]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/search.c
This patch rewrites the old VEC macro-based interface into a new one
[thirdparty/gcc.git] / gcc / cp / search.c
1 /* Breadth-first and depth-first routines for
2 searching multiple-inheritance lattice for GNU C++.
3 Copyright (C) 1987, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011,
5 2012
6 Free Software Foundation, Inc.
7 Contributed by Michael Tiemann (tiemann@cygnus.com)
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3, or (at your option)
14 any later version.
15
16 GCC is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25 /* High-level class interface. */
26
27 #include "config.h"
28 #include "system.h"
29 #include "coretypes.h"
30 #include "tm.h"
31 #include "tree.h"
32 #include "cp-tree.h"
33 #include "intl.h"
34 #include "flags.h"
35 #include "toplev.h"
36 #include "target.h"
37
38 static int is_subobject_of_p (tree, tree);
39 static tree dfs_lookup_base (tree, void *);
40 static tree dfs_dcast_hint_pre (tree, void *);
41 static tree dfs_dcast_hint_post (tree, void *);
42 static tree dfs_debug_mark (tree, void *);
43 static tree dfs_walk_once_r (tree, tree (*pre_fn) (tree, void *),
44 tree (*post_fn) (tree, void *), void *data);
45 static void dfs_unmark_r (tree);
46 static int check_hidden_convs (tree, int, int, tree, tree, tree);
47 static tree split_conversions (tree, tree, tree, tree);
48 static int lookup_conversions_r (tree, int, int,
49 tree, tree, tree, tree, tree *, tree *);
50 static int look_for_overrides_r (tree, tree);
51 static tree lookup_field_r (tree, void *);
52 static tree dfs_accessible_post (tree, void *);
53 static tree dfs_walk_once_accessible_r (tree, bool, bool,
54 tree (*pre_fn) (tree, void *),
55 tree (*post_fn) (tree, void *),
56 void *data);
57 static tree dfs_walk_once_accessible (tree, bool,
58 tree (*pre_fn) (tree, void *),
59 tree (*post_fn) (tree, void *),
60 void *data);
61 static tree dfs_access_in_type (tree, void *);
62 static access_kind access_in_type (tree, tree);
63 static int protected_accessible_p (tree, tree, tree);
64 static int friend_accessible_p (tree, tree, tree);
65 static tree dfs_get_pure_virtuals (tree, void *);
66
67 \f
68 /* Variables for gathering statistics. */
69 static int n_fields_searched;
70 static int n_calls_lookup_field, n_calls_lookup_field_1;
71 static int n_calls_lookup_fnfields, n_calls_lookup_fnfields_1;
72 static int n_calls_get_base_type;
73 static int n_outer_fields_searched;
74 static int n_contexts_saved;
75
76 \f
77 /* Data for lookup_base and its workers. */
78
79 struct lookup_base_data_s
80 {
81 tree t; /* type being searched. */
82 tree base; /* The base type we're looking for. */
83 tree binfo; /* Found binfo. */
84 bool via_virtual; /* Found via a virtual path. */
85 bool ambiguous; /* Found multiply ambiguous */
86 bool repeated_base; /* Whether there are repeated bases in the
87 hierarchy. */
88 bool want_any; /* Whether we want any matching binfo. */
89 };
90
91 /* Worker function for lookup_base. See if we've found the desired
92 base and update DATA_ (a pointer to LOOKUP_BASE_DATA_S). */
93
94 static tree
95 dfs_lookup_base (tree binfo, void *data_)
96 {
97 struct lookup_base_data_s *data = (struct lookup_base_data_s *) data_;
98
99 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->base))
100 {
101 if (!data->binfo)
102 {
103 data->binfo = binfo;
104 data->via_virtual
105 = binfo_via_virtual (data->binfo, data->t) != NULL_TREE;
106
107 if (!data->repeated_base)
108 /* If there are no repeated bases, we can stop now. */
109 return binfo;
110
111 if (data->want_any && !data->via_virtual)
112 /* If this is a non-virtual base, then we can't do
113 better. */
114 return binfo;
115
116 return dfs_skip_bases;
117 }
118 else
119 {
120 gcc_assert (binfo != data->binfo);
121
122 /* We've found more than one matching binfo. */
123 if (!data->want_any)
124 {
125 /* This is immediately ambiguous. */
126 data->binfo = NULL_TREE;
127 data->ambiguous = true;
128 return error_mark_node;
129 }
130
131 /* Prefer one via a non-virtual path. */
132 if (!binfo_via_virtual (binfo, data->t))
133 {
134 data->binfo = binfo;
135 data->via_virtual = false;
136 return binfo;
137 }
138
139 /* There must be repeated bases, otherwise we'd have stopped
140 on the first base we found. */
141 return dfs_skip_bases;
142 }
143 }
144
145 return NULL_TREE;
146 }
147
148 /* Returns true if type BASE is accessible in T. (BASE is known to be
149 a (possibly non-proper) base class of T.) If CONSIDER_LOCAL_P is
150 true, consider any special access of the current scope, or access
151 bestowed by friendship. */
152
153 bool
154 accessible_base_p (tree t, tree base, bool consider_local_p)
155 {
156 tree decl;
157
158 /* [class.access.base]
159
160 A base class is said to be accessible if an invented public
161 member of the base class is accessible.
162
163 If BASE is a non-proper base, this condition is trivially
164 true. */
165 if (same_type_p (t, base))
166 return true;
167 /* Rather than inventing a public member, we use the implicit
168 public typedef created in the scope of every class. */
169 decl = TYPE_FIELDS (base);
170 while (!DECL_SELF_REFERENCE_P (decl))
171 decl = DECL_CHAIN (decl);
172 while (ANON_AGGR_TYPE_P (t))
173 t = TYPE_CONTEXT (t);
174 return accessible_p (t, decl, consider_local_p);
175 }
176
177 /* Lookup BASE in the hierarchy dominated by T. Do access checking as
178 ACCESS specifies. Return the binfo we discover. If KIND_PTR is
179 non-NULL, fill with information about what kind of base we
180 discovered.
181
182 If the base is inaccessible, or ambiguous, then error_mark_node is
183 returned. If the tf_error bit of COMPLAIN is not set, no error
184 is issued. */
185
186 tree
187 lookup_base (tree t, tree base, base_access access,
188 base_kind *kind_ptr, tsubst_flags_t complain)
189 {
190 tree binfo;
191 tree t_binfo;
192 base_kind bk;
193
194 if (t == error_mark_node || base == error_mark_node)
195 {
196 if (kind_ptr)
197 *kind_ptr = bk_not_base;
198 return error_mark_node;
199 }
200 gcc_assert (TYPE_P (base));
201
202 if (!TYPE_P (t))
203 {
204 t_binfo = t;
205 t = BINFO_TYPE (t);
206 }
207 else
208 {
209 t = complete_type (TYPE_MAIN_VARIANT (t));
210 t_binfo = TYPE_BINFO (t);
211 }
212
213 base = TYPE_MAIN_VARIANT (base);
214
215 /* If BASE is incomplete, it can't be a base of T--and instantiating it
216 might cause an error. */
217 if (t_binfo && CLASS_TYPE_P (base) && COMPLETE_OR_OPEN_TYPE_P (base))
218 {
219 struct lookup_base_data_s data;
220
221 data.t = t;
222 data.base = base;
223 data.binfo = NULL_TREE;
224 data.ambiguous = data.via_virtual = false;
225 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (t);
226 data.want_any = access == ba_any;
227
228 dfs_walk_once (t_binfo, dfs_lookup_base, NULL, &data);
229 binfo = data.binfo;
230
231 if (!binfo)
232 bk = data.ambiguous ? bk_ambig : bk_not_base;
233 else if (binfo == t_binfo)
234 bk = bk_same_type;
235 else if (data.via_virtual)
236 bk = bk_via_virtual;
237 else
238 bk = bk_proper_base;
239 }
240 else
241 {
242 binfo = NULL_TREE;
243 bk = bk_not_base;
244 }
245
246 /* Check that the base is unambiguous and accessible. */
247 if (access != ba_any)
248 switch (bk)
249 {
250 case bk_not_base:
251 break;
252
253 case bk_ambig:
254 if (complain & tf_error)
255 error ("%qT is an ambiguous base of %qT", base, t);
256 binfo = error_mark_node;
257 break;
258
259 default:
260 if ((access & ba_check_bit)
261 /* If BASE is incomplete, then BASE and TYPE are probably
262 the same, in which case BASE is accessible. If they
263 are not the same, then TYPE is invalid. In that case,
264 there's no need to issue another error here, and
265 there's no implicit typedef to use in the code that
266 follows, so we skip the check. */
267 && COMPLETE_TYPE_P (base)
268 && !accessible_base_p (t, base, !(access & ba_ignore_scope)))
269 {
270 if (complain & tf_error)
271 error ("%qT is an inaccessible base of %qT", base, t);
272 binfo = error_mark_node;
273 bk = bk_inaccessible;
274 }
275 break;
276 }
277
278 if (kind_ptr)
279 *kind_ptr = bk;
280
281 return binfo;
282 }
283
284 /* Data for dcast_base_hint walker. */
285
286 struct dcast_data_s
287 {
288 tree subtype; /* The base type we're looking for. */
289 int virt_depth; /* Number of virtual bases encountered from most
290 derived. */
291 tree offset; /* Best hint offset discovered so far. */
292 bool repeated_base; /* Whether there are repeated bases in the
293 hierarchy. */
294 };
295
296 /* Worker for dcast_base_hint. Search for the base type being cast
297 from. */
298
299 static tree
300 dfs_dcast_hint_pre (tree binfo, void *data_)
301 {
302 struct dcast_data_s *data = (struct dcast_data_s *) data_;
303
304 if (BINFO_VIRTUAL_P (binfo))
305 data->virt_depth++;
306
307 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), data->subtype))
308 {
309 if (data->virt_depth)
310 {
311 data->offset = ssize_int (-1);
312 return data->offset;
313 }
314 if (data->offset)
315 data->offset = ssize_int (-3);
316 else
317 data->offset = BINFO_OFFSET (binfo);
318
319 return data->repeated_base ? dfs_skip_bases : data->offset;
320 }
321
322 return NULL_TREE;
323 }
324
325 /* Worker for dcast_base_hint. Track the virtual depth. */
326
327 static tree
328 dfs_dcast_hint_post (tree binfo, void *data_)
329 {
330 struct dcast_data_s *data = (struct dcast_data_s *) data_;
331
332 if (BINFO_VIRTUAL_P (binfo))
333 data->virt_depth--;
334
335 return NULL_TREE;
336 }
337
338 /* The dynamic cast runtime needs a hint about how the static SUBTYPE type
339 started from is related to the required TARGET type, in order to optimize
340 the inheritance graph search. This information is independent of the
341 current context, and ignores private paths, hence get_base_distance is
342 inappropriate. Return a TREE specifying the base offset, BOFF.
343 BOFF >= 0, there is only one public non-virtual SUBTYPE base at offset BOFF,
344 and there are no public virtual SUBTYPE bases.
345 BOFF == -1, SUBTYPE occurs as multiple public virtual or non-virtual bases.
346 BOFF == -2, SUBTYPE is not a public base.
347 BOFF == -3, SUBTYPE occurs as multiple public non-virtual bases. */
348
349 tree
350 dcast_base_hint (tree subtype, tree target)
351 {
352 struct dcast_data_s data;
353
354 data.subtype = subtype;
355 data.virt_depth = 0;
356 data.offset = NULL_TREE;
357 data.repeated_base = CLASSTYPE_REPEATED_BASE_P (target);
358
359 dfs_walk_once_accessible (TYPE_BINFO (target), /*friends=*/false,
360 dfs_dcast_hint_pre, dfs_dcast_hint_post, &data);
361 return data.offset ? data.offset : ssize_int (-2);
362 }
363
364 /* Search for a member with name NAME in a multiple inheritance
365 lattice specified by TYPE. If it does not exist, return NULL_TREE.
