to control type-specifier parsing.
7020
7021 *DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
7022 flags:
7023
7024 1: one of the decl-specifiers is an elaborated-type-specifier
7025 (i.e., a type declaration)
7026 2: one of the decl-specifiers is an enum-specifier or a
7027 class-specifier (i.e., a type definition)
7028
7029 */
7030
7031 static void
7032 cp_parser_decl_specifier_seq (cp_parser* parser,
7033 cp_parser_flags flags,
7034 cp_decl_specifier_seq *decl_specs,
7035 int* declares_class_or_enum)
7036 {
7037 bool constructor_possible_p = !parser->in_declarator_p;
7038
7039 /* Clear DECL_SPECS. */
7040 clear_decl_specs (decl_specs);
7041
7042 /* Assume no class or enumeration type is declared. */
7043 *declares_class_or_enum = 0;
7044
7045 /* Keep reading specifiers until there are no more to read. */
7046 while (true)
7047 {
7048 bool constructor_p;
7049 bool found_decl_spec;
7050 cp_token *token;
7051
7052 /* Peek at the next token. */
7053 token = cp_lexer_peek_token (parser->lexer);
7054 /* Handle attributes. */
7055 if (token->keyword == RID_ATTRIBUTE)
7056 {
7057 /* Parse the attributes. */
7058 decl_specs->attributes
7059 = chainon (decl_specs->attributes,
7060 cp_parser_attributes_opt (parser));
7061 continue;
7062 }
7063 /* Assume we will find a decl-specifier keyword. */
7064 found_decl_spec = true;
7065 /* If the next token is an appropriate keyword, we can simply
7066 add it to the list. */
7067 switch (token->keyword)
7068 {
7069 /* decl-specifier:
7070 friend */
7071 case RID_FRIEND:
7072 if (decl_specs->specs[(int) ds_friend]++)
7073 error ("duplicate %<friend%>");
7074 /* Consume the token. */
7075 cp_lexer_consume_token (parser->lexer);
7076 break;
7077
7078 /* function-specifier:
7079 inline
7080 virtual
7081 explicit */
7082 case RID_INLINE:
7083 case RID_VIRTUAL:
7084 case RID_EXPLICIT:
7085 cp_parser_function_specifier_opt (parser, decl_specs);
7086 break;
7087
7088 /* decl-specifier:
7089 typedef */
7090 case RID_TYPEDEF:
7091 ++decl_specs->specs[(int) ds_typedef];
7092 /* Consume the token. */
7093 cp_lexer_consume_token (parser->lexer);
7094 /* A constructor declarator cannot appear in a typedef. */
7095 constructor_possible_p = false;
7096 /* The "typedef" keyword can only occur in a declaration; we
7097 may as well commit at this point. */
7098 cp_parser_commit_to_tentative_parse (parser);
7099 break;
7100
7101 /* storage-class-specifier:
7102 auto
7103 register
7104 static
7105 extern
7106 mutable
7107
7108 GNU Extension:
7109 thread */
7110 case RID_AUTO:
7111 /* Consume the token. */
7112 cp_lexer_consume_token (parser->lexer);
7113 cp_parser_set_storage_class (decl_specs, sc_auto);
7114 break;
7115 case RID_REGISTER:
7116 /* Consume the token. */
7117 cp_lexer_consume_token (parser->lexer);
7118 cp_parser_set_storage_class (decl_specs, sc_register);
7119 break;
7120 case RID_STATIC:
7121 /* Consume the token. */
7122 cp_lexer_consume_token (parser->lexer);
7123 if (decl_specs->specs[(int) ds_thread])
7124 {
7125 error ("%<__thread%> before %<static%>");
7126 decl_specs->specs[(int) ds_thread] = 0;
7127 }
7128 cp_parser_set_storage_class (decl_specs, sc_static);
7129 break;
7130 case RID_EXTERN:
7131 /* Consume the token. */
7132 cp_lexer_consume_token (parser->lexer);
7133 if (decl_specs->specs[(int) ds_thread])
7134 {
7135 error ("%<__thread%> before %<extern%>");
7136 decl_specs->specs[(int) ds_thread] = 0;
7137 }
7138 cp_parser_set_storage_class (decl_specs, sc_extern);
7139 break;
7140 case RID_MUTABLE:
7141 /* Consume the token. */
7142 cp_lexer_consume_token (parser->lexer);
7143 cp_parser_set_storage_class (decl_specs, sc_mutable);
7144 break;
7145 case RID_THREAD:
7146 /* Consume the token. */
7147 cp_lexer_consume_token (parser->lexer);
7148 ++decl_specs->specs[(int) ds_thread];
7149 break;
7150
7151 default:
7152 /* We did not yet find a decl-specifier yet. */
7153 found_decl_spec = false;
7154 break;
7155 }
7156
7157 /* Constructors are a special case. The `S' in `S()' is not a
7158 decl-specifier; it is the beginning of the declarator. */
7159 constructor_p
7160 = (!found_decl_spec
7161 && constructor_possible_p
7162 && (cp_parser_constructor_declarator_p
7163 (parser, decl_specs->specs[(int) ds_friend] != 0)));
7164
7165 /* If we don't have a DECL_SPEC yet, then we must be looking at
7166 a type-specifier. */
7167 if (!found_decl_spec && !constructor_p)
7168 {
7169 int decl_spec_declares_class_or_enum;
7170 bool is_cv_qualifier;
7171 tree type_spec;
7172
7173 type_spec
7174 = cp_parser_type_specifier (parser, flags,
7175 decl_specs,
7176 /*is_declaration=*/true,
7177 &decl_spec_declares_class_or_enum,
7178 &is_cv_qualifier);
7179
7180 *declares_class_or_enum |= decl_spec_declares_class_or_enum;
7181
7182 /* If this type-specifier referenced a user-defined type
7183 (a typedef, class-name, etc.), then we can't allow any
7184 more such type-specifiers henceforth.
7185
7186 [dcl.spec]
7187
7188 The longest sequence of decl-specifiers that could
7189 possibly be a type name is taken as the
7190 decl-specifier-seq of a declaration. The sequence shall
7191 be self-consistent as described below.
7192
7193 [dcl.type]
7194
7195 As a general rule, at most one type-specifier is allowed
7196 in the complete decl-specifier-seq of a declaration. The
7197 only exceptions are the following:
7198
7199 -- const or volatile can be combined with any other
7200 type-specifier.
7201
7202 -- signed or unsigned can be combined with char, long,
7203 short, or int.
7204
7205 -- ..
7206
7207 Example:
7208
7209 typedef char* Pc;
7210 void g (const int Pc);
7211
7212 Here, Pc is *not* part of the decl-specifier seq; it's
7213 the declarator. Therefore, once we see a type-specifier
7214 (other than a cv-qualifier), we forbid any additional
7215 user-defined types. We *do* still allow things like `int
7216 int' to be considered a decl-specifier-seq, and issue the
7217 error message later. */
7218 if (type_spec && !is_cv_qualifier)
7219 flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
7220 /* A constructor declarator cannot follow a type-specifier. */
7221 if (type_spec)
7222 {
7223 constructor_possible_p = false;
7224 found_decl_spec = true;
7225 }
7226 }
7227
7228 /* If we still do not have a DECL_SPEC, then there are no more
7229 decl-specifiers. */
7230 if (!found_decl_spec)
7231 break;
7232
7233 decl_specs->any_specifiers_p = true;
7234 /* After we see one decl-specifier, further decl-specifiers are
7235 always optional. */
7236 flags |= CP_PARSER_FLAGS_OPTIONAL;
7237 }
7238
7239 /* Don't allow a friend specifier with a class definition. */
7240 if (decl_specs->specs[(int) ds_friend] != 0
7241 && (*declares_class_or_enum & 2))
7242 error ("class definition may not be declared a friend");
7243 }
7244
7245 /* Parse an (optional) storage-class-specifier.
7246
7247 storage-class-specifier:
7248 auto
7249 register
7250 static
7251 extern
7252 mutable
7253
7254 GNU Extension:
7255
7256 storage-class-specifier:
7257 thread
7258
7259 Returns an IDENTIFIER_NODE corresponding to the keyword used. */
7260
7261 static tree
7262 cp_parser_storage_class_specifier_opt (cp_parser* parser)
7263 {
7264 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7265 {
7266 case RID_AUTO:
7267 case RID_REGISTER:
7268 case RID_STATIC:
7269 case RID_EXTERN:
7270 case RID_MUTABLE:
7271 case RID_THREAD:
7272 /* Consume the token. */
7273 return cp_lexer_consume_token (parser->lexer)->value;
7274
7275 default:
7276 return NULL_TREE;
7277 }
7278 }
7279
7280 /* Parse an (optional) function-specifier.
7281
7282 function-specifier:
7283 inline
7284 virtual
7285 explicit
7286
7287 Returns an IDENTIFIER_NODE corresponding to the keyword used.
7288 Updates DECL_SPECS, if it is non-NULL. */
7289
7290 static tree
7291 cp_parser_function_specifier_opt (cp_parser* parser,
7292 cp_decl_specifier_seq *decl_specs)
7293 {
7294 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7295 {
7296 case RID_INLINE:
7297 if (decl_specs)
7298 ++decl_specs->specs[(int) ds_inline];
7299 break;
7300
7301 case RID_VIRTUAL:
7302 if (decl_specs)
7303 ++decl_specs->specs[(int) ds_virtual];
7304 break;
7305
7306 case RID_EXPLICIT:
7307 if (decl_specs)
7308 ++decl_specs->specs[(int) ds_explicit];
7309 break;
7310
7311 default:
7312 return NULL_TREE;
7313 }
7314
7315 /* Consume the token. */
7316 return cp_lexer_consume_token (parser->lexer)->value;
7317 }
7318
7319 /* Parse a linkage-specification.
7320
7321 linkage-specification:
7322 extern string-literal { declaration-seq [opt] }
7323 extern string-literal declaration */
7324
7325 static void
7326 cp_parser_linkage_specification (cp_parser* parser)
7327 {
7328 tree linkage;
7329
7330 /* Look for the `extern' keyword. */
7331 cp_parser_require_keyword (parser, RID_EXTERN, "`extern'");
7332
7333 /* Look for the string-literal. */
7334 linkage = cp_parser_string_literal (parser, false, false);
7335
7336 /* Transform the literal into an identifier. If the literal is a
7337 wide-character string, or contains embedded NULs, then we can't
7338 handle it as the user wants. */
7339 if (strlen (TREE_STRING_POINTER (linkage))
7340 != (size_t) (TREE_STRING_LENGTH (linkage) - 1))
7341 {
7342 cp_parser_error (parser, "invalid linkage-specification");
7343 /* Assume C++ linkage. */
7344 linkage = lang_name_cplusplus;
7345 }
7346 else
7347 linkage = get_identifier (TREE_STRING_POINTER (linkage));
7348
7349 /* We're now using the new linkage. */
7350 push_lang_context (linkage);
7351
7352 /* If the next token is a `{', then we're using the first
7353 production. */
7354 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
7355 {
7356 /* Consume the `{' token. */
7357 cp_lexer_consume_token (parser->lexer);
7358 /* Parse the declarations. */
7359 cp_parser_declaration_seq_opt (parser);
7360 /* Look for the closing `}'. */
7361 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
7362 }
7363 /* Otherwise, there's just one declaration. */
7364 else
7365 {
7366 bool saved_in_unbraced_linkage_specification_p;
7367
7368 saved_in_unbraced_linkage_specification_p
7369 = parser->in_unbraced_linkage_specification_p;
7370 parser->in_unbraced_linkage_specification_p = true;
7371 have_extern_spec = true;
7372 cp_parser_declaration (parser);
7373 have_extern_spec = false;
7374 parser->in_unbraced_linkage_specification_p
7375 = saved_in_unbraced_linkage_specification_p;
7376 }
7377
7378 /* We're done with the linkage-specification. */
7379 pop_lang_context ();
7380 }
7381
7382 /* Special member functions [gram.special] */
7383
7384 /* Parse a conversion-function-id.
7385
7386 conversion-function-id:
7387 operator conversion-type-id
7388
7389 Returns an IDENTIFIER_NODE representing the operator. */
7390
7391 static tree
7392 cp_parser_conversion_function_id (cp_parser* parser)
7393 {
7394 tree type;
7395 tree saved_scope;
7396 tree saved_qualifying_scope;
7397 tree saved_object_scope;
7398 bool pop_p = false;
7399
7400 /* Look for the `operator' token. */
7401 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7402 return error_mark_node;
7403 /* When we parse the conversion-type-id, the current scope will be
7404 reset. However, we need that information in able to look up the
7405 conversion function later, so we save it here. */
7406 saved_scope = parser->scope;
7407 saved_qualifying_scope = parser->qualifying_scope;
7408 saved_object_scope = parser->object_scope;
7409 /* We must enter the scope of the class so that the names of
7410 entities declared within the class are available in the
7411 conversion-type-id. For example, consider:
7412
7413 struct S {
7414 typedef int I;
7415 operator I();
7416 };
7417
7418 S::operator I() { ... }
7419
7420 In order to see that `I' is a type-name in the definition, we
7421 must be in the scope of `S'. */
7422 if (saved_scope)
7423 pop_p = push_scope (saved_scope);
7424 /* Parse the conversion-type-id. */
7425 type = cp_parser_conversion_type_id (parser);
7426 /* Leave the scope of the class, if any. */
7427 if (pop_p)
7428 pop_scope (saved_scope);
7429 /* Restore the saved scope. */
7430 parser->scope = saved_scope;
7431 parser->qualifying_scope = saved_qualifying_scope;
7432 parser->object_scope = saved_object_scope;
7433 /* If the TYPE is invalid, indicate failure. */
7434 if (type == error_mark_node)
7435 return error_mark_node;
7436 return mangle_conv_op_name_for_type (type);
7437 }
7438
7439 /* Parse a conversion-type-id:
7440
7441 conversion-type-id:
7442 type-specifier-seq conversion-declarator [opt]
7443
7444 Returns the TYPE specified. */
7445
7446 static tree
7447 cp_parser_conversion_type_id (cp_parser* parser)
7448 {
7449 tree attributes;
7450 cp_decl_specifier_seq type_specifiers;
7451 cp_declarator *declarator;
7452 tree type_specified;
7453
7454 /* Parse the attributes. */
7455 attributes = cp_parser_attributes_opt (parser);
7456 /* Parse the type-specifiers. */
7457 cp_parser_type_specifier_seq (parser, &type_specifiers);
7458 /* If that didn't work, stop. */
7459 if (type_specifiers.type == error_mark_node)
7460 return error_mark_node;
7461 /* Parse the conversion-declarator. */
7462 declarator = cp_parser_conversion_declarator_opt (parser);
7463
7464 type_specified = grokdeclarator (declarator, &type_specifiers, TYPENAME,
7465 /*initialized=*/0, &attributes);
7466 if (attributes)
7467 cplus_decl_attributes (&type_specified, attributes, /*flags=*/0);
7468 return type_specified;
7469 }
7470
7471 /* Parse an (optional) conversion-declarator.
7472
7473 conversion-declarator:
7474 ptr-operator conversion-declarator [opt]
7475
7476 */
7477
7478 static cp_declarator *
7479 cp_parser_conversion_declarator_opt (cp_parser* parser)
7480 {
7481 enum tree_code code;
7482 tree class_type;
7483 cp_cv_quals cv_quals;
7484
7485 /* We don't know if there's a ptr-operator next, or not. */
7486 cp_parser_parse_tentatively (parser);
7487 /* Try the ptr-operator. */
7488 code = cp_parser_ptr_operator (parser, &class_type, &cv_quals);
7489 /* If it worked, look for more conversion-declarators. */
7490 if (cp_parser_parse_definitely (parser))
7491 {
7492 cp_declarator *declarator;
7493
7494 /* Parse another optional declarator. */
7495 declarator = cp_parser_conversion_declarator_opt (parser);
7496
7497 /* Create the representation of the declarator. */
7498 if (class_type)
7499 declarator = make_ptrmem_declarator (cv_quals, class_type,
7500 declarator);
7501 else if (code == INDIRECT_REF)
7502 declarator = make_pointer_declarator (cv_quals, declarator);
7503 else
7504 declarator = make_reference_declarator (cv_quals, declarator);
7505
7506 return declarator;
7507 }
7508
7509 return NULL;
7510 }
7511
7512 /* Parse an (optional) ctor-initializer.
7513
7514 ctor-initializer:
7515 : mem-initializer-list
7516
7517 Returns TRUE iff the ctor-initializer was actually present. */
7518
7519 static bool
7520 cp_parser_ctor_initializer_opt (cp_parser* parser)
7521 {
7522 /* If the next token is not a `:', then there is no
7523 ctor-initializer. */
7524 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
7525 {
7526 /* Do default initialization of any bases and members. */
7527 if (DECL_CONSTRUCTOR_P (current_function_decl))
7528 finish_mem_initializers (NULL_TREE);
7529
7530 return false;
7531 }
7532
7533 /* Consume the `:' token. */
7534 cp_lexer_consume_token (parser->lexer);
7535 /* And the mem-initializer-list. */
7536 cp_parser_mem_initializer_list (parser);
7537
7538 return true;
7539 }
7540
7541 /* Parse a mem-initializer-list.
7542
7543 mem-initializer-list:
7544 mem-initializer
7545 mem-initializer , mem-initializer-list */
7546
7547 static void
7548 cp_parser_mem_initializer_list (cp_parser* parser)
7549 {
7550 tree mem_initializer_list = NULL_TREE;
7551
7552 /* Let the semantic analysis code know that we are starting the
7553 mem-initializer-list. */
7554 if (!DECL_CONSTRUCTOR_P (current_function_decl))
7555 error ("only constructors take base initializers");
7556
7557 /* Loop through the list. */
7558 while (true)
7559 {
7560 tree mem_initializer;
7561
7562 /* Parse the mem-initializer. */
7563 mem_initializer = cp_parser_mem_initializer (parser);
7564 /* Add it to the list, unless it was erroneous. */
7565 if (mem_initializer)
7566 {
7567 TREE_CHAIN (mem_initializer) = mem_initializer_list;
7568 mem_initializer_list = mem_initializer;
7569 }
7570 /* If the next token is not a `,', we're done. */
7571 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
7572 break;
7573 /* Consume the `,' token. */
7574 cp_lexer_consume_token (parser->lexer);
7575 }
7576
7577 /* Perform semantic analysis. */
7578 if (DECL_CONSTRUCTOR_P (current_function_decl))
7579 finish_mem_initializers (mem_initializer_list);
7580 }
7581
7582 /* Parse a mem-initializer.
7583
7584 mem-initializer:
7585 mem-initializer-id ( expression-list [opt] )
7586
7587 GNU extension:
7588
7589 mem-initializer:
7590 ( expression-list [opt] )
7591
7592 Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base
7593 class) or FIELD_DECL (for a non-static data member) to initialize;
7594 the TREE_VALUE is the expression-list. */
7595
7596 static tree
7597 cp_parser_mem_initializer (cp_parser* parser)
7598 {
7599 tree mem_initializer_id;
7600 tree expression_list;
7601 tree member;
7602
7603 /* Find out what is being initialized. */
7604 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
7605 {
7606 pedwarn ("anachronistic old-style base class initializer");
7607 mem_initializer_id = NULL_TREE;
7608 }
7609 else
7610 mem_initializer_id = cp_parser_mem_initializer_id (parser);
7611 member = expand_member_init (mem_initializer_id);
7612 if (member && !DECL_P (member))
7613 in_base_initializer = 1;
7614
7615 expression_list
7616 = cp_parser_parenthesized_expression_list (parser, false,
7617 /*non_constant_p=*/NULL);
7618 if (!expression_list)
7619 expression_list = void_type_node;
7620
7621 in_base_initializer = 0;
7622
7623 return member ? build_tree_list (member, expression_list) : NULL_TREE;
7624 }
7625
7626 /* Parse a mem-initializer-id.
7627
7628 mem-initializer-id:
7629 :: [opt] nested-name-specifier [opt] class-name
7630 identifier
7631
7632 Returns a TYPE indicating the class to be initializer for the first
7633 production. Returns an IDENTIFIER_NODE indicating the data member
7634 to be initialized for the second production. */
7635
7636 static tree
7637 cp_parser_mem_initializer_id (cp_parser* parser)
7638 {
7639 bool global_scope_p;
7640 bool nested_name_specifier_p;
7641 bool template_p = false;
7642 tree id;
7643
7644 /* `typename' is not allowed in this context ([temp.res]). */
7645 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
7646 {
7647 error ("keyword %<typename%> not allowed in this context (a qualified "
7648 "member initializer is implicitly a type)");
7649 cp_lexer_consume_token (parser->lexer);
7650 }
7651 /* Look for the optional `::' operator. */
7652 global_scope_p
7653 = (cp_parser_global_scope_opt (parser,
7654 /*current_scope_valid_p=*/false)
7655 != NULL_TREE);
7656 /* Look for the optional nested-name-specifier. The simplest way to
7657 implement:
7658
7659 [temp.res]
7660
7661 The keyword `typename' is not permitted in a base-specifier or
7662 mem-initializer; in these contexts a qualified name that
7663 depends on a template-parameter is implicitly assumed to be a
7664 type name.
7665
7666 is to assume that we have seen the `typename' keyword at this
7667 point. */
7668 nested_name_specifier_p
7669 = (cp_parser_nested_name_specifier_opt (parser,
7670 /*typename_keyword_p=*/true,
7671 /*check_dependency_p=*/true,
7672 /*type_p=*/true,
7673 /*is_declaration=*/true)
7674 != NULL_TREE);
7675 if (nested_name_specifier_p)
7676 template_p = cp_parser_optional_template_keyword (parser);
7677 /* If there is a `::' operator or a nested-name-specifier, then we
7678 are definitely looking for a class-name. */
7679 if (global_scope_p || nested_name_specifier_p)
7680 return cp_parser_class_name (parser,
7681 /*typename_keyword_p=*/true,
7682 /*template_keyword_p=*/template_p,
7683 /*type_p=*/false,
7684 /*check_dependency_p=*/true,
7685 /*class_head_p=*/false,
7686 /*is_declaration=*/true);
7687 /* Otherwise, we could also be looking for an ordinary identifier. */
7688 cp_parser_parse_tentatively (parser);
7689 /* Try a class-name. */
7690 id = cp_parser_class_name (parser,
7691 /*typename_keyword_p=*/true,
7692 /*template_keyword_p=*/false,
7693 /*type_p=*/false,
7694 /*check_dependency_p=*/true,
7695 /*class_head_p=*/false,
7696 /*is_declaration=*/true);
7697 /* If we found one, we're done. */
7698 if (cp_parser_parse_definitely (parser))
7699 return id;
7700 /* Otherwise, look for an ordinary identifier. */
7701 return cp_parser_identifier (parser);
7702 }
7703
7704 /* Overloading [gram.over] */
7705
7706 /* Parse an operator-function-id.
7707
7708 operator-function-id:
7709 operator operator
7710
7711 Returns an IDENTIFIER_NODE for the operator which is a
7712 human-readable spelling of the identifier, e.g., `operator +'. */
7713
7714 static tree
7715 cp_parser_operator_function_id (cp_parser* parser)
7716 {
7717 /* Look for the `operator' keyword. */
7718 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7719 return error_mark_node;
7720 /* And then the name of the operator itself. */
7721 return cp_parser_operator (parser);
7722 }
7723
7724 /* Parse an operator.
7725
7726 operator:
7727 new delete new[] delete[] + - * / % ^ & | ~ ! = < >
7728 += -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
7729 || ++ -- , ->* -> () []
7730
7731 GNU Extensions:
7732
7733 operator:
7734 <? >? <?= >?=
7735
7736 Returns an IDENTIFIER_NODE for the operator which is a
7737 human-readable spelling of the identifier, e.g., `operator +'. */
7738
7739 static tree
7740 cp_parser_operator (cp_parser* parser)
7741 {
7742 tree id = NULL_TREE;
7743 cp_token *token;
7744
7745 /* Peek at the next token. */
7746 token = cp_lexer_peek_token (parser->lexer);
7747 /* Figure out which operator we have. */
7748 switch (token->type)
7749 {
7750 case CPP_KEYWORD:
7751 {
7752 enum tree_code op;
7753
7754 /* The keyword should be either `new' or `delete'. */
7755 if (token->keyword == RID_NEW)
7756 op = NEW_EXPR;
7757 else if (token->keyword == RID_DELETE)
7758 op = DELETE_EXPR;
7759 else
7760 break;
7761
7762 /* Consume the `new' or `delete' token. */
7763 cp_lexer_consume_token (parser->lexer);
7764
7765 /* Peek at the next token. */
7766 token = cp_lexer_peek_token (parser->lexer);
7767 /* If it's a `[' token then this is the array variant of the
7768 operator. */
7769 if (token->type == CPP_OPEN_SQUARE)
7770 {
7771 /* Consume the `[' token. */
7772 cp_lexer_consume_token (parser->lexer);
7773 /* Look for the `]' token. */
7774 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
7775 id = ansi_opname (op == NEW_EXPR
7776 ? VEC_NEW_EXPR : VEC_DELETE_EXPR);
7777 }
7778 /* Otherwise, we have the non-array variant. */
7779 else
7780 id = ansi_opname (op);
7781
7782 return id;
7783 }
7784
7785 case CPP_PLUS:
7786 id = ansi_opname (PLUS_EXPR);
7787 break;
7788
7789 case CPP_MINUS:
7790 id = ansi_opname (MINUS_EXPR);
7791 break;
7792
7793 case CPP_MULT:
7794 id = ansi_opname (MULT_EXPR);
7795 break;
7796
7797 case CPP_DIV:
7798 id = ansi_opname (TRUNC_DIV_EXPR);
7799 break;
7800
7801 case CPP_MOD:
7802 id = ansi_opname (TRUNC_MOD_EXPR);
7803 break;
7804
7805 case CPP_XOR:
7806 id = ansi_opname (BIT_XOR_EXPR);
7807 break;
7808
7809 case CPP_AND:
7810 id = ansi_opname (BIT_AND_EXPR);
7811 break;
7812
7813 case CPP_OR:
7814 id = ansi_opname (BIT_IOR_EXPR);
7815 break;
7816
7817 case CPP_COMPL:
7818 id = ansi_opname (BIT_NOT_EXPR);
7819 break;
7820
7821 case CPP_NOT:
7822 id = ansi_opname (TRUTH_NOT_EXPR);
7823 break;
7824
7825 case CPP_EQ:
7826 id = ansi_assopname (NOP_EXPR);
7827 break;
7828
7829 case CPP_LESS:
7830 id = ansi_opname (LT_EXPR);
7831 break;
7832
7833 case CPP_GREATER:
7834 id = ansi_opname (GT_EXPR);
7835 break;
7836
7837 case CPP_PLUS_EQ:
7838 id = ansi_assopname (PLUS_EXPR);
7839 break;
7840
7841 case CPP_MINUS_EQ:
7842 id = ansi_assopname (MINUS_EXPR);
7843 break;
7844
7845 case CPP_MULT_EQ:
7846 id = ansi_assopname (MULT_EXPR);
7847 break;
7848
7849 case CPP_DIV_EQ:
7850 id = ansi_assopname (TRUNC_DIV_EXPR);
7851 break;
7852
7853 case CPP_MOD_EQ:
7854 id = ansi_assopname (TRUNC_MOD_EXPR);
7855 break;
7856
7857 case CPP_XOR_EQ:
7858 id = ansi_assopname (BIT_XOR_EXPR);
7859 break;
7860
7861 case CPP_AND_EQ:
7862 id = ansi_assopname (BIT_AND_EXPR);
7863 break;
7864
7865 case CPP_OR_EQ:
7866 id = ansi_assopname (BIT_IOR_EXPR);
7867 break;
7868
7869 case CPP_LSHIFT:
7870 id = ansi_opname (LSHIFT_EXPR);
7871 break;
7872
7873 case CPP_RSHIFT:
7874 id = ansi_opname (RSHIFT_EXPR);
7875 break;
7876
7877 case CPP_LSHIFT_EQ:
7878 id = ansi_assopname (LSHIFT_EXPR);
7879 break;
7880
7881 case CPP_RSHIFT_EQ:
7882 id = ansi_assopname (RSHIFT_EXPR);
7883 break;
7884
7885 case CPP_EQ_EQ:
7886 id = ansi_opname (EQ_EXPR);
7887 break;
7888
7889 case CPP_NOT_EQ:
7890 id = ansi_opname (NE_EXPR);
7891 break;
7892
7893 case CPP_LESS_EQ:
7894 id = ansi_opname (LE_EXPR);
7895 break;
7896
7897 case CPP_GREATER_EQ:
7898 id = ansi_opname (GE_EXPR);
7899 break;
7900
7901 case CPP_AND_AND:
7902 id = ansi_opname (TRUTH_ANDIF_EXPR);
7903 break;
7904
7905 case CPP_OR_OR:
7906 id = ansi_opname (TRUTH_ORIF_EXPR);
7907 break;
7908
7909 case CPP_PLUS_PLUS:
7910 id = ansi_opname (POSTINCREMENT_EXPR);
7911 break;
7912
7913 case CPP_MINUS_MINUS:
7914 id = ansi_opname (PREDECREMENT_EXPR);
7915 break;
7916
7917 case CPP_COMMA:
7918 id = ansi_opname (COMPOUND_EXPR);
7919 break;
7920
7921 case CPP_DEREF_STAR:
7922 id = ansi_opname (MEMBER_REF);
7923 break;
7924
7925 case CPP_DEREF:
7926 id = ansi_opname (COMPONENT_REF);
7927 break;
7928
7929 case CPP_OPEN_PAREN:
7930 /* Consume the `('. */
7931 cp_lexer_consume_token (parser->lexer);
7932 /* Look for the matching `)'. */
7933 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
7934 return ansi_opname (CALL_EXPR);
7935
7936 case CPP_OPEN_SQUARE:
7937 /* Consume the `['. */
7938 cp_lexer_consume_token (parser->lexer);
7939 /* Look for the matching `]'. */
7940 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
7941 return ansi_opname (ARRAY_REF);
7942
7943 /* Extensions. */
7944 case CPP_MIN:
7945 id = ansi_opname (MIN_EXPR);
7946 break;
7947
7948 case CPP_MAX:
7949 id = ansi_opname (MAX_EXPR);
7950 break;
7951
7952 case CPP_MIN_EQ:
7953 id = ansi_assopname (MIN_EXPR);
7954 break;
7955
7956 case CPP_MAX_EQ:
7957 id = ansi_assopname (MAX_EXPR);
7958 break;
7959
7960 default:
7961 /* Anything else is an error. */
7962 break;
7963 }
7964
7965 /* If we have selected an identifier, we need to consume the
7966 operator token. */
7967 if (id)
7968 cp_lexer_consume_token (parser->lexer);
7969 /* Otherwise, no valid operator name was present. */
7970 else
7971 {
7972 cp_parser_error (parser, "expected operator");
7973 id = error_mark_node;
7974 }
7975
7976 return id;
7977 }
7978
7979 /* Parse a template-declaration.
7980
7981 template-declaration:
7982 export [opt] template < template-parameter-list > declaration
7983
7984 If MEMBER_P is TRUE, this template-declaration occurs within a
7985 class-specifier.
7986
7987 The grammar rule given by the standard isn't correct. What
7988 is really meant is:
7989
7990 template-declaration:
7991 export [opt] template-parameter-list-seq
7992 decl-specifier-seq [opt] init-declarator [opt] ;
7993 export [opt] template-parameter-list-seq
7994 function-definition
7995
7996 template-parameter-list-seq:
7997 template-parameter-list-seq [opt]
7998 template < template-parameter-list > */
7999
8000 static void
8001 cp_parser_template_declaration (cp_parser* parser, bool member_p)
8002 {
8003 /* Check for `export'. */
8004 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
8005 {
8006 /* Consume the `export' token. */
8007 cp_lexer_consume_token (parser->lexer);
8008 /* Warn that we do not support `export'. */
8009 warning ("keyword %<export%> not implemented, and will be ignored");
8010 }
8011
8012 cp_parser_template_declaration_after_export (parser, member_p);
8013 }
8014
8015 /* Parse a template-parameter-list.
8016
8017 template-parameter-list:
8018 template-parameter
8019 template-parameter-list , template-parameter
8020
8021 Returns a TREE_LIST. Each node represents a template parameter.
8022 The nodes are connected via their TREE_CHAINs. */
8023
8024 static tree
8025 cp_parser_template_parameter_list (cp_parser* parser)
8026 {
8027 tree parameter_list = NULL_TREE;
8028
8029 while (true)
8030 {
8031 tree parameter;
8032 cp_token *token;
8033 bool is_non_type;
8034
8035 /* Parse the template-parameter. */
8036 parameter = cp_parser_template_parameter (parser, &is_non_type);
8037 /* Add it to the list. */
8038 parameter_list = process_template_parm (parameter_list,
8039 parameter,
8040 is_non_type);
8041 /* Peek at the next token. */
8042 token = cp_lexer_peek_token (parser->lexer);
8043 /* If it's not a `,', we're done. */
8044 if (token->type != CPP_COMMA)
8045 break;
8046 /* Otherwise, consume the `,' token. */
8047 cp_lexer_consume_token (parser->lexer);
8048 }
8049
8050 return parameter_list;
8051 }
8052
8053 /* Parse a template-parameter.
8054
8055 template-parameter:
8056 type-parameter
8057 parameter-declaration
8058
8059 Returns a TREE_LIST. The TREE_VALUE represents the parameter. The
8060 TREE_PURPOSE is the default value, if any. *IS_NON_TYPE is set to
8061 true iff this parameter is a non-type parameter. */
8062
8063 static tree
8064 cp_parser_template_parameter (cp_parser* parser, bool *is_non_type)
8065 {
8066 cp_token *token;
8067 cp_parameter_declarator *parameter_declarator;
8068
8069 /* Assume it is a type parameter or a template parameter. */
8070 *is_non_type = false;
8071 /* Peek at the next token. */
8072 token = cp_lexer_peek_token (parser->lexer);
8073 /* If it is `class' or `template', we have a type-parameter. */
8074 if (token->keyword == RID_TEMPLATE)
8075 return cp_parser_type_parameter (parser);
8076 /* If it is `class' or `typename' we do not know yet whether it is a
8077 type parameter or a non-type parameter. Consider:
8078
8079 template <typename T, typename T::X X> ...
8080
8081 or:
8082
8083 template <class C, class D*> ...
8084
8085 Here, the first parameter is a type parameter, and the second is
8086 a non-type parameter. We can tell by looking at the token after
8087 the identifier -- if it is a `,', `=', or `>' then we have a type
8088 parameter. */
8089 if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
8090 {
8091 /* Peek at the token after `class' or `typename'. */
8092 token = cp_lexer_peek_nth_token (parser->lexer, 2);
8093 /* If it's an identifier, skip it. */
8094 if (token->type == CPP_NAME)
8095 token = cp_lexer_peek_nth_token (parser->lexer, 3);
8096 /* Now, see if the token looks like the end of a template
8097 parameter. */
8098 if (token->type == CPP_COMMA
8099 || token->type == CPP_EQ
8100 || token->type == CPP_GREATER)
8101 return cp_parser_type_parameter (parser);
8102 }
8103
8104 /* Otherwise, it is a non-type parameter.
8105
8106 [temp.param]
8107
8108 When parsing a default template-argument for a non-type
8109 template-parameter, the first non-nested `>' is taken as the end
8110 of the template parameter-list rather than a greater-than
8111 operator. */
8112 *is_non_type = true;
8113 parameter_declarator
8114 = cp_parser_parameter_declaration (parser, /*template_parm_p=*/true,
8115 /*parenthesized_p=*/NULL);
8116 return (build_tree_list
8117 (parameter_declarator->default_argument,
8118 grokdeclarator (parameter_declarator->declarator,
8119 &parameter_declarator->decl_specifiers,
8120 PARM, /*initialized=*/0,
8121 /*attrlist=*/NULL)));
8122 }
8123
8124 /* Parse a type-parameter.
