]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/parser.c
re PR c++/19608 (ICE after friend function definition in local class)
[thirdparty/gcc.git] / gcc / cp / parser.c
1 /* C++ Parser.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004,
3 2005 Free Software Foundation, Inc.
4 Written by Mark Mitchell <mark@codesourcery.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful, but
14 WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "dyn-string.h"
28 #include "varray.h"
29 #include "cpplib.h"
30 #include "tree.h"
31 #include "cp-tree.h"
32 #include "c-pragma.h"
33 #include "decl.h"
34 #include "flags.h"
35 #include "diagnostic.h"
36 #include "toplev.h"
37 #include "output.h"
38 #include "target.h"
39
40 \f
41 /* The lexer. */
42
43 /* The cp_lexer_* routines mediate between the lexer proper (in libcpp
44 and c-lex.c) and the C++ parser. */
45
46 /* A C++ token. */
47
48 typedef struct cp_token GTY (())
49 {
50 /* The kind of token. */
51 ENUM_BITFIELD (cpp_ttype) type : 8;
52 /* If this token is a keyword, this value indicates which keyword.
53 Otherwise, this value is RID_MAX. */
54 ENUM_BITFIELD (rid) keyword : 8;
55 /* Token flags. */
56 unsigned char flags;
57 /* True if this token is from a system header. */
58 BOOL_BITFIELD in_system_header : 1;
59 /* True if this token is from a context where it is implicitly extern "C" */
60 BOOL_BITFIELD implicit_extern_c : 1;
61 /* The value associated with this token, if any. */
62 tree value;
63 /* The location at which this token was found. */
64 location_t location;
65 } cp_token;
66
67 /* We use a stack of token pointer for saving token sets. */
68 typedef struct cp_token *cp_token_position;
69 DEF_VEC_MALLOC_P (cp_token_position);
70
71 static const cp_token eof_token =
72 {
73 CPP_EOF, RID_MAX, 0, 0, 0, NULL_TREE,
74 #if USE_MAPPED_LOCATION
75 0
76 #else
77 {0, 0}
78 #endif
79 };
80
81 /* The cp_lexer structure represents the C++ lexer. It is responsible
82 for managing the token stream from the preprocessor and supplying
83 it to the parser. Tokens are never added to the cp_lexer after
84 it is created. */
85
86 typedef struct cp_lexer GTY (())
87 {
88 /* The memory allocated for the buffer. NULL if this lexer does not
89 own the token buffer. */
90 cp_token * GTY ((length ("%h.buffer_length"))) buffer;
91 /* If the lexer owns the buffer, this is the number of tokens in the
92 buffer. */
93 size_t buffer_length;
94
95 /* A pointer just past the last available token. The tokens
96 in this lexer are [buffer, last_token). */
97 cp_token_position GTY ((skip)) last_token;
98
99 /* The next available token. If NEXT_TOKEN is &eof_token, then there are
100 no more available tokens. */
101 cp_token_position GTY ((skip)) next_token;
102
103 /* A stack indicating positions at which cp_lexer_save_tokens was
104 called. The top entry is the most recent position at which we
105 began saving tokens. If the stack is non-empty, we are saving
106 tokens. */
107 VEC (cp_token_position) *GTY ((skip)) saved_tokens;
108
109 /* True if we should output debugging information. */
110 bool debugging_p;
111
112 /* The next lexer in a linked list of lexers. */
113 struct cp_lexer *next;
114 } cp_lexer;
115
116 /* cp_token_cache is a range of tokens. There is no need to represent
117 allocate heap memory for it, since tokens are never removed from the
118 lexer's array. There is also no need for the GC to walk through
119 a cp_token_cache, since everything in here is referenced through
120 a lexer. */
121
122 typedef struct cp_token_cache GTY(())
123 {
124 /* The beginning of the token range. */
125 cp_token * GTY((skip)) first;
126
127 /* Points immediately after the last token in the range. */
128 cp_token * GTY ((skip)) last;
129 } cp_token_cache;
130
131 /* Prototypes. */
132
133 static cp_lexer *cp_lexer_new_main
134 (void);
135 static cp_lexer *cp_lexer_new_from_tokens
136 (cp_token_cache *tokens);
137 static void cp_lexer_destroy
138 (cp_lexer *);
139 static int cp_lexer_saving_tokens
140 (const cp_lexer *);
141 static cp_token_position cp_lexer_token_position
142 (cp_lexer *, bool);
143 static cp_token *cp_lexer_token_at
144 (cp_lexer *, cp_token_position);
145 static void cp_lexer_get_preprocessor_token
146 (cp_lexer *, cp_token *);
147 static inline cp_token *cp_lexer_peek_token
148 (cp_lexer *);
149 static cp_token *cp_lexer_peek_nth_token
150 (cp_lexer *, size_t);
151 static inline bool cp_lexer_next_token_is
152 (cp_lexer *, enum cpp_ttype);
153 static bool cp_lexer_next_token_is_not
154 (cp_lexer *, enum cpp_ttype);
155 static bool cp_lexer_next_token_is_keyword
156 (cp_lexer *, enum rid);
157 static cp_token *cp_lexer_consume_token
158 (cp_lexer *);
159 static void cp_lexer_purge_token
160 (cp_lexer *);
161 static void cp_lexer_purge_tokens_after
162 (cp_lexer *, cp_token_position);
163 static void cp_lexer_handle_pragma
164 (cp_lexer *);
165 static void cp_lexer_save_tokens
166 (cp_lexer *);
167 static void cp_lexer_commit_tokens
168 (cp_lexer *);
169 static void cp_lexer_rollback_tokens
170 (cp_lexer *);
171 #ifdef ENABLE_CHECKING
172 static void cp_lexer_print_token
173 (FILE *, cp_token *);
174 static inline bool cp_lexer_debugging_p
175 (cp_lexer *);
176 static void cp_lexer_start_debugging
177 (cp_lexer *) ATTRIBUTE_UNUSED;
178 static void cp_lexer_stop_debugging
179 (cp_lexer *) ATTRIBUTE_UNUSED;
180 #else
181 /* If we define cp_lexer_debug_stream to NULL it will provoke warnings
182 about passing NULL to functions that require non-NULL arguments
183 (fputs, fprintf). It will never be used, so all we need is a value
184 of the right type that's guaranteed not to be NULL. */
185 #define cp_lexer_debug_stream stdout
186 #define cp_lexer_print_token(str, tok) (void) 0
187 #define cp_lexer_debugging_p(lexer) 0
188 #endif /* ENABLE_CHECKING */
189
190 static cp_token_cache *cp_token_cache_new
191 (cp_token *, cp_token *);
192
193 /* Manifest constants. */
194 #define CP_LEXER_BUFFER_SIZE 10000
195 #define CP_SAVED_TOKEN_STACK 5
196
197 /* A token type for keywords, as opposed to ordinary identifiers. */
198 #define CPP_KEYWORD ((enum cpp_ttype) (N_TTYPES + 1))
199
200 /* A token type for template-ids. If a template-id is processed while
201 parsing tentatively, it is replaced with a CPP_TEMPLATE_ID token;
202 the value of the CPP_TEMPLATE_ID is whatever was returned by
203 cp_parser_template_id. */
204 #define CPP_TEMPLATE_ID ((enum cpp_ttype) (CPP_KEYWORD + 1))
205
206 /* A token type for nested-name-specifiers. If a
207 nested-name-specifier is processed while parsing tentatively, it is
208 replaced with a CPP_NESTED_NAME_SPECIFIER token; the value of the
209 CPP_NESTED_NAME_SPECIFIER is whatever was returned by
210 cp_parser_nested_name_specifier_opt. */
211 #define CPP_NESTED_NAME_SPECIFIER ((enum cpp_ttype) (CPP_TEMPLATE_ID + 1))
212
213 /* A token type for tokens that are not tokens at all; these are used
214 to represent slots in the array where there used to be a token
215 that has now been deleted. */
216 #define CPP_PURGED ((enum cpp_ttype) (CPP_NESTED_NAME_SPECIFIER + 1))
217
218 /* The number of token types, including C++-specific ones. */
219 #define N_CP_TTYPES ((int) (CPP_PURGED + 1))
220
221 /* Variables. */
222
223 #ifdef ENABLE_CHECKING
224 /* The stream to which debugging output should be written. */
225 static FILE *cp_lexer_debug_stream;
226 #endif /* ENABLE_CHECKING */
227
228 /* Create a new main C++ lexer, the lexer that gets tokens from the
229 preprocessor. */
230
231 static cp_lexer *
232 cp_lexer_new_main (void)
233 {
234 cp_token first_token;
235 cp_lexer *lexer;
236 cp_token *pos;
237 size_t alloc;
238 size_t space;
239 cp_token *buffer;
240
241 /* It's possible that lexing the first token will load a PCH file,
242 which is a GC collection point. So we have to grab the first
243 token before allocating any memory. Pragmas must not be deferred
244 as -fpch-preprocess can generate a pragma to load the PCH file in
245 the preprocessed output used by -save-temps. */
246 cp_lexer_get_preprocessor_token (NULL, &first_token);
247
248 /* Tell cpplib we want CPP_PRAGMA tokens. */
249 cpp_get_options (parse_in)->defer_pragmas = true;
250
251 /* Tell c_lex not to merge string constants. */
252 c_lex_return_raw_strings = true;
253
254 c_common_no_more_pch ();
255
256 /* Allocate the memory. */
257 lexer = GGC_CNEW (cp_lexer);
258
259 #ifdef ENABLE_CHECKING
260 /* Initially we are not debugging. */
261 lexer->debugging_p = false;
262 #endif /* ENABLE_CHECKING */
263 lexer->saved_tokens = VEC_alloc (cp_token_position, CP_SAVED_TOKEN_STACK);
264
265 /* Create the buffer. */
266 alloc = CP_LEXER_BUFFER_SIZE;
267 buffer = ggc_alloc (alloc * sizeof (cp_token));
268
269 /* Put the first token in the buffer. */
270 space = alloc;
271 pos = buffer;
272 *pos = first_token;
273
274 /* Get the remaining tokens from the preprocessor. */
275 while (pos->type != CPP_EOF)
276 {
277 pos++;
278 if (!--space)
279 {
280 space = alloc;
281 alloc *= 2;
282 buffer = ggc_realloc (buffer, alloc * sizeof (cp_token));
283 pos = buffer + space;
284 }
285 cp_lexer_get_preprocessor_token (lexer, pos);
286 }
287 lexer->buffer = buffer;
288 lexer->buffer_length = alloc - space;
289 lexer->last_token = pos;
290 lexer->next_token = lexer->buffer_length ? buffer : (cp_token *)&eof_token;
291
292 /* Pragma processing (via cpp_handle_deferred_pragma) may result in
293 direct calls to c_lex. Those callers all expect c_lex to do
294 string constant concatenation. */
295 c_lex_return_raw_strings = false;
296
297 gcc_assert (lexer->next_token->type != CPP_PURGED);
298 return lexer;
299 }
300
301 /* Create a new lexer whose token stream is primed with the tokens in
302 CACHE. When these tokens are exhausted, no new tokens will be read. */
303
304 static cp_lexer *
305 cp_lexer_new_from_tokens (cp_token_cache *cache)
306 {
307 cp_token *first = cache->first;
308 cp_token *last = cache->last;
309 cp_lexer *lexer = GGC_CNEW (cp_lexer);
310
311 /* We do not own the buffer. */
312 lexer->buffer = NULL;
313 lexer->buffer_length = 0;
314 lexer->next_token = first == last ? (cp_token *)&eof_token : first;
315 lexer->last_token = last;
316
317 lexer->saved_tokens = VEC_alloc (cp_token_position, CP_SAVED_TOKEN_STACK);
318
319 #ifdef ENABLE_CHECKING
320 /* Initially we are not debugging. */
321 lexer->debugging_p = false;
322 #endif
323
324 gcc_assert (lexer->next_token->type != CPP_PURGED);
325 return lexer;
326 }
327
328 /* Frees all resources associated with LEXER. */
329
330 static void
331 cp_lexer_destroy (cp_lexer *lexer)
332 {
333 if (lexer->buffer)
334 ggc_free (lexer->buffer);
335 VEC_free (cp_token_position, lexer->saved_tokens);
336 ggc_free (lexer);
337 }
338
339 /* Returns nonzero if debugging information should be output. */
340
341 #ifdef ENABLE_CHECKING
342
343 static inline bool
344 cp_lexer_debugging_p (cp_lexer *lexer)
345 {
346 return lexer->debugging_p;
347 }
348
349 #endif /* ENABLE_CHECKING */
350
351 static inline cp_token_position
352 cp_lexer_token_position (cp_lexer *lexer, bool previous_p)
353 {
354 gcc_assert (!previous_p || lexer->next_token != &eof_token);
355
356 return lexer->next_token - previous_p;
357 }
358
359 static inline cp_token *
360 cp_lexer_token_at (cp_lexer *lexer ATTRIBUTE_UNUSED, cp_token_position pos)
361 {
362 return pos;
363 }
364
365 /* nonzero if we are presently saving tokens. */
366
367 static inline int
368 cp_lexer_saving_tokens (const cp_lexer* lexer)
369 {
370 return VEC_length (cp_token_position, lexer->saved_tokens) != 0;
371 }
372
373 /* Store the next token from the preprocessor in *TOKEN. Return true
374 if we reach EOF. */
375
376 static void
377 cp_lexer_get_preprocessor_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
378 cp_token *token)
379 {
380 static int is_extern_c = 0;
381
382 /* Get a new token from the preprocessor. */
383 token->type = c_lex_with_flags (&token->value, &token->flags);
384 token->location = input_location;
385 token->in_system_header = in_system_header;
386
387 /* On some systems, some header files are surrounded by an
388 implicit extern "C" block. Set a flag in the token if it
389 comes from such a header. */
390 is_extern_c += pending_lang_change;
391 pending_lang_change = 0;
392 token->implicit_extern_c = is_extern_c > 0;
393
394 /* Check to see if this token is a keyword. */
395 if (token->type == CPP_NAME
396 && C_IS_RESERVED_WORD (token->value))
397 {
398 /* Mark this token as a keyword. */
399 token->type = CPP_KEYWORD;
400 /* Record which keyword. */
401 token->keyword = C_RID_CODE (token->value);
402 /* Update the value. Some keywords are mapped to particular
403 entities, rather than simply having the value of the
404 corresponding IDENTIFIER_NODE. For example, `__const' is
405 mapped to `const'. */
406 token->value = ridpointers[token->keyword];
407 }
408 else
409 token->keyword = RID_MAX;
410 }
411
412 /* Update the globals input_location and in_system_header from TOKEN. */
413 static inline void
414 cp_lexer_set_source_position_from_token (cp_token *token)
415 {
416 if (token->type != CPP_EOF)
417 {
418 input_location = token->location;
419 in_system_header = token->in_system_header;
420 }
421 }
422
423 /* Return a pointer to the next token in the token stream, but do not
424 consume it. */
425
426 static inline cp_token *
427 cp_lexer_peek_token (cp_lexer *lexer)
428 {
429 if (cp_lexer_debugging_p (lexer))
430 {
431 fputs ("cp_lexer: peeking at token: ", cp_lexer_debug_stream);
432 cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
433 putc ('\n', cp_lexer_debug_stream);
434 }
435 return lexer->next_token;
436 }
437
438 /* Return true if the next token has the indicated TYPE. */
439
440 static inline bool
441 cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
442 {
443 return cp_lexer_peek_token (lexer)->type == type;
444 }
445
446 /* Return true if the next token does not have the indicated TYPE. */
447
448 static inline bool
449 cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
450 {
451 return !cp_lexer_next_token_is (lexer, type);
452 }
453
454 /* Return true if the next token is the indicated KEYWORD. */
455
456 static inline bool
457 cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
458 {
459 cp_token *token;
460
461 /* Peek at the next token. */
462 token = cp_lexer_peek_token (lexer);
463 /* Check to see if it is the indicated keyword. */
464 return token->keyword == keyword;
465 }
466
467 /* Return a pointer to the Nth token in the token stream. If N is 1,
468 then this is precisely equivalent to cp_lexer_peek_token (except
469 that it is not inline). One would like to disallow that case, but
470 there is one case (cp_parser_nth_token_starts_template_id) where
471 the caller passes a variable for N and it might be 1. */
472
473 static cp_token *
474 cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
475 {
476 cp_token *token;
477
478 /* N is 1-based, not zero-based. */
479 gcc_assert (n > 0 && lexer->next_token != &eof_token);
480
481 if (cp_lexer_debugging_p (lexer))
482 fprintf (cp_lexer_debug_stream,
483 "cp_lexer: peeking ahead %ld at token: ", (long)n);
484
485 --n;
486 token = lexer->next_token;
487 while (n != 0)
488 {
489 ++token;
490 if (token == lexer->last_token)
491 {
492 token = (cp_token *)&eof_token;
493 break;
494 }
495
496 if (token->type != CPP_PURGED)
497 --n;
498 }
499
500 if (cp_lexer_debugging_p (lexer))
501 {
502 cp_lexer_print_token (cp_lexer_debug_stream, token);
503 putc ('\n', cp_lexer_debug_stream);
504 }
505
506 return token;
507 }
508
509 /* Return the next token, and advance the lexer's next_token pointer
510 to point to the next non-purged token. */
511
512 static cp_token *
513 cp_lexer_consume_token (cp_lexer* lexer)
514 {
515 cp_token *token = lexer->next_token;
516
517 gcc_assert (token != &eof_token);
518
519 do
520 {
521 lexer->next_token++;
522 if (lexer->next_token == lexer->last_token)
523 {
524 lexer->next_token = (cp_token *)&eof_token;
525 break;
526 }
527
528 }
529 while (lexer->next_token->type == CPP_PURGED);
530
531 cp_lexer_set_source_position_from_token (token);
532
533 /* Provide debugging output. */
534 if (cp_lexer_debugging_p (lexer))
535 {
536 fputs ("cp_lexer: consuming token: ", cp_lexer_debug_stream);
537 cp_lexer_print_token (cp_lexer_debug_stream, token);
538 putc ('\n', cp_lexer_debug_stream);
539 }
540
541 return token;
542 }
543
544 /* Permanently remove the next token from the token stream, and
545 advance the next_token pointer to refer to the next non-purged
546 token. */
547
548 static void
549 cp_lexer_purge_token (cp_lexer *lexer)
550 {
551 cp_token *tok = lexer->next_token;
552
553 gcc_assert (tok != &eof_token);
554 tok->type = CPP_PURGED;
555 tok->location = UNKNOWN_LOCATION;
556 tok->value = NULL_TREE;
557 tok->keyword = RID_MAX;
558
559 do
560 {
561 tok++;
562 if (tok == lexer->last_token)
563 {
564 tok = (cp_token *)&eof_token;
565 break;
566 }
567 }
568 while (tok->type == CPP_PURGED);
569 lexer->next_token = tok;
570 }
571
572 /* Permanently remove all tokens after TOK, up to, but not
573 including, the token that will be returned next by
574 cp_lexer_peek_token. */
575
576 static void
577 cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *tok)
578 {
579 cp_token *peek = lexer->next_token;
580
581 if (peek == &eof_token)
582 peek = lexer->last_token;
583
584 gcc_assert (tok < peek);
585
586 for ( tok += 1; tok != peek; tok += 1)
587 {
588 tok->type = CPP_PURGED;
589 tok->location = UNKNOWN_LOCATION;
590 tok->value = NULL_TREE;
591 tok->keyword = RID_MAX;
592 }
593 }
594
595 /* Consume and handle a pragma token. */
596 static void
597 cp_lexer_handle_pragma (cp_lexer *lexer)
598 {
599 cpp_string s;
600 cp_token *token = cp_lexer_consume_token (lexer);
601 gcc_assert (token->type == CPP_PRAGMA);
602 gcc_assert (token->value);
603
604 s.len = TREE_STRING_LENGTH (token->value);
605 s.text = (const unsigned char *) TREE_STRING_POINTER (token->value);
606
607 cpp_handle_deferred_pragma (parse_in, &s);
608
609 /* Clearing token->value here means that we will get an ICE if we
610 try to process this #pragma again (which should be impossible). */
611 token->value = NULL;
612 }
613
614 /* Begin saving tokens. All tokens consumed after this point will be
615 preserved. */
616
617 static void
618 cp_lexer_save_tokens (cp_lexer* lexer)
619 {
620 /* Provide debugging output. */
621 if (cp_lexer_debugging_p (lexer))
622 fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
623
624 VEC_safe_push (cp_token_position, lexer->saved_tokens, lexer->next_token);
625 }
626
627 /* Commit to the portion of the token stream most recently saved. */
628
629 static void
630 cp_lexer_commit_tokens (cp_lexer* lexer)
631 {
632 /* Provide debugging output. */
633 if (cp_lexer_debugging_p (lexer))
634 fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
635
636 VEC_pop (cp_token_position, lexer->saved_tokens);
637 }
638
639 /* Return all tokens saved since the last call to cp_lexer_save_tokens
640 to the token stream. Stop saving tokens. */
641
642 static void
643 cp_lexer_rollback_tokens (cp_lexer* lexer)
644 {
645 /* Provide debugging output. */
646 if (cp_lexer_debugging_p (lexer))
647 fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
648
649 lexer->next_token = VEC_pop (cp_token_position, lexer->saved_tokens);
650 }
651
652 /* Print a representation of the TOKEN on the STREAM. */
653
654 #ifdef ENABLE_CHECKING
655
656 static void
657 cp_lexer_print_token (FILE * stream, cp_token *token)
658 {
659 /* We don't use cpp_type2name here because the parser defines
660 a few tokens of its own. */
661 static const char *const token_names[] = {
662 /* cpplib-defined token types */
663 #define OP(e, s) #e,
664 #define TK(e, s) #e,
665 TTYPE_TABLE
666 #undef OP
667 #undef TK
668 /* C++ parser token types - see "Manifest constants", above. */
669 "KEYWORD",
670 "TEMPLATE_ID",
671 "NESTED_NAME_SPECIFIER",
672 "PURGED"
673 };
674
675 /* If we have a name for the token, print it out. Otherwise, we
676 simply give the numeric code. */
677 gcc_assert (token->type < ARRAY_SIZE(token_names));
678 fputs (token_names[token->type], stream);
679
680 /* For some tokens, print the associated data. */
681 switch (token->type)
682 {
683 case CPP_KEYWORD:
684 /* Some keywords have a value that is not an IDENTIFIER_NODE.
685 For example, `struct' is mapped to an INTEGER_CST. */
686 if (TREE_CODE (token->value) != IDENTIFIER_NODE)
687 break;
688 /* else fall through */
689 case CPP_NAME:
690 fputs (IDENTIFIER_POINTER (token->value), stream);
691 break;
692
693 case CPP_STRING:
694 case CPP_WSTRING:
695 case CPP_PRAGMA:
696 fprintf (stream, " \"%s\"", TREE_STRING_POINTER (token->value));
697 break;
698
699 default:
700 break;
701 }
702 }
703
704 /* Start emitting debugging information. */
705
706 static void
707 cp_lexer_start_debugging (cp_lexer* lexer)
708 {
709 lexer->debugging_p = true;
710 }
711
712 /* Stop emitting debugging information. */
713
714 static void
715 cp_lexer_stop_debugging (cp_lexer* lexer)
716 {
717 lexer->debugging_p = false;
718 }
719
720 #endif /* ENABLE_CHECKING */
721
722 /* Create a new cp_token_cache, representing a range of tokens. */
723
724 static cp_token_cache *
725 cp_token_cache_new (cp_token *first, cp_token *last)
726 {
727 cp_token_cache *cache = GGC_NEW (cp_token_cache);
728 cache->first = first;
729 cache->last = last;
730 return cache;
731 }
732
733 \f
734 /* Decl-specifiers. */
735
736 static void clear_decl_specs
737 (cp_decl_specifier_seq *);
738
739 /* Set *DECL_SPECS to represent an empty decl-specifier-seq. */
740
741 static void
742 clear_decl_specs (cp_decl_specifier_seq *decl_specs)
743 {
744 memset (decl_specs, 0, sizeof (cp_decl_specifier_seq));
745 }
746
747 /* Declarators. */
748
749 /* Nothing other than the parser should be creating declarators;
750 declarators are a semi-syntactic representation of C++ entities.
751 Other parts of the front end that need to create entities (like
752 VAR_DECLs or FUNCTION_DECLs) should do that directly. */
753
754 static cp_declarator *make_call_declarator
755 (cp_declarator *, cp_parameter_declarator *, cp_cv_quals, tree);
756 static cp_declarator *make_array_declarator
757 (cp_declarator *, tree);
758 static cp_declarator *make_pointer_declarator
759 (cp_cv_quals, cp_declarator *);
760 static cp_declarator *make_reference_declarator
761 (cp_cv_quals, cp_declarator *);
762 static cp_parameter_declarator *make_parameter_declarator
763 (cp_decl_specifier_seq *, cp_declarator *, tree);
764 static cp_declarator *make_ptrmem_declarator
765 (cp_cv_quals, tree, cp_declarator *);
766
767 cp_declarator *cp_error_declarator;
768
769 /* The obstack on which declarators and related data structures are
770 allocated. */
771 static struct obstack declarator_obstack;
772
773 /* Alloc BYTES from the declarator memory pool. */
774
775 static inline void *
776 alloc_declarator (size_t bytes)
777 {
778 return obstack_alloc (&declarator_obstack, bytes);
779 }
780
781 /* Allocate a declarator of the indicated KIND. Clear fields that are
782 common to all declarators. */
783
784 static cp_declarator *
785 make_declarator (cp_declarator_kind kind)
786 {
787 cp_declarator *declarator;
788
789 declarator = (cp_declarator *) alloc_declarator (sizeof (cp_declarator));
790 declarator->kind = kind;
791 declarator->attributes = NULL_TREE;
792 declarator->declarator = NULL;
793
794 return declarator;
795 }
796
797 /* Make a declarator for a generalized identifier. If non-NULL, the
798 identifier is QUALIFYING_SCOPE::UNQUALIFIED_NAME; otherwise, it is
799 just UNQUALIFIED_NAME. */
800
801 static cp_declarator *
802 make_id_declarator (tree qualifying_scope, tree unqualified_name)
803 {
804 cp_declarator *declarator;
805
806 /* It is valid to write:
807
808 class C { void f(); };
809 typedef C D;
810 void D::f();
811
812 The standard is not clear about whether `typedef const C D' is
813 legal; as of 2002-09-15 the committee is considering that
814 question. EDG 3.0 allows that syntax. Therefore, we do as
815 well. */
816 if (qualifying_scope && TYPE_P (qualifying_scope))
817 qualifying_scope = TYPE_MAIN_VARIANT (qualifying_scope);
818
819 declarator = make_declarator (cdk_id);
820 declarator->u.id.qualifying_scope = qualifying_scope;
821 declarator->u.id.unqualified_name = unqualified_name;
822 declarator->u.id.sfk = sfk_none;
823
824 return declarator;
825 }
826
827 /* Make a declarator for a pointer to TARGET. CV_QUALIFIERS is a list
828 of modifiers such as const or volatile to apply to the pointer
829 type, represented as identifiers. */
830
831 cp_declarator *
832 make_pointer_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
833 {
834 cp_declarator *declarator;
835
836 declarator = make_declarator (cdk_pointer);
837 declarator->declarator = target;
838 declarator->u.pointer.qualifiers = cv_qualifiers;
839 declarator->u.pointer.class_type = NULL_TREE;
840
841 return declarator;
842 }
843
844 /* Like make_pointer_declarator -- but for references. */
845
846 cp_declarator *
847 make_reference_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
848 {
849 cp_declarator *declarator;
850
851 declarator = make_declarator (cdk_reference);
852 declarator->declarator = target;
853 declarator->u.pointer.qualifiers = cv_qualifiers;
854 declarator->u.pointer.class_type = NULL_TREE;
855
856 return declarator;
857 }
858
859 /* Like make_pointer_declarator -- but for a pointer to a non-static
860 member of CLASS_TYPE. */
861
862 cp_declarator *
863 make_ptrmem_declarator (cp_cv_quals cv_qualifiers, tree class_type,
864 cp_declarator *pointee)
865 {
866 cp_declarator *declarator;
867
868 declarator = make_declarator (cdk_ptrmem);
869 declarator->declarator = pointee;
870 declarator->u.pointer.qualifiers = cv_qualifiers;
871 declarator->u.pointer.class_type = class_type;
872
873 return declarator;
874 }
875
876 /* Make a declarator for the function given by TARGET, with the
877 indicated PARMS. The CV_QUALIFIERS aply to the function, as in
878 "const"-qualified member function. The EXCEPTION_SPECIFICATION
879 indicates what exceptions can be thrown. */
880
881 cp_declarator *
882 make_call_declarator (cp_declarator *target,
883 cp_parameter_declarator *parms,
884 cp_cv_quals cv_qualifiers,
885 tree exception_specification)
886 {
887 cp_declarator *declarator;
888
889 declarator = make_declarator (cdk_function);
890 declarator->declarator = target;
891 declarator->u.function.parameters = parms;
892 declarator->u.function.qualifiers = cv_qualifiers;
893 declarator->u.function.exception_specification = exception_specification;
894
895 return declarator;
896 }
897
898 /* Make a declarator for an array of BOUNDS elements, each of which is
899 defined by ELEMENT. */
900
901 cp_declarator *
902 make_array_declarator (cp_declarator *element, tree bounds)
903 {
904 cp_declarator *declarator;
905
906 declarator = make_declarator (cdk_array);
907 declarator->declarator = element;
908 declarator->u.array.bounds = bounds;
909
910 return declarator;
911 }
912
913 cp_parameter_declarator *no_parameters;
914
915 /* Create a parameter declarator with the indicated DECL_SPECIFIERS,
916 DECLARATOR and DEFAULT_ARGUMENT. */
917
918 cp_parameter_declarator *
919 make_parameter_declarator (cp_decl_specifier_seq *decl_specifiers,
920 cp_declarator *declarator,
921 tree default_argument)
922 {
923 cp_parameter_declarator *parameter;
924
925 parameter = ((cp_parameter_declarator *)
926 alloc_declarator (sizeof (cp_parameter_declarator)));
927 parameter->next = NULL;
928 if (decl_specifiers)
929 parameter->decl_specifiers = *decl_specifiers;
930 else
931 clear_decl_specs (&parameter->decl_specifiers);
932 parameter->declarator = declarator;
933 parameter->default_argument = default_argument;
934 parameter->ellipsis_p = false;
935
936 return parameter;
937 }
938
939 /* The parser. */
940
941 /* Overview
942 --------
943
944 A cp_parser parses the token stream as specified by the C++
945 grammar. Its job is purely parsing, not semantic analysis. For
946 example, the parser breaks the token stream into declarators,
947 expressions, statements, and other similar syntactic constructs.
948 It does not check that the types of the expressions on either side
949 of an assignment-statement are compatible, or that a function is
950 not declared with a parameter of type `void'.
951
952 The parser invokes routines elsewhere in the compiler to perform
953 semantic analysis and to build up the abstract syntax tree for the
954 code processed.
955
956 The parser (and the template instantiation code, which is, in a
957 way, a close relative of parsing) are the only parts of the
958 compiler that should be calling push_scope and pop_scope, or
959 related functions. The parser (and template instantiation code)
960 keeps track of what scope is presently active; everything else
961 should simply honor that. (The code that generates static
962 initializers may also need to set the scope, in order to check
963 access control correctly when emitting the initializers.)
964
965 Methodology
966 -----------
967
968 The parser is of the standard recursive-descent variety. Upcoming
969 tokens in the token stream are examined in order to determine which
970 production to use when parsing a non-terminal. Some C++ constructs
971 require arbitrary look ahead to disambiguate. For example, it is
972 impossible, in the general case, to tell whether a statement is an
973 expression or declaration without scanning the entire statement.
974 Therefore, the parser is capable of "parsing tentatively." When the
975 parser is not sure what construct comes next, it enters this mode.
976 Then, while we attempt to parse the construct, the parser queues up
977 error messages, rather than issuing them immediately, and saves the
978 tokens it consumes. If the construct is parsed successfully, the
979 parser "commits", i.e., it issues any queued error messages and
980 the tokens that were being preserved are permanently discarded.
981 If, however, the construct is not parsed successfully, the parser
982 rolls back its state completely so that it can resume parsing using
983 a different alternative.
984
985 Future Improvements
986 -------------------
987
988 The performance of the parser could probably be improved substantially.
989 We could often eliminate the need to parse tentatively by looking ahead
990 a little bit. In some places, this approach might not entirely eliminate
991 the need to parse tentatively, but it might still speed up the average
992 case. */
993
994 /* Flags that are passed to some parsing functions. These values can
995 be bitwise-ored together. */
996
997 typedef enum cp_parser_flags
998 {
999 /* No flags. */
1000 CP_PARSER_FLAGS_NONE = 0x0,
1001 /* The construct is optional. If it is not present, then no error
1002 should be issued. */
1003 CP_PARSER_FLAGS_OPTIONAL = 0x1,
1004 /* When parsing a type-specifier, do not allow user-defined types. */
1005 CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2
1006 } cp_parser_flags;
1007
1008 /* The different kinds of declarators we want to parse. */
1009
1010 typedef enum cp_parser_declarator_kind
1011 {
1012 /* We want an abstract declarator. */
1013 CP_PARSER_DECLARATOR_ABSTRACT,
1014 /* We want a named declarator. */
1015 CP_PARSER_DECLARATOR_NAMED,
1016 /* We don't mind, but the name must be an unqualified-id. */
1017 CP_PARSER_DECLARATOR_EITHER
1018 } cp_parser_declarator_kind;
1019
1020 /* The precedence values used to parse binary expressions. The minimum value
1021 of PREC must be 1, because zero is reserved to quickly discriminate
1022 binary operators from other tokens. */
1023
1024 enum cp_parser_prec
1025 {
1026 PREC_NOT_OPERATOR,
1027 PREC_LOGICAL_OR_EXPRESSION,
1028 PREC_LOGICAL_AND_EXPRESSION,
1029 PREC_INCLUSIVE_OR_EXPRESSION,
1030 PREC_EXCLUSIVE_OR_EXPRESSION,
1031 PREC_AND_EXPRESSION,
1032 PREC_EQUALITY_EXPRESSION,
1033 PREC_RELATIONAL_EXPRESSION,
1034 PREC_SHIFT_EXPRESSION,
1035 PREC_ADDITIVE_EXPRESSION,
1036 PREC_MULTIPLICATIVE_EXPRESSION,
1037 PREC_PM_EXPRESSION,
1038 NUM_PREC_VALUES = PREC_PM_EXPRESSION
1039 };
1040
1041 /* A mapping from a token type to a corresponding tree node type, with a
1042 precedence value. */
1043
1044 typedef struct cp_parser_binary_operations_map_node
1045 {
1046 /* The token type. */
1047 enum cpp_ttype token_type;
1048 /* The corresponding tree code. */
1049 enum tree_code tree_type;
1050 /* The precedence of this operator. */
1051 enum cp_parser_prec prec;
1052 } cp_parser_binary_operations_map_node;
1053
1054 /* The status of a tentative parse. */
1055
1056 typedef enum cp_parser_status_kind
1057 {
1058 /* No errors have occurred. */
1059 CP_PARSER_STATUS_KIND_NO_ERROR,
1060 /* An error has occurred. */
1061 CP_PARSER_STATUS_KIND_ERROR,
1062 /* We are committed to this tentative parse, whether or not an error
1063 has occurred. */
1064 CP_PARSER_STATUS_KIND_COMMITTED
1065 } cp_parser_status_kind;
1066
1067 typedef struct cp_parser_expression_stack_entry
1068 {
1069 tree lhs;
1070 enum tree_code tree_type;
1071 int prec;
1072 } cp_parser_expression_stack_entry;
1073
1074 /* The stack for storing partial expressions. We only need NUM_PREC_VALUES
1075 entries because precedence levels on the stack are monotonically
1076 increasing. */
1077 typedef struct cp_parser_expression_stack_entry
1078 cp_parser_expression_stack[NUM_PREC_VALUES];
1079
1080 /* Context that is saved and restored when parsing tentatively. */
1081 typedef struct cp_parser_context GTY (())
1082 {
1083 /* If this is a tentative parsing context, the status of the
1084 tentative parse. */
1085 enum cp_parser_status_kind status;
1086 /* If non-NULL, we have just seen a `x->' or `x.' expression. Names
1087 that are looked up in this context must be looked up both in the
1088 scope given by OBJECT_TYPE (the type of `x' or `*x') and also in
1089 the context of the containing expression. */
1090 tree object_type;
1091
1092 /* The next parsing context in the stack. */
1093 struct cp_parser_context *next;
1094 } cp_parser_context;
1095
1096 /* Prototypes. */
1097
1098 /* Constructors and destructors. */
1099
1100 static cp_parser_context *cp_parser_context_new
1101 (cp_parser_context *);
1102
1103 /* Class variables. */
1104
1105 static GTY((deletable)) cp_parser_context* cp_parser_context_free_list;
1106
1107 /* The operator-precedence table used by cp_parser_binary_expression.
1108 Transformed into an associative array (binops_by_token) by
1109 cp_parser_new. */
1110
1111 static const cp_parser_binary_operations_map_node binops[] = {
1112 { CPP_DEREF_STAR, MEMBER_REF, PREC_PM_EXPRESSION },
1113 { CPP_DOT_STAR, DOTSTAR_EXPR, PREC_PM_EXPRESSION },
1114
1115 { CPP_MULT, MULT_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1116 { CPP_DIV, TRUNC_DIV_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1117 { CPP_MOD, TRUNC_MOD_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1118
1119 { CPP_PLUS, PLUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1120 { CPP_MINUS, MINUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1121
1122 { CPP_LSHIFT, LSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1123 { CPP_RSHIFT, RSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1124
1125 { CPP_LESS, LT_EXPR, PREC_RELATIONAL_EXPRESSION },
1126 { CPP_GREATER, GT_EXPR, PREC_RELATIONAL_EXPRESSION },
1127 { CPP_LESS_EQ, LE_EXPR, PREC_RELATIONAL_EXPRESSION },
1128 { CPP_GREATER_EQ, GE_EXPR, PREC_RELATIONAL_EXPRESSION },
1129 { CPP_MIN, MIN_EXPR, PREC_RELATIONAL_EXPRESSION },
1130 { CPP_MAX, MAX_EXPR, PREC_RELATIONAL_EXPRESSION },
1131
1132 { CPP_EQ_EQ, EQ_EXPR, PREC_EQUALITY_EXPRESSION },
1133 { CPP_NOT_EQ, NE_EXPR, PREC_EQUALITY_EXPRESSION },
1134
1135 { CPP_AND, BIT_AND_EXPR, PREC_AND_EXPRESSION },
1136
1137 { CPP_XOR, BIT_XOR_EXPR, PREC_EXCLUSIVE_OR_EXPRESSION },
1138
1139 { CPP_OR, BIT_IOR_EXPR, PREC_INCLUSIVE_OR_EXPRESSION },
1140
1141 { CPP_AND_AND, TRUTH_ANDIF_EXPR, PREC_LOGICAL_AND_EXPRESSION },
1142
1143 { CPP_OR_OR, TRUTH_ORIF_EXPR, PREC_LOGICAL_OR_EXPRESSION }
1144 };
1145
1146 /* The same as binops, but initialized by cp_parser_new so that
1147 binops_by_token[N].token_type == N. Used in cp_parser_binary_expression
1148 for speed. */
1149 static cp_parser_binary_operations_map_node binops_by_token[N_CP_TTYPES];
1150
1151 /* Constructors and destructors. */
1152
1153 /* Construct a new context. The context below this one on the stack
1154 is given by NEXT. */
1155
1156 static cp_parser_context *
1157 cp_parser_context_new (cp_parser_context* next)
1158 {
1159 cp_parser_context *context;
1160
1161 /* Allocate the storage. */
1162 if (cp_parser_context_free_list != NULL)
1163 {
1164 /* Pull the first entry from the free list. */
1165 context = cp_parser_context_free_list;
1166 cp_parser_context_free_list = context->next;
1167 memset (context, 0, sizeof (*context));
1168 }
1169 else
1170 context = GGC_CNEW (cp_parser_context);
1171
1172 /* No errors have occurred yet in this context. */
1173 context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
1174 /* If this is not the bottomost context, copy information that we
1175 need from the previous context. */
1176 if (next)
1177 {
1178 /* If, in the NEXT context, we are parsing an `x->' or `x.'
1179 expression, then we are parsing one in this context, too. */
1180 context->object_type = next->object_type;
1181 /* Thread the stack. */
1182 context->next = next;
1183 }
1184
1185 return context;
1186 }
1187
1188 /* The cp_parser structure represents the C++ parser. */
1189
1190 typedef struct cp_parser GTY(())
1191 {
1192 /* The lexer from which we are obtaining tokens. */
1193 cp_lexer *lexer;
1194
1195 /* The scope in which names should be looked up. If NULL_TREE, then
1196 we look up names in the scope that is currently open in the
1197 source program. If non-NULL, this is either a TYPE or
1198 NAMESPACE_DECL for the scope in which we should look.
1199
1200 This value is not cleared automatically after a name is looked
1201 up, so we must be careful to clear it before starting a new look
1202 up sequence. (If it is not cleared, then `X::Y' followed by `Z'
1203 will look up `Z' in the scope of `X', rather than the current
1204 scope.) Unfortunately, it is difficult to tell when name lookup
1205 is complete, because we sometimes peek at a token, look it up,
1206 and then decide not to consume it. */
1207 tree scope;
1208
1209 /* OBJECT_SCOPE and QUALIFYING_SCOPE give the scopes in which the
1210 last lookup took place. OBJECT_SCOPE is used if an expression
1211 like "x->y" or "x.y" was used; it gives the type of "*x" or "x",
1212 respectively. QUALIFYING_SCOPE is used for an expression of the
1213 form "X::Y"; it refers to X. */
1214 tree object_scope;
1215 tree qualifying_scope;
1216
1217 /* A stack of parsing contexts. All but the bottom entry on the
1218 stack will be tentative contexts.
1219
1220 We parse tentatively in order to determine which construct is in
1221 use in some situations. For example, in order to determine
1222 whether a statement is an expression-statement or a
1223 declaration-statement we parse it tentatively as a
1224 declaration-statement. If that fails, we then reparse the same
1225 token stream as an expression-statement. */
1226 cp_parser_context *context;
1227
1228 /* True if we are parsing GNU C++. If this flag is not set, then
1229 GNU extensions are not recognized. */
1230 bool allow_gnu_extensions_p;
1231
1232 /* TRUE if the `>' token should be interpreted as the greater-than
1233 operator. FALSE if it is the end of a template-id or
1234 template-parameter-list. */
1235 bool greater_than_is_operator_p;
1236
1237 /* TRUE if default arguments are allowed within a parameter list
1238 that starts at this point. FALSE if only a gnu extension makes
1239 them permissible. */
1240 bool default_arg_ok_p;
1241
1242 /* TRUE if we are parsing an integral constant-expression. See
1243 [expr.const] for a precise definition. */
1244 bool integral_constant_expression_p;
1245
1246 /* TRUE if we are parsing an integral constant-expression -- but a
1247 non-constant expression should be permitted as well. This flag
1248 is used when parsing an array bound so that GNU variable-length
1249 arrays are tolerated. */
1250 bool allow_non_integral_constant_expression_p;
1251
1252 /* TRUE if ALLOW_NON_CONSTANT_EXPRESSION_P is TRUE and something has
1253 been seen that makes the expression non-constant. */
1254 bool non_integral_constant_expression_p;
1255
1256 /* TRUE if local variable names and `this' are forbidden in the
1257 current context. */
1258 bool local_variables_forbidden_p;
1259
1260 /* TRUE if the declaration we are parsing is part of a
1261 linkage-specification of the form `extern string-literal
1262 declaration'. */
1263 bool in_unbraced_linkage_specification_p;
1264
1265 /* TRUE if we are presently parsing a declarator, after the
1266 direct-declarator. */
1267 bool in_declarator_p;
1268
1269 /* TRUE if we are presently parsing a template-argument-list. */
1270 bool in_template_argument_list_p;
1271
1272 /* TRUE if we are presently parsing the body of an
1273 iteration-statement. */
1274 bool in_iteration_statement_p;
1275
1276 /* TRUE if we are presently parsing the body of a switch
1277 statement. */
1278 bool in_switch_statement_p;
1279
1280 /* TRUE if we are parsing a type-id in an expression context. In
1281 such a situation, both "type (expr)" and "type (type)" are valid
1282 alternatives. */
1283 bool in_type_id_in_expr_p;
1284
1285 /* TRUE if we are currently in a header file where declarations are
1286 implicitly extern "C". */
1287 bool implicit_extern_c;
1288
1289 /* TRUE if strings in expressions should be translated to the execution
1290 character set. */
1291 bool translate_strings_p;
1292
1293 /* If non-NULL, then we are parsing a construct where new type
1294 definitions are not permitted. The string stored here will be
1295 issued as an error message if a type is defined. */
1296 const char *type_definition_forbidden_message;
1297
1298 /* A list of lists. The outer list is a stack, used for member
1299 functions of local classes. At each level there are two sub-list,
1300 one on TREE_VALUE and one on TREE_PURPOSE. Each of those
1301 sub-lists has a FUNCTION_DECL or TEMPLATE_DECL on their
1302 TREE_VALUE's. The functions are chained in reverse declaration
1303 order.
1304
1305 The TREE_PURPOSE sublist contains those functions with default
1306 arguments that need post processing, and the TREE_VALUE sublist
1307 contains those functions with definitions that need post
1308 processing.
1309
1310 These lists can only be processed once the outermost class being
1311 defined is complete. */
1312 tree unparsed_functions_queues;
1313
1314 /* The number of classes whose definitions are currently in
1315 progress. */
1316 unsigned num_classes_being_defined;
1317
1318 /* The number of template parameter lists that apply directly to the
1319 current declaration. */
1320 unsigned num_template_parameter_lists;
1321 } cp_parser;
1322
1323 /* The type of a function that parses some kind of expression. */
1324 typedef tree (*cp_parser_expression_fn) (cp_parser *);
1325
1326 /* Prototypes. */
1327
1328 /* Constructors and destructors. */
1329
1330 static cp_parser *cp_parser_new
1331 (void);
1332
1333 /* Routines to parse various constructs.
1334
1335 Those that return `tree' will return the error_mark_node (rather
1336 than NULL_TREE) if a parse error occurs, unless otherwise noted.
1337 Sometimes, they will return an ordinary node if error-recovery was
1338 attempted, even though a parse error occurred. So, to check
1339 whether or not a parse error occurred, you should always use
1340 cp_parser_error_occurred. If the construct is optional (indicated
1341 either by an `_opt' in the name of the function that does the
1342 parsing or via a FLAGS parameter), then NULL_TREE is returned if
1343 the construct is not present. */
1344
1345 /* Lexical conventions [gram.lex] */
1346
1347 static tree cp_parser_identifier
1348 (cp_parser *);
1349 static tree cp_parser_string_literal
1350 (cp_parser *, bool, bool);
1351
1352 /* Basic concepts [gram.basic] */
1353
1354 static bool cp_parser_translation_unit
1355 (cp_parser *);
1356
1357 /* Expressions [gram.expr] */
1358
1359 static tree cp_parser_primary_expression
1360 (cp_parser *, bool, cp_id_kind *, tree *);
1361 static tree cp_parser_id_expression
1362 (cp_parser *, bool, bool, bool *, bool);
1363 static tree cp_parser_unqualified_id
1364 (cp_parser *, bool, bool, bool);
1365 static tree cp_parser_nested_name_specifier_opt
1366 (cp_parser *, bool, bool, bool, bool);
1367 static tree cp_parser_nested_name_specifier
1368 (cp_parser *, bool, bool, bool, bool);
1369 static tree cp_parser_class_or_namespace_name
1370 (cp_parser *, bool, bool, bool, bool, bool);
1371 static tree cp_parser_postfix_expression
1372 (cp_parser *, bool, bool);
1373 static tree cp_parser_postfix_open_square_expression
1374 (cp_parser *, tree, bool);
1375 static tree cp_parser_postfix_dot_deref_expression
1376 (cp_parser *, enum cpp_ttype, tree, bool, cp_id_kind *);
1377 static tree cp_parser_parenthesized_expression_list
1378 (cp_parser *, bool, bool, bool *);
1379 static void cp_parser_pseudo_destructor_name
1380 (cp_parser *, tree *, tree *);
1381 static tree cp_parser_unary_expression
1382 (cp_parser *, bool, bool);
1383 static enum tree_code cp_parser_unary_operator
1384 (cp_token *);
1385 static tree cp_parser_new_expression
1386 (cp_parser *);
1387 static tree cp_parser_new_placement
1388 (cp_parser *);
1389 static tree cp_parser_new_type_id
1390 (cp_parser *, tree *);
1391 static cp_declarator *cp_parser_new_declarator_opt
1392 (cp_parser *);
1393 static cp_declarator *cp_parser_direct_new_declarator
1394 (cp_parser *);
1395 static tree cp_parser_new_initializer
1396 (cp_parser *);
1397 static tree cp_parser_delete_expression
1398 (cp_parser *);
1399 static tree cp_parser_cast_expression
1400 (cp_parser *, bool, bool);
1401 static tree cp_parser_binary_expression
1402 (cp_parser *, bool);
1403 static tree cp_parser_question_colon_clause
1404 (cp_parser *, tree);
1405 static tree cp_parser_assignment_expression
1406 (cp_parser *, bool);
1407 static enum tree_code cp_parser_assignment_operator_opt
1408 (cp_parser *);
1409 static tree cp_parser_expression
1410 (cp_parser *, bool);
1411 static tree cp_parser_constant_expression
1412 (cp_parser *, bool, bool *);
1413 static tree cp_parser_builtin_offsetof
1414 (cp_parser *);
1415
1416 /* Statements [gram.stmt.stmt] */
1417
1418 static void cp_parser_statement
1419 (cp_parser *, tree);
1420 static tree cp_parser_labeled_statement
1421 (cp_parser *, tree);
1422 static tree cp_parser_expression_statement
1423 (cp_parser *, tree);
1424 static tree cp_parser_compound_statement
1425 (cp_parser *, tree, bool);
1426 static void cp_parser_statement_seq_opt
1427 (cp_parser *, tree);
1428 static tree cp_parser_selection_statement
1429 (cp_parser *);
1430 static tree cp_parser_condition
1431 (cp_parser *);
1432 static tree cp_parser_iteration_statement
1433 (cp_parser *);
1434 static void cp_parser_for_init_statement
1435 (cp_parser *);
1436 static tree cp_parser_jump_statement
1437 (cp_parser *);
1438 static void cp_parser_declaration_statement
1439 (cp_parser *);
1440
1441 static tree cp_parser_implicitly_scoped_statement
1442 (cp_parser *);
1443 static void cp_parser_already_scoped_statement
1444 (cp_parser *);
1445
1446 /* Declarations [gram.dcl.dcl] */
1447
1448 static void cp_parser_declaration_seq_opt
1449 (cp_parser *);
1450 static void cp_parser_declaration
1451 (cp_parser *);
1452 static void cp_parser_block_declaration
1453 (cp_parser *, bool);
1454 static void cp_parser_simple_declaration
1455 (cp_parser *, bool);
1456 static void cp_parser_decl_specifier_seq
1457 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, int *);
1458 static tree cp_parser_storage_class_specifier_opt
1459 (cp_parser *);
1460 static tree cp_parser_function_specifier_opt
1461 (cp_parser *, cp_decl_specifier_seq *);
1462 static tree cp_parser_type_specifier
1463 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, bool,
1464 int *, bool *);
1465 static tree cp_parser_simple_type_specifier
1466 (cp_parser *, cp_decl_specifier_seq *, cp_parser_flags);
1467 static tree cp_parser_type_name
1468 (cp_parser *);
1469 static tree cp_parser_elaborated_type_specifier
1470 (cp_parser *, bool, bool);
1471 static tree cp_parser_enum_specifier
1472 (cp_parser *);
1473 static void cp_parser_enumerator_list
1474 (cp_parser *, tree);
1475 static void cp_parser_enumerator_definition
1476 (cp_parser *, tree);
1477 static tree cp_parser_namespace_name
1478 (cp_parser *);
1479 static void cp_parser_namespace_definition
1480 (cp_parser *);
1481 static void cp_parser_namespace_body
1482 (cp_parser *);
1483 static tree cp_parser_qualified_namespace_specifier
1484 (cp_parser *);
1485 static void cp_parser_namespace_alias_definition
1486 (cp_parser *);
1487 static void cp_parser_using_declaration
1488 (cp_parser *);
1489 static void cp_parser_using_directive
1490 (cp_parser *);
1491 static void cp_parser_asm_definition
1492 (cp_parser *);
1493 static void cp_parser_linkage_specification
1494 (cp_parser *);
1495
1496 /* Declarators [gram.dcl.decl] */
1497
1498 static tree cp_parser_init_declarator
1499 (cp_parser *, cp_decl_specifier_seq *, bool, bool, int, bool *);
1500 static cp_declarator *cp_parser_declarator
1501 (cp_parser *, cp_parser_declarator_kind, int *, bool *, bool);
1502 static cp_declarator *cp_parser_direct_declarator
1503 (cp_parser *, cp_parser_declarator_kind, int *, bool);
1504 static enum tree_code cp_parser_ptr_operator
1505 (cp_parser *, tree *, cp_cv_quals *);
1506 static cp_cv_quals cp_parser_cv_qualifier_seq_opt
1507 (cp_parser *);
1508 static tree cp_parser_declarator_id
1509 (cp_parser *);
1510 static tree cp_parser_type_id
1511 (cp_parser *);
1512 static void cp_parser_type_specifier_seq
1513 (cp_parser *, cp_decl_specifier_seq *);
1514 static cp_parameter_declarator *cp_parser_parameter_declaration_clause
1515 (cp_parser *);
1516 static cp_parameter_declarator *cp_parser_parameter_declaration_list
1517 (cp_parser *, bool *);
1518 static cp_parameter_declarator *cp_parser_parameter_declaration
1519 (cp_parser *, bool, bool *);
1520 static void cp_parser_function_body
1521 (cp_parser *);
1522 static tree cp_parser_initializer
1523 (cp_parser *, bool *, bool *);
1524 static tree cp_parser_initializer_clause
1525 (cp_parser *, bool *);
1526 static tree cp_parser_initializer_list
1527 (cp_parser *, bool *);
1528
1529 static bool cp_parser_ctor_initializer_opt_and_function_body
1530 (cp_parser *);
1531
1532 /* Classes [gram.class] */
1533
1534 static tree cp_parser_class_name
1535 (cp_parser *, bool, bool, enum tag_types, bool, bool, bool);
1536 static tree cp_parser_class_specifier
1537 (cp_parser *);
1538 static tree cp_parser_class_head
1539 (cp_parser *, bool *, tree *);
1540 static enum tag_types cp_parser_class_key
1541 (cp_parser *);
1542 static void cp_parser_member_specification_opt
1543 (cp_parser *);
1544 static void cp_parser_member_declaration
1545 (cp_parser *);
1546 static tree cp_parser_pure_specifier
1547 (cp_parser *);
1548 static tree cp_parser_constant_initializer
1549 (cp_parser *);
1550
1551 /* Derived classes [gram.class.derived] */
1552
1553 static tree cp_parser_base_clause
1554 (cp_parser *);
1555 static tree cp_parser_base_specifier
1556 (cp_parser *);
1557
1558 /* Special member functions [gram.special] */
1559
1560 static tree cp_parser_conversion_function_id
1561 (cp_parser *);
1562 static tree cp_parser_conversion_type_id
1563 (cp_parser *);
1564 static cp_declarator *cp_parser_conversion_declarator_opt
1565 (cp_parser *);
1566 static bool cp_parser_ctor_initializer_opt
1567 (cp_parser *);
1568 static void cp_parser_mem_initializer_list
1569 (cp_parser *);
1570 static tree cp_parser_mem_initializer
1571 (cp_parser *);
1572 static tree cp_parser_mem_initializer_id
1573 (cp_parser *);
1574
1575 /* Overloading [gram.over] */
1576
1577 static tree cp_parser_operator_function_id
1578 (cp_parser *);
1579 static tree cp_parser_operator
1580 (cp_parser *);
1581
1582 /* Templates [gram.temp] */
1583
1584 static void cp_parser_template_declaration
1585 (cp_parser *, bool);
1586 static tree cp_parser_template_parameter_list
1587 (cp_parser *);
1588 static tree cp_parser_template_parameter
1589 (cp_parser *, bool *);
1590 static tree cp_parser_type_parameter
1591 (cp_parser *);
1592 static tree cp_parser_template_id
1593 (cp_parser *, bool, bool, bool);
1594 static tree cp_parser_template_name
1595 (cp_parser *, bool, bool, bool, bool *);
1596 static tree cp_parser_template_argument_list
1597 (cp_parser *);
1598 static tree cp_parser_template_argument
1599 (cp_parser *);
1600 static void cp_parser_explicit_instantiation
1601 (cp_parser *);
1602 static void cp_parser_explicit_specialization
1603 (cp_parser *);
1604
1605 /* Exception handling [gram.exception] */
1606
1607 static tree cp_parser_try_block
1608 (cp_parser *);
1609 static bool cp_parser_function_try_block
1610 (cp_parser *);
1611 static void cp_parser_handler_seq
1612 (cp_parser *);
1613 static void cp_parser_handler
1614 (cp_parser *);
1615 static tree cp_parser_exception_declaration
1616 (cp_parser *);
1617 static tree cp_parser_throw_expression
1618 (cp_parser *);
1619 static tree cp_parser_exception_specification_opt
1620 (cp_parser *);
1621 static tree cp_parser_type_id_list
1622 (cp_parser *);
1623
1624 /* GNU Extensions */
1625
1626 static tree cp_parser_asm_specification_opt
1627 (cp_parser *);
1628 static tree cp_parser_asm_operand_list
1629 (cp_parser *);
1630 static tree cp_parser_asm_clobber_list
1631 (cp_parser *);
1632 static tree cp_parser_attributes_opt
1633 (cp_parser *);
1634 static tree cp_parser_attribute_list
1635 (cp_parser *);
1636 static bool cp_parser_extension_opt
1637 (cp_parser *, int *);
1638 static void cp_parser_label_declaration
1639 (cp_parser *);
1640
1641 /* Utility Routines */
1642
1643 static tree cp_parser_lookup_name
1644 (cp_parser *, tree, enum tag_types, bool, bool, bool, bool *);
1645 static tree cp_parser_lookup_name_simple
1646 (cp_parser *, tree);
1647 static tree cp_parser_maybe_treat_template_as_class
1648 (tree, bool);
1649 static bool cp_parser_check_declarator_template_parameters
1650 (cp_parser *, cp_declarator *);
1651 static bool cp_parser_check_template_parameters
1652 (cp_parser *, unsigned);
1653 static tree cp_parser_simple_cast_expression
1654 (cp_parser *);
1655 static tree cp_parser_global_scope_opt
1656 (cp_parser *, bool);
1657 static bool cp_parser_constructor_declarator_p
1658 (cp_parser *, bool);
1659 static tree cp_parser_function_definition_from_specifiers_and_declarator
1660 (cp_parser *, cp_decl_specifier_seq *, tree, const cp_declarator *);
1661 static tree cp_parser_function_definition_after_declarator
1662 (cp_parser *, bool);
1663 static void cp_parser_template_declaration_after_export
1664 (cp_parser *, bool);
1665 static tree cp_parser_single_declaration
1666 (cp_parser *, bool, bool *);
1667 static tree cp_parser_functional_cast
1668 (cp_parser *, tree);
1669 static tree cp_parser_save_member_function_body
1670 (cp_parser *, cp_decl_specifier_seq *, cp_declarator *, tree);
1671 static tree cp_parser_enclosed_template_argument_list
1672 (cp_parser *);
1673 static void cp_parser_save_default_args
1674 (cp_parser *, tree);
1675 static void cp_parser_late_parsing_for_member
1676 (cp_parser *, tree);
1677 static void cp_parser_late_parsing_default_args
1678 (cp_parser *, tree);
1679 static tree cp_parser_sizeof_operand
1680 (cp_parser *, enum rid);
1681 static bool cp_parser_declares_only_class_p
1682 (cp_parser *);
1683 static void cp_parser_set_storage_class
1684 (cp_decl_specifier_seq *, cp_storage_class);
1685 static void cp_parser_set_decl_spec_type
1686 (cp_decl_specifier_seq *, tree, bool);
1687 static bool cp_parser_friend_p
1688 (const cp_decl_specifier_seq *);
1689 static cp_token *cp_parser_require
1690 (cp_parser *, enum cpp_ttype, const char *);
1691 static cp_token *cp_parser_require_keyword
1692 (cp_parser *, enum rid, const char *);
1693 static bool cp_parser_token_starts_function_definition_p
1694 (cp_token *);
1695 static bool cp_parser_next_token_starts_class_definition_p
1696 (cp_parser *);
1697 static bool cp_parser_next_token_ends_template_argument_p
1698 (cp_parser *);
1699 static bool cp_parser_nth_token_starts_template_argument_list_p
1700 (cp_parser *, size_t);
1701 static enum tag_types cp_parser_token_is_class_key
1702 (cp_token *);
1703 static void cp_parser_check_class_key
1704 (enum tag_types, tree type);
1705 static void cp_parser_check_access_in_redeclaration
1706 (tree type);
1707 static bool cp_parser_optional_template_keyword
1708 (cp_parser *);
1709 static void cp_parser_pre_parsed_nested_name_specifier
1710 (cp_parser *);
1711 static void cp_parser_cache_group
1712 (cp_parser *, enum cpp_ttype, unsigned);
1713 static void cp_parser_parse_tentatively
1714 (cp_parser *);
1715 static void cp_parser_commit_to_tentative_parse
1716 (cp_parser *);
1717 static void cp_parser_abort_tentative_parse
1718 (cp_parser *);
1719 static bool cp_parser_parse_definitely
1720 (cp_parser *);
1721 static inline bool cp_parser_parsing_tentatively
1722 (cp_parser *);
1723 static bool cp_parser_uncommitted_to_tentative_parse_p
1724 (cp_parser *);
1725 static void cp_parser_error
1726 (cp_parser *, const char *);
1727 static void cp_parser_name_lookup_error
1728 (cp_parser *, tree, tree, const char *);
1729 static bool cp_parser_simulate_error
1730 (cp_parser *);
1731 static void cp_parser_check_type_definition
1732 (cp_parser *);
1733 static void cp_parser_check_for_definition_in_return_type
1734 (cp_declarator *, tree);
1735 static void cp_parser_check_for_invalid_template_id
1736 (cp_parser *, tree);
1737 static bool cp_parser_non_integral_constant_expression
1738 (cp_parser *, const char *);
1739 static void cp_parser_diagnose_invalid_type_name
1740 (cp_parser *, tree, tree);
1741 static bool cp_parser_parse_and_diagnose_invalid_type_name
1742 (cp_parser *);
1743 static int cp_parser_skip_to_closing_parenthesis
1744 (cp_parser *, bool, bool, bool);
1745 static void cp_parser_skip_to_end_of_statement
1746 (cp_parser *);
1747 static void cp_parser_consume_semicolon_at_end_of_statement
1748 (cp_parser *);
1749 static void cp_parser_skip_to_end_of_block_or_statement
1750 (cp_parser *);
1751 static void cp_parser_skip_to_closing_brace
1752 (cp_parser *);
1753 static void cp_parser_skip_until_found
1754 (cp_parser *, enum cpp_ttype, const char *);
1755 static bool cp_parser_error_occurred
1756 (cp_parser *);
1757 static bool cp_parser_allow_gnu_extensions_p
1758 (cp_parser *);
1759 static bool cp_parser_is_string_literal
1760 (cp_token *);
1761 static bool cp_parser_is_keyword
1762 (cp_token *, enum rid);
1763 static tree cp_parser_make_typename_type
1764 (cp_parser *, tree, tree);
1765
1766 /* Returns nonzero if we are parsing tentatively. */
1767
1768 static inline bool
1769 cp_parser_parsing_tentatively (cp_parser* parser)
1770 {
1771 return parser->context->next != NULL;
1772 }
1773
1774 /* Returns nonzero if TOKEN is a string literal. */
1775
1776 static bool
1777 cp_parser_is_string_literal (cp_token* token)
1778 {
1779 return (token->type == CPP_STRING || token->type == CPP_WSTRING);
1780 }
1781
1782 /* Returns nonzero if TOKEN is the indicated KEYWORD. */
1783
1784 static bool
1785 cp_parser_is_keyword (cp_token* token, enum rid keyword)
1786 {
1787 return token->keyword == keyword;
1788 }
1789
1790 /* If not parsing tentatively, issue a diagnostic of the form
1791 FILE:LINE: MESSAGE before TOKEN
1792 where TOKEN is the next token in the input stream. MESSAGE
1793 (specified by the caller) is usually of the form "expected
1794 OTHER-TOKEN". */
1795
1796 static void
1797 cp_parser_error (cp_parser* parser, const char* message)
1798 {
1799 if (!cp_parser_simulate_error (parser))
1800 {
1801 cp_token *token = cp_lexer_peek_token (parser->lexer);
1802 /* This diagnostic makes more sense if it is tagged to the line
1803 of the token we just peeked at. */
1804 cp_lexer_set_source_position_from_token (token);
1805 if (token->type == CPP_PRAGMA)
1806 {
1807 error ("%<#pragma%> is not allowed here");
1808 cp_lexer_purge_token (parser->lexer);
1809 return;
1810 }
1811 c_parse_error (message,
1812 /* Because c_parser_error does not understand
1813 CPP_KEYWORD, keywords are treated like
1814 identifiers. */
1815 (token->type == CPP_KEYWORD ? CPP_NAME : token->type),
1816 token->value);
1817 }
1818 }
1819
1820 /* Issue an error about name-lookup failing. NAME is the
1821 IDENTIFIER_NODE DECL is the result of
1822 the lookup (as returned from cp_parser_lookup_name). DESIRED is
1823 the thing that we hoped to find. */
1824
1825 static void
1826 cp_parser_name_lookup_error (cp_parser* parser,
1827 tree name,
1828 tree decl,
1829 const char* desired)
1830 {
1831 /* If name lookup completely failed, tell the user that NAME was not
1832 declared. */
1833 if (decl == error_mark_node)
1834 {
1835 if (parser->scope && parser->scope != global_namespace)
1836 error ("%<%D::%D%> has not been declared",
1837 parser->scope, name);
1838 else if (parser->scope == global_namespace)
1839 error ("%<::%D%> has not been declared", name);
1840 else if (parser->object_scope
1841 && !CLASS_TYPE_P (parser->object_scope))
1842 error ("request for member %qD in non-class type %qT",
1843 name, parser->object_scope);
1844 else if (parser->object_scope)
1845 error ("%<%T::%D%> has not been declared",
1846 parser->object_scope, name);
1847 else
1848 error ("%qD has not been declared", name);
1849 }
1850 else if (parser->scope && parser->scope != global_namespace)
1851 error ("%<%D::%D%> %s", parser->scope, name, desired);
1852 else if (parser->scope == global_namespace)
1853 error ("%<::%D%> %s", name, desired);
1854 else
1855 error ("%qD %s", name, desired);
1856 }
1857
1858 /* If we are parsing tentatively, remember that an error has occurred
1859 during this tentative parse. Returns true if the error was
1860 simulated; false if a message should be issued by the caller. */
1861
1862 static bool
1863 cp_parser_simulate_error (cp_parser* parser)
1864 {
1865 if (cp_parser_uncommitted_to_tentative_parse_p (parser))
1866 {
1867 parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
1868 return true;
1869 }
1870 return false;
1871 }
1872
1873 /* This function is called when a type is defined. If type
1874 definitions are forbidden at this point, an error message is
1875 issued. */
1876
1877 static void
1878 cp_parser_check_type_definition (cp_parser* parser)
1879 {
1880 /* If types are forbidden here, issue a message. */
1881 if (parser->type_definition_forbidden_message)
1882 /* Use `%s' to print the string in case there are any escape
1883 characters in the message. */
1884 error ("%s", parser->type_definition_forbidden_message);
1885 }
1886
1887 /* This function is called when the DECLARATOR is processed. The TYPE
1888 was a type defined in the decl-specifiers. If it is invalid to
1889 define a type in the decl-specifiers for DECLARATOR, an error is
1890 issued. */
1891
1892 static void
1893 cp_parser_check_for_definition_in_return_type (cp_declarator *declarator,
1894 tree type)
1895 {
1896 /* [dcl.fct] forbids type definitions in return types.