366 If the member is ambiguously referenced, return `error_mark_node'.
367 Otherwise, return a DECL with the indicated name. If WANT_TYPE is
368 true, type declarations are preferred. */
369
370 /* Do a 1-level search for NAME as a member of TYPE. The caller must
371 figure out whether it can access this field. (Since it is only one
372 level, this is reasonable.) */
373
374 tree
375 lookup_field_1 (tree type, tree name, bool want_type)
376 {
377 tree field;
378
379 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
380
381 if (TREE_CODE (type) == TEMPLATE_TYPE_PARM
382 || TREE_CODE (type) == BOUND_TEMPLATE_TEMPLATE_PARM
383 || TREE_CODE (type) == TYPENAME_TYPE)
384 /* The TYPE_FIELDS of a TEMPLATE_TYPE_PARM and
385 BOUND_TEMPLATE_TEMPLATE_PARM are not fields at all;
386 instead TYPE_FIELDS is the TEMPLATE_PARM_INDEX. (Miraculously,
387 the code often worked even when we treated the index as a list
388 of fields!)
389 The TYPE_FIELDS of TYPENAME_TYPE is its TYPENAME_TYPE_FULLNAME. */
390 return NULL_TREE;
391
392 if (CLASSTYPE_SORTED_FIELDS (type))
393 {
394 tree *fields = &CLASSTYPE_SORTED_FIELDS (type)->elts[0];
395 int lo = 0, hi = CLASSTYPE_SORTED_FIELDS (type)->len;
396 int i;
397
398 while (lo < hi)
399 {
400 i = (lo + hi) / 2;
401
402 if (GATHER_STATISTICS)
403 n_fields_searched++;
404
405 if (DECL_NAME (fields[i]) > name)
406 hi = i;
407 else if (DECL_NAME (fields[i]) < name)
408 lo = i + 1;
409 else
410 {
411 field = NULL_TREE;
412
413 /* We might have a nested class and a field with the
414 same name; we sorted them appropriately via
415 field_decl_cmp, so just look for the first or last
416 field with this name. */
417 if (want_type)
418 {
419 do
420 field = fields[i--];
421 while (i >= lo && DECL_NAME (fields[i]) == name);
422 if (TREE_CODE (field) != TYPE_DECL
423 && !DECL_TYPE_TEMPLATE_P (field))
424 field = NULL_TREE;
425 }
426 else
427 {
428 do
429 field = fields[i++];
430 while (i < hi && DECL_NAME (fields[i]) == name);
431 }
432
433 if (field)
434 {
435 field = strip_using_decl (field);
436 if (is_overloaded_fn (field))
437 field = NULL_TREE;
438 }
439
440 return field;
441 }
442 }
443 return NULL_TREE;
444 }
445
446 field = TYPE_FIELDS (type);
447
448 if (GATHER_STATISTICS)
449 n_calls_lookup_field_1++;
450
451 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
452 {
453 tree decl = field;
454
455 if (GATHER_STATISTICS)
456 n_fields_searched++;
457
458 gcc_assert (DECL_P (field));
459 if (DECL_NAME (field) == NULL_TREE
460 && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
461 {
462 tree temp = lookup_field_1 (TREE_TYPE (field), name, want_type);
463 if (temp)
464 return temp;
465 }
466
467 if (TREE_CODE (decl) == USING_DECL
468 && DECL_NAME (decl) == name)
469 {
470 decl = strip_using_decl (decl);
471 if (is_overloaded_fn (decl))
472 continue;
473 }
474
475 if (DECL_NAME (decl) == name
476 && (!want_type
477 || TREE_CODE (decl) == TYPE_DECL
478 || DECL_TYPE_TEMPLATE_P (decl)))
479 return decl;
480 }
481 /* Not found. */
482 if (name == vptr_identifier)
483 {
484 /* Give the user what s/he thinks s/he wants. */
485 if (TYPE_POLYMORPHIC_P (type))
486 return TYPE_VFIELD (type);
487 }
488 return NULL_TREE;
489 }
490
491 /* Return the FUNCTION_DECL, RECORD_TYPE, UNION_TYPE, or
492 NAMESPACE_DECL corresponding to the innermost non-block scope. */
493
494 tree
495 current_scope (void)
496 {
497 /* There are a number of cases we need to be aware of here:
498 current_class_type current_function_decl
499 global NULL NULL
500 fn-local NULL SET
501 class-local SET NULL
502 class->fn SET SET
503 fn->class SET SET
504
505 Those last two make life interesting. If we're in a function which is
506 itself inside a class, we need decls to go into the fn's decls (our
507 second case below). But if we're in a class and the class itself is
508 inside a function, we need decls to go into the decls for the class. To
509 achieve this last goal, we must see if, when both current_class_ptr and
510 current_function_decl are set, the class was declared inside that
511 function. If so, we know to put the decls into the class's scope. */
512 if (current_function_decl && current_class_type
513 && ((DECL_FUNCTION_MEMBER_P (current_function_decl)
514 && same_type_p (DECL_CONTEXT (current_function_decl),
515 current_class_type))
516 || (DECL_FRIEND_CONTEXT (current_function_decl)
517 && same_type_p (DECL_FRIEND_CONTEXT (current_function_decl),
518 current_class_type))))
519 return current_function_decl;
520 if (current_class_type)
521 return current_class_type;
522 if (current_function_decl)
523 return current_function_decl;
524 return current_namespace;
525 }
526
527 /* Returns nonzero if we are currently in a function scope. Note
528 that this function returns zero if we are within a local class, but
529 not within a member function body of the local class. */
530
531 int
532 at_function_scope_p (void)
533 {
534 tree cs = current_scope ();
535 /* Also check cfun to make sure that we're really compiling
536 this function (as opposed to having set current_function_decl
537 for access checking or some such). */
538 return (cs && TREE_CODE (cs) == FUNCTION_DECL
539 && cfun && cfun->decl == current_function_decl);
540 }
541
542 /* Returns true if the innermost active scope is a class scope. */
543
544 bool
545 at_class_scope_p (void)
546 {
547 tree cs = current_scope ();
548 return cs && TYPE_P (cs);
549 }
550
551 /* Returns true if the innermost active scope is a namespace scope. */
552
553 bool
554 at_namespace_scope_p (void)
555 {
556 tree cs = current_scope ();
557 return cs && TREE_CODE (cs) == NAMESPACE_DECL;
558 }
559
560 /* Return the scope of DECL, as appropriate when doing name-lookup. */
561
562 tree
563 context_for_name_lookup (tree decl)
564 {
565 /* [class.union]
566
567 For the purposes of name lookup, after the anonymous union
568 definition, the members of the anonymous union are considered to
569 have been defined in the scope in which the anonymous union is
570 declared. */
571 tree context = DECL_CONTEXT (decl);
572
573 while (context && TYPE_P (context)
574 && (ANON_AGGR_TYPE_P (context) || UNSCOPED_ENUM_P (context)))
575 context = TYPE_CONTEXT (context);
576 if (!context)
577 context = global_namespace;
578
579 return context;
580 }
581
582 /* The accessibility routines use BINFO_ACCESS for scratch space
583 during the computation of the accessibility of some declaration. */
584
585 #define BINFO_ACCESS(NODE) \
586 ((access_kind) ((TREE_PUBLIC (NODE) << 1) | TREE_PRIVATE (NODE)))
587
588 /* Set the access associated with NODE to ACCESS. */
589
590 #define SET_BINFO_ACCESS(NODE, ACCESS) \
591 ((TREE_PUBLIC (NODE) = ((ACCESS) & 2) != 0), \
592 (TREE_PRIVATE (NODE) = ((ACCESS) & 1) != 0))
593
594 /* Called from access_in_type via dfs_walk. Calculate the access to
595 DATA (which is really a DECL) in BINFO. */
596
597 static tree
598 dfs_access_in_type (tree binfo, void *data)
599 {
600 tree decl = (tree) data;
601 tree type = BINFO_TYPE (binfo);
602 access_kind access = ak_none;
603
604 if (context_for_name_lookup (decl) == type)
605 {
606 /* If we have descended to the scope of DECL, just note the
607 appropriate access. */
608 if (TREE_PRIVATE (decl))
609 access = ak_private;
610 else if (TREE_PROTECTED (decl))
611 access = ak_protected;
612 else
613 access = ak_public;
614 }
615 else
616 {
617 /* First, check for an access-declaration that gives us more
618 access to the DECL. */
619 if (DECL_LANG_SPECIFIC (decl) && !DECL_DISCRIMINATOR_P (decl))
620 {
621 tree decl_access = purpose_member (type, DECL_ACCESS (decl));
622
623 if (decl_access)
624 {
625 decl_access = TREE_VALUE (decl_access);
626
627 if (decl_access == access_public_node)
628 access = ak_public;
629 else if (decl_access == access_protected_node)
630 access = ak_protected;
631 else if (decl_access == access_private_node)
632 access = ak_private;
633 else
634 gcc_unreachable ();
635 }
636 }
637
638 if (!access)
639 {
640 int i;
641 tree base_binfo;
642 vec<tree, va_gc> *accesses;
643
644 /* Otherwise, scan our baseclasses, and pick the most favorable
645 access. */
646 accesses = BINFO_BASE_ACCESSES (binfo);
647 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
648 {
649 tree base_access = (*accesses)[i];
650 access_kind base_access_now = BINFO_ACCESS (base_binfo);
651
652 if (base_access_now == ak_none || base_access_now == ak_private)
653 /* If it was not accessible in the base, or only
654 accessible as a private member, we can't access it
655 all. */
656 base_access_now = ak_none;
657 else if (base_access == access_protected_node)
658 /* Public and protected members in the base become
659 protected here. */
660 base_access_now = ak_protected;
661 else if (base_access == access_private_node)
662 /* Public and protected members in the base become
663 private here. */
664 base_access_now = ak_private;
665
666 /* See if the new access, via this base, gives more
667 access than our previous best access. */
668 if (base_access_now != ak_none
669 && (access == ak_none || base_access_now < access))
670 {
671 access = base_access_now;
672
673 /* If the new access is public, we can't do better. */
674 if (access == ak_public)
675 break;
676 }
677 }
678 }
679 }
680
681 /* Note the access to DECL in TYPE. */
682 SET_BINFO_ACCESS (binfo, access);
683
684 return NULL_TREE;
685 }
686
687 /* Return the access to DECL in TYPE. */
688
689 static access_kind
690 access_in_type (tree type, tree decl)
691 {
692 tree binfo = TYPE_BINFO (type);
693
694 /* We must take into account
695
696 [class.paths]
697
698 If a name can be reached by several paths through a multiple
699 inheritance graph, the access is that of the path that gives
700 most access.
701
702 The algorithm we use is to make a post-order depth-first traversal
703 of the base-class hierarchy. As we come up the tree, we annotate
704 each node with the most lenient access. */
705 dfs_walk_once (binfo, NULL, dfs_access_in_type, decl);
706
707 return BINFO_ACCESS (binfo);
708 }
709
710 /* Returns nonzero if it is OK to access DECL through an object
711 indicated by BINFO in the context of DERIVED. */
712
713 static int
714 protected_accessible_p (tree decl, tree derived, tree binfo)
715 {
716 access_kind access;
717
718 /* We're checking this clause from [class.access.base]
719
720 m as a member of N is protected, and the reference occurs in a
721 member or friend of class N, or in a member or friend of a
722 class P derived from N, where m as a member of P is public, private
723 or protected.