8125
8126 type-parameter:
8127 class identifier [opt]
8128 class identifier [opt] = type-id
8129 typename identifier [opt]
8130 typename identifier [opt] = type-id
8131 template < template-parameter-list > class identifier [opt]
8132 template < template-parameter-list > class identifier [opt]
8133 = id-expression
8134
8135 Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The
8136 TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is
8137 the declaration of the parameter. */
8138
8139 static tree
8140 cp_parser_type_parameter (cp_parser* parser)
8141 {
8142 cp_token *token;
8143 tree parameter;
8144
8145 /* Look for a keyword to tell us what kind of parameter this is. */
8146 token = cp_parser_require (parser, CPP_KEYWORD,
8147 "`class', `typename', or `template'");
8148 if (!token)
8149 return error_mark_node;
8150
8151 switch (token->keyword)
8152 {
8153 case RID_CLASS:
8154 case RID_TYPENAME:
8155 {
8156 tree identifier;
8157 tree default_argument;
8158
8159 /* If the next token is an identifier, then it names the
8160 parameter. */
8161 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8162 identifier = cp_parser_identifier (parser);
8163 else
8164 identifier = NULL_TREE;
8165
8166 /* Create the parameter. */
8167 parameter = finish_template_type_parm (class_type_node, identifier);
8168
8169 /* If the next token is an `=', we have a default argument. */
8170 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8171 {
8172 /* Consume the `=' token. */
8173 cp_lexer_consume_token (parser->lexer);
8174 /* Parse the default-argument. */
8175 default_argument = cp_parser_type_id (parser);
8176 }
8177 else
8178 default_argument = NULL_TREE;
8179
8180 /* Create the combined representation of the parameter and the
8181 default argument. */
8182 parameter = build_tree_list (default_argument, parameter);
8183 }
8184 break;
8185
8186 case RID_TEMPLATE:
8187 {
8188 tree parameter_list;
8189 tree identifier;
8190 tree default_argument;
8191
8192 /* Look for the `<'. */
8193 cp_parser_require (parser, CPP_LESS, "`<'");
8194 /* Parse the template-parameter-list. */
8195 begin_template_parm_list ();
8196 parameter_list
8197 = cp_parser_template_parameter_list (parser);
8198 parameter_list = end_template_parm_list (parameter_list);
8199 /* Look for the `>'. */
8200 cp_parser_require (parser, CPP_GREATER, "`>'");
8201 /* Look for the `class' keyword. */
8202 cp_parser_require_keyword (parser, RID_CLASS, "`class'");
8203 /* If the next token is an `=', then there is a
8204 default-argument. If the next token is a `>', we are at
8205 the end of the parameter-list. If the next token is a `,',
8206 then we are at the end of this parameter. */
8207 if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
8208 && cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
8209 && cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
8210 identifier = cp_parser_identifier (parser);
8211 else
8212 identifier = NULL_TREE;
8213 /* Create the template parameter. */
8214 parameter = finish_template_template_parm (class_type_node,
8215 identifier);
8216
8217 /* If the next token is an `=', then there is a
8218 default-argument. */
8219 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8220 {
8221 bool is_template;
8222
8223 /* Consume the `='. */
8224 cp_lexer_consume_token (parser->lexer);
8225 /* Parse the id-expression. */
8226 default_argument
8227 = cp_parser_id_expression (parser,
8228 /*template_keyword_p=*/false,
8229 /*check_dependency_p=*/true,
8230 /*template_p=*/&is_template,
8231 /*declarator_p=*/false);
8232 if (TREE_CODE (default_argument) == TYPE_DECL)
8233 /* If the id-expression was a template-id that refers to
8234 a template-class, we already have the declaration here,
8235 so no further lookup is needed. */
8236 ;
8237 else
8238 /* Look up the name. */
8239 default_argument
8240 = cp_parser_lookup_name (parser, default_argument,
8241 /*is_type=*/false,
8242 /*is_template=*/is_template,
8243 /*is_namespace=*/false,
8244 /*check_dependency=*/true,
8245 /*ambiguous_p=*/NULL);
8246 /* See if the default argument is valid. */
8247 default_argument
8248 = check_template_template_default_arg (default_argument);
8249 }
8250 else
8251 default_argument = NULL_TREE;
8252
8253 /* Create the combined representation of the parameter and the
8254 default argument. */
8255 parameter = build_tree_list (default_argument, parameter);
8256 }
8257 break;
8258
8259 default:
8260 /* Anything else is an error. */
8261 cp_parser_error (parser,
8262 "expected %<class%>, %<typename%>, or %<template%>");
8263 parameter = error_mark_node;
8264 }
8265
8266 return parameter;
8267 }
8268
8269 /* Parse a template-id.
8270
8271 template-id:
8272 template-name < template-argument-list [opt] >
8273
8274 If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
8275 `template' keyword. In this case, a TEMPLATE_ID_EXPR will be
8276 returned. Otherwise, if the template-name names a function, or set
8277 of functions, returns a TEMPLATE_ID_EXPR. If the template-name
8278 names a class, returns a TYPE_DECL for the specialization.
8279
8280 If CHECK_DEPENDENCY_P is FALSE, names are looked up in
8281 uninstantiated templates. */
8282
8283 static tree
8284 cp_parser_template_id (cp_parser *parser,
8285 bool template_keyword_p,
8286 bool check_dependency_p,
8287 bool is_declaration)
8288 {
8289 tree template;
8290 tree arguments;
8291 tree template_id;
8292 cp_token_position start_of_id = 0;
8293 tree access_check = NULL_TREE;
8294 cp_token *next_token, *next_token_2;
8295 bool is_identifier;
8296
8297 /* If the next token corresponds to a template-id, there is no need
8298 to reparse it. */
8299 next_token = cp_lexer_peek_token (parser->lexer);
8300 if (next_token->type == CPP_TEMPLATE_ID)
8301 {
8302 tree value;
8303 tree check;
8304
8305 /* Get the stored value. */
8306 value = cp_lexer_consume_token (parser->lexer)->value;
8307 /* Perform any access checks that were deferred. */
8308 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
8309 perform_or_defer_access_check (TREE_PURPOSE (check),
8310 TREE_VALUE (check));
8311 /* Return the stored value. */
8312 return TREE_VALUE (value);
8313 }
8314
8315 /* Avoid performing name lookup if there is no possibility of
8316 finding a template-id. */
8317 if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR)
8318 || (next_token->type == CPP_NAME
8319 && !cp_parser_nth_token_starts_template_argument_list_p
8320 (parser, 2)))
8321 {
8322 cp_parser_error (parser, "expected template-id");
8323 return error_mark_node;
8324 }
8325
8326 /* Remember where the template-id starts. */
8327 if (cp_parser_parsing_tentatively (parser)
8328 && !cp_parser_committed_to_tentative_parse (parser))
8329 start_of_id = cp_lexer_token_position (parser->lexer, false);
8330
8331 push_deferring_access_checks (dk_deferred);
8332
8333 /* Parse the template-name. */
8334 is_identifier = false;
8335 template = cp_parser_template_name (parser, template_keyword_p,
8336 check_dependency_p,
8337 is_declaration,
8338 &is_identifier);
8339 if (template == error_mark_node || is_identifier)
8340 {
8341 pop_deferring_access_checks ();
8342 return template;
8343 }
8344
8345 /* If we find the sequence `[:' after a template-name, it's probably
8346 a digraph-typo for `< ::'. Substitute the tokens and check if we can
8347 parse correctly the argument list. */
8348 next_token = cp_lexer_peek_token (parser->lexer);
8349 next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2);
8350 if (next_token->type == CPP_OPEN_SQUARE
8351 && next_token->flags & DIGRAPH
8352 && next_token_2->type == CPP_COLON
8353 && !(next_token_2->flags & PREV_WHITE))
8354 {
8355 cp_parser_parse_tentatively (parser);
8356 /* Change `:' into `::'. */
8357 next_token_2->type = CPP_SCOPE;
8358 /* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is
8359 CPP_LESS. */
8360 cp_lexer_consume_token (parser->lexer);
8361 /* Parse the arguments. */
8362 arguments = cp_parser_enclosed_template_argument_list (parser);
8363 if (!cp_parser_parse_definitely (parser))
8364 {
8365 /* If we couldn't parse an argument list, then we revert our changes
8366 and return simply an error. Maybe this is not a template-id
8367 after all. */
8368 next_token_2->type = CPP_COLON;
8369 cp_parser_error (parser, "expected %<<%>");
8370 pop_deferring_access_checks ();
8371 return error_mark_node;
8372 }
8373 /* Otherwise, emit an error about the invalid digraph, but continue
8374 parsing because we got our argument list. */
8375 pedwarn ("%<<::%> cannot begin a template-argument list");
8376 inform ("%<<:%> is an alternate spelling for %<[%>. Insert whitespace "
8377 "between %<<%> and %<::%>");
8378 if (!flag_permissive)
8379 {
8380 static bool hint;
8381 if (!hint)
8382 {
8383 inform ("(if you use -fpermissive G++ will accept your code)");
8384 hint = true;
8385 }
8386 }
8387 }
8388 else
8389 {
8390 /* Look for the `<' that starts the template-argument-list. */
8391 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
8392 {
8393 pop_deferring_access_checks ();
8394 return error_mark_node;
8395 }
8396 /* Parse the arguments. */
8397 arguments = cp_parser_enclosed_template_argument_list (parser);
8398 }
8399
8400 /* Build a representation of the specialization. */
8401 if (TREE_CODE (template) == IDENTIFIER_NODE)
8402 template_id = build_min_nt (TEMPLATE_ID_EXPR, template, arguments);
8403 else if (DECL_CLASS_TEMPLATE_P (template)
8404 || DECL_TEMPLATE_TEMPLATE_PARM_P (template))
8405 template_id
8406 = finish_template_type (template, arguments,
8407 cp_lexer_next_token_is (parser->lexer,
8408 CPP_SCOPE));
8409 else
8410 {
8411 /* If it's not a class-template or a template-template, it should be
8412 a function-template. */
8413 gcc_assert ((DECL_FUNCTION_TEMPLATE_P (template)
8414 || TREE_CODE (template) == OVERLOAD
8415 || BASELINK_P (template)));
8416
8417 template_id = lookup_template_function (template, arguments);
8418 }
8419
8420 /* Retrieve any deferred checks. Do not pop this access checks yet
8421 so the memory will not be reclaimed during token replacing below. */
8422 access_check = get_deferred_access_checks ();
8423
8424 /* If parsing tentatively, replace the sequence of tokens that makes
8425 up the template-id with a CPP_TEMPLATE_ID token. That way,
8426 should we re-parse the token stream, we will not have to repeat
8427 the effort required to do the parse, nor will we issue duplicate
8428 error messages about problems during instantiation of the
8429 template. */
8430 if (start_of_id)
8431 {
8432 cp_token *token = cp_lexer_token_at (parser->lexer, start_of_id);
8433
8434 /* Reset the contents of the START_OF_ID token. */
8435 token->type = CPP_TEMPLATE_ID;
8436 token->value = build_tree_list (access_check, template_id);
8437 token->keyword = RID_MAX;
8438
8439 /* Purge all subsequent tokens. */
8440 cp_lexer_purge_tokens_after (parser->lexer, start_of_id);
8441 }
8442
8443 pop_deferring_access_checks ();
8444 return template_id;
8445 }
8446
8447 /* Parse a template-name.
8448
8449 template-name:
8450 identifier
8451
8452 The standard should actually say:
8453
8454 template-name:
8455 identifier
8456 operator-function-id
8457
8458 A defect report has been filed about this issue.
8459
8460 A conversion-function-id cannot be a template name because they cannot
8461 be part of a template-id. In fact, looking at this code:
8462
8463 a.operator K<int>()
8464
8465 the conversion-function-id is "operator K<int>", and K<int> is a type-id.
8466 It is impossible to call a templated conversion-function-id with an
8467 explicit argument list, since the only allowed template parameter is
8468 the type to which it is converting.
8469
8470 If TEMPLATE_KEYWORD_P is true, then we have just seen the
8471 `template' keyword, in a construction like:
8472
8473 T::template f<3>()
8474
8475 In that case `f' is taken to be a template-name, even though there
8476 is no way of knowing for sure.
8477
8478 Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
8479 name refers to a set of overloaded functions, at least one of which
8480 is a template, or an IDENTIFIER_NODE with the name of the template,
8481 if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE,
8482 names are looked up inside uninstantiated templates. */
8483
8484 static tree
8485 cp_parser_template_name (cp_parser* parser,
8486 bool template_keyword_p,
8487 bool check_dependency_p,
8488 bool is_declaration,
8489 bool *is_identifier)
8490 {
8491 tree identifier;
8492 tree decl;
8493 tree fns;
8494
8495 /* If the next token is `operator', then we have either an
8496 operator-function-id or a conversion-function-id. */
8497 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
8498 {
8499 /* We don't know whether we're looking at an
8500 operator-function-id or a conversion-function-id. */
8501 cp_parser_parse_tentatively (parser);
8502 /* Try an operator-function-id. */
8503 identifier = cp_parser_operator_function_id (parser);
8504 /* If that didn't work, try a conversion-function-id. */
8505 if (!cp_parser_parse_definitely (parser))
8506 {
8507 cp_parser_error (parser, "expected template-name");
8508 return error_mark_node;
8509 }
8510 }
8511 /* Look for the identifier. */
8512 else
8513 identifier = cp_parser_identifier (parser);
8514
8515 /* If we didn't find an identifier, we don't have a template-id. */
8516 if (identifier == error_mark_node)
8517 return error_mark_node;
8518
8519 /* If the name immediately followed the `template' keyword, then it
8520 is a template-name. However, if the next token is not `<', then
8521 we do not treat it as a template-name, since it is not being used
8522 as part of a template-id. This enables us to handle constructs
8523 like:
8524
8525 template <typename T> struct S { S(); };
8526 template <typename T> S<T>::S();
8527
8528 correctly. We would treat `S' as a template -- if it were `S<T>'
8529 -- but we do not if there is no `<'. */
8530
8531 if (processing_template_decl
8532 && cp_parser_nth_token_starts_template_argument_list_p (parser, 1))
8533 {
8534 /* In a declaration, in a dependent context, we pretend that the
8535 "template" keyword was present in order to improve error
8536 recovery. For example, given:
8537
8538 template <typename T> void f(T::X<int>);
8539
8540 we want to treat "X<int>" as a template-id. */
8541 if (is_declaration
8542 && !template_keyword_p
8543 && parser->scope && TYPE_P (parser->scope)
8544 && check_dependency_p
8545 && dependent_type_p (parser->scope)
8546 /* Do not do this for dtors (or ctors), since they never
8547 need the template keyword before their name. */
8548 && !constructor_name_p (identifier, parser->scope))
8549 {
8550 cp_token_position start = 0;
8551
8552 /* Explain what went wrong. */
8553 error ("non-template %qD used as template", identifier);
8554 inform ("use %<%T::template %D%> to indicate that it is a template",
8555 parser->scope, identifier);
8556 /* If parsing tentatively, find the location of the "<"
8557 token. */
8558 if (cp_parser_parsing_tentatively (parser)
8559 && !cp_parser_committed_to_tentative_parse (parser))
8560 {
8561 cp_parser_simulate_error (parser);
8562 start = cp_lexer_token_position (parser->lexer, true);
8563 }
8564 /* Parse the template arguments so that we can issue error
8565 messages about them. */
8566 cp_lexer_consume_token (parser->lexer);
8567 cp_parser_enclosed_template_argument_list (parser);
8568 /* Skip tokens until we find a good place from which to
8569 continue parsing. */
8570 cp_parser_skip_to_closing_parenthesis (parser,
8571 /*recovering=*/true,
8572 /*or_comma=*/true,
8573 /*consume_paren=*/false);
8574 /* If parsing tentatively, permanently remove the
8575 template argument list. That will prevent duplicate
8576 error messages from being issued about the missing
8577 "template" keyword. */
8578 if (start)
8579 cp_lexer_purge_tokens_after (parser->lexer, start);
8580 if (is_identifier)
8581 *is_identifier = true;
8582 return identifier;
8583 }
8584
8585 /* If the "template" keyword is present, then there is generally
8586 no point in doing name-lookup, so we just return IDENTIFIER.
8587 But, if the qualifying scope is non-dependent then we can
8588 (and must) do name-lookup normally. */
8589 if (template_keyword_p
8590 && (!parser->scope
8591 || (TYPE_P (parser->scope)
8592 && dependent_type_p (parser->scope))))
8593 return identifier;
8594 }
8595
8596 /* Look up the name. */
8597 decl = cp_parser_lookup_name (parser, identifier,
8598 /*is_type=*/false,
8599 /*is_template=*/false,
8600 /*is_namespace=*/false,
8601 check_dependency_p,
8602 /*ambiguous_p=*/NULL);
8603 decl = maybe_get_template_decl_from_type_decl (decl);
8604
8605 /* If DECL is a template, then the name was a template-name. */
8606 if (TREE_CODE (decl) == TEMPLATE_DECL)
8607 ;
8608 else
8609 {
8610 /* The standard does not explicitly indicate whether a name that
8611 names a set of overloaded declarations, some of which are
8612 templates, is a template-name. However, such a name should
8613 be a template-name; otherwise, there is no way to form a
8614 template-id for the overloaded templates. */
8615 fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl;
8616 if (TREE_CODE (fns) == OVERLOAD)
8617 {
8618 tree fn;
8619
8620 for (fn = fns; fn; fn = OVL_NEXT (fn))
8621 if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL)
8622 break;
8623 }
8624 else
8625 {
8626 /* Otherwise, the name does not name a template. */
8627 cp_parser_error (parser, "expected template-name");
8628 return error_mark_node;
8629 }
8630 }
8631
8632 /* If DECL is dependent, and refers to a function, then just return
8633 its name; we will look it up again during template instantiation. */
8634 if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl))
8635 {
8636 tree scope = CP_DECL_CONTEXT (get_first_fn (decl));
8637 if (TYPE_P (scope) && dependent_type_p (scope))
8638 return identifier;
8639 }
8640
8641 return decl;
8642 }
8643
8644 /* Parse a template-argument-list.
8645
8646 template-argument-list:
8647 template-argument
8648 template-argument-list , template-argument
8649
8650 Returns a TREE_VEC containing the arguments. */
8651
8652 static tree
8653 cp_parser_template_argument_list (cp_parser* parser)
8654 {
8655 tree fixed_args[10];
8656 unsigned n_args = 0;
8657 unsigned alloced = 10;
8658 tree *arg_ary = fixed_args;
8659 tree vec;
8660 bool saved_in_template_argument_list_p;
8661
8662 saved_in_template_argument_list_p = parser->in_template_argument_list_p;
8663 parser->in_template_argument_list_p = true;
8664 do
8665 {
8666 tree argument;
8667
8668 if (n_args)
8669 /* Consume the comma. */
8670 cp_lexer_consume_token (parser->lexer);
8671
8672 /* Parse the template-argument. */
8673 argument = cp_parser_template_argument (parser);
8674 if (n_args == alloced)
8675 {
8676 alloced *= 2;
8677
8678 if (arg_ary == fixed_args)
8679 {
8680 arg_ary = xmalloc (sizeof (tree) * alloced);
8681 memcpy (arg_ary, fixed_args, sizeof (tree) * n_args);
8682 }
8683 else
8684 arg_ary = xrealloc (arg_ary, sizeof (tree) * alloced);
8685 }
8686 arg_ary[n_args++] = argument;
8687 }
8688 while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
8689
8690 vec = make_tree_vec (n_args);
8691
8692 while (n_args--)
8693 TREE_VEC_ELT (vec, n_args) = arg_ary[n_args];
8694
8695 if (arg_ary != fixed_args)
8696 free (arg_ary);
8697 parser->in_template_argument_list_p = saved_in_template_argument_list_p;
8698 return vec;
8699 }
8700
8701 /* Parse a template-argument.
8702
8703 template-argument:
8704 assignment-expression
8705 type-id
8706 id-expression
8707
8708 The representation is that of an assignment-expression, type-id, or
8709 id-expression -- except that the qualified id-expression is
8710 evaluated, so that the value returned is either a DECL or an
8711 OVERLOAD.
8712
8713 Although the standard says "assignment-expression", it forbids
8714 throw-expressions or assignments in the template argument.
8715 Therefore, we use "conditional-expression" instead. */
8716
8717 static tree
8718 cp_parser_template_argument (cp_parser* parser)
8719 {
8720 tree argument;
8721 bool template_p;
8722 bool address_p;
8723 bool maybe_type_id = false;
8724 cp_token *token;
8725 cp_id_kind idk;
8726 tree qualifying_class;
8727
8728 /* There's really no way to know what we're looking at, so we just
8729 try each alternative in order.
8730
8731 [temp.arg]
8732
8733 In a template-argument, an ambiguity between a type-id and an
8734 expression is resolved to a type-id, regardless of the form of
8735 the corresponding template-parameter.
8736
8737 Therefore, we try a type-id first. */
8738 cp_parser_parse_tentatively (parser);
8739 argument = cp_parser_type_id (parser);
8740 /* If there was no error parsing the type-id but the next token is a '>>',
8741 we probably found a typo for '> >'. But there are type-id which are
8742 also valid expressions. For instance:
8743
8744 struct X { int operator >> (int); };
8745 template <int V> struct Foo {};
8746 Foo<X () >> 5> r;
8747
8748 Here 'X()' is a valid type-id of a function type, but the user just
8749 wanted to write the expression "X() >> 5". Thus, we remember that we
8750 found a valid type-id, but we still try to parse the argument as an
8751 expression to see what happens. */
8752 if (!cp_parser_error_occurred (parser)
8753 && cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
8754 {
8755 maybe_type_id = true;
8756 cp_parser_abort_tentative_parse (parser);
8757 }
8758 else
8759 {
8760 /* If the next token isn't a `,' or a `>', then this argument wasn't
8761 really finished. This means that the argument is not a valid
8762 type-id. */
8763 if (!cp_parser_next_token_ends_template_argument_p (parser))
8764 cp_parser_error (parser, "expected template-argument");
8765 /* If that worked, we're done. */
8766 if (cp_parser_parse_definitely (parser))
8767 return argument;
8768 }
8769 /* We're still not sure what the argument will be. */
8770 cp_parser_parse_tentatively (parser);
8771 /* Try a template. */
8772 argument = cp_parser_id_expression (parser,
8773 /*template_keyword_p=*/false,
8774 /*check_dependency_p=*/true,
8775 &template_p,
8776 /*declarator_p=*/false);
8777 /* If the next token isn't a `,' or a `>', then this argument wasn't
8778 really finished. */
8779 if (!cp_parser_next_token_ends_template_argument_p (parser))
8780 cp_parser_error (parser, "expected template-argument");
8781 if (!cp_parser_error_occurred (parser))
8782 {
8783 /* Figure out what is being referred to. If the id-expression
8784 was for a class template specialization, then we will have a
8785 TYPE_DECL at this point. There is no need to do name lookup
8786 at this point in that case. */
8787 if (TREE_CODE (argument) != TYPE_DECL)
8788 argument = cp_parser_lookup_name (parser, argument,
8789 /*is_type=*/false,
8790 /*is_template=*/template_p,
8791 /*is_namespace=*/false,
8792 /*check_dependency=*/true,
8793 /*ambiguous_p=*/NULL);
8794 if (TREE_CODE (argument) != TEMPLATE_DECL
8795 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
8796 cp_parser_error (parser, "expected template-name");
8797 }
8798 if (cp_parser_parse_definitely (parser))
8799 return argument;
8800 /* It must be a non-type argument. There permitted cases are given
8801 in [temp.arg.nontype]:
8802
8803 -- an integral constant-expression of integral or enumeration
8804 type; or
8805
8806 -- the name of a non-type template-parameter; or
8807
8808 -- the name of an object or function with external linkage...
8809
8810 -- the address of an object or function with external linkage...
8811
8812 -- a pointer to member... */
8813 /* Look for a non-type template parameter. */
8814 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8815 {
8816 cp_parser_parse_tentatively (parser);
8817 argument = cp_parser_primary_expression (parser,
8818 &idk,
8819 &qualifying_class);
8820 if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX
8821 || !cp_parser_next_token_ends_template_argument_p (parser))
8822 cp_parser_simulate_error (parser);
8823 if (cp_parser_parse_definitely (parser))
8824 return argument;
8825 }
8826 /* If the next token is "&", the argument must be the address of an
8827 object or function with external linkage. */
8828 address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND);
8829 if (address_p)
8830 cp_lexer_consume_token (parser->lexer);
8831 /* See if we might have an id-expression. */
8832 token = cp_lexer_peek_token (parser->lexer);
8833 if (token->type == CPP_NAME
8834 || token->keyword == RID_OPERATOR
8835 || token->type == CPP_SCOPE
8836 || token->type == CPP_TEMPLATE_ID
8837 || token->type == CPP_NESTED_NAME_SPECIFIER)
8838 {
8839 cp_parser_parse_tentatively (parser);
8840 argument = cp_parser_primary_expression (parser,
8841 &idk,
8842 &qualifying_class);
8843 if (cp_parser_error_occurred (parser)
8844 || !cp_parser_next_token_ends_template_argument_p (parser))
8845 cp_parser_abort_tentative_parse (parser);
8846 else
8847 {
8848 if (qualifying_class)
8849 argument = finish_qualified_id_expr (qualifying_class,
8850 argument,
8851 /*done=*/true,
8852 address_p);
8853 if (TREE_CODE (argument) == VAR_DECL)
8854 {
8855 /* A variable without external linkage might still be a
8856 valid constant-expression, so no error is issued here
8857 if the external-linkage check fails. */
8858 if (!DECL_EXTERNAL_LINKAGE_P (argument))
8859 cp_parser_simulate_error (parser);
8860 }
8861 else if (is_overloaded_fn (argument))
8862 /* All overloaded functions are allowed; if the external
8863 linkage test does not pass, an error will be issued
8864 later. */
8865 ;
8866 else if (address_p
8867 && (TREE_CODE (argument) == OFFSET_REF
8868 || TREE_CODE (argument) == SCOPE_REF))
8869 /* A pointer-to-member. */
8870 ;
8871 else
8872 cp_parser_simulate_error (parser);
8873
8874 if (cp_parser_parse_definitely (parser))
8875 {
8876 if (address_p)
8877 argument = build_x_unary_op (ADDR_EXPR, argument);
8878 return argument;
8879 }
8880 }
8881 }
8882 /* If the argument started with "&", there are no other valid
8883 alternatives at this point. */
8884 if (address_p)
8885 {
8886 cp_parser_error (parser, "invalid non-type template argument");
8887 return error_mark_node;
8888 }
8889 /* If the argument wasn't successfully parsed as a type-id followed
8890 by '>>', the argument can only be a constant expression now.
8891 Otherwise, we try parsing the constant-expression tentatively,
8892 because the argument could really be a type-id. */
8893 if (maybe_type_id)
8894 cp_parser_parse_tentatively (parser);
8895 argument = cp_parser_constant_expression (parser,
8896 /*allow_non_constant_p=*/false,
8897 /*non_constant_p=*/NULL);
8898 argument = fold_non_dependent_expr (argument);
8899 if (!maybe_type_id)
8900 return argument;
8901 if (!cp_parser_next_token_ends_template_argument_p (parser))
8902 cp_parser_error (parser, "expected template-argument");
8903 if (cp_parser_parse_definitely (parser))
8904 return argument;
8905 /* We did our best to parse the argument as a non type-id, but that
8906 was the only alternative that matched (albeit with a '>' after
8907 it). We can assume it's just a typo from the user, and a
8908 diagnostic will then be issued. */
8909 return cp_parser_type_id (parser);
8910 }
8911
8912 /* Parse an explicit-instantiation.
8913
8914 explicit-instantiation:
8915 template declaration
8916
8917 Although the standard says `declaration', what it really means is:
8918
8919 explicit-instantiation:
8920 template decl-specifier-seq [opt] declarator [opt] ;
8921
8922 Things like `template int S<int>::i = 5, int S<double>::j;' are not
8923 supposed to be allowed. A defect report has been filed about this
8924 issue.
8925
8926 GNU Extension:
8927
8928 explicit-instantiation:
8929 storage-class-specifier template
8930 decl-specifier-seq [opt] declarator [opt] ;
8931 function-specifier template
8932 decl-specifier-seq [opt] declarator [opt] ; */
8933
8934 static void
8935 cp_parser_explicit_instantiation (cp_parser* parser)
8936 {
8937 int declares_class_or_enum;
8938 cp_decl_specifier_seq decl_specifiers;
8939 tree extension_specifier = NULL_TREE;
8940
8941 /* Look for an (optional) storage-class-specifier or
8942 function-specifier. */
8943 if (cp_parser_allow_gnu_extensions_p (parser))
8944 {
8945 extension_specifier
8946 = cp_parser_storage_class_specifier_opt (parser);
8947 if (!extension_specifier)
8948 extension_specifier
8949 = cp_parser_function_specifier_opt (parser,
8950 /*decl_specs=*/NULL);
8951 }
8952
8953 /* Look for the `template' keyword. */
8954 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
8955 /* Let the front end know that we are processing an explicit
8956 instantiation. */
8957 begin_explicit_instantiation ();
8958 /* [temp.explicit] says that we are supposed to ignore access
8959 control while processing explicit instantiation directives. */
8960 push_deferring_access_checks (dk_no_check);
8961 /* Parse a decl-specifier-seq. */
8962 cp_parser_decl_specifier_seq (parser,
8963 CP_PARSER_FLAGS_OPTIONAL,
8964 &decl_specifiers,
8965 &declares_class_or_enum);
8966 /* If there was exactly one decl-specifier, and it declared a class,
8967 and there's no declarator, then we have an explicit type
8968 instantiation. */
8969 if (declares_class_or_enum && cp_parser_declares_only_class_p (parser))
8970 {
8971 tree type;
8972
8973 type = check_tag_decl (&decl_specifiers);
8974 /* Turn access control back on for names used during
8975 template instantiation. */
8976 pop_deferring_access_checks ();
8977 if (type)
8978 do_type_instantiation (type, extension_specifier, /*complain=*/1);
8979 }
8980 else
8981 {
8982 cp_declarator *declarator;
8983 tree decl;
8984
8985 /* Parse the declarator. */
8986 declarator
8987 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
8988 /*ctor_dtor_or_conv_p=*/NULL,
8989 /*parenthesized_p=*/NULL,
8990 /*member_p=*/false);
8991 cp_parser_check_for_definition_in_return_type (declarator,
8992 declares_class_or_enum);
8993 if (declarator != cp_error_declarator)
8994 {
8995 decl = grokdeclarator (declarator, &decl_specifiers,
8996 NORMAL, 0, NULL);
8997 /* Turn access control back on for names used during
8998 template instantiation. */
8999 pop_deferring_access_checks ();
9000 /* Do the explicit instantiation. */
9001 do_decl_instantiation (decl, extension_specifier);
9002 }
9003 else
9004 {
9005 pop_deferring_access_checks ();
9006 /* Skip the body of the explicit instantiation. */
9007 cp_parser_skip_to_end_of_statement (parser);
9008 }
9009 }
9010 /* We're done with the instantiation. */
9011 end_explicit_instantiation ();
9012
9013 cp_parser_consume_semicolon_at_end_of_statement (parser);
9014 }
9015
9016 /* Parse an explicit-specialization.
9017
9018 explicit-specialization:
9019 template < > declaration
9020
9021 Although the standard says `declaration', what it really means is:
9022
9023 explicit-specialization:
9024 template <> decl-specifier [opt] init-declarator [opt] ;
9025 template <> function-definition
9026 template <> explicit-specialization
9027 template <> template-declaration */
9028
9029 static void
9030 cp_parser_explicit_specialization (cp_parser* parser)
9031 {
9032 /* Look for the `template' keyword. */
9033 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
9034 /* Look for the `<'. */
9035 cp_parser_require (parser, CPP_LESS, "`<'");
9036 /* Look for the `>'. */
9037 cp_parser_require (parser, CPP_GREATER, "`>'");
9038 /* We have processed another parameter list. */
9039 ++parser->num_template_parameter_lists;
9040 /* Let the front end know that we are beginning a specialization. */
9041 begin_specialization ();
9042
9043 /* If the next keyword is `template', we need to figure out whether
9044 or not we're looking a template-declaration. */
9045 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
9046 {
9047 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
9048 && cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER)
9049 cp_parser_template_declaration_after_export (parser,
9050 /*member_p=*/false);
9051 else
9052 cp_parser_explicit_specialization (parser);
9053 }
9054 else
9055 /* Parse the dependent declaration. */
9056 cp_parser_single_declaration (parser,
9057 /*member_p=*/false,
9058 /*friend_p=*/NULL);
9059
9060 /* We're done with the specialization. */
9061 end_specialization ();
9062 /* We're done with this parameter list. */
9063 --parser->num_template_parameter_lists;
9064 }
9065
9066 /* Parse a type-specifier.
9067
9068 type-specifier:
9069 simple-type-specifier
9070 class-specifier
9071 enum-specifier
9072 elaborated-type-specifier
9073 cv-qualifier
9074
9075 GNU Extension:
9076
9077 type-specifier:
9078 __complex__
9079
9080 Returns a representation of the type-specifier. For a
9081 class-specifier, enum-specifier, or elaborated-type-specifier, a
9082 TREE_TYPE is returned; otherwise, a TYPE_DECL is returned.
9083
9084 The parser flags FLAGS is used to control type-specifier parsing.
9085
9086 If IS_DECLARATION is TRUE, then this type-specifier is appearing
9087 in a decl-specifier-seq.
9088
9089 If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a
9090 class-specifier, enum-specifier, or elaborated-type-specifier, then
9091 *DECLARES_CLASS_OR_ENUM is set to a nonzero value. The value is 1
9092 if a type is declared; 2 if it is defined. Otherwise, it is set to
9093 zero.
9094
9095 If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a
9096 cv-qualifier, then IS_CV_QUALIFIER is set to TRUE. Otherwise, it
9097 is set to FALSE. */
9098
9099 static tree
9100 cp_parser_type_specifier (cp_parser* parser,
9101 cp_parser_flags flags,
9102 cp_decl_specifier_seq *decl_specs,
9103 bool is_declaration,
9104 int* declares_class_or_enum,
9105 bool* is_cv_qualifier)
9106 {
9107 tree type_spec = NULL_TREE;
9108 cp_token *token;
9109 enum rid keyword;
9110 cp_decl_spec ds = ds_last;
9111
9112 /* Assume this type-specifier does not declare a new type. */
9113 if (declares_class_or_enum)
9114 *declares_class_or_enum = 0;
9115 /* And that it does not specify a cv-qualifier. */
9116 if (is_cv_qualifier)
9117 *is_cv_qualifier = false;
9118 /* Peek at the next token. */
9119 token = cp_lexer_peek_token (parser->lexer);
9120
9121 /* If we're looking at a keyword, we can use that to guide the
9122 production we choose. */
9123 keyword = token->keyword;
9124 switch (keyword)
9125 {
9126 case RID_ENUM:
9127 /* 'enum' [identifier] '{' introduces an enum-specifier;
9128 'enum' <anything else> introduces an elaborated-type-specifier. */
9129 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_OPEN_BRACE
9130 || (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_NAME
9131 && cp_lexer_peek_nth_token (parser->lexer, 3)->type
9132 == CPP_OPEN_BRACE))
9133 {
9134 type_spec = cp_parser_enum_specifier (parser);
9135 if (declares_class_or_enum)
9136 *declares_class_or_enum = 2;
9137 if (decl_specs)
9138 cp_parser_set_decl_spec_type (decl_specs,
9139 type_spec,
9140 /*user_defined_p=*/true);
9141 return type_spec;
9142 }
9143 else
9144 goto elaborated_type_specifier;
9145
9146 /* Any of these indicate either a class-specifier, or an
9147 elaborated-type-specifier. */
9148 case RID_CLASS:
9149 case RID_STRUCT:
9150 case RID_UNION:
9151 /* Parse tentatively so that we can back up if we don't find a
9152 class-specifier. */
9153 cp_parser_parse_tentatively (parser);
9154 /* Look for the class-specifier. */
9155 type_spec = cp_parser_class_specifier (parser);
9156 /* If that worked, we're done. */
9157 if (cp_parser_parse_definitely (parser))
9158 {
9159 if (declares_class_or_enum)
9160 *declares_class_or_enum = 2;
9161 if (decl_specs)
9162 cp_parser_set_decl_spec_type (decl_specs,
9163 type_spec,
9164 /*user_defined_p=*/true);
9165 return type_spec;
9166 }
9167
9168 /* Fall through. */
9169 elaborated_type_specifier:
9170 /* We're declaring (not defining) a class or enum. */
9171 if (declares_class_or_enum)
9172 *declares_class_or_enum = 1;
9173
9174 /* Fall through. */
9175 case RID_TYPENAME:
9176 /* Look for an elaborated-type-specifier. */
9177 type_spec
9178 = (cp_parser_elaborated_type_specifier
9179 (parser,
9180 decl_specs && decl_specs->specs[(int) ds_friend],
9181 is_declaration));
9182 if (decl_specs)
9183 cp_parser_set_decl_spec_type (decl_specs,
9184 type_spec,
9185 /*user_defined_p=*/true);
9186 return type_spec;
9187
9188 case RID_CONST:
9189 ds = ds_const;
9190 if (is_cv_qualifier)
9191 *is_cv_qualifier = true;
9192 break;
9193
9194 case RID_VOLATILE:
9195 ds = ds_volatile;
9196 if (is_cv_qualifier)
9197 *is_cv_qualifier = true;
9198 break;
9199
9200 case RID_RESTRICT:
9201 ds = ds_restrict;
9202 if (is_cv_qualifier)
9203 *is_cv_qualifier = true;
9204 break;
9205
9206 case RID_COMPLEX:
9207 /* The `__complex__' keyword is a GNU extension. */
9208 ds = ds_complex;
9209 break;
9210
9211 default:
9212 break;
9213 }
9214
9215 /* Handle simple keywords. */
9216 if (ds != ds_last)
9217 {
9218 if (decl_specs)
9219 {
9220 ++decl_specs->specs[(int)ds];
9221 decl_specs->any_specifiers_p = true;
9222 }
9223 return cp_lexer_consume_token (parser->lexer)->value;
9224 }
9225
9226 /* If we do not already have a type-specifier, assume we are looking
9227 at a simple-type-specifier. */
9228 type_spec = cp_parser_simple_type_specifier (parser,
9229 decl_specs,
9230 flags);
9231
9232 /* If we didn't find a type-specifier, and a type-specifier was not
9233 optional in this context, issue an error message. */
9234 if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9235 {
9236 cp_parser_error (parser, "expected type specifier");
9237 return error_mark_node;
9238 }
9239
9240 return type_spec;
9241 }
9242
9243 /* Parse a simple-type-specifier.