1897 Unfortunately, it's not easy to know whether or not we are
1898 processing a return type until after the fact. */
1899 while (declarator
1900 && (declarator->kind == cdk_pointer
1901 || declarator->kind == cdk_reference
1902 || declarator->kind == cdk_ptrmem))
1903 declarator = declarator->declarator;
1904 if (declarator
1905 && declarator->kind == cdk_function)
1906 {
1907 error ("new types may not be defined in a return type");
1908 inform ("(perhaps a semicolon is missing after the definition of %qT)",
1909 type);
1910 }
1911 }
1912
1913 /* A type-specifier (TYPE) has been parsed which cannot be followed by
1914 "<" in any valid C++ program. If the next token is indeed "<",
1915 issue a message warning the user about what appears to be an
1916 invalid attempt to form a template-id. */
1917
1918 static void
1919 cp_parser_check_for_invalid_template_id (cp_parser* parser,
1920 tree type)
1921 {
1922 cp_token_position start = 0;
1923
1924 if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
1925 {
1926 if (TYPE_P (type))
1927 error ("%qT is not a template", type);
1928 else if (TREE_CODE (type) == IDENTIFIER_NODE)
1929 error ("%qE is not a template", type);
1930 else
1931 error ("invalid template-id");
1932 /* Remember the location of the invalid "<". */
1933 if (cp_parser_uncommitted_to_tentative_parse_p (parser))
1934 start = cp_lexer_token_position (parser->lexer, true);
1935 /* Consume the "<". */
1936 cp_lexer_consume_token (parser->lexer);
1937 /* Parse the template arguments. */
1938 cp_parser_enclosed_template_argument_list (parser);
1939 /* Permanently remove the invalid template arguments so that
1940 this error message is not issued again. */
1941 if (start)
1942 cp_lexer_purge_tokens_after (parser->lexer, start);
1943 }
1944 }
1945
1946 /* If parsing an integral constant-expression, issue an error message
1947 about the fact that THING appeared and return true. Otherwise,
1948 return false. In either case, set
1949 PARSER->NON_INTEGRAL_CONSTANT_EXPRESSION_P. */
1950
1951 static bool
1952 cp_parser_non_integral_constant_expression (cp_parser *parser,
1953 const char *thing)
1954 {
1955 parser->non_integral_constant_expression_p = true;
1956 if (parser->integral_constant_expression_p)
1957 {
1958 if (!parser->allow_non_integral_constant_expression_p)
1959 {
1960 error ("%s cannot appear in a constant-expression", thing);
1961 return true;
1962 }
1963 }
1964 return false;
1965 }
1966
1967 /* Emit a diagnostic for an invalid type name. SCOPE is the
1968 qualifying scope (or NULL, if none) for ID. This function commits
1969 to the current active tentative parse, if any. (Otherwise, the
1970 problematic construct might be encountered again later, resulting
1971 in duplicate error messages.) */
1972
1973 static void
1974 cp_parser_diagnose_invalid_type_name (cp_parser *parser, tree scope, tree id)
1975 {
1976 tree decl, old_scope;
1977 /* Try to lookup the identifier. */
1978 old_scope = parser->scope;
1979 parser->scope = scope;
1980 decl = cp_parser_lookup_name_simple (parser, id);
1981 parser->scope = old_scope;
1982 /* If the lookup found a template-name, it means that the user forgot
1983 to specify an argument list. Emit an useful error message. */
1984 if (TREE_CODE (decl) == TEMPLATE_DECL)
1985 error ("invalid use of template-name %qE without an argument list",
1986 decl);
1987 else if (!parser->scope)
1988 {
1989 /* Issue an error message. */
1990 error ("%qE does not name a type", id);
1991 /* If we're in a template class, it's possible that the user was
1992 referring to a type from a base class. For example:
1993
1994 template <typename T> struct A { typedef T X; };
1995 template <typename T> struct B : public A<T> { X x; };
1996
1997 The user should have said "typename A<T>::X". */
1998 if (processing_template_decl && current_class_type)
1999 {
2000 tree b;
2001
2002 for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
2003 b;
2004 b = TREE_CHAIN (b))
2005 {
2006 tree base_type = BINFO_TYPE (b);
2007 if (CLASS_TYPE_P (base_type)
2008 && dependent_type_p (base_type))
2009 {
2010 tree field;
2011 /* Go from a particular instantiation of the
2012 template (which will have an empty TYPE_FIELDs),
2013 to the main version. */
2014 base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
2015 for (field = TYPE_FIELDS (base_type);
2016 field;
2017 field = TREE_CHAIN (field))
2018 if (TREE_CODE (field) == TYPE_DECL
2019 && DECL_NAME (field) == id)
2020 {
2021 inform ("(perhaps %<typename %T::%E%> was intended)",
2022 BINFO_TYPE (b), id);
2023 break;
2024 }
2025 if (field)
2026 break;
2027 }
2028 }
2029 }
2030 }
2031 /* Here we diagnose qualified-ids where the scope is actually correct,
2032 but the identifier does not resolve to a valid type name. */
2033 else
2034 {
2035 if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
2036 error ("%qE in namespace %qE does not name a type",
2037 id, parser->scope);
2038 else if (TYPE_P (parser->scope))
2039 error ("%qE in class %qT does not name a type", id, parser->scope);
2040 else
2041 gcc_unreachable ();
2042 }
2043 cp_parser_commit_to_tentative_parse (parser);
2044 }
2045
2046 /* Check for a common situation where a type-name should be present,
2047 but is not, and issue a sensible error message. Returns true if an
2048 invalid type-name was detected.
2049
2050 The situation handled by this function are variable declarations of the
2051 form `ID a', where `ID' is an id-expression and `a' is a plain identifier.
2052 Usually, `ID' should name a type, but if we got here it means that it
2053 does not. We try to emit the best possible error message depending on
2054 how exactly the id-expression looks like.
2055 */
2056
2057 static bool
2058 cp_parser_parse_and_diagnose_invalid_type_name (cp_parser *parser)
2059 {
2060 tree id;
2061
2062 cp_parser_parse_tentatively (parser);
2063 id = cp_parser_id_expression (parser,
2064 /*template_keyword_p=*/false,
2065 /*check_dependency_p=*/true,
2066 /*template_p=*/NULL,
2067 /*declarator_p=*/true);
2068 /* After the id-expression, there should be a plain identifier,
2069 otherwise this is not a simple variable declaration. Also, if
2070 the scope is dependent, we cannot do much. */
2071 if (!cp_lexer_next_token_is (parser->lexer, CPP_NAME)
2072 || (parser->scope && TYPE_P (parser->scope)
2073 && dependent_type_p (parser->scope)))
2074 {
2075 cp_parser_abort_tentative_parse (parser);
2076 return false;
2077 }
2078 if (!cp_parser_parse_definitely (parser)
2079 || TREE_CODE (id) != IDENTIFIER_NODE)
2080 return false;
2081
2082 /* Emit a diagnostic for the invalid type. */
2083 cp_parser_diagnose_invalid_type_name (parser, parser->scope, id);
2084 /* Skip to the end of the declaration; there's no point in
2085 trying to process it. */
2086 cp_parser_skip_to_end_of_block_or_statement (parser);
2087 return true;
2088 }
2089
2090 /* Consume tokens up to, and including, the next non-nested closing `)'.
2091 Returns 1 iff we found a closing `)'. RECOVERING is true, if we
2092 are doing error recovery. Returns -1 if OR_COMMA is true and we
2093 found an unnested comma. */
2094
2095 static int
2096 cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
2097 bool recovering,
2098 bool or_comma,
2099 bool consume_paren)
2100 {
2101 unsigned paren_depth = 0;
2102 unsigned brace_depth = 0;
2103 int result;
2104
2105 if (recovering && !or_comma
2106 && cp_parser_uncommitted_to_tentative_parse_p (parser))
2107 return 0;
2108
2109 while (true)
2110 {
2111 cp_token *token;
2112
2113 /* If we've run out of tokens, then there is no closing `)'. */
2114 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2115 {
2116 result = 0;
2117 break;
2118 }
2119
2120 token = cp_lexer_peek_token (parser->lexer);
2121
2122 /* This matches the processing in skip_to_end_of_statement. */
2123 if (token->type == CPP_SEMICOLON && !brace_depth)
2124 {
2125 result = 0;
2126 break;
2127 }
2128 if (token->type == CPP_OPEN_BRACE)
2129 ++brace_depth;
2130 if (token->type == CPP_CLOSE_BRACE)
2131 {
2132 if (!brace_depth--)
2133 {
2134 result = 0;
2135 break;
2136 }
2137 }
2138 if (recovering && or_comma && token->type == CPP_COMMA
2139 && !brace_depth && !paren_depth)
2140 {
2141 result = -1;
2142 break;
2143 }
2144
2145 if (!brace_depth)
2146 {
2147 /* If it is an `(', we have entered another level of nesting. */
2148 if (token->type == CPP_OPEN_PAREN)
2149 ++paren_depth;
2150 /* If it is a `)', then we might be done. */
2151 else if (token->type == CPP_CLOSE_PAREN && !paren_depth--)
2152 {
2153 if (consume_paren)
2154 cp_lexer_consume_token (parser->lexer);
2155 {
2156 result = 1;
2157 break;
2158 }
2159 }
2160 }
2161
2162 /* Consume the token. */
2163 cp_lexer_consume_token (parser->lexer);
2164 }
2165
2166 return result;
2167 }
2168
2169 /* Consume tokens until we reach the end of the current statement.
2170 Normally, that will be just before consuming a `;'. However, if a
2171 non-nested `}' comes first, then we stop before consuming that. */
2172
2173 static void
2174 cp_parser_skip_to_end_of_statement (cp_parser* parser)
2175 {
2176 unsigned nesting_depth = 0;
2177
2178 while (true)
2179 {
2180 cp_token *token;
2181
2182 /* Peek at the next token. */
2183 token = cp_lexer_peek_token (parser->lexer);
2184 /* If we've run out of tokens, stop. */
2185 if (token->type == CPP_EOF)
2186 break;
2187 /* If the next token is a `;', we have reached the end of the
2188 statement. */
2189 if (token->type == CPP_SEMICOLON && !nesting_depth)
2190 break;
2191 /* If the next token is a non-nested `}', then we have reached
2192 the end of the current block. */
2193 if (token->type == CPP_CLOSE_BRACE)
2194 {
2195 /* If this is a non-nested `}', stop before consuming it.
2196 That way, when confronted with something like:
2197
2198 { 3 + }
2199
2200 we stop before consuming the closing `}', even though we
2201 have not yet reached a `;'. */
2202 if (nesting_depth == 0)
2203 break;
2204 /* If it is the closing `}' for a block that we have
2205 scanned, stop -- but only after consuming the token.
2206 That way given:
2207
2208 void f g () { ... }
2209 typedef int I;
2210
2211 we will stop after the body of the erroneously declared
2212 function, but before consuming the following `typedef'
2213 declaration. */
2214 if (--nesting_depth == 0)
2215 {
2216 cp_lexer_consume_token (parser->lexer);
2217 break;
2218 }
2219 }
2220 /* If it the next token is a `{', then we are entering a new
2221 block. Consume the entire block. */
2222 else if (token->type == CPP_OPEN_BRACE)
2223 ++nesting_depth;
2224 /* Consume the token. */
2225 cp_lexer_consume_token (parser->lexer);
2226 }
2227 }
2228
2229 /* This function is called at the end of a statement or declaration.
2230 If the next token is a semicolon, it is consumed; otherwise, error
2231 recovery is attempted. */
2232
2233 static void
2234 cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
2235 {
2236 /* Look for the trailing `;'. */
2237 if (!cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
2238 {
2239 /* If there is additional (erroneous) input, skip to the end of
2240 the statement. */
2241 cp_parser_skip_to_end_of_statement (parser);
2242 /* If the next token is now a `;', consume it. */
2243 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
2244 cp_lexer_consume_token (parser->lexer);
2245 }
2246 }
2247
2248 /* Skip tokens until we have consumed an entire block, or until we
2249 have consumed a non-nested `;'. */
2250
2251 static void
2252 cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
2253 {
2254 unsigned nesting_depth = 0;
2255
2256 while (true)
2257 {
2258 cp_token *token;
2259
2260 /* Peek at the next token. */
2261 token = cp_lexer_peek_token (parser->lexer);
2262 /* If we've run out of tokens, stop. */
2263 if (token->type == CPP_EOF)
2264 break;
2265 /* If the next token is a `;', we have reached the end of the
2266 statement. */
2267 if (token->type == CPP_SEMICOLON && !nesting_depth)
2268 {
2269 /* Consume the `;'. */
2270 cp_lexer_consume_token (parser->lexer);
2271 break;
2272 }
2273 /* Consume the token. */
2274 token = cp_lexer_consume_token (parser->lexer);
2275 /* If the next token is a non-nested `}', then we have reached
2276 the end of the current block. */
2277 if (token->type == CPP_CLOSE_BRACE
2278 && (nesting_depth == 0 || --nesting_depth == 0))
2279 break;
2280 /* If it the next token is a `{', then we are entering a new
2281 block. Consume the entire block. */
2282 if (token->type == CPP_OPEN_BRACE)
2283 ++nesting_depth;
2284 }
2285 }
2286
2287 /* Skip tokens until a non-nested closing curly brace is the next
2288 token. */
2289
2290 static void
2291 cp_parser_skip_to_closing_brace (cp_parser *parser)
2292 {
2293 unsigned nesting_depth = 0;
2294
2295 while (true)
2296 {
2297 cp_token *token;
2298
2299 /* Peek at the next token. */
2300 token = cp_lexer_peek_token (parser->lexer);
2301 /* If we've run out of tokens, stop. */
2302 if (token->type == CPP_EOF)
2303 break;
2304 /* If the next token is a non-nested `}', then we have reached
2305 the end of the current block. */
2306 if (token->type == CPP_CLOSE_BRACE && nesting_depth-- == 0)
2307 break;
2308 /* If it the next token is a `{', then we are entering a new
2309 block. Consume the entire block. */
2310 else if (token->type == CPP_OPEN_BRACE)
2311 ++nesting_depth;
2312 /* Consume the token. */
2313 cp_lexer_consume_token (parser->lexer);
2314 }
2315 }
2316
2317 /* This is a simple wrapper around make_typename_type. When the id is
2318 an unresolved identifier node, we can provide a superior diagnostic
2319 using cp_parser_diagnose_invalid_type_name. */
2320
2321 static tree
2322 cp_parser_make_typename_type (cp_parser *parser, tree scope, tree id)
2323 {
2324 tree result;
2325 if (TREE_CODE (id) == IDENTIFIER_NODE)
2326 {
2327 result = make_typename_type (scope, id, typename_type,
2328 /*complain=*/0);
2329 if (result == error_mark_node)
2330 cp_parser_diagnose_invalid_type_name (parser, scope, id);
2331 return result;
2332 }
2333 return make_typename_type (scope, id, typename_type, tf_error);
2334 }
2335
2336
2337 /* Create a new C++ parser. */
2338
2339 static cp_parser *
2340 cp_parser_new (void)
2341 {
2342 cp_parser *parser;
2343 cp_lexer *lexer;
2344 unsigned i;
2345
2346 /* cp_lexer_new_main is called before calling ggc_alloc because
2347 cp_lexer_new_main might load a PCH file. */
2348 lexer = cp_lexer_new_main ();
2349
2350 /* Initialize the binops_by_token so that we can get the tree
2351 directly from the token. */
2352 for (i = 0; i < sizeof (binops) / sizeof (binops[0]); i++)
2353 binops_by_token[binops[i].token_type] = binops[i];
2354
2355 parser = GGC_CNEW (cp_parser);
2356 parser->lexer = lexer;
2357 parser->context = cp_parser_context_new (NULL);
2358
2359 /* For now, we always accept GNU extensions. */
2360 parser->allow_gnu_extensions_p = 1;
2361
2362 /* The `>' token is a greater-than operator, not the end of a
2363 template-id. */
2364 parser->greater_than_is_operator_p = true;
2365
2366 parser->default_arg_ok_p = true;
2367
2368 /* We are not parsing a constant-expression. */
2369 parser->integral_constant_expression_p = false;
2370 parser->allow_non_integral_constant_expression_p = false;
2371 parser->non_integral_constant_expression_p = false;
2372
2373 /* Local variable names are not forbidden. */
2374 parser->local_variables_forbidden_p = false;
2375
2376 /* We are not processing an `extern "C"' declaration. */
2377 parser->in_unbraced_linkage_specification_p = false;
2378
2379 /* We are not processing a declarator. */
2380 parser->in_declarator_p = false;
2381
2382 /* We are not processing a template-argument-list. */
2383 parser->in_template_argument_list_p = false;
2384
2385 /* We are not in an iteration statement. */
2386 parser->in_iteration_statement_p = false;
2387
2388 /* We are not in a switch statement. */
2389 parser->in_switch_statement_p = false;
2390
2391 /* We are not parsing a type-id inside an expression. */
2392 parser->in_type_id_in_expr_p = false;
2393
2394 /* Declarations aren't implicitly extern "C". */
2395 parser->implicit_extern_c = false;
2396
2397 /* String literals should be translated to the execution character set. */
2398 parser->translate_strings_p = true;
2399
2400 /* The unparsed function queue is empty. */
2401 parser->unparsed_functions_queues = build_tree_list (NULL_TREE, NULL_TREE);
2402
2403 /* There are no classes being defined. */
2404 parser->num_classes_being_defined = 0;
2405
2406 /* No template parameters apply. */
2407 parser->num_template_parameter_lists = 0;
2408
2409 return parser;
2410 }
2411
2412 /* Create a cp_lexer structure which will emit the tokens in CACHE
2413 and push it onto the parser's lexer stack. This is used for delayed
2414 parsing of in-class method bodies and default arguments, and should
2415 not be confused with tentative parsing. */
2416 static void
2417 cp_parser_push_lexer_for_tokens (cp_parser *parser, cp_token_cache *cache)
2418 {
2419 cp_lexer *lexer = cp_lexer_new_from_tokens (cache);
2420 lexer->next = parser->lexer;
2421 parser->lexer = lexer;
2422
2423 /* Move the current source position to that of the first token in the
2424 new lexer. */
2425 cp_lexer_set_source_position_from_token (lexer->next_token);
2426 }
2427
2428 /* Pop the top lexer off the parser stack. This is never used for the
2429 "main" lexer, only for those pushed by cp_parser_push_lexer_for_tokens. */
2430 static void
2431 cp_parser_pop_lexer (cp_parser *parser)
2432 {
2433 cp_lexer *lexer = parser->lexer;
2434 parser->lexer = lexer->next;
2435 cp_lexer_destroy (lexer);
2436
2437 /* Put the current source position back where it was before this
2438 lexer was pushed. */
2439 cp_lexer_set_source_position_from_token (parser->lexer->next_token);
2440 }
2441
2442 /* Lexical conventions [gram.lex] */
2443
2444 /* Parse an identifier. Returns an IDENTIFIER_NODE representing the
2445 identifier. */
2446
2447 static tree
2448 cp_parser_identifier (cp_parser* parser)
2449 {
2450 cp_token *token;
2451
2452 /* Look for the identifier. */
2453 token = cp_parser_require (parser, CPP_NAME, "identifier");
2454 /* Return the value. */
2455 return token ? token->value : error_mark_node;
2456 }
2457
2458 /* Parse a sequence of adjacent string constants. Returns a
2459 TREE_STRING representing the combined, nul-terminated string
2460 constant. If TRANSLATE is true, translate the string to the
2461 execution character set. If WIDE_OK is true, a wide string is
2462 invalid here.
2463
2464 C++98 [lex.string] says that if a narrow string literal token is
2465 adjacent to a wide string literal token, the behavior is undefined.
2466 However, C99 6.4.5p4 says that this results in a wide string literal.
2467 We follow C99 here, for consistency with the C front end.
2468
2469 This code is largely lifted from lex_string() in c-lex.c.
2470
2471 FUTURE: ObjC++ will need to handle @-strings here. */
2472 static tree
2473 cp_parser_string_literal (cp_parser *parser, bool translate, bool wide_ok)
2474 {
2475 tree value;
2476 bool wide = false;
2477 size_t count;
2478 struct obstack str_ob;
2479 cpp_string str, istr, *strs;
2480 cp_token *tok;
2481
2482 tok = cp_lexer_peek_token (parser->lexer);
2483 if (!cp_parser_is_string_literal (tok))
2484 {
2485 cp_parser_error (parser, "expected string-literal");
2486 return error_mark_node;
2487 }
2488
2489 /* Try to avoid the overhead of creating and destroying an obstack
2490 for the common case of just one string. */
2491 if (!cp_parser_is_string_literal
2492 (cp_lexer_peek_nth_token (parser->lexer, 2)))
2493 {
2494 cp_lexer_consume_token (parser->lexer);
2495
2496 str.text = (const unsigned char *)TREE_STRING_POINTER (tok->value);
2497 str.len = TREE_STRING_LENGTH (tok->value);
2498 count = 1;
2499 if (tok->type == CPP_WSTRING)
2500 wide = true;
2501
2502 strs = &str;
2503 }
2504 else
2505 {
2506 gcc_obstack_init (&str_ob);
2507 count = 0;
2508
2509 do
2510 {
2511 cp_lexer_consume_token (parser->lexer);
2512 count++;
2513 str.text = (unsigned char *)TREE_STRING_POINTER (tok->value);
2514 str.len = TREE_STRING_LENGTH (tok->value);
2515 if (tok->type == CPP_WSTRING)
2516 wide = true;
2517
2518 obstack_grow (&str_ob, &str, sizeof (cpp_string));
2519
2520 tok = cp_lexer_peek_token (parser->lexer);
2521 }
2522 while (cp_parser_is_string_literal (tok));
2523
2524 strs = (cpp_string *) obstack_finish (&str_ob);
2525 }
2526
2527 if (wide && !wide_ok)
2528 {
2529 cp_parser_error (parser, "a wide string is invalid in this context");
2530 wide = false;
2531 }
2532
2533 if ((translate ? cpp_interpret_string : cpp_interpret_string_notranslate)
2534 (parse_in, strs, count, &istr, wide))
2535 {
2536 value = build_string (istr.len, (char *)istr.text);
2537 free ((void *)istr.text);
2538
2539 TREE_TYPE (value) = wide ? wchar_array_type_node : char_array_type_node;
2540 value = fix_string_type (value);
2541 }
2542 else
2543 /* cpp_interpret_string has issued an error. */
2544 value = error_mark_node;
2545
2546 if (count > 1)
2547 obstack_free (&str_ob, 0);
2548
2549 return value;
2550 }
2551
2552
2553 /* Basic concepts [gram.basic] */
2554
2555 /* Parse a translation-unit.
2556
2557 translation-unit:
2558 declaration-seq [opt]
2559
2560 Returns TRUE if all went well. */
2561
2562 static bool
2563 cp_parser_translation_unit (cp_parser* parser)
2564 {
2565 /* The address of the first non-permanent object on the declarator
2566 obstack. */
2567 static void *declarator_obstack_base;
2568
2569 bool success;
2570
2571 /* Create the declarator obstack, if necessary. */
2572 if (!cp_error_declarator)
2573 {
2574 gcc_obstack_init (&declarator_obstack);
2575 /* Create the error declarator. */
2576 cp_error_declarator = make_declarator (cdk_error);
2577 /* Create the empty parameter list. */
2578 no_parameters = make_parameter_declarator (NULL, NULL, NULL_TREE);
2579 /* Remember where the base of the declarator obstack lies. */
2580 declarator_obstack_base = obstack_next_free (&declarator_obstack);
2581 }
2582
2583 while (true)
2584 {
2585 cp_parser_declaration_seq_opt (parser);
2586
2587 /* If there are no tokens left then all went well. */
2588 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2589 {
2590 /* Get rid of the token array; we don't need it any more. */
2591 cp_lexer_destroy (parser->lexer);
2592 parser->lexer = NULL;
2593
2594 /* This file might have been a context that's implicitly extern
2595 "C". If so, pop the lang context. (Only relevant for PCH.) */
2596 if (parser->implicit_extern_c)
2597 {
2598 pop_lang_context ();
2599 parser->implicit_extern_c = false;
2600 }
2601
2602 /* Finish up. */
2603 finish_translation_unit ();
2604
2605 success = true;
2606 break;
2607 }
2608 else
2609 {
2610 cp_parser_error (parser, "expected declaration");
2611 success = false;
2612 break;
2613 }
2614 }
2615
2616 /* Make sure the declarator obstack was fully cleaned up. */
2617 gcc_assert (obstack_next_free (&declarator_obstack)
2618 == declarator_obstack_base);
2619
2620 /* All went well. */
2621 return success;
2622 }
2623
2624 /* Expressions [gram.expr] */
2625
2626 /* Parse a primary-expression.
2627
2628 primary-expression:
2629 literal
2630 this
2631 ( expression )
2632 id-expression
2633
2634 GNU Extensions:
2635
2636 primary-expression:
2637 ( compound-statement )
2638 __builtin_va_arg ( assignment-expression , type-id )
2639
2640 literal:
2641 __null
2642
2643 CAST_P is true if this primary expression is the target of a cast.
2644
2645 Returns a representation of the expression.
2646
2647 *IDK indicates what kind of id-expression (if any) was present.
2648
2649 *QUALIFYING_CLASS is set to a non-NULL value if the id-expression can be
2650 used as the operand of a pointer-to-member. In that case,
2651 *QUALIFYING_CLASS gives the class that is used as the qualifying
2652 class in the pointer-to-member. */
2653
2654 static tree
2655 cp_parser_primary_expression (cp_parser *parser,
2656 bool cast_p,
2657 cp_id_kind *idk,
2658 tree *qualifying_class)
2659 {
2660 cp_token *token;
2661
2662 /* Assume the primary expression is not an id-expression. */
2663 *idk = CP_ID_KIND_NONE;
2664 /* And that it cannot be used as pointer-to-member. */
2665 *qualifying_class = NULL_TREE;
2666
2667 /* Peek at the next token. */
2668 token = cp_lexer_peek_token (parser->lexer);
2669 switch (token->type)
2670 {
2671 /* literal:
2672 integer-literal
2673 character-literal
2674 floating-literal
2675 string-literal
2676 boolean-literal */
2677 case CPP_CHAR:
2678 case CPP_WCHAR:
2679 case CPP_NUMBER:
2680 token = cp_lexer_consume_token (parser->lexer);
2681 /* Floating-point literals are only allowed in an integral
2682 constant expression if they are cast to an integral or
2683 enumeration type. */
2684 if (TREE_CODE (token->value) == REAL_CST
2685 && parser->integral_constant_expression_p
2686 && pedantic)
2687 {
2688 /* CAST_P will be set even in invalid code like "int(2.7 +
2689 ...)". Therefore, we have to check that the next token
2690 is sure to end the cast. */
2691 if (cast_p)
2692 {
2693 cp_token *next_token;
2694
2695 next_token = cp_lexer_peek_token (parser->lexer);
2696 if (/* The comma at the end of an
2697 enumerator-definition. */
2698 next_token->type != CPP_COMMA
2699 /* The curly brace at the end of an enum-specifier. */
2700 && next_token->type != CPP_CLOSE_BRACE
2701 /* The end of a statement. */
2702 && next_token->type != CPP_SEMICOLON
2703 /* The end of the cast-expression. */
2704 && next_token->type != CPP_CLOSE_PAREN
2705 /* The end of an array bound. */
2706 && next_token->type != CPP_CLOSE_SQUARE)
2707 cast_p = false;
2708 }
2709
2710 /* If we are within a cast, then the constraint that the
2711 cast is to an integral or enumeration type will be
2712 checked at that point. If we are not within a cast, then
2713 this code is invalid. */
2714 if (!cast_p)
2715 cp_parser_non_integral_constant_expression
2716 (parser, "floating-point literal");
2717 }
2718 return token->value;
2719
2720 case CPP_STRING:
2721 case CPP_WSTRING:
2722 /* ??? Should wide strings be allowed when parser->translate_strings_p
2723 is false (i.e. in attributes)? If not, we can kill the third
2724 argument to cp_parser_string_literal. */
2725 return cp_parser_string_literal (parser,
2726 parser->translate_strings_p,
2727 true);
2728
2729 case CPP_OPEN_PAREN:
2730 {
2731 tree expr;
2732 bool saved_greater_than_is_operator_p;
2733
2734 /* Consume the `('. */
2735 cp_lexer_consume_token (parser->lexer);
2736 /* Within a parenthesized expression, a `>' token is always
2737 the greater-than operator. */
2738 saved_greater_than_is_operator_p
2739 = parser->greater_than_is_operator_p;
2740 parser->greater_than_is_operator_p = true;
2741 /* If we see `( { ' then we are looking at the beginning of
2742 a GNU statement-expression. */
2743 if (cp_parser_allow_gnu_extensions_p (parser)
2744 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
2745 {
2746 /* Statement-expressions are not allowed by the standard. */
2747 if (pedantic)
2748 pedwarn ("ISO C++ forbids braced-groups within expressions");
2749
2750 /* And they're not allowed outside of a function-body; you
2751 cannot, for example, write:
2752
2753 int i = ({ int j = 3; j + 1; });
2754
2755 at class or namespace scope. */
2756 if (!at_function_scope_p ())
2757 error ("statement-expressions are allowed only inside functions");
2758 /* Start the statement-expression. */
2759 expr = begin_stmt_expr ();
2760 /* Parse the compound-statement. */
2761 cp_parser_compound_statement (parser, expr, false);
2762 /* Finish up. */
2763 expr = finish_stmt_expr (expr, false);
2764 }
2765 else
2766 {
2767 /* Parse the parenthesized expression. */
2768 expr = cp_parser_expression (parser, cast_p);
2769 /* Let the front end know that this expression was
2770 enclosed in parentheses. This matters in case, for
2771 example, the expression is of the form `A::B', since
2772 `&A::B' might be a pointer-to-member, but `&(A::B)' is
2773 not. */
2774 finish_parenthesized_expr (expr);
2775 }
2776 /* The `>' token might be the end of a template-id or
2777 template-parameter-list now. */
2778 parser->greater_than_is_operator_p
2779 = saved_greater_than_is_operator_p;
2780 /* Consume the `)'. */
2781 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
2782 cp_parser_skip_to_end_of_statement (parser);
2783
2784 return expr;
2785 }
2786
2787 case CPP_KEYWORD:
2788 switch (token->keyword)
2789 {
2790 /* These two are the boolean literals. */
2791 case RID_TRUE:
2792 cp_lexer_consume_token (parser->lexer);
2793 return boolean_true_node;
2794 case RID_FALSE:
2795 cp_lexer_consume_token (parser->lexer);
2796 return boolean_false_node;
2797
2798 /* The `__null' literal. */
2799 case RID_NULL:
2800 cp_lexer_consume_token (parser->lexer);
2801 return null_node;
2802
2803 /* Recognize the `this' keyword. */
2804 case RID_THIS:
2805 cp_lexer_consume_token (parser->lexer);
2806 if (parser->local_variables_forbidden_p)
2807 {
2808 error ("%<this%> may not be used in this context");
2809 return error_mark_node;
2810 }
2811 /* Pointers cannot appear in constant-expressions. */
2812 if (cp_parser_non_integral_constant_expression (parser,
2813 "`this'"))
2814 return error_mark_node;
2815 return finish_this_expr ();
2816
2817 /* The `operator' keyword can be the beginning of an
2818 id-expression. */
2819 case RID_OPERATOR:
2820 goto id_expression;
2821
2822 case RID_FUNCTION_NAME:
2823 case RID_PRETTY_FUNCTION_NAME:
2824 case RID_C99_FUNCTION_NAME:
2825 /* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
2826 __func__ are the names of variables -- but they are
2827 treated specially. Therefore, they are handled here,
2828 rather than relying on the generic id-expression logic
2829 below. Grammatically, these names are id-expressions.
2830
2831 Consume the token. */
2832 token = cp_lexer_consume_token (parser->lexer);
2833 /* Look up the name. */
2834 return finish_fname (token->value);
2835
2836 case RID_VA_ARG:
2837 {
2838 tree expression;
2839 tree type;
2840
2841 /* The `__builtin_va_arg' construct is used to handle
2842 `va_arg'. Consume the `__builtin_va_arg' token. */
2843 cp_lexer_consume_token (parser->lexer);
2844 /* Look for the opening `('. */
2845 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
2846 /* Now, parse the assignment-expression. */
2847 expression = cp_parser_assignment_expression (parser,
2848 /*cast_p=*/false);
2849 /* Look for the `,'. */
2850 cp_parser_require (parser, CPP_COMMA, "`,'");
2851 /* Parse the type-id. */
2852 type = cp_parser_type_id (parser);
2853 /* Look for the closing `)'. */
2854 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
2855 /* Using `va_arg' in a constant-expression is not
2856 allowed. */
2857 if (cp_parser_non_integral_constant_expression (parser,
2858 "`va_arg'"))
2859 return error_mark_node;
2860 return build_x_va_arg (expression, type);
2861 }
2862
2863 case RID_OFFSETOF:
2864 return cp_parser_builtin_offsetof (parser);
2865
2866 default:
2867 cp_parser_error (parser, "expected primary-expression");
2868 return error_mark_node;
2869 }
2870
2871 /* An id-expression can start with either an identifier, a
2872 `::' as the beginning of a qualified-id, or the "operator"
2873 keyword. */
2874 case CPP_NAME:
2875 case CPP_SCOPE:
2876 case CPP_TEMPLATE_ID:
2877 case CPP_NESTED_NAME_SPECIFIER:
2878 {
2879 tree id_expression;
2880 tree decl;
2881 const char *error_msg;
2882
2883 id_expression:
2884 /* Parse the id-expression. */
2885 id_expression
2886 = cp_parser_id_expression (parser,
2887 /*template_keyword_p=*/false,
2888 /*check_dependency_p=*/true,
2889 /*template_p=*/NULL,
2890 /*declarator_p=*/false);
2891 if (id_expression == error_mark_node)
2892 return error_mark_node;
2893 /* If we have a template-id, then no further lookup is
2894 required. If the template-id was for a template-class, we
2895 will sometimes have a TYPE_DECL at this point. */
2896 else if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
2897 || TREE_CODE (id_expression) == TYPE_DECL)
2898 decl = id_expression;
2899 /* Look up the name. */
2900 else
2901 {
2902 bool ambiguous_p;
2903
2904 decl = cp_parser_lookup_name (parser, id_expression,
2905 none_type,
2906 /*is_template=*/false,
2907 /*is_namespace=*/false,
2908 /*check_dependency=*/true,
2909 &ambiguous_p);
2910 /* If the lookup was ambiguous, an error will already have
2911 been issued. */
2912 if (ambiguous_p)
2913 return error_mark_node;
2914 /* If name lookup gives us a SCOPE_REF, then the
2915 qualifying scope was dependent. Just propagate the
2916 name. */
2917 if (TREE_CODE (decl) == SCOPE_REF)
2918 {
2919 if (TYPE_P (TREE_OPERAND (decl, 0)))
2920 *qualifying_class = TREE_OPERAND (decl, 0);
2921 return decl;
2922 }
2923 /* Check to see if DECL is a local variable in a context
2924 where that is forbidden. */
2925 if (parser->local_variables_forbidden_p
2926 && local_variable_p (decl))
2927 {
2928 /* It might be that we only found DECL because we are
2929 trying to be generous with pre-ISO scoping rules.
2930 For example, consider:
2931
2932 int i;
2933 void g() {
2934 for (int i = 0; i < 10; ++i) {}
2935 extern void f(int j = i);
2936 }
2937
2938 Here, name look up will originally find the out
2939 of scope `i'. We need to issue a warning message,
2940 but then use the global `i'. */
2941 decl = check_for_out_of_scope_variable (decl);
2942 if (local_variable_p (decl))
2943 {
2944 error ("local variable %qD may not appear in this context",
2945 decl);
2946 return error_mark_node;
2947 }
2948 }
2949 }
2950
2951 decl = finish_id_expression (id_expression, decl, parser->scope,
2952 idk, qualifying_class,
2953 parser->integral_constant_expression_p,
2954 parser->allow_non_integral_constant_expression_p,
2955 &parser->non_integral_constant_expression_p,
2956 &error_msg);
2957 if (error_msg)
2958 cp_parser_error (parser, error_msg);
2959 return decl;
2960 }
2961
2962 /* Anything else is an error. */
2963 default:
2964 cp_parser_error (parser, "expected primary-expression");
2965 return error_mark_node;
2966 }
2967 }
2968
2969 /* Parse an id-expression.
2970
2971 id-expression:
2972 unqualified-id
2973 qualified-id
2974
2975 qualified-id:
2976 :: [opt] nested-name-specifier template [opt] unqualified-id
2977 :: identifier
2978 :: operator-function-id
2979 :: template-id
2980
2981 Return a representation of the unqualified portion of the
2982 identifier. Sets PARSER->SCOPE to the qualifying scope if there is
2983 a `::' or nested-name-specifier.
2984
2985 Often, if the id-expression was a qualified-id, the caller will
2986 want to make a SCOPE_REF to represent the qualified-id. This
2987 function does not do this in order to avoid wastefully creating
2988 SCOPE_REFs when they are not required.
2989
2990 If TEMPLATE_KEYWORD_P is true, then we have just seen the
2991 `template' keyword.
2992
2993 If CHECK_DEPENDENCY_P is false, then names are looked up inside
2994 uninstantiated templates.
2995
2996 If *TEMPLATE_P is non-NULL, it is set to true iff the
2997 `template' keyword is used to explicitly indicate that the entity
2998 named is a template.
2999
3000 If DECLARATOR_P is true, the id-expression is appearing as part of
3001 a declarator, rather than as part of an expression. */
3002
3003 static tree
3004 cp_parser_id_expression (cp_parser *parser,
3005 bool template_keyword_p,
3006 bool check_dependency_p,
3007 bool *template_p,
3008 bool declarator_p)
3009 {
3010 bool global_scope_p;
3011 bool nested_name_specifier_p;
3012
3013 /* Assume the `template' keyword was not used. */
3014 if (template_p)
3015 *template_p = false;
3016
3017 /* Look for the optional `::' operator. */
3018 global_scope_p
3019 = (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)
3020 != NULL_TREE);
3021 /* Look for the optional nested-name-specifier. */
3022 nested_name_specifier_p
3023 = (cp_parser_nested_name_specifier_opt (parser,
3024 /*typename_keyword_p=*/false,
3025 check_dependency_p,
3026 /*type_p=*/false,
3027 declarator_p)
3028 != NULL_TREE);
3029 /* If there is a nested-name-specifier, then we are looking at
3030 the first qualified-id production. */
3031 if (nested_name_specifier_p)
3032 {
3033 tree saved_scope;
3034 tree saved_object_scope;
3035 tree saved_qualifying_scope;
3036 tree unqualified_id;
3037 bool is_template;
3038
3039 /* See if the next token is the `template' keyword. */
3040 if (!template_p)
3041 template_p = &is_template;
3042 *template_p = cp_parser_optional_template_keyword (parser);
3043 /* Name lookup we do during the processing of the
3044 unqualified-id might obliterate SCOPE. */
3045 saved_scope = parser->scope;
3046 saved_object_scope = parser->object_scope;
3047 saved_qualifying_scope = parser->qualifying_scope;
3048 /* Process the final unqualified-id. */
3049 unqualified_id = cp_parser_unqualified_id (parser, *template_p,
3050 check_dependency_p,
3051 declarator_p);
3052 /* Restore the SAVED_SCOPE for our caller. */
3053 parser->scope = saved_scope;
3054 parser->object_scope = saved_object_scope;
3055 parser->qualifying_scope = saved_qualifying_scope;
3056
3057 return unqualified_id;
3058 }
3059 /* Otherwise, if we are in global scope, then we are looking at one
3060 of the other qualified-id productions. */
3061 else if (global_scope_p)
3062 {
3063 cp_token *token;
3064 tree id;
3065
3066 /* Peek at the next token. */
3067 token = cp_lexer_peek_token (parser->lexer);
3068
3069 /* If it's an identifier, and the next token is not a "<", then
3070 we can avoid the template-id case. This is an optimization
3071 for this common case. */
3072 if (token->type == CPP_NAME
3073 && !cp_parser_nth_token_starts_template_argument_list_p
3074 (parser, 2))
3075 return cp_parser_identifier (parser);
3076
3077 cp_parser_parse_tentatively (parser);
3078 /* Try a template-id. */
3079 id = cp_parser_template_id (parser,
3080 /*template_keyword_p=*/false,
3081 /*check_dependency_p=*/true,
3082 declarator_p);
3083 /* If that worked, we're done. */
3084 if (cp_parser_parse_definitely (parser))
3085 return id;
3086
3087 /* Peek at the next token. (Changes in the token buffer may
3088 have invalidated the pointer obtained above.) */
3089 token = cp_lexer_peek_token (parser->lexer);
3090
3091 switch (token->type)
3092 {
3093 case CPP_NAME:
3094 return cp_parser_identifier (parser);
3095
3096 case CPP_KEYWORD:
3097 if (token->keyword == RID_OPERATOR)
3098 return cp_parser_operator_function_id (parser);
3099 /* Fall through. */
3100
3101 default:
3102 cp_parser_error (parser, "expected id-expression");
3103 return error_mark_node;
3104 }
3105 }
3106 else
3107 return cp_parser_unqualified_id (parser, template_keyword_p,
3108 /*check_dependency_p=*/true,
3109 declarator_p);
3110 }
3111
3112 /* Parse an unqualified-id.
3113
3114 unqualified-id:
3115 identifier
3116 operator-function-id
3117 conversion-function-id
3118 ~ class-name
3119 template-id
3120
3121 If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
3122 keyword, in a construct like `A::template ...'.
3123
3124 Returns a representation of unqualified-id. For the `identifier'
3125 production, an IDENTIFIER_NODE is returned. For the `~ class-name'
3126 production a BIT_NOT_EXPR is returned; the operand of the
3127 BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the
3128 other productions, see the documentation accompanying the
3129 corresponding parsing functions. If CHECK_DEPENDENCY_P is false,
3130 names are looked up in uninstantiated templates. If DECLARATOR_P
3131 is true, the unqualified-id is appearing as part of a declarator,
3132 rather than as part of an expression. */
3133
3134 static tree
3135 cp_parser_unqualified_id (cp_parser* parser,
3136 bool template_keyword_p,
3137 bool check_dependency_p,
3138 bool declarator_p)
3139 {
3140 cp_token *token;
3141
3142 /* Peek at the next token. */
3143 token = cp_lexer_peek_token (parser->lexer);
3144
3145 switch (token->type)
3146 {
3147 case CPP_NAME:
3148 {
3149 tree id;
3150
3151 /* We don't know yet whether or not this will be a
3152 template-id. */
3153 cp_parser_parse_tentatively (parser);
3154 /* Try a template-id. */
3155 id = cp_parser_template_id (parser, template_keyword_p,
3156 check_dependency_p,
3157 declarator_p);
3158 /* If it worked, we're done. */
3159 if (cp_parser_parse_definitely (parser))
3160 return id;
3161 /* Otherwise, it's an ordinary identifier. */
3162 return cp_parser_identifier (parser);
3163 }
3164
3165 case CPP_TEMPLATE_ID:
3166 return cp_parser_template_id (parser, template_keyword_p,
3167 check_dependency_p,
3168 declarator_p);
3169
3170 case CPP_COMPL:
3171 {
3172 tree type_decl;
3173 tree qualifying_scope;
3174 tree object_scope;
3175 tree scope;
3176 bool done;
3177
3178 /* Consume the `~' token. */
3179 cp_lexer_consume_token (parser->lexer);
3180 /* Parse the class-name. The standard, as written, seems to
3181 say that:
3182
3183 template <typename T> struct S { ~S (); };
3184 template <typename T> S<T>::~S() {}
3185
3186 is invalid, since `~' must be followed by a class-name, but
3187 `S<T>' is dependent, and so not known to be a class.
3188 That's not right; we need to look in uninstantiated
3189 templates. A further complication arises from:
3190
3191 template <typename T> void f(T t) {
3192 t.T::~T();
3193 }
3194
3195 Here, it is not possible to look up `T' in the scope of `T'
3196 itself. We must look in both the current scope, and the
3197 scope of the containing complete expression.
3198
3199 Yet another issue is:
3200
3201 struct S {
3202 int S;
3203 ~S();
3204 };
3205
3206 S::~S() {}
3207
3208 The standard does not seem to say that the `S' in `~S'
3209 should refer to the type `S' and not the data member
3210 `S::S'. */
3211
3212 /* DR 244 says that we look up the name after the "~" in the
3213 same scope as we looked up the qualifying name. That idea
3214 isn't fully worked out; it's more complicated than that. */
3215 scope = parser->scope;
3216 object_scope = parser->object_scope;
3217 qualifying_scope = parser->qualifying_scope;
3218
3219 /* If the name is of the form "X::~X" it's OK. */
3220 if (scope && TYPE_P (scope)
3221 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3222 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3223 == CPP_OPEN_PAREN)
3224 && (cp_lexer_peek_token (parser->lexer)->value
3225 == TYPE_IDENTIFIER (scope)))
3226 {
3227 cp_lexer_consume_token (parser->lexer);
3228 return build_nt (BIT_NOT_EXPR, scope);
3229 }
3230
3231 /* If there was an explicit qualification (S::~T), first look
3232 in the scope given by the qualification (i.e., S). */
3233 done = false;
3234 type_decl = NULL_TREE;
3235 if (scope)
3236 {
3237 cp_parser_parse_tentatively (parser);
3238 type_decl = cp_parser_class_name (parser,
3239 /*typename_keyword_p=*/false,
3240 /*template_keyword_p=*/false,
3241 none_type,
3242 /*check_dependency=*/false,
3243 /*class_head_p=*/false,
3244 declarator_p);
3245 if (cp_parser_parse_definitely (parser))
3246 done = true;
3247 }
3248 /* In "N::S::~S", look in "N" as well. */
3249 if (!done && scope && qualifying_scope)
3250 {
3251 cp_parser_parse_tentatively (parser);
3252 parser->scope = qualifying_scope;
3253 parser->object_scope = NULL_TREE;
3254 parser->qualifying_scope = NULL_TREE;
3255 type_decl
3256 = cp_parser_class_name (parser,
3257 /*typename_keyword_p=*/false,
3258 /*template_keyword_p=*/false,
3259 none_type,
3260 /*check_dependency=*/false,
3261 /*class_head_p=*/false,
3262 declarator_p);
3263 if (cp_parser_parse_definitely (parser))
3264 done = true;
3265 }
3266 /* In "p->S::~T", look in the scope given by "*p" as well. */
3267 else if (!done && object_scope)
3268 {
3269 cp_parser_parse_tentatively (parser);
3270 parser->scope = object_scope;
3271 parser->object_scope = NULL_TREE;
3272 parser->qualifying_scope = NULL_TREE;
3273 type_decl
3274 = cp_parser_class_name (parser,
3275 /*typename_keyword_p=*/false,
3276 /*template_keyword_p=*/false,
3277 none_type,
3278 /*check_dependency=*/false,
3279 /*class_head_p=*/false,
3280 declarator_p);
3281 if (cp_parser_parse_definitely (parser))
3282 done = true;
3283 }
3284 /* Look in the surrounding context. */
3285 if (!done)
3286 {
3287 parser->scope = NULL_TREE;
3288 parser->object_scope = NULL_TREE;
3289 parser->qualifying_scope = NULL_TREE;
3290 type_decl
3291 = cp_parser_class_name (parser,
3292 /*typename_keyword_p=*/false,
3293 /*template_keyword_p=*/false,
3294 none_type,
3295 /*check_dependency=*/false,
3296 /*class_head_p=*/false,
3297 declarator_p);
3298 }
3299 /* If an error occurred, assume that the name of the
3300 destructor is the same as the name of the qualifying
3301 class. That allows us to keep parsing after running
3302 into ill-formed destructor names. */
3303 if (type_decl == error_mark_node && scope && TYPE_P (scope))
3304 return build_nt (BIT_NOT_EXPR, scope);
3305 else if (type_decl == error_mark_node)
3306 return error_mark_node;
3307
3308 /* [class.dtor]
3309
3310 A typedef-name that names a class shall not be used as the
3311 identifier in the declarator for a destructor declaration. */
3312 if (declarator_p
3313 && !DECL_IMPLICIT_TYPEDEF_P (type_decl)
3314 && !DECL_SELF_REFERENCE_P (type_decl)
3315 && !cp_parser_uncommitted_to_tentative_parse_p (parser))
3316 error ("typedef-name %qD used as destructor declarator",
3317 type_decl);
3318
3319 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3320 }
3321
3322 case CPP_KEYWORD:
3323 if (token->keyword == RID_OPERATOR)
3324 {
3325 tree id;
3326
3327 /* This could be a template-id, so we try that first. */
3328 cp_parser_parse_tentatively (parser);
3329 /* Try a template-id. */
3330 id = cp_parser_template_id (parser, template_keyword_p,
3331 /*check_dependency_p=*/true,
3332 declarator_p);
3333 /* If that worked, we're done. */
3334 if (cp_parser_parse_definitely (parser))
3335 return id;
3336 /* We still don't know whether we're looking at an
3337 operator-function-id or a conversion-function-id. */
3338 cp_parser_parse_tentatively (parser);
3339 /* Try an operator-function-id. */
3340 id = cp_parser_operator_function_id (parser);
3341 /* If that didn't work, try a conversion-function-id. */
3342 if (!cp_parser_parse_definitely (parser))
3343 id = cp_parser_conversion_function_id (parser);
3344
3345 return id;
3346 }
3347 /* Fall through. */
3348
3349 default:
3350 cp_parser_error (parser, "expected unqualified-id");
3351 return error_mark_node;
3352 }
3353 }
3354
3355 /* Parse an (optional) nested-name-specifier.
3356
3357 nested-name-specifier:
3358 class-or-namespace-name :: nested-name-specifier [opt]
3359 class-or-namespace-name :: template nested-name-specifier [opt]
3360
3361 PARSER->SCOPE should be set appropriately before this function is
3362 called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
3363 effect. TYPE_P is TRUE if we non-type bindings should be ignored
3364 in name lookups.
3365
3366 Sets PARSER->SCOPE to the class (TYPE) or namespace
3367 (NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
3368 it unchanged if there is no nested-name-specifier. Returns the new
3369 scope iff there is a nested-name-specifier, or NULL_TREE otherwise.
3370
3371 If IS_DECLARATION is TRUE, the nested-name-specifier is known to be
3372 part of a declaration and/or decl-specifier. */
3373
3374 static tree
3375 cp_parser_nested_name_specifier_opt (cp_parser *parser,
3376 bool typename_keyword_p,
3377 bool check_dependency_p,
3378 bool type_p,
3379 bool is_declaration)
3380 {
3381 bool success = false;
3382 tree access_check = NULL_TREE;
3383 cp_token_position start = 0;
3384 cp_token *token;
3385
3386 /* If the next token corresponds to a nested name specifier, there
3387 is no need to reparse it. However, if CHECK_DEPENDENCY_P is
3388 false, it may have been true before, in which case something
3389 like `A<X>::B<Y>::C' may have resulted in a nested-name-specifier
3390 of `A<X>::', where it should now be `A<X>::B<Y>::'. So, when
3391 CHECK_DEPENDENCY_P is false, we have to fall through into the
3392 main loop. */
3393 if (check_dependency_p
3394 && cp_lexer_next_token_is (parser->lexer, CPP_NESTED_NAME_SPECIFIER))
3395 {
3396 cp_parser_pre_parsed_nested_name_specifier (parser);
3397 return parser->scope;
3398 }
3399
3400 /* Remember where the nested-name-specifier starts. */
3401 if (cp_parser_uncommitted_to_tentative_parse_p (parser))
3402 start = cp_lexer_token_position (parser->lexer, false);
3403
3404 push_deferring_access_checks (dk_deferred);
3405
3406 while (true)
3407 {
3408 tree new_scope;
3409 tree old_scope;
3410 tree saved_qualifying_scope;
3411 bool template_keyword_p;
3412
3413 /* Spot cases that cannot be the beginning of a
3414 nested-name-specifier. */
3415 token = cp_lexer_peek_token (parser->lexer);
3416
3417 /* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
3418 the already parsed nested-name-specifier. */
3419 if (token->type == CPP_NESTED_NAME_SPECIFIER)
3420 {
3421 /* Grab the nested-name-specifier and continue the loop. */
3422 cp_parser_pre_parsed_nested_name_specifier (parser);
3423 success = true;
3424 continue;
3425 }
3426
3427 /* Spot cases that cannot be the beginning of a
3428 nested-name-specifier. On the second and subsequent times
3429 through the loop, we look for the `template' keyword. */
3430 if (success && token->keyword == RID_TEMPLATE)
3431 ;
3432 /* A template-id can start a nested-name-specifier. */
3433 else if (token->type == CPP_TEMPLATE_ID)
3434 ;
3435 else
3436 {
3437 /* If the next token is not an identifier, then it is
3438 definitely not a class-or-namespace-name. */
3439 if (token->type != CPP_NAME)
3440 break;
3441 /* If the following token is neither a `<' (to begin a
3442 template-id), nor a `::', then we are not looking at a
3443 nested-name-specifier. */
3444 token = cp_lexer_peek_nth_token (parser->lexer, 2);
3445 if (token->type != CPP_SCOPE
3446 && !cp_parser_nth_token_starts_template_argument_list_p
3447 (parser, 2))
3448 break;
3449 }
3450
3451 /* The nested-name-specifier is optional, so we parse
3452 tentatively. */
3453 cp_parser_parse_tentatively (parser);
3454
3455 /* Look for the optional `template' keyword, if this isn't the
3456 first time through the loop. */
3457 if (success)
3458 template_keyword_p = cp_parser_optional_template_keyword (parser);
3459 else
3460 template_keyword_p = false;
3461
3462 /* Save the old scope since the name lookup we are about to do
3463 might destroy it. */
3464 old_scope = parser->scope;
3465 saved_qualifying_scope = parser->qualifying_scope;
3466 /* In a declarator-id like "X<T>::I::Y<T>" we must be able to
3467 look up names in "X<T>::I" in order to determine that "Y" is
3468 a template. So, if we have a typename at this point, we make
3469 an effort to look through it. */
3470 if (is_declaration
3471 && !typename_keyword_p
3472 && parser->scope
3473 && TREE_CODE (parser->scope) == TYPENAME_TYPE)
3474 parser->scope = resolve_typename_type (parser->scope,
3475 /*only_current_p=*/false);
3476 /* Parse the qualifying entity. */
3477 new_scope
3478 = cp_parser_class_or_namespace_name (parser,
3479 typename_keyword_p,
3480 template_keyword_p,
3481 check_dependency_p,
3482 type_p,
3483 is_declaration);
3484 /* Look for the `::' token. */
3485 cp_parser_require (parser, CPP_SCOPE, "`::'");
3486
3487 /* If we found what we wanted, we keep going; otherwise, we're
3488 done. */
3489 if (!cp_parser_parse_definitely (parser))
3490 {
3491 bool error_p = false;
3492
3493 /* Restore the OLD_SCOPE since it was valid before the
3494 failed attempt at finding the last
3495 class-or-namespace-name. */
3496 parser->scope = old_scope;
3497 parser->qualifying_scope = saved_qualifying_scope;
3498 /* If the next token is an identifier, and the one after
3499 that is a `::', then any valid interpretation would have
3500 found a class-or-namespace-name. */
3501 while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3502 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3503 == CPP_SCOPE)
3504 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
3505 != CPP_COMPL))
3506 {
3507 token = cp_lexer_consume_token (parser->lexer);
3508 if (!error_p)
3509 {
3510 tree decl;
3511
3512 decl = cp_parser_lookup_name_simple (parser, token->value);
3513 if (TREE_CODE (decl) == TEMPLATE_DECL)
3514 error ("%qD used without template parameters", decl);
3515 else
3516 cp_parser_name_lookup_error
3517 (parser, token->value, decl,
3518 "is not a class or namespace");
3519 parser->scope = NULL_TREE;
3520 error_p = true;
3521 /* Treat this as a successful nested-name-specifier
3522 due to:
3523
3524 [basic.lookup.qual]
3525
3526 If the name found is not a class-name (clause
3527 _class_) or namespace-name (_namespace.def_), the
3528 program is ill-formed. */
3529 success = true;
3530 }
3531 cp_lexer_consume_token (parser->lexer);
3532 }
3533 break;
3534 }
3535
3536 /* We've found one valid nested-name-specifier. */
3537 success = true;
3538 /* Make sure we look in the right scope the next time through
3539 the loop. */
3540 parser->scope = (TREE_CODE (new_scope) == TYPE_DECL
3541 ? TREE_TYPE (new_scope)
3542 : new_scope);
3543 /* If it is a class scope, try to complete it; we are about to
3544 be looking up names inside the class. */
3545 if (TYPE_P (parser->scope)
3546 /* Since checking types for dependency can be expensive,
3547 avoid doing it if the type is already complete. */
3548 && !COMPLETE_TYPE_P (parser->scope)
3549 /* Do not try to complete dependent types. */
3550 && !dependent_type_p (parser->scope))
3551 complete_type (parser->scope);
3552 }
3553
3554 /* Retrieve any deferred checks. Do not pop this access checks yet
3555 so the memory will not be reclaimed during token replacing below. */
3556 access_check = get_deferred_access_checks ();
3557
3558 /* If parsing tentatively, replace the sequence of tokens that makes
3559 up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
3560 token. That way, should we re-parse the token stream, we will
3561 not have to repeat the effort required to do the parse, nor will
3562 we issue duplicate error messages. */
3563 if (success && start)
3564 {
3565 cp_token *token = cp_lexer_token_at (parser->lexer, start);
3566
3567 /* Reset the contents of the START token. */
3568 token->type = CPP_NESTED_NAME_SPECIFIER;
3569 token->value = build_tree_list (access_check, parser->scope);
3570 TREE_TYPE (token->value) = parser->qualifying_scope;
3571 token->keyword = RID_MAX;
3572
3573 /* Purge all subsequent tokens. */
3574 cp_lexer_purge_tokens_after (parser->lexer, start);
3575 }
3576
3577 pop_deferring_access_checks ();
3578 return success ? parser->scope : NULL_TREE;
3579 }
3580
3581 /* Parse a nested-name-specifier. See
3582 cp_parser_nested_name_specifier_opt for details. This function
3583 behaves identically, except that it will an issue an error if no
3584 nested-name-specifier is present, and it will return
3585 ERROR_MARK_NODE, rather than NULL_TREE, if no nested-name-specifier
3586 is present. */
3587
3588 static tree
3589 cp_parser_nested_name_specifier (cp_parser *parser,
3590 bool typename_keyword_p,
3591 bool check_dependency_p,
3592 bool type_p,
3593 bool is_declaration)
3594 {
3595 tree scope;
3596
3597 /* Look for the nested-name-specifier. */
3598 scope = cp_parser_nested_name_specifier_opt (parser,
3599 typename_keyword_p,
3600 check_dependency_p,
3601 type_p,
3602 is_declaration);
3603 /* If it was not present, issue an error message. */
3604 if (!scope)
3605 {
3606 cp_parser_error (parser, "expected nested-name-specifier");
3607 parser->scope = NULL_TREE;
3608 return error_mark_node;
3609 }
3610
3611 return scope;
3612 }
3613
3614 /* Parse a class-or-namespace-name.
3615
3616 class-or-namespace-name:
3617 class-name
3618 namespace-name
3619
3620 TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
3621 TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
3622 CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
3623 TYPE_P is TRUE iff the next name should be taken as a class-name,
3624 even the same name is declared to be another entity in the same
3625 scope.
3626
3627 Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
3628 specified by the class-or-namespace-name. If neither is found the
3629 ERROR_MARK_NODE is returned. */
3630
3631 static tree
3632 cp_parser_class_or_namespace_name (cp_parser *parser,
3633 bool typename_keyword_p,
3634 bool template_keyword_p,
3635 bool check_dependency_p,
3636 bool type_p,
3637 bool is_declaration)
3638 {
3639 tree saved_scope;
3640 tree saved_qualifying_scope;
3641 tree saved_object_scope;
3642 tree scope;
3643 bool only_class_p;
3644
3645 /* Before we try to parse the class-name, we must save away the
3646 current PARSER->SCOPE since cp_parser_class_name will destroy
3647 it. */
3648 saved_scope = parser->scope;
3649 saved_qualifying_scope = parser->qualifying_scope;
3650 saved_object_scope = parser->object_scope;
3651 /* Try for a class-name first. If the SAVED_SCOPE is a type, then
3652 there is no need to look for a namespace-name. */
3653 only_class_p = template_keyword_p || (saved_scope && TYPE_P (saved_scope));
3654 if (!only_class_p)
3655 cp_parser_parse_tentatively (parser);
3656 scope = cp_parser_class_name (parser,
3657 typename_keyword_p,
3658 template_keyword_p,
3659 type_p ? class_type : none_type,
3660 check_dependency_p,
3661 /*class_head_p=*/false,
3662 is_declaration);
3663 /* If that didn't work, try for a namespace-name. */
3664 if (!only_class_p && !cp_parser_parse_definitely (parser))
3665 {
3666 /* Restore the saved scope. */
3667 parser->scope = saved_scope;
3668 parser->qualifying_scope = saved_qualifying_scope;
3669 parser->object_scope = saved_object_scope;
3670 /* If we are not looking at an identifier followed by the scope
3671 resolution operator, then this is not part of a
3672 nested-name-specifier. (Note that this function is only used
3673 to parse the components of a nested-name-specifier.) */
3674 if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
3675 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
3676 return error_mark_node;
3677 scope = cp_parser_namespace_name (parser);
3678 }
3679
3680 return scope;
3681 }
3682
3683 /* Parse a postfix-expression.
3684
3685 postfix-expression:
3686 primary-expression
3687 postfix-expression [ expression ]
3688 postfix-expression ( expression-list [opt] )
3689 simple-type-specifier ( expression-list [opt] )
3690 typename :: [opt] nested-name-specifier identifier
3691 ( expression-list [opt] )
3692 typename :: [opt] nested-name-specifier template [opt] template-id
3693 ( expression-list [opt] )
3694 postfix-expression . template [opt] id-expression
3695 postfix-expression -> template [opt] id-expression
3696 postfix-expression . pseudo-destructor-name
3697 postfix-expression -> pseudo-destructor-name
3698 postfix-expression ++
3699 postfix-expression --
3700 dynamic_cast < type-id > ( expression )
3701 static_cast < type-id > ( expression )
3702 reinterpret_cast < type-id > ( expression )
3703 const_cast < type-id > ( expression )
3704 typeid ( expression )
3705 typeid ( type-id )
3706
3707 GNU Extension:
3708
3709 postfix-expression:
3710 ( type-id ) { initializer-list , [opt] }
3711
3712 This extension is a GNU version of the C99 compound-literal
3713 construct. (The C99 grammar uses `type-name' instead of `type-id',
3714 but they are essentially the same concept.)
3715
3716 If ADDRESS_P is true, the postfix expression is the operand of the
3717 `&' operator. CAST_P is true if this expression is the target of a
3718 cast.
