]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/parser.c
re PR c++/18803 (rejects access to operator() in template)
[thirdparty/gcc.git] / gcc / cp / parser.c
1 /* C++ Parser.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Written by Mark Mitchell <mark@codesourcery.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "dyn-string.h"
27 #include "varray.h"
28 #include "cpplib.h"
29 #include "tree.h"
30 #include "cp-tree.h"
31 #include "c-pragma.h"
32 #include "decl.h"
33 #include "flags.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "target.h"
38
39 \f
40 /* The lexer. */
41
42 /* The cp_lexer_* routines mediate between the lexer proper (in libcpp
43 and c-lex.c) and the C++ parser. */
44
45 /* A C++ token. */
46
47 typedef struct cp_token GTY (())
48 {
49 /* The kind of token. */
50 ENUM_BITFIELD (cpp_ttype) type : 8;
51 /* If this token is a keyword, this value indicates which keyword.
52 Otherwise, this value is RID_MAX. */
53 ENUM_BITFIELD (rid) keyword : 8;
54 /* Token flags. */
55 unsigned char flags;
56 /* True if this token is from a system header. */
57 BOOL_BITFIELD in_system_header : 1;
58 /* True if this token is from a context where it is implicitly extern "C" */
59 BOOL_BITFIELD implicit_extern_c : 1;
60 /* The value associated with this token, if any. */
61 tree value;
62 /* The location at which this token was found. */
63 location_t location;
64 } cp_token;
65
66 /* We use a stack of token pointer for saving token sets. */
67 typedef struct cp_token *cp_token_position;
68 DEF_VEC_MALLOC_P (cp_token_position);
69
70 static const cp_token eof_token =
71 {
72 CPP_EOF, RID_MAX, 0, 0, 0, NULL_TREE,
73 #if USE_MAPPED_LOCATION
74 0
75 #else
76 {0, 0}
77 #endif
78 };
79
80 /* The cp_lexer structure represents the C++ lexer. It is responsible
81 for managing the token stream from the preprocessor and supplying
82 it to the parser. Tokens are never added to the cp_lexer after
83 it is created. */
84
85 typedef struct cp_lexer GTY (())
86 {
87 /* The memory allocated for the buffer. NULL if this lexer does not
88 own the token buffer. */
89 cp_token * GTY ((length ("%h.buffer_length"))) buffer;
90 /* If the lexer owns the buffer, this is the number of tokens in the
91 buffer. */
92 size_t buffer_length;
93
94 /* A pointer just past the last available token. The tokens
95 in this lexer are [buffer, last_token). */
96 cp_token_position GTY ((skip)) last_token;
97
98 /* The next available token. If NEXT_TOKEN is &eof_token, then there are
99 no more available tokens. */
100 cp_token_position GTY ((skip)) next_token;
101
102 /* A stack indicating positions at which cp_lexer_save_tokens was
103 called. The top entry is the most recent position at which we
104 began saving tokens. If the stack is non-empty, we are saving
105 tokens. */
106 VEC (cp_token_position) *GTY ((skip)) saved_tokens;
107
108 /* True if we should output debugging information. */
109 bool debugging_p;
110
111 /* The next lexer in a linked list of lexers. */
112 struct cp_lexer *next;
113 } cp_lexer;
114
115 /* cp_token_cache is a range of tokens. There is no need to represent
116 allocate heap memory for it, since tokens are never removed from the
117 lexer's array. There is also no need for the GC to walk through
118 a cp_token_cache, since everything in here is referenced through
119 a lexer. */
120
121 typedef struct cp_token_cache GTY(())
122 {
123 /* The beginning of the token range. */
124 cp_token * GTY((skip)) first;
125
126 /* Points immediately after the last token in the range. */
127 cp_token * GTY ((skip)) last;
128 } cp_token_cache;
129
130 /* Prototypes. */
131
132 static cp_lexer *cp_lexer_new_main
133 (void);
134 static cp_lexer *cp_lexer_new_from_tokens
135 (cp_token_cache *tokens);
136 static void cp_lexer_destroy
137 (cp_lexer *);
138 static int cp_lexer_saving_tokens
139 (const cp_lexer *);
140 static cp_token_position cp_lexer_token_position
141 (cp_lexer *, bool);
142 static cp_token *cp_lexer_token_at
143 (cp_lexer *, cp_token_position);
144 static void cp_lexer_get_preprocessor_token
145 (cp_lexer *, cp_token *);
146 static inline cp_token *cp_lexer_peek_token
147 (cp_lexer *);
148 static cp_token *cp_lexer_peek_nth_token
149 (cp_lexer *, size_t);
150 static inline bool cp_lexer_next_token_is
151 (cp_lexer *, enum cpp_ttype);
152 static bool cp_lexer_next_token_is_not
153 (cp_lexer *, enum cpp_ttype);
154 static bool cp_lexer_next_token_is_keyword
155 (cp_lexer *, enum rid);
156 static cp_token *cp_lexer_consume_token
157 (cp_lexer *);
158 static void cp_lexer_purge_token
159 (cp_lexer *);
160 static void cp_lexer_purge_tokens_after
161 (cp_lexer *, cp_token_position);
162 static void cp_lexer_handle_pragma
163 (cp_lexer *);
164 static void cp_lexer_save_tokens
165 (cp_lexer *);
166 static void cp_lexer_commit_tokens
167 (cp_lexer *);
168 static void cp_lexer_rollback_tokens
169 (cp_lexer *);
170 #ifdef ENABLE_CHECKING
171 static void cp_lexer_print_token
172 (FILE *, cp_token *);
173 static inline bool cp_lexer_debugging_p
174 (cp_lexer *);
175 static void cp_lexer_start_debugging
176 (cp_lexer *) ATTRIBUTE_UNUSED;
177 static void cp_lexer_stop_debugging
178 (cp_lexer *) ATTRIBUTE_UNUSED;
179 #else
180 /* If we define cp_lexer_debug_stream to NULL it will provoke warnings
181 about passing NULL to functions that require non-NULL arguments
182 (fputs, fprintf). It will never be used, so all we need is a value
183 of the right type that's guaranteed not to be NULL. */
184 #define cp_lexer_debug_stream stdout
185 #define cp_lexer_print_token(str, tok) (void) 0
186 #define cp_lexer_debugging_p(lexer) 0
187 #endif /* ENABLE_CHECKING */
188
189 static cp_token_cache *cp_token_cache_new
190 (cp_token *, cp_token *);
191
192 /* Manifest constants. */
193 #define CP_LEXER_BUFFER_SIZE 10000
194 #define CP_SAVED_TOKEN_STACK 5
195
196 /* A token type for keywords, as opposed to ordinary identifiers. */
197 #define CPP_KEYWORD ((enum cpp_ttype) (N_TTYPES + 1))
198
199 /* A token type for template-ids. If a template-id is processed while
200 parsing tentatively, it is replaced with a CPP_TEMPLATE_ID token;
201 the value of the CPP_TEMPLATE_ID is whatever was returned by
202 cp_parser_template_id. */
203 #define CPP_TEMPLATE_ID ((enum cpp_ttype) (CPP_KEYWORD + 1))
204
205 /* A token type for nested-name-specifiers. If a
206 nested-name-specifier is processed while parsing tentatively, it is
207 replaced with a CPP_NESTED_NAME_SPECIFIER token; the value of the
208 CPP_NESTED_NAME_SPECIFIER is whatever was returned by
209 cp_parser_nested_name_specifier_opt. */
210 #define CPP_NESTED_NAME_SPECIFIER ((enum cpp_ttype) (CPP_TEMPLATE_ID + 1))
211
212 /* A token type for tokens that are not tokens at all; these are used
213 to represent slots in the array where there used to be a token
214 that has now been deleted. */
215 #define CPP_PURGED ((enum cpp_ttype) (CPP_NESTED_NAME_SPECIFIER + 1))
216
217 /* The number of token types, including C++-specific ones. */
218 #define N_CP_TTYPES ((int) (CPP_PURGED + 1))
219
220 /* Variables. */
221
222 #ifdef ENABLE_CHECKING
223 /* The stream to which debugging output should be written. */
224 static FILE *cp_lexer_debug_stream;
225 #endif /* ENABLE_CHECKING */
226
227 /* Create a new main C++ lexer, the lexer that gets tokens from the
228 preprocessor. */
229
230 static cp_lexer *
231 cp_lexer_new_main (void)
232 {
233 cp_token first_token;
234 cp_lexer *lexer;
235 cp_token *pos;
236 size_t alloc;
237 size_t space;
238 cp_token *buffer;
239
240 /* Tell cpplib we want CPP_PRAGMA tokens. */
241 cpp_get_options (parse_in)->defer_pragmas = true;
242
243 /* Tell c_lex not to merge string constants. */
244 c_lex_return_raw_strings = true;
245
246 /* It's possible that lexing the first token will load a PCH file,
247 which is a GC collection point. So we have to grab the first
248 token before allocating any memory. */
249 cp_lexer_get_preprocessor_token (NULL, &first_token);
250 c_common_no_more_pch ();
251
252 /* Allocate the memory. */
253 lexer = GGC_CNEW (cp_lexer);
254
255 #ifdef ENABLE_CHECKING
256 /* Initially we are not debugging. */
257 lexer->debugging_p = false;
258 #endif /* ENABLE_CHECKING */
259 lexer->saved_tokens = VEC_alloc (cp_token_position, CP_SAVED_TOKEN_STACK);
260
261 /* Create the buffer. */
262 alloc = CP_LEXER_BUFFER_SIZE;
263 buffer = ggc_alloc (alloc * sizeof (cp_token));
264
265 /* Put the first token in the buffer. */
266 space = alloc;
267 pos = buffer;
268 *pos = first_token;
269
270 /* Get the remaining tokens from the preprocessor. */
271 while (pos->type != CPP_EOF)
272 {
273 pos++;
274 if (!--space)
275 {
276 space = alloc;
277 alloc *= 2;
278 buffer = ggc_realloc (buffer, alloc * sizeof (cp_token));
279 pos = buffer + space;
280 }
281 cp_lexer_get_preprocessor_token (lexer, pos);
282 }
283 lexer->buffer = buffer;
284 lexer->buffer_length = alloc - space;
285 lexer->last_token = pos;
286 lexer->next_token = lexer->buffer_length ? buffer : (cp_token *)&eof_token;
287
288 /* Pragma processing (via cpp_handle_deferred_pragma) may result in
289 direct calls to c_lex. Those callers all expect c_lex to do
290 string constant concatenation. */
291 c_lex_return_raw_strings = false;
292
293 gcc_assert (lexer->next_token->type != CPP_PURGED);
294 return lexer;
295 }
296
297 /* Create a new lexer whose token stream is primed with the tokens in
298 CACHE. When these tokens are exhausted, no new tokens will be read. */
299
300 static cp_lexer *
301 cp_lexer_new_from_tokens (cp_token_cache *cache)
302 {
303 cp_token *first = cache->first;
304 cp_token *last = cache->last;
305 cp_lexer *lexer = GGC_CNEW (cp_lexer);
306
307 /* We do not own the buffer. */
308 lexer->buffer = NULL;
309 lexer->buffer_length = 0;
310 lexer->next_token = first == last ? (cp_token *)&eof_token : first;
311 lexer->last_token = last;
312
313 lexer->saved_tokens = VEC_alloc (cp_token_position, CP_SAVED_TOKEN_STACK);
314
315 #ifdef ENABLE_CHECKING
316 /* Initially we are not debugging. */
317 lexer->debugging_p = false;
318 #endif
319
320 gcc_assert (lexer->next_token->type != CPP_PURGED);
321 return lexer;
322 }
323
324 /* Frees all resources associated with LEXER. */
325
326 static void
327 cp_lexer_destroy (cp_lexer *lexer)
328 {
329 if (lexer->buffer)
330 ggc_free (lexer->buffer);
331 VEC_free (cp_token_position, lexer->saved_tokens);
332 ggc_free (lexer);
333 }
334
335 /* Returns nonzero if debugging information should be output. */
336
337 #ifdef ENABLE_CHECKING
338
339 static inline bool
340 cp_lexer_debugging_p (cp_lexer *lexer)
341 {
342 return lexer->debugging_p;
343 }
344
345 #endif /* ENABLE_CHECKING */
346
347 static inline cp_token_position
348 cp_lexer_token_position (cp_lexer *lexer, bool previous_p)
349 {
350 gcc_assert (!previous_p || lexer->next_token != &eof_token);
351
352 return lexer->next_token - previous_p;
353 }
354
355 static inline cp_token *
356 cp_lexer_token_at (cp_lexer *lexer ATTRIBUTE_UNUSED, cp_token_position pos)
357 {
358 return pos;
359 }
360
361 /* nonzero if we are presently saving tokens. */
362
363 static inline int
364 cp_lexer_saving_tokens (const cp_lexer* lexer)
365 {
366 return VEC_length (cp_token_position, lexer->saved_tokens) != 0;
367 }
368
369 /* Store the next token from the preprocessor in *TOKEN. Return true
370 if we reach EOF. */
371
372 static void
373 cp_lexer_get_preprocessor_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
374 cp_token *token)
375 {
376 static int is_extern_c = 0;
377
378 /* Get a new token from the preprocessor. */
379 token->type = c_lex_with_flags (&token->value, &token->flags);
380 token->location = input_location;
381 token->in_system_header = in_system_header;
382
383 /* On some systems, some header files are surrounded by an
384 implicit extern "C" block. Set a flag in the token if it
385 comes from such a header. */
386 is_extern_c += pending_lang_change;
387 pending_lang_change = 0;
388 token->implicit_extern_c = is_extern_c > 0;
389
390 /* Check to see if this token is a keyword. */
391 if (token->type == CPP_NAME
392 && C_IS_RESERVED_WORD (token->value))
393 {
394 /* Mark this token as a keyword. */
395 token->type = CPP_KEYWORD;
396 /* Record which keyword. */
397 token->keyword = C_RID_CODE (token->value);
398 /* Update the value. Some keywords are mapped to particular
399 entities, rather than simply having the value of the
400 corresponding IDENTIFIER_NODE. For example, `__const' is
401 mapped to `const'. */
402 token->value = ridpointers[token->keyword];
403 }
404 else
405 token->keyword = RID_MAX;
406 }
407
408 /* Update the globals input_location and in_system_header from TOKEN. */
409 static inline void
410 cp_lexer_set_source_position_from_token (cp_token *token)
411 {
412 if (token->type != CPP_EOF)
413 {
414 input_location = token->location;
415 in_system_header = token->in_system_header;
416 }
417 }
418
419 /* Return a pointer to the next token in the token stream, but do not
420 consume it. */
421
422 static inline cp_token *
423 cp_lexer_peek_token (cp_lexer *lexer)
424 {
425 if (cp_lexer_debugging_p (lexer))
426 {
427 fputs ("cp_lexer: peeking at token: ", cp_lexer_debug_stream);
428 cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
429 putc ('\n', cp_lexer_debug_stream);
430 }
431 return lexer->next_token;
432 }
433
434 /* Return true if the next token has the indicated TYPE. */
435
436 static inline bool
437 cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
438 {
439 return cp_lexer_peek_token (lexer)->type == type;
440 }
441
442 /* Return true if the next token does not have the indicated TYPE. */
443
444 static inline bool
445 cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
446 {
447 return !cp_lexer_next_token_is (lexer, type);
448 }
449
450 /* Return true if the next token is the indicated KEYWORD. */
451
452 static inline bool
453 cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
454 {
455 cp_token *token;
456
457 /* Peek at the next token. */
458 token = cp_lexer_peek_token (lexer);
459 /* Check to see if it is the indicated keyword. */
460 return token->keyword == keyword;
461 }
462
463 /* Return a pointer to the Nth token in the token stream. If N is 1,
464 then this is precisely equivalent to cp_lexer_peek_token (except
465 that it is not inline). One would like to disallow that case, but
466 there is one case (cp_parser_nth_token_starts_template_id) where
467 the caller passes a variable for N and it might be 1. */
468
469 static cp_token *
470 cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
471 {
472 cp_token *token;
473
474 /* N is 1-based, not zero-based. */
475 gcc_assert (n > 0 && lexer->next_token != &eof_token);
476
477 if (cp_lexer_debugging_p (lexer))
478 fprintf (cp_lexer_debug_stream,
479 "cp_lexer: peeking ahead %ld at token: ", (long)n);
480
481 --n;
482 token = lexer->next_token;
483 while (n != 0)
484 {
485 ++token;
486 if (token == lexer->last_token)
487 {
488 token = (cp_token *)&eof_token;
489 break;
490 }
491
492 if (token->type != CPP_PURGED)
493 --n;
494 }
495
496 if (cp_lexer_debugging_p (lexer))
497 {
498 cp_lexer_print_token (cp_lexer_debug_stream, token);
499 putc ('\n', cp_lexer_debug_stream);
500 }
501
502 return token;
503 }
504
505 /* Return the next token, and advance the lexer's next_token pointer
506 to point to the next non-purged token. */
507
508 static cp_token *
509 cp_lexer_consume_token (cp_lexer* lexer)
510 {
511 cp_token *token = lexer->next_token;
512
513 gcc_assert (token != &eof_token);
514
515 do
516 {
517 lexer->next_token++;
518 if (lexer->next_token == lexer->last_token)
519 {
520 lexer->next_token = (cp_token *)&eof_token;
521 break;
522 }
523
524 }
525 while (lexer->next_token->type == CPP_PURGED);
526
527 cp_lexer_set_source_position_from_token (token);
528
529 /* Provide debugging output. */
530 if (cp_lexer_debugging_p (lexer))
531 {
532 fputs ("cp_lexer: consuming token: ", cp_lexer_debug_stream);
533 cp_lexer_print_token (cp_lexer_debug_stream, token);
534 putc ('\n', cp_lexer_debug_stream);
535 }
536
537 return token;
538 }
539
540 /* Permanently remove the next token from the token stream, and
541 advance the next_token pointer to refer to the next non-purged
542 token. */
543
544 static void
545 cp_lexer_purge_token (cp_lexer *lexer)
546 {
547 cp_token *tok = lexer->next_token;
548
549 gcc_assert (tok != &eof_token);
550 tok->type = CPP_PURGED;
551 tok->location = UNKNOWN_LOCATION;
552 tok->value = NULL_TREE;
553 tok->keyword = RID_MAX;
554
555 do
556 {
557 tok++;
558 if (tok == lexer->last_token)
559 {
560 tok = (cp_token *)&eof_token;
561 break;
562 }
563 }
564 while (tok->type == CPP_PURGED);
565 lexer->next_token = tok;
566 }
567
568 /* Permanently remove all tokens after TOK, up to, but not
569 including, the token that will be returned next by
570 cp_lexer_peek_token. */
571
572 static void
573 cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *tok)
574 {
575 cp_token *peek = lexer->next_token;
576
577 if (peek == &eof_token)
578 peek = lexer->last_token;
579
580 gcc_assert (tok < peek);
581
582 for ( tok += 1; tok != peek; tok += 1)
583 {
584 tok->type = CPP_PURGED;
585 tok->location = UNKNOWN_LOCATION;
586 tok->value = NULL_TREE;
587 tok->keyword = RID_MAX;
588 }
589 }
590
591 /* Consume and handle a pragma token. */
592 static void
593 cp_lexer_handle_pragma (cp_lexer *lexer)
594 {
595 cpp_string s;
596 cp_token *token = cp_lexer_consume_token (lexer);
597 gcc_assert (token->type == CPP_PRAGMA);
598 gcc_assert (token->value);
599
600 s.len = TREE_STRING_LENGTH (token->value);
601 s.text = (const unsigned char *) TREE_STRING_POINTER (token->value);
602
603 cpp_handle_deferred_pragma (parse_in, &s);
604
605 /* Clearing token->value here means that we will get an ICE if we
606 try to process this #pragma again (which should be impossible). */
607 token->value = NULL;
608 }
609
610 /* Begin saving tokens. All tokens consumed after this point will be
611 preserved. */
612
613 static void
614 cp_lexer_save_tokens (cp_lexer* lexer)
615 {
616 /* Provide debugging output. */
617 if (cp_lexer_debugging_p (lexer))
618 fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
619
620 VEC_safe_push (cp_token_position, lexer->saved_tokens, lexer->next_token);
621 }
622
623 /* Commit to the portion of the token stream most recently saved. */
624
625 static void
626 cp_lexer_commit_tokens (cp_lexer* lexer)
627 {
628 /* Provide debugging output. */
629 if (cp_lexer_debugging_p (lexer))
630 fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
631
632 VEC_pop (cp_token_position, lexer->saved_tokens);
633 }
634
635 /* Return all tokens saved since the last call to cp_lexer_save_tokens
636 to the token stream. Stop saving tokens. */
637
638 static void
639 cp_lexer_rollback_tokens (cp_lexer* lexer)
640 {
641 /* Provide debugging output. */
642 if (cp_lexer_debugging_p (lexer))
643 fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
644
645 lexer->next_token = VEC_pop (cp_token_position, lexer->saved_tokens);
646 }
647
648 /* Print a representation of the TOKEN on the STREAM. */
649
650 #ifdef ENABLE_CHECKING
651
652 static void
653 cp_lexer_print_token (FILE * stream, cp_token *token)
654 {
655 /* We don't use cpp_type2name here because the parser defines
656 a few tokens of its own. */
657 static const char *const token_names[] = {
658 /* cpplib-defined token types */
659 #define OP(e, s) #e,
660 #define TK(e, s) #e,
661 TTYPE_TABLE
662 #undef OP
663 #undef TK
664 /* C++ parser token types - see "Manifest constants", above. */
665 "KEYWORD",
666 "TEMPLATE_ID",
667 "NESTED_NAME_SPECIFIER",
668 "PURGED"
669 };
670
671 /* If we have a name for the token, print it out. Otherwise, we
672 simply give the numeric code. */
673 gcc_assert (token->type < ARRAY_SIZE(token_names));
674 fputs (token_names[token->type], stream);
675
676 /* For some tokens, print the associated data. */
677 switch (token->type)
678 {
679 case CPP_KEYWORD:
680 /* Some keywords have a value that is not an IDENTIFIER_NODE.
681 For example, `struct' is mapped to an INTEGER_CST. */
682 if (TREE_CODE (token->value) != IDENTIFIER_NODE)
683 break;
684 /* else fall through */
685 case CPP_NAME:
686 fputs (IDENTIFIER_POINTER (token->value), stream);
687 break;
688
689 case CPP_STRING:
690 case CPP_WSTRING:
691 case CPP_PRAGMA:
692 fprintf (stream, " \"%s\"", TREE_STRING_POINTER (token->value));
693 break;
694
695 default:
696 break;
697 }
698 }
699
700 /* Start emitting debugging information. */
701
702 static void
703 cp_lexer_start_debugging (cp_lexer* lexer)
704 {
705 ++lexer->debugging_p;
706 }
707
708 /* Stop emitting debugging information. */
709
710 static void
711 cp_lexer_stop_debugging (cp_lexer* lexer)
712 {
713 --lexer->debugging_p;
714 }
715
716 #endif /* ENABLE_CHECKING */
717
718 /* Create a new cp_token_cache, representing a range of tokens. */
719
720 static cp_token_cache *
721 cp_token_cache_new (cp_token *first, cp_token *last)
722 {
723 cp_token_cache *cache = GGC_NEW (cp_token_cache);
724 cache->first = first;
725 cache->last = last;
726 return cache;
727 }
728
729 \f
730 /* Decl-specifiers. */
731
732 static void clear_decl_specs
733 (cp_decl_specifier_seq *);
734
735 /* Set *DECL_SPECS to represent an empty decl-specifier-seq. */
736
737 static void
738 clear_decl_specs (cp_decl_specifier_seq *decl_specs)
739 {
740 memset (decl_specs, 0, sizeof (cp_decl_specifier_seq));
741 }
742
743 /* Declarators. */
744
745 /* Nothing other than the parser should be creating declarators;
746 declarators are a semi-syntactic representation of C++ entities.
747 Other parts of the front end that need to create entities (like
748 VAR_DECLs or FUNCTION_DECLs) should do that directly. */
749
750 static cp_declarator *make_id_declarator
751 (tree);
752 static cp_declarator *make_call_declarator
753 (cp_declarator *, cp_parameter_declarator *, cp_cv_quals, tree);
754 static cp_declarator *make_array_declarator
755 (cp_declarator *, tree);
756 static cp_declarator *make_pointer_declarator
757 (cp_cv_quals, cp_declarator *);
758 static cp_declarator *make_reference_declarator
759 (cp_cv_quals, cp_declarator *);
760 static cp_parameter_declarator *make_parameter_declarator
761 (cp_decl_specifier_seq *, cp_declarator *, tree);
762 static cp_declarator *make_ptrmem_declarator
763 (cp_cv_quals, tree, cp_declarator *);
764
765 cp_declarator *cp_error_declarator;
766
767 /* The obstack on which declarators and related data structures are
768 allocated. */
769 static struct obstack declarator_obstack;
770
771 /* Alloc BYTES from the declarator memory pool. */
772
773 static inline void *
774 alloc_declarator (size_t bytes)
775 {
776 return obstack_alloc (&declarator_obstack, bytes);
777 }
778
779 /* Allocate a declarator of the indicated KIND. Clear fields that are
780 common to all declarators. */
781
782 static cp_declarator *
783 make_declarator (cp_declarator_kind kind)
784 {
785 cp_declarator *declarator;
786
787 declarator = (cp_declarator *) alloc_declarator (sizeof (cp_declarator));
788 declarator->kind = kind;
789 declarator->attributes = NULL_TREE;
790 declarator->declarator = NULL;
791
792 return declarator;
793 }
794
795 /* Make a declarator for a generalized identifier. */
796
797 cp_declarator *
798 make_id_declarator (tree id)
799 {
800 cp_declarator *declarator;
801
802 declarator = make_declarator (cdk_id);
803 declarator->u.id.name = id;
804 declarator->u.id.sfk = sfk_none;
805
806 return declarator;
807 }
808
809 /* Make a declarator for a pointer to TARGET. CV_QUALIFIERS is a list
810 of modifiers such as const or volatile to apply to the pointer
811 type, represented as identifiers. */
812
813 cp_declarator *
814 make_pointer_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
815 {
816 cp_declarator *declarator;
817
818 declarator = make_declarator (cdk_pointer);
819 declarator->declarator = target;
820 declarator->u.pointer.qualifiers = cv_qualifiers;
821 declarator->u.pointer.class_type = NULL_TREE;
822
823 return declarator;
824 }
825
826 /* Like make_pointer_declarator -- but for references. */
827
828 cp_declarator *
829 make_reference_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
830 {
831 cp_declarator *declarator;
832
833 declarator = make_declarator (cdk_reference);
834 declarator->declarator = target;
835 declarator->u.pointer.qualifiers = cv_qualifiers;
836 declarator->u.pointer.class_type = NULL_TREE;
837
838 return declarator;
839 }
840
841 /* Like make_pointer_declarator -- but for a pointer to a non-static
842 member of CLASS_TYPE. */
843
844 cp_declarator *
845 make_ptrmem_declarator (cp_cv_quals cv_qualifiers, tree class_type,
846 cp_declarator *pointee)
847 {
848 cp_declarator *declarator;
849
850 declarator = make_declarator (cdk_ptrmem);
851 declarator->declarator = pointee;
852 declarator->u.pointer.qualifiers = cv_qualifiers;
853 declarator->u.pointer.class_type = class_type;
854
855 return declarator;
856 }
857
858 /* Make a declarator for the function given by TARGET, with the
859 indicated PARMS. The CV_QUALIFIERS aply to the function, as in
860 "const"-qualified member function. The EXCEPTION_SPECIFICATION
861 indicates what exceptions can be thrown. */
862
863 cp_declarator *
864 make_call_declarator (cp_declarator *target,
865 cp_parameter_declarator *parms,
866 cp_cv_quals cv_qualifiers,
867 tree exception_specification)
868 {
869 cp_declarator *declarator;
870
871 declarator = make_declarator (cdk_function);
872 declarator->declarator = target;
873 declarator->u.function.parameters = parms;
874 declarator->u.function.qualifiers = cv_qualifiers;
875 declarator->u.function.exception_specification = exception_specification;
876
877 return declarator;
878 }
879
880 /* Make a declarator for an array of BOUNDS elements, each of which is
881 defined by ELEMENT. */
882
883 cp_declarator *
884 make_array_declarator (cp_declarator *element, tree bounds)
885 {
886 cp_declarator *declarator;
887
888 declarator = make_declarator (cdk_array);
889 declarator->declarator = element;
890 declarator->u.array.bounds = bounds;
891
892 return declarator;
893 }
894
895 cp_parameter_declarator *no_parameters;
896
897 /* Create a parameter declarator with the indicated DECL_SPECIFIERS,
898 DECLARATOR and DEFAULT_ARGUMENT. */
899
900 cp_parameter_declarator *
901 make_parameter_declarator (cp_decl_specifier_seq *decl_specifiers,
902 cp_declarator *declarator,
903 tree default_argument)
904 {
905 cp_parameter_declarator *parameter;
906
907 parameter = ((cp_parameter_declarator *)
908 alloc_declarator (sizeof (cp_parameter_declarator)));
909 parameter->next = NULL;
910 if (decl_specifiers)
911 parameter->decl_specifiers = *decl_specifiers;
912 else
913 clear_decl_specs (&parameter->decl_specifiers);
914 parameter->declarator = declarator;
915 parameter->default_argument = default_argument;
916 parameter->ellipsis_p = false;
917
918 return parameter;
919 }
920
921 /* The parser. */
922
923 /* Overview
924 --------
925
926 A cp_parser parses the token stream as specified by the C++
927 grammar. Its job is purely parsing, not semantic analysis. For
928 example, the parser breaks the token stream into declarators,
929 expressions, statements, and other similar syntactic constructs.
930 It does not check that the types of the expressions on either side
931 of an assignment-statement are compatible, or that a function is
932 not declared with a parameter of type `void'.
933
934 The parser invokes routines elsewhere in the compiler to perform
935 semantic analysis and to build up the abstract syntax tree for the
936 code processed.
937
938 The parser (and the template instantiation code, which is, in a
939 way, a close relative of parsing) are the only parts of the
940 compiler that should be calling push_scope and pop_scope, or
941 related functions. The parser (and template instantiation code)
942 keeps track of what scope is presently active; everything else
943 should simply honor that. (The code that generates static
944 initializers may also need to set the scope, in order to check
945 access control correctly when emitting the initializers.)
946
947 Methodology
948 -----------
949
950 The parser is of the standard recursive-descent variety. Upcoming
951 tokens in the token stream are examined in order to determine which
952 production to use when parsing a non-terminal. Some C++ constructs
953 require arbitrary look ahead to disambiguate. For example, it is
954 impossible, in the general case, to tell whether a statement is an
955 expression or declaration without scanning the entire statement.
956 Therefore, the parser is capable of "parsing tentatively." When the
957 parser is not sure what construct comes next, it enters this mode.
958 Then, while we attempt to parse the construct, the parser queues up
959 error messages, rather than issuing them immediately, and saves the
960 tokens it consumes. If the construct is parsed successfully, the
961 parser "commits", i.e., it issues any queued error messages and
962 the tokens that were being preserved are permanently discarded.
963 If, however, the construct is not parsed successfully, the parser
964 rolls back its state completely so that it can resume parsing using
965 a different alternative.
966
967 Future Improvements
968 -------------------
969
970 The performance of the parser could probably be improved substantially.
971 We could often eliminate the need to parse tentatively by looking ahead
972 a little bit. In some places, this approach might not entirely eliminate
973 the need to parse tentatively, but it might still speed up the average
974 case. */
975
976 /* Flags that are passed to some parsing functions. These values can
977 be bitwise-ored together. */
978
979 typedef enum cp_parser_flags
980 {
981 /* No flags. */
982 CP_PARSER_FLAGS_NONE = 0x0,
983 /* The construct is optional. If it is not present, then no error
984 should be issued. */
985 CP_PARSER_FLAGS_OPTIONAL = 0x1,
986 /* When parsing a type-specifier, do not allow user-defined types. */
987 CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2
988 } cp_parser_flags;
989
990 /* The different kinds of declarators we want to parse. */
991
992 typedef enum cp_parser_declarator_kind
993 {
994 /* We want an abstract declarator. */
995 CP_PARSER_DECLARATOR_ABSTRACT,
996 /* We want a named declarator. */
997 CP_PARSER_DECLARATOR_NAMED,
998 /* We don't mind, but the name must be an unqualified-id. */
999 CP_PARSER_DECLARATOR_EITHER
1000 } cp_parser_declarator_kind;
1001
1002 /* The precedence values used to parse binary expressions. The minimum value
1003 of PREC must be 1, because zero is reserved to quickly discriminate
1004 binary operators from other tokens. */
1005
1006 enum cp_parser_prec
1007 {
1008 PREC_NOT_OPERATOR,
1009 PREC_LOGICAL_OR_EXPRESSION,
1010 PREC_LOGICAL_AND_EXPRESSION,
1011 PREC_INCLUSIVE_OR_EXPRESSION,
1012 PREC_EXCLUSIVE_OR_EXPRESSION,
1013 PREC_AND_EXPRESSION,
1014 PREC_EQUALITY_EXPRESSION,
1015 PREC_RELATIONAL_EXPRESSION,
1016 PREC_SHIFT_EXPRESSION,
1017 PREC_ADDITIVE_EXPRESSION,
1018 PREC_MULTIPLICATIVE_EXPRESSION,
1019 PREC_PM_EXPRESSION,
1020 NUM_PREC_VALUES = PREC_PM_EXPRESSION
1021 };
1022
1023 /* A mapping from a token type to a corresponding tree node type, with a
1024 precedence value. */
1025
1026 typedef struct cp_parser_binary_operations_map_node
1027 {
1028 /* The token type. */
1029 enum cpp_ttype token_type;
1030 /* The corresponding tree code. */
1031 enum tree_code tree_type;
1032 /* The precedence of this operator. */
1033 enum cp_parser_prec prec;
1034 } cp_parser_binary_operations_map_node;
1035
1036 /* The status of a tentative parse. */
1037
1038 typedef enum cp_parser_status_kind
1039 {
1040 /* No errors have occurred. */
1041 CP_PARSER_STATUS_KIND_NO_ERROR,
1042 /* An error has occurred. */
1043 CP_PARSER_STATUS_KIND_ERROR,
1044 /* We are committed to this tentative parse, whether or not an error
1045 has occurred. */
1046 CP_PARSER_STATUS_KIND_COMMITTED
1047 } cp_parser_status_kind;
1048
1049 typedef struct cp_parser_expression_stack_entry
1050 {
1051 tree lhs;
1052 enum tree_code tree_type;
1053 int prec;
1054 } cp_parser_expression_stack_entry;
1055
1056 /* The stack for storing partial expressions. We only need NUM_PREC_VALUES
1057 entries because precedence levels on the stack are monotonically
1058 increasing. */
1059 typedef struct cp_parser_expression_stack_entry
1060 cp_parser_expression_stack[NUM_PREC_VALUES];
1061
1062 /* Context that is saved and restored when parsing tentatively. */
1063 typedef struct cp_parser_context GTY (())
1064 {
1065 /* If this is a tentative parsing context, the status of the
1066 tentative parse. */
1067 enum cp_parser_status_kind status;
1068 /* If non-NULL, we have just seen a `x->' or `x.' expression. Names
1069 that are looked up in this context must be looked up both in the
1070 scope given by OBJECT_TYPE (the type of `x' or `*x') and also in
1071 the context of the containing expression. */
1072 tree object_type;
1073
1074 /* The next parsing context in the stack. */
1075 struct cp_parser_context *next;
1076 } cp_parser_context;
1077
1078 /* Prototypes. */
1079
1080 /* Constructors and destructors. */
1081
1082 static cp_parser_context *cp_parser_context_new
1083 (cp_parser_context *);
1084
1085 /* Class variables. */
1086
1087 static GTY((deletable)) cp_parser_context* cp_parser_context_free_list;
1088
1089 /* The operator-precedence table used by cp_parser_binary_expression.
1090 Transformed into an associative array (binops_by_token) by
1091 cp_parser_new. */
1092
1093 static const cp_parser_binary_operations_map_node binops[] = {
1094 { CPP_DEREF_STAR, MEMBER_REF, PREC_PM_EXPRESSION },
1095 { CPP_DOT_STAR, DOTSTAR_EXPR, PREC_PM_EXPRESSION },
1096
1097 { CPP_MULT, MULT_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1098 { CPP_DIV, TRUNC_DIV_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1099 { CPP_MOD, TRUNC_MOD_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1100
1101 { CPP_PLUS, PLUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1102 { CPP_MINUS, MINUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1103
1104 { CPP_LSHIFT, LSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1105 { CPP_RSHIFT, RSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1106
1107 { CPP_LESS, LT_EXPR, PREC_RELATIONAL_EXPRESSION },
1108 { CPP_GREATER, GT_EXPR, PREC_RELATIONAL_EXPRESSION },
1109 { CPP_LESS_EQ, LE_EXPR, PREC_RELATIONAL_EXPRESSION },
1110 { CPP_GREATER_EQ, GE_EXPR, PREC_RELATIONAL_EXPRESSION },
1111 { CPP_MIN, MIN_EXPR, PREC_RELATIONAL_EXPRESSION },
1112 { CPP_MAX, MAX_EXPR, PREC_RELATIONAL_EXPRESSION },
1113
1114 { CPP_EQ_EQ, EQ_EXPR, PREC_EQUALITY_EXPRESSION },
1115 { CPP_NOT_EQ, NE_EXPR, PREC_EQUALITY_EXPRESSION },
1116
1117 { CPP_AND, BIT_AND_EXPR, PREC_AND_EXPRESSION },
1118
1119 { CPP_XOR, BIT_XOR_EXPR, PREC_EXCLUSIVE_OR_EXPRESSION },
1120
1121 { CPP_OR, BIT_IOR_EXPR, PREC_INCLUSIVE_OR_EXPRESSION },
1122
1123 { CPP_AND_AND, TRUTH_ANDIF_EXPR, PREC_LOGICAL_AND_EXPRESSION },
1124
1125 { CPP_OR_OR, TRUTH_ORIF_EXPR, PREC_LOGICAL_OR_EXPRESSION }
1126 };
1127
1128 /* The same as binops, but initialized by cp_parser_new so that
1129 binops_by_token[N].token_type == N. Used in cp_parser_binary_expression
1130 for speed. */
1131 static cp_parser_binary_operations_map_node binops_by_token[N_CP_TTYPES];
1132
1133 /* Constructors and destructors. */
1134
1135 /* Construct a new context. The context below this one on the stack
1136 is given by NEXT. */
1137
1138 static cp_parser_context *
1139 cp_parser_context_new (cp_parser_context* next)
1140 {
1141 cp_parser_context *context;
1142
1143 /* Allocate the storage. */
1144 if (cp_parser_context_free_list != NULL)
1145 {
1146 /* Pull the first entry from the free list. */
1147 context = cp_parser_context_free_list;
1148 cp_parser_context_free_list = context->next;
1149 memset (context, 0, sizeof (*context));
1150 }
1151 else
1152 context = GGC_CNEW (cp_parser_context);
1153
1154 /* No errors have occurred yet in this context. */
1155 context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
1156 /* If this is not the bottomost context, copy information that we
1157 need from the previous context. */
1158 if (next)
1159 {
1160 /* If, in the NEXT context, we are parsing an `x->' or `x.'
1161 expression, then we are parsing one in this context, too. */
1162 context->object_type = next->object_type;
1163 /* Thread the stack. */
1164 context->next = next;
1165 }
1166
1167 return context;
1168 }
1169
1170 /* The cp_parser structure represents the C++ parser. */
1171
1172 typedef struct cp_parser GTY(())
1173 {
1174 /* The lexer from which we are obtaining tokens. */
1175 cp_lexer *lexer;
1176
1177 /* The scope in which names should be looked up. If NULL_TREE, then
1178 we look up names in the scope that is currently open in the
1179 source program. If non-NULL, this is either a TYPE or
1180 NAMESPACE_DECL for the scope in which we should look.
1181
1182 This value is not cleared automatically after a name is looked
1183 up, so we must be careful to clear it before starting a new look
1184 up sequence. (If it is not cleared, then `X::Y' followed by `Z'
1185 will look up `Z' in the scope of `X', rather than the current
1186 scope.) Unfortunately, it is difficult to tell when name lookup
1187 is complete, because we sometimes peek at a token, look it up,
1188 and then decide not to consume it. */
1189 tree scope;
1190
1191 /* OBJECT_SCOPE and QUALIFYING_SCOPE give the scopes in which the
1192 last lookup took place. OBJECT_SCOPE is used if an expression
1193 like "x->y" or "x.y" was used; it gives the type of "*x" or "x",
1194 respectively. QUALIFYING_SCOPE is used for an expression of the
1195 form "X::Y"; it refers to X. */
1196 tree object_scope;
1197 tree qualifying_scope;
1198
1199 /* A stack of parsing contexts. All but the bottom entry on the
1200 stack will be tentative contexts.
1201
1202 We parse tentatively in order to determine which construct is in
1203 use in some situations. For example, in order to determine
1204 whether a statement is an expression-statement or a
1205 declaration-statement we parse it tentatively as a
1206 declaration-statement. If that fails, we then reparse the same
1207 token stream as an expression-statement. */
1208 cp_parser_context *context;
1209
1210 /* True if we are parsing GNU C++. If this flag is not set, then
1211 GNU extensions are not recognized. */
1212 bool allow_gnu_extensions_p;
1213
1214 /* TRUE if the `>' token should be interpreted as the greater-than
1215 operator. FALSE if it is the end of a template-id or
1216 template-parameter-list. */
1217 bool greater_than_is_operator_p;
1218
1219 /* TRUE if default arguments are allowed within a parameter list
1220 that starts at this point. FALSE if only a gnu extension makes
1221 them permissible. */
1222 bool default_arg_ok_p;
1223
1224 /* TRUE if we are parsing an integral constant-expression. See
1225 [expr.const] for a precise definition. */
1226 bool integral_constant_expression_p;
1227
1228 /* TRUE if we are parsing an integral constant-expression -- but a
1229 non-constant expression should be permitted as well. This flag
1230 is used when parsing an array bound so that GNU variable-length
1231 arrays are tolerated. */
1232 bool allow_non_integral_constant_expression_p;
1233
1234 /* TRUE if ALLOW_NON_CONSTANT_EXPRESSION_P is TRUE and something has
1235 been seen that makes the expression non-constant. */
1236 bool non_integral_constant_expression_p;
1237
1238 /* TRUE if local variable names and `this' are forbidden in the
1239 current context. */
1240 bool local_variables_forbidden_p;
1241
1242 /* TRUE if the declaration we are parsing is part of a
1243 linkage-specification of the form `extern string-literal
1244 declaration'. */
1245 bool in_unbraced_linkage_specification_p;
1246
1247 /* TRUE if we are presently parsing a declarator, after the
1248 direct-declarator. */
1249 bool in_declarator_p;
1250
1251 /* TRUE if we are presently parsing a template-argument-list. */
1252 bool in_template_argument_list_p;
1253
1254 /* TRUE if we are presently parsing the body of an
1255 iteration-statement. */
1256 bool in_iteration_statement_p;
1257
1258 /* TRUE if we are presently parsing the body of a switch
1259 statement. */
1260 bool in_switch_statement_p;
1261
1262 /* TRUE if we are parsing a type-id in an expression context. In
1263 such a situation, both "type (expr)" and "type (type)" are valid
1264 alternatives. */
1265 bool in_type_id_in_expr_p;
1266
1267 /* TRUE if we are currently in a header file where declarations are
1268 implicitly extern "C". */
1269 bool implicit_extern_c;
1270
1271 /* TRUE if strings in expressions should be translated to the execution
1272 character set. */
1273 bool translate_strings_p;
1274
1275 /* If non-NULL, then we are parsing a construct where new type
1276 definitions are not permitted. The string stored here will be
1277 issued as an error message if a type is defined. */
1278 const char *type_definition_forbidden_message;
1279
1280 /* A list of lists. The outer list is a stack, used for member
1281 functions of local classes. At each level there are two sub-list,
1282 one on TREE_VALUE and one on TREE_PURPOSE. Each of those
1283 sub-lists has a FUNCTION_DECL or TEMPLATE_DECL on their
1284 TREE_VALUE's. The functions are chained in reverse declaration
1285 order.
1286
1287 The TREE_PURPOSE sublist contains those functions with default
1288 arguments that need post processing, and the TREE_VALUE sublist
1289 contains those functions with definitions that need post
1290 processing.
1291
1292 These lists can only be processed once the outermost class being
1293 defined is complete. */
1294 tree unparsed_functions_queues;
1295
1296 /* The number of classes whose definitions are currently in
1297 progress. */
1298 unsigned num_classes_being_defined;
1299
1300 /* The number of template parameter lists that apply directly to the
1301 current declaration. */
1302 unsigned num_template_parameter_lists;
1303 } cp_parser;
1304
1305 /* The type of a function that parses some kind of expression. */
1306 typedef tree (*cp_parser_expression_fn) (cp_parser *);
1307
1308 /* Prototypes. */
1309
1310 /* Constructors and destructors. */
1311
1312 static cp_parser *cp_parser_new
1313 (void);
1314
1315 /* Routines to parse various constructs.
1316
1317 Those that return `tree' will return the error_mark_node (rather
1318 than NULL_TREE) if a parse error occurs, unless otherwise noted.
1319 Sometimes, they will return an ordinary node if error-recovery was
1320 attempted, even though a parse error occurred. So, to check
1321 whether or not a parse error occurred, you should always use
1322 cp_parser_error_occurred. If the construct is optional (indicated
1323 either by an `_opt' in the name of the function that does the
1324 parsing or via a FLAGS parameter), then NULL_TREE is returned if
1325 the construct is not present. */
1326
1327 /* Lexical conventions [gram.lex] */
1328
1329 static tree cp_parser_identifier
1330 (cp_parser *);
1331 static tree cp_parser_string_literal
1332 (cp_parser *, bool, bool);
1333
1334 /* Basic concepts [gram.basic] */
1335
1336 static bool cp_parser_translation_unit
1337 (cp_parser *);
1338
1339 /* Expressions [gram.expr] */
1340
1341 static tree cp_parser_primary_expression
1342 (cp_parser *, cp_id_kind *, tree *);
1343 static tree cp_parser_id_expression
1344 (cp_parser *, bool, bool, bool *, bool);
1345 static tree cp_parser_unqualified_id
1346 (cp_parser *, bool, bool, bool);
1347 static tree cp_parser_nested_name_specifier_opt
1348 (cp_parser *, bool, bool, bool, bool);
1349 static tree cp_parser_nested_name_specifier
1350 (cp_parser *, bool, bool, bool, bool);
1351 static tree cp_parser_class_or_namespace_name
1352 (cp_parser *, bool, bool, bool, bool, bool);
1353 static tree cp_parser_postfix_expression
1354 (cp_parser *, bool);
1355 static tree cp_parser_postfix_open_square_expression
1356 (cp_parser *, tree, bool);
1357 static tree cp_parser_postfix_dot_deref_expression
1358 (cp_parser *, enum cpp_ttype, tree, bool, cp_id_kind *);
1359 static tree cp_parser_parenthesized_expression_list
1360 (cp_parser *, bool, bool *);
1361 static void cp_parser_pseudo_destructor_name
1362 (cp_parser *, tree *, tree *);
1363 static tree cp_parser_unary_expression
1364 (cp_parser *, bool);
1365 static enum tree_code cp_parser_unary_operator
1366 (cp_token *);
1367 static tree cp_parser_new_expression
1368 (cp_parser *);
1369 static tree cp_parser_new_placement
1370 (cp_parser *);
1371 static tree cp_parser_new_type_id
1372 (cp_parser *, tree *);
1373 static cp_declarator *cp_parser_new_declarator_opt
1374 (cp_parser *);
1375 static cp_declarator *cp_parser_direct_new_declarator
1376 (cp_parser *);
1377 static tree cp_parser_new_initializer
1378 (cp_parser *);
1379 static tree cp_parser_delete_expression
1380 (cp_parser *);
1381 static tree cp_parser_cast_expression
1382 (cp_parser *, bool);
1383 static tree cp_parser_binary_expression
1384 (cp_parser *);
1385 static tree cp_parser_question_colon_clause
1386 (cp_parser *, tree);
1387 static tree cp_parser_assignment_expression
1388 (cp_parser *);
1389 static enum tree_code cp_parser_assignment_operator_opt
1390 (cp_parser *);
1391 static tree cp_parser_expression
1392 (cp_parser *);
1393 static tree cp_parser_constant_expression
1394 (cp_parser *, bool, bool *);
1395 static tree cp_parser_builtin_offsetof
1396 (cp_parser *);
1397
1398 /* Statements [gram.stmt.stmt] */
1399
1400 static void cp_parser_statement
1401 (cp_parser *, tree);
1402 static tree cp_parser_labeled_statement
1403 (cp_parser *, tree);
1404 static tree cp_parser_expression_statement
1405 (cp_parser *, tree);
1406 static tree cp_parser_compound_statement
1407 (cp_parser *, tree, bool);
1408 static void cp_parser_statement_seq_opt
1409 (cp_parser *, tree);
1410 static tree cp_parser_selection_statement
1411 (cp_parser *);
1412 static tree cp_parser_condition
1413 (cp_parser *);
1414 static tree cp_parser_iteration_statement
1415 (cp_parser *);
1416 static void cp_parser_for_init_statement
1417 (cp_parser *);
1418 static tree cp_parser_jump_statement
1419 (cp_parser *);
1420 static void cp_parser_declaration_statement
1421 (cp_parser *);
1422
1423 static tree cp_parser_implicitly_scoped_statement
1424 (cp_parser *);
1425 static void cp_parser_already_scoped_statement
1426 (cp_parser *);
1427
1428 /* Declarations [gram.dcl.dcl] */
1429
1430 static void cp_parser_declaration_seq_opt
1431 (cp_parser *);
1432 static void cp_parser_declaration
1433 (cp_parser *);
1434 static void cp_parser_block_declaration
1435 (cp_parser *, bool);
1436 static void cp_parser_simple_declaration
1437 (cp_parser *, bool);
1438 static void cp_parser_decl_specifier_seq
1439 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, int *);
1440 static tree cp_parser_storage_class_specifier_opt
1441 (cp_parser *);
1442 static tree cp_parser_function_specifier_opt
1443 (cp_parser *, cp_decl_specifier_seq *);
1444 static tree cp_parser_type_specifier
1445 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, bool,
1446 int *, bool *);
1447 static tree cp_parser_simple_type_specifier
1448 (cp_parser *, cp_decl_specifier_seq *, cp_parser_flags);
1449 static tree cp_parser_type_name
1450 (cp_parser *);
1451 static tree cp_parser_elaborated_type_specifier
1452 (cp_parser *, bool, bool);
1453 static tree cp_parser_enum_specifier
1454 (cp_parser *);
1455 static void cp_parser_enumerator_list
1456 (cp_parser *, tree);
1457 static void cp_parser_enumerator_definition
1458 (cp_parser *, tree);
1459 static tree cp_parser_namespace_name
1460 (cp_parser *);
1461 static void cp_parser_namespace_definition
1462 (cp_parser *);
1463 static void cp_parser_namespace_body
1464 (cp_parser *);
1465 static tree cp_parser_qualified_namespace_specifier
1466 (cp_parser *);
1467 static void cp_parser_namespace_alias_definition
1468 (cp_parser *);
1469 static void cp_parser_using_declaration
1470 (cp_parser *);
1471 static void cp_parser_using_directive
1472 (cp_parser *);
1473 static void cp_parser_asm_definition
1474 (cp_parser *);
1475 static void cp_parser_linkage_specification
1476 (cp_parser *);
1477
1478 /* Declarators [gram.dcl.decl] */
1479
1480 static tree cp_parser_init_declarator
1481 (cp_parser *, cp_decl_specifier_seq *, bool, bool, int, bool *);
1482 static cp_declarator *cp_parser_declarator
1483 (cp_parser *, cp_parser_declarator_kind, int *, bool *, bool);
1484 static cp_declarator *cp_parser_direct_declarator
1485 (cp_parser *, cp_parser_declarator_kind, int *, bool);
1486 static enum tree_code cp_parser_ptr_operator
1487 (cp_parser *, tree *, cp_cv_quals *);
1488 static cp_cv_quals cp_parser_cv_qualifier_seq_opt
1489 (cp_parser *);
1490 static tree cp_parser_declarator_id
1491 (cp_parser *);
1492 static tree cp_parser_type_id
1493 (cp_parser *);
1494 static void cp_parser_type_specifier_seq
1495 (cp_parser *, cp_decl_specifier_seq *);
1496 static cp_parameter_declarator *cp_parser_parameter_declaration_clause
1497 (cp_parser *);
1498 static cp_parameter_declarator *cp_parser_parameter_declaration_list
1499 (cp_parser *, bool *);
1500 static cp_parameter_declarator *cp_parser_parameter_declaration
1501 (cp_parser *, bool, bool *);
1502 static void cp_parser_function_body
1503 (cp_parser *);
1504 static tree cp_parser_initializer
1505 (cp_parser *, bool *, bool *);
1506 static tree cp_parser_initializer_clause
1507 (cp_parser *, bool *);
1508 static tree cp_parser_initializer_list
1509 (cp_parser *, bool *);
1510
1511 static bool cp_parser_ctor_initializer_opt_and_function_body
1512 (cp_parser *);
1513
1514 /* Classes [gram.class] */
1515
1516 static tree cp_parser_class_name
1517 (cp_parser *, bool, bool, enum tag_types, bool, bool, bool);
1518 static tree cp_parser_class_specifier
1519 (cp_parser *);
1520 static tree cp_parser_class_head
1521 (cp_parser *, bool *, tree *);
1522 static enum tag_types cp_parser_class_key
1523 (cp_parser *);
1524 static void cp_parser_member_specification_opt
1525 (cp_parser *);
1526 static void cp_parser_member_declaration
1527 (cp_parser *);
1528 static tree cp_parser_pure_specifier
1529 (cp_parser *);
1530 static tree cp_parser_constant_initializer
1531 (cp_parser *);
1532
1533 /* Derived classes [gram.class.derived] */
1534
1535 static tree cp_parser_base_clause
1536 (cp_parser *);
1537 static tree cp_parser_base_specifier
1538 (cp_parser *);
1539
1540 /* Special member functions [gram.special] */
1541
1542 static tree cp_parser_conversion_function_id
1543 (cp_parser *);
1544 static tree cp_parser_conversion_type_id
1545 (cp_parser *);
1546 static cp_declarator *cp_parser_conversion_declarator_opt
1547 (cp_parser *);
1548 static bool cp_parser_ctor_initializer_opt
1549 (cp_parser *);
1550 static void cp_parser_mem_initializer_list
1551 (cp_parser *);
1552 static tree cp_parser_mem_initializer
1553 (cp_parser *);
1554 static tree cp_parser_mem_initializer_id
1555 (cp_parser *);
1556
1557 /* Overloading [gram.over] */
1558
1559 static tree cp_parser_operator_function_id
1560 (cp_parser *);
1561 static tree cp_parser_operator
1562 (cp_parser *);
1563
1564 /* Templates [gram.temp] */
1565
1566 static void cp_parser_template_declaration
1567 (cp_parser *, bool);
1568 static tree cp_parser_template_parameter_list
1569 (cp_parser *);
1570 static tree cp_parser_template_parameter
1571 (cp_parser *, bool *);
1572 static tree cp_parser_type_parameter
1573 (cp_parser *);
1574 static tree cp_parser_template_id
1575 (cp_parser *, bool, bool, bool);
1576 static tree cp_parser_template_name
1577 (cp_parser *, bool, bool, bool, bool *);
1578 static tree cp_parser_template_argument_list
1579 (cp_parser *);
1580 static tree cp_parser_template_argument
1581 (cp_parser *);
1582 static void cp_parser_explicit_instantiation
1583 (cp_parser *);
1584 static void cp_parser_explicit_specialization
1585 (cp_parser *);
1586
1587 /* Exception handling [gram.exception] */
1588
1589 static tree cp_parser_try_block
1590 (cp_parser *);
1591 static bool cp_parser_function_try_block
1592 (cp_parser *);
1593 static void cp_parser_handler_seq
1594 (cp_parser *);
1595 static void cp_parser_handler
1596 (cp_parser *);
1597 static tree cp_parser_exception_declaration
1598 (cp_parser *);
1599 static tree cp_parser_throw_expression
1600 (cp_parser *);
1601 static tree cp_parser_exception_specification_opt
1602 (cp_parser *);
1603 static tree cp_parser_type_id_list
1604 (cp_parser *);
1605
1606 /* GNU Extensions */
1607
1608 static tree cp_parser_asm_specification_opt
1609 (cp_parser *);
1610 static tree cp_parser_asm_operand_list
1611 (cp_parser *);
1612 static tree cp_parser_asm_clobber_list
1613 (cp_parser *);
1614 static tree cp_parser_attributes_opt
1615 (cp_parser *);
1616 static tree cp_parser_attribute_list
1617 (cp_parser *);
1618 static bool cp_parser_extension_opt
1619 (cp_parser *, int *);
1620 static void cp_parser_label_declaration
1621 (cp_parser *);
1622
1623 /* Utility Routines */
1624
1625 static tree cp_parser_lookup_name
1626 (cp_parser *, tree, enum tag_types, bool, bool, bool, bool *);
1627 static tree cp_parser_lookup_name_simple
1628 (cp_parser *, tree);
1629 static tree cp_parser_maybe_treat_template_as_class
1630 (tree, bool);
1631 static bool cp_parser_check_declarator_template_parameters
1632 (cp_parser *, cp_declarator *);
1633 static bool cp_parser_check_template_parameters
1634 (cp_parser *, unsigned);
1635 static tree cp_parser_simple_cast_expression
1636 (cp_parser *);
1637 static tree cp_parser_global_scope_opt
1638 (cp_parser *, bool);
1639 static bool cp_parser_constructor_declarator_p
1640 (cp_parser *, bool);
1641 static tree cp_parser_function_definition_from_specifiers_and_declarator
1642 (cp_parser *, cp_decl_specifier_seq *, tree, const cp_declarator *);
1643 static tree cp_parser_function_definition_after_declarator
1644 (cp_parser *, bool);
1645 static void cp_parser_template_declaration_after_export
1646 (cp_parser *, bool);
1647 static tree cp_parser_single_declaration
1648 (cp_parser *, bool, bool *);
1649 static tree cp_parser_functional_cast
1650 (cp_parser *, tree);
1651 static tree cp_parser_save_member_function_body
1652 (cp_parser *, cp_decl_specifier_seq *, cp_declarator *, tree);
1653 static tree cp_parser_enclosed_template_argument_list
1654 (cp_parser *);
1655 static void cp_parser_save_default_args
1656 (cp_parser *, tree);
1657 static void cp_parser_late_parsing_for_member
1658 (cp_parser *, tree);
1659 static void cp_parser_late_parsing_default_args
1660 (cp_parser *, tree);
1661 static tree cp_parser_sizeof_operand
1662 (cp_parser *, enum rid);
1663 static bool cp_parser_declares_only_class_p
1664 (cp_parser *);
1665 static void cp_parser_set_storage_class
1666 (cp_decl_specifier_seq *, cp_storage_class);
1667 static void cp_parser_set_decl_spec_type
1668 (cp_decl_specifier_seq *, tree, bool);
1669 static bool cp_parser_friend_p
1670 (const cp_decl_specifier_seq *);
1671 static cp_token *cp_parser_require
1672 (cp_parser *, enum cpp_ttype, const char *);
1673 static cp_token *cp_parser_require_keyword
1674 (cp_parser *, enum rid, const char *);
1675 static bool cp_parser_token_starts_function_definition_p
1676 (cp_token *);
1677 static bool cp_parser_next_token_starts_class_definition_p
1678 (cp_parser *);
1679 static bool cp_parser_next_token_ends_template_argument_p
1680 (cp_parser *);
1681 static bool cp_parser_nth_token_starts_template_argument_list_p
1682 (cp_parser *, size_t);
1683 static enum tag_types cp_parser_token_is_class_key
1684 (cp_token *);
1685 static void cp_parser_check_class_key
1686 (enum tag_types, tree type);
1687 static void cp_parser_check_access_in_redeclaration
1688 (tree type);
1689 static bool cp_parser_optional_template_keyword
1690 (cp_parser *);
1691 static void cp_parser_pre_parsed_nested_name_specifier
1692 (cp_parser *);
1693 static void cp_parser_cache_group
1694 (cp_parser *, enum cpp_ttype, unsigned);
1695 static void cp_parser_parse_tentatively
1696 (cp_parser *);
1697 static void cp_parser_commit_to_tentative_parse
1698 (cp_parser *);
1699 static void cp_parser_abort_tentative_parse
1700 (cp_parser *);
1701 static bool cp_parser_parse_definitely
1702 (cp_parser *);
1703 static inline bool cp_parser_parsing_tentatively
1704 (cp_parser *);
1705 static bool cp_parser_committed_to_tentative_parse
1706 (cp_parser *);
1707 static void cp_parser_error
1708 (cp_parser *, const char *);
1709 static void cp_parser_name_lookup_error
1710 (cp_parser *, tree, tree, const char *);
1711 static bool cp_parser_simulate_error
1712 (cp_parser *);
1713 static void cp_parser_check_type_definition
1714 (cp_parser *);
1715 static void cp_parser_check_for_definition_in_return_type
1716 (cp_declarator *, tree);
1717 static void cp_parser_check_for_invalid_template_id
1718 (cp_parser *, tree);
1719 static bool cp_parser_non_integral_constant_expression
1720 (cp_parser *, const char *);
1721 static void cp_parser_diagnose_invalid_type_name
1722 (cp_parser *, tree, tree);
1723 static bool cp_parser_parse_and_diagnose_invalid_type_name
1724 (cp_parser *);
1725 static int cp_parser_skip_to_closing_parenthesis
1726 (cp_parser *, bool, bool, bool);
1727 static void cp_parser_skip_to_end_of_statement
1728 (cp_parser *);
1729 static void cp_parser_consume_semicolon_at_end_of_statement
1730 (cp_parser *);
1731 static void cp_parser_skip_to_end_of_block_or_statement
1732 (cp_parser *);
1733 static void cp_parser_skip_to_closing_brace
1734 (cp_parser *);
1735 static void cp_parser_skip_until_found
1736 (cp_parser *, enum cpp_ttype, const char *);
1737 static bool cp_parser_error_occurred
1738 (cp_parser *);
1739 static bool cp_parser_allow_gnu_extensions_p
1740 (cp_parser *);
1741 static bool cp_parser_is_string_literal
1742 (cp_token *);
1743 static bool cp_parser_is_keyword
1744 (cp_token *, enum rid);
1745 static tree cp_parser_make_typename_type
1746 (cp_parser *, tree, tree);
1747
1748 /* Returns nonzero if we are parsing tentatively. */
1749
1750 static inline bool
1751 cp_parser_parsing_tentatively (cp_parser* parser)
1752 {
1753 return parser->context->next != NULL;
1754 }
1755
1756 /* Returns nonzero if TOKEN is a string literal. */
1757
1758 static bool
1759 cp_parser_is_string_literal (cp_token* token)
1760 {
1761 return (token->type == CPP_STRING || token->type == CPP_WSTRING);
1762 }
1763
1764 /* Returns nonzero if TOKEN is the indicated KEYWORD. */
1765
1766 static bool
1767 cp_parser_is_keyword (cp_token* token, enum rid keyword)
1768 {
1769 return token->keyword == keyword;
1770 }
1771
1772 /* If not parsing tentatively, issue a diagnostic of the form
1773 FILE:LINE: MESSAGE before TOKEN
1774 where TOKEN is the next token in the input stream. MESSAGE
1775 (specified by the caller) is usually of the form "expected
1776 OTHER-TOKEN". */
1777
1778 static void
1779 cp_parser_error (cp_parser* parser, const char* message)
1780 {
1781 if (!cp_parser_simulate_error (parser))
1782 {
1783 cp_token *token = cp_lexer_peek_token (parser->lexer);
1784 /* This diagnostic makes more sense if it is tagged to the line
1785 of the token we just peeked at. */
1786 cp_lexer_set_source_position_from_token (token);
1787 c_parse_error (message,
1788 /* Because c_parser_error does not understand
1789 CPP_KEYWORD, keywords are treated like
1790 identifiers. */
1791 (token->type == CPP_KEYWORD ? CPP_NAME : token->type),
1792 token->value);
1793 }
1794 }
1795
1796 /* Issue an error about name-lookup failing. NAME is the
1797 IDENTIFIER_NODE DECL is the result of
1798 the lookup (as returned from cp_parser_lookup_name). DESIRED is
1799 the thing that we hoped to find. */
1800
1801 static void
1802 cp_parser_name_lookup_error (cp_parser* parser,
1803 tree name,
1804 tree decl,
1805 const char* desired)
1806 {
1807 /* If name lookup completely failed, tell the user that NAME was not
1808 declared. */
1809 if (decl == error_mark_node)
1810 {
1811 if (parser->scope && parser->scope != global_namespace)
1812 error ("%<%D::%D%> has not been declared",
1813 parser->scope, name);
1814 else if (parser->scope == global_namespace)
1815 error ("%<::%D%> has not been declared", name);
1816 else if (parser->object_scope
1817 && !CLASS_TYPE_P (parser->object_scope))
1818 error ("request for member %qD in non-class type %qT",
1819 name, parser->object_scope);
1820 else if (parser->object_scope)
1821 error ("%<%T::%D%> has not been declared",
1822 parser->object_scope, name);
1823 else
1824 error ("%qD has not been declared", name);
1825 }
1826 else if (parser->scope && parser->scope != global_namespace)
1827 error ("%<%D::%D%> %s", parser->scope, name, desired);
1828 else if (parser->scope == global_namespace)
1829 error ("%<::%D%> %s", name, desired);
1830 else
1831 error ("%qD %s", name, desired);
1832 }
1833
1834 /* If we are parsing tentatively, remember that an error has occurred
1835 during this tentative parse. Returns true if the error was
1836 simulated; false if a message should be issued by the caller. */
1837
1838 static bool
1839 cp_parser_simulate_error (cp_parser* parser)
1840 {
1841 if (cp_parser_parsing_tentatively (parser)
1842 && !cp_parser_committed_to_tentative_parse (parser))
1843 {
1844 parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
1845 return true;
1846 }
1847 return false;
1848 }
1849
1850 /* This function is called when a type is defined. If type
1851 definitions are forbidden at this point, an error message is
1852 issued. */
1853
1854 static void
1855 cp_parser_check_type_definition (cp_parser* parser)
1856 {
1857 /* If types are forbidden here, issue a message. */
1858 if (parser->type_definition_forbidden_message)
1859 /* Use `%s' to print the string in case there are any escape
1860 characters in the message. */
1861 error ("%s", parser->type_definition_forbidden_message);
1862 }
1863
1864 /* This function is called when the DECLARATOR is processed. The TYPE
1865 was a type defined in the decl-specifiers. If it is invalid to
1866 define a type in the decl-specifiers for DECLARATOR, an error is
1867 issued. */
1868
1869 static void
1870 cp_parser_check_for_definition_in_return_type (cp_declarator *declarator,
1871 tree type)
1872 {
1873 /* [dcl.fct] forbids type definitions in return types.