9244
9245 simple-type-specifier:
9246 :: [opt] nested-name-specifier [opt] type-name
9247 :: [opt] nested-name-specifier template template-id
9248 char
9249 wchar_t
9250 bool
9251 short
9252 int
9253 long
9254 signed
9255 unsigned
9256 float
9257 double
9258 void
9259
9260 GNU Extension:
9261
9262 simple-type-specifier:
9263 __typeof__ unary-expression
9264 __typeof__ ( type-id )
9265
9266 Returns the indicated TYPE_DECL. If DECL_SPECS is not NULL, it is
9267 appropriately updated. */
9268
9269 static tree
9270 cp_parser_simple_type_specifier (cp_parser* parser,
9271 cp_decl_specifier_seq *decl_specs,
9272 cp_parser_flags flags)
9273 {
9274 tree type = NULL_TREE;
9275 cp_token *token;
9276
9277 /* Peek at the next token. */
9278 token = cp_lexer_peek_token (parser->lexer);
9279
9280 /* If we're looking at a keyword, things are easy. */
9281 switch (token->keyword)
9282 {
9283 case RID_CHAR:
9284 if (decl_specs)
9285 decl_specs->explicit_char_p = true;
9286 type = char_type_node;
9287 break;
9288 case RID_WCHAR:
9289 type = wchar_type_node;
9290 break;
9291 case RID_BOOL:
9292 type = boolean_type_node;
9293 break;
9294 case RID_SHORT:
9295 if (decl_specs)
9296 ++decl_specs->specs[(int) ds_short];
9297 type = short_integer_type_node;
9298 break;
9299 case RID_INT:
9300 if (decl_specs)
9301 decl_specs->explicit_int_p = true;
9302 type = integer_type_node;
9303 break;
9304 case RID_LONG:
9305 if (decl_specs)
9306 ++decl_specs->specs[(int) ds_long];
9307 type = long_integer_type_node;
9308 break;
9309 case RID_SIGNED:
9310 if (decl_specs)
9311 ++decl_specs->specs[(int) ds_signed];
9312 type = integer_type_node;
9313 break;
9314 case RID_UNSIGNED:
9315 if (decl_specs)
9316 ++decl_specs->specs[(int) ds_unsigned];
9317 type = unsigned_type_node;
9318 break;
9319 case RID_FLOAT:
9320 type = float_type_node;
9321 break;
9322 case RID_DOUBLE:
9323 type = double_type_node;
9324 break;
9325 case RID_VOID:
9326 type = void_type_node;
9327 break;
9328
9329 case RID_TYPEOF:
9330 /* Consume the `typeof' token. */
9331 cp_lexer_consume_token (parser->lexer);
9332 /* Parse the operand to `typeof'. */
9333 type = cp_parser_sizeof_operand (parser, RID_TYPEOF);
9334 /* If it is not already a TYPE, take its type. */
9335 if (!TYPE_P (type))
9336 type = finish_typeof (type);
9337
9338 if (decl_specs)
9339 cp_parser_set_decl_spec_type (decl_specs, type,
9340 /*user_defined_p=*/true);
9341
9342 return type;
9343
9344 default:
9345 break;
9346 }
9347
9348 /* If the type-specifier was for a built-in type, we're done. */
9349 if (type)
9350 {
9351 tree id;
9352
9353 /* Record the type. */
9354 if (decl_specs
9355 && (token->keyword != RID_SIGNED
9356 && token->keyword != RID_UNSIGNED
9357 && token->keyword != RID_SHORT
9358 && token->keyword != RID_LONG))
9359 cp_parser_set_decl_spec_type (decl_specs,
9360 type,
9361 /*user_defined=*/false);
9362 if (decl_specs)
9363 decl_specs->any_specifiers_p = true;
9364
9365 /* Consume the token. */
9366 id = cp_lexer_consume_token (parser->lexer)->value;
9367
9368 /* There is no valid C++ program where a non-template type is
9369 followed by a "<". That usually indicates that the user thought
9370 that the type was a template. */
9371 cp_parser_check_for_invalid_template_id (parser, type);
9372
9373 return TYPE_NAME (type);
9374 }
9375
9376 /* The type-specifier must be a user-defined type. */
9377 if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES))
9378 {
9379 bool qualified_p;
9380 bool global_p;
9381
9382 /* Don't gobble tokens or issue error messages if this is an
9383 optional type-specifier. */
9384 if (flags & CP_PARSER_FLAGS_OPTIONAL)
9385 cp_parser_parse_tentatively (parser);
9386
9387 /* Look for the optional `::' operator. */
9388 global_p
9389 = (cp_parser_global_scope_opt (parser,
9390 /*current_scope_valid_p=*/false)
9391 != NULL_TREE);
9392 /* Look for the nested-name specifier. */
9393 qualified_p
9394 = (cp_parser_nested_name_specifier_opt (parser,
9395 /*typename_keyword_p=*/false,
9396 /*check_dependency_p=*/true,
9397 /*type_p=*/false,
9398 /*is_declaration=*/false)
9399 != NULL_TREE);
9400 /* If we have seen a nested-name-specifier, and the next token
9401 is `template', then we are using the template-id production. */
9402 if (parser->scope
9403 && cp_parser_optional_template_keyword (parser))
9404 {
9405 /* Look for the template-id. */
9406 type = cp_parser_template_id (parser,
9407 /*template_keyword_p=*/true,
9408 /*check_dependency_p=*/true,
9409 /*is_declaration=*/false);
9410 /* If the template-id did not name a type, we are out of
9411 luck. */
9412 if (TREE_CODE (type) != TYPE_DECL)
9413 {
9414 cp_parser_error (parser, "expected template-id for type");
9415 type = NULL_TREE;
9416 }
9417 }
9418 /* Otherwise, look for a type-name. */
9419 else
9420 type = cp_parser_type_name (parser);
9421 /* Keep track of all name-lookups performed in class scopes. */
9422 if (type
9423 && !global_p
9424 && !qualified_p
9425 && TREE_CODE (type) == TYPE_DECL
9426 && TREE_CODE (DECL_NAME (type)) == IDENTIFIER_NODE)
9427 maybe_note_name_used_in_class (DECL_NAME (type), type);
9428 /* If it didn't work out, we don't have a TYPE. */
9429 if ((flags & CP_PARSER_FLAGS_OPTIONAL)
9430 && !cp_parser_parse_definitely (parser))
9431 type = NULL_TREE;
9432 if (type && decl_specs)
9433 cp_parser_set_decl_spec_type (decl_specs, type,
9434 /*user_defined=*/true);
9435 }
9436
9437 /* If we didn't get a type-name, issue an error message. */
9438 if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9439 {
9440 cp_parser_error (parser, "expected type-name");
9441 return error_mark_node;
9442 }
9443
9444 /* There is no valid C++ program where a non-template type is
9445 followed by a "<". That usually indicates that the user thought
9446 that the type was a template. */
9447 if (type && type != error_mark_node)
9448 cp_parser_check_for_invalid_template_id (parser, TREE_TYPE (type));
9449
9450 return type;
9451 }
9452
9453 /* Parse a type-name.
9454
9455 type-name:
9456 class-name
9457 enum-name
9458 typedef-name
9459
9460 enum-name:
9461 identifier
9462
9463 typedef-name:
9464 identifier
9465
9466 Returns a TYPE_DECL for the the type. */
9467
9468 static tree
9469 cp_parser_type_name (cp_parser* parser)
9470 {
9471 tree type_decl;
9472 tree identifier;
9473
9474 /* We can't know yet whether it is a class-name or not. */
9475 cp_parser_parse_tentatively (parser);
9476 /* Try a class-name. */
9477 type_decl = cp_parser_class_name (parser,
9478 /*typename_keyword_p=*/false,
9479 /*template_keyword_p=*/false,
9480 /*type_p=*/false,
9481 /*check_dependency_p=*/true,
9482 /*class_head_p=*/false,
9483 /*is_declaration=*/false);
9484 /* If it's not a class-name, keep looking. */
9485 if (!cp_parser_parse_definitely (parser))
9486 {
9487 /* It must be a typedef-name or an enum-name. */
9488 identifier = cp_parser_identifier (parser);
9489 if (identifier == error_mark_node)
9490 return error_mark_node;
9491
9492 /* Look up the type-name. */
9493 type_decl = cp_parser_lookup_name_simple (parser, identifier);
9494 /* Issue an error if we did not find a type-name. */
9495 if (TREE_CODE (type_decl) != TYPE_DECL)
9496 {
9497 if (!cp_parser_simulate_error (parser))
9498 cp_parser_name_lookup_error (parser, identifier, type_decl,
9499 "is not a type");
9500 type_decl = error_mark_node;
9501 }
9502 /* Remember that the name was used in the definition of the
9503 current class so that we can check later to see if the
9504 meaning would have been different after the class was
9505 entirely defined. */
9506 else if (type_decl != error_mark_node
9507 && !parser->scope)
9508 maybe_note_name_used_in_class (identifier, type_decl);
9509 }
9510
9511 return type_decl;
9512 }
9513
9514
9515 /* Parse an elaborated-type-specifier. Note that the grammar given
9516 here incorporates the resolution to DR68.
9517
9518 elaborated-type-specifier:
9519 class-key :: [opt] nested-name-specifier [opt] identifier
9520 class-key :: [opt] nested-name-specifier [opt] template [opt] template-id
9521 enum :: [opt] nested-name-specifier [opt] identifier
9522 typename :: [opt] nested-name-specifier identifier
9523 typename :: [opt] nested-name-specifier template [opt]
9524 template-id
9525
9526 GNU extension:
9527
9528 elaborated-type-specifier:
9529 class-key attributes :: [opt] nested-name-specifier [opt] identifier
9530 class-key attributes :: [opt] nested-name-specifier [opt]
9531 template [opt] template-id
9532 enum attributes :: [opt] nested-name-specifier [opt] identifier
9533
9534 If IS_FRIEND is TRUE, then this elaborated-type-specifier is being
9535 declared `friend'. If IS_DECLARATION is TRUE, then this
9536 elaborated-type-specifier appears in a decl-specifiers-seq, i.e.,
9537 something is being declared.
9538
9539 Returns the TYPE specified. */
9540
9541 static tree
9542 cp_parser_elaborated_type_specifier (cp_parser* parser,
9543 bool is_friend,
9544 bool is_declaration)
9545 {
9546 enum tag_types tag_type;
9547 tree identifier;
9548 tree type = NULL_TREE;
9549 tree attributes = NULL_TREE;
9550
9551 /* See if we're looking at the `enum' keyword. */
9552 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM))
9553 {
9554 /* Consume the `enum' token. */
9555 cp_lexer_consume_token (parser->lexer);
9556 /* Remember that it's an enumeration type. */
9557 tag_type = enum_type;
9558 /* Parse the attributes. */
9559 attributes = cp_parser_attributes_opt (parser);
9560 }
9561 /* Or, it might be `typename'. */
9562 else if (cp_lexer_next_token_is_keyword (parser->lexer,
9563 RID_TYPENAME))
9564 {
9565 /* Consume the `typename' token. */
9566 cp_lexer_consume_token (parser->lexer);
9567 /* Remember that it's a `typename' type. */
9568 tag_type = typename_type;
9569 /* The `typename' keyword is only allowed in templates. */
9570 if (!processing_template_decl)
9571 pedwarn ("using %<typename%> outside of template");
9572 }
9573 /* Otherwise it must be a class-key. */
9574 else
9575 {
9576 tag_type = cp_parser_class_key (parser);
9577 if (tag_type == none_type)
9578 return error_mark_node;
9579 /* Parse the attributes. */
9580 attributes = cp_parser_attributes_opt (parser);
9581 }
9582
9583 /* Look for the `::' operator. */
9584 cp_parser_global_scope_opt (parser,
9585 /*current_scope_valid_p=*/false);
9586 /* Look for the nested-name-specifier. */
9587 if (tag_type == typename_type)
9588 {
9589 if (cp_parser_nested_name_specifier (parser,
9590 /*typename_keyword_p=*/true,
9591 /*check_dependency_p=*/true,
9592 /*type_p=*/true,
9593 is_declaration)
9594 == error_mark_node)
9595 return error_mark_node;
9596 }
9597 else
9598 /* Even though `typename' is not present, the proposed resolution
9599 to Core Issue 180 says that in `class A<T>::B', `B' should be
9600 considered a type-name, even if `A<T>' is dependent. */
9601 cp_parser_nested_name_specifier_opt (parser,
9602 /*typename_keyword_p=*/true,
9603 /*check_dependency_p=*/true,
9604 /*type_p=*/true,
9605 is_declaration);
9606 /* For everything but enumeration types, consider a template-id. */
9607 if (tag_type != enum_type)
9608 {
9609 bool template_p = false;
9610 tree decl;
9611
9612 /* Allow the `template' keyword. */
9613 template_p = cp_parser_optional_template_keyword (parser);
9614 /* If we didn't see `template', we don't know if there's a
9615 template-id or not. */
9616 if (!template_p)
9617 cp_parser_parse_tentatively (parser);
9618 /* Parse the template-id. */
9619 decl = cp_parser_template_id (parser, template_p,
9620 /*check_dependency_p=*/true,
9621 is_declaration);
9622 /* If we didn't find a template-id, look for an ordinary
9623 identifier. */
9624 if (!template_p && !cp_parser_parse_definitely (parser))
9625 ;
9626 /* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is
9627 in effect, then we must assume that, upon instantiation, the
9628 template will correspond to a class. */
9629 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
9630 && tag_type == typename_type)
9631 type = make_typename_type (parser->scope, decl,
9632 /*complain=*/1);
9633 else
9634 type = TREE_TYPE (decl);
9635 }
9636
9637 /* For an enumeration type, consider only a plain identifier. */
9638 if (!type)
9639 {
9640 identifier = cp_parser_identifier (parser);
9641
9642 if (identifier == error_mark_node)
9643 {
9644 parser->scope = NULL_TREE;
9645 return error_mark_node;
9646 }
9647
9648 /* For a `typename', we needn't call xref_tag. */
9649 if (tag_type == typename_type)
9650 return cp_parser_make_typename_type (parser, parser->scope,
9651 identifier);
9652 /* Look up a qualified name in the usual way. */
9653 if (parser->scope)
9654 {
9655 tree decl;
9656
9657 /* In an elaborated-type-specifier, names are assumed to name
9658 types, so we set IS_TYPE to TRUE when calling
9659 cp_parser_lookup_name. */
9660 decl = cp_parser_lookup_name (parser, identifier,
9661 /*is_type=*/true,
9662 /*is_template=*/false,
9663 /*is_namespace=*/false,
9664 /*check_dependency=*/true,
9665 /*ambiguous_p=*/NULL);
9666
9667 /* If we are parsing friend declaration, DECL may be a
9668 TEMPLATE_DECL tree node here. However, we need to check
9669 whether this TEMPLATE_DECL results in valid code. Consider
9670 the following example:
9671
9672 namespace N {
9673 template <class T> class C {};
9674 }
9675 class X {
9676 template <class T> friend class N::C; // #1, valid code
9677 };
9678 template <class T> class Y {
9679 friend class N::C; // #2, invalid code
9680 };
9681
9682 For both case #1 and #2, we arrive at a TEMPLATE_DECL after
9683 name lookup of `N::C'. We see that friend declaration must
9684 be template for the code to be valid. Note that
9685 processing_template_decl does not work here since it is
9686 always 1 for the above two cases. */
9687
9688 decl = (cp_parser_maybe_treat_template_as_class
9689 (decl, /*tag_name_p=*/is_friend
9690 && parser->num_template_parameter_lists));
9691
9692 if (TREE_CODE (decl) != TYPE_DECL)
9693 {
9694 error ("expected type-name");
9695 return error_mark_node;
9696 }
9697
9698 if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
9699 check_elaborated_type_specifier
9700 (tag_type, decl,
9701 (parser->num_template_parameter_lists
9702 || DECL_SELF_REFERENCE_P (decl)));
9703
9704 type = TREE_TYPE (decl);
9705 }
9706 else
9707 {
9708 /* An elaborated-type-specifier sometimes introduces a new type and
9709 sometimes names an existing type. Normally, the rule is that it
9710 introduces a new type only if there is not an existing type of
9711 the same name already in scope. For example, given:
9712
9713 struct S {};
9714 void f() { struct S s; }
9715
9716 the `struct S' in the body of `f' is the same `struct S' as in
9717 the global scope; the existing definition is used. However, if
9718 there were no global declaration, this would introduce a new
9719 local class named `S'.
9720
9721 An exception to this rule applies to the following code:
9722
9723 namespace N { struct S; }
9724
9725 Here, the elaborated-type-specifier names a new type
9726 unconditionally; even if there is already an `S' in the
9727 containing scope this declaration names a new type.
9728 This exception only applies if the elaborated-type-specifier
9729 forms the complete declaration:
9730
9731 [class.name]
9732
9733 A declaration consisting solely of `class-key identifier ;' is
9734 either a redeclaration of the name in the current scope or a
9735 forward declaration of the identifier as a class name. It
9736 introduces the name into the current scope.
9737
9738 We are in this situation precisely when the next token is a `;'.
9739
9740 An exception to the exception is that a `friend' declaration does
9741 *not* name a new type; i.e., given:
9742
9743 struct S { friend struct T; };
9744
9745 `T' is not a new type in the scope of `S'.
9746
9747 Also, `new struct S' or `sizeof (struct S)' never results in the
9748 definition of a new type; a new type can only be declared in a
9749 declaration context. */
9750
9751 /* Warn about attributes. They are ignored. */
9752 if (attributes)
9753 warning ("type attributes are honored only at type definition");
9754
9755 type = xref_tag (tag_type, identifier,
9756 (is_friend
9757 || !is_declaration
9758 || cp_lexer_next_token_is_not (parser->lexer,
9759 CPP_SEMICOLON)),
9760 parser->num_template_parameter_lists);
9761 }
9762 }
9763 if (tag_type != enum_type)
9764 cp_parser_check_class_key (tag_type, type);
9765
9766 /* A "<" cannot follow an elaborated type specifier. If that
9767 happens, the user was probably trying to form a template-id. */
9768 cp_parser_check_for_invalid_template_id (parser, type);
9769
9770 return type;
9771 }
9772
9773 /* Parse an enum-specifier.
9774
9775 enum-specifier:
9776 enum identifier [opt] { enumerator-list [opt] }
9777
9778 Returns an ENUM_TYPE representing the enumeration. */
9779
9780 static tree
9781 cp_parser_enum_specifier (cp_parser* parser)
9782 {
9783 tree identifier;
9784 tree type;
9785
9786 /* Caller guarantees that the current token is 'enum', an identifier
9787 possibly follows, and the token after that is an opening brace.
9788 If we don't have an identifier, fabricate an anonymous name for
9789 the enumeration being defined. */
9790 cp_lexer_consume_token (parser->lexer);
9791
9792 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
9793 identifier = cp_parser_identifier (parser);
9794 else
9795 identifier = make_anon_name ();
9796
9797 /* Issue an error message if type-definitions are forbidden here. */
9798 cp_parser_check_type_definition (parser);
9799
9800 /* Create the new type. We do this before consuming the opening brace
9801 so the enum will be recorded as being on the line of its tag (or the
9802 'enum' keyword, if there is no tag). */
9803 type = start_enum (identifier);
9804
9805 /* Consume the opening brace. */
9806 cp_lexer_consume_token (parser->lexer);
9807
9808 /* If the next token is not '}', then there are some enumerators. */
9809 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
9810 cp_parser_enumerator_list (parser, type);
9811
9812 /* Consume the final '}'. */
9813 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
9814
9815 /* Finish up the enumeration. */
9816 finish_enum (type);
9817
9818 return type;
9819 }
9820
9821 /* Parse an enumerator-list. The enumerators all have the indicated
9822 TYPE.
9823
9824 enumerator-list:
9825 enumerator-definition
9826 enumerator-list , enumerator-definition */
9827
9828 static void
9829 cp_parser_enumerator_list (cp_parser* parser, tree type)
9830 {
9831 while (true)
9832 {
9833 /* Parse an enumerator-definition. */
9834 cp_parser_enumerator_definition (parser, type);
9835
9836 /* If the next token is not a ',', we've reached the end of
9837 the list. */
9838 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
9839 break;
9840 /* Otherwise, consume the `,' and keep going. */
9841 cp_lexer_consume_token (parser->lexer);
9842 /* If the next token is a `}', there is a trailing comma. */
9843 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
9844 {
9845 if (pedantic && !in_system_header)
9846 pedwarn ("comma at end of enumerator list");
9847 break;
9848 }
9849 }
9850 }
9851
9852 /* Parse an enumerator-definition. The enumerator has the indicated
9853 TYPE.
9854
9855 enumerator-definition:
9856 enumerator
9857 enumerator = constant-expression
9858
9859 enumerator:
9860 identifier */
9861
9862 static void
9863 cp_parser_enumerator_definition (cp_parser* parser, tree type)
9864 {
9865 tree identifier;
9866 tree value;
9867
9868 /* Look for the identifier. */
9869 identifier = cp_parser_identifier (parser);
9870 if (identifier == error_mark_node)
9871 return;
9872
9873 /* If the next token is an '=', then there is an explicit value. */
9874 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
9875 {
9876 /* Consume the `=' token. */
9877 cp_lexer_consume_token (parser->lexer);
9878 /* Parse the value. */
9879 value = cp_parser_constant_expression (parser,
9880 /*allow_non_constant_p=*/false,
9881 NULL);
9882 }
9883 else
9884 value = NULL_TREE;
9885
9886 /* Create the enumerator. */
9887 build_enumerator (identifier, value, type);
9888 }
9889
9890 /* Parse a namespace-name.
9891
9892 namespace-name:
9893 original-namespace-name
9894 namespace-alias
9895
9896 Returns the NAMESPACE_DECL for the namespace. */
9897
9898 static tree
9899 cp_parser_namespace_name (cp_parser* parser)
9900 {
9901 tree identifier;
9902 tree namespace_decl;
9903
9904 /* Get the name of the namespace. */
9905 identifier = cp_parser_identifier (parser);
9906 if (identifier == error_mark_node)
9907 return error_mark_node;
9908
9909 /* Look up the identifier in the currently active scope. Look only
9910 for namespaces, due to:
9911
9912 [basic.lookup.udir]
9913
9914 When looking up a namespace-name in a using-directive or alias
9915 definition, only namespace names are considered.
9916
9917 And:
9918
9919 [basic.lookup.qual]
9920
9921 During the lookup of a name preceding the :: scope resolution
9922 operator, object, function, and enumerator names are ignored.
9923
9924 (Note that cp_parser_class_or_namespace_name only calls this
9925 function if the token after the name is the scope resolution
9926 operator.) */
9927 namespace_decl = cp_parser_lookup_name (parser, identifier,
9928 /*is_type=*/false,
9929 /*is_template=*/false,
9930 /*is_namespace=*/true,
9931 /*check_dependency=*/true,
9932 /*ambiguous_p=*/NULL);
9933 /* If it's not a namespace, issue an error. */
9934 if (namespace_decl == error_mark_node
9935 || TREE_CODE (namespace_decl) != NAMESPACE_DECL)
9936 {
9937 cp_parser_error (parser, "expected namespace-name");
9938 namespace_decl = error_mark_node;
9939 }
9940
9941 return namespace_decl;
9942 }
9943
9944 /* Parse a namespace-definition.
9945
9946 namespace-definition:
9947 named-namespace-definition
9948 unnamed-namespace-definition
9949
9950 named-namespace-definition:
9951 original-namespace-definition
9952 extension-namespace-definition
9953
9954 original-namespace-definition:
9955 namespace identifier { namespace-body }
9956
9957 extension-namespace-definition:
9958 namespace original-namespace-name { namespace-body }
9959
9960 unnamed-namespace-definition:
9961 namespace { namespace-body } */
9962
9963 static void
9964 cp_parser_namespace_definition (cp_parser* parser)
9965 {
9966 tree identifier;
9967
9968 /* Look for the `namespace' keyword. */
9969 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
9970
9971 /* Get the name of the namespace. We do not attempt to distinguish
9972 between an original-namespace-definition and an
9973 extension-namespace-definition at this point. The semantic
9974 analysis routines are responsible for that. */
9975 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
9976 identifier = cp_parser_identifier (parser);
9977 else
9978 identifier = NULL_TREE;
9979
9980 /* Look for the `{' to start the namespace. */
9981 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
9982 /* Start the namespace. */
9983 push_namespace (identifier);
9984 /* Parse the body of the namespace. */
9985 cp_parser_namespace_body (parser);
9986 /* Finish the namespace. */
9987 pop_namespace ();
9988 /* Look for the final `}'. */
9989 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
9990 }
9991
9992 /* Parse a namespace-body.
9993
9994 namespace-body:
9995 declaration-seq [opt] */
9996
9997 static void
9998 cp_parser_namespace_body (cp_parser* parser)
9999 {
10000 cp_parser_declaration_seq_opt (parser);
10001 }
10002
10003 /* Parse a namespace-alias-definition.
10004
10005 namespace-alias-definition:
10006 namespace identifier = qualified-namespace-specifier ; */
10007
10008 static void
10009 cp_parser_namespace_alias_definition (cp_parser* parser)
10010 {
10011 tree identifier;
10012 tree namespace_specifier;
10013
10014 /* Look for the `namespace' keyword. */
10015 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10016 /* Look for the identifier. */
10017 identifier = cp_parser_identifier (parser);
10018 if (identifier == error_mark_node)
10019 return;
10020 /* Look for the `=' token. */
10021 cp_parser_require (parser, CPP_EQ, "`='");
10022 /* Look for the qualified-namespace-specifier. */
10023 namespace_specifier
10024 = cp_parser_qualified_namespace_specifier (parser);
10025 /* Look for the `;' token. */
10026 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10027
10028 /* Register the alias in the symbol table. */
10029 do_namespace_alias (identifier, namespace_specifier);
10030 }
10031
10032 /* Parse a qualified-namespace-specifier.
10033
10034 qualified-namespace-specifier:
10035 :: [opt] nested-name-specifier [opt] namespace-name
10036
10037 Returns a NAMESPACE_DECL corresponding to the specified
10038 namespace. */
10039
10040 static tree
10041 cp_parser_qualified_namespace_specifier (cp_parser* parser)
10042 {
10043 /* Look for the optional `::'. */
10044 cp_parser_global_scope_opt (parser,
10045 /*current_scope_valid_p=*/false);
10046
10047 /* Look for the optional nested-name-specifier. */
10048 cp_parser_nested_name_specifier_opt (parser,
10049 /*typename_keyword_p=*/false,
10050 /*check_dependency_p=*/true,
10051 /*type_p=*/false,
10052 /*is_declaration=*/true);
10053
10054 return cp_parser_namespace_name (parser);
10055 }
10056
10057 /* Parse a using-declaration.
10058
10059 using-declaration:
10060 using typename [opt] :: [opt] nested-name-specifier unqualified-id ;
10061 using :: unqualified-id ; */
10062
10063 static void
10064 cp_parser_using_declaration (cp_parser* parser)
10065 {
10066 cp_token *token;
10067 bool typename_p = false;
10068 bool global_scope_p;
10069 tree decl;
10070 tree identifier;
10071 tree scope;
10072 tree qscope;
10073
10074 /* Look for the `using' keyword. */
10075 cp_parser_require_keyword (parser, RID_USING, "`using'");
10076
10077 /* Peek at the next token. */
10078 token = cp_lexer_peek_token (parser->lexer);
10079 /* See if it's `typename'. */
10080 if (token->keyword == RID_TYPENAME)
10081 {
10082 /* Remember that we've seen it. */
10083 typename_p = true;
10084 /* Consume the `typename' token. */
10085 cp_lexer_consume_token (parser->lexer);
10086 }
10087
10088 /* Look for the optional global scope qualification. */
10089 global_scope_p
10090 = (cp_parser_global_scope_opt (parser,
10091 /*current_scope_valid_p=*/false)
10092 != NULL_TREE);
10093
10094 /* If we saw `typename', or didn't see `::', then there must be a
10095 nested-name-specifier present. */
10096 if (typename_p || !global_scope_p)
10097 qscope = cp_parser_nested_name_specifier (parser, typename_p,
10098 /*check_dependency_p=*/true,
10099 /*type_p=*/false,
10100 /*is_declaration=*/true);
10101 /* Otherwise, we could be in either of the two productions. In that
10102 case, treat the nested-name-specifier as optional. */
10103 else
10104 qscope = cp_parser_nested_name_specifier_opt (parser,
10105 /*typename_keyword_p=*/false,
10106 /*check_dependency_p=*/true,
10107 /*type_p=*/false,
10108 /*is_declaration=*/true);
10109 if (!qscope)
10110 qscope = global_namespace;
10111
10112 /* Parse the unqualified-id. */
10113 identifier = cp_parser_unqualified_id (parser,
10114 /*template_keyword_p=*/false,
10115 /*check_dependency_p=*/true,
10116 /*declarator_p=*/true);
10117
10118 /* The function we call to handle a using-declaration is different
10119 depending on what scope we are in. */
10120 if (identifier == error_mark_node)
10121 ;
10122 else if (TREE_CODE (identifier) != IDENTIFIER_NODE
10123 && TREE_CODE (identifier) != BIT_NOT_EXPR)
10124 /* [namespace.udecl]
10125
10126 A using declaration shall not name a template-id. */
10127 error ("a template-id may not appear in a using-declaration");
10128 else
10129 {
10130 scope = current_scope ();
10131 if (scope && TYPE_P (scope))
10132 {
10133 /* Create the USING_DECL. */
10134 decl = do_class_using_decl (build_nt (SCOPE_REF,
10135 parser->scope,
10136 identifier));
10137 /* Add it to the list of members in this class. */
10138 finish_member_declaration (decl);
10139 }
10140 else
10141 {
10142 decl = cp_parser_lookup_name_simple (parser, identifier);
10143 if (decl == error_mark_node)
10144 cp_parser_name_lookup_error (parser, identifier, decl, NULL);
10145 else if (scope)
10146 do_local_using_decl (decl, qscope, identifier);
10147 else
10148 do_toplevel_using_decl (decl, qscope, identifier);
10149 }
10150 }
10151
10152 /* Look for the final `;'. */
10153 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10154 }
10155
10156 /* Parse a using-directive.
10157
10158 using-directive:
10159 using namespace :: [opt] nested-name-specifier [opt]
10160 namespace-name ; */
10161
10162 static void
10163 cp_parser_using_directive (cp_parser* parser)
10164 {
10165 tree namespace_decl;
10166 tree attribs;
10167
10168 /* Look for the `using' keyword. */
10169 cp_parser_require_keyword (parser, RID_USING, "`using'");
10170 /* And the `namespace' keyword. */
10171 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10172 /* Look for the optional `::' operator. */
10173 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
10174 /* And the optional nested-name-specifier. */
10175 cp_parser_nested_name_specifier_opt (parser,
10176 /*typename_keyword_p=*/false,
10177 /*check_dependency_p=*/true,
10178 /*type_p=*/false,
10179 /*is_declaration=*/true);
10180 /* Get the namespace being used. */
10181 namespace_decl = cp_parser_namespace_name (parser);
10182 /* And any specified attributes. */
10183 attribs = cp_parser_attributes_opt (parser);
10184 /* Update the symbol table. */
10185 parse_using_directive (namespace_decl, attribs);
10186 /* Look for the final `;'. */
10187 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10188 }
10189
10190 /* Parse an asm-definition.
10191
10192 asm-definition:
10193 asm ( string-literal ) ;
10194
10195 GNU Extension:
10196
10197 asm-definition:
10198 asm volatile [opt] ( string-literal ) ;
10199 asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ;
10200 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10201 : asm-operand-list [opt] ) ;
10202 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10203 : asm-operand-list [opt]
10204 : asm-operand-list [opt] ) ; */
10205
10206 static void
10207 cp_parser_asm_definition (cp_parser* parser)
10208 {
10209 tree string;
10210 tree outputs = NULL_TREE;
10211 tree inputs = NULL_TREE;
10212 tree clobbers = NULL_TREE;
10213 tree asm_stmt;
10214 bool volatile_p = false;
10215 bool extended_p = false;
10216
10217 /* Look for the `asm' keyword. */
10218 cp_parser_require_keyword (parser, RID_ASM, "`asm'");
10219 /* See if the next token is `volatile'. */
10220 if (cp_parser_allow_gnu_extensions_p (parser)
10221 && cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE))
10222 {
10223 /* Remember that we saw the `volatile' keyword. */
10224 volatile_p = true;
10225 /* Consume the token. */
10226 cp_lexer_consume_token (parser->lexer);
10227 }
10228 /* Look for the opening `('. */
10229 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
10230 return;
10231 /* Look for the string. */
10232 string = cp_parser_string_literal (parser, false, false);
10233 if (string == error_mark_node)
10234 {
10235 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10236 /*consume_paren=*/true);
10237 return;
10238 }
10239
10240 /* If we're allowing GNU extensions, check for the extended assembly
10241 syntax. Unfortunately, the `:' tokens need not be separated by
10242 a space in C, and so, for compatibility, we tolerate that here
10243 too. Doing that means that we have to treat the `::' operator as
10244 two `:' tokens. */
10245 if (cp_parser_allow_gnu_extensions_p (parser)
10246 && at_function_scope_p ()
10247 && (cp_lexer_next_token_is (parser->lexer, CPP_COLON)
10248 || cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)))
10249 {
10250 bool inputs_p = false;
10251 bool clobbers_p = false;
10252
10253 /* The extended syntax was used. */
10254 extended_p = true;
10255
10256 /* Look for outputs. */
10257 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10258 {
10259 /* Consume the `:'. */
10260 cp_lexer_consume_token (parser->lexer);
10261 /* Parse the output-operands. */
10262 if (cp_lexer_next_token_is_not (parser->lexer,
10263 CPP_COLON)
10264 && cp_lexer_next_token_is_not (parser->lexer,
10265 CPP_SCOPE)
10266 && cp_lexer_next_token_is_not (parser->lexer,
10267 CPP_CLOSE_PAREN))
10268 outputs = cp_parser_asm_operand_list (parser);
10269 }
10270 /* If the next token is `::', there are no outputs, and the
10271 next token is the beginning of the inputs. */
10272 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10273 /* The inputs are coming next. */
10274 inputs_p = true;
10275
10276 /* Look for inputs. */
10277 if (inputs_p
10278 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10279 {
10280 /* Consume the `:' or `::'. */
10281 cp_lexer_consume_token (parser->lexer);
10282 /* Parse the output-operands. */
10283 if (cp_lexer_next_token_is_not (parser->lexer,
10284 CPP_COLON)
10285 && cp_lexer_next_token_is_not (parser->lexer,
10286 CPP_CLOSE_PAREN))
10287 inputs = cp_parser_asm_operand_list (parser);
10288 }
10289 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10290 /* The clobbers are coming next. */
10291 clobbers_p = true;
10292
10293 /* Look for clobbers. */
10294 if (clobbers_p
10295 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10296 {
10297 /* Consume the `:' or `::'. */
10298 cp_lexer_consume_token (parser->lexer);
10299 /* Parse the clobbers. */
10300 if (cp_lexer_next_token_is_not (parser->lexer,
10301 CPP_CLOSE_PAREN))
10302 clobbers = cp_parser_asm_clobber_list (parser);
10303 }
10304 }
10305 /* Look for the closing `)'. */
10306 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
10307 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10308 /*consume_paren=*/true);
10309 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10310
10311 /* Create the ASM_EXPR. */
10312 if (at_function_scope_p ())
10313 {
10314 asm_stmt = finish_asm_stmt (volatile_p, string, outputs,
10315 inputs, clobbers);
10316 /* If the extended syntax was not used, mark the ASM_EXPR. */
10317 if (!extended_p)
10318 {
10319 tree temp = asm_stmt;
10320 if (TREE_CODE (temp) == CLEANUP_POINT_EXPR)
10321 temp = TREE_OPERAND (temp, 0);
10322
10323 ASM_INPUT_P (temp) = 1;
10324 }
10325 }
10326 else
10327 assemble_asm (string);
10328 }
10329
10330 /* Declarators [gram.dcl.decl] */
10331
10332 /* Parse an init-declarator.
10333
10334 init-declarator:
10335 declarator initializer [opt]
10336
10337 GNU Extension:
10338
10339 init-declarator:
10340 declarator asm-specification [opt] attributes [opt] initializer [opt]
10341
10342 function-definition:
10343 decl-specifier-seq [opt] declarator ctor-initializer [opt]
10344 function-body
10345 decl-specifier-seq [opt] declarator function-try-block
10346
10347 GNU Extension:
10348
10349 function-definition:
10350 __extension__ function-definition
10351
10352 The DECL_SPECIFIERS and PREFIX_ATTRIBUTES apply to this declarator.
10353 Returns a representation of the entity declared. If MEMBER_P is TRUE,
10354 then this declarator appears in a class scope. The new DECL created
10355 by this declarator is returned.
10356
10357 If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and
10358 for a function-definition here as well. If the declarator is a
10359 declarator for a function-definition, *FUNCTION_DEFINITION_P will
10360 be TRUE upon return. By that point, the function-definition will
10361 have been completely parsed.