3719
3720 Returns a representation of the expression. */
3721
3722 static tree
3723 cp_parser_postfix_expression (cp_parser *parser, bool address_p, bool cast_p)
3724 {
3725 cp_token *token;
3726 enum rid keyword;
3727 cp_id_kind idk = CP_ID_KIND_NONE;
3728 tree postfix_expression = NULL_TREE;
3729 /* Non-NULL only if the current postfix-expression can be used to
3730 form a pointer-to-member. In that case, QUALIFYING_CLASS is the
3731 class used to qualify the member. */
3732 tree qualifying_class = NULL_TREE;
3733
3734 /* Peek at the next token. */
3735 token = cp_lexer_peek_token (parser->lexer);
3736 /* Some of the productions are determined by keywords. */
3737 keyword = token->keyword;
3738 switch (keyword)
3739 {
3740 case RID_DYNCAST:
3741 case RID_STATCAST:
3742 case RID_REINTCAST:
3743 case RID_CONSTCAST:
3744 {
3745 tree type;
3746 tree expression;
3747 const char *saved_message;
3748
3749 /* All of these can be handled in the same way from the point
3750 of view of parsing. Begin by consuming the token
3751 identifying the cast. */
3752 cp_lexer_consume_token (parser->lexer);
3753
3754 /* New types cannot be defined in the cast. */
3755 saved_message = parser->type_definition_forbidden_message;
3756 parser->type_definition_forbidden_message
3757 = "types may not be defined in casts";
3758
3759 /* Look for the opening `<'. */
3760 cp_parser_require (parser, CPP_LESS, "`<'");
3761 /* Parse the type to which we are casting. */
3762 type = cp_parser_type_id (parser);
3763 /* Look for the closing `>'. */
3764 cp_parser_require (parser, CPP_GREATER, "`>'");
3765 /* Restore the old message. */
3766 parser->type_definition_forbidden_message = saved_message;
3767
3768 /* And the expression which is being cast. */
3769 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3770 expression = cp_parser_expression (parser, /*cast_p=*/true);
3771 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3772
3773 /* Only type conversions to integral or enumeration types
3774 can be used in constant-expressions. */
3775 if (parser->integral_constant_expression_p
3776 && !dependent_type_p (type)
3777 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
3778 && (cp_parser_non_integral_constant_expression
3779 (parser,
3780 "a cast to a type other than an integral or "
3781 "enumeration type")))
3782 return error_mark_node;
3783
3784 switch (keyword)
3785 {
3786 case RID_DYNCAST:
3787 postfix_expression
3788 = build_dynamic_cast (type, expression);
3789 break;
3790 case RID_STATCAST:
3791 postfix_expression
3792 = build_static_cast (type, expression);
3793 break;
3794 case RID_REINTCAST:
3795 postfix_expression
3796 = build_reinterpret_cast (type, expression);
3797 break;
3798 case RID_CONSTCAST:
3799 postfix_expression
3800 = build_const_cast (type, expression);
3801 break;
3802 default:
3803 gcc_unreachable ();
3804 }
3805 }
3806 break;
3807
3808 case RID_TYPEID:
3809 {
3810 tree type;
3811 const char *saved_message;
3812 bool saved_in_type_id_in_expr_p;
3813
3814 /* Consume the `typeid' token. */
3815 cp_lexer_consume_token (parser->lexer);
3816 /* Look for the `(' token. */
3817 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3818 /* Types cannot be defined in a `typeid' expression. */
3819 saved_message = parser->type_definition_forbidden_message;
3820 parser->type_definition_forbidden_message
3821 = "types may not be defined in a `typeid\' expression";
3822 /* We can't be sure yet whether we're looking at a type-id or an
3823 expression. */
3824 cp_parser_parse_tentatively (parser);
3825 /* Try a type-id first. */
3826 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3827 parser->in_type_id_in_expr_p = true;
3828 type = cp_parser_type_id (parser);
3829 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3830 /* Look for the `)' token. Otherwise, we can't be sure that
3831 we're not looking at an expression: consider `typeid (int
3832 (3))', for example. */
3833 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3834 /* If all went well, simply lookup the type-id. */
3835 if (cp_parser_parse_definitely (parser))
3836 postfix_expression = get_typeid (type);
3837 /* Otherwise, fall back to the expression variant. */
3838 else
3839 {
3840 tree expression;
3841
3842 /* Look for an expression. */
3843 expression = cp_parser_expression (parser, /*cast_p=*/false);
3844 /* Compute its typeid. */
3845 postfix_expression = build_typeid (expression);
3846 /* Look for the `)' token. */
3847 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3848 }
3849 /* `typeid' may not appear in an integral constant expression. */
3850 if (cp_parser_non_integral_constant_expression(parser,
3851 "`typeid' operator"))
3852 return error_mark_node;
3853 /* Restore the saved message. */
3854 parser->type_definition_forbidden_message = saved_message;
3855 }
3856 break;
3857
3858 case RID_TYPENAME:
3859 {
3860 bool template_p = false;
3861 tree id;
3862 tree type;
3863
3864 /* Consume the `typename' token. */
3865 cp_lexer_consume_token (parser->lexer);
3866 /* Look for the optional `::' operator. */
3867 cp_parser_global_scope_opt (parser,
3868 /*current_scope_valid_p=*/false);
3869 /* Look for the nested-name-specifier. */
3870 cp_parser_nested_name_specifier (parser,
3871 /*typename_keyword_p=*/true,
3872 /*check_dependency_p=*/true,
3873 /*type_p=*/true,
3874 /*is_declaration=*/true);
3875 /* Look for the optional `template' keyword. */
3876 template_p = cp_parser_optional_template_keyword (parser);
3877 /* We don't know whether we're looking at a template-id or an
3878 identifier. */
3879 cp_parser_parse_tentatively (parser);
3880 /* Try a template-id. */
3881 id = cp_parser_template_id (parser, template_p,
3882 /*check_dependency_p=*/true,
3883 /*is_declaration=*/true);
3884 /* If that didn't work, try an identifier. */
3885 if (!cp_parser_parse_definitely (parser))
3886 id = cp_parser_identifier (parser);
3887 /* If we look up a template-id in a non-dependent qualifying
3888 scope, there's no need to create a dependent type. */
3889 if (TREE_CODE (id) == TYPE_DECL
3890 && !dependent_type_p (parser->scope))
3891 type = TREE_TYPE (id);
3892 /* Create a TYPENAME_TYPE to represent the type to which the
3893 functional cast is being performed. */
3894 else
3895 type = make_typename_type (parser->scope, id,
3896 typename_type,
3897 /*complain=*/1);
3898
3899 postfix_expression = cp_parser_functional_cast (parser, type);
3900 }
3901 break;
3902
3903 default:
3904 {
3905 tree type;
3906
3907 /* If the next thing is a simple-type-specifier, we may be
3908 looking at a functional cast. We could also be looking at
3909 an id-expression. So, we try the functional cast, and if
3910 that doesn't work we fall back to the primary-expression. */
3911 cp_parser_parse_tentatively (parser);
3912 /* Look for the simple-type-specifier. */
3913 type = cp_parser_simple_type_specifier (parser,
3914 /*decl_specs=*/NULL,
3915 CP_PARSER_FLAGS_NONE);
3916 /* Parse the cast itself. */
3917 if (!cp_parser_error_occurred (parser))
3918 postfix_expression
3919 = cp_parser_functional_cast (parser, type);
3920 /* If that worked, we're done. */
3921 if (cp_parser_parse_definitely (parser))
3922 break;
3923
3924 /* If the functional-cast didn't work out, try a
3925 compound-literal. */
3926 if (cp_parser_allow_gnu_extensions_p (parser)
3927 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
3928 {
3929 tree initializer_list = NULL_TREE;
3930 bool saved_in_type_id_in_expr_p;
3931
3932 cp_parser_parse_tentatively (parser);
3933 /* Consume the `('. */
3934 cp_lexer_consume_token (parser->lexer);
3935 /* Parse the type. */
3936 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3937 parser->in_type_id_in_expr_p = true;
3938 type = cp_parser_type_id (parser);
3939 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3940 /* Look for the `)'. */
3941 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3942 /* Look for the `{'. */
3943 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
3944 /* If things aren't going well, there's no need to
3945 keep going. */
3946 if (!cp_parser_error_occurred (parser))
3947 {
3948 bool non_constant_p;
3949 /* Parse the initializer-list. */
3950 initializer_list
3951 = cp_parser_initializer_list (parser, &non_constant_p);
3952 /* Allow a trailing `,'. */
3953 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
3954 cp_lexer_consume_token (parser->lexer);
3955 /* Look for the final `}'. */
3956 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
3957 }
3958 /* If that worked, we're definitely looking at a
3959 compound-literal expression. */
3960 if (cp_parser_parse_definitely (parser))
3961 {
3962 /* Warn the user that a compound literal is not
3963 allowed in standard C++. */
3964 if (pedantic)
3965 pedwarn ("ISO C++ forbids compound-literals");
3966 /* Form the representation of the compound-literal. */
3967 postfix_expression
3968 = finish_compound_literal (type, initializer_list);
3969 break;
3970 }
3971 }
3972
3973 /* It must be a primary-expression. */
3974 postfix_expression = cp_parser_primary_expression (parser,
3975 cast_p,
3976 &idk,
3977 &qualifying_class);
3978 }
3979 break;
3980 }
3981
3982 /* If we were avoiding committing to the processing of a
3983 qualified-id until we knew whether or not we had a
3984 pointer-to-member, we now know. */
3985 if (qualifying_class)
3986 {
3987 bool done;
3988
3989 /* Peek at the next token. */
3990 token = cp_lexer_peek_token (parser->lexer);
3991 done = (token->type != CPP_OPEN_SQUARE
3992 && token->type != CPP_OPEN_PAREN
3993 && token->type != CPP_DOT
3994 && token->type != CPP_DEREF
3995 && token->type != CPP_PLUS_PLUS
3996 && token->type != CPP_MINUS_MINUS);
3997
3998 postfix_expression = finish_qualified_id_expr (qualifying_class,
3999 postfix_expression,
4000 done,
4001 address_p);
4002 if (done)
4003 return postfix_expression;
4004 }
4005
4006 /* Keep looping until the postfix-expression is complete. */
4007 while (true)
4008 {
4009 if (idk == CP_ID_KIND_UNQUALIFIED
4010 && TREE_CODE (postfix_expression) == IDENTIFIER_NODE
4011 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
4012 /* It is not a Koenig lookup function call. */
4013 postfix_expression
4014 = unqualified_name_lookup_error (postfix_expression);
4015
4016 /* Peek at the next token. */
4017 token = cp_lexer_peek_token (parser->lexer);
4018
4019 switch (token->type)
4020 {
4021 case CPP_OPEN_SQUARE:
4022 postfix_expression
4023 = cp_parser_postfix_open_square_expression (parser,
4024 postfix_expression,
4025 false);
4026 idk = CP_ID_KIND_NONE;
4027 break;
4028
4029 case CPP_OPEN_PAREN:
4030 /* postfix-expression ( expression-list [opt] ) */
4031 {
4032 bool koenig_p;
4033 tree args = (cp_parser_parenthesized_expression_list
4034 (parser, false,
4035 /*cast_p=*/false,
4036 /*non_constant_p=*/NULL));
4037
4038 if (args == error_mark_node)
4039 {
4040 postfix_expression = error_mark_node;
4041 break;
4042 }
4043
4044 /* Function calls are not permitted in
4045 constant-expressions. */
4046 if (! builtin_valid_in_constant_expr_p (postfix_expression)
4047 && cp_parser_non_integral_constant_expression (parser,
4048 "a function call"))
4049 {
4050 postfix_expression = error_mark_node;
4051 break;
4052 }
4053
4054 koenig_p = false;
4055 if (idk == CP_ID_KIND_UNQUALIFIED)
4056 {
4057 if (TREE_CODE (postfix_expression) == IDENTIFIER_NODE)
4058 {
4059 if (args)
4060 {
4061 koenig_p = true;
4062 postfix_expression
4063 = perform_koenig_lookup (postfix_expression, args);
4064 }
4065 else
4066 postfix_expression
4067 = unqualified_fn_lookup_error (postfix_expression);
4068 }
4069 /* We do not perform argument-dependent lookup if
4070 normal lookup finds a non-function, in accordance
4071 with the expected resolution of DR 218. */
4072 else if (args && is_overloaded_fn (postfix_expression))
4073 {
4074 tree fn = get_first_fn (postfix_expression);
4075
4076 if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
4077 fn = OVL_CURRENT (TREE_OPERAND (fn, 0));
4078
4079 /* Only do argument dependent lookup if regular
4080 lookup does not find a set of member functions.
4081 [basic.lookup.koenig]/2a */
4082 if (!DECL_FUNCTION_MEMBER_P (fn))
4083 {
4084 koenig_p = true;
4085 postfix_expression
4086 = perform_koenig_lookup (postfix_expression, args);
4087 }
4088 }
4089 }
4090
4091 if (TREE_CODE (postfix_expression) == COMPONENT_REF)
4092 {
4093 tree instance = TREE_OPERAND (postfix_expression, 0);
4094 tree fn = TREE_OPERAND (postfix_expression, 1);
4095
4096 if (processing_template_decl
4097 && (type_dependent_expression_p (instance)
4098 || (!BASELINK_P (fn)
4099 && TREE_CODE (fn) != FIELD_DECL)
4100 || type_dependent_expression_p (fn)
4101 || any_type_dependent_arguments_p (args)))
4102 {
4103 postfix_expression
4104 = build_min_nt (CALL_EXPR, postfix_expression,
4105 args, NULL_TREE);
4106 break;
4107 }
4108
4109 if (BASELINK_P (fn))
4110 postfix_expression
4111 = (build_new_method_call
4112 (instance, fn, args, NULL_TREE,
4113 (idk == CP_ID_KIND_QUALIFIED
4114 ? LOOKUP_NONVIRTUAL : LOOKUP_NORMAL)));
4115 else
4116 postfix_expression
4117 = finish_call_expr (postfix_expression, args,
4118 /*disallow_virtual=*/false,
4119 /*koenig_p=*/false);
4120 }
4121 else if (TREE_CODE (postfix_expression) == OFFSET_REF
4122 || TREE_CODE (postfix_expression) == MEMBER_REF
4123 || TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
4124 postfix_expression = (build_offset_ref_call_from_tree
4125 (postfix_expression, args));
4126 else if (idk == CP_ID_KIND_QUALIFIED)
4127 /* A call to a static class member, or a namespace-scope
4128 function. */
4129 postfix_expression
4130 = finish_call_expr (postfix_expression, args,
4131 /*disallow_virtual=*/true,
4132 koenig_p);
4133 else
4134 /* All other function calls. */
4135 postfix_expression
4136 = finish_call_expr (postfix_expression, args,
4137 /*disallow_virtual=*/false,
4138 koenig_p);
4139
4140 /* The POSTFIX_EXPRESSION is certainly no longer an id. */
4141 idk = CP_ID_KIND_NONE;
4142 }
4143 break;
4144
4145 case CPP_DOT:
4146 case CPP_DEREF:
4147 /* postfix-expression . template [opt] id-expression
4148 postfix-expression . pseudo-destructor-name
4149 postfix-expression -> template [opt] id-expression
4150 postfix-expression -> pseudo-destructor-name */
4151
4152 /* Consume the `.' or `->' operator. */
4153 cp_lexer_consume_token (parser->lexer);
4154
4155 postfix_expression
4156 = cp_parser_postfix_dot_deref_expression (parser, token->type,
4157 postfix_expression,
4158 false, &idk);
4159 break;
4160
4161 case CPP_PLUS_PLUS:
4162 /* postfix-expression ++ */
4163 /* Consume the `++' token. */
4164 cp_lexer_consume_token (parser->lexer);
4165 /* Generate a representation for the complete expression. */
4166 postfix_expression
4167 = finish_increment_expr (postfix_expression,
4168 POSTINCREMENT_EXPR);
4169 /* Increments may not appear in constant-expressions. */
4170 if (cp_parser_non_integral_constant_expression (parser,
4171 "an increment"))
4172 postfix_expression = error_mark_node;
4173 idk = CP_ID_KIND_NONE;
4174 break;
4175
4176 case CPP_MINUS_MINUS:
4177 /* postfix-expression -- */
4178 /* Consume the `--' token. */
4179 cp_lexer_consume_token (parser->lexer);
4180 /* Generate a representation for the complete expression. */
4181 postfix_expression
4182 = finish_increment_expr (postfix_expression,
4183 POSTDECREMENT_EXPR);
4184 /* Decrements may not appear in constant-expressions. */
4185 if (cp_parser_non_integral_constant_expression (parser,
4186 "a decrement"))
4187 postfix_expression = error_mark_node;
4188 idk = CP_ID_KIND_NONE;
4189 break;
4190
4191 default:
4192 return postfix_expression;
4193 }
4194 }
4195
4196 /* We should never get here. */
4197 gcc_unreachable ();
4198 return error_mark_node;
4199 }
4200
4201 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4202 by cp_parser_builtin_offsetof. We're looking for
4203
4204 postfix-expression [ expression ]
4205
4206 FOR_OFFSETOF is set if we're being called in that context, which
4207 changes how we deal with integer constant expressions. */
4208
4209 static tree
4210 cp_parser_postfix_open_square_expression (cp_parser *parser,
4211 tree postfix_expression,
4212 bool for_offsetof)
4213 {
4214 tree index;
4215
4216 /* Consume the `[' token. */
4217 cp_lexer_consume_token (parser->lexer);
4218
4219 /* Parse the index expression. */
4220 /* ??? For offsetof, there is a question of what to allow here. If
4221 offsetof is not being used in an integral constant expression context,
4222 then we *could* get the right answer by computing the value at runtime.
4223 If we are in an integral constant expression context, then we might
4224 could accept any constant expression; hard to say without analysis.
4225 Rather than open the barn door too wide right away, allow only integer
4226 constant expressions here. */
4227 if (for_offsetof)
4228 index = cp_parser_constant_expression (parser, false, NULL);
4229 else
4230 index = cp_parser_expression (parser, /*cast_p=*/false);
4231
4232 /* Look for the closing `]'. */
4233 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
4234
4235 /* Build the ARRAY_REF. */
4236 postfix_expression = grok_array_decl (postfix_expression, index);
4237
4238 /* When not doing offsetof, array references are not permitted in
4239 constant-expressions. */
4240 if (!for_offsetof
4241 && (cp_parser_non_integral_constant_expression
4242 (parser, "an array reference")))
4243 postfix_expression = error_mark_node;
4244
4245 return postfix_expression;
4246 }
4247
4248 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4249 by cp_parser_builtin_offsetof. We're looking for
4250
4251 postfix-expression . template [opt] id-expression
4252 postfix-expression . pseudo-destructor-name
4253 postfix-expression -> template [opt] id-expression
4254 postfix-expression -> pseudo-destructor-name
4255
4256 FOR_OFFSETOF is set if we're being called in that context. That sorta
4257 limits what of the above we'll actually accept, but nevermind.
4258 TOKEN_TYPE is the "." or "->" token, which will already have been
4259 removed from the stream. */
4260
4261 static tree
4262 cp_parser_postfix_dot_deref_expression (cp_parser *parser,
4263 enum cpp_ttype token_type,
4264 tree postfix_expression,
4265 bool for_offsetof, cp_id_kind *idk)
4266 {
4267 tree name;
4268 bool dependent_p;
4269 bool template_p;
4270 bool pseudo_destructor_p;
4271 tree scope = NULL_TREE;
4272
4273 /* If this is a `->' operator, dereference the pointer. */
4274 if (token_type == CPP_DEREF)
4275 postfix_expression = build_x_arrow (postfix_expression);
4276 /* Check to see whether or not the expression is type-dependent. */
4277 dependent_p = type_dependent_expression_p (postfix_expression);
4278 /* The identifier following the `->' or `.' is not qualified. */
4279 parser->scope = NULL_TREE;
4280 parser->qualifying_scope = NULL_TREE;
4281 parser->object_scope = NULL_TREE;
4282 *idk = CP_ID_KIND_NONE;
4283 /* Enter the scope corresponding to the type of the object
4284 given by the POSTFIX_EXPRESSION. */
4285 if (!dependent_p && TREE_TYPE (postfix_expression) != NULL_TREE)
4286 {
4287 scope = TREE_TYPE (postfix_expression);
4288 /* According to the standard, no expression should ever have
4289 reference type. Unfortunately, we do not currently match
4290 the standard in this respect in that our internal representation
4291 of an expression may have reference type even when the standard
4292 says it does not. Therefore, we have to manually obtain the
4293 underlying type here. */
4294 scope = non_reference (scope);
4295 /* The type of the POSTFIX_EXPRESSION must be complete. */
4296 scope = complete_type_or_else (scope, NULL_TREE);
4297 /* Let the name lookup machinery know that we are processing a
4298 class member access expression. */
4299 parser->context->object_type = scope;
4300 /* If something went wrong, we want to be able to discern that case,
4301 as opposed to the case where there was no SCOPE due to the type
4302 of expression being dependent. */
4303 if (!scope)
4304 scope = error_mark_node;
4305 /* If the SCOPE was erroneous, make the various semantic analysis
4306 functions exit quickly -- and without issuing additional error
4307 messages. */
4308 if (scope == error_mark_node)
4309 postfix_expression = error_mark_node;
4310 }
4311
4312 /* Assume this expression is not a pseudo-destructor access. */
4313 pseudo_destructor_p = false;
4314
4315 /* If the SCOPE is a scalar type, then, if this is a valid program,
4316 we must be looking at a pseudo-destructor-name. */
4317 if (scope && SCALAR_TYPE_P (scope))
4318 {
4319 tree s;
4320 tree type;
4321
4322 cp_parser_parse_tentatively (parser);
4323 /* Parse the pseudo-destructor-name. */
4324 s = NULL_TREE;
4325 cp_parser_pseudo_destructor_name (parser, &s, &type);
4326 if (cp_parser_parse_definitely (parser))
4327 {
4328 pseudo_destructor_p = true;
4329 postfix_expression
4330 = finish_pseudo_destructor_expr (postfix_expression,
4331 s, TREE_TYPE (type));
4332 }
4333 }
4334
4335 if (!pseudo_destructor_p)
4336 {
4337 /* If the SCOPE is not a scalar type, we are looking at an
4338 ordinary class member access expression, rather than a
4339 pseudo-destructor-name. */
4340 template_p = cp_parser_optional_template_keyword (parser);
4341 /* Parse the id-expression. */
4342 name = cp_parser_id_expression (parser, template_p,
4343 /*check_dependency_p=*/true,
4344 /*template_p=*/NULL,
4345 /*declarator_p=*/false);
4346 /* In general, build a SCOPE_REF if the member name is qualified.
4347 However, if the name was not dependent and has already been
4348 resolved; there is no need to build the SCOPE_REF. For example;
4349
4350 struct X { void f(); };
4351 template <typename T> void f(T* t) { t->X::f(); }
4352
4353 Even though "t" is dependent, "X::f" is not and has been resolved
4354 to a BASELINK; there is no need to include scope information. */
4355
4356 /* But we do need to remember that there was an explicit scope for
4357 virtual function calls. */
4358 if (parser->scope)
4359 *idk = CP_ID_KIND_QUALIFIED;
4360
4361 /* If the name is a template-id that names a type, we will get a
4362 TYPE_DECL here. That is invalid code. */
4363 if (TREE_CODE (name) == TYPE_DECL)
4364 {
4365 error ("invalid use of %qD", name);
4366 postfix_expression = error_mark_node;
4367 }
4368 else
4369 {
4370 if (name != error_mark_node && !BASELINK_P (name) && parser->scope)
4371 {
4372 name = build_nt (SCOPE_REF, parser->scope, name);
4373 parser->scope = NULL_TREE;
4374 parser->qualifying_scope = NULL_TREE;
4375 parser->object_scope = NULL_TREE;
4376 }
4377 if (scope && name && BASELINK_P (name))
4378 adjust_result_of_qualified_name_lookup
4379 (name, BINFO_TYPE (BASELINK_BINFO (name)), scope);
4380 postfix_expression
4381 = finish_class_member_access_expr (postfix_expression, name);
4382 }
4383 }
4384
4385 /* We no longer need to look up names in the scope of the object on
4386 the left-hand side of the `.' or `->' operator. */
4387 parser->context->object_type = NULL_TREE;
4388
4389 /* Outside of offsetof, these operators may not appear in
4390 constant-expressions. */
4391 if (!for_offsetof
4392 && (cp_parser_non_integral_constant_expression
4393 (parser, token_type == CPP_DEREF ? "'->'" : "`.'")))
4394 postfix_expression = error_mark_node;
4395
4396 return postfix_expression;
4397 }
4398
4399 /* Parse a parenthesized expression-list.
4400
4401 expression-list:
4402 assignment-expression
4403 expression-list, assignment-expression
4404
4405 attribute-list:
4406 expression-list
4407 identifier
4408 identifier, expression-list
4409
4410 CAST_P is true if this expression is the target of a cast.
4411
4412 Returns a TREE_LIST. The TREE_VALUE of each node is a
4413 representation of an assignment-expression. Note that a TREE_LIST
4414 is returned even if there is only a single expression in the list.
4415 error_mark_node is returned if the ( and or ) are
4416 missing. NULL_TREE is returned on no expressions. The parentheses
4417 are eaten. IS_ATTRIBUTE_LIST is true if this is really an attribute
4418 list being parsed. If NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P
4419 indicates whether or not all of the expressions in the list were
4420 constant. */
4421
4422 static tree
4423 cp_parser_parenthesized_expression_list (cp_parser* parser,
4424 bool is_attribute_list,
4425 bool cast_p,
4426 bool *non_constant_p)
4427 {
4428 tree expression_list = NULL_TREE;
4429 bool fold_expr_p = is_attribute_list;
4430 tree identifier = NULL_TREE;
4431
4432 /* Assume all the expressions will be constant. */
4433 if (non_constant_p)
4434 *non_constant_p = false;
4435
4436 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
4437 return error_mark_node;
4438
4439 /* Consume expressions until there are no more. */
4440 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
4441 while (true)
4442 {
4443 tree expr;
4444
4445 /* At the beginning of attribute lists, check to see if the
4446 next token is an identifier. */
4447 if (is_attribute_list
4448 && cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
4449 {
4450 cp_token *token;
4451
4452 /* Consume the identifier. */
4453 token = cp_lexer_consume_token (parser->lexer);
4454 /* Save the identifier. */
4455 identifier = token->value;
4456 }
4457 else
4458 {
4459 /* Parse the next assignment-expression. */
4460 if (non_constant_p)
4461 {
4462 bool expr_non_constant_p;
4463 expr = (cp_parser_constant_expression
4464 (parser, /*allow_non_constant_p=*/true,
4465 &expr_non_constant_p));
4466 if (expr_non_constant_p)
4467 *non_constant_p = true;
4468 }
4469 else
4470 expr = cp_parser_assignment_expression (parser, cast_p);
4471
4472 if (fold_expr_p)
4473 expr = fold_non_dependent_expr (expr);
4474
4475 /* Add it to the list. We add error_mark_node
4476 expressions to the list, so that we can still tell if
4477 the correct form for a parenthesized expression-list
4478 is found. That gives better errors. */
4479 expression_list = tree_cons (NULL_TREE, expr, expression_list);
4480
4481 if (expr == error_mark_node)
4482 goto skip_comma;
4483 }
4484
4485 /* After the first item, attribute lists look the same as
4486 expression lists. */
4487 is_attribute_list = false;
4488
4489 get_comma:;
4490 /* If the next token isn't a `,', then we are done. */
4491 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
4492 break;
4493
4494 /* Otherwise, consume the `,' and keep going. */
4495 cp_lexer_consume_token (parser->lexer);
4496 }
4497
4498 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
4499 {
4500 int ending;
4501
4502 skip_comma:;
4503 /* We try and resync to an unnested comma, as that will give the
4504 user better diagnostics. */
4505 ending = cp_parser_skip_to_closing_parenthesis (parser,
4506 /*recovering=*/true,
4507 /*or_comma=*/true,
4508 /*consume_paren=*/true);
4509 if (ending < 0)
4510 goto get_comma;
4511 if (!ending)
4512 return error_mark_node;
4513 }
4514
4515 /* We built up the list in reverse order so we must reverse it now. */
4516 expression_list = nreverse (expression_list);
4517 if (identifier)
4518 expression_list = tree_cons (NULL_TREE, identifier, expression_list);
4519
4520 return expression_list;
4521 }
4522
4523 /* Parse a pseudo-destructor-name.
4524
4525 pseudo-destructor-name:
4526 :: [opt] nested-name-specifier [opt] type-name :: ~ type-name
4527 :: [opt] nested-name-specifier template template-id :: ~ type-name
4528 :: [opt] nested-name-specifier [opt] ~ type-name
4529
4530 If either of the first two productions is used, sets *SCOPE to the
4531 TYPE specified before the final `::'. Otherwise, *SCOPE is set to
4532 NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name,
4533 or ERROR_MARK_NODE if the parse fails. */
4534
4535 static void
4536 cp_parser_pseudo_destructor_name (cp_parser* parser,
4537 tree* scope,
4538 tree* type)
4539 {
4540 bool nested_name_specifier_p;
4541
4542 /* Assume that things will not work out. */
4543 *type = error_mark_node;
4544
4545 /* Look for the optional `::' operator. */
4546 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
4547 /* Look for the optional nested-name-specifier. */
4548 nested_name_specifier_p
4549 = (cp_parser_nested_name_specifier_opt (parser,
4550 /*typename_keyword_p=*/false,
4551 /*check_dependency_p=*/true,
4552 /*type_p=*/false,
4553 /*is_declaration=*/true)
4554 != NULL_TREE);
4555 /* Now, if we saw a nested-name-specifier, we might be doing the
4556 second production. */
4557 if (nested_name_specifier_p
4558 && cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
4559 {
4560 /* Consume the `template' keyword. */
4561 cp_lexer_consume_token (parser->lexer);
4562 /* Parse the template-id. */
4563 cp_parser_template_id (parser,
4564 /*template_keyword_p=*/true,
4565 /*check_dependency_p=*/false,
4566 /*is_declaration=*/true);
4567 /* Look for the `::' token. */
4568 cp_parser_require (parser, CPP_SCOPE, "`::'");
4569 }
4570 /* If the next token is not a `~', then there might be some
4571 additional qualification. */
4572 else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
4573 {
4574 /* Look for the type-name. */
4575 *scope = TREE_TYPE (cp_parser_type_name (parser));
4576
4577 if (*scope == error_mark_node)
4578 return;
4579
4580 /* If we don't have ::~, then something has gone wrong. Since
4581 the only caller of this function is looking for something
4582 after `.' or `->' after a scalar type, most likely the
4583 program is trying to get a member of a non-aggregate
4584 type. */
4585 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE)
4586 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_COMPL)
4587 {
4588 cp_parser_error (parser, "request for member of non-aggregate type");
4589 return;
4590 }
4591
4592 /* Look for the `::' token. */
4593 cp_parser_require (parser, CPP_SCOPE, "`::'");
4594 }
4595 else
4596 *scope = NULL_TREE;
4597
4598 /* Look for the `~'. */
4599 cp_parser_require (parser, CPP_COMPL, "`~'");
4600 /* Look for the type-name again. We are not responsible for
4601 checking that it matches the first type-name. */
4602 *type = cp_parser_type_name (parser);
4603 }
4604
4605 /* Parse a unary-expression.
4606
4607 unary-expression:
4608 postfix-expression
4609 ++ cast-expression
4610 -- cast-expression
4611 unary-operator cast-expression
4612 sizeof unary-expression
4613 sizeof ( type-id )
4614 new-expression
4615 delete-expression
4616
4617 GNU Extensions:
4618
4619 unary-expression:
4620 __extension__ cast-expression
4621 __alignof__ unary-expression
4622 __alignof__ ( type-id )
4623 __real__ cast-expression
4624 __imag__ cast-expression
4625 && identifier
4626
4627 ADDRESS_P is true iff the unary-expression is appearing as the
4628 operand of the `&' operator. CAST_P is true if this expression is
4629 the target of a cast.
4630
4631 Returns a representation of the expression. */
4632
4633 static tree
4634 cp_parser_unary_expression (cp_parser *parser, bool address_p, bool cast_p)
4635 {
4636 cp_token *token;
4637 enum tree_code unary_operator;
4638
4639 /* Peek at the next token. */
4640 token = cp_lexer_peek_token (parser->lexer);
4641 /* Some keywords give away the kind of expression. */
4642 if (token->type == CPP_KEYWORD)
4643 {
4644 enum rid keyword = token->keyword;
4645
4646 switch (keyword)
4647 {
4648 case RID_ALIGNOF:
4649 case RID_SIZEOF:
4650 {
4651 tree operand;
4652 enum tree_code op;
4653
4654 op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
4655 /* Consume the token. */
4656 cp_lexer_consume_token (parser->lexer);
4657 /* Parse the operand. */
4658 operand = cp_parser_sizeof_operand (parser, keyword);
4659
4660 if (TYPE_P (operand))
4661 return cxx_sizeof_or_alignof_type (operand, op, true);
4662 else
4663 return cxx_sizeof_or_alignof_expr (operand, op);
4664 }
4665
4666 case RID_NEW:
4667 return cp_parser_new_expression (parser);
4668
4669 case RID_DELETE:
4670 return cp_parser_delete_expression (parser);
4671
4672 case RID_EXTENSION:
4673 {
4674 /* The saved value of the PEDANTIC flag. */
4675 int saved_pedantic;
4676 tree expr;
4677
4678 /* Save away the PEDANTIC flag. */
4679 cp_parser_extension_opt (parser, &saved_pedantic);
4680 /* Parse the cast-expression. */
4681 expr = cp_parser_simple_cast_expression (parser);
4682 /* Restore the PEDANTIC flag. */
4683 pedantic = saved_pedantic;
4684
4685 return expr;
4686 }
4687
4688 case RID_REALPART:
4689 case RID_IMAGPART:
4690 {
4691 tree expression;
4692
4693 /* Consume the `__real__' or `__imag__' token. */
4694 cp_lexer_consume_token (parser->lexer);
4695 /* Parse the cast-expression. */
4696 expression = cp_parser_simple_cast_expression (parser);
4697 /* Create the complete representation. */
4698 return build_x_unary_op ((keyword == RID_REALPART
4699 ? REALPART_EXPR : IMAGPART_EXPR),
4700 expression);
4701 }
4702 break;
4703
4704 default:
4705 break;
4706 }
4707 }
4708
4709 /* Look for the `:: new' and `:: delete', which also signal the
4710 beginning of a new-expression, or delete-expression,
4711 respectively. If the next token is `::', then it might be one of
4712 these. */
4713 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
4714 {
4715 enum rid keyword;
4716
4717 /* See if the token after the `::' is one of the keywords in
4718 which we're interested. */
4719 keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
4720 /* If it's `new', we have a new-expression. */
4721 if (keyword == RID_NEW)
4722 return cp_parser_new_expression (parser);
4723 /* Similarly, for `delete'. */
4724 else if (keyword == RID_DELETE)
4725 return cp_parser_delete_expression (parser);
4726 }
4727
4728 /* Look for a unary operator. */
4729 unary_operator = cp_parser_unary_operator (token);
4730 /* The `++' and `--' operators can be handled similarly, even though
4731 they are not technically unary-operators in the grammar. */
4732 if (unary_operator == ERROR_MARK)
4733 {
4734 if (token->type == CPP_PLUS_PLUS)
4735 unary_operator = PREINCREMENT_EXPR;
4736 else if (token->type == CPP_MINUS_MINUS)
4737 unary_operator = PREDECREMENT_EXPR;
4738 /* Handle the GNU address-of-label extension. */
4739 else if (cp_parser_allow_gnu_extensions_p (parser)
4740 && token->type == CPP_AND_AND)
4741 {
4742 tree identifier;
4743
4744 /* Consume the '&&' token. */
4745 cp_lexer_consume_token (parser->lexer);
4746 /* Look for the identifier. */
4747 identifier = cp_parser_identifier (parser);
4748 /* Create an expression representing the address. */
4749 return finish_label_address_expr (identifier);
4750 }
4751 }
4752 if (unary_operator != ERROR_MARK)
4753 {
4754 tree cast_expression;
4755 tree expression = error_mark_node;
4756 const char *non_constant_p = NULL;
4757
4758 /* Consume the operator token. */
4759 token = cp_lexer_consume_token (parser->lexer);
4760 /* Parse the cast-expression. */
4761 cast_expression
4762 = cp_parser_cast_expression (parser,
4763 unary_operator == ADDR_EXPR,
4764 /*cast_p=*/false);
4765 /* Now, build an appropriate representation. */
4766 switch (unary_operator)
4767 {
4768 case INDIRECT_REF:
4769 non_constant_p = "`*'";
4770 expression = build_x_indirect_ref (cast_expression, "unary *");
4771 break;
4772
4773 case ADDR_EXPR:
4774 non_constant_p = "`&'";
4775 /* Fall through. */
4776 case BIT_NOT_EXPR:
4777 expression = build_x_unary_op (unary_operator, cast_expression);
4778 break;
4779
4780 case PREINCREMENT_EXPR:
4781 case PREDECREMENT_EXPR:
4782 non_constant_p = (unary_operator == PREINCREMENT_EXPR
4783 ? "`++'" : "`--'");
4784 /* Fall through. */
4785 case CONVERT_EXPR:
4786 case NEGATE_EXPR:
4787 case TRUTH_NOT_EXPR:
4788 expression = finish_unary_op_expr (unary_operator, cast_expression);
4789 break;
4790
4791 default:
4792 gcc_unreachable ();
4793 }
4794
4795 if (non_constant_p
4796 && cp_parser_non_integral_constant_expression (parser,
4797 non_constant_p))
4798 expression = error_mark_node;
4799
4800 return expression;
4801 }
4802
4803 return cp_parser_postfix_expression (parser, address_p, cast_p);
4804 }
4805
4806 /* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a
4807 unary-operator, the corresponding tree code is returned. */
4808
4809 static enum tree_code
4810 cp_parser_unary_operator (cp_token* token)
4811 {
4812 switch (token->type)
4813 {
4814 case CPP_MULT:
4815 return INDIRECT_REF;
4816
4817 case CPP_AND:
4818 return ADDR_EXPR;
4819
4820 case CPP_PLUS:
4821 return CONVERT_EXPR;
4822
4823 case CPP_MINUS:
4824 return NEGATE_EXPR;
4825
4826 case CPP_NOT:
4827 return TRUTH_NOT_EXPR;
4828
4829 case CPP_COMPL:
4830 return BIT_NOT_EXPR;
4831
4832 default:
4833 return ERROR_MARK;
4834 }
4835 }
4836
4837 /* Parse a new-expression.
4838
4839 new-expression:
4840 :: [opt] new new-placement [opt] new-type-id new-initializer [opt]
4841 :: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
4842
4843 Returns a representation of the expression. */
4844
4845 static tree
4846 cp_parser_new_expression (cp_parser* parser)
4847 {
4848 bool global_scope_p;
4849 tree placement;
4850 tree type;
4851 tree initializer;
4852 tree nelts;
4853
4854 /* Look for the optional `::' operator. */
4855 global_scope_p
4856 = (cp_parser_global_scope_opt (parser,
4857 /*current_scope_valid_p=*/false)
4858 != NULL_TREE);
4859 /* Look for the `new' operator. */
4860 cp_parser_require_keyword (parser, RID_NEW, "`new'");
4861 /* There's no easy way to tell a new-placement from the
4862 `( type-id )' construct. */
4863 cp_parser_parse_tentatively (parser);
4864 /* Look for a new-placement. */
4865 placement = cp_parser_new_placement (parser);
4866 /* If that didn't work out, there's no new-placement. */
4867 if (!cp_parser_parse_definitely (parser))
4868 placement = NULL_TREE;
4869
4870 /* If the next token is a `(', then we have a parenthesized
4871 type-id. */
4872 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4873 {
4874 /* Consume the `('. */
4875 cp_lexer_consume_token (parser->lexer);
4876 /* Parse the type-id. */
4877 type = cp_parser_type_id (parser);
4878 /* Look for the closing `)'. */
4879 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4880 /* There should not be a direct-new-declarator in this production,
4881 but GCC used to allowed this, so we check and emit a sensible error
4882 message for this case. */
4883 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4884 {
4885 error ("array bound forbidden after parenthesized type-id");
4886 inform ("try removing the parentheses around the type-id");
4887 cp_parser_direct_new_declarator (parser);
4888 }
4889 nelts = NULL_TREE;
4890 }
4891 /* Otherwise, there must be a new-type-id. */
4892 else
4893 type = cp_parser_new_type_id (parser, &nelts);
4894
4895 /* If the next token is a `(', then we have a new-initializer. */
4896 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4897 initializer = cp_parser_new_initializer (parser);
4898 else
4899 initializer = NULL_TREE;
4900
4901 /* A new-expression may not appear in an integral constant
4902 expression. */
4903 if (cp_parser_non_integral_constant_expression (parser, "`new'"))
4904 return error_mark_node;
4905
4906 /* Create a representation of the new-expression. */
4907 return build_new (placement, type, nelts, initializer, global_scope_p);
4908 }
4909
4910 /* Parse a new-placement.
4911
4912 new-placement:
4913 ( expression-list )
4914
4915 Returns the same representation as for an expression-list. */
4916
4917 static tree
4918 cp_parser_new_placement (cp_parser* parser)
4919 {
4920 tree expression_list;
4921
4922 /* Parse the expression-list. */
4923 expression_list = (cp_parser_parenthesized_expression_list
4924 (parser, false, /*cast_p=*/false,
4925 /*non_constant_p=*/NULL));
4926
4927 return expression_list;
4928 }
4929
4930 /* Parse a new-type-id.
4931
4932 new-type-id:
4933 type-specifier-seq new-declarator [opt]
4934
4935 Returns the TYPE allocated. If the new-type-id indicates an array
4936 type, *NELTS is set to the number of elements in the last array
4937 bound; the TYPE will not include the last array bound. */
4938
4939 static tree
4940 cp_parser_new_type_id (cp_parser* parser, tree *nelts)
4941 {
4942 cp_decl_specifier_seq type_specifier_seq;
4943 cp_declarator *new_declarator;
4944 cp_declarator *declarator;
4945 cp_declarator *outer_declarator;
4946 const char *saved_message;
4947 tree type;
4948
4949 /* The type-specifier sequence must not contain type definitions.
4950 (It cannot contain declarations of new types either, but if they
4951 are not definitions we will catch that because they are not
4952 complete.) */
4953 saved_message = parser->type_definition_forbidden_message;
4954 parser->type_definition_forbidden_message
4955 = "types may not be defined in a new-type-id";
4956 /* Parse the type-specifier-seq. */
4957 cp_parser_type_specifier_seq (parser, &type_specifier_seq);
4958 /* Restore the old message. */
4959 parser->type_definition_forbidden_message = saved_message;
4960 /* Parse the new-declarator. */
4961 new_declarator = cp_parser_new_declarator_opt (parser);
4962
4963 /* Determine the number of elements in the last array dimension, if
4964 any. */
4965 *nelts = NULL_TREE;
4966 /* Skip down to the last array dimension. */
4967 declarator = new_declarator;
4968 outer_declarator = NULL;
4969 while (declarator && (declarator->kind == cdk_pointer
4970 || declarator->kind == cdk_ptrmem))
4971 {
4972 outer_declarator = declarator;
4973 declarator = declarator->declarator;
4974 }
4975 while (declarator
4976 && declarator->kind == cdk_array
4977 && declarator->declarator
4978 && declarator->declarator->kind == cdk_array)
4979 {
4980 outer_declarator = declarator;
4981 declarator = declarator->declarator;
4982 }
4983
4984 if (declarator && declarator->kind == cdk_array)
4985 {
4986 *nelts = declarator->u.array.bounds;
4987 if (*nelts == error_mark_node)
4988 *nelts = integer_one_node;
4989
4990 if (outer_declarator)
4991 outer_declarator->declarator = declarator->declarator;
4992 else
4993 new_declarator = NULL;
4994 }
4995
4996 type = groktypename (&type_specifier_seq, new_declarator);
4997 if (TREE_CODE (type) == ARRAY_TYPE && *nelts == NULL_TREE)
4998 {
4999 *nelts = array_type_nelts_top (type);
5000 type = TREE_TYPE (type);
5001 }
5002 return type;
5003 }
5004
5005 /* Parse an (optional) new-declarator.
5006
5007 new-declarator:
5008 ptr-operator new-declarator [opt]
5009 direct-new-declarator
5010
5011 Returns the declarator. */
5012
5013 static cp_declarator *
5014 cp_parser_new_declarator_opt (cp_parser* parser)
5015 {
5016 enum tree_code code;
5017 tree type;
5018 cp_cv_quals cv_quals;
5019
5020 /* We don't know if there's a ptr-operator next, or not. */
5021 cp_parser_parse_tentatively (parser);
5022 /* Look for a ptr-operator. */
5023 code = cp_parser_ptr_operator (parser, &type, &cv_quals);
5024 /* If that worked, look for more new-declarators. */
5025 if (cp_parser_parse_definitely (parser))
5026 {
5027 cp_declarator *declarator;
5028
5029 /* Parse another optional declarator. */
5030 declarator = cp_parser_new_declarator_opt (parser);
5031
5032 /* Create the representation of the declarator. */
5033 if (type)
5034 declarator = make_ptrmem_declarator (cv_quals, type, declarator);
5035 else if (code == INDIRECT_REF)
5036 declarator = make_pointer_declarator (cv_quals, declarator);
5037 else
5038 declarator = make_reference_declarator (cv_quals, declarator);
5039
5040 return declarator;
5041 }
5042
5043 /* If the next token is a `[', there is a direct-new-declarator. */
5044 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
5045 return cp_parser_direct_new_declarator (parser);
5046
5047 return NULL;
5048 }
5049
5050 /* Parse a direct-new-declarator.
5051
5052 direct-new-declarator:
5053 [ expression ]
5054 direct-new-declarator [constant-expression]
5055
5056 */
5057
5058 static cp_declarator *
5059 cp_parser_direct_new_declarator (cp_parser* parser)
5060 {
5061 cp_declarator *declarator = NULL;
5062
5063 while (true)
5064 {
5065 tree expression;
5066
5067 /* Look for the opening `['. */
5068 cp_parser_require (parser, CPP_OPEN_SQUARE, "`['");
5069 /* The first expression is not required to be constant. */
5070 if (!declarator)
5071 {
5072 expression = cp_parser_expression (parser, /*cast_p=*/false);
5073 /* The standard requires that the expression have integral
5074 type. DR 74 adds enumeration types. We believe that the
5075 real intent is that these expressions be handled like the
5076 expression in a `switch' condition, which also allows
5077 classes with a single conversion to integral or
5078 enumeration type. */
5079 if (!processing_template_decl)
5080 {
5081 expression
5082 = build_expr_type_conversion (WANT_INT | WANT_ENUM,
5083 expression,
5084 /*complain=*/true);
5085 if (!expression)
5086 {
5087 error ("expression in new-declarator must have integral "
5088 "or enumeration type");
5089 expression = error_mark_node;
5090 }
5091 }
5092 }
5093 /* But all the other expressions must be. */
5094 else
5095 expression
5096 = cp_parser_constant_expression (parser,
5097 /*allow_non_constant=*/false,
5098 NULL);
5099 /* Look for the closing `]'. */
5100 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5101
5102 /* Add this bound to the declarator. */
5103 declarator = make_array_declarator (declarator, expression);
5104
5105 /* If the next token is not a `[', then there are no more
5106 bounds. */
5107 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
5108 break;
5109 }
5110
5111 return declarator;
5112 }
5113
5114 /* Parse a new-initializer.
5115
5116 new-initializer:
5117 ( expression-list [opt] )
5118
5119 Returns a representation of the expression-list. If there is no
5120 expression-list, VOID_ZERO_NODE is returned. */
5121
5122 static tree
5123 cp_parser_new_initializer (cp_parser* parser)
5124 {
5125 tree expression_list;
5126
5127 expression_list = (cp_parser_parenthesized_expression_list
5128 (parser, false, /*cast_p=*/false,
5129 /*non_constant_p=*/NULL));
5130 if (!expression_list)
5131 expression_list = void_zero_node;
5132
5133 return expression_list;
5134 }
5135
5136 /* Parse a delete-expression.
5137
5138 delete-expression:
5139 :: [opt] delete cast-expression
5140 :: [opt] delete [ ] cast-expression
5141
5142 Returns a representation of the expression. */
5143
5144 static tree
5145 cp_parser_delete_expression (cp_parser* parser)
5146 {
5147 bool global_scope_p;
5148 bool array_p;
5149 tree expression;
5150
5151 /* Look for the optional `::' operator. */
5152 global_scope_p
5153 = (cp_parser_global_scope_opt (parser,
5154 /*current_scope_valid_p=*/false)
5155 != NULL_TREE);
5156 /* Look for the `delete' keyword. */
5157 cp_parser_require_keyword (parser, RID_DELETE, "`delete'");
5158 /* See if the array syntax is in use. */
5159 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
5160 {
5161 /* Consume the `[' token. */
5162 cp_lexer_consume_token (parser->lexer);
5163 /* Look for the `]' token. */
5164 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5165 /* Remember that this is the `[]' construct. */
5166 array_p = true;
5167 }
5168 else
5169 array_p = false;
5170
5171 /* Parse the cast-expression. */
5172 expression = cp_parser_simple_cast_expression (parser);
5173
5174 /* A delete-expression may not appear in an integral constant
5175 expression. */
5176 if (cp_parser_non_integral_constant_expression (parser, "`delete'"))
5177 return error_mark_node;
5178
5179 return delete_sanity (expression, NULL_TREE, array_p, global_scope_p);
5180 }
5181
5182 /* Parse a cast-expression.
5183
5184 cast-expression:
5185 unary-expression
5186 ( type-id ) cast-expression
5187
5188 ADDRESS_P is true iff the unary-expression is appearing as the
5189 operand of the `&' operator. CAST_P is true if this expression is
5190 the target of a cast.
5191
5192 Returns a representation of the expression. */
5193
5194 static tree
5195 cp_parser_cast_expression (cp_parser *parser, bool address_p, bool cast_p)
5196 {
5197 /* If it's a `(', then we might be looking at a cast. */
5198 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
5199 {
5200 tree type = NULL_TREE;
5201 tree expr = NULL_TREE;
5202 bool compound_literal_p;
5203 const char *saved_message;
5204
5205 /* There's no way to know yet whether or not this is a cast.
5206 For example, `(int (3))' is a unary-expression, while `(int)
5207 3' is a cast. So, we resort to parsing tentatively. */
5208 cp_parser_parse_tentatively (parser);
5209 /* Types may not be defined in a cast. */
5210 saved_message = parser->type_definition_forbidden_message;
5211 parser->type_definition_forbidden_message
5212 = "types may not be defined in casts";
5213 /* Consume the `('. */
5214 cp_lexer_consume_token (parser->lexer);
5215 /* A very tricky bit is that `(struct S) { 3 }' is a
5216 compound-literal (which we permit in C++ as an extension).
5217 But, that construct is not a cast-expression -- it is a
5218 postfix-expression. (The reason is that `(struct S) { 3 }.i'
5219 is legal; if the compound-literal were a cast-expression,
5220 you'd need an extra set of parentheses.) But, if we parse
5221 the type-id, and it happens to be a class-specifier, then we
5222 will commit to the parse at that point, because we cannot
5223 undo the action that is done when creating a new class. So,
5224 then we cannot back up and do a postfix-expression.
5225
5226 Therefore, we scan ahead to the closing `)', and check to see
5227 if the token after the `)' is a `{'. If so, we are not
5228 looking at a cast-expression.
5229
5230 Save tokens so that we can put them back. */
5231 cp_lexer_save_tokens (parser->lexer);
5232 /* Skip tokens until the next token is a closing parenthesis.
5233 If we find the closing `)', and the next token is a `{', then
5234 we are looking at a compound-literal. */
5235 compound_literal_p
5236 = (cp_parser_skip_to_closing_parenthesis (parser, false, false,
5237 /*consume_paren=*/true)
5238 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
5239 /* Roll back the tokens we skipped. */
5240 cp_lexer_rollback_tokens (parser->lexer);
5241 /* If we were looking at a compound-literal, simulate an error
5242 so that the call to cp_parser_parse_definitely below will
5243 fail. */
5244 if (compound_literal_p)
5245 cp_parser_simulate_error (parser);
5246 else
5247 {
5248 bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
5249 parser->in_type_id_in_expr_p = true;
5250 /* Look for the type-id. */
5251 type = cp_parser_type_id (parser);
5252 /* Look for the closing `)'. */
5253 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5254 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
5255 }
5256
5257 /* Restore the saved message. */
5258 parser->type_definition_forbidden_message = saved_message;
5259
5260 /* If ok so far, parse the dependent expression. We cannot be
5261 sure it is a cast. Consider `(T ())'. It is a parenthesized
5262 ctor of T, but looks like a cast to function returning T
5263 without a dependent expression. */
5264 if (!cp_parser_error_occurred (parser))
5265 expr = cp_parser_cast_expression (parser,
5266 /*address_p=*/false,
5267 /*cast_p=*/true);
5268
5269 if (cp_parser_parse_definitely (parser))
5270 {
5271 /* Warn about old-style casts, if so requested. */
5272 if (warn_old_style_cast
5273 && !in_system_header
5274 && !VOID_TYPE_P (type)
5275 && current_lang_name != lang_name_c)
5276 warning ("use of old-style cast");
5277
5278 /* Only type conversions to integral or enumeration types
5279 can be used in constant-expressions. */
5280 if (parser->integral_constant_expression_p
5281 && !dependent_type_p (type)
5282 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
5283 && (cp_parser_non_integral_constant_expression
5284 (parser,
5285 "a cast to a type other than an integral or "
5286 "enumeration type")))
5287 return error_mark_node;
5288
5289 /* Perform the cast. */
5290 expr = build_c_cast (type, expr);
5291 return expr;
5292 }
5293 }
5294
5295 /* If we get here, then it's not a cast, so it must be a
5296 unary-expression. */
5297 return cp_parser_unary_expression (parser, address_p, cast_p);
5298 }
5299
5300 /* Parse a binary expression of the general form:
5301
5302 pm-expression:
5303 cast-expression
5304 pm-expression .* cast-expression
5305 pm-expression ->* cast-expression
5306
5307 multiplicative-expression:
5308 pm-expression
5309 multiplicative-expression * pm-expression
5310 multiplicative-expression / pm-expression
5311 multiplicative-expression % pm-expression
5312
5313 additive-expression:
5314 multiplicative-expression
5315 additive-expression + multiplicative-expression
5316 additive-expression - multiplicative-expression
5317
5318 shift-expression:
5319 additive-expression
5320 shift-expression << additive-expression
5321 shift-expression >> additive-expression
5322
5323 relational-expression:
5324 shift-expression
5325 relational-expression < shift-expression
5326 relational-expression > shift-expression
5327 relational-expression <= shift-expression
5328 relational-expression >= shift-expression
5329
5330 GNU Extension:
5331
5332 relational-expression:
5333 relational-expression <? shift-expression
5334 relational-expression >? shift-expression
5335
5336 equality-expression:
5337 relational-expression
5338 equality-expression == relational-expression
5339 equality-expression != relational-expression
5340
5341 and-expression:
5342 equality-expression
5343 and-expression & equality-expression
5344
5345 exclusive-or-expression:
5346 and-expression
5347 exclusive-or-expression ^ and-expression
5348
5349 inclusive-or-expression:
5350 exclusive-or-expression
5351 inclusive-or-expression | exclusive-or-expression
5352
5353 logical-and-expression:
5354 inclusive-or-expression
5355 logical-and-expression && inclusive-or-expression
5356
5357 logical-or-expression:
5358 logical-and-expression
5359 logical-or-expression || logical-and-expression
5360
5361 All these are implemented with a single function like:
5362
5363 binary-expression:
5364 simple-cast-expression
5365 binary-expression <token> binary-expression
5366
5367 CAST_P is true if this expression is the target of a cast.
5368
5369 The binops_by_token map is used to get the tree codes for each <token> type.
5370 binary-expressions are associated according to a precedence table. */
5371
5372 #define TOKEN_PRECEDENCE(token) \
5373 ((token->type == CPP_GREATER && !parser->greater_than_is_operator_p) \
5374 ? PREC_NOT_OPERATOR \
5375 : binops_by_token[token->type].prec)
5376
5377 static tree
5378 cp_parser_binary_expression (cp_parser* parser, bool cast_p)
5379 {
5380 cp_parser_expression_stack stack;
5381 cp_parser_expression_stack_entry *sp = &stack[0];
5382 tree lhs, rhs;
5383 cp_token *token;
5384 enum tree_code tree_type;
5385 enum cp_parser_prec prec = PREC_NOT_OPERATOR, new_prec, lookahead_prec;
5386 bool overloaded_p;
5387
5388 /* Parse the first expression. */
5389 lhs = cp_parser_cast_expression (parser, /*address_p=*/false, cast_p);
5390
5391 for (;;)
5392 {
5393 /* Get an operator token. */
5394 token = cp_lexer_peek_token (parser->lexer);
5395 new_prec = TOKEN_PRECEDENCE (token);
5396
5397 /* Popping an entry off the stack means we completed a subexpression:
5398 - either we found a token which is not an operator (`>' where it is not
5399 an operator, or prec == PREC_NOT_OPERATOR), in which case popping
5400 will happen repeatedly;
5401 - or, we found an operator which has lower priority. This is the case
5402 where the recursive descent *ascends*, as in `3 * 4 + 5' after
5403 parsing `3 * 4'. */
5404 if (new_prec <= prec)
5405 {
5406 if (sp == stack)
5407 break;
5408 else
5409 goto pop;
5410 }
5411
5412 get_rhs:
5413 tree_type = binops_by_token[token->type].tree_type;
5414
5415 /* We used the operator token. */
5416 cp_lexer_consume_token (parser->lexer);
5417
5418 /* Extract another operand. It may be the RHS of this expression
5419 or the LHS of a new, higher priority expression. */
5420 rhs = cp_parser_simple_cast_expression (parser);
5421
5422 /* Get another operator token. Look up its precedence to avoid
5423 building a useless (immediately popped) stack entry for common
5424 cases such as 3 + 4 + 5 or 3 * 4 + 5. */
5425 token = cp_lexer_peek_token (parser->lexer);
5426 lookahead_prec = TOKEN_PRECEDENCE (token);
5427 if (lookahead_prec > new_prec)
5428 {
5429 /* ... and prepare to parse the RHS of the new, higher priority
5430 expression. Since precedence levels on the stack are
5431 monotonically increasing, we do not have to care about
5432 stack overflows. */
5433 sp->prec = prec;
5434 sp->tree_type = tree_type;
5435 sp->lhs = lhs;
5436 sp++;
5437 lhs = rhs;
5438 prec = new_prec;
5439 new_prec = lookahead_prec;
5440 goto get_rhs;
5441
5442 pop:
5443 /* If the stack is not empty, we have parsed into LHS the right side
5444 (`4' in the example above) of an expression we had suspended.
5445 We can use the information on the stack to recover the LHS (`3')
5446 from the stack together with the tree code (`MULT_EXPR'), and
5447 the precedence of the higher level subexpression
5448 (`PREC_ADDITIVE_EXPRESSION'). TOKEN is the CPP_PLUS token,
5449 which will be used to actually build the additive expression. */
5450 --sp;
5451 prec = sp->prec;
5452 tree_type = sp->tree_type;
5453 rhs = lhs;
5454 lhs = sp->lhs;
5455 }
5456
5457 overloaded_p = false;
5458 lhs = build_x_binary_op (tree_type, lhs, rhs, &overloaded_p);
5459
5460 /* If the binary operator required the use of an overloaded operator,
5461 then this expression cannot be an integral constant-expression.
5462 An overloaded operator can be used even if both operands are
5463 otherwise permissible in an integral constant-expression if at
5464 least one of the operands is of enumeration type. */
5465
5466 if (overloaded_p
5467 && (cp_parser_non_integral_constant_expression
5468 (parser, "calls to overloaded operators")))
5469 return error_mark_node;
5470 }
5471
5472 return lhs;
5473 }
5474
5475
5476 /* Parse the `? expression : assignment-expression' part of a
5477 conditional-expression. The LOGICAL_OR_EXPR is the
5478 logical-or-expression that started the conditional-expression.
5479 Returns a representation of the entire conditional-expression.
5480
5481 This routine is used by cp_parser_assignment_expression.
5482
5483 ? expression : assignment-expression
5484
5485 GNU Extensions:
5486
5487 ? : assignment-expression */
5488
5489 static tree
5490 cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
5491 {
5492 tree expr;
5493 tree assignment_expr;
5494
5495 /* Consume the `?' token. */
5496 cp_lexer_consume_token (parser->lexer);
5497 if (cp_parser_allow_gnu_extensions_p (parser)
5498 && cp_lexer_next_token_is (parser->lexer, CPP_COLON))
5499 /* Implicit true clause. */
5500 expr = NULL_TREE;
5501 else
5502 /* Parse the expression. */
5503 expr = cp_parser_expression (parser, /*cast_p=*/false);
5504
5505 /* The next token should be a `:'. */
5506 cp_parser_require (parser, CPP_COLON, "`:'");
5507 /* Parse the assignment-expression. */
5508 assignment_expr = cp_parser_assignment_expression (parser, /*cast_p=*/false);
5509
5510 /* Build the conditional-expression. */
5511 return build_x_conditional_expr (logical_or_expr,
5512 expr,
5513 assignment_expr);
5514 }
5515
5516 /* Parse an assignment-expression.
5517
5518 assignment-expression:
5519 conditional-expression
5520 logical-or-expression assignment-operator assignment_expression
5521 throw-expression
5522
5523 CAST_P is true if this expression is the target of a cast.
5524
5525 Returns a representation for the expression. */
5526
5527 static tree
5528 cp_parser_assignment_expression (cp_parser* parser, bool cast_p)
5529 {
5530 tree expr;
5531
5532 /* If the next token is the `throw' keyword, then we're looking at
5533 a throw-expression. */
5534 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
5535 expr = cp_parser_throw_expression (parser);
5536 /* Otherwise, it must be that we are looking at a
5537 logical-or-expression. */
5538 else
5539 {
5540 /* Parse the binary expressions (logical-or-expression). */
5541 expr = cp_parser_binary_expression (parser, cast_p);
5542 /* If the next token is a `?' then we're actually looking at a
5543 conditional-expression. */
5544 if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
5545 return cp_parser_question_colon_clause (parser, expr);
5546 else
5547 {
5548 enum tree_code assignment_operator;
5549
5550 /* If it's an assignment-operator, we're using the second
5551 production. */
5552 assignment_operator
5553 = cp_parser_assignment_operator_opt (parser);
5554 if (assignment_operator != ERROR_MARK)
5555 {
5556 tree rhs;
5557
5558 /* Parse the right-hand side of the assignment. */
5559 rhs = cp_parser_assignment_expression (parser, cast_p);
5560 /* An assignment may not appear in a
5561 constant-expression. */
5562 if (cp_parser_non_integral_constant_expression (parser,
5563 "an assignment"))
5564 return error_mark_node;
5565 /* Build the assignment expression. */
5566 expr = build_x_modify_expr (expr,
5567 assignment_operator,
5568 rhs);
5569 }
5570 }
5571 }
5572
5573 return expr;
5574 }
5575
5576 /* Parse an (optional) assignment-operator.
5577
5578 assignment-operator: one of
5579 = *= /= %= += -= >>= <<= &= ^= |=
5580
5581 GNU Extension:
5582
5583 assignment-operator: one of
5584 <?= >?=
5585
5586 If the next token is an assignment operator, the corresponding tree
5587 code is returned, and the token is consumed. For example, for
5588 `+=', PLUS_EXPR is returned. For `=' itself, the code returned is
5589 NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%',
5590 TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment
5591 operator, ERROR_MARK is returned. */
5592
5593 static enum tree_code
5594 cp_parser_assignment_operator_opt (cp_parser* parser)
5595 {
5596 enum tree_code op;
5597 cp_token *token;
5598
5599 /* Peek at the next toen. */
5600 token = cp_lexer_peek_token (parser->lexer);
5601
5602 switch (token->type)
5603 {
5604 case CPP_EQ:
5605 op = NOP_EXPR;
5606 break;
5607
5608 case CPP_MULT_EQ:
5609 op = MULT_EXPR;
5610 break;
5611
5612 case CPP_DIV_EQ:
5613 op = TRUNC_DIV_EXPR;
5614 break;
5615
5616 case CPP_MOD_EQ:
5617 op = TRUNC_MOD_EXPR;
5618 break;
5619
5620 case CPP_PLUS_EQ:
5621 op = PLUS_EXPR;
5622 break;
5623
5624 case CPP_MINUS_EQ:
5625 op = MINUS_EXPR;
5626 break;
5627
5628 case CPP_RSHIFT_EQ:
5629 op = RSHIFT_EXPR;
5630 break;
5631
5632 case CPP_LSHIFT_EQ:
5633 op = LSHIFT_EXPR;
5634 break;
5635
5636 case CPP_AND_EQ:
5637 op = BIT_AND_EXPR;
5638 break;
5639
5640 case CPP_XOR_EQ:
5641 op = BIT_XOR_EXPR;
5642 break;
5643
5644 case CPP_OR_EQ:
5645 op = BIT_IOR_EXPR;
5646 break;
5647
5648 case CPP_MIN_EQ:
5649 op = MIN_EXPR;
5650 break;
5651
5652 case CPP_MAX_EQ:
5653 op = MAX_EXPR;
5654 break;
5655
5656 default:
5657 /* Nothing else is an assignment operator. */
5658 op = ERROR_MARK;
5659 }
5660
5661 /* If it was an assignment operator, consume it. */
5662 if (op != ERROR_MARK)
5663 cp_lexer_consume_token (parser->lexer);
5664
5665 return op;
5666 }
5667
5668 /* Parse an expression.
5669
5670 expression:
5671 assignment-expression
5672 expression , assignment-expression
5673
5674 CAST_P is true if this expression is the target of a cast.
5675
5676 Returns a representation of the expression. */
5677
5678 static tree
5679 cp_parser_expression (cp_parser* parser, bool cast_p)
5680 {
5681 tree expression = NULL_TREE;
5682
5683 while (true)
5684 {
5685 tree assignment_expression;
5686
5687 /* Parse the next assignment-expression. */
5688 assignment_expression
5689 = cp_parser_assignment_expression (parser, cast_p);
5690 /* If this is the first assignment-expression, we can just
5691 save it away. */
5692 if (!expression)
5693 expression = assignment_expression;
5694 else
5695 expression = build_x_compound_expr (expression,
5696 assignment_expression);
5697 /* If the next token is not a comma, then we are done with the
5698 expression. */
5699 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
5700 break;
5701 /* Consume the `,'. */
5702 cp_lexer_consume_token (parser->lexer);
5703 /* A comma operator cannot appear in a constant-expression. */
5704 if (cp_parser_non_integral_constant_expression (parser,
5705 "a comma operator"))
5706 expression = error_mark_node;
5707 }
5708
5709 return expression;
5710 }
5711
5712 /* Parse a constant-expression.
5713
5714 constant-expression:
5715 conditional-expression
5716
5717 If ALLOW_NON_CONSTANT_P a non-constant expression is silently
5718 accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not
5719 constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P
5720 is false, NON_CONSTANT_P should be NULL. */
5721
5722 static tree
5723 cp_parser_constant_expression (cp_parser* parser,
5724 bool allow_non_constant_p,
5725 bool *non_constant_p)
5726 {
5727 bool saved_integral_constant_expression_p;
5728 bool saved_allow_non_integral_constant_expression_p;
5729 bool saved_non_integral_constant_expression_p;
5730 tree expression;
5731
5732 /* It might seem that we could simply parse the
5733 conditional-expression, and then check to see if it were
5734 TREE_CONSTANT. However, an expression that is TREE_CONSTANT is
5735 one that the compiler can figure out is constant, possibly after
5736 doing some simplifications or optimizations. The standard has a
5737 precise definition of constant-expression, and we must honor
5738 that, even though it is somewhat more restrictive.
5739
5740 For example:
5741
5742 int i[(2, 3)];
5743
5744 is not a legal declaration, because `(2, 3)' is not a
5745 constant-expression. The `,' operator is forbidden in a
5746 constant-expression. However, GCC's constant-folding machinery
5747 will fold this operation to an INTEGER_CST for `3'. */
5748
5749 /* Save the old settings. */
5750 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
5751 saved_allow_non_integral_constant_expression_p
5752 = parser->allow_non_integral_constant_expression_p;
5753 saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p;
5754 /* We are now parsing a constant-expression. */
5755 parser->integral_constant_expression_p = true;
5756 parser->allow_non_integral_constant_expression_p = allow_non_constant_p;
5757 parser->non_integral_constant_expression_p = false;
5758 /* Although the grammar says "conditional-expression", we parse an
5759 "assignment-expression", which also permits "throw-expression"
5760 and the use of assignment operators. In the case that
5761 ALLOW_NON_CONSTANT_P is false, we get better errors than we would
5762 otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is
5763 actually essential that we look for an assignment-expression.
5764 For example, cp_parser_initializer_clauses uses this function to
5765 determine whether a particular assignment-expression is in fact
5766 constant. */
5767 expression = cp_parser_assignment_expression (parser, /*cast_p=*/false);
5768 /* Restore the old settings. */
5769 parser->integral_constant_expression_p
5770 = saved_integral_constant_expression_p;
5771 parser->allow_non_integral_constant_expression_p
5772 = saved_allow_non_integral_constant_expression_p;
5773 if (allow_non_constant_p)
5774 *non_constant_p = parser->non_integral_constant_expression_p;
5775 else if (parser->non_integral_constant_expression_p)
5776 expression = error_mark_node;
5777 parser->non_integral_constant_expression_p
5778 = saved_non_integral_constant_expression_p;
5779
5780 return expression;
5781 }
5782
5783 /* Parse __builtin_offsetof.
5784
5785 offsetof-expression:
5786 "__builtin_offsetof" "(" type-id "," offsetof-member-designator ")"
5787
5788 offsetof-member-designator:
5789 id-expression
5790 | offsetof-member-designator "." id-expression
5791 | offsetof-member-designator "[" expression "]"
5792 */
5793
5794 static tree
5795 cp_parser_builtin_offsetof (cp_parser *parser)
5796 {
5797 int save_ice_p, save_non_ice_p;
5798 tree type, expr;
5799 cp_id_kind dummy;
5800
5801 /* We're about to accept non-integral-constant things, but will
5802 definitely yield an integral constant expression. Save and
5803 restore these values around our local parsing. */
5804 save_ice_p = parser->integral_constant_expression_p;
5805 save_non_ice_p = parser->non_integral_constant_expression_p;
5806
5807 /* Consume the "__builtin_offsetof" token. */
5808 cp_lexer_consume_token (parser->lexer);
5809 /* Consume the opening `('. */
5810 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
5811 /* Parse the type-id. */
5812 type = cp_parser_type_id (parser);
5813 /* Look for the `,'. */
5814 cp_parser_require (parser, CPP_COMMA, "`,'");
5815
5816 /* Build the (type *)null that begins the traditional offsetof macro. */
5817 expr = build_static_cast (build_pointer_type (type), null_pointer_node);
5818
5819 /* Parse the offsetof-member-designator. We begin as if we saw "expr->". */
5820 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DEREF, expr,
5821 true, &dummy);
5822 while (true)
5823 {
5824 cp_token *token = cp_lexer_peek_token (parser->lexer);
5825 switch (token->type)
5826 {
5827 case CPP_OPEN_SQUARE:
5828 /* offsetof-member-designator "[" expression "]" */
5829 expr = cp_parser_postfix_open_square_expression (parser, expr, true);
5830 break;
5831
5832 case CPP_DOT:
5833 /* offsetof-member-designator "." identifier */
5834 cp_lexer_consume_token (parser->lexer);
5835 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DOT, expr,
5836 true, &dummy);
5837 break;
5838
5839 case CPP_CLOSE_PAREN:
5840 /* Consume the ")" token. */
5841 cp_lexer_consume_token (parser->lexer);
5842 goto success;
5843
5844 default:
5845 /* Error. We know the following require will fail, but
5846 that gives the proper error message. */
5847 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5848 cp_parser_skip_to_closing_parenthesis (parser, true, false, true);
5849 expr = error_mark_node;
5850 goto failure;
5851 }
5852 }
5853
5854 success:
5855 /* If we're processing a template, we can't finish the semantics yet.
5856 Otherwise we can fold the entire expression now. */
5857 if (processing_template_decl)
5858 expr = build1 (OFFSETOF_EXPR, size_type_node, expr);
5859 else
5860 expr = fold_offsetof (expr);
5861
5862 failure:
5863 parser->integral_constant_expression_p = save_ice_p;
5864 parser->non_integral_constant_expression_p = save_non_ice_p;
5865
5866 return expr;
5867 }
5868
5869 /* Statements [gram.stmt.stmt] */
5870
5871 /* Parse a statement.