1874 Unfortunately, it's not easy to know whether or not we are
1875 processing a return type until after the fact. */
1876 while (declarator
1877 && (declarator->kind == cdk_pointer
1878 || declarator->kind == cdk_reference
1879 || declarator->kind == cdk_ptrmem))
1880 declarator = declarator->declarator;
1881 if (declarator
1882 && declarator->kind == cdk_function)
1883 {
1884 error ("new types may not be defined in a return type");
1885 inform ("(perhaps a semicolon is missing after the definition of %qT)",
1886 type);
1887 }
1888 }
1889
1890 /* A type-specifier (TYPE) has been parsed which cannot be followed by
1891 "<" in any valid C++ program. If the next token is indeed "<",
1892 issue a message warning the user about what appears to be an
1893 invalid attempt to form a template-id. */
1894
1895 static void
1896 cp_parser_check_for_invalid_template_id (cp_parser* parser,
1897 tree type)
1898 {
1899 cp_token_position start = 0;
1900
1901 if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
1902 {
1903 if (TYPE_P (type))
1904 error ("%qT is not a template", type);
1905 else if (TREE_CODE (type) == IDENTIFIER_NODE)
1906 error ("%qE is not a template", type);
1907 else
1908 error ("invalid template-id");
1909 /* Remember the location of the invalid "<". */
1910 if (cp_parser_parsing_tentatively (parser)
1911 && !cp_parser_committed_to_tentative_parse (parser))
1912 start = cp_lexer_token_position (parser->lexer, true);
1913 /* Consume the "<". */
1914 cp_lexer_consume_token (parser->lexer);
1915 /* Parse the template arguments. */
1916 cp_parser_enclosed_template_argument_list (parser);
1917 /* Permanently remove the invalid template arguments so that
1918 this error message is not issued again. */
1919 if (start)
1920 cp_lexer_purge_tokens_after (parser->lexer, start);
1921 }
1922 }
1923
1924 /* If parsing an integral constant-expression, issue an error message
1925 about the fact that THING appeared and return true. Otherwise,
1926 return false, marking the current expression as non-constant. */
1927
1928 static bool
1929 cp_parser_non_integral_constant_expression (cp_parser *parser,
1930 const char *thing)
1931 {
1932 if (parser->integral_constant_expression_p)
1933 {
1934 if (!parser->allow_non_integral_constant_expression_p)
1935 {
1936 error ("%s cannot appear in a constant-expression", thing);
1937 return true;
1938 }
1939 parser->non_integral_constant_expression_p = true;
1940 }
1941 return false;
1942 }
1943
1944 /* Emit a diagnostic for an invalid type name. Consider also if it is
1945 qualified or not and the result of a lookup, to provide a better
1946 message. */
1947
1948 static void
1949 cp_parser_diagnose_invalid_type_name (cp_parser *parser, tree scope, tree id)
1950 {
1951 tree decl, old_scope;
1952 /* Try to lookup the identifier. */
1953 old_scope = parser->scope;
1954 parser->scope = scope;
1955 decl = cp_parser_lookup_name_simple (parser, id);
1956 parser->scope = old_scope;
1957 /* If the lookup found a template-name, it means that the user forgot
1958 to specify an argument list. Emit an useful error message. */
1959 if (TREE_CODE (decl) == TEMPLATE_DECL)
1960 error ("invalid use of template-name %qE without an argument list",
1961 decl);
1962 else if (!parser->scope)
1963 {
1964 /* Issue an error message. */
1965 error ("%qE does not name a type", id);
1966 /* If we're in a template class, it's possible that the user was
1967 referring to a type from a base class. For example:
1968
1969 template <typename T> struct A { typedef T X; };
1970 template <typename T> struct B : public A<T> { X x; };
1971
1972 The user should have said "typename A<T>::X". */
1973 if (processing_template_decl && current_class_type)
1974 {
1975 tree b;
1976
1977 for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
1978 b;
1979 b = TREE_CHAIN (b))
1980 {
1981 tree base_type = BINFO_TYPE (b);
1982 if (CLASS_TYPE_P (base_type)
1983 && dependent_type_p (base_type))
1984 {
1985 tree field;
1986 /* Go from a particular instantiation of the
1987 template (which will have an empty TYPE_FIELDs),
1988 to the main version. */
1989 base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
1990 for (field = TYPE_FIELDS (base_type);
1991 field;
1992 field = TREE_CHAIN (field))
1993 if (TREE_CODE (field) == TYPE_DECL
1994 && DECL_NAME (field) == id)
1995 {
1996 inform ("(perhaps %<typename %T::%E%> was intended)",
1997 BINFO_TYPE (b), id);
1998 break;
1999 }
2000 if (field)
2001 break;
2002 }
2003 }
2004 }
2005 }
2006 /* Here we diagnose qualified-ids where the scope is actually correct,
2007 but the identifier does not resolve to a valid type name. */
2008 else
2009 {
2010 if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
2011 error ("%qE in namespace %qE does not name a type",
2012 id, parser->scope);
2013 else if (TYPE_P (parser->scope))
2014 error ("%qE in class %qT does not name a type", id, parser->scope);
2015 else
2016 gcc_unreachable ();
2017 }
2018 }
2019
2020 /* Check for a common situation where a type-name should be present,
2021 but is not, and issue a sensible error message. Returns true if an
2022 invalid type-name was detected.
2023
2024 The situation handled by this function are variable declarations of the
2025 form `ID a', where `ID' is an id-expression and `a' is a plain identifier.
2026 Usually, `ID' should name a type, but if we got here it means that it
2027 does not. We try to emit the best possible error message depending on
2028 how exactly the id-expression looks like.
2029 */
2030
2031 static bool
2032 cp_parser_parse_and_diagnose_invalid_type_name (cp_parser *parser)
2033 {
2034 tree id;
2035
2036 cp_parser_parse_tentatively (parser);
2037 id = cp_parser_id_expression (parser,
2038 /*template_keyword_p=*/false,
2039 /*check_dependency_p=*/true,
2040 /*template_p=*/NULL,
2041 /*declarator_p=*/true);
2042 /* After the id-expression, there should be a plain identifier,
2043 otherwise this is not a simple variable declaration. Also, if
2044 the scope is dependent, we cannot do much. */
2045 if (!cp_lexer_next_token_is (parser->lexer, CPP_NAME)
2046 || (parser->scope && TYPE_P (parser->scope)
2047 && dependent_type_p (parser->scope)))
2048 {
2049 cp_parser_abort_tentative_parse (parser);
2050 return false;
2051 }
2052 if (!cp_parser_parse_definitely (parser)
2053 || TREE_CODE (id) != IDENTIFIER_NODE)
2054 return false;
2055
2056 /* Emit a diagnostic for the invalid type. */
2057 cp_parser_diagnose_invalid_type_name (parser, parser->scope, id);
2058 /* Skip to the end of the declaration; there's no point in
2059 trying to process it. */
2060 cp_parser_skip_to_end_of_block_or_statement (parser);
2061 return true;
2062 }
2063
2064 /* Consume tokens up to, and including, the next non-nested closing `)'.
2065 Returns 1 iff we found a closing `)'. RECOVERING is true, if we
2066 are doing error recovery. Returns -1 if OR_COMMA is true and we
2067 found an unnested comma. */
2068
2069 static int
2070 cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
2071 bool recovering,
2072 bool or_comma,
2073 bool consume_paren)
2074 {
2075 unsigned paren_depth = 0;
2076 unsigned brace_depth = 0;
2077 int result;
2078
2079 if (recovering && !or_comma && cp_parser_parsing_tentatively (parser)
2080 && !cp_parser_committed_to_tentative_parse (parser))
2081 return 0;
2082
2083 while (true)
2084 {
2085 cp_token *token;
2086
2087 /* If we've run out of tokens, then there is no closing `)'. */
2088 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2089 {
2090 result = 0;
2091 break;
2092 }
2093
2094 token = cp_lexer_peek_token (parser->lexer);
2095
2096 /* This matches the processing in skip_to_end_of_statement. */
2097 if (token->type == CPP_SEMICOLON && !brace_depth)
2098 {
2099 result = 0;
2100 break;
2101 }
2102 if (token->type == CPP_OPEN_BRACE)
2103 ++brace_depth;
2104 if (token->type == CPP_CLOSE_BRACE)
2105 {
2106 if (!brace_depth--)
2107 {
2108 result = 0;
2109 break;
2110 }
2111 }
2112 if (recovering && or_comma && token->type == CPP_COMMA
2113 && !brace_depth && !paren_depth)
2114 {
2115 result = -1;
2116 break;
2117 }
2118
2119 if (!brace_depth)
2120 {
2121 /* If it is an `(', we have entered another level of nesting. */
2122 if (token->type == CPP_OPEN_PAREN)
2123 ++paren_depth;
2124 /* If it is a `)', then we might be done. */
2125 else if (token->type == CPP_CLOSE_PAREN && !paren_depth--)
2126 {
2127 if (consume_paren)
2128 cp_lexer_consume_token (parser->lexer);
2129 {
2130 result = 1;
2131 break;
2132 }
2133 }
2134 }
2135
2136 /* Consume the token. */
2137 cp_lexer_consume_token (parser->lexer);
2138 }
2139
2140 return result;
2141 }
2142
2143 /* Consume tokens until we reach the end of the current statement.
2144 Normally, that will be just before consuming a `;'. However, if a
2145 non-nested `}' comes first, then we stop before consuming that. */
2146
2147 static void
2148 cp_parser_skip_to_end_of_statement (cp_parser* parser)
2149 {
2150 unsigned nesting_depth = 0;
2151
2152 while (true)
2153 {
2154 cp_token *token;
2155
2156 /* Peek at the next token. */
2157 token = cp_lexer_peek_token (parser->lexer);
2158 /* If we've run out of tokens, stop. */
2159 if (token->type == CPP_EOF)
2160 break;
2161 /* If the next token is a `;', we have reached the end of the
2162 statement. */
2163 if (token->type == CPP_SEMICOLON && !nesting_depth)
2164 break;
2165 /* If the next token is a non-nested `}', then we have reached
2166 the end of the current block. */
2167 if (token->type == CPP_CLOSE_BRACE)
2168 {
2169 /* If this is a non-nested `}', stop before consuming it.
2170 That way, when confronted with something like:
2171
2172 { 3 + }
2173
2174 we stop before consuming the closing `}', even though we
2175 have not yet reached a `;'. */
2176 if (nesting_depth == 0)
2177 break;
2178 /* If it is the closing `}' for a block that we have
2179 scanned, stop -- but only after consuming the token.
2180 That way given:
2181
2182 void f g () { ... }
2183 typedef int I;
2184
2185 we will stop after the body of the erroneously declared
2186 function, but before consuming the following `typedef'
2187 declaration. */
2188 if (--nesting_depth == 0)
2189 {
2190 cp_lexer_consume_token (parser->lexer);
2191 break;
2192 }
2193 }
2194 /* If it the next token is a `{', then we are entering a new
2195 block. Consume the entire block. */
2196 else if (token->type == CPP_OPEN_BRACE)
2197 ++nesting_depth;
2198 /* Consume the token. */
2199 cp_lexer_consume_token (parser->lexer);
2200 }
2201 }
2202
2203 /* This function is called at the end of a statement or declaration.
2204 If the next token is a semicolon, it is consumed; otherwise, error
2205 recovery is attempted. */
2206
2207 static void
2208 cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
2209 {
2210 /* Look for the trailing `;'. */
2211 if (!cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
2212 {
2213 /* If there is additional (erroneous) input, skip to the end of
2214 the statement. */
2215 cp_parser_skip_to_end_of_statement (parser);
2216 /* If the next token is now a `;', consume it. */
2217 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
2218 cp_lexer_consume_token (parser->lexer);
2219 }
2220 }
2221
2222 /* Skip tokens until we have consumed an entire block, or until we
2223 have consumed a non-nested `;'. */
2224
2225 static void
2226 cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
2227 {
2228 unsigned nesting_depth = 0;
2229
2230 while (true)
2231 {
2232 cp_token *token;
2233
2234 /* Peek at the next token. */
2235 token = cp_lexer_peek_token (parser->lexer);
2236 /* If we've run out of tokens, stop. */
2237 if (token->type == CPP_EOF)
2238 break;
2239 /* If the next token is a `;', we have reached the end of the
2240 statement. */
2241 if (token->type == CPP_SEMICOLON && !nesting_depth)
2242 {
2243 /* Consume the `;'. */
2244 cp_lexer_consume_token (parser->lexer);
2245 break;
2246 }
2247 /* Consume the token. */
2248 token = cp_lexer_consume_token (parser->lexer);
2249 /* If the next token is a non-nested `}', then we have reached
2250 the end of the current block. */
2251 if (token->type == CPP_CLOSE_BRACE
2252 && (nesting_depth == 0 || --nesting_depth == 0))
2253 break;
2254 /* If it the next token is a `{', then we are entering a new
2255 block. Consume the entire block. */
2256 if (token->type == CPP_OPEN_BRACE)
2257 ++nesting_depth;
2258 }
2259 }
2260
2261 /* Skip tokens until a non-nested closing curly brace is the next
2262 token. */
2263
2264 static void
2265 cp_parser_skip_to_closing_brace (cp_parser *parser)
2266 {
2267 unsigned nesting_depth = 0;
2268
2269 while (true)
2270 {
2271 cp_token *token;
2272
2273 /* Peek at the next token. */
2274 token = cp_lexer_peek_token (parser->lexer);
2275 /* If we've run out of tokens, stop. */
2276 if (token->type == CPP_EOF)
2277 break;
2278 /* If the next token is a non-nested `}', then we have reached
2279 the end of the current block. */
2280 if (token->type == CPP_CLOSE_BRACE && nesting_depth-- == 0)
2281 break;
2282 /* If it the next token is a `{', then we are entering a new
2283 block. Consume the entire block. */
2284 else if (token->type == CPP_OPEN_BRACE)
2285 ++nesting_depth;
2286 /* Consume the token. */
2287 cp_lexer_consume_token (parser->lexer);
2288 }
2289 }
2290
2291 /* This is a simple wrapper around make_typename_type. When the id is
2292 an unresolved identifier node, we can provide a superior diagnostic
2293 using cp_parser_diagnose_invalid_type_name. */
2294
2295 static tree
2296 cp_parser_make_typename_type (cp_parser *parser, tree scope, tree id)
2297 {
2298 tree result;
2299 if (TREE_CODE (id) == IDENTIFIER_NODE)
2300 {
2301 result = make_typename_type (scope, id, typename_type,
2302 /*complain=*/0);
2303 if (result == error_mark_node)
2304 cp_parser_diagnose_invalid_type_name (parser, scope, id);
2305 return result;
2306 }
2307 return make_typename_type (scope, id, typename_type, tf_error);
2308 }
2309
2310
2311 /* Create a new C++ parser. */
2312
2313 static cp_parser *
2314 cp_parser_new (void)
2315 {
2316 cp_parser *parser;
2317 cp_lexer *lexer;
2318 unsigned i;
2319
2320 /* cp_lexer_new_main is called before calling ggc_alloc because
2321 cp_lexer_new_main might load a PCH file. */
2322 lexer = cp_lexer_new_main ();
2323
2324 /* Initialize the binops_by_token so that we can get the tree
2325 directly from the token. */
2326 for (i = 0; i < sizeof (binops) / sizeof (binops[0]); i++)
2327 binops_by_token[binops[i].token_type] = binops[i];
2328
2329 parser = GGC_CNEW (cp_parser);
2330 parser->lexer = lexer;
2331 parser->context = cp_parser_context_new (NULL);
2332
2333 /* For now, we always accept GNU extensions. */
2334 parser->allow_gnu_extensions_p = 1;
2335
2336 /* The `>' token is a greater-than operator, not the end of a
2337 template-id. */
2338 parser->greater_than_is_operator_p = true;
2339
2340 parser->default_arg_ok_p = true;
2341
2342 /* We are not parsing a constant-expression. */
2343 parser->integral_constant_expression_p = false;
2344 parser->allow_non_integral_constant_expression_p = false;
2345 parser->non_integral_constant_expression_p = false;
2346
2347 /* Local variable names are not forbidden. */
2348 parser->local_variables_forbidden_p = false;
2349
2350 /* We are not processing an `extern "C"' declaration. */
2351 parser->in_unbraced_linkage_specification_p = false;
2352
2353 /* We are not processing a declarator. */
2354 parser->in_declarator_p = false;
2355
2356 /* We are not processing a template-argument-list. */
2357 parser->in_template_argument_list_p = false;
2358
2359 /* We are not in an iteration statement. */
2360 parser->in_iteration_statement_p = false;
2361
2362 /* We are not in a switch statement. */
2363 parser->in_switch_statement_p = false;
2364
2365 /* We are not parsing a type-id inside an expression. */
2366 parser->in_type_id_in_expr_p = false;
2367
2368 /* Declarations aren't implicitly extern "C". */
2369 parser->implicit_extern_c = false;
2370
2371 /* String literals should be translated to the execution character set. */
2372 parser->translate_strings_p = true;
2373
2374 /* The unparsed function queue is empty. */
2375 parser->unparsed_functions_queues = build_tree_list (NULL_TREE, NULL_TREE);
2376
2377 /* There are no classes being defined. */
2378 parser->num_classes_being_defined = 0;
2379
2380 /* No template parameters apply. */
2381 parser->num_template_parameter_lists = 0;
2382
2383 return parser;
2384 }
2385
2386 /* Create a cp_lexer structure which will emit the tokens in CACHE
2387 and push it onto the parser's lexer stack. This is used for delayed
2388 parsing of in-class method bodies and default arguments, and should
2389 not be confused with tentative parsing. */
2390 static void
2391 cp_parser_push_lexer_for_tokens (cp_parser *parser, cp_token_cache *cache)
2392 {
2393 cp_lexer *lexer = cp_lexer_new_from_tokens (cache);
2394 lexer->next = parser->lexer;
2395 parser->lexer = lexer;
2396
2397 /* Move the current source position to that of the first token in the
2398 new lexer. */
2399 cp_lexer_set_source_position_from_token (lexer->next_token);
2400 }
2401
2402 /* Pop the top lexer off the parser stack. This is never used for the
2403 "main" lexer, only for those pushed by cp_parser_push_lexer_for_tokens. */
2404 static void
2405 cp_parser_pop_lexer (cp_parser *parser)
2406 {
2407 cp_lexer *lexer = parser->lexer;
2408 parser->lexer = lexer->next;
2409 cp_lexer_destroy (lexer);
2410
2411 /* Put the current source position back where it was before this
2412 lexer was pushed. */
2413 cp_lexer_set_source_position_from_token (parser->lexer->next_token);
2414 }
2415
2416 /* Lexical conventions [gram.lex] */
2417
2418 /* Parse an identifier. Returns an IDENTIFIER_NODE representing the
2419 identifier. */
2420
2421 static tree
2422 cp_parser_identifier (cp_parser* parser)
2423 {
2424 cp_token *token;
2425
2426 /* Look for the identifier. */
2427 token = cp_parser_require (parser, CPP_NAME, "identifier");
2428 /* Return the value. */
2429 return token ? token->value : error_mark_node;
2430 }
2431
2432 /* Parse a sequence of adjacent string constants. Returns a
2433 TREE_STRING representing the combined, nul-terminated string
2434 constant. If TRANSLATE is true, translate the string to the
2435 execution character set. If WIDE_OK is true, a wide string is
2436 invalid here.
2437
2438 C++98 [lex.string] says that if a narrow string literal token is
2439 adjacent to a wide string literal token, the behavior is undefined.
2440 However, C99 6.4.5p4 says that this results in a wide string literal.
2441 We follow C99 here, for consistency with the C front end.
2442
2443 This code is largely lifted from lex_string() in c-lex.c.
2444
2445 FUTURE: ObjC++ will need to handle @-strings here. */
2446 static tree
2447 cp_parser_string_literal (cp_parser *parser, bool translate, bool wide_ok)
2448 {
2449 tree value;
2450 bool wide = false;
2451 size_t count;
2452 struct obstack str_ob;
2453 cpp_string str, istr, *strs;
2454 cp_token *tok;
2455
2456 tok = cp_lexer_peek_token (parser->lexer);
2457 if (!cp_parser_is_string_literal (tok))
2458 {
2459 cp_parser_error (parser, "expected string-literal");
2460 return error_mark_node;
2461 }
2462
2463 /* Try to avoid the overhead of creating and destroying an obstack
2464 for the common case of just one string. */
2465 if (!cp_parser_is_string_literal
2466 (cp_lexer_peek_nth_token (parser->lexer, 2)))
2467 {
2468 cp_lexer_consume_token (parser->lexer);
2469
2470 str.text = (const unsigned char *)TREE_STRING_POINTER (tok->value);
2471 str.len = TREE_STRING_LENGTH (tok->value);
2472 count = 1;
2473 if (tok->type == CPP_WSTRING)
2474 wide = true;
2475
2476 strs = &str;
2477 }
2478 else
2479 {
2480 gcc_obstack_init (&str_ob);
2481 count = 0;
2482
2483 do
2484 {
2485 cp_lexer_consume_token (parser->lexer);
2486 count++;
2487 str.text = (unsigned char *)TREE_STRING_POINTER (tok->value);
2488 str.len = TREE_STRING_LENGTH (tok->value);
2489 if (tok->type == CPP_WSTRING)
2490 wide = true;
2491
2492 obstack_grow (&str_ob, &str, sizeof (cpp_string));
2493
2494 tok = cp_lexer_peek_token (parser->lexer);
2495 }
2496 while (cp_parser_is_string_literal (tok));
2497
2498 strs = (cpp_string *) obstack_finish (&str_ob);
2499 }
2500
2501 if (wide && !wide_ok)
2502 {
2503 cp_parser_error (parser, "a wide string is invalid in this context");
2504 wide = false;
2505 }
2506
2507 if ((translate ? cpp_interpret_string : cpp_interpret_string_notranslate)
2508 (parse_in, strs, count, &istr, wide))
2509 {
2510 value = build_string (istr.len, (char *)istr.text);
2511 free ((void *)istr.text);
2512
2513 TREE_TYPE (value) = wide ? wchar_array_type_node : char_array_type_node;
2514 value = fix_string_type (value);
2515 }
2516 else
2517 /* cpp_interpret_string has issued an error. */
2518 value = error_mark_node;
2519
2520 if (count > 1)
2521 obstack_free (&str_ob, 0);
2522
2523 return value;
2524 }
2525
2526
2527 /* Basic concepts [gram.basic] */
2528
2529 /* Parse a translation-unit.
2530
2531 translation-unit:
2532 declaration-seq [opt]
2533
2534 Returns TRUE if all went well. */
2535
2536 static bool
2537 cp_parser_translation_unit (cp_parser* parser)
2538 {
2539 /* The address of the first non-permanent object on the declarator
2540 obstack. */
2541 static void *declarator_obstack_base;
2542
2543 bool success;
2544
2545 /* Create the declarator obstack, if necessary. */
2546 if (!cp_error_declarator)
2547 {
2548 gcc_obstack_init (&declarator_obstack);
2549 /* Create the error declarator. */
2550 cp_error_declarator = make_declarator (cdk_error);
2551 /* Create the empty parameter list. */
2552 no_parameters = make_parameter_declarator (NULL, NULL, NULL_TREE);
2553 /* Remember where the base of the declarator obstack lies. */
2554 declarator_obstack_base = obstack_next_free (&declarator_obstack);
2555 }
2556
2557 while (true)
2558 {
2559 cp_parser_declaration_seq_opt (parser);
2560
2561 /* If there are no tokens left then all went well. */
2562 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2563 {
2564 /* Get rid of the token array; we don't need it any more. */
2565 cp_lexer_destroy (parser->lexer);
2566 parser->lexer = NULL;
2567
2568 /* This file might have been a context that's implicitly extern
2569 "C". If so, pop the lang context. (Only relevant for PCH.) */
2570 if (parser->implicit_extern_c)
2571 {
2572 pop_lang_context ();
2573 parser->implicit_extern_c = false;
2574 }
2575
2576 /* Finish up. */
2577 finish_translation_unit ();
2578
2579 success = true;
2580 break;
2581 }
2582 else
2583 {
2584 cp_parser_error (parser, "expected declaration");
2585 success = false;
2586 break;
2587 }
2588 }
2589
2590 /* Make sure the declarator obstack was fully cleaned up. */
2591 gcc_assert (obstack_next_free (&declarator_obstack)
2592 == declarator_obstack_base);
2593
2594 /* All went well. */
2595 return success;
2596 }
2597
2598 /* Expressions [gram.expr] */
2599
2600 /* Parse a primary-expression.
2601
2602 primary-expression:
2603 literal
2604 this
2605 ( expression )
2606 id-expression
2607
2608 GNU Extensions:
2609
2610 primary-expression:
2611 ( compound-statement )
2612 __builtin_va_arg ( assignment-expression , type-id )
2613
2614 literal:
2615 __null
2616
2617 Returns a representation of the expression.
2618
2619 *IDK indicates what kind of id-expression (if any) was present.
2620
2621 *QUALIFYING_CLASS is set to a non-NULL value if the id-expression can be
2622 used as the operand of a pointer-to-member. In that case,
2623 *QUALIFYING_CLASS gives the class that is used as the qualifying
2624 class in the pointer-to-member. */
2625
2626 static tree
2627 cp_parser_primary_expression (cp_parser *parser,
2628 cp_id_kind *idk,
2629 tree *qualifying_class)
2630 {
2631 cp_token *token;
2632
2633 /* Assume the primary expression is not an id-expression. */
2634 *idk = CP_ID_KIND_NONE;
2635 /* And that it cannot be used as pointer-to-member. */
2636 *qualifying_class = NULL_TREE;
2637
2638 /* Peek at the next token. */
2639 token = cp_lexer_peek_token (parser->lexer);
2640 switch (token->type)
2641 {
2642 /* literal:
2643 integer-literal
2644 character-literal
2645 floating-literal
2646 string-literal
2647 boolean-literal */
2648 case CPP_CHAR:
2649 case CPP_WCHAR:
2650 case CPP_NUMBER:
2651 token = cp_lexer_consume_token (parser->lexer);
2652 return token->value;
2653
2654 case CPP_STRING:
2655 case CPP_WSTRING:
2656 /* ??? Should wide strings be allowed when parser->translate_strings_p
2657 is false (i.e. in attributes)? If not, we can kill the third
2658 argument to cp_parser_string_literal. */
2659 return cp_parser_string_literal (parser,
2660 parser->translate_strings_p,
2661 true);
2662
2663 case CPP_OPEN_PAREN:
2664 {
2665 tree expr;
2666 bool saved_greater_than_is_operator_p;
2667
2668 /* Consume the `('. */
2669 cp_lexer_consume_token (parser->lexer);
2670 /* Within a parenthesized expression, a `>' token is always
2671 the greater-than operator. */
2672 saved_greater_than_is_operator_p
2673 = parser->greater_than_is_operator_p;
2674 parser->greater_than_is_operator_p = true;
2675 /* If we see `( { ' then we are looking at the beginning of
2676 a GNU statement-expression. */
2677 if (cp_parser_allow_gnu_extensions_p (parser)
2678 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
2679 {
2680 /* Statement-expressions are not allowed by the standard. */
2681 if (pedantic)
2682 pedwarn ("ISO C++ forbids braced-groups within expressions");
2683
2684 /* And they're not allowed outside of a function-body; you
2685 cannot, for example, write:
2686
2687 int i = ({ int j = 3; j + 1; });
2688
2689 at class or namespace scope. */
2690 if (!at_function_scope_p ())
2691 error ("statement-expressions are allowed only inside functions");
2692 /* Start the statement-expression. */
2693 expr = begin_stmt_expr ();
2694 /* Parse the compound-statement. */
2695 cp_parser_compound_statement (parser, expr, false);
2696 /* Finish up. */
2697 expr = finish_stmt_expr (expr, false);
2698 }
2699 else
2700 {
2701 /* Parse the parenthesized expression. */
2702 expr = cp_parser_expression (parser);
2703 /* Let the front end know that this expression was
2704 enclosed in parentheses. This matters in case, for
2705 example, the expression is of the form `A::B', since
2706 `&A::B' might be a pointer-to-member, but `&(A::B)' is
2707 not. */
2708 finish_parenthesized_expr (expr);
2709 }
2710 /* The `>' token might be the end of a template-id or
2711 template-parameter-list now. */
2712 parser->greater_than_is_operator_p
2713 = saved_greater_than_is_operator_p;
2714 /* Consume the `)'. */
2715 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
2716 cp_parser_skip_to_end_of_statement (parser);
2717
2718 return expr;
2719 }
2720
2721 case CPP_KEYWORD:
2722 switch (token->keyword)
2723 {
2724 /* These two are the boolean literals. */
2725 case RID_TRUE:
2726 cp_lexer_consume_token (parser->lexer);
2727 return boolean_true_node;
2728 case RID_FALSE:
2729 cp_lexer_consume_token (parser->lexer);
2730 return boolean_false_node;
2731
2732 /* The `__null' literal. */
2733 case RID_NULL:
2734 cp_lexer_consume_token (parser->lexer);
2735 return null_node;
2736
2737 /* Recognize the `this' keyword. */
2738 case RID_THIS:
2739 cp_lexer_consume_token (parser->lexer);
2740 if (parser->local_variables_forbidden_p)
2741 {
2742 error ("%<this%> may not be used in this context");
2743 return error_mark_node;
2744 }
2745 /* Pointers cannot appear in constant-expressions. */
2746 if (cp_parser_non_integral_constant_expression (parser,
2747 "`this'"))
2748 return error_mark_node;
2749 return finish_this_expr ();
2750
2751 /* The `operator' keyword can be the beginning of an
2752 id-expression. */
2753 case RID_OPERATOR:
2754 goto id_expression;
2755
2756 case RID_FUNCTION_NAME:
2757 case RID_PRETTY_FUNCTION_NAME:
2758 case RID_C99_FUNCTION_NAME:
2759 /* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
2760 __func__ are the names of variables -- but they are
2761 treated specially. Therefore, they are handled here,
2762 rather than relying on the generic id-expression logic
2763 below. Grammatically, these names are id-expressions.
2764
2765 Consume the token. */
2766 token = cp_lexer_consume_token (parser->lexer);
2767 /* Look up the name. */
2768 return finish_fname (token->value);
2769
2770 case RID_VA_ARG:
2771 {
2772 tree expression;
2773 tree type;
2774
2775 /* The `__builtin_va_arg' construct is used to handle
2776 `va_arg'. Consume the `__builtin_va_arg' token. */
2777 cp_lexer_consume_token (parser->lexer);
2778 /* Look for the opening `('. */
2779 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
2780 /* Now, parse the assignment-expression. */
2781 expression = cp_parser_assignment_expression (parser);
2782 /* Look for the `,'. */
2783 cp_parser_require (parser, CPP_COMMA, "`,'");
2784 /* Parse the type-id. */
2785 type = cp_parser_type_id (parser);
2786 /* Look for the closing `)'. */
2787 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
2788 /* Using `va_arg' in a constant-expression is not
2789 allowed. */
2790 if (cp_parser_non_integral_constant_expression (parser,
2791 "`va_arg'"))
2792 return error_mark_node;
2793 return build_x_va_arg (expression, type);
2794 }
2795
2796 case RID_OFFSETOF:
2797 return cp_parser_builtin_offsetof (parser);
2798
2799 default:
2800 cp_parser_error (parser, "expected primary-expression");
2801 return error_mark_node;
2802 }
2803
2804 /* An id-expression can start with either an identifier, a
2805 `::' as the beginning of a qualified-id, or the "operator"
2806 keyword. */
2807 case CPP_NAME:
2808 case CPP_SCOPE:
2809 case CPP_TEMPLATE_ID:
2810 case CPP_NESTED_NAME_SPECIFIER:
2811 {
2812 tree id_expression;
2813 tree decl;
2814 const char *error_msg;
2815
2816 id_expression:
2817 /* Parse the id-expression. */
2818 id_expression
2819 = cp_parser_id_expression (parser,
2820 /*template_keyword_p=*/false,
2821 /*check_dependency_p=*/true,
2822 /*template_p=*/NULL,
2823 /*declarator_p=*/false);
2824 if (id_expression == error_mark_node)
2825 return error_mark_node;
2826 /* If we have a template-id, then no further lookup is
2827 required. If the template-id was for a template-class, we
2828 will sometimes have a TYPE_DECL at this point. */
2829 else if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
2830 || TREE_CODE (id_expression) == TYPE_DECL)
2831 decl = id_expression;
2832 /* Look up the name. */
2833 else
2834 {
2835 bool ambiguous_p;
2836
2837 decl = cp_parser_lookup_name (parser, id_expression,
2838 none_type,
2839 /*is_template=*/false,
2840 /*is_namespace=*/false,
2841 /*check_dependency=*/true,
2842 &ambiguous_p);
2843 /* If the lookup was ambiguous, an error will already have
2844 been issued. */
2845 if (ambiguous_p)
2846 return error_mark_node;
2847 /* If name lookup gives us a SCOPE_REF, then the
2848 qualifying scope was dependent. Just propagate the
2849 name. */
2850 if (TREE_CODE (decl) == SCOPE_REF)
2851 {
2852 if (TYPE_P (TREE_OPERAND (decl, 0)))
2853 *qualifying_class = TREE_OPERAND (decl, 0);
2854 return decl;
2855 }
2856 /* Check to see if DECL is a local variable in a context
2857 where that is forbidden. */
2858 if (parser->local_variables_forbidden_p
2859 && local_variable_p (decl))
2860 {
2861 /* It might be that we only found DECL because we are
2862 trying to be generous with pre-ISO scoping rules.
2863 For example, consider:
2864
2865 int i;
2866 void g() {
2867 for (int i = 0; i < 10; ++i) {}
2868 extern void f(int j = i);
2869 }
2870
2871 Here, name look up will originally find the out
2872 of scope `i'. We need to issue a warning message,
2873 but then use the global `i'. */
2874 decl = check_for_out_of_scope_variable (decl);
2875 if (local_variable_p (decl))
2876 {
2877 error ("local variable %qD may not appear in this context",
2878 decl);
2879 return error_mark_node;
2880 }
2881 }
2882 }
2883
2884 decl = finish_id_expression (id_expression, decl, parser->scope,
2885 idk, qualifying_class,
2886 parser->integral_constant_expression_p,
2887 parser->allow_non_integral_constant_expression_p,
2888 &parser->non_integral_constant_expression_p,
2889 &error_msg);
2890 if (error_msg)
2891 cp_parser_error (parser, error_msg);
2892 return decl;
2893 }
2894
2895 /* Anything else is an error. */
2896 default:
2897 cp_parser_error (parser, "expected primary-expression");
2898 return error_mark_node;
2899 }
2900 }
2901
2902 /* Parse an id-expression.
2903
2904 id-expression:
2905 unqualified-id
2906 qualified-id
2907
2908 qualified-id:
2909 :: [opt] nested-name-specifier template [opt] unqualified-id
2910 :: identifier
2911 :: operator-function-id
2912 :: template-id
2913
2914 Return a representation of the unqualified portion of the
2915 identifier. Sets PARSER->SCOPE to the qualifying scope if there is
2916 a `::' or nested-name-specifier.
2917
2918 Often, if the id-expression was a qualified-id, the caller will
2919 want to make a SCOPE_REF to represent the qualified-id. This
2920 function does not do this in order to avoid wastefully creating
2921 SCOPE_REFs when they are not required.
2922
2923 If TEMPLATE_KEYWORD_P is true, then we have just seen the
2924 `template' keyword.
2925
2926 If CHECK_DEPENDENCY_P is false, then names are looked up inside
2927 uninstantiated templates.
2928
2929 If *TEMPLATE_P is non-NULL, it is set to true iff the
2930 `template' keyword is used to explicitly indicate that the entity
2931 named is a template.
2932
2933 If DECLARATOR_P is true, the id-expression is appearing as part of
2934 a declarator, rather than as part of an expression. */
2935
2936 static tree
2937 cp_parser_id_expression (cp_parser *parser,
2938 bool template_keyword_p,
2939 bool check_dependency_p,
2940 bool *template_p,
2941 bool declarator_p)
2942 {
2943 bool global_scope_p;
2944 bool nested_name_specifier_p;
2945
2946 /* Assume the `template' keyword was not used. */
2947 if (template_p)
2948 *template_p = false;
2949
2950 /* Look for the optional `::' operator. */
2951 global_scope_p
2952 = (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)
2953 != NULL_TREE);
2954 /* Look for the optional nested-name-specifier. */
2955 nested_name_specifier_p
2956 = (cp_parser_nested_name_specifier_opt (parser,
2957 /*typename_keyword_p=*/false,
2958 check_dependency_p,
2959 /*type_p=*/false,
2960 declarator_p)
2961 != NULL_TREE);
2962 /* If there is a nested-name-specifier, then we are looking at
2963 the first qualified-id production. */
2964 if (nested_name_specifier_p)
2965 {
2966 tree saved_scope;
2967 tree saved_object_scope;
2968 tree saved_qualifying_scope;
2969 tree unqualified_id;
2970 bool is_template;
2971
2972 /* See if the next token is the `template' keyword. */
2973 if (!template_p)
2974 template_p = &is_template;
2975 *template_p = cp_parser_optional_template_keyword (parser);
2976 /* Name lookup we do during the processing of the
2977 unqualified-id might obliterate SCOPE. */
2978 saved_scope = parser->scope;
2979 saved_object_scope = parser->object_scope;
2980 saved_qualifying_scope = parser->qualifying_scope;
2981 /* Process the final unqualified-id. */
2982 unqualified_id = cp_parser_unqualified_id (parser, *template_p,
2983 check_dependency_p,
2984 declarator_p);
2985 /* Restore the SAVED_SCOPE for our caller. */
2986 parser->scope = saved_scope;
2987 parser->object_scope = saved_object_scope;
2988 parser->qualifying_scope = saved_qualifying_scope;
2989
2990 return unqualified_id;
2991 }
2992 /* Otherwise, if we are in global scope, then we are looking at one
2993 of the other qualified-id productions. */
2994 else if (global_scope_p)
2995 {
2996 cp_token *token;
2997 tree id;
2998
2999 /* Peek at the next token. */
3000 token = cp_lexer_peek_token (parser->lexer);
3001
3002 /* If it's an identifier, and the next token is not a "<", then
3003 we can avoid the template-id case. This is an optimization
3004 for this common case. */
3005 if (token->type == CPP_NAME
3006 && !cp_parser_nth_token_starts_template_argument_list_p
3007 (parser, 2))
3008 return cp_parser_identifier (parser);
3009
3010 cp_parser_parse_tentatively (parser);
3011 /* Try a template-id. */
3012 id = cp_parser_template_id (parser,
3013 /*template_keyword_p=*/false,
3014 /*check_dependency_p=*/true,
3015 declarator_p);
3016 /* If that worked, we're done. */
3017 if (cp_parser_parse_definitely (parser))
3018 return id;
3019
3020 /* Peek at the next token. (Changes in the token buffer may
3021 have invalidated the pointer obtained above.) */
3022 token = cp_lexer_peek_token (parser->lexer);
3023
3024 switch (token->type)
3025 {
3026 case CPP_NAME:
3027 return cp_parser_identifier (parser);
3028
3029 case CPP_KEYWORD:
3030 if (token->keyword == RID_OPERATOR)
3031 return cp_parser_operator_function_id (parser);
3032 /* Fall through. */
3033
3034 default:
3035 cp_parser_error (parser, "expected id-expression");
3036 return error_mark_node;
3037 }
3038 }
3039 else
3040 return cp_parser_unqualified_id (parser, template_keyword_p,
3041 /*check_dependency_p=*/true,
3042 declarator_p);
3043 }
3044
3045 /* Parse an unqualified-id.
3046
3047 unqualified-id:
3048 identifier
3049 operator-function-id
3050 conversion-function-id
3051 ~ class-name
3052 template-id
3053
3054 If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
3055 keyword, in a construct like `A::template ...'.
3056
3057 Returns a representation of unqualified-id. For the `identifier'
3058 production, an IDENTIFIER_NODE is returned. For the `~ class-name'
3059 production a BIT_NOT_EXPR is returned; the operand of the
3060 BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the
3061 other productions, see the documentation accompanying the
3062 corresponding parsing functions. If CHECK_DEPENDENCY_P is false,
3063 names are looked up in uninstantiated templates. If DECLARATOR_P
3064 is true, the unqualified-id is appearing as part of a declarator,
3065 rather than as part of an expression. */
3066
3067 static tree
3068 cp_parser_unqualified_id (cp_parser* parser,
3069 bool template_keyword_p,
3070 bool check_dependency_p,
3071 bool declarator_p)
3072 {
3073 cp_token *token;
3074
3075 /* Peek at the next token. */
3076 token = cp_lexer_peek_token (parser->lexer);
3077
3078 switch (token->type)
3079 {
3080 case CPP_NAME:
3081 {
3082 tree id;
3083
3084 /* We don't know yet whether or not this will be a
3085 template-id. */
3086 cp_parser_parse_tentatively (parser);
3087 /* Try a template-id. */
3088 id = cp_parser_template_id (parser, template_keyword_p,
3089 check_dependency_p,
3090 declarator_p);
3091 /* If it worked, we're done. */
3092 if (cp_parser_parse_definitely (parser))
3093 return id;
3094 /* Otherwise, it's an ordinary identifier. */
3095 return cp_parser_identifier (parser);
3096 }
3097
3098 case CPP_TEMPLATE_ID:
3099 return cp_parser_template_id (parser, template_keyword_p,
3100 check_dependency_p,
3101 declarator_p);
3102
3103 case CPP_COMPL:
3104 {
3105 tree type_decl;
3106 tree qualifying_scope;
3107 tree object_scope;
3108 tree scope;
3109
3110 /* Consume the `~' token. */
3111 cp_lexer_consume_token (parser->lexer);
3112 /* Parse the class-name. The standard, as written, seems to
3113 say that:
3114
3115 template <typename T> struct S { ~S (); };
3116 template <typename T> S<T>::~S() {}
3117
3118 is invalid, since `~' must be followed by a class-name, but
3119 `S<T>' is dependent, and so not known to be a class.
3120 That's not right; we need to look in uninstantiated
3121 templates. A further complication arises from:
3122
3123 template <typename T> void f(T t) {
3124 t.T::~T();
3125 }
3126
3127 Here, it is not possible to look up `T' in the scope of `T'
3128 itself. We must look in both the current scope, and the
3129 scope of the containing complete expression.
3130
3131 Yet another issue is:
3132
3133 struct S {
3134 int S;
3135 ~S();
3136 };
3137
3138 S::~S() {}
3139
3140 The standard does not seem to say that the `S' in `~S'
3141 should refer to the type `S' and not the data member
3142 `S::S'. */
3143
3144 /* DR 244 says that we look up the name after the "~" in the
3145 same scope as we looked up the qualifying name. That idea
3146 isn't fully worked out; it's more complicated than that. */
3147 scope = parser->scope;
3148 object_scope = parser->object_scope;
3149 qualifying_scope = parser->qualifying_scope;
3150
3151 /* If the name is of the form "X::~X" it's OK. */
3152 if (scope && TYPE_P (scope)
3153 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3154 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3155 == CPP_OPEN_PAREN)
3156 && (cp_lexer_peek_token (parser->lexer)->value
3157 == TYPE_IDENTIFIER (scope)))
3158 {
3159 cp_lexer_consume_token (parser->lexer);
3160 return build_nt (BIT_NOT_EXPR, scope);
3161 }
3162
3163 /* If there was an explicit qualification (S::~T), first look
3164 in the scope given by the qualification (i.e., S). */
3165 if (scope)
3166 {
3167 cp_parser_parse_tentatively (parser);
3168 type_decl = cp_parser_class_name (parser,
3169 /*typename_keyword_p=*/false,
3170 /*template_keyword_p=*/false,
3171 none_type,
3172 /*check_dependency=*/false,
3173 /*class_head_p=*/false,
3174 declarator_p);
3175 if (cp_parser_parse_definitely (parser))
3176 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3177 }
3178 /* In "N::S::~S", look in "N" as well. */
3179 if (scope && qualifying_scope)
3180 {
3181 cp_parser_parse_tentatively (parser);
3182 parser->scope = qualifying_scope;
3183 parser->object_scope = NULL_TREE;
3184 parser->qualifying_scope = NULL_TREE;
3185 type_decl
3186 = cp_parser_class_name (parser,
3187 /*typename_keyword_p=*/false,
3188 /*template_keyword_p=*/false,
3189 none_type,
3190 /*check_dependency=*/false,
3191 /*class_head_p=*/false,
3192 declarator_p);
3193 if (cp_parser_parse_definitely (parser))
3194 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3195 }
3196 /* In "p->S::~T", look in the scope given by "*p" as well. */
3197 else if (object_scope)
3198 {
3199 cp_parser_parse_tentatively (parser);
3200 parser->scope = object_scope;
3201 parser->object_scope = NULL_TREE;
3202 parser->qualifying_scope = NULL_TREE;
3203 type_decl
3204 = cp_parser_class_name (parser,
3205 /*typename_keyword_p=*/false,
3206 /*template_keyword_p=*/false,
3207 none_type,
3208 /*check_dependency=*/false,
3209 /*class_head_p=*/false,
3210 declarator_p);
3211 if (cp_parser_parse_definitely (parser))
3212 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3213 }
3214 /* Look in the surrounding context. */
3215 parser->scope = NULL_TREE;
3216 parser->object_scope = NULL_TREE;
3217 parser->qualifying_scope = NULL_TREE;
3218 type_decl
3219 = cp_parser_class_name (parser,
3220 /*typename_keyword_p=*/false,
3221 /*template_keyword_p=*/false,
3222 none_type,
3223 /*check_dependency=*/false,
3224 /*class_head_p=*/false,
3225 declarator_p);
3226 /* If an error occurred, assume that the name of the
3227 destructor is the same as the name of the qualifying
3228 class. That allows us to keep parsing after running
3229 into ill-formed destructor names. */
3230 if (type_decl == error_mark_node && scope && TYPE_P (scope))
3231 return build_nt (BIT_NOT_EXPR, scope);
3232 else if (type_decl == error_mark_node)
3233 return error_mark_node;
3234
3235 /* [class.dtor]
3236
3237 A typedef-name that names a class shall not be used as the
3238 identifier in the declarator for a destructor declaration. */
3239 if (declarator_p
3240 && !DECL_IMPLICIT_TYPEDEF_P (type_decl)
3241 && !DECL_SELF_REFERENCE_P (type_decl))
3242 error ("typedef-name %qD used as destructor declarator",
3243 type_decl);
3244
3245 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3246 }
3247
3248 case CPP_KEYWORD:
3249 if (token->keyword == RID_OPERATOR)
3250 {
3251 tree id;
3252
3253 /* This could be a template-id, so we try that first. */
3254 cp_parser_parse_tentatively (parser);
3255 /* Try a template-id. */
3256 id = cp_parser_template_id (parser, template_keyword_p,
3257 /*check_dependency_p=*/true,
3258 declarator_p);
3259 /* If that worked, we're done. */
3260 if (cp_parser_parse_definitely (parser))
3261 return id;
3262 /* We still don't know whether we're looking at an
3263 operator-function-id or a conversion-function-id. */
3264 cp_parser_parse_tentatively (parser);
3265 /* Try an operator-function-id. */
3266 id = cp_parser_operator_function_id (parser);
3267 /* If that didn't work, try a conversion-function-id. */
3268 if (!cp_parser_parse_definitely (parser))
3269 id = cp_parser_conversion_function_id (parser);
3270
3271 return id;
3272 }
3273 /* Fall through. */
3274
3275 default:
3276 cp_parser_error (parser, "expected unqualified-id");
3277 return error_mark_node;
3278 }
3279 }
3280
3281 /* Parse an (optional) nested-name-specifier.
3282
3283 nested-name-specifier:
3284 class-or-namespace-name :: nested-name-specifier [opt]
3285 class-or-namespace-name :: template nested-name-specifier [opt]
3286
3287 PARSER->SCOPE should be set appropriately before this function is
3288 called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
3289 effect. TYPE_P is TRUE if we non-type bindings should be ignored
3290 in name lookups.
3291
3292 Sets PARSER->SCOPE to the class (TYPE) or namespace
3293 (NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
3294 it unchanged if there is no nested-name-specifier. Returns the new
3295 scope iff there is a nested-name-specifier, or NULL_TREE otherwise.
3296
3297 If IS_DECLARATION is TRUE, the nested-name-specifier is known to be
3298 part of a declaration and/or decl-specifier. */
3299
3300 static tree
3301 cp_parser_nested_name_specifier_opt (cp_parser *parser,
3302 bool typename_keyword_p,
3303 bool check_dependency_p,
3304 bool type_p,
3305 bool is_declaration)
3306 {
3307 bool success = false;
3308 tree access_check = NULL_TREE;
3309 cp_token_position start = 0;
3310 cp_token *token;
3311
3312 /* If the next token corresponds to a nested name specifier, there
3313 is no need to reparse it. However, if CHECK_DEPENDENCY_P is
3314 false, it may have been true before, in which case something
3315 like `A<X>::B<Y>::C' may have resulted in a nested-name-specifier
3316 of `A<X>::', where it should now be `A<X>::B<Y>::'. So, when
3317 CHECK_DEPENDENCY_P is false, we have to fall through into the
3318 main loop. */
3319 if (check_dependency_p
3320 && cp_lexer_next_token_is (parser->lexer, CPP_NESTED_NAME_SPECIFIER))
3321 {
3322 cp_parser_pre_parsed_nested_name_specifier (parser);
3323 return parser->scope;
3324 }
3325
3326 /* Remember where the nested-name-specifier starts. */
3327 if (cp_parser_parsing_tentatively (parser)
3328 && !cp_parser_committed_to_tentative_parse (parser))
3329 start = cp_lexer_token_position (parser->lexer, false);
3330
3331 push_deferring_access_checks (dk_deferred);
3332
3333 while (true)
3334 {
3335 tree new_scope;
3336 tree old_scope;
3337 tree saved_qualifying_scope;
3338 bool template_keyword_p;
3339
3340 /* Spot cases that cannot be the beginning of a
3341 nested-name-specifier. */
3342 token = cp_lexer_peek_token (parser->lexer);
3343
3344 /* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
3345 the already parsed nested-name-specifier. */
3346 if (token->type == CPP_NESTED_NAME_SPECIFIER)
3347 {
3348 /* Grab the nested-name-specifier and continue the loop. */
3349 cp_parser_pre_parsed_nested_name_specifier (parser);
3350 success = true;
3351 continue;
3352 }
3353
3354 /* Spot cases that cannot be the beginning of a
3355 nested-name-specifier. On the second and subsequent times
3356 through the loop, we look for the `template' keyword. */
3357 if (success && token->keyword == RID_TEMPLATE)
3358 ;
3359 /* A template-id can start a nested-name-specifier. */
3360 else if (token->type == CPP_TEMPLATE_ID)
3361 ;
3362 else
3363 {
3364 /* If the next token is not an identifier, then it is
3365 definitely not a class-or-namespace-name. */
3366 if (token->type != CPP_NAME)
3367 break;
3368 /* If the following token is neither a `<' (to begin a
3369 template-id), nor a `::', then we are not looking at a
3370 nested-name-specifier. */
3371 token = cp_lexer_peek_nth_token (parser->lexer, 2);
3372 if (token->type != CPP_SCOPE
3373 && !cp_parser_nth_token_starts_template_argument_list_p
3374 (parser, 2))
3375 break;
3376 }
3377
3378 /* The nested-name-specifier is optional, so we parse
3379 tentatively. */
3380 cp_parser_parse_tentatively (parser);
3381
3382 /* Look for the optional `template' keyword, if this isn't the
3383 first time through the loop. */
3384 if (success)
3385 template_keyword_p = cp_parser_optional_template_keyword (parser);
3386 else
3387 template_keyword_p = false;
3388
3389 /* Save the old scope since the name lookup we are about to do
3390 might destroy it. */
3391 old_scope = parser->scope;
3392 saved_qualifying_scope = parser->qualifying_scope;
3393 /* In a declarator-id like "X<T>::I::Y<T>" we must be able to
3394 look up names in "X<T>::I" in order to determine that "Y" is
3395 a template. So, if we have a typename at this point, we make
3396 an effort to look through it. */
3397 if (is_declaration
3398 && !typename_keyword_p
3399 && parser->scope
3400 && TREE_CODE (parser->scope) == TYPENAME_TYPE)
3401 parser->scope = resolve_typename_type (parser->scope,
3402 /*only_current_p=*/false);
3403 /* Parse the qualifying entity. */
3404 new_scope
3405 = cp_parser_class_or_namespace_name (parser,
3406 typename_keyword_p,
3407 template_keyword_p,
3408 check_dependency_p,
3409 type_p,
3410 is_declaration);
3411 /* Look for the `::' token. */
3412 cp_parser_require (parser, CPP_SCOPE, "`::'");
3413
3414 /* If we found what we wanted, we keep going; otherwise, we're
3415 done. */
3416 if (!cp_parser_parse_definitely (parser))
3417 {
3418 bool error_p = false;
3419
3420 /* Restore the OLD_SCOPE since it was valid before the
3421 failed attempt at finding the last
3422 class-or-namespace-name. */
3423 parser->scope = old_scope;
3424 parser->qualifying_scope = saved_qualifying_scope;
3425 /* If the next token is an identifier, and the one after
3426 that is a `::', then any valid interpretation would have
3427 found a class-or-namespace-name. */
3428 while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3429 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3430 == CPP_SCOPE)
3431 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
3432 != CPP_COMPL))
3433 {
3434 token = cp_lexer_consume_token (parser->lexer);
3435 if (!error_p)
3436 {
3437 tree decl;
3438
3439 decl = cp_parser_lookup_name_simple (parser, token->value);
3440 if (TREE_CODE (decl) == TEMPLATE_DECL)
3441 error ("%qD used without template parameters", decl);
3442 else
3443 cp_parser_name_lookup_error
3444 (parser, token->value, decl,
3445 "is not a class or namespace");
3446 parser->scope = NULL_TREE;
3447 error_p = true;
3448 /* Treat this as a successful nested-name-specifier
3449 due to:
3450
3451 [basic.lookup.qual]
3452
3453 If the name found is not a class-name (clause
3454 _class_) or namespace-name (_namespace.def_), the
3455 program is ill-formed. */
3456 success = true;
3457 }
3458 cp_lexer_consume_token (parser->lexer);
3459 }
3460 break;
3461 }
3462
3463 /* We've found one valid nested-name-specifier. */
3464 success = true;
3465 /* Make sure we look in the right scope the next time through
3466 the loop. */
3467 parser->scope = (TREE_CODE (new_scope) == TYPE_DECL
3468 ? TREE_TYPE (new_scope)
3469 : new_scope);
3470 /* If it is a class scope, try to complete it; we are about to
3471 be looking up names inside the class. */
3472 if (TYPE_P (parser->scope)
3473 /* Since checking types for dependency can be expensive,
3474 avoid doing it if the type is already complete. */
3475 && !COMPLETE_TYPE_P (parser->scope)
3476 /* Do not try to complete dependent types. */
3477 && !dependent_type_p (parser->scope))
3478 complete_type (parser->scope);
3479 }
3480
3481 /* Retrieve any deferred checks. Do not pop this access checks yet
3482 so the memory will not be reclaimed during token replacing below. */
3483 access_check = get_deferred_access_checks ();
3484
3485 /* If parsing tentatively, replace the sequence of tokens that makes
3486 up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
3487 token. That way, should we re-parse the token stream, we will
3488 not have to repeat the effort required to do the parse, nor will
3489 we issue duplicate error messages. */
3490 if (success && start)
3491 {
3492 cp_token *token = cp_lexer_token_at (parser->lexer, start);
3493
3494 /* Reset the contents of the START token. */
3495 token->type = CPP_NESTED_NAME_SPECIFIER;
3496 token->value = build_tree_list (access_check, parser->scope);
3497 TREE_TYPE (token->value) = parser->qualifying_scope;
3498 token->keyword = RID_MAX;
3499
3500 /* Purge all subsequent tokens. */
3501 cp_lexer_purge_tokens_after (parser->lexer, start);
3502 }
3503
3504 pop_deferring_access_checks ();
3505 return success ? parser->scope : NULL_TREE;
3506 }
3507
3508 /* Parse a nested-name-specifier. See
3509 cp_parser_nested_name_specifier_opt for details. This function
3510 behaves identically, except that it will an issue an error if no
3511 nested-name-specifier is present, and it will return
3512 ERROR_MARK_NODE, rather than NULL_TREE, if no nested-name-specifier
3513 is present. */
3514
3515 static tree
3516 cp_parser_nested_name_specifier (cp_parser *parser,
3517 bool typename_keyword_p,
3518 bool check_dependency_p,
3519 bool type_p,
3520 bool is_declaration)
3521 {
3522 tree scope;
3523
3524 /* Look for the nested-name-specifier. */
3525 scope = cp_parser_nested_name_specifier_opt (parser,
3526 typename_keyword_p,
3527 check_dependency_p,
3528 type_p,
3529 is_declaration);
3530 /* If it was not present, issue an error message. */
3531 if (!scope)
3532 {
3533 cp_parser_error (parser, "expected nested-name-specifier");
3534 parser->scope = NULL_TREE;
3535 return error_mark_node;
3536 }
3537
3538 return scope;
3539 }
3540
3541 /* Parse a class-or-namespace-name.
3542
3543 class-or-namespace-name:
3544 class-name
3545 namespace-name
3546
3547 TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
3548 TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
3549 CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
3550 TYPE_P is TRUE iff the next name should be taken as a class-name,
3551 even the same name is declared to be another entity in the same
3552 scope.
3553
3554 Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
3555 specified by the class-or-namespace-name. If neither is found the
3556 ERROR_MARK_NODE is returned. */
3557
3558 static tree
3559 cp_parser_class_or_namespace_name (cp_parser *parser,
3560 bool typename_keyword_p,
3561 bool template_keyword_p,
3562 bool check_dependency_p,
3563 bool type_p,
3564 bool is_declaration)
3565 {
3566 tree saved_scope;
3567 tree saved_qualifying_scope;
3568 tree saved_object_scope;
3569 tree scope;
3570 bool only_class_p;
3571
3572 /* Before we try to parse the class-name, we must save away the
3573 current PARSER->SCOPE since cp_parser_class_name will destroy
3574 it. */
3575 saved_scope = parser->scope;
3576 saved_qualifying_scope = parser->qualifying_scope;
3577 saved_object_scope = parser->object_scope;
3578 /* Try for a class-name first. If the SAVED_SCOPE is a type, then
3579 there is no need to look for a namespace-name. */
3580 only_class_p = template_keyword_p || (saved_scope && TYPE_P (saved_scope));
3581 if (!only_class_p)
3582 cp_parser_parse_tentatively (parser);
3583 scope = cp_parser_class_name (parser,
3584 typename_keyword_p,
3585 template_keyword_p,
3586 type_p ? class_type : none_type,
3587 check_dependency_p,
3588 /*class_head_p=*/false,
3589 is_declaration);
3590 /* If that didn't work, try for a namespace-name. */
3591 if (!only_class_p && !cp_parser_parse_definitely (parser))
3592 {
3593 /* Restore the saved scope. */
3594 parser->scope = saved_scope;
3595 parser->qualifying_scope = saved_qualifying_scope;
3596 parser->object_scope = saved_object_scope;
3597 /* If we are not looking at an identifier followed by the scope
3598 resolution operator, then this is not part of a
3599 nested-name-specifier. (Note that this function is only used
3600 to parse the components of a nested-name-specifier.) */
3601 if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
3602 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
3603 return error_mark_node;
3604 scope = cp_parser_namespace_name (parser);
3605 }
3606
3607 return scope;
3608 }
3609
3610 /* Parse a postfix-expression.
3611
3612 postfix-expression:
3613 primary-expression
3614 postfix-expression [ expression ]
3615 postfix-expression ( expression-list [opt] )
3616 simple-type-specifier ( expression-list [opt] )
3617 typename :: [opt] nested-name-specifier identifier
3618 ( expression-list [opt] )
3619 typename :: [opt] nested-name-specifier template [opt] template-id
3620 ( expression-list [opt] )
3621 postfix-expression . template [opt] id-expression
3622 postfix-expression -> template [opt] id-expression
3623 postfix-expression . pseudo-destructor-name
3624 postfix-expression -> pseudo-destructor-name
3625 postfix-expression ++
3626 postfix-expression --
3627 dynamic_cast < type-id > ( expression )
3628 static_cast < type-id > ( expression )
3629 reinterpret_cast < type-id > ( expression )
3630 const_cast < type-id > ( expression )
3631 typeid ( expression )
3632 typeid ( type-id )
3633
3634 GNU Extension:
3635
3636 postfix-expression:
3637 ( type-id ) { initializer-list , [opt] }
3638
3639 This extension is a GNU version of the C99 compound-literal
3640 construct. (The C99 grammar uses `type-name' instead of `type-id',
3641 but they are essentially the same concept.)
3642
3643 If ADDRESS_P is true, the postfix expression is the operand of the
3644 `&' operator.
3645
3646 Returns a representation of the expression. */
3647
3648 static tree
3649 cp_parser_postfix_expression (cp_parser *parser, bool address_p)
3650 {
3651 cp_token *token;
3652 enum rid keyword;
3653 cp_id_kind idk = CP_ID_KIND_NONE;
3654 tree postfix_expression = NULL_TREE;
3655 /* Non-NULL only if the current postfix-expression can be used to
3656 form a pointer-to-member. In that case, QUALIFYING_CLASS is the
3657 class used to qualify the member. */
3658 tree qualifying_class = NULL_TREE;
3659
3660 /* Peek at the next token. */
3661 token = cp_lexer_peek_token (parser->lexer);
3662 /* Some of the productions are determined by keywords. */
3663 keyword = token->keyword;
3664 switch (keyword)
3665 {
3666 case RID_DYNCAST:
3667 case RID_STATCAST:
3668 case RID_REINTCAST:
3669 case RID_CONSTCAST:
3670 {
3671 tree type;
3672 tree expression;
3673 const char *saved_message;
3674
3675 /* All of these can be handled in the same way from the point
3676 of view of parsing. Begin by consuming the token
3677 identifying the cast. */
3678 cp_lexer_consume_token (parser->lexer);
3679
3680 /* New types cannot be defined in the cast. */
3681 saved_message = parser->type_definition_forbidden_message;
3682 parser->type_definition_forbidden_message
3683 = "types may not be defined in casts";
3684
3685 /* Look for the opening `<'. */
3686 cp_parser_require (parser, CPP_LESS, "`<'");
3687 /* Parse the type to which we are casting. */
3688 type = cp_parser_type_id (parser);
3689 /* Look for the closing `>'. */
3690 cp_parser_require (parser, CPP_GREATER, "`>'");
3691 /* Restore the old message. */
3692 parser->type_definition_forbidden_message = saved_message;
3693
3694 /* And the expression which is being cast. */
3695 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3696 expression = cp_parser_expression (parser);
3697 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3698
3699 /* Only type conversions to integral or enumeration types
3700 can be used in constant-expressions. */
3701 if (parser->integral_constant_expression_p
3702 && !dependent_type_p (type)
3703 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
3704 && (cp_parser_non_integral_constant_expression
3705 (parser,
3706 "a cast to a type other than an integral or "
3707 "enumeration type")))
3708 return error_mark_node;
3709
3710 switch (keyword)
3711 {
3712 case RID_DYNCAST:
3713 postfix_expression
3714 = build_dynamic_cast (type, expression);
3715 break;
3716 case RID_STATCAST:
3717 postfix_expression
3718 = build_static_cast (type, expression);
3719 break;
3720 case RID_REINTCAST:
3721 postfix_expression
3722 = build_reinterpret_cast (type, expression);
3723 break;
3724 case RID_CONSTCAST:
3725 postfix_expression
3726 = build_const_cast (type, expression);
3727 break;
3728 default:
3729 gcc_unreachable ();
3730 }
3731 }
3732 break;
3733
3734 case RID_TYPEID:
3735 {
3736 tree type;
3737 const char *saved_message;
3738 bool saved_in_type_id_in_expr_p;
3739
3740 /* Consume the `typeid' token. */
3741 cp_lexer_consume_token (parser->lexer);
3742 /* Look for the `(' token. */
3743 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3744 /* Types cannot be defined in a `typeid' expression. */
3745 saved_message = parser->type_definition_forbidden_message;
3746 parser->type_definition_forbidden_message
3747 = "types may not be defined in a `typeid\' expression";
3748 /* We can't be sure yet whether we're looking at a type-id or an
3749 expression. */
3750 cp_parser_parse_tentatively (parser);
3751 /* Try a type-id first. */
3752 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3753 parser->in_type_id_in_expr_p = true;
3754 type = cp_parser_type_id (parser);
3755 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3756 /* Look for the `)' token. Otherwise, we can't be sure that
3757 we're not looking at an expression: consider `typeid (int
3758 (3))', for example. */
3759 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3760 /* If all went well, simply lookup the type-id. */
3761 if (cp_parser_parse_definitely (parser))
3762 postfix_expression = get_typeid (type);
3763 /* Otherwise, fall back to the expression variant. */
3764 else
3765 {
3766 tree expression;
3767
3768 /* Look for an expression. */
3769 expression = cp_parser_expression (parser);
3770 /* Compute its typeid. */
3771 postfix_expression = build_typeid (expression);
3772 /* Look for the `)' token. */
3773 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3774 }
3775 /* `typeid' may not appear in an integral constant expression. */
3776 if (cp_parser_non_integral_constant_expression(parser,
3777 "`typeid' operator"))
3778 return error_mark_node;
3779 /* Restore the saved message. */
3780 parser->type_definition_forbidden_message = saved_message;
3781 }
3782 break;
3783
3784 case RID_TYPENAME:
3785 {
3786 bool template_p = false;
3787 tree id;
3788 tree type;
3789
3790 /* Consume the `typename' token. */
3791 cp_lexer_consume_token (parser->lexer);
3792 /* Look for the optional `::' operator. */
3793 cp_parser_global_scope_opt (parser,
3794 /*current_scope_valid_p=*/false);
3795 /* Look for the nested-name-specifier. */
3796 cp_parser_nested_name_specifier (parser,
3797 /*typename_keyword_p=*/true,
3798 /*check_dependency_p=*/true,
3799 /*type_p=*/true,
3800 /*is_declaration=*/true);
3801 /* Look for the optional `template' keyword. */
3802 template_p = cp_parser_optional_template_keyword (parser);
3803 /* We don't know whether we're looking at a template-id or an
3804 identifier. */
3805 cp_parser_parse_tentatively (parser);
3806 /* Try a template-id. */
3807 id = cp_parser_template_id (parser, template_p,
3808 /*check_dependency_p=*/true,
3809 /*is_declaration=*/true);
3810 /* If that didn't work, try an identifier. */
3811 if (!cp_parser_parse_definitely (parser))
3812 id = cp_parser_identifier (parser);
3813 /* If we look up a template-id in a non-dependent qualifying
3814 scope, there's no need to create a dependent type. */
3815 if (TREE_CODE (id) == TYPE_DECL
3816 && !dependent_type_p (parser->scope))
3817 type = TREE_TYPE (id);
3818 /* Create a TYPENAME_TYPE to represent the type to which the
3819 functional cast is being performed. */
3820 else
3821 type = make_typename_type (parser->scope, id,
3822 typename_type,
3823 /*complain=*/1);
3824
3825 postfix_expression = cp_parser_functional_cast (parser, type);
3826 }
3827 break;
3828
3829 default:
3830 {
3831 tree type;
3832
3833 /* If the next thing is a simple-type-specifier, we may be
3834 looking at a functional cast. We could also be looking at
3835 an id-expression. So, we try the functional cast, and if
3836 that doesn't work we fall back to the primary-expression. */
3837 cp_parser_parse_tentatively (parser);
3838 /* Look for the simple-type-specifier. */
3839 type = cp_parser_simple_type_specifier (parser,
3840 /*decl_specs=*/NULL,
3841 CP_PARSER_FLAGS_NONE);
3842 /* Parse the cast itself. */
3843 if (!cp_parser_error_occurred (parser))
3844 postfix_expression
3845 = cp_parser_functional_cast (parser, type);
3846 /* If that worked, we're done. */
3847 if (cp_parser_parse_definitely (parser))
3848 break;
3849
3850 /* If the functional-cast didn't work out, try a
3851 compound-literal. */
3852 if (cp_parser_allow_gnu_extensions_p (parser)
3853 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
3854 {
3855 tree initializer_list = NULL_TREE;
3856 bool saved_in_type_id_in_expr_p;
3857
3858 cp_parser_parse_tentatively (parser);
3859 /* Consume the `('. */
3860 cp_lexer_consume_token (parser->lexer);
3861 /* Parse the type. */
3862 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3863 parser->in_type_id_in_expr_p = true;
3864 type = cp_parser_type_id (parser);
3865 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3866 /* Look for the `)'. */
3867 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3868 /* Look for the `{'. */
3869 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
3870 /* If things aren't going well, there's no need to
3871 keep going. */
3872 if (!cp_parser_error_occurred (parser))
3873 {
3874 bool non_constant_p;
3875 /* Parse the initializer-list. */
3876 initializer_list
3877 = cp_parser_initializer_list (parser, &non_constant_p);
3878 /* Allow a trailing `,'. */
3879 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
3880 cp_lexer_consume_token (parser->lexer);
3881 /* Look for the final `}'. */
3882 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
3883 }
3884 /* If that worked, we're definitely looking at a
3885 compound-literal expression. */
3886 if (cp_parser_parse_definitely (parser))
3887 {
3888 /* Warn the user that a compound literal is not
3889 allowed in standard C++. */
3890 if (pedantic)
3891 pedwarn ("ISO C++ forbids compound-literals");
3892 /* Form the representation of the compound-literal. */
3893 postfix_expression
3894 = finish_compound_literal (type, initializer_list);
3895 break;
3896 }
3897 }
3898
3899 /* It must be a primary-expression. */
3900 postfix_expression = cp_parser_primary_expression (parser,
3901 &idk,
3902 &qualifying_class);
3903 }
3904 break;
3905 }
3906
3907 /* If we were avoiding committing to the processing of a
3908 qualified-id until we knew whether or not we had a
3909 pointer-to-member, we now know. */
3910 if (qualifying_class)
3911 {
3912 bool done;
3913
3914 /* Peek at the next token. */
3915 token = cp_lexer_peek_token (parser->lexer);
3916 done = (token->type != CPP_OPEN_SQUARE
3917 && token->type != CPP_OPEN_PAREN
3918 && token->type != CPP_DOT
3919 && token->type != CPP_DEREF
3920 && token->type != CPP_PLUS_PLUS
3921 && token->type != CPP_MINUS_MINUS);
3922
3923 postfix_expression = finish_qualified_id_expr (qualifying_class,
3924 postfix_expression,
3925 done,
3926 address_p);
3927 if (done)
3928 return postfix_expression;
3929 }
3930
3931 /* Keep looping until the postfix-expression is complete. */
3932 while (true)
3933 {
3934 if (idk == CP_ID_KIND_UNQUALIFIED
3935 && TREE_CODE (postfix_expression) == IDENTIFIER_NODE
3936 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
3937 /* It is not a Koenig lookup function call. */
3938 postfix_expression
3939 = unqualified_name_lookup_error (postfix_expression);
3940
3941 /* Peek at the next token. */
3942 token = cp_lexer_peek_token (parser->lexer);
3943
3944 switch (token->type)
3945 {
3946 case CPP_OPEN_SQUARE:
3947 postfix_expression
3948 = cp_parser_postfix_open_square_expression (parser,
3949 postfix_expression,
3950 false);
3951 idk = CP_ID_KIND_NONE;
3952 break;
3953
3954 case CPP_OPEN_PAREN:
3955 /* postfix-expression ( expression-list [opt] ) */
3956 {
3957 bool koenig_p;
3958 tree args = (cp_parser_parenthesized_expression_list
3959 (parser, false, /*non_constant_p=*/NULL));
3960
3961 if (args == error_mark_node)
3962 {
3963 postfix_expression = error_mark_node;
3964 break;
3965 }
3966
3967 /* Function calls are not permitted in
3968 constant-expressions. */
3969 if (cp_parser_non_integral_constant_expression (parser,
3970 "a function call"))
3971 {
3972 postfix_expression = error_mark_node;
3973 break;
3974 }
3975
3976 koenig_p = false;
3977 if (idk == CP_ID_KIND_UNQUALIFIED)
3978 {
3979 if (TREE_CODE (postfix_expression) == IDENTIFIER_NODE)
3980 {
3981 if (args)
3982 {
3983 koenig_p = true;
3984 postfix_expression
3985 = perform_koenig_lookup (postfix_expression, args);
3986 }
3987 else
3988 postfix_expression
3989 = unqualified_fn_lookup_error (postfix_expression);
3990 }
3991 /* We do not perform argument-dependent lookup if
3992 normal lookup finds a non-function, in accordance
3993 with the expected resolution of DR 218. */
3994 else if (args && is_overloaded_fn (postfix_expression))
3995 {
3996 tree fn = get_first_fn (postfix_expression);
3997
3998 if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
3999 fn = OVL_CURRENT (TREE_OPERAND (fn, 0));
4000
4001 /* Only do argument dependent lookup if regular
4002 lookup does not find a set of member functions.