10362
10363 FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P
10364 is FALSE. */
10365
10366 static tree
10367 cp_parser_init_declarator (cp_parser* parser,
10368 cp_decl_specifier_seq *decl_specifiers,
10369 bool function_definition_allowed_p,
10370 bool member_p,
10371 int declares_class_or_enum,
10372 bool* function_definition_p)
10373 {
10374 cp_token *token;
10375 cp_declarator *declarator;
10376 tree prefix_attributes;
10377 tree attributes;
10378 tree asm_specification;
10379 tree initializer;
10380 tree decl = NULL_TREE;
10381 tree scope;
10382 bool is_initialized;
10383 bool is_parenthesized_init;
10384 bool is_non_constant_init;
10385 int ctor_dtor_or_conv_p;
10386 bool friend_p;
10387 bool pop_p = false;
10388
10389 /* Gather the attributes that were provided with the
10390 decl-specifiers. */
10391 prefix_attributes = decl_specifiers->attributes;
10392
10393 /* Assume that this is not the declarator for a function
10394 definition. */
10395 if (function_definition_p)
10396 *function_definition_p = false;
10397
10398 /* Defer access checks while parsing the declarator; we cannot know
10399 what names are accessible until we know what is being
10400 declared. */
10401 resume_deferring_access_checks ();
10402
10403 /* Parse the declarator. */
10404 declarator
10405 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
10406 &ctor_dtor_or_conv_p,
10407 /*parenthesized_p=*/NULL,
10408 /*member_p=*/false);
10409 /* Gather up the deferred checks. */
10410 stop_deferring_access_checks ();
10411
10412 /* If the DECLARATOR was erroneous, there's no need to go
10413 further. */
10414 if (declarator == cp_error_declarator)
10415 return error_mark_node;
10416
10417 cp_parser_check_for_definition_in_return_type (declarator,
10418 declares_class_or_enum);
10419
10420 /* Figure out what scope the entity declared by the DECLARATOR is
10421 located in. `grokdeclarator' sometimes changes the scope, so
10422 we compute it now. */
10423 scope = get_scope_of_declarator (declarator);
10424
10425 /* If we're allowing GNU extensions, look for an asm-specification
10426 and attributes. */
10427 if (cp_parser_allow_gnu_extensions_p (parser))
10428 {
10429 /* Look for an asm-specification. */
10430 asm_specification = cp_parser_asm_specification_opt (parser);
10431 /* And attributes. */
10432 attributes = cp_parser_attributes_opt (parser);
10433 }
10434 else
10435 {
10436 asm_specification = NULL_TREE;
10437 attributes = NULL_TREE;
10438 }
10439
10440 /* Peek at the next token. */
10441 token = cp_lexer_peek_token (parser->lexer);
10442 /* Check to see if the token indicates the start of a
10443 function-definition. */
10444 if (cp_parser_token_starts_function_definition_p (token))
10445 {
10446 if (!function_definition_allowed_p)
10447 {
10448 /* If a function-definition should not appear here, issue an
10449 error message. */
10450 cp_parser_error (parser,
10451 "a function-definition is not allowed here");
10452 return error_mark_node;
10453 }
10454 else
10455 {
10456 /* Neither attributes nor an asm-specification are allowed
10457 on a function-definition. */
10458 if (asm_specification)
10459 error ("an asm-specification is not allowed on a function-definition");
10460 if (attributes)
10461 error ("attributes are not allowed on a function-definition");
10462 /* This is a function-definition. */
10463 *function_definition_p = true;
10464
10465 /* Parse the function definition. */
10466 if (member_p)
10467 decl = cp_parser_save_member_function_body (parser,
10468 decl_specifiers,
10469 declarator,
10470 prefix_attributes);
10471 else
10472 decl
10473 = (cp_parser_function_definition_from_specifiers_and_declarator
10474 (parser, decl_specifiers, prefix_attributes, declarator));
10475
10476 return decl;
10477 }
10478 }
10479
10480 /* [dcl.dcl]
10481
10482 Only in function declarations for constructors, destructors, and
10483 type conversions can the decl-specifier-seq be omitted.
10484
10485 We explicitly postpone this check past the point where we handle
10486 function-definitions because we tolerate function-definitions
10487 that are missing their return types in some modes. */
10488 if (!decl_specifiers->any_specifiers_p && ctor_dtor_or_conv_p <= 0)
10489 {
10490 cp_parser_error (parser,
10491 "expected constructor, destructor, or type conversion");
10492 return error_mark_node;
10493 }
10494
10495 /* An `=' or an `(' indicates an initializer. */
10496 is_initialized = (token->type == CPP_EQ
10497 || token->type == CPP_OPEN_PAREN);
10498 /* If the init-declarator isn't initialized and isn't followed by a
10499 `,' or `;', it's not a valid init-declarator. */
10500 if (!is_initialized
10501 && token->type != CPP_COMMA
10502 && token->type != CPP_SEMICOLON)
10503 {
10504 cp_parser_error (parser, "expected initializer");
10505 return error_mark_node;
10506 }
10507
10508 /* Because start_decl has side-effects, we should only call it if we
10509 know we're going ahead. By this point, we know that we cannot
10510 possibly be looking at any other construct. */
10511 cp_parser_commit_to_tentative_parse (parser);
10512
10513 /* If the decl specifiers were bad, issue an error now that we're
10514 sure this was intended to be a declarator. Then continue
10515 declaring the variable(s), as int, to try to cut down on further
10516 errors. */
10517 if (decl_specifiers->any_specifiers_p
10518 && decl_specifiers->type == error_mark_node)
10519 {
10520 cp_parser_error (parser, "invalid type in declaration");
10521 decl_specifiers->type = integer_type_node;
10522 }
10523
10524 /* Check to see whether or not this declaration is a friend. */
10525 friend_p = cp_parser_friend_p (decl_specifiers);
10526
10527 /* Check that the number of template-parameter-lists is OK. */
10528 if (!cp_parser_check_declarator_template_parameters (parser, declarator))
10529 return error_mark_node;
10530
10531 /* Enter the newly declared entry in the symbol table. If we're
10532 processing a declaration in a class-specifier, we wait until
10533 after processing the initializer. */
10534 if (!member_p)
10535 {
10536 if (parser->in_unbraced_linkage_specification_p)
10537 {
10538 decl_specifiers->storage_class = sc_extern;
10539 have_extern_spec = false;
10540 }
10541 decl = start_decl (declarator, decl_specifiers,
10542 is_initialized, attributes, prefix_attributes,
10543 &pop_p);
10544 }
10545 else if (scope)
10546 /* Enter the SCOPE. That way unqualified names appearing in the
10547 initializer will be looked up in SCOPE. */
10548 pop_p = push_scope (scope);
10549
10550 /* Perform deferred access control checks, now that we know in which
10551 SCOPE the declared entity resides. */
10552 if (!member_p && decl)
10553 {
10554 tree saved_current_function_decl = NULL_TREE;
10555
10556 /* If the entity being declared is a function, pretend that we
10557 are in its scope. If it is a `friend', it may have access to
10558 things that would not otherwise be accessible. */
10559 if (TREE_CODE (decl) == FUNCTION_DECL)
10560 {
10561 saved_current_function_decl = current_function_decl;
10562 current_function_decl = decl;
10563 }
10564
10565 /* Perform the access control checks for the declarator and the
10566 the decl-specifiers. */
10567 perform_deferred_access_checks ();
10568
10569 /* Restore the saved value. */
10570 if (TREE_CODE (decl) == FUNCTION_DECL)
10571 current_function_decl = saved_current_function_decl;
10572 }
10573
10574 /* Parse the initializer. */
10575 if (is_initialized)
10576 initializer = cp_parser_initializer (parser,
10577 &is_parenthesized_init,
10578 &is_non_constant_init);
10579 else
10580 {
10581 initializer = NULL_TREE;
10582 is_parenthesized_init = false;
10583 is_non_constant_init = true;
10584 }
10585
10586 /* The old parser allows attributes to appear after a parenthesized
10587 initializer. Mark Mitchell proposed removing this functionality
10588 on the GCC mailing lists on 2002-08-13. This parser accepts the
10589 attributes -- but ignores them. */
10590 if (cp_parser_allow_gnu_extensions_p (parser) && is_parenthesized_init)
10591 if (cp_parser_attributes_opt (parser))
10592 warning ("attributes after parenthesized initializer ignored");
10593
10594 /* For an in-class declaration, use `grokfield' to create the
10595 declaration. */
10596 if (member_p)
10597 {
10598 if (pop_p)
10599 pop_scope (scope);
10600 decl = grokfield (declarator, decl_specifiers,
10601 initializer, /*asmspec=*/NULL_TREE,
10602 /*attributes=*/NULL_TREE);
10603 if (decl && TREE_CODE (decl) == FUNCTION_DECL)
10604 cp_parser_save_default_args (parser, decl);
10605 }
10606
10607 /* Finish processing the declaration. But, skip friend
10608 declarations. */
10609 if (!friend_p && decl && decl != error_mark_node)
10610 {
10611 cp_finish_decl (decl,
10612 initializer,
10613 asm_specification,
10614 /* If the initializer is in parentheses, then this is
10615 a direct-initialization, which means that an
10616 `explicit' constructor is OK. Otherwise, an
10617 `explicit' constructor cannot be used. */
10618 ((is_parenthesized_init || !is_initialized)
10619 ? 0 : LOOKUP_ONLYCONVERTING));
10620 if (pop_p)
10621 pop_scope (DECL_CONTEXT (decl));
10622 }
10623
10624 /* Remember whether or not variables were initialized by
10625 constant-expressions. */
10626 if (decl && TREE_CODE (decl) == VAR_DECL
10627 && is_initialized && !is_non_constant_init)
10628 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = true;
10629
10630 return decl;
10631 }
10632
10633 /* Parse a declarator.
10634
10635 declarator:
10636 direct-declarator
10637 ptr-operator declarator
10638
10639 abstract-declarator:
10640 ptr-operator abstract-declarator [opt]
10641 direct-abstract-declarator
10642
10643 GNU Extensions:
10644
10645 declarator:
10646 attributes [opt] direct-declarator
10647 attributes [opt] ptr-operator declarator
10648
10649 abstract-declarator:
10650 attributes [opt] ptr-operator abstract-declarator [opt]
10651 attributes [opt] direct-abstract-declarator
10652
10653 If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to
10654 detect constructor, destructor or conversion operators. It is set
10655 to -1 if the declarator is a name, and +1 if it is a
10656 function. Otherwise it is set to zero. Usually you just want to
10657 test for >0, but internally the negative value is used.
10658
10659 (The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have
10660 a decl-specifier-seq unless it declares a constructor, destructor,
10661 or conversion. It might seem that we could check this condition in
10662 semantic analysis, rather than parsing, but that makes it difficult
10663 to handle something like `f()'. We want to notice that there are
10664 no decl-specifiers, and therefore realize that this is an
10665 expression, not a declaration.)
10666
10667 If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
10668 the declarator is a direct-declarator of the form "(...)".
10669
10670 MEMBER_P is true iff this declarator is a member-declarator. */
10671
10672 static cp_declarator *
10673 cp_parser_declarator (cp_parser* parser,
10674 cp_parser_declarator_kind dcl_kind,
10675 int* ctor_dtor_or_conv_p,
10676 bool* parenthesized_p,
10677 bool member_p)
10678 {
10679 cp_token *token;
10680 cp_declarator *declarator;
10681 enum tree_code code;
10682 cp_cv_quals cv_quals;
10683 tree class_type;
10684 tree attributes = NULL_TREE;
10685
10686 /* Assume this is not a constructor, destructor, or type-conversion
10687 operator. */
10688 if (ctor_dtor_or_conv_p)
10689 *ctor_dtor_or_conv_p = 0;
10690
10691 if (cp_parser_allow_gnu_extensions_p (parser))
10692 attributes = cp_parser_attributes_opt (parser);
10693
10694 /* Peek at the next token. */
10695 token = cp_lexer_peek_token (parser->lexer);
10696
10697 /* Check for the ptr-operator production. */
10698 cp_parser_parse_tentatively (parser);
10699 /* Parse the ptr-operator. */
10700 code = cp_parser_ptr_operator (parser,
10701 &class_type,
10702 &cv_quals);
10703 /* If that worked, then we have a ptr-operator. */
10704 if (cp_parser_parse_definitely (parser))
10705 {
10706 /* If a ptr-operator was found, then this declarator was not
10707 parenthesized. */
10708 if (parenthesized_p)
10709 *parenthesized_p = true;
10710 /* The dependent declarator is optional if we are parsing an
10711 abstract-declarator. */
10712 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10713 cp_parser_parse_tentatively (parser);
10714
10715 /* Parse the dependent declarator. */
10716 declarator = cp_parser_declarator (parser, dcl_kind,
10717 /*ctor_dtor_or_conv_p=*/NULL,
10718 /*parenthesized_p=*/NULL,
10719 /*member_p=*/false);
10720
10721 /* If we are parsing an abstract-declarator, we must handle the
10722 case where the dependent declarator is absent. */
10723 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED
10724 && !cp_parser_parse_definitely (parser))
10725 declarator = NULL;
10726
10727 /* Build the representation of the ptr-operator. */
10728 if (class_type)
10729 declarator = make_ptrmem_declarator (cv_quals,
10730 class_type,
10731 declarator);
10732 else if (code == INDIRECT_REF)
10733 declarator = make_pointer_declarator (cv_quals, declarator);
10734 else
10735 declarator = make_reference_declarator (cv_quals, declarator);
10736 }
10737 /* Everything else is a direct-declarator. */
10738 else
10739 {
10740 if (parenthesized_p)
10741 *parenthesized_p = cp_lexer_next_token_is (parser->lexer,
10742 CPP_OPEN_PAREN);
10743 declarator = cp_parser_direct_declarator (parser, dcl_kind,
10744 ctor_dtor_or_conv_p,
10745 member_p);
10746 }
10747
10748 if (attributes && declarator != cp_error_declarator)
10749 declarator->attributes = attributes;
10750
10751 return declarator;
10752 }
10753
10754 /* Parse a direct-declarator or direct-abstract-declarator.
10755
10756 direct-declarator:
10757 declarator-id
10758 direct-declarator ( parameter-declaration-clause )
10759 cv-qualifier-seq [opt]
10760 exception-specification [opt]
10761 direct-declarator [ constant-expression [opt] ]
10762 ( declarator )
10763
10764 direct-abstract-declarator:
10765 direct-abstract-declarator [opt]
10766 ( parameter-declaration-clause )
10767 cv-qualifier-seq [opt]
10768 exception-specification [opt]
10769 direct-abstract-declarator [opt] [ constant-expression [opt] ]
10770 ( abstract-declarator )
10771
10772 Returns a representation of the declarator. DCL_KIND is
10773 CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a
10774 direct-abstract-declarator. It is CP_PARSER_DECLARATOR_NAMED, if
10775 we are parsing a direct-declarator. It is
10776 CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case
10777 of ambiguity we prefer an abstract declarator, as per
10778 [dcl.ambig.res]. CTOR_DTOR_OR_CONV_P and MEMBER_P are as for
10779 cp_parser_declarator. */
10780
10781 static cp_declarator *
10782 cp_parser_direct_declarator (cp_parser* parser,
10783 cp_parser_declarator_kind dcl_kind,
10784 int* ctor_dtor_or_conv_p,
10785 bool member_p)
10786 {
10787 cp_token *token;
10788 cp_declarator *declarator = NULL;
10789 tree scope = NULL_TREE;
10790 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
10791 bool saved_in_declarator_p = parser->in_declarator_p;
10792 bool first = true;
10793 bool pop_p = false;
10794
10795 while (true)
10796 {
10797 /* Peek at the next token. */
10798 token = cp_lexer_peek_token (parser->lexer);
10799 if (token->type == CPP_OPEN_PAREN)
10800 {
10801 /* This is either a parameter-declaration-clause, or a
10802 parenthesized declarator. When we know we are parsing a
10803 named declarator, it must be a parenthesized declarator
10804 if FIRST is true. For instance, `(int)' is a
10805 parameter-declaration-clause, with an omitted
10806 direct-abstract-declarator. But `((*))', is a
10807 parenthesized abstract declarator. Finally, when T is a
10808 template parameter `(T)' is a
10809 parameter-declaration-clause, and not a parenthesized
10810 named declarator.
10811
10812 We first try and parse a parameter-declaration-clause,
10813 and then try a nested declarator (if FIRST is true).
10814
10815 It is not an error for it not to be a
10816 parameter-declaration-clause, even when FIRST is
10817 false. Consider,
10818
10819 int i (int);
10820 int i (3);
10821
10822 The first is the declaration of a function while the
10823 second is a the definition of a variable, including its
10824 initializer.
10825
10826 Having seen only the parenthesis, we cannot know which of
10827 these two alternatives should be selected. Even more
10828 complex are examples like:
10829
10830 int i (int (a));
10831 int i (int (3));
10832
10833 The former is a function-declaration; the latter is a
10834 variable initialization.
10835
10836 Thus again, we try a parameter-declaration-clause, and if
10837 that fails, we back out and return. */
10838
10839 if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10840 {
10841 cp_parameter_declarator *params;
10842 unsigned saved_num_template_parameter_lists;
10843
10844 /* In a member-declarator, the only valid interpretation
10845 of a parenthesis is the start of a
10846 parameter-declaration-clause. (It is invalid to
10847 initialize a static data member with a parenthesized
10848 initializer; only the "=" form of initialization is
10849 permitted.) */
10850 if (!member_p)
10851 cp_parser_parse_tentatively (parser);
10852
10853 /* Consume the `('. */
10854 cp_lexer_consume_token (parser->lexer);
10855 if (first)
10856 {
10857 /* If this is going to be an abstract declarator, we're
10858 in a declarator and we can't have default args. */
10859 parser->default_arg_ok_p = false;
10860 parser->in_declarator_p = true;
10861 }
10862
10863 /* Inside the function parameter list, surrounding
10864 template-parameter-lists do not apply. */
10865 saved_num_template_parameter_lists
10866 = parser->num_template_parameter_lists;
10867 parser->num_template_parameter_lists = 0;
10868
10869 /* Parse the parameter-declaration-clause. */
10870 params = cp_parser_parameter_declaration_clause (parser);
10871
10872 parser->num_template_parameter_lists
10873 = saved_num_template_parameter_lists;
10874
10875 /* If all went well, parse the cv-qualifier-seq and the
10876 exception-specification. */
10877 if (member_p || cp_parser_parse_definitely (parser))
10878 {
10879 cp_cv_quals cv_quals;
10880 tree exception_specification;
10881
10882 if (ctor_dtor_or_conv_p)
10883 *ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0;
10884 first = false;
10885 /* Consume the `)'. */
10886 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
10887
10888 /* Parse the cv-qualifier-seq. */
10889 cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
10890 /* And the exception-specification. */
10891 exception_specification
10892 = cp_parser_exception_specification_opt (parser);
10893
10894 /* Create the function-declarator. */
10895 declarator = make_call_declarator (declarator,
10896 params,
10897 cv_quals,
10898 exception_specification);
10899 /* Any subsequent parameter lists are to do with
10900 return type, so are not those of the declared
10901 function. */
10902 parser->default_arg_ok_p = false;
10903
10904 /* Repeat the main loop. */
10905 continue;
10906 }
10907 }
10908
10909 /* If this is the first, we can try a parenthesized
10910 declarator. */
10911 if (first)
10912 {
10913 bool saved_in_type_id_in_expr_p;
10914
10915 parser->default_arg_ok_p = saved_default_arg_ok_p;
10916 parser->in_declarator_p = saved_in_declarator_p;
10917
10918 /* Consume the `('. */
10919 cp_lexer_consume_token (parser->lexer);
10920 /* Parse the nested declarator. */
10921 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
10922 parser->in_type_id_in_expr_p = true;
10923 declarator
10924 = cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p,
10925 /*parenthesized_p=*/NULL,
10926 member_p);
10927 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
10928 first = false;
10929 /* Expect a `)'. */
10930 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
10931 declarator = cp_error_declarator;
10932 if (declarator == cp_error_declarator)
10933 break;
10934
10935 goto handle_declarator;
10936 }
10937 /* Otherwise, we must be done. */
10938 else
10939 break;
10940 }
10941 else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10942 && token->type == CPP_OPEN_SQUARE)
10943 {
10944 /* Parse an array-declarator. */
10945 tree bounds;
10946
10947 if (ctor_dtor_or_conv_p)
10948 *ctor_dtor_or_conv_p = 0;
10949
10950 first = false;
10951 parser->default_arg_ok_p = false;
10952 parser->in_declarator_p = true;
10953 /* Consume the `['. */
10954 cp_lexer_consume_token (parser->lexer);
10955 /* Peek at the next token. */
10956 token = cp_lexer_peek_token (parser->lexer);
10957 /* If the next token is `]', then there is no
10958 constant-expression. */
10959 if (token->type != CPP_CLOSE_SQUARE)
10960 {
10961 bool non_constant_p;
10962
10963 bounds
10964 = cp_parser_constant_expression (parser,
10965 /*allow_non_constant=*/true,
10966 &non_constant_p);
10967 if (!non_constant_p)
10968 bounds = fold_non_dependent_expr (bounds);
10969 }
10970 else
10971 bounds = NULL_TREE;
10972 /* Look for the closing `]'. */
10973 if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'"))
10974 {
10975 declarator = cp_error_declarator;
10976 break;
10977 }
10978
10979 declarator = make_array_declarator (declarator, bounds);
10980 }
10981 else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT)
10982 {
10983 tree id;
10984
10985 /* Parse a declarator-id */
10986 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
10987 cp_parser_parse_tentatively (parser);
10988 id = cp_parser_declarator_id (parser);
10989 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
10990 {
10991 if (!cp_parser_parse_definitely (parser))
10992 id = error_mark_node;
10993 else if (TREE_CODE (id) != IDENTIFIER_NODE)
10994 {
10995 cp_parser_error (parser, "expected unqualified-id");
10996 id = error_mark_node;
10997 }
10998 }
10999
11000 if (id == error_mark_node)
11001 {
11002 declarator = cp_error_declarator;
11003 break;
11004 }
11005
11006 if (TREE_CODE (id) == SCOPE_REF && !current_scope ())
11007 {
11008 tree scope = TREE_OPERAND (id, 0);
11009
11010 /* In the declaration of a member of a template class
11011 outside of the class itself, the SCOPE will sometimes
11012 be a TYPENAME_TYPE. For example, given:
11013
11014 template <typename T>
11015 int S<T>::R::i = 3;
11016
11017 the SCOPE will be a TYPENAME_TYPE for `S<T>::R'. In
11018 this context, we must resolve S<T>::R to an ordinary
11019 type, rather than a typename type.
11020
11021 The reason we normally avoid resolving TYPENAME_TYPEs
11022 is that a specialization of `S' might render
11023 `S<T>::R' not a type. However, if `S' is
11024 specialized, then this `i' will not be used, so there
11025 is no harm in resolving the types here. */
11026 if (TREE_CODE (scope) == TYPENAME_TYPE)
11027 {
11028 tree type;
11029
11030 /* Resolve the TYPENAME_TYPE. */
11031 type = resolve_typename_type (scope,
11032 /*only_current_p=*/false);
11033 /* If that failed, the declarator is invalid. */
11034 if (type == error_mark_node)
11035 error ("%<%T::%D%> is not a type",
11036 TYPE_CONTEXT (scope),
11037 TYPE_IDENTIFIER (scope));
11038 /* Build a new DECLARATOR. */
11039 id = build_nt (SCOPE_REF, type, TREE_OPERAND (id, 1));
11040 }
11041 }
11042
11043 declarator = make_id_declarator (id);
11044 if (id)
11045 {
11046 tree class_type;
11047 tree unqualified_name;
11048
11049 if (TREE_CODE (id) == SCOPE_REF
11050 && CLASS_TYPE_P (TREE_OPERAND (id, 0)))
11051 {
11052 class_type = TREE_OPERAND (id, 0);
11053 unqualified_name = TREE_OPERAND (id, 1);
11054 }
11055 else
11056 {
11057 class_type = current_class_type;
11058 unqualified_name = id;
11059 }
11060
11061 if (class_type)
11062 {
11063 if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR)
11064 declarator->u.id.sfk = sfk_destructor;
11065 else if (IDENTIFIER_TYPENAME_P (unqualified_name))
11066 declarator->u.id.sfk = sfk_conversion;
11067 else if (constructor_name_p (unqualified_name,
11068 class_type)
11069 || (TREE_CODE (unqualified_name) == TYPE_DECL
11070 && same_type_p (TREE_TYPE (unqualified_name),
11071 class_type)))
11072 declarator->u.id.sfk = sfk_constructor;
11073
11074 if (ctor_dtor_or_conv_p && declarator->u.id.sfk != sfk_none)
11075 *ctor_dtor_or_conv_p = -1;
11076 if (TREE_CODE (id) == SCOPE_REF
11077 && TREE_CODE (unqualified_name) == TYPE_DECL
11078 && CLASSTYPE_USE_TEMPLATE (TREE_TYPE (unqualified_name)))
11079 {
11080 error ("invalid use of constructor as a template");
11081 inform ("use %<%T::%D%> instead of %<%T::%T%> to name "
11082 "the constructor in a qualified name",
11083 class_type,
11084 DECL_NAME (TYPE_TI_TEMPLATE (class_type)),
11085 class_type, class_type);
11086 }
11087 }
11088 }
11089
11090 handle_declarator:;
11091 scope = get_scope_of_declarator (declarator);
11092 if (scope)
11093 /* Any names that appear after the declarator-id for a
11094 member are looked up in the containing scope. */
11095 pop_p = push_scope (scope);
11096 parser->in_declarator_p = true;
11097 if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p)
11098 || (declarator && declarator->kind == cdk_id))
11099 /* Default args are only allowed on function
11100 declarations. */
11101 parser->default_arg_ok_p = saved_default_arg_ok_p;
11102 else
11103 parser->default_arg_ok_p = false;
11104
11105 first = false;
11106 }
11107 /* We're done. */
11108 else
11109 break;
11110 }
11111
11112 /* For an abstract declarator, we might wind up with nothing at this
11113 point. That's an error; the declarator is not optional. */
11114 if (!declarator)
11115 cp_parser_error (parser, "expected declarator");
11116
11117 /* If we entered a scope, we must exit it now. */
11118 if (pop_p)
11119 pop_scope (scope);
11120
11121 parser->default_arg_ok_p = saved_default_arg_ok_p;
11122 parser->in_declarator_p = saved_in_declarator_p;
11123
11124 return declarator;
11125 }
11126
11127 /* Parse a ptr-operator.
11128
11129 ptr-operator:
11130 * cv-qualifier-seq [opt]
11131 &
11132 :: [opt] nested-name-specifier * cv-qualifier-seq [opt]
11133
11134 GNU Extension:
11135
11136 ptr-operator:
11137 & cv-qualifier-seq [opt]
11138
11139 Returns INDIRECT_REF if a pointer, or pointer-to-member, was used.
11140 Returns ADDR_EXPR if a reference was used. In the case of a
11141 pointer-to-member, *TYPE is filled in with the TYPE containing the
11142 member. *CV_QUALS is filled in with the cv-qualifier-seq, or
11143 TYPE_UNQUALIFIED, if there are no cv-qualifiers. Returns
11144 ERROR_MARK if an error occurred. */
11145
11146 static enum tree_code
11147 cp_parser_ptr_operator (cp_parser* parser,
11148 tree* type,
11149 cp_cv_quals *cv_quals)
11150 {
11151 enum tree_code code = ERROR_MARK;
11152 cp_token *token;
11153
11154 /* Assume that it's not a pointer-to-member. */
11155 *type = NULL_TREE;
11156 /* And that there are no cv-qualifiers. */
11157 *cv_quals = TYPE_UNQUALIFIED;
11158
11159 /* Peek at the next token. */
11160 token = cp_lexer_peek_token (parser->lexer);
11161 /* If it's a `*' or `&' we have a pointer or reference. */
11162 if (token->type == CPP_MULT || token->type == CPP_AND)
11163 {
11164 /* Remember which ptr-operator we were processing. */
11165 code = (token->type == CPP_AND ? ADDR_EXPR : INDIRECT_REF);
11166
11167 /* Consume the `*' or `&'. */
11168 cp_lexer_consume_token (parser->lexer);
11169
11170 /* A `*' can be followed by a cv-qualifier-seq, and so can a
11171 `&', if we are allowing GNU extensions. (The only qualifier
11172 that can legally appear after `&' is `restrict', but that is
11173 enforced during semantic analysis. */
11174 if (code == INDIRECT_REF
11175 || cp_parser_allow_gnu_extensions_p (parser))
11176 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11177 }
11178 else
11179 {
11180 /* Try the pointer-to-member case. */
11181 cp_parser_parse_tentatively (parser);
11182 /* Look for the optional `::' operator. */
11183 cp_parser_global_scope_opt (parser,
11184 /*current_scope_valid_p=*/false);
11185 /* Look for the nested-name specifier. */
11186 cp_parser_nested_name_specifier (parser,
11187 /*typename_keyword_p=*/false,
11188 /*check_dependency_p=*/true,
11189 /*type_p=*/false,
11190 /*is_declaration=*/false);
11191 /* If we found it, and the next token is a `*', then we are
11192 indeed looking at a pointer-to-member operator. */
11193 if (!cp_parser_error_occurred (parser)
11194 && cp_parser_require (parser, CPP_MULT, "`*'"))
11195 {
11196 /* The type of which the member is a member is given by the
11197 current SCOPE. */
11198 *type = parser->scope;
11199 /* The next name will not be qualified. */
11200 parser->scope = NULL_TREE;
11201 parser->qualifying_scope = NULL_TREE;
11202 parser->object_scope = NULL_TREE;
11203 /* Indicate that the `*' operator was used. */
11204 code = INDIRECT_REF;
11205 /* Look for the optional cv-qualifier-seq. */
11206 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11207 }
11208 /* If that didn't work we don't have a ptr-operator. */
11209 if (!cp_parser_parse_definitely (parser))
11210 cp_parser_error (parser, "expected ptr-operator");
11211 }
11212
11213 return code;
11214 }
11215
11216 /* Parse an (optional) cv-qualifier-seq.
11217
11218 cv-qualifier-seq:
11219 cv-qualifier cv-qualifier-seq [opt]
11220
11221 cv-qualifier:
11222 const
11223 volatile
11224
11225 GNU Extension:
11226
11227 cv-qualifier:
11228 __restrict__
11229
11230 Returns a bitmask representing the cv-qualifiers. */
11231
11232 static cp_cv_quals
11233 cp_parser_cv_qualifier_seq_opt (cp_parser* parser)
11234 {
11235 cp_cv_quals cv_quals = TYPE_UNQUALIFIED;
11236
11237 while (true)
11238 {
11239 cp_token *token;
11240 cp_cv_quals cv_qualifier;
11241
11242 /* Peek at the next token. */
11243 token = cp_lexer_peek_token (parser->lexer);
11244 /* See if it's a cv-qualifier. */
11245 switch (token->keyword)
11246 {
11247 case RID_CONST:
11248 cv_qualifier = TYPE_QUAL_CONST;
11249 break;
11250
11251 case RID_VOLATILE:
11252 cv_qualifier = TYPE_QUAL_VOLATILE;
11253 break;
11254
11255 case RID_RESTRICT:
11256 cv_qualifier = TYPE_QUAL_RESTRICT;
11257 break;
11258
11259 default:
11260 cv_qualifier = TYPE_UNQUALIFIED;
11261 break;
11262 }
11263
11264 if (!cv_qualifier)
11265 break;
11266
11267 if (cv_quals & cv_qualifier)
11268 {
11269 error ("duplicate cv-qualifier");
11270 cp_lexer_purge_token (parser->lexer);
11271 }
11272 else
11273 {
11274 cp_lexer_consume_token (parser->lexer);
11275 cv_quals |= cv_qualifier;
11276 }
11277 }
11278
11279 return cv_quals;
11280 }
11281
11282 /* Parse a declarator-id.
11283
11284 declarator-id:
11285 id-expression
11286 :: [opt] nested-name-specifier [opt] type-name
11287
11288 In the `id-expression' case, the value returned is as for
11289 cp_parser_id_expression if the id-expression was an unqualified-id.
11290 If the id-expression was a qualified-id, then a SCOPE_REF is
11291 returned. The first operand is the scope (either a NAMESPACE_DECL
11292 or TREE_TYPE), but the second is still just a representation of an
11293 unqualified-id. */
11294
11295 static tree
11296 cp_parser_declarator_id (cp_parser* parser)
11297 {
11298 tree id_expression;
11299
11300 /* The expression must be an id-expression. Assume that qualified
11301 names are the names of types so that:
11302
11303 template <class T>
11304 int S<T>::R::i = 3;
11305
11306 will work; we must treat `S<T>::R' as the name of a type.
11307 Similarly, assume that qualified names are templates, where
11308 required, so that:
11309
11310 template <class T>
11311 int S<T>::R<T>::i = 3;
11312
11313 will work, too. */
11314 id_expression = cp_parser_id_expression (parser,
11315 /*template_keyword_p=*/false,
11316 /*check_dependency_p=*/false,
11317 /*template_p=*/NULL,
11318 /*declarator_p=*/true);
11319 /* If the name was qualified, create a SCOPE_REF to represent
11320 that. */
11321 if (parser->scope)
11322 {
11323 id_expression = build_nt (SCOPE_REF, parser->scope, id_expression);
11324 parser->scope = NULL_TREE;
11325 }
11326
11327 return id_expression;
11328 }
11329
11330 /* Parse a type-id.
11331
11332 type-id:
11333 type-specifier-seq abstract-declarator [opt]
11334
11335 Returns the TYPE specified. */
11336
11337 static tree
11338 cp_parser_type_id (cp_parser* parser)
11339 {
11340 cp_decl_specifier_seq type_specifier_seq;
11341 cp_declarator *abstract_declarator;
11342
11343 /* Parse the type-specifier-seq. */
11344 cp_parser_type_specifier_seq (parser, &type_specifier_seq);
11345 if (type_specifier_seq.type == error_mark_node)
11346 return error_mark_node;
11347
11348 /* There might or might not be an abstract declarator. */
11349 cp_parser_parse_tentatively (parser);
11350 /* Look for the declarator. */
11351 abstract_declarator
11352 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL,
11353 /*parenthesized_p=*/NULL,
11354 /*member_p=*/false);
11355 /* Check to see if there really was a declarator. */
11356 if (!cp_parser_parse_definitely (parser))
11357 abstract_declarator = NULL;
11358
11359 return groktypename (&type_specifier_seq, abstract_declarator);
11360 }
11361
11362 /* Parse a type-specifier-seq.
11363
11364 type-specifier-seq:
11365 type-specifier type-specifier-seq [opt]
11366
11367 GNU extension:
11368
11369 type-specifier-seq:
11370 attributes type-specifier-seq [opt]
11371
11372 Sets *TYPE_SPECIFIER_SEQ to represent the sequence. */
11373
11374 static void
11375 cp_parser_type_specifier_seq (cp_parser* parser,
11376 cp_decl_specifier_seq *type_specifier_seq)
11377 {
11378 bool seen_type_specifier = false;
11379
11380 /* Clear the TYPE_SPECIFIER_SEQ. */
11381 clear_decl_specs (type_specifier_seq);
11382
11383 /* Parse the type-specifiers and attributes. */
11384 while (true)
11385 {
11386 tree type_specifier;
11387
11388 /* Check for attributes first. */
11389 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
11390 {
11391 type_specifier_seq->attributes =
11392 chainon (type_specifier_seq->attributes,
11393 cp_parser_attributes_opt (parser));
11394 continue;
11395 }
11396
11397 /* Look for the type-specifier. */
11398 type_specifier = cp_parser_type_specifier (parser,
11399 CP_PARSER_FLAGS_OPTIONAL,
11400 type_specifier_seq,
11401 /*is_declaration=*/false,
11402 NULL,
11403 NULL);
11404 /* If the first type-specifier could not be found, this is not a
11405 type-specifier-seq at all. */
11406 if (!seen_type_specifier && !type_specifier)
11407 {
11408 cp_parser_error (parser, "expected type-specifier");
11409 type_specifier_seq->type = error_mark_node;
11410 return;
11411 }
11412 /* If subsequent type-specifiers could not be found, the
11413 type-specifier-seq is complete. */
11414 else if (seen_type_specifier && !type_specifier)
11415 break;
11416
11417 seen_type_specifier = true;
11418 }
11419
11420 return;
11421 }
11422
11423 /* Parse a parameter-declaration-clause.
11424
11425 parameter-declaration-clause:
11426 parameter-declaration-list [opt] ... [opt]
11427 parameter-declaration-list , ...