5872
5873 statement:
5874 labeled-statement
5875 expression-statement
5876 compound-statement
5877 selection-statement
5878 iteration-statement
5879 jump-statement
5880 declaration-statement
5881 try-block */
5882
5883 static void
5884 cp_parser_statement (cp_parser* parser, tree in_statement_expr)
5885 {
5886 tree statement;
5887 cp_token *token;
5888 location_t statement_location;
5889
5890 /* There is no statement yet. */
5891 statement = NULL_TREE;
5892 /* Peek at the next token. */
5893 token = cp_lexer_peek_token (parser->lexer);
5894 /* Remember the location of the first token in the statement. */
5895 statement_location = token->location;
5896 /* If this is a keyword, then that will often determine what kind of
5897 statement we have. */
5898 if (token->type == CPP_KEYWORD)
5899 {
5900 enum rid keyword = token->keyword;
5901
5902 switch (keyword)
5903 {
5904 case RID_CASE:
5905 case RID_DEFAULT:
5906 statement = cp_parser_labeled_statement (parser,
5907 in_statement_expr);
5908 break;
5909
5910 case RID_IF:
5911 case RID_SWITCH:
5912 statement = cp_parser_selection_statement (parser);
5913 break;
5914
5915 case RID_WHILE:
5916 case RID_DO:
5917 case RID_FOR:
5918 statement = cp_parser_iteration_statement (parser);
5919 break;
5920
5921 case RID_BREAK:
5922 case RID_CONTINUE:
5923 case RID_RETURN:
5924 case RID_GOTO:
5925 statement = cp_parser_jump_statement (parser);
5926 break;
5927
5928 case RID_TRY:
5929 statement = cp_parser_try_block (parser);
5930 break;
5931
5932 default:
5933 /* It might be a keyword like `int' that can start a
5934 declaration-statement. */
5935 break;
5936 }
5937 }
5938 else if (token->type == CPP_NAME)
5939 {
5940 /* If the next token is a `:', then we are looking at a
5941 labeled-statement. */
5942 token = cp_lexer_peek_nth_token (parser->lexer, 2);
5943 if (token->type == CPP_COLON)
5944 statement = cp_parser_labeled_statement (parser, in_statement_expr);
5945 }
5946 /* Anything that starts with a `{' must be a compound-statement. */
5947 else if (token->type == CPP_OPEN_BRACE)
5948 statement = cp_parser_compound_statement (parser, NULL, false);
5949 /* CPP_PRAGMA is a #pragma inside a function body, which constitutes
5950 a statement all its own. */
5951 else if (token->type == CPP_PRAGMA)
5952 {
5953 cp_lexer_handle_pragma (parser->lexer);
5954 return;
5955 }
5956
5957 /* Everything else must be a declaration-statement or an
5958 expression-statement. Try for the declaration-statement
5959 first, unless we are looking at a `;', in which case we know that
5960 we have an expression-statement. */
5961 if (!statement)
5962 {
5963 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
5964 {
5965 cp_parser_parse_tentatively (parser);
5966 /* Try to parse the declaration-statement. */
5967 cp_parser_declaration_statement (parser);
5968 /* If that worked, we're done. */
5969 if (cp_parser_parse_definitely (parser))
5970 return;
5971 }
5972 /* Look for an expression-statement instead. */
5973 statement = cp_parser_expression_statement (parser, in_statement_expr);
5974 }
5975
5976 /* Set the line number for the statement. */
5977 if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
5978 SET_EXPR_LOCATION (statement, statement_location);
5979 }
5980
5981 /* Parse a labeled-statement.
5982
5983 labeled-statement:
5984 identifier : statement
5985 case constant-expression : statement
5986 default : statement
5987
5988 GNU Extension:
5989
5990 labeled-statement:
5991 case constant-expression ... constant-expression : statement
5992
5993 Returns the new CASE_LABEL_EXPR, for a `case' or `default' label.
5994 For an ordinary label, returns a LABEL_EXPR. */
5995
5996 static tree
5997 cp_parser_labeled_statement (cp_parser* parser, tree in_statement_expr)
5998 {
5999 cp_token *token;
6000 tree statement = error_mark_node;
6001
6002 /* The next token should be an identifier. */
6003 token = cp_lexer_peek_token (parser->lexer);
6004 if (token->type != CPP_NAME
6005 && token->type != CPP_KEYWORD)
6006 {
6007 cp_parser_error (parser, "expected labeled-statement");
6008 return error_mark_node;
6009 }
6010
6011 switch (token->keyword)
6012 {
6013 case RID_CASE:
6014 {
6015 tree expr, expr_hi;
6016 cp_token *ellipsis;
6017
6018 /* Consume the `case' token. */
6019 cp_lexer_consume_token (parser->lexer);
6020 /* Parse the constant-expression. */
6021 expr = cp_parser_constant_expression (parser,
6022 /*allow_non_constant_p=*/false,
6023 NULL);
6024
6025 ellipsis = cp_lexer_peek_token (parser->lexer);
6026 if (ellipsis->type == CPP_ELLIPSIS)
6027 {
6028 /* Consume the `...' token. */
6029 cp_lexer_consume_token (parser->lexer);
6030 expr_hi =
6031 cp_parser_constant_expression (parser,
6032 /*allow_non_constant_p=*/false,
6033 NULL);
6034 /* We don't need to emit warnings here, as the common code
6035 will do this for us. */
6036 }
6037 else
6038 expr_hi = NULL_TREE;
6039
6040 if (!parser->in_switch_statement_p)
6041 error ("case label %qE not within a switch statement", expr);
6042 else
6043 statement = finish_case_label (expr, expr_hi);
6044 }
6045 break;
6046
6047 case RID_DEFAULT:
6048 /* Consume the `default' token. */
6049 cp_lexer_consume_token (parser->lexer);
6050 if (!parser->in_switch_statement_p)
6051 error ("case label not within a switch statement");
6052 else
6053 statement = finish_case_label (NULL_TREE, NULL_TREE);
6054 break;
6055
6056 default:
6057 /* Anything else must be an ordinary label. */
6058 statement = finish_label_stmt (cp_parser_identifier (parser));
6059 break;
6060 }
6061
6062 /* Require the `:' token. */
6063 cp_parser_require (parser, CPP_COLON, "`:'");
6064 /* Parse the labeled statement. */
6065 cp_parser_statement (parser, in_statement_expr);
6066
6067 /* Return the label, in the case of a `case' or `default' label. */
6068 return statement;
6069 }
6070
6071 /* Parse an expression-statement.
6072
6073 expression-statement:
6074 expression [opt] ;
6075
6076 Returns the new EXPR_STMT -- or NULL_TREE if the expression
6077 statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
6078 indicates whether this expression-statement is part of an
6079 expression statement. */
6080
6081 static tree
6082 cp_parser_expression_statement (cp_parser* parser, tree in_statement_expr)
6083 {
6084 tree statement = NULL_TREE;
6085
6086 /* If the next token is a ';', then there is no expression
6087 statement. */
6088 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6089 statement = cp_parser_expression (parser, /*cast_p=*/false);
6090
6091 /* Consume the final `;'. */
6092 cp_parser_consume_semicolon_at_end_of_statement (parser);
6093
6094 if (in_statement_expr
6095 && cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
6096 /* This is the final expression statement of a statement
6097 expression. */
6098 statement = finish_stmt_expr_expr (statement, in_statement_expr);
6099 else if (statement)
6100 statement = finish_expr_stmt (statement);
6101 else
6102 finish_stmt ();
6103
6104 return statement;
6105 }
6106
6107 /* Parse a compound-statement.
6108
6109 compound-statement:
6110 { statement-seq [opt] }
6111
6112 Returns a tree representing the statement. */
6113
6114 static tree
6115 cp_parser_compound_statement (cp_parser *parser, tree in_statement_expr,
6116 bool in_try)
6117 {
6118 tree compound_stmt;
6119
6120 /* Consume the `{'. */
6121 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
6122 return error_mark_node;
6123 /* Begin the compound-statement. */
6124 compound_stmt = begin_compound_stmt (in_try ? BCS_TRY_BLOCK : 0);
6125 /* Parse an (optional) statement-seq. */
6126 cp_parser_statement_seq_opt (parser, in_statement_expr);
6127 /* Finish the compound-statement. */
6128 finish_compound_stmt (compound_stmt);
6129 /* Consume the `}'. */
6130 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6131
6132 return compound_stmt;
6133 }
6134
6135 /* Parse an (optional) statement-seq.
6136
6137 statement-seq:
6138 statement
6139 statement-seq [opt] statement */
6140
6141 static void
6142 cp_parser_statement_seq_opt (cp_parser* parser, tree in_statement_expr)
6143 {
6144 /* Scan statements until there aren't any more. */
6145 while (true)
6146 {
6147 /* If we're looking at a `}', then we've run out of statements. */
6148 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)
6149 || cp_lexer_next_token_is (parser->lexer, CPP_EOF))
6150 break;
6151
6152 /* Parse the statement. */
6153 cp_parser_statement (parser, in_statement_expr);
6154 }
6155 }
6156
6157 /* Parse a selection-statement.
6158
6159 selection-statement:
6160 if ( condition ) statement
6161 if ( condition ) statement else statement
6162 switch ( condition ) statement
6163
6164 Returns the new IF_STMT or SWITCH_STMT. */
6165
6166 static tree
6167 cp_parser_selection_statement (cp_parser* parser)
6168 {
6169 cp_token *token;
6170 enum rid keyword;
6171
6172 /* Peek at the next token. */
6173 token = cp_parser_require (parser, CPP_KEYWORD, "selection-statement");
6174
6175 /* See what kind of keyword it is. */
6176 keyword = token->keyword;
6177 switch (keyword)
6178 {
6179 case RID_IF:
6180 case RID_SWITCH:
6181 {
6182 tree statement;
6183 tree condition;
6184
6185 /* Look for the `('. */
6186 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
6187 {
6188 cp_parser_skip_to_end_of_statement (parser);
6189 return error_mark_node;
6190 }
6191
6192 /* Begin the selection-statement. */
6193 if (keyword == RID_IF)
6194 statement = begin_if_stmt ();
6195 else
6196 statement = begin_switch_stmt ();
6197
6198 /* Parse the condition. */
6199 condition = cp_parser_condition (parser);
6200 /* Look for the `)'. */
6201 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
6202 cp_parser_skip_to_closing_parenthesis (parser, true, false,
6203 /*consume_paren=*/true);
6204
6205 if (keyword == RID_IF)
6206 {
6207 /* Add the condition. */
6208 finish_if_stmt_cond (condition, statement);
6209
6210 /* Parse the then-clause. */
6211 cp_parser_implicitly_scoped_statement (parser);
6212 finish_then_clause (statement);
6213
6214 /* If the next token is `else', parse the else-clause. */
6215 if (cp_lexer_next_token_is_keyword (parser->lexer,
6216 RID_ELSE))
6217 {
6218 /* Consume the `else' keyword. */
6219 cp_lexer_consume_token (parser->lexer);
6220 begin_else_clause (statement);
6221 /* Parse the else-clause. */
6222 cp_parser_implicitly_scoped_statement (parser);
6223 finish_else_clause (statement);
6224 }
6225
6226 /* Now we're all done with the if-statement. */
6227 finish_if_stmt (statement);
6228 }
6229 else
6230 {
6231 bool in_switch_statement_p;
6232
6233 /* Add the condition. */
6234 finish_switch_cond (condition, statement);
6235
6236 /* Parse the body of the switch-statement. */
6237 in_switch_statement_p = parser->in_switch_statement_p;
6238 parser->in_switch_statement_p = true;
6239 cp_parser_implicitly_scoped_statement (parser);
6240 parser->in_switch_statement_p = in_switch_statement_p;
6241
6242 /* Now we're all done with the switch-statement. */
6243 finish_switch_stmt (statement);
6244 }
6245
6246 return statement;
6247 }
6248 break;
6249
6250 default:
6251 cp_parser_error (parser, "expected selection-statement");
6252 return error_mark_node;
6253 }
6254 }
6255
6256 /* Parse a condition.
6257
6258 condition:
6259 expression
6260 type-specifier-seq declarator = assignment-expression
6261
6262 GNU Extension:
6263
6264 condition:
6265 type-specifier-seq declarator asm-specification [opt]
6266 attributes [opt] = assignment-expression
6267
6268 Returns the expression that should be tested. */
6269
6270 static tree
6271 cp_parser_condition (cp_parser* parser)
6272 {
6273 cp_decl_specifier_seq type_specifiers;
6274 const char *saved_message;
6275
6276 /* Try the declaration first. */
6277 cp_parser_parse_tentatively (parser);
6278 /* New types are not allowed in the type-specifier-seq for a
6279 condition. */
6280 saved_message = parser->type_definition_forbidden_message;
6281 parser->type_definition_forbidden_message
6282 = "types may not be defined in conditions";
6283 /* Parse the type-specifier-seq. */
6284 cp_parser_type_specifier_seq (parser, &type_specifiers);
6285 /* Restore the saved message. */
6286 parser->type_definition_forbidden_message = saved_message;
6287 /* If all is well, we might be looking at a declaration. */
6288 if (!cp_parser_error_occurred (parser))
6289 {
6290 tree decl;
6291 tree asm_specification;
6292 tree attributes;
6293 cp_declarator *declarator;
6294 tree initializer = NULL_TREE;
6295
6296 /* Parse the declarator. */
6297 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
6298 /*ctor_dtor_or_conv_p=*/NULL,
6299 /*parenthesized_p=*/NULL,
6300 /*member_p=*/false);
6301 /* Parse the attributes. */
6302 attributes = cp_parser_attributes_opt (parser);
6303 /* Parse the asm-specification. */
6304 asm_specification = cp_parser_asm_specification_opt (parser);
6305 /* If the next token is not an `=', then we might still be
6306 looking at an expression. For example:
6307
6308 if (A(a).x)
6309
6310 looks like a decl-specifier-seq and a declarator -- but then
6311 there is no `=', so this is an expression. */
6312 cp_parser_require (parser, CPP_EQ, "`='");
6313 /* If we did see an `=', then we are looking at a declaration
6314 for sure. */
6315 if (cp_parser_parse_definitely (parser))
6316 {
6317 tree pushed_scope;
6318
6319 /* Create the declaration. */
6320 decl = start_decl (declarator, &type_specifiers,
6321 /*initialized_p=*/true,
6322 attributes, /*prefix_attributes=*/NULL_TREE,
6323 &pushed_scope);
6324 /* Parse the assignment-expression. */
6325 initializer = cp_parser_assignment_expression (parser,
6326 /*cast_p=*/false);
6327
6328 /* Process the initializer. */
6329 cp_finish_decl (decl,
6330 initializer,
6331 asm_specification,
6332 LOOKUP_ONLYCONVERTING);
6333
6334 if (pushed_scope)
6335 pop_scope (pushed_scope);
6336
6337 return convert_from_reference (decl);
6338 }
6339 }
6340 /* If we didn't even get past the declarator successfully, we are
6341 definitely not looking at a declaration. */
6342 else
6343 cp_parser_abort_tentative_parse (parser);
6344
6345 /* Otherwise, we are looking at an expression. */
6346 return cp_parser_expression (parser, /*cast_p=*/false);
6347 }
6348
6349 /* Parse an iteration-statement.
6350
6351 iteration-statement:
6352 while ( condition ) statement
6353 do statement while ( expression ) ;
6354 for ( for-init-statement condition [opt] ; expression [opt] )
6355 statement
6356
6357 Returns the new WHILE_STMT, DO_STMT, or FOR_STMT. */
6358
6359 static tree
6360 cp_parser_iteration_statement (cp_parser* parser)
6361 {
6362 cp_token *token;
6363 enum rid keyword;
6364 tree statement;
6365 bool in_iteration_statement_p;
6366
6367
6368 /* Peek at the next token. */
6369 token = cp_parser_require (parser, CPP_KEYWORD, "iteration-statement");
6370 if (!token)
6371 return error_mark_node;
6372
6373 /* Remember whether or not we are already within an iteration
6374 statement. */
6375 in_iteration_statement_p = parser->in_iteration_statement_p;
6376
6377 /* See what kind of keyword it is. */
6378 keyword = token->keyword;
6379 switch (keyword)
6380 {
6381 case RID_WHILE:
6382 {
6383 tree condition;
6384
6385 /* Begin the while-statement. */
6386 statement = begin_while_stmt ();
6387 /* Look for the `('. */
6388 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6389 /* Parse the condition. */
6390 condition = cp_parser_condition (parser);
6391 finish_while_stmt_cond (condition, statement);
6392 /* Look for the `)'. */
6393 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6394 /* Parse the dependent statement. */
6395 parser->in_iteration_statement_p = true;
6396 cp_parser_already_scoped_statement (parser);
6397 parser->in_iteration_statement_p = in_iteration_statement_p;
6398 /* We're done with the while-statement. */
6399 finish_while_stmt (statement);
6400 }
6401 break;
6402
6403 case RID_DO:
6404 {
6405 tree expression;
6406
6407 /* Begin the do-statement. */
6408 statement = begin_do_stmt ();
6409 /* Parse the body of the do-statement. */
6410 parser->in_iteration_statement_p = true;
6411 cp_parser_implicitly_scoped_statement (parser);
6412 parser->in_iteration_statement_p = in_iteration_statement_p;
6413 finish_do_body (statement);
6414 /* Look for the `while' keyword. */
6415 cp_parser_require_keyword (parser, RID_WHILE, "`while'");
6416 /* Look for the `('. */
6417 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6418 /* Parse the expression. */
6419 expression = cp_parser_expression (parser, /*cast_p=*/false);
6420 /* We're done with the do-statement. */
6421 finish_do_stmt (expression, statement);
6422 /* Look for the `)'. */
6423 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6424 /* Look for the `;'. */
6425 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6426 }
6427 break;
6428
6429 case RID_FOR:
6430 {
6431 tree condition = NULL_TREE;
6432 tree expression = NULL_TREE;
6433
6434 /* Begin the for-statement. */
6435 statement = begin_for_stmt ();
6436 /* Look for the `('. */
6437 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6438 /* Parse the initialization. */
6439 cp_parser_for_init_statement (parser);
6440 finish_for_init_stmt (statement);
6441
6442 /* If there's a condition, process it. */
6443 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6444 condition = cp_parser_condition (parser);
6445 finish_for_cond (condition, statement);
6446 /* Look for the `;'. */
6447 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6448
6449 /* If there's an expression, process it. */
6450 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
6451 expression = cp_parser_expression (parser, /*cast_p=*/false);
6452 finish_for_expr (expression, statement);
6453 /* Look for the `)'. */
6454 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6455
6456 /* Parse the body of the for-statement. */
6457 parser->in_iteration_statement_p = true;
6458 cp_parser_already_scoped_statement (parser);
6459 parser->in_iteration_statement_p = in_iteration_statement_p;
6460
6461 /* We're done with the for-statement. */
6462 finish_for_stmt (statement);
6463 }
6464 break;
6465
6466 default:
6467 cp_parser_error (parser, "expected iteration-statement");
6468 statement = error_mark_node;
6469 break;
6470 }
6471
6472 return statement;
6473 }
6474
6475 /* Parse a for-init-statement.
6476
6477 for-init-statement:
6478 expression-statement
6479 simple-declaration */
6480
6481 static void
6482 cp_parser_for_init_statement (cp_parser* parser)
6483 {
6484 /* If the next token is a `;', then we have an empty
6485 expression-statement. Grammatically, this is also a
6486 simple-declaration, but an invalid one, because it does not
6487 declare anything. Therefore, if we did not handle this case
6488 specially, we would issue an error message about an invalid
6489 declaration. */
6490 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6491 {
6492 /* We're going to speculatively look for a declaration, falling back
6493 to an expression, if necessary. */
6494 cp_parser_parse_tentatively (parser);
6495 /* Parse the declaration. */
6496 cp_parser_simple_declaration (parser,
6497 /*function_definition_allowed_p=*/false);
6498 /* If the tentative parse failed, then we shall need to look for an
6499 expression-statement. */
6500 if (cp_parser_parse_definitely (parser))
6501 return;
6502 }
6503
6504 cp_parser_expression_statement (parser, false);
6505 }
6506
6507 /* Parse a jump-statement.
6508
6509 jump-statement:
6510 break ;
6511 continue ;
6512 return expression [opt] ;
6513 goto identifier ;
6514
6515 GNU extension:
6516
6517 jump-statement:
6518 goto * expression ;
6519
6520 Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_EXPR, or GOTO_EXPR. */
6521
6522 static tree
6523 cp_parser_jump_statement (cp_parser* parser)
6524 {
6525 tree statement = error_mark_node;
6526 cp_token *token;
6527 enum rid keyword;
6528
6529 /* Peek at the next token. */
6530 token = cp_parser_require (parser, CPP_KEYWORD, "jump-statement");
6531 if (!token)
6532 return error_mark_node;
6533
6534 /* See what kind of keyword it is. */
6535 keyword = token->keyword;
6536 switch (keyword)
6537 {
6538 case RID_BREAK:
6539 if (!parser->in_switch_statement_p
6540 && !parser->in_iteration_statement_p)
6541 {
6542 error ("break statement not within loop or switch");
6543 statement = error_mark_node;
6544 }
6545 else
6546 statement = finish_break_stmt ();
6547 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6548 break;
6549
6550 case RID_CONTINUE:
6551 if (!parser->in_iteration_statement_p)
6552 {
6553 error ("continue statement not within a loop");
6554 statement = error_mark_node;
6555 }
6556 else
6557 statement = finish_continue_stmt ();
6558 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6559 break;
6560
6561 case RID_RETURN:
6562 {
6563 tree expr;
6564
6565 /* If the next token is a `;', then there is no
6566 expression. */
6567 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6568 expr = cp_parser_expression (parser, /*cast_p=*/false);
6569 else
6570 expr = NULL_TREE;
6571 /* Build the return-statement. */
6572 statement = finish_return_stmt (expr);
6573 /* Look for the final `;'. */
6574 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6575 }
6576 break;
6577
6578 case RID_GOTO:
6579 /* Create the goto-statement. */
6580 if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
6581 {
6582 /* Issue a warning about this use of a GNU extension. */
6583 if (pedantic)
6584 pedwarn ("ISO C++ forbids computed gotos");
6585 /* Consume the '*' token. */
6586 cp_lexer_consume_token (parser->lexer);
6587 /* Parse the dependent expression. */
6588 finish_goto_stmt (cp_parser_expression (parser, /*cast_p=*/false));
6589 }
6590 else
6591 finish_goto_stmt (cp_parser_identifier (parser));
6592 /* Look for the final `;'. */
6593 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6594 break;
6595
6596 default:
6597 cp_parser_error (parser, "expected jump-statement");
6598 break;
6599 }
6600
6601 return statement;
6602 }
6603
6604 /* Parse a declaration-statement.
6605
6606 declaration-statement:
6607 block-declaration */
6608
6609 static void
6610 cp_parser_declaration_statement (cp_parser* parser)
6611 {
6612 void *p;
6613
6614 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6615 p = obstack_alloc (&declarator_obstack, 0);
6616
6617 /* Parse the block-declaration. */
6618 cp_parser_block_declaration (parser, /*statement_p=*/true);
6619
6620 /* Free any declarators allocated. */
6621 obstack_free (&declarator_obstack, p);
6622
6623 /* Finish off the statement. */
6624 finish_stmt ();
6625 }
6626
6627 /* Some dependent statements (like `if (cond) statement'), are
6628 implicitly in their own scope. In other words, if the statement is
6629 a single statement (as opposed to a compound-statement), it is
6630 none-the-less treated as if it were enclosed in braces. Any
6631 declarations appearing in the dependent statement are out of scope
6632 after control passes that point. This function parses a statement,
6633 but ensures that is in its own scope, even if it is not a
6634 compound-statement.
6635
6636 Returns the new statement. */
6637
6638 static tree
6639 cp_parser_implicitly_scoped_statement (cp_parser* parser)
6640 {
6641 tree statement;
6642
6643 /* If the token is not a `{', then we must take special action. */
6644 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6645 {
6646 /* Create a compound-statement. */
6647 statement = begin_compound_stmt (0);
6648 /* Parse the dependent-statement. */
6649 cp_parser_statement (parser, false);
6650 /* Finish the dummy compound-statement. */
6651 finish_compound_stmt (statement);
6652 }
6653 /* Otherwise, we simply parse the statement directly. */
6654 else
6655 statement = cp_parser_compound_statement (parser, NULL, false);
6656
6657 /* Return the statement. */
6658 return statement;
6659 }
6660
6661 /* For some dependent statements (like `while (cond) statement'), we
6662 have already created a scope. Therefore, even if the dependent
6663 statement is a compound-statement, we do not want to create another
6664 scope. */
6665
6666 static void
6667 cp_parser_already_scoped_statement (cp_parser* parser)
6668 {
6669 /* If the token is a `{', then we must take special action. */
6670 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6671 cp_parser_statement (parser, false);
6672 else
6673 {
6674 /* Avoid calling cp_parser_compound_statement, so that we
6675 don't create a new scope. Do everything else by hand. */
6676 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
6677 cp_parser_statement_seq_opt (parser, false);
6678 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6679 }
6680 }
6681
6682 /* Declarations [gram.dcl.dcl] */
6683
6684 /* Parse an optional declaration-sequence.
6685
6686 declaration-seq:
6687 declaration
6688 declaration-seq declaration */
6689
6690 static void
6691 cp_parser_declaration_seq_opt (cp_parser* parser)
6692 {
6693 while (true)
6694 {
6695 cp_token *token;
6696
6697 token = cp_lexer_peek_token (parser->lexer);
6698
6699 if (token->type == CPP_CLOSE_BRACE
6700 || token->type == CPP_EOF)
6701 break;
6702
6703 if (token->type == CPP_SEMICOLON)
6704 {
6705 /* A declaration consisting of a single semicolon is
6706 invalid. Allow it unless we're being pedantic. */
6707 cp_lexer_consume_token (parser->lexer);
6708 if (pedantic && !in_system_header)
6709 pedwarn ("extra %<;%>");
6710 continue;
6711 }
6712
6713 /* If we're entering or exiting a region that's implicitly
6714 extern "C", modify the lang context appropriately. */
6715 if (!parser->implicit_extern_c && token->implicit_extern_c)
6716 {
6717 push_lang_context (lang_name_c);
6718 parser->implicit_extern_c = true;
6719 }
6720 else if (parser->implicit_extern_c && !token->implicit_extern_c)
6721 {
6722 pop_lang_context ();
6723 parser->implicit_extern_c = false;
6724 }
6725
6726 if (token->type == CPP_PRAGMA)
6727 {
6728 /* A top-level declaration can consist solely of a #pragma.
6729 A nested declaration cannot, so this is done here and not
6730 in cp_parser_declaration. (A #pragma at block scope is
6731 handled in cp_parser_statement.) */
6732 cp_lexer_handle_pragma (parser->lexer);
6733 continue;
6734 }
6735
6736 /* Parse the declaration itself. */
6737 cp_parser_declaration (parser);
6738 }
6739 }
6740
6741 /* Parse a declaration.
6742
6743 declaration:
6744 block-declaration
6745 function-definition
6746 template-declaration
6747 explicit-instantiation
6748 explicit-specialization
6749 linkage-specification
6750 namespace-definition
6751
6752 GNU extension:
6753
6754 declaration:
6755 __extension__ declaration */
6756
6757 static void
6758 cp_parser_declaration (cp_parser* parser)
6759 {
6760 cp_token token1;
6761 cp_token token2;
6762 int saved_pedantic;
6763 void *p;
6764
6765 /* Check for the `__extension__' keyword. */
6766 if (cp_parser_extension_opt (parser, &saved_pedantic))
6767 {
6768 /* Parse the qualified declaration. */
6769 cp_parser_declaration (parser);
6770 /* Restore the PEDANTIC flag. */
6771 pedantic = saved_pedantic;
6772
6773 return;
6774 }
6775
6776 /* Try to figure out what kind of declaration is present. */
6777 token1 = *cp_lexer_peek_token (parser->lexer);
6778
6779 if (token1.type != CPP_EOF)
6780 token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
6781
6782 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6783 p = obstack_alloc (&declarator_obstack, 0);
6784
6785 /* If the next token is `extern' and the following token is a string
6786 literal, then we have a linkage specification. */
6787 if (token1.keyword == RID_EXTERN
6788 && cp_parser_is_string_literal (&token2))
6789 cp_parser_linkage_specification (parser);
6790 /* If the next token is `template', then we have either a template
6791 declaration, an explicit instantiation, or an explicit
6792 specialization. */
6793 else if (token1.keyword == RID_TEMPLATE)
6794 {
6795 /* `template <>' indicates a template specialization. */
6796 if (token2.type == CPP_LESS
6797 && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
6798 cp_parser_explicit_specialization (parser);
6799 /* `template <' indicates a template declaration. */
6800 else if (token2.type == CPP_LESS)
6801 cp_parser_template_declaration (parser, /*member_p=*/false);
6802 /* Anything else must be an explicit instantiation. */
6803 else
6804 cp_parser_explicit_instantiation (parser);
6805 }
6806 /* If the next token is `export', then we have a template
6807 declaration. */
6808 else if (token1.keyword == RID_EXPORT)
6809 cp_parser_template_declaration (parser, /*member_p=*/false);
6810 /* If the next token is `extern', 'static' or 'inline' and the one
6811 after that is `template', we have a GNU extended explicit
6812 instantiation directive. */
6813 else if (cp_parser_allow_gnu_extensions_p (parser)
6814 && (token1.keyword == RID_EXTERN
6815 || token1.keyword == RID_STATIC
6816 || token1.keyword == RID_INLINE)
6817 && token2.keyword == RID_TEMPLATE)
6818 cp_parser_explicit_instantiation (parser);
6819 /* If the next token is `namespace', check for a named or unnamed
6820 namespace definition. */
6821 else if (token1.keyword == RID_NAMESPACE
6822 && (/* A named namespace definition. */
6823 (token2.type == CPP_NAME
6824 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
6825 == CPP_OPEN_BRACE))
6826 /* An unnamed namespace definition. */
6827 || token2.type == CPP_OPEN_BRACE))
6828 cp_parser_namespace_definition (parser);
6829 /* We must have either a block declaration or a function
6830 definition. */
6831 else
6832 /* Try to parse a block-declaration, or a function-definition. */
6833 cp_parser_block_declaration (parser, /*statement_p=*/false);
6834
6835 /* Free any declarators allocated. */
6836 obstack_free (&declarator_obstack, p);
6837 }
6838
6839 /* Parse a block-declaration.
6840
6841 block-declaration:
6842 simple-declaration
6843 asm-definition
6844 namespace-alias-definition
6845 using-declaration
6846 using-directive
6847
6848 GNU Extension:
6849
6850 block-declaration:
6851 __extension__ block-declaration
6852 label-declaration
6853
6854 If STATEMENT_P is TRUE, then this block-declaration is occurring as
6855 part of a declaration-statement. */
6856
6857 static void
6858 cp_parser_block_declaration (cp_parser *parser,
6859 bool statement_p)
6860 {
6861 cp_token *token1;
6862 int saved_pedantic;
6863
6864 /* Check for the `__extension__' keyword. */
6865 if (cp_parser_extension_opt (parser, &saved_pedantic))
6866 {
6867 /* Parse the qualified declaration. */
6868 cp_parser_block_declaration (parser, statement_p);
6869 /* Restore the PEDANTIC flag. */
6870 pedantic = saved_pedantic;
6871
6872 return;
6873 }
6874
6875 /* Peek at the next token to figure out which kind of declaration is
6876 present. */
6877 token1 = cp_lexer_peek_token (parser->lexer);
6878
6879 /* If the next keyword is `asm', we have an asm-definition. */
6880 if (token1->keyword == RID_ASM)
6881 {
6882 if (statement_p)
6883 cp_parser_commit_to_tentative_parse (parser);
6884 cp_parser_asm_definition (parser);
6885 }
6886 /* If the next keyword is `namespace', we have a
6887 namespace-alias-definition. */
6888 else if (token1->keyword == RID_NAMESPACE)
6889 cp_parser_namespace_alias_definition (parser);
6890 /* If the next keyword is `using', we have either a
6891 using-declaration or a using-directive. */
6892 else if (token1->keyword == RID_USING)
6893 {
6894 cp_token *token2;
6895
6896 if (statement_p)
6897 cp_parser_commit_to_tentative_parse (parser);
6898 /* If the token after `using' is `namespace', then we have a
6899 using-directive. */
6900 token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
6901 if (token2->keyword == RID_NAMESPACE)
6902 cp_parser_using_directive (parser);
6903 /* Otherwise, it's a using-declaration. */
6904 else
6905 cp_parser_using_declaration (parser);
6906 }
6907 /* If the next keyword is `__label__' we have a label declaration. */
6908 else if (token1->keyword == RID_LABEL)
6909 {
6910 if (statement_p)
6911 cp_parser_commit_to_tentative_parse (parser);
6912 cp_parser_label_declaration (parser);
6913 }
6914 /* Anything else must be a simple-declaration. */
6915 else
6916 cp_parser_simple_declaration (parser, !statement_p);
6917 }
6918
6919 /* Parse a simple-declaration.
6920
6921 simple-declaration:
6922 decl-specifier-seq [opt] init-declarator-list [opt] ;
6923
6924 init-declarator-list:
6925 init-declarator
6926 init-declarator-list , init-declarator
6927
6928 If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
6929 function-definition as a simple-declaration. */
6930
6931 static void
6932 cp_parser_simple_declaration (cp_parser* parser,
6933 bool function_definition_allowed_p)
6934 {
6935 cp_decl_specifier_seq decl_specifiers;
6936 int declares_class_or_enum;
6937 bool saw_declarator;
6938
6939 /* Defer access checks until we know what is being declared; the
6940 checks for names appearing in the decl-specifier-seq should be
6941 done as if we were in the scope of the thing being declared. */
6942 push_deferring_access_checks (dk_deferred);
6943
6944 /* Parse the decl-specifier-seq. We have to keep track of whether
6945 or not the decl-specifier-seq declares a named class or
6946 enumeration type, since that is the only case in which the
6947 init-declarator-list is allowed to be empty.
6948
6949 [dcl.dcl]
6950
6951 In a simple-declaration, the optional init-declarator-list can be
6952 omitted only when declaring a class or enumeration, that is when
6953 the decl-specifier-seq contains either a class-specifier, an
6954 elaborated-type-specifier, or an enum-specifier. */
6955 cp_parser_decl_specifier_seq (parser,
6956 CP_PARSER_FLAGS_OPTIONAL,
6957 &decl_specifiers,
6958 &declares_class_or_enum);
6959 /* We no longer need to defer access checks. */
6960 stop_deferring_access_checks ();
6961
6962 /* In a block scope, a valid declaration must always have a
6963 decl-specifier-seq. By not trying to parse declarators, we can
6964 resolve the declaration/expression ambiguity more quickly. */
6965 if (!function_definition_allowed_p
6966 && !decl_specifiers.any_specifiers_p)
6967 {
6968 cp_parser_error (parser, "expected declaration");
6969 goto done;
6970 }
6971
6972 /* If the next two tokens are both identifiers, the code is
6973 erroneous. The usual cause of this situation is code like:
6974
6975 T t;
6976
6977 where "T" should name a type -- but does not. */
6978 if (!decl_specifiers.type
6979 && cp_parser_parse_and_diagnose_invalid_type_name (parser))
6980 {
6981 /* If parsing tentatively, we should commit; we really are
6982 looking at a declaration. */
6983 cp_parser_commit_to_tentative_parse (parser);
6984 /* Give up. */
6985 goto done;
6986 }
6987
6988 /* If we have seen at least one decl-specifier, and the next token
6989 is not a parenthesis, then we must be looking at a declaration.
6990 (After "int (" we might be looking at a functional cast.) */
6991 if (decl_specifiers.any_specifiers_p
6992 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
6993 cp_parser_commit_to_tentative_parse (parser);
6994
6995 /* Keep going until we hit the `;' at the end of the simple
6996 declaration. */
6997 saw_declarator = false;
6998 while (cp_lexer_next_token_is_not (parser->lexer,
6999 CPP_SEMICOLON))
7000 {
7001 cp_token *token;
7002 bool function_definition_p;
7003 tree decl;
7004
7005 saw_declarator = true;
7006 /* Parse the init-declarator. */
7007 decl = cp_parser_init_declarator (parser, &decl_specifiers,
7008 function_definition_allowed_p,
7009 /*member_p=*/false,
7010 declares_class_or_enum,
7011 &function_definition_p);
7012 /* If an error occurred while parsing tentatively, exit quickly.
7013 (That usually happens when in the body of a function; each
7014 statement is treated as a declaration-statement until proven
7015 otherwise.) */
7016 if (cp_parser_error_occurred (parser))
7017 goto done;
7018 /* Handle function definitions specially. */
7019 if (function_definition_p)
7020 {
7021 /* If the next token is a `,', then we are probably
7022 processing something like:
7023
7024 void f() {}, *p;
7025
7026 which is erroneous. */
7027 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
7028 error ("mixing declarations and function-definitions is forbidden");
7029 /* Otherwise, we're done with the list of declarators. */
7030 else
7031 {
7032 pop_deferring_access_checks ();
7033 return;
7034 }
7035 }
7036 /* The next token should be either a `,' or a `;'. */
7037 token = cp_lexer_peek_token (parser->lexer);
7038 /* If it's a `,', there are more declarators to come. */
7039 if (token->type == CPP_COMMA)
7040 cp_lexer_consume_token (parser->lexer);
7041 /* If it's a `;', we are done. */
7042 else if (token->type == CPP_SEMICOLON)
7043 break;
7044 /* Anything else is an error. */
7045 else
7046 {
7047 /* If we have already issued an error message we don't need
7048 to issue another one. */
7049 if (decl != error_mark_node
7050 || cp_parser_uncommitted_to_tentative_parse_p (parser))
7051 cp_parser_error (parser, "expected %<,%> or %<;%>");
7052 /* Skip tokens until we reach the end of the statement. */
7053 cp_parser_skip_to_end_of_statement (parser);
7054 /* If the next token is now a `;', consume it. */
7055 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
7056 cp_lexer_consume_token (parser->lexer);
7057 goto done;
7058 }
7059 /* After the first time around, a function-definition is not
7060 allowed -- even if it was OK at first. For example:
7061
7062 int i, f() {}
7063
7064 is not valid. */
7065 function_definition_allowed_p = false;
7066 }
7067
7068 /* Issue an error message if no declarators are present, and the
7069 decl-specifier-seq does not itself declare a class or
7070 enumeration. */
7071 if (!saw_declarator)
7072 {
7073 if (cp_parser_declares_only_class_p (parser))
7074 shadow_tag (&decl_specifiers);
7075 /* Perform any deferred access checks. */
7076 perform_deferred_access_checks ();
7077 }
7078
7079 /* Consume the `;'. */
7080 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
7081
7082 done:
7083 pop_deferring_access_checks ();
7084 }
7085
7086 /* Parse a decl-specifier-seq.
7087
7088 decl-specifier-seq:
7089 decl-specifier-seq [opt] decl-specifier
7090
7091 decl-specifier:
7092 storage-class-specifier
7093 type-specifier
7094 function-specifier
7095 friend
7096 typedef
7097
7098 GNU Extension:
7099
7100 decl-specifier:
7101 attributes
7102
7103 Set *DECL_SPECS to a representation of the decl-specifier-seq.
7104
7105 The parser flags FLAGS is used to control type-specifier parsing.
7106
7107 *DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
7108 flags:
7109
7110 1: one of the decl-specifiers is an elaborated-type-specifier
7111 (i.e., a type declaration)
7112 2: one of the decl-specifiers is an enum-specifier or a
7113 class-specifier (i.e., a type definition)
7114
7115 */
7116
7117 static void
7118 cp_parser_decl_specifier_seq (cp_parser* parser,
7119 cp_parser_flags flags,
7120 cp_decl_specifier_seq *decl_specs,
7121 int* declares_class_or_enum)
7122 {
7123 bool constructor_possible_p = !parser->in_declarator_p;
7124
7125 /* Clear DECL_SPECS. */
7126 clear_decl_specs (decl_specs);
7127
7128 /* Assume no class or enumeration type is declared. */
7129 *declares_class_or_enum = 0;
7130
7131 /* Keep reading specifiers until there are no more to read. */
7132 while (true)
7133 {
7134 bool constructor_p;
7135 bool found_decl_spec;
7136 cp_token *token;
7137
7138 /* Peek at the next token. */
7139 token = cp_lexer_peek_token (parser->lexer);
7140 /* Handle attributes. */
7141 if (token->keyword == RID_ATTRIBUTE)
7142 {
7143 /* Parse the attributes. */
7144 decl_specs->attributes
7145 = chainon (decl_specs->attributes,
7146 cp_parser_attributes_opt (parser));
7147 continue;
7148 }
7149 /* Assume we will find a decl-specifier keyword. */
7150 found_decl_spec = true;
7151 /* If the next token is an appropriate keyword, we can simply
7152 add it to the list. */
7153 switch (token->keyword)
7154 {
7155 /* decl-specifier:
7156 friend */
7157 case RID_FRIEND:
7158 if (decl_specs->specs[(int) ds_friend]++)
7159 error ("duplicate %<friend%>");
7160 /* Consume the token. */
7161 cp_lexer_consume_token (parser->lexer);
7162 break;
7163
7164 /* function-specifier:
7165 inline
7166 virtual
7167 explicit */
7168 case RID_INLINE:
7169 case RID_VIRTUAL:
7170 case RID_EXPLICIT:
7171 cp_parser_function_specifier_opt (parser, decl_specs);
7172 break;
7173
7174 /* decl-specifier:
7175 typedef */
7176 case RID_TYPEDEF:
7177 ++decl_specs->specs[(int) ds_typedef];
7178 /* Consume the token. */
7179 cp_lexer_consume_token (parser->lexer);
7180 /* A constructor declarator cannot appear in a typedef. */
7181 constructor_possible_p = false;
7182 /* The "typedef" keyword can only occur in a declaration; we
7183 may as well commit at this point. */
7184 cp_parser_commit_to_tentative_parse (parser);
7185 break;
7186
7187 /* storage-class-specifier:
7188 auto
7189 register
7190 static
7191 extern
7192 mutable
7193
7194 GNU Extension:
7195 thread */
7196 case RID_AUTO:
7197 /* Consume the token. */
7198 cp_lexer_consume_token (parser->lexer);
7199 cp_parser_set_storage_class (decl_specs, sc_auto);
7200 break;
7201 case RID_REGISTER:
7202 /* Consume the token. */
7203 cp_lexer_consume_token (parser->lexer);
7204 cp_parser_set_storage_class (decl_specs, sc_register);
7205 break;
7206 case RID_STATIC:
7207 /* Consume the token. */
7208 cp_lexer_consume_token (parser->lexer);
7209 if (decl_specs->specs[(int) ds_thread])
7210 {
7211 error ("%<__thread%> before %<static%>");
7212 decl_specs->specs[(int) ds_thread] = 0;
7213 }
7214 cp_parser_set_storage_class (decl_specs, sc_static);
7215 break;
7216 case RID_EXTERN:
7217 /* Consume the token. */
7218 cp_lexer_consume_token (parser->lexer);
7219 if (decl_specs->specs[(int) ds_thread])
7220 {
7221 error ("%<__thread%> before %<extern%>");
7222 decl_specs->specs[(int) ds_thread] = 0;
7223 }
7224 cp_parser_set_storage_class (decl_specs, sc_extern);
7225 break;
7226 case RID_MUTABLE:
7227 /* Consume the token. */
7228 cp_lexer_consume_token (parser->lexer);
7229 cp_parser_set_storage_class (decl_specs, sc_mutable);
7230 break;
7231 case RID_THREAD:
7232 /* Consume the token. */
7233 cp_lexer_consume_token (parser->lexer);
7234 ++decl_specs->specs[(int) ds_thread];
7235 break;
7236
7237 default:
7238 /* We did not yet find a decl-specifier yet. */
7239 found_decl_spec = false;
7240 break;
7241 }
7242
7243 /* Constructors are a special case. The `S' in `S()' is not a
7244 decl-specifier; it is the beginning of the declarator. */
7245 constructor_p
7246 = (!found_decl_spec
7247 && constructor_possible_p
7248 && (cp_parser_constructor_declarator_p
7249 (parser, decl_specs->specs[(int) ds_friend] != 0)));
7250
7251 /* If we don't have a DECL_SPEC yet, then we must be looking at
7252 a type-specifier. */
7253 if (!found_decl_spec && !constructor_p)
7254 {
7255 int decl_spec_declares_class_or_enum;
7256 bool is_cv_qualifier;
7257 tree type_spec;
7258
7259 type_spec
7260 = cp_parser_type_specifier (parser, flags,
7261 decl_specs,
7262 /*is_declaration=*/true,
7263 &decl_spec_declares_class_or_enum,
7264 &is_cv_qualifier);
7265
7266 *declares_class_or_enum |= decl_spec_declares_class_or_enum;
7267
7268 /* If this type-specifier referenced a user-defined type
7269 (a typedef, class-name, etc.), then we can't allow any
7270 more such type-specifiers henceforth.
7271
7272 [dcl.spec]
7273
7274 The longest sequence of decl-specifiers that could
7275 possibly be a type name is taken as the
7276 decl-specifier-seq of a declaration. The sequence shall
7277 be self-consistent as described below.
7278
7279 [dcl.type]
7280
7281 As a general rule, at most one type-specifier is allowed
7282 in the complete decl-specifier-seq of a declaration. The
7283 only exceptions are the following:
7284
7285 -- const or volatile can be combined with any other
7286 type-specifier.
7287
7288 -- signed or unsigned can be combined with char, long,
7289 short, or int.
7290
7291 -- ..
7292
7293 Example:
7294
7295 typedef char* Pc;
7296 void g (const int Pc);
7297
7298 Here, Pc is *not* part of the decl-specifier seq; it's
7299 the declarator. Therefore, once we see a type-specifier
7300 (other than a cv-qualifier), we forbid any additional
7301 user-defined types. We *do* still allow things like `int
7302 int' to be considered a decl-specifier-seq, and issue the
7303 error message later. */
7304 if (type_spec && !is_cv_qualifier)
7305 flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
7306 /* A constructor declarator cannot follow a type-specifier. */
7307 if (type_spec)
7308 {
7309 constructor_possible_p = false;
7310 found_decl_spec = true;
7311 }
7312 }
7313
7314 /* If we still do not have a DECL_SPEC, then there are no more
7315 decl-specifiers. */
7316 if (!found_decl_spec)
7317 break;
7318
7319 decl_specs->any_specifiers_p = true;
7320 /* After we see one decl-specifier, further decl-specifiers are
7321 always optional. */
7322 flags |= CP_PARSER_FLAGS_OPTIONAL;
7323 }
7324
7325 /* Don't allow a friend specifier with a class definition. */
7326 if (decl_specs->specs[(int) ds_friend] != 0
7327 && (*declares_class_or_enum & 2))
7328 error ("class definition may not be declared a friend");
7329 }
7330
7331 /* Parse an (optional) storage-class-specifier.
7332
7333 storage-class-specifier:
7334 auto
7335 register
7336 static
7337 extern
7338 mutable
7339
7340 GNU Extension:
7341
7342 storage-class-specifier:
7343 thread
7344
7345 Returns an IDENTIFIER_NODE corresponding to the keyword used. */
7346
7347 static tree
7348 cp_parser_storage_class_specifier_opt (cp_parser* parser)
7349 {
7350 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7351 {
7352 case RID_AUTO:
7353 case RID_REGISTER:
7354 case RID_STATIC:
7355 case RID_EXTERN:
7356 case RID_MUTABLE:
7357 case RID_THREAD:
7358 /* Consume the token. */
7359 return cp_lexer_consume_token (parser->lexer)->value;
7360
7361 default:
7362 return NULL_TREE;
7363 }
7364 }
7365
7366 /* Parse an (optional) function-specifier.
7367
7368 function-specifier:
7369 inline
7370 virtual
7371 explicit
7372
7373 Returns an IDENTIFIER_NODE corresponding to the keyword used.
7374 Updates DECL_SPECS, if it is non-NULL. */
7375
7376 static tree
7377 cp_parser_function_specifier_opt (cp_parser* parser,
7378 cp_decl_specifier_seq *decl_specs)
7379 {
7380 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7381 {
7382 case RID_INLINE:
7383 if (decl_specs)
7384 ++decl_specs->specs[(int) ds_inline];
7385 break;
7386
7387 case RID_VIRTUAL:
7388 if (decl_specs)
7389 ++decl_specs->specs[(int) ds_virtual];
7390 break;
7391
7392 case RID_EXPLICIT:
7393 if (decl_specs)
7394 ++decl_specs->specs[(int) ds_explicit];
7395 break;
7396
7397 default:
7398 return NULL_TREE;
7399 }
7400
7401 /* Consume the token. */
7402 return cp_lexer_consume_token (parser->lexer)->value;
7403 }
7404
7405 /* Parse a linkage-specification.
7406
7407 linkage-specification:
7408 extern string-literal { declaration-seq [opt] }
7409 extern string-literal declaration */
7410
7411 static void
7412 cp_parser_linkage_specification (cp_parser* parser)
7413 {
7414 tree linkage;
7415
7416 /* Look for the `extern' keyword. */
7417 cp_parser_require_keyword (parser, RID_EXTERN, "`extern'");
7418
7419 /* Look for the string-literal. */
7420 linkage = cp_parser_string_literal (parser, false, false);
7421
7422 /* Transform the literal into an identifier. If the literal is a
7423 wide-character string, or contains embedded NULs, then we can't
7424 handle it as the user wants. */
7425 if (strlen (TREE_STRING_POINTER (linkage))
7426 != (size_t) (TREE_STRING_LENGTH (linkage) - 1))
7427 {
7428 cp_parser_error (parser, "invalid linkage-specification");
7429 /* Assume C++ linkage. */
7430 linkage = lang_name_cplusplus;
7431 }
7432 else
7433 linkage = get_identifier (TREE_STRING_POINTER (linkage));
7434
7435 /* We're now using the new linkage. */
7436 push_lang_context (linkage);
7437
7438 /* If the next token is a `{', then we're using the first
7439 production. */
7440 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
7441 {
7442 /* Consume the `{' token. */
7443 cp_lexer_consume_token (parser->lexer);
7444 /* Parse the declarations. */
7445 cp_parser_declaration_seq_opt (parser);
7446 /* Look for the closing `}'. */
7447 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
7448 }
7449 /* Otherwise, there's just one declaration. */
7450 else
7451 {
7452 bool saved_in_unbraced_linkage_specification_p;
7453
7454 saved_in_unbraced_linkage_specification_p
7455 = parser->in_unbraced_linkage_specification_p;
7456 parser->in_unbraced_linkage_specification_p = true;
7457 have_extern_spec = true;
7458 cp_parser_declaration (parser);
7459 have_extern_spec = false;
7460 parser->in_unbraced_linkage_specification_p
7461 = saved_in_unbraced_linkage_specification_p;
7462 }
7463
7464 /* We're done with the linkage-specification. */
7465 pop_lang_context ();
7466 }
7467
7468 /* Special member functions [gram.special] */
7469
7470 /* Parse a conversion-function-id.
7471
7472 conversion-function-id:
7473 operator conversion-type-id
7474
7475 Returns an IDENTIFIER_NODE representing the operator. */
7476
7477 static tree
7478 cp_parser_conversion_function_id (cp_parser* parser)
7479 {
7480 tree type;
7481 tree saved_scope;
7482 tree saved_qualifying_scope;
7483 tree saved_object_scope;
7484 tree pushed_scope = NULL_TREE;
7485
7486 /* Look for the `operator' token. */
7487 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7488 return error_mark_node;
7489 /* When we parse the conversion-type-id, the current scope will be
7490 reset. However, we need that information in able to look up the
7491 conversion function later, so we save it here. */
7492 saved_scope = parser->scope;
7493 saved_qualifying_scope = parser->qualifying_scope;
7494 saved_object_scope = parser->object_scope;
7495 /* We must enter the scope of the class so that the names of
7496 entities declared within the class are available in the
7497 conversion-type-id. For example, consider:
7498
7499 struct S {
7500 typedef int I;
7501 operator I();
7502 };
7503
7504 S::operator I() { ... }
7505
7506 In order to see that `I' is a type-name in the definition, we
7507 must be in the scope of `S'. */
7508 if (saved_scope)
7509 pushed_scope = push_scope (saved_scope);
7510 /* Parse the conversion-type-id. */
7511 type = cp_parser_conversion_type_id (parser);
7512 /* Leave the scope of the class, if any. */
7513 if (pushed_scope)
7514 pop_scope (pushed_scope);
7515 /* Restore the saved scope. */
7516 parser->scope = saved_scope;
7517 parser->qualifying_scope = saved_qualifying_scope;
7518 parser->object_scope = saved_object_scope;
7519 /* If the TYPE is invalid, indicate failure. */
7520 if (type == error_mark_node)
7521 return error_mark_node;
7522 return mangle_conv_op_name_for_type (type);
7523 }
7524
7525 /* Parse a conversion-type-id:
7526
7527 conversion-type-id:
7528 type-specifier-seq conversion-declarator [opt]
7529
7530 Returns the TYPE specified. */
7531
7532 static tree
7533 cp_parser_conversion_type_id (cp_parser* parser)
7534 {
7535 tree attributes;
7536 cp_decl_specifier_seq type_specifiers;
7537 cp_declarator *declarator;
7538 tree type_specified;
7539
7540 /* Parse the attributes. */
7541 attributes = cp_parser_attributes_opt (parser);
7542 /* Parse the type-specifiers. */
7543 cp_parser_type_specifier_seq (parser, &type_specifiers);
7544 /* If that didn't work, stop. */
7545 if (type_specifiers.type == error_mark_node)
7546 return error_mark_node;
7547 /* Parse the conversion-declarator. */
7548 declarator = cp_parser_conversion_declarator_opt (parser);
7549
7550 type_specified = grokdeclarator (declarator, &type_specifiers, TYPENAME,
7551 /*initialized=*/0, &attributes);
7552 if (attributes)
7553 cplus_decl_attributes (&type_specified, attributes, /*flags=*/0);
7554 return type_specified;
7555 }
7556
7557 /* Parse an (optional) conversion-declarator.
7558
7559 conversion-declarator:
7560 ptr-operator conversion-declarator [opt]
7561
7562 */
7563
7564 static cp_declarator *
7565 cp_parser_conversion_declarator_opt (cp_parser* parser)
7566 {
7567 enum tree_code code;
7568 tree class_type;
7569 cp_cv_quals cv_quals;
7570
7571 /* We don't know if there's a ptr-operator next, or not. */
7572 cp_parser_parse_tentatively (parser);
7573 /* Try the ptr-operator. */
7574 code = cp_parser_ptr_operator (parser, &class_type, &cv_quals);
7575 /* If it worked, look for more conversion-declarators. */
7576 if (cp_parser_parse_definitely (parser))
7577 {
7578 cp_declarator *declarator;
7579
7580 /* Parse another optional declarator. */
7581 declarator = cp_parser_conversion_declarator_opt (parser);
7582
7583 /* Create the representation of the declarator. */
7584 if (class_type)
7585 declarator = make_ptrmem_declarator (cv_quals, class_type,
7586 declarator);
7587 else if (code == INDIRECT_REF)
7588 declarator = make_pointer_declarator (cv_quals, declarator);
7589 else
7590 declarator = make_reference_declarator (cv_quals, declarator);
7591
7592 return declarator;
7593 }
7594
7595 return NULL;
7596 }
7597
7598 /* Parse an (optional) ctor-initializer.
7599
7600 ctor-initializer:
7601 : mem-initializer-list
7602
7603 Returns TRUE iff the ctor-initializer was actually present. */
7604
7605 static bool
7606 cp_parser_ctor_initializer_opt (cp_parser* parser)
7607 {
7608 /* If the next token is not a `:', then there is no
7609 ctor-initializer. */
7610 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
7611 {
7612 /* Do default initialization of any bases and members. */
7613 if (DECL_CONSTRUCTOR_P (current_function_decl))
7614 finish_mem_initializers (NULL_TREE);
7615
7616 return false;
7617 }
7618
7619 /* Consume the `:' token. */
7620 cp_lexer_consume_token (parser->lexer);
7621 /* And the mem-initializer-list. */
7622 cp_parser_mem_initializer_list (parser);
7623
7624 return true;
7625 }
7626
7627 /* Parse a mem-initializer-list.
7628
7629 mem-initializer-list:
7630 mem-initializer
7631 mem-initializer , mem-initializer-list */
7632
7633 static void
7634 cp_parser_mem_initializer_list (cp_parser* parser)
7635 {
7636 tree mem_initializer_list = NULL_TREE;
7637
7638 /* Let the semantic analysis code know that we are starting the
7639 mem-initializer-list. */
7640 if (!DECL_CONSTRUCTOR_P (current_function_decl))
7641 error ("only constructors take base initializers");
7642
7643 /* Loop through the list. */
7644 while (true)
7645 {
7646 tree mem_initializer;
7647
7648 /* Parse the mem-initializer. */
7649 mem_initializer = cp_parser_mem_initializer (parser);
7650 /* Add it to the list, unless it was erroneous. */
7651 if (mem_initializer)
7652 {
7653 TREE_CHAIN (mem_initializer) = mem_initializer_list;
7654 mem_initializer_list = mem_initializer;
7655 }
7656 /* If the next token is not a `,', we're done. */
7657 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
7658 break;
7659 /* Consume the `,' token. */
7660 cp_lexer_consume_token (parser->lexer);
7661 }
7662
7663 /* Perform semantic analysis. */
7664 if (DECL_CONSTRUCTOR_P (current_function_decl))
7665 finish_mem_initializers (mem_initializer_list);
7666 }
7667
7668 /* Parse a mem-initializer.
7669
7670 mem-initializer:
7671 mem-initializer-id ( expression-list [opt] )
7672
7673 GNU extension:
7674
7675 mem-initializer:
7676 ( expression-list [opt] )
7677
7678 Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base
7679 class) or FIELD_DECL (for a non-static data member) to initialize;
7680 the TREE_VALUE is the expression-list. */
7681
7682 static tree
7683 cp_parser_mem_initializer (cp_parser* parser)
7684 {
7685 tree mem_initializer_id;
7686 tree expression_list;
7687 tree member;
7688
7689 /* Find out what is being initialized. */
7690 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
7691 {
7692 pedwarn ("anachronistic old-style base class initializer");
7693 mem_initializer_id = NULL_TREE;
7694 }
7695 else
7696 mem_initializer_id = cp_parser_mem_initializer_id (parser);
7697 member = expand_member_init (mem_initializer_id);
7698 if (member && !DECL_P (member))
7699 in_base_initializer = 1;
7700
7701 expression_list
7702 = cp_parser_parenthesized_expression_list (parser, false,
7703 /*cast_p=*/false,
7704 /*non_constant_p=*/NULL);
7705 if (!expression_list)
7706 expression_list = void_type_node;
7707
7708 in_base_initializer = 0;
7709
7710 return member ? build_tree_list (member, expression_list) : NULL_TREE;
7711 }
7712
7713 /* Parse a mem-initializer-id.
7714
7715 mem-initializer-id:
7716 :: [opt] nested-name-specifier [opt] class-name
7717 identifier
7718
7719 Returns a TYPE indicating the class to be initializer for the first
7720 production. Returns an IDENTIFIER_NODE indicating the data member
7721 to be initialized for the second production. */
7722
7723 static tree
7724 cp_parser_mem_initializer_id (cp_parser* parser)
7725 {
7726 bool global_scope_p;
7727 bool nested_name_specifier_p;
7728 bool template_p = false;
7729 tree id;
7730
7731 /* `typename' is not allowed in this context ([temp.res]). */
7732 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
7733 {
7734 error ("keyword %<typename%> not allowed in this context (a qualified "
7735 "member initializer is implicitly a type)");
7736 cp_lexer_consume_token (parser->lexer);
7737 }
7738 /* Look for the optional `::' operator. */
7739 global_scope_p
7740 = (cp_parser_global_scope_opt (parser,
7741 /*current_scope_valid_p=*/false)
7742 != NULL_TREE);
7743 /* Look for the optional nested-name-specifier. The simplest way to
7744 implement:
7745
7746 [temp.res]
7747
7748 The keyword `typename' is not permitted in a base-specifier or
7749 mem-initializer; in these contexts a qualified name that
7750 depends on a template-parameter is implicitly assumed to be a
7751 type name.
7752
7753 is to assume that we have seen the `typename' keyword at this
7754 point. */
7755 nested_name_specifier_p
7756 = (cp_parser_nested_name_specifier_opt (parser,
7757 /*typename_keyword_p=*/true,
7758 /*check_dependency_p=*/true,
7759 /*type_p=*/true,
7760 /*is_declaration=*/true)
7761 != NULL_TREE);
7762 if (nested_name_specifier_p)
7763 template_p = cp_parser_optional_template_keyword (parser);
7764 /* If there is a `::' operator or a nested-name-specifier, then we
7765 are definitely looking for a class-name. */
7766 if (global_scope_p || nested_name_specifier_p)
7767 return cp_parser_class_name (parser,
7768 /*typename_keyword_p=*/true,
7769 /*template_keyword_p=*/template_p,
7770 none_type,
7771 /*check_dependency_p=*/true,
7772 /*class_head_p=*/false,
7773 /*is_declaration=*/true);
7774 /* Otherwise, we could also be looking for an ordinary identifier. */
7775 cp_parser_parse_tentatively (parser);
7776 /* Try a class-name. */
7777 id = cp_parser_class_name (parser,
7778 /*typename_keyword_p=*/true,
7779 /*template_keyword_p=*/false,
7780 none_type,
7781 /*check_dependency_p=*/true,
7782 /*class_head_p=*/false,
7783 /*is_declaration=*/true);
7784 /* If we found one, we're done. */
7785 if (cp_parser_parse_definitely (parser))
7786 return id;
7787 /* Otherwise, look for an ordinary identifier. */
7788 return cp_parser_identifier (parser);
7789 }
7790
7791 /* Overloading [gram.over] */
7792
7793 /* Parse an operator-function-id.
7794
7795 operator-function-id:
7796 operator operator
7797
7798 Returns an IDENTIFIER_NODE for the operator which is a
7799 human-readable spelling of the identifier, e.g., `operator +'. */
7800
7801 static tree
7802 cp_parser_operator_function_id (cp_parser* parser)
7803 {
7804 /* Look for the `operator' keyword. */
7805 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7806 return error_mark_node;
7807 /* And then the name of the operator itself. */
7808 return cp_parser_operator (parser);
7809 }
7810
7811 /* Parse an operator.
7812
7813 operator:
7814 new delete new[] delete[] + - * / % ^ & | ~ ! = < >
7815 += -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
7816 || ++ -- , ->* -> () []
7817
7818 GNU Extensions:
7819
7820 operator:
7821 <? >? <?= >?=
7822
7823 Returns an IDENTIFIER_NODE for the operator which is a
7824 human-readable spelling of the identifier, e.g., `operator +'. */
7825
7826 static tree
7827 cp_parser_operator (cp_parser* parser)
7828 {
7829 tree id = NULL_TREE;
7830 cp_token *token;
7831
7832 /* Peek at the next token. */
7833 token = cp_lexer_peek_token (parser->lexer);
7834 /* Figure out which operator we have. */
7835 switch (token->type)
7836 {
7837 case CPP_KEYWORD:
7838 {
7839 enum tree_code op;
7840
7841 /* The keyword should be either `new' or `delete'. */
7842 if (token->keyword == RID_NEW)
7843 op = NEW_EXPR;
7844 else if (token->keyword == RID_DELETE)
7845 op = DELETE_EXPR;
7846 else
7847 break;
7848
7849 /* Consume the `new' or `delete' token. */
7850 cp_lexer_consume_token (parser->lexer);
7851
7852 /* Peek at the next token. */
7853 token = cp_lexer_peek_token (parser->lexer);
7854 /* If it's a `[' token then this is the array variant of the
7855 operator. */
7856 if (token->type == CPP_OPEN_SQUARE)
7857 {
7858 /* Consume the `[' token. */
7859 cp_lexer_consume_token (parser->lexer);
7860 /* Look for the `]' token. */
7861 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
7862 id = ansi_opname (op == NEW_EXPR
7863 ? VEC_NEW_EXPR : VEC_DELETE_EXPR);
7864 }
7865 /* Otherwise, we have the non-array variant. */
7866 else
7867 id = ansi_opname (op);
7868
7869 return id;
7870 }
7871
7872 case CPP_PLUS:
7873 id = ansi_opname (PLUS_EXPR);
7874 break;
7875
7876 case CPP_MINUS:
7877 id = ansi_opname (MINUS_EXPR);
7878 break;
7879
7880 case CPP_MULT:
7881 id = ansi_opname (MULT_EXPR);
7882 break;
7883
7884 case CPP_DIV:
7885 id = ansi_opname (TRUNC_DIV_EXPR);
7886 break;
7887
7888 case CPP_MOD:
7889 id = ansi_opname (TRUNC_MOD_EXPR);
7890 break;
7891
7892 case CPP_XOR:
7893 id = ansi_opname (BIT_XOR_EXPR);
7894 break;
7895
7896 case CPP_AND:
7897 id = ansi_opname (BIT_AND_EXPR);
7898 break;
7899
7900 case CPP_OR:
7901 id = ansi_opname (BIT_IOR_EXPR);
7902 break;
7903
7904 case CPP_COMPL:
7905 id = ansi_opname (BIT_NOT_EXPR);
7906 break;
7907
7908 case CPP_NOT:
7909 id = ansi_opname (TRUTH_NOT_EXPR);
7910 break;
7911
7912 case CPP_EQ:
7913 id = ansi_assopname (NOP_EXPR);
7914 break;
7915
7916 case CPP_LESS:
7917 id = ansi_opname (LT_EXPR);
7918 break;
7919
7920 case CPP_GREATER:
7921 id = ansi_opname (GT_EXPR);
7922 break;
7923
7924 case CPP_PLUS_EQ:
7925 id = ansi_assopname (PLUS_EXPR);
7926 break;
7927
7928 case CPP_MINUS_EQ:
7929 id = ansi_assopname (MINUS_EXPR);
7930 break;
7931
7932 case CPP_MULT_EQ:
7933 id = ansi_assopname (MULT_EXPR);
7934 break;
7935
7936 case CPP_DIV_EQ:
7937 id = ansi_assopname (TRUNC_DIV_EXPR);
7938 break;
7939
7940 case CPP_MOD_EQ:
7941 id = ansi_assopname (TRUNC_MOD_EXPR);
7942 break;
7943
7944 case CPP_XOR_EQ:
7945 id = ansi_assopname (BIT_XOR_EXPR);
7946 break;
7947
7948 case CPP_AND_EQ:
7949 id = ansi_assopname (BIT_AND_EXPR);
7950 break;
7951
7952 case CPP_OR_EQ:
7953 id = ansi_assopname (BIT_IOR_EXPR);
7954 break;
7955
7956 case CPP_LSHIFT:
7957 id = ansi_opname (LSHIFT_EXPR);
7958 break;
7959
7960 case CPP_RSHIFT:
7961 id = ansi_opname (RSHIFT_EXPR);
7962 break;
7963
7964 case CPP_LSHIFT_EQ:
7965 id = ansi_assopname (LSHIFT_EXPR);
7966 break;
7967
7968 case CPP_RSHIFT_EQ:
7969 id = ansi_assopname (RSHIFT_EXPR);
7970 break;
7971
7972 case CPP_EQ_EQ:
7973 id = ansi_opname (EQ_EXPR);
7974 break;
7975
7976 case CPP_NOT_EQ:
7977 id = ansi_opname (NE_EXPR);
7978 break;
7979
7980 case CPP_LESS_EQ:
7981 id = ansi_opname (LE_EXPR);
7982 break;
7983
7984 case CPP_GREATER_EQ:
7985 id = ansi_opname (GE_EXPR);
7986 break;
7987
7988 case CPP_AND_AND:
7989 id = ansi_opname (TRUTH_ANDIF_EXPR);
7990 break;
7991
7992 case CPP_OR_OR:
7993 id = ansi_opname (TRUTH_ORIF_EXPR);
7994 break;
7995
7996 case CPP_PLUS_PLUS:
7997 id = ansi_opname (POSTINCREMENT_EXPR);
7998 break;
7999
8000 case CPP_MINUS_MINUS:
8001 id = ansi_opname (PREDECREMENT_EXPR);
8002 break;
8003
8004 case CPP_COMMA:
8005 id = ansi_opname (COMPOUND_EXPR);
8006 break;
8007
8008 case CPP_DEREF_STAR:
8009 id = ansi_opname (MEMBER_REF);
8010 break;
8011
8012 case CPP_DEREF:
8013 id = ansi_opname (COMPONENT_REF);
8014 break;
8015
8016 case CPP_OPEN_PAREN:
8017 /* Consume the `('. */
8018 cp_lexer_consume_token (parser->lexer);
8019 /* Look for the matching `)'. */
8020 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
8021 return ansi_opname (CALL_EXPR);
8022
8023 case CPP_OPEN_SQUARE:
8024 /* Consume the `['. */
8025 cp_lexer_consume_token (parser->lexer);
8026 /* Look for the matching `]'. */
8027 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
8028 return ansi_opname (ARRAY_REF);
8029
8030 /* Extensions. */
8031 case CPP_MIN:
8032 id = ansi_opname (MIN_EXPR);
8033 break;
8034
8035 case CPP_MAX:
8036 id = ansi_opname (MAX_EXPR);
8037 break;
8038
8039 case CPP_MIN_EQ:
8040 id = ansi_assopname (MIN_EXPR);
8041 break;
8042
8043 case CPP_MAX_EQ:
8044 id = ansi_assopname (MAX_EXPR);
8045 break;
8046
8047 default:
8048 /* Anything else is an error. */
8049 break;
8050 }
8051
8052 /* If we have selected an identifier, we need to consume the
8053 operator token. */
8054 if (id)
8055 cp_lexer_consume_token (parser->lexer);
8056 /* Otherwise, no valid operator name was present. */
8057 else
8058 {
8059 cp_parser_error (parser, "expected operator");
8060 id = error_mark_node;
8061 }
8062
8063 return id;
8064 }
8065
8066 /* Parse a template-declaration.