724
725 Here DERIVED is a possible P, DECL is m and BINFO_TYPE (binfo) is N. */
726
727 /* If DERIVED isn't derived from N, then it can't be a P. */
728 if (!DERIVED_FROM_P (BINFO_TYPE (binfo), derived))
729 return 0;
730
731 access = access_in_type (derived, decl);
732
733 /* If m is inaccessible in DERIVED, then it's not a P. */
734 if (access == ak_none)
735 return 0;
736
737 /* [class.protected]
738
739 When a friend or a member function of a derived class references
740 a protected nonstatic member of a base class, an access check
741 applies in addition to those described earlier in clause
742 _class.access_) Except when forming a pointer to member
743 (_expr.unary.op_), the access must be through a pointer to,
744 reference to, or object of the derived class itself (or any class
745 derived from that class) (_expr.ref_). If the access is to form
746 a pointer to member, the nested-name-specifier shall name the
747 derived class (or any class derived from that class). */
748 if (DECL_NONSTATIC_MEMBER_P (decl))
749 {
750 /* We can tell through what the reference is occurring by
751 chasing BINFO up to the root. */
752 tree t = binfo;
753 while (BINFO_INHERITANCE_CHAIN (t))
754 t = BINFO_INHERITANCE_CHAIN (t);
755
756 if (!DERIVED_FROM_P (derived, BINFO_TYPE (t)))
757 return 0;
758 }
759
760 return 1;
761 }
762
763 /* Returns nonzero if SCOPE is a friend of a type which would be able
764 to access DECL through the object indicated by BINFO. */
765
766 static int
767 friend_accessible_p (tree scope, tree decl, tree binfo)
768 {
769 tree befriending_classes;
770 tree t;
771
772 if (!scope)
773 return 0;
774
775 if (TREE_CODE (scope) == FUNCTION_DECL
776 || DECL_FUNCTION_TEMPLATE_P (scope))
777 befriending_classes = DECL_BEFRIENDING_CLASSES (scope);
778 else if (TYPE_P (scope))
779 befriending_classes = CLASSTYPE_BEFRIENDING_CLASSES (scope);
780 else
781 return 0;
782
783 for (t = befriending_classes; t; t = TREE_CHAIN (t))
784 if (protected_accessible_p (decl, TREE_VALUE (t), binfo))
785 return 1;
786
787 /* Nested classes have the same access as their enclosing types, as
788 per DR 45 (this is a change from the standard). */
789 if (TYPE_P (scope))
790 for (t = TYPE_CONTEXT (scope); t && TYPE_P (t); t = TYPE_CONTEXT (t))
791 if (protected_accessible_p (decl, t, binfo))
792 return 1;
793
794 if (TREE_CODE (scope) == FUNCTION_DECL
795 || DECL_FUNCTION_TEMPLATE_P (scope))
796 {
797 /* Perhaps this SCOPE is a member of a class which is a
798 friend. */
799 if (DECL_CLASS_SCOPE_P (scope)
800 && friend_accessible_p (DECL_CONTEXT (scope), decl, binfo))
801 return 1;
802
803 /* Or an instantiation of something which is a friend. */
804 if (DECL_TEMPLATE_INFO (scope))
805 {
806 int ret;
807 /* Increment processing_template_decl to make sure that
808 dependent_type_p works correctly. */
809 ++processing_template_decl;
810 ret = friend_accessible_p (DECL_TI_TEMPLATE (scope), decl, binfo);
811 --processing_template_decl;
812 return ret;
813 }
814 }
815
816 return 0;
817 }
818
819 /* Called via dfs_walk_once_accessible from accessible_p */
820
821 static tree
822 dfs_accessible_post (tree binfo, void * /*data*/)
823 {
824 if (BINFO_ACCESS (binfo) != ak_none)
825 {
826 tree scope = current_scope ();
827 if (scope && TREE_CODE (scope) != NAMESPACE_DECL
828 && is_friend (BINFO_TYPE (binfo), scope))
829 return binfo;
830 }
831
832 return NULL_TREE;
833 }
834
835 /* DECL is a declaration from a base class of TYPE, which was the
836 class used to name DECL. Return nonzero if, in the current
837 context, DECL is accessible. If TYPE is actually a BINFO node,
838 then we can tell in what context the access is occurring by looking
839 at the most derived class along the path indicated by BINFO. If
840 CONSIDER_LOCAL is true, do consider special access the current
841 scope or friendship thereof we might have. */
842
843 int
844 accessible_p (tree type, tree decl, bool consider_local_p)
845 {
846 tree binfo;
847 tree scope;
848 access_kind access;
849
850 /* Nonzero if it's OK to access DECL if it has protected
851 accessibility in TYPE. */
852 int protected_ok = 0;
853
854 /* If this declaration is in a block or namespace scope, there's no
855 access control. */
856 if (!TYPE_P (context_for_name_lookup (decl)))
857 return 1;
858
859 /* There is no need to perform access checks inside a thunk. */
860 scope = current_scope ();
861 if (scope && DECL_THUNK_P (scope))
862 return 1;
863
864 /* In a template declaration, we cannot be sure whether the
865 particular specialization that is instantiated will be a friend
866 or not. Therefore, all access checks are deferred until
867 instantiation. However, PROCESSING_TEMPLATE_DECL is set in the
868 parameter list for a template (because we may see dependent types
869 in default arguments for template parameters), and access
870 checking should be performed in the outermost parameter list. */
871 if (processing_template_decl
872 && (!processing_template_parmlist || processing_template_decl > 1))
873 return 1;
874
875 if (!TYPE_P (type))
876 {
877 binfo = type;
878 type = BINFO_TYPE (type);
879 }
880 else
881 binfo = TYPE_BINFO (type);
882
883 /* [class.access.base]
884
885 A member m is accessible when named in class N if
886
887 --m as a member of N is public, or
888
889 --m as a member of N is private, and the reference occurs in a
890 member or friend of class N, or
891
892 --m as a member of N is protected, and the reference occurs in a
893 member or friend of class N, or in a member or friend of a
894 class P derived from N, where m as a member of P is private or
895 protected, or
896
897 --there exists a base class B of N that is accessible at the point
898 of reference, and m is accessible when named in class B.
899
900 We walk the base class hierarchy, checking these conditions. */
901
902 if (consider_local_p)
903 {
904 /* Figure out where the reference is occurring. Check to see if
905 DECL is private or protected in this scope, since that will
906 determine whether protected access is allowed. */
907 if (current_class_type)
908 protected_ok = protected_accessible_p (decl,
909 current_class_type, binfo);
910
911 /* Now, loop through the classes of which we are a friend. */
912 if (!protected_ok)
913 protected_ok = friend_accessible_p (scope, decl, binfo);
914 }
915
916 /* Standardize the binfo that access_in_type will use. We don't
917 need to know what path was chosen from this point onwards. */
918 binfo = TYPE_BINFO (type);
919
920 /* Compute the accessibility of DECL in the class hierarchy
921 dominated by type. */
922 access = access_in_type (type, decl);
923 if (access == ak_public
924 || (access == ak_protected && protected_ok))
925 return 1;
926
927 if (!consider_local_p)
928 return 0;
929
930 /* Walk the hierarchy again, looking for a base class that allows
931 access. */
932 return dfs_walk_once_accessible (binfo, /*friends=*/true,
933 NULL, dfs_accessible_post, NULL)
934 != NULL_TREE;
935 }
936
937 struct lookup_field_info {
938 /* The type in which we're looking. */
939 tree type;
940 /* The name of the field for which we're looking. */
941 tree name;
942 /* If non-NULL, the current result of the lookup. */
943 tree rval;
944 /* The path to RVAL. */
945 tree rval_binfo;
946 /* If non-NULL, the lookup was ambiguous, and this is a list of the
947 candidates. */
948 tree ambiguous;
949 /* If nonzero, we are looking for types, not data members. */
950 int want_type;
951 /* If something went wrong, a message indicating what. */
952 const char *errstr;
953 };
954
955 /* Nonzero for a class member means that it is shared between all objects
956 of that class.
957
958 [class.member.lookup]:If the resulting set of declarations are not all
959 from sub-objects of the same type, or the set has a nonstatic member
960 and includes members from distinct sub-objects, there is an ambiguity
961 and the program is ill-formed.
962
963 This function checks that T contains no nonstatic members. */
964
965 int
966 shared_member_p (tree t)
967 {
968 if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == TYPE_DECL \
969 || TREE_CODE (t) == CONST_DECL)
970 return 1;
971 if (is_overloaded_fn (t))
972 {
973 t = get_fns (t);
974 for (; t; t = OVL_NEXT (t))
975 {
976 tree fn = OVL_CURRENT (t);
977 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
978 return 0;
979 }
980 return 1;
981 }
982 return 0;
983 }
984
985 /* Routine to see if the sub-object denoted by the binfo PARENT can be
986 found as a base class and sub-object of the object denoted by
987 BINFO. */
988
989 static int
990 is_subobject_of_p (tree parent, tree binfo)
991 {
992 tree probe;
993
994 for (probe = parent; probe; probe = BINFO_INHERITANCE_CHAIN (probe))
995 {
996 if (probe == binfo)
997 return 1;
998 if (BINFO_VIRTUAL_P (probe))
999 return (binfo_for_vbase (BINFO_TYPE (probe), BINFO_TYPE (binfo))
1000 != NULL_TREE);
1001 }
1002 return 0;
1003 }
1004
1005 /* DATA is really a struct lookup_field_info. Look for a field with
1006 the name indicated there in BINFO. If this function returns a
1007 non-NULL value it is the result of the lookup. Called from
1008 lookup_field via breadth_first_search. */
1009
1010 static tree
1011 lookup_field_r (tree binfo, void *data)
1012 {
1013 struct lookup_field_info *lfi = (struct lookup_field_info *) data;
1014 tree type = BINFO_TYPE (binfo);
1015 tree nval = NULL_TREE;
1016
1017 /* If this is a dependent base, don't look in it. */
1018 if (BINFO_DEPENDENT_BASE_P (binfo))
1019 return NULL_TREE;
1020
1021 /* If this base class is hidden by the best-known value so far, we
1022 don't need to look. */
1023 if (lfi->rval_binfo && BINFO_INHERITANCE_CHAIN (binfo) == lfi->rval_binfo
1024 && !BINFO_VIRTUAL_P (binfo))
1025 return dfs_skip_bases;
1026
1027 /* First, look for a function. There can't be a function and a data
1028 member with the same name, and if there's a function and a type
1029 with the same name, the type is hidden by the function. */
1030 if (!lfi->want_type)
1031 nval = lookup_fnfields_slot (type, lfi->name);
1032
1033 if (!nval)
1034 /* Look for a data member or type. */
1035 nval = lookup_field_1 (type, lfi->name, lfi->want_type);
1036
1037 /* If there is no declaration with the indicated name in this type,
1038 then there's nothing to do. */
1039 if (!nval)
1040 goto done;
1041
1042 /* If we're looking up a type (as with an elaborated type specifier)
1043 we ignore all non-types we find. */
1044 if (lfi->want_type && TREE_CODE (nval) != TYPE_DECL
1045 && !DECL_TYPE_TEMPLATE_P (nval))
1046 {
1047 if (lfi->name == TYPE_IDENTIFIER (type))
1048 {
1049 /* If the aggregate has no user defined constructors, we allow
1050 it to have fields with the same name as the enclosing type.