4003 [basic.lookup.koenig]/2a */
4004 if (!DECL_FUNCTION_MEMBER_P (fn))
4005 {
4006 koenig_p = true;
4007 postfix_expression
4008 = perform_koenig_lookup (postfix_expression, args);
4009 }
4010 }
4011 }
4012
4013 if (TREE_CODE (postfix_expression) == COMPONENT_REF)
4014 {
4015 tree instance = TREE_OPERAND (postfix_expression, 0);
4016 tree fn = TREE_OPERAND (postfix_expression, 1);
4017
4018 if (processing_template_decl
4019 && (type_dependent_expression_p (instance)
4020 || (!BASELINK_P (fn)
4021 && TREE_CODE (fn) != FIELD_DECL)
4022 || type_dependent_expression_p (fn)
4023 || any_type_dependent_arguments_p (args)))
4024 {
4025 postfix_expression
4026 = build_min_nt (CALL_EXPR, postfix_expression,
4027 args, NULL_TREE);
4028 break;
4029 }
4030
4031 if (BASELINK_P (fn))
4032 postfix_expression
4033 = (build_new_method_call
4034 (instance, fn, args, NULL_TREE,
4035 (idk == CP_ID_KIND_QUALIFIED
4036 ? LOOKUP_NONVIRTUAL : LOOKUP_NORMAL)));
4037 else
4038 postfix_expression
4039 = finish_call_expr (postfix_expression, args,
4040 /*disallow_virtual=*/false,
4041 /*koenig_p=*/false);
4042 }
4043 else if (TREE_CODE (postfix_expression) == OFFSET_REF
4044 || TREE_CODE (postfix_expression) == MEMBER_REF
4045 || TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
4046 postfix_expression = (build_offset_ref_call_from_tree
4047 (postfix_expression, args));
4048 else if (idk == CP_ID_KIND_QUALIFIED)
4049 /* A call to a static class member, or a namespace-scope
4050 function. */
4051 postfix_expression
4052 = finish_call_expr (postfix_expression, args,
4053 /*disallow_virtual=*/true,
4054 koenig_p);
4055 else
4056 /* All other function calls. */
4057 postfix_expression
4058 = finish_call_expr (postfix_expression, args,
4059 /*disallow_virtual=*/false,
4060 koenig_p);
4061
4062 /* The POSTFIX_EXPRESSION is certainly no longer an id. */
4063 idk = CP_ID_KIND_NONE;
4064 }
4065 break;
4066
4067 case CPP_DOT:
4068 case CPP_DEREF:
4069 /* postfix-expression . template [opt] id-expression
4070 postfix-expression . pseudo-destructor-name
4071 postfix-expression -> template [opt] id-expression
4072 postfix-expression -> pseudo-destructor-name */
4073
4074 /* Consume the `.' or `->' operator. */
4075 cp_lexer_consume_token (parser->lexer);
4076
4077 postfix_expression
4078 = cp_parser_postfix_dot_deref_expression (parser, token->type,
4079 postfix_expression,
4080 false, &idk);
4081 break;
4082
4083 case CPP_PLUS_PLUS:
4084 /* postfix-expression ++ */
4085 /* Consume the `++' token. */
4086 cp_lexer_consume_token (parser->lexer);
4087 /* Generate a representation for the complete expression. */
4088 postfix_expression
4089 = finish_increment_expr (postfix_expression,
4090 POSTINCREMENT_EXPR);
4091 /* Increments may not appear in constant-expressions. */
4092 if (cp_parser_non_integral_constant_expression (parser,
4093 "an increment"))
4094 postfix_expression = error_mark_node;
4095 idk = CP_ID_KIND_NONE;
4096 break;
4097
4098 case CPP_MINUS_MINUS:
4099 /* postfix-expression -- */
4100 /* Consume the `--' token. */
4101 cp_lexer_consume_token (parser->lexer);
4102 /* Generate a representation for the complete expression. */
4103 postfix_expression
4104 = finish_increment_expr (postfix_expression,
4105 POSTDECREMENT_EXPR);
4106 /* Decrements may not appear in constant-expressions. */
4107 if (cp_parser_non_integral_constant_expression (parser,
4108 "a decrement"))
4109 postfix_expression = error_mark_node;
4110 idk = CP_ID_KIND_NONE;
4111 break;
4112
4113 default:
4114 return postfix_expression;
4115 }
4116 }
4117
4118 /* We should never get here. */
4119 gcc_unreachable ();
4120 return error_mark_node;
4121 }
4122
4123 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4124 by cp_parser_builtin_offsetof. We're looking for
4125
4126 postfix-expression [ expression ]
4127
4128 FOR_OFFSETOF is set if we're being called in that context, which
4129 changes how we deal with integer constant expressions. */
4130
4131 static tree
4132 cp_parser_postfix_open_square_expression (cp_parser *parser,
4133 tree postfix_expression,
4134 bool for_offsetof)
4135 {
4136 tree index;
4137
4138 /* Consume the `[' token. */
4139 cp_lexer_consume_token (parser->lexer);
4140
4141 /* Parse the index expression. */
4142 /* ??? For offsetof, there is a question of what to allow here. If
4143 offsetof is not being used in an integral constant expression context,
4144 then we *could* get the right answer by computing the value at runtime.
4145 If we are in an integral constant expression context, then we might
4146 could accept any constant expression; hard to say without analysis.
4147 Rather than open the barn door too wide right away, allow only integer
4148 constant expressions here. */
4149 if (for_offsetof)
4150 index = cp_parser_constant_expression (parser, false, NULL);
4151 else
4152 index = cp_parser_expression (parser);
4153
4154 /* Look for the closing `]'. */
4155 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
4156
4157 /* Build the ARRAY_REF. */
4158 postfix_expression = grok_array_decl (postfix_expression, index);
4159
4160 /* When not doing offsetof, array references are not permitted in
4161 constant-expressions. */
4162 if (!for_offsetof
4163 && (cp_parser_non_integral_constant_expression
4164 (parser, "an array reference")))
4165 postfix_expression = error_mark_node;
4166
4167 return postfix_expression;
4168 }
4169
4170 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4171 by cp_parser_builtin_offsetof. We're looking for
4172
4173 postfix-expression . template [opt] id-expression
4174 postfix-expression . pseudo-destructor-name
4175 postfix-expression -> template [opt] id-expression
4176 postfix-expression -> pseudo-destructor-name
4177
4178 FOR_OFFSETOF is set if we're being called in that context. That sorta
4179 limits what of the above we'll actually accept, but nevermind.
4180 TOKEN_TYPE is the "." or "->" token, which will already have been
4181 removed from the stream. */
4182
4183 static tree
4184 cp_parser_postfix_dot_deref_expression (cp_parser *parser,
4185 enum cpp_ttype token_type,
4186 tree postfix_expression,
4187 bool for_offsetof, cp_id_kind *idk)
4188 {
4189 tree name;
4190 bool dependent_p;
4191 bool template_p;
4192 bool pseudo_destructor_p;
4193 tree scope = NULL_TREE;
4194
4195 /* If this is a `->' operator, dereference the pointer. */
4196 if (token_type == CPP_DEREF)
4197 postfix_expression = build_x_arrow (postfix_expression);
4198 /* Check to see whether or not the expression is type-dependent. */
4199 dependent_p = type_dependent_expression_p (postfix_expression);
4200 /* The identifier following the `->' or `.' is not qualified. */
4201 parser->scope = NULL_TREE;
4202 parser->qualifying_scope = NULL_TREE;
4203 parser->object_scope = NULL_TREE;
4204 *idk = CP_ID_KIND_NONE;
4205 /* Enter the scope corresponding to the type of the object
4206 given by the POSTFIX_EXPRESSION. */
4207 if (!dependent_p && TREE_TYPE (postfix_expression) != NULL_TREE)
4208 {
4209 scope = TREE_TYPE (postfix_expression);
4210 /* According to the standard, no expression should ever have
4211 reference type. Unfortunately, we do not currently match
4212 the standard in this respect in that our internal representation
4213 of an expression may have reference type even when the standard
4214 says it does not. Therefore, we have to manually obtain the
4215 underlying type here. */
4216 scope = non_reference (scope);
4217 /* The type of the POSTFIX_EXPRESSION must be complete. */
4218 scope = complete_type_or_else (scope, NULL_TREE);
4219 /* Let the name lookup machinery know that we are processing a
4220 class member access expression. */
4221 parser->context->object_type = scope;
4222 /* If something went wrong, we want to be able to discern that case,
4223 as opposed to the case where there was no SCOPE due to the type
4224 of expression being dependent. */
4225 if (!scope)
4226 scope = error_mark_node;
4227 /* If the SCOPE was erroneous, make the various semantic analysis
4228 functions exit quickly -- and without issuing additional error
4229 messages. */
4230 if (scope == error_mark_node)
4231 postfix_expression = error_mark_node;
4232 }
4233
4234 /* Assume this expression is not a pseudo-destructor access. */
4235 pseudo_destructor_p = false;
4236
4237 /* If the SCOPE is a scalar type, then, if this is a valid program,
4238 we must be looking at a pseudo-destructor-name. */
4239 if (scope && SCALAR_TYPE_P (scope))
4240 {
4241 tree s;
4242 tree type;
4243
4244 cp_parser_parse_tentatively (parser);
4245 /* Parse the pseudo-destructor-name. */
4246 s = NULL_TREE;
4247 cp_parser_pseudo_destructor_name (parser, &s, &type);
4248 if (cp_parser_parse_definitely (parser))
4249 {
4250 pseudo_destructor_p = true;
4251 postfix_expression
4252 = finish_pseudo_destructor_expr (postfix_expression,
4253 s, TREE_TYPE (type));
4254 }
4255 }
4256
4257 if (!pseudo_destructor_p)
4258 {
4259 /* If the SCOPE is not a scalar type, we are looking at an
4260 ordinary class member access expression, rather than a
4261 pseudo-destructor-name. */
4262 template_p = cp_parser_optional_template_keyword (parser);
4263 /* Parse the id-expression. */
4264 name = cp_parser_id_expression (parser, template_p,
4265 /*check_dependency_p=*/true,
4266 /*template_p=*/NULL,
4267 /*declarator_p=*/false);
4268 /* In general, build a SCOPE_REF if the member name is qualified.
4269 However, if the name was not dependent and has already been
4270 resolved; there is no need to build the SCOPE_REF. For example;
4271
4272 struct X { void f(); };
4273 template <typename T> void f(T* t) { t->X::f(); }
4274
4275 Even though "t" is dependent, "X::f" is not and has been resolved
4276 to a BASELINK; there is no need to include scope information. */
4277
4278 /* But we do need to remember that there was an explicit scope for
4279 virtual function calls. */
4280 if (parser->scope)
4281 *idk = CP_ID_KIND_QUALIFIED;
4282
4283 /* If the name is a template-id that names a type, we will get a
4284 TYPE_DECL here. That is invalid code. */
4285 if (TREE_CODE (name) == TYPE_DECL)
4286 {
4287 error ("invalid use of %qD", name);
4288 postfix_expression = error_mark_node;
4289 }
4290 else
4291 {
4292 if (name != error_mark_node && !BASELINK_P (name) && parser->scope)
4293 {
4294 name = build_nt (SCOPE_REF, parser->scope, name);
4295 parser->scope = NULL_TREE;
4296 parser->qualifying_scope = NULL_TREE;
4297 parser->object_scope = NULL_TREE;
4298 }
4299 if (scope && name && BASELINK_P (name))
4300 adjust_result_of_qualified_name_lookup
4301 (name, BINFO_TYPE (BASELINK_BINFO (name)), scope);
4302 postfix_expression
4303 = finish_class_member_access_expr (postfix_expression, name);
4304 }
4305 }
4306
4307 /* We no longer need to look up names in the scope of the object on
4308 the left-hand side of the `.' or `->' operator. */
4309 parser->context->object_type = NULL_TREE;
4310
4311 /* Outside of offsetof, these operators may not appear in
4312 constant-expressions. */
4313 if (!for_offsetof
4314 && (cp_parser_non_integral_constant_expression
4315 (parser, token_type == CPP_DEREF ? "'->'" : "`.'")))
4316 postfix_expression = error_mark_node;
4317
4318 return postfix_expression;
4319 }
4320
4321 /* Parse a parenthesized expression-list.
4322
4323 expression-list:
4324 assignment-expression
4325 expression-list, assignment-expression
4326
4327 attribute-list:
4328 expression-list
4329 identifier
4330 identifier, expression-list
4331
4332 Returns a TREE_LIST. The TREE_VALUE of each node is a
4333 representation of an assignment-expression. Note that a TREE_LIST
4334 is returned even if there is only a single expression in the list.
4335 error_mark_node is returned if the ( and or ) are
4336 missing. NULL_TREE is returned on no expressions. The parentheses
4337 are eaten. IS_ATTRIBUTE_LIST is true if this is really an attribute
4338 list being parsed. If NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P
4339 indicates whether or not all of the expressions in the list were
4340 constant. */
4341
4342 static tree
4343 cp_parser_parenthesized_expression_list (cp_parser* parser,
4344 bool is_attribute_list,
4345 bool *non_constant_p)
4346 {
4347 tree expression_list = NULL_TREE;
4348 bool fold_expr_p = is_attribute_list;
4349 tree identifier = NULL_TREE;
4350
4351 /* Assume all the expressions will be constant. */
4352 if (non_constant_p)
4353 *non_constant_p = false;
4354
4355 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
4356 return error_mark_node;
4357
4358 /* Consume expressions until there are no more. */
4359 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
4360 while (true)
4361 {
4362 tree expr;
4363
4364 /* At the beginning of attribute lists, check to see if the
4365 next token is an identifier. */
4366 if (is_attribute_list
4367 && cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
4368 {
4369 cp_token *token;
4370
4371 /* Consume the identifier. */
4372 token = cp_lexer_consume_token (parser->lexer);
4373 /* Save the identifier. */
4374 identifier = token->value;
4375 }
4376 else
4377 {
4378 /* Parse the next assignment-expression. */
4379 if (non_constant_p)
4380 {
4381 bool expr_non_constant_p;
4382 expr = (cp_parser_constant_expression
4383 (parser, /*allow_non_constant_p=*/true,
4384 &expr_non_constant_p));
4385 if (expr_non_constant_p)
4386 *non_constant_p = true;
4387 }
4388 else
4389 expr = cp_parser_assignment_expression (parser);
4390
4391 if (fold_expr_p)
4392 expr = fold_non_dependent_expr (expr);
4393
4394 /* Add it to the list. We add error_mark_node
4395 expressions to the list, so that we can still tell if
4396 the correct form for a parenthesized expression-list
4397 is found. That gives better errors. */
4398 expression_list = tree_cons (NULL_TREE, expr, expression_list);
4399
4400 if (expr == error_mark_node)
4401 goto skip_comma;
4402 }
4403
4404 /* After the first item, attribute lists look the same as
4405 expression lists. */
4406 is_attribute_list = false;
4407
4408 get_comma:;
4409 /* If the next token isn't a `,', then we are done. */
4410 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
4411 break;
4412
4413 /* Otherwise, consume the `,' and keep going. */
4414 cp_lexer_consume_token (parser->lexer);
4415 }
4416
4417 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
4418 {
4419 int ending;
4420
4421 skip_comma:;
4422 /* We try and resync to an unnested comma, as that will give the
4423 user better diagnostics. */
4424 ending = cp_parser_skip_to_closing_parenthesis (parser,
4425 /*recovering=*/true,
4426 /*or_comma=*/true,
4427 /*consume_paren=*/true);
4428 if (ending < 0)
4429 goto get_comma;
4430 if (!ending)
4431 return error_mark_node;
4432 }
4433
4434 /* We built up the list in reverse order so we must reverse it now. */
4435 expression_list = nreverse (expression_list);
4436 if (identifier)
4437 expression_list = tree_cons (NULL_TREE, identifier, expression_list);
4438
4439 return expression_list;
4440 }
4441
4442 /* Parse a pseudo-destructor-name.
4443
4444 pseudo-destructor-name:
4445 :: [opt] nested-name-specifier [opt] type-name :: ~ type-name
4446 :: [opt] nested-name-specifier template template-id :: ~ type-name
4447 :: [opt] nested-name-specifier [opt] ~ type-name
4448
4449 If either of the first two productions is used, sets *SCOPE to the
4450 TYPE specified before the final `::'. Otherwise, *SCOPE is set to
4451 NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name,
4452 or ERROR_MARK_NODE if the parse fails. */
4453
4454 static void
4455 cp_parser_pseudo_destructor_name (cp_parser* parser,
4456 tree* scope,
4457 tree* type)
4458 {
4459 bool nested_name_specifier_p;
4460
4461 /* Assume that things will not work out. */
4462 *type = error_mark_node;
4463
4464 /* Look for the optional `::' operator. */
4465 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
4466 /* Look for the optional nested-name-specifier. */
4467 nested_name_specifier_p
4468 = (cp_parser_nested_name_specifier_opt (parser,
4469 /*typename_keyword_p=*/false,
4470 /*check_dependency_p=*/true,
4471 /*type_p=*/false,
4472 /*is_declaration=*/true)
4473 != NULL_TREE);
4474 /* Now, if we saw a nested-name-specifier, we might be doing the
4475 second production. */
4476 if (nested_name_specifier_p
4477 && cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
4478 {
4479 /* Consume the `template' keyword. */
4480 cp_lexer_consume_token (parser->lexer);
4481 /* Parse the template-id. */
4482 cp_parser_template_id (parser,
4483 /*template_keyword_p=*/true,
4484 /*check_dependency_p=*/false,
4485 /*is_declaration=*/true);
4486 /* Look for the `::' token. */
4487 cp_parser_require (parser, CPP_SCOPE, "`::'");
4488 }
4489 /* If the next token is not a `~', then there might be some
4490 additional qualification. */
4491 else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
4492 {
4493 /* Look for the type-name. */
4494 *scope = TREE_TYPE (cp_parser_type_name (parser));
4495
4496 if (*scope == error_mark_node)
4497 return;
4498
4499 /* If we don't have ::~, then something has gone wrong. Since
4500 the only caller of this function is looking for something
4501 after `.' or `->' after a scalar type, most likely the
4502 program is trying to get a member of a non-aggregate
4503 type. */
4504 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE)
4505 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_COMPL)
4506 {
4507 cp_parser_error (parser, "request for member of non-aggregate type");
4508 return;
4509 }
4510
4511 /* Look for the `::' token. */
4512 cp_parser_require (parser, CPP_SCOPE, "`::'");
4513 }
4514 else
4515 *scope = NULL_TREE;
4516
4517 /* Look for the `~'. */
4518 cp_parser_require (parser, CPP_COMPL, "`~'");
4519 /* Look for the type-name again. We are not responsible for
4520 checking that it matches the first type-name. */
4521 *type = cp_parser_type_name (parser);
4522 }
4523
4524 /* Parse a unary-expression.
4525
4526 unary-expression:
4527 postfix-expression
4528 ++ cast-expression
4529 -- cast-expression
4530 unary-operator cast-expression
4531 sizeof unary-expression
4532 sizeof ( type-id )
4533 new-expression
4534 delete-expression
4535
4536 GNU Extensions:
4537
4538 unary-expression:
4539 __extension__ cast-expression
4540 __alignof__ unary-expression
4541 __alignof__ ( type-id )
4542 __real__ cast-expression
4543 __imag__ cast-expression
4544 && identifier
4545
4546 ADDRESS_P is true iff the unary-expression is appearing as the
4547 operand of the `&' operator.
4548
4549 Returns a representation of the expression. */
4550
4551 static tree
4552 cp_parser_unary_expression (cp_parser *parser, bool address_p)
4553 {
4554 cp_token *token;
4555 enum tree_code unary_operator;
4556
4557 /* Peek at the next token. */
4558 token = cp_lexer_peek_token (parser->lexer);
4559 /* Some keywords give away the kind of expression. */
4560 if (token->type == CPP_KEYWORD)
4561 {
4562 enum rid keyword = token->keyword;
4563
4564 switch (keyword)
4565 {
4566 case RID_ALIGNOF:
4567 case RID_SIZEOF:
4568 {
4569 tree operand;
4570 enum tree_code op;
4571
4572 op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
4573 /* Consume the token. */
4574 cp_lexer_consume_token (parser->lexer);
4575 /* Parse the operand. */
4576 operand = cp_parser_sizeof_operand (parser, keyword);
4577
4578 if (TYPE_P (operand))
4579 return cxx_sizeof_or_alignof_type (operand, op, true);
4580 else
4581 return cxx_sizeof_or_alignof_expr (operand, op);
4582 }
4583
4584 case RID_NEW:
4585 return cp_parser_new_expression (parser);
4586
4587 case RID_DELETE:
4588 return cp_parser_delete_expression (parser);
4589
4590 case RID_EXTENSION:
4591 {
4592 /* The saved value of the PEDANTIC flag. */
4593 int saved_pedantic;
4594 tree expr;
4595
4596 /* Save away the PEDANTIC flag. */
4597 cp_parser_extension_opt (parser, &saved_pedantic);
4598 /* Parse the cast-expression. */
4599 expr = cp_parser_simple_cast_expression (parser);
4600 /* Restore the PEDANTIC flag. */
4601 pedantic = saved_pedantic;
4602
4603 return expr;
4604 }
4605
4606 case RID_REALPART:
4607 case RID_IMAGPART:
4608 {
4609 tree expression;
4610
4611 /* Consume the `__real__' or `__imag__' token. */
4612 cp_lexer_consume_token (parser->lexer);
4613 /* Parse the cast-expression. */
4614 expression = cp_parser_simple_cast_expression (parser);
4615 /* Create the complete representation. */
4616 return build_x_unary_op ((keyword == RID_REALPART
4617 ? REALPART_EXPR : IMAGPART_EXPR),
4618 expression);
4619 }
4620 break;
4621
4622 default:
4623 break;
4624 }
4625 }
4626
4627 /* Look for the `:: new' and `:: delete', which also signal the
4628 beginning of a new-expression, or delete-expression,
4629 respectively. If the next token is `::', then it might be one of
4630 these. */
4631 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
4632 {
4633 enum rid keyword;
4634
4635 /* See if the token after the `::' is one of the keywords in
4636 which we're interested. */
4637 keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
4638 /* If it's `new', we have a new-expression. */
4639 if (keyword == RID_NEW)
4640 return cp_parser_new_expression (parser);
4641 /* Similarly, for `delete'. */
4642 else if (keyword == RID_DELETE)
4643 return cp_parser_delete_expression (parser);
4644 }
4645
4646 /* Look for a unary operator. */
4647 unary_operator = cp_parser_unary_operator (token);
4648 /* The `++' and `--' operators can be handled similarly, even though
4649 they are not technically unary-operators in the grammar. */
4650 if (unary_operator == ERROR_MARK)
4651 {
4652 if (token->type == CPP_PLUS_PLUS)
4653 unary_operator = PREINCREMENT_EXPR;
4654 else if (token->type == CPP_MINUS_MINUS)
4655 unary_operator = PREDECREMENT_EXPR;
4656 /* Handle the GNU address-of-label extension. */
4657 else if (cp_parser_allow_gnu_extensions_p (parser)
4658 && token->type == CPP_AND_AND)
4659 {
4660 tree identifier;
4661
4662 /* Consume the '&&' token. */
4663 cp_lexer_consume_token (parser->lexer);
4664 /* Look for the identifier. */
4665 identifier = cp_parser_identifier (parser);
4666 /* Create an expression representing the address. */
4667 return finish_label_address_expr (identifier);
4668 }
4669 }
4670 if (unary_operator != ERROR_MARK)
4671 {
4672 tree cast_expression;
4673 tree expression = error_mark_node;
4674 const char *non_constant_p = NULL;
4675
4676 /* Consume the operator token. */
4677 token = cp_lexer_consume_token (parser->lexer);
4678 /* Parse the cast-expression. */
4679 cast_expression
4680 = cp_parser_cast_expression (parser, unary_operator == ADDR_EXPR);
4681 /* Now, build an appropriate representation. */
4682 switch (unary_operator)
4683 {
4684 case INDIRECT_REF:
4685 non_constant_p = "`*'";
4686 expression = build_x_indirect_ref (cast_expression, "unary *");
4687 break;
4688
4689 case ADDR_EXPR:
4690 non_constant_p = "`&'";
4691 /* Fall through. */
4692 case BIT_NOT_EXPR:
4693 expression = build_x_unary_op (unary_operator, cast_expression);
4694 break;
4695
4696 case PREINCREMENT_EXPR:
4697 case PREDECREMENT_EXPR:
4698 non_constant_p = (unary_operator == PREINCREMENT_EXPR
4699 ? "`++'" : "`--'");
4700 /* Fall through. */
4701 case CONVERT_EXPR:
4702 case NEGATE_EXPR:
4703 case TRUTH_NOT_EXPR:
4704 expression = finish_unary_op_expr (unary_operator, cast_expression);
4705 break;
4706
4707 default:
4708 gcc_unreachable ();
4709 }
4710
4711 if (non_constant_p
4712 && cp_parser_non_integral_constant_expression (parser,
4713 non_constant_p))
4714 expression = error_mark_node;
4715
4716 return expression;
4717 }
4718
4719 return cp_parser_postfix_expression (parser, address_p);
4720 }
4721
4722 /* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a
4723 unary-operator, the corresponding tree code is returned. */
4724
4725 static enum tree_code
4726 cp_parser_unary_operator (cp_token* token)
4727 {
4728 switch (token->type)
4729 {
4730 case CPP_MULT:
4731 return INDIRECT_REF;
4732
4733 case CPP_AND:
4734 return ADDR_EXPR;
4735
4736 case CPP_PLUS:
4737 return CONVERT_EXPR;
4738
4739 case CPP_MINUS:
4740 return NEGATE_EXPR;
4741
4742 case CPP_NOT:
4743 return TRUTH_NOT_EXPR;
4744
4745 case CPP_COMPL:
4746 return BIT_NOT_EXPR;
4747
4748 default:
4749 return ERROR_MARK;
4750 }
4751 }
4752
4753 /* Parse a new-expression.
4754
4755 new-expression:
4756 :: [opt] new new-placement [opt] new-type-id new-initializer [opt]
4757 :: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
4758
4759 Returns a representation of the expression. */
4760
4761 static tree
4762 cp_parser_new_expression (cp_parser* parser)
4763 {
4764 bool global_scope_p;
4765 tree placement;
4766 tree type;
4767 tree initializer;
4768 tree nelts;
4769
4770 /* Look for the optional `::' operator. */
4771 global_scope_p
4772 = (cp_parser_global_scope_opt (parser,
4773 /*current_scope_valid_p=*/false)
4774 != NULL_TREE);
4775 /* Look for the `new' operator. */
4776 cp_parser_require_keyword (parser, RID_NEW, "`new'");
4777 /* There's no easy way to tell a new-placement from the
4778 `( type-id )' construct. */
4779 cp_parser_parse_tentatively (parser);
4780 /* Look for a new-placement. */
4781 placement = cp_parser_new_placement (parser);
4782 /* If that didn't work out, there's no new-placement. */
4783 if (!cp_parser_parse_definitely (parser))
4784 placement = NULL_TREE;
4785
4786 /* If the next token is a `(', then we have a parenthesized
4787 type-id. */
4788 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4789 {
4790 /* Consume the `('. */
4791 cp_lexer_consume_token (parser->lexer);
4792 /* Parse the type-id. */
4793 type = cp_parser_type_id (parser);
4794 /* Look for the closing `)'. */
4795 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4796 /* There should not be a direct-new-declarator in this production,
4797 but GCC used to allowed this, so we check and emit a sensible error
4798 message for this case. */
4799 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4800 {
4801 error ("array bound forbidden after parenthesized type-id");
4802 inform ("try removing the parentheses around the type-id");
4803 cp_parser_direct_new_declarator (parser);
4804 }
4805 nelts = NULL_TREE;
4806 }
4807 /* Otherwise, there must be a new-type-id. */
4808 else
4809 type = cp_parser_new_type_id (parser, &nelts);
4810
4811 /* If the next token is a `(', then we have a new-initializer. */
4812 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4813 initializer = cp_parser_new_initializer (parser);
4814 else
4815 initializer = NULL_TREE;
4816
4817 /* A new-expression may not appear in an integral constant
4818 expression. */
4819 if (cp_parser_non_integral_constant_expression (parser, "`new'"))
4820 return error_mark_node;
4821
4822 /* Create a representation of the new-expression. */
4823 return build_new (placement, type, nelts, initializer, global_scope_p);
4824 }
4825
4826 /* Parse a new-placement.
4827
4828 new-placement:
4829 ( expression-list )
4830
4831 Returns the same representation as for an expression-list. */
4832
4833 static tree
4834 cp_parser_new_placement (cp_parser* parser)
4835 {
4836 tree expression_list;
4837
4838 /* Parse the expression-list. */
4839 expression_list = (cp_parser_parenthesized_expression_list
4840 (parser, false, /*non_constant_p=*/NULL));
4841
4842 return expression_list;
4843 }
4844
4845 /* Parse a new-type-id.
4846
4847 new-type-id:
4848 type-specifier-seq new-declarator [opt]
4849
4850 Returns the TYPE allocated. If the new-type-id indicates an array
4851 type, *NELTS is set to the number of elements in the last array
4852 bound; the TYPE will not include the last array bound. */
4853
4854 static tree
4855 cp_parser_new_type_id (cp_parser* parser, tree *nelts)
4856 {
4857 cp_decl_specifier_seq type_specifier_seq;
4858 cp_declarator *new_declarator;
4859 cp_declarator *declarator;
4860 cp_declarator *outer_declarator;
4861 const char *saved_message;
4862 tree type;
4863
4864 /* The type-specifier sequence must not contain type definitions.
4865 (It cannot contain declarations of new types either, but if they
4866 are not definitions we will catch that because they are not
4867 complete.) */
4868 saved_message = parser->type_definition_forbidden_message;
4869 parser->type_definition_forbidden_message
4870 = "types may not be defined in a new-type-id";
4871 /* Parse the type-specifier-seq. */
4872 cp_parser_type_specifier_seq (parser, &type_specifier_seq);
4873 /* Restore the old message. */
4874 parser->type_definition_forbidden_message = saved_message;
4875 /* Parse the new-declarator. */
4876 new_declarator = cp_parser_new_declarator_opt (parser);
4877
4878 /* Determine the number of elements in the last array dimension, if
4879 any. */
4880 *nelts = NULL_TREE;
4881 /* Skip down to the last array dimension. */
4882 declarator = new_declarator;
4883 outer_declarator = NULL;
4884 while (declarator && (declarator->kind == cdk_pointer
4885 || declarator->kind == cdk_ptrmem))
4886 {
4887 outer_declarator = declarator;
4888 declarator = declarator->declarator;
4889 }
4890 while (declarator
4891 && declarator->kind == cdk_array
4892 && declarator->declarator
4893 && declarator->declarator->kind == cdk_array)
4894 {
4895 outer_declarator = declarator;
4896 declarator = declarator->declarator;
4897 }
4898
4899 if (declarator && declarator->kind == cdk_array)
4900 {
4901 *nelts = declarator->u.array.bounds;
4902 if (*nelts == error_mark_node)
4903 *nelts = integer_one_node;
4904
4905 if (outer_declarator)
4906 outer_declarator->declarator = declarator->declarator;
4907 else
4908 new_declarator = NULL;
4909 }
4910
4911 type = groktypename (&type_specifier_seq, new_declarator);
4912 if (TREE_CODE (type) == ARRAY_TYPE && *nelts == NULL_TREE)
4913 {
4914 *nelts = array_type_nelts_top (type);
4915 type = TREE_TYPE (type);
4916 }
4917 return type;
4918 }
4919
4920 /* Parse an (optional) new-declarator.
4921
4922 new-declarator:
4923 ptr-operator new-declarator [opt]
4924 direct-new-declarator
4925
4926 Returns the declarator. */
4927
4928 static cp_declarator *
4929 cp_parser_new_declarator_opt (cp_parser* parser)
4930 {
4931 enum tree_code code;
4932 tree type;
4933 cp_cv_quals cv_quals;
4934
4935 /* We don't know if there's a ptr-operator next, or not. */
4936 cp_parser_parse_tentatively (parser);
4937 /* Look for a ptr-operator. */
4938 code = cp_parser_ptr_operator (parser, &type, &cv_quals);
4939 /* If that worked, look for more new-declarators. */
4940 if (cp_parser_parse_definitely (parser))
4941 {
4942 cp_declarator *declarator;
4943
4944 /* Parse another optional declarator. */
4945 declarator = cp_parser_new_declarator_opt (parser);
4946
4947 /* Create the representation of the declarator. */
4948 if (type)
4949 declarator = make_ptrmem_declarator (cv_quals, type, declarator);
4950 else if (code == INDIRECT_REF)
4951 declarator = make_pointer_declarator (cv_quals, declarator);
4952 else
4953 declarator = make_reference_declarator (cv_quals, declarator);
4954
4955 return declarator;
4956 }
4957
4958 /* If the next token is a `[', there is a direct-new-declarator. */
4959 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4960 return cp_parser_direct_new_declarator (parser);
4961
4962 return NULL;
4963 }
4964
4965 /* Parse a direct-new-declarator.
4966
4967 direct-new-declarator:
4968 [ expression ]
4969 direct-new-declarator [constant-expression]
4970
4971 */
4972
4973 static cp_declarator *
4974 cp_parser_direct_new_declarator (cp_parser* parser)
4975 {
4976 cp_declarator *declarator = NULL;
4977
4978 while (true)
4979 {
4980 tree expression;
4981
4982 /* Look for the opening `['. */
4983 cp_parser_require (parser, CPP_OPEN_SQUARE, "`['");
4984 /* The first expression is not required to be constant. */
4985 if (!declarator)
4986 {
4987 expression = cp_parser_expression (parser);
4988 /* The standard requires that the expression have integral
4989 type. DR 74 adds enumeration types. We believe that the
4990 real intent is that these expressions be handled like the
4991 expression in a `switch' condition, which also allows
4992 classes with a single conversion to integral or
4993 enumeration type. */
4994 if (!processing_template_decl)
4995 {
4996 expression
4997 = build_expr_type_conversion (WANT_INT | WANT_ENUM,
4998 expression,
4999 /*complain=*/true);
5000 if (!expression)
5001 {
5002 error ("expression in new-declarator must have integral "
5003 "or enumeration type");
5004 expression = error_mark_node;
5005 }
5006 }
5007 }
5008 /* But all the other expressions must be. */
5009 else
5010 expression
5011 = cp_parser_constant_expression (parser,
5012 /*allow_non_constant=*/false,
5013 NULL);
5014 /* Look for the closing `]'. */
5015 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5016
5017 /* Add this bound to the declarator. */
5018 declarator = make_array_declarator (declarator, expression);
5019
5020 /* If the next token is not a `[', then there are no more
5021 bounds. */
5022 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
5023 break;
5024 }
5025
5026 return declarator;
5027 }
5028
5029 /* Parse a new-initializer.
5030
5031 new-initializer:
5032 ( expression-list [opt] )
5033
5034 Returns a representation of the expression-list. If there is no
5035 expression-list, VOID_ZERO_NODE is returned. */
5036
5037 static tree
5038 cp_parser_new_initializer (cp_parser* parser)
5039 {
5040 tree expression_list;
5041
5042 expression_list = (cp_parser_parenthesized_expression_list
5043 (parser, false, /*non_constant_p=*/NULL));
5044 if (!expression_list)
5045 expression_list = void_zero_node;
5046
5047 return expression_list;
5048 }
5049
5050 /* Parse a delete-expression.
5051
5052 delete-expression:
5053 :: [opt] delete cast-expression
5054 :: [opt] delete [ ] cast-expression
5055
5056 Returns a representation of the expression. */
5057
5058 static tree
5059 cp_parser_delete_expression (cp_parser* parser)
5060 {
5061 bool global_scope_p;
5062 bool array_p;
5063 tree expression;
5064
5065 /* Look for the optional `::' operator. */
5066 global_scope_p
5067 = (cp_parser_global_scope_opt (parser,
5068 /*current_scope_valid_p=*/false)
5069 != NULL_TREE);
5070 /* Look for the `delete' keyword. */
5071 cp_parser_require_keyword (parser, RID_DELETE, "`delete'");
5072 /* See if the array syntax is in use. */
5073 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
5074 {
5075 /* Consume the `[' token. */
5076 cp_lexer_consume_token (parser->lexer);
5077 /* Look for the `]' token. */
5078 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5079 /* Remember that this is the `[]' construct. */
5080 array_p = true;
5081 }
5082 else
5083 array_p = false;
5084
5085 /* Parse the cast-expression. */
5086 expression = cp_parser_simple_cast_expression (parser);
5087
5088 /* A delete-expression may not appear in an integral constant
5089 expression. */
5090 if (cp_parser_non_integral_constant_expression (parser, "`delete'"))
5091 return error_mark_node;
5092
5093 return delete_sanity (expression, NULL_TREE, array_p, global_scope_p);
5094 }
5095
5096 /* Parse a cast-expression.
5097
5098 cast-expression:
5099 unary-expression
5100 ( type-id ) cast-expression
5101
5102 Returns a representation of the expression. */
5103
5104 static tree
5105 cp_parser_cast_expression (cp_parser *parser, bool address_p)
5106 {
5107 /* If it's a `(', then we might be looking at a cast. */
5108 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
5109 {
5110 tree type = NULL_TREE;
5111 tree expr = NULL_TREE;
5112 bool compound_literal_p;
5113 const char *saved_message;
5114
5115 /* There's no way to know yet whether or not this is a cast.
5116 For example, `(int (3))' is a unary-expression, while `(int)
5117 3' is a cast. So, we resort to parsing tentatively. */
5118 cp_parser_parse_tentatively (parser);
5119 /* Types may not be defined in a cast. */
5120 saved_message = parser->type_definition_forbidden_message;
5121 parser->type_definition_forbidden_message
5122 = "types may not be defined in casts";
5123 /* Consume the `('. */
5124 cp_lexer_consume_token (parser->lexer);
5125 /* A very tricky bit is that `(struct S) { 3 }' is a
5126 compound-literal (which we permit in C++ as an extension).
5127 But, that construct is not a cast-expression -- it is a
5128 postfix-expression. (The reason is that `(struct S) { 3 }.i'
5129 is legal; if the compound-literal were a cast-expression,
5130 you'd need an extra set of parentheses.) But, if we parse
5131 the type-id, and it happens to be a class-specifier, then we
5132 will commit to the parse at that point, because we cannot
5133 undo the action that is done when creating a new class. So,
5134 then we cannot back up and do a postfix-expression.
5135
5136 Therefore, we scan ahead to the closing `)', and check to see
5137 if the token after the `)' is a `{'. If so, we are not
5138 looking at a cast-expression.
5139
5140 Save tokens so that we can put them back. */
5141 cp_lexer_save_tokens (parser->lexer);
5142 /* Skip tokens until the next token is a closing parenthesis.
5143 If we find the closing `)', and the next token is a `{', then
5144 we are looking at a compound-literal. */
5145 compound_literal_p
5146 = (cp_parser_skip_to_closing_parenthesis (parser, false, false,
5147 /*consume_paren=*/true)
5148 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
5149 /* Roll back the tokens we skipped. */
5150 cp_lexer_rollback_tokens (parser->lexer);
5151 /* If we were looking at a compound-literal, simulate an error
5152 so that the call to cp_parser_parse_definitely below will
5153 fail. */
5154 if (compound_literal_p)
5155 cp_parser_simulate_error (parser);
5156 else
5157 {
5158 bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
5159 parser->in_type_id_in_expr_p = true;
5160 /* Look for the type-id. */
5161 type = cp_parser_type_id (parser);
5162 /* Look for the closing `)'. */
5163 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5164 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
5165 }
5166
5167 /* Restore the saved message. */
5168 parser->type_definition_forbidden_message = saved_message;
5169
5170 /* If ok so far, parse the dependent expression. We cannot be
5171 sure it is a cast. Consider `(T ())'. It is a parenthesized
5172 ctor of T, but looks like a cast to function returning T
5173 without a dependent expression. */
5174 if (!cp_parser_error_occurred (parser))
5175 expr = cp_parser_simple_cast_expression (parser);
5176
5177 if (cp_parser_parse_definitely (parser))
5178 {
5179 /* Warn about old-style casts, if so requested. */
5180 if (warn_old_style_cast
5181 && !in_system_header
5182 && !VOID_TYPE_P (type)
5183 && current_lang_name != lang_name_c)
5184 warning ("use of old-style cast");
5185
5186 /* Only type conversions to integral or enumeration types
5187 can be used in constant-expressions. */
5188 if (parser->integral_constant_expression_p
5189 && !dependent_type_p (type)
5190 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
5191 && (cp_parser_non_integral_constant_expression
5192 (parser,
5193 "a cast to a type other than an integral or "
5194 "enumeration type")))
5195 return error_mark_node;
5196
5197 /* Perform the cast. */
5198 expr = build_c_cast (type, expr);
5199 return expr;
5200 }
5201 }
5202
5203 /* If we get here, then it's not a cast, so it must be a
5204 unary-expression. */
5205 return cp_parser_unary_expression (parser, address_p);
5206 }
5207
5208 /* Parse a binary expression of the general form:
5209
5210 pm-expression:
5211 cast-expression
5212 pm-expression .* cast-expression
5213 pm-expression ->* cast-expression
5214
5215 multiplicative-expression:
5216 pm-expression
5217 multiplicative-expression * pm-expression
5218 multiplicative-expression / pm-expression
5219 multiplicative-expression % pm-expression
5220
5221 additive-expression:
5222 multiplicative-expression
5223 additive-expression + multiplicative-expression
5224 additive-expression - multiplicative-expression
5225
5226 shift-expression:
5227 additive-expression
5228 shift-expression << additive-expression
5229 shift-expression >> additive-expression
5230
5231 relational-expression:
5232 shift-expression
5233 relational-expression < shift-expression
5234 relational-expression > shift-expression
5235 relational-expression <= shift-expression
5236 relational-expression >= shift-expression
5237
5238 GNU Extension:
5239
5240 relational-expression:
5241 relational-expression <? shift-expression
5242 relational-expression >? shift-expression
5243
5244 equality-expression:
5245 relational-expression
5246 equality-expression == relational-expression
5247 equality-expression != relational-expression
5248
5249 and-expression:
5250 equality-expression
5251 and-expression & equality-expression
5252
5253 exclusive-or-expression:
5254 and-expression
5255 exclusive-or-expression ^ and-expression
5256
5257 inclusive-or-expression:
5258 exclusive-or-expression
5259 inclusive-or-expression | exclusive-or-expression
5260
5261 logical-and-expression:
5262 inclusive-or-expression
5263 logical-and-expression && inclusive-or-expression
5264
5265 logical-or-expression:
5266 logical-and-expression
5267 logical-or-expression || logical-and-expression
5268
5269 All these are implemented with a single function like:
5270
5271 binary-expression:
5272 simple-cast-expression
5273 binary-expression <token> binary-expression
5274
5275 The binops_by_token map is used to get the tree codes for each <token> type.
5276 binary-expressions are associated according to a precedence table. */
5277
5278 #define TOKEN_PRECEDENCE(token) \
5279 ((token->type == CPP_GREATER && !parser->greater_than_is_operator_p) \
5280 ? PREC_NOT_OPERATOR \
5281 : binops_by_token[token->type].prec)
5282
5283 static tree
5284 cp_parser_binary_expression (cp_parser* parser)
5285 {
5286 cp_parser_expression_stack stack;
5287 cp_parser_expression_stack_entry *sp = &stack[0];
5288 tree lhs, rhs;
5289 cp_token *token;
5290 enum tree_code tree_type;
5291 enum cp_parser_prec prec = PREC_NOT_OPERATOR, new_prec, lookahead_prec;
5292 bool overloaded_p;
5293
5294 /* Parse the first expression. */
5295 lhs = cp_parser_simple_cast_expression (parser);
5296
5297 for (;;)
5298 {
5299 /* Get an operator token. */
5300 token = cp_lexer_peek_token (parser->lexer);
5301 new_prec = TOKEN_PRECEDENCE (token);
5302
5303 /* Popping an entry off the stack means we completed a subexpression:
5304 - either we found a token which is not an operator (`>' where it is not
5305 an operator, or prec == PREC_NOT_OPERATOR), in which case popping
5306 will happen repeatedly;
5307 - or, we found an operator which has lower priority. This is the case
5308 where the recursive descent *ascends*, as in `3 * 4 + 5' after
5309 parsing `3 * 4'. */
5310 if (new_prec <= prec)
5311 {
5312 if (sp == stack)
5313 break;
5314 else
5315 goto pop;
5316 }
5317
5318 get_rhs:
5319 tree_type = binops_by_token[token->type].tree_type;
5320
5321 /* We used the operator token. */
5322 cp_lexer_consume_token (parser->lexer);
5323
5324 /* Extract another operand. It may be the RHS of this expression
5325 or the LHS of a new, higher priority expression. */
5326 rhs = cp_parser_simple_cast_expression (parser);
5327
5328 /* Get another operator token. Look up its precedence to avoid
5329 building a useless (immediately popped) stack entry for common
5330 cases such as 3 + 4 + 5 or 3 * 4 + 5. */
5331 token = cp_lexer_peek_token (parser->lexer);
5332 lookahead_prec = TOKEN_PRECEDENCE (token);
5333 if (lookahead_prec > new_prec)
5334 {
5335 /* ... and prepare to parse the RHS of the new, higher priority
5336 expression. Since precedence levels on the stack are
5337 monotonically increasing, we do not have to care about
5338 stack overflows. */
5339 sp->prec = prec;
5340 sp->tree_type = tree_type;
5341 sp->lhs = lhs;
5342 sp++;
5343 lhs = rhs;
5344 prec = new_prec;
5345 new_prec = lookahead_prec;
5346 goto get_rhs;
5347
5348 pop:
5349 /* If the stack is not empty, we have parsed into LHS the right side
5350 (`4' in the example above) of an expression we had suspended.
5351 We can use the information on the stack to recover the LHS (`3')
5352 from the stack together with the tree code (`MULT_EXPR'), and
5353 the precedence of the higher level subexpression
5354 (`PREC_ADDITIVE_EXPRESSION'). TOKEN is the CPP_PLUS token,
5355 which will be used to actually build the additive expression. */
5356 --sp;
5357 prec = sp->prec;
5358 tree_type = sp->tree_type;
5359 rhs = lhs;
5360 lhs = sp->lhs;
5361 }
5362
5363 overloaded_p = false;
5364 lhs = build_x_binary_op (tree_type, lhs, rhs, &overloaded_p);
5365
5366 /* If the binary operator required the use of an overloaded operator,
5367 then this expression cannot be an integral constant-expression.
5368 An overloaded operator can be used even if both operands are
5369 otherwise permissible in an integral constant-expression if at
5370 least one of the operands is of enumeration type. */
5371
5372 if (overloaded_p
5373 && (cp_parser_non_integral_constant_expression
5374 (parser, "calls to overloaded operators")))
5375 return error_mark_node;
5376 }
5377
5378 return lhs;
5379 }
5380
5381
5382 /* Parse the `? expression : assignment-expression' part of a
5383 conditional-expression. The LOGICAL_OR_EXPR is the
5384 logical-or-expression that started the conditional-expression.
5385 Returns a representation of the entire conditional-expression.
5386
5387 This routine is used by cp_parser_assignment_expression.
5388
5389 ? expression : assignment-expression
5390
5391 GNU Extensions:
5392
5393 ? : assignment-expression */
5394
5395 static tree
5396 cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
5397 {
5398 tree expr;
5399 tree assignment_expr;
5400
5401 /* Consume the `?' token. */
5402 cp_lexer_consume_token (parser->lexer);
5403 if (cp_parser_allow_gnu_extensions_p (parser)
5404 && cp_lexer_next_token_is (parser->lexer, CPP_COLON))
5405 /* Implicit true clause. */
5406 expr = NULL_TREE;
5407 else
5408 /* Parse the expression. */
5409 expr = cp_parser_expression (parser);
5410
5411 /* The next token should be a `:'. */
5412 cp_parser_require (parser, CPP_COLON, "`:'");
5413 /* Parse the assignment-expression. */
5414 assignment_expr = cp_parser_assignment_expression (parser);
5415
5416 /* Build the conditional-expression. */
5417 return build_x_conditional_expr (logical_or_expr,
5418 expr,
5419 assignment_expr);
5420 }
5421
5422 /* Parse an assignment-expression.
5423
5424 assignment-expression:
5425 conditional-expression
5426 logical-or-expression assignment-operator assignment_expression
5427 throw-expression
5428
5429 Returns a representation for the expression. */
5430
5431 static tree
5432 cp_parser_assignment_expression (cp_parser* parser)
5433 {
5434 tree expr;
5435
5436 /* If the next token is the `throw' keyword, then we're looking at
5437 a throw-expression. */
5438 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
5439 expr = cp_parser_throw_expression (parser);
5440 /* Otherwise, it must be that we are looking at a
5441 logical-or-expression. */
5442 else
5443 {
5444 /* Parse the binary expressions (logical-or-expression). */
5445 expr = cp_parser_binary_expression (parser);
5446 /* If the next token is a `?' then we're actually looking at a
5447 conditional-expression. */
5448 if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
5449 return cp_parser_question_colon_clause (parser, expr);
5450 else
5451 {
5452 enum tree_code assignment_operator;
5453
5454 /* If it's an assignment-operator, we're using the second
5455 production. */
5456 assignment_operator
5457 = cp_parser_assignment_operator_opt (parser);
5458 if (assignment_operator != ERROR_MARK)
5459 {
5460 tree rhs;
5461
5462 /* Parse the right-hand side of the assignment. */
5463 rhs = cp_parser_assignment_expression (parser);
5464 /* An assignment may not appear in a
5465 constant-expression. */
5466 if (cp_parser_non_integral_constant_expression (parser,
5467 "an assignment"))
5468 return error_mark_node;
5469 /* Build the assignment expression. */
5470 expr = build_x_modify_expr (expr,
5471 assignment_operator,
5472 rhs);
5473 }
5474 }
5475 }
5476
5477 return expr;
5478 }
5479
5480 /* Parse an (optional) assignment-operator.
5481
5482 assignment-operator: one of
5483 = *= /= %= += -= >>= <<= &= ^= |=
5484
5485 GNU Extension:
5486
5487 assignment-operator: one of
5488 <?= >?=
5489
5490 If the next token is an assignment operator, the corresponding tree
5491 code is returned, and the token is consumed. For example, for
5492 `+=', PLUS_EXPR is returned. For `=' itself, the code returned is
5493 NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%',
5494 TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment
5495 operator, ERROR_MARK is returned. */
5496
5497 static enum tree_code
5498 cp_parser_assignment_operator_opt (cp_parser* parser)
5499 {
5500 enum tree_code op;
5501 cp_token *token;
5502
5503 /* Peek at the next toen. */
5504 token = cp_lexer_peek_token (parser->lexer);
5505
5506 switch (token->type)
5507 {
5508 case CPP_EQ:
5509 op = NOP_EXPR;
5510 break;
5511
5512 case CPP_MULT_EQ:
5513 op = MULT_EXPR;
5514 break;
5515
5516 case CPP_DIV_EQ:
5517 op = TRUNC_DIV_EXPR;
5518 break;
5519
5520 case CPP_MOD_EQ:
5521 op = TRUNC_MOD_EXPR;
5522 break;
5523
5524 case CPP_PLUS_EQ:
5525 op = PLUS_EXPR;
5526 break;
5527
5528 case CPP_MINUS_EQ:
5529 op = MINUS_EXPR;
5530 break;
5531
5532 case CPP_RSHIFT_EQ:
5533 op = RSHIFT_EXPR;
5534 break;
5535
5536 case CPP_LSHIFT_EQ:
5537 op = LSHIFT_EXPR;
5538 break;
5539
5540 case CPP_AND_EQ:
5541 op = BIT_AND_EXPR;
5542 break;
5543
5544 case CPP_XOR_EQ:
5545 op = BIT_XOR_EXPR;
5546 break;
5547
5548 case CPP_OR_EQ:
5549 op = BIT_IOR_EXPR;
5550 break;
5551
5552 case CPP_MIN_EQ:
5553 op = MIN_EXPR;
5554 break;
5555
5556 case CPP_MAX_EQ:
5557 op = MAX_EXPR;
5558 break;
5559
5560 default:
5561 /* Nothing else is an assignment operator. */
5562 op = ERROR_MARK;
5563 }
5564
5565 /* If it was an assignment operator, consume it. */
5566 if (op != ERROR_MARK)
5567 cp_lexer_consume_token (parser->lexer);
5568
5569 return op;
5570 }
5571
5572 /* Parse an expression.
5573
5574 expression:
5575 assignment-expression
5576 expression , assignment-expression
5577
5578 Returns a representation of the expression. */
5579
5580 static tree
5581 cp_parser_expression (cp_parser* parser)
5582 {
5583 tree expression = NULL_TREE;
5584
5585 while (true)
5586 {
5587 tree assignment_expression;
5588
5589 /* Parse the next assignment-expression. */
5590 assignment_expression
5591 = cp_parser_assignment_expression (parser);
5592 /* If this is the first assignment-expression, we can just
5593 save it away. */
5594 if (!expression)
5595 expression = assignment_expression;
5596 else
5597 expression = build_x_compound_expr (expression,
5598 assignment_expression);
5599 /* If the next token is not a comma, then we are done with the
5600 expression. */
5601 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
5602 break;
5603 /* Consume the `,'. */
5604 cp_lexer_consume_token (parser->lexer);
5605 /* A comma operator cannot appear in a constant-expression. */
5606 if (cp_parser_non_integral_constant_expression (parser,
5607 "a comma operator"))
5608 expression = error_mark_node;
5609 }
5610
5611 return expression;
5612 }
5613
5614 /* Parse a constant-expression.
5615
5616 constant-expression:
5617 conditional-expression
5618
5619 If ALLOW_NON_CONSTANT_P a non-constant expression is silently
5620 accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not
5621 constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P
5622 is false, NON_CONSTANT_P should be NULL. */
5623
5624 static tree
5625 cp_parser_constant_expression (cp_parser* parser,
5626 bool allow_non_constant_p,
5627 bool *non_constant_p)
5628 {
5629 bool saved_integral_constant_expression_p;
5630 bool saved_allow_non_integral_constant_expression_p;
5631 bool saved_non_integral_constant_expression_p;
5632 tree expression;
5633
5634 /* It might seem that we could simply parse the
5635 conditional-expression, and then check to see if it were
5636 TREE_CONSTANT. However, an expression that is TREE_CONSTANT is
5637 one that the compiler can figure out is constant, possibly after
5638 doing some simplifications or optimizations. The standard has a
5639 precise definition of constant-expression, and we must honor
5640 that, even though it is somewhat more restrictive.
5641
5642 For example:
5643
5644 int i[(2, 3)];
5645
5646 is not a legal declaration, because `(2, 3)' is not a
5647 constant-expression. The `,' operator is forbidden in a
5648 constant-expression. However, GCC's constant-folding machinery
5649 will fold this operation to an INTEGER_CST for `3'. */
5650
5651 /* Save the old settings. */
5652 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
5653 saved_allow_non_integral_constant_expression_p
5654 = parser->allow_non_integral_constant_expression_p;
5655 saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p;
5656 /* We are now parsing a constant-expression. */
5657 parser->integral_constant_expression_p = true;
5658 parser->allow_non_integral_constant_expression_p = allow_non_constant_p;
5659 parser->non_integral_constant_expression_p = false;
5660 /* Although the grammar says "conditional-expression", we parse an
5661 "assignment-expression", which also permits "throw-expression"
5662 and the use of assignment operators. In the case that
5663 ALLOW_NON_CONSTANT_P is false, we get better errors than we would
5664 otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is
5665 actually essential that we look for an assignment-expression.
5666 For example, cp_parser_initializer_clauses uses this function to
5667 determine whether a particular assignment-expression is in fact
5668 constant. */
5669 expression = cp_parser_assignment_expression (parser);
5670 /* Restore the old settings. */
5671 parser->integral_constant_expression_p = saved_integral_constant_expression_p;
5672 parser->allow_non_integral_constant_expression_p
5673 = saved_allow_non_integral_constant_expression_p;
5674 if (allow_non_constant_p)
5675 *non_constant_p = parser->non_integral_constant_expression_p;
5676 parser->non_integral_constant_expression_p = saved_non_integral_constant_expression_p;
5677
5678 return expression;
5679 }
5680
5681 /* Parse __builtin_offsetof.
5682
5683 offsetof-expression:
5684 "__builtin_offsetof" "(" type-id "," offsetof-member-designator ")"
5685
5686 offsetof-member-designator:
5687 id-expression
5688 | offsetof-member-designator "." id-expression
5689 | offsetof-member-designator "[" expression "]"
5690 */
5691
5692 static tree
5693 cp_parser_builtin_offsetof (cp_parser *parser)
5694 {
5695 int save_ice_p, save_non_ice_p;
5696 tree type, expr;
5697 cp_id_kind dummy;
5698
5699 /* We're about to accept non-integral-constant things, but will
5700 definitely yield an integral constant expression. Save and
5701 restore these values around our local parsing. */
5702 save_ice_p = parser->integral_constant_expression_p;
5703 save_non_ice_p = parser->non_integral_constant_expression_p;
5704
5705 /* Consume the "__builtin_offsetof" token. */
5706 cp_lexer_consume_token (parser->lexer);
5707 /* Consume the opening `('. */
5708 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
5709 /* Parse the type-id. */
5710 type = cp_parser_type_id (parser);
5711 /* Look for the `,'. */
5712 cp_parser_require (parser, CPP_COMMA, "`,'");
5713
5714 /* Build the (type *)null that begins the traditional offsetof macro. */
5715 expr = build_static_cast (build_pointer_type (type), null_pointer_node);
5716
5717 /* Parse the offsetof-member-designator. We begin as if we saw "expr->". */
5718 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DEREF, expr,
5719 true, &dummy);
5720 while (true)
5721 {
5722 cp_token *token = cp_lexer_peek_token (parser->lexer);
5723 switch (token->type)
5724 {
5725 case CPP_OPEN_SQUARE:
5726 /* offsetof-member-designator "[" expression "]" */
5727 expr = cp_parser_postfix_open_square_expression (parser, expr, true);
5728 break;
5729
5730 case CPP_DOT:
5731 /* offsetof-member-designator "." identifier */
5732 cp_lexer_consume_token (parser->lexer);
5733 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DOT, expr,
5734 true, &dummy);
5735 break;
5736
5737 case CPP_CLOSE_PAREN:
5738 /* Consume the ")" token. */
5739 cp_lexer_consume_token (parser->lexer);
5740 goto success;
5741
5742 default:
5743 /* Error. We know the following require will fail, but
5744 that gives the proper error message. */
5745 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5746 cp_parser_skip_to_closing_parenthesis (parser, true, false, true);
5747 expr = error_mark_node;
5748 goto failure;
5749 }
5750 }
5751
5752 success:
5753 /* If we're processing a template, we can't finish the semantics yet.
5754 Otherwise we can fold the entire expression now. */
5755 if (processing_template_decl)
5756 expr = build1 (OFFSETOF_EXPR, size_type_node, expr);
5757 else
5758 expr = fold_offsetof (expr);
5759
5760 failure:
5761 parser->integral_constant_expression_p = save_ice_p;
5762 parser->non_integral_constant_expression_p = save_non_ice_p;
5763
5764 return expr;
5765 }
5766
5767 /* Statements [gram.stmt.stmt] */
5768
5769 /* Parse a statement.
5770
5771 statement:
5772 labeled-statement
5773 expression-statement
5774 compound-statement
5775 selection-statement
5776 iteration-statement
5777 jump-statement
5778 declaration-statement
5779 try-block */
5780
5781 static void
5782 cp_parser_statement (cp_parser* parser, tree in_statement_expr)
5783 {
5784 tree statement;
5785 cp_token *token;
5786 location_t statement_location;
5787
5788 /* There is no statement yet. */
5789 statement = NULL_TREE;
5790 /* Peek at the next token. */
5791 token = cp_lexer_peek_token (parser->lexer);
5792 /* Remember the location of the first token in the statement. */
5793 statement_location = token->location;
5794 /* If this is a keyword, then that will often determine what kind of
5795 statement we have. */
5796 if (token->type == CPP_KEYWORD)
5797 {
5798 enum rid keyword = token->keyword;
5799
5800 switch (keyword)
5801 {
5802 case RID_CASE:
5803 case RID_DEFAULT:
5804 statement = cp_parser_labeled_statement (parser,
5805 in_statement_expr);
5806 break;
5807
5808 case RID_IF:
5809 case RID_SWITCH:
5810 statement = cp_parser_selection_statement (parser);
5811 break;
5812
5813 case RID_WHILE:
5814 case RID_DO:
5815 case RID_FOR:
5816 statement = cp_parser_iteration_statement (parser);
5817 break;
5818
5819 case RID_BREAK:
5820 case RID_CONTINUE:
5821 case RID_RETURN:
5822 case RID_GOTO:
5823 statement = cp_parser_jump_statement (parser);
5824 break;
5825
5826 case RID_TRY:
5827 statement = cp_parser_try_block (parser);
5828 break;
5829
5830 default:
5831 /* It might be a keyword like `int' that can start a
5832 declaration-statement. */
5833 break;
5834 }
5835 }
5836 else if (token->type == CPP_NAME)
5837 {
5838 /* If the next token is a `:', then we are looking at a
5839 labeled-statement. */
5840 token = cp_lexer_peek_nth_token (parser->lexer, 2);
5841 if (token->type == CPP_COLON)
5842 statement = cp_parser_labeled_statement (parser, in_statement_expr);
5843 }
5844 /* Anything that starts with a `{' must be a compound-statement. */
5845 else if (token->type == CPP_OPEN_BRACE)
5846 statement = cp_parser_compound_statement (parser, NULL, false);
5847 /* CPP_PRAGMA is a #pragma inside a function body, which constitutes
5848 a statement all its own. */
5849 else if (token->type == CPP_PRAGMA)
5850 {
5851 cp_lexer_handle_pragma (parser->lexer);
5852 return;
5853 }
5854
5855 /* Everything else must be a declaration-statement or an
5856 expression-statement. Try for the declaration-statement
5857 first, unless we are looking at a `;', in which case we know that
5858 we have an expression-statement. */
5859 if (!statement)
5860 {
5861 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
5862 {
5863 cp_parser_parse_tentatively (parser);
5864 /* Try to parse the declaration-statement. */
5865 cp_parser_declaration_statement (parser);
5866 /* If that worked, we're done. */
5867 if (cp_parser_parse_definitely (parser))
5868 return;
5869 }
5870 /* Look for an expression-statement instead. */
5871 statement = cp_parser_expression_statement (parser, in_statement_expr);
5872 }
5873
5874 /* Set the line number for the statement. */
5875 if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
5876 SET_EXPR_LOCATION (statement, statement_location);
5877 }
5878
5879 /* Parse a labeled-statement.