11428
11429 Returns a representation for the parameter declarations. A return
11430 value of NULL indicates a parameter-declaration-clause consisting
11431 only of an ellipsis. */
11432
11433 static cp_parameter_declarator *
11434 cp_parser_parameter_declaration_clause (cp_parser* parser)
11435 {
11436 cp_parameter_declarator *parameters;
11437 cp_token *token;
11438 bool ellipsis_p;
11439 bool is_error;
11440
11441 /* Peek at the next token. */
11442 token = cp_lexer_peek_token (parser->lexer);
11443 /* Check for trivial parameter-declaration-clauses. */
11444 if (token->type == CPP_ELLIPSIS)
11445 {
11446 /* Consume the `...' token. */
11447 cp_lexer_consume_token (parser->lexer);
11448 return NULL;
11449 }
11450 else if (token->type == CPP_CLOSE_PAREN)
11451 /* There are no parameters. */
11452 {
11453 #ifndef NO_IMPLICIT_EXTERN_C
11454 if (in_system_header && current_class_type == NULL
11455 && current_lang_name == lang_name_c)
11456 return NULL;
11457 else
11458 #endif
11459 return no_parameters;
11460 }
11461 /* Check for `(void)', too, which is a special case. */
11462 else if (token->keyword == RID_VOID
11463 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
11464 == CPP_CLOSE_PAREN))
11465 {
11466 /* Consume the `void' token. */
11467 cp_lexer_consume_token (parser->lexer);
11468 /* There are no parameters. */
11469 return no_parameters;
11470 }
11471
11472 /* Parse the parameter-declaration-list. */
11473 parameters = cp_parser_parameter_declaration_list (parser, &is_error);
11474 /* If a parse error occurred while parsing the
11475 parameter-declaration-list, then the entire
11476 parameter-declaration-clause is erroneous. */
11477 if (is_error)
11478 return NULL;
11479
11480 /* Peek at the next token. */
11481 token = cp_lexer_peek_token (parser->lexer);
11482 /* If it's a `,', the clause should terminate with an ellipsis. */
11483 if (token->type == CPP_COMMA)
11484 {
11485 /* Consume the `,'. */
11486 cp_lexer_consume_token (parser->lexer);
11487 /* Expect an ellipsis. */
11488 ellipsis_p
11489 = (cp_parser_require (parser, CPP_ELLIPSIS, "`...'") != NULL);
11490 }
11491 /* It might also be `...' if the optional trailing `,' was
11492 omitted. */
11493 else if (token->type == CPP_ELLIPSIS)
11494 {
11495 /* Consume the `...' token. */
11496 cp_lexer_consume_token (parser->lexer);
11497 /* And remember that we saw it. */
11498 ellipsis_p = true;
11499 }
11500 else
11501 ellipsis_p = false;
11502
11503 /* Finish the parameter list. */
11504 if (parameters && ellipsis_p)
11505 parameters->ellipsis_p = true;
11506
11507 return parameters;
11508 }
11509
11510 /* Parse a parameter-declaration-list.
11511
11512 parameter-declaration-list:
11513 parameter-declaration
11514 parameter-declaration-list , parameter-declaration
11515
11516 Returns a representation of the parameter-declaration-list, as for
11517 cp_parser_parameter_declaration_clause. However, the
11518 `void_list_node' is never appended to the list. Upon return,
11519 *IS_ERROR will be true iff an error occurred. */
11520
11521 static cp_parameter_declarator *
11522 cp_parser_parameter_declaration_list (cp_parser* parser, bool *is_error)
11523 {
11524 cp_parameter_declarator *parameters = NULL;
11525 cp_parameter_declarator **tail = &parameters;
11526
11527 /* Assume all will go well. */
11528 *is_error = false;
11529
11530 /* Look for more parameters. */
11531 while (true)
11532 {
11533 cp_parameter_declarator *parameter;
11534 bool parenthesized_p;
11535 /* Parse the parameter. */
11536 parameter
11537 = cp_parser_parameter_declaration (parser,
11538 /*template_parm_p=*/false,
11539 &parenthesized_p);
11540
11541 /* If a parse error occurred parsing the parameter declaration,
11542 then the entire parameter-declaration-list is erroneous. */
11543 if (!parameter)
11544 {
11545 *is_error = true;
11546 parameters = NULL;
11547 break;
11548 }
11549 /* Add the new parameter to the list. */
11550 *tail = parameter;
11551 tail = &parameter->next;
11552
11553 /* Peek at the next token. */
11554 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
11555 || cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
11556 /* The parameter-declaration-list is complete. */
11557 break;
11558 else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
11559 {
11560 cp_token *token;
11561
11562 /* Peek at the next token. */
11563 token = cp_lexer_peek_nth_token (parser->lexer, 2);
11564 /* If it's an ellipsis, then the list is complete. */
11565 if (token->type == CPP_ELLIPSIS)
11566 break;
11567 /* Otherwise, there must be more parameters. Consume the
11568 `,'. */
11569 cp_lexer_consume_token (parser->lexer);
11570 /* When parsing something like:
11571
11572 int i(float f, double d)
11573
11574 we can tell after seeing the declaration for "f" that we
11575 are not looking at an initialization of a variable "i",
11576 but rather at the declaration of a function "i".
11577
11578 Due to the fact that the parsing of template arguments
11579 (as specified to a template-id) requires backtracking we
11580 cannot use this technique when inside a template argument
11581 list. */
11582 if (!parser->in_template_argument_list_p
11583 && !parser->in_type_id_in_expr_p
11584 && cp_parser_parsing_tentatively (parser)
11585 && !cp_parser_committed_to_tentative_parse (parser)
11586 /* However, a parameter-declaration of the form
11587 "foat(f)" (which is a valid declaration of a
11588 parameter "f") can also be interpreted as an
11589 expression (the conversion of "f" to "float"). */
11590 && !parenthesized_p)
11591 cp_parser_commit_to_tentative_parse (parser);
11592 }
11593 else
11594 {
11595 cp_parser_error (parser, "expected %<,%> or %<...%>");
11596 if (!cp_parser_parsing_tentatively (parser)
11597 || cp_parser_committed_to_tentative_parse (parser))
11598 cp_parser_skip_to_closing_parenthesis (parser,
11599 /*recovering=*/true,
11600 /*or_comma=*/false,
11601 /*consume_paren=*/false);
11602 break;
11603 }
11604 }
11605
11606 return parameters;
11607 }
11608
11609 /* Parse a parameter declaration.
11610
11611 parameter-declaration:
11612 decl-specifier-seq declarator
11613 decl-specifier-seq declarator = assignment-expression
11614 decl-specifier-seq abstract-declarator [opt]
11615 decl-specifier-seq abstract-declarator [opt] = assignment-expression
11616
11617 If TEMPLATE_PARM_P is TRUE, then this parameter-declaration
11618 declares a template parameter. (In that case, a non-nested `>'
11619 token encountered during the parsing of the assignment-expression
11620 is not interpreted as a greater-than operator.)
11621
11622 Returns a representation of the parameter, or NULL if an error
11623 occurs. If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to
11624 true iff the declarator is of the form "(p)". */
11625
11626 static cp_parameter_declarator *
11627 cp_parser_parameter_declaration (cp_parser *parser,
11628 bool template_parm_p,
11629 bool *parenthesized_p)
11630 {
11631 int declares_class_or_enum;
11632 bool greater_than_is_operator_p;
11633 cp_decl_specifier_seq decl_specifiers;
11634 cp_declarator *declarator;
11635 tree default_argument;
11636 cp_token *token;
11637 const char *saved_message;
11638
11639 /* In a template parameter, `>' is not an operator.
11640
11641 [temp.param]
11642
11643 When parsing a default template-argument for a non-type
11644 template-parameter, the first non-nested `>' is taken as the end
11645 of the template parameter-list rather than a greater-than
11646 operator. */
11647 greater_than_is_operator_p = !template_parm_p;
11648
11649 /* Type definitions may not appear in parameter types. */
11650 saved_message = parser->type_definition_forbidden_message;
11651 parser->type_definition_forbidden_message
11652 = "types may not be defined in parameter types";
11653
11654 /* Parse the declaration-specifiers. */
11655 cp_parser_decl_specifier_seq (parser,
11656 CP_PARSER_FLAGS_NONE,
11657 &decl_specifiers,
11658 &declares_class_or_enum);
11659 /* If an error occurred, there's no reason to attempt to parse the
11660 rest of the declaration. */
11661 if (cp_parser_error_occurred (parser))
11662 {
11663 parser->type_definition_forbidden_message = saved_message;
11664 return NULL;
11665 }
11666
11667 /* Peek at the next token. */
11668 token = cp_lexer_peek_token (parser->lexer);
11669 /* If the next token is a `)', `,', `=', `>', or `...', then there
11670 is no declarator. */
11671 if (token->type == CPP_CLOSE_PAREN
11672 || token->type == CPP_COMMA
11673 || token->type == CPP_EQ
11674 || token->type == CPP_ELLIPSIS
11675 || token->type == CPP_GREATER)
11676 {
11677 declarator = NULL;
11678 if (parenthesized_p)
11679 *parenthesized_p = false;
11680 }
11681 /* Otherwise, there should be a declarator. */
11682 else
11683 {
11684 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
11685 parser->default_arg_ok_p = false;
11686
11687 /* After seeing a decl-specifier-seq, if the next token is not a
11688 "(", there is no possibility that the code is a valid
11689 expression. Therefore, if parsing tentatively, we commit at
11690 this point. */
11691 if (!parser->in_template_argument_list_p
11692 /* In an expression context, having seen:
11693
11694 (int((char ...
11695
11696 we cannot be sure whether we are looking at a
11697 function-type (taking a "char" as a parameter) or a cast
11698 of some object of type "char" to "int". */
11699 && !parser->in_type_id_in_expr_p
11700 && cp_parser_parsing_tentatively (parser)
11701 && !cp_parser_committed_to_tentative_parse (parser)
11702 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
11703 cp_parser_commit_to_tentative_parse (parser);
11704 /* Parse the declarator. */
11705 declarator = cp_parser_declarator (parser,
11706 CP_PARSER_DECLARATOR_EITHER,
11707 /*ctor_dtor_or_conv_p=*/NULL,
11708 parenthesized_p,
11709 /*member_p=*/false);
11710 parser->default_arg_ok_p = saved_default_arg_ok_p;
11711 /* After the declarator, allow more attributes. */
11712 decl_specifiers.attributes
11713 = chainon (decl_specifiers.attributes,
11714 cp_parser_attributes_opt (parser));
11715 }
11716
11717 /* The restriction on defining new types applies only to the type
11718 of the parameter, not to the default argument. */
11719 parser->type_definition_forbidden_message = saved_message;
11720
11721 /* If the next token is `=', then process a default argument. */
11722 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
11723 {
11724 bool saved_greater_than_is_operator_p;
11725 /* Consume the `='. */
11726 cp_lexer_consume_token (parser->lexer);
11727
11728 /* If we are defining a class, then the tokens that make up the
11729 default argument must be saved and processed later. */
11730 if (!template_parm_p && at_class_scope_p ()
11731 && TYPE_BEING_DEFINED (current_class_type))
11732 {
11733 unsigned depth = 0;
11734 cp_token *first_token;
11735 cp_token *token;
11736
11737 /* Add tokens until we have processed the entire default
11738 argument. We add the range [first_token, token). */
11739 first_token = cp_lexer_peek_token (parser->lexer);
11740 while (true)
11741 {
11742 bool done = false;
11743
11744 /* Peek at the next token. */
11745 token = cp_lexer_peek_token (parser->lexer);
11746 /* What we do depends on what token we have. */
11747 switch (token->type)
11748 {
11749 /* In valid code, a default argument must be
11750 immediately followed by a `,' `)', or `...'. */
11751 case CPP_COMMA:
11752 case CPP_CLOSE_PAREN:
11753 case CPP_ELLIPSIS:
11754 /* If we run into a non-nested `;', `}', or `]',
11755 then the code is invalid -- but the default
11756 argument is certainly over. */
11757 case CPP_SEMICOLON:
11758 case CPP_CLOSE_BRACE:
11759 case CPP_CLOSE_SQUARE:
11760 if (depth == 0)
11761 done = true;
11762 /* Update DEPTH, if necessary. */
11763 else if (token->type == CPP_CLOSE_PAREN
11764 || token->type == CPP_CLOSE_BRACE
11765 || token->type == CPP_CLOSE_SQUARE)
11766 --depth;
11767 break;
11768
11769 case CPP_OPEN_PAREN:
11770 case CPP_OPEN_SQUARE:
11771 case CPP_OPEN_BRACE:
11772 ++depth;
11773 break;
11774
11775 case CPP_GREATER:
11776 /* If we see a non-nested `>', and `>' is not an
11777 operator, then it marks the end of the default
11778 argument. */
11779 if (!depth && !greater_than_is_operator_p)
11780 done = true;
11781 break;
11782
11783 /* If we run out of tokens, issue an error message. */
11784 case CPP_EOF:
11785 error ("file ends in default argument");
11786 done = true;
11787 break;
11788
11789 case CPP_NAME:
11790 case CPP_SCOPE:
11791 /* In these cases, we should look for template-ids.
11792 For example, if the default argument is
11793 `X<int, double>()', we need to do name lookup to
11794 figure out whether or not `X' is a template; if
11795 so, the `,' does not end the default argument.
11796
11797 That is not yet done. */
11798 break;
11799
11800 default:
11801 break;
11802 }
11803
11804 /* If we've reached the end, stop. */
11805 if (done)
11806 break;
11807
11808 /* Add the token to the token block. */
11809 token = cp_lexer_consume_token (parser->lexer);
11810 }
11811
11812 /* Create a DEFAULT_ARG to represented the unparsed default
11813 argument. */
11814 default_argument = make_node (DEFAULT_ARG);
11815 DEFARG_TOKENS (default_argument)
11816 = cp_token_cache_new (first_token, token);
11817 }
11818 /* Outside of a class definition, we can just parse the
11819 assignment-expression. */
11820 else
11821 {
11822 bool saved_local_variables_forbidden_p;
11823
11824 /* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is
11825 set correctly. */
11826 saved_greater_than_is_operator_p
11827 = parser->greater_than_is_operator_p;
11828 parser->greater_than_is_operator_p = greater_than_is_operator_p;
11829 /* Local variable names (and the `this' keyword) may not
11830 appear in a default argument. */
11831 saved_local_variables_forbidden_p
11832 = parser->local_variables_forbidden_p;
11833 parser->local_variables_forbidden_p = true;
11834 /* Parse the assignment-expression. */
11835 default_argument = cp_parser_assignment_expression (parser);
11836 /* Restore saved state. */
11837 parser->greater_than_is_operator_p
11838 = saved_greater_than_is_operator_p;
11839 parser->local_variables_forbidden_p
11840 = saved_local_variables_forbidden_p;
11841 }
11842 if (!parser->default_arg_ok_p)
11843 {
11844 if (!flag_pedantic_errors)
11845 warning ("deprecated use of default argument for parameter of non-function");
11846 else
11847 {
11848 error ("default arguments are only permitted for function parameters");
11849 default_argument = NULL_TREE;
11850 }
11851 }
11852 }
11853 else
11854 default_argument = NULL_TREE;
11855
11856 return make_parameter_declarator (&decl_specifiers,
11857 declarator,
11858 default_argument);
11859 }
11860
11861 /* Parse a function-body.
11862
11863 function-body:
11864 compound_statement */
11865
11866 static void
11867 cp_parser_function_body (cp_parser *parser)
11868 {
11869 cp_parser_compound_statement (parser, NULL, false);
11870 }
11871
11872 /* Parse a ctor-initializer-opt followed by a function-body. Return
11873 true if a ctor-initializer was present. */
11874
11875 static bool
11876 cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser)
11877 {
11878 tree body;
11879 bool ctor_initializer_p;
11880
11881 /* Begin the function body. */
11882 body = begin_function_body ();
11883 /* Parse the optional ctor-initializer. */
11884 ctor_initializer_p = cp_parser_ctor_initializer_opt (parser);
11885 /* Parse the function-body. */
11886 cp_parser_function_body (parser);
11887 /* Finish the function body. */
11888 finish_function_body (body);
11889
11890 return ctor_initializer_p;
11891 }
11892
11893 /* Parse an initializer.
11894
11895 initializer:
11896 = initializer-clause
11897 ( expression-list )
11898
11899 Returns a expression representing the initializer. If no
11900 initializer is present, NULL_TREE is returned.
11901
11902 *IS_PARENTHESIZED_INIT is set to TRUE if the `( expression-list )'
11903 production is used, and zero otherwise. *IS_PARENTHESIZED_INIT is
11904 set to FALSE if there is no initializer present. If there is an
11905 initializer, and it is not a constant-expression, *NON_CONSTANT_P
11906 is set to true; otherwise it is set to false. */
11907
11908 static tree
11909 cp_parser_initializer (cp_parser* parser, bool* is_parenthesized_init,
11910 bool* non_constant_p)
11911 {
11912 cp_token *token;
11913 tree init;
11914
11915 /* Peek at the next token. */
11916 token = cp_lexer_peek_token (parser->lexer);
11917
11918 /* Let our caller know whether or not this initializer was
11919 parenthesized. */
11920 *is_parenthesized_init = (token->type == CPP_OPEN_PAREN);
11921 /* Assume that the initializer is constant. */
11922 *non_constant_p = false;
11923
11924 if (token->type == CPP_EQ)
11925 {
11926 /* Consume the `='. */
11927 cp_lexer_consume_token (parser->lexer);
11928 /* Parse the initializer-clause. */
11929 init = cp_parser_initializer_clause (parser, non_constant_p);
11930 }
11931 else if (token->type == CPP_OPEN_PAREN)
11932 init = cp_parser_parenthesized_expression_list (parser, false,
11933 non_constant_p);
11934 else
11935 {
11936 /* Anything else is an error. */
11937 cp_parser_error (parser, "expected initializer");
11938 init = error_mark_node;
11939 }
11940
11941 return init;
11942 }
11943
11944 /* Parse an initializer-clause.
11945
11946 initializer-clause:
11947 assignment-expression
11948 { initializer-list , [opt] }
11949 { }
11950
11951 Returns an expression representing the initializer.
11952
11953 If the `assignment-expression' production is used the value
11954 returned is simply a representation for the expression.
11955
11956 Otherwise, a CONSTRUCTOR is returned. The CONSTRUCTOR_ELTS will be
11957 the elements of the initializer-list (or NULL_TREE, if the last
11958 production is used). The TREE_TYPE for the CONSTRUCTOR will be
11959 NULL_TREE. There is no way to detect whether or not the optional
11960 trailing `,' was provided. NON_CONSTANT_P is as for
11961 cp_parser_initializer. */
11962
11963 static tree
11964 cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p)
11965 {
11966 tree initializer;
11967
11968 /* If it is not a `{', then we are looking at an
11969 assignment-expression. */
11970 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
11971 {
11972 initializer
11973 = cp_parser_constant_expression (parser,
11974 /*allow_non_constant_p=*/true,
11975 non_constant_p);
11976 if (!*non_constant_p)
11977 initializer = fold_non_dependent_expr (initializer);
11978 }
11979 else
11980 {
11981 /* Consume the `{' token. */
11982 cp_lexer_consume_token (parser->lexer);
11983 /* Create a CONSTRUCTOR to represent the braced-initializer. */
11984 initializer = make_node (CONSTRUCTOR);
11985 /* If it's not a `}', then there is a non-trivial initializer. */
11986 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
11987 {
11988 /* Parse the initializer list. */
11989 CONSTRUCTOR_ELTS (initializer)
11990 = cp_parser_initializer_list (parser, non_constant_p);
11991 /* A trailing `,' token is allowed. */
11992 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
11993 cp_lexer_consume_token (parser->lexer);
11994 }
11995 /* Now, there should be a trailing `}'. */
11996 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
11997 }
11998
11999 return initializer;
12000 }
12001
12002 /* Parse an initializer-list.
12003
12004 initializer-list:
12005 initializer-clause
12006 initializer-list , initializer-clause
12007
12008 GNU Extension:
12009
12010 initializer-list:
12011 identifier : initializer-clause
12012 initializer-list, identifier : initializer-clause
12013
12014 Returns a TREE_LIST. The TREE_VALUE of each node is an expression
12015 for the initializer. If the TREE_PURPOSE is non-NULL, it is the
12016 IDENTIFIER_NODE naming the field to initialize. NON_CONSTANT_P is
12017 as for cp_parser_initializer. */
12018
12019 static tree
12020 cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p)
12021 {
12022 tree initializers = NULL_TREE;
12023
12024 /* Assume all of the expressions are constant. */
12025 *non_constant_p = false;
12026
12027 /* Parse the rest of the list. */
12028 while (true)
12029 {
12030 cp_token *token;
12031 tree identifier;
12032 tree initializer;
12033 bool clause_non_constant_p;
12034
12035 /* If the next token is an identifier and the following one is a
12036 colon, we are looking at the GNU designated-initializer
12037 syntax. */
12038 if (cp_parser_allow_gnu_extensions_p (parser)
12039 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
12040 && cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
12041 {
12042 /* Consume the identifier. */
12043 identifier = cp_lexer_consume_token (parser->lexer)->value;
12044 /* Consume the `:'. */
12045 cp_lexer_consume_token (parser->lexer);
12046 }
12047 else
12048 identifier = NULL_TREE;
12049
12050 /* Parse the initializer. */
12051 initializer = cp_parser_initializer_clause (parser,
12052 &clause_non_constant_p);
12053 /* If any clause is non-constant, so is the entire initializer. */
12054 if (clause_non_constant_p)
12055 *non_constant_p = true;
12056 /* Add it to the list. */
12057 initializers = tree_cons (identifier, initializer, initializers);
12058
12059 /* If the next token is not a comma, we have reached the end of
12060 the list. */
12061 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
12062 break;
12063
12064 /* Peek at the next token. */
12065 token = cp_lexer_peek_nth_token (parser->lexer, 2);
12066 /* If the next token is a `}', then we're still done. An
12067 initializer-clause can have a trailing `,' after the
12068 initializer-list and before the closing `}'. */
12069 if (token->type == CPP_CLOSE_BRACE)
12070 break;
12071
12072 /* Consume the `,' token. */
12073 cp_lexer_consume_token (parser->lexer);
12074 }
12075
12076 /* The initializers were built up in reverse order, so we need to
12077 reverse them now. */
12078 return nreverse (initializers);
12079 }
12080
12081 /* Classes [gram.class] */
12082
12083 /* Parse a class-name.
12084
12085 class-name:
12086 identifier
12087 template-id
12088
12089 TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used
12090 to indicate that names looked up in dependent types should be
12091 assumed to be types. TEMPLATE_KEYWORD_P is true iff the `template'
12092 keyword has been used to indicate that the name that appears next
12093 is a template. TYPE_P is true iff the next name should be treated
12094 as class-name, even if it is declared to be some other kind of name
12095 as well. If CHECK_DEPENDENCY_P is FALSE, names are looked up in
12096 dependent scopes. If CLASS_HEAD_P is TRUE, this class is the class
12097 being defined in a class-head.
12098
12099 Returns the TYPE_DECL representing the class. */
12100
12101 static tree
12102 cp_parser_class_name (cp_parser *parser,
12103 bool typename_keyword_p,
12104 bool template_keyword_p,
12105 bool type_p,
12106 bool check_dependency_p,
12107 bool class_head_p,
12108 bool is_declaration)
12109 {
12110 tree decl;
12111 tree scope;
12112 bool typename_p;
12113 cp_token *token;
12114
12115 /* All class-names start with an identifier. */
12116 token = cp_lexer_peek_token (parser->lexer);
12117 if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID)
12118 {
12119 cp_parser_error (parser, "expected class-name");
12120 return error_mark_node;
12121 }
12122
12123 /* PARSER->SCOPE can be cleared when parsing the template-arguments
12124 to a template-id, so we save it here. */
12125 scope = parser->scope;
12126 if (scope == error_mark_node)
12127 return error_mark_node;
12128
12129 /* Any name names a type if we're following the `typename' keyword
12130 in a qualified name where the enclosing scope is type-dependent. */
12131 typename_p = (typename_keyword_p && scope && TYPE_P (scope)
12132 && dependent_type_p (scope));
12133 /* Handle the common case (an identifier, but not a template-id)
12134 efficiently. */
12135 if (token->type == CPP_NAME
12136 && !cp_parser_nth_token_starts_template_argument_list_p (parser, 2))
12137 {
12138 tree identifier;
12139
12140 /* Look for the identifier. */
12141 identifier = cp_parser_identifier (parser);
12142 /* If the next token isn't an identifier, we are certainly not
12143 looking at a class-name. */
12144 if (identifier == error_mark_node)
12145 decl = error_mark_node;
12146 /* If we know this is a type-name, there's no need to look it
12147 up. */
12148 else if (typename_p)
12149 decl = identifier;
12150 else
12151 {
12152 /* If the next token is a `::', then the name must be a type
12153 name.
12154
12155 [basic.lookup.qual]
12156
12157 During the lookup for a name preceding the :: scope
12158 resolution operator, object, function, and enumerator
12159 names are ignored. */
12160 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12161 type_p = true;
12162 /* Look up the name. */
12163 decl = cp_parser_lookup_name (parser, identifier,
12164 type_p,
12165 /*is_template=*/false,
12166 /*is_namespace=*/false,
12167 check_dependency_p,
12168 /*ambiguous_p=*/NULL);
12169 }
12170 }
12171 else
12172 {
12173 /* Try a template-id. */
12174 decl = cp_parser_template_id (parser, template_keyword_p,
12175 check_dependency_p,
12176 is_declaration);
12177 if (decl == error_mark_node)
12178 return error_mark_node;
12179 }
12180
12181 decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p);
12182
12183 /* If this is a typename, create a TYPENAME_TYPE. */
12184 if (typename_p && decl != error_mark_node)
12185 {
12186 decl = make_typename_type (scope, decl, /*complain=*/1);
12187 if (decl != error_mark_node)
12188 decl = TYPE_NAME (decl);
12189 }
12190
12191 /* Check to see that it is really the name of a class. */
12192 if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
12193 && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE
12194 && cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12195 /* Situations like this:
12196
12197 template <typename T> struct A {
12198 typename T::template X<int>::I i;
12199 };
12200
12201 are problematic. Is `T::template X<int>' a class-name? The
12202 standard does not seem to be definitive, but there is no other
12203 valid interpretation of the following `::'. Therefore, those
12204 names are considered class-names. */
12205 decl = TYPE_NAME (make_typename_type (scope, decl, tf_error));
12206 else if (decl == error_mark_node
12207 || TREE_CODE (decl) != TYPE_DECL
12208 || !IS_AGGR_TYPE (TREE_TYPE (decl)))
12209 {
12210 cp_parser_error (parser, "expected class-name");
12211 return error_mark_node;
12212 }
12213
12214 return decl;
12215 }
12216
12217 /* Parse a class-specifier.
12218
12219 class-specifier:
12220 class-head { member-specification [opt] }
12221
12222 Returns the TREE_TYPE representing the class. */
12223
12224 static tree
12225 cp_parser_class_specifier (cp_parser* parser)
12226 {
12227 cp_token *token;
12228 tree type;
12229 tree attributes = NULL_TREE;
12230 int has_trailing_semicolon;
12231 bool nested_name_specifier_p;
12232 unsigned saved_num_template_parameter_lists;
12233 bool pop_p = false;
12234 tree scope = NULL_TREE;
12235
12236 push_deferring_access_checks (dk_no_deferred);
12237
12238 /* Parse the class-head. */
12239 type = cp_parser_class_head (parser,
12240 &nested_name_specifier_p,
12241 &attributes);
12242 /* If the class-head was a semantic disaster, skip the entire body
12243 of the class. */
12244 if (!type)
12245 {
12246 cp_parser_skip_to_end_of_block_or_statement (parser);
12247 pop_deferring_access_checks ();
12248 return error_mark_node;
12249 }
12250
12251 /* Look for the `{'. */
12252 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
12253 {
12254 pop_deferring_access_checks ();
12255 return error_mark_node;
12256 }
12257
12258 /* Issue an error message if type-definitions are forbidden here. */
12259 cp_parser_check_type_definition (parser);
12260 /* Remember that we are defining one more class. */
12261 ++parser->num_classes_being_defined;
12262 /* Inside the class, surrounding template-parameter-lists do not
12263 apply. */
12264 saved_num_template_parameter_lists
12265 = parser->num_template_parameter_lists;
12266 parser->num_template_parameter_lists = 0;
12267
12268 /* Start the class. */
12269 if (nested_name_specifier_p)
12270 {
12271 scope = CP_DECL_CONTEXT (TYPE_MAIN_DECL (type));
12272 pop_p = push_scope (scope);
12273 }
12274 type = begin_class_definition (type);
12275
12276 if (type == error_mark_node)
12277 /* If the type is erroneous, skip the entire body of the class. */
12278 cp_parser_skip_to_closing_brace (parser);
12279 else
12280 /* Parse the member-specification. */
12281 cp_parser_member_specification_opt (parser);
12282
12283 /* Look for the trailing `}'. */
12284 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12285 /* We get better error messages by noticing a common problem: a
12286 missing trailing `;'. */
12287 token = cp_lexer_peek_token (parser->lexer);
12288 has_trailing_semicolon = (token->type == CPP_SEMICOLON);
12289 /* Look for trailing attributes to apply to this class. */
12290 if (cp_parser_allow_gnu_extensions_p (parser))
12291 {
12292 tree sub_attr = cp_parser_attributes_opt (parser);
12293 attributes = chainon (attributes, sub_attr);
12294 }
12295 if (type != error_mark_node)
12296 type = finish_struct (type, attributes);
12297 if (pop_p)
12298 pop_scope (scope);
12299 /* If this class is not itself within the scope of another class,
12300 then we need to parse the bodies of all of the queued function
12301 definitions. Note that the queued functions defined in a class
12302 are not always processed immediately following the
12303 class-specifier for that class. Consider:
12304
12305 struct A {
12306 struct B { void f() { sizeof (A); } };
12307 };
12308
12309 If `f' were processed before the processing of `A' were
12310 completed, there would be no way to compute the size of `A'.
12311 Note that the nesting we are interested in here is lexical --
12312 not the semantic nesting given by TYPE_CONTEXT. In particular,
12313 for:
12314
12315 struct A { struct B; };
12316 struct A::B { void f() { } };
12317
12318 there is no need to delay the parsing of `A::B::f'. */
12319 if (--parser->num_classes_being_defined == 0)
12320 {
12321 tree queue_entry;
12322 tree fn;
12323 tree class_type;
12324 bool pop_p;
12325
12326 /* In a first pass, parse default arguments to the functions.
12327 Then, in a second pass, parse the bodies of the functions.
12328 This two-phased approach handles cases like:
12329
12330 struct S {
12331 void f() { g(); }
12332 void g(int i = 3);
12333 };
12334
12335 */
12336 class_type = NULL_TREE;
12337 pop_p = false;
12338 for (TREE_PURPOSE (parser->unparsed_functions_queues)
12339 = nreverse (TREE_PURPOSE (parser->unparsed_functions_queues));
12340 (queue_entry = TREE_PURPOSE (parser->unparsed_functions_queues));
12341 TREE_PURPOSE (parser->unparsed_functions_queues)
12342 = TREE_CHAIN (TREE_PURPOSE (parser->unparsed_functions_queues)))
12343 {
12344 fn = TREE_VALUE (queue_entry);
12345 /* If there are default arguments that have not yet been processed,
12346 take care of them now. */
12347 if (class_type != TREE_PURPOSE (queue_entry))
12348 {
12349 if (pop_p)
12350 pop_scope (class_type);
12351 class_type = TREE_PURPOSE (queue_entry);
12352 pop_p = push_scope (class_type);
12353 }
12354 /* Make sure that any template parameters are in scope. */
12355 maybe_begin_member_template_processing (fn);
12356 /* Parse the default argument expressions. */
12357 cp_parser_late_parsing_default_args (parser, fn);
12358 /* Remove any template parameters from the symbol table. */
12359 maybe_end_member_template_processing ();
12360 }
12361 if (pop_p)
12362 pop_scope (class_type);
12363 /* Now parse the body of the functions. */
12364 for (TREE_VALUE (parser->unparsed_functions_queues)
12365 = nreverse (TREE_VALUE (parser->unparsed_functions_queues));
12366 (queue_entry = TREE_VALUE (parser->unparsed_functions_queues));
12367 TREE_VALUE (parser->unparsed_functions_queues)
12368 = TREE_CHAIN (TREE_VALUE (parser->unparsed_functions_queues)))
12369 {
12370 /* Figure out which function we need to process. */
12371 fn = TREE_VALUE (queue_entry);
12372
12373 /* A hack to prevent garbage collection. */
12374 function_depth++;
12375
12376 /* Parse the function. */
12377 cp_parser_late_parsing_for_member (parser, fn);
12378 function_depth--;
12379 }
12380 }
12381
12382 /* Put back any saved access checks. */
12383 pop_deferring_access_checks ();
12384
12385 /* Restore the count of active template-parameter-lists. */
12386 parser->num_template_parameter_lists
12387 = saved_num_template_parameter_lists;
12388
12389 return type;
12390 }
12391
12392 /* Parse a class-head.
12393
12394 class-head:
12395 class-key identifier [opt] base-clause [opt]
12396 class-key nested-name-specifier identifier base-clause [opt]
12397 class-key nested-name-specifier [opt] template-id
12398 base-clause [opt]
12399
12400 GNU Extensions:
12401 class-key attributes identifier [opt] base-clause [opt]
12402 class-key attributes nested-name-specifier identifier base-clause [opt]
12403 class-key attributes nested-name-specifier [opt] template-id
12404 base-clause [opt]
12405
12406 Returns the TYPE of the indicated class. Sets
12407 *NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions
12408 involving a nested-name-specifier was used, and FALSE otherwise.
12409
12410 Returns NULL_TREE if the class-head is syntactically valid, but
12411 semantically invalid in a way that means we should skip the entire
12412 body of the class. */
12413
12414 static tree
12415 cp_parser_class_head (cp_parser* parser,
12416 bool* nested_name_specifier_p,
12417 tree *attributes_p)
12418 {
12419 tree nested_name_specifier;
12420 enum tag_types class_key;
12421 tree id = NULL_TREE;
12422 tree type = NULL_TREE;
12423 tree attributes;
12424 bool template_id_p = false;
12425 bool qualified_p = false;
12426 bool invalid_nested_name_p = false;
12427 bool invalid_explicit_specialization_p = false;
12428 bool pop_p = false;
12429 unsigned num_templates;
12430 tree bases;
12431
12432 /* Assume no nested-name-specifier will be present. */
12433 *nested_name_specifier_p = false;
12434 /* Assume no template parameter lists will be used in defining the
12435 type. */
12436 num_templates = 0;
12437
12438 /* Look for the class-key. */
12439 class_key = cp_parser_class_key (parser);
12440 if (class_key == none_type)
12441 return error_mark_node;
12442
12443 /* Parse the attributes. */
12444 attributes = cp_parser_attributes_opt (parser);
12445
12446 /* If the next token is `::', that is invalid -- but sometimes
12447 people do try to write:
12448
12449 struct ::S {};
12450
12451 Handle this gracefully by accepting the extra qualifier, and then
12452 issuing an error about it later if this really is a
12453 class-head. If it turns out just to be an elaborated type
12454 specifier, remain silent. */
12455 if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false))
12456 qualified_p = true;
12457
12458 push_deferring_access_checks (dk_no_check);
12459
12460 /* Determine the name of the class. Begin by looking for an
12461 optional nested-name-specifier. */
12462 nested_name_specifier
12463 = cp_parser_nested_name_specifier_opt (parser,
12464 /*typename_keyword_p=*/false,
12465 /*check_dependency_p=*/false,
12466 /*type_p=*/false,
12467 /*is_declaration=*/false);
12468 /* If there was a nested-name-specifier, then there *must* be an
12469 identifier. */
12470 if (nested_name_specifier)
12471 {
12472 /* Although the grammar says `identifier', it really means
12473 `class-name' or `template-name'. You are only allowed to
12474 define a class that has already been declared with this
12475 syntax.
12476
12477 The proposed resolution for Core Issue 180 says that whever
12478 you see `class T::X' you should treat `X' as a type-name.