1051 If we are looking for that name, find the corresponding
1052 TYPE_DECL. */
1053 for (nval = TREE_CHAIN (nval); nval; nval = TREE_CHAIN (nval))
1054 if (DECL_NAME (nval) == lfi->name
1055 && TREE_CODE (nval) == TYPE_DECL)
1056 break;
1057 }
1058 else
1059 nval = NULL_TREE;
1060 if (!nval && CLASSTYPE_NESTED_UTDS (type) != NULL)
1061 {
1062 binding_entry e = binding_table_find (CLASSTYPE_NESTED_UTDS (type),
1063 lfi->name);
1064 if (e != NULL)
1065 nval = TYPE_MAIN_DECL (e->type);
1066 else
1067 goto done;
1068 }
1069 }
1070
1071 /* If the lookup already found a match, and the new value doesn't
1072 hide the old one, we might have an ambiguity. */
1073 if (lfi->rval_binfo
1074 && !is_subobject_of_p (lfi->rval_binfo, binfo))
1075
1076 {
1077 if (nval == lfi->rval && shared_member_p (nval))
1078 /* The two things are really the same. */
1079 ;
1080 else if (is_subobject_of_p (binfo, lfi->rval_binfo))
1081 /* The previous value hides the new one. */
1082 ;
1083 else
1084 {
1085 /* We have a real ambiguity. We keep a chain of all the
1086 candidates. */
1087 if (!lfi->ambiguous && lfi->rval)
1088 {
1089 /* This is the first time we noticed an ambiguity. Add
1090 what we previously thought was a reasonable candidate
1091 to the list. */
1092 lfi->ambiguous = tree_cons (NULL_TREE, lfi->rval, NULL_TREE);
1093 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1094 }
1095
1096 /* Add the new value. */
1097 lfi->ambiguous = tree_cons (NULL_TREE, nval, lfi->ambiguous);
1098 TREE_TYPE (lfi->ambiguous) = error_mark_node;
1099 lfi->errstr = G_("request for member %qD is ambiguous");
1100 }
1101 }
1102 else
1103 {
1104 lfi->rval = nval;
1105 lfi->rval_binfo = binfo;
1106 }
1107
1108 done:
1109 /* Don't look for constructors or destructors in base classes. */
1110 if (IDENTIFIER_CTOR_OR_DTOR_P (lfi->name))
1111 return dfs_skip_bases;
1112 return NULL_TREE;
1113 }
1114
1115 /* Return a "baselink" with BASELINK_BINFO, BASELINK_ACCESS_BINFO,
1116 BASELINK_FUNCTIONS, and BASELINK_OPTYPE set to BINFO, ACCESS_BINFO,
1117 FUNCTIONS, and OPTYPE respectively. */
1118
1119 tree
1120 build_baselink (tree binfo, tree access_binfo, tree functions, tree optype)
1121 {
1122 tree baselink;
1123
1124 gcc_assert (TREE_CODE (functions) == FUNCTION_DECL
1125 || TREE_CODE (functions) == TEMPLATE_DECL
1126 || TREE_CODE (functions) == TEMPLATE_ID_EXPR
1127 || TREE_CODE (functions) == OVERLOAD);
1128 gcc_assert (!optype || TYPE_P (optype));
1129 gcc_assert (TREE_TYPE (functions));
1130
1131 baselink = make_node (BASELINK);
1132 TREE_TYPE (baselink) = TREE_TYPE (functions);
1133 BASELINK_BINFO (baselink) = binfo;
1134 BASELINK_ACCESS_BINFO (baselink) = access_binfo;
1135 BASELINK_FUNCTIONS (baselink) = functions;
1136 BASELINK_OPTYPE (baselink) = optype;
1137
1138 return baselink;
1139 }
1140
1141 /* Look for a member named NAME in an inheritance lattice dominated by
1142 XBASETYPE. If PROTECT is 0 or two, we do not check access. If it
1143 is 1, we enforce accessibility. If PROTECT is zero, then, for an
1144 ambiguous lookup, we return NULL. If PROTECT is 1, we issue error
1145 messages about inaccessible or ambiguous lookup. If PROTECT is 2,
1146 we return a TREE_LIST whose TREE_TYPE is error_mark_node and whose
1147 TREE_VALUEs are the list of ambiguous candidates.
1148
1149 WANT_TYPE is 1 when we should only return TYPE_DECLs.
1150
1151 If nothing can be found return NULL_TREE and do not issue an error. */
1152
1153 tree
1154 lookup_member (tree xbasetype, tree name, int protect, bool want_type,
1155 tsubst_flags_t complain)
1156 {
1157 tree rval, rval_binfo = NULL_TREE;
1158 tree type = NULL_TREE, basetype_path = NULL_TREE;
1159 struct lookup_field_info lfi;
1160
1161 /* rval_binfo is the binfo associated with the found member, note,
1162 this can be set with useful information, even when rval is not
1163 set, because it must deal with ALL members, not just non-function
1164 members. It is used for ambiguity checking and the hidden
1165 checks. Whereas rval is only set if a proper (not hidden)
1166 non-function member is found. */
1167
1168 const char *errstr = 0;
1169
1170 if (name == error_mark_node
1171 || xbasetype == NULL_TREE
1172 || xbasetype == error_mark_node)
1173 return NULL_TREE;
1174
1175 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
1176
1177 if (TREE_CODE (xbasetype) == TREE_BINFO)
1178 {
1179 type = BINFO_TYPE (xbasetype);
1180 basetype_path = xbasetype;
1181 }
1182 else
1183 {
1184 if (!RECORD_OR_UNION_CODE_P (TREE_CODE (xbasetype)))
1185 return NULL_TREE;
1186 type = xbasetype;
1187 xbasetype = NULL_TREE;
1188 }
1189
1190 type = complete_type (type);
1191 if (!basetype_path)
1192 basetype_path = TYPE_BINFO (type);
1193
1194 if (!basetype_path)
1195 return NULL_TREE;
1196
1197 if (GATHER_STATISTICS)
1198 n_calls_lookup_field++;
1199
1200 memset (&lfi, 0, sizeof (lfi));
1201 lfi.type = type;
1202 lfi.name = name;
1203 lfi.want_type = want_type;
1204 dfs_walk_all (basetype_path, &lookup_field_r, NULL, &lfi);
1205 rval = lfi.rval;
1206 rval_binfo = lfi.rval_binfo;
1207 if (rval_binfo)
1208 type = BINFO_TYPE (rval_binfo);
1209 errstr = lfi.errstr;
1210
1211 /* If we are not interested in ambiguities, don't report them;
1212 just return NULL_TREE. */
1213 if (!protect && lfi.ambiguous)
1214 return NULL_TREE;
1215
1216 if (protect == 2)
1217 {
1218 if (lfi.ambiguous)
1219 return lfi.ambiguous;
1220 else
1221 protect = 0;
1222 }
1223
1224 /* [class.access]
1225
1226 In the case of overloaded function names, access control is
1227 applied to the function selected by overloaded resolution.
1228
1229 We cannot check here, even if RVAL is only a single non-static
1230 member function, since we do not know what the "this" pointer
1231 will be. For:
1232
1233 class A { protected: void f(); };
1234 class B : public A {
1235 void g(A *p) {
1236 f(); // OK
1237 p->f(); // Not OK.
1238 }
1239 };
1240
1241 only the first call to "f" is valid. However, if the function is
1242 static, we can check. */
1243 if (rval && protect
1244 && !really_overloaded_fn (rval))
1245 {
1246 tree decl = is_overloaded_fn (rval) ? get_first_fn (rval) : rval;
1247 if (!DECL_NONSTATIC_MEMBER_FUNCTION_P (decl)
1248 && !perform_or_defer_access_check (basetype_path, decl, decl,
1249 complain))
1250 rval = error_mark_node;
1251 }
1252
1253 if (errstr && protect)
1254 {
1255 if (complain & tf_error)
1256 {
1257 error (errstr, name, type);
1258 if (lfi.ambiguous)
1259 print_candidates (lfi.ambiguous);
1260 }
1261 rval = error_mark_node;
1262 }
1263
1264 if (rval && is_overloaded_fn (rval))
1265 rval = build_baselink (rval_binfo, basetype_path, rval,
1266 (IDENTIFIER_TYPENAME_P (name)
1267 ? TREE_TYPE (name): NULL_TREE));
1268 return rval;
1269 }
1270
1271 /* Like lookup_member, except that if we find a function member we
1272 return NULL_TREE. */
1273
1274 tree
1275 lookup_field (tree xbasetype, tree name, int protect, bool want_type)
1276 {
1277 tree rval = lookup_member (xbasetype, name, protect, want_type,
1278 tf_warning_or_error);
1279
1280 /* Ignore functions, but propagate the ambiguity list. */
1281 if (!error_operand_p (rval)
1282 && (rval && BASELINK_P (rval)))
1283 return NULL_TREE;
1284
1285 return rval;
1286 }
1287
1288 /* Like lookup_member, except that if we find a non-function member we
1289 return NULL_TREE. */
1290
1291 tree
1292 lookup_fnfields (tree xbasetype, tree name, int protect)
1293 {
1294 tree rval = lookup_member (xbasetype, name, protect, /*want_type=*/false,
1295 tf_warning_or_error);
1296
1297 /* Ignore non-functions, but propagate the ambiguity list. */
1298 if (!error_operand_p (rval)
1299 && (rval && !BASELINK_P (rval)))
1300 return NULL_TREE;
1301
1302 return rval;
1303 }
1304
1305 /* Return the index in the CLASSTYPE_METHOD_VEC for CLASS_TYPE
1306 corresponding to "operator TYPE ()", or -1 if there is no such
1307 operator. Only CLASS_TYPE itself is searched; this routine does
1308 not scan the base classes of CLASS_TYPE. */
1309
1310 static int
1311 lookup_conversion_operator (tree class_type, tree type)
1312 {
1313 int tpl_slot = -1;
1314
1315 if (TYPE_HAS_CONVERSION (class_type))
1316 {
1317 int i;
1318 tree fn;
1319 vec<tree, va_gc> *methods = CLASSTYPE_METHOD_VEC (class_type);
1320
1321 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1322 vec_safe_iterate (methods, i, &fn); ++i)
1323 {
1324 /* All the conversion operators come near the beginning of
1325 the class. Therefore, if FN is not a conversion
1326 operator, there is no matching conversion operator in
1327 CLASS_TYPE. */
1328 fn = OVL_CURRENT (fn);
1329 if (!DECL_CONV_FN_P (fn))
1330 break;
1331
1332 if (TREE_CODE (fn) == TEMPLATE_DECL)
1333 /* All the templated conversion functions are on the same
1334 slot, so remember it. */
1335 tpl_slot = i;
1336 else if (same_type_p (DECL_CONV_FN_TYPE (fn), type))
1337 return i;
1338 }
1339 }
1340
1341 return tpl_slot;
1342 }
1343
1344 /* TYPE is a class type. Return the index of the fields within
1345 the method vector with name NAME, or -1 if no such field exists.