5880
5881 labeled-statement:
5882 identifier : statement
5883 case constant-expression : statement
5884 default : statement
5885
5886 GNU Extension:
5887
5888 labeled-statement:
5889 case constant-expression ... constant-expression : statement
5890
5891 Returns the new CASE_LABEL_EXPR, for a `case' or `default' label.
5892 For an ordinary label, returns a LABEL_EXPR. */
5893
5894 static tree
5895 cp_parser_labeled_statement (cp_parser* parser, tree in_statement_expr)
5896 {
5897 cp_token *token;
5898 tree statement = error_mark_node;
5899
5900 /* The next token should be an identifier. */
5901 token = cp_lexer_peek_token (parser->lexer);
5902 if (token->type != CPP_NAME
5903 && token->type != CPP_KEYWORD)
5904 {
5905 cp_parser_error (parser, "expected labeled-statement");
5906 return error_mark_node;
5907 }
5908
5909 switch (token->keyword)
5910 {
5911 case RID_CASE:
5912 {
5913 tree expr, expr_hi;
5914 cp_token *ellipsis;
5915
5916 /* Consume the `case' token. */
5917 cp_lexer_consume_token (parser->lexer);
5918 /* Parse the constant-expression. */
5919 expr = cp_parser_constant_expression (parser,
5920 /*allow_non_constant_p=*/false,
5921 NULL);
5922
5923 ellipsis = cp_lexer_peek_token (parser->lexer);
5924 if (ellipsis->type == CPP_ELLIPSIS)
5925 {
5926 /* Consume the `...' token. */
5927 cp_lexer_consume_token (parser->lexer);
5928 expr_hi =
5929 cp_parser_constant_expression (parser,
5930 /*allow_non_constant_p=*/false,
5931 NULL);
5932 /* We don't need to emit warnings here, as the common code
5933 will do this for us. */
5934 }
5935 else
5936 expr_hi = NULL_TREE;
5937
5938 if (!parser->in_switch_statement_p)
5939 error ("case label %qE not within a switch statement", expr);
5940 else
5941 statement = finish_case_label (expr, expr_hi);
5942 }
5943 break;
5944
5945 case RID_DEFAULT:
5946 /* Consume the `default' token. */
5947 cp_lexer_consume_token (parser->lexer);
5948 if (!parser->in_switch_statement_p)
5949 error ("case label not within a switch statement");
5950 else
5951 statement = finish_case_label (NULL_TREE, NULL_TREE);
5952 break;
5953
5954 default:
5955 /* Anything else must be an ordinary label. */
5956 statement = finish_label_stmt (cp_parser_identifier (parser));
5957 break;
5958 }
5959
5960 /* Require the `:' token. */
5961 cp_parser_require (parser, CPP_COLON, "`:'");
5962 /* Parse the labeled statement. */
5963 cp_parser_statement (parser, in_statement_expr);
5964
5965 /* Return the label, in the case of a `case' or `default' label. */
5966 return statement;
5967 }
5968
5969 /* Parse an expression-statement.
5970
5971 expression-statement:
5972 expression [opt] ;
5973
5974 Returns the new EXPR_STMT -- or NULL_TREE if the expression
5975 statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
5976 indicates whether this expression-statement is part of an
5977 expression statement. */
5978
5979 static tree
5980 cp_parser_expression_statement (cp_parser* parser, tree in_statement_expr)
5981 {
5982 tree statement = NULL_TREE;
5983
5984 /* If the next token is a ';', then there is no expression
5985 statement. */
5986 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
5987 statement = cp_parser_expression (parser);
5988
5989 /* Consume the final `;'. */
5990 cp_parser_consume_semicolon_at_end_of_statement (parser);
5991
5992 if (in_statement_expr
5993 && cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
5994 {
5995 /* This is the final expression statement of a statement
5996 expression. */
5997 statement = finish_stmt_expr_expr (statement, in_statement_expr);
5998 }
5999 else if (statement)
6000 statement = finish_expr_stmt (statement);
6001 else
6002 finish_stmt ();
6003
6004 return statement;
6005 }
6006
6007 /* Parse a compound-statement.
6008
6009 compound-statement:
6010 { statement-seq [opt] }
6011
6012 Returns a tree representing the statement. */
6013
6014 static tree
6015 cp_parser_compound_statement (cp_parser *parser, tree in_statement_expr,
6016 bool in_try)
6017 {
6018 tree compound_stmt;
6019
6020 /* Consume the `{'. */
6021 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
6022 return error_mark_node;
6023 /* Begin the compound-statement. */
6024 compound_stmt = begin_compound_stmt (in_try ? BCS_TRY_BLOCK : 0);
6025 /* Parse an (optional) statement-seq. */
6026 cp_parser_statement_seq_opt (parser, in_statement_expr);
6027 /* Finish the compound-statement. */
6028 finish_compound_stmt (compound_stmt);
6029 /* Consume the `}'. */
6030 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6031
6032 return compound_stmt;
6033 }
6034
6035 /* Parse an (optional) statement-seq.
6036
6037 statement-seq:
6038 statement
6039 statement-seq [opt] statement */
6040
6041 static void
6042 cp_parser_statement_seq_opt (cp_parser* parser, tree in_statement_expr)
6043 {
6044 /* Scan statements until there aren't any more. */
6045 while (true)
6046 {
6047 /* If we're looking at a `}', then we've run out of statements. */
6048 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)
6049 || cp_lexer_next_token_is (parser->lexer, CPP_EOF))
6050 break;
6051
6052 /* Parse the statement. */
6053 cp_parser_statement (parser, in_statement_expr);
6054 }
6055 }
6056
6057 /* Parse a selection-statement.
6058
6059 selection-statement:
6060 if ( condition ) statement
6061 if ( condition ) statement else statement
6062 switch ( condition ) statement
6063
6064 Returns the new IF_STMT or SWITCH_STMT. */
6065
6066 static tree
6067 cp_parser_selection_statement (cp_parser* parser)
6068 {
6069 cp_token *token;
6070 enum rid keyword;
6071
6072 /* Peek at the next token. */
6073 token = cp_parser_require (parser, CPP_KEYWORD, "selection-statement");
6074
6075 /* See what kind of keyword it is. */
6076 keyword = token->keyword;
6077 switch (keyword)
6078 {
6079 case RID_IF:
6080 case RID_SWITCH:
6081 {
6082 tree statement;
6083 tree condition;
6084
6085 /* Look for the `('. */
6086 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
6087 {
6088 cp_parser_skip_to_end_of_statement (parser);
6089 return error_mark_node;
6090 }
6091
6092 /* Begin the selection-statement. */
6093 if (keyword == RID_IF)
6094 statement = begin_if_stmt ();
6095 else
6096 statement = begin_switch_stmt ();
6097
6098 /* Parse the condition. */
6099 condition = cp_parser_condition (parser);
6100 /* Look for the `)'. */
6101 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
6102 cp_parser_skip_to_closing_parenthesis (parser, true, false,
6103 /*consume_paren=*/true);
6104
6105 if (keyword == RID_IF)
6106 {
6107 /* Add the condition. */
6108 finish_if_stmt_cond (condition, statement);
6109
6110 /* Parse the then-clause. */
6111 cp_parser_implicitly_scoped_statement (parser);
6112 finish_then_clause (statement);
6113
6114 /* If the next token is `else', parse the else-clause. */
6115 if (cp_lexer_next_token_is_keyword (parser->lexer,
6116 RID_ELSE))
6117 {
6118 /* Consume the `else' keyword. */
6119 cp_lexer_consume_token (parser->lexer);
6120 begin_else_clause (statement);
6121 /* Parse the else-clause. */
6122 cp_parser_implicitly_scoped_statement (parser);
6123 finish_else_clause (statement);
6124 }
6125
6126 /* Now we're all done with the if-statement. */
6127 finish_if_stmt (statement);
6128 }
6129 else
6130 {
6131 bool in_switch_statement_p;
6132
6133 /* Add the condition. */
6134 finish_switch_cond (condition, statement);
6135
6136 /* Parse the body of the switch-statement. */
6137 in_switch_statement_p = parser->in_switch_statement_p;
6138 parser->in_switch_statement_p = true;
6139 cp_parser_implicitly_scoped_statement (parser);
6140 parser->in_switch_statement_p = in_switch_statement_p;
6141
6142 /* Now we're all done with the switch-statement. */
6143 finish_switch_stmt (statement);
6144 }
6145
6146 return statement;
6147 }
6148 break;
6149
6150 default:
6151 cp_parser_error (parser, "expected selection-statement");
6152 return error_mark_node;
6153 }
6154 }
6155
6156 /* Parse a condition.
6157
6158 condition:
6159 expression
6160 type-specifier-seq declarator = assignment-expression
6161
6162 GNU Extension:
6163
6164 condition:
6165 type-specifier-seq declarator asm-specification [opt]
6166 attributes [opt] = assignment-expression
6167
6168 Returns the expression that should be tested. */
6169
6170 static tree
6171 cp_parser_condition (cp_parser* parser)
6172 {
6173 cp_decl_specifier_seq type_specifiers;
6174 const char *saved_message;
6175
6176 /* Try the declaration first. */
6177 cp_parser_parse_tentatively (parser);
6178 /* New types are not allowed in the type-specifier-seq for a
6179 condition. */
6180 saved_message = parser->type_definition_forbidden_message;
6181 parser->type_definition_forbidden_message
6182 = "types may not be defined in conditions";
6183 /* Parse the type-specifier-seq. */
6184 cp_parser_type_specifier_seq (parser, &type_specifiers);
6185 /* Restore the saved message. */
6186 parser->type_definition_forbidden_message = saved_message;
6187 /* If all is well, we might be looking at a declaration. */
6188 if (!cp_parser_error_occurred (parser))
6189 {
6190 tree decl;
6191 tree asm_specification;
6192 tree attributes;
6193 cp_declarator *declarator;
6194 tree initializer = NULL_TREE;
6195
6196 /* Parse the declarator. */
6197 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
6198 /*ctor_dtor_or_conv_p=*/NULL,
6199 /*parenthesized_p=*/NULL,
6200 /*member_p=*/false);
6201 /* Parse the attributes. */
6202 attributes = cp_parser_attributes_opt (parser);
6203 /* Parse the asm-specification. */
6204 asm_specification = cp_parser_asm_specification_opt (parser);
6205 /* If the next token is not an `=', then we might still be
6206 looking at an expression. For example:
6207
6208 if (A(a).x)
6209
6210 looks like a decl-specifier-seq and a declarator -- but then
6211 there is no `=', so this is an expression. */
6212 cp_parser_require (parser, CPP_EQ, "`='");
6213 /* If we did see an `=', then we are looking at a declaration
6214 for sure. */
6215 if (cp_parser_parse_definitely (parser))
6216 {
6217 bool pop_p;
6218
6219 /* Create the declaration. */
6220 decl = start_decl (declarator, &type_specifiers,
6221 /*initialized_p=*/true,
6222 attributes, /*prefix_attributes=*/NULL_TREE,
6223 &pop_p);
6224 /* Parse the assignment-expression. */
6225 initializer = cp_parser_assignment_expression (parser);
6226
6227 /* Process the initializer. */
6228 cp_finish_decl (decl,
6229 initializer,
6230 asm_specification,
6231 LOOKUP_ONLYCONVERTING);
6232
6233 if (pop_p)
6234 pop_scope (DECL_CONTEXT (decl));
6235
6236 return convert_from_reference (decl);
6237 }
6238 }
6239 /* If we didn't even get past the declarator successfully, we are
6240 definitely not looking at a declaration. */
6241 else
6242 cp_parser_abort_tentative_parse (parser);
6243
6244 /* Otherwise, we are looking at an expression. */
6245 return cp_parser_expression (parser);
6246 }
6247
6248 /* Parse an iteration-statement.
6249
6250 iteration-statement:
6251 while ( condition ) statement
6252 do statement while ( expression ) ;
6253 for ( for-init-statement condition [opt] ; expression [opt] )
6254 statement
6255
6256 Returns the new WHILE_STMT, DO_STMT, or FOR_STMT. */
6257
6258 static tree
6259 cp_parser_iteration_statement (cp_parser* parser)
6260 {
6261 cp_token *token;
6262 enum rid keyword;
6263 tree statement;
6264 bool in_iteration_statement_p;
6265
6266
6267 /* Peek at the next token. */
6268 token = cp_parser_require (parser, CPP_KEYWORD, "iteration-statement");
6269 if (!token)
6270 return error_mark_node;
6271
6272 /* Remember whether or not we are already within an iteration
6273 statement. */
6274 in_iteration_statement_p = parser->in_iteration_statement_p;
6275
6276 /* See what kind of keyword it is. */
6277 keyword = token->keyword;
6278 switch (keyword)
6279 {
6280 case RID_WHILE:
6281 {
6282 tree condition;
6283
6284 /* Begin the while-statement. */
6285 statement = begin_while_stmt ();
6286 /* Look for the `('. */
6287 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6288 /* Parse the condition. */
6289 condition = cp_parser_condition (parser);
6290 finish_while_stmt_cond (condition, statement);
6291 /* Look for the `)'. */
6292 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6293 /* Parse the dependent statement. */
6294 parser->in_iteration_statement_p = true;
6295 cp_parser_already_scoped_statement (parser);
6296 parser->in_iteration_statement_p = in_iteration_statement_p;
6297 /* We're done with the while-statement. */
6298 finish_while_stmt (statement);
6299 }
6300 break;
6301
6302 case RID_DO:
6303 {
6304 tree expression;
6305
6306 /* Begin the do-statement. */
6307 statement = begin_do_stmt ();
6308 /* Parse the body of the do-statement. */
6309 parser->in_iteration_statement_p = true;
6310 cp_parser_implicitly_scoped_statement (parser);
6311 parser->in_iteration_statement_p = in_iteration_statement_p;
6312 finish_do_body (statement);
6313 /* Look for the `while' keyword. */
6314 cp_parser_require_keyword (parser, RID_WHILE, "`while'");
6315 /* Look for the `('. */
6316 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6317 /* Parse the expression. */
6318 expression = cp_parser_expression (parser);
6319 /* We're done with the do-statement. */
6320 finish_do_stmt (expression, statement);
6321 /* Look for the `)'. */
6322 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6323 /* Look for the `;'. */
6324 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6325 }
6326 break;
6327
6328 case RID_FOR:
6329 {
6330 tree condition = NULL_TREE;
6331 tree expression = NULL_TREE;
6332
6333 /* Begin the for-statement. */
6334 statement = begin_for_stmt ();
6335 /* Look for the `('. */
6336 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6337 /* Parse the initialization. */
6338 cp_parser_for_init_statement (parser);
6339 finish_for_init_stmt (statement);
6340
6341 /* If there's a condition, process it. */
6342 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6343 condition = cp_parser_condition (parser);
6344 finish_for_cond (condition, statement);
6345 /* Look for the `;'. */
6346 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6347
6348 /* If there's an expression, process it. */
6349 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
6350 expression = cp_parser_expression (parser);
6351 finish_for_expr (expression, statement);
6352 /* Look for the `)'. */
6353 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6354
6355 /* Parse the body of the for-statement. */
6356 parser->in_iteration_statement_p = true;
6357 cp_parser_already_scoped_statement (parser);
6358 parser->in_iteration_statement_p = in_iteration_statement_p;
6359
6360 /* We're done with the for-statement. */
6361 finish_for_stmt (statement);
6362 }
6363 break;
6364
6365 default:
6366 cp_parser_error (parser, "expected iteration-statement");
6367 statement = error_mark_node;
6368 break;
6369 }
6370
6371 return statement;
6372 }
6373
6374 /* Parse a for-init-statement.
6375
6376 for-init-statement:
6377 expression-statement
6378 simple-declaration */
6379
6380 static void
6381 cp_parser_for_init_statement (cp_parser* parser)
6382 {
6383 /* If the next token is a `;', then we have an empty
6384 expression-statement. Grammatically, this is also a
6385 simple-declaration, but an invalid one, because it does not
6386 declare anything. Therefore, if we did not handle this case
6387 specially, we would issue an error message about an invalid
6388 declaration. */
6389 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6390 {
6391 /* We're going to speculatively look for a declaration, falling back
6392 to an expression, if necessary. */
6393 cp_parser_parse_tentatively (parser);
6394 /* Parse the declaration. */
6395 cp_parser_simple_declaration (parser,
6396 /*function_definition_allowed_p=*/false);
6397 /* If the tentative parse failed, then we shall need to look for an
6398 expression-statement. */
6399 if (cp_parser_parse_definitely (parser))
6400 return;
6401 }
6402
6403 cp_parser_expression_statement (parser, false);
6404 }
6405
6406 /* Parse a jump-statement.
6407
6408 jump-statement:
6409 break ;
6410 continue ;
6411 return expression [opt] ;
6412 goto identifier ;
6413
6414 GNU extension:
6415
6416 jump-statement:
6417 goto * expression ;
6418
6419 Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_EXPR, or GOTO_EXPR. */
6420
6421 static tree
6422 cp_parser_jump_statement (cp_parser* parser)
6423 {
6424 tree statement = error_mark_node;
6425 cp_token *token;
6426 enum rid keyword;
6427
6428 /* Peek at the next token. */
6429 token = cp_parser_require (parser, CPP_KEYWORD, "jump-statement");
6430 if (!token)
6431 return error_mark_node;
6432
6433 /* See what kind of keyword it is. */
6434 keyword = token->keyword;
6435 switch (keyword)
6436 {
6437 case RID_BREAK:
6438 if (!parser->in_switch_statement_p
6439 && !parser->in_iteration_statement_p)
6440 {
6441 error ("break statement not within loop or switch");
6442 statement = error_mark_node;
6443 }
6444 else
6445 statement = finish_break_stmt ();
6446 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6447 break;
6448
6449 case RID_CONTINUE:
6450 if (!parser->in_iteration_statement_p)
6451 {
6452 error ("continue statement not within a loop");
6453 statement = error_mark_node;
6454 }
6455 else
6456 statement = finish_continue_stmt ();
6457 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6458 break;
6459
6460 case RID_RETURN:
6461 {
6462 tree expr;
6463
6464 /* If the next token is a `;', then there is no
6465 expression. */
6466 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6467 expr = cp_parser_expression (parser);
6468 else
6469 expr = NULL_TREE;
6470 /* Build the return-statement. */
6471 statement = finish_return_stmt (expr);
6472 /* Look for the final `;'. */
6473 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6474 }
6475 break;
6476
6477 case RID_GOTO:
6478 /* Create the goto-statement. */
6479 if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
6480 {
6481 /* Issue a warning about this use of a GNU extension. */
6482 if (pedantic)
6483 pedwarn ("ISO C++ forbids computed gotos");
6484 /* Consume the '*' token. */
6485 cp_lexer_consume_token (parser->lexer);
6486 /* Parse the dependent expression. */
6487 finish_goto_stmt (cp_parser_expression (parser));
6488 }
6489 else
6490 finish_goto_stmt (cp_parser_identifier (parser));
6491 /* Look for the final `;'. */
6492 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6493 break;
6494
6495 default:
6496 cp_parser_error (parser, "expected jump-statement");
6497 break;
6498 }
6499
6500 return statement;
6501 }
6502
6503 /* Parse a declaration-statement.
6504
6505 declaration-statement:
6506 block-declaration */
6507
6508 static void
6509 cp_parser_declaration_statement (cp_parser* parser)
6510 {
6511 void *p;
6512
6513 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6514 p = obstack_alloc (&declarator_obstack, 0);
6515
6516 /* Parse the block-declaration. */
6517 cp_parser_block_declaration (parser, /*statement_p=*/true);
6518
6519 /* Free any declarators allocated. */
6520 obstack_free (&declarator_obstack, p);
6521
6522 /* Finish off the statement. */
6523 finish_stmt ();
6524 }
6525
6526 /* Some dependent statements (like `if (cond) statement'), are
6527 implicitly in their own scope. In other words, if the statement is
6528 a single statement (as opposed to a compound-statement), it is
6529 none-the-less treated as if it were enclosed in braces. Any
6530 declarations appearing in the dependent statement are out of scope
6531 after control passes that point. This function parses a statement,
6532 but ensures that is in its own scope, even if it is not a
6533 compound-statement.
6534
6535 Returns the new statement. */
6536
6537 static tree
6538 cp_parser_implicitly_scoped_statement (cp_parser* parser)
6539 {
6540 tree statement;
6541
6542 /* If the token is not a `{', then we must take special action. */
6543 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6544 {
6545 /* Create a compound-statement. */
6546 statement = begin_compound_stmt (0);
6547 /* Parse the dependent-statement. */
6548 cp_parser_statement (parser, false);
6549 /* Finish the dummy compound-statement. */
6550 finish_compound_stmt (statement);
6551 }
6552 /* Otherwise, we simply parse the statement directly. */
6553 else
6554 statement = cp_parser_compound_statement (parser, NULL, false);
6555
6556 /* Return the statement. */
6557 return statement;
6558 }
6559
6560 /* For some dependent statements (like `while (cond) statement'), we
6561 have already created a scope. Therefore, even if the dependent
6562 statement is a compound-statement, we do not want to create another
6563 scope. */
6564
6565 static void
6566 cp_parser_already_scoped_statement (cp_parser* parser)
6567 {
6568 /* If the token is a `{', then we must take special action. */
6569 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6570 cp_parser_statement (parser, false);
6571 else
6572 {
6573 /* Avoid calling cp_parser_compound_statement, so that we
6574 don't create a new scope. Do everything else by hand. */
6575 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
6576 cp_parser_statement_seq_opt (parser, false);
6577 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6578 }
6579 }
6580
6581 /* Declarations [gram.dcl.dcl] */
6582
6583 /* Parse an optional declaration-sequence.
6584
6585 declaration-seq:
6586 declaration
6587 declaration-seq declaration */
6588
6589 static void
6590 cp_parser_declaration_seq_opt (cp_parser* parser)
6591 {
6592 while (true)
6593 {
6594 cp_token *token;
6595
6596 token = cp_lexer_peek_token (parser->lexer);
6597
6598 if (token->type == CPP_CLOSE_BRACE
6599 || token->type == CPP_EOF)
6600 break;
6601
6602 if (token->type == CPP_SEMICOLON)
6603 {
6604 /* A declaration consisting of a single semicolon is
6605 invalid. Allow it unless we're being pedantic. */
6606 cp_lexer_consume_token (parser->lexer);
6607 if (pedantic && !in_system_header)
6608 pedwarn ("extra %<;%>");
6609 continue;
6610 }
6611
6612 /* If we're entering or exiting a region that's implicitly
6613 extern "C", modify the lang context appropriately. */
6614 if (!parser->implicit_extern_c && token->implicit_extern_c)
6615 {
6616 push_lang_context (lang_name_c);
6617 parser->implicit_extern_c = true;
6618 }
6619 else if (parser->implicit_extern_c && !token->implicit_extern_c)
6620 {
6621 pop_lang_context ();
6622 parser->implicit_extern_c = false;
6623 }
6624
6625 if (token->type == CPP_PRAGMA)
6626 {
6627 /* A top-level declaration can consist solely of a #pragma.
6628 A nested declaration cannot, so this is done here and not
6629 in cp_parser_declaration. (A #pragma at block scope is
6630 handled in cp_parser_statement.) */
6631 cp_lexer_handle_pragma (parser->lexer);
6632 continue;
6633 }
6634
6635 /* Parse the declaration itself. */
6636 cp_parser_declaration (parser);
6637 }
6638 }
6639
6640 /* Parse a declaration.
6641
6642 declaration:
6643 block-declaration
6644 function-definition
6645 template-declaration
6646 explicit-instantiation
6647 explicit-specialization
6648 linkage-specification
6649 namespace-definition
6650
6651 GNU extension:
6652
6653 declaration:
6654 __extension__ declaration */
6655
6656 static void
6657 cp_parser_declaration (cp_parser* parser)
6658 {
6659 cp_token token1;
6660 cp_token token2;
6661 int saved_pedantic;
6662 void *p;
6663
6664 /* Check for the `__extension__' keyword. */
6665 if (cp_parser_extension_opt (parser, &saved_pedantic))
6666 {
6667 /* Parse the qualified declaration. */
6668 cp_parser_declaration (parser);
6669 /* Restore the PEDANTIC flag. */
6670 pedantic = saved_pedantic;
6671
6672 return;
6673 }
6674
6675 /* Try to figure out what kind of declaration is present. */
6676 token1 = *cp_lexer_peek_token (parser->lexer);
6677
6678 if (token1.type != CPP_EOF)
6679 token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
6680
6681 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6682 p = obstack_alloc (&declarator_obstack, 0);
6683
6684 /* If the next token is `extern' and the following token is a string
6685 literal, then we have a linkage specification. */
6686 if (token1.keyword == RID_EXTERN
6687 && cp_parser_is_string_literal (&token2))
6688 cp_parser_linkage_specification (parser);
6689 /* If the next token is `template', then we have either a template
6690 declaration, an explicit instantiation, or an explicit
6691 specialization. */
6692 else if (token1.keyword == RID_TEMPLATE)
6693 {
6694 /* `template <>' indicates a template specialization. */
6695 if (token2.type == CPP_LESS
6696 && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
6697 cp_parser_explicit_specialization (parser);
6698 /* `template <' indicates a template declaration. */
6699 else if (token2.type == CPP_LESS)
6700 cp_parser_template_declaration (parser, /*member_p=*/false);
6701 /* Anything else must be an explicit instantiation. */
6702 else
6703 cp_parser_explicit_instantiation (parser);
6704 }
6705 /* If the next token is `export', then we have a template
6706 declaration. */
6707 else if (token1.keyword == RID_EXPORT)
6708 cp_parser_template_declaration (parser, /*member_p=*/false);
6709 /* If the next token is `extern', 'static' or 'inline' and the one
6710 after that is `template', we have a GNU extended explicit
6711 instantiation directive. */
6712 else if (cp_parser_allow_gnu_extensions_p (parser)
6713 && (token1.keyword == RID_EXTERN
6714 || token1.keyword == RID_STATIC
6715 || token1.keyword == RID_INLINE)
6716 && token2.keyword == RID_TEMPLATE)
6717 cp_parser_explicit_instantiation (parser);
6718 /* If the next token is `namespace', check for a named or unnamed
6719 namespace definition. */
6720 else if (token1.keyword == RID_NAMESPACE
6721 && (/* A named namespace definition. */
6722 (token2.type == CPP_NAME
6723 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
6724 == CPP_OPEN_BRACE))
6725 /* An unnamed namespace definition. */
6726 || token2.type == CPP_OPEN_BRACE))
6727 cp_parser_namespace_definition (parser);
6728 /* We must have either a block declaration or a function
6729 definition. */
6730 else
6731 /* Try to parse a block-declaration, or a function-definition. */
6732 cp_parser_block_declaration (parser, /*statement_p=*/false);
6733
6734 /* Free any declarators allocated. */
6735 obstack_free (&declarator_obstack, p);
6736 }
6737
6738 /* Parse a block-declaration.
6739
6740 block-declaration:
6741 simple-declaration
6742 asm-definition
6743 namespace-alias-definition
6744 using-declaration
6745 using-directive
6746
6747 GNU Extension:
6748
6749 block-declaration:
6750 __extension__ block-declaration
6751 label-declaration
6752
6753 If STATEMENT_P is TRUE, then this block-declaration is occurring as
6754 part of a declaration-statement. */
6755
6756 static void
6757 cp_parser_block_declaration (cp_parser *parser,
6758 bool statement_p)
6759 {
6760 cp_token *token1;
6761 int saved_pedantic;
6762
6763 /* Check for the `__extension__' keyword. */
6764 if (cp_parser_extension_opt (parser, &saved_pedantic))
6765 {
6766 /* Parse the qualified declaration. */
6767 cp_parser_block_declaration (parser, statement_p);
6768 /* Restore the PEDANTIC flag. */
6769 pedantic = saved_pedantic;
6770
6771 return;
6772 }
6773
6774 /* Peek at the next token to figure out which kind of declaration is
6775 present. */
6776 token1 = cp_lexer_peek_token (parser->lexer);
6777
6778 /* If the next keyword is `asm', we have an asm-definition. */
6779 if (token1->keyword == RID_ASM)
6780 {
6781 if (statement_p)
6782 cp_parser_commit_to_tentative_parse (parser);
6783 cp_parser_asm_definition (parser);
6784 }
6785 /* If the next keyword is `namespace', we have a
6786 namespace-alias-definition. */
6787 else if (token1->keyword == RID_NAMESPACE)
6788 cp_parser_namespace_alias_definition (parser);
6789 /* If the next keyword is `using', we have either a
6790 using-declaration or a using-directive. */
6791 else if (token1->keyword == RID_USING)
6792 {
6793 cp_token *token2;
6794
6795 if (statement_p)
6796 cp_parser_commit_to_tentative_parse (parser);
6797 /* If the token after `using' is `namespace', then we have a
6798 using-directive. */
6799 token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
6800 if (token2->keyword == RID_NAMESPACE)
6801 cp_parser_using_directive (parser);
6802 /* Otherwise, it's a using-declaration. */
6803 else
6804 cp_parser_using_declaration (parser);
6805 }
6806 /* If the next keyword is `__label__' we have a label declaration. */
6807 else if (token1->keyword == RID_LABEL)
6808 {
6809 if (statement_p)
6810 cp_parser_commit_to_tentative_parse (parser);
6811 cp_parser_label_declaration (parser);
6812 }
6813 /* Anything else must be a simple-declaration. */
6814 else
6815 cp_parser_simple_declaration (parser, !statement_p);
6816 }
6817
6818 /* Parse a simple-declaration.
6819
6820 simple-declaration:
6821 decl-specifier-seq [opt] init-declarator-list [opt] ;
6822
6823 init-declarator-list:
6824 init-declarator
6825 init-declarator-list , init-declarator
6826
6827 If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
6828 function-definition as a simple-declaration. */
6829
6830 static void
6831 cp_parser_simple_declaration (cp_parser* parser,
6832 bool function_definition_allowed_p)
6833 {
6834 cp_decl_specifier_seq decl_specifiers;
6835 int declares_class_or_enum;
6836 bool saw_declarator;
6837
6838 /* Defer access checks until we know what is being declared; the
6839 checks for names appearing in the decl-specifier-seq should be
6840 done as if we were in the scope of the thing being declared. */
6841 push_deferring_access_checks (dk_deferred);
6842
6843 /* Parse the decl-specifier-seq. We have to keep track of whether
6844 or not the decl-specifier-seq declares a named class or
6845 enumeration type, since that is the only case in which the
6846 init-declarator-list is allowed to be empty.
6847
6848 [dcl.dcl]
6849
6850 In a simple-declaration, the optional init-declarator-list can be
6851 omitted only when declaring a class or enumeration, that is when
6852 the decl-specifier-seq contains either a class-specifier, an
6853 elaborated-type-specifier, or an enum-specifier. */
6854 cp_parser_decl_specifier_seq (parser,
6855 CP_PARSER_FLAGS_OPTIONAL,
6856 &decl_specifiers,
6857 &declares_class_or_enum);
6858 /* We no longer need to defer access checks. */
6859 stop_deferring_access_checks ();
6860
6861 /* In a block scope, a valid declaration must always have a
6862 decl-specifier-seq. By not trying to parse declarators, we can
6863 resolve the declaration/expression ambiguity more quickly. */
6864 if (!function_definition_allowed_p
6865 && !decl_specifiers.any_specifiers_p)
6866 {
6867 cp_parser_error (parser, "expected declaration");
6868 goto done;
6869 }
6870
6871 /* If the next two tokens are both identifiers, the code is
6872 erroneous. The usual cause of this situation is code like:
6873
6874 T t;
6875
6876 where "T" should name a type -- but does not. */
6877 if (!decl_specifiers.type
6878 && cp_parser_parse_and_diagnose_invalid_type_name (parser))
6879 {
6880 /* If parsing tentatively, we should commit; we really are
6881 looking at a declaration. */
6882 cp_parser_commit_to_tentative_parse (parser);
6883 /* Give up. */
6884 goto done;
6885 }
6886
6887 /* If we have seen at least one decl-specifier, and the next token
6888 is not a parenthesis, then we must be looking at a declaration.
6889 (After "int (" we might be looking at a functional cast.) */
6890 if (decl_specifiers.any_specifiers_p
6891 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
6892 cp_parser_commit_to_tentative_parse (parser);
6893
6894 /* Keep going until we hit the `;' at the end of the simple
6895 declaration. */
6896 saw_declarator = false;
6897 while (cp_lexer_next_token_is_not (parser->lexer,
6898 CPP_SEMICOLON))
6899 {
6900 cp_token *token;
6901 bool function_definition_p;
6902 tree decl;
6903
6904 saw_declarator = true;
6905 /* Parse the init-declarator. */
6906 decl = cp_parser_init_declarator (parser, &decl_specifiers,
6907 function_definition_allowed_p,
6908 /*member_p=*/false,
6909 declares_class_or_enum,
6910 &function_definition_p);
6911 /* If an error occurred while parsing tentatively, exit quickly.
6912 (That usually happens when in the body of a function; each
6913 statement is treated as a declaration-statement until proven
6914 otherwise.) */
6915 if (cp_parser_error_occurred (parser))
6916 goto done;
6917 /* Handle function definitions specially. */
6918 if (function_definition_p)
6919 {
6920 /* If the next token is a `,', then we are probably
6921 processing something like:
6922
6923 void f() {}, *p;
6924
6925 which is erroneous. */
6926 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
6927 error ("mixing declarations and function-definitions is forbidden");
6928 /* Otherwise, we're done with the list of declarators. */
6929 else
6930 {
6931 pop_deferring_access_checks ();
6932 return;
6933 }
6934 }
6935 /* The next token should be either a `,' or a `;'. */
6936 token = cp_lexer_peek_token (parser->lexer);
6937 /* If it's a `,', there are more declarators to come. */
6938 if (token->type == CPP_COMMA)
6939 cp_lexer_consume_token (parser->lexer);
6940 /* If it's a `;', we are done. */
6941 else if (token->type == CPP_SEMICOLON)
6942 break;
6943 /* Anything else is an error. */
6944 else
6945 {
6946 /* If we have already issued an error message we don't need
6947 to issue another one. */
6948 if (decl != error_mark_node
6949 || (cp_parser_parsing_tentatively (parser)
6950 && !cp_parser_committed_to_tentative_parse (parser)))
6951 cp_parser_error (parser, "expected %<,%> or %<;%>");
6952 /* Skip tokens until we reach the end of the statement. */
6953 cp_parser_skip_to_end_of_statement (parser);
6954 /* If the next token is now a `;', consume it. */
6955 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
6956 cp_lexer_consume_token (parser->lexer);
6957 goto done;
6958 }
6959 /* After the first time around, a function-definition is not
6960 allowed -- even if it was OK at first. For example:
6961
6962 int i, f() {}
6963
6964 is not valid. */
6965 function_definition_allowed_p = false;
6966 }
6967
6968 /* Issue an error message if no declarators are present, and the
6969 decl-specifier-seq does not itself declare a class or
6970 enumeration. */
6971 if (!saw_declarator)
6972 {
6973 if (cp_parser_declares_only_class_p (parser))
6974 shadow_tag (&decl_specifiers);
6975 /* Perform any deferred access checks. */
6976 perform_deferred_access_checks ();
6977 }
6978
6979 /* Consume the `;'. */
6980 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6981
6982 done:
6983 pop_deferring_access_checks ();
6984 }
6985
6986 /* Parse a decl-specifier-seq.
6987
6988 decl-specifier-seq:
6989 decl-specifier-seq [opt] decl-specifier
6990
6991 decl-specifier:
6992 storage-class-specifier
6993 type-specifier
6994 function-specifier
6995 friend
6996 typedef
6997
6998 GNU Extension:
6999
7000 decl-specifier:
7001 attributes
7002
7003 Set *DECL_SPECS to a representation of the decl-specifier-seq.
7004
7005 The parser flags FLAGS is used to control type-specifier parsing.
7006
7007 *DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
7008 flags:
7009
7010 1: one of the decl-specifiers is an elaborated-type-specifier
7011 (i.e., a type declaration)
7012 2: one of the decl-specifiers is an enum-specifier or a
7013 class-specifier (i.e., a type definition)
7014
7015 */
7016
7017 static void
7018 cp_parser_decl_specifier_seq (cp_parser* parser,
7019 cp_parser_flags flags,
7020 cp_decl_specifier_seq *decl_specs,
7021 int* declares_class_or_enum)
7022 {
7023 bool constructor_possible_p = !parser->in_declarator_p;
7024
7025 /* Clear DECL_SPECS. */
7026 clear_decl_specs (decl_specs);
7027
7028 /* Assume no class or enumeration type is declared. */
7029 *declares_class_or_enum = 0;
7030
7031 /* Keep reading specifiers until there are no more to read. */
7032 while (true)
7033 {
7034 bool constructor_p;
7035 bool found_decl_spec;
7036 cp_token *token;
7037
7038 /* Peek at the next token. */
7039 token = cp_lexer_peek_token (parser->lexer);
7040 /* Handle attributes. */
7041 if (token->keyword == RID_ATTRIBUTE)
7042 {
7043 /* Parse the attributes. */
7044 decl_specs->attributes
7045 = chainon (decl_specs->attributes,
7046 cp_parser_attributes_opt (parser));
7047 continue;
7048 }
7049 /* Assume we will find a decl-specifier keyword. */
7050 found_decl_spec = true;
7051 /* If the next token is an appropriate keyword, we can simply
7052 add it to the list. */
7053 switch (token->keyword)
7054 {
7055 /* decl-specifier:
7056 friend */
7057 case RID_FRIEND:
7058 if (decl_specs->specs[(int) ds_friend]++)
7059 error ("duplicate %<friend%>");
7060 /* Consume the token. */
7061 cp_lexer_consume_token (parser->lexer);
7062 break;
7063
7064 /* function-specifier:
7065 inline
7066 virtual
7067 explicit */
7068 case RID_INLINE:
7069 case RID_VIRTUAL:
7070 case RID_EXPLICIT:
7071 cp_parser_function_specifier_opt (parser, decl_specs);
7072 break;
7073
7074 /* decl-specifier:
7075 typedef */
7076 case RID_TYPEDEF:
7077 ++decl_specs->specs[(int) ds_typedef];
7078 /* Consume the token. */
7079 cp_lexer_consume_token (parser->lexer);
7080 /* A constructor declarator cannot appear in a typedef. */
7081 constructor_possible_p = false;
7082 /* The "typedef" keyword can only occur in a declaration; we
7083 may as well commit at this point. */
7084 cp_parser_commit_to_tentative_parse (parser);
7085 break;
7086
7087 /* storage-class-specifier:
7088 auto
7089 register
7090 static
7091 extern
7092 mutable
7093
7094 GNU Extension:
7095 thread */
7096 case RID_AUTO:
7097 /* Consume the token. */
7098 cp_lexer_consume_token (parser->lexer);
7099 cp_parser_set_storage_class (decl_specs, sc_auto);
7100 break;
7101 case RID_REGISTER:
7102 /* Consume the token. */
7103 cp_lexer_consume_token (parser->lexer);
7104 cp_parser_set_storage_class (decl_specs, sc_register);
7105 break;
7106 case RID_STATIC:
7107 /* Consume the token. */
7108 cp_lexer_consume_token (parser->lexer);
7109 if (decl_specs->specs[(int) ds_thread])
7110 {
7111 error ("%<__thread%> before %<static%>");
7112 decl_specs->specs[(int) ds_thread] = 0;
7113 }
7114 cp_parser_set_storage_class (decl_specs, sc_static);
7115 break;
7116 case RID_EXTERN:
7117 /* Consume the token. */
7118 cp_lexer_consume_token (parser->lexer);
7119 if (decl_specs->specs[(int) ds_thread])
7120 {
7121 error ("%<__thread%> before %<extern%>");
7122 decl_specs->specs[(int) ds_thread] = 0;
7123 }
7124 cp_parser_set_storage_class (decl_specs, sc_extern);
7125 break;
7126 case RID_MUTABLE:
7127 /* Consume the token. */
7128 cp_lexer_consume_token (parser->lexer);
7129 cp_parser_set_storage_class (decl_specs, sc_mutable);
7130 break;
7131 case RID_THREAD:
7132 /* Consume the token. */
7133 cp_lexer_consume_token (parser->lexer);
7134 ++decl_specs->specs[(int) ds_thread];
7135 break;
7136
7137 default:
7138 /* We did not yet find a decl-specifier yet. */
7139 found_decl_spec = false;
7140 break;
7141 }
7142
7143 /* Constructors are a special case. The `S' in `S()' is not a
7144 decl-specifier; it is the beginning of the declarator. */
7145 constructor_p
7146 = (!found_decl_spec
7147 && constructor_possible_p
7148 && (cp_parser_constructor_declarator_p
7149 (parser, decl_specs->specs[(int) ds_friend] != 0)));
7150
7151 /* If we don't have a DECL_SPEC yet, then we must be looking at
7152 a type-specifier. */
7153 if (!found_decl_spec && !constructor_p)
7154 {
7155 int decl_spec_declares_class_or_enum;
7156 bool is_cv_qualifier;
7157 tree type_spec;
7158
7159 type_spec
7160 = cp_parser_type_specifier (parser, flags,
7161 decl_specs,
7162 /*is_declaration=*/true,
7163 &decl_spec_declares_class_or_enum,
7164 &is_cv_qualifier);
7165
7166 *declares_class_or_enum |= decl_spec_declares_class_or_enum;
7167
7168 /* If this type-specifier referenced a user-defined type
7169 (a typedef, class-name, etc.), then we can't allow any
7170 more such type-specifiers henceforth.
7171
7172 [dcl.spec]
7173
7174 The longest sequence of decl-specifiers that could
7175 possibly be a type name is taken as the
7176 decl-specifier-seq of a declaration. The sequence shall
7177 be self-consistent as described below.
7178
7179 [dcl.type]
7180
7181 As a general rule, at most one type-specifier is allowed
7182 in the complete decl-specifier-seq of a declaration. The
7183 only exceptions are the following:
7184
7185 -- const or volatile can be combined with any other
7186 type-specifier.
7187
7188 -- signed or unsigned can be combined with char, long,
7189 short, or int.
7190
7191 -- ..
7192
7193 Example:
7194
7195 typedef char* Pc;
7196 void g (const int Pc);
7197
7198 Here, Pc is *not* part of the decl-specifier seq; it's
7199 the declarator. Therefore, once we see a type-specifier
7200 (other than a cv-qualifier), we forbid any additional
7201 user-defined types. We *do* still allow things like `int
7202 int' to be considered a decl-specifier-seq, and issue the
7203 error message later. */
7204 if (type_spec && !is_cv_qualifier)
7205 flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
7206 /* A constructor declarator cannot follow a type-specifier. */
7207 if (type_spec)
7208 {
7209 constructor_possible_p = false;
7210 found_decl_spec = true;
7211 }
7212 }
7213
7214 /* If we still do not have a DECL_SPEC, then there are no more
7215 decl-specifiers. */
7216 if (!found_decl_spec)
7217 break;
7218
7219 decl_specs->any_specifiers_p = true;
7220 /* After we see one decl-specifier, further decl-specifiers are
7221 always optional. */
7222 flags |= CP_PARSER_FLAGS_OPTIONAL;
7223 }
7224
7225 /* Don't allow a friend specifier with a class definition. */
7226 if (decl_specs->specs[(int) ds_friend] != 0
7227 && (*declares_class_or_enum & 2))
7228 error ("class definition may not be declared a friend");
7229 }
7230
7231 /* Parse an (optional) storage-class-specifier.
7232
7233 storage-class-specifier:
7234 auto
7235 register
7236 static
7237 extern
7238 mutable
7239
7240 GNU Extension:
7241
7242 storage-class-specifier:
7243 thread
7244
7245 Returns an IDENTIFIER_NODE corresponding to the keyword used. */
7246
7247 static tree
7248 cp_parser_storage_class_specifier_opt (cp_parser* parser)
7249 {
7250 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7251 {
7252 case RID_AUTO:
7253 case RID_REGISTER:
7254 case RID_STATIC:
7255 case RID_EXTERN:
7256 case RID_MUTABLE:
7257 case RID_THREAD:
7258 /* Consume the token. */
7259 return cp_lexer_consume_token (parser->lexer)->value;
7260
7261 default:
7262 return NULL_TREE;
7263 }
7264 }
7265
7266 /* Parse an (optional) function-specifier.
7267
7268 function-specifier:
7269 inline
7270 virtual
7271 explicit
7272
7273 Returns an IDENTIFIER_NODE corresponding to the keyword used.
7274 Updates DECL_SPECS, if it is non-NULL. */
7275
7276 static tree
7277 cp_parser_function_specifier_opt (cp_parser* parser,
7278 cp_decl_specifier_seq *decl_specs)
7279 {
7280 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7281 {
7282 case RID_INLINE:
7283 if (decl_specs)
7284 ++decl_specs->specs[(int) ds_inline];
7285 break;
7286
7287 case RID_VIRTUAL:
7288 if (decl_specs)
7289 ++decl_specs->specs[(int) ds_virtual];
7290 break;
7291
7292 case RID_EXPLICIT:
7293 if (decl_specs)
7294 ++decl_specs->specs[(int) ds_explicit];
7295 break;
7296
7297 default:
7298 return NULL_TREE;
7299 }
7300
7301 /* Consume the token. */
7302 return cp_lexer_consume_token (parser->lexer)->value;
7303 }
7304
7305 /* Parse a linkage-specification.
7306
7307 linkage-specification:
7308 extern string-literal { declaration-seq [opt] }
7309 extern string-literal declaration */
7310
7311 static void
7312 cp_parser_linkage_specification (cp_parser* parser)
7313 {
7314 tree linkage;
7315
7316 /* Look for the `extern' keyword. */
7317 cp_parser_require_keyword (parser, RID_EXTERN, "`extern'");
7318
7319 /* Look for the string-literal. */
7320 linkage = cp_parser_string_literal (parser, false, false);
7321
7322 /* Transform the literal into an identifier. If the literal is a
7323 wide-character string, or contains embedded NULs, then we can't
7324 handle it as the user wants. */
7325 if (strlen (TREE_STRING_POINTER (linkage))
7326 != (size_t) (TREE_STRING_LENGTH (linkage) - 1))
7327 {
7328 cp_parser_error (parser, "invalid linkage-specification");
7329 /* Assume C++ linkage. */
7330 linkage = lang_name_cplusplus;
7331 }
7332 else
7333 linkage = get_identifier (TREE_STRING_POINTER (linkage));
7334
7335 /* We're now using the new linkage. */
7336 push_lang_context (linkage);
7337
7338 /* If the next token is a `{', then we're using the first
7339 production. */
7340 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
7341 {
7342 /* Consume the `{' token. */
7343 cp_lexer_consume_token (parser->lexer);
7344 /* Parse the declarations. */
7345 cp_parser_declaration_seq_opt (parser);
7346 /* Look for the closing `}'. */
7347 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
7348 }
7349 /* Otherwise, there's just one declaration. */
7350 else
7351 {
7352 bool saved_in_unbraced_linkage_specification_p;
7353
7354 saved_in_unbraced_linkage_specification_p
7355 = parser->in_unbraced_linkage_specification_p;
7356 parser->in_unbraced_linkage_specification_p = true;
7357 have_extern_spec = true;
7358 cp_parser_declaration (parser);
7359 have_extern_spec = false;
7360 parser->in_unbraced_linkage_specification_p
7361 = saved_in_unbraced_linkage_specification_p;
7362 }
7363
7364 /* We're done with the linkage-specification. */
7365 pop_lang_context ();
7366 }
7367
7368 /* Special member functions [gram.special] */
7369
7370 /* Parse a conversion-function-id.
7371
7372 conversion-function-id:
7373 operator conversion-type-id
7374
7375 Returns an IDENTIFIER_NODE representing the operator. */
7376
7377 static tree
7378 cp_parser_conversion_function_id (cp_parser* parser)
7379 {
7380 tree type;
7381 tree saved_scope;
7382 tree saved_qualifying_scope;
7383 tree saved_object_scope;
7384 bool pop_p = false;
7385
7386 /* Look for the `operator' token. */
7387 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7388 return error_mark_node;
7389 /* When we parse the conversion-type-id, the current scope will be
7390 reset. However, we need that information in able to look up the
7391 conversion function later, so we save it here. */
7392 saved_scope = parser->scope;
7393 saved_qualifying_scope = parser->qualifying_scope;
7394 saved_object_scope = parser->object_scope;
7395 /* We must enter the scope of the class so that the names of
7396 entities declared within the class are available in the
7397 conversion-type-id. For example, consider:
7398
7399 struct S {
7400 typedef int I;
7401 operator I();
7402 };
7403
7404 S::operator I() { ... }
7405
7406 In order to see that `I' is a type-name in the definition, we
7407 must be in the scope of `S'. */
7408 if (saved_scope)
7409 pop_p = push_scope (saved_scope);
7410 /* Parse the conversion-type-id. */
7411 type = cp_parser_conversion_type_id (parser);
7412 /* Leave the scope of the class, if any. */
7413 if (pop_p)
7414 pop_scope (saved_scope);
7415 /* Restore the saved scope. */
7416 parser->scope = saved_scope;
7417 parser->qualifying_scope = saved_qualifying_scope;
7418 parser->object_scope = saved_object_scope;
7419 /* If the TYPE is invalid, indicate failure. */
7420 if (type == error_mark_node)
7421 return error_mark_node;
7422 return mangle_conv_op_name_for_type (type);
7423 }
7424
7425 /* Parse a conversion-type-id:
7426
7427 conversion-type-id:
7428 type-specifier-seq conversion-declarator [opt]
7429
7430 Returns the TYPE specified. */
7431
7432 static tree
7433 cp_parser_conversion_type_id (cp_parser* parser)
7434 {
7435 tree attributes;
7436 cp_decl_specifier_seq type_specifiers;
7437 cp_declarator *declarator;
7438 tree type_specified;
7439
7440 /* Parse the attributes. */
7441 attributes = cp_parser_attributes_opt (parser);
7442 /* Parse the type-specifiers. */
7443 cp_parser_type_specifier_seq (parser, &type_specifiers);
7444 /* If that didn't work, stop. */
7445 if (type_specifiers.type == error_mark_node)
7446 return error_mark_node;
7447 /* Parse the conversion-declarator. */
7448 declarator = cp_parser_conversion_declarator_opt (parser);
7449
7450 type_specified = grokdeclarator (declarator, &type_specifiers, TYPENAME,
7451 /*initialized=*/0, &attributes);
7452 if (attributes)
7453 cplus_decl_attributes (&type_specified, attributes, /*flags=*/0);
7454 return type_specified;
7455 }
7456
7457 /* Parse an (optional) conversion-declarator.
7458
7459 conversion-declarator:
7460 ptr-operator conversion-declarator [opt]
7461
7462 */
7463
7464 static cp_declarator *
7465 cp_parser_conversion_declarator_opt (cp_parser* parser)
7466 {
7467 enum tree_code code;
7468 tree class_type;
7469 cp_cv_quals cv_quals;
7470
7471 /* We don't know if there's a ptr-operator next, or not. */
7472 cp_parser_parse_tentatively (parser);
7473 /* Try the ptr-operator. */
7474 code = cp_parser_ptr_operator (parser, &class_type, &cv_quals);
7475 /* If it worked, look for more conversion-declarators. */
7476 if (cp_parser_parse_definitely (parser))
7477 {
7478 cp_declarator *declarator;
7479
7480 /* Parse another optional declarator. */
7481 declarator = cp_parser_conversion_declarator_opt (parser);
7482
7483 /* Create the representation of the declarator. */
7484 if (class_type)
7485 declarator = make_ptrmem_declarator (cv_quals, class_type,
7486 declarator);
7487 else if (code == INDIRECT_REF)
7488 declarator = make_pointer_declarator (cv_quals, declarator);
7489 else
7490 declarator = make_reference_declarator (cv_quals, declarator);
7491
7492 return declarator;
7493 }
7494
7495 return NULL;
7496 }
7497
7498 /* Parse an (optional) ctor-initializer.
7499
7500 ctor-initializer:
7501 : mem-initializer-list
7502
7503 Returns TRUE iff the ctor-initializer was actually present. */
7504
7505 static bool
7506 cp_parser_ctor_initializer_opt (cp_parser* parser)
7507 {
7508 /* If the next token is not a `:', then there is no
7509 ctor-initializer. */
7510 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
7511 {
7512 /* Do default initialization of any bases and members. */
7513 if (DECL_CONSTRUCTOR_P (current_function_decl))
7514 finish_mem_initializers (NULL_TREE);
7515
7516 return false;
7517 }
7518
7519 /* Consume the `:' token. */
7520 cp_lexer_consume_token (parser->lexer);
7521 /* And the mem-initializer-list. */
7522 cp_parser_mem_initializer_list (parser);
7523
7524 return true;
7525 }
7526
7527 /* Parse a mem-initializer-list.
7528
7529 mem-initializer-list:
7530 mem-initializer
7531 mem-initializer , mem-initializer-list */
7532
7533 static void
7534 cp_parser_mem_initializer_list (cp_parser* parser)
7535 {
7536 tree mem_initializer_list = NULL_TREE;
7537
7538 /* Let the semantic analysis code know that we are starting the
7539 mem-initializer-list. */
7540 if (!DECL_CONSTRUCTOR_P (current_function_decl))
7541 error ("only constructors take base initializers");
7542
7543 /* Loop through the list. */
7544 while (true)
7545 {
7546 tree mem_initializer;
7547
7548 /* Parse the mem-initializer. */
7549 mem_initializer = cp_parser_mem_initializer (parser);
7550 /* Add it to the list, unless it was erroneous. */
7551 if (mem_initializer)
7552 {
7553 TREE_CHAIN (mem_initializer) = mem_initializer_list;
7554 mem_initializer_list = mem_initializer;
7555 }
7556 /* If the next token is not a `,', we're done. */
7557 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
7558 break;
7559 /* Consume the `,' token. */
7560 cp_lexer_consume_token (parser->lexer);
7561 }
7562
7563 /* Perform semantic analysis. */
7564 if (DECL_CONSTRUCTOR_P (current_function_decl))
7565 finish_mem_initializers (mem_initializer_list);
7566 }
7567
7568 /* Parse a mem-initializer.
7569
7570 mem-initializer:
7571 mem-initializer-id ( expression-list [opt] )
7572
7573 GNU extension:
7574
7575 mem-initializer:
7576 ( expression-list [opt] )
7577
7578 Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base
7579 class) or FIELD_DECL (for a non-static data member) to initialize;
7580 the TREE_VALUE is the expression-list. */
7581
7582 static tree
7583 cp_parser_mem_initializer (cp_parser* parser)
7584 {
7585 tree mem_initializer_id;
7586 tree expression_list;
7587 tree member;
7588
7589 /* Find out what is being initialized. */
7590 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
7591 {
7592 pedwarn ("anachronistic old-style base class initializer");
7593 mem_initializer_id = NULL_TREE;
7594 }
7595 else
7596 mem_initializer_id = cp_parser_mem_initializer_id (parser);
7597 member = expand_member_init (mem_initializer_id);
7598 if (member && !DECL_P (member))
7599 in_base_initializer = 1;
7600
7601 expression_list
7602 = cp_parser_parenthesized_expression_list (parser, false,
7603 /*non_constant_p=*/NULL);
7604 if (!expression_list)
7605 expression_list = void_type_node;
7606
7607 in_base_initializer = 0;
7608
7609 return member ? build_tree_list (member, expression_list) : NULL_TREE;
7610 }
7611
7612 /* Parse a mem-initializer-id.
7613
7614 mem-initializer-id:
7615 :: [opt] nested-name-specifier [opt] class-name
7616 identifier
7617
7618 Returns a TYPE indicating the class to be initializer for the first
7619 production. Returns an IDENTIFIER_NODE indicating the data member
7620 to be initialized for the second production. */
7621
7622 static tree
7623 cp_parser_mem_initializer_id (cp_parser* parser)
7624 {
7625 bool global_scope_p;
7626 bool nested_name_specifier_p;
7627 bool template_p = false;
7628 tree id;
7629
7630 /* `typename' is not allowed in this context ([temp.res]). */
7631 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
7632 {
7633 error ("keyword %<typename%> not allowed in this context (a qualified "
7634 "member initializer is implicitly a type)");
7635 cp_lexer_consume_token (parser->lexer);
7636 }
7637 /* Look for the optional `::' operator. */
7638 global_scope_p
7639 = (cp_parser_global_scope_opt (parser,
7640 /*current_scope_valid_p=*/false)
7641 != NULL_TREE);
7642 /* Look for the optional nested-name-specifier. The simplest way to
7643 implement:
7644
7645 [temp.res]
7646
7647 The keyword `typename' is not permitted in a base-specifier or
7648 mem-initializer; in these contexts a qualified name that
7649 depends on a template-parameter is implicitly assumed to be a
7650 type name.
7651
7652 is to assume that we have seen the `typename' keyword at this
7653 point. */
7654 nested_name_specifier_p
7655 = (cp_parser_nested_name_specifier_opt (parser,
7656 /*typename_keyword_p=*/true,
7657 /*check_dependency_p=*/true,
7658 /*type_p=*/true,
7659 /*is_declaration=*/true)
7660 != NULL_TREE);
7661 if (nested_name_specifier_p)
7662 template_p = cp_parser_optional_template_keyword (parser);
7663 /* If there is a `::' operator or a nested-name-specifier, then we
7664 are definitely looking for a class-name. */
7665 if (global_scope_p || nested_name_specifier_p)
7666 return cp_parser_class_name (parser,
7667 /*typename_keyword_p=*/true,
7668 /*template_keyword_p=*/template_p,
7669 none_type,
7670 /*check_dependency_p=*/true,
7671 /*class_head_p=*/false,
7672 /*is_declaration=*/true);
7673 /* Otherwise, we could also be looking for an ordinary identifier. */
7674 cp_parser_parse_tentatively (parser);
7675 /* Try a class-name. */
7676 id = cp_parser_class_name (parser,
7677 /*typename_keyword_p=*/true,
7678 /*template_keyword_p=*/false,
7679 none_type,
7680 /*check_dependency_p=*/true,
7681 /*class_head_p=*/false,
7682 /*is_declaration=*/true);
7683 /* If we found one, we're done. */
7684 if (cp_parser_parse_definitely (parser))
7685 return id;
7686 /* Otherwise, look for an ordinary identifier. */
7687 return cp_parser_identifier (parser);
7688 }
7689
7690 /* Overloading [gram.over] */
7691
7692 /* Parse an operator-function-id.
7693
7694 operator-function-id:
7695 operator operator
7696
7697 Returns an IDENTIFIER_NODE for the operator which is a
7698 human-readable spelling of the identifier, e.g., `operator +'. */
7699
7700 static tree
7701 cp_parser_operator_function_id (cp_parser* parser)
7702 {
7703 /* Look for the `operator' keyword. */
7704 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7705 return error_mark_node;
7706 /* And then the name of the operator itself. */
7707 return cp_parser_operator (parser);
7708 }
7709
7710 /* Parse an operator.
7711
7712 operator:
7713 new delete new[] delete[] + - * / % ^ & | ~ ! = < >
7714 += -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
7715 || ++ -- , ->* -> () []
7716
7717 GNU Extensions:
7718
7719 operator:
7720 <? >? <?= >?=
7721
7722 Returns an IDENTIFIER_NODE for the operator which is a
7723 human-readable spelling of the identifier, e.g., `operator +'. */
7724
7725 static tree
7726 cp_parser_operator (cp_parser* parser)
7727 {
7728 tree id = NULL_TREE;
7729 cp_token *token;
7730
7731 /* Peek at the next token. */
7732 token = cp_lexer_peek_token (parser->lexer);
7733 /* Figure out which operator we have. */
7734 switch (token->type)
7735 {
7736 case CPP_KEYWORD:
7737 {
7738 enum tree_code op;
7739
7740 /* The keyword should be either `new' or `delete'. */
7741 if (token->keyword == RID_NEW)
7742 op = NEW_EXPR;
7743 else if (token->keyword == RID_DELETE)
7744 op = DELETE_EXPR;
7745 else
7746 break;
7747
7748 /* Consume the `new' or `delete' token. */
7749 cp_lexer_consume_token (parser->lexer);
7750
7751 /* Peek at the next token. */
7752 token = cp_lexer_peek_token (parser->lexer);
7753 /* If it's a `[' token then this is the array variant of the
7754 operator. */
7755 if (token->type == CPP_OPEN_SQUARE)
7756 {
7757 /* Consume the `[' token. */
7758 cp_lexer_consume_token (parser->lexer);
7759 /* Look for the `]' token. */
7760 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
7761 id = ansi_opname (op == NEW_EXPR
7762 ? VEC_NEW_EXPR : VEC_DELETE_EXPR);
7763 }
7764 /* Otherwise, we have the non-array variant. */
7765 else
7766 id = ansi_opname (op);
7767
7768 return id;
7769 }
7770
7771 case CPP_PLUS:
7772 id = ansi_opname (PLUS_EXPR);
7773 break;
7774
7775 case CPP_MINUS:
7776 id = ansi_opname (MINUS_EXPR);
7777 break;
7778
7779 case CPP_MULT:
7780 id = ansi_opname (MULT_EXPR);
7781 break;
7782
7783 case CPP_DIV:
7784 id = ansi_opname (TRUNC_DIV_EXPR);
7785 break;
7786
7787 case CPP_MOD:
7788 id = ansi_opname (TRUNC_MOD_EXPR);
7789 break;
7790
7791 case CPP_XOR:
7792 id = ansi_opname (BIT_XOR_EXPR);
7793 break;
7794
7795 case CPP_AND:
7796 id = ansi_opname (BIT_AND_EXPR);
7797 break;
7798
7799 case CPP_OR:
7800 id = ansi_opname (BIT_IOR_EXPR);
7801 break;
7802
7803 case CPP_COMPL:
7804 id = ansi_opname (BIT_NOT_EXPR);
7805 break;
7806
7807 case CPP_NOT:
7808 id = ansi_opname (TRUTH_NOT_EXPR);
7809 break;
7810
7811 case CPP_EQ:
7812 id = ansi_assopname (NOP_EXPR);
7813 break;
7814
7815 case CPP_LESS:
7816 id = ansi_opname (LT_EXPR);
7817 break;
7818
7819 case CPP_GREATER:
7820 id = ansi_opname (GT_EXPR);
7821 break;
7822
7823 case CPP_PLUS_EQ:
7824 id = ansi_assopname (PLUS_EXPR);
7825 break;
7826
7827 case CPP_MINUS_EQ:
7828 id = ansi_assopname (MINUS_EXPR);
7829 break;
7830
7831 case CPP_MULT_EQ:
7832 id = ansi_assopname (MULT_EXPR);
7833 break;
7834
7835 case CPP_DIV_EQ:
7836 id = ansi_assopname (TRUNC_DIV_EXPR);
7837 break;
7838
7839 case CPP_MOD_EQ:
7840 id = ansi_assopname (TRUNC_MOD_EXPR);
7841 break;
7842
7843 case CPP_XOR_EQ:
7844 id = ansi_assopname (BIT_XOR_EXPR);
7845 break;
7846
7847 case CPP_AND_EQ:
7848 id = ansi_assopname (BIT_AND_EXPR);
7849 break;
7850
7851 case CPP_OR_EQ:
7852 id = ansi_assopname (BIT_IOR_EXPR);
7853 break;
7854
7855 case CPP_LSHIFT:
7856 id = ansi_opname (LSHIFT_EXPR);
7857 break;
7858
7859 case CPP_RSHIFT:
7860 id = ansi_opname (RSHIFT_EXPR);
7861 break;
7862
7863 case CPP_LSHIFT_EQ:
7864 id = ansi_assopname (LSHIFT_EXPR);
7865 break;
7866
7867 case CPP_RSHIFT_EQ:
7868 id = ansi_assopname (RSHIFT_EXPR);
7869 break;
7870
7871 case CPP_EQ_EQ:
7872 id = ansi_opname (EQ_EXPR);
7873 break;
7874
7875 case CPP_NOT_EQ:
7876 id = ansi_opname (NE_EXPR);
7877 break;
7878
7879 case CPP_LESS_EQ:
7880 id = ansi_opname (LE_EXPR);
7881 break;
7882
7883 case CPP_GREATER_EQ:
7884 id = ansi_opname (GE_EXPR);
7885 break;
7886
7887 case CPP_AND_AND:
7888 id = ansi_opname (TRUTH_ANDIF_EXPR);
7889 break;
7890
7891 case CPP_OR_OR:
7892 id = ansi_opname (TRUTH_ORIF_EXPR);
7893 break;
7894
7895 case CPP_PLUS_PLUS:
7896 id = ansi_opname (POSTINCREMENT_EXPR);
7897 break;
7898
7899 case CPP_MINUS_MINUS:
7900 id = ansi_opname (PREDECREMENT_EXPR);
7901 break;
7902
7903 case CPP_COMMA:
7904 id = ansi_opname (COMPOUND_EXPR);
7905 break;
7906
7907 case CPP_DEREF_STAR:
7908 id = ansi_opname (MEMBER_REF);
7909 break;
7910
7911 case CPP_DEREF:
7912 id = ansi_opname (COMPONENT_REF);
7913 break;
7914
7915 case CPP_OPEN_PAREN:
7916 /* Consume the `('. */
7917 cp_lexer_consume_token (parser->lexer);
7918 /* Look for the matching `)'. */
7919 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
7920 return ansi_opname (CALL_EXPR);
7921
7922 case CPP_OPEN_SQUARE:
7923 /* Consume the `['. */
7924 cp_lexer_consume_token (parser->lexer);
7925 /* Look for the matching `]'. */
7926 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
7927 return ansi_opname (ARRAY_REF);
7928
7929 /* Extensions. */
7930 case CPP_MIN:
7931 id = ansi_opname (MIN_EXPR);
7932 break;
7933
7934 case CPP_MAX:
7935 id = ansi_opname (MAX_EXPR);
7936 break;
7937
7938 case CPP_MIN_EQ:
7939 id = ansi_assopname (MIN_EXPR);
7940 break;
7941
7942 case CPP_MAX_EQ:
7943 id = ansi_assopname (MAX_EXPR);
7944 break;
7945
7946 default:
7947 /* Anything else is an error. */
7948 break;
7949 }
7950
7951 /* If we have selected an identifier, we need to consume the
7952 operator token. */
7953 if (id)
7954 cp_lexer_consume_token (parser->lexer);
7955 /* Otherwise, no valid operator name was present. */
7956 else
7957 {
7958 cp_parser_error (parser, "expected operator");
7959 id = error_mark_node;
7960 }
7961
7962 return id;
7963 }
7964
7965 /* Parse a template-declaration.