12479
12480 It is OK to define an inaccessible class; for example:
12481
12482 class A { class B; };
12483 class A::B {};
12484
12485 We do not know if we will see a class-name, or a
12486 template-name. We look for a class-name first, in case the
12487 class-name is a template-id; if we looked for the
12488 template-name first we would stop after the template-name. */
12489 cp_parser_parse_tentatively (parser);
12490 type = cp_parser_class_name (parser,
12491 /*typename_keyword_p=*/false,
12492 /*template_keyword_p=*/false,
12493 /*type_p=*/true,
12494 /*check_dependency_p=*/false,
12495 /*class_head_p=*/true,
12496 /*is_declaration=*/false);
12497 /* If that didn't work, ignore the nested-name-specifier. */
12498 if (!cp_parser_parse_definitely (parser))
12499 {
12500 invalid_nested_name_p = true;
12501 id = cp_parser_identifier (parser);
12502 if (id == error_mark_node)
12503 id = NULL_TREE;
12504 }
12505 /* If we could not find a corresponding TYPE, treat this
12506 declaration like an unqualified declaration. */
12507 if (type == error_mark_node)
12508 nested_name_specifier = NULL_TREE;
12509 /* Otherwise, count the number of templates used in TYPE and its
12510 containing scopes. */
12511 else
12512 {
12513 tree scope;
12514
12515 for (scope = TREE_TYPE (type);
12516 scope && TREE_CODE (scope) != NAMESPACE_DECL;
12517 scope = (TYPE_P (scope)
12518 ? TYPE_CONTEXT (scope)
12519 : DECL_CONTEXT (scope)))
12520 if (TYPE_P (scope)
12521 && CLASS_TYPE_P (scope)
12522 && CLASSTYPE_TEMPLATE_INFO (scope)
12523 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))
12524 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (scope))
12525 ++num_templates;
12526 }
12527 }
12528 /* Otherwise, the identifier is optional. */
12529 else
12530 {
12531 /* We don't know whether what comes next is a template-id,
12532 an identifier, or nothing at all. */
12533 cp_parser_parse_tentatively (parser);
12534 /* Check for a template-id. */
12535 id = cp_parser_template_id (parser,
12536 /*template_keyword_p=*/false,
12537 /*check_dependency_p=*/true,
12538 /*is_declaration=*/true);
12539 /* If that didn't work, it could still be an identifier. */
12540 if (!cp_parser_parse_definitely (parser))
12541 {
12542 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
12543 id = cp_parser_identifier (parser);
12544 else
12545 id = NULL_TREE;
12546 }
12547 else
12548 {
12549 template_id_p = true;
12550 ++num_templates;
12551 }
12552 }
12553
12554 pop_deferring_access_checks ();
12555
12556 if (id)
12557 cp_parser_check_for_invalid_template_id (parser, id);
12558
12559 /* If it's not a `:' or a `{' then we can't really be looking at a
12560 class-head, since a class-head only appears as part of a
12561 class-specifier. We have to detect this situation before calling
12562 xref_tag, since that has irreversible side-effects. */
12563 if (!cp_parser_next_token_starts_class_definition_p (parser))
12564 {
12565 cp_parser_error (parser, "expected %<{%> or %<:%>");
12566 return error_mark_node;
12567 }
12568
12569 /* At this point, we're going ahead with the class-specifier, even
12570 if some other problem occurs. */
12571 cp_parser_commit_to_tentative_parse (parser);
12572 /* Issue the error about the overly-qualified name now. */
12573 if (qualified_p)
12574 cp_parser_error (parser,
12575 "global qualification of class name is invalid");
12576 else if (invalid_nested_name_p)
12577 cp_parser_error (parser,
12578 "qualified name does not name a class");
12579 else if (nested_name_specifier)
12580 {
12581 tree scope;
12582 /* Figure out in what scope the declaration is being placed. */
12583 scope = current_scope ();
12584 if (!scope)
12585 scope = current_namespace;
12586 /* If that scope does not contain the scope in which the
12587 class was originally declared, the program is invalid. */
12588 if (scope && !is_ancestor (scope, nested_name_specifier))
12589 {
12590 error ("declaration of %qD in %qD which does not enclose %qD",
12591 type, scope, nested_name_specifier);
12592 type = NULL_TREE;
12593 goto done;
12594 }
12595 /* [dcl.meaning]
12596
12597 A declarator-id shall not be qualified exception of the
12598 definition of a ... nested class outside of its class
12599 ... [or] a the definition or explicit instantiation of a
12600 class member of a namespace outside of its namespace. */
12601 if (scope == nested_name_specifier)
12602 {
12603 pedwarn ("extra qualification ignored");
12604 nested_name_specifier = NULL_TREE;
12605 num_templates = 0;
12606 }
12607 }
12608 /* An explicit-specialization must be preceded by "template <>". If
12609 it is not, try to recover gracefully. */
12610 if (at_namespace_scope_p ()
12611 && parser->num_template_parameter_lists == 0
12612 && template_id_p)
12613 {
12614 error ("an explicit specialization must be preceded by %<template <>%>");
12615 invalid_explicit_specialization_p = true;
12616 /* Take the same action that would have been taken by
12617 cp_parser_explicit_specialization. */
12618 ++parser->num_template_parameter_lists;
12619 begin_specialization ();
12620 }
12621 /* There must be no "return" statements between this point and the
12622 end of this function; set "type "to the correct return value and
12623 use "goto done;" to return. */
12624 /* Make sure that the right number of template parameters were
12625 present. */
12626 if (!cp_parser_check_template_parameters (parser, num_templates))
12627 {
12628 /* If something went wrong, there is no point in even trying to
12629 process the class-definition. */
12630 type = NULL_TREE;
12631 goto done;
12632 }
12633
12634 /* Look up the type. */
12635 if (template_id_p)
12636 {
12637 type = TREE_TYPE (id);
12638 maybe_process_partial_specialization (type);
12639 }
12640 else if (!nested_name_specifier)
12641 {
12642 /* If the class was unnamed, create a dummy name. */
12643 if (!id)
12644 id = make_anon_name ();
12645 type = xref_tag (class_key, id, /*globalize=*/false,
12646 parser->num_template_parameter_lists);
12647 }
12648 else
12649 {
12650 tree class_type;
12651 bool pop_p = false;
12652
12653 /* Given:
12654
12655 template <typename T> struct S { struct T };
12656 template <typename T> struct S<T>::T { };
12657
12658 we will get a TYPENAME_TYPE when processing the definition of
12659 `S::T'. We need to resolve it to the actual type before we
12660 try to define it. */
12661 if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE)
12662 {
12663 class_type = resolve_typename_type (TREE_TYPE (type),
12664 /*only_current_p=*/false);
12665 if (class_type != error_mark_node)
12666 type = TYPE_NAME (class_type);
12667 else
12668 {
12669 cp_parser_error (parser, "could not resolve typename type");
12670 type = error_mark_node;
12671 }
12672 }
12673
12674 maybe_process_partial_specialization (TREE_TYPE (type));
12675 class_type = current_class_type;
12676 /* Enter the scope indicated by the nested-name-specifier. */
12677 if (nested_name_specifier)
12678 pop_p = push_scope (nested_name_specifier);
12679 /* Get the canonical version of this type. */
12680 type = TYPE_MAIN_DECL (TREE_TYPE (type));
12681 if (PROCESSING_REAL_TEMPLATE_DECL_P ()
12682 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type)))
12683 type = push_template_decl (type);
12684 type = TREE_TYPE (type);
12685 if (nested_name_specifier)
12686 {
12687 *nested_name_specifier_p = true;
12688 if (pop_p)
12689 pop_scope (nested_name_specifier);
12690 }
12691 }
12692 /* Indicate whether this class was declared as a `class' or as a
12693 `struct'. */
12694 if (TREE_CODE (type) == RECORD_TYPE)
12695 CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type);
12696 cp_parser_check_class_key (class_key, type);
12697
12698 /* Enter the scope containing the class; the names of base classes
12699 should be looked up in that context. For example, given:
12700
12701 struct A { struct B {}; struct C; };
12702 struct A::C : B {};
12703
12704 is valid. */
12705 if (nested_name_specifier)
12706 pop_p = push_scope (nested_name_specifier);
12707
12708 bases = NULL_TREE;
12709
12710 /* Get the list of base-classes, if there is one. */
12711 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
12712 bases = cp_parser_base_clause (parser);
12713
12714 /* Process the base classes. */
12715 xref_basetypes (type, bases);
12716
12717 /* Leave the scope given by the nested-name-specifier. We will
12718 enter the class scope itself while processing the members. */
12719 if (pop_p)
12720 pop_scope (nested_name_specifier);
12721
12722 done:
12723 if (invalid_explicit_specialization_p)
12724 {
12725 end_specialization ();
12726 --parser->num_template_parameter_lists;
12727 }
12728 *attributes_p = attributes;
12729 return type;
12730 }
12731
12732 /* Parse a class-key.
12733
12734 class-key:
12735 class
12736 struct
12737 union
12738
12739 Returns the kind of class-key specified, or none_type to indicate
12740 error. */
12741
12742 static enum tag_types
12743 cp_parser_class_key (cp_parser* parser)
12744 {
12745 cp_token *token;
12746 enum tag_types tag_type;
12747
12748 /* Look for the class-key. */
12749 token = cp_parser_require (parser, CPP_KEYWORD, "class-key");
12750 if (!token)
12751 return none_type;
12752
12753 /* Check to see if the TOKEN is a class-key. */
12754 tag_type = cp_parser_token_is_class_key (token);
12755 if (!tag_type)
12756 cp_parser_error (parser, "expected class-key");
12757 return tag_type;
12758 }
12759
12760 /* Parse an (optional) member-specification.
12761
12762 member-specification:
12763 member-declaration member-specification [opt]
12764 access-specifier : member-specification [opt] */
12765
12766 static void
12767 cp_parser_member_specification_opt (cp_parser* parser)
12768 {
12769 while (true)
12770 {
12771 cp_token *token;
12772 enum rid keyword;
12773
12774 /* Peek at the next token. */
12775 token = cp_lexer_peek_token (parser->lexer);
12776 /* If it's a `}', or EOF then we've seen all the members. */
12777 if (token->type == CPP_CLOSE_BRACE || token->type == CPP_EOF)
12778 break;
12779
12780 /* See if this token is a keyword. */
12781 keyword = token->keyword;
12782 switch (keyword)
12783 {
12784 case RID_PUBLIC:
12785 case RID_PROTECTED:
12786 case RID_PRIVATE:
12787 /* Consume the access-specifier. */
12788 cp_lexer_consume_token (parser->lexer);
12789 /* Remember which access-specifier is active. */
12790 current_access_specifier = token->value;
12791 /* Look for the `:'. */
12792 cp_parser_require (parser, CPP_COLON, "`:'");
12793 break;
12794
12795 default:
12796 /* Accept #pragmas at class scope. */
12797 if (token->type == CPP_PRAGMA)
12798 {
12799 cp_lexer_handle_pragma (parser->lexer);
12800 break;
12801 }
12802
12803 /* Otherwise, the next construction must be a
12804 member-declaration. */
12805 cp_parser_member_declaration (parser);
12806 }
12807 }
12808 }
12809
12810 /* Parse a member-declaration.
12811
12812 member-declaration:
12813 decl-specifier-seq [opt] member-declarator-list [opt] ;
12814 function-definition ; [opt]
12815 :: [opt] nested-name-specifier template [opt] unqualified-id ;
12816 using-declaration
12817 template-declaration
12818
12819 member-declarator-list:
12820 member-declarator
12821 member-declarator-list , member-declarator
12822
12823 member-declarator:
12824 declarator pure-specifier [opt]
12825 declarator constant-initializer [opt]
12826 identifier [opt] : constant-expression
12827
12828 GNU Extensions:
12829
12830 member-declaration:
12831 __extension__ member-declaration
12832
12833 member-declarator:
12834 declarator attributes [opt] pure-specifier [opt]
12835 declarator attributes [opt] constant-initializer [opt]
12836 identifier [opt] attributes [opt] : constant-expression */
12837
12838 static void
12839 cp_parser_member_declaration (cp_parser* parser)
12840 {
12841 cp_decl_specifier_seq decl_specifiers;
12842 tree prefix_attributes;
12843 tree decl;
12844 int declares_class_or_enum;
12845 bool friend_p;
12846 cp_token *token;
12847 int saved_pedantic;
12848
12849 /* Check for the `__extension__' keyword. */
12850 if (cp_parser_extension_opt (parser, &saved_pedantic))
12851 {
12852 /* Recurse. */
12853 cp_parser_member_declaration (parser);
12854 /* Restore the old value of the PEDANTIC flag. */
12855 pedantic = saved_pedantic;
12856
12857 return;
12858 }
12859
12860 /* Check for a template-declaration. */
12861 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
12862 {
12863 /* Parse the template-declaration. */
12864 cp_parser_template_declaration (parser, /*member_p=*/true);
12865
12866 return;
12867 }
12868
12869 /* Check for a using-declaration. */
12870 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
12871 {
12872 /* Parse the using-declaration. */
12873 cp_parser_using_declaration (parser);
12874
12875 return;
12876 }
12877
12878 /* Parse the decl-specifier-seq. */
12879 cp_parser_decl_specifier_seq (parser,
12880 CP_PARSER_FLAGS_OPTIONAL,
12881 &decl_specifiers,
12882 &declares_class_or_enum);
12883 prefix_attributes = decl_specifiers.attributes;
12884 decl_specifiers.attributes = NULL_TREE;
12885 /* Check for an invalid type-name. */
12886 if (!decl_specifiers.type
12887 && cp_parser_parse_and_diagnose_invalid_type_name (parser))
12888 return;
12889 /* If there is no declarator, then the decl-specifier-seq should
12890 specify a type. */
12891 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
12892 {
12893 /* If there was no decl-specifier-seq, and the next token is a
12894 `;', then we have something like:
12895
12896 struct S { ; };
12897
12898 [class.mem]
12899
12900 Each member-declaration shall declare at least one member
12901 name of the class. */
12902 if (!decl_specifiers.any_specifiers_p)
12903 {
12904 cp_token *token = cp_lexer_peek_token (parser->lexer);
12905 if (pedantic && !token->in_system_header)
12906 pedwarn ("%Hextra %<;%>", &token->location);
12907 }
12908 else
12909 {
12910 tree type;
12911
12912 /* See if this declaration is a friend. */
12913 friend_p = cp_parser_friend_p (&decl_specifiers);
12914 /* If there were decl-specifiers, check to see if there was
12915 a class-declaration. */
12916 type = check_tag_decl (&decl_specifiers);
12917 /* Nested classes have already been added to the class, but
12918 a `friend' needs to be explicitly registered. */
12919 if (friend_p)
12920 {
12921 /* If the `friend' keyword was present, the friend must
12922 be introduced with a class-key. */
12923 if (!declares_class_or_enum)
12924 error ("a class-key must be used when declaring a friend");
12925 /* In this case:
12926
12927 template <typename T> struct A {
12928 friend struct A<T>::B;
12929 };
12930
12931 A<T>::B will be represented by a TYPENAME_TYPE, and
12932 therefore not recognized by check_tag_decl. */
12933 if (!type
12934 && decl_specifiers.type
12935 && TYPE_P (decl_specifiers.type))
12936 type = decl_specifiers.type;
12937 if (!type || !TYPE_P (type))
12938 error ("friend declaration does not name a class or "
12939 "function");
12940 else
12941 make_friend_class (current_class_type, type,
12942 /*complain=*/true);
12943 }
12944 /* If there is no TYPE, an error message will already have
12945 been issued. */
12946 else if (!type || type == error_mark_node)
12947 ;
12948 /* An anonymous aggregate has to be handled specially; such
12949 a declaration really declares a data member (with a
12950 particular type), as opposed to a nested class. */
12951 else if (ANON_AGGR_TYPE_P (type))
12952 {
12953 /* Remove constructors and such from TYPE, now that we
12954 know it is an anonymous aggregate. */
12955 fixup_anonymous_aggr (type);
12956 /* And make the corresponding data member. */
12957 decl = build_decl (FIELD_DECL, NULL_TREE, type);
12958 /* Add it to the class. */
12959 finish_member_declaration (decl);
12960 }
12961 else
12962 cp_parser_check_access_in_redeclaration (TYPE_NAME (type));
12963 }
12964 }
12965 else
12966 {
12967 /* See if these declarations will be friends. */
12968 friend_p = cp_parser_friend_p (&decl_specifiers);
12969
12970 /* Keep going until we hit the `;' at the end of the
12971 declaration. */
12972 while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
12973 {
12974 tree attributes = NULL_TREE;
12975 tree first_attribute;
12976
12977 /* Peek at the next token. */
12978 token = cp_lexer_peek_token (parser->lexer);
12979
12980 /* Check for a bitfield declaration. */
12981 if (token->type == CPP_COLON
12982 || (token->type == CPP_NAME
12983 && cp_lexer_peek_nth_token (parser->lexer, 2)->type
12984 == CPP_COLON))
12985 {
12986 tree identifier;
12987 tree width;
12988
12989 /* Get the name of the bitfield. Note that we cannot just
12990 check TOKEN here because it may have been invalidated by
12991 the call to cp_lexer_peek_nth_token above. */
12992 if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
12993 identifier = cp_parser_identifier (parser);
12994 else
12995 identifier = NULL_TREE;
12996
12997 /* Consume the `:' token. */
12998 cp_lexer_consume_token (parser->lexer);
12999 /* Get the width of the bitfield. */
13000 width
13001 = cp_parser_constant_expression (parser,
13002 /*allow_non_constant=*/false,
13003 NULL);
13004
13005 /* Look for attributes that apply to the bitfield. */
13006 attributes = cp_parser_attributes_opt (parser);
13007 /* Remember which attributes are prefix attributes and
13008 which are not. */
13009 first_attribute = attributes;
13010 /* Combine the attributes. */
13011 attributes = chainon (prefix_attributes, attributes);
13012
13013 /* Create the bitfield declaration. */
13014 decl = grokbitfield (identifier
13015 ? make_id_declarator (identifier)
13016 : NULL,
13017 &decl_specifiers,
13018 width);
13019 /* Apply the attributes. */
13020 cplus_decl_attributes (&decl, attributes, /*flags=*/0);
13021 }
13022 else
13023 {
13024 cp_declarator *declarator;
13025 tree initializer;
13026 tree asm_specification;
13027 int ctor_dtor_or_conv_p;
13028
13029 /* Parse the declarator. */
13030 declarator
13031 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
13032 &ctor_dtor_or_conv_p,
13033 /*parenthesized_p=*/NULL,
13034 /*member_p=*/true);
13035
13036 /* If something went wrong parsing the declarator, make sure
13037 that we at least consume some tokens. */
13038 if (declarator == cp_error_declarator)
13039 {
13040 /* Skip to the end of the statement. */
13041 cp_parser_skip_to_end_of_statement (parser);
13042 /* If the next token is not a semicolon, that is
13043 probably because we just skipped over the body of
13044 a function. So, we consume a semicolon if
13045 present, but do not issue an error message if it
13046 is not present. */
13047 if (cp_lexer_next_token_is (parser->lexer,
13048 CPP_SEMICOLON))
13049 cp_lexer_consume_token (parser->lexer);
13050 return;
13051 }
13052
13053 cp_parser_check_for_definition_in_return_type
13054 (declarator, declares_class_or_enum);
13055
13056 /* Look for an asm-specification. */
13057 asm_specification = cp_parser_asm_specification_opt (parser);
13058 /* Look for attributes that apply to the declaration. */
13059 attributes = cp_parser_attributes_opt (parser);
13060 /* Remember which attributes are prefix attributes and
13061 which are not. */
13062 first_attribute = attributes;
13063 /* Combine the attributes. */
13064 attributes = chainon (prefix_attributes, attributes);
13065
13066 /* If it's an `=', then we have a constant-initializer or a
13067 pure-specifier. It is not correct to parse the
13068 initializer before registering the member declaration
13069 since the member declaration should be in scope while
13070 its initializer is processed. However, the rest of the
13071 front end does not yet provide an interface that allows
13072 us to handle this correctly. */
13073 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
13074 {
13075 /* In [class.mem]:
13076
13077 A pure-specifier shall be used only in the declaration of
13078 a virtual function.
13079
13080 A member-declarator can contain a constant-initializer
13081 only if it declares a static member of integral or
13082 enumeration type.
13083
13084 Therefore, if the DECLARATOR is for a function, we look
13085 for a pure-specifier; otherwise, we look for a
13086 constant-initializer. When we call `grokfield', it will
13087 perform more stringent semantics checks. */
13088 if (declarator->kind == cdk_function)
13089 initializer = cp_parser_pure_specifier (parser);
13090 else
13091 /* Parse the initializer. */
13092 initializer = cp_parser_constant_initializer (parser);
13093 }
13094 /* Otherwise, there is no initializer. */
13095 else
13096 initializer = NULL_TREE;
13097
13098 /* See if we are probably looking at a function
13099 definition. We are certainly not looking at at a
13100 member-declarator. Calling `grokfield' has
13101 side-effects, so we must not do it unless we are sure
13102 that we are looking at a member-declarator. */
13103 if (cp_parser_token_starts_function_definition_p
13104 (cp_lexer_peek_token (parser->lexer)))
13105 {
13106 /* The grammar does not allow a pure-specifier to be
13107 used when a member function is defined. (It is
13108 possible that this fact is an oversight in the
13109 standard, since a pure function may be defined
13110 outside of the class-specifier. */
13111 if (initializer)
13112 error ("pure-specifier on function-definition");
13113 decl = cp_parser_save_member_function_body (parser,
13114 &decl_specifiers,
13115 declarator,
13116 attributes);
13117 /* If the member was not a friend, declare it here. */
13118 if (!friend_p)
13119 finish_member_declaration (decl);
13120 /* Peek at the next token. */
13121 token = cp_lexer_peek_token (parser->lexer);
13122 /* If the next token is a semicolon, consume it. */
13123 if (token->type == CPP_SEMICOLON)
13124 cp_lexer_consume_token (parser->lexer);
13125 return;
13126 }
13127 else
13128 {
13129 /* Create the declaration. */
13130 decl = grokfield (declarator, &decl_specifiers,
13131 initializer, asm_specification,
13132 attributes);
13133 /* Any initialization must have been from a
13134 constant-expression. */
13135 if (decl && TREE_CODE (decl) == VAR_DECL && initializer)
13136 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
13137 }
13138 }
13139
13140 /* Reset PREFIX_ATTRIBUTES. */
13141 while (attributes && TREE_CHAIN (attributes) != first_attribute)
13142 attributes = TREE_CHAIN (attributes);
13143 if (attributes)
13144 TREE_CHAIN (attributes) = NULL_TREE;
13145
13146 /* If there is any qualification still in effect, clear it
13147 now; we will be starting fresh with the next declarator. */
13148 parser->scope = NULL_TREE;
13149 parser->qualifying_scope = NULL_TREE;
13150 parser->object_scope = NULL_TREE;
13151 /* If it's a `,', then there are more declarators. */
13152 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
13153 cp_lexer_consume_token (parser->lexer);
13154 /* If the next token isn't a `;', then we have a parse error. */
13155 else if (cp_lexer_next_token_is_not (parser->lexer,
13156 CPP_SEMICOLON))
13157 {
13158 cp_parser_error (parser, "expected %<;%>");
13159 /* Skip tokens until we find a `;'. */
13160 cp_parser_skip_to_end_of_statement (parser);
13161
13162 break;
13163 }
13164
13165 if (decl)
13166 {
13167 /* Add DECL to the list of members. */
13168 if (!friend_p)
13169 finish_member_declaration (decl);
13170
13171 if (TREE_CODE (decl) == FUNCTION_DECL)
13172 cp_parser_save_default_args (parser, decl);
13173 }
13174 }
13175 }
13176
13177 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
13178 }
13179
13180 /* Parse a pure-specifier.
13181
13182 pure-specifier:
13183 = 0
13184
13185 Returns INTEGER_ZERO_NODE if a pure specifier is found.
13186 Otherwise, ERROR_MARK_NODE is returned. */
13187
13188 static tree
13189 cp_parser_pure_specifier (cp_parser* parser)
13190 {
13191 cp_token *token;
13192
13193 /* Look for the `=' token. */
13194 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13195 return error_mark_node;
13196 /* Look for the `0' token. */
13197 token = cp_parser_require (parser, CPP_NUMBER, "`0'");
13198 /* Unfortunately, this will accept `0L' and `0x00' as well. We need
13199 to get information from the lexer about how the number was
13200 spelled in order to fix this problem. */
13201 if (!token || !integer_zerop (token->value))
13202 return error_mark_node;
13203
13204 return integer_zero_node;
13205 }
13206
13207 /* Parse a constant-initializer.
13208
13209 constant-initializer:
13210 = constant-expression
13211
13212 Returns a representation of the constant-expression. */
13213
13214 static tree
13215 cp_parser_constant_initializer (cp_parser* parser)
13216 {
13217 /* Look for the `=' token. */
13218 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13219 return error_mark_node;
13220
13221 /* It is invalid to write:
13222
13223 struct S { static const int i = { 7 }; };
13224
13225 */
13226 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
13227 {
13228 cp_parser_error (parser,
13229 "a brace-enclosed initializer is not allowed here");
13230 /* Consume the opening brace. */
13231 cp_lexer_consume_token (parser->lexer);
13232 /* Skip the initializer. */
13233 cp_parser_skip_to_closing_brace (parser);
13234 /* Look for the trailing `}'. */
13235 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
13236
13237 return error_mark_node;
13238 }
13239
13240 return cp_parser_constant_expression (parser,
13241 /*allow_non_constant=*/false,
13242 NULL);
13243 }
13244
13245 /* Derived classes [gram.class.derived] */
13246
13247 /* Parse a base-clause.
13248
13249 base-clause:
13250 : base-specifier-list
13251
13252 base-specifier-list:
13253 base-specifier
13254 base-specifier-list , base-specifier
13255
13256 Returns a TREE_LIST representing the base-classes, in the order in
13257 which they were declared. The representation of each node is as
13258 described by cp_parser_base_specifier.
13259
13260 In the case that no bases are specified, this function will return
13261 NULL_TREE, not ERROR_MARK_NODE. */
13262
13263 static tree
13264 cp_parser_base_clause (cp_parser* parser)
13265 {
13266 tree bases = NULL_TREE;
13267
13268 /* Look for the `:' that begins the list. */
13269 cp_parser_require (parser, CPP_COLON, "`:'");
13270
13271 /* Scan the base-specifier-list. */
13272 while (true)
13273 {
13274 cp_token *token;
13275 tree base;
13276
13277 /* Look for the base-specifier. */
13278 base = cp_parser_base_specifier (parser);
13279 /* Add BASE to the front of the list. */
13280 if (base != error_mark_node)
13281 {
13282 TREE_CHAIN (base) = bases;
13283 bases = base;
13284 }
13285 /* Peek at the next token. */
13286 token = cp_lexer_peek_token (parser->lexer);
13287 /* If it's not a comma, then the list is complete. */
13288 if (token->type != CPP_COMMA)
13289 break;
13290 /* Consume the `,'. */
13291 cp_lexer_consume_token (parser->lexer);
13292 }
13293
13294 /* PARSER->SCOPE may still be non-NULL at this point, if the last
13295 base class had a qualified name. However, the next name that
13296 appears is certainly not qualified. */
13297 parser->scope = NULL_TREE;
13298 parser->qualifying_scope = NULL_TREE;
13299 parser->object_scope = NULL_TREE;
13300
13301 return nreverse (bases);
13302 }
13303
13304 /* Parse a base-specifier.
13305
13306 base-specifier:
13307 :: [opt] nested-name-specifier [opt] class-name
13308 virtual access-specifier [opt] :: [opt] nested-name-specifier
13309 [opt] class-name
13310 access-specifier virtual [opt] :: [opt] nested-name-specifier
13311 [opt] class-name
13312
13313 Returns a TREE_LIST. The TREE_PURPOSE will be one of
13314 ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to
13315 indicate the specifiers provided. The TREE_VALUE will be a TYPE
13316 (or the ERROR_MARK_NODE) indicating the type that was specified. */
13317
13318 static tree
13319 cp_parser_base_specifier (cp_parser* parser)
13320 {
13321 cp_token *token;
13322 bool done = false;
13323 bool virtual_p = false;
13324 bool duplicate_virtual_error_issued_p = false;
13325 bool duplicate_access_error_issued_p = false;
13326 bool class_scope_p, template_p;
13327 tree access = access_default_node;
13328 tree type;
13329
13330 /* Process the optional `virtual' and `access-specifier'. */
13331 while (!done)
13332 {
13333 /* Peek at the next token. */
13334 token = cp_lexer_peek_token (parser->lexer);
13335 /* Process `virtual'. */
13336 switch (token->keyword)
13337 {
13338 case RID_VIRTUAL:
13339 /* If `virtual' appears more than once, issue an error. */
13340 if (virtual_p && !duplicate_virtual_error_issued_p)
13341 {
13342 cp_parser_error (parser,
13343 "%<virtual%> specified more than once in base-specified");
13344 duplicate_virtual_error_issued_p = true;
13345 }
13346
13347 virtual_p = true;
13348
13349 /* Consume the `virtual' token. */
13350 cp_lexer_consume_token (parser->lexer);
13351
13352 break;
13353
13354 case RID_PUBLIC:
13355 case RID_PROTECTED:
13356 case RID_PRIVATE:
13357 /* If more than one access specifier appears, issue an
13358 error. */
13359 if (access != access_default_node
13360 && !duplicate_access_error_issued_p)
13361 {
13362 cp_parser_error (parser,
13363 "more than one access specifier in base-specified");
13364 duplicate_access_error_issued_p = true;
13365 }
13366
13367 access = ridpointers[(int) token->keyword];
13368
13369 /* Consume the access-specifier. */
13370 cp_lexer_consume_token (parser->lexer);
13371
13372 break;
13373
13374 default:
13375 done = true;
13376 break;
13377 }
13378 }
13379 /* It is not uncommon to see programs mechanically, erroneously, use
13380 the 'typename' keyword to denote (dependent) qualified types
13381 as base classes. */
13382 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
13383 {
13384 if (!processing_template_decl)
13385 error ("keyword %<typename%> not allowed outside of templates");
13386 else
13387 error ("keyword %<typename%> not allowed in this context "
13388 "(the base class is implicitly a type)");
13389 cp_lexer_consume_token (parser->lexer);
13390 }
13391
13392 /* Look for the optional `::' operator. */
13393 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
13394 /* Look for the nested-name-specifier. The simplest way to
13395 implement:
13396
13397 [temp.res]
13398
13399 The keyword `typename' is not permitted in a base-specifier or
13400 mem-initializer; in these contexts a qualified name that
13401 depends on a template-parameter is implicitly assumed to be a
13402 type name.
13403
13404 is to pretend that we have seen the `typename' keyword at this
13405 point. */
13406 cp_parser_nested_name_specifier_opt (parser,
13407 /*typename_keyword_p=*/true,
13408 /*check_dependency_p=*/true,
13409 /*type_p=*/true,
13410 /*is_declaration=*/true);
13411 /* If the base class is given by a qualified name, assume that names
13412 we see are type names or templates, as appropriate. */
13413 class_scope_p = (parser->scope && TYPE_P (parser->scope));
13414 template_p = class_scope_p && cp_parser_optional_template_keyword (parser);
13415
13416 /* Finally, look for the class-name. */
13417 type = cp_parser_class_name (parser,
13418 class_scope_p,
13419 template_p,
13420 /*type_p=*/true,
13421 /*check_dependency_p=*/true,
13422 /*class_head_p=*/false,
13423 /*is_declaration=*/true);
13424
13425 if (type == error_mark_node)
13426 return error_mark_node;
13427
13428 return finish_base_specifier (TREE_TYPE (type), access, virtual_p);
13429 }
13430
13431 /* Exception handling [gram.exception] */
13432
13433 /* Parse an (optional) exception-specification.
13434
13435 exception-specification:
13436 throw ( type-id-list [opt] )
13437
13438 Returns a TREE_LIST representing the exception-specification. The
13439 TREE_VALUE of each node is a type. */
13440
13441 static tree
13442 cp_parser_exception_specification_opt (cp_parser* parser)
13443 {
13444 cp_token *token;
13445 tree type_id_list;
13446
13447 /* Peek at the next token. */
13448 token = cp_lexer_peek_token (parser->lexer);
13449 /* If it's not `throw', then there's no exception-specification. */
13450 if (!cp_parser_is_keyword (token, RID_THROW))
13451 return NULL_TREE;
13452
13453 /* Consume the `throw'. */
13454 cp_lexer_consume_token (parser->lexer);
13455
13456 /* Look for the `('. */
13457 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13458
13459 /* Peek at the next token. */
13460 token = cp_lexer_peek_token (parser->lexer);
13461 /* If it's not a `)', then there is a type-id-list. */
13462 if (token->type != CPP_CLOSE_PAREN)
13463 {
13464 const char *saved_message;
13465
13466 /* Types may not be defined in an exception-specification. */
13467 saved_message = parser->type_definition_forbidden_message;
13468 parser->type_definition_forbidden_message
13469 = "types may not be defined in an exception-specification";
13470 /* Parse the type-id-list. */
13471 type_id_list = cp_parser_type_id_list (parser);
13472 /* Restore the saved message. */
13473 parser->type_definition_forbidden_message = saved_message;
13474 }
13475 else
13476 type_id_list = empty_except_spec;
13477
13478 /* Look for the `)'. */
13479 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13480
13481 return type_id_list;
13482 }
13483
13484 /* Parse an (optional) type-id-list.
13485
13486 type-id-list:
13487 type-id
13488 type-id-list , type-id
13489
13490 Returns a TREE_LIST. The TREE_VALUE of each node is a TYPE,
13491 in the order that the types were presented. */
13492
13493 static tree
13494 cp_parser_type_id_list (cp_parser* parser)
13495 {
13496 tree types = NULL_TREE;
13497
13498 while (true)
13499 {
13500 cp_token *token;
13501 tree type;
13502
13503 /* Get the next type-id. */
13504 type = cp_parser_type_id (parser);
13505 /* Add it to the list. */
13506 types = add_exception_specifier (types, type, /*complain=*/1);
13507 /* Peek at the next token. */
13508 token = cp_lexer_peek_token (parser->lexer);
13509 /* If it is not a `,', we are done. */
13510 if (token->type != CPP_COMMA)
13511 break;
13512 /* Consume the `,'. */
13513 cp_lexer_consume_token (parser->lexer);
13514 }
13515
13516 return nreverse (types);
13517 }
13518
13519 /* Parse a try-block.
13520
13521 try-block:
13522 try compound-statement handler-seq */
13523
13524 static tree
13525 cp_parser_try_block (cp_parser* parser)
13526 {
13527 tree try_block;
13528
13529 cp_parser_require_keyword (parser, RID_TRY, "`try'");
13530 try_block = begin_try_block ();
13531 cp_parser_compound_statement (parser, NULL, true);
13532 finish_try_block (try_block);
13533 cp_parser_handler_seq (parser);
13534 finish_handler_sequence (try_block);
13535
13536 return try_block;
13537 }
13538
13539 /* Parse a function-try-block.
13540
13541 function-try-block:
13542 try ctor-initializer [opt] function-body handler-seq */
13543
13544 static bool
13545 cp_parser_function_try_block (cp_parser* parser)
13546 {
13547 tree try_block;
13548 bool ctor_initializer_p;
13549
13550 /* Look for the `try' keyword. */
13551 if (!cp_parser_require_keyword (parser, RID_TRY, "`try'"))
13552 return false;
13553 /* Let the rest of the front-end know where we are. */
13554 try_block = begin_function_try_block ();
13555 /* Parse the function-body. */
13556 ctor_initializer_p
13557 = cp_parser_ctor_initializer_opt_and_function_body (parser);
13558 /* We're done with the `try' part. */
13559 finish_function_try_block (try_block);
13560 /* Parse the handlers. */
13561 cp_parser_handler_seq (parser);
13562 /* We're done with the handlers. */
13563 finish_function_handler_sequence (try_block);
13564
13565 return ctor_initializer_p;
13566 }
13567
13568 /* Parse a handler-seq.
13569
13570 handler-seq:
13571 handler handler-seq [opt] */
13572
13573 static void
13574 cp_parser_handler_seq (cp_parser* parser)
13575 {
13576 while (true)
13577 {
13578 cp_token *token;
13579
13580 /* Parse the handler. */
13581 cp_parser_handler (parser);
13582 /* Peek at the next token. */
13583 token = cp_lexer_peek_token (parser->lexer);
13584 /* If it's not `catch' then there are no more handlers. */
13585 if (!cp_parser_is_keyword (token, RID_CATCH))
13586 break;
13587 }
13588 }
13589
13590 /* Parse a handler.
13591
13592 handler:
13593 catch ( exception-declaration ) compound-statement */
13594
13595 static void
13596 cp_parser_handler (cp_parser* parser)
13597 {
13598 tree handler;
13599 tree declaration;
13600
13601 cp_parser_require_keyword (parser, RID_CATCH, "`catch'");
13602 handler = begin_handler ();
13603 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13604 declaration = cp_parser_exception_declaration (parser);
13605 finish_handler_parms (declaration, handler);
13606 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13607 cp_parser_compound_statement (parser, NULL, false);
13608 finish_handler (handler);
13609 }
13610
13611 /* Parse an exception-declaration.
13612
13613 exception-declaration:
13614 type-specifier-seq declarator
13615 type-specifier-seq abstract-declarator
13616 type-specifier-seq
13617 ...
13618
13619 Returns a VAR_DECL for the declaration, or NULL_TREE if the
13620 ellipsis variant is used. */
13621
13622 static tree
13623 cp_parser_exception_declaration (cp_parser* parser)
13624 {
13625 tree decl;
13626 cp_decl_specifier_seq type_specifiers;
13627 cp_declarator *declarator;
13628 const char *saved_message;
13629
13630 /* If it's an ellipsis, it's easy to handle. */
13631 if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
13632 {
13633 /* Consume the `...' token. */
13634 cp_lexer_consume_token (parser->lexer);
13635 return NULL_TREE;
13636 }
13637
13638 /* Types may not be defined in exception-declarations. */
13639 saved_message = parser->type_definition_forbidden_message;
13640 parser->type_definition_forbidden_message
13641 = "types may not be defined in exception-declarations";
13642
13643 /* Parse the type-specifier-seq. */
13644 cp_parser_type_specifier_seq (parser, &type_specifiers);
13645 /* If it's a `)', then there is no declarator. */
13646 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
13647 declarator = NULL;
13648 else
13649 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER,
13650 /*ctor_dtor_or_conv_p=*/NULL,
13651 /*parenthesized_p=*/NULL,
13652 /*member_p=*/false);
13653
13654 /* Restore the saved message. */
13655 parser->type_definition_forbidden_message = saved_message;
13656
13657 if (type_specifiers.any_specifiers_p)
13658 {
13659 decl = grokdeclarator (declarator, &type_specifiers, CATCHPARM, 1, NULL);
13660 if (decl == NULL_TREE)
13661 error ("invalid catch parameter");
13662 }
13663 else
13664 decl = NULL_TREE;
13665
13666 return decl;
13667 }
13668
13669 /* Parse a throw-expression.