8067
8068 template-declaration:
8069 export [opt] template < template-parameter-list > declaration
8070
8071 If MEMBER_P is TRUE, this template-declaration occurs within a
8072 class-specifier.
8073
8074 The grammar rule given by the standard isn't correct. What
8075 is really meant is:
8076
8077 template-declaration:
8078 export [opt] template-parameter-list-seq
8079 decl-specifier-seq [opt] init-declarator [opt] ;
8080 export [opt] template-parameter-list-seq
8081 function-definition
8082
8083 template-parameter-list-seq:
8084 template-parameter-list-seq [opt]
8085 template < template-parameter-list > */
8086
8087 static void
8088 cp_parser_template_declaration (cp_parser* parser, bool member_p)
8089 {
8090 /* Check for `export'. */
8091 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
8092 {
8093 /* Consume the `export' token. */
8094 cp_lexer_consume_token (parser->lexer);
8095 /* Warn that we do not support `export'. */
8096 warning ("keyword %<export%> not implemented, and will be ignored");
8097 }
8098
8099 cp_parser_template_declaration_after_export (parser, member_p);
8100 }
8101
8102 /* Parse a template-parameter-list.
8103
8104 template-parameter-list:
8105 template-parameter
8106 template-parameter-list , template-parameter
8107
8108 Returns a TREE_LIST. Each node represents a template parameter.
8109 The nodes are connected via their TREE_CHAINs. */
8110
8111 static tree
8112 cp_parser_template_parameter_list (cp_parser* parser)
8113 {
8114 tree parameter_list = NULL_TREE;
8115
8116 while (true)
8117 {
8118 tree parameter;
8119 cp_token *token;
8120 bool is_non_type;
8121
8122 /* Parse the template-parameter. */
8123 parameter = cp_parser_template_parameter (parser, &is_non_type);
8124 /* Add it to the list. */
8125 if (parameter != error_mark_node)
8126 parameter_list = process_template_parm (parameter_list,
8127 parameter,
8128 is_non_type);
8129 /* Peek at the next token. */
8130 token = cp_lexer_peek_token (parser->lexer);
8131 /* If it's not a `,', we're done. */
8132 if (token->type != CPP_COMMA)
8133 break;
8134 /* Otherwise, consume the `,' token. */
8135 cp_lexer_consume_token (parser->lexer);
8136 }
8137
8138 return parameter_list;
8139 }
8140
8141 /* Parse a template-parameter.
8142
8143 template-parameter:
8144 type-parameter
8145 parameter-declaration
8146
8147 If all goes well, returns a TREE_LIST. The TREE_VALUE represents
8148 the parameter. The TREE_PURPOSE is the default value, if any.
8149 Returns ERROR_MARK_NODE on failure. *IS_NON_TYPE is set to true
8150 iff this parameter is a non-type parameter. */
8151
8152 static tree
8153 cp_parser_template_parameter (cp_parser* parser, bool *is_non_type)
8154 {
8155 cp_token *token;
8156 cp_parameter_declarator *parameter_declarator;
8157 tree parm;
8158
8159 /* Assume it is a type parameter or a template parameter. */
8160 *is_non_type = false;
8161 /* Peek at the next token. */
8162 token = cp_lexer_peek_token (parser->lexer);
8163 /* If it is `class' or `template', we have a type-parameter. */
8164 if (token->keyword == RID_TEMPLATE)
8165 return cp_parser_type_parameter (parser);
8166 /* If it is `class' or `typename' we do not know yet whether it is a
8167 type parameter or a non-type parameter. Consider:
8168
8169 template <typename T, typename T::X X> ...
8170
8171 or:
8172
8173 template <class C, class D*> ...
8174
8175 Here, the first parameter is a type parameter, and the second is
8176 a non-type parameter. We can tell by looking at the token after
8177 the identifier -- if it is a `,', `=', or `>' then we have a type
8178 parameter. */
8179 if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
8180 {
8181 /* Peek at the token after `class' or `typename'. */
8182 token = cp_lexer_peek_nth_token (parser->lexer, 2);
8183 /* If it's an identifier, skip it. */
8184 if (token->type == CPP_NAME)
8185 token = cp_lexer_peek_nth_token (parser->lexer, 3);
8186 /* Now, see if the token looks like the end of a template
8187 parameter. */
8188 if (token->type == CPP_COMMA
8189 || token->type == CPP_EQ
8190 || token->type == CPP_GREATER)
8191 return cp_parser_type_parameter (parser);
8192 }
8193
8194 /* Otherwise, it is a non-type parameter.
8195
8196 [temp.param]
8197
8198 When parsing a default template-argument for a non-type
8199 template-parameter, the first non-nested `>' is taken as the end
8200 of the template parameter-list rather than a greater-than
8201 operator. */
8202 *is_non_type = true;
8203 parameter_declarator
8204 = cp_parser_parameter_declaration (parser, /*template_parm_p=*/true,
8205 /*parenthesized_p=*/NULL);
8206 parm = grokdeclarator (parameter_declarator->declarator,
8207 &parameter_declarator->decl_specifiers,
8208 PARM, /*initialized=*/0,
8209 /*attrlist=*/NULL);
8210 if (parm == error_mark_node)
8211 return error_mark_node;
8212 return build_tree_list (parameter_declarator->default_argument, parm);
8213 }
8214
8215 /* Parse a type-parameter.
8216
8217 type-parameter:
8218 class identifier [opt]
8219 class identifier [opt] = type-id
8220 typename identifier [opt]
8221 typename identifier [opt] = type-id
8222 template < template-parameter-list > class identifier [opt]
8223 template < template-parameter-list > class identifier [opt]
8224 = id-expression
8225
8226 Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The
8227 TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is
8228 the declaration of the parameter. */
8229
8230 static tree
8231 cp_parser_type_parameter (cp_parser* parser)
8232 {
8233 cp_token *token;
8234 tree parameter;
8235
8236 /* Look for a keyword to tell us what kind of parameter this is. */
8237 token = cp_parser_require (parser, CPP_KEYWORD,
8238 "`class', `typename', or `template'");
8239 if (!token)
8240 return error_mark_node;
8241
8242 switch (token->keyword)
8243 {
8244 case RID_CLASS:
8245 case RID_TYPENAME:
8246 {
8247 tree identifier;
8248 tree default_argument;
8249
8250 /* If the next token is an identifier, then it names the
8251 parameter. */
8252 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8253 identifier = cp_parser_identifier (parser);
8254 else
8255 identifier = NULL_TREE;
8256
8257 /* Create the parameter. */
8258 parameter = finish_template_type_parm (class_type_node, identifier);
8259
8260 /* If the next token is an `=', we have a default argument. */
8261 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8262 {
8263 /* Consume the `=' token. */
8264 cp_lexer_consume_token (parser->lexer);
8265 /* Parse the default-argument. */
8266 default_argument = cp_parser_type_id (parser);
8267 }
8268 else
8269 default_argument = NULL_TREE;
8270
8271 /* Create the combined representation of the parameter and the
8272 default argument. */
8273 parameter = build_tree_list (default_argument, parameter);
8274 }
8275 break;
8276
8277 case RID_TEMPLATE:
8278 {
8279 tree parameter_list;
8280 tree identifier;
8281 tree default_argument;
8282
8283 /* Look for the `<'. */
8284 cp_parser_require (parser, CPP_LESS, "`<'");
8285 /* Parse the template-parameter-list. */
8286 begin_template_parm_list ();
8287 parameter_list
8288 = cp_parser_template_parameter_list (parser);
8289 parameter_list = end_template_parm_list (parameter_list);
8290 /* Look for the `>'. */
8291 cp_parser_require (parser, CPP_GREATER, "`>'");
8292 /* Look for the `class' keyword. */
8293 cp_parser_require_keyword (parser, RID_CLASS, "`class'");
8294 /* If the next token is an `=', then there is a
8295 default-argument. If the next token is a `>', we are at
8296 the end of the parameter-list. If the next token is a `,',
8297 then we are at the end of this parameter. */
8298 if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
8299 && cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
8300 && cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
8301 {
8302 identifier = cp_parser_identifier (parser);
8303 /* Treat invalid names as if the parameter were nameless. */
8304 if (identifier == error_mark_node)
8305 identifier = NULL_TREE;
8306 }
8307 else
8308 identifier = NULL_TREE;
8309
8310 /* Create the template parameter. */
8311 parameter = finish_template_template_parm (class_type_node,
8312 identifier);
8313
8314 /* If the next token is an `=', then there is a
8315 default-argument. */
8316 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8317 {
8318 bool is_template;
8319
8320 /* Consume the `='. */
8321 cp_lexer_consume_token (parser->lexer);
8322 /* Parse the id-expression. */
8323 default_argument
8324 = cp_parser_id_expression (parser,
8325 /*template_keyword_p=*/false,
8326 /*check_dependency_p=*/true,
8327 /*template_p=*/&is_template,
8328 /*declarator_p=*/false);
8329 if (TREE_CODE (default_argument) == TYPE_DECL)
8330 /* If the id-expression was a template-id that refers to
8331 a template-class, we already have the declaration here,
8332 so no further lookup is needed. */
8333 ;
8334 else
8335 /* Look up the name. */
8336 default_argument
8337 = cp_parser_lookup_name (parser, default_argument,
8338 none_type,
8339 /*is_template=*/is_template,
8340 /*is_namespace=*/false,
8341 /*check_dependency=*/true,
8342 /*ambiguous_p=*/NULL);
8343 /* See if the default argument is valid. */
8344 default_argument
8345 = check_template_template_default_arg (default_argument);
8346 }
8347 else
8348 default_argument = NULL_TREE;
8349
8350 /* Create the combined representation of the parameter and the
8351 default argument. */
8352 parameter = build_tree_list (default_argument, parameter);
8353 }
8354 break;
8355
8356 default:
8357 gcc_unreachable ();
8358 break;
8359 }
8360
8361 return parameter;
8362 }
8363
8364 /* Parse a template-id.
8365
8366 template-id:
8367 template-name < template-argument-list [opt] >
8368
8369 If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
8370 `template' keyword. In this case, a TEMPLATE_ID_EXPR will be
8371 returned. Otherwise, if the template-name names a function, or set
8372 of functions, returns a TEMPLATE_ID_EXPR. If the template-name
8373 names a class, returns a TYPE_DECL for the specialization.
8374
8375 If CHECK_DEPENDENCY_P is FALSE, names are looked up in
8376 uninstantiated templates. */
8377
8378 static tree
8379 cp_parser_template_id (cp_parser *parser,
8380 bool template_keyword_p,
8381 bool check_dependency_p,
8382 bool is_declaration)
8383 {
8384 tree template;
8385 tree arguments;
8386 tree template_id;
8387 cp_token_position start_of_id = 0;
8388 tree access_check = NULL_TREE;
8389 cp_token *next_token, *next_token_2;
8390 bool is_identifier;
8391
8392 /* If the next token corresponds to a template-id, there is no need
8393 to reparse it. */
8394 next_token = cp_lexer_peek_token (parser->lexer);
8395 if (next_token->type == CPP_TEMPLATE_ID)
8396 {
8397 tree value;
8398 tree check;
8399
8400 /* Get the stored value. */
8401 value = cp_lexer_consume_token (parser->lexer)->value;
8402 /* Perform any access checks that were deferred. */
8403 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
8404 perform_or_defer_access_check (TREE_PURPOSE (check),
8405 TREE_VALUE (check));
8406 /* Return the stored value. */
8407 return TREE_VALUE (value);
8408 }
8409
8410 /* Avoid performing name lookup if there is no possibility of
8411 finding a template-id. */
8412 if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR)
8413 || (next_token->type == CPP_NAME
8414 && !cp_parser_nth_token_starts_template_argument_list_p
8415 (parser, 2)))
8416 {
8417 cp_parser_error (parser, "expected template-id");
8418 return error_mark_node;
8419 }
8420
8421 /* Remember where the template-id starts. */
8422 if (cp_parser_uncommitted_to_tentative_parse_p (parser))
8423 start_of_id = cp_lexer_token_position (parser->lexer, false);
8424
8425 push_deferring_access_checks (dk_deferred);
8426
8427 /* Parse the template-name. */
8428 is_identifier = false;
8429 template = cp_parser_template_name (parser, template_keyword_p,
8430 check_dependency_p,
8431 is_declaration,
8432 &is_identifier);
8433 if (template == error_mark_node || is_identifier)
8434 {
8435 pop_deferring_access_checks ();
8436 return template;
8437 }
8438
8439 /* If we find the sequence `[:' after a template-name, it's probably
8440 a digraph-typo for `< ::'. Substitute the tokens and check if we can
8441 parse correctly the argument list. */
8442 next_token = cp_lexer_peek_token (parser->lexer);
8443 next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2);
8444 if (next_token->type == CPP_OPEN_SQUARE
8445 && next_token->flags & DIGRAPH
8446 && next_token_2->type == CPP_COLON
8447 && !(next_token_2->flags & PREV_WHITE))
8448 {
8449 cp_parser_parse_tentatively (parser);
8450 /* Change `:' into `::'. */
8451 next_token_2->type = CPP_SCOPE;
8452 /* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is
8453 CPP_LESS. */
8454 cp_lexer_consume_token (parser->lexer);
8455 /* Parse the arguments. */
8456 arguments = cp_parser_enclosed_template_argument_list (parser);
8457 if (!cp_parser_parse_definitely (parser))
8458 {
8459 /* If we couldn't parse an argument list, then we revert our changes
8460 and return simply an error. Maybe this is not a template-id
8461 after all. */
8462 next_token_2->type = CPP_COLON;
8463 cp_parser_error (parser, "expected %<<%>");
8464 pop_deferring_access_checks ();
8465 return error_mark_node;
8466 }
8467 /* Otherwise, emit an error about the invalid digraph, but continue
8468 parsing because we got our argument list. */
8469 pedwarn ("%<<::%> cannot begin a template-argument list");
8470 inform ("%<<:%> is an alternate spelling for %<[%>. Insert whitespace "
8471 "between %<<%> and %<::%>");
8472 if (!flag_permissive)
8473 {
8474 static bool hint;
8475 if (!hint)
8476 {
8477 inform ("(if you use -fpermissive G++ will accept your code)");
8478 hint = true;
8479 }
8480 }
8481 }
8482 else
8483 {
8484 /* Look for the `<' that starts the template-argument-list. */
8485 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
8486 {
8487 pop_deferring_access_checks ();
8488 return error_mark_node;
8489 }
8490 /* Parse the arguments. */
8491 arguments = cp_parser_enclosed_template_argument_list (parser);
8492 }
8493
8494 /* Build a representation of the specialization. */
8495 if (TREE_CODE (template) == IDENTIFIER_NODE)
8496 template_id = build_min_nt (TEMPLATE_ID_EXPR, template, arguments);
8497 else if (DECL_CLASS_TEMPLATE_P (template)
8498 || DECL_TEMPLATE_TEMPLATE_PARM_P (template))
8499 template_id
8500 = finish_template_type (template, arguments,
8501 cp_lexer_next_token_is (parser->lexer,
8502 CPP_SCOPE));
8503 else
8504 {
8505 /* If it's not a class-template or a template-template, it should be
8506 a function-template. */
8507 gcc_assert ((DECL_FUNCTION_TEMPLATE_P (template)
8508 || TREE_CODE (template) == OVERLOAD
8509 || BASELINK_P (template)));
8510
8511 template_id = lookup_template_function (template, arguments);
8512 }
8513
8514 /* Retrieve any deferred checks. Do not pop this access checks yet
8515 so the memory will not be reclaimed during token replacing below. */
8516 access_check = get_deferred_access_checks ();
8517
8518 /* If parsing tentatively, replace the sequence of tokens that makes
8519 up the template-id with a CPP_TEMPLATE_ID token. That way,
8520 should we re-parse the token stream, we will not have to repeat
8521 the effort required to do the parse, nor will we issue duplicate
8522 error messages about problems during instantiation of the
8523 template. */
8524 if (start_of_id)
8525 {
8526 cp_token *token = cp_lexer_token_at (parser->lexer, start_of_id);
8527
8528 /* Reset the contents of the START_OF_ID token. */
8529 token->type = CPP_TEMPLATE_ID;
8530 token->value = build_tree_list (access_check, template_id);
8531 token->keyword = RID_MAX;
8532
8533 /* Purge all subsequent tokens. */
8534 cp_lexer_purge_tokens_after (parser->lexer, start_of_id);
8535
8536 /* ??? Can we actually assume that, if template_id ==
8537 error_mark_node, we will have issued a diagnostic to the
8538 user, as opposed to simply marking the tentative parse as
8539 failed? */
8540 if (cp_parser_error_occurred (parser) && template_id != error_mark_node)
8541 error ("parse error in template argument list");
8542 }
8543
8544 pop_deferring_access_checks ();
8545 return template_id;
8546 }
8547
8548 /* Parse a template-name.
8549
8550 template-name:
8551 identifier
8552
8553 The standard should actually say:
8554
8555 template-name:
8556 identifier
8557 operator-function-id
8558
8559 A defect report has been filed about this issue.
8560
8561 A conversion-function-id cannot be a template name because they cannot
8562 be part of a template-id. In fact, looking at this code:
8563
8564 a.operator K<int>()
8565
8566 the conversion-function-id is "operator K<int>", and K<int> is a type-id.
8567 It is impossible to call a templated conversion-function-id with an
8568 explicit argument list, since the only allowed template parameter is
8569 the type to which it is converting.
8570
8571 If TEMPLATE_KEYWORD_P is true, then we have just seen the
8572 `template' keyword, in a construction like:
8573
8574 T::template f<3>()
8575
8576 In that case `f' is taken to be a template-name, even though there
8577 is no way of knowing for sure.
8578
8579 Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
8580 name refers to a set of overloaded functions, at least one of which
8581 is a template, or an IDENTIFIER_NODE with the name of the template,
8582 if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE,
8583 names are looked up inside uninstantiated templates. */
8584
8585 static tree
8586 cp_parser_template_name (cp_parser* parser,
8587 bool template_keyword_p,
8588 bool check_dependency_p,
8589 bool is_declaration,
8590 bool *is_identifier)
8591 {
8592 tree identifier;
8593 tree decl;
8594 tree fns;
8595
8596 /* If the next token is `operator', then we have either an
8597 operator-function-id or a conversion-function-id. */
8598 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
8599 {
8600 /* We don't know whether we're looking at an
8601 operator-function-id or a conversion-function-id. */
8602 cp_parser_parse_tentatively (parser);
8603 /* Try an operator-function-id. */
8604 identifier = cp_parser_operator_function_id (parser);
8605 /* If that didn't work, try a conversion-function-id. */
8606 if (!cp_parser_parse_definitely (parser))
8607 {
8608 cp_parser_error (parser, "expected template-name");
8609 return error_mark_node;
8610 }
8611 }
8612 /* Look for the identifier. */
8613 else
8614 identifier = cp_parser_identifier (parser);
8615
8616 /* If we didn't find an identifier, we don't have a template-id. */
8617 if (identifier == error_mark_node)
8618 return error_mark_node;
8619
8620 /* If the name immediately followed the `template' keyword, then it
8621 is a template-name. However, if the next token is not `<', then
8622 we do not treat it as a template-name, since it is not being used
8623 as part of a template-id. This enables us to handle constructs
8624 like:
8625
8626 template <typename T> struct S { S(); };
8627 template <typename T> S<T>::S();
8628
8629 correctly. We would treat `S' as a template -- if it were `S<T>'
8630 -- but we do not if there is no `<'. */
8631
8632 if (processing_template_decl
8633 && cp_parser_nth_token_starts_template_argument_list_p (parser, 1))
8634 {
8635 /* In a declaration, in a dependent context, we pretend that the
8636 "template" keyword was present in order to improve error
8637 recovery. For example, given:
8638
8639 template <typename T> void f(T::X<int>);
8640
8641 we want to treat "X<int>" as a template-id. */
8642 if (is_declaration
8643 && !template_keyword_p
8644 && parser->scope && TYPE_P (parser->scope)
8645 && check_dependency_p
8646 && dependent_type_p (parser->scope)
8647 /* Do not do this for dtors (or ctors), since they never
8648 need the template keyword before their name. */
8649 && !constructor_name_p (identifier, parser->scope))
8650 {
8651 cp_token_position start = 0;
8652
8653 /* Explain what went wrong. */
8654 error ("non-template %qD used as template", identifier);
8655 inform ("use %<%T::template %D%> to indicate that it is a template",
8656 parser->scope, identifier);
8657 /* If parsing tentatively, find the location of the "<" token. */
8658 if (cp_parser_simulate_error (parser))
8659 start = cp_lexer_token_position (parser->lexer, true);
8660 /* Parse the template arguments so that we can issue error
8661 messages about them. */
8662 cp_lexer_consume_token (parser->lexer);
8663 cp_parser_enclosed_template_argument_list (parser);
8664 /* Skip tokens until we find a good place from which to
8665 continue parsing. */
8666 cp_parser_skip_to_closing_parenthesis (parser,
8667 /*recovering=*/true,
8668 /*or_comma=*/true,
8669 /*consume_paren=*/false);
8670 /* If parsing tentatively, permanently remove the
8671 template argument list. That will prevent duplicate
8672 error messages from being issued about the missing
8673 "template" keyword. */
8674 if (start)
8675 cp_lexer_purge_tokens_after (parser->lexer, start);
8676 if (is_identifier)
8677 *is_identifier = true;
8678 return identifier;
8679 }
8680
8681 /* If the "template" keyword is present, then there is generally
8682 no point in doing name-lookup, so we just return IDENTIFIER.
8683 But, if the qualifying scope is non-dependent then we can
8684 (and must) do name-lookup normally. */
8685 if (template_keyword_p
8686 && (!parser->scope
8687 || (TYPE_P (parser->scope)
8688 && dependent_type_p (parser->scope))))
8689 return identifier;
8690 }
8691
8692 /* Look up the name. */
8693 decl = cp_parser_lookup_name (parser, identifier,
8694 none_type,
8695 /*is_template=*/false,
8696 /*is_namespace=*/false,
8697 check_dependency_p,
8698 /*ambiguous_p=*/NULL);
8699 decl = maybe_get_template_decl_from_type_decl (decl);
8700
8701 /* If DECL is a template, then the name was a template-name. */
8702 if (TREE_CODE (decl) == TEMPLATE_DECL)
8703 ;
8704 else
8705 {
8706 /* The standard does not explicitly indicate whether a name that
8707 names a set of overloaded declarations, some of which are
8708 templates, is a template-name. However, such a name should
8709 be a template-name; otherwise, there is no way to form a
8710 template-id for the overloaded templates. */
8711 fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl;
8712 if (TREE_CODE (fns) == OVERLOAD)
8713 {
8714 tree fn;
8715
8716 for (fn = fns; fn; fn = OVL_NEXT (fn))
8717 if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL)
8718 break;
8719 }
8720 else
8721 {
8722 /* Otherwise, the name does not name a template. */
8723 cp_parser_error (parser, "expected template-name");
8724 return error_mark_node;
8725 }
8726 }
8727
8728 /* If DECL is dependent, and refers to a function, then just return
8729 its name; we will look it up again during template instantiation. */
8730 if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl))
8731 {
8732 tree scope = CP_DECL_CONTEXT (get_first_fn (decl));
8733 if (TYPE_P (scope) && dependent_type_p (scope))
8734 return identifier;
8735 }
8736
8737 return decl;
8738 }
8739
8740 /* Parse a template-argument-list.
8741
8742 template-argument-list:
8743 template-argument
8744 template-argument-list , template-argument
8745
8746 Returns a TREE_VEC containing the arguments. */
8747
8748 static tree
8749 cp_parser_template_argument_list (cp_parser* parser)
8750 {
8751 tree fixed_args[10];
8752 unsigned n_args = 0;
8753 unsigned alloced = 10;
8754 tree *arg_ary = fixed_args;
8755 tree vec;
8756 bool saved_in_template_argument_list_p;
8757
8758 saved_in_template_argument_list_p = parser->in_template_argument_list_p;
8759 parser->in_template_argument_list_p = true;
8760 do
8761 {
8762 tree argument;
8763
8764 if (n_args)
8765 /* Consume the comma. */
8766 cp_lexer_consume_token (parser->lexer);
8767
8768 /* Parse the template-argument. */
8769 argument = cp_parser_template_argument (parser);
8770 if (n_args == alloced)
8771 {
8772 alloced *= 2;
8773
8774 if (arg_ary == fixed_args)
8775 {
8776 arg_ary = xmalloc (sizeof (tree) * alloced);
8777 memcpy (arg_ary, fixed_args, sizeof (tree) * n_args);
8778 }
8779 else
8780 arg_ary = xrealloc (arg_ary, sizeof (tree) * alloced);
8781 }
8782 arg_ary[n_args++] = argument;
8783 }
8784 while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
8785
8786 vec = make_tree_vec (n_args);
8787
8788 while (n_args--)
8789 TREE_VEC_ELT (vec, n_args) = arg_ary[n_args];
8790
8791 if (arg_ary != fixed_args)
8792 free (arg_ary);
8793 parser->in_template_argument_list_p = saved_in_template_argument_list_p;
8794 return vec;
8795 }
8796
8797 /* Parse a template-argument.
8798
8799 template-argument:
8800 assignment-expression
8801 type-id
8802 id-expression
8803
8804 The representation is that of an assignment-expression, type-id, or
8805 id-expression -- except that the qualified id-expression is
8806 evaluated, so that the value returned is either a DECL or an
8807 OVERLOAD.
8808
8809 Although the standard says "assignment-expression", it forbids
8810 throw-expressions or assignments in the template argument.
8811 Therefore, we use "conditional-expression" instead. */
8812
8813 static tree
8814 cp_parser_template_argument (cp_parser* parser)
8815 {
8816 tree argument;
8817 bool template_p;
8818 bool address_p;
8819 bool maybe_type_id = false;
8820 cp_token *token;
8821 cp_id_kind idk;
8822 tree qualifying_class;
8823
8824 /* There's really no way to know what we're looking at, so we just
8825 try each alternative in order.
8826
8827 [temp.arg]
8828
8829 In a template-argument, an ambiguity between a type-id and an
8830 expression is resolved to a type-id, regardless of the form of
8831 the corresponding template-parameter.
8832
8833 Therefore, we try a type-id first. */
8834 cp_parser_parse_tentatively (parser);
8835 argument = cp_parser_type_id (parser);
8836 /* If there was no error parsing the type-id but the next token is a '>>',
8837 we probably found a typo for '> >'. But there are type-id which are
8838 also valid expressions. For instance:
8839
8840 struct X { int operator >> (int); };
8841 template <int V> struct Foo {};
8842 Foo<X () >> 5> r;
8843
8844 Here 'X()' is a valid type-id of a function type, but the user just
8845 wanted to write the expression "X() >> 5". Thus, we remember that we
8846 found a valid type-id, but we still try to parse the argument as an
8847 expression to see what happens. */
8848 if (!cp_parser_error_occurred (parser)
8849 && cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
8850 {
8851 maybe_type_id = true;
8852 cp_parser_abort_tentative_parse (parser);
8853 }
8854 else
8855 {
8856 /* If the next token isn't a `,' or a `>', then this argument wasn't
8857 really finished. This means that the argument is not a valid
8858 type-id. */
8859 if (!cp_parser_next_token_ends_template_argument_p (parser))
8860 cp_parser_error (parser, "expected template-argument");
8861 /* If that worked, we're done. */
8862 if (cp_parser_parse_definitely (parser))
8863 return argument;
8864 }
8865 /* We're still not sure what the argument will be. */
8866 cp_parser_parse_tentatively (parser);
8867 /* Try a template. */
8868 argument = cp_parser_id_expression (parser,
8869 /*template_keyword_p=*/false,
8870 /*check_dependency_p=*/true,
8871 &template_p,
8872 /*declarator_p=*/false);
8873 /* If the next token isn't a `,' or a `>', then this argument wasn't
8874 really finished. */
8875 if (!cp_parser_next_token_ends_template_argument_p (parser))
8876 cp_parser_error (parser, "expected template-argument");
8877 if (!cp_parser_error_occurred (parser))
8878 {
8879 /* Figure out what is being referred to. If the id-expression
8880 was for a class template specialization, then we will have a
8881 TYPE_DECL at this point. There is no need to do name lookup
8882 at this point in that case. */
8883 if (TREE_CODE (argument) != TYPE_DECL)
8884 argument = cp_parser_lookup_name (parser, argument,
8885 none_type,
8886 /*is_template=*/template_p,
8887 /*is_namespace=*/false,
8888 /*check_dependency=*/true,
8889 /*ambiguous_p=*/NULL);
8890 if (TREE_CODE (argument) != TEMPLATE_DECL
8891 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
8892 cp_parser_error (parser, "expected template-name");
8893 }
8894 if (cp_parser_parse_definitely (parser))
8895 return argument;
8896 /* It must be a non-type argument. There permitted cases are given
8897 in [temp.arg.nontype]:
8898
8899 -- an integral constant-expression of integral or enumeration
8900 type; or
8901
8902 -- the name of a non-type template-parameter; or
8903
8904 -- the name of an object or function with external linkage...
8905
8906 -- the address of an object or function with external linkage...
8907
8908 -- a pointer to member... */
8909 /* Look for a non-type template parameter. */
8910 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8911 {
8912 cp_parser_parse_tentatively (parser);
8913 argument = cp_parser_primary_expression (parser,
8914 /*cast_p=*/false,
8915 &idk,
8916 &qualifying_class);
8917 if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX
8918 || !cp_parser_next_token_ends_template_argument_p (parser))
8919 cp_parser_simulate_error (parser);
8920 if (cp_parser_parse_definitely (parser))
8921 return argument;
8922 }
8923
8924 /* If the next token is "&", the argument must be the address of an
8925 object or function with external linkage. */
8926 address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND);
8927 if (address_p)
8928 cp_lexer_consume_token (parser->lexer);
8929 /* See if we might have an id-expression. */
8930 token = cp_lexer_peek_token (parser->lexer);
8931 if (token->type == CPP_NAME
8932 || token->keyword == RID_OPERATOR
8933 || token->type == CPP_SCOPE
8934 || token->type == CPP_TEMPLATE_ID
8935 || token->type == CPP_NESTED_NAME_SPECIFIER)
8936 {
8937 cp_parser_parse_tentatively (parser);
8938 argument = cp_parser_primary_expression (parser,
8939 /*cast_p=*/false,
8940 &idk,
8941 &qualifying_class);
8942 if (cp_parser_error_occurred (parser)
8943 || !cp_parser_next_token_ends_template_argument_p (parser))
8944 cp_parser_abort_tentative_parse (parser);
8945 else
8946 {
8947 if (TREE_CODE (argument) == INDIRECT_REF)
8948 {
8949 gcc_assert (REFERENCE_REF_P (argument));
8950 argument = TREE_OPERAND (argument, 0);
8951 }
8952
8953 if (qualifying_class)
8954 argument = finish_qualified_id_expr (qualifying_class,
8955 argument,
8956 /*done=*/true,
8957 address_p);
8958 if (TREE_CODE (argument) == VAR_DECL)
8959 {
8960 /* A variable without external linkage might still be a
8961 valid constant-expression, so no error is issued here
8962 if the external-linkage check fails. */
8963 if (!DECL_EXTERNAL_LINKAGE_P (argument))
8964 cp_parser_simulate_error (parser);
8965 }
8966 else if (is_overloaded_fn (argument))
8967 /* All overloaded functions are allowed; if the external
8968 linkage test does not pass, an error will be issued
8969 later. */
8970 ;
8971 else if (address_p
8972 && (TREE_CODE (argument) == OFFSET_REF
8973 || TREE_CODE (argument) == SCOPE_REF))
8974 /* A pointer-to-member. */
8975 ;
8976 else if (TREE_CODE (argument) == TEMPLATE_PARM_INDEX)
8977 ;
8978 else
8979 cp_parser_simulate_error (parser);
8980
8981 if (cp_parser_parse_definitely (parser))
8982 {
8983 if (address_p)
8984 argument = build_x_unary_op (ADDR_EXPR, argument);
8985 return argument;
8986 }
8987 }
8988 }
8989 /* If the argument started with "&", there are no other valid
8990 alternatives at this point. */
8991 if (address_p)
8992 {
8993 cp_parser_error (parser, "invalid non-type template argument");
8994 return error_mark_node;
8995 }
8996
8997 /* If the argument wasn't successfully parsed as a type-id followed
8998 by '>>', the argument can only be a constant expression now.
8999 Otherwise, we try parsing the constant-expression tentatively,
9000 because the argument could really be a type-id. */
9001 if (maybe_type_id)
9002 cp_parser_parse_tentatively (parser);
9003 argument = cp_parser_constant_expression (parser,
9004 /*allow_non_constant_p=*/false,
9005 /*non_constant_p=*/NULL);
9006 argument = fold_non_dependent_expr (argument);
9007 if (!maybe_type_id)
9008 return argument;
9009 if (!cp_parser_next_token_ends_template_argument_p (parser))
9010 cp_parser_error (parser, "expected template-argument");
9011 if (cp_parser_parse_definitely (parser))
9012 return argument;
9013 /* We did our best to parse the argument as a non type-id, but that
9014 was the only alternative that matched (albeit with a '>' after
9015 it). We can assume it's just a typo from the user, and a
9016 diagnostic will then be issued. */
9017 return cp_parser_type_id (parser);
9018 }
9019
9020 /* Parse an explicit-instantiation.
9021
9022 explicit-instantiation:
9023 template declaration
9024
9025 Although the standard says `declaration', what it really means is:
9026
9027 explicit-instantiation:
9028 template decl-specifier-seq [opt] declarator [opt] ;
9029
9030 Things like `template int S<int>::i = 5, int S<double>::j;' are not
9031 supposed to be allowed. A defect report has been filed about this
9032 issue.
9033
9034 GNU Extension:
9035
9036 explicit-instantiation:
9037 storage-class-specifier template
9038 decl-specifier-seq [opt] declarator [opt] ;
9039 function-specifier template
9040 decl-specifier-seq [opt] declarator [opt] ; */
9041
9042 static void
9043 cp_parser_explicit_instantiation (cp_parser* parser)
9044 {
9045 int declares_class_or_enum;
9046 cp_decl_specifier_seq decl_specifiers;
9047 tree extension_specifier = NULL_TREE;
9048
9049 /* Look for an (optional) storage-class-specifier or
9050 function-specifier. */
9051 if (cp_parser_allow_gnu_extensions_p (parser))
9052 {
9053 extension_specifier
9054 = cp_parser_storage_class_specifier_opt (parser);
9055 if (!extension_specifier)
9056 extension_specifier
9057 = cp_parser_function_specifier_opt (parser,
9058 /*decl_specs=*/NULL);
9059 }
9060
9061 /* Look for the `template' keyword. */
9062 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
9063 /* Let the front end know that we are processing an explicit
9064 instantiation. */
9065 begin_explicit_instantiation ();
9066 /* [temp.explicit] says that we are supposed to ignore access
9067 control while processing explicit instantiation directives. */
9068 push_deferring_access_checks (dk_no_check);
9069 /* Parse a decl-specifier-seq. */
9070 cp_parser_decl_specifier_seq (parser,
9071 CP_PARSER_FLAGS_OPTIONAL,
9072 &decl_specifiers,
9073 &declares_class_or_enum);
9074 /* If there was exactly one decl-specifier, and it declared a class,
9075 and there's no declarator, then we have an explicit type
9076 instantiation. */
9077 if (declares_class_or_enum && cp_parser_declares_only_class_p (parser))
9078 {
9079 tree type;
9080
9081 type = check_tag_decl (&decl_specifiers);
9082 /* Turn access control back on for names used during
9083 template instantiation. */
9084 pop_deferring_access_checks ();
9085 if (type)
9086 do_type_instantiation (type, extension_specifier, /*complain=*/1);
9087 }
9088 else
9089 {
9090 cp_declarator *declarator;
9091 tree decl;
9092
9093 /* Parse the declarator. */
9094 declarator
9095 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
9096 /*ctor_dtor_or_conv_p=*/NULL,
9097 /*parenthesized_p=*/NULL,
9098 /*member_p=*/false);
9099 if (declares_class_or_enum & 2)
9100 cp_parser_check_for_definition_in_return_type (declarator,
9101 decl_specifiers.type);
9102 if (declarator != cp_error_declarator)
9103 {
9104 decl = grokdeclarator (declarator, &decl_specifiers,
9105 NORMAL, 0, NULL);
9106 /* Turn access control back on for names used during
9107 template instantiation. */
9108 pop_deferring_access_checks ();
9109 /* Do the explicit instantiation. */
9110 do_decl_instantiation (decl, extension_specifier);
9111 }
9112 else
9113 {
9114 pop_deferring_access_checks ();
9115 /* Skip the body of the explicit instantiation. */
9116 cp_parser_skip_to_end_of_statement (parser);
9117 }
9118 }
9119 /* We're done with the instantiation. */
9120 end_explicit_instantiation ();
9121
9122 cp_parser_consume_semicolon_at_end_of_statement (parser);
9123 }
9124
9125 /* Parse an explicit-specialization.
9126
9127 explicit-specialization:
9128 template < > declaration
9129
9130 Although the standard says `declaration', what it really means is:
9131
9132 explicit-specialization:
9133 template <> decl-specifier [opt] init-declarator [opt] ;
9134 template <> function-definition
9135 template <> explicit-specialization
9136 template <> template-declaration */
9137
9138 static void
9139 cp_parser_explicit_specialization (cp_parser* parser)
9140 {
9141 /* Look for the `template' keyword. */
9142 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
9143 /* Look for the `<'. */
9144 cp_parser_require (parser, CPP_LESS, "`<'");
9145 /* Look for the `>'. */
9146 cp_parser_require (parser, CPP_GREATER, "`>'");
9147 /* We have processed another parameter list. */
9148 ++parser->num_template_parameter_lists;
9149 /* Let the front end know that we are beginning a specialization. */
9150 begin_specialization ();
9151
9152 /* If the next keyword is `template', we need to figure out whether
9153 or not we're looking a template-declaration. */
9154 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
9155 {
9156 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
9157 && cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER)
9158 cp_parser_template_declaration_after_export (parser,
9159 /*member_p=*/false);
9160 else
9161 cp_parser_explicit_specialization (parser);
9162 }
9163 else
9164 /* Parse the dependent declaration. */
9165 cp_parser_single_declaration (parser,
9166 /*member_p=*/false,
9167 /*friend_p=*/NULL);
9168
9169 /* We're done with the specialization. */
9170 end_specialization ();
9171 /* We're done with this parameter list. */
9172 --parser->num_template_parameter_lists;
9173 }
9174
9175 /* Parse a type-specifier.
9176
9177 type-specifier:
9178 simple-type-specifier
9179 class-specifier
9180 enum-specifier
9181 elaborated-type-specifier
9182 cv-qualifier
9183
9184 GNU Extension:
9185
9186 type-specifier:
9187 __complex__
9188
9189 Returns a representation of the type-specifier. For a
9190 class-specifier, enum-specifier, or elaborated-type-specifier, a
9191 TREE_TYPE is returned; otherwise, a TYPE_DECL is returned.
9192
9193 The parser flags FLAGS is used to control type-specifier parsing.
9194
9195 If IS_DECLARATION is TRUE, then this type-specifier is appearing
9196 in a decl-specifier-seq.
9197
9198 If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a
9199 class-specifier, enum-specifier, or elaborated-type-specifier, then
9200 *DECLARES_CLASS_OR_ENUM is set to a nonzero value. The value is 1
9201 if a type is declared; 2 if it is defined. Otherwise, it is set to
9202 zero.
9203
9204 If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a
9205 cv-qualifier, then IS_CV_QUALIFIER is set to TRUE. Otherwise, it
9206 is set to FALSE. */
9207
9208 static tree
9209 cp_parser_type_specifier (cp_parser* parser,
9210 cp_parser_flags flags,
9211 cp_decl_specifier_seq *decl_specs,
9212 bool is_declaration,
9213 int* declares_class_or_enum,
9214 bool* is_cv_qualifier)
9215 {
9216 tree type_spec = NULL_TREE;
9217 cp_token *token;
9218 enum rid keyword;
9219 cp_decl_spec ds = ds_last;
9220
9221 /* Assume this type-specifier does not declare a new type. */
9222 if (declares_class_or_enum)
9223 *declares_class_or_enum = 0;
9224 /* And that it does not specify a cv-qualifier. */
9225 if (is_cv_qualifier)
9226 *is_cv_qualifier = false;
9227 /* Peek at the next token. */
9228 token = cp_lexer_peek_token (parser->lexer);
9229
9230 /* If we're looking at a keyword, we can use that to guide the
9231 production we choose. */
9232 keyword = token->keyword;
9233 switch (keyword)
9234 {
9235 case RID_ENUM:
9236 /* 'enum' [identifier] '{' introduces an enum-specifier;
9237 'enum' <anything else> introduces an elaborated-type-specifier. */
9238 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_OPEN_BRACE
9239 || (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_NAME
9240 && cp_lexer_peek_nth_token (parser->lexer, 3)->type
9241 == CPP_OPEN_BRACE))
9242 {
9243 if (parser->num_template_parameter_lists)
9244 {
9245 error ("template declaration of %qs", "enum");
9246 cp_parser_skip_to_end_of_block_or_statement (parser);
9247 type_spec = error_mark_node;
9248 }
9249 else
9250 type_spec = cp_parser_enum_specifier (parser);
9251
9252 if (declares_class_or_enum)
9253 *declares_class_or_enum = 2;
9254 if (decl_specs)
9255 cp_parser_set_decl_spec_type (decl_specs,
9256 type_spec,
9257 /*user_defined_p=*/true);
9258 return type_spec;
9259 }
9260 else
9261 goto elaborated_type_specifier;
9262
9263 /* Any of these indicate either a class-specifier, or an
9264 elaborated-type-specifier. */
9265 case RID_CLASS:
9266 case RID_STRUCT:
9267 case RID_UNION:
9268 /* Parse tentatively so that we can back up if we don't find a
9269 class-specifier. */
9270 cp_parser_parse_tentatively (parser);
9271 /* Look for the class-specifier. */
9272 type_spec = cp_parser_class_specifier (parser);
9273 /* If that worked, we're done. */
9274 if (cp_parser_parse_definitely (parser))
9275 {
9276 if (declares_class_or_enum)
9277 *declares_class_or_enum = 2;
9278 if (decl_specs)
9279 cp_parser_set_decl_spec_type (decl_specs,
9280 type_spec,
9281 /*user_defined_p=*/true);
9282 return type_spec;
9283 }
9284
9285 /* Fall through. */
9286 elaborated_type_specifier:
9287 /* We're declaring (not defining) a class or enum. */
9288 if (declares_class_or_enum)
9289 *declares_class_or_enum = 1;
9290
9291 /* Fall through. */
9292 case RID_TYPENAME:
9293 /* Look for an elaborated-type-specifier. */
9294 type_spec
9295 = (cp_parser_elaborated_type_specifier
9296 (parser,
9297 decl_specs && decl_specs->specs[(int) ds_friend],
9298 is_declaration));
9299 if (decl_specs)
9300 cp_parser_set_decl_spec_type (decl_specs,
9301 type_spec,
9302 /*user_defined_p=*/true);
9303 return type_spec;
9304
9305 case RID_CONST:
9306 ds = ds_const;
9307 if (is_cv_qualifier)
9308 *is_cv_qualifier = true;
9309 break;
9310
9311 case RID_VOLATILE:
9312 ds = ds_volatile;
9313 if (is_cv_qualifier)
9314 *is_cv_qualifier = true;
9315 break;
9316
9317 case RID_RESTRICT:
9318 ds = ds_restrict;
9319 if (is_cv_qualifier)
9320 *is_cv_qualifier = true;
9321 break;
9322
9323 case RID_COMPLEX:
9324 /* The `__complex__' keyword is a GNU extension. */
9325 ds = ds_complex;
9326 break;
9327
9328 default:
9329 break;
9330 }
9331
9332 /* Handle simple keywords. */
9333 if (ds != ds_last)
9334 {
9335 if (decl_specs)
9336 {
9337 ++decl_specs->specs[(int)ds];
9338 decl_specs->any_specifiers_p = true;
9339 }
9340 return cp_lexer_consume_token (parser->lexer)->value;
9341 }
9342
9343 /* If we do not already have a type-specifier, assume we are looking
9344 at a simple-type-specifier. */
9345 type_spec = cp_parser_simple_type_specifier (parser,
9346 decl_specs,
9347 flags);
9348
9349 /* If we didn't find a type-specifier, and a type-specifier was not
9350 optional in this context, issue an error message. */
9351 if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9352 {
9353 cp_parser_error (parser, "expected type specifier");
9354 return error_mark_node;
9355 }
9356
9357 return type_spec;
9358 }
9359
9360 /* Parse a simple-type-specifier.
9361
9362 simple-type-specifier:
9363 :: [opt] nested-name-specifier [opt] type-name
9364 :: [opt] nested-name-specifier template template-id
9365 char
9366 wchar_t
9367 bool
9368 short
9369 int
9370 long
9371 signed
9372 unsigned
9373 float
9374 double
9375 void
9376
9377 GNU Extension:
9378
9379 simple-type-specifier:
9380 __typeof__ unary-expression
9381 __typeof__ ( type-id )
9382
9383 Returns the indicated TYPE_DECL. If DECL_SPECS is not NULL, it is
9384 appropriately updated. */
9385
9386 static tree
9387 cp_parser_simple_type_specifier (cp_parser* parser,
9388 cp_decl_specifier_seq *decl_specs,
9389 cp_parser_flags flags)
9390 {
9391 tree type = NULL_TREE;
9392 cp_token *token;
9393
9394 /* Peek at the next token. */
9395 token = cp_lexer_peek_token (parser->lexer);
9396
9397 /* If we're looking at a keyword, things are easy. */
9398 switch (token->keyword)
9399 {
9400 case RID_CHAR:
9401 if (decl_specs)
9402 decl_specs->explicit_char_p = true;
9403 type = char_type_node;
9404 break;
9405 case RID_WCHAR:
9406 type = wchar_type_node;
9407 break;
9408 case RID_BOOL:
9409 type = boolean_type_node;
9410 break;
9411 case RID_SHORT:
9412 if (decl_specs)
9413 ++decl_specs->specs[(int) ds_short];
9414 type = short_integer_type_node;
9415 break;
9416 case RID_INT:
9417 if (decl_specs)
9418 decl_specs->explicit_int_p = true;
9419 type = integer_type_node;
9420 break;
9421 case RID_LONG:
9422 if (decl_specs)
9423 ++decl_specs->specs[(int) ds_long];
9424 type = long_integer_type_node;
9425 break;
9426 case RID_SIGNED:
9427 if (decl_specs)
9428 ++decl_specs->specs[(int) ds_signed];
9429 type = integer_type_node;
9430 break;
9431 case RID_UNSIGNED:
9432 if (decl_specs)
9433 ++decl_specs->specs[(int) ds_unsigned];
9434 type = unsigned_type_node;
9435 break;
9436 case RID_FLOAT:
9437 type = float_type_node;
9438 break;
9439 case RID_DOUBLE:
9440 type = double_type_node;
9441 break;
9442 case RID_VOID:
9443 type = void_type_node;
9444 break;
9445
9446 case RID_TYPEOF:
9447 /* Consume the `typeof' token. */
9448 cp_lexer_consume_token (parser->lexer);
9449 /* Parse the operand to `typeof'. */
9450 type = cp_parser_sizeof_operand (parser, RID_TYPEOF);
9451 /* If it is not already a TYPE, take its type. */
9452 if (!TYPE_P (type))
9453 type = finish_typeof (type);
9454
9455 if (decl_specs)
9456 cp_parser_set_decl_spec_type (decl_specs, type,
9457 /*user_defined_p=*/true);
9458
9459 return type;
9460
9461 default:
9462 break;
9463 }
9464
9465 /* If the type-specifier was for a built-in type, we're done. */
9466 if (type)
9467 {
9468 tree id;
9469
9470 /* Record the type. */
9471 if (decl_specs
9472 && (token->keyword != RID_SIGNED
9473 && token->keyword != RID_UNSIGNED
9474 && token->keyword != RID_SHORT
9475 && token->keyword != RID_LONG))
9476 cp_parser_set_decl_spec_type (decl_specs,
9477 type,
9478 /*user_defined=*/false);
9479 if (decl_specs)
9480 decl_specs->any_specifiers_p = true;
9481
9482 /* Consume the token. */
9483 id = cp_lexer_consume_token (parser->lexer)->value;
9484
9485 /* There is no valid C++ program where a non-template type is
9486 followed by a "<". That usually indicates that the user thought
9487 that the type was a template. */
9488 cp_parser_check_for_invalid_template_id (parser, type);
9489
9490 return TYPE_NAME (type);
9491 }
9492
9493 /* The type-specifier must be a user-defined type. */
9494 if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES))
9495 {
9496 bool qualified_p;
9497 bool global_p;
9498
9499 /* Don't gobble tokens or issue error messages if this is an
9500 optional type-specifier. */
9501 if (flags & CP_PARSER_FLAGS_OPTIONAL)
9502 cp_parser_parse_tentatively (parser);
9503
9504 /* Look for the optional `::' operator. */
9505 global_p
9506 = (cp_parser_global_scope_opt (parser,
9507 /*current_scope_valid_p=*/false)
9508 != NULL_TREE);
9509 /* Look for the nested-name specifier. */
9510 qualified_p
9511 = (cp_parser_nested_name_specifier_opt (parser,
9512 /*typename_keyword_p=*/false,
9513 /*check_dependency_p=*/true,
9514 /*type_p=*/false,
9515 /*is_declaration=*/false)
9516 != NULL_TREE);
9517 /* If we have seen a nested-name-specifier, and the next token
9518 is `template', then we are using the template-id production. */
9519 if (parser->scope
9520 && cp_parser_optional_template_keyword (parser))
9521 {
9522 /* Look for the template-id. */
9523 type = cp_parser_template_id (parser,
9524 /*template_keyword_p=*/true,
9525 /*check_dependency_p=*/true,
9526 /*is_declaration=*/false);
9527 /* If the template-id did not name a type, we are out of
9528 luck. */
9529 if (TREE_CODE (type) != TYPE_DECL)
9530 {
9531 cp_parser_error (parser, "expected template-id for type");
9532 type = NULL_TREE;
9533 }
9534 }
9535 /* Otherwise, look for a type-name. */
9536 else
9537 type = cp_parser_type_name (parser);
9538 /* Keep track of all name-lookups performed in class scopes. */
9539 if (type
9540 && !global_p
9541 && !qualified_p
9542 && TREE_CODE (type) == TYPE_DECL
9543 && TREE_CODE (DECL_NAME (type)) == IDENTIFIER_NODE)
9544 maybe_note_name_used_in_class (DECL_NAME (type), type);
9545 /* If it didn't work out, we don't have a TYPE. */
9546 if ((flags & CP_PARSER_FLAGS_OPTIONAL)
9547 && !cp_parser_parse_definitely (parser))
9548 type = NULL_TREE;
9549 if (type && decl_specs)
9550 cp_parser_set_decl_spec_type (decl_specs, type,
9551 /*user_defined=*/true);
9552 }
9553
9554 /* If we didn't get a type-name, issue an error message. */
9555 if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9556 {
9557 cp_parser_error (parser, "expected type-name");
9558 return error_mark_node;
9559 }
9560
9561 /* There is no valid C++ program where a non-template type is
9562 followed by a "<". That usually indicates that the user thought
9563 that the type was a template. */
9564 if (type && type != error_mark_node)
9565 cp_parser_check_for_invalid_template_id (parser, TREE_TYPE (type));
9566
9567 return type;
9568 }
9569
9570 /* Parse a type-name.
9571
9572 type-name:
9573 class-name
9574 enum-name
9575 typedef-name
9576
9577 enum-name:
9578 identifier
9579
9580 typedef-name:
9581 identifier
9582
9583 Returns a TYPE_DECL for the the type. */
9584
9585 static tree
9586 cp_parser_type_name (cp_parser* parser)
9587 {
9588 tree type_decl;
9589 tree identifier;
9590
9591 /* We can't know yet whether it is a class-name or not. */
9592 cp_parser_parse_tentatively (parser);
9593 /* Try a class-name. */
9594 type_decl = cp_parser_class_name (parser,
9595 /*typename_keyword_p=*/false,
9596 /*template_keyword_p=*/false,
9597 none_type,
9598 /*check_dependency_p=*/true,
9599 /*class_head_p=*/false,
9600 /*is_declaration=*/false);
9601 /* If it's not a class-name, keep looking. */
9602 if (!cp_parser_parse_definitely (parser))
9603 {
9604 /* It must be a typedef-name or an enum-name. */
9605 identifier = cp_parser_identifier (parser);
9606 if (identifier == error_mark_node)
9607 return error_mark_node;
9608
9609 /* Look up the type-name. */
9610 type_decl = cp_parser_lookup_name_simple (parser, identifier);
9611 /* Issue an error if we did not find a type-name. */
9612 if (TREE_CODE (type_decl) != TYPE_DECL)
9613 {
9614 if (!cp_parser_simulate_error (parser))
9615 cp_parser_name_lookup_error (parser, identifier, type_decl,
9616 "is not a type");
9617 type_decl = error_mark_node;
9618 }
9619 /* Remember that the name was used in the definition of the
9620 current class so that we can check later to see if the
9621 meaning would have been different after the class was
9622 entirely defined. */
9623 else if (type_decl != error_mark_node
9624 && !parser->scope)
9625 maybe_note_name_used_in_class (identifier, type_decl);
9626 }
9627
9628 return type_decl;
9629 }
9630
9631
9632 /* Parse an elaborated-type-specifier. Note that the grammar given
9633 here incorporates the resolution to DR68.
9634
9635 elaborated-type-specifier:
9636 class-key :: [opt] nested-name-specifier [opt] identifier
9637 class-key :: [opt] nested-name-specifier [opt] template [opt] template-id
9638 enum :: [opt] nested-name-specifier [opt] identifier
9639 typename :: [opt] nested-name-specifier identifier
9640 typename :: [opt] nested-name-specifier template [opt]
9641 template-id
9642
9643 GNU extension:
9644
9645 elaborated-type-specifier:
9646 class-key attributes :: [opt] nested-name-specifier [opt] identifier
9647 class-key attributes :: [opt] nested-name-specifier [opt]
9648 template [opt] template-id
9649 enum attributes :: [opt] nested-name-specifier [opt] identifier
9650
9651 If IS_FRIEND is TRUE, then this elaborated-type-specifier is being
9652 declared `friend'. If IS_DECLARATION is TRUE, then this
9653 elaborated-type-specifier appears in a decl-specifiers-seq, i.e.,
9654 something is being declared.
9655
9656 Returns the TYPE specified. */
9657
9658 static tree
9659 cp_parser_elaborated_type_specifier (cp_parser* parser,
9660 bool is_friend,
9661 bool is_declaration)
9662 {
9663 enum tag_types tag_type;
9664 tree identifier;
9665 tree type = NULL_TREE;
9666 tree attributes = NULL_TREE;
9667
9668 /* See if we're looking at the `enum' keyword. */
9669 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM))
9670 {
9671 /* Consume the `enum' token. */
9672 cp_lexer_consume_token (parser->lexer);
9673 /* Remember that it's an enumeration type. */
9674 tag_type = enum_type;
9675 /* Parse the attributes. */
9676 attributes = cp_parser_attributes_opt (parser);
9677 }
9678 /* Or, it might be `typename'. */
9679 else if (cp_lexer_next_token_is_keyword (parser->lexer,
9680 RID_TYPENAME))
9681 {
9682 /* Consume the `typename' token. */
9683 cp_lexer_consume_token (parser->lexer);
9684 /* Remember that it's a `typename' type. */
9685 tag_type = typename_type;
9686 /* The `typename' keyword is only allowed in templates. */
9687 if (!processing_template_decl)
9688 pedwarn ("using %<typename%> outside of template");
9689 }
9690 /* Otherwise it must be a class-key. */
9691 else
9692 {
9693 tag_type = cp_parser_class_key (parser);
9694 if (tag_type == none_type)
9695 return error_mark_node;
9696 /* Parse the attributes. */
9697 attributes = cp_parser_attributes_opt (parser);
9698 }
9699
9700 /* Look for the `::' operator. */
9701 cp_parser_global_scope_opt (parser,
9702 /*current_scope_valid_p=*/false);
9703 /* Look for the nested-name-specifier. */
9704 if (tag_type == typename_type)
9705 {
9706 if (cp_parser_nested_name_specifier (parser,
9707 /*typename_keyword_p=*/true,
9708 /*check_dependency_p=*/true,
9709 /*type_p=*/true,
9710 is_declaration)
9711 == error_mark_node)
9712 return error_mark_node;
9713 }
9714 else
9715 /* Even though `typename' is not present, the proposed resolution
9716 to Core Issue 180 says that in `class A<T>::B', `B' should be
9717 considered a type-name, even if `A<T>' is dependent. */
9718 cp_parser_nested_name_specifier_opt (parser,
9719 /*typename_keyword_p=*/true,
9720 /*check_dependency_p=*/true,
9721 /*type_p=*/true,
9722 is_declaration);
9723 /* For everything but enumeration types, consider a template-id. */
9724 if (tag_type != enum_type)
9725 {
9726 bool template_p = false;
9727 tree decl;
9728
9729 /* Allow the `template' keyword. */
9730 template_p = cp_parser_optional_template_keyword (parser);
9731 /* If we didn't see `template', we don't know if there's a
9732 template-id or not. */
9733 if (!template_p)
9734 cp_parser_parse_tentatively (parser);
9735 /* Parse the template-id. */
9736 decl = cp_parser_template_id (parser, template_p,
9737 /*check_dependency_p=*/true,
9738 is_declaration);
9739 /* If we didn't find a template-id, look for an ordinary
9740 identifier. */
9741 if (!template_p && !cp_parser_parse_definitely (parser))
9742 ;
9743 /* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is
9744 in effect, then we must assume that, upon instantiation, the
9745 template will correspond to a class. */
9746 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
9747 && tag_type == typename_type)
9748 type = make_typename_type (parser->scope, decl,
9749 typename_type,
9750 /*complain=*/1);
9751 else
9752 type = TREE_TYPE (decl);
9753 }
9754
9755 /* For an enumeration type, consider only a plain identifier. */
9756 if (!type)
9757 {
9758 identifier = cp_parser_identifier (parser);
9759
9760 if (identifier == error_mark_node)
9761 {
9762 parser->scope = NULL_TREE;
9763 return error_mark_node;
9764 }
9765
9766 /* For a `typename', we needn't call xref_tag. */
9767 if (tag_type == typename_type
9768 && TREE_CODE (parser->scope) != NAMESPACE_DECL)
9769 return cp_parser_make_typename_type (parser, parser->scope,
9770 identifier);
9771 /* Look up a qualified name in the usual way. */
9772 if (parser->scope)
9773 {
9774 tree decl;
9775
9776 decl = cp_parser_lookup_name (parser, identifier,
9777 tag_type,
9778 /*is_template=*/false,
9779 /*is_namespace=*/false,
9780 /*check_dependency=*/true,
9781 /*ambiguous_p=*/NULL);
9782
9783 /* If we are parsing friend declaration, DECL may be a
9784 TEMPLATE_DECL tree node here. However, we need to check
9785 whether this TEMPLATE_DECL results in valid code. Consider
9786 the following example:
9787
9788 namespace N {
9789 template <class T> class C {};
9790 }
9791 class X {
9792 template <class T> friend class N::C; // #1, valid code
9793 };
9794 template <class T> class Y {
9795 friend class N::C; // #2, invalid code
9796 };
9797
9798 For both case #1 and #2, we arrive at a TEMPLATE_DECL after
9799 name lookup of `N::C'. We see that friend declaration must
9800 be template for the code to be valid. Note that
9801 processing_template_decl does not work here since it is
9802 always 1 for the above two cases. */
9803
9804 decl = (cp_parser_maybe_treat_template_as_class
9805 (decl, /*tag_name_p=*/is_friend
9806 && parser->num_template_parameter_lists));
9807
9808 if (TREE_CODE (decl) != TYPE_DECL)
9809 {
9810 cp_parser_diagnose_invalid_type_name (parser,
9811 parser->scope,
9812 identifier);
9813 return error_mark_node;
9814 }
9815
9816 if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
9817 check_elaborated_type_specifier
9818 (tag_type, decl,
9819 (parser->num_template_parameter_lists
9820 || DECL_SELF_REFERENCE_P (decl)));
9821
9822 type = TREE_TYPE (decl);
9823 }
9824 else
9825 {
9826 /* An elaborated-type-specifier sometimes introduces a new type and
9827 sometimes names an existing type. Normally, the rule is that it
9828 introduces a new type only if there is not an existing type of
9829 the same name already in scope. For example, given:
9830
9831 struct S {};
9832 void f() { struct S s; }
9833
9834 the `struct S' in the body of `f' is the same `struct S' as in
9835 the global scope; the existing definition is used. However, if
9836 there were no global declaration, this would introduce a new
9837 local class named `S'.
9838
9839 An exception to this rule applies to the following code:
9840
9841 namespace N { struct S; }
9842
9843 Here, the elaborated-type-specifier names a new type
9844 unconditionally; even if there is already an `S' in the
9845 containing scope this declaration names a new type.
9846 This exception only applies if the elaborated-type-specifier
9847 forms the complete declaration:
9848
9849 [class.name]
9850
9851 A declaration consisting solely of `class-key identifier ;' is
9852 either a redeclaration of the name in the current scope or a
9853 forward declaration of the identifier as a class name. It
9854 introduces the name into the current scope.
9855
9856 We are in this situation precisely when the next token is a `;'.
9857
9858 An exception to the exception is that a `friend' declaration does
9859 *not* name a new type; i.e., given:
9860
9861 struct S { friend struct T; };
9862
9863 `T' is not a new type in the scope of `S'.
9864
9865 Also, `new struct S' or `sizeof (struct S)' never results in the
9866 definition of a new type; a new type can only be declared in a
9867 declaration context. */
9868
9869 tag_scope ts;
9870 if (is_friend)
9871 /* Friends have special name lookup rules. */
9872 ts = ts_within_enclosing_non_class;
9873 else if (is_declaration
9874 && cp_lexer_next_token_is (parser->lexer,
9875 CPP_SEMICOLON))
9876 /* This is a `class-key identifier ;' */
9877 ts = ts_current;
9878 else
9879 ts = ts_global;
9880
9881 /* Warn about attributes. They are ignored. */
9882 if (attributes)
9883 warning ("type attributes are honored only at type definition");
9884
9885 type = xref_tag (tag_type, identifier, ts,
9886 parser->num_template_parameter_lists);
9887 }
9888 }
9889 if (tag_type != enum_type)
9890 cp_parser_check_class_key (tag_type, type);
9891
9892 /* A "<" cannot follow an elaborated type specifier. If that
9893 happens, the user was probably trying to form a template-id. */
9894 cp_parser_check_for_invalid_template_id (parser, type);
9895
9896 return type;
9897 }
9898
9899 /* Parse an enum-specifier.
9900
9901 enum-specifier:
9902 enum identifier [opt] { enumerator-list [opt] }
9903
9904 GNU Extensions:
9905 enum identifier [opt] { enumerator-list [opt] } attributes
9906
9907 Returns an ENUM_TYPE representing the enumeration. */
9908
9909 static tree
9910 cp_parser_enum_specifier (cp_parser* parser)
9911 {
9912 tree identifier;
9913 tree type;
9914
9915 /* Caller guarantees that the current token is 'enum', an identifier
9916 possibly follows, and the token after that is an opening brace.
9917 If we don't have an identifier, fabricate an anonymous name for
9918 the enumeration being defined. */
9919 cp_lexer_consume_token (parser->lexer);
9920
9921 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
9922 identifier = cp_parser_identifier (parser);
9923 else
9924 identifier = make_anon_name ();
9925
9926 /* Issue an error message if type-definitions are forbidden here. */
9927 cp_parser_check_type_definition (parser);
9928
9929 /* Create the new type. We do this before consuming the opening brace
9930 so the enum will be recorded as being on the line of its tag (or the
9931 'enum' keyword, if there is no tag). */
9932 type = start_enum (identifier);
9933
9934 /* Consume the opening brace. */
9935 cp_lexer_consume_token (parser->lexer);
9936
9937 /* If the next token is not '}', then there are some enumerators. */
9938 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
9939 cp_parser_enumerator_list (parser, type);
9940
9941 /* Consume the final '}'. */
9942 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
9943
9944 /* Look for trailing attributes to apply to this enumeration, and
9945 apply them if appropriate. */
9946 if (cp_parser_allow_gnu_extensions_p (parser))
9947 {
9948 tree trailing_attr = cp_parser_attributes_opt (parser);
9949 cplus_decl_attributes (&type,
9950 trailing_attr,
9951 (int) ATTR_FLAG_TYPE_IN_PLACE);
9952 }
9953
9954 /* Finish up the enumeration. */
9955 finish_enum (type);
9956
9957 return type;
9958 }
9959
9960 /* Parse an enumerator-list. The enumerators all have the indicated
9961 TYPE.
9962
9963 enumerator-list:
9964 enumerator-definition
9965 enumerator-list , enumerator-definition */
9966
9967 static void
9968 cp_parser_enumerator_list (cp_parser* parser, tree type)
9969 {
9970 while (true)
9971 {
9972 /* Parse an enumerator-definition. */
9973 cp_parser_enumerator_definition (parser, type);
9974
9975 /* If the next token is not a ',', we've reached the end of
9976 the list. */
9977 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
9978 break;
9979 /* Otherwise, consume the `,' and keep going. */
9980 cp_lexer_consume_token (parser->lexer);
9981 /* If the next token is a `}', there is a trailing comma. */
9982 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
9983 {
9984 if (pedantic && !in_system_header)
9985 pedwarn ("comma at end of enumerator list");
9986 break;
9987 }
9988 }
9989 }
9990
9991 /* Parse an enumerator-definition. The enumerator has the indicated
9992 TYPE.
9993
9994 enumerator-definition:
9995 enumerator
9996 enumerator = constant-expression
9997
9998 enumerator:
9999 identifier */
10000
10001 static void
10002 cp_parser_enumerator_definition (cp_parser* parser, tree type)
10003 {
10004 tree identifier;
10005 tree value;
10006
10007 /* Look for the identifier. */
10008 identifier = cp_parser_identifier (parser);
10009 if (identifier == error_mark_node)
10010 return;
10011
10012 /* If the next token is an '=', then there is an explicit value. */
10013 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
10014 {
10015 /* Consume the `=' token. */
10016 cp_lexer_consume_token (parser->lexer);
10017 /* Parse the value. */
10018 value = cp_parser_constant_expression (parser,
10019 /*allow_non_constant_p=*/false,
10020 NULL);
10021 }
10022 else
10023 value = NULL_TREE;
10024
10025 /* Create the enumerator. */
10026 build_enumerator (identifier, value, type);
10027 }
10028
10029 /* Parse a namespace-name.