7966
7967 template-declaration:
7968 export [opt] template < template-parameter-list > declaration
7969
7970 If MEMBER_P is TRUE, this template-declaration occurs within a
7971 class-specifier.
7972
7973 The grammar rule given by the standard isn't correct. What
7974 is really meant is:
7975
7976 template-declaration:
7977 export [opt] template-parameter-list-seq
7978 decl-specifier-seq [opt] init-declarator [opt] ;
7979 export [opt] template-parameter-list-seq
7980 function-definition
7981
7982 template-parameter-list-seq:
7983 template-parameter-list-seq [opt]
7984 template < template-parameter-list > */
7985
7986 static void
7987 cp_parser_template_declaration (cp_parser* parser, bool member_p)
7988 {
7989 /* Check for `export'. */
7990 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
7991 {
7992 /* Consume the `export' token. */
7993 cp_lexer_consume_token (parser->lexer);
7994 /* Warn that we do not support `export'. */
7995 warning ("keyword %<export%> not implemented, and will be ignored");
7996 }
7997
7998 cp_parser_template_declaration_after_export (parser, member_p);
7999 }
8000
8001 /* Parse a template-parameter-list.
8002
8003 template-parameter-list:
8004 template-parameter
8005 template-parameter-list , template-parameter
8006
8007 Returns a TREE_LIST. Each node represents a template parameter.
8008 The nodes are connected via their TREE_CHAINs. */
8009
8010 static tree
8011 cp_parser_template_parameter_list (cp_parser* parser)
8012 {
8013 tree parameter_list = NULL_TREE;
8014
8015 while (true)
8016 {
8017 tree parameter;
8018 cp_token *token;
8019 bool is_non_type;
8020
8021 /* Parse the template-parameter. */
8022 parameter = cp_parser_template_parameter (parser, &is_non_type);
8023 /* Add it to the list. */
8024 parameter_list = process_template_parm (parameter_list,
8025 parameter,
8026 is_non_type);
8027 /* Peek at the next token. */
8028 token = cp_lexer_peek_token (parser->lexer);
8029 /* If it's not a `,', we're done. */
8030 if (token->type != CPP_COMMA)
8031 break;
8032 /* Otherwise, consume the `,' token. */
8033 cp_lexer_consume_token (parser->lexer);
8034 }
8035
8036 return parameter_list;
8037 }
8038
8039 /* Parse a template-parameter.
8040
8041 template-parameter:
8042 type-parameter
8043 parameter-declaration
8044
8045 Returns a TREE_LIST. The TREE_VALUE represents the parameter. The
8046 TREE_PURPOSE is the default value, if any. *IS_NON_TYPE is set to
8047 true iff this parameter is a non-type parameter. */
8048
8049 static tree
8050 cp_parser_template_parameter (cp_parser* parser, bool *is_non_type)
8051 {
8052 cp_token *token;
8053 cp_parameter_declarator *parameter_declarator;
8054
8055 /* Assume it is a type parameter or a template parameter. */
8056 *is_non_type = false;
8057 /* Peek at the next token. */
8058 token = cp_lexer_peek_token (parser->lexer);
8059 /* If it is `class' or `template', we have a type-parameter. */
8060 if (token->keyword == RID_TEMPLATE)
8061 return cp_parser_type_parameter (parser);
8062 /* If it is `class' or `typename' we do not know yet whether it is a
8063 type parameter or a non-type parameter. Consider:
8064
8065 template <typename T, typename T::X X> ...
8066
8067 or:
8068
8069 template <class C, class D*> ...
8070
8071 Here, the first parameter is a type parameter, and the second is
8072 a non-type parameter. We can tell by looking at the token after
8073 the identifier -- if it is a `,', `=', or `>' then we have a type
8074 parameter. */
8075 if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
8076 {
8077 /* Peek at the token after `class' or `typename'. */
8078 token = cp_lexer_peek_nth_token (parser->lexer, 2);
8079 /* If it's an identifier, skip it. */
8080 if (token->type == CPP_NAME)
8081 token = cp_lexer_peek_nth_token (parser->lexer, 3);
8082 /* Now, see if the token looks like the end of a template
8083 parameter. */
8084 if (token->type == CPP_COMMA
8085 || token->type == CPP_EQ
8086 || token->type == CPP_GREATER)
8087 return cp_parser_type_parameter (parser);
8088 }
8089
8090 /* Otherwise, it is a non-type parameter.
8091
8092 [temp.param]
8093
8094 When parsing a default template-argument for a non-type
8095 template-parameter, the first non-nested `>' is taken as the end
8096 of the template parameter-list rather than a greater-than
8097 operator. */
8098 *is_non_type = true;
8099 parameter_declarator
8100 = cp_parser_parameter_declaration (parser, /*template_parm_p=*/true,
8101 /*parenthesized_p=*/NULL);
8102 return (build_tree_list
8103 (parameter_declarator->default_argument,
8104 grokdeclarator (parameter_declarator->declarator,
8105 &parameter_declarator->decl_specifiers,
8106 PARM, /*initialized=*/0,
8107 /*attrlist=*/NULL)));
8108 }
8109
8110 /* Parse a type-parameter.
8111
8112 type-parameter:
8113 class identifier [opt]
8114 class identifier [opt] = type-id
8115 typename identifier [opt]
8116 typename identifier [opt] = type-id
8117 template < template-parameter-list > class identifier [opt]
8118 template < template-parameter-list > class identifier [opt]
8119 = id-expression
8120
8121 Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The
8122 TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is
8123 the declaration of the parameter. */
8124
8125 static tree
8126 cp_parser_type_parameter (cp_parser* parser)
8127 {
8128 cp_token *token;
8129 tree parameter;
8130
8131 /* Look for a keyword to tell us what kind of parameter this is. */
8132 token = cp_parser_require (parser, CPP_KEYWORD,
8133 "`class', `typename', or `template'");
8134 if (!token)
8135 return error_mark_node;
8136
8137 switch (token->keyword)
8138 {
8139 case RID_CLASS:
8140 case RID_TYPENAME:
8141 {
8142 tree identifier;
8143 tree default_argument;
8144
8145 /* If the next token is an identifier, then it names the
8146 parameter. */
8147 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8148 identifier = cp_parser_identifier (parser);
8149 else
8150 identifier = NULL_TREE;
8151
8152 /* Create the parameter. */
8153 parameter = finish_template_type_parm (class_type_node, identifier);
8154
8155 /* If the next token is an `=', we have a default argument. */
8156 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8157 {
8158 /* Consume the `=' token. */
8159 cp_lexer_consume_token (parser->lexer);
8160 /* Parse the default-argument. */
8161 default_argument = cp_parser_type_id (parser);
8162 }
8163 else
8164 default_argument = NULL_TREE;
8165
8166 /* Create the combined representation of the parameter and the
8167 default argument. */
8168 parameter = build_tree_list (default_argument, parameter);
8169 }
8170 break;
8171
8172 case RID_TEMPLATE:
8173 {
8174 tree parameter_list;
8175 tree identifier;
8176 tree default_argument;
8177
8178 /* Look for the `<'. */
8179 cp_parser_require (parser, CPP_LESS, "`<'");
8180 /* Parse the template-parameter-list. */
8181 begin_template_parm_list ();
8182 parameter_list
8183 = cp_parser_template_parameter_list (parser);
8184 parameter_list = end_template_parm_list (parameter_list);
8185 /* Look for the `>'. */
8186 cp_parser_require (parser, CPP_GREATER, "`>'");
8187 /* Look for the `class' keyword. */
8188 cp_parser_require_keyword (parser, RID_CLASS, "`class'");
8189 /* If the next token is an `=', then there is a
8190 default-argument. If the next token is a `>', we are at
8191 the end of the parameter-list. If the next token is a `,',
8192 then we are at the end of this parameter. */
8193 if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
8194 && cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
8195 && cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
8196 {
8197 identifier = cp_parser_identifier (parser);
8198 /* Treat invalid names as if the parameter were nameless. */
8199 if (identifier == error_mark_node)
8200 identifier = NULL_TREE;
8201 }
8202 else
8203 identifier = NULL_TREE;
8204
8205 /* Create the template parameter. */
8206 parameter = finish_template_template_parm (class_type_node,
8207 identifier);
8208
8209 /* If the next token is an `=', then there is a
8210 default-argument. */
8211 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8212 {
8213 bool is_template;
8214
8215 /* Consume the `='. */
8216 cp_lexer_consume_token (parser->lexer);
8217 /* Parse the id-expression. */
8218 default_argument
8219 = cp_parser_id_expression (parser,
8220 /*template_keyword_p=*/false,
8221 /*check_dependency_p=*/true,
8222 /*template_p=*/&is_template,
8223 /*declarator_p=*/false);
8224 if (TREE_CODE (default_argument) == TYPE_DECL)
8225 /* If the id-expression was a template-id that refers to
8226 a template-class, we already have the declaration here,
8227 so no further lookup is needed. */
8228 ;
8229 else
8230 /* Look up the name. */
8231 default_argument
8232 = cp_parser_lookup_name (parser, default_argument,
8233 none_type,
8234 /*is_template=*/is_template,
8235 /*is_namespace=*/false,
8236 /*check_dependency=*/true,
8237 /*ambiguous_p=*/NULL);
8238 /* See if the default argument is valid. */
8239 default_argument
8240 = check_template_template_default_arg (default_argument);
8241 }
8242 else
8243 default_argument = NULL_TREE;
8244
8245 /* Create the combined representation of the parameter and the
8246 default argument. */
8247 parameter = build_tree_list (default_argument, parameter);
8248 }
8249 break;
8250
8251 default:
8252 gcc_unreachable ();
8253 break;
8254 }
8255
8256 return parameter;
8257 }
8258
8259 /* Parse a template-id.
8260
8261 template-id:
8262 template-name < template-argument-list [opt] >
8263
8264 If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
8265 `template' keyword. In this case, a TEMPLATE_ID_EXPR will be
8266 returned. Otherwise, if the template-name names a function, or set
8267 of functions, returns a TEMPLATE_ID_EXPR. If the template-name
8268 names a class, returns a TYPE_DECL for the specialization.
8269
8270 If CHECK_DEPENDENCY_P is FALSE, names are looked up in
8271 uninstantiated templates. */
8272
8273 static tree
8274 cp_parser_template_id (cp_parser *parser,
8275 bool template_keyword_p,
8276 bool check_dependency_p,
8277 bool is_declaration)
8278 {
8279 tree template;
8280 tree arguments;
8281 tree template_id;
8282 cp_token_position start_of_id = 0;
8283 tree access_check = NULL_TREE;
8284 cp_token *next_token, *next_token_2;
8285 bool is_identifier;
8286
8287 /* If the next token corresponds to a template-id, there is no need
8288 to reparse it. */
8289 next_token = cp_lexer_peek_token (parser->lexer);
8290 if (next_token->type == CPP_TEMPLATE_ID)
8291 {
8292 tree value;
8293 tree check;
8294
8295 /* Get the stored value. */
8296 value = cp_lexer_consume_token (parser->lexer)->value;
8297 /* Perform any access checks that were deferred. */
8298 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
8299 perform_or_defer_access_check (TREE_PURPOSE (check),
8300 TREE_VALUE (check));
8301 /* Return the stored value. */
8302 return TREE_VALUE (value);
8303 }
8304
8305 /* Avoid performing name lookup if there is no possibility of
8306 finding a template-id. */
8307 if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR)
8308 || (next_token->type == CPP_NAME
8309 && !cp_parser_nth_token_starts_template_argument_list_p
8310 (parser, 2)))
8311 {
8312 cp_parser_error (parser, "expected template-id");
8313 return error_mark_node;
8314 }
8315
8316 /* Remember where the template-id starts. */
8317 if (cp_parser_parsing_tentatively (parser)
8318 && !cp_parser_committed_to_tentative_parse (parser))
8319 start_of_id = cp_lexer_token_position (parser->lexer, false);
8320
8321 push_deferring_access_checks (dk_deferred);
8322
8323 /* Parse the template-name. */
8324 is_identifier = false;
8325 template = cp_parser_template_name (parser, template_keyword_p,
8326 check_dependency_p,
8327 is_declaration,
8328 &is_identifier);
8329 if (template == error_mark_node || is_identifier)
8330 {
8331 pop_deferring_access_checks ();
8332 return template;
8333 }
8334
8335 /* If we find the sequence `[:' after a template-name, it's probably
8336 a digraph-typo for `< ::'. Substitute the tokens and check if we can
8337 parse correctly the argument list. */
8338 next_token = cp_lexer_peek_token (parser->lexer);
8339 next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2);
8340 if (next_token->type == CPP_OPEN_SQUARE
8341 && next_token->flags & DIGRAPH
8342 && next_token_2->type == CPP_COLON
8343 && !(next_token_2->flags & PREV_WHITE))
8344 {
8345 cp_parser_parse_tentatively (parser);
8346 /* Change `:' into `::'. */
8347 next_token_2->type = CPP_SCOPE;
8348 /* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is
8349 CPP_LESS. */
8350 cp_lexer_consume_token (parser->lexer);
8351 /* Parse the arguments. */
8352 arguments = cp_parser_enclosed_template_argument_list (parser);
8353 if (!cp_parser_parse_definitely (parser))
8354 {
8355 /* If we couldn't parse an argument list, then we revert our changes
8356 and return simply an error. Maybe this is not a template-id
8357 after all. */
8358 next_token_2->type = CPP_COLON;
8359 cp_parser_error (parser, "expected %<<%>");
8360 pop_deferring_access_checks ();
8361 return error_mark_node;
8362 }
8363 /* Otherwise, emit an error about the invalid digraph, but continue
8364 parsing because we got our argument list. */
8365 pedwarn ("%<<::%> cannot begin a template-argument list");
8366 inform ("%<<:%> is an alternate spelling for %<[%>. Insert whitespace "
8367 "between %<<%> and %<::%>");
8368 if (!flag_permissive)
8369 {
8370 static bool hint;
8371 if (!hint)
8372 {
8373 inform ("(if you use -fpermissive G++ will accept your code)");
8374 hint = true;
8375 }
8376 }
8377 }
8378 else
8379 {
8380 /* Look for the `<' that starts the template-argument-list. */
8381 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
8382 {
8383 pop_deferring_access_checks ();
8384 return error_mark_node;
8385 }
8386 /* Parse the arguments. */
8387 arguments = cp_parser_enclosed_template_argument_list (parser);
8388 }
8389
8390 /* Build a representation of the specialization. */
8391 if (TREE_CODE (template) == IDENTIFIER_NODE)
8392 template_id = build_min_nt (TEMPLATE_ID_EXPR, template, arguments);
8393 else if (DECL_CLASS_TEMPLATE_P (template)
8394 || DECL_TEMPLATE_TEMPLATE_PARM_P (template))
8395 template_id
8396 = finish_template_type (template, arguments,
8397 cp_lexer_next_token_is (parser->lexer,
8398 CPP_SCOPE));
8399 else
8400 {
8401 /* If it's not a class-template or a template-template, it should be
8402 a function-template. */
8403 gcc_assert ((DECL_FUNCTION_TEMPLATE_P (template)
8404 || TREE_CODE (template) == OVERLOAD
8405 || BASELINK_P (template)));
8406
8407 template_id = lookup_template_function (template, arguments);
8408 }
8409
8410 /* Retrieve any deferred checks. Do not pop this access checks yet
8411 so the memory will not be reclaimed during token replacing below. */
8412 access_check = get_deferred_access_checks ();
8413
8414 /* If parsing tentatively, replace the sequence of tokens that makes
8415 up the template-id with a CPP_TEMPLATE_ID token. That way,
8416 should we re-parse the token stream, we will not have to repeat
8417 the effort required to do the parse, nor will we issue duplicate
8418 error messages about problems during instantiation of the
8419 template. */
8420 if (start_of_id)
8421 {
8422 cp_token *token = cp_lexer_token_at (parser->lexer, start_of_id);
8423
8424 /* Reset the contents of the START_OF_ID token. */
8425 token->type = CPP_TEMPLATE_ID;
8426 token->value = build_tree_list (access_check, template_id);
8427 token->keyword = RID_MAX;
8428
8429 /* Purge all subsequent tokens. */
8430 cp_lexer_purge_tokens_after (parser->lexer, start_of_id);
8431 }
8432
8433 pop_deferring_access_checks ();
8434 return template_id;
8435 }
8436
8437 /* Parse a template-name.
8438
8439 template-name:
8440 identifier
8441
8442 The standard should actually say:
8443
8444 template-name:
8445 identifier
8446 operator-function-id
8447
8448 A defect report has been filed about this issue.
8449
8450 A conversion-function-id cannot be a template name because they cannot
8451 be part of a template-id. In fact, looking at this code:
8452
8453 a.operator K<int>()
8454
8455 the conversion-function-id is "operator K<int>", and K<int> is a type-id.
8456 It is impossible to call a templated conversion-function-id with an
8457 explicit argument list, since the only allowed template parameter is
8458 the type to which it is converting.
8459
8460 If TEMPLATE_KEYWORD_P is true, then we have just seen the
8461 `template' keyword, in a construction like:
8462
8463 T::template f<3>()
8464
8465 In that case `f' is taken to be a template-name, even though there
8466 is no way of knowing for sure.
8467
8468 Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
8469 name refers to a set of overloaded functions, at least one of which
8470 is a template, or an IDENTIFIER_NODE with the name of the template,
8471 if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE,
8472 names are looked up inside uninstantiated templates. */
8473
8474 static tree
8475 cp_parser_template_name (cp_parser* parser,
8476 bool template_keyword_p,
8477 bool check_dependency_p,
8478 bool is_declaration,
8479 bool *is_identifier)
8480 {
8481 tree identifier;
8482 tree decl;
8483 tree fns;
8484
8485 /* If the next token is `operator', then we have either an
8486 operator-function-id or a conversion-function-id. */
8487 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
8488 {
8489 /* We don't know whether we're looking at an
8490 operator-function-id or a conversion-function-id. */
8491 cp_parser_parse_tentatively (parser);
8492 /* Try an operator-function-id. */
8493 identifier = cp_parser_operator_function_id (parser);
8494 /* If that didn't work, try a conversion-function-id. */
8495 if (!cp_parser_parse_definitely (parser))
8496 {
8497 cp_parser_error (parser, "expected template-name");
8498 return error_mark_node;
8499 }
8500 }
8501 /* Look for the identifier. */
8502 else
8503 identifier = cp_parser_identifier (parser);
8504
8505 /* If we didn't find an identifier, we don't have a template-id. */
8506 if (identifier == error_mark_node)
8507 return error_mark_node;
8508
8509 /* If the name immediately followed the `template' keyword, then it
8510 is a template-name. However, if the next token is not `<', then
8511 we do not treat it as a template-name, since it is not being used
8512 as part of a template-id. This enables us to handle constructs
8513 like:
8514
8515 template <typename T> struct S { S(); };
8516 template <typename T> S<T>::S();
8517
8518 correctly. We would treat `S' as a template -- if it were `S<T>'
8519 -- but we do not if there is no `<'. */
8520
8521 if (processing_template_decl
8522 && cp_parser_nth_token_starts_template_argument_list_p (parser, 1))
8523 {
8524 /* In a declaration, in a dependent context, we pretend that the
8525 "template" keyword was present in order to improve error
8526 recovery. For example, given:
8527
8528 template <typename T> void f(T::X<int>);
8529
8530 we want to treat "X<int>" as a template-id. */
8531 if (is_declaration
8532 && !template_keyword_p
8533 && parser->scope && TYPE_P (parser->scope)
8534 && check_dependency_p
8535 && dependent_type_p (parser->scope)
8536 /* Do not do this for dtors (or ctors), since they never
8537 need the template keyword before their name. */
8538 && !constructor_name_p (identifier, parser->scope))
8539 {
8540 cp_token_position start = 0;
8541
8542 /* Explain what went wrong. */
8543 error ("non-template %qD used as template", identifier);
8544 inform ("use %<%T::template %D%> to indicate that it is a template",
8545 parser->scope, identifier);
8546 /* If parsing tentatively, find the location of the "<"
8547 token. */
8548 if (cp_parser_parsing_tentatively (parser)
8549 && !cp_parser_committed_to_tentative_parse (parser))
8550 {
8551 cp_parser_simulate_error (parser);
8552 start = cp_lexer_token_position (parser->lexer, true);
8553 }
8554 /* Parse the template arguments so that we can issue error
8555 messages about them. */
8556 cp_lexer_consume_token (parser->lexer);
8557 cp_parser_enclosed_template_argument_list (parser);
8558 /* Skip tokens until we find a good place from which to
8559 continue parsing. */
8560 cp_parser_skip_to_closing_parenthesis (parser,
8561 /*recovering=*/true,
8562 /*or_comma=*/true,
8563 /*consume_paren=*/false);
8564 /* If parsing tentatively, permanently remove the
8565 template argument list. That will prevent duplicate
8566 error messages from being issued about the missing
8567 "template" keyword. */
8568 if (start)
8569 cp_lexer_purge_tokens_after (parser->lexer, start);
8570 if (is_identifier)
8571 *is_identifier = true;
8572 return identifier;
8573 }
8574
8575 /* If the "template" keyword is present, then there is generally
8576 no point in doing name-lookup, so we just return IDENTIFIER.
8577 But, if the qualifying scope is non-dependent then we can
8578 (and must) do name-lookup normally. */
8579 if (template_keyword_p
8580 && (!parser->scope
8581 || (TYPE_P (parser->scope)
8582 && dependent_type_p (parser->scope))))
8583 return identifier;
8584 }
8585
8586 /* Look up the name. */
8587 decl = cp_parser_lookup_name (parser, identifier,
8588 none_type,
8589 /*is_template=*/false,
8590 /*is_namespace=*/false,
8591 check_dependency_p,
8592 /*ambiguous_p=*/NULL);
8593 decl = maybe_get_template_decl_from_type_decl (decl);
8594
8595 /* If DECL is a template, then the name was a template-name. */
8596 if (TREE_CODE (decl) == TEMPLATE_DECL)
8597 ;
8598 else
8599 {
8600 /* The standard does not explicitly indicate whether a name that
8601 names a set of overloaded declarations, some of which are
8602 templates, is a template-name. However, such a name should
8603 be a template-name; otherwise, there is no way to form a
8604 template-id for the overloaded templates. */
8605 fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl;
8606 if (TREE_CODE (fns) == OVERLOAD)
8607 {
8608 tree fn;
8609
8610 for (fn = fns; fn; fn = OVL_NEXT (fn))
8611 if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL)
8612 break;
8613 }
8614 else
8615 {
8616 /* Otherwise, the name does not name a template. */
8617 cp_parser_error (parser, "expected template-name");
8618 return error_mark_node;
8619 }
8620 }
8621
8622 /* If DECL is dependent, and refers to a function, then just return
8623 its name; we will look it up again during template instantiation. */
8624 if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl))
8625 {
8626 tree scope = CP_DECL_CONTEXT (get_first_fn (decl));
8627 if (TYPE_P (scope) && dependent_type_p (scope))
8628 return identifier;
8629 }
8630
8631 return decl;
8632 }
8633
8634 /* Parse a template-argument-list.
8635
8636 template-argument-list:
8637 template-argument
8638 template-argument-list , template-argument
8639
8640 Returns a TREE_VEC containing the arguments. */
8641
8642 static tree
8643 cp_parser_template_argument_list (cp_parser* parser)
8644 {
8645 tree fixed_args[10];
8646 unsigned n_args = 0;
8647 unsigned alloced = 10;
8648 tree *arg_ary = fixed_args;
8649 tree vec;
8650 bool saved_in_template_argument_list_p;
8651
8652 saved_in_template_argument_list_p = parser->in_template_argument_list_p;
8653 parser->in_template_argument_list_p = true;
8654 do
8655 {
8656 tree argument;
8657
8658 if (n_args)
8659 /* Consume the comma. */
8660 cp_lexer_consume_token (parser->lexer);
8661
8662 /* Parse the template-argument. */
8663 argument = cp_parser_template_argument (parser);
8664 if (n_args == alloced)
8665 {
8666 alloced *= 2;
8667
8668 if (arg_ary == fixed_args)
8669 {
8670 arg_ary = xmalloc (sizeof (tree) * alloced);
8671 memcpy (arg_ary, fixed_args, sizeof (tree) * n_args);
8672 }
8673 else
8674 arg_ary = xrealloc (arg_ary, sizeof (tree) * alloced);
8675 }
8676 arg_ary[n_args++] = argument;
8677 }
8678 while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
8679
8680 vec = make_tree_vec (n_args);
8681
8682 while (n_args--)
8683 TREE_VEC_ELT (vec, n_args) = arg_ary[n_args];
8684
8685 if (arg_ary != fixed_args)
8686 free (arg_ary);
8687 parser->in_template_argument_list_p = saved_in_template_argument_list_p;
8688 return vec;
8689 }
8690
8691 /* Parse a template-argument.
8692
8693 template-argument:
8694 assignment-expression
8695 type-id
8696 id-expression
8697
8698 The representation is that of an assignment-expression, type-id, or
8699 id-expression -- except that the qualified id-expression is
8700 evaluated, so that the value returned is either a DECL or an
8701 OVERLOAD.
8702
8703 Although the standard says "assignment-expression", it forbids
8704 throw-expressions or assignments in the template argument.
8705 Therefore, we use "conditional-expression" instead. */
8706
8707 static tree
8708 cp_parser_template_argument (cp_parser* parser)
8709 {
8710 tree argument;
8711 bool template_p;
8712 bool address_p;
8713 bool maybe_type_id = false;
8714 cp_token *token;
8715 cp_id_kind idk;
8716 tree qualifying_class;
8717
8718 /* There's really no way to know what we're looking at, so we just
8719 try each alternative in order.
8720
8721 [temp.arg]
8722
8723 In a template-argument, an ambiguity between a type-id and an
8724 expression is resolved to a type-id, regardless of the form of
8725 the corresponding template-parameter.
8726
8727 Therefore, we try a type-id first. */
8728 cp_parser_parse_tentatively (parser);
8729 argument = cp_parser_type_id (parser);
8730 /* If there was no error parsing the type-id but the next token is a '>>',
8731 we probably found a typo for '> >'. But there are type-id which are
8732 also valid expressions. For instance:
8733
8734 struct X { int operator >> (int); };
8735 template <int V> struct Foo {};
8736 Foo<X () >> 5> r;
8737
8738 Here 'X()' is a valid type-id of a function type, but the user just
8739 wanted to write the expression "X() >> 5". Thus, we remember that we
8740 found a valid type-id, but we still try to parse the argument as an
8741 expression to see what happens. */
8742 if (!cp_parser_error_occurred (parser)
8743 && cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
8744 {
8745 maybe_type_id = true;
8746 cp_parser_abort_tentative_parse (parser);
8747 }
8748 else
8749 {
8750 /* If the next token isn't a `,' or a `>', then this argument wasn't
8751 really finished. This means that the argument is not a valid
8752 type-id. */
8753 if (!cp_parser_next_token_ends_template_argument_p (parser))
8754 cp_parser_error (parser, "expected template-argument");
8755 /* If that worked, we're done. */
8756 if (cp_parser_parse_definitely (parser))
8757 return argument;
8758 }
8759 /* We're still not sure what the argument will be. */
8760 cp_parser_parse_tentatively (parser);
8761 /* Try a template. */
8762 argument = cp_parser_id_expression (parser,
8763 /*template_keyword_p=*/false,
8764 /*check_dependency_p=*/true,
8765 &template_p,
8766 /*declarator_p=*/false);
8767 /* If the next token isn't a `,' or a `>', then this argument wasn't
8768 really finished. */
8769 if (!cp_parser_next_token_ends_template_argument_p (parser))
8770 cp_parser_error (parser, "expected template-argument");
8771 if (!cp_parser_error_occurred (parser))
8772 {
8773 /* Figure out what is being referred to. If the id-expression
8774 was for a class template specialization, then we will have a
8775 TYPE_DECL at this point. There is no need to do name lookup
8776 at this point in that case. */
8777 if (TREE_CODE (argument) != TYPE_DECL)
8778 argument = cp_parser_lookup_name (parser, argument,
8779 none_type,
8780 /*is_template=*/template_p,
8781 /*is_namespace=*/false,
8782 /*check_dependency=*/true,
8783 /*ambiguous_p=*/NULL);
8784 if (TREE_CODE (argument) != TEMPLATE_DECL
8785 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
8786 cp_parser_error (parser, "expected template-name");
8787 }
8788 if (cp_parser_parse_definitely (parser))
8789 return argument;
8790 /* It must be a non-type argument. There permitted cases are given
8791 in [temp.arg.nontype]:
8792
8793 -- an integral constant-expression of integral or enumeration
8794 type; or
8795
8796 -- the name of a non-type template-parameter; or
8797
8798 -- the name of an object or function with external linkage...
8799
8800 -- the address of an object or function with external linkage...
8801
8802 -- a pointer to member... */
8803 /* Look for a non-type template parameter. */
8804 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8805 {
8806 cp_parser_parse_tentatively (parser);
8807 argument = cp_parser_primary_expression (parser,
8808 &idk,
8809 &qualifying_class);
8810 if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX
8811 || !cp_parser_next_token_ends_template_argument_p (parser))
8812 cp_parser_simulate_error (parser);
8813 if (cp_parser_parse_definitely (parser))
8814 return argument;
8815 }
8816
8817 /* If the next token is "&", the argument must be the address of an
8818 object or function with external linkage. */
8819 address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND);
8820 if (address_p)
8821 cp_lexer_consume_token (parser->lexer);
8822 /* See if we might have an id-expression. */
8823 token = cp_lexer_peek_token (parser->lexer);
8824 if (token->type == CPP_NAME
8825 || token->keyword == RID_OPERATOR
8826 || token->type == CPP_SCOPE
8827 || token->type == CPP_TEMPLATE_ID
8828 || token->type == CPP_NESTED_NAME_SPECIFIER)
8829 {
8830 cp_parser_parse_tentatively (parser);
8831 argument = cp_parser_primary_expression (parser,
8832 &idk,
8833 &qualifying_class);
8834 if (cp_parser_error_occurred (parser)
8835 || !cp_parser_next_token_ends_template_argument_p (parser))
8836 cp_parser_abort_tentative_parse (parser);
8837 else
8838 {
8839 if (TREE_CODE (argument) == INDIRECT_REF)
8840 {
8841 gcc_assert (REFERENCE_REF_P (argument));
8842 argument = TREE_OPERAND (argument, 0);
8843 }
8844
8845 if (qualifying_class)
8846 argument = finish_qualified_id_expr (qualifying_class,
8847 argument,
8848 /*done=*/true,
8849 address_p);
8850 if (TREE_CODE (argument) == VAR_DECL)
8851 {
8852 /* A variable without external linkage might still be a
8853 valid constant-expression, so no error is issued here
8854 if the external-linkage check fails. */
8855 if (!DECL_EXTERNAL_LINKAGE_P (argument))
8856 cp_parser_simulate_error (parser);
8857 }
8858 else if (is_overloaded_fn (argument))
8859 /* All overloaded functions are allowed; if the external
8860 linkage test does not pass, an error will be issued
8861 later. */
8862 ;
8863 else if (address_p
8864 && (TREE_CODE (argument) == OFFSET_REF
8865 || TREE_CODE (argument) == SCOPE_REF))
8866 /* A pointer-to-member. */
8867 ;
8868 else if (TREE_CODE (argument) == TEMPLATE_PARM_INDEX)
8869 ;
8870 else
8871 cp_parser_simulate_error (parser);
8872
8873 if (cp_parser_parse_definitely (parser))
8874 {
8875 if (address_p)
8876 argument = build_x_unary_op (ADDR_EXPR, argument);
8877 return argument;
8878 }
8879 }
8880 }
8881 /* If the argument started with "&", there are no other valid
8882 alternatives at this point. */
8883 if (address_p)
8884 {
8885 cp_parser_error (parser, "invalid non-type template argument");
8886 return error_mark_node;
8887 }
8888
8889 /* If the argument wasn't successfully parsed as a type-id followed
8890 by '>>', the argument can only be a constant expression now.
8891 Otherwise, we try parsing the constant-expression tentatively,
8892 because the argument could really be a type-id. */
8893 if (maybe_type_id)
8894 cp_parser_parse_tentatively (parser);
8895 argument = cp_parser_constant_expression (parser,
8896 /*allow_non_constant_p=*/false,
8897 /*non_constant_p=*/NULL);
8898 argument = fold_non_dependent_expr (argument);
8899 if (!maybe_type_id)
8900 return argument;
8901 if (!cp_parser_next_token_ends_template_argument_p (parser))
8902 cp_parser_error (parser, "expected template-argument");
8903 if (cp_parser_parse_definitely (parser))
8904 return argument;
8905 /* We did our best to parse the argument as a non type-id, but that
8906 was the only alternative that matched (albeit with a '>' after
8907 it). We can assume it's just a typo from the user, and a
8908 diagnostic will then be issued. */
8909 return cp_parser_type_id (parser);
8910 }
8911
8912 /* Parse an explicit-instantiation.
8913
8914 explicit-instantiation:
8915 template declaration
8916
8917 Although the standard says `declaration', what it really means is:
8918
8919 explicit-instantiation:
8920 template decl-specifier-seq [opt] declarator [opt] ;
8921
8922 Things like `template int S<int>::i = 5, int S<double>::j;' are not
8923 supposed to be allowed. A defect report has been filed about this
8924 issue.
8925
8926 GNU Extension:
8927
8928 explicit-instantiation:
8929 storage-class-specifier template
8930 decl-specifier-seq [opt] declarator [opt] ;
8931 function-specifier template
8932 decl-specifier-seq [opt] declarator [opt] ; */
8933
8934 static void
8935 cp_parser_explicit_instantiation (cp_parser* parser)
8936 {
8937 int declares_class_or_enum;
8938 cp_decl_specifier_seq decl_specifiers;
8939 tree extension_specifier = NULL_TREE;
8940
8941 /* Look for an (optional) storage-class-specifier or
8942 function-specifier. */
8943 if (cp_parser_allow_gnu_extensions_p (parser))
8944 {
8945 extension_specifier
8946 = cp_parser_storage_class_specifier_opt (parser);
8947 if (!extension_specifier)
8948 extension_specifier
8949 = cp_parser_function_specifier_opt (parser,
8950 /*decl_specs=*/NULL);
8951 }
8952
8953 /* Look for the `template' keyword. */
8954 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
8955 /* Let the front end know that we are processing an explicit
8956 instantiation. */
8957 begin_explicit_instantiation ();
8958 /* [temp.explicit] says that we are supposed to ignore access
8959 control while processing explicit instantiation directives. */
8960 push_deferring_access_checks (dk_no_check);
8961 /* Parse a decl-specifier-seq. */
8962 cp_parser_decl_specifier_seq (parser,
8963 CP_PARSER_FLAGS_OPTIONAL,
8964 &decl_specifiers,
8965 &declares_class_or_enum);
8966 /* If there was exactly one decl-specifier, and it declared a class,
8967 and there's no declarator, then we have an explicit type
8968 instantiation. */
8969 if (declares_class_or_enum && cp_parser_declares_only_class_p (parser))
8970 {
8971 tree type;
8972
8973 type = check_tag_decl (&decl_specifiers);
8974 /* Turn access control back on for names used during
8975 template instantiation. */
8976 pop_deferring_access_checks ();
8977 if (type)
8978 do_type_instantiation (type, extension_specifier, /*complain=*/1);
8979 }
8980 else
8981 {
8982 cp_declarator *declarator;
8983 tree decl;
8984
8985 /* Parse the declarator. */
8986 declarator
8987 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
8988 /*ctor_dtor_or_conv_p=*/NULL,
8989 /*parenthesized_p=*/NULL,
8990 /*member_p=*/false);
8991 if (declares_class_or_enum & 2)
8992 cp_parser_check_for_definition_in_return_type (declarator,
8993 decl_specifiers.type);
8994 if (declarator != cp_error_declarator)
8995 {
8996 decl = grokdeclarator (declarator, &decl_specifiers,
8997 NORMAL, 0, NULL);
8998 /* Turn access control back on for names used during
8999 template instantiation. */
9000 pop_deferring_access_checks ();
9001 /* Do the explicit instantiation. */
9002 do_decl_instantiation (decl, extension_specifier);
9003 }
9004 else
9005 {
9006 pop_deferring_access_checks ();
9007 /* Skip the body of the explicit instantiation. */
9008 cp_parser_skip_to_end_of_statement (parser);
9009 }
9010 }
9011 /* We're done with the instantiation. */
9012 end_explicit_instantiation ();
9013
9014 cp_parser_consume_semicolon_at_end_of_statement (parser);
9015 }
9016
9017 /* Parse an explicit-specialization.
9018
9019 explicit-specialization:
9020 template < > declaration
9021
9022 Although the standard says `declaration', what it really means is:
9023
9024 explicit-specialization:
9025 template <> decl-specifier [opt] init-declarator [opt] ;
9026 template <> function-definition
9027 template <> explicit-specialization
9028 template <> template-declaration */
9029
9030 static void
9031 cp_parser_explicit_specialization (cp_parser* parser)
9032 {
9033 /* Look for the `template' keyword. */
9034 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
9035 /* Look for the `<'. */
9036 cp_parser_require (parser, CPP_LESS, "`<'");
9037 /* Look for the `>'. */
9038 cp_parser_require (parser, CPP_GREATER, "`>'");
9039 /* We have processed another parameter list. */
9040 ++parser->num_template_parameter_lists;
9041 /* Let the front end know that we are beginning a specialization. */
9042 begin_specialization ();
9043
9044 /* If the next keyword is `template', we need to figure out whether
9045 or not we're looking a template-declaration. */
9046 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
9047 {
9048 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
9049 && cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER)
9050 cp_parser_template_declaration_after_export (parser,
9051 /*member_p=*/false);
9052 else
9053 cp_parser_explicit_specialization (parser);
9054 }
9055 else
9056 /* Parse the dependent declaration. */
9057 cp_parser_single_declaration (parser,
9058 /*member_p=*/false,
9059 /*friend_p=*/NULL);
9060
9061 /* We're done with the specialization. */
9062 end_specialization ();
9063 /* We're done with this parameter list. */
9064 --parser->num_template_parameter_lists;
9065 }
9066
9067 /* Parse a type-specifier.
9068
9069 type-specifier:
9070 simple-type-specifier
9071 class-specifier
9072 enum-specifier
9073 elaborated-type-specifier
9074 cv-qualifier
9075
9076 GNU Extension:
9077
9078 type-specifier:
9079 __complex__
9080
9081 Returns a representation of the type-specifier. For a
9082 class-specifier, enum-specifier, or elaborated-type-specifier, a
9083 TREE_TYPE is returned; otherwise, a TYPE_DECL is returned.
9084
9085 The parser flags FLAGS is used to control type-specifier parsing.
9086
9087 If IS_DECLARATION is TRUE, then this type-specifier is appearing
9088 in a decl-specifier-seq.
9089
9090 If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a
9091 class-specifier, enum-specifier, or elaborated-type-specifier, then
9092 *DECLARES_CLASS_OR_ENUM is set to a nonzero value. The value is 1
9093 if a type is declared; 2 if it is defined. Otherwise, it is set to
9094 zero.
9095
9096 If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a
9097 cv-qualifier, then IS_CV_QUALIFIER is set to TRUE. Otherwise, it
9098 is set to FALSE. */
9099
9100 static tree
9101 cp_parser_type_specifier (cp_parser* parser,
9102 cp_parser_flags flags,
9103 cp_decl_specifier_seq *decl_specs,
9104 bool is_declaration,
9105 int* declares_class_or_enum,
9106 bool* is_cv_qualifier)
9107 {
9108 tree type_spec = NULL_TREE;
9109 cp_token *token;
9110 enum rid keyword;
9111 cp_decl_spec ds = ds_last;
9112
9113 /* Assume this type-specifier does not declare a new type. */
9114 if (declares_class_or_enum)
9115 *declares_class_or_enum = 0;
9116 /* And that it does not specify a cv-qualifier. */
9117 if (is_cv_qualifier)
9118 *is_cv_qualifier = false;
9119 /* Peek at the next token. */
9120 token = cp_lexer_peek_token (parser->lexer);
9121
9122 /* If we're looking at a keyword, we can use that to guide the
9123 production we choose. */
9124 keyword = token->keyword;
9125 switch (keyword)
9126 {
9127 case RID_ENUM:
9128 /* 'enum' [identifier] '{' introduces an enum-specifier;
9129 'enum' <anything else> introduces an elaborated-type-specifier. */
9130 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_OPEN_BRACE
9131 || (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_NAME
9132 && cp_lexer_peek_nth_token (parser->lexer, 3)->type
9133 == CPP_OPEN_BRACE))
9134 {
9135 if (parser->num_template_parameter_lists)
9136 {
9137 error ("template declaration of %qs", "enum");
9138 cp_parser_skip_to_end_of_block_or_statement (parser);
9139 type_spec = error_mark_node;
9140 }
9141 else
9142 type_spec = cp_parser_enum_specifier (parser);
9143
9144 if (declares_class_or_enum)
9145 *declares_class_or_enum = 2;
9146 if (decl_specs)
9147 cp_parser_set_decl_spec_type (decl_specs,
9148 type_spec,
9149 /*user_defined_p=*/true);
9150 return type_spec;
9151 }
9152 else
9153 goto elaborated_type_specifier;
9154
9155 /* Any of these indicate either a class-specifier, or an
9156 elaborated-type-specifier. */
9157 case RID_CLASS:
9158 case RID_STRUCT:
9159 case RID_UNION:
9160 /* Parse tentatively so that we can back up if we don't find a
9161 class-specifier. */
9162 cp_parser_parse_tentatively (parser);
9163 /* Look for the class-specifier. */
9164 type_spec = cp_parser_class_specifier (parser);
9165 /* If that worked, we're done. */
9166 if (cp_parser_parse_definitely (parser))
9167 {
9168 if (declares_class_or_enum)
9169 *declares_class_or_enum = 2;
9170 if (decl_specs)
9171 cp_parser_set_decl_spec_type (decl_specs,
9172 type_spec,
9173 /*user_defined_p=*/true);
9174 return type_spec;
9175 }
9176
9177 /* Fall through. */
9178 elaborated_type_specifier:
9179 /* We're declaring (not defining) a class or enum. */
9180 if (declares_class_or_enum)
9181 *declares_class_or_enum = 1;
9182
9183 /* Fall through. */
9184 case RID_TYPENAME:
9185 /* Look for an elaborated-type-specifier. */
9186 type_spec
9187 = (cp_parser_elaborated_type_specifier
9188 (parser,
9189 decl_specs && decl_specs->specs[(int) ds_friend],
9190 is_declaration));
9191 if (decl_specs)
9192 cp_parser_set_decl_spec_type (decl_specs,
9193 type_spec,
9194 /*user_defined_p=*/true);
9195 return type_spec;
9196
9197 case RID_CONST:
9198 ds = ds_const;
9199 if (is_cv_qualifier)
9200 *is_cv_qualifier = true;
9201 break;
9202
9203 case RID_VOLATILE:
9204 ds = ds_volatile;
9205 if (is_cv_qualifier)
9206 *is_cv_qualifier = true;
9207 break;
9208
9209 case RID_RESTRICT:
9210 ds = ds_restrict;
9211 if (is_cv_qualifier)
9212 *is_cv_qualifier = true;
9213 break;
9214
9215 case RID_COMPLEX:
9216 /* The `__complex__' keyword is a GNU extension. */
9217 ds = ds_complex;
9218 break;
9219
9220 default:
9221 break;
9222 }
9223
9224 /* Handle simple keywords. */
9225 if (ds != ds_last)
9226 {
9227 if (decl_specs)
9228 {
9229 ++decl_specs->specs[(int)ds];
9230 decl_specs->any_specifiers_p = true;
9231 }
9232 return cp_lexer_consume_token (parser->lexer)->value;
9233 }
9234
9235 /* If we do not already have a type-specifier, assume we are looking
9236 at a simple-type-specifier. */
9237 type_spec = cp_parser_simple_type_specifier (parser,
9238 decl_specs,
9239 flags);
9240
9241 /* If we didn't find a type-specifier, and a type-specifier was not
9242 optional in this context, issue an error message. */
9243 if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9244 {
9245 cp_parser_error (parser, "expected type specifier");
9246 return error_mark_node;
9247 }
9248
9249 return type_spec;
9250 }
9251
9252 /* Parse a simple-type-specifier.
9253
9254 simple-type-specifier:
9255 :: [opt] nested-name-specifier [opt] type-name
9256 :: [opt] nested-name-specifier template template-id
9257 char
9258 wchar_t
9259 bool
9260 short
9261 int
9262 long
9263 signed
9264 unsigned
9265 float
9266 double
9267 void
9268
9269 GNU Extension:
9270
9271 simple-type-specifier:
9272 __typeof__ unary-expression
9273 __typeof__ ( type-id )
9274
9275 Returns the indicated TYPE_DECL. If DECL_SPECS is not NULL, it is
9276 appropriately updated. */
9277
9278 static tree
9279 cp_parser_simple_type_specifier (cp_parser* parser,
9280 cp_decl_specifier_seq *decl_specs,
9281 cp_parser_flags flags)
9282 {
9283 tree type = NULL_TREE;
9284 cp_token *token;
9285
9286 /* Peek at the next token. */
9287 token = cp_lexer_peek_token (parser->lexer);
9288
9289 /* If we're looking at a keyword, things are easy. */
9290 switch (token->keyword)
9291 {
9292 case RID_CHAR:
9293 if (decl_specs)
9294 decl_specs->explicit_char_p = true;
9295 type = char_type_node;
9296 break;
9297 case RID_WCHAR:
9298 type = wchar_type_node;
9299 break;
9300 case RID_BOOL:
9301 type = boolean_type_node;
9302 break;
9303 case RID_SHORT:
9304 if (decl_specs)
9305 ++decl_specs->specs[(int) ds_short];
9306 type = short_integer_type_node;
9307 break;
9308 case RID_INT:
9309 if (decl_specs)
9310 decl_specs->explicit_int_p = true;
9311 type = integer_type_node;
9312 break;
9313 case RID_LONG:
9314 if (decl_specs)
9315 ++decl_specs->specs[(int) ds_long];
9316 type = long_integer_type_node;
9317 break;
9318 case RID_SIGNED:
9319 if (decl_specs)
9320 ++decl_specs->specs[(int) ds_signed];
9321 type = integer_type_node;
9322 break;
9323 case RID_UNSIGNED:
9324 if (decl_specs)
9325 ++decl_specs->specs[(int) ds_unsigned];
9326 type = unsigned_type_node;
9327 break;
9328 case RID_FLOAT:
9329 type = float_type_node;
9330 break;
9331 case RID_DOUBLE:
9332 type = double_type_node;
9333 break;
9334 case RID_VOID:
9335 type = void_type_node;
9336 break;
9337
9338 case RID_TYPEOF:
9339 /* Consume the `typeof' token. */
9340 cp_lexer_consume_token (parser->lexer);
9341 /* Parse the operand to `typeof'. */
9342 type = cp_parser_sizeof_operand (parser, RID_TYPEOF);
9343 /* If it is not already a TYPE, take its type. */
9344 if (!TYPE_P (type))
9345 type = finish_typeof (type);
9346
9347 if (decl_specs)
9348 cp_parser_set_decl_spec_type (decl_specs, type,
9349 /*user_defined_p=*/true);
9350
9351 return type;
9352
9353 default:
9354 break;
9355 }
9356
9357 /* If the type-specifier was for a built-in type, we're done. */
9358 if (type)
9359 {
9360 tree id;
9361
9362 /* Record the type. */
9363 if (decl_specs
9364 && (token->keyword != RID_SIGNED
9365 && token->keyword != RID_UNSIGNED
9366 && token->keyword != RID_SHORT
9367 && token->keyword != RID_LONG))
9368 cp_parser_set_decl_spec_type (decl_specs,
9369 type,
9370 /*user_defined=*/false);
9371 if (decl_specs)
9372 decl_specs->any_specifiers_p = true;
9373
9374 /* Consume the token. */
9375 id = cp_lexer_consume_token (parser->lexer)->value;
9376
9377 /* There is no valid C++ program where a non-template type is
9378 followed by a "<". That usually indicates that the user thought
9379 that the type was a template. */
9380 cp_parser_check_for_invalid_template_id (parser, type);
9381
9382 return TYPE_NAME (type);
9383 }
9384
9385 /* The type-specifier must be a user-defined type. */
9386 if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES))
9387 {
9388 bool qualified_p;
9389 bool global_p;
9390
9391 /* Don't gobble tokens or issue error messages if this is an
9392 optional type-specifier. */
9393 if (flags & CP_PARSER_FLAGS_OPTIONAL)
9394 cp_parser_parse_tentatively (parser);
9395
9396 /* Look for the optional `::' operator. */
9397 global_p
9398 = (cp_parser_global_scope_opt (parser,
9399 /*current_scope_valid_p=*/false)
9400 != NULL_TREE);
9401 /* Look for the nested-name specifier. */
9402 qualified_p
9403 = (cp_parser_nested_name_specifier_opt (parser,
9404 /*typename_keyword_p=*/false,
9405 /*check_dependency_p=*/true,
9406 /*type_p=*/false,
9407 /*is_declaration=*/false)
9408 != NULL_TREE);
9409 /* If we have seen a nested-name-specifier, and the next token
9410 is `template', then we are using the template-id production. */
9411 if (parser->scope
9412 && cp_parser_optional_template_keyword (parser))
9413 {
9414 /* Look for the template-id. */
9415 type = cp_parser_template_id (parser,
9416 /*template_keyword_p=*/true,
9417 /*check_dependency_p=*/true,
9418 /*is_declaration=*/false);
9419 /* If the template-id did not name a type, we are out of
9420 luck. */
9421 if (TREE_CODE (type) != TYPE_DECL)
9422 {
9423 cp_parser_error (parser, "expected template-id for type");
9424 type = NULL_TREE;
9425 }
9426 }
9427 /* Otherwise, look for a type-name. */
9428 else
9429 type = cp_parser_type_name (parser);
9430 /* Keep track of all name-lookups performed in class scopes. */
9431 if (type
9432 && !global_p
9433 && !qualified_p
9434 && TREE_CODE (type) == TYPE_DECL
9435 && TREE_CODE (DECL_NAME (type)) == IDENTIFIER_NODE)
9436 maybe_note_name_used_in_class (DECL_NAME (type), type);
9437 /* If it didn't work out, we don't have a TYPE. */
9438 if ((flags & CP_PARSER_FLAGS_OPTIONAL)
9439 && !cp_parser_parse_definitely (parser))
9440 type = NULL_TREE;
9441 if (type && decl_specs)
9442 cp_parser_set_decl_spec_type (decl_specs, type,
9443 /*user_defined=*/true);
9444 }
9445
9446 /* If we didn't get a type-name, issue an error message. */
9447 if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9448 {
9449 cp_parser_error (parser, "expected type-name");
9450 return error_mark_node;
9451 }
9452
9453 /* There is no valid C++ program where a non-template type is
9454 followed by a "<". That usually indicates that the user thought
9455 that the type was a template. */
9456 if (type && type != error_mark_node)
9457 cp_parser_check_for_invalid_template_id (parser, TREE_TYPE (type));
9458
9459 return type;
9460 }
9461
9462 /* Parse a type-name.
9463
9464 type-name:
9465 class-name
9466 enum-name
9467 typedef-name
9468
9469 enum-name:
9470 identifier
9471
9472 typedef-name:
9473 identifier
9474
9475 Returns a TYPE_DECL for the the type. */
9476
9477 static tree
9478 cp_parser_type_name (cp_parser* parser)
9479 {
9480 tree type_decl;
9481 tree identifier;
9482
9483 /* We can't know yet whether it is a class-name or not. */
9484 cp_parser_parse_tentatively (parser);
9485 /* Try a class-name. */
9486 type_decl = cp_parser_class_name (parser,
9487 /*typename_keyword_p=*/false,
9488 /*template_keyword_p=*/false,
9489 none_type,
9490 /*check_dependency_p=*/true,
9491 /*class_head_p=*/false,
9492 /*is_declaration=*/false);
9493 /* If it's not a class-name, keep looking. */
9494 if (!cp_parser_parse_definitely (parser))
9495 {
9496 /* It must be a typedef-name or an enum-name. */
9497 identifier = cp_parser_identifier (parser);
9498 if (identifier == error_mark_node)
9499 return error_mark_node;
9500
9501 /* Look up the type-name. */
9502 type_decl = cp_parser_lookup_name_simple (parser, identifier);
9503 /* Issue an error if we did not find a type-name. */
9504 if (TREE_CODE (type_decl) != TYPE_DECL)
9505 {
9506 if (!cp_parser_simulate_error (parser))
9507 cp_parser_name_lookup_error (parser, identifier, type_decl,
9508 "is not a type");
9509 type_decl = error_mark_node;
9510 }
9511 /* Remember that the name was used in the definition of the
9512 current class so that we can check later to see if the
9513 meaning would have been different after the class was
9514 entirely defined. */
9515 else if (type_decl != error_mark_node
9516 && !parser->scope)
9517 maybe_note_name_used_in_class (identifier, type_decl);
9518 }
9519
9520 return type_decl;
9521 }
9522
9523
9524 /* Parse an elaborated-type-specifier. Note that the grammar given
9525 here incorporates the resolution to DR68.
9526
9527 elaborated-type-specifier:
9528 class-key :: [opt] nested-name-specifier [opt] identifier
9529 class-key :: [opt] nested-name-specifier [opt] template [opt] template-id
9530 enum :: [opt] nested-name-specifier [opt] identifier
9531 typename :: [opt] nested-name-specifier identifier
9532 typename :: [opt] nested-name-specifier template [opt]
9533 template-id
9534
9535 GNU extension:
9536
9537 elaborated-type-specifier:
9538 class-key attributes :: [opt] nested-name-specifier [opt] identifier
9539 class-key attributes :: [opt] nested-name-specifier [opt]
9540 template [opt] template-id
9541 enum attributes :: [opt] nested-name-specifier [opt] identifier
9542
9543 If IS_FRIEND is TRUE, then this elaborated-type-specifier is being
9544 declared `friend'. If IS_DECLARATION is TRUE, then this
9545 elaborated-type-specifier appears in a decl-specifiers-seq, i.e.,
9546 something is being declared.
9547
9548 Returns the TYPE specified. */
9549
9550 static tree
9551 cp_parser_elaborated_type_specifier (cp_parser* parser,
9552 bool is_friend,
9553 bool is_declaration)
9554 {
9555 enum tag_types tag_type;
9556 tree identifier;
9557 tree type = NULL_TREE;
9558 tree attributes = NULL_TREE;
9559
9560 /* See if we're looking at the `enum' keyword. */
9561 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM))
9562 {
9563 /* Consume the `enum' token. */
9564 cp_lexer_consume_token (parser->lexer);
9565 /* Remember that it's an enumeration type. */
9566 tag_type = enum_type;
9567 /* Parse the attributes. */
9568 attributes = cp_parser_attributes_opt (parser);
9569 }
9570 /* Or, it might be `typename'. */
9571 else if (cp_lexer_next_token_is_keyword (parser->lexer,
9572 RID_TYPENAME))
9573 {
9574 /* Consume the `typename' token. */
9575 cp_lexer_consume_token (parser->lexer);
9576 /* Remember that it's a `typename' type. */
9577 tag_type = typename_type;
9578 /* The `typename' keyword is only allowed in templates. */
9579 if (!processing_template_decl)
9580 pedwarn ("using %<typename%> outside of template");
9581 }
9582 /* Otherwise it must be a class-key. */
9583 else
9584 {
9585 tag_type = cp_parser_class_key (parser);
9586 if (tag_type == none_type)
9587 return error_mark_node;
9588 /* Parse the attributes. */
9589 attributes = cp_parser_attributes_opt (parser);
9590 }
9591
9592 /* Look for the `::' operator. */
9593 cp_parser_global_scope_opt (parser,
9594 /*current_scope_valid_p=*/false);
9595 /* Look for the nested-name-specifier. */
9596 if (tag_type == typename_type)
9597 {
9598 if (cp_parser_nested_name_specifier (parser,
9599 /*typename_keyword_p=*/true,
9600 /*check_dependency_p=*/true,
9601 /*type_p=*/true,
9602 is_declaration)
9603 == error_mark_node)
9604 return error_mark_node;
9605 }
9606 else
9607 /* Even though `typename' is not present, the proposed resolution
9608 to Core Issue 180 says that in `class A<T>::B', `B' should be
9609 considered a type-name, even if `A<T>' is dependent. */
9610 cp_parser_nested_name_specifier_opt (parser,
9611 /*typename_keyword_p=*/true,
9612 /*check_dependency_p=*/true,
9613 /*type_p=*/true,
9614 is_declaration);
9615 /* For everything but enumeration types, consider a template-id. */
9616 if (tag_type != enum_type)
9617 {
9618 bool template_p = false;
9619 tree decl;
9620
9621 /* Allow the `template' keyword. */
9622 template_p = cp_parser_optional_template_keyword (parser);
9623 /* If we didn't see `template', we don't know if there's a
9624 template-id or not. */
9625 if (!template_p)
9626 cp_parser_parse_tentatively (parser);
9627 /* Parse the template-id. */
9628 decl = cp_parser_template_id (parser, template_p,
9629 /*check_dependency_p=*/true,
9630 is_declaration);
9631 /* If we didn't find a template-id, look for an ordinary
9632 identifier. */
9633 if (!template_p && !cp_parser_parse_definitely (parser))
9634 ;
9635 /* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is
9636 in effect, then we must assume that, upon instantiation, the
9637 template will correspond to a class. */
9638 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
9639 && tag_type == typename_type)
9640 type = make_typename_type (parser->scope, decl,
9641 typename_type,
9642 /*complain=*/1);
9643 else
9644 type = TREE_TYPE (decl);
9645 }
9646
9647 /* For an enumeration type, consider only a plain identifier. */
9648 if (!type)
9649 {
9650 identifier = cp_parser_identifier (parser);
9651
9652 if (identifier == error_mark_node)
9653 {
9654 parser->scope = NULL_TREE;
9655 return error_mark_node;
9656 }
9657
9658 /* For a `typename', we needn't call xref_tag. */
9659 if (tag_type == typename_type)
9660 return cp_parser_make_typename_type (parser, parser->scope,
9661 identifier);
9662 /* Look up a qualified name in the usual way. */
9663 if (parser->scope)
9664 {
9665 tree decl;
9666
9667 /* In an elaborated-type-specifier, names are assumed to name
9668 types, so we set IS_TYPE to TRUE when calling
9669 cp_parser_lookup_name. */
9670 decl = cp_parser_lookup_name (parser, identifier,
9671 tag_type,
9672 /*is_template=*/false,
9673 /*is_namespace=*/false,
9674 /*check_dependency=*/true,
9675 /*ambiguous_p=*/NULL);
9676
9677 /* If we are parsing friend declaration, DECL may be a
9678 TEMPLATE_DECL tree node here. However, we need to check
9679 whether this TEMPLATE_DECL results in valid code. Consider
9680 the following example:
9681
9682 namespace N {
9683 template <class T> class C {};
9684 }
9685 class X {
9686 template <class T> friend class N::C; // #1, valid code
9687 };
9688 template <class T> class Y {
9689 friend class N::C; // #2, invalid code
9690 };
9691
9692 For both case #1 and #2, we arrive at a TEMPLATE_DECL after
9693 name lookup of `N::C'. We see that friend declaration must
9694 be template for the code to be valid. Note that
9695 processing_template_decl does not work here since it is
9696 always 1 for the above two cases. */
9697
9698 decl = (cp_parser_maybe_treat_template_as_class
9699 (decl, /*tag_name_p=*/is_friend
9700 && parser->num_template_parameter_lists));
9701
9702 if (TREE_CODE (decl) != TYPE_DECL)
9703 {
9704 error ("expected type-name");
9705 return error_mark_node;
9706 }
9707
9708 if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
9709 check_elaborated_type_specifier
9710 (tag_type, decl,
9711 (parser->num_template_parameter_lists
9712 || DECL_SELF_REFERENCE_P (decl)));
9713
9714 type = TREE_TYPE (decl);
9715 }
9716 else
9717 {
9718 /* An elaborated-type-specifier sometimes introduces a new type and
9719 sometimes names an existing type. Normally, the rule is that it
9720 introduces a new type only if there is not an existing type of
9721 the same name already in scope. For example, given:
9722
9723 struct S {};
9724 void f() { struct S s; }
9725
9726 the `struct S' in the body of `f' is the same `struct S' as in
9727 the global scope; the existing definition is used. However, if
9728 there were no global declaration, this would introduce a new
9729 local class named `S'.
9730
9731 An exception to this rule applies to the following code:
9732
9733 namespace N { struct S; }
9734
9735 Here, the elaborated-type-specifier names a new type
9736 unconditionally; even if there is already an `S' in the
9737 containing scope this declaration names a new type.
9738 This exception only applies if the elaborated-type-specifier
9739 forms the complete declaration:
9740
9741 [class.name]
9742
9743 A declaration consisting solely of `class-key identifier ;' is
9744 either a redeclaration of the name in the current scope or a
9745 forward declaration of the identifier as a class name. It
9746 introduces the name into the current scope.
9747
9748 We are in this situation precisely when the next token is a `;'.
9749
9750 An exception to the exception is that a `friend' declaration does
9751 *not* name a new type; i.e., given:
9752
9753 struct S { friend struct T; };
9754
9755 `T' is not a new type in the scope of `S'.
9756
9757 Also, `new struct S' or `sizeof (struct S)' never results in the
9758 definition of a new type; a new type can only be declared in a
9759 declaration context. */
9760
9761 tag_scope ts;
9762 if (is_friend)
9763 /* Friends have special name lookup rules. */
9764 ts = ts_within_enclosing_non_class;
9765 else if (is_declaration
9766 && cp_lexer_next_token_is (parser->lexer,
9767 CPP_SEMICOLON))
9768 /* This is a `class-key identifier ;' */
9769 ts = ts_current;
9770 else
9771 ts = ts_global;
9772
9773 /* Warn about attributes. They are ignored. */
9774 if (attributes)
9775 warning ("type attributes are honored only at type definition");
9776
9777 type = xref_tag (tag_type, identifier, ts,
9778 parser->num_template_parameter_lists);
9779 }
9780 }
9781 if (tag_type != enum_type)
9782 cp_parser_check_class_key (tag_type, type);
9783
9784 /* A "<" cannot follow an elaborated type specifier. If that
9785 happens, the user was probably trying to form a template-id. */
9786 cp_parser_check_for_invalid_template_id (parser, type);
9787
9788 return type;
9789 }
9790
9791 /* Parse an enum-specifier.
9792
9793 enum-specifier:
9794 enum identifier [opt] { enumerator-list [opt] }
9795
9796 GNU Extensions:
9797 enum identifier [opt] { enumerator-list [opt] } attributes
9798
9799 Returns an ENUM_TYPE representing the enumeration. */
9800
9801 static tree
9802 cp_parser_enum_specifier (cp_parser* parser)
9803 {
9804 tree identifier;
9805 tree type;
9806
9807 /* Caller guarantees that the current token is 'enum', an identifier
9808 possibly follows, and the token after that is an opening brace.
9809 If we don't have an identifier, fabricate an anonymous name for
9810 the enumeration being defined. */
9811 cp_lexer_consume_token (parser->lexer);
9812
9813 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
9814 identifier = cp_parser_identifier (parser);
9815 else
9816 identifier = make_anon_name ();
9817
9818 /* Issue an error message if type-definitions are forbidden here. */
9819 cp_parser_check_type_definition (parser);
9820
9821 /* Create the new type. We do this before consuming the opening brace
9822 so the enum will be recorded as being on the line of its tag (or the
9823 'enum' keyword, if there is no tag). */
9824 type = start_enum (identifier);
9825
9826 /* Consume the opening brace. */
9827 cp_lexer_consume_token (parser->lexer);
9828
9829 /* If the next token is not '}', then there are some enumerators. */
9830 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
9831 cp_parser_enumerator_list (parser, type);
9832
9833 /* Consume the final '}'. */
9834 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
9835
9836 /* Look for trailing attributes to apply to this enumeration, and
9837 apply them if appropriate. */
9838 if (cp_parser_allow_gnu_extensions_p (parser))
9839 {
9840 tree trailing_attr = cp_parser_attributes_opt (parser);
9841 cplus_decl_attributes (&type,
9842 trailing_attr,
9843 (int) ATTR_FLAG_TYPE_IN_PLACE);
9844 }
9845
9846 /* Finish up the enumeration. */
9847 finish_enum (type);
9848
9849 return type;
9850 }
9851
9852 /* Parse an enumerator-list. The enumerators all have the indicated
9853 TYPE.
9854
9855 enumerator-list:
9856 enumerator-definition
9857 enumerator-list , enumerator-definition */
9858
9859 static void
9860 cp_parser_enumerator_list (cp_parser* parser, tree type)
9861 {
9862 while (true)
9863 {
9864 /* Parse an enumerator-definition. */
9865 cp_parser_enumerator_definition (parser, type);
9866
9867 /* If the next token is not a ',', we've reached the end of
9868 the list. */
9869 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
9870 break;
9871 /* Otherwise, consume the `,' and keep going. */
9872 cp_lexer_consume_token (parser->lexer);
9873 /* If the next token is a `}', there is a trailing comma. */
9874 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
9875 {
9876 if (pedantic && !in_system_header)
9877 pedwarn ("comma at end of enumerator list");
9878 break;
9879 }
9880 }
9881 }
9882
9883 /* Parse an enumerator-definition. The enumerator has the indicated
9884 TYPE.
9885
9886 enumerator-definition:
9887 enumerator
9888 enumerator = constant-expression
9889
9890 enumerator:
9891 identifier */
9892
9893 static void
9894 cp_parser_enumerator_definition (cp_parser* parser, tree type)
9895 {
9896 tree identifier;
9897 tree value;
9898
9899 /* Look for the identifier. */
9900 identifier = cp_parser_identifier (parser);
9901 if (identifier == error_mark_node)
9902 return;
9903
9904 /* If the next token is an '=', then there is an explicit value. */
9905 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
9906 {
9907 /* Consume the `=' token. */
9908 cp_lexer_consume_token (parser->lexer);
9909 /* Parse the value. */
9910 value = cp_parser_constant_expression (parser,
9911 /*allow_non_constant_p=*/false,
9912 NULL);
9913 }
9914 else
9915 value = NULL_TREE;
9916
9917 /* Create the enumerator. */
9918 build_enumerator (identifier, value, type);
9919 }
9920
9921 /* Parse a namespace-name.
9922
9923 namespace-name:
9924 original-namespace-name
9925 namespace-alias
9926
9927 Returns the NAMESPACE_DECL for the namespace. */
9928
9929 static tree
9930 cp_parser_namespace_name (cp_parser* parser)
9931 {
9932 tree identifier;
9933 tree namespace_decl;
9934
9935 /* Get the name of the namespace. */
9936 identifier = cp_parser_identifier (parser);
9937 if (identifier == error_mark_node)
9938 return error_mark_node;
9939
9940 /* Look up the identifier in the currently active scope. Look only
9941 for namespaces, due to:
9942
9943 [basic.lookup.udir]
9944
9945 When looking up a namespace-name in a using-directive or alias
9946 definition, only namespace names are considered.