1346 Does not lazily declare implicitly-declared member functions. */
1347
1348 static int
1349 lookup_fnfields_idx_nolazy (tree type, tree name)
1350 {
1351 vec<tree, va_gc> *method_vec;
1352 tree fn;
1353 tree tmp;
1354 size_t i;
1355
1356 if (!CLASS_TYPE_P (type))
1357 return -1;
1358
1359 method_vec = CLASSTYPE_METHOD_VEC (type);
1360 if (!method_vec)
1361 return -1;
1362
1363 if (GATHER_STATISTICS)
1364 n_calls_lookup_fnfields_1++;
1365
1366 /* Constructors are first... */
1367 if (name == ctor_identifier)
1368 {
1369 fn = CLASSTYPE_CONSTRUCTORS (type);
1370 return fn ? CLASSTYPE_CONSTRUCTOR_SLOT : -1;
1371 }
1372 /* and destructors are second. */
1373 if (name == dtor_identifier)
1374 {
1375 fn = CLASSTYPE_DESTRUCTORS (type);
1376 return fn ? CLASSTYPE_DESTRUCTOR_SLOT : -1;
1377 }
1378 if (IDENTIFIER_TYPENAME_P (name))
1379 return lookup_conversion_operator (type, TREE_TYPE (name));
1380
1381 /* Skip the conversion operators. */
1382 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
1383 vec_safe_iterate (method_vec, i, &fn);
1384 ++i)
1385 if (!DECL_CONV_FN_P (OVL_CURRENT (fn)))
1386 break;
1387
1388 /* If the type is complete, use binary search. */
1389 if (COMPLETE_TYPE_P (type))
1390 {
1391 int lo;
1392 int hi;
1393
1394 lo = i;
1395 hi = method_vec->length ();
1396 while (lo < hi)
1397 {
1398 i = (lo + hi) / 2;
1399
1400 if (GATHER_STATISTICS)
1401 n_outer_fields_searched++;
1402
1403 tmp = (*method_vec)[i];
1404 tmp = DECL_NAME (OVL_CURRENT (tmp));
1405 if (tmp > name)
1406 hi = i;
1407 else if (tmp < name)
1408 lo = i + 1;
1409 else
1410 return i;
1411 }
1412 }
1413 else
1414 for (; vec_safe_iterate (method_vec, i, &fn); ++i)
1415 {
1416 if (GATHER_STATISTICS)
1417 n_outer_fields_searched++;
1418 if (DECL_NAME (OVL_CURRENT (fn)) == name)
1419 return i;
1420 }
1421
1422 return -1;
1423 }
1424
1425 /* TYPE is a class type. Return the index of the fields within
1426 the method vector with name NAME, or -1 if no such field exists. */
1427
1428 int
1429 lookup_fnfields_1 (tree type, tree name)
1430 {
1431 if (!CLASS_TYPE_P (type))
1432 return -1;
1433
1434 if (COMPLETE_TYPE_P (type))
1435 {
1436 if ((name == ctor_identifier
1437 || name == base_ctor_identifier
1438 || name == complete_ctor_identifier))
1439 {
1440 if (CLASSTYPE_LAZY_DEFAULT_CTOR (type))
1441 lazily_declare_fn (sfk_constructor, type);
1442 if (CLASSTYPE_LAZY_COPY_CTOR (type))
1443 lazily_declare_fn (sfk_copy_constructor, type);
1444 if (CLASSTYPE_LAZY_MOVE_CTOR (type))
1445 lazily_declare_fn (sfk_move_constructor, type);
1446 }
1447 else if (name == ansi_assopname (NOP_EXPR))
1448 {
1449 if (CLASSTYPE_LAZY_COPY_ASSIGN (type))
1450 lazily_declare_fn (sfk_copy_assignment, type);
1451 if (CLASSTYPE_LAZY_MOVE_ASSIGN (type))
1452 lazily_declare_fn (sfk_move_assignment, type);
1453 }
1454 else if ((name == dtor_identifier
1455 || name == base_dtor_identifier
1456 || name == complete_dtor_identifier
1457 || name == deleting_dtor_identifier)
1458 && CLASSTYPE_LAZY_DESTRUCTOR (type))
1459 lazily_declare_fn (sfk_destructor, type);
1460 }
1461
1462 return lookup_fnfields_idx_nolazy (type, name);
1463 }
1464
1465 /* TYPE is a class type. Return the field within the method vector with
1466 name NAME, or NULL_TREE if no such field exists. */
1467
1468 tree
1469 lookup_fnfields_slot (tree type, tree name)
1470 {
1471 int ix = lookup_fnfields_1 (complete_type (type), name);
1472 if (ix < 0)
1473 return NULL_TREE;
1474 return (*CLASSTYPE_METHOD_VEC (type))[ix];
1475 }
1476
1477 /* As above, but avoid lazily declaring functions. */
1478
1479 tree
1480 lookup_fnfields_slot_nolazy (tree type, tree name)
1481 {
1482 int ix = lookup_fnfields_idx_nolazy (complete_type (type), name);
1483 if (ix < 0)
1484 return NULL_TREE;
1485 return (*CLASSTYPE_METHOD_VEC (type))[ix];
1486 }
1487
1488 /* Like lookup_fnfields_1, except that the name is extracted from
1489 FUNCTION, which is a FUNCTION_DECL or a TEMPLATE_DECL. */
1490
1491 int
1492 class_method_index_for_fn (tree class_type, tree function)
1493 {
1494 gcc_assert (TREE_CODE (function) == FUNCTION_DECL
1495 || DECL_FUNCTION_TEMPLATE_P (function));
1496
1497 return lookup_fnfields_1 (class_type,
1498 DECL_CONSTRUCTOR_P (function) ? ctor_identifier :
1499 DECL_DESTRUCTOR_P (function) ? dtor_identifier :
1500 DECL_NAME (function));
1501 }
1502
1503
1504 /* DECL is the result of a qualified name lookup. QUALIFYING_SCOPE is
1505 the class or namespace used to qualify the name. CONTEXT_CLASS is
1506 the class corresponding to the object in which DECL will be used.
1507 Return a possibly modified version of DECL that takes into account
1508 the CONTEXT_CLASS.
1509
1510 In particular, consider an expression like `B::m' in the context of
1511 a derived class `D'. If `B::m' has been resolved to a BASELINK,
1512 then the most derived class indicated by the BASELINK_BINFO will be
1513 `B', not `D'. This function makes that adjustment. */
1514
1515 tree
1516 adjust_result_of_qualified_name_lookup (tree decl,
1517 tree qualifying_scope,
1518 tree context_class)
1519 {
1520 if (context_class && context_class != error_mark_node
1521 && CLASS_TYPE_P (context_class)
1522 && CLASS_TYPE_P (qualifying_scope)
1523 && DERIVED_FROM_P (qualifying_scope, context_class)
1524 && BASELINK_P (decl))
1525 {
1526 tree base;
1527
1528 /* Look for the QUALIFYING_SCOPE as a base of the CONTEXT_CLASS.
1529 Because we do not yet know which function will be chosen by
1530 overload resolution, we cannot yet check either accessibility
1531 or ambiguity -- in either case, the choice of a static member
1532 function might make the usage valid. */
1533 base = lookup_base (context_class, qualifying_scope,
1534 ba_unique, NULL, tf_none);
1535 if (base && base != error_mark_node)
1536 {
1537 BASELINK_ACCESS_BINFO (decl) = base;
1538 BASELINK_BINFO (decl)
1539 = lookup_base (base, BINFO_TYPE (BASELINK_BINFO (decl)),
1540 ba_unique, NULL, tf_none);
1541 }
1542 }
1543
1544 if (BASELINK_P (decl))
1545 BASELINK_QUALIFIED_P (decl) = true;
1546
1547 return decl;
1548 }
1549
1550 \f
1551 /* Walk the class hierarchy within BINFO, in a depth-first traversal.
1552 PRE_FN is called in preorder, while POST_FN is called in postorder.
1553 If PRE_FN returns DFS_SKIP_BASES, child binfos will not be
1554 walked. If PRE_FN or POST_FN returns a different non-NULL value,
1555 that value is immediately returned and the walk is terminated. One
1556 of PRE_FN and POST_FN can be NULL. At each node, PRE_FN and
1557 POST_FN are passed the binfo to examine and the caller's DATA
1558 value. All paths are walked, thus virtual and morally virtual
1559 binfos can be multiply walked. */
1560
1561 tree
1562 dfs_walk_all (tree binfo, tree (*pre_fn) (tree, void *),
1563 tree (*post_fn) (tree, void *), void *data)
1564 {
1565 tree rval;
1566 unsigned ix;
1567 tree base_binfo;
1568
1569 /* Call the pre-order walking function. */
1570 if (pre_fn)
1571 {
1572 rval = pre_fn (binfo, data);
1573 if (rval)
1574 {
1575 if (rval == dfs_skip_bases)
1576 goto skip_bases;
1577 return rval;
1578 }
1579 }
1580
1581 /* Find the next child binfo to walk. */
1582 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1583 {
1584 rval = dfs_walk_all (base_binfo, pre_fn, post_fn, data);
1585 if (rval)
1586 return rval;
1587 }
1588
1589 skip_bases:
1590 /* Call the post-order walking function. */
1591 if (post_fn)
1592 {
1593 rval = post_fn (binfo, data);
1594 gcc_assert (rval != dfs_skip_bases);
1595 return rval;
1596 }
1597
1598 return NULL_TREE;
1599 }
1600
1601 /* Worker for dfs_walk_once. This behaves as dfs_walk_all, except
1602 that binfos are walked at most once. */
1603
1604 static tree
1605 dfs_walk_once_r (tree binfo, tree (*pre_fn) (tree, void *),
1606 tree (*post_fn) (tree, void *), void *data)
1607 {
1608 tree rval;
1609 unsigned ix;
1610 tree base_binfo;
1611
1612 /* Call the pre-order walking function. */
1613 if (pre_fn)
1614 {
1615 rval = pre_fn (binfo, data);
1616 if (rval)
1617 {
1618 if (rval == dfs_skip_bases)
1619 goto skip_bases;
1620
1621 return rval;
1622 }
1623 }
1624
1625 /* Find the next child binfo to walk. */
1626 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1627 {
1628 if (BINFO_VIRTUAL_P (base_binfo))
1629 {
1630 if (BINFO_MARKED (base_binfo))
1631 continue;
1632 BINFO_MARKED (base_binfo) = 1;
1633 }
1634
1635 rval = dfs_walk_once_r (base_binfo, pre_fn, post_fn, data);
1636 if (rval)
1637 return rval;
1638 }
1639
1640 skip_bases:
1641 /* Call the post-order walking function. */
1642 if (post_fn)
1643 {
1644 rval = post_fn (binfo, data);
1645 gcc_assert (rval != dfs_skip_bases);
1646 return rval;
1647 }
1648
1649 return NULL_TREE;
1650 }
1651
1652 /* Worker for dfs_walk_once. Recursively unmark the virtual base binfos of
1653 BINFO. */
1654
1655 static void
1656 dfs_unmark_r (tree binfo)
1657 {
1658 unsigned ix;
1659 tree base_binfo;
1660
1661 /* Process the basetypes. */
1662 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1663 {
1664 if (BINFO_VIRTUAL_P (base_binfo))
1665 {
1666 if (!BINFO_MARKED (base_binfo))
1667 continue;
1668 BINFO_MARKED (base_binfo) = 0;
1669 }
1670 /* Only walk, if it can contain more virtual bases. */
1671 if (CLASSTYPE_VBASECLASSES (BINFO_TYPE (base_binfo)))
1672 dfs_unmark_r (base_binfo);
1673 }
1674 }
1675
1676 /* Like dfs_walk_all, except that binfos are not multiply walked. For
1677 non-diamond shaped hierarchies this is the same as dfs_walk_all.