10030
10031 namespace-name:
10032 original-namespace-name
10033 namespace-alias
10034
10035 Returns the NAMESPACE_DECL for the namespace. */
10036
10037 static tree
10038 cp_parser_namespace_name (cp_parser* parser)
10039 {
10040 tree identifier;
10041 tree namespace_decl;
10042
10043 /* Get the name of the namespace. */
10044 identifier = cp_parser_identifier (parser);
10045 if (identifier == error_mark_node)
10046 return error_mark_node;
10047
10048 /* Look up the identifier in the currently active scope. Look only
10049 for namespaces, due to:
10050
10051 [basic.lookup.udir]
10052
10053 When looking up a namespace-name in a using-directive or alias
10054 definition, only namespace names are considered.
10055
10056 And:
10057
10058 [basic.lookup.qual]
10059
10060 During the lookup of a name preceding the :: scope resolution
10061 operator, object, function, and enumerator names are ignored.
10062
10063 (Note that cp_parser_class_or_namespace_name only calls this
10064 function if the token after the name is the scope resolution
10065 operator.) */
10066 namespace_decl = cp_parser_lookup_name (parser, identifier,
10067 none_type,
10068 /*is_template=*/false,
10069 /*is_namespace=*/true,
10070 /*check_dependency=*/true,
10071 /*ambiguous_p=*/NULL);
10072 /* If it's not a namespace, issue an error. */
10073 if (namespace_decl == error_mark_node
10074 || TREE_CODE (namespace_decl) != NAMESPACE_DECL)
10075 {
10076 cp_parser_error (parser, "expected namespace-name");
10077 namespace_decl = error_mark_node;
10078 }
10079
10080 return namespace_decl;
10081 }
10082
10083 /* Parse a namespace-definition.
10084
10085 namespace-definition:
10086 named-namespace-definition
10087 unnamed-namespace-definition
10088
10089 named-namespace-definition:
10090 original-namespace-definition
10091 extension-namespace-definition
10092
10093 original-namespace-definition:
10094 namespace identifier { namespace-body }
10095
10096 extension-namespace-definition:
10097 namespace original-namespace-name { namespace-body }
10098
10099 unnamed-namespace-definition:
10100 namespace { namespace-body } */
10101
10102 static void
10103 cp_parser_namespace_definition (cp_parser* parser)
10104 {
10105 tree identifier;
10106
10107 /* Look for the `namespace' keyword. */
10108 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10109
10110 /* Get the name of the namespace. We do not attempt to distinguish
10111 between an original-namespace-definition and an
10112 extension-namespace-definition at this point. The semantic
10113 analysis routines are responsible for that. */
10114 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
10115 identifier = cp_parser_identifier (parser);
10116 else
10117 identifier = NULL_TREE;
10118
10119 /* Look for the `{' to start the namespace. */
10120 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
10121 /* Start the namespace. */
10122 push_namespace (identifier);
10123 /* Parse the body of the namespace. */
10124 cp_parser_namespace_body (parser);
10125 /* Finish the namespace. */
10126 pop_namespace ();
10127 /* Look for the final `}'. */
10128 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
10129 }
10130
10131 /* Parse a namespace-body.
10132
10133 namespace-body:
10134 declaration-seq [opt] */
10135
10136 static void
10137 cp_parser_namespace_body (cp_parser* parser)
10138 {
10139 cp_parser_declaration_seq_opt (parser);
10140 }
10141
10142 /* Parse a namespace-alias-definition.
10143
10144 namespace-alias-definition:
10145 namespace identifier = qualified-namespace-specifier ; */
10146
10147 static void
10148 cp_parser_namespace_alias_definition (cp_parser* parser)
10149 {
10150 tree identifier;
10151 tree namespace_specifier;
10152
10153 /* Look for the `namespace' keyword. */
10154 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10155 /* Look for the identifier. */
10156 identifier = cp_parser_identifier (parser);
10157 if (identifier == error_mark_node)
10158 return;
10159 /* Look for the `=' token. */
10160 cp_parser_require (parser, CPP_EQ, "`='");
10161 /* Look for the qualified-namespace-specifier. */
10162 namespace_specifier
10163 = cp_parser_qualified_namespace_specifier (parser);
10164 /* Look for the `;' token. */
10165 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10166
10167 /* Register the alias in the symbol table. */
10168 do_namespace_alias (identifier, namespace_specifier);
10169 }
10170
10171 /* Parse a qualified-namespace-specifier.
10172
10173 qualified-namespace-specifier:
10174 :: [opt] nested-name-specifier [opt] namespace-name
10175
10176 Returns a NAMESPACE_DECL corresponding to the specified
10177 namespace. */
10178
10179 static tree
10180 cp_parser_qualified_namespace_specifier (cp_parser* parser)
10181 {
10182 /* Look for the optional `::'. */
10183 cp_parser_global_scope_opt (parser,
10184 /*current_scope_valid_p=*/false);
10185
10186 /* Look for the optional nested-name-specifier. */
10187 cp_parser_nested_name_specifier_opt (parser,
10188 /*typename_keyword_p=*/false,
10189 /*check_dependency_p=*/true,
10190 /*type_p=*/false,
10191 /*is_declaration=*/true);
10192
10193 return cp_parser_namespace_name (parser);
10194 }
10195
10196 /* Parse a using-declaration.
10197
10198 using-declaration:
10199 using typename [opt] :: [opt] nested-name-specifier unqualified-id ;
10200 using :: unqualified-id ; */
10201
10202 static void
10203 cp_parser_using_declaration (cp_parser* parser)
10204 {
10205 cp_token *token;
10206 bool typename_p = false;
10207 bool global_scope_p;
10208 tree decl;
10209 tree identifier;
10210 tree qscope;
10211
10212 /* Look for the `using' keyword. */
10213 cp_parser_require_keyword (parser, RID_USING, "`using'");
10214
10215 /* Peek at the next token. */
10216 token = cp_lexer_peek_token (parser->lexer);
10217 /* See if it's `typename'. */
10218 if (token->keyword == RID_TYPENAME)
10219 {
10220 /* Remember that we've seen it. */
10221 typename_p = true;
10222 /* Consume the `typename' token. */
10223 cp_lexer_consume_token (parser->lexer);
10224 }
10225
10226 /* Look for the optional global scope qualification. */
10227 global_scope_p
10228 = (cp_parser_global_scope_opt (parser,
10229 /*current_scope_valid_p=*/false)
10230 != NULL_TREE);
10231
10232 /* If we saw `typename', or didn't see `::', then there must be a
10233 nested-name-specifier present. */
10234 if (typename_p || !global_scope_p)
10235 qscope = cp_parser_nested_name_specifier (parser, typename_p,
10236 /*check_dependency_p=*/true,
10237 /*type_p=*/false,
10238 /*is_declaration=*/true);
10239 /* Otherwise, we could be in either of the two productions. In that
10240 case, treat the nested-name-specifier as optional. */
10241 else
10242 qscope = cp_parser_nested_name_specifier_opt (parser,
10243 /*typename_keyword_p=*/false,
10244 /*check_dependency_p=*/true,
10245 /*type_p=*/false,
10246 /*is_declaration=*/true);
10247 if (!qscope)
10248 qscope = global_namespace;
10249
10250 /* Parse the unqualified-id. */
10251 identifier = cp_parser_unqualified_id (parser,
10252 /*template_keyword_p=*/false,
10253 /*check_dependency_p=*/true,
10254 /*declarator_p=*/true);
10255
10256 /* The function we call to handle a using-declaration is different
10257 depending on what scope we are in. */
10258 if (identifier == error_mark_node)
10259 ;
10260 else if (TREE_CODE (identifier) != IDENTIFIER_NODE
10261 && TREE_CODE (identifier) != BIT_NOT_EXPR)
10262 /* [namespace.udecl]
10263
10264 A using declaration shall not name a template-id. */
10265 error ("a template-id may not appear in a using-declaration");
10266 else
10267 {
10268 if (at_class_scope_p ())
10269 {
10270 /* Create the USING_DECL. */
10271 decl = do_class_using_decl (parser->scope, identifier);
10272 /* Add it to the list of members in this class. */
10273 finish_member_declaration (decl);
10274 }
10275 else
10276 {
10277 decl = cp_parser_lookup_name_simple (parser, identifier);
10278 if (decl == error_mark_node)
10279 cp_parser_name_lookup_error (parser, identifier, decl, NULL);
10280 else if (!at_namespace_scope_p ())
10281 do_local_using_decl (decl, qscope, identifier);
10282 else
10283 do_toplevel_using_decl (decl, qscope, identifier);
10284 }
10285 }
10286
10287 /* Look for the final `;'. */
10288 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10289 }
10290
10291 /* Parse a using-directive.
10292
10293 using-directive:
10294 using namespace :: [opt] nested-name-specifier [opt]
10295 namespace-name ; */
10296
10297 static void
10298 cp_parser_using_directive (cp_parser* parser)
10299 {
10300 tree namespace_decl;
10301 tree attribs;
10302
10303 /* Look for the `using' keyword. */
10304 cp_parser_require_keyword (parser, RID_USING, "`using'");
10305 /* And the `namespace' keyword. */
10306 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10307 /* Look for the optional `::' operator. */
10308 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
10309 /* And the optional nested-name-specifier. */
10310 cp_parser_nested_name_specifier_opt (parser,
10311 /*typename_keyword_p=*/false,
10312 /*check_dependency_p=*/true,
10313 /*type_p=*/false,
10314 /*is_declaration=*/true);
10315 /* Get the namespace being used. */
10316 namespace_decl = cp_parser_namespace_name (parser);
10317 /* And any specified attributes. */
10318 attribs = cp_parser_attributes_opt (parser);
10319 /* Update the symbol table. */
10320 parse_using_directive (namespace_decl, attribs);
10321 /* Look for the final `;'. */
10322 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10323 }
10324
10325 /* Parse an asm-definition.
10326
10327 asm-definition:
10328 asm ( string-literal ) ;
10329
10330 GNU Extension:
10331
10332 asm-definition:
10333 asm volatile [opt] ( string-literal ) ;
10334 asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ;
10335 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10336 : asm-operand-list [opt] ) ;
10337 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10338 : asm-operand-list [opt]
10339 : asm-operand-list [opt] ) ; */
10340
10341 static void
10342 cp_parser_asm_definition (cp_parser* parser)
10343 {
10344 tree string;
10345 tree outputs = NULL_TREE;
10346 tree inputs = NULL_TREE;
10347 tree clobbers = NULL_TREE;
10348 tree asm_stmt;
10349 bool volatile_p = false;
10350 bool extended_p = false;
10351
10352 /* Look for the `asm' keyword. */
10353 cp_parser_require_keyword (parser, RID_ASM, "`asm'");
10354 /* See if the next token is `volatile'. */
10355 if (cp_parser_allow_gnu_extensions_p (parser)
10356 && cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE))
10357 {
10358 /* Remember that we saw the `volatile' keyword. */
10359 volatile_p = true;
10360 /* Consume the token. */
10361 cp_lexer_consume_token (parser->lexer);
10362 }
10363 /* Look for the opening `('. */
10364 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
10365 return;
10366 /* Look for the string. */
10367 string = cp_parser_string_literal (parser, false, false);
10368 if (string == error_mark_node)
10369 {
10370 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10371 /*consume_paren=*/true);
10372 return;
10373 }
10374
10375 /* If we're allowing GNU extensions, check for the extended assembly
10376 syntax. Unfortunately, the `:' tokens need not be separated by
10377 a space in C, and so, for compatibility, we tolerate that here
10378 too. Doing that means that we have to treat the `::' operator as
10379 two `:' tokens. */
10380 if (cp_parser_allow_gnu_extensions_p (parser)
10381 && at_function_scope_p ()
10382 && (cp_lexer_next_token_is (parser->lexer, CPP_COLON)
10383 || cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)))
10384 {
10385 bool inputs_p = false;
10386 bool clobbers_p = false;
10387
10388 /* The extended syntax was used. */
10389 extended_p = true;
10390
10391 /* Look for outputs. */
10392 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10393 {
10394 /* Consume the `:'. */
10395 cp_lexer_consume_token (parser->lexer);
10396 /* Parse the output-operands. */
10397 if (cp_lexer_next_token_is_not (parser->lexer,
10398 CPP_COLON)
10399 && cp_lexer_next_token_is_not (parser->lexer,
10400 CPP_SCOPE)
10401 && cp_lexer_next_token_is_not (parser->lexer,
10402 CPP_CLOSE_PAREN))
10403 outputs = cp_parser_asm_operand_list (parser);
10404 }
10405 /* If the next token is `::', there are no outputs, and the
10406 next token is the beginning of the inputs. */
10407 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10408 /* The inputs are coming next. */
10409 inputs_p = true;
10410
10411 /* Look for inputs. */
10412 if (inputs_p
10413 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10414 {
10415 /* Consume the `:' or `::'. */
10416 cp_lexer_consume_token (parser->lexer);
10417 /* Parse the output-operands. */
10418 if (cp_lexer_next_token_is_not (parser->lexer,
10419 CPP_COLON)
10420 && cp_lexer_next_token_is_not (parser->lexer,
10421 CPP_CLOSE_PAREN))
10422 inputs = cp_parser_asm_operand_list (parser);
10423 }
10424 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10425 /* The clobbers are coming next. */
10426 clobbers_p = true;
10427
10428 /* Look for clobbers. */
10429 if (clobbers_p
10430 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10431 {
10432 /* Consume the `:' or `::'. */
10433 cp_lexer_consume_token (parser->lexer);
10434 /* Parse the clobbers. */
10435 if (cp_lexer_next_token_is_not (parser->lexer,
10436 CPP_CLOSE_PAREN))
10437 clobbers = cp_parser_asm_clobber_list (parser);
10438 }
10439 }
10440 /* Look for the closing `)'. */
10441 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
10442 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10443 /*consume_paren=*/true);
10444 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10445
10446 /* Create the ASM_EXPR. */
10447 if (at_function_scope_p ())
10448 {
10449 asm_stmt = finish_asm_stmt (volatile_p, string, outputs,
10450 inputs, clobbers);
10451 /* If the extended syntax was not used, mark the ASM_EXPR. */
10452 if (!extended_p)
10453 {
10454 tree temp = asm_stmt;
10455 if (TREE_CODE (temp) == CLEANUP_POINT_EXPR)
10456 temp = TREE_OPERAND (temp, 0);
10457
10458 ASM_INPUT_P (temp) = 1;
10459 }
10460 }
10461 else
10462 assemble_asm (string);
10463 }
10464
10465 /* Declarators [gram.dcl.decl] */
10466
10467 /* Parse an init-declarator.
10468
10469 init-declarator:
10470 declarator initializer [opt]
10471
10472 GNU Extension:
10473
10474 init-declarator:
10475 declarator asm-specification [opt] attributes [opt] initializer [opt]
10476
10477 function-definition:
10478 decl-specifier-seq [opt] declarator ctor-initializer [opt]
10479 function-body
10480 decl-specifier-seq [opt] declarator function-try-block
10481
10482 GNU Extension:
10483
10484 function-definition:
10485 __extension__ function-definition
10486
10487 The DECL_SPECIFIERS and PREFIX_ATTRIBUTES apply to this declarator.
10488 Returns a representation of the entity declared. If MEMBER_P is TRUE,
10489 then this declarator appears in a class scope. The new DECL created
10490 by this declarator is returned.
10491
10492 If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and
10493 for a function-definition here as well. If the declarator is a
10494 declarator for a function-definition, *FUNCTION_DEFINITION_P will
10495 be TRUE upon return. By that point, the function-definition will
10496 have been completely parsed.
10497
10498 FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P
10499 is FALSE. */
10500
10501 static tree
10502 cp_parser_init_declarator (cp_parser* parser,
10503 cp_decl_specifier_seq *decl_specifiers,
10504 bool function_definition_allowed_p,
10505 bool member_p,
10506 int declares_class_or_enum,
10507 bool* function_definition_p)
10508 {
10509 cp_token *token;
10510 cp_declarator *declarator;
10511 tree prefix_attributes;
10512 tree attributes;
10513 tree asm_specification;
10514 tree initializer;
10515 tree decl = NULL_TREE;
10516 tree scope;
10517 bool is_initialized;
10518 bool is_parenthesized_init;
10519 bool is_non_constant_init;
10520 int ctor_dtor_or_conv_p;
10521 bool friend_p;
10522 tree pushed_scope = NULL;
10523
10524 /* Gather the attributes that were provided with the
10525 decl-specifiers. */
10526 prefix_attributes = decl_specifiers->attributes;
10527
10528 /* Assume that this is not the declarator for a function
10529 definition. */
10530 if (function_definition_p)
10531 *function_definition_p = false;
10532
10533 /* Defer access checks while parsing the declarator; we cannot know
10534 what names are accessible until we know what is being
10535 declared. */
10536 resume_deferring_access_checks ();
10537
10538 /* Parse the declarator. */
10539 declarator
10540 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
10541 &ctor_dtor_or_conv_p,
10542 /*parenthesized_p=*/NULL,
10543 /*member_p=*/false);
10544 /* Gather up the deferred checks. */
10545 stop_deferring_access_checks ();
10546
10547 /* If the DECLARATOR was erroneous, there's no need to go
10548 further. */
10549 if (declarator == cp_error_declarator)
10550 return error_mark_node;
10551
10552 if (declares_class_or_enum & 2)
10553 cp_parser_check_for_definition_in_return_type (declarator,
10554 decl_specifiers->type);
10555
10556 /* Figure out what scope the entity declared by the DECLARATOR is
10557 located in. `grokdeclarator' sometimes changes the scope, so
10558 we compute it now. */
10559 scope = get_scope_of_declarator (declarator);
10560
10561 /* If we're allowing GNU extensions, look for an asm-specification
10562 and attributes. */
10563 if (cp_parser_allow_gnu_extensions_p (parser))
10564 {
10565 /* Look for an asm-specification. */
10566 asm_specification = cp_parser_asm_specification_opt (parser);
10567 /* And attributes. */
10568 attributes = cp_parser_attributes_opt (parser);
10569 }
10570 else
10571 {
10572 asm_specification = NULL_TREE;
10573 attributes = NULL_TREE;
10574 }
10575
10576 /* Peek at the next token. */
10577 token = cp_lexer_peek_token (parser->lexer);
10578 /* Check to see if the token indicates the start of a
10579 function-definition. */
10580 if (cp_parser_token_starts_function_definition_p (token))
10581 {
10582 if (!function_definition_allowed_p)
10583 {
10584 /* If a function-definition should not appear here, issue an
10585 error message. */
10586 cp_parser_error (parser,
10587 "a function-definition is not allowed here");
10588 return error_mark_node;
10589 }
10590 else
10591 {
10592 /* Neither attributes nor an asm-specification are allowed
10593 on a function-definition. */
10594 if (asm_specification)
10595 error ("an asm-specification is not allowed on a function-definition");
10596 if (attributes)
10597 error ("attributes are not allowed on a function-definition");
10598 /* This is a function-definition. */
10599 *function_definition_p = true;
10600
10601 /* Parse the function definition. */
10602 if (member_p)
10603 decl = cp_parser_save_member_function_body (parser,
10604 decl_specifiers,
10605 declarator,
10606 prefix_attributes);
10607 else
10608 decl
10609 = (cp_parser_function_definition_from_specifiers_and_declarator
10610 (parser, decl_specifiers, prefix_attributes, declarator));
10611
10612 return decl;
10613 }
10614 }
10615
10616 /* [dcl.dcl]
10617
10618 Only in function declarations for constructors, destructors, and
10619 type conversions can the decl-specifier-seq be omitted.
10620
10621 We explicitly postpone this check past the point where we handle
10622 function-definitions because we tolerate function-definitions
10623 that are missing their return types in some modes. */
10624 if (!decl_specifiers->any_specifiers_p && ctor_dtor_or_conv_p <= 0)
10625 {
10626 cp_parser_error (parser,
10627 "expected constructor, destructor, or type conversion");
10628 return error_mark_node;
10629 }
10630
10631 /* An `=' or an `(' indicates an initializer. */
10632 is_initialized = (token->type == CPP_EQ
10633 || token->type == CPP_OPEN_PAREN);
10634 /* If the init-declarator isn't initialized and isn't followed by a
10635 `,' or `;', it's not a valid init-declarator. */
10636 if (!is_initialized
10637 && token->type != CPP_COMMA
10638 && token->type != CPP_SEMICOLON)
10639 {
10640 cp_parser_error (parser, "expected initializer");
10641 return error_mark_node;
10642 }
10643
10644 /* Because start_decl has side-effects, we should only call it if we
10645 know we're going ahead. By this point, we know that we cannot
10646 possibly be looking at any other construct. */
10647 cp_parser_commit_to_tentative_parse (parser);
10648
10649 /* If the decl specifiers were bad, issue an error now that we're
10650 sure this was intended to be a declarator. Then continue
10651 declaring the variable(s), as int, to try to cut down on further
10652 errors. */
10653 if (decl_specifiers->any_specifiers_p
10654 && decl_specifiers->type == error_mark_node)
10655 {
10656 cp_parser_error (parser, "invalid type in declaration");
10657 decl_specifiers->type = integer_type_node;
10658 }
10659
10660 /* Check to see whether or not this declaration is a friend. */
10661 friend_p = cp_parser_friend_p (decl_specifiers);
10662
10663 /* Check that the number of template-parameter-lists is OK. */
10664 if (!cp_parser_check_declarator_template_parameters (parser, declarator))
10665 return error_mark_node;
10666
10667 /* Enter the newly declared entry in the symbol table. If we're
10668 processing a declaration in a class-specifier, we wait until
10669 after processing the initializer. */
10670 if (!member_p)
10671 {
10672 if (parser->in_unbraced_linkage_specification_p)
10673 {
10674 decl_specifiers->storage_class = sc_extern;
10675 have_extern_spec = false;
10676 }
10677 decl = start_decl (declarator, decl_specifiers,
10678 is_initialized, attributes, prefix_attributes,
10679 &pushed_scope);
10680 }
10681 else if (scope)
10682 /* Enter the SCOPE. That way unqualified names appearing in the
10683 initializer will be looked up in SCOPE. */
10684 pushed_scope = push_scope (scope);
10685
10686 /* Perform deferred access control checks, now that we know in which
10687 SCOPE the declared entity resides. */
10688 if (!member_p && decl)
10689 {
10690 tree saved_current_function_decl = NULL_TREE;
10691
10692 /* If the entity being declared is a function, pretend that we
10693 are in its scope. If it is a `friend', it may have access to
10694 things that would not otherwise be accessible. */
10695 if (TREE_CODE (decl) == FUNCTION_DECL)
10696 {
10697 saved_current_function_decl = current_function_decl;
10698 current_function_decl = decl;
10699 }
10700
10701 /* Perform the access control checks for the declarator and the
10702 the decl-specifiers. */
10703 perform_deferred_access_checks ();
10704
10705 /* Restore the saved value. */
10706 if (TREE_CODE (decl) == FUNCTION_DECL)
10707 current_function_decl = saved_current_function_decl;
10708 }
10709
10710 /* Parse the initializer. */
10711 if (is_initialized)
10712 initializer = cp_parser_initializer (parser,
10713 &is_parenthesized_init,
10714 &is_non_constant_init);
10715 else
10716 {
10717 initializer = NULL_TREE;
10718 is_parenthesized_init = false;
10719 is_non_constant_init = true;
10720 }
10721
10722 /* The old parser allows attributes to appear after a parenthesized
10723 initializer. Mark Mitchell proposed removing this functionality
10724 on the GCC mailing lists on 2002-08-13. This parser accepts the
10725 attributes -- but ignores them. */
10726 if (cp_parser_allow_gnu_extensions_p (parser) && is_parenthesized_init)
10727 if (cp_parser_attributes_opt (parser))
10728 warning ("attributes after parenthesized initializer ignored");
10729
10730 /* For an in-class declaration, use `grokfield' to create the
10731 declaration. */
10732 if (member_p)
10733 {
10734 if (pushed_scope)
10735 {
10736 pop_scope (pushed_scope);
10737 pushed_scope = false;
10738 }
10739 decl = grokfield (declarator, decl_specifiers,
10740 initializer, /*asmspec=*/NULL_TREE,
10741 /*attributes=*/NULL_TREE);
10742 if (decl && TREE_CODE (decl) == FUNCTION_DECL)
10743 cp_parser_save_default_args (parser, decl);
10744 }
10745
10746 /* Finish processing the declaration. But, skip friend
10747 declarations. */
10748 if (!friend_p && decl && decl != error_mark_node)
10749 {
10750 cp_finish_decl (decl,
10751 initializer,
10752 asm_specification,
10753 /* If the initializer is in parentheses, then this is
10754 a direct-initialization, which means that an
10755 `explicit' constructor is OK. Otherwise, an
10756 `explicit' constructor cannot be used. */
10757 ((is_parenthesized_init || !is_initialized)
10758 ? 0 : LOOKUP_ONLYCONVERTING));
10759 }
10760 if (!friend_p && pushed_scope)
10761 pop_scope (pushed_scope);
10762
10763 /* Remember whether or not variables were initialized by
10764 constant-expressions. */
10765 if (decl && TREE_CODE (decl) == VAR_DECL
10766 && is_initialized && !is_non_constant_init)
10767 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = true;
10768
10769 return decl;
10770 }
10771
10772 /* Parse a declarator.
10773
10774 declarator:
10775 direct-declarator
10776 ptr-operator declarator
10777
10778 abstract-declarator:
10779 ptr-operator abstract-declarator [opt]
10780 direct-abstract-declarator
10781
10782 GNU Extensions:
10783
10784 declarator:
10785 attributes [opt] direct-declarator
10786 attributes [opt] ptr-operator declarator
10787
10788 abstract-declarator:
10789 attributes [opt] ptr-operator abstract-declarator [opt]
10790 attributes [opt] direct-abstract-declarator
10791
10792 If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to
10793 detect constructor, destructor or conversion operators. It is set
10794 to -1 if the declarator is a name, and +1 if it is a
10795 function. Otherwise it is set to zero. Usually you just want to
10796 test for >0, but internally the negative value is used.
10797
10798 (The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have
10799 a decl-specifier-seq unless it declares a constructor, destructor,
10800 or conversion. It might seem that we could check this condition in
10801 semantic analysis, rather than parsing, but that makes it difficult
10802 to handle something like `f()'. We want to notice that there are
10803 no decl-specifiers, and therefore realize that this is an
10804 expression, not a declaration.)
10805
10806 If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
10807 the declarator is a direct-declarator of the form "(...)".
10808
10809 MEMBER_P is true iff this declarator is a member-declarator. */
10810
10811 static cp_declarator *
10812 cp_parser_declarator (cp_parser* parser,
10813 cp_parser_declarator_kind dcl_kind,
10814 int* ctor_dtor_or_conv_p,
10815 bool* parenthesized_p,
10816 bool member_p)
10817 {
10818 cp_token *token;
10819 cp_declarator *declarator;
10820 enum tree_code code;
10821 cp_cv_quals cv_quals;
10822 tree class_type;
10823 tree attributes = NULL_TREE;
10824
10825 /* Assume this is not a constructor, destructor, or type-conversion
10826 operator. */
10827 if (ctor_dtor_or_conv_p)
10828 *ctor_dtor_or_conv_p = 0;
10829
10830 if (cp_parser_allow_gnu_extensions_p (parser))
10831 attributes = cp_parser_attributes_opt (parser);
10832
10833 /* Peek at the next token. */
10834 token = cp_lexer_peek_token (parser->lexer);
10835
10836 /* Check for the ptr-operator production. */
10837 cp_parser_parse_tentatively (parser);
10838 /* Parse the ptr-operator. */
10839 code = cp_parser_ptr_operator (parser,
10840 &class_type,
10841 &cv_quals);
10842 /* If that worked, then we have a ptr-operator. */
10843 if (cp_parser_parse_definitely (parser))
10844 {
10845 /* If a ptr-operator was found, then this declarator was not
10846 parenthesized. */
10847 if (parenthesized_p)
10848 *parenthesized_p = true;
10849 /* The dependent declarator is optional if we are parsing an
10850 abstract-declarator. */
10851 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10852 cp_parser_parse_tentatively (parser);
10853
10854 /* Parse the dependent declarator. */
10855 declarator = cp_parser_declarator (parser, dcl_kind,
10856 /*ctor_dtor_or_conv_p=*/NULL,
10857 /*parenthesized_p=*/NULL,
10858 /*member_p=*/false);
10859
10860 /* If we are parsing an abstract-declarator, we must handle the
10861 case where the dependent declarator is absent. */
10862 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED
10863 && !cp_parser_parse_definitely (parser))
10864 declarator = NULL;
10865
10866 /* Build the representation of the ptr-operator. */
10867 if (class_type)
10868 declarator = make_ptrmem_declarator (cv_quals,
10869 class_type,
10870 declarator);
10871 else if (code == INDIRECT_REF)
10872 declarator = make_pointer_declarator (cv_quals, declarator);
10873 else
10874 declarator = make_reference_declarator (cv_quals, declarator);
10875 }
10876 /* Everything else is a direct-declarator. */
10877 else
10878 {
10879 if (parenthesized_p)
10880 *parenthesized_p = cp_lexer_next_token_is (parser->lexer,
10881 CPP_OPEN_PAREN);
10882 declarator = cp_parser_direct_declarator (parser, dcl_kind,
10883 ctor_dtor_or_conv_p,
10884 member_p);
10885 }
10886
10887 if (attributes && declarator != cp_error_declarator)
10888 declarator->attributes = attributes;
10889
10890 return declarator;
10891 }
10892
10893 /* Parse a direct-declarator or direct-abstract-declarator.
10894
10895 direct-declarator:
10896 declarator-id
10897 direct-declarator ( parameter-declaration-clause )
10898 cv-qualifier-seq [opt]
10899 exception-specification [opt]
10900 direct-declarator [ constant-expression [opt] ]
10901 ( declarator )
10902
10903 direct-abstract-declarator:
10904 direct-abstract-declarator [opt]
10905 ( parameter-declaration-clause )
10906 cv-qualifier-seq [opt]
10907 exception-specification [opt]
10908 direct-abstract-declarator [opt] [ constant-expression [opt] ]
10909 ( abstract-declarator )
10910
10911 Returns a representation of the declarator. DCL_KIND is
10912 CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a
10913 direct-abstract-declarator. It is CP_PARSER_DECLARATOR_NAMED, if
10914 we are parsing a direct-declarator. It is
10915 CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case
10916 of ambiguity we prefer an abstract declarator, as per
10917 [dcl.ambig.res]. CTOR_DTOR_OR_CONV_P and MEMBER_P are as for
10918 cp_parser_declarator. */
10919
10920 static cp_declarator *
10921 cp_parser_direct_declarator (cp_parser* parser,
10922 cp_parser_declarator_kind dcl_kind,
10923 int* ctor_dtor_or_conv_p,
10924 bool member_p)
10925 {
10926 cp_token *token;
10927 cp_declarator *declarator = NULL;
10928 tree scope = NULL_TREE;
10929 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
10930 bool saved_in_declarator_p = parser->in_declarator_p;
10931 bool first = true;
10932 tree pushed_scope = NULL_TREE;
10933
10934 while (true)
10935 {
10936 /* Peek at the next token. */
10937 token = cp_lexer_peek_token (parser->lexer);
10938 if (token->type == CPP_OPEN_PAREN)
10939 {
10940 /* This is either a parameter-declaration-clause, or a
10941 parenthesized declarator. When we know we are parsing a
10942 named declarator, it must be a parenthesized declarator
10943 if FIRST is true. For instance, `(int)' is a
10944 parameter-declaration-clause, with an omitted
10945 direct-abstract-declarator. But `((*))', is a
10946 parenthesized abstract declarator. Finally, when T is a
10947 template parameter `(T)' is a
10948 parameter-declaration-clause, and not a parenthesized
10949 named declarator.
10950
10951 We first try and parse a parameter-declaration-clause,
10952 and then try a nested declarator (if FIRST is true).
10953
10954 It is not an error for it not to be a
10955 parameter-declaration-clause, even when FIRST is
10956 false. Consider,
10957
10958 int i (int);
10959 int i (3);
10960
10961 The first is the declaration of a function while the
10962 second is a the definition of a variable, including its
10963 initializer.
10964
10965 Having seen only the parenthesis, we cannot know which of
10966 these two alternatives should be selected. Even more
10967 complex are examples like:
10968
10969 int i (int (a));
10970 int i (int (3));
10971
10972 The former is a function-declaration; the latter is a
10973 variable initialization.
10974
10975 Thus again, we try a parameter-declaration-clause, and if
10976 that fails, we back out and return. */
10977
10978 if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10979 {
10980 cp_parameter_declarator *params;
10981 unsigned saved_num_template_parameter_lists;
10982
10983 /* In a member-declarator, the only valid interpretation
10984 of a parenthesis is the start of a
10985 parameter-declaration-clause. (It is invalid to
10986 initialize a static data member with a parenthesized
10987 initializer; only the "=" form of initialization is
10988 permitted.) */
10989 if (!member_p)
10990 cp_parser_parse_tentatively (parser);
10991
10992 /* Consume the `('. */
10993 cp_lexer_consume_token (parser->lexer);
10994 if (first)
10995 {
10996 /* If this is going to be an abstract declarator, we're
10997 in a declarator and we can't have default args. */
10998 parser->default_arg_ok_p = false;
10999 parser->in_declarator_p = true;
11000 }
11001
11002 /* Inside the function parameter list, surrounding
11003 template-parameter-lists do not apply. */
11004 saved_num_template_parameter_lists
11005 = parser->num_template_parameter_lists;
11006 parser->num_template_parameter_lists = 0;
11007
11008 /* Parse the parameter-declaration-clause. */
11009 params = cp_parser_parameter_declaration_clause (parser);
11010
11011 parser->num_template_parameter_lists
11012 = saved_num_template_parameter_lists;
11013
11014 /* If all went well, parse the cv-qualifier-seq and the
11015 exception-specification. */
11016 if (member_p || cp_parser_parse_definitely (parser))
11017 {
11018 cp_cv_quals cv_quals;
11019 tree exception_specification;
11020
11021 if (ctor_dtor_or_conv_p)
11022 *ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0;
11023 first = false;
11024 /* Consume the `)'. */
11025 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
11026
11027 /* Parse the cv-qualifier-seq. */
11028 cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11029 /* And the exception-specification. */
11030 exception_specification
11031 = cp_parser_exception_specification_opt (parser);
11032
11033 /* Create the function-declarator. */
11034 declarator = make_call_declarator (declarator,
11035 params,
11036 cv_quals,
11037 exception_specification);
11038 /* Any subsequent parameter lists are to do with
11039 return type, so are not those of the declared
11040 function. */
11041 parser->default_arg_ok_p = false;
11042
11043 /* Repeat the main loop. */
11044 continue;
11045 }
11046 }
11047
11048 /* If this is the first, we can try a parenthesized
11049 declarator. */
11050 if (first)
11051 {
11052 bool saved_in_type_id_in_expr_p;
11053
11054 parser->default_arg_ok_p = saved_default_arg_ok_p;
11055 parser->in_declarator_p = saved_in_declarator_p;
11056
11057 /* Consume the `('. */
11058 cp_lexer_consume_token (parser->lexer);
11059 /* Parse the nested declarator. */
11060 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
11061 parser->in_type_id_in_expr_p = true;
11062 declarator
11063 = cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p,
11064 /*parenthesized_p=*/NULL,
11065 member_p);
11066 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
11067 first = false;
11068 /* Expect a `)'. */
11069 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
11070 declarator = cp_error_declarator;
11071 if (declarator == cp_error_declarator)
11072 break;
11073
11074 goto handle_declarator;
11075 }
11076 /* Otherwise, we must be done. */
11077 else
11078 break;
11079 }
11080 else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
11081 && token->type == CPP_OPEN_SQUARE)
11082 {
11083 /* Parse an array-declarator. */
11084 tree bounds;
11085
11086 if (ctor_dtor_or_conv_p)
11087 *ctor_dtor_or_conv_p = 0;
11088
11089 first = false;
11090 parser->default_arg_ok_p = false;
11091 parser->in_declarator_p = true;
11092 /* Consume the `['. */
11093 cp_lexer_consume_token (parser->lexer);
11094 /* Peek at the next token. */
11095 token = cp_lexer_peek_token (parser->lexer);
11096 /* If the next token is `]', then there is no
11097 constant-expression. */
11098 if (token->type != CPP_CLOSE_SQUARE)
11099 {
11100 bool non_constant_p;
11101
11102 bounds
11103 = cp_parser_constant_expression (parser,
11104 /*allow_non_constant=*/true,
11105 &non_constant_p);
11106 if (!non_constant_p)
11107 bounds = fold_non_dependent_expr (bounds);
11108 /* Normally, the array bound must be an integral constant
11109 expression. However, as an extension, we allow VLAs
11110 in function scopes. And, we allow type-dependent
11111 expressions in templates; sometimes we don't know for
11112 sure whether or not something is a valid integral
11113 constant expression until instantiation time. (It
11114 doesn't make sense to check for value-dependency, as
11115 an expression is only value-dependent when it is a
11116 constant expression.) */
11117 else if (!type_dependent_expression_p (bounds)
11118 && !at_function_scope_p ())
11119 {
11120 error ("array bound is not an integer constant");
11121 bounds = error_mark_node;
11122 }
11123 }
11124 else
11125 bounds = NULL_TREE;
11126 /* Look for the closing `]'. */
11127 if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'"))
11128 {
11129 declarator = cp_error_declarator;
11130 break;
11131 }
11132
11133 declarator = make_array_declarator (declarator, bounds);
11134 }
11135 else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT)
11136 {
11137 tree qualifying_scope;
11138 tree unqualified_name;
11139
11140 /* Parse a declarator-id */
11141 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
11142 cp_parser_parse_tentatively (parser);
11143 unqualified_name = cp_parser_declarator_id (parser);
11144 qualifying_scope = parser->scope;
11145 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
11146 {
11147 if (!cp_parser_parse_definitely (parser))
11148 unqualified_name = error_mark_node;
11149 else if (qualifying_scope
11150 || (TREE_CODE (unqualified_name)
11151 != IDENTIFIER_NODE))
11152 {
11153 cp_parser_error (parser, "expected unqualified-id");
11154 unqualified_name = error_mark_node;
11155 }
11156 }
11157
11158 if (unqualified_name == error_mark_node)
11159 {
11160 declarator = cp_error_declarator;
11161 break;
11162 }
11163
11164 if (qualifying_scope && at_namespace_scope_p ()
11165 && TREE_CODE (qualifying_scope) == TYPENAME_TYPE)
11166 {
11167 /* In the declaration of a member of a template class
11168 outside of the class itself, the SCOPE will sometimes
11169 be a TYPENAME_TYPE. For example, given:
11170
11171 template <typename T>
11172 int S<T>::R::i = 3;
11173
11174 the SCOPE will be a TYPENAME_TYPE for `S<T>::R'. In
11175 this context, we must resolve S<T>::R to an ordinary
11176 type, rather than a typename type.
11177
11178 The reason we normally avoid resolving TYPENAME_TYPEs
11179 is that a specialization of `S' might render
11180 `S<T>::R' not a type. However, if `S' is
11181 specialized, then this `i' will not be used, so there
11182 is no harm in resolving the types here. */
11183 tree type;
11184
11185 /* Resolve the TYPENAME_TYPE. */
11186 type = resolve_typename_type (qualifying_scope,
11187 /*only_current_p=*/false);
11188 /* If that failed, the declarator is invalid. */
11189 if (type == error_mark_node)
11190 error ("%<%T::%D%> is not a type",
11191 TYPE_CONTEXT (qualifying_scope),
11192 TYPE_IDENTIFIER (qualifying_scope));
11193 qualifying_scope = type;
11194 }
11195
11196 declarator = make_id_declarator (qualifying_scope,
11197 unqualified_name);
11198 if (unqualified_name)
11199 {
11200 tree class_type;
11201
11202 if (qualifying_scope
11203 && CLASS_TYPE_P (qualifying_scope))
11204 class_type = qualifying_scope;
11205 else
11206 class_type = current_class_type;
11207
11208 if (class_type)
11209 {
11210 if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR)
11211 declarator->u.id.sfk = sfk_destructor;
11212 else if (IDENTIFIER_TYPENAME_P (unqualified_name))
11213 declarator->u.id.sfk = sfk_conversion;
11214 else if (/* There's no way to declare a constructor
11215 for an anonymous type, even if the type
11216 got a name for linkage purposes. */
11217 !TYPE_WAS_ANONYMOUS (class_type)
11218 && (constructor_name_p (unqualified_name,
11219 class_type)
11220 || (TREE_CODE (unqualified_name) == TYPE_DECL
11221 && (same_type_p
11222 (TREE_TYPE (unqualified_name),
11223 class_type)))))
11224 declarator->u.id.sfk = sfk_constructor;
11225
11226 if (ctor_dtor_or_conv_p && declarator->u.id.sfk != sfk_none)
11227 *ctor_dtor_or_conv_p = -1;
11228 if (qualifying_scope
11229 && TREE_CODE (unqualified_name) == TYPE_DECL
11230 && CLASSTYPE_USE_TEMPLATE (TREE_TYPE (unqualified_name)))
11231 {
11232 error ("invalid use of constructor as a template");
11233 inform ("use %<%T::%D%> instead of %<%T::%T%> to name "
11234 "the constructor in a qualified name",
11235 class_type,
11236 DECL_NAME (TYPE_TI_TEMPLATE (class_type)),
11237 class_type, class_type);
11238 }
11239 }
11240 }
11241
11242 handle_declarator:;
11243 scope = get_scope_of_declarator (declarator);
11244 if (scope)
11245 /* Any names that appear after the declarator-id for a
11246 member are looked up in the containing scope. */
11247 pushed_scope = push_scope (scope);
11248 parser->in_declarator_p = true;
11249 if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p)
11250 || (declarator && declarator->kind == cdk_id))
11251 /* Default args are only allowed on function
11252 declarations. */
11253 parser->default_arg_ok_p = saved_default_arg_ok_p;
11254 else
11255 parser->default_arg_ok_p = false;
11256
11257 first = false;
11258 }
11259 /* We're done. */
11260 else
11261 break;
11262 }
11263
11264 /* For an abstract declarator, we might wind up with nothing at this
11265 point. That's an error; the declarator is not optional. */
11266 if (!declarator)
11267 cp_parser_error (parser, "expected declarator");
11268
11269 /* If we entered a scope, we must exit it now. */
11270 if (pushed_scope)
11271 pop_scope (pushed_scope);
11272
11273 parser->default_arg_ok_p = saved_default_arg_ok_p;
11274 parser->in_declarator_p = saved_in_declarator_p;
11275
11276 return declarator;
11277 }
11278
11279 /* Parse a ptr-operator.
11280
11281 ptr-operator:
11282 * cv-qualifier-seq [opt]
11283 &
11284 :: [opt] nested-name-specifier * cv-qualifier-seq [opt]
11285
11286 GNU Extension:
11287
11288 ptr-operator:
11289 & cv-qualifier-seq [opt]
11290
11291 Returns INDIRECT_REF if a pointer, or pointer-to-member, was used.
11292 Returns ADDR_EXPR if a reference was used. In the case of a
11293 pointer-to-member, *TYPE is filled in with the TYPE containing the
11294 member. *CV_QUALS is filled in with the cv-qualifier-seq, or
11295 TYPE_UNQUALIFIED, if there are no cv-qualifiers. Returns
11296 ERROR_MARK if an error occurred. */
11297
11298 static enum tree_code
11299 cp_parser_ptr_operator (cp_parser* parser,
11300 tree* type,
11301 cp_cv_quals *cv_quals)
11302 {
11303 enum tree_code code = ERROR_MARK;
11304 cp_token *token;
11305
11306 /* Assume that it's not a pointer-to-member. */
11307 *type = NULL_TREE;
11308 /* And that there are no cv-qualifiers. */
11309 *cv_quals = TYPE_UNQUALIFIED;
11310
11311 /* Peek at the next token. */
11312 token = cp_lexer_peek_token (parser->lexer);
11313 /* If it's a `*' or `&' we have a pointer or reference. */
11314 if (token->type == CPP_MULT || token->type == CPP_AND)
11315 {
11316 /* Remember which ptr-operator we were processing. */
11317 code = (token->type == CPP_AND ? ADDR_EXPR : INDIRECT_REF);
11318
11319 /* Consume the `*' or `&'. */
11320 cp_lexer_consume_token (parser->lexer);
11321
11322 /* A `*' can be followed by a cv-qualifier-seq, and so can a
11323 `&', if we are allowing GNU extensions. (The only qualifier
11324 that can legally appear after `&' is `restrict', but that is
11325 enforced during semantic analysis. */
11326 if (code == INDIRECT_REF
11327 || cp_parser_allow_gnu_extensions_p (parser))
11328 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11329 }
11330 else
11331 {
11332 /* Try the pointer-to-member case. */
11333 cp_parser_parse_tentatively (parser);
11334 /* Look for the optional `::' operator. */
11335 cp_parser_global_scope_opt (parser,
11336 /*current_scope_valid_p=*/false);
11337 /* Look for the nested-name specifier. */
11338 cp_parser_nested_name_specifier (parser,
11339 /*typename_keyword_p=*/false,
11340 /*check_dependency_p=*/true,
11341 /*type_p=*/false,
11342 /*is_declaration=*/false);
11343 /* If we found it, and the next token is a `*', then we are
11344 indeed looking at a pointer-to-member operator. */
11345 if (!cp_parser_error_occurred (parser)
11346 && cp_parser_require (parser, CPP_MULT, "`*'"))
11347 {
11348 /* The type of which the member is a member is given by the
11349 current SCOPE. */
11350 *type = parser->scope;
11351 /* The next name will not be qualified. */
11352 parser->scope = NULL_TREE;
11353 parser->qualifying_scope = NULL_TREE;
11354 parser->object_scope = NULL_TREE;
11355 /* Indicate that the `*' operator was used. */
11356 code = INDIRECT_REF;
11357 /* Look for the optional cv-qualifier-seq. */
11358 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11359 }
11360 /* If that didn't work we don't have a ptr-operator. */
11361 if (!cp_parser_parse_definitely (parser))
11362 cp_parser_error (parser, "expected ptr-operator");
11363 }
11364
11365 return code;
11366 }
11367
11368 /* Parse an (optional) cv-qualifier-seq.
11369
11370 cv-qualifier-seq:
11371 cv-qualifier cv-qualifier-seq [opt]
11372
11373 cv-qualifier:
11374 const
11375 volatile
11376
11377 GNU Extension:
11378
11379 cv-qualifier:
11380 __restrict__
11381
11382 Returns a bitmask representing the cv-qualifiers. */
11383
11384 static cp_cv_quals
11385 cp_parser_cv_qualifier_seq_opt (cp_parser* parser)
11386 {
11387 cp_cv_quals cv_quals = TYPE_UNQUALIFIED;
11388
11389 while (true)
11390 {
11391 cp_token *token;
11392 cp_cv_quals cv_qualifier;
11393
11394 /* Peek at the next token. */
11395 token = cp_lexer_peek_token (parser->lexer);
11396 /* See if it's a cv-qualifier. */
11397 switch (token->keyword)
11398 {
11399 case RID_CONST:
11400 cv_qualifier = TYPE_QUAL_CONST;
11401 break;
11402
11403 case RID_VOLATILE:
11404 cv_qualifier = TYPE_QUAL_VOLATILE;
11405 break;
11406
11407 case RID_RESTRICT:
11408 cv_qualifier = TYPE_QUAL_RESTRICT;
11409 break;
11410
11411 default:
11412 cv_qualifier = TYPE_UNQUALIFIED;
11413 break;
11414 }
11415
11416 if (!cv_qualifier)
11417 break;
11418
11419 if (cv_quals & cv_qualifier)
11420 {
11421 error ("duplicate cv-qualifier");
11422 cp_lexer_purge_token (parser->lexer);
11423 }
11424 else
11425 {
11426 cp_lexer_consume_token (parser->lexer);
11427 cv_quals |= cv_qualifier;
11428 }
11429 }
11430
11431 return cv_quals;
11432 }
11433
11434 /* Parse a declarator-id.
11435
11436 declarator-id:
11437 id-expression
11438 :: [opt] nested-name-specifier [opt] type-name
11439
11440 In the `id-expression' case, the value returned is as for
11441 cp_parser_id_expression if the id-expression was an unqualified-id.
11442 If the id-expression was a qualified-id, then a SCOPE_REF is
11443 returned. The first operand is the scope (either a NAMESPACE_DECL
11444 or TREE_TYPE), but the second is still just a representation of an
11445 unqualified-id. */
11446
11447 static tree
11448 cp_parser_declarator_id (cp_parser* parser)
11449 {
11450 /* The expression must be an id-expression. Assume that qualified
11451 names are the names of types so that:
11452
11453 template <class T>
11454 int S<T>::R::i = 3;
11455
11456 will work; we must treat `S<T>::R' as the name of a type.
11457 Similarly, assume that qualified names are templates, where
11458 required, so that:
11459
11460 template <class T>
11461 int S<T>::R<T>::i = 3;
11462
11463 will work, too. */
11464 return cp_parser_id_expression (parser,
11465 /*template_keyword_p=*/false,
11466 /*check_dependency_p=*/false,
11467 /*template_p=*/NULL,
11468 /*declarator_p=*/true);
11469 }
11470
11471 /* Parse a type-id.
11472
11473 type-id:
11474 type-specifier-seq abstract-declarator [opt]
11475
11476 Returns the TYPE specified. */
11477
11478 static tree
11479 cp_parser_type_id (cp_parser* parser)
11480 {
11481 cp_decl_specifier_seq type_specifier_seq;
11482 cp_declarator *abstract_declarator;
11483
11484 /* Parse the type-specifier-seq. */
11485 cp_parser_type_specifier_seq (parser, &type_specifier_seq);
11486 if (type_specifier_seq.type == error_mark_node)
11487 return error_mark_node;
11488
11489 /* There might or might not be an abstract declarator. */
11490 cp_parser_parse_tentatively (parser);
11491 /* Look for the declarator. */
11492 abstract_declarator
11493 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL,
11494 /*parenthesized_p=*/NULL,
11495 /*member_p=*/false);
11496 /* Check to see if there really was a declarator. */
11497 if (!cp_parser_parse_definitely (parser))
11498 abstract_declarator = NULL;
11499
11500 return groktypename (&type_specifier_seq, abstract_declarator);
11501 }
11502
11503 /* Parse a type-specifier-seq.
11504
11505 type-specifier-seq:
11506 type-specifier type-specifier-seq [opt]
11507
11508 GNU extension:
11509
11510 type-specifier-seq:
11511 attributes type-specifier-seq [opt]
11512
11513 Sets *TYPE_SPECIFIER_SEQ to represent the sequence. */
11514
11515 static void
11516 cp_parser_type_specifier_seq (cp_parser* parser,
11517 cp_decl_specifier_seq *type_specifier_seq)
11518 {
11519 bool seen_type_specifier = false;
11520
11521 /* Clear the TYPE_SPECIFIER_SEQ. */
11522 clear_decl_specs (type_specifier_seq);
11523
11524 /* Parse the type-specifiers and attributes. */
11525 while (true)
11526 {
11527 tree type_specifier;
11528
11529 /* Check for attributes first. */
11530 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
11531 {
11532 type_specifier_seq->attributes =
11533 chainon (type_specifier_seq->attributes,
11534 cp_parser_attributes_opt (parser));
11535 continue;
11536 }
11537
11538 /* Look for the type-specifier. */
11539 type_specifier = cp_parser_type_specifier (parser,
11540 CP_PARSER_FLAGS_OPTIONAL,
11541 type_specifier_seq,
11542 /*is_declaration=*/false,
11543 NULL,
11544 NULL);
11545 /* If the first type-specifier could not be found, this is not a
11546 type-specifier-seq at all. */
11547 if (!seen_type_specifier && !type_specifier)
11548 {
11549 cp_parser_error (parser, "expected type-specifier");
11550 type_specifier_seq->type = error_mark_node;
11551 return;
11552 }
11553 /* If subsequent type-specifiers could not be found, the
11554 type-specifier-seq is complete. */
11555 else if (seen_type_specifier && !type_specifier)
11556 break;
11557
11558 seen_type_specifier = true;
11559 }
11560
11561 return;
11562 }
11563
11564 /* Parse a parameter-declaration-clause.
11565
11566 parameter-declaration-clause:
11567 parameter-declaration-list [opt] ... [opt]
11568 parameter-declaration-list , ...
11569
11570 Returns a representation for the parameter declarations. A return
11571 value of NULL indicates a parameter-declaration-clause consisting
11572 only of an ellipsis. */
11573
11574 static cp_parameter_declarator *
11575 cp_parser_parameter_declaration_clause (cp_parser* parser)
11576 {
11577 cp_parameter_declarator *parameters;
11578 cp_token *token;
11579 bool ellipsis_p;
11580 bool is_error;
11581
11582 /* Peek at the next token. */
11583 token = cp_lexer_peek_token (parser->lexer);
11584 /* Check for trivial parameter-declaration-clauses. */
11585 if (token->type == CPP_ELLIPSIS)
11586 {
11587 /* Consume the `...' token. */
11588 cp_lexer_consume_token (parser->lexer);
11589 return NULL;
11590 }
11591 else if (token->type == CPP_CLOSE_PAREN)
11592 /* There are no parameters. */
11593 {
11594 #ifndef NO_IMPLICIT_EXTERN_C
11595 if (in_system_header && current_class_type == NULL
11596 && current_lang_name == lang_name_c)
11597 return NULL;
11598 else
11599 #endif
11600 return no_parameters;
11601 }
11602 /* Check for `(void)', too, which is a special case. */
11603 else if (token->keyword == RID_VOID
11604 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
11605 == CPP_CLOSE_PAREN))
11606 {
11607 /* Consume the `void' token. */
11608 cp_lexer_consume_token (parser->lexer);
11609 /* There are no parameters. */
11610 return no_parameters;
11611 }
11612
11613 /* Parse the parameter-declaration-list. */
11614 parameters = cp_parser_parameter_declaration_list (parser, &is_error);
11615 /* If a parse error occurred while parsing the
11616 parameter-declaration-list, then the entire
11617 parameter-declaration-clause is erroneous. */
11618 if (is_error)
11619 return NULL;
11620
11621 /* Peek at the next token. */
11622 token = cp_lexer_peek_token (parser->lexer);
11623 /* If it's a `,', the clause should terminate with an ellipsis. */
11624 if (token->type == CPP_COMMA)
11625 {
11626 /* Consume the `,'. */
11627 cp_lexer_consume_token (parser->lexer);
11628 /* Expect an ellipsis. */
11629 ellipsis_p
11630 = (cp_parser_require (parser, CPP_ELLIPSIS, "`...'") != NULL);
11631 }
11632 /* It might also be `...' if the optional trailing `,' was
11633 omitted. */
11634 else if (token->type == CPP_ELLIPSIS)
11635 {
11636 /* Consume the `...' token. */
11637 cp_lexer_consume_token (parser->lexer);
11638 /* And remember that we saw it. */
11639 ellipsis_p = true;
11640 }
11641 else
11642 ellipsis_p = false;
11643
11644 /* Finish the parameter list. */
11645 if (parameters && ellipsis_p)
11646 parameters->ellipsis_p = true;
11647
11648 return parameters;
11649 }
11650
11651 /* Parse a parameter-declaration-list.
11652
11653 parameter-declaration-list:
11654 parameter-declaration
11655 parameter-declaration-list , parameter-declaration
11656
11657 Returns a representation of the parameter-declaration-list, as for
11658 cp_parser_parameter_declaration_clause. However, the
11659 `void_list_node' is never appended to the list. Upon return,
11660 *IS_ERROR will be true iff an error occurred. */
11661
11662 static cp_parameter_declarator *
11663 cp_parser_parameter_declaration_list (cp_parser* parser, bool *is_error)
11664 {
11665 cp_parameter_declarator *parameters = NULL;
11666 cp_parameter_declarator **tail = &parameters;
11667
11668 /* Assume all will go well. */
11669 *is_error = false;
11670
11671 /* Look for more parameters. */
11672 while (true)
11673 {
11674 cp_parameter_declarator *parameter;
11675 bool parenthesized_p;
11676 /* Parse the parameter. */
11677 parameter
11678 = cp_parser_parameter_declaration (parser,
11679 /*template_parm_p=*/false,
11680 &parenthesized_p);
11681
11682 /* If a parse error occurred parsing the parameter declaration,
11683 then the entire parameter-declaration-list is erroneous. */
11684 if (!parameter)
11685 {
11686 *is_error = true;
11687 parameters = NULL;
11688 break;
11689 }
11690 /* Add the new parameter to the list. */
11691 *tail = parameter;
11692 tail = &parameter->next;
11693
11694 /* Peek at the next token. */
11695 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
11696 || cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
11697 /* The parameter-declaration-list is complete. */
11698 break;
11699 else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
11700 {
11701 cp_token *token;
11702
11703 /* Peek at the next token. */
11704 token = cp_lexer_peek_nth_token (parser->lexer, 2);
11705 /* If it's an ellipsis, then the list is complete. */
11706 if (token->type == CPP_ELLIPSIS)
11707 break;
11708 /* Otherwise, there must be more parameters. Consume the
11709 `,'. */
11710 cp_lexer_consume_token (parser->lexer);
11711 /* When parsing something like:
11712
11713 int i(float f, double d)
11714
11715 we can tell after seeing the declaration for "f" that we
11716 are not looking at an initialization of a variable "i",
11717 but rather at the declaration of a function "i".
11718
11719 Due to the fact that the parsing of template arguments
11720 (as specified to a template-id) requires backtracking we
11721 cannot use this technique when inside a template argument
11722 list. */
11723 if (!parser->in_template_argument_list_p
11724 && !parser->in_type_id_in_expr_p
11725 && cp_parser_uncommitted_to_tentative_parse_p (parser)
11726 /* However, a parameter-declaration of the form
11727 "foat(f)" (which is a valid declaration of a
11728 parameter "f") can also be interpreted as an
11729 expression (the conversion of "f" to "float"). */
11730 && !parenthesized_p)
11731 cp_parser_commit_to_tentative_parse (parser);
11732 }
11733 else
11734 {
11735 cp_parser_error (parser, "expected %<,%> or %<...%>");
11736 if (!cp_parser_uncommitted_to_tentative_parse_p (parser))
11737 cp_parser_skip_to_closing_parenthesis (parser,
11738 /*recovering=*/true,
11739 /*or_comma=*/false,
11740 /*consume_paren=*/false);
11741 break;
11742 }
11743 }
11744
11745 return parameters;
11746 }
11747
11748 /* Parse a parameter declaration.
11749
11750 parameter-declaration:
11751 decl-specifier-seq declarator
11752 decl-specifier-seq declarator = assignment-expression
11753 decl-specifier-seq abstract-declarator [opt]
11754 decl-specifier-seq abstract-declarator [opt] = assignment-expression
11755
11756 If TEMPLATE_PARM_P is TRUE, then this parameter-declaration
11757 declares a template parameter. (In that case, a non-nested `>'
11758 token encountered during the parsing of the assignment-expression
11759 is not interpreted as a greater-than operator.)
11760
11761 Returns a representation of the parameter, or NULL if an error
11762 occurs. If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to
11763 true iff the declarator is of the form "(p)". */
11764
11765 static cp_parameter_declarator *
11766 cp_parser_parameter_declaration (cp_parser *parser,
11767 bool template_parm_p,
11768 bool *parenthesized_p)
11769 {
11770 int declares_class_or_enum;
11771 bool greater_than_is_operator_p;
11772 cp_decl_specifier_seq decl_specifiers;
11773 cp_declarator *declarator;
11774 tree default_argument;
11775 cp_token *token;
11776 const char *saved_message;
11777
11778 /* In a template parameter, `>' is not an operator.
11779
11780 [temp.param]
11781
11782 When parsing a default template-argument for a non-type
11783 template-parameter, the first non-nested `>' is taken as the end
11784 of the template parameter-list rather than a greater-than
11785 operator. */
11786 greater_than_is_operator_p = !template_parm_p;
11787
11788 /* Type definitions may not appear in parameter types. */
11789 saved_message = parser->type_definition_forbidden_message;
11790 parser->type_definition_forbidden_message
11791 = "types may not be defined in parameter types";
11792
11793 /* Parse the declaration-specifiers. */
11794 cp_parser_decl_specifier_seq (parser,
11795 CP_PARSER_FLAGS_NONE,
11796 &decl_specifiers,
11797 &declares_class_or_enum);
11798 /* If an error occurred, there's no reason to attempt to parse the
11799 rest of the declaration. */
11800 if (cp_parser_error_occurred (parser))
11801 {
11802 parser->type_definition_forbidden_message = saved_message;
11803 return NULL;
11804 }
11805
11806 /* Peek at the next token. */
11807 token = cp_lexer_peek_token (parser->lexer);
11808 /* If the next token is a `)', `,', `=', `>', or `...', then there
11809 is no declarator. */
11810 if (token->type == CPP_CLOSE_PAREN
11811 || token->type == CPP_COMMA
11812 || token->type == CPP_EQ
11813 || token->type == CPP_ELLIPSIS
11814 || token->type == CPP_GREATER)
11815 {
11816 declarator = NULL;
11817 if (parenthesized_p)
11818 *parenthesized_p = false;
11819 }
11820 /* Otherwise, there should be a declarator. */
11821 else
11822 {
11823 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
11824 parser->default_arg_ok_p = false;
11825
11826 /* After seeing a decl-specifier-seq, if the next token is not a
11827 "(", there is no possibility that the code is a valid
11828 expression. Therefore, if parsing tentatively, we commit at
11829 this point. */
11830 if (!parser->in_template_argument_list_p
11831 /* In an expression context, having seen:
11832
11833 (int((char ...
11834
11835 we cannot be sure whether we are looking at a
11836 function-type (taking a "char" as a parameter) or a cast
11837 of some object of type "char" to "int". */
11838 && !parser->in_type_id_in_expr_p
11839 && cp_parser_uncommitted_to_tentative_parse_p (parser)
11840 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
11841 cp_parser_commit_to_tentative_parse (parser);
11842 /* Parse the declarator. */
11843 declarator = cp_parser_declarator (parser,
11844 CP_PARSER_DECLARATOR_EITHER,
11845 /*ctor_dtor_or_conv_p=*/NULL,
11846 parenthesized_p,
11847 /*member_p=*/false);
11848 parser->default_arg_ok_p = saved_default_arg_ok_p;
11849 /* After the declarator, allow more attributes. */
11850 decl_specifiers.attributes
11851 = chainon (decl_specifiers.attributes,
11852 cp_parser_attributes_opt (parser));
11853 }
11854
11855 /* The restriction on defining new types applies only to the type
11856 of the parameter, not to the default argument. */
11857 parser->type_definition_forbidden_message = saved_message;
11858
11859 /* If the next token is `=', then process a default argument. */
11860 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
11861 {
11862 bool saved_greater_than_is_operator_p;
11863 /* Consume the `='. */
11864 cp_lexer_consume_token (parser->lexer);
11865
11866 /* If we are defining a class, then the tokens that make up the
11867 default argument must be saved and processed later. */
11868 if (!template_parm_p && at_class_scope_p ()
11869 && TYPE_BEING_DEFINED (current_class_type))
11870 {
11871 unsigned depth = 0;
11872 cp_token *first_token;
11873 cp_token *token;
11874
11875 /* Add tokens until we have processed the entire default
11876 argument. We add the range [first_token, token). */
11877 first_token = cp_lexer_peek_token (parser->lexer);
11878 while (true)
11879 {
11880 bool done = false;
11881
11882 /* Peek at the next token. */
11883 token = cp_lexer_peek_token (parser->lexer);
11884 /* What we do depends on what token we have. */
11885 switch (token->type)
11886 {
11887 /* In valid code, a default argument must be
11888 immediately followed by a `,' `)', or `...'. */
11889 case CPP_COMMA:
11890 case CPP_CLOSE_PAREN:
11891 case CPP_ELLIPSIS:
11892 /* If we run into a non-nested `;', `}', or `]',
11893 then the code is invalid -- but the default
11894 argument is certainly over. */
11895 case CPP_SEMICOLON:
11896 case CPP_CLOSE_BRACE:
11897 case CPP_CLOSE_SQUARE:
11898 if (depth == 0)
11899 done = true;
11900 /* Update DEPTH, if necessary. */
11901 else if (token->type == CPP_CLOSE_PAREN
11902 || token->type == CPP_CLOSE_BRACE
11903 || token->type == CPP_CLOSE_SQUARE)
11904 --depth;
11905 break;
11906
11907 case CPP_OPEN_PAREN:
11908 case CPP_OPEN_SQUARE:
11909 case CPP_OPEN_BRACE:
11910 ++depth;
11911 break;
11912
11913 case CPP_GREATER:
11914 /* If we see a non-nested `>', and `>' is not an
11915 operator, then it marks the end of the default
11916 argument. */
11917 if (!depth && !greater_than_is_operator_p)
11918 done = true;
11919 break;
11920
11921 /* If we run out of tokens, issue an error message. */
11922 case CPP_EOF:
11923 error ("file ends in default argument");
11924 done = true;
11925 break;
11926
11927 case CPP_NAME:
11928 case CPP_SCOPE:
11929 /* In these cases, we should look for template-ids.
11930 For example, if the default argument is
11931 `X<int, double>()', we need to do name lookup to
11932 figure out whether or not `X' is a template; if
11933 so, the `,' does not end the default argument.
11934
11935 That is not yet done. */
11936 break;
11937
11938 default:
11939 break;
11940 }
11941
11942 /* If we've reached the end, stop. */
11943 if (done)
11944 break;
11945
11946 /* Add the token to the token block. */
11947 token = cp_lexer_consume_token (parser->lexer);
11948 }
11949
11950 /* Create a DEFAULT_ARG to represented the unparsed default
11951 argument. */
11952 default_argument = make_node (DEFAULT_ARG);
11953 DEFARG_TOKENS (default_argument)
11954 = cp_token_cache_new (first_token, token);
11955 }
11956 /* Outside of a class definition, we can just parse the
11957 assignment-expression. */
11958 else
11959 {
11960 bool saved_local_variables_forbidden_p;
11961
11962 /* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is
11963 set correctly. */
11964 saved_greater_than_is_operator_p
11965 = parser->greater_than_is_operator_p;
11966 parser->greater_than_is_operator_p = greater_than_is_operator_p;
11967 /* Local variable names (and the `this' keyword) may not
11968 appear in a default argument. */
11969 saved_local_variables_forbidden_p
11970 = parser->local_variables_forbidden_p;
11971 parser->local_variables_forbidden_p = true;
11972 /* Parse the assignment-expression. */
11973 default_argument
11974 = cp_parser_assignment_expression (parser, /*cast_p=*/false);
11975 /* Restore saved state. */
11976 parser->greater_than_is_operator_p
11977 = saved_greater_than_is_operator_p;
11978 parser->local_variables_forbidden_p
11979 = saved_local_variables_forbidden_p;
11980 }
11981 if (!parser->default_arg_ok_p)
11982 {
11983 if (!flag_pedantic_errors)
11984 warning ("deprecated use of default argument for parameter of non-function");
11985 else
11986 {
11987 error ("default arguments are only permitted for function parameters");
11988 default_argument = NULL_TREE;
11989 }
11990 }
11991 }
11992 else
11993 default_argument = NULL_TREE;
11994
11995 return make_parameter_declarator (&decl_specifiers,
11996 declarator,
11997 default_argument);
11998 }
11999
12000 /* Parse a function-body.