9947
9948 And:
9949
9950 [basic.lookup.qual]
9951
9952 During the lookup of a name preceding the :: scope resolution
9953 operator, object, function, and enumerator names are ignored.
9954
9955 (Note that cp_parser_class_or_namespace_name only calls this
9956 function if the token after the name is the scope resolution
9957 operator.) */
9958 namespace_decl = cp_parser_lookup_name (parser, identifier,
9959 none_type,
9960 /*is_template=*/false,
9961 /*is_namespace=*/true,
9962 /*check_dependency=*/true,
9963 /*ambiguous_p=*/NULL);
9964 /* If it's not a namespace, issue an error. */
9965 if (namespace_decl == error_mark_node
9966 || TREE_CODE (namespace_decl) != NAMESPACE_DECL)
9967 {
9968 cp_parser_error (parser, "expected namespace-name");
9969 namespace_decl = error_mark_node;
9970 }
9971
9972 return namespace_decl;
9973 }
9974
9975 /* Parse a namespace-definition.
9976
9977 namespace-definition:
9978 named-namespace-definition
9979 unnamed-namespace-definition
9980
9981 named-namespace-definition:
9982 original-namespace-definition
9983 extension-namespace-definition
9984
9985 original-namespace-definition:
9986 namespace identifier { namespace-body }
9987
9988 extension-namespace-definition:
9989 namespace original-namespace-name { namespace-body }
9990
9991 unnamed-namespace-definition:
9992 namespace { namespace-body } */
9993
9994 static void
9995 cp_parser_namespace_definition (cp_parser* parser)
9996 {
9997 tree identifier;
9998
9999 /* Look for the `namespace' keyword. */
10000 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10001
10002 /* Get the name of the namespace. We do not attempt to distinguish
10003 between an original-namespace-definition and an
10004 extension-namespace-definition at this point. The semantic
10005 analysis routines are responsible for that. */
10006 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
10007 identifier = cp_parser_identifier (parser);
10008 else
10009 identifier = NULL_TREE;
10010
10011 /* Look for the `{' to start the namespace. */
10012 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
10013 /* Start the namespace. */
10014 push_namespace (identifier);
10015 /* Parse the body of the namespace. */
10016 cp_parser_namespace_body (parser);
10017 /* Finish the namespace. */
10018 pop_namespace ();
10019 /* Look for the final `}'. */
10020 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
10021 }
10022
10023 /* Parse a namespace-body.
10024
10025 namespace-body:
10026 declaration-seq [opt] */
10027
10028 static void
10029 cp_parser_namespace_body (cp_parser* parser)
10030 {
10031 cp_parser_declaration_seq_opt (parser);
10032 }
10033
10034 /* Parse a namespace-alias-definition.
10035
10036 namespace-alias-definition:
10037 namespace identifier = qualified-namespace-specifier ; */
10038
10039 static void
10040 cp_parser_namespace_alias_definition (cp_parser* parser)
10041 {
10042 tree identifier;
10043 tree namespace_specifier;
10044
10045 /* Look for the `namespace' keyword. */
10046 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10047 /* Look for the identifier. */
10048 identifier = cp_parser_identifier (parser);
10049 if (identifier == error_mark_node)
10050 return;
10051 /* Look for the `=' token. */
10052 cp_parser_require (parser, CPP_EQ, "`='");
10053 /* Look for the qualified-namespace-specifier. */
10054 namespace_specifier
10055 = cp_parser_qualified_namespace_specifier (parser);
10056 /* Look for the `;' token. */
10057 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10058
10059 /* Register the alias in the symbol table. */
10060 do_namespace_alias (identifier, namespace_specifier);
10061 }
10062
10063 /* Parse a qualified-namespace-specifier.
10064
10065 qualified-namespace-specifier:
10066 :: [opt] nested-name-specifier [opt] namespace-name
10067
10068 Returns a NAMESPACE_DECL corresponding to the specified
10069 namespace. */
10070
10071 static tree
10072 cp_parser_qualified_namespace_specifier (cp_parser* parser)
10073 {
10074 /* Look for the optional `::'. */
10075 cp_parser_global_scope_opt (parser,
10076 /*current_scope_valid_p=*/false);
10077
10078 /* Look for the optional nested-name-specifier. */
10079 cp_parser_nested_name_specifier_opt (parser,
10080 /*typename_keyword_p=*/false,
10081 /*check_dependency_p=*/true,
10082 /*type_p=*/false,
10083 /*is_declaration=*/true);
10084
10085 return cp_parser_namespace_name (parser);
10086 }
10087
10088 /* Parse a using-declaration.
10089
10090 using-declaration:
10091 using typename [opt] :: [opt] nested-name-specifier unqualified-id ;
10092 using :: unqualified-id ; */
10093
10094 static void
10095 cp_parser_using_declaration (cp_parser* parser)
10096 {
10097 cp_token *token;
10098 bool typename_p = false;
10099 bool global_scope_p;
10100 tree decl;
10101 tree identifier;
10102 tree qscope;
10103
10104 /* Look for the `using' keyword. */
10105 cp_parser_require_keyword (parser, RID_USING, "`using'");
10106
10107 /* Peek at the next token. */
10108 token = cp_lexer_peek_token (parser->lexer);
10109 /* See if it's `typename'. */
10110 if (token->keyword == RID_TYPENAME)
10111 {
10112 /* Remember that we've seen it. */
10113 typename_p = true;
10114 /* Consume the `typename' token. */
10115 cp_lexer_consume_token (parser->lexer);
10116 }
10117
10118 /* Look for the optional global scope qualification. */
10119 global_scope_p
10120 = (cp_parser_global_scope_opt (parser,
10121 /*current_scope_valid_p=*/false)
10122 != NULL_TREE);
10123
10124 /* If we saw `typename', or didn't see `::', then there must be a
10125 nested-name-specifier present. */
10126 if (typename_p || !global_scope_p)
10127 qscope = cp_parser_nested_name_specifier (parser, typename_p,
10128 /*check_dependency_p=*/true,
10129 /*type_p=*/false,
10130 /*is_declaration=*/true);
10131 /* Otherwise, we could be in either of the two productions. In that
10132 case, treat the nested-name-specifier as optional. */
10133 else
10134 qscope = cp_parser_nested_name_specifier_opt (parser,
10135 /*typename_keyword_p=*/false,
10136 /*check_dependency_p=*/true,
10137 /*type_p=*/false,
10138 /*is_declaration=*/true);
10139 if (!qscope)
10140 qscope = global_namespace;
10141
10142 /* Parse the unqualified-id. */
10143 identifier = cp_parser_unqualified_id (parser,
10144 /*template_keyword_p=*/false,
10145 /*check_dependency_p=*/true,
10146 /*declarator_p=*/true);
10147
10148 /* The function we call to handle a using-declaration is different
10149 depending on what scope we are in. */
10150 if (identifier == error_mark_node)
10151 ;
10152 else if (TREE_CODE (identifier) != IDENTIFIER_NODE
10153 && TREE_CODE (identifier) != BIT_NOT_EXPR)
10154 /* [namespace.udecl]
10155
10156 A using declaration shall not name a template-id. */
10157 error ("a template-id may not appear in a using-declaration");
10158 else
10159 {
10160 if (at_class_scope_p ())
10161 {
10162 /* Create the USING_DECL. */
10163 decl = do_class_using_decl (build_nt (SCOPE_REF,
10164 parser->scope,
10165 identifier));
10166 /* Add it to the list of members in this class. */
10167 finish_member_declaration (decl);
10168 }
10169 else
10170 {
10171 decl = cp_parser_lookup_name_simple (parser, identifier);
10172 if (decl == error_mark_node)
10173 cp_parser_name_lookup_error (parser, identifier, decl, NULL);
10174 else if (!at_namespace_scope_p ())
10175 do_local_using_decl (decl, qscope, identifier);
10176 else
10177 do_toplevel_using_decl (decl, qscope, identifier);
10178 }
10179 }
10180
10181 /* Look for the final `;'. */
10182 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10183 }
10184
10185 /* Parse a using-directive.
10186
10187 using-directive:
10188 using namespace :: [opt] nested-name-specifier [opt]
10189 namespace-name ; */
10190
10191 static void
10192 cp_parser_using_directive (cp_parser* parser)
10193 {
10194 tree namespace_decl;
10195 tree attribs;
10196
10197 /* Look for the `using' keyword. */
10198 cp_parser_require_keyword (parser, RID_USING, "`using'");
10199 /* And the `namespace' keyword. */
10200 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10201 /* Look for the optional `::' operator. */
10202 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
10203 /* And the optional nested-name-specifier. */
10204 cp_parser_nested_name_specifier_opt (parser,
10205 /*typename_keyword_p=*/false,
10206 /*check_dependency_p=*/true,
10207 /*type_p=*/false,
10208 /*is_declaration=*/true);
10209 /* Get the namespace being used. */
10210 namespace_decl = cp_parser_namespace_name (parser);
10211 /* And any specified attributes. */
10212 attribs = cp_parser_attributes_opt (parser);
10213 /* Update the symbol table. */
10214 parse_using_directive (namespace_decl, attribs);
10215 /* Look for the final `;'. */
10216 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10217 }
10218
10219 /* Parse an asm-definition.
10220
10221 asm-definition:
10222 asm ( string-literal ) ;
10223
10224 GNU Extension:
10225
10226 asm-definition:
10227 asm volatile [opt] ( string-literal ) ;
10228 asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ;
10229 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10230 : asm-operand-list [opt] ) ;
10231 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10232 : asm-operand-list [opt]
10233 : asm-operand-list [opt] ) ; */
10234
10235 static void
10236 cp_parser_asm_definition (cp_parser* parser)
10237 {
10238 tree string;
10239 tree outputs = NULL_TREE;
10240 tree inputs = NULL_TREE;
10241 tree clobbers = NULL_TREE;
10242 tree asm_stmt;
10243 bool volatile_p = false;
10244 bool extended_p = false;
10245
10246 /* Look for the `asm' keyword. */
10247 cp_parser_require_keyword (parser, RID_ASM, "`asm'");
10248 /* See if the next token is `volatile'. */
10249 if (cp_parser_allow_gnu_extensions_p (parser)
10250 && cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE))
10251 {
10252 /* Remember that we saw the `volatile' keyword. */
10253 volatile_p = true;
10254 /* Consume the token. */
10255 cp_lexer_consume_token (parser->lexer);
10256 }
10257 /* Look for the opening `('. */
10258 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
10259 return;
10260 /* Look for the string. */
10261 string = cp_parser_string_literal (parser, false, false);
10262 if (string == error_mark_node)
10263 {
10264 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10265 /*consume_paren=*/true);
10266 return;
10267 }
10268
10269 /* If we're allowing GNU extensions, check for the extended assembly
10270 syntax. Unfortunately, the `:' tokens need not be separated by
10271 a space in C, and so, for compatibility, we tolerate that here
10272 too. Doing that means that we have to treat the `::' operator as
10273 two `:' tokens. */
10274 if (cp_parser_allow_gnu_extensions_p (parser)
10275 && at_function_scope_p ()
10276 && (cp_lexer_next_token_is (parser->lexer, CPP_COLON)
10277 || cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)))
10278 {
10279 bool inputs_p = false;
10280 bool clobbers_p = false;
10281
10282 /* The extended syntax was used. */
10283 extended_p = true;
10284
10285 /* Look for outputs. */
10286 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10287 {
10288 /* Consume the `:'. */
10289 cp_lexer_consume_token (parser->lexer);
10290 /* Parse the output-operands. */
10291 if (cp_lexer_next_token_is_not (parser->lexer,
10292 CPP_COLON)
10293 && cp_lexer_next_token_is_not (parser->lexer,
10294 CPP_SCOPE)
10295 && cp_lexer_next_token_is_not (parser->lexer,
10296 CPP_CLOSE_PAREN))
10297 outputs = cp_parser_asm_operand_list (parser);
10298 }
10299 /* If the next token is `::', there are no outputs, and the
10300 next token is the beginning of the inputs. */
10301 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10302 /* The inputs are coming next. */
10303 inputs_p = true;
10304
10305 /* Look for inputs. */
10306 if (inputs_p
10307 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10308 {
10309 /* Consume the `:' or `::'. */
10310 cp_lexer_consume_token (parser->lexer);
10311 /* Parse the output-operands. */
10312 if (cp_lexer_next_token_is_not (parser->lexer,
10313 CPP_COLON)
10314 && cp_lexer_next_token_is_not (parser->lexer,
10315 CPP_CLOSE_PAREN))
10316 inputs = cp_parser_asm_operand_list (parser);
10317 }
10318 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10319 /* The clobbers are coming next. */
10320 clobbers_p = true;
10321
10322 /* Look for clobbers. */
10323 if (clobbers_p
10324 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10325 {
10326 /* Consume the `:' or `::'. */
10327 cp_lexer_consume_token (parser->lexer);
10328 /* Parse the clobbers. */
10329 if (cp_lexer_next_token_is_not (parser->lexer,
10330 CPP_CLOSE_PAREN))
10331 clobbers = cp_parser_asm_clobber_list (parser);
10332 }
10333 }
10334 /* Look for the closing `)'. */
10335 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
10336 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10337 /*consume_paren=*/true);
10338 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10339
10340 /* Create the ASM_EXPR. */
10341 if (at_function_scope_p ())
10342 {
10343 asm_stmt = finish_asm_stmt (volatile_p, string, outputs,
10344 inputs, clobbers);
10345 /* If the extended syntax was not used, mark the ASM_EXPR. */
10346 if (!extended_p)
10347 {
10348 tree temp = asm_stmt;
10349 if (TREE_CODE (temp) == CLEANUP_POINT_EXPR)
10350 temp = TREE_OPERAND (temp, 0);
10351
10352 ASM_INPUT_P (temp) = 1;
10353 }
10354 }
10355 else
10356 assemble_asm (string);
10357 }
10358
10359 /* Declarators [gram.dcl.decl] */
10360
10361 /* Parse an init-declarator.
10362
10363 init-declarator:
10364 declarator initializer [opt]
10365
10366 GNU Extension:
10367
10368 init-declarator:
10369 declarator asm-specification [opt] attributes [opt] initializer [opt]
10370
10371 function-definition:
10372 decl-specifier-seq [opt] declarator ctor-initializer [opt]
10373 function-body
10374 decl-specifier-seq [opt] declarator function-try-block
10375
10376 GNU Extension:
10377
10378 function-definition:
10379 __extension__ function-definition
10380
10381 The DECL_SPECIFIERS and PREFIX_ATTRIBUTES apply to this declarator.
10382 Returns a representation of the entity declared. If MEMBER_P is TRUE,
10383 then this declarator appears in a class scope. The new DECL created
10384 by this declarator is returned.
10385
10386 If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and
10387 for a function-definition here as well. If the declarator is a
10388 declarator for a function-definition, *FUNCTION_DEFINITION_P will
10389 be TRUE upon return. By that point, the function-definition will
10390 have been completely parsed.
10391
10392 FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P
10393 is FALSE. */
10394
10395 static tree
10396 cp_parser_init_declarator (cp_parser* parser,
10397 cp_decl_specifier_seq *decl_specifiers,
10398 bool function_definition_allowed_p,
10399 bool member_p,
10400 int declares_class_or_enum,
10401 bool* function_definition_p)
10402 {
10403 cp_token *token;
10404 cp_declarator *declarator;
10405 tree prefix_attributes;
10406 tree attributes;
10407 tree asm_specification;
10408 tree initializer;
10409 tree decl = NULL_TREE;
10410 tree scope;
10411 bool is_initialized;
10412 bool is_parenthesized_init;
10413 bool is_non_constant_init;
10414 int ctor_dtor_or_conv_p;
10415 bool friend_p;
10416 bool pop_p = false;
10417
10418 /* Gather the attributes that were provided with the
10419 decl-specifiers. */
10420 prefix_attributes = decl_specifiers->attributes;
10421
10422 /* Assume that this is not the declarator for a function
10423 definition. */
10424 if (function_definition_p)
10425 *function_definition_p = false;
10426
10427 /* Defer access checks while parsing the declarator; we cannot know
10428 what names are accessible until we know what is being
10429 declared. */
10430 resume_deferring_access_checks ();
10431
10432 /* Parse the declarator. */
10433 declarator
10434 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
10435 &ctor_dtor_or_conv_p,
10436 /*parenthesized_p=*/NULL,
10437 /*member_p=*/false);
10438 /* Gather up the deferred checks. */
10439 stop_deferring_access_checks ();
10440
10441 /* If the DECLARATOR was erroneous, there's no need to go
10442 further. */
10443 if (declarator == cp_error_declarator)
10444 return error_mark_node;
10445
10446 if (declares_class_or_enum & 2)
10447 cp_parser_check_for_definition_in_return_type (declarator,
10448 decl_specifiers->type);
10449
10450 /* Figure out what scope the entity declared by the DECLARATOR is
10451 located in. `grokdeclarator' sometimes changes the scope, so
10452 we compute it now. */
10453 scope = get_scope_of_declarator (declarator);
10454
10455 /* If we're allowing GNU extensions, look for an asm-specification
10456 and attributes. */
10457 if (cp_parser_allow_gnu_extensions_p (parser))
10458 {
10459 /* Look for an asm-specification. */
10460 asm_specification = cp_parser_asm_specification_opt (parser);
10461 /* And attributes. */
10462 attributes = cp_parser_attributes_opt (parser);
10463 }
10464 else
10465 {
10466 asm_specification = NULL_TREE;
10467 attributes = NULL_TREE;
10468 }
10469
10470 /* Peek at the next token. */
10471 token = cp_lexer_peek_token (parser->lexer);
10472 /* Check to see if the token indicates the start of a
10473 function-definition. */
10474 if (cp_parser_token_starts_function_definition_p (token))
10475 {
10476 if (!function_definition_allowed_p)
10477 {
10478 /* If a function-definition should not appear here, issue an
10479 error message. */
10480 cp_parser_error (parser,
10481 "a function-definition is not allowed here");
10482 return error_mark_node;
10483 }
10484 else
10485 {
10486 /* Neither attributes nor an asm-specification are allowed
10487 on a function-definition. */
10488 if (asm_specification)
10489 error ("an asm-specification is not allowed on a function-definition");
10490 if (attributes)
10491 error ("attributes are not allowed on a function-definition");
10492 /* This is a function-definition. */
10493 *function_definition_p = true;
10494
10495 /* Parse the function definition. */
10496 if (member_p)
10497 decl = cp_parser_save_member_function_body (parser,
10498 decl_specifiers,
10499 declarator,
10500 prefix_attributes);
10501 else
10502 decl
10503 = (cp_parser_function_definition_from_specifiers_and_declarator
10504 (parser, decl_specifiers, prefix_attributes, declarator));
10505
10506 return decl;
10507 }
10508 }
10509
10510 /* [dcl.dcl]
10511
10512 Only in function declarations for constructors, destructors, and
10513 type conversions can the decl-specifier-seq be omitted.
10514
10515 We explicitly postpone this check past the point where we handle
10516 function-definitions because we tolerate function-definitions
10517 that are missing their return types in some modes. */
10518 if (!decl_specifiers->any_specifiers_p && ctor_dtor_or_conv_p <= 0)
10519 {
10520 cp_parser_error (parser,
10521 "expected constructor, destructor, or type conversion");
10522 return error_mark_node;
10523 }
10524
10525 /* An `=' or an `(' indicates an initializer. */
10526 is_initialized = (token->type == CPP_EQ
10527 || token->type == CPP_OPEN_PAREN);
10528 /* If the init-declarator isn't initialized and isn't followed by a
10529 `,' or `;', it's not a valid init-declarator. */
10530 if (!is_initialized
10531 && token->type != CPP_COMMA
10532 && token->type != CPP_SEMICOLON)
10533 {
10534 cp_parser_error (parser, "expected initializer");
10535 return error_mark_node;
10536 }
10537
10538 /* Because start_decl has side-effects, we should only call it if we
10539 know we're going ahead. By this point, we know that we cannot
10540 possibly be looking at any other construct. */
10541 cp_parser_commit_to_tentative_parse (parser);
10542
10543 /* If the decl specifiers were bad, issue an error now that we're
10544 sure this was intended to be a declarator. Then continue
10545 declaring the variable(s), as int, to try to cut down on further
10546 errors. */
10547 if (decl_specifiers->any_specifiers_p
10548 && decl_specifiers->type == error_mark_node)
10549 {
10550 cp_parser_error (parser, "invalid type in declaration");
10551 decl_specifiers->type = integer_type_node;
10552 }
10553
10554 /* Check to see whether or not this declaration is a friend. */
10555 friend_p = cp_parser_friend_p (decl_specifiers);
10556
10557 /* Check that the number of template-parameter-lists is OK. */
10558 if (!cp_parser_check_declarator_template_parameters (parser, declarator))
10559 return error_mark_node;
10560
10561 /* Enter the newly declared entry in the symbol table. If we're
10562 processing a declaration in a class-specifier, we wait until
10563 after processing the initializer. */
10564 if (!member_p)
10565 {
10566 if (parser->in_unbraced_linkage_specification_p)
10567 {
10568 decl_specifiers->storage_class = sc_extern;
10569 have_extern_spec = false;
10570 }
10571 decl = start_decl (declarator, decl_specifiers,
10572 is_initialized, attributes, prefix_attributes,
10573 &pop_p);
10574 }
10575 else if (scope)
10576 /* Enter the SCOPE. That way unqualified names appearing in the
10577 initializer will be looked up in SCOPE. */
10578 pop_p = push_scope (scope);
10579
10580 /* Perform deferred access control checks, now that we know in which
10581 SCOPE the declared entity resides. */
10582 if (!member_p && decl)
10583 {
10584 tree saved_current_function_decl = NULL_TREE;
10585
10586 /* If the entity being declared is a function, pretend that we
10587 are in its scope. If it is a `friend', it may have access to
10588 things that would not otherwise be accessible. */
10589 if (TREE_CODE (decl) == FUNCTION_DECL)
10590 {
10591 saved_current_function_decl = current_function_decl;
10592 current_function_decl = decl;
10593 }
10594
10595 /* Perform the access control checks for the declarator and the
10596 the decl-specifiers. */
10597 perform_deferred_access_checks ();
10598
10599 /* Restore the saved value. */
10600 if (TREE_CODE (decl) == FUNCTION_DECL)
10601 current_function_decl = saved_current_function_decl;
10602 }
10603
10604 /* Parse the initializer. */
10605 if (is_initialized)
10606 initializer = cp_parser_initializer (parser,
10607 &is_parenthesized_init,
10608 &is_non_constant_init);
10609 else
10610 {
10611 initializer = NULL_TREE;
10612 is_parenthesized_init = false;
10613 is_non_constant_init = true;
10614 }
10615
10616 /* The old parser allows attributes to appear after a parenthesized
10617 initializer. Mark Mitchell proposed removing this functionality
10618 on the GCC mailing lists on 2002-08-13. This parser accepts the
10619 attributes -- but ignores them. */
10620 if (cp_parser_allow_gnu_extensions_p (parser) && is_parenthesized_init)
10621 if (cp_parser_attributes_opt (parser))
10622 warning ("attributes after parenthesized initializer ignored");
10623
10624 /* For an in-class declaration, use `grokfield' to create the
10625 declaration. */
10626 if (member_p)
10627 {
10628 if (pop_p)
10629 {
10630 pop_scope (scope);
10631 pop_p = false;
10632 }
10633 decl = grokfield (declarator, decl_specifiers,
10634 initializer, /*asmspec=*/NULL_TREE,
10635 /*attributes=*/NULL_TREE);
10636 if (decl && TREE_CODE (decl) == FUNCTION_DECL)
10637 cp_parser_save_default_args (parser, decl);
10638 }
10639
10640 /* Finish processing the declaration. But, skip friend
10641 declarations. */
10642 if (!friend_p && decl && decl != error_mark_node)
10643 {
10644 cp_finish_decl (decl,
10645 initializer,
10646 asm_specification,
10647 /* If the initializer is in parentheses, then this is
10648 a direct-initialization, which means that an
10649 `explicit' constructor is OK. Otherwise, an
10650 `explicit' constructor cannot be used. */
10651 ((is_parenthesized_init || !is_initialized)
10652 ? 0 : LOOKUP_ONLYCONVERTING));
10653 if (pop_p)
10654 pop_scope (DECL_CONTEXT (decl));
10655 }
10656
10657 /* Remember whether or not variables were initialized by
10658 constant-expressions. */
10659 if (decl && TREE_CODE (decl) == VAR_DECL
10660 && is_initialized && !is_non_constant_init)
10661 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = true;
10662
10663 return decl;
10664 }
10665
10666 /* Parse a declarator.
10667
10668 declarator:
10669 direct-declarator
10670 ptr-operator declarator
10671
10672 abstract-declarator:
10673 ptr-operator abstract-declarator [opt]
10674 direct-abstract-declarator
10675
10676 GNU Extensions:
10677
10678 declarator:
10679 attributes [opt] direct-declarator
10680 attributes [opt] ptr-operator declarator
10681
10682 abstract-declarator:
10683 attributes [opt] ptr-operator abstract-declarator [opt]
10684 attributes [opt] direct-abstract-declarator
10685
10686 If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to
10687 detect constructor, destructor or conversion operators. It is set
10688 to -1 if the declarator is a name, and +1 if it is a
10689 function. Otherwise it is set to zero. Usually you just want to
10690 test for >0, but internally the negative value is used.
10691
10692 (The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have
10693 a decl-specifier-seq unless it declares a constructor, destructor,
10694 or conversion. It might seem that we could check this condition in
10695 semantic analysis, rather than parsing, but that makes it difficult
10696 to handle something like `f()'. We want to notice that there are
10697 no decl-specifiers, and therefore realize that this is an
10698 expression, not a declaration.)
10699
10700 If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
10701 the declarator is a direct-declarator of the form "(...)".
10702
10703 MEMBER_P is true iff this declarator is a member-declarator. */
10704
10705 static cp_declarator *
10706 cp_parser_declarator (cp_parser* parser,
10707 cp_parser_declarator_kind dcl_kind,
10708 int* ctor_dtor_or_conv_p,
10709 bool* parenthesized_p,
10710 bool member_p)
10711 {
10712 cp_token *token;
10713 cp_declarator *declarator;
10714 enum tree_code code;
10715 cp_cv_quals cv_quals;
10716 tree class_type;
10717 tree attributes = NULL_TREE;
10718
10719 /* Assume this is not a constructor, destructor, or type-conversion
10720 operator. */
10721 if (ctor_dtor_or_conv_p)
10722 *ctor_dtor_or_conv_p = 0;
10723
10724 if (cp_parser_allow_gnu_extensions_p (parser))
10725 attributes = cp_parser_attributes_opt (parser);
10726
10727 /* Peek at the next token. */
10728 token = cp_lexer_peek_token (parser->lexer);
10729
10730 /* Check for the ptr-operator production. */
10731 cp_parser_parse_tentatively (parser);
10732 /* Parse the ptr-operator. */
10733 code = cp_parser_ptr_operator (parser,
10734 &class_type,
10735 &cv_quals);
10736 /* If that worked, then we have a ptr-operator. */
10737 if (cp_parser_parse_definitely (parser))
10738 {
10739 /* If a ptr-operator was found, then this declarator was not
10740 parenthesized. */
10741 if (parenthesized_p)
10742 *parenthesized_p = true;
10743 /* The dependent declarator is optional if we are parsing an
10744 abstract-declarator. */
10745 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10746 cp_parser_parse_tentatively (parser);
10747
10748 /* Parse the dependent declarator. */
10749 declarator = cp_parser_declarator (parser, dcl_kind,
10750 /*ctor_dtor_or_conv_p=*/NULL,
10751 /*parenthesized_p=*/NULL,
10752 /*member_p=*/false);
10753
10754 /* If we are parsing an abstract-declarator, we must handle the
10755 case where the dependent declarator is absent. */
10756 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED
10757 && !cp_parser_parse_definitely (parser))
10758 declarator = NULL;
10759
10760 /* Build the representation of the ptr-operator. */
10761 if (class_type)
10762 declarator = make_ptrmem_declarator (cv_quals,
10763 class_type,
10764 declarator);
10765 else if (code == INDIRECT_REF)
10766 declarator = make_pointer_declarator (cv_quals, declarator);
10767 else
10768 declarator = make_reference_declarator (cv_quals, declarator);
10769 }
10770 /* Everything else is a direct-declarator. */
10771 else
10772 {
10773 if (parenthesized_p)
10774 *parenthesized_p = cp_lexer_next_token_is (parser->lexer,
10775 CPP_OPEN_PAREN);
10776 declarator = cp_parser_direct_declarator (parser, dcl_kind,
10777 ctor_dtor_or_conv_p,
10778 member_p);
10779 }
10780
10781 if (attributes && declarator != cp_error_declarator)
10782 declarator->attributes = attributes;
10783
10784 return declarator;
10785 }
10786
10787 /* Parse a direct-declarator or direct-abstract-declarator.
10788
10789 direct-declarator:
10790 declarator-id
10791 direct-declarator ( parameter-declaration-clause )
10792 cv-qualifier-seq [opt]
10793 exception-specification [opt]
10794 direct-declarator [ constant-expression [opt] ]
10795 ( declarator )
10796
10797 direct-abstract-declarator:
10798 direct-abstract-declarator [opt]
10799 ( parameter-declaration-clause )
10800 cv-qualifier-seq [opt]
10801 exception-specification [opt]
10802 direct-abstract-declarator [opt] [ constant-expression [opt] ]
10803 ( abstract-declarator )
10804
10805 Returns a representation of the declarator. DCL_KIND is
10806 CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a
10807 direct-abstract-declarator. It is CP_PARSER_DECLARATOR_NAMED, if
10808 we are parsing a direct-declarator. It is
10809 CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case
10810 of ambiguity we prefer an abstract declarator, as per
10811 [dcl.ambig.res]. CTOR_DTOR_OR_CONV_P and MEMBER_P are as for
10812 cp_parser_declarator. */
10813
10814 static cp_declarator *
10815 cp_parser_direct_declarator (cp_parser* parser,
10816 cp_parser_declarator_kind dcl_kind,
10817 int* ctor_dtor_or_conv_p,
10818 bool member_p)
10819 {
10820 cp_token *token;
10821 cp_declarator *declarator = NULL;
10822 tree scope = NULL_TREE;
10823 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
10824 bool saved_in_declarator_p = parser->in_declarator_p;
10825 bool first = true;
10826 bool pop_p = false;
10827
10828 while (true)
10829 {
10830 /* Peek at the next token. */
10831 token = cp_lexer_peek_token (parser->lexer);
10832 if (token->type == CPP_OPEN_PAREN)
10833 {
10834 /* This is either a parameter-declaration-clause, or a
10835 parenthesized declarator. When we know we are parsing a
10836 named declarator, it must be a parenthesized declarator
10837 if FIRST is true. For instance, `(int)' is a
10838 parameter-declaration-clause, with an omitted
10839 direct-abstract-declarator. But `((*))', is a
10840 parenthesized abstract declarator. Finally, when T is a
10841 template parameter `(T)' is a
10842 parameter-declaration-clause, and not a parenthesized
10843 named declarator.
10844
10845 We first try and parse a parameter-declaration-clause,
10846 and then try a nested declarator (if FIRST is true).
10847
10848 It is not an error for it not to be a
10849 parameter-declaration-clause, even when FIRST is
10850 false. Consider,
10851
10852 int i (int);
10853 int i (3);
10854
10855 The first is the declaration of a function while the
10856 second is a the definition of a variable, including its
10857 initializer.
10858
10859 Having seen only the parenthesis, we cannot know which of
10860 these two alternatives should be selected. Even more
10861 complex are examples like:
10862
10863 int i (int (a));
10864 int i (int (3));
10865
10866 The former is a function-declaration; the latter is a
10867 variable initialization.
10868
10869 Thus again, we try a parameter-declaration-clause, and if
10870 that fails, we back out and return. */
10871
10872 if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10873 {
10874 cp_parameter_declarator *params;
10875 unsigned saved_num_template_parameter_lists;
10876
10877 /* In a member-declarator, the only valid interpretation
10878 of a parenthesis is the start of a
10879 parameter-declaration-clause. (It is invalid to
10880 initialize a static data member with a parenthesized
10881 initializer; only the "=" form of initialization is
10882 permitted.) */
10883 if (!member_p)
10884 cp_parser_parse_tentatively (parser);
10885
10886 /* Consume the `('. */
10887 cp_lexer_consume_token (parser->lexer);
10888 if (first)
10889 {
10890 /* If this is going to be an abstract declarator, we're
10891 in a declarator and we can't have default args. */
10892 parser->default_arg_ok_p = false;
10893 parser->in_declarator_p = true;
10894 }
10895
10896 /* Inside the function parameter list, surrounding
10897 template-parameter-lists do not apply. */
10898 saved_num_template_parameter_lists
10899 = parser->num_template_parameter_lists;
10900 parser->num_template_parameter_lists = 0;
10901
10902 /* Parse the parameter-declaration-clause. */
10903 params = cp_parser_parameter_declaration_clause (parser);
10904
10905 parser->num_template_parameter_lists
10906 = saved_num_template_parameter_lists;
10907
10908 /* If all went well, parse the cv-qualifier-seq and the
10909 exception-specification. */
10910 if (member_p || cp_parser_parse_definitely (parser))
10911 {
10912 cp_cv_quals cv_quals;
10913 tree exception_specification;
10914
10915 if (ctor_dtor_or_conv_p)
10916 *ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0;
10917 first = false;
10918 /* Consume the `)'. */
10919 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
10920
10921 /* Parse the cv-qualifier-seq. */
10922 cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
10923 /* And the exception-specification. */
10924 exception_specification
10925 = cp_parser_exception_specification_opt (parser);
10926
10927 /* Create the function-declarator. */
10928 declarator = make_call_declarator (declarator,
10929 params,
10930 cv_quals,
10931 exception_specification);
10932 /* Any subsequent parameter lists are to do with
10933 return type, so are not those of the declared
10934 function. */
10935 parser->default_arg_ok_p = false;
10936
10937 /* Repeat the main loop. */
10938 continue;
10939 }
10940 }
10941
10942 /* If this is the first, we can try a parenthesized
10943 declarator. */
10944 if (first)
10945 {
10946 bool saved_in_type_id_in_expr_p;
10947
10948 parser->default_arg_ok_p = saved_default_arg_ok_p;
10949 parser->in_declarator_p = saved_in_declarator_p;
10950
10951 /* Consume the `('. */
10952 cp_lexer_consume_token (parser->lexer);
10953 /* Parse the nested declarator. */
10954 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
10955 parser->in_type_id_in_expr_p = true;
10956 declarator
10957 = cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p,
10958 /*parenthesized_p=*/NULL,
10959 member_p);
10960 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
10961 first = false;
10962 /* Expect a `)'. */
10963 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
10964 declarator = cp_error_declarator;
10965 if (declarator == cp_error_declarator)
10966 break;
10967
10968 goto handle_declarator;
10969 }
10970 /* Otherwise, we must be done. */
10971 else
10972 break;
10973 }
10974 else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10975 && token->type == CPP_OPEN_SQUARE)
10976 {
10977 /* Parse an array-declarator. */
10978 tree bounds;
10979
10980 if (ctor_dtor_or_conv_p)
10981 *ctor_dtor_or_conv_p = 0;
10982
10983 first = false;
10984 parser->default_arg_ok_p = false;
10985 parser->in_declarator_p = true;
10986 /* Consume the `['. */
10987 cp_lexer_consume_token (parser->lexer);
10988 /* Peek at the next token. */
10989 token = cp_lexer_peek_token (parser->lexer);
10990 /* If the next token is `]', then there is no
10991 constant-expression. */
10992 if (token->type != CPP_CLOSE_SQUARE)
10993 {
10994 bool non_constant_p;
10995
10996 bounds
10997 = cp_parser_constant_expression (parser,
10998 /*allow_non_constant=*/true,
10999 &non_constant_p);
11000 if (!non_constant_p)
11001 bounds = fold_non_dependent_expr (bounds);
11002 else if (!at_function_scope_p ())
11003 {
11004 error ("array bound is not an integer constant");
11005 bounds = error_mark_node;
11006 }
11007 }
11008 else
11009 bounds = NULL_TREE;
11010 /* Look for the closing `]'. */
11011 if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'"))
11012 {
11013 declarator = cp_error_declarator;
11014 break;
11015 }
11016
11017 declarator = make_array_declarator (declarator, bounds);
11018 }
11019 else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT)
11020 {
11021 tree id;
11022
11023 /* Parse a declarator-id */
11024 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
11025 cp_parser_parse_tentatively (parser);
11026 id = cp_parser_declarator_id (parser);
11027 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
11028 {
11029 if (!cp_parser_parse_definitely (parser))
11030 id = error_mark_node;
11031 else if (TREE_CODE (id) != IDENTIFIER_NODE)
11032 {
11033 cp_parser_error (parser, "expected unqualified-id");
11034 id = error_mark_node;
11035 }
11036 }
11037
11038 if (id == error_mark_node)
11039 {
11040 declarator = cp_error_declarator;
11041 break;
11042 }
11043
11044 if (TREE_CODE (id) == SCOPE_REF && at_namespace_scope_p ())
11045 {
11046 tree scope = TREE_OPERAND (id, 0);
11047
11048 /* In the declaration of a member of a template class
11049 outside of the class itself, the SCOPE will sometimes
11050 be a TYPENAME_TYPE. For example, given:
11051
11052 template <typename T>
11053 int S<T>::R::i = 3;
11054
11055 the SCOPE will be a TYPENAME_TYPE for `S<T>::R'. In
11056 this context, we must resolve S<T>::R to an ordinary
11057 type, rather than a typename type.
11058
11059 The reason we normally avoid resolving TYPENAME_TYPEs
11060 is that a specialization of `S' might render
11061 `S<T>::R' not a type. However, if `S' is
11062 specialized, then this `i' will not be used, so there
11063 is no harm in resolving the types here. */
11064 if (TREE_CODE (scope) == TYPENAME_TYPE)
11065 {
11066 tree type;
11067
11068 /* Resolve the TYPENAME_TYPE. */
11069 type = resolve_typename_type (scope,
11070 /*only_current_p=*/false);
11071 /* If that failed, the declarator is invalid. */
11072 if (type == error_mark_node)
11073 error ("%<%T::%D%> is not a type",
11074 TYPE_CONTEXT (scope),
11075 TYPE_IDENTIFIER (scope));
11076 /* Build a new DECLARATOR. */
11077 id = build_nt (SCOPE_REF, type, TREE_OPERAND (id, 1));
11078 }
11079 }
11080
11081 declarator = make_id_declarator (id);
11082 if (id)
11083 {
11084 tree class_type;
11085 tree unqualified_name;
11086
11087 if (TREE_CODE (id) == SCOPE_REF
11088 && CLASS_TYPE_P (TREE_OPERAND (id, 0)))
11089 {
11090 class_type = TREE_OPERAND (id, 0);
11091 unqualified_name = TREE_OPERAND (id, 1);
11092 }
11093 else
11094 {
11095 class_type = current_class_type;
11096 unqualified_name = id;
11097 }
11098
11099 if (class_type)
11100 {
11101 if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR)
11102 declarator->u.id.sfk = sfk_destructor;
11103 else if (IDENTIFIER_TYPENAME_P (unqualified_name))
11104 declarator->u.id.sfk = sfk_conversion;
11105 else if (constructor_name_p (unqualified_name,
11106 class_type)
11107 || (TREE_CODE (unqualified_name) == TYPE_DECL
11108 && same_type_p (TREE_TYPE (unqualified_name),
11109 class_type)))
11110 declarator->u.id.sfk = sfk_constructor;
11111
11112 if (ctor_dtor_or_conv_p && declarator->u.id.sfk != sfk_none)
11113 *ctor_dtor_or_conv_p = -1;
11114 if (TREE_CODE (id) == SCOPE_REF
11115 && TREE_CODE (unqualified_name) == TYPE_DECL
11116 && CLASSTYPE_USE_TEMPLATE (TREE_TYPE (unqualified_name)))
11117 {
11118 error ("invalid use of constructor as a template");
11119 inform ("use %<%T::%D%> instead of %<%T::%T%> to name "
11120 "the constructor in a qualified name",
11121 class_type,
11122 DECL_NAME (TYPE_TI_TEMPLATE (class_type)),
11123 class_type, class_type);
11124 }
11125 }
11126 }
11127
11128 handle_declarator:;
11129 scope = get_scope_of_declarator (declarator);
11130 if (scope)
11131 /* Any names that appear after the declarator-id for a
11132 member are looked up in the containing scope. */
11133 pop_p = push_scope (scope);
11134 parser->in_declarator_p = true;
11135 if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p)
11136 || (declarator && declarator->kind == cdk_id))
11137 /* Default args are only allowed on function
11138 declarations. */
11139 parser->default_arg_ok_p = saved_default_arg_ok_p;
11140 else
11141 parser->default_arg_ok_p = false;
11142
11143 first = false;
11144 }
11145 /* We're done. */
11146 else
11147 break;
11148 }
11149
11150 /* For an abstract declarator, we might wind up with nothing at this
11151 point. That's an error; the declarator is not optional. */
11152 if (!declarator)
11153 cp_parser_error (parser, "expected declarator");
11154
11155 /* If we entered a scope, we must exit it now. */
11156 if (pop_p)
11157 pop_scope (scope);
11158
11159 parser->default_arg_ok_p = saved_default_arg_ok_p;
11160 parser->in_declarator_p = saved_in_declarator_p;
11161
11162 return declarator;
11163 }
11164
11165 /* Parse a ptr-operator.
11166
11167 ptr-operator:
11168 * cv-qualifier-seq [opt]
11169 &
11170 :: [opt] nested-name-specifier * cv-qualifier-seq [opt]
11171
11172 GNU Extension:
11173
11174 ptr-operator:
11175 & cv-qualifier-seq [opt]
11176
11177 Returns INDIRECT_REF if a pointer, or pointer-to-member, was used.
11178 Returns ADDR_EXPR if a reference was used. In the case of a
11179 pointer-to-member, *TYPE is filled in with the TYPE containing the
11180 member. *CV_QUALS is filled in with the cv-qualifier-seq, or
11181 TYPE_UNQUALIFIED, if there are no cv-qualifiers. Returns
11182 ERROR_MARK if an error occurred. */
11183
11184 static enum tree_code
11185 cp_parser_ptr_operator (cp_parser* parser,
11186 tree* type,
11187 cp_cv_quals *cv_quals)
11188 {
11189 enum tree_code code = ERROR_MARK;
11190 cp_token *token;
11191
11192 /* Assume that it's not a pointer-to-member. */
11193 *type = NULL_TREE;
11194 /* And that there are no cv-qualifiers. */
11195 *cv_quals = TYPE_UNQUALIFIED;
11196
11197 /* Peek at the next token. */
11198 token = cp_lexer_peek_token (parser->lexer);
11199 /* If it's a `*' or `&' we have a pointer or reference. */
11200 if (token->type == CPP_MULT || token->type == CPP_AND)
11201 {
11202 /* Remember which ptr-operator we were processing. */
11203 code = (token->type == CPP_AND ? ADDR_EXPR : INDIRECT_REF);
11204
11205 /* Consume the `*' or `&'. */
11206 cp_lexer_consume_token (parser->lexer);
11207
11208 /* A `*' can be followed by a cv-qualifier-seq, and so can a
11209 `&', if we are allowing GNU extensions. (The only qualifier
11210 that can legally appear after `&' is `restrict', but that is
11211 enforced during semantic analysis. */
11212 if (code == INDIRECT_REF
11213 || cp_parser_allow_gnu_extensions_p (parser))
11214 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11215 }
11216 else
11217 {
11218 /* Try the pointer-to-member case. */
11219 cp_parser_parse_tentatively (parser);
11220 /* Look for the optional `::' operator. */
11221 cp_parser_global_scope_opt (parser,
11222 /*current_scope_valid_p=*/false);
11223 /* Look for the nested-name specifier. */
11224 cp_parser_nested_name_specifier (parser,
11225 /*typename_keyword_p=*/false,
11226 /*check_dependency_p=*/true,
11227 /*type_p=*/false,
11228 /*is_declaration=*/false);
11229 /* If we found it, and the next token is a `*', then we are
11230 indeed looking at a pointer-to-member operator. */
11231 if (!cp_parser_error_occurred (parser)
11232 && cp_parser_require (parser, CPP_MULT, "`*'"))
11233 {
11234 /* The type of which the member is a member is given by the
11235 current SCOPE. */
11236 *type = parser->scope;
11237 /* The next name will not be qualified. */
11238 parser->scope = NULL_TREE;
11239 parser->qualifying_scope = NULL_TREE;
11240 parser->object_scope = NULL_TREE;
11241 /* Indicate that the `*' operator was used. */
11242 code = INDIRECT_REF;
11243 /* Look for the optional cv-qualifier-seq. */
11244 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11245 }
11246 /* If that didn't work we don't have a ptr-operator. */
11247 if (!cp_parser_parse_definitely (parser))
11248 cp_parser_error (parser, "expected ptr-operator");
11249 }
11250
11251 return code;
11252 }
11253
11254 /* Parse an (optional) cv-qualifier-seq.
11255
11256 cv-qualifier-seq:
11257 cv-qualifier cv-qualifier-seq [opt]
11258
11259 cv-qualifier:
11260 const
11261 volatile
11262
11263 GNU Extension:
11264
11265 cv-qualifier:
11266 __restrict__
11267
11268 Returns a bitmask representing the cv-qualifiers. */
11269
11270 static cp_cv_quals
11271 cp_parser_cv_qualifier_seq_opt (cp_parser* parser)
11272 {
11273 cp_cv_quals cv_quals = TYPE_UNQUALIFIED;
11274
11275 while (true)
11276 {
11277 cp_token *token;
11278 cp_cv_quals cv_qualifier;
11279
11280 /* Peek at the next token. */
11281 token = cp_lexer_peek_token (parser->lexer);
11282 /* See if it's a cv-qualifier. */
11283 switch (token->keyword)
11284 {
11285 case RID_CONST:
11286 cv_qualifier = TYPE_QUAL_CONST;
11287 break;
11288
11289 case RID_VOLATILE:
11290 cv_qualifier = TYPE_QUAL_VOLATILE;
11291 break;
11292
11293 case RID_RESTRICT:
11294 cv_qualifier = TYPE_QUAL_RESTRICT;
11295 break;
11296
11297 default:
11298 cv_qualifier = TYPE_UNQUALIFIED;
11299 break;
11300 }
11301
11302 if (!cv_qualifier)
11303 break;
11304
11305 if (cv_quals & cv_qualifier)
11306 {
11307 error ("duplicate cv-qualifier");
11308 cp_lexer_purge_token (parser->lexer);
11309 }
11310 else
11311 {
11312 cp_lexer_consume_token (parser->lexer);
11313 cv_quals |= cv_qualifier;
11314 }
11315 }
11316
11317 return cv_quals;
11318 }
11319
11320 /* Parse a declarator-id.
11321
11322 declarator-id:
11323 id-expression
11324 :: [opt] nested-name-specifier [opt] type-name
11325
11326 In the `id-expression' case, the value returned is as for
11327 cp_parser_id_expression if the id-expression was an unqualified-id.
11328 If the id-expression was a qualified-id, then a SCOPE_REF is
11329 returned. The first operand is the scope (either a NAMESPACE_DECL
11330 or TREE_TYPE), but the second is still just a representation of an
11331 unqualified-id. */
11332
11333 static tree
11334 cp_parser_declarator_id (cp_parser* parser)
11335 {
11336 tree id_expression;
11337
11338 /* The expression must be an id-expression. Assume that qualified
11339 names are the names of types so that:
11340
11341 template <class T>
11342 int S<T>::R::i = 3;
11343
11344 will work; we must treat `S<T>::R' as the name of a type.
11345 Similarly, assume that qualified names are templates, where
11346 required, so that:
11347
11348 template <class T>
11349 int S<T>::R<T>::i = 3;
11350
11351 will work, too. */
11352 id_expression = cp_parser_id_expression (parser,
11353 /*template_keyword_p=*/false,
11354 /*check_dependency_p=*/false,
11355 /*template_p=*/NULL,
11356 /*declarator_p=*/true);
11357 /* If the name was qualified, create a SCOPE_REF to represent
11358 that. */
11359 if (parser->scope)
11360 {
11361 id_expression = build_nt (SCOPE_REF, parser->scope, id_expression);
11362 parser->scope = NULL_TREE;
11363 }
11364
11365 return id_expression;
11366 }
11367
11368 /* Parse a type-id.
11369
11370 type-id:
11371 type-specifier-seq abstract-declarator [opt]
11372
11373 Returns the TYPE specified. */
11374
11375 static tree
11376 cp_parser_type_id (cp_parser* parser)
11377 {
11378 cp_decl_specifier_seq type_specifier_seq;
11379 cp_declarator *abstract_declarator;
11380
11381 /* Parse the type-specifier-seq. */
11382 cp_parser_type_specifier_seq (parser, &type_specifier_seq);
11383 if (type_specifier_seq.type == error_mark_node)
11384 return error_mark_node;
11385
11386 /* There might or might not be an abstract declarator. */
11387 cp_parser_parse_tentatively (parser);
11388 /* Look for the declarator. */
11389 abstract_declarator
11390 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL,
11391 /*parenthesized_p=*/NULL,
11392 /*member_p=*/false);
11393 /* Check to see if there really was a declarator. */
11394 if (!cp_parser_parse_definitely (parser))
11395 abstract_declarator = NULL;
11396
11397 return groktypename (&type_specifier_seq, abstract_declarator);
11398 }
11399
11400 /* Parse a type-specifier-seq.
11401
11402 type-specifier-seq:
11403 type-specifier type-specifier-seq [opt]
11404
11405 GNU extension:
11406
11407 type-specifier-seq:
11408 attributes type-specifier-seq [opt]
11409
11410 Sets *TYPE_SPECIFIER_SEQ to represent the sequence. */
11411
11412 static void
11413 cp_parser_type_specifier_seq (cp_parser* parser,
11414 cp_decl_specifier_seq *type_specifier_seq)
11415 {
11416 bool seen_type_specifier = false;
11417
11418 /* Clear the TYPE_SPECIFIER_SEQ. */
11419 clear_decl_specs (type_specifier_seq);
11420
11421 /* Parse the type-specifiers and attributes. */
11422 while (true)
11423 {
11424 tree type_specifier;
11425
11426 /* Check for attributes first. */
11427 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
11428 {
11429 type_specifier_seq->attributes =
11430 chainon (type_specifier_seq->attributes,
11431 cp_parser_attributes_opt (parser));
11432 continue;
11433 }
11434
11435 /* Look for the type-specifier. */
11436 type_specifier = cp_parser_type_specifier (parser,
11437 CP_PARSER_FLAGS_OPTIONAL,
11438 type_specifier_seq,
11439 /*is_declaration=*/false,
11440 NULL,
11441 NULL);
11442 /* If the first type-specifier could not be found, this is not a
11443 type-specifier-seq at all. */
11444 if (!seen_type_specifier && !type_specifier)
11445 {
11446 cp_parser_error (parser, "expected type-specifier");
11447 type_specifier_seq->type = error_mark_node;
11448 return;
11449 }
11450 /* If subsequent type-specifiers could not be found, the
11451 type-specifier-seq is complete. */
11452 else if (seen_type_specifier && !type_specifier)
11453 break;
11454
11455 seen_type_specifier = true;
11456 }
11457
11458 return;
11459 }
11460
11461 /* Parse a parameter-declaration-clause.
11462
11463 parameter-declaration-clause:
11464 parameter-declaration-list [opt] ... [opt]
11465 parameter-declaration-list , ...
11466
11467 Returns a representation for the parameter declarations. A return
11468 value of NULL indicates a parameter-declaration-clause consisting
11469 only of an ellipsis. */
11470
11471 static cp_parameter_declarator *
11472 cp_parser_parameter_declaration_clause (cp_parser* parser)
11473 {
11474 cp_parameter_declarator *parameters;
11475 cp_token *token;
11476 bool ellipsis_p;
11477 bool is_error;
11478
11479 /* Peek at the next token. */
11480 token = cp_lexer_peek_token (parser->lexer);
11481 /* Check for trivial parameter-declaration-clauses. */
11482 if (token->type == CPP_ELLIPSIS)
11483 {
11484 /* Consume the `...' token. */
11485 cp_lexer_consume_token (parser->lexer);
11486 return NULL;
11487 }
11488 else if (token->type == CPP_CLOSE_PAREN)
11489 /* There are no parameters. */
11490 {
11491 #ifndef NO_IMPLICIT_EXTERN_C
11492 if (in_system_header && current_class_type == NULL
11493 && current_lang_name == lang_name_c)
11494 return NULL;
11495 else
11496 #endif
11497 return no_parameters;
11498 }
11499 /* Check for `(void)', too, which is a special case. */
11500 else if (token->keyword == RID_VOID
11501 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
11502 == CPP_CLOSE_PAREN))
11503 {
11504 /* Consume the `void' token. */
11505 cp_lexer_consume_token (parser->lexer);
11506 /* There are no parameters. */
11507 return no_parameters;
11508 }
11509
11510 /* Parse the parameter-declaration-list. */
11511 parameters = cp_parser_parameter_declaration_list (parser, &is_error);
11512 /* If a parse error occurred while parsing the
11513 parameter-declaration-list, then the entire
11514 parameter-declaration-clause is erroneous. */
11515 if (is_error)
11516 return NULL;
11517
11518 /* Peek at the next token. */
11519 token = cp_lexer_peek_token (parser->lexer);
11520 /* If it's a `,', the clause should terminate with an ellipsis. */
11521 if (token->type == CPP_COMMA)
11522 {
11523 /* Consume the `,'. */
11524 cp_lexer_consume_token (parser->lexer);
11525 /* Expect an ellipsis. */
11526 ellipsis_p
11527 = (cp_parser_require (parser, CPP_ELLIPSIS, "`...'") != NULL);
11528 }
11529 /* It might also be `...' if the optional trailing `,' was
11530 omitted. */
11531 else if (token->type == CPP_ELLIPSIS)
11532 {
11533 /* Consume the `...' token. */
11534 cp_lexer_consume_token (parser->lexer);
11535 /* And remember that we saw it. */
11536 ellipsis_p = true;
11537 }
11538 else
11539 ellipsis_p = false;
11540
11541 /* Finish the parameter list. */
11542 if (parameters && ellipsis_p)
11543 parameters->ellipsis_p = true;
11544
11545 return parameters;
11546 }
11547
11548 /* Parse a parameter-declaration-list.
11549
11550 parameter-declaration-list:
11551 parameter-declaration
11552 parameter-declaration-list , parameter-declaration
11553
11554 Returns a representation of the parameter-declaration-list, as for
11555 cp_parser_parameter_declaration_clause. However, the
11556 `void_list_node' is never appended to the list. Upon return,
11557 *IS_ERROR will be true iff an error occurred. */
11558
11559 static cp_parameter_declarator *
11560 cp_parser_parameter_declaration_list (cp_parser* parser, bool *is_error)
11561 {
11562 cp_parameter_declarator *parameters = NULL;
11563 cp_parameter_declarator **tail = &parameters;
11564
11565 /* Assume all will go well. */
11566 *is_error = false;
11567
11568 /* Look for more parameters. */
11569 while (true)
11570 {
11571 cp_parameter_declarator *parameter;
11572 bool parenthesized_p;
11573 /* Parse the parameter. */
11574 parameter
11575 = cp_parser_parameter_declaration (parser,
11576 /*template_parm_p=*/false,
11577 &parenthesized_p);
11578
11579 /* If a parse error occurred parsing the parameter declaration,
11580 then the entire parameter-declaration-list is erroneous. */
11581 if (!parameter)
11582 {
11583 *is_error = true;
11584 parameters = NULL;
11585 break;
11586 }
11587 /* Add the new parameter to the list. */
11588 *tail = parameter;
11589 tail = &parameter->next;
11590
11591 /* Peek at the next token. */
11592 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
11593 || cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
11594 /* The parameter-declaration-list is complete. */
11595 break;
11596 else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
11597 {
11598 cp_token *token;
11599
11600 /* Peek at the next token. */
11601 token = cp_lexer_peek_nth_token (parser->lexer, 2);
11602 /* If it's an ellipsis, then the list is complete. */
11603 if (token->type == CPP_ELLIPSIS)
11604 break;
11605 /* Otherwise, there must be more parameters. Consume the
11606 `,'. */
11607 cp_lexer_consume_token (parser->lexer);
11608 /* When parsing something like:
11609
11610 int i(float f, double d)
11611
11612 we can tell after seeing the declaration for "f" that we
11613 are not looking at an initialization of a variable "i",
11614 but rather at the declaration of a function "i".
11615
11616 Due to the fact that the parsing of template arguments
11617 (as specified to a template-id) requires backtracking we
11618 cannot use this technique when inside a template argument
11619 list. */
11620 if (!parser->in_template_argument_list_p
11621 && !parser->in_type_id_in_expr_p
11622 && cp_parser_parsing_tentatively (parser)
11623 && !cp_parser_committed_to_tentative_parse (parser)
11624 /* However, a parameter-declaration of the form
11625 "foat(f)" (which is a valid declaration of a
11626 parameter "f") can also be interpreted as an
11627 expression (the conversion of "f" to "float"). */
11628 && !parenthesized_p)
11629 cp_parser_commit_to_tentative_parse (parser);
11630 }
11631 else
11632 {
11633 cp_parser_error (parser, "expected %<,%> or %<...%>");
11634 if (!cp_parser_parsing_tentatively (parser)
11635 || cp_parser_committed_to_tentative_parse (parser))
11636 cp_parser_skip_to_closing_parenthesis (parser,
11637 /*recovering=*/true,
11638 /*or_comma=*/false,
11639 /*consume_paren=*/false);
11640 break;
11641 }
11642 }
11643
11644 return parameters;
11645 }
11646
11647 /* Parse a parameter declaration.
11648
11649 parameter-declaration:
11650 decl-specifier-seq declarator
11651 decl-specifier-seq declarator = assignment-expression
11652 decl-specifier-seq abstract-declarator [opt]
11653 decl-specifier-seq abstract-declarator [opt] = assignment-expression
11654
11655 If TEMPLATE_PARM_P is TRUE, then this parameter-declaration
11656 declares a template parameter. (In that case, a non-nested `>'
11657 token encountered during the parsing of the assignment-expression
11658 is not interpreted as a greater-than operator.)
11659
11660 Returns a representation of the parameter, or NULL if an error
11661 occurs. If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to
11662 true iff the declarator is of the form "(p)". */
11663
11664 static cp_parameter_declarator *
11665 cp_parser_parameter_declaration (cp_parser *parser,
11666 bool template_parm_p,
11667 bool *parenthesized_p)
11668 {
11669 int declares_class_or_enum;
11670 bool greater_than_is_operator_p;
11671 cp_decl_specifier_seq decl_specifiers;
11672 cp_declarator *declarator;
11673 tree default_argument;
11674 cp_token *token;
11675 const char *saved_message;
11676
11677 /* In a template parameter, `>' is not an operator.
11678
11679 [temp.param]
11680
11681 When parsing a default template-argument for a non-type
11682 template-parameter, the first non-nested `>' is taken as the end
11683 of the template parameter-list rather than a greater-than
11684 operator. */
11685 greater_than_is_operator_p = !template_parm_p;
11686
11687 /* Type definitions may not appear in parameter types. */
11688 saved_message = parser->type_definition_forbidden_message;
11689 parser->type_definition_forbidden_message
11690 = "types may not be defined in parameter types";
11691
11692 /* Parse the declaration-specifiers. */
11693 cp_parser_decl_specifier_seq (parser,
11694 CP_PARSER_FLAGS_NONE,
11695 &decl_specifiers,
11696 &declares_class_or_enum);
11697 /* If an error occurred, there's no reason to attempt to parse the
11698 rest of the declaration. */
11699 if (cp_parser_error_occurred (parser))
11700 {
11701 parser->type_definition_forbidden_message = saved_message;
11702 return NULL;
11703 }
11704
11705 /* Peek at the next token. */
11706 token = cp_lexer_peek_token (parser->lexer);
11707 /* If the next token is a `)', `,', `=', `>', or `...', then there
11708 is no declarator. */
11709 if (token->type == CPP_CLOSE_PAREN
11710 || token->type == CPP_COMMA
11711 || token->type == CPP_EQ
11712 || token->type == CPP_ELLIPSIS
11713 || token->type == CPP_GREATER)
11714 {
11715 declarator = NULL;
11716 if (parenthesized_p)
11717 *parenthesized_p = false;
11718 }
11719 /* Otherwise, there should be a declarator. */
11720 else
11721 {
11722 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
11723 parser->default_arg_ok_p = false;
11724
11725 /* After seeing a decl-specifier-seq, if the next token is not a
11726 "(", there is no possibility that the code is a valid
11727 expression. Therefore, if parsing tentatively, we commit at
11728 this point. */
11729 if (!parser->in_template_argument_list_p
11730 /* In an expression context, having seen:
11731
11732 (int((char ...
11733
11734 we cannot be sure whether we are looking at a
11735 function-type (taking a "char" as a parameter) or a cast
11736 of some object of type "char" to "int". */
11737 && !parser->in_type_id_in_expr_p
11738 && cp_parser_parsing_tentatively (parser)
11739 && !cp_parser_committed_to_tentative_parse (parser)
11740 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
11741 cp_parser_commit_to_tentative_parse (parser);
11742 /* Parse the declarator. */
11743 declarator = cp_parser_declarator (parser,
11744 CP_PARSER_DECLARATOR_EITHER,
11745 /*ctor_dtor_or_conv_p=*/NULL,
11746 parenthesized_p,
11747 /*member_p=*/false);
11748 parser->default_arg_ok_p = saved_default_arg_ok_p;
11749 /* After the declarator, allow more attributes. */
11750 decl_specifiers.attributes
11751 = chainon (decl_specifiers.attributes,
11752 cp_parser_attributes_opt (parser));
11753 }
11754
11755 /* The restriction on defining new types applies only to the type
11756 of the parameter, not to the default argument. */
11757 parser->type_definition_forbidden_message = saved_message;
11758
11759 /* If the next token is `=', then process a default argument. */
11760 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
11761 {
11762 bool saved_greater_than_is_operator_p;
11763 /* Consume the `='. */
11764 cp_lexer_consume_token (parser->lexer);
11765
11766 /* If we are defining a class, then the tokens that make up the
11767 default argument must be saved and processed later. */
11768 if (!template_parm_p && at_class_scope_p ()
11769 && TYPE_BEING_DEFINED (current_class_type))
11770 {
11771 unsigned depth = 0;
11772 cp_token *first_token;
11773 cp_token *token;
11774
11775 /* Add tokens until we have processed the entire default
11776 argument. We add the range [first_token, token). */
11777 first_token = cp_lexer_peek_token (parser->lexer);
11778 while (true)
11779 {
11780 bool done = false;
11781
11782 /* Peek at the next token. */
11783 token = cp_lexer_peek_token (parser->lexer);
11784 /* What we do depends on what token we have. */
11785 switch (token->type)
11786 {
11787 /* In valid code, a default argument must be
11788 immediately followed by a `,' `)', or `...'. */
11789 case CPP_COMMA:
11790 case CPP_CLOSE_PAREN:
11791 case CPP_ELLIPSIS:
11792 /* If we run into a non-nested `;', `}', or `]',
11793 then the code is invalid -- but the default
11794 argument is certainly over. */
11795 case CPP_SEMICOLON:
11796 case CPP_CLOSE_BRACE:
11797 case CPP_CLOSE_SQUARE:
11798 if (depth == 0)
11799 done = true;
11800 /* Update DEPTH, if necessary. */
11801 else if (token->type == CPP_CLOSE_PAREN
11802 || token->type == CPP_CLOSE_BRACE
11803 || token->type == CPP_CLOSE_SQUARE)
11804 --depth;
11805 break;
11806
11807 case CPP_OPEN_PAREN:
11808 case CPP_OPEN_SQUARE:
11809 case CPP_OPEN_BRACE:
11810 ++depth;
11811 break;
11812
11813 case CPP_GREATER:
11814 /* If we see a non-nested `>', and `>' is not an
11815 operator, then it marks the end of the default
11816 argument. */
11817 if (!depth && !greater_than_is_operator_p)
11818 done = true;
11819 break;
11820
11821 /* If we run out of tokens, issue an error message. */
11822 case CPP_EOF:
11823 error ("file ends in default argument");
11824 done = true;
11825 break;
11826
11827 case CPP_NAME:
11828 case CPP_SCOPE:
11829 /* In these cases, we should look for template-ids.
11830 For example, if the default argument is
11831 `X<int, double>()', we need to do name lookup to
11832 figure out whether or not `X' is a template; if
11833 so, the `,' does not end the default argument.
11834
11835 That is not yet done. */
11836 break;
11837
11838 default:
11839 break;
11840 }
11841
11842 /* If we've reached the end, stop. */
11843 if (done)
11844 break;
11845
11846 /* Add the token to the token block. */
11847 token = cp_lexer_consume_token (parser->lexer);
11848 }
11849
11850 /* Create a DEFAULT_ARG to represented the unparsed default
11851 argument. */
11852 default_argument = make_node (DEFAULT_ARG);
11853 DEFARG_TOKENS (default_argument)
11854 = cp_token_cache_new (first_token, token);
11855 }
11856 /* Outside of a class definition, we can just parse the
11857 assignment-expression. */
11858 else
11859 {
11860 bool saved_local_variables_forbidden_p;
11861
11862 /* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is
11863 set correctly. */
11864 saved_greater_than_is_operator_p
11865 = parser->greater_than_is_operator_p;
11866 parser->greater_than_is_operator_p = greater_than_is_operator_p;
11867 /* Local variable names (and the `this' keyword) may not
11868 appear in a default argument. */
11869 saved_local_variables_forbidden_p
11870 = parser->local_variables_forbidden_p;
11871 parser->local_variables_forbidden_p = true;
11872 /* Parse the assignment-expression. */
11873 default_argument = cp_parser_assignment_expression (parser);
11874 /* Restore saved state. */
11875 parser->greater_than_is_operator_p
11876 = saved_greater_than_is_operator_p;
11877 parser->local_variables_forbidden_p
11878 = saved_local_variables_forbidden_p;
11879 }
11880 if (!parser->default_arg_ok_p)
11881 {
11882 if (!flag_pedantic_errors)
11883 warning ("deprecated use of default argument for parameter of non-function");
11884 else
11885 {
11886 error ("default arguments are only permitted for function parameters");
11887 default_argument = NULL_TREE;
11888 }
11889 }
11890 }
11891 else
11892 default_argument = NULL_TREE;
11893
11894 return make_parameter_declarator (&decl_specifiers,
11895 declarator,
11896 default_argument);
11897 }
11898
11899 /* Parse a function-body.
11900
11901 function-body:
11902 compound_statement */
11903
11904 static void
11905 cp_parser_function_body (cp_parser *parser)
11906 {
11907 cp_parser_compound_statement (parser, NULL, false);
11908 }
11909
11910 /* Parse a ctor-initializer-opt followed by a function-body. Return
11911 true if a ctor-initializer was present. */
11912
11913 static bool
11914 cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser)
11915 {
11916 tree body;
11917 bool ctor_initializer_p;
11918
11919 /* Begin the function body. */
11920 body = begin_function_body ();
11921 /* Parse the optional ctor-initializer. */
11922 ctor_initializer_p = cp_parser_ctor_initializer_opt (parser);
11923 /* Parse the function-body. */
11924 cp_parser_function_body (parser);
11925 /* Finish the function body. */
11926 finish_function_body (body);
11927
11928 return ctor_initializer_p;
11929 }
11930
11931 /* Parse an initializer.