1678 For diamond shaped hierarchies we must mark the virtual bases, to
1679 avoid multiple walks. */
1680
1681 tree
1682 dfs_walk_once (tree binfo, tree (*pre_fn) (tree, void *),
1683 tree (*post_fn) (tree, void *), void *data)
1684 {
1685 static int active = 0; /* We must not be called recursively. */
1686 tree rval;
1687
1688 gcc_assert (pre_fn || post_fn);
1689 gcc_assert (!active);
1690 active++;
1691
1692 if (!CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo)))
1693 /* We are not diamond shaped, and therefore cannot encounter the
1694 same binfo twice. */
1695 rval = dfs_walk_all (binfo, pre_fn, post_fn, data);
1696 else
1697 {
1698 rval = dfs_walk_once_r (binfo, pre_fn, post_fn, data);
1699 if (!BINFO_INHERITANCE_CHAIN (binfo))
1700 {
1701 /* We are at the top of the hierarchy, and can use the
1702 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1703 bases. */
1704 vec<tree, va_gc> *vbases;
1705 unsigned ix;
1706 tree base_binfo;
1707
1708 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1709 vec_safe_iterate (vbases, ix, &base_binfo); ix++)
1710 BINFO_MARKED (base_binfo) = 0;
1711 }
1712 else
1713 dfs_unmark_r (binfo);
1714 }
1715
1716 active--;
1717
1718 return rval;
1719 }
1720
1721 /* Worker function for dfs_walk_once_accessible. Behaves like
1722 dfs_walk_once_r, except (a) FRIENDS_P is true if special
1723 access given by the current context should be considered, (b) ONCE
1724 indicates whether bases should be marked during traversal. */
1725
1726 static tree
1727 dfs_walk_once_accessible_r (tree binfo, bool friends_p, bool once,
1728 tree (*pre_fn) (tree, void *),
1729 tree (*post_fn) (tree, void *), void *data)
1730 {
1731 tree rval = NULL_TREE;
1732 unsigned ix;
1733 tree base_binfo;
1734
1735 /* Call the pre-order walking function. */
1736 if (pre_fn)
1737 {
1738 rval = pre_fn (binfo, data);
1739 if (rval)
1740 {
1741 if (rval == dfs_skip_bases)
1742 goto skip_bases;
1743
1744 return rval;
1745 }
1746 }
1747
1748 /* Find the next child binfo to walk. */
1749 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1750 {
1751 bool mark = once && BINFO_VIRTUAL_P (base_binfo);
1752
1753 if (mark && BINFO_MARKED (base_binfo))
1754 continue;
1755
1756 /* If the base is inherited via private or protected
1757 inheritance, then we can't see it, unless we are a friend of
1758 the current binfo. */
1759 if (BINFO_BASE_ACCESS (binfo, ix) != access_public_node)
1760 {
1761 tree scope;
1762 if (!friends_p)
1763 continue;
1764 scope = current_scope ();
1765 if (!scope
1766 || TREE_CODE (scope) == NAMESPACE_DECL
1767 || !is_friend (BINFO_TYPE (binfo), scope))
1768 continue;
1769 }
1770
1771 if (mark)
1772 BINFO_MARKED (base_binfo) = 1;
1773
1774 rval = dfs_walk_once_accessible_r (base_binfo, friends_p, once,
1775 pre_fn, post_fn, data);
1776 if (rval)
1777 return rval;
1778 }
1779
1780 skip_bases:
1781 /* Call the post-order walking function. */
1782 if (post_fn)
1783 {
1784 rval = post_fn (binfo, data);
1785 gcc_assert (rval != dfs_skip_bases);
1786 return rval;
1787 }
1788
1789 return NULL_TREE;
1790 }
1791
1792 /* Like dfs_walk_once except that only accessible bases are walked.
1793 FRIENDS_P indicates whether friendship of the local context
1794 should be considered when determining accessibility. */
1795
1796 static tree
1797 dfs_walk_once_accessible (tree binfo, bool friends_p,
1798 tree (*pre_fn) (tree, void *),
1799 tree (*post_fn) (tree, void *), void *data)
1800 {
1801 bool diamond_shaped = CLASSTYPE_DIAMOND_SHAPED_P (BINFO_TYPE (binfo));
1802 tree rval = dfs_walk_once_accessible_r (binfo, friends_p, diamond_shaped,
1803 pre_fn, post_fn, data);
1804
1805 if (diamond_shaped)
1806 {
1807 if (!BINFO_INHERITANCE_CHAIN (binfo))
1808 {
1809 /* We are at the top of the hierarchy, and can use the
1810 CLASSTYPE_VBASECLASSES list for unmarking the virtual
1811 bases. */
1812 vec<tree, va_gc> *vbases;
1813 unsigned ix;
1814 tree base_binfo;
1815
1816 for (vbases = CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo)), ix = 0;
1817 vec_safe_iterate (vbases, ix, &base_binfo); ix++)
1818 BINFO_MARKED (base_binfo) = 0;
1819 }
1820 else
1821 dfs_unmark_r (binfo);
1822 }
1823 return rval;
1824 }
1825
1826 /* Check that virtual overrider OVERRIDER is acceptable for base function
1827 BASEFN. Issue diagnostic, and return zero, if unacceptable. */
1828
1829 static int
1830 check_final_overrider (tree overrider, tree basefn)
1831 {
1832 tree over_type = TREE_TYPE (overrider);
1833 tree base_type = TREE_TYPE (basefn);
1834 tree over_return = TREE_TYPE (over_type);
1835 tree base_return = TREE_TYPE (base_type);
1836 tree over_throw, base_throw;
1837
1838 int fail = 0;
1839
1840 if (DECL_INVALID_OVERRIDER_P (overrider))
1841 return 0;
1842
1843 if (same_type_p (base_return, over_return))
1844 /* OK */;
1845 else if ((CLASS_TYPE_P (over_return) && CLASS_TYPE_P (base_return))
1846 || (TREE_CODE (base_return) == TREE_CODE (over_return)
1847 && POINTER_TYPE_P (base_return)))
1848 {
1849 /* Potentially covariant. */
1850 unsigned base_quals, over_quals;
1851
1852 fail = !POINTER_TYPE_P (base_return);
1853 if (!fail)
1854 {
1855 fail = cp_type_quals (base_return) != cp_type_quals (over_return);
1856
1857 base_return = TREE_TYPE (base_return);
1858 over_return = TREE_TYPE (over_return);
1859 }
1860 base_quals = cp_type_quals (base_return);
1861 over_quals = cp_type_quals (over_return);
1862
1863 if ((base_quals & over_quals) != over_quals)
1864 fail = 1;
1865
1866 if (CLASS_TYPE_P (base_return) && CLASS_TYPE_P (over_return))
1867 {
1868 /* Strictly speaking, the standard requires the return type to be
1869 complete even if it only differs in cv-quals, but that seems
1870 like a bug in the wording. */
1871 if (!same_type_ignoring_top_level_qualifiers_p (base_return,
1872 over_return))
1873 {
1874 tree binfo = lookup_base (over_return, base_return,
1875 ba_check, NULL, tf_none);
1876
1877 if (!binfo || binfo == error_mark_node)
1878 fail = 1;
1879 }
1880 }
1881 else if (!pedantic
1882 && can_convert (TREE_TYPE (base_type), TREE_TYPE (over_type),
1883 tf_warning_or_error))
1884 /* GNU extension, allow trivial pointer conversions such as
1885 converting to void *, or qualification conversion. */
1886 {
1887 /* can_convert will permit user defined conversion from a
1888 (reference to) class type. We must reject them. */
1889 over_return = non_reference (TREE_TYPE (over_type));
1890 if (CLASS_TYPE_P (over_return))
1891 fail = 2;
1892 else
1893 {
1894 warning (0, "deprecated covariant return type for %q+#D",
1895 overrider);
1896 warning (0, " overriding %q+#D", basefn);
1897 }
1898 }
1899 else
1900 fail = 2;
1901 }
1902 else
1903 fail = 2;
1904 if (!fail)
1905 /* OK */;
1906 else
1907 {
1908 if (fail == 1)
1909 {
1910 error ("invalid covariant return type for %q+#D", overrider);
1911 error (" overriding %q+#D", basefn);
1912 }
1913 else
1914 {
1915 error ("conflicting return type specified for %q+#D", overrider);
1916 error (" overriding %q+#D", basefn);
1917 }
1918 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1919 return 0;
1920 }
1921
1922 /* Check throw specifier is at least as strict. */
1923 maybe_instantiate_noexcept (basefn);
1924 maybe_instantiate_noexcept (overrider);
1925 base_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (basefn));
1926 over_throw = TYPE_RAISES_EXCEPTIONS (TREE_TYPE (overrider));
1927
1928 if (!comp_except_specs (base_throw, over_throw, ce_derived))
1929 {
1930 error ("looser throw specifier for %q+#F", overrider);
1931 error (" overriding %q+#F", basefn);
1932 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1933 return 0;
1934 }
1935
1936 /* Check for conflicting type attributes. */
1937 if (!comp_type_attributes (over_type, base_type))
1938 {
1939 error ("conflicting type attributes specified for %q+#D", overrider);
1940 error (" overriding %q+#D", basefn);
1941 DECL_INVALID_OVERRIDER_P (overrider) = 1;
1942 return 0;
1943 }
1944
1945 if (DECL_DELETED_FN (basefn) != DECL_DELETED_FN (overrider))
1946 {
1947 if (DECL_DELETED_FN (overrider))
1948 {
1949 error ("deleted function %q+D", overrider);
1950 error ("overriding non-deleted function %q+D", basefn);
1951 maybe_explain_implicit_delete (overrider);
1952 }
1953 else
1954 {
1955 error ("non-deleted function %q+D", overrider);
1956 error ("overriding deleted function %q+D", basefn);
1957 }
1958 return 0;
1959 }
1960 if (DECL_FINAL_P (basefn))
1961 {
1962 error ("virtual function %q+D", overrider);
1963 error ("overriding final function %q+D", basefn);
1964 return 0;
1965 }
1966 return 1;
1967 }
1968
1969 /* Given a class TYPE, and a function decl FNDECL, look for
1970 virtual functions in TYPE's hierarchy which FNDECL overrides.
1971 We do not look in TYPE itself, only its bases.
1972
1973 Returns nonzero, if we find any. Set FNDECL's DECL_VIRTUAL_P, if we
1974 find that it overrides anything.