12001
12002 function-body:
12003 compound_statement */
12004
12005 static void
12006 cp_parser_function_body (cp_parser *parser)
12007 {
12008 cp_parser_compound_statement (parser, NULL, false);
12009 }
12010
12011 /* Parse a ctor-initializer-opt followed by a function-body. Return
12012 true if a ctor-initializer was present. */
12013
12014 static bool
12015 cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser)
12016 {
12017 tree body;
12018 bool ctor_initializer_p;
12019
12020 /* Begin the function body. */
12021 body = begin_function_body ();
12022 /* Parse the optional ctor-initializer. */
12023 ctor_initializer_p = cp_parser_ctor_initializer_opt (parser);
12024 /* Parse the function-body. */
12025 cp_parser_function_body (parser);
12026 /* Finish the function body. */
12027 finish_function_body (body);
12028
12029 return ctor_initializer_p;
12030 }
12031
12032 /* Parse an initializer.
12033
12034 initializer:
12035 = initializer-clause
12036 ( expression-list )
12037
12038 Returns a expression representing the initializer. If no
12039 initializer is present, NULL_TREE is returned.
12040
12041 *IS_PARENTHESIZED_INIT is set to TRUE if the `( expression-list )'
12042 production is used, and zero otherwise. *IS_PARENTHESIZED_INIT is
12043 set to FALSE if there is no initializer present. If there is an
12044 initializer, and it is not a constant-expression, *NON_CONSTANT_P
12045 is set to true; otherwise it is set to false. */
12046
12047 static tree
12048 cp_parser_initializer (cp_parser* parser, bool* is_parenthesized_init,
12049 bool* non_constant_p)
12050 {
12051 cp_token *token;
12052 tree init;
12053
12054 /* Peek at the next token. */
12055 token = cp_lexer_peek_token (parser->lexer);
12056
12057 /* Let our caller know whether or not this initializer was
12058 parenthesized. */
12059 *is_parenthesized_init = (token->type == CPP_OPEN_PAREN);
12060 /* Assume that the initializer is constant. */
12061 *non_constant_p = false;
12062
12063 if (token->type == CPP_EQ)
12064 {
12065 /* Consume the `='. */
12066 cp_lexer_consume_token (parser->lexer);
12067 /* Parse the initializer-clause. */
12068 init = cp_parser_initializer_clause (parser, non_constant_p);
12069 }
12070 else if (token->type == CPP_OPEN_PAREN)
12071 init = cp_parser_parenthesized_expression_list (parser, false,
12072 /*cast_p=*/false,
12073 non_constant_p);
12074 else
12075 {
12076 /* Anything else is an error. */
12077 cp_parser_error (parser, "expected initializer");
12078 init = error_mark_node;
12079 }
12080
12081 return init;
12082 }
12083
12084 /* Parse an initializer-clause.
12085
12086 initializer-clause:
12087 assignment-expression
12088 { initializer-list , [opt] }
12089 { }
12090
12091 Returns an expression representing the initializer.
12092
12093 If the `assignment-expression' production is used the value
12094 returned is simply a representation for the expression.
12095
12096 Otherwise, a CONSTRUCTOR is returned. The CONSTRUCTOR_ELTS will be
12097 the elements of the initializer-list (or NULL_TREE, if the last
12098 production is used). The TREE_TYPE for the CONSTRUCTOR will be
12099 NULL_TREE. There is no way to detect whether or not the optional
12100 trailing `,' was provided. NON_CONSTANT_P is as for
12101 cp_parser_initializer. */
12102
12103 static tree
12104 cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p)
12105 {
12106 tree initializer;
12107
12108 /* Assume the expression is constant. */
12109 *non_constant_p = false;
12110
12111 /* If it is not a `{', then we are looking at an
12112 assignment-expression. */
12113 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
12114 {
12115 initializer
12116 = cp_parser_constant_expression (parser,
12117 /*allow_non_constant_p=*/true,
12118 non_constant_p);
12119 if (!*non_constant_p)
12120 initializer = fold_non_dependent_expr (initializer);
12121 }
12122 else
12123 {
12124 /* Consume the `{' token. */
12125 cp_lexer_consume_token (parser->lexer);
12126 /* Create a CONSTRUCTOR to represent the braced-initializer. */
12127 initializer = make_node (CONSTRUCTOR);
12128 /* If it's not a `}', then there is a non-trivial initializer. */
12129 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
12130 {
12131 /* Parse the initializer list. */
12132 CONSTRUCTOR_ELTS (initializer)
12133 = cp_parser_initializer_list (parser, non_constant_p);
12134 /* A trailing `,' token is allowed. */
12135 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
12136 cp_lexer_consume_token (parser->lexer);
12137 }
12138 /* Now, there should be a trailing `}'. */
12139 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12140 }
12141
12142 return initializer;
12143 }
12144
12145 /* Parse an initializer-list.
12146
12147 initializer-list:
12148 initializer-clause
12149 initializer-list , initializer-clause
12150
12151 GNU Extension:
12152
12153 initializer-list:
12154 identifier : initializer-clause
12155 initializer-list, identifier : initializer-clause
12156
12157 Returns a TREE_LIST. The TREE_VALUE of each node is an expression
12158 for the initializer. If the TREE_PURPOSE is non-NULL, it is the
12159 IDENTIFIER_NODE naming the field to initialize. NON_CONSTANT_P is
12160 as for cp_parser_initializer. */
12161
12162 static tree
12163 cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p)
12164 {
12165 tree initializers = NULL_TREE;
12166
12167 /* Assume all of the expressions are constant. */
12168 *non_constant_p = false;
12169
12170 /* Parse the rest of the list. */
12171 while (true)
12172 {
12173 cp_token *token;
12174 tree identifier;
12175 tree initializer;
12176 bool clause_non_constant_p;
12177
12178 /* If the next token is an identifier and the following one is a
12179 colon, we are looking at the GNU designated-initializer
12180 syntax. */
12181 if (cp_parser_allow_gnu_extensions_p (parser)
12182 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
12183 && cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
12184 {
12185 /* Consume the identifier. */
12186 identifier = cp_lexer_consume_token (parser->lexer)->value;
12187 /* Consume the `:'. */
12188 cp_lexer_consume_token (parser->lexer);
12189 }
12190 else
12191 identifier = NULL_TREE;
12192
12193 /* Parse the initializer. */
12194 initializer = cp_parser_initializer_clause (parser,
12195 &clause_non_constant_p);
12196 /* If any clause is non-constant, so is the entire initializer. */
12197 if (clause_non_constant_p)
12198 *non_constant_p = true;
12199 /* Add it to the list. */
12200 initializers = tree_cons (identifier, initializer, initializers);
12201
12202 /* If the next token is not a comma, we have reached the end of
12203 the list. */
12204 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
12205 break;
12206
12207 /* Peek at the next token. */
12208 token = cp_lexer_peek_nth_token (parser->lexer, 2);
12209 /* If the next token is a `}', then we're still done. An
12210 initializer-clause can have a trailing `,' after the
12211 initializer-list and before the closing `}'. */
12212 if (token->type == CPP_CLOSE_BRACE)
12213 break;
12214
12215 /* Consume the `,' token. */
12216 cp_lexer_consume_token (parser->lexer);
12217 }
12218
12219 /* The initializers were built up in reverse order, so we need to
12220 reverse them now. */
12221 return nreverse (initializers);
12222 }
12223
12224 /* Classes [gram.class] */
12225
12226 /* Parse a class-name.
12227
12228 class-name:
12229 identifier
12230 template-id
12231
12232 TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used
12233 to indicate that names looked up in dependent types should be
12234 assumed to be types. TEMPLATE_KEYWORD_P is true iff the `template'
12235 keyword has been used to indicate that the name that appears next
12236 is a template. TAG_TYPE indicates the explicit tag given before
12237 the type name, if any. If CHECK_DEPENDENCY_P is FALSE, names are
12238 looked up in dependent scopes. If CLASS_HEAD_P is TRUE, this class
12239 is the class being defined in a class-head.
12240
12241 Returns the TYPE_DECL representing the class. */
12242
12243 static tree
12244 cp_parser_class_name (cp_parser *parser,
12245 bool typename_keyword_p,
12246 bool template_keyword_p,
12247 enum tag_types tag_type,
12248 bool check_dependency_p,
12249 bool class_head_p,
12250 bool is_declaration)
12251 {
12252 tree decl;
12253 tree scope;
12254 bool typename_p;
12255 cp_token *token;
12256
12257 /* All class-names start with an identifier. */
12258 token = cp_lexer_peek_token (parser->lexer);
12259 if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID)
12260 {
12261 cp_parser_error (parser, "expected class-name");
12262 return error_mark_node;
12263 }
12264
12265 /* PARSER->SCOPE can be cleared when parsing the template-arguments
12266 to a template-id, so we save it here. */
12267 scope = parser->scope;
12268 if (scope == error_mark_node)
12269 return error_mark_node;
12270
12271 /* Any name names a type if we're following the `typename' keyword
12272 in a qualified name where the enclosing scope is type-dependent. */
12273 typename_p = (typename_keyword_p && scope && TYPE_P (scope)
12274 && dependent_type_p (scope));
12275 /* Handle the common case (an identifier, but not a template-id)
12276 efficiently. */
12277 if (token->type == CPP_NAME
12278 && !cp_parser_nth_token_starts_template_argument_list_p (parser, 2))
12279 {
12280 tree identifier;
12281
12282 /* Look for the identifier. */
12283 identifier = cp_parser_identifier (parser);
12284 /* If the next token isn't an identifier, we are certainly not
12285 looking at a class-name. */
12286 if (identifier == error_mark_node)
12287 decl = error_mark_node;
12288 /* If we know this is a type-name, there's no need to look it
12289 up. */
12290 else if (typename_p)
12291 decl = identifier;
12292 else
12293 {
12294 /* If the next token is a `::', then the name must be a type
12295 name.
12296
12297 [basic.lookup.qual]
12298
12299 During the lookup for a name preceding the :: scope
12300 resolution operator, object, function, and enumerator
12301 names are ignored. */
12302 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12303 tag_type = typename_type;
12304 /* Look up the name. */
12305 decl = cp_parser_lookup_name (parser, identifier,
12306 tag_type,
12307 /*is_template=*/false,
12308 /*is_namespace=*/false,
12309 check_dependency_p,
12310 /*ambiguous_p=*/NULL);
12311 }
12312 }
12313 else
12314 {
12315 /* Try a template-id. */
12316 decl = cp_parser_template_id (parser, template_keyword_p,
12317 check_dependency_p,
12318 is_declaration);
12319 if (decl == error_mark_node)
12320 return error_mark_node;
12321 }
12322
12323 decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p);
12324
12325 /* If this is a typename, create a TYPENAME_TYPE. */
12326 if (typename_p && decl != error_mark_node)
12327 {
12328 decl = make_typename_type (scope, decl, typename_type, /*complain=*/1);
12329 if (decl != error_mark_node)
12330 decl = TYPE_NAME (decl);
12331 }
12332
12333 /* Check to see that it is really the name of a class. */
12334 if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
12335 && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE
12336 && cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12337 /* Situations like this:
12338
12339 template <typename T> struct A {
12340 typename T::template X<int>::I i;
12341 };
12342
12343 are problematic. Is `T::template X<int>' a class-name? The
12344 standard does not seem to be definitive, but there is no other
12345 valid interpretation of the following `::'. Therefore, those
12346 names are considered class-names. */
12347 decl = TYPE_NAME (make_typename_type (scope, decl, tag_type, tf_error));
12348 else if (decl == error_mark_node
12349 || TREE_CODE (decl) != TYPE_DECL
12350 || TREE_TYPE (decl) == error_mark_node
12351 || !IS_AGGR_TYPE (TREE_TYPE (decl)))
12352 {
12353 cp_parser_error (parser, "expected class-name");
12354 return error_mark_node;
12355 }
12356
12357 return decl;
12358 }
12359
12360 /* Parse a class-specifier.
12361
12362 class-specifier:
12363 class-head { member-specification [opt] }
12364
12365 Returns the TREE_TYPE representing the class. */
12366
12367 static tree
12368 cp_parser_class_specifier (cp_parser* parser)
12369 {
12370 cp_token *token;
12371 tree type;
12372 tree attributes = NULL_TREE;
12373 int has_trailing_semicolon;
12374 bool nested_name_specifier_p;
12375 unsigned saved_num_template_parameter_lists;
12376 tree old_scope = NULL_TREE;
12377 tree scope = NULL_TREE;
12378
12379 push_deferring_access_checks (dk_no_deferred);
12380
12381 /* Parse the class-head. */
12382 type = cp_parser_class_head (parser,
12383 &nested_name_specifier_p,
12384 &attributes);
12385 /* If the class-head was a semantic disaster, skip the entire body
12386 of the class. */
12387 if (!type)
12388 {
12389 cp_parser_skip_to_end_of_block_or_statement (parser);
12390 pop_deferring_access_checks ();
12391 return error_mark_node;
12392 }
12393
12394 /* Look for the `{'. */
12395 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
12396 {
12397 pop_deferring_access_checks ();
12398 return error_mark_node;
12399 }
12400
12401 /* Issue an error message if type-definitions are forbidden here. */
12402 cp_parser_check_type_definition (parser);
12403 /* Remember that we are defining one more class. */
12404 ++parser->num_classes_being_defined;
12405 /* Inside the class, surrounding template-parameter-lists do not
12406 apply. */
12407 saved_num_template_parameter_lists
12408 = parser->num_template_parameter_lists;
12409 parser->num_template_parameter_lists = 0;
12410
12411 /* Start the class. */
12412 if (nested_name_specifier_p)
12413 {
12414 scope = CP_DECL_CONTEXT (TYPE_MAIN_DECL (type));
12415 old_scope = push_inner_scope (scope);
12416 }
12417 type = begin_class_definition (type);
12418
12419 if (type == error_mark_node)
12420 /* If the type is erroneous, skip the entire body of the class. */
12421 cp_parser_skip_to_closing_brace (parser);
12422 else
12423 /* Parse the member-specification. */
12424 cp_parser_member_specification_opt (parser);
12425
12426 /* Look for the trailing `}'. */
12427 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12428 /* We get better error messages by noticing a common problem: a
12429 missing trailing `;'. */
12430 token = cp_lexer_peek_token (parser->lexer);
12431 has_trailing_semicolon = (token->type == CPP_SEMICOLON);
12432 /* Look for trailing attributes to apply to this class. */
12433 if (cp_parser_allow_gnu_extensions_p (parser))
12434 {
12435 tree sub_attr = cp_parser_attributes_opt (parser);
12436 attributes = chainon (attributes, sub_attr);
12437 }
12438 if (type != error_mark_node)
12439 type = finish_struct (type, attributes);
12440 if (nested_name_specifier_p)
12441 pop_inner_scope (old_scope, scope);
12442 /* If this class is not itself within the scope of another class,
12443 then we need to parse the bodies of all of the queued function
12444 definitions. Note that the queued functions defined in a class
12445 are not always processed immediately following the
12446 class-specifier for that class. Consider:
12447
12448 struct A {
12449 struct B { void f() { sizeof (A); } };
12450 };
12451
12452 If `f' were processed before the processing of `A' were
12453 completed, there would be no way to compute the size of `A'.
12454 Note that the nesting we are interested in here is lexical --
12455 not the semantic nesting given by TYPE_CONTEXT. In particular,
12456 for:
12457
12458 struct A { struct B; };
12459 struct A::B { void f() { } };
12460
12461 there is no need to delay the parsing of `A::B::f'. */
12462 if (--parser->num_classes_being_defined == 0)
12463 {
12464 tree queue_entry;
12465 tree fn;
12466 tree class_type = NULL_TREE;
12467 tree pushed_scope = NULL_TREE;
12468
12469 /* In a first pass, parse default arguments to the functions.
12470 Then, in a second pass, parse the bodies of the functions.
12471 This two-phased approach handles cases like:
12472
12473 struct S {
12474 void f() { g(); }
12475 void g(int i = 3);
12476 };
12477
12478 */
12479 for (TREE_PURPOSE (parser->unparsed_functions_queues)
12480 = nreverse (TREE_PURPOSE (parser->unparsed_functions_queues));
12481 (queue_entry = TREE_PURPOSE (parser->unparsed_functions_queues));
12482 TREE_PURPOSE (parser->unparsed_functions_queues)
12483 = TREE_CHAIN (TREE_PURPOSE (parser->unparsed_functions_queues)))
12484 {
12485 fn = TREE_VALUE (queue_entry);
12486 /* If there are default arguments that have not yet been processed,
12487 take care of them now. */
12488 if (class_type != TREE_PURPOSE (queue_entry))
12489 {
12490 if (pushed_scope)
12491 pop_scope (pushed_scope);
12492 class_type = TREE_PURPOSE (queue_entry);
12493 pushed_scope = push_scope (class_type);
12494 }
12495 /* Make sure that any template parameters are in scope. */
12496 maybe_begin_member_template_processing (fn);
12497 /* Parse the default argument expressions. */
12498 cp_parser_late_parsing_default_args (parser, fn);
12499 /* Remove any template parameters from the symbol table. */
12500 maybe_end_member_template_processing ();
12501 }
12502 if (pushed_scope)
12503 pop_scope (pushed_scope);
12504 /* Now parse the body of the functions. */
12505 for (TREE_VALUE (parser->unparsed_functions_queues)
12506 = nreverse (TREE_VALUE (parser->unparsed_functions_queues));
12507 (queue_entry = TREE_VALUE (parser->unparsed_functions_queues));
12508 TREE_VALUE (parser->unparsed_functions_queues)
12509 = TREE_CHAIN (TREE_VALUE (parser->unparsed_functions_queues)))
12510 {
12511 /* Figure out which function we need to process. */
12512 fn = TREE_VALUE (queue_entry);
12513
12514 /* A hack to prevent garbage collection. */
12515 function_depth++;
12516
12517 /* Parse the function. */
12518 cp_parser_late_parsing_for_member (parser, fn);
12519 function_depth--;
12520 }
12521 }
12522
12523 /* Put back any saved access checks. */
12524 pop_deferring_access_checks ();
12525
12526 /* Restore the count of active template-parameter-lists. */
12527 parser->num_template_parameter_lists
12528 = saved_num_template_parameter_lists;
12529
12530 return type;
12531 }
12532
12533 /* Parse a class-head.
12534
12535 class-head:
12536 class-key identifier [opt] base-clause [opt]
12537 class-key nested-name-specifier identifier base-clause [opt]
12538 class-key nested-name-specifier [opt] template-id
12539 base-clause [opt]
12540
12541 GNU Extensions:
12542 class-key attributes identifier [opt] base-clause [opt]
12543 class-key attributes nested-name-specifier identifier base-clause [opt]
12544 class-key attributes nested-name-specifier [opt] template-id
12545 base-clause [opt]
12546
12547 Returns the TYPE of the indicated class. Sets
12548 *NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions
12549 involving a nested-name-specifier was used, and FALSE otherwise.
12550
12551 Returns error_mark_node if this is not a class-head.
12552
12553 Returns NULL_TREE if the class-head is syntactically valid, but
12554 semantically invalid in a way that means we should skip the entire
12555 body of the class. */
12556
12557 static tree
12558 cp_parser_class_head (cp_parser* parser,
12559 bool* nested_name_specifier_p,
12560 tree *attributes_p)
12561 {
12562 tree nested_name_specifier;
12563 enum tag_types class_key;
12564 tree id = NULL_TREE;
12565 tree type = NULL_TREE;
12566 tree attributes;
12567 bool template_id_p = false;
12568 bool qualified_p = false;
12569 bool invalid_nested_name_p = false;
12570 bool invalid_explicit_specialization_p = false;
12571 tree pushed_scope = NULL_TREE;
12572 unsigned num_templates;
12573 tree bases;
12574
12575 /* Assume no nested-name-specifier will be present. */
12576 *nested_name_specifier_p = false;
12577 /* Assume no template parameter lists will be used in defining the
12578 type. */
12579 num_templates = 0;
12580
12581 /* Look for the class-key. */
12582 class_key = cp_parser_class_key (parser);
12583 if (class_key == none_type)
12584 return error_mark_node;
12585
12586 /* Parse the attributes. */
12587 attributes = cp_parser_attributes_opt (parser);
12588
12589 /* If the next token is `::', that is invalid -- but sometimes
12590 people do try to write:
12591
12592 struct ::S {};
12593
12594 Handle this gracefully by accepting the extra qualifier, and then
12595 issuing an error about it later if this really is a
12596 class-head. If it turns out just to be an elaborated type
12597 specifier, remain silent. */
12598 if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false))
12599 qualified_p = true;
12600
12601 push_deferring_access_checks (dk_no_check);
12602
12603 /* Determine the name of the class. Begin by looking for an
12604 optional nested-name-specifier. */
12605 nested_name_specifier
12606 = cp_parser_nested_name_specifier_opt (parser,
12607 /*typename_keyword_p=*/false,
12608 /*check_dependency_p=*/false,
12609 /*type_p=*/false,
12610 /*is_declaration=*/false);
12611 /* If there was a nested-name-specifier, then there *must* be an
12612 identifier. */
12613 if (nested_name_specifier)
12614 {
12615 /* Although the grammar says `identifier', it really means
12616 `class-name' or `template-name'. You are only allowed to
12617 define a class that has already been declared with this
12618 syntax.
12619
12620 The proposed resolution for Core Issue 180 says that whever
12621 you see `class T::X' you should treat `X' as a type-name.
12622
12623 It is OK to define an inaccessible class; for example:
12624
12625 class A { class B; };
12626 class A::B {};
12627
12628 We do not know if we will see a class-name, or a
12629 template-name. We look for a class-name first, in case the
12630 class-name is a template-id; if we looked for the
12631 template-name first we would stop after the template-name. */
12632 cp_parser_parse_tentatively (parser);
12633 type = cp_parser_class_name (parser,
12634 /*typename_keyword_p=*/false,
12635 /*template_keyword_p=*/false,
12636 class_type,
12637 /*check_dependency_p=*/false,
12638 /*class_head_p=*/true,
12639 /*is_declaration=*/false);
12640 /* If that didn't work, ignore the nested-name-specifier. */
12641 if (!cp_parser_parse_definitely (parser))
12642 {
12643 invalid_nested_name_p = true;
12644 id = cp_parser_identifier (parser);
12645 if (id == error_mark_node)
12646 id = NULL_TREE;
12647 }
12648 /* If we could not find a corresponding TYPE, treat this
12649 declaration like an unqualified declaration. */
12650 if (type == error_mark_node)
12651 nested_name_specifier = NULL_TREE;
12652 /* Otherwise, count the number of templates used in TYPE and its
12653 containing scopes. */
12654 else
12655 {
12656 tree scope;
12657
12658 for (scope = TREE_TYPE (type);
12659 scope && TREE_CODE (scope) != NAMESPACE_DECL;
12660 scope = (TYPE_P (scope)
12661 ? TYPE_CONTEXT (scope)
12662 : DECL_CONTEXT (scope)))
12663 if (TYPE_P (scope)
12664 && CLASS_TYPE_P (scope)
12665 && CLASSTYPE_TEMPLATE_INFO (scope)
12666 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))
12667 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (scope))
12668 ++num_templates;
12669 }
12670 }
12671 /* Otherwise, the identifier is optional. */
12672 else
12673 {
12674 /* We don't know whether what comes next is a template-id,
12675 an identifier, or nothing at all. */
12676 cp_parser_parse_tentatively (parser);
12677 /* Check for a template-id. */
12678 id = cp_parser_template_id (parser,
12679 /*template_keyword_p=*/false,
12680 /*check_dependency_p=*/true,
12681 /*is_declaration=*/true);
12682 /* If that didn't work, it could still be an identifier. */
12683 if (!cp_parser_parse_definitely (parser))
12684 {
12685 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
12686 id = cp_parser_identifier (parser);
12687 else
12688 id = NULL_TREE;
12689 }
12690 else
12691 {
12692 template_id_p = true;
12693 ++num_templates;
12694 }
12695 }
12696
12697 pop_deferring_access_checks ();
12698
12699 if (id)
12700 cp_parser_check_for_invalid_template_id (parser, id);
12701
12702 /* If it's not a `:' or a `{' then we can't really be looking at a
12703 class-head, since a class-head only appears as part of a
12704 class-specifier. We have to detect this situation before calling
12705 xref_tag, since that has irreversible side-effects. */
12706 if (!cp_parser_next_token_starts_class_definition_p (parser))
12707 {
12708 cp_parser_error (parser, "expected %<{%> or %<:%>");
12709 return error_mark_node;
12710 }
12711
12712 /* At this point, we're going ahead with the class-specifier, even
12713 if some other problem occurs. */
12714 cp_parser_commit_to_tentative_parse (parser);
12715 /* Issue the error about the overly-qualified name now. */
12716 if (qualified_p)
12717 cp_parser_error (parser,
12718 "global qualification of class name is invalid");
12719 else if (invalid_nested_name_p)
12720 cp_parser_error (parser,
12721 "qualified name does not name a class");
12722 else if (nested_name_specifier)
12723 {
12724 tree scope;
12725
12726 /* Reject typedef-names in class heads. */
12727 if (!DECL_IMPLICIT_TYPEDEF_P (type))
12728 {
12729 error ("invalid class name in declaration of %qD", type);
12730 type = NULL_TREE;
12731 goto done;
12732 }
12733
12734 /* Figure out in what scope the declaration is being placed. */
12735 scope = current_scope ();
12736 /* If that scope does not contain the scope in which the
12737 class was originally declared, the program is invalid. */
12738 if (scope && !is_ancestor (scope, nested_name_specifier))
12739 {
12740 error ("declaration of %qD in %qD which does not enclose %qD",
12741 type, scope, nested_name_specifier);
12742 type = NULL_TREE;
12743 goto done;
12744 }
12745 /* [dcl.meaning]
12746
12747 A declarator-id shall not be qualified exception of the
12748 definition of a ... nested class outside of its class
12749 ... [or] a the definition or explicit instantiation of a
12750 class member of a namespace outside of its namespace. */
12751 if (scope == nested_name_specifier)
12752 {
12753 pedwarn ("extra qualification ignored");
12754 nested_name_specifier = NULL_TREE;
12755 num_templates = 0;
12756 }
12757 }
12758 /* An explicit-specialization must be preceded by "template <>". If
12759 it is not, try to recover gracefully. */
12760 if (at_namespace_scope_p ()
12761 && parser->num_template_parameter_lists == 0
12762 && template_id_p)
12763 {
12764 error ("an explicit specialization must be preceded by %<template <>%>");
12765 invalid_explicit_specialization_p = true;
12766 /* Take the same action that would have been taken by
12767 cp_parser_explicit_specialization. */
12768 ++parser->num_template_parameter_lists;
12769 begin_specialization ();
12770 }
12771 /* There must be no "return" statements between this point and the
12772 end of this function; set "type "to the correct return value and
12773 use "goto done;" to return. */
12774 /* Make sure that the right number of template parameters were
12775 present. */
12776 if (!cp_parser_check_template_parameters (parser, num_templates))
12777 {
12778 /* If something went wrong, there is no point in even trying to
12779 process the class-definition. */
12780 type = NULL_TREE;
12781 goto done;
12782 }
12783
12784 /* Look up the type. */
12785 if (template_id_p)
12786 {
12787 type = TREE_TYPE (id);
12788 maybe_process_partial_specialization (type);
12789 if (nested_name_specifier)
12790 pushed_scope = push_scope (nested_name_specifier);
12791 }
12792 else if (nested_name_specifier)
12793 {
12794 tree class_type;
12795
12796 /* Given:
12797
12798 template <typename T> struct S { struct T };
12799 template <typename T> struct S<T>::T { };
12800
12801 we will get a TYPENAME_TYPE when processing the definition of
12802 `S::T'. We need to resolve it to the actual type before we
12803 try to define it. */
12804 if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE)
12805 {
12806 class_type = resolve_typename_type (TREE_TYPE (type),
12807 /*only_current_p=*/false);
12808 if (class_type != error_mark_node)
12809 type = TYPE_NAME (class_type);
12810 else
12811 {
12812 cp_parser_error (parser, "could not resolve typename type");
12813 type = error_mark_node;
12814 }
12815 }
12816
12817 maybe_process_partial_specialization (TREE_TYPE (type));
12818 class_type = current_class_type;
12819 /* Enter the scope indicated by the nested-name-specifier. */
12820 pushed_scope = push_scope (nested_name_specifier);
12821 /* Get the canonical version of this type. */
12822 type = TYPE_MAIN_DECL (TREE_TYPE (type));
12823 if (PROCESSING_REAL_TEMPLATE_DECL_P ()
12824 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type)))
12825 {
12826 type = push_template_decl (type);
12827 if (type == error_mark_node)
12828 {
12829 type = NULL_TREE;
12830 goto done;
12831 }
12832 }
12833
12834 type = TREE_TYPE (type);
12835 *nested_name_specifier_p = true;
12836 }
12837 else /* The name is not a nested name. */
12838 {
12839 /* If the class was unnamed, create a dummy name. */
12840 if (!id)
12841 id = make_anon_name ();
12842 type = xref_tag (class_key, id, /*tag_scope=*/ts_current,
12843 parser->num_template_parameter_lists);
12844 }
12845
12846 /* Indicate whether this class was declared as a `class' or as a
12847 `struct'. */
12848 if (TREE_CODE (type) == RECORD_TYPE)
12849 CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type);
12850 cp_parser_check_class_key (class_key, type);
12851
12852 /* We will have entered the scope containing the class; the names of
12853 base classes should be looked up in that context. For example,
12854 given:
12855
12856 struct A { struct B {}; struct C; };
12857 struct A::C : B {};
12858
12859 is valid. */
12860 bases = NULL_TREE;
12861
12862 /* Get the list of base-classes, if there is one. */
12863 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
12864 bases = cp_parser_base_clause (parser);
12865
12866 /* Process the base classes. */
12867 xref_basetypes (type, bases);
12868
12869 done:
12870 /* Leave the scope given by the nested-name-specifier. We will
12871 enter the class scope itself while processing the members. */
12872 if (pushed_scope)
12873 pop_scope (pushed_scope);
12874
12875 if (invalid_explicit_specialization_p)
12876 {
12877 end_specialization ();
12878 --parser->num_template_parameter_lists;
12879 }
12880 *attributes_p = attributes;
12881 return type;
12882 }
12883
12884 /* Parse a class-key.
12885
12886 class-key:
12887 class
12888 struct
12889 union
12890
12891 Returns the kind of class-key specified, or none_type to indicate
12892 error. */
12893
12894 static enum tag_types
12895 cp_parser_class_key (cp_parser* parser)
12896 {
12897 cp_token *token;
12898 enum tag_types tag_type;
12899
12900 /* Look for the class-key. */
12901 token = cp_parser_require (parser, CPP_KEYWORD, "class-key");
12902 if (!token)
12903 return none_type;
12904
12905 /* Check to see if the TOKEN is a class-key. */
12906 tag_type = cp_parser_token_is_class_key (token);
12907 if (!tag_type)
12908 cp_parser_error (parser, "expected class-key");
12909 return tag_type;
12910 }
12911
12912 /* Parse an (optional) member-specification.
12913
12914 member-specification:
12915 member-declaration member-specification [opt]
12916 access-specifier : member-specification [opt] */
12917
12918 static void
12919 cp_parser_member_specification_opt (cp_parser* parser)
12920 {
12921 while (true)
12922 {
12923 cp_token *token;
12924 enum rid keyword;
12925
12926 /* Peek at the next token. */
12927 token = cp_lexer_peek_token (parser->lexer);
12928 /* If it's a `}', or EOF then we've seen all the members. */
12929 if (token->type == CPP_CLOSE_BRACE || token->type == CPP_EOF)
12930 break;
12931
12932 /* See if this token is a keyword. */
12933 keyword = token->keyword;
12934 switch (keyword)
12935 {
12936 case RID_PUBLIC:
12937 case RID_PROTECTED:
12938 case RID_PRIVATE:
12939 /* Consume the access-specifier. */
12940 cp_lexer_consume_token (parser->lexer);
12941 /* Remember which access-specifier is active. */
12942 current_access_specifier = token->value;
12943 /* Look for the `:'. */
12944 cp_parser_require (parser, CPP_COLON, "`:'");
12945 break;
12946
12947 default:
12948 /* Accept #pragmas at class scope. */
12949 if (token->type == CPP_PRAGMA)
12950 {
12951 cp_lexer_handle_pragma (parser->lexer);
12952 break;
12953 }
12954
12955 /* Otherwise, the next construction must be a
12956 member-declaration. */
12957 cp_parser_member_declaration (parser);
12958 }
12959 }
12960 }
12961
12962 /* Parse a member-declaration.
12963
12964 member-declaration:
12965 decl-specifier-seq [opt] member-declarator-list [opt] ;
12966 function-definition ; [opt]
12967 :: [opt] nested-name-specifier template [opt] unqualified-id ;
12968 using-declaration
12969 template-declaration
12970
12971 member-declarator-list:
12972 member-declarator
12973 member-declarator-list , member-declarator
12974
12975 member-declarator:
12976 declarator pure-specifier [opt]
12977 declarator constant-initializer [opt]
12978 identifier [opt] : constant-expression
12979
12980 GNU Extensions:
12981
12982 member-declaration:
12983 __extension__ member-declaration
12984
12985 member-declarator:
12986 declarator attributes [opt] pure-specifier [opt]
12987 declarator attributes [opt] constant-initializer [opt]
12988 identifier [opt] attributes [opt] : constant-expression */
12989
12990 static void
12991 cp_parser_member_declaration (cp_parser* parser)
12992 {
12993 cp_decl_specifier_seq decl_specifiers;
12994 tree prefix_attributes;
12995 tree decl;
12996 int declares_class_or_enum;
12997 bool friend_p;
12998 cp_token *token;
12999 int saved_pedantic;
13000
13001 /* Check for the `__extension__' keyword. */
13002 if (cp_parser_extension_opt (parser, &saved_pedantic))
13003 {
13004 /* Recurse. */
13005 cp_parser_member_declaration (parser);
13006 /* Restore the old value of the PEDANTIC flag. */
13007 pedantic = saved_pedantic;
13008
13009 return;
13010 }
13011
13012 /* Check for a template-declaration. */
13013 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
13014 {
13015 /* Parse the template-declaration. */
13016 cp_parser_template_declaration (parser, /*member_p=*/true);
13017
13018 return;
13019 }
13020
13021 /* Check for a using-declaration. */
13022 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
13023 {
13024 /* Parse the using-declaration. */
13025 cp_parser_using_declaration (parser);
13026
13027 return;
13028 }
13029
13030 /* Parse the decl-specifier-seq. */
13031 cp_parser_decl_specifier_seq (parser,
13032 CP_PARSER_FLAGS_OPTIONAL,
13033 &decl_specifiers,
13034 &declares_class_or_enum);
13035 prefix_attributes = decl_specifiers.attributes;
13036 decl_specifiers.attributes = NULL_TREE;
13037 /* Check for an invalid type-name. */
13038 if (!decl_specifiers.type
13039 && cp_parser_parse_and_diagnose_invalid_type_name (parser))
13040 return;
13041 /* If there is no declarator, then the decl-specifier-seq should
13042 specify a type. */
13043 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
13044 {
13045 /* If there was no decl-specifier-seq, and the next token is a
13046 `;', then we have something like:
13047
13048 struct S { ; };
13049
13050 [class.mem]
13051
13052 Each member-declaration shall declare at least one member
13053 name of the class. */
13054 if (!decl_specifiers.any_specifiers_p)
13055 {
13056 cp_token *token = cp_lexer_peek_token (parser->lexer);
13057 if (pedantic && !token->in_system_header)
13058 pedwarn ("%Hextra %<;%>", &token->location);
13059 }
13060 else
13061 {
13062 tree type;
13063
13064 /* See if this declaration is a friend. */
13065 friend_p = cp_parser_friend_p (&decl_specifiers);
13066 /* If there were decl-specifiers, check to see if there was
13067 a class-declaration. */
13068 type = check_tag_decl (&decl_specifiers);
13069 /* Nested classes have already been added to the class, but
13070 a `friend' needs to be explicitly registered. */
13071 if (friend_p)
13072 {
13073 /* If the `friend' keyword was present, the friend must
13074 be introduced with a class-key. */
13075 if (!declares_class_or_enum)
13076 error ("a class-key must be used when declaring a friend");
13077 /* In this case:
13078
13079 template <typename T> struct A {
13080 friend struct A<T>::B;
13081 };
13082
13083 A<T>::B will be represented by a TYPENAME_TYPE, and
13084 therefore not recognized by check_tag_decl. */
13085 if (!type
13086 && decl_specifiers.type
13087 && TYPE_P (decl_specifiers.type))
13088 type = decl_specifiers.type;
13089 if (!type || !TYPE_P (type))
13090 error ("friend declaration does not name a class or "
13091 "function");
13092 else
13093 make_friend_class (current_class_type, type,
13094 /*complain=*/true);
13095 }
13096 /* If there is no TYPE, an error message will already have
13097 been issued. */
13098 else if (!type || type == error_mark_node)
13099 ;
13100 /* An anonymous aggregate has to be handled specially; such
13101 a declaration really declares a data member (with a
13102 particular type), as opposed to a nested class. */
13103 else if (ANON_AGGR_TYPE_P (type))
13104 {
13105 /* Remove constructors and such from TYPE, now that we
13106 know it is an anonymous aggregate. */
13107 fixup_anonymous_aggr (type);
13108 /* And make the corresponding data member. */
13109 decl = build_decl (FIELD_DECL, NULL_TREE, type);
13110 /* Add it to the class. */
13111 finish_member_declaration (decl);
13112 }
13113 else
13114 cp_parser_check_access_in_redeclaration (TYPE_NAME (type));
13115 }
13116 }
13117 else
13118 {
13119 /* See if these declarations will be friends. */
13120 friend_p = cp_parser_friend_p (&decl_specifiers);
13121
13122 /* Keep going until we hit the `;' at the end of the
13123 declaration. */
13124 while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
13125 {
13126 tree attributes = NULL_TREE;
13127 tree first_attribute;
13128
13129 /* Peek at the next token. */
13130 token = cp_lexer_peek_token (parser->lexer);
13131
13132 /* Check for a bitfield declaration. */
13133 if (token->type == CPP_COLON
13134 || (token->type == CPP_NAME
13135 && cp_lexer_peek_nth_token (parser->lexer, 2)->type
13136 == CPP_COLON))
13137 {
13138 tree identifier;
13139 tree width;
13140
13141 /* Get the name of the bitfield. Note that we cannot just
13142 check TOKEN here because it may have been invalidated by
13143 the call to cp_lexer_peek_nth_token above. */
13144 if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
13145 identifier = cp_parser_identifier (parser);
13146 else
13147 identifier = NULL_TREE;
13148
13149 /* Consume the `:' token. */
13150 cp_lexer_consume_token (parser->lexer);
13151 /* Get the width of the bitfield. */
13152 width
13153 = cp_parser_constant_expression (parser,
13154 /*allow_non_constant=*/false,
13155 NULL);
13156
13157 /* Look for attributes that apply to the bitfield. */
13158 attributes = cp_parser_attributes_opt (parser);
13159 /* Remember which attributes are prefix attributes and
13160 which are not. */
13161 first_attribute = attributes;
13162 /* Combine the attributes. */
13163 attributes = chainon (prefix_attributes, attributes);
13164
13165 /* Create the bitfield declaration. */
13166 decl = grokbitfield (identifier
13167 ? make_id_declarator (NULL_TREE,
13168 identifier)
13169 : NULL,
13170 &decl_specifiers,
13171 width);
13172 /* Apply the attributes. */
13173 cplus_decl_attributes (&decl, attributes, /*flags=*/0);
13174 }
13175 else
13176 {
13177 cp_declarator *declarator;
13178 tree initializer;
13179 tree asm_specification;
13180 int ctor_dtor_or_conv_p;
13181
13182 /* Parse the declarator. */
13183 declarator
13184 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
13185 &ctor_dtor_or_conv_p,
13186 /*parenthesized_p=*/NULL,
13187 /*member_p=*/true);
13188
13189 /* If something went wrong parsing the declarator, make sure
13190 that we at least consume some tokens. */
13191 if (declarator == cp_error_declarator)
13192 {
13193 /* Skip to the end of the statement. */
13194 cp_parser_skip_to_end_of_statement (parser);
13195 /* If the next token is not a semicolon, that is
13196 probably because we just skipped over the body of
13197 a function. So, we consume a semicolon if
13198 present, but do not issue an error message if it
13199 is not present. */
13200 if (cp_lexer_next_token_is (parser->lexer,
13201 CPP_SEMICOLON))
13202 cp_lexer_consume_token (parser->lexer);
13203 return;
13204 }
13205
13206 if (declares_class_or_enum & 2)
13207 cp_parser_check_for_definition_in_return_type
13208 (declarator, decl_specifiers.type);
13209
13210 /* Look for an asm-specification. */
13211 asm_specification = cp_parser_asm_specification_opt (parser);
13212 /* Look for attributes that apply to the declaration. */
13213 attributes = cp_parser_attributes_opt (parser);
13214 /* Remember which attributes are prefix attributes and
13215 which are not. */
13216 first_attribute = attributes;
13217 /* Combine the attributes. */
13218 attributes = chainon (prefix_attributes, attributes);
13219
13220 /* If it's an `=', then we have a constant-initializer or a
13221 pure-specifier. It is not correct to parse the
13222 initializer before registering the member declaration
13223 since the member declaration should be in scope while
13224 its initializer is processed. However, the rest of the
13225 front end does not yet provide an interface that allows
13226 us to handle this correctly. */
13227 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
13228 {
13229 /* In [class.mem]:
13230
13231 A pure-specifier shall be used only in the declaration of
13232 a virtual function.
13233
13234 A member-declarator can contain a constant-initializer
13235 only if it declares a static member of integral or
13236 enumeration type.
13237
13238 Therefore, if the DECLARATOR is for a function, we look
13239 for a pure-specifier; otherwise, we look for a
13240 constant-initializer. When we call `grokfield', it will
13241 perform more stringent semantics checks. */
13242 if (declarator->kind == cdk_function)
13243 initializer = cp_parser_pure_specifier (parser);
13244 else
13245 /* Parse the initializer. */
13246 initializer = cp_parser_constant_initializer (parser);
13247 }
13248 /* Otherwise, there is no initializer. */
13249 else
13250 initializer = NULL_TREE;
13251
13252 /* See if we are probably looking at a function
13253 definition. We are certainly not looking at a
13254 member-declarator. Calling `grokfield' has
13255 side-effects, so we must not do it unless we are sure
13256 that we are looking at a member-declarator. */
13257 if (cp_parser_token_starts_function_definition_p
13258 (cp_lexer_peek_token (parser->lexer)))
13259 {
13260 /* The grammar does not allow a pure-specifier to be
13261 used when a member function is defined. (It is
13262 possible that this fact is an oversight in the
13263 standard, since a pure function may be defined
13264 outside of the class-specifier. */
13265 if (initializer)
13266 error ("pure-specifier on function-definition");
13267 decl = cp_parser_save_member_function_body (parser,
13268 &decl_specifiers,
13269 declarator,
13270 attributes);
13271 /* If the member was not a friend, declare it here. */
13272 if (!friend_p)
13273 finish_member_declaration (decl);
13274 /* Peek at the next token. */
13275 token = cp_lexer_peek_token (parser->lexer);
13276 /* If the next token is a semicolon, consume it. */
13277 if (token->type == CPP_SEMICOLON)
13278 cp_lexer_consume_token (parser->lexer);
13279 return;
13280 }
13281 else
13282 {
13283 /* Create the declaration. */
13284 decl = grokfield (declarator, &decl_specifiers,
13285 initializer, asm_specification,
13286 attributes);
13287 /* Any initialization must have been from a
13288 constant-expression. */
13289 if (decl && TREE_CODE (decl) == VAR_DECL && initializer)
13290 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
13291 }
13292 }
13293
13294 /* Reset PREFIX_ATTRIBUTES. */
13295 while (attributes && TREE_CHAIN (attributes) != first_attribute)
13296 attributes = TREE_CHAIN (attributes);
13297 if (attributes)
13298 TREE_CHAIN (attributes) = NULL_TREE;
13299
13300 /* If there is any qualification still in effect, clear it
13301 now; we will be starting fresh with the next declarator. */
13302 parser->scope = NULL_TREE;
13303 parser->qualifying_scope = NULL_TREE;
13304 parser->object_scope = NULL_TREE;
13305 /* If it's a `,', then there are more declarators. */
13306 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
13307 cp_lexer_consume_token (parser->lexer);
13308 /* If the next token isn't a `;', then we have a parse error. */
13309 else if (cp_lexer_next_token_is_not (parser->lexer,
13310 CPP_SEMICOLON))
13311 {
13312 cp_parser_error (parser, "expected %<;%>");
13313 /* Skip tokens until we find a `;'. */
13314 cp_parser_skip_to_end_of_statement (parser);
13315
13316 break;
13317 }
13318
13319 if (decl)
13320 {
13321 /* Add DECL to the list of members. */
13322 if (!friend_p)
13323 finish_member_declaration (decl);
13324
13325 if (TREE_CODE (decl) == FUNCTION_DECL)
13326 cp_parser_save_default_args (parser, decl);
13327 }
13328 }
13329 }
13330
13331 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
13332 }
13333
13334 /* Parse a pure-specifier.
13335
13336 pure-specifier:
13337 = 0
13338
13339 Returns INTEGER_ZERO_NODE if a pure specifier is found.
13340 Otherwise, ERROR_MARK_NODE is returned. */
13341
13342 static tree
13343 cp_parser_pure_specifier (cp_parser* parser)
13344 {
13345 cp_token *token;
13346
13347 /* Look for the `=' token. */
13348 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13349 return error_mark_node;
13350 /* Look for the `0' token. */
13351 token = cp_lexer_consume_token (parser->lexer);
13352 if (token->type != CPP_NUMBER || !integer_zerop (token->value))
13353 {
13354 cp_parser_error (parser,
13355 "invalid pure specifier (only `= 0' is allowed)");
13356 cp_parser_skip_to_end_of_statement (parser);
13357 return error_mark_node;
13358 }
13359
13360 /* FIXME: Unfortunately, this will accept `0L' and `0x00' as well.
13361 We need to get information from the lexer about how the number
13362 was spelled in order to fix this problem. */
13363 return integer_zero_node;
13364 }
13365
13366 /* Parse a constant-initializer.
13367
13368 constant-initializer:
13369 = constant-expression
13370
13371 Returns a representation of the constant-expression. */
13372
13373 static tree
13374 cp_parser_constant_initializer (cp_parser* parser)
13375 {
13376 /* Look for the `=' token. */
13377 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13378 return error_mark_node;
13379
13380 /* It is invalid to write:
13381
13382 struct S { static const int i = { 7 }; };
13383
13384 */
13385 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
13386 {
13387 cp_parser_error (parser,
13388 "a brace-enclosed initializer is not allowed here");
13389 /* Consume the opening brace. */
13390 cp_lexer_consume_token (parser->lexer);
13391 /* Skip the initializer. */
13392 cp_parser_skip_to_closing_brace (parser);
13393 /* Look for the trailing `}'. */
13394 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
13395
13396 return error_mark_node;
13397 }
13398
13399 return cp_parser_constant_expression (parser,
13400 /*allow_non_constant=*/false,
13401 NULL);
13402 }
13403
13404 /* Derived classes [gram.class.derived] */
13405
13406 /* Parse a base-clause.
13407
13408 base-clause:
13409 : base-specifier-list
13410
13411 base-specifier-list:
13412 base-specifier
13413 base-specifier-list , base-specifier
13414
13415 Returns a TREE_LIST representing the base-classes, in the order in
13416 which they were declared. The representation of each node is as
13417 described by cp_parser_base_specifier.
13418
13419 In the case that no bases are specified, this function will return
13420 NULL_TREE, not ERROR_MARK_NODE. */
13421
13422 static tree
13423 cp_parser_base_clause (cp_parser* parser)
13424 {
13425 tree bases = NULL_TREE;
13426
13427 /* Look for the `:' that begins the list. */
13428 cp_parser_require (parser, CPP_COLON, "`:'");
13429
13430 /* Scan the base-specifier-list. */
13431 while (true)
13432 {
13433 cp_token *token;
13434 tree base;
13435
13436 /* Look for the base-specifier. */
13437 base = cp_parser_base_specifier (parser);
13438 /* Add BASE to the front of the list. */
13439 if (base != error_mark_node)
13440 {
13441 TREE_CHAIN (base) = bases;
13442 bases = base;
13443 }
13444 /* Peek at the next token. */
13445 token = cp_lexer_peek_token (parser->lexer);
13446 /* If it's not a comma, then the list is complete. */
13447 if (token->type != CPP_COMMA)
13448 break;
13449 /* Consume the `,'. */
13450 cp_lexer_consume_token (parser->lexer);
13451 }
13452
13453 /* PARSER->SCOPE may still be non-NULL at this point, if the last
13454 base class had a qualified name. However, the next name that
13455 appears is certainly not qualified. */
13456 parser->scope = NULL_TREE;
13457 parser->qualifying_scope = NULL_TREE;
13458 parser->object_scope = NULL_TREE;
13459
13460 return nreverse (bases);
13461 }
13462
13463 /* Parse a base-specifier.
13464
13465 base-specifier:
13466 :: [opt] nested-name-specifier [opt] class-name
13467 virtual access-specifier [opt] :: [opt] nested-name-specifier
13468 [opt] class-name
13469 access-specifier virtual [opt] :: [opt] nested-name-specifier
13470 [opt] class-name
13471
13472 Returns a TREE_LIST. The TREE_PURPOSE will be one of
13473 ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to
13474 indicate the specifiers provided. The TREE_VALUE will be a TYPE
13475 (or the ERROR_MARK_NODE) indicating the type that was specified. */
13476
13477 static tree
13478 cp_parser_base_specifier (cp_parser* parser)
13479 {
13480 cp_token *token;
13481 bool done = false;
13482 bool virtual_p = false;
13483 bool duplicate_virtual_error_issued_p = false;
13484 bool duplicate_access_error_issued_p = false;
13485 bool class_scope_p, template_p;
13486 tree access = access_default_node;
13487 tree type;
13488
13489 /* Process the optional `virtual' and `access-specifier'. */
13490 while (!done)
13491 {
13492 /* Peek at the next token. */
13493 token = cp_lexer_peek_token (parser->lexer);
13494 /* Process `virtual'. */
13495 switch (token->keyword)
13496 {
13497 case RID_VIRTUAL:
13498 /* If `virtual' appears more than once, issue an error. */
13499 if (virtual_p && !duplicate_virtual_error_issued_p)
13500 {
13501 cp_parser_error (parser,
13502 "%<virtual%> specified more than once in base-specified");
13503 duplicate_virtual_error_issued_p = true;
13504 }
13505
13506 virtual_p = true;
13507
13508 /* Consume the `virtual' token. */
13509 cp_lexer_consume_token (parser->lexer);
13510
13511 break;
13512
13513 case RID_PUBLIC:
13514 case RID_PROTECTED:
13515 case RID_PRIVATE:
13516 /* If more than one access specifier appears, issue an
13517 error. */
13518 if (access != access_default_node
13519 && !duplicate_access_error_issued_p)
13520 {
13521 cp_parser_error (parser,
13522 "more than one access specifier in base-specified");
13523 duplicate_access_error_issued_p = true;
13524 }
13525
13526 access = ridpointers[(int) token->keyword];
13527
13528 /* Consume the access-specifier. */
13529 cp_lexer_consume_token (parser->lexer);
13530
13531 break;
13532
13533 default:
13534 done = true;
13535 break;
13536 }
13537 }
13538 /* It is not uncommon to see programs mechanically, erroneously, use
13539 the 'typename' keyword to denote (dependent) qualified types
13540 as base classes. */
13541 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
13542 {
13543 if (!processing_template_decl)
13544 error ("keyword %<typename%> not allowed outside of templates");
13545 else
13546 error ("keyword %<typename%> not allowed in this context "
13547 "(the base class is implicitly a type)");
13548 cp_lexer_consume_token (parser->lexer);
13549 }
13550
13551 /* Look for the optional `::' operator. */
13552 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
13553 /* Look for the nested-name-specifier. The simplest way to
13554 implement:
13555
13556 [temp.res]
13557
13558 The keyword `typename' is not permitted in a base-specifier or
13559 mem-initializer; in these contexts a qualified name that
13560 depends on a template-parameter is implicitly assumed to be a
13561 type name.
13562
13563 is to pretend that we have seen the `typename' keyword at this
13564 point. */
13565 cp_parser_nested_name_specifier_opt (parser,
13566 /*typename_keyword_p=*/true,
13567 /*check_dependency_p=*/true,
13568 typename_type,
13569 /*is_declaration=*/true);
13570 /* If the base class is given by a qualified name, assume that names
13571 we see are type names or templates, as appropriate. */
13572 class_scope_p = (parser->scope && TYPE_P (parser->scope));
13573 template_p = class_scope_p && cp_parser_optional_template_keyword (parser);
13574
13575 /* Finally, look for the class-name. */
13576 type = cp_parser_class_name (parser,
13577 class_scope_p,
13578 template_p,
13579 typename_type,
13580 /*check_dependency_p=*/true,
13581 /*class_head_p=*/false,
13582 /*is_declaration=*/true);
13583
13584 if (type == error_mark_node)
13585 return error_mark_node;
13586
13587 return finish_base_specifier (TREE_TYPE (type), access, virtual_p);
13588 }
13589
13590 /* Exception handling [gram.exception] */
13591
13592 /* Parse an (optional) exception-specification.
13593
13594 exception-specification:
13595 throw ( type-id-list [opt] )
13596
13597 Returns a TREE_LIST representing the exception-specification. The
13598 TREE_VALUE of each node is a type. */
13599
13600 static tree
13601 cp_parser_exception_specification_opt (cp_parser* parser)
13602 {
13603 cp_token *token;
13604 tree type_id_list;
13605
13606 /* Peek at the next token. */
13607 token = cp_lexer_peek_token (parser->lexer);
13608 /* If it's not `throw', then there's no exception-specification. */
13609 if (!cp_parser_is_keyword (token, RID_THROW))
13610 return NULL_TREE;
13611
13612 /* Consume the `throw'. */
13613 cp_lexer_consume_token (parser->lexer);
13614
13615 /* Look for the `('. */
13616 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13617
13618 /* Peek at the next token. */
13619 token = cp_lexer_peek_token (parser->lexer);
13620 /* If it's not a `)', then there is a type-id-list. */
13621 if (token->type != CPP_CLOSE_PAREN)
13622 {
13623 const char *saved_message;
13624
13625 /* Types may not be defined in an exception-specification. */
13626 saved_message = parser->type_definition_forbidden_message;
13627 parser->type_definition_forbidden_message
13628 = "types may not be defined in an exception-specification";
13629 /* Parse the type-id-list. */
13630 type_id_list = cp_parser_type_id_list (parser);
13631 /* Restore the saved message. */
13632 parser->type_definition_forbidden_message = saved_message;
13633 }
13634 else
13635 type_id_list = empty_except_spec;
13636
13637 /* Look for the `)'. */
13638 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13639
13640 return type_id_list;
13641 }
13642
13643 /* Parse an (optional) type-id-list.
13644
13645 type-id-list:
13646 type-id
13647 type-id-list , type-id
13648
13649 Returns a TREE_LIST. The TREE_VALUE of each node is a TYPE,
13650 in the order that the types were presented. */
13651
13652 static tree
13653 cp_parser_type_id_list (cp_parser* parser)
13654 {
13655 tree types = NULL_TREE;
13656
13657 while (true)
13658 {
13659 cp_token *token;
13660 tree type;
13661
13662 /* Get the next type-id. */
13663 type = cp_parser_type_id (parser);
13664 /* Add it to the list. */
13665 types = add_exception_specifier (types, type, /*complain=*/1);
13666 /* Peek at the next token. */
13667 token = cp_lexer_peek_token (parser->lexer);
13668 /* If it is not a `,', we are done. */
13669 if (token->type != CPP_COMMA)
13670 break;
13671 /* Consume the `,'. */
13672 cp_lexer_consume_token (parser->lexer);
13673 }
13674
13675 return nreverse (types);
13676 }
13677
13678 /* Parse a try-block.
13679
13680 try-block:
13681 try compound-statement handler-seq */
13682
13683 static tree
13684 cp_parser_try_block (cp_parser* parser)
13685 {
13686 tree try_block;
13687
13688 cp_parser_require_keyword (parser, RID_TRY, "`try'");
13689 try_block = begin_try_block ();
13690 cp_parser_compound_statement (parser, NULL, true);
13691 finish_try_block (try_block);
13692 cp_parser_handler_seq (parser);
13693 finish_handler_sequence (try_block);
13694
13695 return try_block;
13696 }
13697
13698 /* Parse a function-try-block.
13699
13700 function-try-block:
13701 try ctor-initializer [opt] function-body handler-seq */
13702
13703 static bool
13704 cp_parser_function_try_block (cp_parser* parser)
13705 {
13706 tree try_block;
13707 bool ctor_initializer_p;
13708
13709 /* Look for the `try' keyword. */
13710 if (!cp_parser_require_keyword (parser, RID_TRY, "`try'"))
13711 return false;
13712 /* Let the rest of the front-end know where we are. */
13713 try_block = begin_function_try_block ();
13714 /* Parse the function-body. */
13715 ctor_initializer_p
13716 = cp_parser_ctor_initializer_opt_and_function_body (parser);
13717 /* We're done with the `try' part. */
13718 finish_function_try_block (try_block);
13719 /* Parse the handlers. */
13720 cp_parser_handler_seq (parser);
13721 /* We're done with the handlers. */
13722 finish_function_handler_sequence (try_block);
13723
13724 return ctor_initializer_p;
13725 }
13726
13727 /* Parse a handler-seq.
13728
13729 handler-seq:
13730 handler handler-seq [opt] */
13731
13732 static void
13733 cp_parser_handler_seq (cp_parser* parser)
13734 {
13735 while (true)
13736 {
13737 cp_token *token;
13738
13739 /* Parse the handler. */
13740 cp_parser_handler (parser);
13741 /* Peek at the next token. */
13742 token = cp_lexer_peek_token (parser->lexer);
13743 /* If it's not `catch' then there are no more handlers. */
13744 if (!cp_parser_is_keyword (token, RID_CATCH))
13745 break;
13746 }
13747 }
13748
13749 /* Parse a handler.
13750
13751 handler:
13752 catch ( exception-declaration ) compound-statement */
13753
13754 static void
13755 cp_parser_handler (cp_parser* parser)
13756 {
13757 tree handler;
13758 tree declaration;
13759
13760 cp_parser_require_keyword (parser, RID_CATCH, "`catch'");
13761 handler = begin_handler ();
13762 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13763 declaration = cp_parser_exception_declaration (parser);
13764 finish_handler_parms (declaration, handler);
13765 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13766 cp_parser_compound_statement (parser, NULL, false);
13767 finish_handler (handler);
13768 }
13769
13770 /* Parse an exception-declaration.
13771
13772 exception-declaration:
13773 type-specifier-seq declarator
13774 type-specifier-seq abstract-declarator
13775 type-specifier-seq
13776 ...
13777
13778 Returns a VAR_DECL for the declaration, or NULL_TREE if the
13779 ellipsis variant is used. */
13780
13781 static tree
13782 cp_parser_exception_declaration (cp_parser* parser)
13783 {
13784 tree decl;
13785 cp_decl_specifier_seq type_specifiers;
13786 cp_declarator *declarator;
13787 const char *saved_message;
13788
13789 /* If it's an ellipsis, it's easy to handle. */
13790 if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
13791 {
13792 /* Consume the `...' token. */
13793 cp_lexer_consume_token (parser->lexer);
13794 return NULL_TREE;
13795 }
13796
13797 /* Types may not be defined in exception-declarations. */
13798 saved_message = parser->type_definition_forbidden_message;
13799 parser->type_definition_forbidden_message
13800 = "types may not be defined in exception-declarations";
13801
13802 /* Parse the type-specifier-seq. */
13803 cp_parser_type_specifier_seq (parser, &type_specifiers);
13804 /* If it's a `)', then there is no declarator. */
13805 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
13806 declarator = NULL;
13807 else
13808 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER,
13809 /*ctor_dtor_or_conv_p=*/NULL,
13810 /*parenthesized_p=*/NULL,
13811 /*member_p=*/false);
13812
13813 /* Restore the saved message. */
13814 parser->type_definition_forbidden_message = saved_message;
13815
13816 if (type_specifiers.any_specifiers_p)
13817 {
13818 decl = grokdeclarator (declarator, &type_specifiers, CATCHPARM, 1, NULL);
13819 if (decl == NULL_TREE)
13820 error ("invalid catch parameter");
13821 }
13822 else
13823 decl = NULL_TREE;
13824
13825 return decl;
13826 }
13827
13828 /* Parse a throw-expression.
13829
13830 throw-expression:
13831 throw assignment-expression [opt]
13832
13833 Returns a THROW_EXPR representing the throw-expression. */
13834
13835 static tree
13836 cp_parser_throw_expression (cp_parser* parser)
13837 {
13838 tree expression;
13839 cp_token* token;
13840
13841 cp_parser_require_keyword (parser, RID_THROW, "`throw'");
13842 token = cp_lexer_peek_token (parser->lexer);
13843 /* Figure out whether or not there is an assignment-expression
13844 following the "throw" keyword. */
13845 if (token->type == CPP_COMMA
13846 || token->type == CPP_SEMICOLON
13847 || token->type == CPP_CLOSE_PAREN
13848 || token->type == CPP_CLOSE_SQUARE
13849 || token->type == CPP_CLOSE_BRACE
13850 || token->type == CPP_COLON)
13851 expression = NULL_TREE;
13852 else
13853 expression = cp_parser_assignment_expression (parser,
13854 /*cast_p=*/false);
13855
13856 return build_throw (expression);
13857 }
13858
13859 /* GNU Extensions */
13860
13861 /* Parse an (optional) asm-specification.
13862
13863 asm-specification:
13864 asm ( string-literal )
13865
13866 If the asm-specification is present, returns a STRING_CST
13867 corresponding to the string-literal. Otherwise, returns
13868 NULL_TREE. */
13869
13870 static tree
13871 cp_parser_asm_specification_opt (cp_parser* parser)
13872 {
13873 cp_token *token;
13874 tree asm_specification;
13875
13876 /* Peek at the next token. */
13877 token = cp_lexer_peek_token (parser->lexer);
13878 /* If the next token isn't the `asm' keyword, then there's no
13879 asm-specification. */
13880 if (!cp_parser_is_keyword (token, RID_ASM))
13881 return NULL_TREE;
13882
13883 /* Consume the `asm' token. */
13884 cp_lexer_consume_token (parser->lexer);
13885 /* Look for the `('. */
13886 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13887
13888 /* Look for the string-literal. */
13889 asm_specification = cp_parser_string_literal (parser, false, false);
13890
13891 /* Look for the `)'. */
13892 cp_parser_require (parser, CPP_CLOSE_PAREN, "`('");
13893
13894 return asm_specification;
13895 }
13896
13897 /* Parse an asm-operand-list.
13898
13899 asm-operand-list:
13900 asm-operand
13901 asm-operand-list , asm-operand
13902
13903 asm-operand:
13904 string-literal ( expression )
13905 [ string-literal ] string-literal ( expression )
13906
13907 Returns a TREE_LIST representing the operands. The TREE_VALUE of
13908 each node is the expression. The TREE_PURPOSE is itself a
13909 TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed
13910 string-literal (or NULL_TREE if not present) and whose TREE_VALUE
13911 is a STRING_CST for the string literal before the parenthesis. */
13912
13913 static tree
13914 cp_parser_asm_operand_list (cp_parser* parser)
13915 {
13916 tree asm_operands = NULL_TREE;
13917
13918 while (true)
13919 {
13920 tree string_literal;
13921 tree expression;
13922 tree name;
13923
13924 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
13925 {
13926 /* Consume the `[' token. */
13927 cp_lexer_consume_token (parser->lexer);
13928 /* Read the operand name. */
13929 name = cp_parser_identifier (parser);
13930 if (name != error_mark_node)
13931 name = build_string (IDENTIFIER_LENGTH (name),
13932 IDENTIFIER_POINTER (name));
13933 /* Look for the closing `]'. */
13934 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
13935 }
13936 else
13937 name = NULL_TREE;
13938 /* Look for the string-literal. */
13939 string_literal = cp_parser_string_literal (parser, false, false);
13940
13941 /* Look for the `('. */
13942 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13943 /* Parse the expression. */
13944 expression = cp_parser_expression (parser, /*cast_p=*/false);
13945 /* Look for the `)'. */
13946 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13947
13948 /* Add this operand to the list. */
13949 asm_operands = tree_cons (build_tree_list (name, string_literal),
13950 expression,
13951 asm_operands);
13952 /* If the next token is not a `,', there are no more
13953 operands. */
13954 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
13955 break;
13956 /* Consume the `,'. */
13957 cp_lexer_consume_token (parser->lexer);
13958 }
13959
13960 return nreverse (asm_operands);
13961 }
13962
13963 /* Parse an asm-clobber-list.
13964
13965 asm-clobber-list:
13966 string-literal
13967 asm-clobber-list , string-literal
13968
13969 Returns a TREE_LIST, indicating the clobbers in the order that they
13970 appeared. The TREE_VALUE of each node is a STRING_CST. */
13971
13972 static tree
13973 cp_parser_asm_clobber_list (cp_parser* parser)
13974 {
13975 tree clobbers = NULL_TREE;
13976
13977 while (true)
13978 {
13979 tree string_literal;
13980
13981 /* Look for the string literal. */
13982 string_literal = cp_parser_string_literal (parser, false, false);
13983 /* Add it to the list. */
13984 clobbers = tree_cons (NULL_TREE, string_literal, clobbers);
13985 /* If the next token is not a `,', then the list is
13986 complete. */
13987 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
13988 break;
13989 /* Consume the `,' token. */
13990 cp_lexer_consume_token (parser->lexer);
13991 }
13992
13993 return clobbers;
13994 }
13995
13996 /* Parse an (optional) series of attributes.
13997
13998 attributes:
13999 attributes attribute
14000
14001 attribute:
14002 __attribute__ (( attribute-list [opt] ))
14003
14004 The return value is as for cp_parser_attribute_list. */
14005
14006 static tree
14007 cp_parser_attributes_opt (cp_parser* parser)
14008 {
14009 tree attributes = NULL_TREE;
14010
14011 while (true)
14012 {
14013 cp_token *token;
14014 tree attribute_list;
14015
14016 /* Peek at the next token. */
14017 token = cp_lexer_peek_token (parser->lexer);
14018 /* If it's not `__attribute__', then we're done. */
14019 if (token->keyword != RID_ATTRIBUTE)
14020 break;
14021
14022 /* Consume the `__attribute__' keyword. */
14023 cp_lexer_consume_token (parser->lexer);
14024 /* Look for the two `(' tokens. */
14025 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14026 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
14027
14028 /* Peek at the next token. */
14029 token = cp_lexer_peek_token (parser->lexer);
14030 if (token->type != CPP_CLOSE_PAREN)
14031 /* Parse the attribute-list. */
14032 attribute_list = cp_parser_attribute_list (parser);
14033 else
14034 /* If the next token is a `)', then there is no attribute
14035 list. */
14036 attribute_list = NULL;
14037
14038 /* Look for the two `)' tokens. */
14039 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
14040 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
14041
14042 /* Add these new attributes to the list. */
14043 attributes = chainon (attributes, attribute_list);
14044 }
14045
14046 return attributes;
14047 }
14048
14049 /* Parse an attribute-list.