11932
11933 initializer:
11934 = initializer-clause
11935 ( expression-list )
11936
11937 Returns a expression representing the initializer. If no
11938 initializer is present, NULL_TREE is returned.
11939
11940 *IS_PARENTHESIZED_INIT is set to TRUE if the `( expression-list )'
11941 production is used, and zero otherwise. *IS_PARENTHESIZED_INIT is
11942 set to FALSE if there is no initializer present. If there is an
11943 initializer, and it is not a constant-expression, *NON_CONSTANT_P
11944 is set to true; otherwise it is set to false. */
11945
11946 static tree
11947 cp_parser_initializer (cp_parser* parser, bool* is_parenthesized_init,
11948 bool* non_constant_p)
11949 {
11950 cp_token *token;
11951 tree init;
11952
11953 /* Peek at the next token. */
11954 token = cp_lexer_peek_token (parser->lexer);
11955
11956 /* Let our caller know whether or not this initializer was
11957 parenthesized. */
11958 *is_parenthesized_init = (token->type == CPP_OPEN_PAREN);
11959 /* Assume that the initializer is constant. */
11960 *non_constant_p = false;
11961
11962 if (token->type == CPP_EQ)
11963 {
11964 /* Consume the `='. */
11965 cp_lexer_consume_token (parser->lexer);
11966 /* Parse the initializer-clause. */
11967 init = cp_parser_initializer_clause (parser, non_constant_p);
11968 }
11969 else if (token->type == CPP_OPEN_PAREN)
11970 init = cp_parser_parenthesized_expression_list (parser, false,
11971 non_constant_p);
11972 else
11973 {
11974 /* Anything else is an error. */
11975 cp_parser_error (parser, "expected initializer");
11976 init = error_mark_node;
11977 }
11978
11979 return init;
11980 }
11981
11982 /* Parse an initializer-clause.
11983
11984 initializer-clause:
11985 assignment-expression
11986 { initializer-list , [opt] }
11987 { }
11988
11989 Returns an expression representing the initializer.
11990
11991 If the `assignment-expression' production is used the value
11992 returned is simply a representation for the expression.
11993
11994 Otherwise, a CONSTRUCTOR is returned. The CONSTRUCTOR_ELTS will be
11995 the elements of the initializer-list (or NULL_TREE, if the last
11996 production is used). The TREE_TYPE for the CONSTRUCTOR will be
11997 NULL_TREE. There is no way to detect whether or not the optional
11998 trailing `,' was provided. NON_CONSTANT_P is as for
11999 cp_parser_initializer. */
12000
12001 static tree
12002 cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p)
12003 {
12004 tree initializer;
12005
12006 /* If it is not a `{', then we are looking at an
12007 assignment-expression. */
12008 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
12009 {
12010 initializer
12011 = cp_parser_constant_expression (parser,
12012 /*allow_non_constant_p=*/true,
12013 non_constant_p);
12014 if (!*non_constant_p)
12015 initializer = fold_non_dependent_expr (initializer);
12016 }
12017 else
12018 {
12019 /* Consume the `{' token. */
12020 cp_lexer_consume_token (parser->lexer);
12021 /* Create a CONSTRUCTOR to represent the braced-initializer. */
12022 initializer = make_node (CONSTRUCTOR);
12023 /* If it's not a `}', then there is a non-trivial initializer. */
12024 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
12025 {
12026 /* Parse the initializer list. */
12027 CONSTRUCTOR_ELTS (initializer)
12028 = cp_parser_initializer_list (parser, non_constant_p);
12029 /* A trailing `,' token is allowed. */
12030 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
12031 cp_lexer_consume_token (parser->lexer);
12032 }
12033 /* Now, there should be a trailing `}'. */
12034 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12035 }
12036
12037 return initializer;
12038 }
12039
12040 /* Parse an initializer-list.
12041
12042 initializer-list:
12043 initializer-clause
12044 initializer-list , initializer-clause
12045
12046 GNU Extension:
12047
12048 initializer-list:
12049 identifier : initializer-clause
12050 initializer-list, identifier : initializer-clause
12051
12052 Returns a TREE_LIST. The TREE_VALUE of each node is an expression
12053 for the initializer. If the TREE_PURPOSE is non-NULL, it is the
12054 IDENTIFIER_NODE naming the field to initialize. NON_CONSTANT_P is
12055 as for cp_parser_initializer. */
12056
12057 static tree
12058 cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p)
12059 {
12060 tree initializers = NULL_TREE;
12061
12062 /* Assume all of the expressions are constant. */
12063 *non_constant_p = false;
12064
12065 /* Parse the rest of the list. */
12066 while (true)
12067 {
12068 cp_token *token;
12069 tree identifier;
12070 tree initializer;
12071 bool clause_non_constant_p;
12072
12073 /* If the next token is an identifier and the following one is a
12074 colon, we are looking at the GNU designated-initializer
12075 syntax. */
12076 if (cp_parser_allow_gnu_extensions_p (parser)
12077 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
12078 && cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
12079 {
12080 /* Consume the identifier. */
12081 identifier = cp_lexer_consume_token (parser->lexer)->value;
12082 /* Consume the `:'. */
12083 cp_lexer_consume_token (parser->lexer);
12084 }
12085 else
12086 identifier = NULL_TREE;
12087
12088 /* Parse the initializer. */
12089 initializer = cp_parser_initializer_clause (parser,
12090 &clause_non_constant_p);
12091 /* If any clause is non-constant, so is the entire initializer. */
12092 if (clause_non_constant_p)
12093 *non_constant_p = true;
12094 /* Add it to the list. */
12095 initializers = tree_cons (identifier, initializer, initializers);
12096
12097 /* If the next token is not a comma, we have reached the end of
12098 the list. */
12099 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
12100 break;
12101
12102 /* Peek at the next token. */
12103 token = cp_lexer_peek_nth_token (parser->lexer, 2);
12104 /* If the next token is a `}', then we're still done. An
12105 initializer-clause can have a trailing `,' after the
12106 initializer-list and before the closing `}'. */
12107 if (token->type == CPP_CLOSE_BRACE)
12108 break;
12109
12110 /* Consume the `,' token. */
12111 cp_lexer_consume_token (parser->lexer);
12112 }
12113
12114 /* The initializers were built up in reverse order, so we need to
12115 reverse them now. */
12116 return nreverse (initializers);
12117 }
12118
12119 /* Classes [gram.class] */
12120
12121 /* Parse a class-name.
12122
12123 class-name:
12124 identifier
12125 template-id
12126
12127 TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used
12128 to indicate that names looked up in dependent types should be
12129 assumed to be types. TEMPLATE_KEYWORD_P is true iff the `template'
12130 keyword has been used to indicate that the name that appears next
12131 is a template. TAG_TYPE indicates the explicit tag given before
12132 the type name, if any. If CHECK_DEPENDENCY_P is FALSE, names are
12133 looked up in dependent scopes. If CLASS_HEAD_P is TRUE, this class
12134 is the class being defined in a class-head.
12135
12136 Returns the TYPE_DECL representing the class. */
12137
12138 static tree
12139 cp_parser_class_name (cp_parser *parser,
12140 bool typename_keyword_p,
12141 bool template_keyword_p,
12142 enum tag_types tag_type,
12143 bool check_dependency_p,
12144 bool class_head_p,
12145 bool is_declaration)
12146 {
12147 tree decl;
12148 tree scope;
12149 bool typename_p;
12150 cp_token *token;
12151
12152 /* All class-names start with an identifier. */
12153 token = cp_lexer_peek_token (parser->lexer);
12154 if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID)
12155 {
12156 cp_parser_error (parser, "expected class-name");
12157 return error_mark_node;
12158 }
12159
12160 /* PARSER->SCOPE can be cleared when parsing the template-arguments
12161 to a template-id, so we save it here. */
12162 scope = parser->scope;
12163 if (scope == error_mark_node)
12164 return error_mark_node;
12165
12166 /* Any name names a type if we're following the `typename' keyword
12167 in a qualified name where the enclosing scope is type-dependent. */
12168 typename_p = (typename_keyword_p && scope && TYPE_P (scope)
12169 && dependent_type_p (scope));
12170 /* Handle the common case (an identifier, but not a template-id)
12171 efficiently. */
12172 if (token->type == CPP_NAME
12173 && !cp_parser_nth_token_starts_template_argument_list_p (parser, 2))
12174 {
12175 tree identifier;
12176
12177 /* Look for the identifier. */
12178 identifier = cp_parser_identifier (parser);
12179 /* If the next token isn't an identifier, we are certainly not
12180 looking at a class-name. */
12181 if (identifier == error_mark_node)
12182 decl = error_mark_node;
12183 /* If we know this is a type-name, there's no need to look it
12184 up. */
12185 else if (typename_p)
12186 decl = identifier;
12187 else
12188 {
12189 /* If the next token is a `::', then the name must be a type
12190 name.
12191
12192 [basic.lookup.qual]
12193
12194 During the lookup for a name preceding the :: scope
12195 resolution operator, object, function, and enumerator
12196 names are ignored. */
12197 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12198 tag_type = typename_type;
12199 /* Look up the name. */
12200 decl = cp_parser_lookup_name (parser, identifier,
12201 tag_type,
12202 /*is_template=*/false,
12203 /*is_namespace=*/false,
12204 check_dependency_p,
12205 /*ambiguous_p=*/NULL);
12206 }
12207 }
12208 else
12209 {
12210 /* Try a template-id. */
12211 decl = cp_parser_template_id (parser, template_keyword_p,
12212 check_dependency_p,
12213 is_declaration);
12214 if (decl == error_mark_node)
12215 return error_mark_node;
12216 }
12217
12218 decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p);
12219
12220 /* If this is a typename, create a TYPENAME_TYPE. */
12221 if (typename_p && decl != error_mark_node)
12222 {
12223 decl = make_typename_type (scope, decl, typename_type, /*complain=*/1);
12224 if (decl != error_mark_node)
12225 decl = TYPE_NAME (decl);
12226 }
12227
12228 /* Check to see that it is really the name of a class. */
12229 if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
12230 && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE
12231 && cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12232 /* Situations like this:
12233
12234 template <typename T> struct A {
12235 typename T::template X<int>::I i;
12236 };
12237
12238 are problematic. Is `T::template X<int>' a class-name? The
12239 standard does not seem to be definitive, but there is no other
12240 valid interpretation of the following `::'. Therefore, those
12241 names are considered class-names. */
12242 decl = TYPE_NAME (make_typename_type (scope, decl, tag_type, tf_error));
12243 else if (decl == error_mark_node
12244 || TREE_CODE (decl) != TYPE_DECL
12245 || TREE_TYPE (decl) == error_mark_node
12246 || !IS_AGGR_TYPE (TREE_TYPE (decl)))
12247 {
12248 cp_parser_error (parser, "expected class-name");
12249 return error_mark_node;
12250 }
12251
12252 return decl;
12253 }
12254
12255 /* Parse a class-specifier.
12256
12257 class-specifier:
12258 class-head { member-specification [opt] }
12259
12260 Returns the TREE_TYPE representing the class. */
12261
12262 static tree
12263 cp_parser_class_specifier (cp_parser* parser)
12264 {
12265 cp_token *token;
12266 tree type;
12267 tree attributes = NULL_TREE;
12268 int has_trailing_semicolon;
12269 bool nested_name_specifier_p;
12270 unsigned saved_num_template_parameter_lists;
12271 tree old_scope = NULL_TREE;
12272 tree scope = NULL_TREE;
12273
12274 push_deferring_access_checks (dk_no_deferred);
12275
12276 /* Parse the class-head. */
12277 type = cp_parser_class_head (parser,
12278 &nested_name_specifier_p,
12279 &attributes);
12280 /* If the class-head was a semantic disaster, skip the entire body
12281 of the class. */
12282 if (!type)
12283 {
12284 cp_parser_skip_to_end_of_block_or_statement (parser);
12285 pop_deferring_access_checks ();
12286 return error_mark_node;
12287 }
12288
12289 /* Look for the `{'. */
12290 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
12291 {
12292 pop_deferring_access_checks ();
12293 return error_mark_node;
12294 }
12295
12296 /* Issue an error message if type-definitions are forbidden here. */
12297 cp_parser_check_type_definition (parser);
12298 /* Remember that we are defining one more class. */
12299 ++parser->num_classes_being_defined;
12300 /* Inside the class, surrounding template-parameter-lists do not
12301 apply. */
12302 saved_num_template_parameter_lists
12303 = parser->num_template_parameter_lists;
12304 parser->num_template_parameter_lists = 0;
12305
12306 /* Start the class. */
12307 if (nested_name_specifier_p)
12308 {
12309 scope = CP_DECL_CONTEXT (TYPE_MAIN_DECL (type));
12310 old_scope = push_inner_scope (scope);
12311 }
12312 type = begin_class_definition (type);
12313
12314 if (type == error_mark_node)
12315 /* If the type is erroneous, skip the entire body of the class. */
12316 cp_parser_skip_to_closing_brace (parser);
12317 else
12318 /* Parse the member-specification. */
12319 cp_parser_member_specification_opt (parser);
12320
12321 /* Look for the trailing `}'. */
12322 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12323 /* We get better error messages by noticing a common problem: a
12324 missing trailing `;'. */
12325 token = cp_lexer_peek_token (parser->lexer);
12326 has_trailing_semicolon = (token->type == CPP_SEMICOLON);
12327 /* Look for trailing attributes to apply to this class. */
12328 if (cp_parser_allow_gnu_extensions_p (parser))
12329 {
12330 tree sub_attr = cp_parser_attributes_opt (parser);
12331 attributes = chainon (attributes, sub_attr);
12332 }
12333 if (type != error_mark_node)
12334 type = finish_struct (type, attributes);
12335 if (nested_name_specifier_p)
12336 pop_inner_scope (old_scope, scope);
12337 /* If this class is not itself within the scope of another class,
12338 then we need to parse the bodies of all of the queued function
12339 definitions. Note that the queued functions defined in a class
12340 are not always processed immediately following the
12341 class-specifier for that class. Consider:
12342
12343 struct A {
12344 struct B { void f() { sizeof (A); } };
12345 };
12346
12347 If `f' were processed before the processing of `A' were
12348 completed, there would be no way to compute the size of `A'.
12349 Note that the nesting we are interested in here is lexical --
12350 not the semantic nesting given by TYPE_CONTEXT. In particular,
12351 for:
12352
12353 struct A { struct B; };
12354 struct A::B { void f() { } };
12355
12356 there is no need to delay the parsing of `A::B::f'. */
12357 if (--parser->num_classes_being_defined == 0)
12358 {
12359 tree queue_entry;
12360 tree fn;
12361 tree class_type;
12362 bool pop_p;
12363
12364 /* In a first pass, parse default arguments to the functions.
12365 Then, in a second pass, parse the bodies of the functions.
12366 This two-phased approach handles cases like:
12367
12368 struct S {
12369 void f() { g(); }
12370 void g(int i = 3);
12371 };
12372
12373 */
12374 class_type = NULL_TREE;
12375 pop_p = false;
12376 for (TREE_PURPOSE (parser->unparsed_functions_queues)
12377 = nreverse (TREE_PURPOSE (parser->unparsed_functions_queues));
12378 (queue_entry = TREE_PURPOSE (parser->unparsed_functions_queues));
12379 TREE_PURPOSE (parser->unparsed_functions_queues)
12380 = TREE_CHAIN (TREE_PURPOSE (parser->unparsed_functions_queues)))
12381 {
12382 fn = TREE_VALUE (queue_entry);
12383 /* If there are default arguments that have not yet been processed,
12384 take care of them now. */
12385 if (class_type != TREE_PURPOSE (queue_entry))
12386 {
12387 if (pop_p)
12388 pop_scope (class_type);
12389 class_type = TREE_PURPOSE (queue_entry);
12390 pop_p = push_scope (class_type);
12391 }
12392 /* Make sure that any template parameters are in scope. */
12393 maybe_begin_member_template_processing (fn);
12394 /* Parse the default argument expressions. */
12395 cp_parser_late_parsing_default_args (parser, fn);
12396 /* Remove any template parameters from the symbol table. */
12397 maybe_end_member_template_processing ();
12398 }
12399 if (pop_p)
12400 pop_scope (class_type);
12401 /* Now parse the body of the functions. */
12402 for (TREE_VALUE (parser->unparsed_functions_queues)
12403 = nreverse (TREE_VALUE (parser->unparsed_functions_queues));
12404 (queue_entry = TREE_VALUE (parser->unparsed_functions_queues));
12405 TREE_VALUE (parser->unparsed_functions_queues)
12406 = TREE_CHAIN (TREE_VALUE (parser->unparsed_functions_queues)))
12407 {
12408 /* Figure out which function we need to process. */
12409 fn = TREE_VALUE (queue_entry);
12410
12411 /* A hack to prevent garbage collection. */
12412 function_depth++;
12413
12414 /* Parse the function. */
12415 cp_parser_late_parsing_for_member (parser, fn);
12416 function_depth--;
12417 }
12418 }
12419
12420 /* Put back any saved access checks. */
12421 pop_deferring_access_checks ();
12422
12423 /* Restore the count of active template-parameter-lists. */
12424 parser->num_template_parameter_lists
12425 = saved_num_template_parameter_lists;
12426
12427 return type;
12428 }
12429
12430 /* Parse a class-head.
12431
12432 class-head:
12433 class-key identifier [opt] base-clause [opt]
12434 class-key nested-name-specifier identifier base-clause [opt]
12435 class-key nested-name-specifier [opt] template-id
12436 base-clause [opt]
12437
12438 GNU Extensions:
12439 class-key attributes identifier [opt] base-clause [opt]
12440 class-key attributes nested-name-specifier identifier base-clause [opt]
12441 class-key attributes nested-name-specifier [opt] template-id
12442 base-clause [opt]
12443
12444 Returns the TYPE of the indicated class. Sets
12445 *NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions
12446 involving a nested-name-specifier was used, and FALSE otherwise.
12447
12448 Returns error_mark_node if this is not a class-head.
12449
12450 Returns NULL_TREE if the class-head is syntactically valid, but
12451 semantically invalid in a way that means we should skip the entire
12452 body of the class. */
12453
12454 static tree
12455 cp_parser_class_head (cp_parser* parser,
12456 bool* nested_name_specifier_p,
12457 tree *attributes_p)
12458 {
12459 tree nested_name_specifier;
12460 enum tag_types class_key;
12461 tree id = NULL_TREE;
12462 tree type = NULL_TREE;
12463 tree attributes;
12464 bool template_id_p = false;
12465 bool qualified_p = false;
12466 bool invalid_nested_name_p = false;
12467 bool invalid_explicit_specialization_p = false;
12468 bool pop_p = false;
12469 unsigned num_templates;
12470 tree bases;
12471
12472 /* Assume no nested-name-specifier will be present. */
12473 *nested_name_specifier_p = false;
12474 /* Assume no template parameter lists will be used in defining the
12475 type. */
12476 num_templates = 0;
12477
12478 /* Look for the class-key. */
12479 class_key = cp_parser_class_key (parser);
12480 if (class_key == none_type)
12481 return error_mark_node;
12482
12483 /* Parse the attributes. */
12484 attributes = cp_parser_attributes_opt (parser);
12485
12486 /* If the next token is `::', that is invalid -- but sometimes
12487 people do try to write:
12488
12489 struct ::S {};
12490
12491 Handle this gracefully by accepting the extra qualifier, and then
12492 issuing an error about it later if this really is a
12493 class-head. If it turns out just to be an elaborated type
12494 specifier, remain silent. */
12495 if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false))
12496 qualified_p = true;
12497
12498 push_deferring_access_checks (dk_no_check);
12499
12500 /* Determine the name of the class. Begin by looking for an
12501 optional nested-name-specifier. */
12502 nested_name_specifier
12503 = cp_parser_nested_name_specifier_opt (parser,
12504 /*typename_keyword_p=*/false,
12505 /*check_dependency_p=*/false,
12506 /*type_p=*/false,
12507 /*is_declaration=*/false);
12508 /* If there was a nested-name-specifier, then there *must* be an
12509 identifier. */
12510 if (nested_name_specifier)
12511 {
12512 /* Although the grammar says `identifier', it really means
12513 `class-name' or `template-name'. You are only allowed to
12514 define a class that has already been declared with this
12515 syntax.
12516
12517 The proposed resolution for Core Issue 180 says that whever
12518 you see `class T::X' you should treat `X' as a type-name.
12519
12520 It is OK to define an inaccessible class; for example:
12521
12522 class A { class B; };
12523 class A::B {};
12524
12525 We do not know if we will see a class-name, or a
12526 template-name. We look for a class-name first, in case the
12527 class-name is a template-id; if we looked for the
12528 template-name first we would stop after the template-name. */
12529 cp_parser_parse_tentatively (parser);
12530 type = cp_parser_class_name (parser,
12531 /*typename_keyword_p=*/false,
12532 /*template_keyword_p=*/false,
12533 class_type,
12534 /*check_dependency_p=*/false,
12535 /*class_head_p=*/true,
12536 /*is_declaration=*/false);
12537 /* If that didn't work, ignore the nested-name-specifier. */
12538 if (!cp_parser_parse_definitely (parser))
12539 {
12540 invalid_nested_name_p = true;
12541 id = cp_parser_identifier (parser);
12542 if (id == error_mark_node)
12543 id = NULL_TREE;
12544 }
12545 /* If we could not find a corresponding TYPE, treat this
12546 declaration like an unqualified declaration. */
12547 if (type == error_mark_node)
12548 nested_name_specifier = NULL_TREE;
12549 /* Otherwise, count the number of templates used in TYPE and its
12550 containing scopes. */
12551 else
12552 {
12553 tree scope;
12554
12555 for (scope = TREE_TYPE (type);
12556 scope && TREE_CODE (scope) != NAMESPACE_DECL;
12557 scope = (TYPE_P (scope)
12558 ? TYPE_CONTEXT (scope)
12559 : DECL_CONTEXT (scope)))
12560 if (TYPE_P (scope)
12561 && CLASS_TYPE_P (scope)
12562 && CLASSTYPE_TEMPLATE_INFO (scope)
12563 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))
12564 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (scope))
12565 ++num_templates;
12566 }
12567 }
12568 /* Otherwise, the identifier is optional. */
12569 else
12570 {
12571 /* We don't know whether what comes next is a template-id,
12572 an identifier, or nothing at all. */
12573 cp_parser_parse_tentatively (parser);
12574 /* Check for a template-id. */
12575 id = cp_parser_template_id (parser,
12576 /*template_keyword_p=*/false,
12577 /*check_dependency_p=*/true,
12578 /*is_declaration=*/true);
12579 /* If that didn't work, it could still be an identifier. */
12580 if (!cp_parser_parse_definitely (parser))
12581 {
12582 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
12583 id = cp_parser_identifier (parser);
12584 else
12585 id = NULL_TREE;
12586 }
12587 else
12588 {
12589 template_id_p = true;
12590 ++num_templates;
12591 }
12592 }
12593
12594 pop_deferring_access_checks ();
12595
12596 if (id)
12597 cp_parser_check_for_invalid_template_id (parser, id);
12598
12599 /* If it's not a `:' or a `{' then we can't really be looking at a
12600 class-head, since a class-head only appears as part of a
12601 class-specifier. We have to detect this situation before calling
12602 xref_tag, since that has irreversible side-effects. */
12603 if (!cp_parser_next_token_starts_class_definition_p (parser))
12604 {
12605 cp_parser_error (parser, "expected %<{%> or %<:%>");
12606 return error_mark_node;
12607 }
12608
12609 /* At this point, we're going ahead with the class-specifier, even
12610 if some other problem occurs. */
12611 cp_parser_commit_to_tentative_parse (parser);
12612 /* Issue the error about the overly-qualified name now. */
12613 if (qualified_p)
12614 cp_parser_error (parser,
12615 "global qualification of class name is invalid");
12616 else if (invalid_nested_name_p)
12617 cp_parser_error (parser,
12618 "qualified name does not name a class");
12619 else if (nested_name_specifier)
12620 {
12621 tree scope;
12622 /* Figure out in what scope the declaration is being placed. */
12623 scope = current_scope ();
12624 /* If that scope does not contain the scope in which the
12625 class was originally declared, the program is invalid. */
12626 if (scope && !is_ancestor (scope, nested_name_specifier))
12627 {
12628 error ("declaration of %qD in %qD which does not enclose %qD",
12629 type, scope, nested_name_specifier);
12630 type = NULL_TREE;
12631 goto done;
12632 }
12633 /* [dcl.meaning]
12634
12635 A declarator-id shall not be qualified exception of the
12636 definition of a ... nested class outside of its class
12637 ... [or] a the definition or explicit instantiation of a
12638 class member of a namespace outside of its namespace. */
12639 if (scope == nested_name_specifier)
12640 {
12641 pedwarn ("extra qualification ignored");
12642 nested_name_specifier = NULL_TREE;
12643 num_templates = 0;
12644 }
12645 }
12646 /* An explicit-specialization must be preceded by "template <>". If
12647 it is not, try to recover gracefully. */
12648 if (at_namespace_scope_p ()
12649 && parser->num_template_parameter_lists == 0
12650 && template_id_p)
12651 {
12652 error ("an explicit specialization must be preceded by %<template <>%>");
12653 invalid_explicit_specialization_p = true;
12654 /* Take the same action that would have been taken by
12655 cp_parser_explicit_specialization. */
12656 ++parser->num_template_parameter_lists;
12657 begin_specialization ();
12658 }
12659 /* There must be no "return" statements between this point and the
12660 end of this function; set "type "to the correct return value and
12661 use "goto done;" to return. */
12662 /* Make sure that the right number of template parameters were
12663 present. */
12664 if (!cp_parser_check_template_parameters (parser, num_templates))
12665 {
12666 /* If something went wrong, there is no point in even trying to
12667 process the class-definition. */
12668 type = NULL_TREE;
12669 goto done;
12670 }
12671
12672 /* Look up the type. */
12673 if (template_id_p)
12674 {
12675 type = TREE_TYPE (id);
12676 maybe_process_partial_specialization (type);
12677 }
12678 else if (!nested_name_specifier)
12679 {
12680 /* If the class was unnamed, create a dummy name. */
12681 if (!id)
12682 id = make_anon_name ();
12683 type = xref_tag (class_key, id, /*tag_scope=*/ts_current,
12684 parser->num_template_parameter_lists);
12685 }
12686 else
12687 {
12688 tree class_type;
12689 bool pop_p = false;
12690
12691 /* Given:
12692
12693 template <typename T> struct S { struct T };
12694 template <typename T> struct S<T>::T { };
12695
12696 we will get a TYPENAME_TYPE when processing the definition of
12697 `S::T'. We need to resolve it to the actual type before we
12698 try to define it. */
12699 if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE)
12700 {
12701 class_type = resolve_typename_type (TREE_TYPE (type),
12702 /*only_current_p=*/false);
12703 if (class_type != error_mark_node)
12704 type = TYPE_NAME (class_type);
12705 else
12706 {
12707 cp_parser_error (parser, "could not resolve typename type");
12708 type = error_mark_node;
12709 }
12710 }
12711
12712 maybe_process_partial_specialization (TREE_TYPE (type));
12713 class_type = current_class_type;
12714 /* Enter the scope indicated by the nested-name-specifier. */
12715 if (nested_name_specifier)
12716 pop_p = push_scope (nested_name_specifier);
12717 /* Get the canonical version of this type. */
12718 type = TYPE_MAIN_DECL (TREE_TYPE (type));
12719 if (PROCESSING_REAL_TEMPLATE_DECL_P ()
12720 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type)))
12721 {
12722 type = push_template_decl (type);
12723 if (type == error_mark_node)
12724 {
12725 type = NULL_TREE;
12726 goto done;
12727 }
12728 }
12729
12730 type = TREE_TYPE (type);
12731 if (nested_name_specifier)
12732 {
12733 *nested_name_specifier_p = true;
12734 if (pop_p)
12735 pop_scope (nested_name_specifier);
12736 }
12737 }
12738 /* Indicate whether this class was declared as a `class' or as a
12739 `struct'. */
12740 if (TREE_CODE (type) == RECORD_TYPE)
12741 CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type);
12742 cp_parser_check_class_key (class_key, type);
12743
12744 /* Enter the scope containing the class; the names of base classes
12745 should be looked up in that context. For example, given:
12746
12747 struct A { struct B {}; struct C; };
12748 struct A::C : B {};
12749
12750 is valid. */
12751 if (nested_name_specifier)
12752 pop_p = push_scope (nested_name_specifier);
12753
12754 bases = NULL_TREE;
12755
12756 /* Get the list of base-classes, if there is one. */
12757 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
12758 bases = cp_parser_base_clause (parser);
12759
12760 /* Process the base classes. */
12761 xref_basetypes (type, bases);
12762
12763 /* Leave the scope given by the nested-name-specifier. We will
12764 enter the class scope itself while processing the members. */
12765 if (pop_p)
12766 pop_scope (nested_name_specifier);
12767
12768 done:
12769 if (invalid_explicit_specialization_p)
12770 {
12771 end_specialization ();
12772 --parser->num_template_parameter_lists;
12773 }
12774 *attributes_p = attributes;
12775 return type;
12776 }
12777
12778 /* Parse a class-key.
12779
12780 class-key:
12781 class
12782 struct
12783 union
12784
12785 Returns the kind of class-key specified, or none_type to indicate
12786 error. */
12787
12788 static enum tag_types
12789 cp_parser_class_key (cp_parser* parser)
12790 {
12791 cp_token *token;
12792 enum tag_types tag_type;
12793
12794 /* Look for the class-key. */
12795 token = cp_parser_require (parser, CPP_KEYWORD, "class-key");
12796 if (!token)
12797 return none_type;
12798
12799 /* Check to see if the TOKEN is a class-key. */
12800 tag_type = cp_parser_token_is_class_key (token);
12801 if (!tag_type)
12802 cp_parser_error (parser, "expected class-key");
12803 return tag_type;
12804 }
12805
12806 /* Parse an (optional) member-specification.
12807
12808 member-specification:
12809 member-declaration member-specification [opt]
12810 access-specifier : member-specification [opt] */
12811
12812 static void
12813 cp_parser_member_specification_opt (cp_parser* parser)
12814 {
12815 while (true)
12816 {
12817 cp_token *token;
12818 enum rid keyword;
12819
12820 /* Peek at the next token. */
12821 token = cp_lexer_peek_token (parser->lexer);
12822 /* If it's a `}', or EOF then we've seen all the members. */
12823 if (token->type == CPP_CLOSE_BRACE || token->type == CPP_EOF)
12824 break;
12825
12826 /* See if this token is a keyword. */
12827 keyword = token->keyword;
12828 switch (keyword)
12829 {
12830 case RID_PUBLIC:
12831 case RID_PROTECTED:
12832 case RID_PRIVATE:
12833 /* Consume the access-specifier. */
12834 cp_lexer_consume_token (parser->lexer);
12835 /* Remember which access-specifier is active. */
12836 current_access_specifier = token->value;
12837 /* Look for the `:'. */
12838 cp_parser_require (parser, CPP_COLON, "`:'");
12839 break;
12840
12841 default:
12842 /* Accept #pragmas at class scope. */
12843 if (token->type == CPP_PRAGMA)
12844 {
12845 cp_lexer_handle_pragma (parser->lexer);
12846 break;
12847 }
12848
12849 /* Otherwise, the next construction must be a
12850 member-declaration. */
12851 cp_parser_member_declaration (parser);
12852 }
12853 }
12854 }
12855
12856 /* Parse a member-declaration.
12857
12858 member-declaration:
12859 decl-specifier-seq [opt] member-declarator-list [opt] ;
12860 function-definition ; [opt]
12861 :: [opt] nested-name-specifier template [opt] unqualified-id ;
12862 using-declaration
12863 template-declaration
12864
12865 member-declarator-list:
12866 member-declarator
12867 member-declarator-list , member-declarator
12868
12869 member-declarator:
12870 declarator pure-specifier [opt]
12871 declarator constant-initializer [opt]
12872 identifier [opt] : constant-expression
12873
12874 GNU Extensions:
12875
12876 member-declaration:
12877 __extension__ member-declaration
12878
12879 member-declarator:
12880 declarator attributes [opt] pure-specifier [opt]
12881 declarator attributes [opt] constant-initializer [opt]
12882 identifier [opt] attributes [opt] : constant-expression */
12883
12884 static void
12885 cp_parser_member_declaration (cp_parser* parser)
12886 {
12887 cp_decl_specifier_seq decl_specifiers;
12888 tree prefix_attributes;
12889 tree decl;
12890 int declares_class_or_enum;
12891 bool friend_p;
12892 cp_token *token;
12893 int saved_pedantic;
12894
12895 /* Check for the `__extension__' keyword. */
12896 if (cp_parser_extension_opt (parser, &saved_pedantic))
12897 {
12898 /* Recurse. */
12899 cp_parser_member_declaration (parser);
12900 /* Restore the old value of the PEDANTIC flag. */
12901 pedantic = saved_pedantic;
12902
12903 return;
12904 }
12905
12906 /* Check for a template-declaration. */
12907 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
12908 {
12909 /* Parse the template-declaration. */
12910 cp_parser_template_declaration (parser, /*member_p=*/true);
12911
12912 return;
12913 }
12914
12915 /* Check for a using-declaration. */
12916 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
12917 {
12918 /* Parse the using-declaration. */
12919 cp_parser_using_declaration (parser);
12920
12921 return;
12922 }
12923
12924 /* Parse the decl-specifier-seq. */
12925 cp_parser_decl_specifier_seq (parser,
12926 CP_PARSER_FLAGS_OPTIONAL,
12927 &decl_specifiers,
12928 &declares_class_or_enum);
12929 prefix_attributes = decl_specifiers.attributes;
12930 decl_specifiers.attributes = NULL_TREE;
12931 /* Check for an invalid type-name. */
12932 if (!decl_specifiers.type
12933 && cp_parser_parse_and_diagnose_invalid_type_name (parser))
12934 return;
12935 /* If there is no declarator, then the decl-specifier-seq should
12936 specify a type. */
12937 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
12938 {
12939 /* If there was no decl-specifier-seq, and the next token is a
12940 `;', then we have something like:
12941
12942 struct S { ; };
12943
12944 [class.mem]
12945
12946 Each member-declaration shall declare at least one member
12947 name of the class. */
12948 if (!decl_specifiers.any_specifiers_p)
12949 {
12950 cp_token *token = cp_lexer_peek_token (parser->lexer);
12951 if (pedantic && !token->in_system_header)
12952 pedwarn ("%Hextra %<;%>", &token->location);
12953 }
12954 else
12955 {
12956 tree type;
12957
12958 /* See if this declaration is a friend. */
12959 friend_p = cp_parser_friend_p (&decl_specifiers);
12960 /* If there were decl-specifiers, check to see if there was
12961 a class-declaration. */
12962 type = check_tag_decl (&decl_specifiers);
12963 /* Nested classes have already been added to the class, but
12964 a `friend' needs to be explicitly registered. */
12965 if (friend_p)
12966 {
12967 /* If the `friend' keyword was present, the friend must
12968 be introduced with a class-key. */
12969 if (!declares_class_or_enum)
12970 error ("a class-key must be used when declaring a friend");
12971 /* In this case:
12972
12973 template <typename T> struct A {
12974 friend struct A<T>::B;
12975 };
12976
12977 A<T>::B will be represented by a TYPENAME_TYPE, and
12978 therefore not recognized by check_tag_decl. */
12979 if (!type
12980 && decl_specifiers.type
12981 && TYPE_P (decl_specifiers.type))
12982 type = decl_specifiers.type;
12983 if (!type || !TYPE_P (type))
12984 error ("friend declaration does not name a class or "
12985 "function");
12986 else
12987 make_friend_class (current_class_type, type,
12988 /*complain=*/true);
12989 }
12990 /* If there is no TYPE, an error message will already have
12991 been issued. */
12992 else if (!type || type == error_mark_node)
12993 ;
12994 /* An anonymous aggregate has to be handled specially; such
12995 a declaration really declares a data member (with a
12996 particular type), as opposed to a nested class. */
12997 else if (ANON_AGGR_TYPE_P (type))
12998 {
12999 /* Remove constructors and such from TYPE, now that we
13000 know it is an anonymous aggregate. */
13001 fixup_anonymous_aggr (type);
13002 /* And make the corresponding data member. */
13003 decl = build_decl (FIELD_DECL, NULL_TREE, type);
13004 /* Add it to the class. */
13005 finish_member_declaration (decl);
13006 }
13007 else
13008 cp_parser_check_access_in_redeclaration (TYPE_NAME (type));
13009 }
13010 }
13011 else
13012 {
13013 /* See if these declarations will be friends. */
13014 friend_p = cp_parser_friend_p (&decl_specifiers);
13015
13016 /* Keep going until we hit the `;' at the end of the
13017 declaration. */
13018 while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
13019 {
13020 tree attributes = NULL_TREE;
13021 tree first_attribute;
13022
13023 /* Peek at the next token. */
13024 token = cp_lexer_peek_token (parser->lexer);
13025
13026 /* Check for a bitfield declaration. */
13027 if (token->type == CPP_COLON
13028 || (token->type == CPP_NAME
13029 && cp_lexer_peek_nth_token (parser->lexer, 2)->type
13030 == CPP_COLON))
13031 {
13032 tree identifier;
13033 tree width;
13034
13035 /* Get the name of the bitfield. Note that we cannot just
13036 check TOKEN here because it may have been invalidated by
13037 the call to cp_lexer_peek_nth_token above. */
13038 if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
13039 identifier = cp_parser_identifier (parser);
13040 else
13041 identifier = NULL_TREE;
13042
13043 /* Consume the `:' token. */
13044 cp_lexer_consume_token (parser->lexer);
13045 /* Get the width of the bitfield. */
13046 width
13047 = cp_parser_constant_expression (parser,
13048 /*allow_non_constant=*/false,
13049 NULL);
13050
13051 /* Look for attributes that apply to the bitfield. */
13052 attributes = cp_parser_attributes_opt (parser);
13053 /* Remember which attributes are prefix attributes and
13054 which are not. */
13055 first_attribute = attributes;
13056 /* Combine the attributes. */
13057 attributes = chainon (prefix_attributes, attributes);
13058
13059 /* Create the bitfield declaration. */
13060 decl = grokbitfield (identifier
13061 ? make_id_declarator (identifier)
13062 : NULL,
13063 &decl_specifiers,
13064 width);
13065 /* Apply the attributes. */
13066 cplus_decl_attributes (&decl, attributes, /*flags=*/0);
13067 }
13068 else
13069 {
13070 cp_declarator *declarator;
13071 tree initializer;
13072 tree asm_specification;
13073 int ctor_dtor_or_conv_p;
13074
13075 /* Parse the declarator. */
13076 declarator
13077 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
13078 &ctor_dtor_or_conv_p,
13079 /*parenthesized_p=*/NULL,
13080 /*member_p=*/true);
13081
13082 /* If something went wrong parsing the declarator, make sure
13083 that we at least consume some tokens. */
13084 if (declarator == cp_error_declarator)
13085 {
13086 /* Skip to the end of the statement. */
13087 cp_parser_skip_to_end_of_statement (parser);
13088 /* If the next token is not a semicolon, that is
13089 probably because we just skipped over the body of
13090 a function. So, we consume a semicolon if
13091 present, but do not issue an error message if it
13092 is not present. */
13093 if (cp_lexer_next_token_is (parser->lexer,
13094 CPP_SEMICOLON))
13095 cp_lexer_consume_token (parser->lexer);
13096 return;
13097 }
13098
13099 if (declares_class_or_enum & 2)
13100 cp_parser_check_for_definition_in_return_type
13101 (declarator, decl_specifiers.type);
13102
13103 /* Look for an asm-specification. */
13104 asm_specification = cp_parser_asm_specification_opt (parser);
13105 /* Look for attributes that apply to the declaration. */
13106 attributes = cp_parser_attributes_opt (parser);
13107 /* Remember which attributes are prefix attributes and
13108 which are not. */
13109 first_attribute = attributes;
13110 /* Combine the attributes. */
13111 attributes = chainon (prefix_attributes, attributes);
13112
13113 /* If it's an `=', then we have a constant-initializer or a
13114 pure-specifier. It is not correct to parse the
13115 initializer before registering the member declaration
13116 since the member declaration should be in scope while
13117 its initializer is processed. However, the rest of the
13118 front end does not yet provide an interface that allows
13119 us to handle this correctly. */
13120 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
13121 {
13122 /* In [class.mem]:
13123
13124 A pure-specifier shall be used only in the declaration of
13125 a virtual function.
13126
13127 A member-declarator can contain a constant-initializer
13128 only if it declares a static member of integral or
13129 enumeration type.
13130
13131 Therefore, if the DECLARATOR is for a function, we look
13132 for a pure-specifier; otherwise, we look for a
13133 constant-initializer. When we call `grokfield', it will
13134 perform more stringent semantics checks. */
13135 if (declarator->kind == cdk_function)
13136 initializer = cp_parser_pure_specifier (parser);
13137 else
13138 /* Parse the initializer. */
13139 initializer = cp_parser_constant_initializer (parser);
13140 }
13141 /* Otherwise, there is no initializer. */
13142 else
13143 initializer = NULL_TREE;
13144
13145 /* See if we are probably looking at a function
13146 definition. We are certainly not looking at at a
13147 member-declarator. Calling `grokfield' has
13148 side-effects, so we must not do it unless we are sure
13149 that we are looking at a member-declarator. */
13150 if (cp_parser_token_starts_function_definition_p
13151 (cp_lexer_peek_token (parser->lexer)))
13152 {
13153 /* The grammar does not allow a pure-specifier to be
13154 used when a member function is defined. (It is
13155 possible that this fact is an oversight in the
13156 standard, since a pure function may be defined
13157 outside of the class-specifier. */
13158 if (initializer)
13159 error ("pure-specifier on function-definition");
13160 decl = cp_parser_save_member_function_body (parser,
13161 &decl_specifiers,
13162 declarator,
13163 attributes);
13164 /* If the member was not a friend, declare it here. */
13165 if (!friend_p)
13166 finish_member_declaration (decl);
13167 /* Peek at the next token. */
13168 token = cp_lexer_peek_token (parser->lexer);
13169 /* If the next token is a semicolon, consume it. */
13170 if (token->type == CPP_SEMICOLON)
13171 cp_lexer_consume_token (parser->lexer);
13172 return;
13173 }
13174 else
13175 {
13176 /* Create the declaration. */
13177 decl = grokfield (declarator, &decl_specifiers,
13178 initializer, asm_specification,
13179 attributes);
13180 /* Any initialization must have been from a
13181 constant-expression. */
13182 if (decl && TREE_CODE (decl) == VAR_DECL && initializer)
13183 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
13184 }
13185 }
13186
13187 /* Reset PREFIX_ATTRIBUTES. */
13188 while (attributes && TREE_CHAIN (attributes) != first_attribute)
13189 attributes = TREE_CHAIN (attributes);
13190 if (attributes)
13191 TREE_CHAIN (attributes) = NULL_TREE;
13192
13193 /* If there is any qualification still in effect, clear it
13194 now; we will be starting fresh with the next declarator. */
13195 parser->scope = NULL_TREE;
13196 parser->qualifying_scope = NULL_TREE;
13197 parser->object_scope = NULL_TREE;
13198 /* If it's a `,', then there are more declarators. */
13199 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
13200 cp_lexer_consume_token (parser->lexer);
13201 /* If the next token isn't a `;', then we have a parse error. */
13202 else if (cp_lexer_next_token_is_not (parser->lexer,
13203 CPP_SEMICOLON))
13204 {
13205 cp_parser_error (parser, "expected %<;%>");
13206 /* Skip tokens until we find a `;'. */
13207 cp_parser_skip_to_end_of_statement (parser);
13208
13209 break;
13210 }
13211
13212 if (decl)
13213 {
13214 /* Add DECL to the list of members. */
13215 if (!friend_p)
13216 finish_member_declaration (decl);
13217
13218 if (TREE_CODE (decl) == FUNCTION_DECL)
13219 cp_parser_save_default_args (parser, decl);
13220 }
13221 }
13222 }
13223
13224 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
13225 }
13226
13227 /* Parse a pure-specifier.
13228
13229 pure-specifier:
13230 = 0
13231
13232 Returns INTEGER_ZERO_NODE if a pure specifier is found.
13233 Otherwise, ERROR_MARK_NODE is returned. */
13234
13235 static tree
13236 cp_parser_pure_specifier (cp_parser* parser)
13237 {
13238 cp_token *token;
13239
13240 /* Look for the `=' token. */
13241 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13242 return error_mark_node;
13243 /* Look for the `0' token. */
13244 token = cp_parser_require (parser, CPP_NUMBER, "`0'");
13245 /* Unfortunately, this will accept `0L' and `0x00' as well. We need
13246 to get information from the lexer about how the number was
13247 spelled in order to fix this problem. */
13248 if (!token || !integer_zerop (token->value))
13249 return error_mark_node;
13250
13251 return integer_zero_node;
13252 }
13253
13254 /* Parse a constant-initializer.
13255
13256 constant-initializer:
13257 = constant-expression
13258
13259 Returns a representation of the constant-expression. */
13260
13261 static tree
13262 cp_parser_constant_initializer (cp_parser* parser)
13263 {
13264 /* Look for the `=' token. */
13265 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13266 return error_mark_node;
13267
13268 /* It is invalid to write:
13269
13270 struct S { static const int i = { 7 }; };
13271
13272 */
13273 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
13274 {
13275 cp_parser_error (parser,
13276 "a brace-enclosed initializer is not allowed here");
13277 /* Consume the opening brace. */
13278 cp_lexer_consume_token (parser->lexer);
13279 /* Skip the initializer. */
13280 cp_parser_skip_to_closing_brace (parser);
13281 /* Look for the trailing `}'. */
13282 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
13283
13284 return error_mark_node;
13285 }
13286
13287 return cp_parser_constant_expression (parser,
13288 /*allow_non_constant=*/false,
13289 NULL);
13290 }
13291
13292 /* Derived classes [gram.class.derived] */
13293
13294 /* Parse a base-clause.
13295
13296 base-clause:
13297 : base-specifier-list
13298
13299 base-specifier-list:
13300 base-specifier
13301 base-specifier-list , base-specifier
13302
13303 Returns a TREE_LIST representing the base-classes, in the order in
13304 which they were declared. The representation of each node is as
13305 described by cp_parser_base_specifier.
13306
13307 In the case that no bases are specified, this function will return
13308 NULL_TREE, not ERROR_MARK_NODE. */
13309
13310 static tree
13311 cp_parser_base_clause (cp_parser* parser)
13312 {
13313 tree bases = NULL_TREE;
13314
13315 /* Look for the `:' that begins the list. */
13316 cp_parser_require (parser, CPP_COLON, "`:'");
13317
13318 /* Scan the base-specifier-list. */
13319 while (true)
13320 {
13321 cp_token *token;
13322 tree base;
13323
13324 /* Look for the base-specifier. */
13325 base = cp_parser_base_specifier (parser);
13326 /* Add BASE to the front of the list. */
13327 if (base != error_mark_node)
13328 {
13329 TREE_CHAIN (base) = bases;
13330 bases = base;
13331 }
13332 /* Peek at the next token. */
13333 token = cp_lexer_peek_token (parser->lexer);
13334 /* If it's not a comma, then the list is complete. */
13335 if (token->type != CPP_COMMA)
13336 break;
13337 /* Consume the `,'. */
13338 cp_lexer_consume_token (parser->lexer);
13339 }
13340
13341 /* PARSER->SCOPE may still be non-NULL at this point, if the last
13342 base class had a qualified name. However, the next name that
13343 appears is certainly not qualified. */
13344 parser->scope = NULL_TREE;
13345 parser->qualifying_scope = NULL_TREE;
13346 parser->object_scope = NULL_TREE;
13347
13348 return nreverse (bases);
13349 }
13350
13351 /* Parse a base-specifier.
13352
13353 base-specifier:
13354 :: [opt] nested-name-specifier [opt] class-name
13355 virtual access-specifier [opt] :: [opt] nested-name-specifier
13356 [opt] class-name
13357 access-specifier virtual [opt] :: [opt] nested-name-specifier
13358 [opt] class-name
13359
13360 Returns a TREE_LIST. The TREE_PURPOSE will be one of
13361 ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to
13362 indicate the specifiers provided. The TREE_VALUE will be a TYPE
13363 (or the ERROR_MARK_NODE) indicating the type that was specified. */
13364
13365 static tree
13366 cp_parser_base_specifier (cp_parser* parser)
13367 {
13368 cp_token *token;
13369 bool done = false;
13370 bool virtual_p = false;
13371 bool duplicate_virtual_error_issued_p = false;
13372 bool duplicate_access_error_issued_p = false;
13373 bool class_scope_p, template_p;
13374 tree access = access_default_node;
13375 tree type;
13376
13377 /* Process the optional `virtual' and `access-specifier'. */
13378 while (!done)
13379 {
13380 /* Peek at the next token. */
13381 token = cp_lexer_peek_token (parser->lexer);
13382 /* Process `virtual'. */
13383 switch (token->keyword)
13384 {
13385 case RID_VIRTUAL:
13386 /* If `virtual' appears more than once, issue an error. */
13387 if (virtual_p && !duplicate_virtual_error_issued_p)
13388 {
13389 cp_parser_error (parser,
13390 "%<virtual%> specified more than once in base-specified");
13391 duplicate_virtual_error_issued_p = true;
13392 }
13393
13394 virtual_p = true;
13395
13396 /* Consume the `virtual' token. */
13397 cp_lexer_consume_token (parser->lexer);
13398
13399 break;
13400
13401 case RID_PUBLIC:
13402 case RID_PROTECTED:
13403 case RID_PRIVATE:
13404 /* If more than one access specifier appears, issue an
13405 error. */
13406 if (access != access_default_node
13407 && !duplicate_access_error_issued_p)
13408 {
13409 cp_parser_error (parser,
13410 "more than one access specifier in base-specified");
13411 duplicate_access_error_issued_p = true;
13412 }
13413
13414 access = ridpointers[(int) token->keyword];
13415
13416 /* Consume the access-specifier. */
13417 cp_lexer_consume_token (parser->lexer);
13418
13419 break;
13420
13421 default:
13422 done = true;
13423 break;
13424 }
13425 }
13426 /* It is not uncommon to see programs mechanically, erroneously, use
13427 the 'typename' keyword to denote (dependent) qualified types
13428 as base classes. */
13429 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
13430 {
13431 if (!processing_template_decl)
13432 error ("keyword %<typename%> not allowed outside of templates");
13433 else
13434 error ("keyword %<typename%> not allowed in this context "
13435 "(the base class is implicitly a type)");
13436 cp_lexer_consume_token (parser->lexer);
13437 }
13438
13439 /* Look for the optional `::' operator. */
13440 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
13441 /* Look for the nested-name-specifier. The simplest way to
13442 implement:
13443
13444 [temp.res]
13445
13446 The keyword `typename' is not permitted in a base-specifier or
13447 mem-initializer; in these contexts a qualified name that
13448 depends on a template-parameter is implicitly assumed to be a
13449 type name.
13450
13451 is to pretend that we have seen the `typename' keyword at this
13452 point. */
13453 cp_parser_nested_name_specifier_opt (parser,
13454 /*typename_keyword_p=*/true,
13455 /*check_dependency_p=*/true,
13456 typename_type,
13457 /*is_declaration=*/true);
13458 /* If the base class is given by a qualified name, assume that names
13459 we see are type names or templates, as appropriate. */
13460 class_scope_p = (parser->scope && TYPE_P (parser->scope));
13461 template_p = class_scope_p && cp_parser_optional_template_keyword (parser);
13462
13463 /* Finally, look for the class-name. */
13464 type = cp_parser_class_name (parser,
13465 class_scope_p,
13466 template_p,
13467 typename_type,
13468 /*check_dependency_p=*/true,
13469 /*class_head_p=*/false,
13470 /*is_declaration=*/true);
13471
13472 if (type == error_mark_node)
13473 return error_mark_node;
13474
13475 return finish_base_specifier (TREE_TYPE (type), access, virtual_p);
13476 }
13477
13478 /* Exception handling [gram.exception] */
13479
13480 /* Parse an (optional) exception-specification.
13481
13482 exception-specification:
13483 throw ( type-id-list [opt] )
13484
13485 Returns a TREE_LIST representing the exception-specification. The
13486 TREE_VALUE of each node is a type. */
13487
13488 static tree
13489 cp_parser_exception_specification_opt (cp_parser* parser)
13490 {
13491 cp_token *token;
13492 tree type_id_list;
13493
13494 /* Peek at the next token. */
13495 token = cp_lexer_peek_token (parser->lexer);
13496 /* If it's not `throw', then there's no exception-specification. */
13497 if (!cp_parser_is_keyword (token, RID_THROW))
13498 return NULL_TREE;
13499
13500 /* Consume the `throw'. */
13501 cp_lexer_consume_token (parser->lexer);
13502
13503 /* Look for the `('. */
13504 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13505
13506 /* Peek at the next token. */
13507 token = cp_lexer_peek_token (parser->lexer);
13508 /* If it's not a `)', then there is a type-id-list. */
13509 if (token->type != CPP_CLOSE_PAREN)
13510 {
13511 const char *saved_message;
13512
13513 /* Types may not be defined in an exception-specification. */
13514 saved_message = parser->type_definition_forbidden_message;
13515 parser->type_definition_forbidden_message
13516 = "types may not be defined in an exception-specification";
13517 /* Parse the type-id-list. */
13518 type_id_list = cp_parser_type_id_list (parser);
13519 /* Restore the saved message. */
13520 parser->type_definition_forbidden_message = saved_message;
13521 }
13522 else
13523 type_id_list = empty_except_spec;
13524
13525 /* Look for the `)'. */
13526 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13527
13528 return type_id_list;
13529 }
13530
13531 /* Parse an (optional) type-id-list.
13532
13533 type-id-list:
13534 type-id
13535 type-id-list , type-id
13536
13537 Returns a TREE_LIST. The TREE_VALUE of each node is a TYPE,
13538 in the order that the types were presented. */
13539
13540 static tree
13541 cp_parser_type_id_list (cp_parser* parser)
13542 {
13543 tree types = NULL_TREE;
13544
13545 while (true)
13546 {
13547 cp_token *token;
13548 tree type;
13549
13550 /* Get the next type-id. */
13551 type = cp_parser_type_id (parser);
13552 /* Add it to the list. */
13553 types = add_exception_specifier (types, type, /*complain=*/1);
13554 /* Peek at the next token. */
13555 token = cp_lexer_peek_token (parser->lexer);
13556 /* If it is not a `,', we are done. */
13557 if (token->type != CPP_COMMA)
13558 break;
13559 /* Consume the `,'. */
13560 cp_lexer_consume_token (parser->lexer);
13561 }
13562
13563 return nreverse (types);
13564 }
13565
13566 /* Parse a try-block.
13567
13568 try-block:
13569 try compound-statement handler-seq */
13570
13571 static tree
13572 cp_parser_try_block (cp_parser* parser)
13573 {
13574 tree try_block;
13575
13576 cp_parser_require_keyword (parser, RID_TRY, "`try'");
13577 try_block = begin_try_block ();
13578 cp_parser_compound_statement (parser, NULL, true);
13579 finish_try_block (try_block);
13580 cp_parser_handler_seq (parser);
13581 finish_handler_sequence (try_block);
13582
13583 return try_block;
13584 }
13585
13586 /* Parse a function-try-block.
13587
13588 function-try-block:
13589 try ctor-initializer [opt] function-body handler-seq */
13590
13591 static bool
13592 cp_parser_function_try_block (cp_parser* parser)
13593 {
13594 tree try_block;
13595 bool ctor_initializer_p;
13596
13597 /* Look for the `try' keyword. */
13598 if (!cp_parser_require_keyword (parser, RID_TRY, "`try'"))
13599 return false;
13600 /* Let the rest of the front-end know where we are. */
13601 try_block = begin_function_try_block ();
13602 /* Parse the function-body. */
13603 ctor_initializer_p
13604 = cp_parser_ctor_initializer_opt_and_function_body (parser);
13605 /* We're done with the `try' part. */
13606 finish_function_try_block (try_block);
13607 /* Parse the handlers. */
13608 cp_parser_handler_seq (parser);
13609 /* We're done with the handlers. */
13610 finish_function_handler_sequence (try_block);
13611
13612 return ctor_initializer_p;
13613 }
13614
13615 /* Parse a handler-seq.
13616
13617 handler-seq:
13618 handler handler-seq [opt] */
13619
13620 static void
13621 cp_parser_handler_seq (cp_parser* parser)
13622 {
13623 while (true)
13624 {
13625 cp_token *token;
13626
13627 /* Parse the handler. */
13628 cp_parser_handler (parser);
13629 /* Peek at the next token. */
13630 token = cp_lexer_peek_token (parser->lexer);
13631 /* If it's not `catch' then there are no more handlers. */
13632 if (!cp_parser_is_keyword (token, RID_CATCH))
13633 break;
13634 }
13635 }
13636
13637 /* Parse a handler.
13638
13639 handler:
13640 catch ( exception-declaration ) compound-statement */
13641
13642 static void
13643 cp_parser_handler (cp_parser* parser)
13644 {
13645 tree handler;
13646 tree declaration;
13647
13648 cp_parser_require_keyword (parser, RID_CATCH, "`catch'");
13649 handler = begin_handler ();
13650 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13651 declaration = cp_parser_exception_declaration (parser);
13652 finish_handler_parms (declaration, handler);
13653 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13654 cp_parser_compound_statement (parser, NULL, false);
13655 finish_handler (handler);
13656 }
13657
13658 /* Parse an exception-declaration.
13659
13660 exception-declaration:
13661 type-specifier-seq declarator
13662 type-specifier-seq abstract-declarator
13663 type-specifier-seq
13664 ...
13665
13666 Returns a VAR_DECL for the declaration, or NULL_TREE if the
13667 ellipsis variant is used. */
13668
13669 static tree
13670 cp_parser_exception_declaration (cp_parser* parser)
13671 {
13672 tree decl;
13673 cp_decl_specifier_seq type_specifiers;
13674 cp_declarator *declarator;
13675 const char *saved_message;
13676
13677 /* If it's an ellipsis, it's easy to handle. */
13678 if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
13679 {
13680 /* Consume the `...' token. */
13681 cp_lexer_consume_token (parser->lexer);
13682 return NULL_TREE;
13683 }
13684
13685 /* Types may not be defined in exception-declarations. */
13686 saved_message = parser->type_definition_forbidden_message;
13687 parser->type_definition_forbidden_message
13688 = "types may not be defined in exception-declarations";
13689
13690 /* Parse the type-specifier-seq. */
13691 cp_parser_type_specifier_seq (parser, &type_specifiers);
13692 /* If it's a `)', then there is no declarator. */
13693 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
13694 declarator = NULL;
13695 else
13696 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER,
13697 /*ctor_dtor_or_conv_p=*/NULL,
13698 /*parenthesized_p=*/NULL,
13699 /*member_p=*/false);
13700
13701 /* Restore the saved message. */
13702 parser->type_definition_forbidden_message = saved_message;
13703
13704 if (type_specifiers.any_specifiers_p)
13705 {
13706 decl = grokdeclarator (declarator, &type_specifiers, CATCHPARM, 1, NULL);
13707 if (decl == NULL_TREE)
13708 error ("invalid catch parameter");
13709 }
13710 else
13711 decl = NULL_TREE;
13712
13713 return decl;
13714 }
13715
13716 /* Parse a throw-expression.
13717
13718 throw-expression:
13719 throw assignment-expression [opt]
13720
13721 Returns a THROW_EXPR representing the throw-expression. */
13722
13723 static tree
13724 cp_parser_throw_expression (cp_parser* parser)
13725 {
13726 tree expression;
13727 cp_token* token;
13728
13729 cp_parser_require_keyword (parser, RID_THROW, "`throw'");
13730 token = cp_lexer_peek_token (parser->lexer);
13731 /* Figure out whether or not there is an assignment-expression
13732 following the "throw" keyword. */
13733 if (token->type == CPP_COMMA
13734 || token->type == CPP_SEMICOLON
13735 || token->type == CPP_CLOSE_PAREN
13736 || token->type == CPP_CLOSE_SQUARE
13737 || token->type == CPP_CLOSE_BRACE
13738 || token->type == CPP_COLON)
13739 expression = NULL_TREE;
13740 else
13741 expression = cp_parser_assignment_expression (parser);
13742
13743 return build_throw (expression);
13744 }
13745
13746 /* GNU Extensions */
13747
13748 /* Parse an (optional) asm-specification.
13749
13750 asm-specification:
13751 asm ( string-literal )
13752
13753 If the asm-specification is present, returns a STRING_CST
13754 corresponding to the string-literal. Otherwise, returns
13755 NULL_TREE. */
13756
13757 static tree
13758 cp_parser_asm_specification_opt (cp_parser* parser)
13759 {
13760 cp_token *token;
13761 tree asm_specification;
13762
13763 /* Peek at the next token. */
13764 token = cp_lexer_peek_token (parser->lexer);
13765 /* If the next token isn't the `asm' keyword, then there's no
13766 asm-specification. */
13767 if (!cp_parser_is_keyword (token, RID_ASM))
13768 return NULL_TREE;
13769
13770 /* Consume the `asm' token. */
13771 cp_lexer_consume_token (parser->lexer);
13772 /* Look for the `('. */
13773 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13774
13775 /* Look for the string-literal. */
13776 asm_specification = cp_parser_string_literal (parser, false, false);
13777
13778 /* Look for the `)'. */
13779 cp_parser_require (parser, CPP_CLOSE_PAREN, "`('");
13780
13781 return asm_specification;
13782 }
13783
13784 /* Parse an asm-operand-list.
13785
13786 asm-operand-list:
13787 asm-operand
13788 asm-operand-list , asm-operand
13789
13790 asm-operand:
13791 string-literal ( expression )
13792 [ string-literal ] string-literal ( expression )
13793
13794 Returns a TREE_LIST representing the operands. The TREE_VALUE of
13795 each node is the expression. The TREE_PURPOSE is itself a
13796 TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed
13797 string-literal (or NULL_TREE if not present) and whose TREE_VALUE
13798 is a STRING_CST for the string literal before the parenthesis. */
13799
13800 static tree
13801 cp_parser_asm_operand_list (cp_parser* parser)
13802 {
13803 tree asm_operands = NULL_TREE;
13804
13805 while (true)
13806 {
13807 tree string_literal;
13808 tree expression;
13809 tree name;
13810
13811 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
13812 {
13813 /* Consume the `[' token. */
13814 cp_lexer_consume_token (parser->lexer);
13815 /* Read the operand name. */
13816 name = cp_parser_identifier (parser);
13817 if (name != error_mark_node)
13818 name = build_string (IDENTIFIER_LENGTH (name),
13819 IDENTIFIER_POINTER (name));
13820 /* Look for the closing `]'. */
13821 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
13822 }
13823 else
13824 name = NULL_TREE;
13825 /* Look for the string-literal. */
13826 string_literal = cp_parser_string_literal (parser, false, false);
13827
13828 /* Look for the `('. */
13829 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13830 /* Parse the expression. */
13831 expression = cp_parser_expression (parser);
13832 /* Look for the `)'. */
13833 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13834
13835 /* Add this operand to the list. */
13836 asm_operands = tree_cons (build_tree_list (name, string_literal),
13837 expression,
13838 asm_operands);
13839 /* If the next token is not a `,', there are no more
13840 operands. */
13841 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
13842 break;
13843 /* Consume the `,'. */
13844 cp_lexer_consume_token (parser->lexer);
13845 }
13846
13847 return nreverse (asm_operands);
13848 }
13849
13850 /* Parse an asm-clobber-list.
13851
13852 asm-clobber-list:
13853 string-literal
13854 asm-clobber-list , string-literal
13855
13856 Returns a TREE_LIST, indicating the clobbers in the order that they
13857 appeared. The TREE_VALUE of each node is a STRING_CST. */
13858
13859 static tree
13860 cp_parser_asm_clobber_list (cp_parser* parser)
13861 {
13862 tree clobbers = NULL_TREE;
13863
13864 while (true)
13865 {
13866 tree string_literal;
13867
13868 /* Look for the string literal. */
13869 string_literal = cp_parser_string_literal (parser, false, false);
13870 /* Add it to the list. */
13871 clobbers = tree_cons (NULL_TREE, string_literal, clobbers);
13872 /* If the next token is not a `,', then the list is
13873 complete. */
13874 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
13875 break;
13876 /* Consume the `,' token. */
13877 cp_lexer_consume_token (parser->lexer);
13878 }
13879
13880 return clobbers;
13881 }
13882
13883 /* Parse an (optional) series of attributes.
13884
13885 attributes:
13886 attributes attribute
13887
13888 attribute:
13889 __attribute__ (( attribute-list [opt] ))
13890
13891 The return value is as for cp_parser_attribute_list. */
13892
13893 static tree
13894 cp_parser_attributes_opt (cp_parser* parser)
13895 {
13896 tree attributes = NULL_TREE;
13897
13898 while (true)
13899 {
13900 cp_token *token;
13901 tree attribute_list;
13902
13903 /* Peek at the next token. */
13904 token = cp_lexer_peek_token (parser->lexer);
13905 /* If it's not `__attribute__', then we're done. */
13906 if (token->keyword != RID_ATTRIBUTE)
13907 break;
13908
13909 /* Consume the `__attribute__' keyword. */
13910 cp_lexer_consume_token (parser->lexer);
13911 /* Look for the two `(' tokens. */
13912 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13913 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13914
13915 /* Peek at the next token. */
13916 token = cp_lexer_peek_token (parser->lexer);
13917 if (token->type != CPP_CLOSE_PAREN)
13918 /* Parse the attribute-list. */
13919 attribute_list = cp_parser_attribute_list (parser);
13920 else
13921 /* If the next token is a `)', then there is no attribute
13922 list. */
13923 attribute_list = NULL;
13924
13925 /* Look for the two `)' tokens. */
13926 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13927 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13928
13929 /* Add these new attributes to the list. */
13930 attributes = chainon (attributes, attribute_list);
13931 }
13932
13933 return attributes;
13934 }
13935
13936 /* Parse an attribute-list.