1975
1976 We check that every function which is overridden, is correctly
1977 overridden. */
1978
1979 int
1980 look_for_overrides (tree type, tree fndecl)
1981 {
1982 tree binfo = TYPE_BINFO (type);
1983 tree base_binfo;
1984 int ix;
1985 int found = 0;
1986
1987 /* A constructor for a class T does not override a function T
1988 in a base class. */
1989 if (DECL_CONSTRUCTOR_P (fndecl))
1990 return 0;
1991
1992 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1993 {
1994 tree basetype = BINFO_TYPE (base_binfo);
1995
1996 if (TYPE_POLYMORPHIC_P (basetype))
1997 found += look_for_overrides_r (basetype, fndecl);
1998 }
1999 return found;
2000 }
2001
2002 /* Look in TYPE for virtual functions with the same signature as
2003 FNDECL. */
2004
2005 tree
2006 look_for_overrides_here (tree type, tree fndecl)
2007 {
2008 int ix;
2009
2010 /* If there are no methods in TYPE (meaning that only implicitly
2011 declared methods will ever be provided for TYPE), then there are
2012 no virtual functions. */
2013 if (!CLASSTYPE_METHOD_VEC (type))
2014 return NULL_TREE;
2015
2016 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fndecl))
2017 ix = CLASSTYPE_DESTRUCTOR_SLOT;
2018 else
2019 ix = lookup_fnfields_1 (type, DECL_NAME (fndecl));
2020 if (ix >= 0)
2021 {
2022 tree fns = (*CLASSTYPE_METHOD_VEC (type))[ix];
2023
2024 for (; fns; fns = OVL_NEXT (fns))
2025 {
2026 tree fn = OVL_CURRENT (fns);
2027
2028 if (!DECL_VIRTUAL_P (fn))
2029 /* Not a virtual. */;
2030 else if (DECL_CONTEXT (fn) != type)
2031 /* Introduced with a using declaration. */;
2032 else if (DECL_STATIC_FUNCTION_P (fndecl))
2033 {
2034 tree btypes = TYPE_ARG_TYPES (TREE_TYPE (fn));
2035 tree dtypes = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2036 if (compparms (TREE_CHAIN (btypes), dtypes))
2037 return fn;
2038 }
2039 else if (same_signature_p (fndecl, fn))
2040 return fn;
2041 }
2042 }
2043 return NULL_TREE;
2044 }
2045
2046 /* Look in TYPE for virtual functions overridden by FNDECL. Check both
2047 TYPE itself and its bases. */
2048
2049 static int
2050 look_for_overrides_r (tree type, tree fndecl)
2051 {
2052 tree fn = look_for_overrides_here (type, fndecl);
2053 if (fn)
2054 {
2055 if (DECL_STATIC_FUNCTION_P (fndecl))
2056 {
2057 /* A static member function cannot match an inherited
2058 virtual member function. */
2059 error ("%q+#D cannot be declared", fndecl);
2060 error (" since %q+#D declared in base class", fn);
2061 }
2062 else
2063 {
2064 /* It's definitely virtual, even if not explicitly set. */
2065 DECL_VIRTUAL_P (fndecl) = 1;
2066 check_final_overrider (fndecl, fn);
2067 }
2068 return 1;
2069 }
2070
2071 /* We failed to find one declared in this class. Look in its bases. */
2072 return look_for_overrides (type, fndecl);
2073 }
2074
2075 /* Called via dfs_walk from dfs_get_pure_virtuals. */
2076
2077 static tree
2078 dfs_get_pure_virtuals (tree binfo, void *data)
2079 {
2080 tree type = (tree) data;
2081
2082 /* We're not interested in primary base classes; the derived class
2083 of which they are a primary base will contain the information we
2084 need. */
2085 if (!BINFO_PRIMARY_P (binfo))
2086 {
2087 tree virtuals;
2088
2089 for (virtuals = BINFO_VIRTUALS (binfo);
2090 virtuals;
2091 virtuals = TREE_CHAIN (virtuals))
2092 if (DECL_PURE_VIRTUAL_P (BV_FN (virtuals)))
2093 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (type), BV_FN (virtuals));
2094 }
2095
2096 return NULL_TREE;
2097 }
2098
2099 /* Set CLASSTYPE_PURE_VIRTUALS for TYPE. */
2100
2101 void
2102 get_pure_virtuals (tree type)
2103 {
2104 /* Clear the CLASSTYPE_PURE_VIRTUALS list; whatever is already there
2105 is going to be overridden. */
2106 CLASSTYPE_PURE_VIRTUALS (type) = NULL;
2107 /* Now, run through all the bases which are not primary bases, and
2108 collect the pure virtual functions. We look at the vtable in
2109 each class to determine what pure virtual functions are present.
2110 (A primary base is not interesting because the derived class of
2111 which it is a primary base will contain vtable entries for the
2112 pure virtuals in the base class. */
2113 dfs_walk_once (TYPE_BINFO (type), NULL, dfs_get_pure_virtuals, type);
2114 }
2115 \f
2116 /* Debug info for C++ classes can get very large; try to avoid
2117 emitting it everywhere.
2118
2119 Note that this optimization wins even when the target supports
2120 BINCL (if only slightly), and reduces the amount of work for the
2121 linker. */
2122
2123 void
2124 maybe_suppress_debug_info (tree t)
2125 {
2126 if (write_symbols == NO_DEBUG)
2127 return;
2128
2129 /* We might have set this earlier in cp_finish_decl. */
2130 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 0;
2131
2132 /* Always emit the information for each class every time. */
2133 if (flag_emit_class_debug_always)
2134 return;
2135
2136 /* If we already know how we're handling this class, handle debug info
2137 the same way. */
2138 if (CLASSTYPE_INTERFACE_KNOWN (t))
2139 {
2140 if (CLASSTYPE_INTERFACE_ONLY (t))
2141 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2142 /* else don't set it. */
2143 }
2144 /* If the class has a vtable, write out the debug info along with
2145 the vtable. */
2146 else if (TYPE_CONTAINS_VPTR_P (t))
2147 TYPE_DECL_SUPPRESS_DEBUG (TYPE_MAIN_DECL (t)) = 1;
2148
2149 /* Otherwise, just emit the debug info normally. */
2150 }
2151
2152 /* Note that we want debugging information for a base class of a class
2153 whose vtable is being emitted. Normally, this would happen because
2154 calling the constructor for a derived class implies calling the
2155 constructors for all bases, which involve initializing the
2156 appropriate vptr with the vtable for the base class; but in the
2157 presence of optimization, this initialization may be optimized
2158 away, so we tell finish_vtable_vardecl that we want the debugging
2159 information anyway. */
2160
2161 static tree
2162 dfs_debug_mark (tree binfo, void * /*data*/)
2163 {
2164 tree t = BINFO_TYPE (binfo);
2165
2166 if (CLASSTYPE_DEBUG_REQUESTED (t))
2167 return dfs_skip_bases;
2168
2169 CLASSTYPE_DEBUG_REQUESTED (t) = 1;
2170
2171 return NULL_TREE;
2172 }
2173
2174 /* Write out the debugging information for TYPE, whose vtable is being
2175 emitted. Also walk through our bases and note that we want to
2176 write out information for them. This avoids the problem of not
2177 writing any debug info for intermediate basetypes whose
2178 constructors, and thus the references to their vtables, and thus
2179 the vtables themselves, were optimized away. */
2180
2181 void
2182 note_debug_info_needed (tree type)
2183 {
2184 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)))
2185 {
2186 TYPE_DECL_SUPPRESS_DEBUG (TYPE_NAME (type)) = 0;
2187 rest_of_type_compilation (type, toplevel_bindings_p ());
2188 }
2189
2190 dfs_walk_all (TYPE_BINFO (type), dfs_debug_mark, NULL, 0);
2191 }
2192 \f
2193 void
2194 print_search_statistics (void)
2195 {
2196 if (! GATHER_STATISTICS)
2197 {
2198 fprintf (stderr, "no search statistics\n");
2199 return;
2200 }
2201
2202 fprintf (stderr, "%d fields searched in %d[%d] calls to lookup_field[_1]\n",
2203 n_fields_searched, n_calls_lookup_field, n_calls_lookup_field_1);
2204 fprintf (stderr, "%d fnfields searched in %d calls to lookup_fnfields\n",
2205 n_outer_fields_searched, n_calls_lookup_fnfields);
2206 fprintf (stderr, "%d calls to get_base_type\n", n_calls_get_base_type);
2207 }
2208
2209 void
2210 reinit_search_statistics (void)
2211 {
2212 n_fields_searched = 0;
2213 n_calls_lookup_field = 0, n_calls_lookup_field_1 = 0;
2214 n_calls_lookup_fnfields = 0, n_calls_lookup_fnfields_1 = 0;
2215 n_calls_get_base_type = 0;
2216 n_outer_fields_searched = 0;
2217 n_contexts_saved = 0;
2218 }
2219
2220 /* Helper for lookup_conversions_r. TO_TYPE is the type converted to
2221 by a conversion op in base BINFO. VIRTUAL_DEPTH is nonzero if
2222 BINFO is morally virtual, and VIRTUALNESS is nonzero if virtual
2223 bases have been encountered already in the tree walk. PARENT_CONVS
2224 is the list of lists of conversion functions that could hide CONV
2225 and OTHER_CONVS is the list of lists of conversion functions that
2226 could hide or be hidden by CONV, should virtualness be involved in
2227 the hierarchy. Merely checking the conversion op's name is not
2228 enough because two conversion operators to the same type can have
2229 different names. Return nonzero if we are visible. */
2230
2231 static int
2232 check_hidden_convs (tree binfo, int virtual_depth, int virtualness,
2233 tree to_type, tree parent_convs, tree other_convs)
2234 {
2235 tree level, probe;
2236
2237 /* See if we are hidden by a parent conversion. */
2238 for (level = parent_convs; level; level = TREE_CHAIN (level))
2239 for (probe = TREE_VALUE (level); probe; probe = TREE_CHAIN (probe))
2240 if (same_type_p (to_type, TREE_TYPE (probe)))
2241 return 0;
2242
2243 if (virtual_depth || virtualness)
2244 {
2245 /* In a virtual hierarchy, we could be hidden, or could hide a
2246 conversion function on the other_convs list. */
2247 for (level = other_convs; level; level = TREE_CHAIN (level))
2248 {
2249 int we_hide_them;
2250 int they_hide_us;
2251 tree *prev, other;
2252
2253 if (!(virtual_depth || TREE_STATIC (level)))
2254 /* Neither is morally virtual, so cannot hide each other. */
2255 continue;
2256
2257 if (!TREE_VALUE (level))
2258 /* They evaporated away already. */
2259 continue;
2260
2261 they_hide_us = (virtual_depth
2262 && original_binfo (binfo, TREE_PURPOSE (level)));
2263 we_hide_them = (!they_hide_us && TREE_STATIC (level)
2264 && original_binfo (TREE_PURPOSE (level), binfo));
2265
2266 if (!(we_hide_them || they_hide_us))
2267 /* Neither is within the other, so no hiding can occur. */
2268 continue;
2269
2270 for (prev = &TREE_VALUE (level), other = *prev; other;)
2271 {
2272 if (same_type_p (to_type, TREE_TYPE (other)))
2273 {
2274 if (they_hide_us)
2275 /* We are hidden. */
2276 return 0;
2277
2278 if (we_hide_them)
2279 {
2280 /* We hide the other one. */
2281 other = TREE_CHAIN (other);
2282 *prev = other;
2283 continue;
2284 }
2285 }
2286 prev = &TREE_CHAIN (other);
2287 other = *prev;
2288 }
2289 }
2290 }
2291 return 1;
2292 }
2293
2294 /* Helper for lookup_conversions_r. PARENT_CONVS is a list of lists
2295 of conversion functions, the first slot will be for the current
2296 binfo, if MY_CONVS is non-NULL. CHILD_CONVS is the list of lists
2297 of conversion functions from children of the current binfo,
2298 concatenated with conversions from elsewhere in the hierarchy --
2299 that list begins with OTHER_CONVS. Return a single list of lists
2300 containing only conversions from the current binfo and its
2301 children. */
2302
2303 static tree
2304 split_conversions (tree my_convs, tree parent_convs,
2305 tree child_convs, tree other_convs)
2306 {
2307 tree t;
2308 tree prev;
2309
2310 /* Remove the original other_convs portion from child_convs. */
2311 for (prev = NULL, t = child_convs;
2312 t != other_convs; prev = t, t = TREE_CHAIN (t))
2313 continue;
2314
2315 if (prev)
2316 TREE_CHAIN (prev) = NULL_TREE;
2317 else
2318 child_convs = NULL_TREE;
2319
2320 /* Attach the child convs to any we had at this level. */
2321 if (my_convs)
2322 {
2323 my_convs = parent_convs;
2324 TREE_CHAIN (my_convs) = child_convs;
2325 }
2326 else
2327 my_convs = child_convs;
2328
2329 return my_convs;
2330 }
2331
2332 /* Worker for lookup_conversions. Lookup conversion functions in
2333 BINFO and its children. VIRTUAL_DEPTH is nonzero, if BINFO is in
2334 a morally virtual base, and VIRTUALNESS is nonzero, if we've
2335 encountered virtual bases already in the tree walk. PARENT_CONVS &
2336 PARENT_TPL_CONVS are lists of list of conversions within parent
2337 binfos. OTHER_CONVS and OTHER_TPL_CONVS are conversions found
2338 elsewhere in the tree. Return the conversions found within this
2339 portion of the graph in CONVS and TPL_CONVS. Return nonzero is we
2340 encountered virtualness. We keep template and non-template
2341 conversions separate, to avoid unnecessary type comparisons.