13670
13671 throw-expression:
13672 throw assignment-expression [opt]
13673
13674 Returns a THROW_EXPR representing the throw-expression. */
13675
13676 static tree
13677 cp_parser_throw_expression (cp_parser* parser)
13678 {
13679 tree expression;
13680 cp_token* token;
13681
13682 cp_parser_require_keyword (parser, RID_THROW, "`throw'");
13683 token = cp_lexer_peek_token (parser->lexer);
13684 /* Figure out whether or not there is an assignment-expression
13685 following the "throw" keyword. */
13686 if (token->type == CPP_COMMA
13687 || token->type == CPP_SEMICOLON
13688 || token->type == CPP_CLOSE_PAREN
13689 || token->type == CPP_CLOSE_SQUARE
13690 || token->type == CPP_CLOSE_BRACE
13691 || token->type == CPP_COLON)
13692 expression = NULL_TREE;
13693 else
13694 expression = cp_parser_assignment_expression (parser);
13695
13696 return build_throw (expression);
13697 }
13698
13699 /* GNU Extensions */
13700
13701 /* Parse an (optional) asm-specification.
13702
13703 asm-specification:
13704 asm ( string-literal )
13705
13706 If the asm-specification is present, returns a STRING_CST
13707 corresponding to the string-literal. Otherwise, returns
13708 NULL_TREE. */
13709
13710 static tree
13711 cp_parser_asm_specification_opt (cp_parser* parser)
13712 {
13713 cp_token *token;
13714 tree asm_specification;
13715
13716 /* Peek at the next token. */
13717 token = cp_lexer_peek_token (parser->lexer);
13718 /* If the next token isn't the `asm' keyword, then there's no
13719 asm-specification. */
13720 if (!cp_parser_is_keyword (token, RID_ASM))
13721 return NULL_TREE;
13722
13723 /* Consume the `asm' token. */
13724 cp_lexer_consume_token (parser->lexer);
13725 /* Look for the `('. */
13726 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13727
13728 /* Look for the string-literal. */
13729 asm_specification = cp_parser_string_literal (parser, false, false);
13730
13731 /* Look for the `)'. */
13732 cp_parser_require (parser, CPP_CLOSE_PAREN, "`('");
13733
13734 return asm_specification;
13735 }
13736
13737 /* Parse an asm-operand-list.
13738
13739 asm-operand-list:
13740 asm-operand
13741 asm-operand-list , asm-operand
13742
13743 asm-operand:
13744 string-literal ( expression )
13745 [ string-literal ] string-literal ( expression )
13746
13747 Returns a TREE_LIST representing the operands. The TREE_VALUE of
13748 each node is the expression. The TREE_PURPOSE is itself a
13749 TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed
13750 string-literal (or NULL_TREE if not present) and whose TREE_VALUE
13751 is a STRING_CST for the string literal before the parenthesis. */
13752
13753 static tree
13754 cp_parser_asm_operand_list (cp_parser* parser)
13755 {
13756 tree asm_operands = NULL_TREE;
13757
13758 while (true)
13759 {
13760 tree string_literal;
13761 tree expression;
13762 tree name;
13763
13764 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
13765 {
13766 /* Consume the `[' token. */
13767 cp_lexer_consume_token (parser->lexer);
13768 /* Read the operand name. */
13769 name = cp_parser_identifier (parser);
13770 if (name != error_mark_node)
13771 name = build_string (IDENTIFIER_LENGTH (name),
13772 IDENTIFIER_POINTER (name));
13773 /* Look for the closing `]'. */
13774 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
13775 }
13776 else
13777 name = NULL_TREE;
13778 /* Look for the string-literal. */
13779 string_literal = cp_parser_string_literal (parser, false, false);
13780
13781 /* Look for the `('. */
13782 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13783 /* Parse the expression. */
13784 expression = cp_parser_expression (parser);
13785 /* Look for the `)'. */
13786 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13787
13788 /* Add this operand to the list. */
13789 asm_operands = tree_cons (build_tree_list (name, string_literal),
13790 expression,
13791 asm_operands);
13792 /* If the next token is not a `,', there are no more
13793 operands. */
13794 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
13795 break;
13796 /* Consume the `,'. */
13797 cp_lexer_consume_token (parser->lexer);
13798 }
13799
13800 return nreverse (asm_operands);
13801 }
13802
13803 /* Parse an asm-clobber-list.
13804
13805 asm-clobber-list:
13806 string-literal
13807 asm-clobber-list , string-literal
13808
13809 Returns a TREE_LIST, indicating the clobbers in the order that they
13810 appeared. The TREE_VALUE of each node is a STRING_CST. */
13811
13812 static tree
13813 cp_parser_asm_clobber_list (cp_parser* parser)
13814 {
13815 tree clobbers = NULL_TREE;
13816
13817 while (true)
13818 {
13819 tree string_literal;
13820
13821 /* Look for the string literal. */
13822 string_literal = cp_parser_string_literal (parser, false, false);
13823 /* Add it to the list. */
13824 clobbers = tree_cons (NULL_TREE, string_literal, clobbers);
13825 /* If the next token is not a `,', then the list is
13826 complete. */
13827 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
13828 break;
13829 /* Consume the `,' token. */
13830 cp_lexer_consume_token (parser->lexer);
13831 }
13832
13833 return clobbers;
13834 }
13835
13836 /* Parse an (optional) series of attributes.
13837
13838 attributes:
13839 attributes attribute
13840
13841 attribute:
13842 __attribute__ (( attribute-list [opt] ))
13843
13844 The return value is as for cp_parser_attribute_list. */
13845
13846 static tree
13847 cp_parser_attributes_opt (cp_parser* parser)
13848 {
13849 tree attributes = NULL_TREE;
13850
13851 while (true)
13852 {
13853 cp_token *token;
13854 tree attribute_list;
13855
13856 /* Peek at the next token. */
13857 token = cp_lexer_peek_token (parser->lexer);
13858 /* If it's not `__attribute__', then we're done. */
13859 if (token->keyword != RID_ATTRIBUTE)
13860 break;
13861
13862 /* Consume the `__attribute__' keyword. */
13863 cp_lexer_consume_token (parser->lexer);
13864 /* Look for the two `(' tokens. */
13865 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13866 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13867
13868 /* Peek at the next token. */
13869 token = cp_lexer_peek_token (parser->lexer);
13870 if (token->type != CPP_CLOSE_PAREN)
13871 /* Parse the attribute-list. */
13872 attribute_list = cp_parser_attribute_list (parser);
13873 else
13874 /* If the next token is a `)', then there is no attribute
13875 list. */
13876 attribute_list = NULL;
13877
13878 /* Look for the two `)' tokens. */
13879 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13880 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13881
13882 /* Add these new attributes to the list. */
13883 attributes = chainon (attributes, attribute_list);
13884 }
13885
13886 return attributes;
13887 }
13888
13889 /* Parse an attribute-list.
13890
13891 attribute-list:
13892 attribute
13893 attribute-list , attribute
13894
13895 attribute:
13896 identifier
13897 identifier ( identifier )
13898 identifier ( identifier , expression-list )
13899 identifier ( expression-list )
13900
13901 Returns a TREE_LIST. Each node corresponds to an attribute. THe
13902 TREE_PURPOSE of each node is the identifier indicating which
13903 attribute is in use. The TREE_VALUE represents the arguments, if
13904 any. */
13905
13906 static tree
13907 cp_parser_attribute_list (cp_parser* parser)
13908 {
13909 tree attribute_list = NULL_TREE;
13910 bool save_translate_strings_p = parser->translate_strings_p;
13911
13912 parser->translate_strings_p = false;
13913 while (true)
13914 {
13915 cp_token *token;
13916 tree identifier;
13917 tree attribute;
13918
13919 /* Look for the identifier. We also allow keywords here; for
13920 example `__attribute__ ((const))' is legal. */
13921 token = cp_lexer_peek_token (parser->lexer);
13922 if (token->type != CPP_NAME
13923 && token->type != CPP_KEYWORD)
13924 return error_mark_node;
13925 /* Consume the token. */
13926 token = cp_lexer_consume_token (parser->lexer);
13927
13928 /* Save away the identifier that indicates which attribute this is. */
13929 identifier = token->value;
13930 attribute = build_tree_list (identifier, NULL_TREE);
13931
13932 /* Peek at the next token. */
13933 token = cp_lexer_peek_token (parser->lexer);
13934 /* If it's an `(', then parse the attribute arguments. */
13935 if (token->type == CPP_OPEN_PAREN)
13936 {
13937 tree arguments;
13938
13939 arguments = (cp_parser_parenthesized_expression_list
13940 (parser, true, /*non_constant_p=*/NULL));
13941 /* Save the identifier and arguments away. */
13942 TREE_VALUE (attribute) = arguments;
13943 }
13944
13945 /* Add this attribute to the list. */
13946 TREE_CHAIN (attribute) = attribute_list;
13947 attribute_list = attribute;
13948
13949 /* Now, look for more attributes. */
13950 token = cp_lexer_peek_token (parser->lexer);
13951 /* If the next token isn't a `,', we're done. */
13952 if (token->type != CPP_COMMA)
13953 break;
13954
13955 /* Consume the comma and keep going. */
13956 cp_lexer_consume_token (parser->lexer);
13957 }
13958 parser->translate_strings_p = save_translate_strings_p;
13959
13960 /* We built up the list in reverse order. */
13961 return nreverse (attribute_list);
13962 }
13963
13964 /* Parse an optional `__extension__' keyword. Returns TRUE if it is
13965 present, and FALSE otherwise. *SAVED_PEDANTIC is set to the
13966 current value of the PEDANTIC flag, regardless of whether or not
13967 the `__extension__' keyword is present. The caller is responsible
13968 for restoring the value of the PEDANTIC flag. */
13969
13970 static bool
13971 cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic)
13972 {
13973 /* Save the old value of the PEDANTIC flag. */
13974 *saved_pedantic = pedantic;
13975
13976 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION))
13977 {
13978 /* Consume the `__extension__' token. */
13979 cp_lexer_consume_token (parser->lexer);
13980 /* We're not being pedantic while the `__extension__' keyword is
13981 in effect. */
13982 pedantic = 0;
13983
13984 return true;
13985 }
13986
13987 return false;
13988 }
13989
13990 /* Parse a label declaration.
13991
13992 label-declaration:
13993 __label__ label-declarator-seq ;
13994
13995 label-declarator-seq:
13996 identifier , label-declarator-seq
13997 identifier */
13998
13999 static void
14000 cp_parser_label_declaration (cp_parser* parser)
14001 {
14002 /* Look for the `__label__' keyword. */
14003 cp_parser_require_keyword (parser, RID_LABEL, "`__label__'");
14004
14005 while (true)
14006 {
14007 tree identifier;
14008
14009 /* Look for an identifier. */
14010 identifier = cp_parser_identifier (parser);
14011 /* Declare it as a lobel. */
14012 finish_label_decl (identifier);
14013 /* If the next token is a `;', stop. */
14014 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
14015 break;
14016 /* Look for the `,' separating the label declarations. */
14017 cp_parser_require (parser, CPP_COMMA, "`,'");
14018 }
14019
14020 /* Look for the final `;'. */
14021 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
14022 }
14023
14024 /* Support Functions */
14025
14026 /* Looks up NAME in the current scope, as given by PARSER->SCOPE.
14027 NAME should have one of the representations used for an
14028 id-expression. If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE
14029 is returned. If PARSER->SCOPE is a dependent type, then a
14030 SCOPE_REF is returned.
14031
14032 If NAME is a TEMPLATE_ID_EXPR, then it will be immediately
14033 returned; the name was already resolved when the TEMPLATE_ID_EXPR
14034 was formed. Abstractly, such entities should not be passed to this
14035 function, because they do not need to be looked up, but it is
14036 simpler to check for this special case here, rather than at the
14037 call-sites.
14038
14039 In cases not explicitly covered above, this function returns a
14040 DECL, OVERLOAD, or baselink representing the result of the lookup.
14041 If there was no entity with the indicated NAME, the ERROR_MARK_NODE
14042 is returned.
14043
14044 If IS_TYPE is TRUE, bindings that do not refer to types are
14045 ignored.
14046
14047 If IS_TEMPLATE is TRUE, bindings that do not refer to templates are
14048 ignored.
14049
14050 If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces
14051 are ignored.
14052
14053 If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent
14054 types.
14055
14056 If AMBIGUOUS_P is non-NULL, it is set to true if name-lookup
14057 results in an ambiguity, and false otherwise. */
14058
14059 static tree
14060 cp_parser_lookup_name (cp_parser *parser, tree name,
14061 bool is_type, bool is_template, bool is_namespace,
14062 bool check_dependency,
14063 bool *ambiguous_p)
14064 {
14065 tree decl;
14066 tree object_type = parser->context->object_type;
14067
14068 /* Assume that the lookup will be unambiguous. */
14069 if (ambiguous_p)
14070 *ambiguous_p = false;
14071
14072 /* Now that we have looked up the name, the OBJECT_TYPE (if any) is
14073 no longer valid. Note that if we are parsing tentatively, and
14074 the parse fails, OBJECT_TYPE will be automatically restored. */
14075 parser->context->object_type = NULL_TREE;
14076
14077 if (name == error_mark_node)
14078 return error_mark_node;
14079
14080 /* A template-id has already been resolved; there is no lookup to
14081 do. */
14082 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
14083 return name;
14084 if (BASELINK_P (name))
14085 {
14086 gcc_assert (TREE_CODE (BASELINK_FUNCTIONS (name))
14087 == TEMPLATE_ID_EXPR);
14088 return name;
14089 }
14090
14091 /* A BIT_NOT_EXPR is used to represent a destructor. By this point,
14092 it should already have been checked to make sure that the name
14093 used matches the type being destroyed. */
14094 if (TREE_CODE (name) == BIT_NOT_EXPR)
14095 {
14096 tree type;
14097
14098 /* Figure out to which type this destructor applies. */
14099 if (parser->scope)
14100 type = parser->scope;
14101 else if (object_type)
14102 type = object_type;
14103 else
14104 type = current_class_type;
14105 /* If that's not a class type, there is no destructor. */
14106 if (!type || !CLASS_TYPE_P (type))
14107 return error_mark_node;
14108 if (!CLASSTYPE_DESTRUCTORS (type))
14109 return error_mark_node;
14110 /* If it was a class type, return the destructor. */
14111 return CLASSTYPE_DESTRUCTORS (type);
14112 }
14113
14114 /* By this point, the NAME should be an ordinary identifier. If
14115 the id-expression was a qualified name, the qualifying scope is
14116 stored in PARSER->SCOPE at this point. */
14117 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
14118
14119 /* Perform the lookup. */
14120 if (parser->scope)
14121 {
14122 bool dependent_p;
14123
14124 if (parser->scope == error_mark_node)
14125 return error_mark_node;
14126
14127 /* If the SCOPE is dependent, the lookup must be deferred until
14128 the template is instantiated -- unless we are explicitly
14129 looking up names in uninstantiated templates. Even then, we
14130 cannot look up the name if the scope is not a class type; it
14131 might, for example, be a template type parameter. */
14132 dependent_p = (TYPE_P (parser->scope)
14133 && !(parser->in_declarator_p
14134 && currently_open_class (parser->scope))
14135 && dependent_type_p (parser->scope));
14136 if ((check_dependency || !CLASS_TYPE_P (parser->scope))
14137 && dependent_p)
14138 {
14139 if (is_type)
14140 /* The resolution to Core Issue 180 says that `struct A::B'
14141 should be considered a type-name, even if `A' is
14142 dependent. */
14143 decl = TYPE_NAME (make_typename_type (parser->scope,
14144 name,
14145 /*complain=*/1));
14146 else if (is_template)
14147 decl = make_unbound_class_template (parser->scope,
14148 name, NULL_TREE,
14149 /*complain=*/1);
14150 else
14151 decl = build_nt (SCOPE_REF, parser->scope, name);
14152 }
14153 else
14154 {
14155 bool pop_p = false;
14156
14157 /* If PARSER->SCOPE is a dependent type, then it must be a
14158 class type, and we must not be checking dependencies;
14159 otherwise, we would have processed this lookup above. So
14160 that PARSER->SCOPE is not considered a dependent base by
14161 lookup_member, we must enter the scope here. */
14162 if (dependent_p)
14163 pop_p = push_scope (parser->scope);
14164 /* If the PARSER->SCOPE is a a template specialization, it
14165 may be instantiated during name lookup. In that case,
14166 errors may be issued. Even if we rollback the current
14167 tentative parse, those errors are valid. */
14168 decl = lookup_qualified_name (parser->scope, name, is_type,
14169 /*complain=*/true);
14170 if (pop_p)
14171 pop_scope (parser->scope);
14172 }
14173 parser->qualifying_scope = parser->scope;
14174 parser->object_scope = NULL_TREE;
14175 }
14176 else if (object_type)
14177 {
14178 tree object_decl = NULL_TREE;
14179 /* Look up the name in the scope of the OBJECT_TYPE, unless the
14180 OBJECT_TYPE is not a class. */
14181 if (CLASS_TYPE_P (object_type))
14182 /* If the OBJECT_TYPE is a template specialization, it may
14183 be instantiated during name lookup. In that case, errors
14184 may be issued. Even if we rollback the current tentative
14185 parse, those errors are valid. */
14186 object_decl = lookup_member (object_type,
14187 name,
14188 /*protect=*/0, is_type);
14189 /* Look it up in the enclosing context, too. */
14190 decl = lookup_name_real (name, is_type, /*nonclass=*/0,
14191 /*block_p=*/true, is_namespace,
14192 /*flags=*/0);
14193 parser->object_scope = object_type;
14194 parser->qualifying_scope = NULL_TREE;
14195 if (object_decl)
14196 decl = object_decl;
14197 }
14198 else
14199 {
14200 decl = lookup_name_real (name, is_type, /*nonclass=*/0,
14201 /*block_p=*/true, is_namespace,
14202 /*flags=*/0);
14203 parser->qualifying_scope = NULL_TREE;
14204 parser->object_scope = NULL_TREE;
14205 }
14206
14207 /* If the lookup failed, let our caller know. */
14208 if (!decl
14209 || decl == error_mark_node
14210 || (TREE_CODE (decl) == FUNCTION_DECL
14211 && DECL_ANTICIPATED (decl)))
14212 return error_mark_node;
14213
14214 /* If it's a TREE_LIST, the result of the lookup was ambiguous. */
14215 if (TREE_CODE (decl) == TREE_LIST)
14216 {
14217 if (ambiguous_p)
14218 *ambiguous_p = true;
14219 /* The error message we have to print is too complicated for
14220 cp_parser_error, so we incorporate its actions directly. */
14221 if (!cp_parser_simulate_error (parser))
14222 {
14223 error ("reference to %qD is ambiguous", name);
14224 print_candidates (decl);
14225 }
14226 return error_mark_node;
14227 }
14228
14229 gcc_assert (DECL_P (decl)
14230 || TREE_CODE (decl) == OVERLOAD
14231 || TREE_CODE (decl) == SCOPE_REF
14232 || TREE_CODE (decl) == UNBOUND_CLASS_TEMPLATE
14233 || BASELINK_P (decl));
14234
14235 /* If we have resolved the name of a member declaration, check to
14236 see if the declaration is accessible. When the name resolves to
14237 set of overloaded functions, accessibility is checked when
14238 overload resolution is done.
14239
14240 During an explicit instantiation, access is not checked at all,
14241 as per [temp.explicit]. */
14242 if (DECL_P (decl))
14243 check_accessibility_of_qualified_id (decl, object_type, parser->scope);
14244
14245 return decl;
14246 }
14247
14248 /* Like cp_parser_lookup_name, but for use in the typical case where
14249 CHECK_ACCESS is TRUE, IS_TYPE is FALSE, IS_TEMPLATE is FALSE,
14250 IS_NAMESPACE is FALSE, and CHECK_DEPENDENCY is TRUE. */
14251
14252 static tree
14253 cp_parser_lookup_name_simple (cp_parser* parser, tree name)
14254 {
14255 return cp_parser_lookup_name (parser, name,
14256 /*is_type=*/false,
14257 /*is_template=*/false,
14258 /*is_namespace=*/false,
14259 /*check_dependency=*/true,
14260 /*ambiguous_p=*/NULL);
14261 }
14262
14263 /* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in
14264 the current context, return the TYPE_DECL. If TAG_NAME_P is
14265 true, the DECL indicates the class being defined in a class-head,
14266 or declared in an elaborated-type-specifier.
14267
14268 Otherwise, return DECL. */
14269
14270 static tree
14271 cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p)
14272 {
14273 /* If the TEMPLATE_DECL is being declared as part of a class-head,
14274 the translation from TEMPLATE_DECL to TYPE_DECL occurs:
14275
14276 struct A {
14277 template <typename T> struct B;
14278 };
14279
14280 template <typename T> struct A::B {};
14281
14282 Similarly, in a elaborated-type-specifier:
14283
14284 namespace N { struct X{}; }
14285
14286 struct A {
14287 template <typename T> friend struct N::X;
14288 };
14289
14290 However, if the DECL refers to a class type, and we are in
14291 the scope of the class, then the name lookup automatically
14292 finds the TYPE_DECL created by build_self_reference rather
14293 than a TEMPLATE_DECL. For example, in:
14294
14295 template <class T> struct S {
14296 S s;
14297 };
14298
14299 there is no need to handle such case. */
14300
14301 if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p)
14302 return DECL_TEMPLATE_RESULT (decl);
14303
14304 return decl;
14305 }
14306
14307 /* If too many, or too few, template-parameter lists apply to the
14308 declarator, issue an error message. Returns TRUE if all went well,
14309 and FALSE otherwise. */
14310
14311 static bool
14312 cp_parser_check_declarator_template_parameters (cp_parser* parser,
14313 cp_declarator *declarator)
14314 {
14315 unsigned num_templates;
14316
14317 /* We haven't seen any classes that involve template parameters yet. */
14318 num_templates = 0;
14319
14320 switch (declarator->kind)
14321 {
14322 case cdk_id:
14323 if (TREE_CODE (declarator->u.id.name) == SCOPE_REF)
14324 {
14325 tree scope;
14326 tree member;
14327
14328 scope = TREE_OPERAND (declarator->u.id.name, 0);
14329 member = TREE_OPERAND (declarator->u.id.name, 1);
14330
14331 while (scope && CLASS_TYPE_P (scope))
14332 {
14333 /* You're supposed to have one `template <...>'
14334 for every template class, but you don't need one
14335 for a full specialization. For example:
14336
14337 template <class T> struct S{};
14338 template <> struct S<int> { void f(); };
14339 void S<int>::f () {}
14340
14341 is correct; there shouldn't be a `template <>' for
14342 the definition of `S<int>::f'. */
14343 if (CLASSTYPE_TEMPLATE_INFO (scope)
14344 && (CLASSTYPE_TEMPLATE_INSTANTIATION (scope)
14345 || uses_template_parms (CLASSTYPE_TI_ARGS (scope)))
14346 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope)))
14347 ++num_templates;
14348
14349 scope = TYPE_CONTEXT (scope);
14350 }
14351 }
14352
14353 /* If the DECLARATOR has the form `X<y>' then it uses one
14354 additional level of template parameters. */
14355 if (TREE_CODE (declarator->u.id.name) == TEMPLATE_ID_EXPR)
14356 ++num_templates;
14357
14358 return cp_parser_check_template_parameters (parser,
14359 num_templates);
14360
14361 case cdk_function:
14362 case cdk_array:
14363 case cdk_pointer:
14364 case cdk_reference:
14365 case cdk_ptrmem:
14366 return (cp_parser_check_declarator_template_parameters
14367 (parser, declarator->declarator));
14368
14369 case cdk_error:
14370 return true;
14371
14372 default:
14373 gcc_unreachable ();
14374 }
14375 return false;
14376 }
14377
14378 /* NUM_TEMPLATES were used in the current declaration. If that is
14379 invalid, return FALSE and issue an error messages. Otherwise,
14380 return TRUE. */
14381
14382 static bool
14383 cp_parser_check_template_parameters (cp_parser* parser,
14384 unsigned num_templates)
14385 {
14386 /* If there are more template classes than parameter lists, we have
14387 something like:
14388
14389 template <class T> void S<T>::R<T>::f (); */
14390 if (parser->num_template_parameter_lists < num_templates)
14391 {
14392 error ("too few template-parameter-lists");
14393 return false;
14394 }
14395 /* If there are the same number of template classes and parameter
14396 lists, that's OK. */
14397 if (parser->num_template_parameter_lists == num_templates)
14398 return true;
14399 /* If there are more, but only one more, then we are referring to a
14400 member template. That's OK too. */
14401 if (parser->num_template_parameter_lists == num_templates + 1)
14402 return true;
14403 /* Otherwise, there are too many template parameter lists. We have
14404 something like:
14405
14406 template <class T> template <class U> void S::f(); */
14407 error ("too many template-parameter-lists");
14408 return false;
14409 }
14410
14411 /* Parse an optional `::' token indicating that the following name is
14412 from the global namespace. If so, PARSER->SCOPE is set to the
14413 GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE,
14414 unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone.
14415 Returns the new value of PARSER->SCOPE, if the `::' token is
14416 present, and NULL_TREE otherwise. */
14417
14418 static tree
14419 cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p)
14420 {
14421 cp_token *token;
14422
14423 /* Peek at the next token. */
14424 token = cp_lexer_peek_token (parser->lexer);
14425 /* If we're looking at a `::' token then we're starting from the
14426 global namespace, not our current location. */
14427 if (token->type == CPP_SCOPE)
14428 {
14429 /* Consume the `::' token. */
14430 cp_lexer_consume_token (parser->lexer);
14431 /* Set the SCOPE so that we know where to start the lookup. */
14432 parser->scope = global_namespace;
14433 parser->qualifying_scope = global_namespace;
14434 parser->object_scope = NULL_TREE;
14435
14436 return parser->scope;
14437 }
14438 else if (!current_scope_valid_p)
14439 {
14440 parser->scope = NULL_TREE;
14441 parser->qualifying_scope = NULL_TREE;
14442 parser->object_scope = NULL_TREE;
14443 }
14444
14445 return NULL_TREE;
14446 }
14447
14448 /* Returns TRUE if the upcoming token sequence is the start of a
14449 constructor declarator. If FRIEND_P is true, the declarator is
14450 preceded by the `friend' specifier. */
14451
14452 static bool
14453 cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p)
14454 {
14455 bool constructor_p;
14456 tree type_decl = NULL_TREE;
14457 bool nested_name_p;
14458 cp_token *next_token;
14459
14460 /* The common case is that this is not a constructor declarator, so
14461 try to avoid doing lots of work if at all possible. It's not
14462 valid declare a constructor at function scope. */
14463 if (at_function_scope_p ())
14464 return false;
14465 /* And only certain tokens can begin a constructor declarator. */
14466 next_token = cp_lexer_peek_token (parser->lexer);
14467 if (next_token->type != CPP_NAME
14468 && next_token->type != CPP_SCOPE
14469 && next_token->type != CPP_NESTED_NAME_SPECIFIER
14470 && next_token->type != CPP_TEMPLATE_ID)
14471 return false;
14472
14473 /* Parse tentatively; we are going to roll back all of the tokens
14474 consumed here. */
14475 cp_parser_parse_tentatively (parser);
14476 /* Assume that we are looking at a constructor declarator. */
14477 constructor_p = true;
14478
14479 /* Look for the optional `::' operator. */
14480 cp_parser_global_scope_opt (parser,
14481 /*current_scope_valid_p=*/false);
14482 /* Look for the nested-name-specifier. */
14483 nested_name_p
14484 = (cp_parser_nested_name_specifier_opt (parser,
14485 /*typename_keyword_p=*/false,
14486 /*check_dependency_p=*/false,
14487 /*type_p=*/false,
14488 /*is_declaration=*/false)
14489 != NULL_TREE);
14490 /* Outside of a class-specifier, there must be a
14491 nested-name-specifier. */
14492 if (!nested_name_p &&
14493 (!at_class_scope_p () || !TYPE_BEING_DEFINED (current_class_type)
14494 || friend_p))
14495 constructor_p = false;
14496 /* If we still think that this might be a constructor-declarator,
14497 look for a class-name. */
14498 if (constructor_p)
14499 {
14500 /* If we have:
14501
14502 template <typename T> struct S { S(); };
14503 template <typename T> S<T>::S ();
14504
14505 we must recognize that the nested `S' names a class.
14506 Similarly, for:
14507
14508 template <typename T> S<T>::S<T> ();
14509
14510 we must recognize that the nested `S' names a template. */
14511 type_decl = cp_parser_class_name (parser,
14512 /*typename_keyword_p=*/false,
14513 /*template_keyword_p=*/false,
14514 /*type_p=*/false,
14515 /*check_dependency_p=*/false,
14516 /*class_head_p=*/false,
14517 /*is_declaration=*/false);
14518 /* If there was no class-name, then this is not a constructor. */
14519 constructor_p = !cp_parser_error_occurred (parser);
14520 }
14521
14522 /* If we're still considering a constructor, we have to see a `(',
14523 to begin the parameter-declaration-clause, followed by either a
14524 `)', an `...', or a decl-specifier. We need to check for a
14525 type-specifier to avoid being fooled into thinking that:
14526
14527 S::S (f) (int);
14528
14529 is a constructor. (It is actually a function named `f' that
14530 takes one parameter (of type `int') and returns a value of type
14531 `S::S'. */
14532 if (constructor_p
14533 && cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
14534 {
14535 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)
14536 && cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS)
14537 /* A parameter declaration begins with a decl-specifier,
14538 which is either the "attribute" keyword, a storage class
14539 specifier, or (usually) a type-specifier. */
14540 && !cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE)
14541 && !cp_parser_storage_class_specifier_opt (parser))
14542 {
14543 tree type;
14544 bool pop_p = false;
14545 unsigned saved_num_template_parameter_lists;
14546
14547 /* Names appearing in the type-specifier should be looked up
14548 in the scope of the class. */
14549 if (current_class_type)
14550 type = NULL_TREE;
14551 else
14552 {
14553 type = TREE_TYPE (type_decl);
14554 if (TREE_CODE (type) == TYPENAME_TYPE)
14555 {
14556 type = resolve_typename_type (type,
14557 /*only_current_p=*/false);
14558 if (type == error_mark_node)
14559 {
14560 cp_parser_abort_tentative_parse (parser);
14561 return false;
14562 }
14563 }
14564 pop_p = push_scope (type);
14565 }
14566
14567 /* Inside the constructor parameter list, surrounding
14568 template-parameter-lists do not apply. */
14569 saved_num_template_parameter_lists
14570 = parser->num_template_parameter_lists;
14571 parser->num_template_parameter_lists = 0;
14572
14573 /* Look for the type-specifier. */
14574 cp_parser_type_specifier (parser,
14575 CP_PARSER_FLAGS_NONE,
14576 /*decl_specs=*/NULL,
14577 /*is_declarator=*/true,
14578 /*declares_class_or_enum=*/NULL,
14579 /*is_cv_qualifier=*/NULL);
14580
14581 parser->num_template_parameter_lists
14582 = saved_num_template_parameter_lists;
14583
14584 /* Leave the scope of the class. */
14585 if (pop_p)
14586 pop_scope (type);
14587
14588 constructor_p = !cp_parser_error_occurred (parser);
14589 }
14590 }
14591 else
14592 constructor_p = false;
14593 /* We did not really want to consume any tokens. */
14594 cp_parser_abort_tentative_parse (parser);
14595
14596 return constructor_p;
14597 }
14598
14599 /* Parse the definition of the function given by the DECL_SPECIFIERS,
14600 ATTRIBUTES, and DECLARATOR. The access checks have been deferred;
14601 they must be performed once we are in the scope of the function.
14602
14603 Returns the function defined. */
14604
14605 static tree
14606 cp_parser_function_definition_from_specifiers_and_declarator
14607 (cp_parser* parser,
14608 cp_decl_specifier_seq *decl_specifiers,
14609 tree attributes,
14610 const cp_declarator *declarator)
14611 {
14612 tree fn;
14613 bool success_p;
14614
14615 /* Begin the function-definition. */
14616 success_p = start_function (decl_specifiers, declarator, attributes);
14617
14618 /* The things we're about to see are not directly qualified by any
14619 template headers we've seen thus far. */
14620 reset_specialization ();
14621
14622 /* If there were names looked up in the decl-specifier-seq that we
14623 did not check, check them now. We must wait until we are in the
14624 scope of the function to perform the checks, since the function
14625 might be a friend. */
14626 perform_deferred_access_checks ();
14627
14628 if (!success_p)
14629 {
14630 /* Skip the entire function. */
14631 error ("invalid function declaration");
14632 cp_parser_skip_to_end_of_block_or_statement (parser);
14633 fn = error_mark_node;
14634 }
14635 else
14636 fn = cp_parser_function_definition_after_declarator (parser,
14637 /*inline_p=*/false);
14638
14639 return fn;
14640 }
14641
14642 /* Parse the part of a function-definition that follows the
14643 declarator. INLINE_P is TRUE iff this function is an inline
14644 function defined with a class-specifier.
14645
14646 Returns the function defined. */
14647
14648 static tree
14649 cp_parser_function_definition_after_declarator (cp_parser* parser,
14650 bool inline_p)
14651 {
14652 tree fn;
14653 bool ctor_initializer_p = false;
14654 bool saved_in_unbraced_linkage_specification_p;
14655 unsigned saved_num_template_parameter_lists;
14656
14657 /* If the next token is `return', then the code may be trying to
14658 make use of the "named return value" extension that G++ used to
14659 support. */
14660 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN))
14661 {
14662 /* Consume the `return' keyword. */
14663 cp_lexer_consume_token (parser->lexer);
14664 /* Look for the identifier that indicates what value is to be
14665 returned. */
14666 cp_parser_identifier (parser);
14667 /* Issue an error message. */
14668 error ("named return values are no longer supported");
14669 /* Skip tokens until we reach the start of the function body. */
14670 while (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)
14671 && cp_lexer_next_token_is_not (parser->lexer, CPP_EOF))
14672 cp_lexer_consume_token (parser->lexer);
14673 }
14674 /* The `extern' in `extern "C" void f () { ... }' does not apply to
14675 anything declared inside `f'. */
14676 saved_in_unbraced_linkage_specification_p
14677 = parser->in_unbraced_linkage_specification_p;
14678 parser->in_unbraced_linkage_specification_p = false;
14679 /* Inside the function, surrounding template-parameter-lists do not
14680 apply. */
14681 saved_num_template_parameter_lists
14682 = parser->num_template_parameter_lists;
14683 parser->num_template_parameter_lists = 0;
14684 /* If the next token is `try', then we are looking at a
14685 function-try-block. */
14686 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
14687 ctor_initializer_p = cp_parser_function_try_block (parser);
14688 /* A function-try-block includes the function-body, so we only do
14689 this next part if we're not processing a function-try-block. */
14690 else
14691 ctor_initializer_p
14692 = cp_parser_ctor_initializer_opt_and_function_body (parser);
14693
14694 /* Finish the function. */
14695 fn = finish_function ((ctor_initializer_p ? 1 : 0) |
14696 (inline_p ? 2 : 0));
14697 /* Generate code for it, if necessary. */
14698 expand_or_defer_fn (fn);
14699 /* Restore the saved values. */
14700 parser->in_unbraced_linkage_specification_p
14701 = saved_in_unbraced_linkage_specification_p;
14702 parser->num_template_parameter_lists
14703 = saved_num_template_parameter_lists;
14704
14705 return fn;
14706 }
14707
14708 /* Parse a template-declaration, assuming that the `export' (and
14709 `extern') keywords, if present, has already been scanned. MEMBER_P
14710 is as for cp_parser_template_declaration. */
14711
14712 static void
14713 cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
14714 {
14715 tree decl = NULL_TREE;
14716 tree parameter_list;
14717 bool friend_p = false;
14718
14719 /* Look for the `template' keyword. */
14720 if (!cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'"))
14721 return;
14722
14723 /* And the `<'. */
14724 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
14725 return;
14726
14727 /* If the next token is `>', then we have an invalid
14728 specialization. Rather than complain about an invalid template
14729 parameter, issue an error message here. */
14730 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
14731 {
14732 cp_parser_error (parser, "invalid explicit specialization");
14733 begin_specialization ();
14734 parameter_list = NULL_TREE;
14735 }
14736 else
14737 {
14738 /* Parse the template parameters. */
14739 begin_template_parm_list ();
14740 parameter_list = cp_parser_template_parameter_list (parser);
14741 parameter_list = end_template_parm_list (parameter_list);
14742 }
14743
14744 /* Look for the `>'. */
14745 cp_parser_skip_until_found (parser, CPP_GREATER, "`>'");
14746 /* We just processed one more parameter list. */
14747 ++parser->num_template_parameter_lists;
14748 /* If the next token is `template', there are more template
14749 parameters. */
14750 if (cp_lexer_next_token_is_keyword (parser->lexer,
14751 RID_TEMPLATE))
14752 cp_parser_template_declaration_after_export (parser, member_p);
14753 else
14754 {
14755 /* There are no access checks when parsing a template, as we do not
14756 know if a specialization will be a friend. */
14757 push_deferring_access_checks (dk_no_check);
14758
14759 decl = cp_parser_single_declaration (parser,
14760 member_p,
14761 &friend_p);
14762
14763 pop_deferring_access_checks ();
14764
14765 /* If this is a member template declaration, let the front
14766 end know. */
14767 if (member_p && !friend_p && decl)
14768 {
14769 if (TREE_CODE (decl) == TYPE_DECL)
14770 cp_parser_check_access_in_redeclaration (decl);
14771
14772 decl = finish_member_template_decl (decl);
14773 }
14774 else if (friend_p && decl && TREE_CODE (decl) == TYPE_DECL)
14775 make_friend_class (current_class_type, TREE_TYPE (decl),
14776 /*complain=*/true);
14777 }
14778 /* We are done with the current parameter list. */
14779 --parser->num_template_parameter_lists;
14780
14781 /* Finish up. */
14782 finish_template_decl (parameter_list);
14783
14784 /* Register member declarations. */
14785 if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
14786 finish_member_declaration (decl);
14787
14788 /* If DECL is a function template, we must return to parse it later.