14050
14051 attribute-list:
14052 attribute
14053 attribute-list , attribute
14054
14055 attribute:
14056 identifier
14057 identifier ( identifier )
14058 identifier ( identifier , expression-list )
14059 identifier ( expression-list )
14060
14061 Returns a TREE_LIST, or NULL_TREE on error. Each node corresponds
14062 to an attribute. The TREE_PURPOSE of each node is the identifier
14063 indicating which attribute is in use. The TREE_VALUE represents
14064 the arguments, if any. */
14065
14066 static tree
14067 cp_parser_attribute_list (cp_parser* parser)
14068 {
14069 tree attribute_list = NULL_TREE;
14070 bool save_translate_strings_p = parser->translate_strings_p;
14071
14072 parser->translate_strings_p = false;
14073 while (true)
14074 {
14075 cp_token *token;
14076 tree identifier;
14077 tree attribute;
14078
14079 /* Look for the identifier. We also allow keywords here; for
14080 example `__attribute__ ((const))' is legal. */
14081 token = cp_lexer_peek_token (parser->lexer);
14082 if (token->type == CPP_NAME
14083 || token->type == CPP_KEYWORD)
14084 {
14085 /* Consume the token. */
14086 token = cp_lexer_consume_token (parser->lexer);
14087
14088 /* Save away the identifier that indicates which attribute
14089 this is. */
14090 identifier = token->value;
14091 attribute = build_tree_list (identifier, NULL_TREE);
14092
14093 /* Peek at the next token. */
14094 token = cp_lexer_peek_token (parser->lexer);
14095 /* If it's an `(', then parse the attribute arguments. */
14096 if (token->type == CPP_OPEN_PAREN)
14097 {
14098 tree arguments;
14099
14100 arguments = (cp_parser_parenthesized_expression_list
14101 (parser, true, /*cast_p=*/false,
14102 /*non_constant_p=*/NULL));
14103 /* Save the identifier and arguments away. */
14104 TREE_VALUE (attribute) = arguments;
14105 }
14106
14107 /* Add this attribute to the list. */
14108 TREE_CHAIN (attribute) = attribute_list;
14109 attribute_list = attribute;
14110
14111 token = cp_lexer_peek_token (parser->lexer);
14112 }
14113 /* Now, look for more attributes. If the next token isn't a
14114 `,', we're done. */
14115 if (token->type != CPP_COMMA)
14116 break;
14117
14118 /* Consume the comma and keep going. */
14119 cp_lexer_consume_token (parser->lexer);
14120 }
14121 parser->translate_strings_p = save_translate_strings_p;
14122
14123 /* We built up the list in reverse order. */
14124 return nreverse (attribute_list);
14125 }
14126
14127 /* Parse an optional `__extension__' keyword. Returns TRUE if it is
14128 present, and FALSE otherwise. *SAVED_PEDANTIC is set to the
14129 current value of the PEDANTIC flag, regardless of whether or not
14130 the `__extension__' keyword is present. The caller is responsible
14131 for restoring the value of the PEDANTIC flag. */
14132
14133 static bool
14134 cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic)
14135 {
14136 /* Save the old value of the PEDANTIC flag. */
14137 *saved_pedantic = pedantic;
14138
14139 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION))
14140 {
14141 /* Consume the `__extension__' token. */
14142 cp_lexer_consume_token (parser->lexer);
14143 /* We're not being pedantic while the `__extension__' keyword is
14144 in effect. */
14145 pedantic = 0;
14146
14147 return true;
14148 }
14149
14150 return false;
14151 }
14152
14153 /* Parse a label declaration.
14154
14155 label-declaration:
14156 __label__ label-declarator-seq ;
14157
14158 label-declarator-seq:
14159 identifier , label-declarator-seq
14160 identifier */
14161
14162 static void
14163 cp_parser_label_declaration (cp_parser* parser)
14164 {
14165 /* Look for the `__label__' keyword. */
14166 cp_parser_require_keyword (parser, RID_LABEL, "`__label__'");
14167
14168 while (true)
14169 {
14170 tree identifier;
14171
14172 /* Look for an identifier. */
14173 identifier = cp_parser_identifier (parser);
14174 /* Declare it as a lobel. */
14175 finish_label_decl (identifier);
14176 /* If the next token is a `;', stop. */
14177 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
14178 break;
14179 /* Look for the `,' separating the label declarations. */
14180 cp_parser_require (parser, CPP_COMMA, "`,'");
14181 }
14182
14183 /* Look for the final `;'. */
14184 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
14185 }
14186
14187 /* Support Functions */
14188
14189 /* Looks up NAME in the current scope, as given by PARSER->SCOPE.
14190 NAME should have one of the representations used for an
14191 id-expression. If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE
14192 is returned. If PARSER->SCOPE is a dependent type, then a
14193 SCOPE_REF is returned.
14194
14195 If NAME is a TEMPLATE_ID_EXPR, then it will be immediately
14196 returned; the name was already resolved when the TEMPLATE_ID_EXPR
14197 was formed. Abstractly, such entities should not be passed to this
14198 function, because they do not need to be looked up, but it is
14199 simpler to check for this special case here, rather than at the
14200 call-sites.
14201
14202 In cases not explicitly covered above, this function returns a
14203 DECL, OVERLOAD, or baselink representing the result of the lookup.
14204 If there was no entity with the indicated NAME, the ERROR_MARK_NODE
14205 is returned.
14206
14207 If TAG_TYPE is not NONE_TYPE, it indicates an explicit type keyword
14208 (e.g., "struct") that was used. In that case bindings that do not
14209 refer to types are ignored.
14210
14211 If IS_TEMPLATE is TRUE, bindings that do not refer to templates are
14212 ignored.
14213
14214 If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces
14215 are ignored.
14216
14217 If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent
14218 types.
14219
14220 If AMBIGUOUS_P is non-NULL, it is set to true if name-lookup
14221 results in an ambiguity, and false otherwise. */
14222
14223 static tree
14224 cp_parser_lookup_name (cp_parser *parser, tree name,
14225 enum tag_types tag_type,
14226 bool is_template, bool is_namespace,
14227 bool check_dependency,
14228 bool *ambiguous_p)
14229 {
14230 tree decl;
14231 tree object_type = parser->context->object_type;
14232
14233 /* Assume that the lookup will be unambiguous. */
14234 if (ambiguous_p)
14235 *ambiguous_p = false;
14236
14237 /* Now that we have looked up the name, the OBJECT_TYPE (if any) is
14238 no longer valid. Note that if we are parsing tentatively, and
14239 the parse fails, OBJECT_TYPE will be automatically restored. */
14240 parser->context->object_type = NULL_TREE;
14241
14242 if (name == error_mark_node)
14243 return error_mark_node;
14244
14245 /* A template-id has already been resolved; there is no lookup to
14246 do. */
14247 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
14248 return name;
14249 if (BASELINK_P (name))
14250 {
14251 gcc_assert (TREE_CODE (BASELINK_FUNCTIONS (name))
14252 == TEMPLATE_ID_EXPR);
14253 return name;
14254 }
14255
14256 /* A BIT_NOT_EXPR is used to represent a destructor. By this point,
14257 it should already have been checked to make sure that the name
14258 used matches the type being destroyed. */
14259 if (TREE_CODE (name) == BIT_NOT_EXPR)
14260 {
14261 tree type;
14262
14263 /* Figure out to which type this destructor applies. */
14264 if (parser->scope)
14265 type = parser->scope;
14266 else if (object_type)
14267 type = object_type;
14268 else
14269 type = current_class_type;
14270 /* If that's not a class type, there is no destructor. */
14271 if (!type || !CLASS_TYPE_P (type))
14272 return error_mark_node;
14273 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
14274 lazily_declare_fn (sfk_destructor, type);
14275 if (!CLASSTYPE_DESTRUCTORS (type))
14276 return error_mark_node;
14277 /* If it was a class type, return the destructor. */
14278 return CLASSTYPE_DESTRUCTORS (type);
14279 }
14280
14281 /* By this point, the NAME should be an ordinary identifier. If
14282 the id-expression was a qualified name, the qualifying scope is
14283 stored in PARSER->SCOPE at this point. */
14284 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
14285
14286 /* Perform the lookup. */
14287 if (parser->scope)
14288 {
14289 bool dependent_p;
14290
14291 if (parser->scope == error_mark_node)
14292 return error_mark_node;
14293
14294 /* If the SCOPE is dependent, the lookup must be deferred until
14295 the template is instantiated -- unless we are explicitly
14296 looking up names in uninstantiated templates. Even then, we
14297 cannot look up the name if the scope is not a class type; it
14298 might, for example, be a template type parameter. */
14299 dependent_p = (TYPE_P (parser->scope)
14300 && !(parser->in_declarator_p
14301 && currently_open_class (parser->scope))
14302 && dependent_type_p (parser->scope));
14303 if ((check_dependency || !CLASS_TYPE_P (parser->scope))
14304 && dependent_p)
14305 {
14306 if (tag_type)
14307 {
14308 tree type;
14309
14310 /* The resolution to Core Issue 180 says that `struct
14311 A::B' should be considered a type-name, even if `A'
14312 is dependent. */
14313 type = make_typename_type (parser->scope, name, tag_type,
14314 /*complain=*/1);
14315 decl = TYPE_NAME (type);
14316 }
14317 else if (is_template)
14318 decl = make_unbound_class_template (parser->scope,
14319 name, NULL_TREE,
14320 /*complain=*/1);
14321 else
14322 decl = build_nt (SCOPE_REF, parser->scope, name);
14323 }
14324 else
14325 {
14326 tree pushed_scope = NULL_TREE;
14327
14328 /* If PARSER->SCOPE is a dependent type, then it must be a
14329 class type, and we must not be checking dependencies;
14330 otherwise, we would have processed this lookup above. So
14331 that PARSER->SCOPE is not considered a dependent base by
14332 lookup_member, we must enter the scope here. */
14333 if (dependent_p)
14334 pushed_scope = push_scope (parser->scope);
14335 /* If the PARSER->SCOPE is a a template specialization, it
14336 may be instantiated during name lookup. In that case,
14337 errors may be issued. Even if we rollback the current
14338 tentative parse, those errors are valid. */
14339 decl = lookup_qualified_name (parser->scope, name,
14340 tag_type != none_type,
14341 /*complain=*/true);
14342 if (pushed_scope)
14343 pop_scope (pushed_scope);
14344 }
14345 parser->qualifying_scope = parser->scope;
14346 parser->object_scope = NULL_TREE;
14347 }
14348 else if (object_type)
14349 {
14350 tree object_decl = NULL_TREE;
14351 /* Look up the name in the scope of the OBJECT_TYPE, unless the
14352 OBJECT_TYPE is not a class. */
14353 if (CLASS_TYPE_P (object_type))
14354 /* If the OBJECT_TYPE is a template specialization, it may
14355 be instantiated during name lookup. In that case, errors
14356 may be issued. Even if we rollback the current tentative
14357 parse, those errors are valid. */
14358 object_decl = lookup_member (object_type,
14359 name,
14360 /*protect=*/0,
14361 tag_type != none_type);
14362 /* Look it up in the enclosing context, too. */
14363 decl = lookup_name_real (name, tag_type != none_type,
14364 /*nonclass=*/0,
14365 /*block_p=*/true, is_namespace,
14366 /*flags=*/0);
14367 parser->object_scope = object_type;
14368 parser->qualifying_scope = NULL_TREE;
14369 if (object_decl)
14370 decl = object_decl;
14371 }
14372 else
14373 {
14374 decl = lookup_name_real (name, tag_type != none_type,
14375 /*nonclass=*/0,
14376 /*block_p=*/true, is_namespace,
14377 /*flags=*/0);
14378 parser->qualifying_scope = NULL_TREE;
14379 parser->object_scope = NULL_TREE;
14380 }
14381
14382 /* If the lookup failed, let our caller know. */
14383 if (!decl
14384 || decl == error_mark_node
14385 || (TREE_CODE (decl) == FUNCTION_DECL
14386 && DECL_ANTICIPATED (decl)))
14387 return error_mark_node;
14388
14389 /* If it's a TREE_LIST, the result of the lookup was ambiguous. */
14390 if (TREE_CODE (decl) == TREE_LIST)
14391 {
14392 if (ambiguous_p)
14393 *ambiguous_p = true;
14394 /* The error message we have to print is too complicated for
14395 cp_parser_error, so we incorporate its actions directly. */
14396 if (!cp_parser_simulate_error (parser))
14397 {
14398 error ("reference to %qD is ambiguous", name);
14399 print_candidates (decl);
14400 }
14401 return error_mark_node;
14402 }
14403
14404 gcc_assert (DECL_P (decl)
14405 || TREE_CODE (decl) == OVERLOAD
14406 || TREE_CODE (decl) == SCOPE_REF
14407 || TREE_CODE (decl) == UNBOUND_CLASS_TEMPLATE
14408 || BASELINK_P (decl));
14409
14410 /* If we have resolved the name of a member declaration, check to
14411 see if the declaration is accessible. When the name resolves to
14412 set of overloaded functions, accessibility is checked when
14413 overload resolution is done.
14414
14415 During an explicit instantiation, access is not checked at all,
14416 as per [temp.explicit]. */
14417 if (DECL_P (decl))
14418 check_accessibility_of_qualified_id (decl, object_type, parser->scope);
14419
14420 return decl;
14421 }
14422
14423 /* Like cp_parser_lookup_name, but for use in the typical case where
14424 CHECK_ACCESS is TRUE, IS_TYPE is FALSE, IS_TEMPLATE is FALSE,
14425 IS_NAMESPACE is FALSE, and CHECK_DEPENDENCY is TRUE. */
14426
14427 static tree
14428 cp_parser_lookup_name_simple (cp_parser* parser, tree name)
14429 {
14430 return cp_parser_lookup_name (parser, name,
14431 none_type,
14432 /*is_template=*/false,
14433 /*is_namespace=*/false,
14434 /*check_dependency=*/true,
14435 /*ambiguous_p=*/NULL);
14436 }
14437
14438 /* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in
14439 the current context, return the TYPE_DECL. If TAG_NAME_P is
14440 true, the DECL indicates the class being defined in a class-head,
14441 or declared in an elaborated-type-specifier.
14442
14443 Otherwise, return DECL. */
14444
14445 static tree
14446 cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p)
14447 {
14448 /* If the TEMPLATE_DECL is being declared as part of a class-head,
14449 the translation from TEMPLATE_DECL to TYPE_DECL occurs:
14450
14451 struct A {
14452 template <typename T> struct B;
14453 };
14454
14455 template <typename T> struct A::B {};
14456
14457 Similarly, in a elaborated-type-specifier:
14458
14459 namespace N { struct X{}; }
14460
14461 struct A {
14462 template <typename T> friend struct N::X;
14463 };
14464
14465 However, if the DECL refers to a class type, and we are in
14466 the scope of the class, then the name lookup automatically
14467 finds the TYPE_DECL created by build_self_reference rather
14468 than a TEMPLATE_DECL. For example, in:
14469
14470 template <class T> struct S {
14471 S s;
14472 };
14473
14474 there is no need to handle such case. */
14475
14476 if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p)
14477 return DECL_TEMPLATE_RESULT (decl);
14478
14479 return decl;
14480 }
14481
14482 /* If too many, or too few, template-parameter lists apply to the
14483 declarator, issue an error message. Returns TRUE if all went well,
14484 and FALSE otherwise. */
14485
14486 static bool
14487 cp_parser_check_declarator_template_parameters (cp_parser* parser,
14488 cp_declarator *declarator)
14489 {
14490 unsigned num_templates;
14491
14492 /* We haven't seen any classes that involve template parameters yet. */
14493 num_templates = 0;
14494
14495 switch (declarator->kind)
14496 {
14497 case cdk_id:
14498 if (declarator->u.id.qualifying_scope)
14499 {
14500 tree scope;
14501 tree member;
14502
14503 scope = declarator->u.id.qualifying_scope;
14504 member = declarator->u.id.unqualified_name;
14505
14506 while (scope && CLASS_TYPE_P (scope))
14507 {
14508 /* You're supposed to have one `template <...>'
14509 for every template class, but you don't need one
14510 for a full specialization. For example:
14511
14512 template <class T> struct S{};
14513 template <> struct S<int> { void f(); };
14514 void S<int>::f () {}
14515
14516 is correct; there shouldn't be a `template <>' for
14517 the definition of `S<int>::f'. */
14518 if (CLASSTYPE_TEMPLATE_INFO (scope)
14519 && (CLASSTYPE_TEMPLATE_INSTANTIATION (scope)
14520 || uses_template_parms (CLASSTYPE_TI_ARGS (scope)))
14521 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope)))
14522 ++num_templates;
14523
14524 scope = TYPE_CONTEXT (scope);
14525 }
14526 }
14527 else if (TREE_CODE (declarator->u.id.unqualified_name)
14528 == TEMPLATE_ID_EXPR)
14529 /* If the DECLARATOR has the form `X<y>' then it uses one
14530 additional level of template parameters. */
14531 ++num_templates;
14532
14533 return cp_parser_check_template_parameters (parser,
14534 num_templates);
14535
14536 case cdk_function:
14537 case cdk_array:
14538 case cdk_pointer:
14539 case cdk_reference:
14540 case cdk_ptrmem:
14541 return (cp_parser_check_declarator_template_parameters
14542 (parser, declarator->declarator));
14543
14544 case cdk_error:
14545 return true;
14546
14547 default:
14548 gcc_unreachable ();
14549 }
14550 return false;
14551 }
14552
14553 /* NUM_TEMPLATES were used in the current declaration. If that is
14554 invalid, return FALSE and issue an error messages. Otherwise,
14555 return TRUE. */
14556
14557 static bool
14558 cp_parser_check_template_parameters (cp_parser* parser,
14559 unsigned num_templates)
14560 {
14561 /* If there are more template classes than parameter lists, we have
14562 something like:
14563
14564 template <class T> void S<T>::R<T>::f (); */
14565 if (parser->num_template_parameter_lists < num_templates)
14566 {
14567 error ("too few template-parameter-lists");
14568 return false;
14569 }
14570 /* If there are the same number of template classes and parameter
14571 lists, that's OK. */
14572 if (parser->num_template_parameter_lists == num_templates)
14573 return true;
14574 /* If there are more, but only one more, then we are referring to a
14575 member template. That's OK too. */
14576 if (parser->num_template_parameter_lists == num_templates + 1)
14577 return true;
14578 /* Otherwise, there are too many template parameter lists. We have
14579 something like:
14580
14581 template <class T> template <class U> void S::f(); */
14582 error ("too many template-parameter-lists");
14583 return false;
14584 }
14585
14586 /* Parse an optional `::' token indicating that the following name is
14587 from the global namespace. If so, PARSER->SCOPE is set to the
14588 GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE,
14589 unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone.
14590 Returns the new value of PARSER->SCOPE, if the `::' token is
14591 present, and NULL_TREE otherwise. */
14592
14593 static tree
14594 cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p)
14595 {
14596 cp_token *token;
14597
14598 /* Peek at the next token. */
14599 token = cp_lexer_peek_token (parser->lexer);
14600 /* If we're looking at a `::' token then we're starting from the
14601 global namespace, not our current location. */
14602 if (token->type == CPP_SCOPE)
14603 {
14604 /* Consume the `::' token. */
14605 cp_lexer_consume_token (parser->lexer);
14606 /* Set the SCOPE so that we know where to start the lookup. */
14607 parser->scope = global_namespace;
14608 parser->qualifying_scope = global_namespace;
14609 parser->object_scope = NULL_TREE;
14610
14611 return parser->scope;
14612 }
14613 else if (!current_scope_valid_p)
14614 {
14615 parser->scope = NULL_TREE;
14616 parser->qualifying_scope = NULL_TREE;
14617 parser->object_scope = NULL_TREE;
14618 }
14619
14620 return NULL_TREE;
14621 }
14622
14623 /* Returns TRUE if the upcoming token sequence is the start of a
14624 constructor declarator. If FRIEND_P is true, the declarator is
14625 preceded by the `friend' specifier. */
14626
14627 static bool
14628 cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p)
14629 {
14630 bool constructor_p;
14631 tree type_decl = NULL_TREE;
14632 bool nested_name_p;
14633 cp_token *next_token;
14634
14635 /* The common case is that this is not a constructor declarator, so
14636 try to avoid doing lots of work if at all possible. It's not
14637 valid declare a constructor at function scope. */
14638 if (at_function_scope_p ())
14639 return false;
14640 /* And only certain tokens can begin a constructor declarator. */
14641 next_token = cp_lexer_peek_token (parser->lexer);
14642 if (next_token->type != CPP_NAME
14643 && next_token->type != CPP_SCOPE
14644 && next_token->type != CPP_NESTED_NAME_SPECIFIER
14645 && next_token->type != CPP_TEMPLATE_ID)
14646 return false;
14647
14648 /* Parse tentatively; we are going to roll back all of the tokens
14649 consumed here. */
14650 cp_parser_parse_tentatively (parser);
14651 /* Assume that we are looking at a constructor declarator. */
14652 constructor_p = true;
14653
14654 /* Look for the optional `::' operator. */
14655 cp_parser_global_scope_opt (parser,
14656 /*current_scope_valid_p=*/false);
14657 /* Look for the nested-name-specifier. */
14658 nested_name_p
14659 = (cp_parser_nested_name_specifier_opt (parser,
14660 /*typename_keyword_p=*/false,
14661 /*check_dependency_p=*/false,
14662 /*type_p=*/false,
14663 /*is_declaration=*/false)
14664 != NULL_TREE);
14665 /* Outside of a class-specifier, there must be a
14666 nested-name-specifier. */
14667 if (!nested_name_p &&
14668 (!at_class_scope_p () || !TYPE_BEING_DEFINED (current_class_type)
14669 || friend_p))
14670 constructor_p = false;
14671 /* If we still think that this might be a constructor-declarator,
14672 look for a class-name. */
14673 if (constructor_p)
14674 {
14675 /* If we have:
14676
14677 template <typename T> struct S { S(); };
14678 template <typename T> S<T>::S ();
14679
14680 we must recognize that the nested `S' names a class.
14681 Similarly, for:
14682
14683 template <typename T> S<T>::S<T> ();
14684
14685 we must recognize that the nested `S' names a template. */
14686 type_decl = cp_parser_class_name (parser,
14687 /*typename_keyword_p=*/false,
14688 /*template_keyword_p=*/false,
14689 none_type,
14690 /*check_dependency_p=*/false,
14691 /*class_head_p=*/false,
14692 /*is_declaration=*/false);
14693 /* If there was no class-name, then this is not a constructor. */
14694 constructor_p = !cp_parser_error_occurred (parser);
14695 }
14696
14697 /* If we're still considering a constructor, we have to see a `(',
14698 to begin the parameter-declaration-clause, followed by either a
14699 `)', an `...', or a decl-specifier. We need to check for a
14700 type-specifier to avoid being fooled into thinking that:
14701
14702 S::S (f) (int);
14703
14704 is a constructor. (It is actually a function named `f' that
14705 takes one parameter (of type `int') and returns a value of type
14706 `S::S'. */
14707 if (constructor_p
14708 && cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
14709 {
14710 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)
14711 && cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS)
14712 /* A parameter declaration begins with a decl-specifier,
14713 which is either the "attribute" keyword, a storage class
14714 specifier, or (usually) a type-specifier. */
14715 && !cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE)
14716 && !cp_parser_storage_class_specifier_opt (parser))
14717 {
14718 tree type;
14719 tree pushed_scope = NULL_TREE;
14720 unsigned saved_num_template_parameter_lists;
14721
14722 /* Names appearing in the type-specifier should be looked up
14723 in the scope of the class. */
14724 if (current_class_type)
14725 type = NULL_TREE;
14726 else
14727 {
14728 type = TREE_TYPE (type_decl);
14729 if (TREE_CODE (type) == TYPENAME_TYPE)
14730 {
14731 type = resolve_typename_type (type,
14732 /*only_current_p=*/false);
14733 if (type == error_mark_node)
14734 {
14735 cp_parser_abort_tentative_parse (parser);
14736 return false;
14737 }
14738 }
14739 pushed_scope = push_scope (type);
14740 }
14741
14742 /* Inside the constructor parameter list, surrounding
14743 template-parameter-lists do not apply. */
14744 saved_num_template_parameter_lists
14745 = parser->num_template_parameter_lists;
14746 parser->num_template_parameter_lists = 0;
14747
14748 /* Look for the type-specifier. */
14749 cp_parser_type_specifier (parser,
14750 CP_PARSER_FLAGS_NONE,
14751 /*decl_specs=*/NULL,
14752 /*is_declarator=*/true,
14753 /*declares_class_or_enum=*/NULL,
14754 /*is_cv_qualifier=*/NULL);
14755
14756 parser->num_template_parameter_lists
14757 = saved_num_template_parameter_lists;
14758
14759 /* Leave the scope of the class. */
14760 if (pushed_scope)
14761 pop_scope (pushed_scope);
14762
14763 constructor_p = !cp_parser_error_occurred (parser);
14764 }
14765 }
14766 else
14767 constructor_p = false;
14768 /* We did not really want to consume any tokens. */
14769 cp_parser_abort_tentative_parse (parser);
14770
14771 return constructor_p;
14772 }
14773
14774 /* Parse the definition of the function given by the DECL_SPECIFIERS,
14775 ATTRIBUTES, and DECLARATOR. The access checks have been deferred;
14776 they must be performed once we are in the scope of the function.
14777
14778 Returns the function defined. */
14779
14780 static tree
14781 cp_parser_function_definition_from_specifiers_and_declarator
14782 (cp_parser* parser,
14783 cp_decl_specifier_seq *decl_specifiers,
14784 tree attributes,
14785 const cp_declarator *declarator)
14786 {
14787 tree fn;
14788 bool success_p;
14789
14790 /* Begin the function-definition. */
14791 success_p = start_function (decl_specifiers, declarator, attributes);
14792
14793 /* The things we're about to see are not directly qualified by any
14794 template headers we've seen thus far. */
14795 reset_specialization ();
14796
14797 /* If there were names looked up in the decl-specifier-seq that we
14798 did not check, check them now. We must wait until we are in the
14799 scope of the function to perform the checks, since the function
14800 might be a friend. */
14801 perform_deferred_access_checks ();
14802
14803 if (!success_p)
14804 {
14805 /* Skip the entire function. */
14806 error ("invalid function declaration");
14807 cp_parser_skip_to_end_of_block_or_statement (parser);
14808 fn = error_mark_node;
14809 }
14810 else
14811 fn = cp_parser_function_definition_after_declarator (parser,
14812 /*inline_p=*/false);
14813
14814 return fn;
14815 }
14816
14817 /* Parse the part of a function-definition that follows the
14818 declarator. INLINE_P is TRUE iff this function is an inline
14819 function defined with a class-specifier.
14820
14821 Returns the function defined. */
14822
14823 static tree
14824 cp_parser_function_definition_after_declarator (cp_parser* parser,
14825 bool inline_p)
14826 {
14827 tree fn;
14828 bool ctor_initializer_p = false;
14829 bool saved_in_unbraced_linkage_specification_p;
14830 unsigned saved_num_template_parameter_lists;
14831
14832 /* If the next token is `return', then the code may be trying to
14833 make use of the "named return value" extension that G++ used to
14834 support. */
14835 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN))
14836 {
14837 /* Consume the `return' keyword. */
14838 cp_lexer_consume_token (parser->lexer);
14839 /* Look for the identifier that indicates what value is to be
14840 returned. */
14841 cp_parser_identifier (parser);
14842 /* Issue an error message. */
14843 error ("named return values are no longer supported");
14844 /* Skip tokens until we reach the start of the function body. */
14845 while (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)
14846 && cp_lexer_next_token_is_not (parser->lexer, CPP_EOF))
14847 cp_lexer_consume_token (parser->lexer);
14848 }
14849 /* The `extern' in `extern "C" void f () { ... }' does not apply to
14850 anything declared inside `f'. */
14851 saved_in_unbraced_linkage_specification_p
14852 = parser->in_unbraced_linkage_specification_p;
14853 parser->in_unbraced_linkage_specification_p = false;
14854 /* Inside the function, surrounding template-parameter-lists do not
14855 apply. */
14856 saved_num_template_parameter_lists
14857 = parser->num_template_parameter_lists;
14858 parser->num_template_parameter_lists = 0;
14859 /* If the next token is `try', then we are looking at a
14860 function-try-block. */
14861 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
14862 ctor_initializer_p = cp_parser_function_try_block (parser);
14863 /* A function-try-block includes the function-body, so we only do
14864 this next part if we're not processing a function-try-block. */
14865 else
14866 ctor_initializer_p
14867 = cp_parser_ctor_initializer_opt_and_function_body (parser);
14868
14869 /* Finish the function. */
14870 fn = finish_function ((ctor_initializer_p ? 1 : 0) |
14871 (inline_p ? 2 : 0));
14872 /* Generate code for it, if necessary. */
14873 expand_or_defer_fn (fn);
14874 /* Restore the saved values. */
14875 parser->in_unbraced_linkage_specification_p
14876 = saved_in_unbraced_linkage_specification_p;
14877 parser->num_template_parameter_lists
14878 = saved_num_template_parameter_lists;
14879
14880 return fn;
14881 }
14882
14883 /* Parse a template-declaration, assuming that the `export' (and
14884 `extern') keywords, if present, has already been scanned. MEMBER_P
14885 is as for cp_parser_template_declaration. */
14886
14887 static void
14888 cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
14889 {
14890 tree decl = NULL_TREE;
14891 tree parameter_list;
14892 bool friend_p = false;
14893
14894 /* Look for the `template' keyword. */
14895 if (!cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'"))
14896 return;
14897
14898 /* And the `<'. */
14899 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
14900 return;
14901
14902 /* If the next token is `>', then we have an invalid
14903 specialization. Rather than complain about an invalid template
14904 parameter, issue an error message here. */
14905 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
14906 {
14907 cp_parser_error (parser, "invalid explicit specialization");
14908 begin_specialization ();
14909 parameter_list = NULL_TREE;
14910 }
14911 else
14912 {
14913 /* Parse the template parameters. */
14914 begin_template_parm_list ();
14915 parameter_list = cp_parser_template_parameter_list (parser);
14916 parameter_list = end_template_parm_list (parameter_list);
14917 }
14918
14919 /* Look for the `>'. */
14920 cp_parser_skip_until_found (parser, CPP_GREATER, "`>'");
14921 /* We just processed one more parameter list. */
14922 ++parser->num_template_parameter_lists;
14923 /* If the next token is `template', there are more template
14924 parameters. */
14925 if (cp_lexer_next_token_is_keyword (parser->lexer,
14926 RID_TEMPLATE))
14927 cp_parser_template_declaration_after_export (parser, member_p);
14928 else
14929 {
14930 /* There are no access checks when parsing a template, as we do not
14931 know if a specialization will be a friend. */
14932 push_deferring_access_checks (dk_no_check);
14933
14934 decl = cp_parser_single_declaration (parser,
14935 member_p,
14936 &friend_p);
14937
14938 pop_deferring_access_checks ();
14939
14940 /* If this is a member template declaration, let the front
14941 end know. */
14942 if (member_p && !friend_p && decl)
14943 {
14944 if (TREE_CODE (decl) == TYPE_DECL)
14945 cp_parser_check_access_in_redeclaration (decl);
14946
14947 decl = finish_member_template_decl (decl);
14948 }
14949 else if (friend_p && decl && TREE_CODE (decl) == TYPE_DECL)
14950 make_friend_class (current_class_type, TREE_TYPE (decl),
14951 /*complain=*/true);
14952 }
14953 /* We are done with the current parameter list. */
14954 --parser->num_template_parameter_lists;
14955
14956 /* Finish up. */
14957 finish_template_decl (parameter_list);
14958
14959 /* Register member declarations. */
14960 if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
14961 finish_member_declaration (decl);
14962
14963 /* If DECL is a function template, we must return to parse it later.
14964 (Even though there is no definition, there might be default
14965 arguments that need handling.) */
14966 if (member_p && decl
14967 && (TREE_CODE (decl) == FUNCTION_DECL
14968 || DECL_FUNCTION_TEMPLATE_P (decl)))
14969 TREE_VALUE (parser->unparsed_functions_queues)
14970 = tree_cons (NULL_TREE, decl,
14971 TREE_VALUE (parser->unparsed_functions_queues));
14972 }
14973
14974 /* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or
14975 `function-definition' sequence. MEMBER_P is true, this declaration
14976 appears in a class scope.
14977
14978 Returns the DECL for the declared entity. If FRIEND_P is non-NULL,
14979 *FRIEND_P is set to TRUE iff the declaration is a friend. */
14980
14981 static tree
14982 cp_parser_single_declaration (cp_parser* parser,
14983 bool member_p,
14984 bool* friend_p)
14985 {
14986 int declares_class_or_enum;
14987 tree decl = NULL_TREE;
14988 cp_decl_specifier_seq decl_specifiers;
14989 bool function_definition_p = false;
14990
14991 /* This function is only used when processing a template
14992 declaration. */
14993 gcc_assert (innermost_scope_kind () == sk_template_parms
14994 || innermost_scope_kind () == sk_template_spec);
14995
14996 /* Defer access checks until we know what is being declared. */
14997 push_deferring_access_checks (dk_deferred);
14998
14999 /* Try the `decl-specifier-seq [opt] init-declarator [opt]'
15000 alternative. */
15001 cp_parser_decl_specifier_seq (parser,
15002 CP_PARSER_FLAGS_OPTIONAL,
15003 &decl_specifiers,
15004 &declares_class_or_enum);
15005 if (friend_p)
15006 *friend_p = cp_parser_friend_p (&decl_specifiers);
15007
15008 /* There are no template typedefs. */
15009 if (decl_specifiers.specs[(int) ds_typedef])
15010 {
15011 error ("template declaration of %qs", "typedef");
15012 decl = error_mark_node;
15013 }
15014
15015 /* Gather up the access checks that occurred the
15016 decl-specifier-seq. */
15017 stop_deferring_access_checks ();
15018
15019 /* Check for the declaration of a template class. */
15020 if (declares_class_or_enum)
15021 {
15022 if (cp_parser_declares_only_class_p (parser))
15023 {
15024 decl = shadow_tag (&decl_specifiers);
15025
15026 /* In this case:
15027
15028 struct C {
15029 friend template <typename T> struct A<T>::B;
15030 };
15031
15032 A<T>::B will be represented by a TYPENAME_TYPE, and
15033 therefore not recognized by shadow_tag. */
15034 if (friend_p && *friend_p
15035 && !decl
15036 && decl_specifiers.type
15037 && TYPE_P (decl_specifiers.type))
15038 decl = decl_specifiers.type;
15039
15040 if (decl && decl != error_mark_node)
15041 decl = TYPE_NAME (decl);
15042 else
15043 decl = error_mark_node;
15044 }
15045 }
15046 /* If it's not a template class, try for a template function. If
15047 the next token is a `;', then this declaration does not declare
15048 anything. But, if there were errors in the decl-specifiers, then
15049 the error might well have come from an attempted class-specifier.
15050 In that case, there's no need to warn about a missing declarator. */
15051 if (!decl
15052 && (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
15053 || decl_specifiers.type != error_mark_node))
15054 decl = cp_parser_init_declarator (parser,
15055 &decl_specifiers,
15056 /*function_definition_allowed_p=*/true,
15057 member_p,
15058 declares_class_or_enum,
15059 &function_definition_p);
15060
15061 pop_deferring_access_checks ();
15062
15063 /* Clear any current qualification; whatever comes next is the start
15064 of something new. */
15065 parser->scope = NULL_TREE;
15066 parser->qualifying_scope = NULL_TREE;
15067 parser->object_scope = NULL_TREE;
15068 /* Look for a trailing `;' after the declaration. */
15069 if (!function_definition_p
15070 && (decl == error_mark_node
15071 || !cp_parser_require (parser, CPP_SEMICOLON, "`;'")))
15072 cp_parser_skip_to_end_of_block_or_statement (parser);
15073
15074 return decl;
15075 }
15076
15077 /* Parse a cast-expression that is not the operand of a unary "&". */
15078
15079 static tree
15080 cp_parser_simple_cast_expression (cp_parser *parser)
15081 {
15082 return cp_parser_cast_expression (parser, /*address_p=*/false,
15083 /*cast_p=*/false);
15084 }
15085
15086 /* Parse a functional cast to TYPE. Returns an expression
15087 representing the cast. */
15088
15089 static tree
15090 cp_parser_functional_cast (cp_parser* parser, tree type)
15091 {
15092 tree expression_list;
15093 tree cast;
15094
15095 expression_list
15096 = cp_parser_parenthesized_expression_list (parser, false,
15097 /*cast_p=*/true,
15098 /*non_constant_p=*/NULL);
15099
15100 cast = build_functional_cast (type, expression_list);
15101 /* [expr.const]/1: In an integral constant expression "only type
15102 conversions to integral or enumeration type can be used". */
15103 if (cast != error_mark_node && !type_dependent_expression_p (type)
15104 && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (type)))
15105 {
15106 if (cp_parser_non_integral_constant_expression
15107 (parser, "a call to a constructor"))
15108 return error_mark_node;
15109 }
15110 return cast;
15111 }
15112
15113 /* Save the tokens that make up the body of a member function defined
15114 in a class-specifier. The DECL_SPECIFIERS and DECLARATOR have
15115 already been parsed. The ATTRIBUTES are any GNU "__attribute__"
15116 specifiers applied to the declaration. Returns the FUNCTION_DECL
15117 for the member function. */
15118
15119 static tree
15120 cp_parser_save_member_function_body (cp_parser* parser,
15121 cp_decl_specifier_seq *decl_specifiers,
15122 cp_declarator *declarator,
15123 tree attributes)
15124 {
15125 cp_token *first;
15126 cp_token *last;
15127 tree fn;
15128
15129 /* Create the function-declaration. */
15130 fn = start_method (decl_specifiers, declarator, attributes);
15131 /* If something went badly wrong, bail out now. */
15132 if (fn == error_mark_node)
15133 {
15134 /* If there's a function-body, skip it. */
15135 if (cp_parser_token_starts_function_definition_p
15136 (cp_lexer_peek_token (parser->lexer)))
15137 cp_parser_skip_to_end_of_block_or_statement (parser);
15138 return error_mark_node;
15139 }
15140
15141 /* Remember it, if there default args to post process. */
15142 cp_parser_save_default_args (parser, fn);
15143
15144 /* Save away the tokens that make up the body of the
15145 function. */
15146 first = parser->lexer->next_token;
15147 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
15148 /* Handle function try blocks. */
15149 while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH))
15150 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
15151 last = parser->lexer->next_token;
15152
15153 /* Save away the inline definition; we will process it when the
15154 class is complete. */
15155 DECL_PENDING_INLINE_INFO (fn) = cp_token_cache_new (first, last);
15156 DECL_PENDING_INLINE_P (fn) = 1;
15157
15158 /* We need to know that this was defined in the class, so that
15159 friend templates are handled correctly. */
15160 DECL_INITIALIZED_IN_CLASS_P (fn) = 1;
15161
15162 /* We're done with the inline definition. */
15163 finish_method (fn);
15164
15165 /* Add FN to the queue of functions to be parsed later. */
15166 TREE_VALUE (parser->unparsed_functions_queues)
15167 = tree_cons (NULL_TREE, fn,
15168 TREE_VALUE (parser->unparsed_functions_queues));
15169
15170 return fn;
15171 }
15172
15173 /* Parse a template-argument-list, as well as the trailing ">" (but
15174 not the opening ">"). See cp_parser_template_argument_list for the
15175 return value. */
15176
15177 static tree
15178 cp_parser_enclosed_template_argument_list (cp_parser* parser)
15179 {
15180 tree arguments;
15181 tree saved_scope;
15182 tree saved_qualifying_scope;
15183 tree saved_object_scope;
15184 bool saved_greater_than_is_operator_p;
15185
15186 /* [temp.names]
15187
15188 When parsing a template-id, the first non-nested `>' is taken as
15189 the end of the template-argument-list rather than a greater-than
15190 operator. */
15191 saved_greater_than_is_operator_p
15192 = parser->greater_than_is_operator_p;
15193 parser->greater_than_is_operator_p = false;
15194 /* Parsing the argument list may modify SCOPE, so we save it
15195 here. */
15196 saved_scope = parser->scope;
15197 saved_qualifying_scope = parser->qualifying_scope;
15198 saved_object_scope = parser->object_scope;
15199 /* Parse the template-argument-list itself. */
15200 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15201 arguments = NULL_TREE;
15202 else
15203 arguments = cp_parser_template_argument_list (parser);
15204 /* Look for the `>' that ends the template-argument-list. If we find
15205 a '>>' instead, it's probably just a typo. */
15206 if (cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
15207 {
15208 if (!saved_greater_than_is_operator_p)
15209 {
15210 /* If we're in a nested template argument list, the '>>' has
15211 to be a typo for '> >'. We emit the error message, but we
15212 continue parsing and we push a '>' as next token, so that
15213 the argument list will be parsed correctly. Note that the
15214 global source location is still on the token before the
15215 '>>', so we need to say explicitly where we want it. */
15216 cp_token *token = cp_lexer_peek_token (parser->lexer);
15217 error ("%H%<>>%> should be %<> >%> "
15218 "within a nested template argument list",
15219 &token->location);
15220
15221 /* ??? Proper recovery should terminate two levels of
15222 template argument list here. */
15223 token->type = CPP_GREATER;
15224 }
15225 else
15226 {
15227 /* If this is not a nested template argument list, the '>>'
15228 is a typo for '>'. Emit an error message and continue.
15229 Same deal about the token location, but here we can get it
15230 right by consuming the '>>' before issuing the diagnostic. */
15231 cp_lexer_consume_token (parser->lexer);
15232 error ("spurious %<>>%>, use %<>%> to terminate "
15233 "a template argument list");
15234 }
15235 }
15236 else if (!cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15237 error ("missing %<>%> to terminate the template argument list");
15238 else
15239 /* It's what we want, a '>'; consume it. */
15240 cp_lexer_consume_token (parser->lexer);
15241 /* The `>' token might be a greater-than operator again now. */
15242 parser->greater_than_is_operator_p
15243 = saved_greater_than_is_operator_p;
15244 /* Restore the SAVED_SCOPE. */
15245 parser->scope = saved_scope;
15246 parser->qualifying_scope = saved_qualifying_scope;
15247 parser->object_scope = saved_object_scope;
15248
15249 return arguments;
15250 }
15251
15252 /* MEMBER_FUNCTION is a member function, or a friend. If default
15253 arguments, or the body of the function have not yet been parsed,
15254 parse them now. */
15255
15256 static void
15257 cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function)
15258 {
15259 /* If this member is a template, get the underlying
15260 FUNCTION_DECL. */
15261 if (DECL_FUNCTION_TEMPLATE_P (member_function))
15262 member_function = DECL_TEMPLATE_RESULT (member_function);
15263
15264 /* There should not be any class definitions in progress at this
15265 point; the bodies of members are only parsed outside of all class
15266 definitions. */
15267 gcc_assert (parser->num_classes_being_defined == 0);
15268 /* While we're parsing the member functions we might encounter more
15269 classes. We want to handle them right away, but we don't want
15270 them getting mixed up with functions that are currently in the
15271 queue. */
15272 parser->unparsed_functions_queues
15273 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15274
15275 /* Make sure that any template parameters are in scope. */
15276 maybe_begin_member_template_processing (member_function);
15277
15278 /* If the body of the function has not yet been parsed, parse it
15279 now. */
15280 if (DECL_PENDING_INLINE_P (member_function))
15281 {
15282 tree function_scope;
15283 cp_token_cache *tokens;
15284
15285 /* The function is no longer pending; we are processing it. */
15286 tokens = DECL_PENDING_INLINE_INFO (member_function);
15287 DECL_PENDING_INLINE_INFO (member_function) = NULL;
15288 DECL_PENDING_INLINE_P (member_function) = 0;
15289
15290 /* If this is a local class, enter the scope of the containing
15291 function. */
15292 function_scope = current_function_decl;
15293 if (function_scope)
15294 push_function_context_to (function_scope);
15295
15296 /* Push the body of the function onto the lexer stack. */
15297 cp_parser_push_lexer_for_tokens (parser, tokens);
15298
15299 /* Let the front end know that we going to be defining this
15300 function. */
15301 start_preparsed_function (member_function, NULL_TREE,
15302 SF_PRE_PARSED | SF_INCLASS_INLINE);
15303
15304 /* Now, parse the body of the function. */
15305 cp_parser_function_definition_after_declarator (parser,
15306 /*inline_p=*/true);
15307
15308 /* Leave the scope of the containing function. */
15309 if (function_scope)
15310 pop_function_context_from (function_scope);
15311 cp_parser_pop_lexer (parser);
15312 }
15313
15314 /* Remove any template parameters from the symbol table. */
15315 maybe_end_member_template_processing ();
15316
15317 /* Restore the queue. */
15318 parser->unparsed_functions_queues
15319 = TREE_CHAIN (parser->unparsed_functions_queues);
15320 }
15321
15322 /* If DECL contains any default args, remember it on the unparsed
15323 functions queue. */
15324
15325 static void
15326 cp_parser_save_default_args (cp_parser* parser, tree decl)
15327 {
15328 tree probe;
15329
15330 for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl));
15331 probe;
15332 probe = TREE_CHAIN (probe))
15333 if (TREE_PURPOSE (probe))
15334 {
15335 TREE_PURPOSE (parser->unparsed_functions_queues)
15336 = tree_cons (current_class_type, decl,
15337 TREE_PURPOSE (parser->unparsed_functions_queues));
15338 break;
15339 }
15340 return;
15341 }
15342
15343 /* FN is a FUNCTION_DECL which may contains a parameter with an
15344 unparsed DEFAULT_ARG. Parse the default args now. This function
15345 assumes that the current scope is the scope in which the default
15346 argument should be processed. */
15347
15348 static void
15349 cp_parser_late_parsing_default_args (cp_parser *parser, tree fn)
15350 {
15351 bool saved_local_variables_forbidden_p;
15352 tree parm;
15353
15354 /* While we're parsing the default args, we might (due to the
15355 statement expression extension) encounter more classes. We want
15356 to handle them right away, but we don't want them getting mixed
15357 up with default args that are currently in the queue. */
15358 parser->unparsed_functions_queues
15359 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15360
15361 /* Local variable names (and the `this' keyword) may not appear
15362 in a default argument. */
15363 saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
15364 parser->local_variables_forbidden_p = true;
15365
15366 for (parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
15367 parm;
15368 parm = TREE_CHAIN (parm))
15369 {
15370 cp_token_cache *tokens;
15371
15372 if (!TREE_PURPOSE (parm)
15373 || TREE_CODE (TREE_PURPOSE (parm)) != DEFAULT_ARG)
15374 continue;
15375
15376 /* Push the saved tokens for the default argument onto the parser's
15377 lexer stack. */
15378 tokens = DEFARG_TOKENS (TREE_PURPOSE (parm));
15379 cp_parser_push_lexer_for_tokens (parser, tokens);
15380
15381 /* Parse the assignment-expression. */
15382 TREE_PURPOSE (parm) = cp_parser_assignment_expression (parser,
15383 /*cast_p=*/false);
15384
15385 /* If the token stream has not been completely used up, then
15386 there was extra junk after the end of the default
15387 argument. */
15388 if (!cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15389 cp_parser_error (parser, "expected %<,%>");
15390
15391 /* Revert to the main lexer. */
15392 cp_parser_pop_lexer (parser);
15393 }
15394
15395 /* Restore the state of local_variables_forbidden_p. */
15396 parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
15397
15398 /* Restore the queue. */
15399 parser->unparsed_functions_queues
15400 = TREE_CHAIN (parser->unparsed_functions_queues);
15401 }
15402
15403 /* Parse the operand of `sizeof' (or a similar operator). Returns
15404 either a TYPE or an expression, depending on the form of the
15405 input. The KEYWORD indicates which kind of expression we have
15406 encountered. */
15407
15408 static tree
15409 cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword)
15410 {
15411 static const char *format;
15412 tree expr = NULL_TREE;
15413 const char *saved_message;
15414 bool saved_integral_constant_expression_p;
15415 bool saved_non_integral_constant_expression_p;
15416
15417 /* Initialize FORMAT the first time we get here. */
15418 if (!format)
15419 format = "types may not be defined in '%s' expressions";
15420
15421 /* Types cannot be defined in a `sizeof' expression. Save away the
15422 old message. */
15423 saved_message = parser->type_definition_forbidden_message;
15424 /* And create the new one. */
15425 parser->type_definition_forbidden_message
15426 = xmalloc (strlen (format)
15427 + strlen (IDENTIFIER_POINTER (ridpointers[keyword]))
15428 + 1 /* `\0' */);
15429 sprintf ((char *) parser->type_definition_forbidden_message,
15430 format, IDENTIFIER_POINTER (ridpointers[keyword]));
15431
15432 /* The restrictions on constant-expressions do not apply inside
15433 sizeof expressions. */
15434 saved_integral_constant_expression_p
15435 = parser->integral_constant_expression_p;
15436 saved_non_integral_constant_expression_p
15437 = parser->non_integral_constant_expression_p;
15438 parser->integral_constant_expression_p = false;
15439
15440 /* Do not actually evaluate the expression. */
15441 ++skip_evaluation;
15442 /* If it's a `(', then we might be looking at the type-id
15443 construction. */
15444 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
15445 {
15446 tree type;
15447 bool saved_in_type_id_in_expr_p;
15448
15449 /* We can't be sure yet whether we're looking at a type-id or an
15450 expression. */
15451 cp_parser_parse_tentatively (parser);
15452 /* Consume the `('. */
15453 cp_lexer_consume_token (parser->lexer);
15454 /* Parse the type-id. */
15455 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
15456 parser->in_type_id_in_expr_p = true;
15457 type = cp_parser_type_id (parser);
15458 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
15459 /* Now, look for the trailing `)'. */
15460 cp_parser_require (parser, CPP_CLOSE_PAREN, "%<)%>");
15461 /* If all went well, then we're done. */
15462 if (cp_parser_parse_definitely (parser))
15463 {
15464 cp_decl_specifier_seq decl_specs;
15465
15466 /* Build a trivial decl-specifier-seq. */
15467 clear_decl_specs (&decl_specs);
15468 decl_specs.type = type;
15469
15470 /* Call grokdeclarator to figure out what type this is. */
15471 expr = grokdeclarator (NULL,
15472 &decl_specs,
15473 TYPENAME,
15474 /*initialized=*/0,
15475 /*attrlist=*/NULL);
15476 }
15477 }
15478
15479 /* If the type-id production did not work out, then we must be
15480 looking at the unary-expression production. */
15481 if (!expr)
15482 expr = cp_parser_unary_expression (parser, /*address_p=*/false,
15483 /*cast_p=*/false);
15484 /* Go back to evaluating expressions. */
15485 --skip_evaluation;
15486
15487 /* Free the message we created. */
15488 free ((char *) parser->type_definition_forbidden_message);
15489 /* And restore the old one. */
15490 parser->type_definition_forbidden_message = saved_message;
15491 parser->integral_constant_expression_p
15492 = saved_integral_constant_expression_p;
15493 parser->non_integral_constant_expression_p
15494 = saved_non_integral_constant_expression_p;
15495
15496 return expr;
15497 }
15498
15499 /* If the current declaration has no declarator, return true. */
15500
15501 static bool
15502 cp_parser_declares_only_class_p (cp_parser *parser)
15503 {
15504 /* If the next token is a `;' or a `,' then there is no
15505 declarator. */
15506 return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
15507 || cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
15508 }
15509
15510 /* Update the DECL_SPECS to reflect the STORAGE_CLASS. */
15511
15512 static void
15513 cp_parser_set_storage_class (cp_decl_specifier_seq *decl_specs,
15514 cp_storage_class storage_class)
15515 {
15516 if (decl_specs->storage_class != sc_none)
15517 decl_specs->multiple_storage_classes_p = true;
15518 else
15519 decl_specs->storage_class = storage_class;
15520 }
15521
15522 /* Update the DECL_SPECS to reflect the TYPE_SPEC. If USER_DEFINED_P
15523 is true, the type is a user-defined type; otherwise it is a
15524 built-in type specified by a keyword. */
15525
15526 static void
15527 cp_parser_set_decl_spec_type (cp_decl_specifier_seq *decl_specs,
15528 tree type_spec,
15529 bool user_defined_p)
15530 {
15531 decl_specs->any_specifiers_p = true;
15532
15533 /* If the user tries to redeclare bool or wchar_t (with, for
15534 example, in "typedef int wchar_t;") we remember that this is what
15535 happened. In system headers, we ignore these declarations so
15536 that G++ can work with system headers that are not C++-safe. */
15537 if (decl_specs->specs[(int) ds_typedef]
15538 && !user_defined_p
15539 && (type_spec == boolean_type_node
15540 || type_spec == wchar_type_node)
15541 && (decl_specs->type
15542 || decl_specs->specs[(int) ds_long]
15543 || decl_specs->specs[(int) ds_short]
15544 || decl_specs->specs[(int) ds_unsigned]
15545 || decl_specs->specs[(int) ds_signed]))
15546 {
15547 decl_specs->redefined_builtin_type = type_spec;
15548 if (!decl_specs->type)
15549 {
15550 decl_specs->type = type_spec;
15551 decl_specs->user_defined_type_p = false;
15552 }
15553 }
15554 else if (decl_specs->type)
15555 decl_specs->multiple_types_p = true;
15556 else
15557 {
15558 decl_specs->type = type_spec;
15559 decl_specs->user_defined_type_p = user_defined_p;
15560 decl_specs->redefined_builtin_type = NULL_TREE;
15561 }
15562 }
15563
15564 /* DECL_SPECIFIERS is the representation of a decl-specifier-seq.
15565 Returns TRUE iff `friend' appears among the DECL_SPECIFIERS. */
15566
15567 static bool
15568 cp_parser_friend_p (const cp_decl_specifier_seq *decl_specifiers)
15569 {
15570 return decl_specifiers->specs[(int) ds_friend] != 0;
15571 }
15572
15573 /* If the next token is of the indicated TYPE, consume it. Otherwise,
15574 issue an error message indicating that TOKEN_DESC was expected.
15575
15576 Returns the token consumed, if the token had the appropriate type.
15577 Otherwise, returns NULL. */
15578
15579 static cp_token *
15580 cp_parser_require (cp_parser* parser,
15581 enum cpp_ttype type,
15582 const char* token_desc)
15583 {
15584 if (cp_lexer_next_token_is (parser->lexer, type))
15585 return cp_lexer_consume_token (parser->lexer);
15586 else
15587 {
15588 /* Output the MESSAGE -- unless we're parsing tentatively. */
15589 if (!cp_parser_simulate_error (parser))
15590 {
15591 char *message = concat ("expected ", token_desc, NULL);
15592 cp_parser_error (parser, message);
15593 free (message);
15594 }
15595 return NULL;
15596 }
15597 }
15598
15599 /* Like cp_parser_require, except that tokens will be skipped until
15600 the desired token is found. An error message is still produced if
15601 the next token is not as expected. */
15602
15603 static void
15604 cp_parser_skip_until_found (cp_parser* parser,
15605 enum cpp_ttype type,
15606 const char* token_desc)
15607 {
15608 cp_token *token;
15609 unsigned nesting_depth = 0;
15610
15611 if (cp_parser_require (parser, type, token_desc))
15612 return;
15613
15614 /* Skip tokens until the desired token is found. */
15615 while (true)
15616 {
15617 /* Peek at the next token. */
15618 token = cp_lexer_peek_token (parser->lexer);
15619 /* If we've reached the token we want, consume it and
15620 stop. */
15621 if (token->type == type && !nesting_depth)
15622 {
15623 cp_lexer_consume_token (parser->lexer);
15624 return;
15625 }
15626 /* If we've run out of tokens, stop. */
15627 if (token->type == CPP_EOF)
15628 return;
15629 if (token->type == CPP_OPEN_BRACE
15630 || token->type == CPP_OPEN_PAREN
15631 || token->type == CPP_OPEN_SQUARE)
15632 ++nesting_depth;
15633 else if (token->type == CPP_CLOSE_BRACE
15634 || token->type == CPP_CLOSE_PAREN
15635 || token->type == CPP_CLOSE_SQUARE)
15636 {
15637 if (nesting_depth-- == 0)
15638 return;
15639 }
15640 /* Consume this token. */
15641 cp_lexer_consume_token (parser->lexer);
15642 }
15643 }
15644
15645 /* If the next token is the indicated keyword, consume it. Otherwise,
15646 issue an error message indicating that TOKEN_DESC was expected.
15647
15648 Returns the token consumed, if the token had the appropriate type.
15649 Otherwise, returns NULL. */
15650
15651 static cp_token *
15652 cp_parser_require_keyword (cp_parser* parser,
15653 enum rid keyword,
15654 const char* token_desc)
15655 {
15656 cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc);
15657
15658 if (token && token->keyword != keyword)
15659 {
15660 dyn_string_t error_msg;
15661
15662 /* Format the error message. */
15663 error_msg = dyn_string_new (0);
15664 dyn_string_append_cstr (error_msg, "expected ");
15665 dyn_string_append_cstr (error_msg, token_desc);
15666 cp_parser_error (parser, error_msg->s);
15667 dyn_string_delete (error_msg);
15668 return NULL;
15669 }
15670
15671 return token;
15672 }
15673
15674 /* Returns TRUE iff TOKEN is a token that can begin the body of a
15675 function-definition. */
15676
15677 static bool
15678 cp_parser_token_starts_function_definition_p (cp_token* token)
15679 {
15680 return (/* An ordinary function-body begins with an `{'. */
15681 token->type == CPP_OPEN_BRACE
15682 /* A ctor-initializer begins with a `:'. */
15683 || token->type == CPP_COLON
15684 /* A function-try-block begins with `try'. */
15685 || token->keyword == RID_TRY
15686 /* The named return value extension begins with `return'. */
15687 || token->keyword == RID_RETURN);
15688 }
15689
15690 /* Returns TRUE iff the next token is the ":" or "{" beginning a class
15691 definition. */
15692
15693 static bool
15694 cp_parser_next_token_starts_class_definition_p (cp_parser *parser)
15695 {
15696 cp_token *token;
15697
15698 token = cp_lexer_peek_token (parser->lexer);
15699 return (token->type == CPP_OPEN_BRACE || token->type == CPP_COLON);
15700 }
15701
15702 /* Returns TRUE iff the next token is the "," or ">" ending a
15703 template-argument. */
15704
15705 static bool
15706 cp_parser_next_token_ends_template_argument_p (cp_parser *parser)
15707 {
15708 cp_token *token;
15709
15710 token = cp_lexer_peek_token (parser->lexer);
15711 return (token->type == CPP_COMMA || token->type == CPP_GREATER);
15712 }
15713
15714 /* Returns TRUE iff the n-th token is a ">", or the n-th is a "[" and the
15715 (n+1)-th is a ":" (which is a possible digraph typo for "< ::"). */
15716
15717 static bool
15718 cp_parser_nth_token_starts_template_argument_list_p (cp_parser * parser,
15719 size_t n)
15720 {
15721 cp_token *token;
15722
15723 token = cp_lexer_peek_nth_token (parser->lexer, n);
15724 if (token->type == CPP_LESS)
15725 return true;
15726 /* Check for the sequence `<::' in the original code. It would be lexed as
15727 `[:', where `[' is a digraph, and there is no whitespace before
15728 `:'. */
15729 if (token->type == CPP_OPEN_SQUARE && token->flags & DIGRAPH)
15730 {
15731 cp_token *token2;
15732 token2 = cp_lexer_peek_nth_token (parser->lexer, n+1);
15733 if (token2->type == CPP_COLON && !(token2->flags & PREV_WHITE))
15734 return true;
15735 }
15736 return false;
15737 }
15738
15739 /* Returns the kind of tag indicated by TOKEN, if it is a class-key,
15740 or none_type otherwise. */
15741
15742 static enum tag_types
15743 cp_parser_token_is_class_key (cp_token* token)
15744 {
15745 switch (token->keyword)
15746 {
15747 case RID_CLASS:
15748 return class_type;
15749 case RID_STRUCT:
15750 return record_type;
15751 case RID_UNION:
15752 return union_type;
15753
15754 default:
15755 return none_type;
15756 }
15757 }
15758
15759 /* Issue an error message if the CLASS_KEY does not match the TYPE. */
15760
15761 static void
15762 cp_parser_check_class_key (enum tag_types class_key, tree type)
15763 {
15764 if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type))
15765 pedwarn ("%qs tag used in naming %q#T",
15766 class_key == union_type ? "union"
15767 : class_key == record_type ? "struct" : "class",
15768 type);
15769 }
15770
15771 /* Issue an error message if DECL is redeclared with different
15772 access than its original declaration [class.access.spec/3].
15773 This applies to nested classes and nested class templates.
15774 [class.mem/1]. */
15775
15776 static void
15777 cp_parser_check_access_in_redeclaration (tree decl)
15778 {
15779 if (!CLASS_TYPE_P (TREE_TYPE (decl)))
15780 return;
15781
15782 if ((TREE_PRIVATE (decl)
15783 != (current_access_specifier == access_private_node))
15784 || (TREE_PROTECTED (decl)
15785 != (current_access_specifier == access_protected_node)))
15786 error ("%qD redeclared with different access", decl);
15787 }
15788
15789 /* Look for the `template' keyword, as a syntactic disambiguator.
15790 Return TRUE iff it is present, in which case it will be
15791 consumed. */
15792
15793 static bool
15794 cp_parser_optional_template_keyword (cp_parser *parser)
15795 {
15796 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
15797 {
15798 /* The `template' keyword can only be used within templates;
15799 outside templates the parser can always figure out what is a
15800 template and what is not. */
15801 if (!processing_template_decl)
15802 {
15803 error ("%<template%> (as a disambiguator) is only allowed "
15804 "within templates");
15805 /* If this part of the token stream is rescanned, the same
15806 error message would be generated. So, we purge the token
15807 from the stream. */
15808 cp_lexer_purge_token (parser->lexer);
15809 return false;
15810 }
15811 else
15812 {
15813 /* Consume the `template' keyword. */
15814 cp_lexer_consume_token (parser->lexer);
15815 return true;
15816 }
15817 }
15818
15819 return false;
15820 }
15821
15822 /* The next token is a CPP_NESTED_NAME_SPECIFIER. Consume the token,
15823 set PARSER->SCOPE, and perform other related actions. */
15824
15825 static void
15826 cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser)
15827 {
15828 tree value;
15829 tree check;
15830
15831 /* Get the stored value. */
15832 value = cp_lexer_consume_token (parser->lexer)->value;
15833 /* Perform any access checks that were deferred. */
15834 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
15835 perform_or_defer_access_check (TREE_PURPOSE (check), TREE_VALUE (check));
15836 /* Set the scope from the stored value. */
15837 parser->scope = TREE_VALUE (value);
15838 parser->qualifying_scope = TREE_TYPE (value);
15839 parser->object_scope = NULL_TREE;
15840 }
15841
15842 /* Consume tokens up through a non-nested END token. */
15843
15844 static void
15845 cp_parser_cache_group (cp_parser *parser,
15846 enum cpp_ttype end,
15847 unsigned depth)
15848 {
15849 while (true)
15850 {
15851 cp_token *token;
15852
15853 /* Abort a parenthesized expression if we encounter a brace. */
15854 if ((end == CPP_CLOSE_PAREN || depth == 0)
15855 && cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
15856 return;
15857 /* If we've reached the end of the file, stop. */
15858 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15859 return;
15860 /* Consume the next token. */
15861 token = cp_lexer_consume_token (parser->lexer);
15862 /* See if it starts a new group. */
15863 if (token->type == CPP_OPEN_BRACE)
15864 {
15865 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, depth + 1);
15866 if (depth == 0)
15867 return;
15868 }
15869 else if (token->type == CPP_OPEN_PAREN)
15870 cp_parser_cache_group (parser, CPP_CLOSE_PAREN, depth + 1);
15871 else if (token->type == end)
15872 return;
15873 }
15874 }
15875
15876 /* Begin parsing tentatively. We always save tokens while parsing
15877 tentatively so that if the tentative parsing fails we can restore the
15878 tokens. */
15879
15880 static void
15881 cp_parser_parse_tentatively (cp_parser* parser)
15882 {
15883 /* Enter a new parsing context. */
15884 parser->context = cp_parser_context_new (parser->context);
15885 /* Begin saving tokens. */
15886 cp_lexer_save_tokens (parser->lexer);
15887 /* In order to avoid repetitive access control error messages,
15888 access checks are queued up until we are no longer parsing
15889 tentatively. */
15890 push_deferring_access_checks (dk_deferred);
15891 }
15892
15893 /* Commit to the currently active tentative parse. */
15894
15895 static void
15896 cp_parser_commit_to_tentative_parse (cp_parser* parser)
15897 {
15898 cp_parser_context *context;
15899 cp_lexer *lexer;
15900
15901 /* Mark all of the levels as committed. */
15902 lexer = parser->lexer;
15903 for (context = parser->context; context->next; context = context->next)
15904 {
15905 if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
15906 break;
15907 context->status = CP_PARSER_STATUS_KIND_COMMITTED;
15908 while (!cp_lexer_saving_tokens (lexer))
15909 lexer = lexer->next;
15910 cp_lexer_commit_tokens (lexer);
15911 }
15912 }
15913
15914 /* Abort the currently active tentative parse. All consumed tokens
15915 will be rolled back, and no diagnostics will be issued. */
15916
15917 static void
15918 cp_parser_abort_tentative_parse (cp_parser* parser)
15919 {
15920 cp_parser_simulate_error (parser);
15921 /* Now, pretend that we want to see if the construct was
15922 successfully parsed. */
15923 cp_parser_parse_definitely (parser);
15924 }
15925
15926 /* Stop parsing tentatively. If a parse error has occurred, restore the
15927 token stream. Otherwise, commit to the tokens we have consumed.
15928 Returns true if no error occurred; false otherwise. */
15929
15930 static bool
15931 cp_parser_parse_definitely (cp_parser* parser)
15932 {
15933 bool error_occurred;
15934 cp_parser_context *context;
15935
15936 /* Remember whether or not an error occurred, since we are about to
15937 destroy that information. */
15938 error_occurred = cp_parser_error_occurred (parser);
15939 /* Remove the topmost context from the stack. */
15940 context = parser->context;
15941 parser->context = context->next;
15942 /* If no parse errors occurred, commit to the tentative parse. */
15943 if (!error_occurred)
15944 {
15945 /* Commit to the tokens read tentatively, unless that was
15946 already done. */
15947 if (context->status != CP_PARSER_STATUS_KIND_COMMITTED)
15948 cp_lexer_commit_tokens (parser->lexer);
15949
15950 pop_to_parent_deferring_access_checks ();
15951 }
15952 /* Otherwise, if errors occurred, roll back our state so that things
15953 are just as they were before we began the tentative parse. */
15954 else
15955 {
15956 cp_lexer_rollback_tokens (parser->lexer);
15957 pop_deferring_access_checks ();
15958 }
15959 /* Add the context to the front of the free list. */
15960 context->next = cp_parser_context_free_list;
15961 cp_parser_context_free_list = context;
15962
15963 return !error_occurred;
15964 }
15965
15966 /* Returns true if we are parsing tentatively and are not committed to
15967 this tentative parse. */
15968
15969 static bool
15970 cp_parser_uncommitted_to_tentative_parse_p (cp_parser* parser)
15971 {
15972 return (cp_parser_parsing_tentatively (parser)
15973 && parser->context->status != CP_PARSER_STATUS_KIND_COMMITTED);
15974 }
15975
15976 /* Returns nonzero iff an error has occurred during the most recent
15977 tentative parse. */
15978
15979 static bool
15980 cp_parser_error_occurred (cp_parser* parser)
15981 {
15982 return (cp_parser_parsing_tentatively (parser)
15983 && parser->context->status == CP_PARSER_STATUS_KIND_ERROR);
15984 }
15985
15986 /* Returns nonzero if GNU extensions are allowed. */
15987
15988 static bool
15989 cp_parser_allow_gnu_extensions_p (cp_parser* parser)
15990 {
15991 return parser->allow_gnu_extensions_p;
15992 }
15993
15994 \f
15995 /* The parser. */
15996
15997 static GTY (()) cp_parser *the_parser;
15998
15999 /* External interface. */
16000
16001 /* Parse one entire translation unit. */
16002
16003 void
16004 c_parse_file (void)
16005 {
16006 bool error_occurred;
16007 static bool already_called = false;
16008
16009 if (already_called)
16010 {
16011 sorry ("inter-module optimizations not implemented for C++");
16012 return;
16013 }
16014 already_called = true;
16015
16016 the_parser = cp_parser_new ();
16017 push_deferring_access_checks (flag_access_control
16018 ? dk_no_deferred : dk_no_check);
16019 error_occurred = cp_parser_translation_unit (the_parser);
16020 the_parser = NULL;
16021 }
16022
16023 /* This variable must be provided by every front end. */
16024
16025 int yydebug;
16026
16027 #include "gt-cp-parser.h"