13937
13938 attribute-list:
13939 attribute
13940 attribute-list , attribute
13941
13942 attribute:
13943 identifier
13944 identifier ( identifier )
13945 identifier ( identifier , expression-list )
13946 identifier ( expression-list )
13947
13948 Returns a TREE_LIST. Each node corresponds to an attribute. THe
13949 TREE_PURPOSE of each node is the identifier indicating which
13950 attribute is in use. The TREE_VALUE represents the arguments, if
13951 any. */
13952
13953 static tree
13954 cp_parser_attribute_list (cp_parser* parser)
13955 {
13956 tree attribute_list = NULL_TREE;
13957 bool save_translate_strings_p = parser->translate_strings_p;
13958
13959 parser->translate_strings_p = false;
13960 while (true)
13961 {
13962 cp_token *token;
13963 tree identifier;
13964 tree attribute;
13965
13966 /* Look for the identifier. We also allow keywords here; for
13967 example `__attribute__ ((const))' is legal. */
13968 token = cp_lexer_peek_token (parser->lexer);
13969 if (token->type != CPP_NAME
13970 && token->type != CPP_KEYWORD)
13971 return error_mark_node;
13972 /* Consume the token. */
13973 token = cp_lexer_consume_token (parser->lexer);
13974
13975 /* Save away the identifier that indicates which attribute this is. */
13976 identifier = token->value;
13977 attribute = build_tree_list (identifier, NULL_TREE);
13978
13979 /* Peek at the next token. */
13980 token = cp_lexer_peek_token (parser->lexer);
13981 /* If it's an `(', then parse the attribute arguments. */
13982 if (token->type == CPP_OPEN_PAREN)
13983 {
13984 tree arguments;
13985
13986 arguments = (cp_parser_parenthesized_expression_list
13987 (parser, true, /*non_constant_p=*/NULL));
13988 /* Save the identifier and arguments away. */
13989 TREE_VALUE (attribute) = arguments;
13990 }
13991
13992 /* Add this attribute to the list. */
13993 TREE_CHAIN (attribute) = attribute_list;
13994 attribute_list = attribute;
13995
13996 /* Now, look for more attributes. */
13997 token = cp_lexer_peek_token (parser->lexer);
13998 /* If the next token isn't a `,', we're done. */
13999 if (token->type != CPP_COMMA)
14000 break;
14001
14002 /* Consume the comma and keep going. */
14003 cp_lexer_consume_token (parser->lexer);
14004 }
14005 parser->translate_strings_p = save_translate_strings_p;
14006
14007 /* We built up the list in reverse order. */
14008 return nreverse (attribute_list);
14009 }
14010
14011 /* Parse an optional `__extension__' keyword. Returns TRUE if it is
14012 present, and FALSE otherwise. *SAVED_PEDANTIC is set to the
14013 current value of the PEDANTIC flag, regardless of whether or not
14014 the `__extension__' keyword is present. The caller is responsible
14015 for restoring the value of the PEDANTIC flag. */
14016
14017 static bool
14018 cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic)
14019 {
14020 /* Save the old value of the PEDANTIC flag. */
14021 *saved_pedantic = pedantic;
14022
14023 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION))
14024 {
14025 /* Consume the `__extension__' token. */
14026 cp_lexer_consume_token (parser->lexer);
14027 /* We're not being pedantic while the `__extension__' keyword is
14028 in effect. */
14029 pedantic = 0;
14030
14031 return true;
14032 }
14033
14034 return false;
14035 }
14036
14037 /* Parse a label declaration.
14038
14039 label-declaration:
14040 __label__ label-declarator-seq ;
14041
14042 label-declarator-seq:
14043 identifier , label-declarator-seq
14044 identifier */
14045
14046 static void
14047 cp_parser_label_declaration (cp_parser* parser)
14048 {
14049 /* Look for the `__label__' keyword. */
14050 cp_parser_require_keyword (parser, RID_LABEL, "`__label__'");
14051
14052 while (true)
14053 {
14054 tree identifier;
14055
14056 /* Look for an identifier. */
14057 identifier = cp_parser_identifier (parser);
14058 /* Declare it as a lobel. */
14059 finish_label_decl (identifier);
14060 /* If the next token is a `;', stop. */
14061 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
14062 break;
14063 /* Look for the `,' separating the label declarations. */
14064 cp_parser_require (parser, CPP_COMMA, "`,'");
14065 }
14066
14067 /* Look for the final `;'. */
14068 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
14069 }
14070
14071 /* Support Functions */
14072
14073 /* Looks up NAME in the current scope, as given by PARSER->SCOPE.
14074 NAME should have one of the representations used for an
14075 id-expression. If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE
14076 is returned. If PARSER->SCOPE is a dependent type, then a
14077 SCOPE_REF is returned.
14078
14079 If NAME is a TEMPLATE_ID_EXPR, then it will be immediately
14080 returned; the name was already resolved when the TEMPLATE_ID_EXPR
14081 was formed. Abstractly, such entities should not be passed to this
14082 function, because they do not need to be looked up, but it is
14083 simpler to check for this special case here, rather than at the
14084 call-sites.
14085
14086 In cases not explicitly covered above, this function returns a
14087 DECL, OVERLOAD, or baselink representing the result of the lookup.
14088 If there was no entity with the indicated NAME, the ERROR_MARK_NODE
14089 is returned.
14090
14091 If TAG_TYPE is not NONE_TYPE, it indicates an explicit type keyword
14092 (e.g., "struct") that was used. In that case bindings that do not
14093 refer to types are ignored.
14094
14095 If IS_TEMPLATE is TRUE, bindings that do not refer to templates are
14096 ignored.
14097
14098 If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces
14099 are ignored.
14100
14101 If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent
14102 types.
14103
14104 If AMBIGUOUS_P is non-NULL, it is set to true if name-lookup
14105 results in an ambiguity, and false otherwise. */
14106
14107 static tree
14108 cp_parser_lookup_name (cp_parser *parser, tree name,
14109 enum tag_types tag_type,
14110 bool is_template, bool is_namespace,
14111 bool check_dependency,
14112 bool *ambiguous_p)
14113 {
14114 tree decl;
14115 tree object_type = parser->context->object_type;
14116
14117 /* Assume that the lookup will be unambiguous. */
14118 if (ambiguous_p)
14119 *ambiguous_p = false;
14120
14121 /* Now that we have looked up the name, the OBJECT_TYPE (if any) is
14122 no longer valid. Note that if we are parsing tentatively, and
14123 the parse fails, OBJECT_TYPE will be automatically restored. */
14124 parser->context->object_type = NULL_TREE;
14125
14126 if (name == error_mark_node)
14127 return error_mark_node;
14128
14129 /* A template-id has already been resolved; there is no lookup to
14130 do. */
14131 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
14132 return name;
14133 if (BASELINK_P (name))
14134 {
14135 gcc_assert (TREE_CODE (BASELINK_FUNCTIONS (name))
14136 == TEMPLATE_ID_EXPR);
14137 return name;
14138 }
14139
14140 /* A BIT_NOT_EXPR is used to represent a destructor. By this point,
14141 it should already have been checked to make sure that the name
14142 used matches the type being destroyed. */
14143 if (TREE_CODE (name) == BIT_NOT_EXPR)
14144 {
14145 tree type;
14146
14147 /* Figure out to which type this destructor applies. */
14148 if (parser->scope)
14149 type = parser->scope;
14150 else if (object_type)
14151 type = object_type;
14152 else
14153 type = current_class_type;
14154 /* If that's not a class type, there is no destructor. */
14155 if (!type || !CLASS_TYPE_P (type))
14156 return error_mark_node;
14157 if (!CLASSTYPE_DESTRUCTORS (type))
14158 return error_mark_node;
14159 /* If it was a class type, return the destructor. */
14160 return CLASSTYPE_DESTRUCTORS (type);
14161 }
14162
14163 /* By this point, the NAME should be an ordinary identifier. If
14164 the id-expression was a qualified name, the qualifying scope is
14165 stored in PARSER->SCOPE at this point. */
14166 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
14167
14168 /* Perform the lookup. */
14169 if (parser->scope)
14170 {
14171 bool dependent_p;
14172
14173 if (parser->scope == error_mark_node)
14174 return error_mark_node;
14175
14176 /* If the SCOPE is dependent, the lookup must be deferred until
14177 the template is instantiated -- unless we are explicitly
14178 looking up names in uninstantiated templates. Even then, we
14179 cannot look up the name if the scope is not a class type; it
14180 might, for example, be a template type parameter. */
14181 dependent_p = (TYPE_P (parser->scope)
14182 && !(parser->in_declarator_p
14183 && currently_open_class (parser->scope))
14184 && dependent_type_p (parser->scope));
14185 if ((check_dependency || !CLASS_TYPE_P (parser->scope))
14186 && dependent_p)
14187 {
14188 if (tag_type)
14189 {
14190 tree type;
14191
14192 /* The resolution to Core Issue 180 says that `struct
14193 A::B' should be considered a type-name, even if `A'
14194 is dependent. */
14195 type = make_typename_type (parser->scope, name, tag_type,
14196 /*complain=*/1);
14197 if (tag_type == enum_type)
14198 TYPENAME_IS_ENUM_P (type) = 1;
14199 else if (tag_type != typename_type)
14200 TYPENAME_IS_CLASS_P (type) = 1;
14201 decl = TYPE_NAME (type);
14202 }
14203 else if (is_template)
14204 decl = make_unbound_class_template (parser->scope,
14205 name, NULL_TREE,
14206 /*complain=*/1);
14207 else
14208 decl = build_nt (SCOPE_REF, parser->scope, name);
14209 }
14210 else
14211 {
14212 bool pop_p = false;
14213
14214 /* If PARSER->SCOPE is a dependent type, then it must be a
14215 class type, and we must not be checking dependencies;
14216 otherwise, we would have processed this lookup above. So
14217 that PARSER->SCOPE is not considered a dependent base by
14218 lookup_member, we must enter the scope here. */
14219 if (dependent_p)
14220 pop_p = push_scope (parser->scope);
14221 /* If the PARSER->SCOPE is a a template specialization, it
14222 may be instantiated during name lookup. In that case,
14223 errors may be issued. Even if we rollback the current
14224 tentative parse, those errors are valid. */
14225 decl = lookup_qualified_name (parser->scope, name,
14226 tag_type != none_type,
14227 /*complain=*/true);
14228 if (pop_p)
14229 pop_scope (parser->scope);
14230 }
14231 parser->qualifying_scope = parser->scope;
14232 parser->object_scope = NULL_TREE;
14233 }
14234 else if (object_type)
14235 {
14236 tree object_decl = NULL_TREE;
14237 /* Look up the name in the scope of the OBJECT_TYPE, unless the
14238 OBJECT_TYPE is not a class. */
14239 if (CLASS_TYPE_P (object_type))
14240 /* If the OBJECT_TYPE is a template specialization, it may
14241 be instantiated during name lookup. In that case, errors
14242 may be issued. Even if we rollback the current tentative
14243 parse, those errors are valid. */
14244 object_decl = lookup_member (object_type,
14245 name,
14246 /*protect=*/0,
14247 tag_type != none_type);
14248 /* Look it up in the enclosing context, too. */
14249 decl = lookup_name_real (name, tag_type != none_type,
14250 /*nonclass=*/0,
14251 /*block_p=*/true, is_namespace,
14252 /*flags=*/0);
14253 parser->object_scope = object_type;
14254 parser->qualifying_scope = NULL_TREE;
14255 if (object_decl)
14256 decl = object_decl;
14257 }
14258 else
14259 {
14260 decl = lookup_name_real (name, tag_type != none_type,
14261 /*nonclass=*/0,
14262 /*block_p=*/true, is_namespace,
14263 /*flags=*/0);
14264 parser->qualifying_scope = NULL_TREE;
14265 parser->object_scope = NULL_TREE;
14266 }
14267
14268 /* If the lookup failed, let our caller know. */
14269 if (!decl
14270 || decl == error_mark_node
14271 || (TREE_CODE (decl) == FUNCTION_DECL
14272 && DECL_ANTICIPATED (decl)))
14273 return error_mark_node;
14274
14275 /* If it's a TREE_LIST, the result of the lookup was ambiguous. */
14276 if (TREE_CODE (decl) == TREE_LIST)
14277 {
14278 if (ambiguous_p)
14279 *ambiguous_p = true;
14280 /* The error message we have to print is too complicated for
14281 cp_parser_error, so we incorporate its actions directly. */
14282 if (!cp_parser_simulate_error (parser))
14283 {
14284 error ("reference to %qD is ambiguous", name);
14285 print_candidates (decl);
14286 }
14287 return error_mark_node;
14288 }
14289
14290 gcc_assert (DECL_P (decl)
14291 || TREE_CODE (decl) == OVERLOAD
14292 || TREE_CODE (decl) == SCOPE_REF
14293 || TREE_CODE (decl) == UNBOUND_CLASS_TEMPLATE
14294 || BASELINK_P (decl));
14295
14296 /* If we have resolved the name of a member declaration, check to
14297 see if the declaration is accessible. When the name resolves to
14298 set of overloaded functions, accessibility is checked when
14299 overload resolution is done.
14300
14301 During an explicit instantiation, access is not checked at all,
14302 as per [temp.explicit]. */
14303 if (DECL_P (decl))
14304 check_accessibility_of_qualified_id (decl, object_type, parser->scope);
14305
14306 return decl;
14307 }
14308
14309 /* Like cp_parser_lookup_name, but for use in the typical case where
14310 CHECK_ACCESS is TRUE, IS_TYPE is FALSE, IS_TEMPLATE is FALSE,
14311 IS_NAMESPACE is FALSE, and CHECK_DEPENDENCY is TRUE. */
14312
14313 static tree
14314 cp_parser_lookup_name_simple (cp_parser* parser, tree name)
14315 {
14316 return cp_parser_lookup_name (parser, name,
14317 none_type,
14318 /*is_template=*/false,
14319 /*is_namespace=*/false,
14320 /*check_dependency=*/true,
14321 /*ambiguous_p=*/NULL);
14322 }
14323
14324 /* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in
14325 the current context, return the TYPE_DECL. If TAG_NAME_P is
14326 true, the DECL indicates the class being defined in a class-head,
14327 or declared in an elaborated-type-specifier.
14328
14329 Otherwise, return DECL. */
14330
14331 static tree
14332 cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p)
14333 {
14334 /* If the TEMPLATE_DECL is being declared as part of a class-head,
14335 the translation from TEMPLATE_DECL to TYPE_DECL occurs:
14336
14337 struct A {
14338 template <typename T> struct B;
14339 };
14340
14341 template <typename T> struct A::B {};
14342
14343 Similarly, in a elaborated-type-specifier:
14344
14345 namespace N { struct X{}; }
14346
14347 struct A {
14348 template <typename T> friend struct N::X;
14349 };
14350
14351 However, if the DECL refers to a class type, and we are in
14352 the scope of the class, then the name lookup automatically
14353 finds the TYPE_DECL created by build_self_reference rather
14354 than a TEMPLATE_DECL. For example, in:
14355
14356 template <class T> struct S {
14357 S s;
14358 };
14359
14360 there is no need to handle such case. */
14361
14362 if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p)
14363 return DECL_TEMPLATE_RESULT (decl);
14364
14365 return decl;
14366 }
14367
14368 /* If too many, or too few, template-parameter lists apply to the
14369 declarator, issue an error message. Returns TRUE if all went well,
14370 and FALSE otherwise. */
14371
14372 static bool
14373 cp_parser_check_declarator_template_parameters (cp_parser* parser,
14374 cp_declarator *declarator)
14375 {
14376 unsigned num_templates;
14377
14378 /* We haven't seen any classes that involve template parameters yet. */
14379 num_templates = 0;
14380
14381 switch (declarator->kind)
14382 {
14383 case cdk_id:
14384 if (TREE_CODE (declarator->u.id.name) == SCOPE_REF)
14385 {
14386 tree scope;
14387 tree member;
14388
14389 scope = TREE_OPERAND (declarator->u.id.name, 0);
14390 member = TREE_OPERAND (declarator->u.id.name, 1);
14391
14392 while (scope && CLASS_TYPE_P (scope))
14393 {
14394 /* You're supposed to have one `template <...>'
14395 for every template class, but you don't need one
14396 for a full specialization. For example:
14397
14398 template <class T> struct S{};
14399 template <> struct S<int> { void f(); };
14400 void S<int>::f () {}
14401
14402 is correct; there shouldn't be a `template <>' for
14403 the definition of `S<int>::f'. */
14404 if (CLASSTYPE_TEMPLATE_INFO (scope)
14405 && (CLASSTYPE_TEMPLATE_INSTANTIATION (scope)
14406 || uses_template_parms (CLASSTYPE_TI_ARGS (scope)))
14407 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope)))
14408 ++num_templates;
14409
14410 scope = TYPE_CONTEXT (scope);
14411 }
14412 }
14413
14414 /* If the DECLARATOR has the form `X<y>' then it uses one
14415 additional level of template parameters. */
14416 if (TREE_CODE (declarator->u.id.name) == TEMPLATE_ID_EXPR)
14417 ++num_templates;
14418
14419 return cp_parser_check_template_parameters (parser,
14420 num_templates);
14421
14422 case cdk_function:
14423 case cdk_array:
14424 case cdk_pointer:
14425 case cdk_reference:
14426 case cdk_ptrmem:
14427 return (cp_parser_check_declarator_template_parameters
14428 (parser, declarator->declarator));
14429
14430 case cdk_error:
14431 return true;
14432
14433 default:
14434 gcc_unreachable ();
14435 }
14436 return false;
14437 }
14438
14439 /* NUM_TEMPLATES were used in the current declaration. If that is
14440 invalid, return FALSE and issue an error messages. Otherwise,
14441 return TRUE. */
14442
14443 static bool
14444 cp_parser_check_template_parameters (cp_parser* parser,
14445 unsigned num_templates)
14446 {
14447 /* If there are more template classes than parameter lists, we have
14448 something like:
14449
14450 template <class T> void S<T>::R<T>::f (); */
14451 if (parser->num_template_parameter_lists < num_templates)
14452 {
14453 error ("too few template-parameter-lists");
14454 return false;
14455 }
14456 /* If there are the same number of template classes and parameter
14457 lists, that's OK. */
14458 if (parser->num_template_parameter_lists == num_templates)
14459 return true;
14460 /* If there are more, but only one more, then we are referring to a
14461 member template. That's OK too. */
14462 if (parser->num_template_parameter_lists == num_templates + 1)
14463 return true;
14464 /* Otherwise, there are too many template parameter lists. We have
14465 something like:
14466
14467 template <class T> template <class U> void S::f(); */
14468 error ("too many template-parameter-lists");
14469 return false;
14470 }
14471
14472 /* Parse an optional `::' token indicating that the following name is
14473 from the global namespace. If so, PARSER->SCOPE is set to the
14474 GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE,
14475 unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone.
14476 Returns the new value of PARSER->SCOPE, if the `::' token is
14477 present, and NULL_TREE otherwise. */
14478
14479 static tree
14480 cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p)
14481 {
14482 cp_token *token;
14483
14484 /* Peek at the next token. */
14485 token = cp_lexer_peek_token (parser->lexer);
14486 /* If we're looking at a `::' token then we're starting from the
14487 global namespace, not our current location. */
14488 if (token->type == CPP_SCOPE)
14489 {
14490 /* Consume the `::' token. */
14491 cp_lexer_consume_token (parser->lexer);
14492 /* Set the SCOPE so that we know where to start the lookup. */
14493 parser->scope = global_namespace;
14494 parser->qualifying_scope = global_namespace;
14495 parser->object_scope = NULL_TREE;
14496
14497 return parser->scope;
14498 }
14499 else if (!current_scope_valid_p)
14500 {
14501 parser->scope = NULL_TREE;
14502 parser->qualifying_scope = NULL_TREE;
14503 parser->object_scope = NULL_TREE;
14504 }
14505
14506 return NULL_TREE;
14507 }
14508
14509 /* Returns TRUE if the upcoming token sequence is the start of a
14510 constructor declarator. If FRIEND_P is true, the declarator is
14511 preceded by the `friend' specifier. */
14512
14513 static bool
14514 cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p)
14515 {
14516 bool constructor_p;
14517 tree type_decl = NULL_TREE;
14518 bool nested_name_p;
14519 cp_token *next_token;
14520
14521 /* The common case is that this is not a constructor declarator, so
14522 try to avoid doing lots of work if at all possible. It's not
14523 valid declare a constructor at function scope. */
14524 if (at_function_scope_p ())
14525 return false;
14526 /* And only certain tokens can begin a constructor declarator. */
14527 next_token = cp_lexer_peek_token (parser->lexer);
14528 if (next_token->type != CPP_NAME
14529 && next_token->type != CPP_SCOPE
14530 && next_token->type != CPP_NESTED_NAME_SPECIFIER
14531 && next_token->type != CPP_TEMPLATE_ID)
14532 return false;
14533
14534 /* Parse tentatively; we are going to roll back all of the tokens
14535 consumed here. */
14536 cp_parser_parse_tentatively (parser);
14537 /* Assume that we are looking at a constructor declarator. */
14538 constructor_p = true;
14539
14540 /* Look for the optional `::' operator. */
14541 cp_parser_global_scope_opt (parser,
14542 /*current_scope_valid_p=*/false);
14543 /* Look for the nested-name-specifier. */
14544 nested_name_p
14545 = (cp_parser_nested_name_specifier_opt (parser,
14546 /*typename_keyword_p=*/false,
14547 /*check_dependency_p=*/false,
14548 /*type_p=*/false,
14549 /*is_declaration=*/false)
14550 != NULL_TREE);
14551 /* Outside of a class-specifier, there must be a
14552 nested-name-specifier. */
14553 if (!nested_name_p &&
14554 (!at_class_scope_p () || !TYPE_BEING_DEFINED (current_class_type)
14555 || friend_p))
14556 constructor_p = false;
14557 /* If we still think that this might be a constructor-declarator,
14558 look for a class-name. */
14559 if (constructor_p)
14560 {
14561 /* If we have:
14562
14563 template <typename T> struct S { S(); };
14564 template <typename T> S<T>::S ();
14565
14566 we must recognize that the nested `S' names a class.
14567 Similarly, for:
14568
14569 template <typename T> S<T>::S<T> ();
14570
14571 we must recognize that the nested `S' names a template. */
14572 type_decl = cp_parser_class_name (parser,
14573 /*typename_keyword_p=*/false,
14574 /*template_keyword_p=*/false,
14575 none_type,
14576 /*check_dependency_p=*/false,
14577 /*class_head_p=*/false,
14578 /*is_declaration=*/false);
14579 /* If there was no class-name, then this is not a constructor. */
14580 constructor_p = !cp_parser_error_occurred (parser);
14581 }
14582
14583 /* If we're still considering a constructor, we have to see a `(',
14584 to begin the parameter-declaration-clause, followed by either a
14585 `)', an `...', or a decl-specifier. We need to check for a
14586 type-specifier to avoid being fooled into thinking that:
14587
14588 S::S (f) (int);
14589
14590 is a constructor. (It is actually a function named `f' that
14591 takes one parameter (of type `int') and returns a value of type
14592 `S::S'. */
14593 if (constructor_p
14594 && cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
14595 {
14596 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)
14597 && cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS)
14598 /* A parameter declaration begins with a decl-specifier,
14599 which is either the "attribute" keyword, a storage class
14600 specifier, or (usually) a type-specifier. */
14601 && !cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE)
14602 && !cp_parser_storage_class_specifier_opt (parser))
14603 {
14604 tree type;
14605 bool pop_p = false;
14606 unsigned saved_num_template_parameter_lists;
14607
14608 /* Names appearing in the type-specifier should be looked up
14609 in the scope of the class. */
14610 if (current_class_type)
14611 type = NULL_TREE;
14612 else
14613 {
14614 type = TREE_TYPE (type_decl);
14615 if (TREE_CODE (type) == TYPENAME_TYPE)
14616 {
14617 type = resolve_typename_type (type,
14618 /*only_current_p=*/false);
14619 if (type == error_mark_node)
14620 {
14621 cp_parser_abort_tentative_parse (parser);
14622 return false;
14623 }
14624 }
14625 pop_p = push_scope (type);
14626 }
14627
14628 /* Inside the constructor parameter list, surrounding
14629 template-parameter-lists do not apply. */
14630 saved_num_template_parameter_lists
14631 = parser->num_template_parameter_lists;
14632 parser->num_template_parameter_lists = 0;
14633
14634 /* Look for the type-specifier. */
14635 cp_parser_type_specifier (parser,
14636 CP_PARSER_FLAGS_NONE,
14637 /*decl_specs=*/NULL,
14638 /*is_declarator=*/true,
14639 /*declares_class_or_enum=*/NULL,
14640 /*is_cv_qualifier=*/NULL);
14641
14642 parser->num_template_parameter_lists
14643 = saved_num_template_parameter_lists;
14644
14645 /* Leave the scope of the class. */
14646 if (pop_p)
14647 pop_scope (type);
14648
14649 constructor_p = !cp_parser_error_occurred (parser);
14650 }
14651 }
14652 else
14653 constructor_p = false;
14654 /* We did not really want to consume any tokens. */
14655 cp_parser_abort_tentative_parse (parser);
14656
14657 return constructor_p;
14658 }
14659
14660 /* Parse the definition of the function given by the DECL_SPECIFIERS,
14661 ATTRIBUTES, and DECLARATOR. The access checks have been deferred;
14662 they must be performed once we are in the scope of the function.
14663
14664 Returns the function defined. */
14665
14666 static tree
14667 cp_parser_function_definition_from_specifiers_and_declarator
14668 (cp_parser* parser,
14669 cp_decl_specifier_seq *decl_specifiers,
14670 tree attributes,
14671 const cp_declarator *declarator)
14672 {
14673 tree fn;
14674 bool success_p;
14675
14676 /* Begin the function-definition. */
14677 success_p = start_function (decl_specifiers, declarator, attributes);
14678
14679 /* The things we're about to see are not directly qualified by any
14680 template headers we've seen thus far. */
14681 reset_specialization ();
14682
14683 /* If there were names looked up in the decl-specifier-seq that we
14684 did not check, check them now. We must wait until we are in the
14685 scope of the function to perform the checks, since the function
14686 might be a friend. */
14687 perform_deferred_access_checks ();
14688
14689 if (!success_p)
14690 {
14691 /* Skip the entire function. */
14692 error ("invalid function declaration");
14693 cp_parser_skip_to_end_of_block_or_statement (parser);
14694 fn = error_mark_node;
14695 }
14696 else
14697 fn = cp_parser_function_definition_after_declarator (parser,
14698 /*inline_p=*/false);
14699
14700 return fn;
14701 }
14702
14703 /* Parse the part of a function-definition that follows the
14704 declarator. INLINE_P is TRUE iff this function is an inline
14705 function defined with a class-specifier.
14706
14707 Returns the function defined. */
14708
14709 static tree
14710 cp_parser_function_definition_after_declarator (cp_parser* parser,
14711 bool inline_p)
14712 {
14713 tree fn;
14714 bool ctor_initializer_p = false;
14715 bool saved_in_unbraced_linkage_specification_p;
14716 unsigned saved_num_template_parameter_lists;
14717
14718 /* If the next token is `return', then the code may be trying to
14719 make use of the "named return value" extension that G++ used to
14720 support. */
14721 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN))
14722 {
14723 /* Consume the `return' keyword. */
14724 cp_lexer_consume_token (parser->lexer);
14725 /* Look for the identifier that indicates what value is to be
14726 returned. */
14727 cp_parser_identifier (parser);
14728 /* Issue an error message. */
14729 error ("named return values are no longer supported");
14730 /* Skip tokens until we reach the start of the function body. */
14731 while (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)
14732 && cp_lexer_next_token_is_not (parser->lexer, CPP_EOF))
14733 cp_lexer_consume_token (parser->lexer);
14734 }
14735 /* The `extern' in `extern "C" void f () { ... }' does not apply to
14736 anything declared inside `f'. */
14737 saved_in_unbraced_linkage_specification_p
14738 = parser->in_unbraced_linkage_specification_p;
14739 parser->in_unbraced_linkage_specification_p = false;
14740 /* Inside the function, surrounding template-parameter-lists do not
14741 apply. */
14742 saved_num_template_parameter_lists
14743 = parser->num_template_parameter_lists;
14744 parser->num_template_parameter_lists = 0;
14745 /* If the next token is `try', then we are looking at a
14746 function-try-block. */
14747 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
14748 ctor_initializer_p = cp_parser_function_try_block (parser);
14749 /* A function-try-block includes the function-body, so we only do
14750 this next part if we're not processing a function-try-block. */
14751 else
14752 ctor_initializer_p
14753 = cp_parser_ctor_initializer_opt_and_function_body (parser);
14754
14755 /* Finish the function. */
14756 fn = finish_function ((ctor_initializer_p ? 1 : 0) |
14757 (inline_p ? 2 : 0));
14758 /* Generate code for it, if necessary. */
14759 expand_or_defer_fn (fn);
14760 /* Restore the saved values. */
14761 parser->in_unbraced_linkage_specification_p
14762 = saved_in_unbraced_linkage_specification_p;
14763 parser->num_template_parameter_lists
14764 = saved_num_template_parameter_lists;
14765
14766 return fn;
14767 }
14768
14769 /* Parse a template-declaration, assuming that the `export' (and
14770 `extern') keywords, if present, has already been scanned. MEMBER_P
14771 is as for cp_parser_template_declaration. */
14772
14773 static void
14774 cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
14775 {
14776 tree decl = NULL_TREE;
14777 tree parameter_list;
14778 bool friend_p = false;
14779
14780 /* Look for the `template' keyword. */
14781 if (!cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'"))
14782 return;
14783
14784 /* And the `<'. */
14785 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
14786 return;
14787
14788 /* If the next token is `>', then we have an invalid
14789 specialization. Rather than complain about an invalid template
14790 parameter, issue an error message here. */
14791 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
14792 {
14793 cp_parser_error (parser, "invalid explicit specialization");
14794 begin_specialization ();
14795 parameter_list = NULL_TREE;
14796 }
14797 else
14798 {
14799 /* Parse the template parameters. */
14800 begin_template_parm_list ();
14801 parameter_list = cp_parser_template_parameter_list (parser);
14802 parameter_list = end_template_parm_list (parameter_list);
14803 }
14804
14805 /* Look for the `>'. */
14806 cp_parser_skip_until_found (parser, CPP_GREATER, "`>'");
14807 /* We just processed one more parameter list. */
14808 ++parser->num_template_parameter_lists;
14809 /* If the next token is `template', there are more template
14810 parameters. */
14811 if (cp_lexer_next_token_is_keyword (parser->lexer,
14812 RID_TEMPLATE))
14813 cp_parser_template_declaration_after_export (parser, member_p);
14814 else
14815 {
14816 /* There are no access checks when parsing a template, as we do not
14817 know if a specialization will be a friend. */
14818 push_deferring_access_checks (dk_no_check);
14819
14820 decl = cp_parser_single_declaration (parser,
14821 member_p,
14822 &friend_p);
14823
14824 pop_deferring_access_checks ();
14825
14826 /* If this is a member template declaration, let the front
14827 end know. */
14828 if (member_p && !friend_p && decl)
14829 {
14830 if (TREE_CODE (decl) == TYPE_DECL)
14831 cp_parser_check_access_in_redeclaration (decl);
14832
14833 decl = finish_member_template_decl (decl);
14834 }
14835 else if (friend_p && decl && TREE_CODE (decl) == TYPE_DECL)
14836 make_friend_class (current_class_type, TREE_TYPE (decl),
14837 /*complain=*/true);
14838 }
14839 /* We are done with the current parameter list. */
14840 --parser->num_template_parameter_lists;
14841
14842 /* Finish up. */
14843 finish_template_decl (parameter_list);
14844
14845 /* Register member declarations. */
14846 if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
14847 finish_member_declaration (decl);
14848
14849 /* If DECL is a function template, we must return to parse it later.
14850 (Even though there is no definition, there might be default
14851 arguments that need handling.) */
14852 if (member_p && decl
14853 && (TREE_CODE (decl) == FUNCTION_DECL
14854 || DECL_FUNCTION_TEMPLATE_P (decl)))
14855 TREE_VALUE (parser->unparsed_functions_queues)
14856 = tree_cons (NULL_TREE, decl,
14857 TREE_VALUE (parser->unparsed_functions_queues));
14858 }
14859
14860 /* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or
14861 `function-definition' sequence. MEMBER_P is true, this declaration
14862 appears in a class scope.
14863
14864 Returns the DECL for the declared entity. If FRIEND_P is non-NULL,
14865 *FRIEND_P is set to TRUE iff the declaration is a friend. */
14866
14867 static tree
14868 cp_parser_single_declaration (cp_parser* parser,
14869 bool member_p,
14870 bool* friend_p)
14871 {
14872 int declares_class_or_enum;
14873 tree decl = NULL_TREE;
14874 cp_decl_specifier_seq decl_specifiers;
14875 bool function_definition_p = false;
14876
14877 /* This function is only used when processing a template
14878 declaration. */
14879 gcc_assert (innermost_scope_kind () == sk_template_parms
14880 || innermost_scope_kind () == sk_template_spec);
14881
14882 /* Defer access checks until we know what is being declared. */
14883 push_deferring_access_checks (dk_deferred);
14884
14885 /* Try the `decl-specifier-seq [opt] init-declarator [opt]'
14886 alternative. */
14887 cp_parser_decl_specifier_seq (parser,
14888 CP_PARSER_FLAGS_OPTIONAL,
14889 &decl_specifiers,
14890 &declares_class_or_enum);
14891 if (friend_p)
14892 *friend_p = cp_parser_friend_p (&decl_specifiers);
14893
14894 /* There are no template typedefs. */
14895 if (decl_specifiers.specs[(int) ds_typedef])
14896 {
14897 error ("template declaration of %qs", "typedef");
14898 decl = error_mark_node;
14899 }
14900
14901 /* Gather up the access checks that occurred the
14902 decl-specifier-seq. */
14903 stop_deferring_access_checks ();
14904
14905 /* Check for the declaration of a template class. */
14906 if (declares_class_or_enum)
14907 {
14908 if (cp_parser_declares_only_class_p (parser))
14909 {
14910 decl = shadow_tag (&decl_specifiers);
14911
14912 /* In this case:
14913
14914 struct C {
14915 friend template <typename T> struct A<T>::B;
14916 };
14917
14918 A<T>::B will be represented by a TYPENAME_TYPE, and
14919 therefore not recognized by shadow_tag. */
14920 if (friend_p && *friend_p
14921 && !decl
14922 && decl_specifiers.type
14923 && TYPE_P (decl_specifiers.type))
14924 decl = decl_specifiers.type;
14925
14926 if (decl && decl != error_mark_node)
14927 decl = TYPE_NAME (decl);
14928 else
14929 decl = error_mark_node;
14930 }
14931 }
14932 /* If it's not a template class, try for a template function. If
14933 the next token is a `;', then this declaration does not declare
14934 anything. But, if there were errors in the decl-specifiers, then
14935 the error might well have come from an attempted class-specifier.
14936 In that case, there's no need to warn about a missing declarator. */
14937 if (!decl
14938 && (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
14939 || decl_specifiers.type != error_mark_node))
14940 decl = cp_parser_init_declarator (parser,
14941 &decl_specifiers,
14942 /*function_definition_allowed_p=*/true,
14943 member_p,
14944 declares_class_or_enum,
14945 &function_definition_p);
14946
14947 pop_deferring_access_checks ();
14948
14949 /* Clear any current qualification; whatever comes next is the start
14950 of something new. */
14951 parser->scope = NULL_TREE;
14952 parser->qualifying_scope = NULL_TREE;
14953 parser->object_scope = NULL_TREE;
14954 /* Look for a trailing `;' after the declaration. */
14955 if (!function_definition_p
14956 && (decl == error_mark_node
14957 || !cp_parser_require (parser, CPP_SEMICOLON, "`;'")))
14958 cp_parser_skip_to_end_of_block_or_statement (parser);
14959
14960 return decl;
14961 }
14962
14963 /* Parse a cast-expression that is not the operand of a unary "&". */
14964
14965 static tree
14966 cp_parser_simple_cast_expression (cp_parser *parser)
14967 {
14968 return cp_parser_cast_expression (parser, /*address_p=*/false);
14969 }
14970
14971 /* Parse a functional cast to TYPE. Returns an expression
14972 representing the cast. */
14973
14974 static tree
14975 cp_parser_functional_cast (cp_parser* parser, tree type)
14976 {
14977 tree expression_list;
14978 tree cast;
14979
14980 expression_list
14981 = cp_parser_parenthesized_expression_list (parser, false,
14982 /*non_constant_p=*/NULL);
14983
14984 cast = build_functional_cast (type, expression_list);
14985 /* [expr.const]/1: In an integral constant expression "only type
14986 conversions to integral or enumeration type can be used". */
14987 if (cast != error_mark_node && !type_dependent_expression_p (type)
14988 && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (type)))
14989 {
14990 if (cp_parser_non_integral_constant_expression
14991 (parser, "a call to a constructor"))
14992 return error_mark_node;
14993 }
14994 return cast;
14995 }
14996
14997 /* Save the tokens that make up the body of a member function defined
14998 in a class-specifier. The DECL_SPECIFIERS and DECLARATOR have
14999 already been parsed. The ATTRIBUTES are any GNU "__attribute__"
15000 specifiers applied to the declaration. Returns the FUNCTION_DECL
15001 for the member function. */
15002
15003 static tree
15004 cp_parser_save_member_function_body (cp_parser* parser,
15005 cp_decl_specifier_seq *decl_specifiers,
15006 cp_declarator *declarator,
15007 tree attributes)
15008 {
15009 cp_token *first;
15010 cp_token *last;
15011 tree fn;
15012
15013 /* Create the function-declaration. */
15014 fn = start_method (decl_specifiers, declarator, attributes);
15015 /* If something went badly wrong, bail out now. */
15016 if (fn == error_mark_node)
15017 {
15018 /* If there's a function-body, skip it. */
15019 if (cp_parser_token_starts_function_definition_p
15020 (cp_lexer_peek_token (parser->lexer)))
15021 cp_parser_skip_to_end_of_block_or_statement (parser);
15022 return error_mark_node;
15023 }
15024
15025 /* Remember it, if there default args to post process. */
15026 cp_parser_save_default_args (parser, fn);
15027
15028 /* Save away the tokens that make up the body of the
15029 function. */
15030 first = parser->lexer->next_token;
15031 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
15032 /* Handle function try blocks. */
15033 while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH))
15034 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
15035 last = parser->lexer->next_token;
15036
15037 /* Save away the inline definition; we will process it when the
15038 class is complete. */
15039 DECL_PENDING_INLINE_INFO (fn) = cp_token_cache_new (first, last);
15040 DECL_PENDING_INLINE_P (fn) = 1;
15041
15042 /* We need to know that this was defined in the class, so that
15043 friend templates are handled correctly. */
15044 DECL_INITIALIZED_IN_CLASS_P (fn) = 1;
15045
15046 /* We're done with the inline definition. */
15047 finish_method (fn);
15048
15049 /* Add FN to the queue of functions to be parsed later. */
15050 TREE_VALUE (parser->unparsed_functions_queues)
15051 = tree_cons (NULL_TREE, fn,
15052 TREE_VALUE (parser->unparsed_functions_queues));
15053
15054 return fn;
15055 }
15056
15057 /* Parse a template-argument-list, as well as the trailing ">" (but
15058 not the opening ">"). See cp_parser_template_argument_list for the
15059 return value. */
15060
15061 static tree
15062 cp_parser_enclosed_template_argument_list (cp_parser* parser)
15063 {
15064 tree arguments;
15065 tree saved_scope;
15066 tree saved_qualifying_scope;
15067 tree saved_object_scope;
15068 bool saved_greater_than_is_operator_p;
15069
15070 /* [temp.names]
15071
15072 When parsing a template-id, the first non-nested `>' is taken as
15073 the end of the template-argument-list rather than a greater-than
15074 operator. */
15075 saved_greater_than_is_operator_p
15076 = parser->greater_than_is_operator_p;
15077 parser->greater_than_is_operator_p = false;
15078 /* Parsing the argument list may modify SCOPE, so we save it
15079 here. */
15080 saved_scope = parser->scope;
15081 saved_qualifying_scope = parser->qualifying_scope;
15082 saved_object_scope = parser->object_scope;
15083 /* Parse the template-argument-list itself. */
15084 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15085 arguments = NULL_TREE;
15086 else
15087 arguments = cp_parser_template_argument_list (parser);
15088 /* Look for the `>' that ends the template-argument-list. If we find
15089 a '>>' instead, it's probably just a typo. */
15090 if (cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
15091 {
15092 if (!saved_greater_than_is_operator_p)
15093 {
15094 /* If we're in a nested template argument list, the '>>' has
15095 to be a typo for '> >'. We emit the error message, but we
15096 continue parsing and we push a '>' as next token, so that
15097 the argument list will be parsed correctly. Note that the
15098 global source location is still on the token before the
15099 '>>', so we need to say explicitly where we want it. */
15100 cp_token *token = cp_lexer_peek_token (parser->lexer);
15101 error ("%H%<>>%> should be %<> >%> "
15102 "within a nested template argument list",
15103 &token->location);
15104
15105 /* ??? Proper recovery should terminate two levels of
15106 template argument list here. */
15107 token->type = CPP_GREATER;
15108 }
15109 else
15110 {
15111 /* If this is not a nested template argument list, the '>>'
15112 is a typo for '>'. Emit an error message and continue.
15113 Same deal about the token location, but here we can get it
15114 right by consuming the '>>' before issuing the diagnostic. */
15115 cp_lexer_consume_token (parser->lexer);
15116 error ("spurious %<>>%>, use %<>%> to terminate "
15117 "a template argument list");
15118 }
15119 }
15120 else if (!cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15121 error ("missing %<>%> to terminate the template argument list");
15122 else
15123 /* It's what we want, a '>'; consume it. */
15124 cp_lexer_consume_token (parser->lexer);
15125 /* The `>' token might be a greater-than operator again now. */
15126 parser->greater_than_is_operator_p
15127 = saved_greater_than_is_operator_p;
15128 /* Restore the SAVED_SCOPE. */
15129 parser->scope = saved_scope;
15130 parser->qualifying_scope = saved_qualifying_scope;
15131 parser->object_scope = saved_object_scope;
15132
15133 return arguments;
15134 }
15135
15136 /* MEMBER_FUNCTION is a member function, or a friend. If default
15137 arguments, or the body of the function have not yet been parsed,
15138 parse them now. */
15139
15140 static void
15141 cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function)
15142 {
15143 /* If this member is a template, get the underlying
15144 FUNCTION_DECL. */
15145 if (DECL_FUNCTION_TEMPLATE_P (member_function))
15146 member_function = DECL_TEMPLATE_RESULT (member_function);
15147
15148 /* There should not be any class definitions in progress at this
15149 point; the bodies of members are only parsed outside of all class
15150 definitions. */
15151 gcc_assert (parser->num_classes_being_defined == 0);
15152 /* While we're parsing the member functions we might encounter more
15153 classes. We want to handle them right away, but we don't want
15154 them getting mixed up with functions that are currently in the
15155 queue. */
15156 parser->unparsed_functions_queues
15157 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15158
15159 /* Make sure that any template parameters are in scope. */
15160 maybe_begin_member_template_processing (member_function);
15161
15162 /* If the body of the function has not yet been parsed, parse it
15163 now. */
15164 if (DECL_PENDING_INLINE_P (member_function))
15165 {
15166 tree function_scope;
15167 cp_token_cache *tokens;
15168
15169 /* The function is no longer pending; we are processing it. */
15170 tokens = DECL_PENDING_INLINE_INFO (member_function);
15171 DECL_PENDING_INLINE_INFO (member_function) = NULL;
15172 DECL_PENDING_INLINE_P (member_function) = 0;
15173 /* If this was an inline function in a local class, enter the scope
15174 of the containing function. */
15175 function_scope = decl_function_context (member_function);
15176 if (function_scope)
15177 push_function_context_to (function_scope);
15178
15179 /* Push the body of the function onto the lexer stack. */
15180 cp_parser_push_lexer_for_tokens (parser, tokens);
15181
15182 /* Let the front end know that we going to be defining this
15183 function. */
15184 start_preparsed_function (member_function, NULL_TREE,
15185 SF_PRE_PARSED | SF_INCLASS_INLINE);
15186
15187 /* Now, parse the body of the function. */
15188 cp_parser_function_definition_after_declarator (parser,
15189 /*inline_p=*/true);
15190
15191 /* Leave the scope of the containing function. */
15192 if (function_scope)
15193 pop_function_context_from (function_scope);
15194 cp_parser_pop_lexer (parser);
15195 }
15196
15197 /* Remove any template parameters from the symbol table. */
15198 maybe_end_member_template_processing ();
15199
15200 /* Restore the queue. */
15201 parser->unparsed_functions_queues
15202 = TREE_CHAIN (parser->unparsed_functions_queues);
15203 }
15204
15205 /* If DECL contains any default args, remember it on the unparsed
15206 functions queue. */
15207
15208 static void
15209 cp_parser_save_default_args (cp_parser* parser, tree decl)
15210 {
15211 tree probe;
15212
15213 for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl));
15214 probe;
15215 probe = TREE_CHAIN (probe))
15216 if (TREE_PURPOSE (probe))
15217 {
15218 TREE_PURPOSE (parser->unparsed_functions_queues)
15219 = tree_cons (current_class_type, decl,
15220 TREE_PURPOSE (parser->unparsed_functions_queues));
15221 break;
15222 }
15223 return;
15224 }
15225
15226 /* FN is a FUNCTION_DECL which may contains a parameter with an
15227 unparsed DEFAULT_ARG. Parse the default args now. This function
15228 assumes that the current scope is the scope in which the default
15229 argument should be processed. */
15230
15231 static void
15232 cp_parser_late_parsing_default_args (cp_parser *parser, tree fn)
15233 {
15234 bool saved_local_variables_forbidden_p;
15235 tree parm;
15236
15237 /* While we're parsing the default args, we might (due to the
15238 statement expression extension) encounter more classes. We want
15239 to handle them right away, but we don't want them getting mixed
15240 up with default args that are currently in the queue. */
15241 parser->unparsed_functions_queues
15242 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15243
15244 /* Local variable names (and the `this' keyword) may not appear
15245 in a default argument. */
15246 saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
15247 parser->local_variables_forbidden_p = true;
15248
15249 for (parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
15250 parm;
15251 parm = TREE_CHAIN (parm))
15252 {
15253 cp_token_cache *tokens;
15254
15255 if (!TREE_PURPOSE (parm)
15256 || TREE_CODE (TREE_PURPOSE (parm)) != DEFAULT_ARG)
15257 continue;
15258
15259 /* Push the saved tokens for the default argument onto the parser's
15260 lexer stack. */
15261 tokens = DEFARG_TOKENS (TREE_PURPOSE (parm));
15262 cp_parser_push_lexer_for_tokens (parser, tokens);
15263
15264 /* Parse the assignment-expression. */
15265 TREE_PURPOSE (parm) = cp_parser_assignment_expression (parser);
15266
15267 /* If the token stream has not been completely used up, then
15268 there was extra junk after the end of the default
15269 argument. */
15270 if (!cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15271 cp_parser_error (parser, "expected %<,%>");
15272
15273 /* Revert to the main lexer. */
15274 cp_parser_pop_lexer (parser);
15275 }
15276
15277 /* Restore the state of local_variables_forbidden_p. */
15278 parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
15279
15280 /* Restore the queue. */
15281 parser->unparsed_functions_queues
15282 = TREE_CHAIN (parser->unparsed_functions_queues);
15283 }
15284
15285 /* Parse the operand of `sizeof' (or a similar operator). Returns
15286 either a TYPE or an expression, depending on the form of the
15287 input. The KEYWORD indicates which kind of expression we have
15288 encountered. */
15289
15290 static tree
15291 cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword)
15292 {
15293 static const char *format;
15294 tree expr = NULL_TREE;
15295 const char *saved_message;
15296 bool saved_integral_constant_expression_p;
15297
15298 /* Initialize FORMAT the first time we get here. */
15299 if (!format)
15300 format = "types may not be defined in '%s' expressions";
15301
15302 /* Types cannot be defined in a `sizeof' expression. Save away the
15303 old message. */
15304 saved_message = parser->type_definition_forbidden_message;
15305 /* And create the new one. */
15306 parser->type_definition_forbidden_message
15307 = xmalloc (strlen (format)
15308 + strlen (IDENTIFIER_POINTER (ridpointers[keyword]))
15309 + 1 /* `\0' */);
15310 sprintf ((char *) parser->type_definition_forbidden_message,
15311 format, IDENTIFIER_POINTER (ridpointers[keyword]));
15312
15313 /* The restrictions on constant-expressions do not apply inside
15314 sizeof expressions. */
15315 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
15316 parser->integral_constant_expression_p = false;
15317
15318 /* Do not actually evaluate the expression. */
15319 ++skip_evaluation;
15320 /* If it's a `(', then we might be looking at the type-id
15321 construction. */
15322 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
15323 {
15324 tree type;
15325 bool saved_in_type_id_in_expr_p;
15326
15327 /* We can't be sure yet whether we're looking at a type-id or an
15328 expression. */
15329 cp_parser_parse_tentatively (parser);
15330 /* Consume the `('. */
15331 cp_lexer_consume_token (parser->lexer);
15332 /* Parse the type-id. */
15333 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
15334 parser->in_type_id_in_expr_p = true;
15335 type = cp_parser_type_id (parser);
15336 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
15337 /* Now, look for the trailing `)'. */
15338 cp_parser_require (parser, CPP_CLOSE_PAREN, "%<)%>");
15339 /* If all went well, then we're done. */
15340 if (cp_parser_parse_definitely (parser))
15341 {
15342 cp_decl_specifier_seq decl_specs;
15343
15344 /* Build a trivial decl-specifier-seq. */
15345 clear_decl_specs (&decl_specs);
15346 decl_specs.type = type;
15347
15348 /* Call grokdeclarator to figure out what type this is. */
15349 expr = grokdeclarator (NULL,
15350 &decl_specs,
15351 TYPENAME,
15352 /*initialized=*/0,
15353 /*attrlist=*/NULL);
15354 }
15355 }
15356
15357 /* If the type-id production did not work out, then we must be
15358 looking at the unary-expression production. */
15359 if (!expr)
15360 expr = cp_parser_unary_expression (parser, /*address_p=*/false);
15361 /* Go back to evaluating expressions. */
15362 --skip_evaluation;
15363
15364 /* Free the message we created. */
15365 free ((char *) parser->type_definition_forbidden_message);
15366 /* And restore the old one. */
15367 parser->type_definition_forbidden_message = saved_message;
15368 parser->integral_constant_expression_p = saved_integral_constant_expression_p;
15369
15370 return expr;
15371 }
15372
15373 /* If the current declaration has no declarator, return true. */
15374
15375 static bool
15376 cp_parser_declares_only_class_p (cp_parser *parser)
15377 {
15378 /* If the next token is a `;' or a `,' then there is no
15379 declarator. */
15380 return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
15381 || cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
15382 }
15383
15384 /* Update the DECL_SPECS to reflect the STORAGE_CLASS. */
15385
15386 static void
15387 cp_parser_set_storage_class (cp_decl_specifier_seq *decl_specs,
15388 cp_storage_class storage_class)
15389 {
15390 if (decl_specs->storage_class != sc_none)
15391 decl_specs->multiple_storage_classes_p = true;
15392 else
15393 decl_specs->storage_class = storage_class;
15394 }
15395
15396 /* Update the DECL_SPECS to reflect the TYPE_SPEC. If USER_DEFINED_P
15397 is true, the type is a user-defined type; otherwise it is a
15398 built-in type specified by a keyword. */
15399
15400 static void
15401 cp_parser_set_decl_spec_type (cp_decl_specifier_seq *decl_specs,
15402 tree type_spec,
15403 bool user_defined_p)
15404 {
15405 decl_specs->any_specifiers_p = true;
15406
15407 /* If the user tries to redeclare bool or wchar_t (with, for
15408 example, in "typedef int wchar_t;") we remember that this is what
15409 happened. In system headers, we ignore these declarations so
15410 that G++ can work with system headers that are not C++-safe. */
15411 if (decl_specs->specs[(int) ds_typedef]
15412 && !user_defined_p
15413 && (type_spec == boolean_type_node
15414 || type_spec == wchar_type_node)
15415 && (decl_specs->type
15416 || decl_specs->specs[(int) ds_long]
15417 || decl_specs->specs[(int) ds_short]
15418 || decl_specs->specs[(int) ds_unsigned]
15419 || decl_specs->specs[(int) ds_signed]))
15420 {
15421 decl_specs->redefined_builtin_type = type_spec;
15422 if (!decl_specs->type)
15423 {
15424 decl_specs->type = type_spec;
15425 decl_specs->user_defined_type_p = false;
15426 }
15427 }
15428 else if (decl_specs->type)
15429 decl_specs->multiple_types_p = true;
15430 else
15431 {
15432 decl_specs->type = type_spec;
15433 decl_specs->user_defined_type_p = user_defined_p;
15434 decl_specs->redefined_builtin_type = NULL_TREE;
15435 }
15436 }
15437
15438 /* DECL_SPECIFIERS is the representation of a decl-specifier-seq.
15439 Returns TRUE iff `friend' appears among the DECL_SPECIFIERS. */
15440
15441 static bool
15442 cp_parser_friend_p (const cp_decl_specifier_seq *decl_specifiers)
15443 {
15444 return decl_specifiers->specs[(int) ds_friend] != 0;
15445 }
15446
15447 /* If the next token is of the indicated TYPE, consume it. Otherwise,
15448 issue an error message indicating that TOKEN_DESC was expected.
15449
15450 Returns the token consumed, if the token had the appropriate type.
15451 Otherwise, returns NULL. */
15452
15453 static cp_token *
15454 cp_parser_require (cp_parser* parser,
15455 enum cpp_ttype type,
15456 const char* token_desc)
15457 {
15458 if (cp_lexer_next_token_is (parser->lexer, type))
15459 return cp_lexer_consume_token (parser->lexer);
15460 else
15461 {
15462 /* Output the MESSAGE -- unless we're parsing tentatively. */
15463 if (!cp_parser_simulate_error (parser))
15464 {
15465 char *message = concat ("expected ", token_desc, NULL);
15466 cp_parser_error (parser, message);
15467 free (message);
15468 }
15469 return NULL;
15470 }
15471 }
15472
15473 /* Like cp_parser_require, except that tokens will be skipped until
15474 the desired token is found. An error message is still produced if
15475 the next token is not as expected. */
15476
15477 static void
15478 cp_parser_skip_until_found (cp_parser* parser,
15479 enum cpp_ttype type,
15480 const char* token_desc)
15481 {
15482 cp_token *token;
15483 unsigned nesting_depth = 0;
15484
15485 if (cp_parser_require (parser, type, token_desc))
15486 return;
15487
15488 /* Skip tokens until the desired token is found. */
15489 while (true)
15490 {
15491 /* Peek at the next token. */
15492 token = cp_lexer_peek_token (parser->lexer);
15493 /* If we've reached the token we want, consume it and
15494 stop. */
15495 if (token->type == type && !nesting_depth)
15496 {
15497 cp_lexer_consume_token (parser->lexer);
15498 return;
15499 }
15500 /* If we've run out of tokens, stop. */
15501 if (token->type == CPP_EOF)
15502 return;
15503 if (token->type == CPP_OPEN_BRACE
15504 || token->type == CPP_OPEN_PAREN
15505 || token->type == CPP_OPEN_SQUARE)
15506 ++nesting_depth;
15507 else if (token->type == CPP_CLOSE_BRACE
15508 || token->type == CPP_CLOSE_PAREN
15509 || token->type == CPP_CLOSE_SQUARE)
15510 {
15511 if (nesting_depth-- == 0)
15512 return;
15513 }
15514 /* Consume this token. */
15515 cp_lexer_consume_token (parser->lexer);
15516 }
15517 }
15518
15519 /* If the next token is the indicated keyword, consume it. Otherwise,
15520 issue an error message indicating that TOKEN_DESC was expected.
15521
15522 Returns the token consumed, if the token had the appropriate type.
15523 Otherwise, returns NULL. */
15524
15525 static cp_token *
15526 cp_parser_require_keyword (cp_parser* parser,
15527 enum rid keyword,
15528 const char* token_desc)
15529 {
15530 cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc);
15531
15532 if (token && token->keyword != keyword)
15533 {
15534 dyn_string_t error_msg;
15535
15536 /* Format the error message. */
15537 error_msg = dyn_string_new (0);
15538 dyn_string_append_cstr (error_msg, "expected ");
15539 dyn_string_append_cstr (error_msg, token_desc);
15540 cp_parser_error (parser, error_msg->s);
15541 dyn_string_delete (error_msg);
15542 return NULL;
15543 }
15544
15545 return token;
15546 }
15547
15548 /* Returns TRUE iff TOKEN is a token that can begin the body of a
15549 function-definition. */
15550
15551 static bool
15552 cp_parser_token_starts_function_definition_p (cp_token* token)
15553 {
15554 return (/* An ordinary function-body begins with an `{'. */
15555 token->type == CPP_OPEN_BRACE
15556 /* A ctor-initializer begins with a `:'. */
15557 || token->type == CPP_COLON
15558 /* A function-try-block begins with `try'. */
15559 || token->keyword == RID_TRY
15560 /* The named return value extension begins with `return'. */
15561 || token->keyword == RID_RETURN);
15562 }
15563
15564 /* Returns TRUE iff the next token is the ":" or "{" beginning a class
15565 definition. */
15566
15567 static bool
15568 cp_parser_next_token_starts_class_definition_p (cp_parser *parser)
15569 {
15570 cp_token *token;
15571
15572 token = cp_lexer_peek_token (parser->lexer);
15573 return (token->type == CPP_OPEN_BRACE || token->type == CPP_COLON);
15574 }
15575
15576 /* Returns TRUE iff the next token is the "," or ">" ending a
15577 template-argument. */
15578
15579 static bool
15580 cp_parser_next_token_ends_template_argument_p (cp_parser *parser)
15581 {
15582 cp_token *token;
15583
15584 token = cp_lexer_peek_token (parser->lexer);
15585 return (token->type == CPP_COMMA || token->type == CPP_GREATER);
15586 }
15587
15588 /* Returns TRUE iff the n-th token is a ">", or the n-th is a "[" and the
15589 (n+1)-th is a ":" (which is a possible digraph typo for "< ::"). */
15590
15591 static bool
15592 cp_parser_nth_token_starts_template_argument_list_p (cp_parser * parser,
15593 size_t n)
15594 {
15595 cp_token *token;
15596
15597 token = cp_lexer_peek_nth_token (parser->lexer, n);
15598 if (token->type == CPP_LESS)
15599 return true;
15600 /* Check for the sequence `<::' in the original code. It would be lexed as
15601 `[:', where `[' is a digraph, and there is no whitespace before
15602 `:'. */
15603 if (token->type == CPP_OPEN_SQUARE && token->flags & DIGRAPH)
15604 {
15605 cp_token *token2;
15606 token2 = cp_lexer_peek_nth_token (parser->lexer, n+1);
15607 if (token2->type == CPP_COLON && !(token2->flags & PREV_WHITE))
15608 return true;
15609 }
15610 return false;
15611 }
15612
15613 /* Returns the kind of tag indicated by TOKEN, if it is a class-key,
15614 or none_type otherwise. */
15615
15616 static enum tag_types
15617 cp_parser_token_is_class_key (cp_token* token)
15618 {
15619 switch (token->keyword)
15620 {
15621 case RID_CLASS:
15622 return class_type;
15623 case RID_STRUCT:
15624 return record_type;
15625 case RID_UNION:
15626 return union_type;
15627
15628 default:
15629 return none_type;
15630 }
15631 }
15632
15633 /* Issue an error message if the CLASS_KEY does not match the TYPE. */
15634
15635 static void
15636 cp_parser_check_class_key (enum tag_types class_key, tree type)
15637 {
15638 if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type))
15639 pedwarn ("%qs tag used in naming %q#T",
15640 class_key == union_type ? "union"
15641 : class_key == record_type ? "struct" : "class",
15642 type);
15643 }
15644
15645 /* Issue an error message if DECL is redeclared with different
15646 access than its original declaration [class.access.spec/3].
15647 This applies to nested classes and nested class templates.
15648 [class.mem/1]. */
15649
15650 static void
15651 cp_parser_check_access_in_redeclaration (tree decl)
15652 {
15653 if (!CLASS_TYPE_P (TREE_TYPE (decl)))
15654 return;
15655
15656 if ((TREE_PRIVATE (decl)
15657 != (current_access_specifier == access_private_node))
15658 || (TREE_PROTECTED (decl)
15659 != (current_access_specifier == access_protected_node)))
15660 error ("%qD redeclared with different access", decl);
15661 }
15662
15663 /* Look for the `template' keyword, as a syntactic disambiguator.
15664 Return TRUE iff it is present, in which case it will be
15665 consumed. */
15666
15667 static bool
15668 cp_parser_optional_template_keyword (cp_parser *parser)
15669 {
15670 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
15671 {
15672 /* The `template' keyword can only be used within templates;
15673 outside templates the parser can always figure out what is a
15674 template and what is not. */
15675 if (!processing_template_decl)
15676 {
15677 error ("%<template%> (as a disambiguator) is only allowed "
15678 "within templates");
15679 /* If this part of the token stream is rescanned, the same
15680 error message would be generated. So, we purge the token
15681 from the stream. */
15682 cp_lexer_purge_token (parser->lexer);
15683 return false;
15684 }
15685 else
15686 {
15687 /* Consume the `template' keyword. */
15688 cp_lexer_consume_token (parser->lexer);
15689 return true;
15690 }
15691 }
15692
15693 return false;
15694 }
15695
15696 /* The next token is a CPP_NESTED_NAME_SPECIFIER. Consume the token,
15697 set PARSER->SCOPE, and perform other related actions. */
15698
15699 static void
15700 cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser)
15701 {
15702 tree value;
15703 tree check;
15704
15705 /* Get the stored value. */
15706 value = cp_lexer_consume_token (parser->lexer)->value;
15707 /* Perform any access checks that were deferred. */
15708 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
15709 perform_or_defer_access_check (TREE_PURPOSE (check), TREE_VALUE (check));
15710 /* Set the scope from the stored value. */
15711 parser->scope = TREE_VALUE (value);
15712 parser->qualifying_scope = TREE_TYPE (value);
15713 parser->object_scope = NULL_TREE;
15714 }
15715
15716 /* Consume tokens up through a non-nested END token. */
15717
15718 static void
15719 cp_parser_cache_group (cp_parser *parser,
15720 enum cpp_ttype end,
15721 unsigned depth)
15722 {
15723 while (true)
15724 {
15725 cp_token *token;
15726
15727 /* Abort a parenthesized expression if we encounter a brace. */
15728 if ((end == CPP_CLOSE_PAREN || depth == 0)
15729 && cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
15730 return;
15731 /* If we've reached the end of the file, stop. */
15732 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15733 return;
15734 /* Consume the next token. */
15735 token = cp_lexer_consume_token (parser->lexer);
15736 /* See if it starts a new group. */
15737 if (token->type == CPP_OPEN_BRACE)
15738 {
15739 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, depth + 1);
15740 if (depth == 0)
15741 return;
15742 }
15743 else if (token->type == CPP_OPEN_PAREN)
15744 cp_parser_cache_group (parser, CPP_CLOSE_PAREN, depth + 1);
15745 else if (token->type == end)
15746 return;
15747 }
15748 }
15749
15750 /* Begin parsing tentatively. We always save tokens while parsing
15751 tentatively so that if the tentative parsing fails we can restore the
15752 tokens. */
15753
15754 static void
15755 cp_parser_parse_tentatively (cp_parser* parser)
15756 {
15757 /* Enter a new parsing context. */
15758 parser->context = cp_parser_context_new (parser->context);
15759 /* Begin saving tokens. */
15760 cp_lexer_save_tokens (parser->lexer);
15761 /* In order to avoid repetitive access control error messages,
15762 access checks are queued up until we are no longer parsing
15763 tentatively. */
15764 push_deferring_access_checks (dk_deferred);
15765 }
15766
15767 /* Commit to the currently active tentative parse. */
15768
15769 static void
15770 cp_parser_commit_to_tentative_parse (cp_parser* parser)
15771 {
15772 cp_parser_context *context;
15773 cp_lexer *lexer;
15774
15775 /* Mark all of the levels as committed. */
15776 lexer = parser->lexer;
15777 for (context = parser->context; context->next; context = context->next)
15778 {
15779 if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
15780 break;
15781 context->status = CP_PARSER_STATUS_KIND_COMMITTED;
15782 while (!cp_lexer_saving_tokens (lexer))
15783 lexer = lexer->next;
15784 cp_lexer_commit_tokens (lexer);
15785 }
15786 }
15787
15788 /* Abort the currently active tentative parse. All consumed tokens
15789 will be rolled back, and no diagnostics will be issued. */
15790
15791 static void
15792 cp_parser_abort_tentative_parse (cp_parser* parser)
15793 {
15794 cp_parser_simulate_error (parser);
15795 /* Now, pretend that we want to see if the construct was
15796 successfully parsed. */
15797 cp_parser_parse_definitely (parser);
15798 }
15799
15800 /* Stop parsing tentatively. If a parse error has occurred, restore the
15801 token stream. Otherwise, commit to the tokens we have consumed.
15802 Returns true if no error occurred; false otherwise. */
15803
15804 static bool
15805 cp_parser_parse_definitely (cp_parser* parser)
15806 {
15807 bool error_occurred;
15808 cp_parser_context *context;
15809
15810 /* Remember whether or not an error occurred, since we are about to
15811 destroy that information. */
15812 error_occurred = cp_parser_error_occurred (parser);
15813 /* Remove the topmost context from the stack. */
15814 context = parser->context;
15815 parser->context = context->next;
15816 /* If no parse errors occurred, commit to the tentative parse. */
15817 if (!error_occurred)
15818 {
15819 /* Commit to the tokens read tentatively, unless that was
15820 already done. */
15821 if (context->status != CP_PARSER_STATUS_KIND_COMMITTED)
15822 cp_lexer_commit_tokens (parser->lexer);
15823
15824 pop_to_parent_deferring_access_checks ();
15825 }
15826 /* Otherwise, if errors occurred, roll back our state so that things
15827 are just as they were before we began the tentative parse. */
15828 else
15829 {
15830 cp_lexer_rollback_tokens (parser->lexer);
15831 pop_deferring_access_checks ();
15832 }
15833 /* Add the context to the front of the free list. */
15834 context->next = cp_parser_context_free_list;
15835 cp_parser_context_free_list = context;
15836
15837 return !error_occurred;
15838 }
15839
15840 /* Returns true if we are parsing tentatively -- but have decided that
15841 we will stick with this tentative parse, even if errors occur. */
15842
15843 static bool
15844 cp_parser_committed_to_tentative_parse (cp_parser* parser)
15845 {
15846 return (cp_parser_parsing_tentatively (parser)
15847 && parser->context->status == CP_PARSER_STATUS_KIND_COMMITTED);
15848 }
15849
15850 /* Returns nonzero iff an error has occurred during the most recent
15851 tentative parse. */
15852
15853 static bool
15854 cp_parser_error_occurred (cp_parser* parser)
15855 {
15856 return (cp_parser_parsing_tentatively (parser)
15857 && parser->context->status == CP_PARSER_STATUS_KIND_ERROR);
15858 }
15859
15860 /* Returns nonzero if GNU extensions are allowed. */
15861
15862 static bool
15863 cp_parser_allow_gnu_extensions_p (cp_parser* parser)
15864 {
15865 return parser->allow_gnu_extensions_p;
15866 }
15867
15868 \f
15869 /* The parser. */
15870
15871 static GTY (()) cp_parser *the_parser;
15872
15873 /* External interface. */
15874
15875 /* Parse one entire translation unit. */
15876
15877 void
15878 c_parse_file (void)
15879 {
15880 bool error_occurred;
15881 static bool already_called = false;
15882
15883 if (already_called)
15884 {
15885 sorry ("inter-module optimizations not implemented for C++");
15886 return;
15887 }
15888 already_called = true;
15889
15890 the_parser = cp_parser_new ();
15891 push_deferring_access_checks (flag_access_control
15892 ? dk_no_deferred : dk_no_check);
15893 error_occurred = cp_parser_translation_unit (the_parser);
15894 the_parser = NULL;
15895 }
15896
15897 /* This variable must be provided by every front end. */
15898
15899 int yydebug;
15900
15901 #include "gt-cp-parser.h"