14789 (Even though there is no definition, there might be default
14790 arguments that need handling.) */
14791 if (member_p && decl
14792 && (TREE_CODE (decl) == FUNCTION_DECL
14793 || DECL_FUNCTION_TEMPLATE_P (decl)))
14794 TREE_VALUE (parser->unparsed_functions_queues)
14795 = tree_cons (NULL_TREE, decl,
14796 TREE_VALUE (parser->unparsed_functions_queues));
14797 }
14798
14799 /* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or
14800 `function-definition' sequence. MEMBER_P is true, this declaration
14801 appears in a class scope.
14802
14803 Returns the DECL for the declared entity. If FRIEND_P is non-NULL,
14804 *FRIEND_P is set to TRUE iff the declaration is a friend. */
14805
14806 static tree
14807 cp_parser_single_declaration (cp_parser* parser,
14808 bool member_p,
14809 bool* friend_p)
14810 {
14811 int declares_class_or_enum;
14812 tree decl = NULL_TREE;
14813 cp_decl_specifier_seq decl_specifiers;
14814 bool function_definition_p = false;
14815
14816 /* Defer access checks until we know what is being declared. */
14817 push_deferring_access_checks (dk_deferred);
14818
14819 /* Try the `decl-specifier-seq [opt] init-declarator [opt]'
14820 alternative. */
14821 cp_parser_decl_specifier_seq (parser,
14822 CP_PARSER_FLAGS_OPTIONAL,
14823 &decl_specifiers,
14824 &declares_class_or_enum);
14825 if (friend_p)
14826 *friend_p = cp_parser_friend_p (&decl_specifiers);
14827 /* Gather up the access checks that occurred the
14828 decl-specifier-seq. */
14829 stop_deferring_access_checks ();
14830
14831 /* Check for the declaration of a template class. */
14832 if (declares_class_or_enum)
14833 {
14834 if (cp_parser_declares_only_class_p (parser))
14835 {
14836 decl = shadow_tag (&decl_specifiers);
14837
14838 /* In this case:
14839
14840 struct C {
14841 friend template <typename T> struct A<T>::B;
14842 };
14843
14844 A<T>::B will be represented by a TYPENAME_TYPE, and
14845 therefore not recognized by shadow_tag. */
14846 if (friend_p && *friend_p
14847 && !decl
14848 && decl_specifiers.type
14849 && TYPE_P (decl_specifiers.type))
14850 decl = decl_specifiers.type;
14851
14852 if (decl && decl != error_mark_node)
14853 decl = TYPE_NAME (decl);
14854 else
14855 decl = error_mark_node;
14856 }
14857 }
14858 else
14859 decl = NULL_TREE;
14860 /* If it's not a template class, try for a template function. If
14861 the next token is a `;', then this declaration does not declare
14862 anything. But, if there were errors in the decl-specifiers, then
14863 the error might well have come from an attempted class-specifier.
14864 In that case, there's no need to warn about a missing declarator. */
14865 if (!decl
14866 && (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
14867 || decl_specifiers.type != error_mark_node))
14868 decl = cp_parser_init_declarator (parser,
14869 &decl_specifiers,
14870 /*function_definition_allowed_p=*/true,
14871 member_p,
14872 declares_class_or_enum,
14873 &function_definition_p);
14874
14875 pop_deferring_access_checks ();
14876
14877 /* Clear any current qualification; whatever comes next is the start
14878 of something new. */
14879 parser->scope = NULL_TREE;
14880 parser->qualifying_scope = NULL_TREE;
14881 parser->object_scope = NULL_TREE;
14882 /* Look for a trailing `;' after the declaration. */
14883 if (!function_definition_p
14884 && !cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
14885 cp_parser_skip_to_end_of_block_or_statement (parser);
14886
14887 return decl;
14888 }
14889
14890 /* Parse a cast-expression that is not the operand of a unary "&". */
14891
14892 static tree
14893 cp_parser_simple_cast_expression (cp_parser *parser)
14894 {
14895 return cp_parser_cast_expression (parser, /*address_p=*/false);
14896 }
14897
14898 /* Parse a functional cast to TYPE. Returns an expression
14899 representing the cast. */
14900
14901 static tree
14902 cp_parser_functional_cast (cp_parser* parser, tree type)
14903 {
14904 tree expression_list;
14905 tree cast;
14906
14907 expression_list
14908 = cp_parser_parenthesized_expression_list (parser, false,
14909 /*non_constant_p=*/NULL);
14910
14911 cast = build_functional_cast (type, expression_list);
14912 /* [expr.const]/1: In an integral constant expression "only type
14913 conversions to integral or enumeration type can be used". */
14914 if (cast != error_mark_node && !type_dependent_expression_p (type)
14915 && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (type)))
14916 {
14917 if (cp_parser_non_integral_constant_expression
14918 (parser, "a call to a constructor"))
14919 return error_mark_node;
14920 }
14921 return cast;
14922 }
14923
14924 /* Save the tokens that make up the body of a member function defined
14925 in a class-specifier. The DECL_SPECIFIERS and DECLARATOR have
14926 already been parsed. The ATTRIBUTES are any GNU "__attribute__"
14927 specifiers applied to the declaration. Returns the FUNCTION_DECL
14928 for the member function. */
14929
14930 static tree
14931 cp_parser_save_member_function_body (cp_parser* parser,
14932 cp_decl_specifier_seq *decl_specifiers,
14933 cp_declarator *declarator,
14934 tree attributes)
14935 {
14936 cp_token *first;
14937 cp_token *last;
14938 tree fn;
14939
14940 /* Create the function-declaration. */
14941 fn = start_method (decl_specifiers, declarator, attributes);
14942 /* If something went badly wrong, bail out now. */
14943 if (fn == error_mark_node)
14944 {
14945 /* If there's a function-body, skip it. */
14946 if (cp_parser_token_starts_function_definition_p
14947 (cp_lexer_peek_token (parser->lexer)))
14948 cp_parser_skip_to_end_of_block_or_statement (parser);
14949 return error_mark_node;
14950 }
14951
14952 /* Remember it, if there default args to post process. */
14953 cp_parser_save_default_args (parser, fn);
14954
14955 /* Save away the tokens that make up the body of the
14956 function. */
14957 first = parser->lexer->next_token;
14958 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
14959 /* Handle function try blocks. */
14960 while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH))
14961 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
14962 last = parser->lexer->next_token;
14963
14964 /* Save away the inline definition; we will process it when the
14965 class is complete. */
14966 DECL_PENDING_INLINE_INFO (fn) = cp_token_cache_new (first, last);
14967 DECL_PENDING_INLINE_P (fn) = 1;
14968
14969 /* We need to know that this was defined in the class, so that
14970 friend templates are handled correctly. */
14971 DECL_INITIALIZED_IN_CLASS_P (fn) = 1;
14972
14973 /* We're done with the inline definition. */
14974 finish_method (fn);
14975
14976 /* Add FN to the queue of functions to be parsed later. */
14977 TREE_VALUE (parser->unparsed_functions_queues)
14978 = tree_cons (NULL_TREE, fn,
14979 TREE_VALUE (parser->unparsed_functions_queues));
14980
14981 return fn;
14982 }
14983
14984 /* Parse a template-argument-list, as well as the trailing ">" (but
14985 not the opening ">"). See cp_parser_template_argument_list for the
14986 return value. */
14987
14988 static tree
14989 cp_parser_enclosed_template_argument_list (cp_parser* parser)
14990 {
14991 tree arguments;
14992 tree saved_scope;
14993 tree saved_qualifying_scope;
14994 tree saved_object_scope;
14995 bool saved_greater_than_is_operator_p;
14996
14997 /* [temp.names]
14998
14999 When parsing a template-id, the first non-nested `>' is taken as
15000 the end of the template-argument-list rather than a greater-than
15001 operator. */
15002 saved_greater_than_is_operator_p
15003 = parser->greater_than_is_operator_p;
15004 parser->greater_than_is_operator_p = false;
15005 /* Parsing the argument list may modify SCOPE, so we save it
15006 here. */
15007 saved_scope = parser->scope;
15008 saved_qualifying_scope = parser->qualifying_scope;
15009 saved_object_scope = parser->object_scope;
15010 /* Parse the template-argument-list itself. */
15011 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15012 arguments = NULL_TREE;
15013 else
15014 arguments = cp_parser_template_argument_list (parser);
15015 /* Look for the `>' that ends the template-argument-list. If we find
15016 a '>>' instead, it's probably just a typo. */
15017 if (cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
15018 {
15019 if (!saved_greater_than_is_operator_p)
15020 {
15021 /* If we're in a nested template argument list, the '>>' has
15022 to be a typo for '> >'. We emit the error message, but we
15023 continue parsing and we push a '>' as next token, so that
15024 the argument list will be parsed correctly. Note that the
15025 global source location is still on the token before the
15026 '>>', so we need to say explicitly where we want it. */
15027 cp_token *token = cp_lexer_peek_token (parser->lexer);
15028 error ("%H%<>>%> should be %<> >%> "
15029 "within a nested template argument list",
15030 &token->location);
15031
15032 /* ??? Proper recovery should terminate two levels of
15033 template argument list here. */
15034 token->type = CPP_GREATER;
15035 }
15036 else
15037 {
15038 /* If this is not a nested template argument list, the '>>'
15039 is a typo for '>'. Emit an error message and continue.
15040 Same deal about the token location, but here we can get it
15041 right by consuming the '>>' before issuing the diagnostic. */
15042 cp_lexer_consume_token (parser->lexer);
15043 error ("spurious %<>>%>, use %<>%> to terminate "
15044 "a template argument list");
15045 }
15046 }
15047 else if (!cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15048 error ("missing %<>%> to terminate the template argument list");
15049 else
15050 /* It's what we want, a '>'; consume it. */
15051 cp_lexer_consume_token (parser->lexer);
15052 /* The `>' token might be a greater-than operator again now. */
15053 parser->greater_than_is_operator_p
15054 = saved_greater_than_is_operator_p;
15055 /* Restore the SAVED_SCOPE. */
15056 parser->scope = saved_scope;
15057 parser->qualifying_scope = saved_qualifying_scope;
15058 parser->object_scope = saved_object_scope;
15059
15060 return arguments;
15061 }
15062
15063 /* MEMBER_FUNCTION is a member function, or a friend. If default
15064 arguments, or the body of the function have not yet been parsed,
15065 parse them now. */
15066
15067 static void
15068 cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function)
15069 {
15070 /* If this member is a template, get the underlying
15071 FUNCTION_DECL. */
15072 if (DECL_FUNCTION_TEMPLATE_P (member_function))
15073 member_function = DECL_TEMPLATE_RESULT (member_function);
15074
15075 /* There should not be any class definitions in progress at this
15076 point; the bodies of members are only parsed outside of all class
15077 definitions. */
15078 gcc_assert (parser->num_classes_being_defined == 0);
15079 /* While we're parsing the member functions we might encounter more
15080 classes. We want to handle them right away, but we don't want
15081 them getting mixed up with functions that are currently in the
15082 queue. */
15083 parser->unparsed_functions_queues
15084 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15085
15086 /* Make sure that any template parameters are in scope. */
15087 maybe_begin_member_template_processing (member_function);
15088
15089 /* If the body of the function has not yet been parsed, parse it
15090 now. */
15091 if (DECL_PENDING_INLINE_P (member_function))
15092 {
15093 tree function_scope;
15094 cp_token_cache *tokens;
15095
15096 /* The function is no longer pending; we are processing it. */
15097 tokens = DECL_PENDING_INLINE_INFO (member_function);
15098 DECL_PENDING_INLINE_INFO (member_function) = NULL;
15099 DECL_PENDING_INLINE_P (member_function) = 0;
15100 /* If this was an inline function in a local class, enter the scope
15101 of the containing function. */
15102 function_scope = decl_function_context (member_function);
15103 if (function_scope)
15104 push_function_context_to (function_scope);
15105
15106 /* Push the body of the function onto the lexer stack. */
15107 cp_parser_push_lexer_for_tokens (parser, tokens);
15108
15109 /* Let the front end know that we going to be defining this
15110 function. */
15111 start_preparsed_function (member_function, NULL_TREE,
15112 SF_PRE_PARSED | SF_INCLASS_INLINE);
15113
15114 /* Now, parse the body of the function. */
15115 cp_parser_function_definition_after_declarator (parser,
15116 /*inline_p=*/true);
15117
15118 /* Leave the scope of the containing function. */
15119 if (function_scope)
15120 pop_function_context_from (function_scope);
15121 cp_parser_pop_lexer (parser);
15122 }
15123
15124 /* Remove any template parameters from the symbol table. */
15125 maybe_end_member_template_processing ();
15126
15127 /* Restore the queue. */
15128 parser->unparsed_functions_queues
15129 = TREE_CHAIN (parser->unparsed_functions_queues);
15130 }
15131
15132 /* If DECL contains any default args, remember it on the unparsed
15133 functions queue. */
15134
15135 static void
15136 cp_parser_save_default_args (cp_parser* parser, tree decl)
15137 {
15138 tree probe;
15139
15140 for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl));
15141 probe;
15142 probe = TREE_CHAIN (probe))
15143 if (TREE_PURPOSE (probe))
15144 {
15145 TREE_PURPOSE (parser->unparsed_functions_queues)
15146 = tree_cons (current_class_type, decl,
15147 TREE_PURPOSE (parser->unparsed_functions_queues));
15148 break;
15149 }
15150 return;
15151 }
15152
15153 /* FN is a FUNCTION_DECL which may contains a parameter with an
15154 unparsed DEFAULT_ARG. Parse the default args now. This function
15155 assumes that the current scope is the scope in which the default
15156 argument should be processed. */
15157
15158 static void
15159 cp_parser_late_parsing_default_args (cp_parser *parser, tree fn)
15160 {
15161 bool saved_local_variables_forbidden_p;
15162 tree parm;
15163
15164 /* While we're parsing the default args, we might (due to the
15165 statement expression extension) encounter more classes. We want
15166 to handle them right away, but we don't want them getting mixed
15167 up with default args that are currently in the queue. */
15168 parser->unparsed_functions_queues
15169 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15170
15171 /* Local variable names (and the `this' keyword) may not appear
15172 in a default argument. */
15173 saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
15174 parser->local_variables_forbidden_p = true;
15175
15176 for (parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
15177 parm;
15178 parm = TREE_CHAIN (parm))
15179 {
15180 cp_token_cache *tokens;
15181
15182 if (!TREE_PURPOSE (parm)
15183 || TREE_CODE (TREE_PURPOSE (parm)) != DEFAULT_ARG)
15184 continue;
15185
15186 /* Push the saved tokens for the default argument onto the parser's
15187 lexer stack. */
15188 tokens = DEFARG_TOKENS (TREE_PURPOSE (parm));
15189 cp_parser_push_lexer_for_tokens (parser, tokens);
15190
15191 /* Parse the assignment-expression. */
15192 TREE_PURPOSE (parm) = cp_parser_assignment_expression (parser);
15193
15194 /* If the token stream has not been completely used up, then
15195 there was extra junk after the end of the default
15196 argument. */
15197 if (!cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15198 cp_parser_error (parser, "expected %<,%>");
15199
15200 /* Revert to the main lexer. */
15201 cp_parser_pop_lexer (parser);
15202 }
15203
15204 /* Restore the state of local_variables_forbidden_p. */
15205 parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
15206
15207 /* Restore the queue. */
15208 parser->unparsed_functions_queues
15209 = TREE_CHAIN (parser->unparsed_functions_queues);
15210 }
15211
15212 /* Parse the operand of `sizeof' (or a similar operator). Returns
15213 either a TYPE or an expression, depending on the form of the
15214 input. The KEYWORD indicates which kind of expression we have
15215 encountered. */
15216
15217 static tree
15218 cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword)
15219 {
15220 static const char *format;
15221 tree expr = NULL_TREE;
15222 const char *saved_message;
15223 bool saved_integral_constant_expression_p;
15224
15225 /* Initialize FORMAT the first time we get here. */
15226 if (!format)
15227 format = "types may not be defined in `%s' expressions";
15228
15229 /* Types cannot be defined in a `sizeof' expression. Save away the
15230 old message. */
15231 saved_message = parser->type_definition_forbidden_message;
15232 /* And create the new one. */
15233 parser->type_definition_forbidden_message
15234 = xmalloc (strlen (format)
15235 + strlen (IDENTIFIER_POINTER (ridpointers[keyword]))
15236 + 1 /* `\0' */);
15237 sprintf ((char *) parser->type_definition_forbidden_message,
15238 format, IDENTIFIER_POINTER (ridpointers[keyword]));
15239
15240 /* The restrictions on constant-expressions do not apply inside
15241 sizeof expressions. */
15242 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
15243 parser->integral_constant_expression_p = false;
15244
15245 /* Do not actually evaluate the expression. */
15246 ++skip_evaluation;
15247 /* If it's a `(', then we might be looking at the type-id
15248 construction. */
15249 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
15250 {
15251 tree type;
15252 bool saved_in_type_id_in_expr_p;
15253
15254 /* We can't be sure yet whether we're looking at a type-id or an
15255 expression. */
15256 cp_parser_parse_tentatively (parser);
15257 /* Consume the `('. */
15258 cp_lexer_consume_token (parser->lexer);
15259 /* Parse the type-id. */
15260 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
15261 parser->in_type_id_in_expr_p = true;
15262 type = cp_parser_type_id (parser);
15263 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
15264 /* Now, look for the trailing `)'. */
15265 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
15266 /* If all went well, then we're done. */
15267 if (cp_parser_parse_definitely (parser))
15268 {
15269 cp_decl_specifier_seq decl_specs;
15270
15271 /* Build a trivial decl-specifier-seq. */
15272 clear_decl_specs (&decl_specs);
15273 decl_specs.type = type;
15274
15275 /* Call grokdeclarator to figure out what type this is. */
15276 expr = grokdeclarator (NULL,
15277 &decl_specs,
15278 TYPENAME,
15279 /*initialized=*/0,
15280 /*attrlist=*/NULL);
15281 }
15282 }
15283
15284 /* If the type-id production did not work out, then we must be
15285 looking at the unary-expression production. */
15286 if (!expr)
15287 expr = cp_parser_unary_expression (parser, /*address_p=*/false);
15288 /* Go back to evaluating expressions. */
15289 --skip_evaluation;
15290
15291 /* Free the message we created. */
15292 free ((char *) parser->type_definition_forbidden_message);
15293 /* And restore the old one. */
15294 parser->type_definition_forbidden_message = saved_message;
15295 parser->integral_constant_expression_p = saved_integral_constant_expression_p;
15296
15297 return expr;
15298 }
15299
15300 /* If the current declaration has no declarator, return true. */
15301
15302 static bool
15303 cp_parser_declares_only_class_p (cp_parser *parser)
15304 {
15305 /* If the next token is a `;' or a `,' then there is no
15306 declarator. */
15307 return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
15308 || cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
15309 }
15310
15311 /* Update the DECL_SPECS to reflect the STORAGE_CLASS. */
15312
15313 static void
15314 cp_parser_set_storage_class (cp_decl_specifier_seq *decl_specs,
15315 cp_storage_class storage_class)
15316 {
15317 if (decl_specs->storage_class != sc_none)
15318 decl_specs->multiple_storage_classes_p = true;
15319 else
15320 decl_specs->storage_class = storage_class;
15321 }
15322
15323 /* Update the DECL_SPECS to reflect the TYPE_SPEC. If USER_DEFINED_P
15324 is true, the type is a user-defined type; otherwise it is a
15325 built-in type specified by a keyword. */
15326
15327 static void
15328 cp_parser_set_decl_spec_type (cp_decl_specifier_seq *decl_specs,
15329 tree type_spec,
15330 bool user_defined_p)
15331 {
15332 decl_specs->any_specifiers_p = true;
15333
15334 /* If the user tries to redeclare a built-in type (with, for example,
15335 in "typedef int wchar_t;") we remember that this is what
15336 happened. In system headers, we ignore these declarations so
15337 that G++ can work with system headers that are not C++-safe. */
15338 if (decl_specs->specs[(int) ds_typedef]
15339 && !user_defined_p
15340 && (decl_specs->type
15341 || decl_specs->specs[(int) ds_long]
15342 || decl_specs->specs[(int) ds_short]
15343 || decl_specs->specs[(int) ds_unsigned]
15344 || decl_specs->specs[(int) ds_signed]))
15345 {
15346 decl_specs->redefined_builtin_type = type_spec;
15347 if (!decl_specs->type)
15348 {
15349 decl_specs->type = type_spec;
15350 decl_specs->user_defined_type_p = false;
15351 }
15352 }
15353 else if (decl_specs->type)
15354 decl_specs->multiple_types_p = true;
15355 else
15356 {
15357 decl_specs->type = type_spec;
15358 decl_specs->user_defined_type_p = user_defined_p;
15359 decl_specs->redefined_builtin_type = NULL_TREE;
15360 }
15361 }
15362
15363 /* DECL_SPECIFIERS is the representation of a decl-specifier-seq.
15364 Returns TRUE iff `friend' appears among the DECL_SPECIFIERS. */
15365
15366 static bool
15367 cp_parser_friend_p (const cp_decl_specifier_seq *decl_specifiers)
15368 {
15369 return decl_specifiers->specs[(int) ds_friend] != 0;
15370 }
15371
15372 /* If the next token is of the indicated TYPE, consume it. Otherwise,
15373 issue an error message indicating that TOKEN_DESC was expected.
15374
15375 Returns the token consumed, if the token had the appropriate type.
15376 Otherwise, returns NULL. */
15377
15378 static cp_token *
15379 cp_parser_require (cp_parser* parser,
15380 enum cpp_ttype type,
15381 const char* token_desc)
15382 {
15383 if (cp_lexer_next_token_is (parser->lexer, type))
15384 return cp_lexer_consume_token (parser->lexer);
15385 else
15386 {
15387 /* Output the MESSAGE -- unless we're parsing tentatively. */
15388 if (!cp_parser_simulate_error (parser))
15389 {
15390 char *message = concat ("expected ", token_desc, NULL);
15391 cp_parser_error (parser, message);
15392 free (message);
15393 }
15394 return NULL;
15395 }
15396 }
15397
15398 /* Like cp_parser_require, except that tokens will be skipped until
15399 the desired token is found. An error message is still produced if
15400 the next token is not as expected. */
15401
15402 static void
15403 cp_parser_skip_until_found (cp_parser* parser,
15404 enum cpp_ttype type,
15405 const char* token_desc)
15406 {
15407 cp_token *token;
15408 unsigned nesting_depth = 0;
15409
15410 if (cp_parser_require (parser, type, token_desc))
15411 return;
15412
15413 /* Skip tokens until the desired token is found. */
15414 while (true)
15415 {
15416 /* Peek at the next token. */
15417 token = cp_lexer_peek_token (parser->lexer);
15418 /* If we've reached the token we want, consume it and
15419 stop. */
15420 if (token->type == type && !nesting_depth)
15421 {
15422 cp_lexer_consume_token (parser->lexer);
15423 return;
15424 }
15425 /* If we've run out of tokens, stop. */
15426 if (token->type == CPP_EOF)
15427 return;
15428 if (token->type == CPP_OPEN_BRACE
15429 || token->type == CPP_OPEN_PAREN
15430 || token->type == CPP_OPEN_SQUARE)
15431 ++nesting_depth;
15432 else if (token->type == CPP_CLOSE_BRACE
15433 || token->type == CPP_CLOSE_PAREN
15434 || token->type == CPP_CLOSE_SQUARE)
15435 {
15436 if (nesting_depth-- == 0)
15437 return;
15438 }
15439 /* Consume this token. */
15440 cp_lexer_consume_token (parser->lexer);
15441 }
15442 }
15443
15444 /* If the next token is the indicated keyword, consume it. Otherwise,
15445 issue an error message indicating that TOKEN_DESC was expected.
15446
15447 Returns the token consumed, if the token had the appropriate type.
15448 Otherwise, returns NULL. */
15449
15450 static cp_token *
15451 cp_parser_require_keyword (cp_parser* parser,
15452 enum rid keyword,
15453 const char* token_desc)
15454 {
15455 cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc);
15456
15457 if (token && token->keyword != keyword)
15458 {
15459 dyn_string_t error_msg;
15460
15461 /* Format the error message. */
15462 error_msg = dyn_string_new (0);
15463 dyn_string_append_cstr (error_msg, "expected ");
15464 dyn_string_append_cstr (error_msg, token_desc);
15465 cp_parser_error (parser, error_msg->s);
15466 dyn_string_delete (error_msg);
15467 return NULL;
15468 }
15469
15470 return token;
15471 }
15472
15473 /* Returns TRUE iff TOKEN is a token that can begin the body of a
15474 function-definition. */
15475
15476 static bool
15477 cp_parser_token_starts_function_definition_p (cp_token* token)
15478 {
15479 return (/* An ordinary function-body begins with an `{'. */
15480 token->type == CPP_OPEN_BRACE
15481 /* A ctor-initializer begins with a `:'. */
15482 || token->type == CPP_COLON
15483 /* A function-try-block begins with `try'. */
15484 || token->keyword == RID_TRY
15485 /* The named return value extension begins with `return'. */
15486 || token->keyword == RID_RETURN);
15487 }
15488
15489 /* Returns TRUE iff the next token is the ":" or "{" beginning a class
15490 definition. */
15491
15492 static bool
15493 cp_parser_next_token_starts_class_definition_p (cp_parser *parser)
15494 {
15495 cp_token *token;
15496
15497 token = cp_lexer_peek_token (parser->lexer);
15498 return (token->type == CPP_OPEN_BRACE || token->type == CPP_COLON);
15499 }
15500
15501 /* Returns TRUE iff the next token is the "," or ">" ending a
15502 template-argument. ">>" is also accepted (after the full
15503 argument was parsed) because it's probably a typo for "> >",
15504 and there is a specific diagnostic for this. */
15505
15506 static bool
15507 cp_parser_next_token_ends_template_argument_p (cp_parser *parser)
15508 {
15509 cp_token *token;
15510
15511 token = cp_lexer_peek_token (parser->lexer);
15512 return (token->type == CPP_COMMA || token->type == CPP_GREATER
15513 || token->type == CPP_RSHIFT);
15514 }
15515
15516 /* Returns TRUE iff the n-th token is a ">", or the n-th is a "[" and the
15517 (n+1)-th is a ":" (which is a possible digraph typo for "< ::"). */
15518
15519 static bool
15520 cp_parser_nth_token_starts_template_argument_list_p (cp_parser * parser,
15521 size_t n)
15522 {
15523 cp_token *token;
15524
15525 token = cp_lexer_peek_nth_token (parser->lexer, n);
15526 if (token->type == CPP_LESS)
15527 return true;
15528 /* Check for the sequence `<::' in the original code. It would be lexed as
15529 `[:', where `[' is a digraph, and there is no whitespace before
15530 `:'. */
15531 if (token->type == CPP_OPEN_SQUARE && token->flags & DIGRAPH)
15532 {
15533 cp_token *token2;
15534 token2 = cp_lexer_peek_nth_token (parser->lexer, n+1);
15535 if (token2->type == CPP_COLON && !(token2->flags & PREV_WHITE))
15536 return true;
15537 }
15538 return false;
15539 }
15540
15541 /* Returns the kind of tag indicated by TOKEN, if it is a class-key,
15542 or none_type otherwise. */
15543
15544 static enum tag_types
15545 cp_parser_token_is_class_key (cp_token* token)
15546 {
15547 switch (token->keyword)
15548 {
15549 case RID_CLASS:
15550 return class_type;
15551 case RID_STRUCT:
15552 return record_type;
15553 case RID_UNION:
15554 return union_type;
15555
15556 default:
15557 return none_type;
15558 }
15559 }
15560
15561 /* Issue an error message if the CLASS_KEY does not match the TYPE. */
15562
15563 static void
15564 cp_parser_check_class_key (enum tag_types class_key, tree type)
15565 {
15566 if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type))
15567 pedwarn ("%qs tag used in naming %q#T",
15568 class_key == union_type ? "union"
15569 : class_key == record_type ? "struct" : "class",
15570 type);
15571 }
15572
15573 /* Issue an error message if DECL is redeclared with different
15574 access than its original declaration [class.access.spec/3].
15575 This applies to nested classes and nested class templates.
15576 [class.mem/1]. */
15577
15578 static void
15579 cp_parser_check_access_in_redeclaration (tree decl)
15580 {
15581 if (!CLASS_TYPE_P (TREE_TYPE (decl)))
15582 return;
15583
15584 if ((TREE_PRIVATE (decl)
15585 != (current_access_specifier == access_private_node))
15586 || (TREE_PROTECTED (decl)
15587 != (current_access_specifier == access_protected_node)))
15588 error ("%qD redeclared with different access", decl);
15589 }
15590
15591 /* Look for the `template' keyword, as a syntactic disambiguator.
15592 Return TRUE iff it is present, in which case it will be
15593 consumed. */
15594
15595 static bool
15596 cp_parser_optional_template_keyword (cp_parser *parser)
15597 {
15598 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
15599 {
15600 /* The `template' keyword can only be used within templates;
15601 outside templates the parser can always figure out what is a
15602 template and what is not. */
15603 if (!processing_template_decl)
15604 {
15605 error ("%<template%> (as a disambiguator) is only allowed "
15606 "within templates");
15607 /* If this part of the token stream is rescanned, the same
15608 error message would be generated. So, we purge the token
15609 from the stream. */
15610 cp_lexer_purge_token (parser->lexer);
15611 return false;
15612 }
15613 else
15614 {
15615 /* Consume the `template' keyword. */
15616 cp_lexer_consume_token (parser->lexer);
15617 return true;
15618 }
15619 }
15620
15621 return false;
15622 }
15623
15624 /* The next token is a CPP_NESTED_NAME_SPECIFIER. Consume the token,
15625 set PARSER->SCOPE, and perform other related actions. */
15626
15627 static void
15628 cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser)
15629 {
15630 tree value;
15631 tree check;
15632
15633 /* Get the stored value. */
15634 value = cp_lexer_consume_token (parser->lexer)->value;
15635 /* Perform any access checks that were deferred. */
15636 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
15637 perform_or_defer_access_check (TREE_PURPOSE (check), TREE_VALUE (check));
15638 /* Set the scope from the stored value. */
15639 parser->scope = TREE_VALUE (value);
15640 parser->qualifying_scope = TREE_TYPE (value);
15641 parser->object_scope = NULL_TREE;
15642 }
15643
15644 /* Consume tokens up through a non-nested END token. */
15645
15646 static void
15647 cp_parser_cache_group (cp_parser *parser,
15648 enum cpp_ttype end,
15649 unsigned depth)
15650 {
15651 while (true)
15652 {
15653 cp_token *token;
15654
15655 /* Abort a parenthesized expression if we encounter a brace. */
15656 if ((end == CPP_CLOSE_PAREN || depth == 0)
15657 && cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
15658 return;
15659 /* If we've reached the end of the file, stop. */
15660 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15661 return;
15662 /* Consume the next token. */
15663 token = cp_lexer_consume_token (parser->lexer);
15664 /* See if it starts a new group. */
15665 if (token->type == CPP_OPEN_BRACE)
15666 {
15667 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, depth + 1);
15668 if (depth == 0)
15669 return;
15670 }
15671 else if (token->type == CPP_OPEN_PAREN)
15672 cp_parser_cache_group (parser, CPP_CLOSE_PAREN, depth + 1);
15673 else if (token->type == end)
15674 return;
15675 }
15676 }
15677
15678 /* Begin parsing tentatively. We always save tokens while parsing
15679 tentatively so that if the tentative parsing fails we can restore the
15680 tokens. */
15681
15682 static void
15683 cp_parser_parse_tentatively (cp_parser* parser)
15684 {
15685 /* Enter a new parsing context. */
15686 parser->context = cp_parser_context_new (parser->context);
15687 /* Begin saving tokens. */
15688 cp_lexer_save_tokens (parser->lexer);
15689 /* In order to avoid repetitive access control error messages,
15690 access checks are queued up until we are no longer parsing
15691 tentatively. */
15692 push_deferring_access_checks (dk_deferred);
15693 }
15694
15695 /* Commit to the currently active tentative parse. */
15696
15697 static void
15698 cp_parser_commit_to_tentative_parse (cp_parser* parser)
15699 {
15700 cp_parser_context *context;
15701 cp_lexer *lexer;
15702
15703 /* Mark all of the levels as committed. */
15704 lexer = parser->lexer;
15705 for (context = parser->context; context->next; context = context->next)
15706 {
15707 if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
15708 break;
15709 context->status = CP_PARSER_STATUS_KIND_COMMITTED;
15710 while (!cp_lexer_saving_tokens (lexer))
15711 lexer = lexer->next;
15712 cp_lexer_commit_tokens (lexer);
15713 }
15714 }
15715
15716 /* Abort the currently active tentative parse. All consumed tokens
15717 will be rolled back, and no diagnostics will be issued. */
15718
15719 static void
15720 cp_parser_abort_tentative_parse (cp_parser* parser)
15721 {
15722 cp_parser_simulate_error (parser);
15723 /* Now, pretend that we want to see if the construct was
15724 successfully parsed. */
15725 cp_parser_parse_definitely (parser);
15726 }
15727
15728 /* Stop parsing tentatively. If a parse error has occurred, restore the
15729 token stream. Otherwise, commit to the tokens we have consumed.
15730 Returns true if no error occurred; false otherwise. */
15731
15732 static bool
15733 cp_parser_parse_definitely (cp_parser* parser)
15734 {
15735 bool error_occurred;
15736 cp_parser_context *context;
15737
15738 /* Remember whether or not an error occurred, since we are about to
15739 destroy that information. */
15740 error_occurred = cp_parser_error_occurred (parser);
15741 /* Remove the topmost context from the stack. */
15742 context = parser->context;
15743 parser->context = context->next;
15744 /* If no parse errors occurred, commit to the tentative parse. */
15745 if (!error_occurred)
15746 {
15747 /* Commit to the tokens read tentatively, unless that was
15748 already done. */
15749 if (context->status != CP_PARSER_STATUS_KIND_COMMITTED)
15750 cp_lexer_commit_tokens (parser->lexer);
15751
15752 pop_to_parent_deferring_access_checks ();
15753 }
15754 /* Otherwise, if errors occurred, roll back our state so that things
15755 are just as they were before we began the tentative parse. */
15756 else
15757 {
15758 cp_lexer_rollback_tokens (parser->lexer);
15759 pop_deferring_access_checks ();
15760 }
15761 /* Add the context to the front of the free list. */
15762 context->next = cp_parser_context_free_list;
15763 cp_parser_context_free_list = context;
15764
15765 return !error_occurred;
15766 }
15767
15768 /* Returns true if we are parsing tentatively -- but have decided that
15769 we will stick with this tentative parse, even if errors occur. */
15770
15771 static bool
15772 cp_parser_committed_to_tentative_parse (cp_parser* parser)
15773 {
15774 return (cp_parser_parsing_tentatively (parser)
15775 && parser->context->status == CP_PARSER_STATUS_KIND_COMMITTED);
15776 }
15777
15778 /* Returns nonzero iff an error has occurred during the most recent
15779 tentative parse. */
15780
15781 static bool
15782 cp_parser_error_occurred (cp_parser* parser)
15783 {
15784 return (cp_parser_parsing_tentatively (parser)
15785 && parser->context->status == CP_PARSER_STATUS_KIND_ERROR);
15786 }
15787
15788 /* Returns nonzero if GNU extensions are allowed. */
15789
15790 static bool
15791 cp_parser_allow_gnu_extensions_p (cp_parser* parser)
15792 {
15793 return parser->allow_gnu_extensions_p;
15794 }
15795
15796 \f
15797 /* The parser. */
15798
15799 static GTY (()) cp_parser *the_parser;
15800
15801 /* External interface. */
15802
15803 /* Parse one entire translation unit. */
15804
15805 void
15806 c_parse_file (void)
15807 {
15808 bool error_occurred;
15809 static bool already_called = false;
15810
15811 if (already_called)
15812 {
15813 sorry ("inter-module optimizations not implemented for C++");
15814 return;
15815 }
15816 already_called = true;
15817
15818 the_parser = cp_parser_new ();
15819 push_deferring_access_checks (flag_access_control
15820 ? dk_no_deferred : dk_no_check);
15821 error_occurred = cp_parser_translation_unit (the_parser);
15822 the_parser = NULL;
15823 }
15824
15825 /* This variable must be provided by every front end. */
15826
15827 int yydebug;
15828
15829 #include "gt-cp-parser.h"