2342
2343 The located conversion functions are held in lists of lists. The
2344 TREE_VALUE of the outer list is the list of conversion functions
2345 found in a particular binfo. The TREE_PURPOSE of both the outer
2346 and inner lists is the binfo at which those conversions were
2347 found. TREE_STATIC is set for those lists within of morally
2348 virtual binfos. The TREE_VALUE of the inner list is the conversion
2349 function or overload itself. The TREE_TYPE of each inner list node
2350 is the converted-to type. */
2351
2352 static int
2353 lookup_conversions_r (tree binfo,
2354 int virtual_depth, int virtualness,
2355 tree parent_convs, tree parent_tpl_convs,
2356 tree other_convs, tree other_tpl_convs,
2357 tree *convs, tree *tpl_convs)
2358 {
2359 int my_virtualness = 0;
2360 tree my_convs = NULL_TREE;
2361 tree my_tpl_convs = NULL_TREE;
2362 tree child_convs = NULL_TREE;
2363 tree child_tpl_convs = NULL_TREE;
2364 unsigned i;
2365 tree base_binfo;
2366 vec<tree, va_gc> *method_vec = CLASSTYPE_METHOD_VEC (BINFO_TYPE (binfo));
2367 tree conv;
2368
2369 /* If we have no conversion operators, then don't look. */
2370 if (!TYPE_HAS_CONVERSION (BINFO_TYPE (binfo)))
2371 {
2372 *convs = *tpl_convs = NULL_TREE;
2373
2374 return 0;
2375 }
2376
2377 if (BINFO_VIRTUAL_P (binfo))
2378 virtual_depth++;
2379
2380 /* First, locate the unhidden ones at this level. */
2381 for (i = CLASSTYPE_FIRST_CONVERSION_SLOT;
2382 vec_safe_iterate (method_vec, i, &conv);
2383 ++i)
2384 {
2385 tree cur = OVL_CURRENT (conv);
2386
2387 if (!DECL_CONV_FN_P (cur))
2388 break;
2389
2390 if (TREE_CODE (cur) == TEMPLATE_DECL)
2391 {
2392 /* Only template conversions can be overloaded, and we must
2393 flatten them out and check each one individually. */
2394 tree tpls;
2395
2396 for (tpls = conv; tpls; tpls = OVL_NEXT (tpls))
2397 {
2398 tree tpl = OVL_CURRENT (tpls);
2399 tree type = DECL_CONV_FN_TYPE (tpl);
2400
2401 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2402 type, parent_tpl_convs, other_tpl_convs))
2403 {
2404 my_tpl_convs = tree_cons (binfo, tpl, my_tpl_convs);
2405 TREE_TYPE (my_tpl_convs) = type;
2406 if (virtual_depth)
2407 {
2408 TREE_STATIC (my_tpl_convs) = 1;
2409 my_virtualness = 1;
2410 }
2411 }
2412 }
2413 }
2414 else
2415 {
2416 tree name = DECL_NAME (cur);
2417
2418 if (!IDENTIFIER_MARKED (name))
2419 {
2420 tree type = DECL_CONV_FN_TYPE (cur);
2421 if (type_uses_auto (type))
2422 {
2423 mark_used (cur);
2424 type = DECL_CONV_FN_TYPE (cur);
2425 }
2426
2427 if (check_hidden_convs (binfo, virtual_depth, virtualness,
2428 type, parent_convs, other_convs))
2429 {
2430 my_convs = tree_cons (binfo, conv, my_convs);
2431 TREE_TYPE (my_convs) = type;
2432 if (virtual_depth)
2433 {
2434 TREE_STATIC (my_convs) = 1;
2435 my_virtualness = 1;
2436 }
2437 IDENTIFIER_MARKED (name) = 1;
2438 }
2439 }
2440 }
2441 }
2442
2443 if (my_convs)
2444 {
2445 parent_convs = tree_cons (binfo, my_convs, parent_convs);
2446 if (virtual_depth)
2447 TREE_STATIC (parent_convs) = 1;
2448 }
2449
2450 if (my_tpl_convs)
2451 {
2452 parent_tpl_convs = tree_cons (binfo, my_tpl_convs, parent_tpl_convs);
2453 if (virtual_depth)
2454 TREE_STATIC (parent_tpl_convs) = 1;
2455 }
2456
2457 child_convs = other_convs;
2458 child_tpl_convs = other_tpl_convs;
2459
2460 /* Now iterate over each base, looking for more conversions. */
2461 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
2462 {
2463 tree base_convs, base_tpl_convs;
2464 unsigned base_virtualness;
2465
2466 base_virtualness = lookup_conversions_r (base_binfo,
2467 virtual_depth, virtualness,
2468 parent_convs, parent_tpl_convs,
2469 child_convs, child_tpl_convs,
2470 &base_convs, &base_tpl_convs);
2471 if (base_virtualness)
2472 my_virtualness = virtualness = 1;
2473 child_convs = chainon (base_convs, child_convs);
2474 child_tpl_convs = chainon (base_tpl_convs, child_tpl_convs);
2475 }
2476
2477 /* Unmark the conversions found at this level */
2478 for (conv = my_convs; conv; conv = TREE_CHAIN (conv))
2479 IDENTIFIER_MARKED (DECL_NAME (OVL_CURRENT (TREE_VALUE (conv)))) = 0;
2480
2481 *convs = split_conversions (my_convs, parent_convs,
2482 child_convs, other_convs);
2483 *tpl_convs = split_conversions (my_tpl_convs, parent_tpl_convs,
2484 child_tpl_convs, other_tpl_convs);
2485
2486 return my_virtualness;
2487 }
2488
2489 /* Return a TREE_LIST containing all the non-hidden user-defined
2490 conversion functions for TYPE (and its base-classes). The
2491 TREE_VALUE of each node is the FUNCTION_DECL of the conversion
2492 function. The TREE_PURPOSE is the BINFO from which the conversion
2493 functions in this node were selected. This function is effectively
2494 performing a set of member lookups as lookup_fnfield does, but
2495 using the type being converted to as the unique key, rather than the
2496 field name. */
2497
2498 tree
2499 lookup_conversions (tree type)
2500 {
2501 tree convs, tpl_convs;
2502 tree list = NULL_TREE;
2503
2504 complete_type (type);
2505 if (!TYPE_BINFO (type))
2506 return NULL_TREE;
2507
2508 lookup_conversions_r (TYPE_BINFO (type), 0, 0,
2509 NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE,
2510 &convs, &tpl_convs);
2511
2512 /* Flatten the list-of-lists */
2513 for (; convs; convs = TREE_CHAIN (convs))
2514 {
2515 tree probe, next;
2516
2517 for (probe = TREE_VALUE (convs); probe; probe = next)
2518 {
2519 next = TREE_CHAIN (probe);
2520
2521 TREE_CHAIN (probe) = list;
2522 list = probe;
2523 }
2524 }
2525
2526 for (; tpl_convs; tpl_convs = TREE_CHAIN (tpl_convs))
2527 {
2528 tree probe, next;
2529
2530 for (probe = TREE_VALUE (tpl_convs); probe; probe = next)
2531 {
2532 next = TREE_CHAIN (probe);
2533
2534 TREE_CHAIN (probe) = list;
2535 list = probe;
2536 }
2537 }
2538
2539 return list;
2540 }
2541
2542 /* Returns the binfo of the first direct or indirect virtual base derived
2543 from BINFO, or NULL if binfo is not via virtual. */
2544
2545 tree
2546 binfo_from_vbase (tree binfo)
2547 {
2548 for (; binfo; binfo = BINFO_INHERITANCE_CHAIN (binfo))
2549 {
2550 if (BINFO_VIRTUAL_P (binfo))
2551 return binfo;
2552 }
2553 return NULL_TREE;
2554 }
2555
2556 /* Returns the binfo of the first direct or indirect virtual base derived
2557 from BINFO up to the TREE_TYPE, LIMIT, or NULL if binfo is not
2558 via virtual. */
2559
2560 tree
2561 binfo_via_virtual (tree binfo, tree limit)
2562 {
2563 if (limit && !CLASSTYPE_VBASECLASSES (limit))
2564 /* LIMIT has no virtual bases, so BINFO cannot be via one. */
2565 return NULL_TREE;
2566
2567 for (; binfo && !SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), limit);
2568 binfo = BINFO_INHERITANCE_CHAIN (binfo))
2569 {
2570 if (BINFO_VIRTUAL_P (binfo))
2571 return binfo;
2572 }
2573 return NULL_TREE;
2574 }
2575
2576 /* BINFO is a base binfo in the complete type BINFO_TYPE (HERE).
2577 Find the equivalent binfo within whatever graph HERE is located.
2578 This is the inverse of original_binfo. */
2579
2580 tree
2581 copied_binfo (tree binfo, tree here)
2582 {
2583 tree result = NULL_TREE;
2584
2585 if (BINFO_VIRTUAL_P (binfo))
2586 {
2587 tree t;
2588
2589 for (t = here; BINFO_INHERITANCE_CHAIN (t);
2590 t = BINFO_INHERITANCE_CHAIN (t))
2591 continue;
2592
2593 result = binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (t));
2594 }
2595 else if (BINFO_INHERITANCE_CHAIN (binfo))
2596 {
2597 tree cbinfo;
2598 tree base_binfo;
2599 int ix;
2600
2601 cbinfo = copied_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2602 for (ix = 0; BINFO_BASE_ITERATE (cbinfo, ix, base_binfo); ix++)
2603 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo), BINFO_TYPE (binfo)))
2604 {
2605 result = base_binfo;
2606 break;
2607 }
2608 }
2609 else
2610 {
2611 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (here), BINFO_TYPE (binfo)));
2612 result = here;
2613 }
2614
2615 gcc_assert (result);
2616 return result;
2617 }
2618
2619 tree
2620 binfo_for_vbase (tree base, tree t)
2621 {
2622 unsigned ix;
2623 tree binfo;
2624 vec<tree, va_gc> *vbases;
2625
2626 for (vbases = CLASSTYPE_VBASECLASSES (t), ix = 0;
2627 vec_safe_iterate (vbases, ix, &binfo); ix++)
2628 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), base))
2629 return binfo;
2630 return NULL;
2631 }
2632
2633 /* BINFO is some base binfo of HERE, within some other
2634 hierarchy. Return the equivalent binfo, but in the hierarchy
2635 dominated by HERE. This is the inverse of copied_binfo. If BINFO
2636 is not a base binfo of HERE, returns NULL_TREE. */
2637
2638 tree
2639 original_binfo (tree binfo, tree here)
2640 {
2641 tree result = NULL;
2642
2643 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), BINFO_TYPE (here)))
2644 result = here;
2645 else if (BINFO_VIRTUAL_P (binfo))
2646 result = (CLASSTYPE_VBASECLASSES (BINFO_TYPE (here))
2647 ? binfo_for_vbase (BINFO_TYPE (binfo), BINFO_TYPE (here))
2648 : NULL_TREE);
2649 else if (BINFO_INHERITANCE_CHAIN (binfo))
2650 {
2651 tree base_binfos;
2652
2653 base_binfos = original_binfo (BINFO_INHERITANCE_CHAIN (binfo), here);
2654 if (base_binfos)
2655 {
2656 int ix;
2657 tree base_binfo;
2658
2659 for (ix = 0; (base_binfo = BINFO_BASE_BINFO (base_binfos, ix)); ix++)
2660 if (SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo),
2661 BINFO_TYPE (binfo)))
2662 {
2663 result = base_binfo;
2664 break;
2665 }
2666 }
2667 }
2668
2669 return result;
2670 }
2671