]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/semantics.c
tree-eh.c (decide_copy_try_finally): Fix scaling of copy and switch estimates.
[thirdparty/gcc.git] / gcc / cp / semantics.c
1 /* Perform the semantic phase of parsing, i.e., the process of
2 building tree structure, checking semantic consistency, and
3 building RTL. These routines are used both during actual parsing
4 and during the instantiation of template functions.
5
6 Copyright (C) 1998, 1999, 2000, 2001, 2002,
7 2003, 2004 Free Software Foundation, Inc.
8 Written by Mark Mitchell (mmitchell@usa.net) based on code found
9 formerly in parse.y and pt.c.
10
11 This file is part of GCC.
12
13 GCC is free software; you can redistribute it and/or modify it
14 under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 GCC is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with GCC; see the file COPYING. If not, write to the Free
25 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
26 02111-1307, USA. */
27
28 #include "config.h"
29 #include "system.h"
30 #include "coretypes.h"
31 #include "tm.h"
32 #include "tree.h"
33 #include "cp-tree.h"
34 #include "tree-inline.h"
35 #include "tree-mudflap.h"
36 #include "except.h"
37 #include "lex.h"
38 #include "toplev.h"
39 #include "flags.h"
40 #include "rtl.h"
41 #include "expr.h"
42 #include "output.h"
43 #include "timevar.h"
44 #include "debug.h"
45 #include "diagnostic.h"
46 #include "cgraph.h"
47 #include "tree-iterator.h"
48
49 /* There routines provide a modular interface to perform many parsing
50 operations. They may therefore be used during actual parsing, or
51 during template instantiation, which may be regarded as a
52 degenerate form of parsing. Since the current g++ parser is
53 lacking in several respects, and will be reimplemented, we are
54 attempting to move most code that is not directly related to
55 parsing into this file; that will make implementing the new parser
56 much easier since it will be able to make use of these routines. */
57
58 static tree maybe_convert_cond (tree);
59 static tree simplify_aggr_init_exprs_r (tree *, int *, void *);
60 static void emit_associated_thunks (tree);
61 static tree finalize_nrv_r (tree *, int *, void *);
62
63
64 /* Deferred Access Checking Overview
65 ---------------------------------
66
67 Most C++ expressions and declarations require access checking
68 to be performed during parsing. However, in several cases,
69 this has to be treated differently.
70
71 For member declarations, access checking has to be deferred
72 until more information about the declaration is known. For
73 example:
74
75 class A {
76 typedef int X;
77 public:
78 X f();
79 };
80
81 A::X A::f();
82 A::X g();
83
84 When we are parsing the function return type `A::X', we don't
85 really know if this is allowed until we parse the function name.
86
87 Furthermore, some contexts require that access checking is
88 never performed at all. These include class heads, and template
89 instantiations.
90
91 Typical use of access checking functions is described here:
92
93 1. When we enter a context that requires certain access checking
94 mode, the function `push_deferring_access_checks' is called with
95 DEFERRING argument specifying the desired mode. Access checking
96 may be performed immediately (dk_no_deferred), deferred
97 (dk_deferred), or not performed (dk_no_check).
98
99 2. When a declaration such as a type, or a variable, is encountered,
100 the function `perform_or_defer_access_check' is called. It
101 maintains a TREE_LIST of all deferred checks.
102
103 3. The global `current_class_type' or `current_function_decl' is then
104 setup by the parser. `enforce_access' relies on these information
105 to check access.
106
107 4. Upon exiting the context mentioned in step 1,
108 `perform_deferred_access_checks' is called to check all declaration
109 stored in the TREE_LIST. `pop_deferring_access_checks' is then
110 called to restore the previous access checking mode.
111
112 In case of parsing error, we simply call `pop_deferring_access_checks'
113 without `perform_deferred_access_checks'. */
114
115 /* Data for deferred access checking. */
116 static GTY(()) deferred_access *deferred_access_stack;
117 static GTY(()) deferred_access *deferred_access_free_list;
118
119 /* Save the current deferred access states and start deferred
120 access checking iff DEFER_P is true. */
121
122 void
123 push_deferring_access_checks (deferring_kind deferring)
124 {
125 deferred_access *d;
126
127 /* For context like template instantiation, access checking
128 disabling applies to all nested context. */
129 if (deferred_access_stack
130 && deferred_access_stack->deferring_access_checks_kind == dk_no_check)
131 deferring = dk_no_check;
132
133 /* Recycle previously used free store if available. */
134 if (deferred_access_free_list)
135 {
136 d = deferred_access_free_list;
137 deferred_access_free_list = d->next;
138 }
139 else
140 d = ggc_alloc (sizeof (deferred_access));
141
142 d->next = deferred_access_stack;
143 d->deferred_access_checks = NULL_TREE;
144 d->deferring_access_checks_kind = deferring;
145 deferred_access_stack = d;
146 }
147
148 /* Resume deferring access checks again after we stopped doing
149 this previously. */
150
151 void
152 resume_deferring_access_checks (void)
153 {
154 if (deferred_access_stack->deferring_access_checks_kind == dk_no_deferred)
155 deferred_access_stack->deferring_access_checks_kind = dk_deferred;
156 }
157
158 /* Stop deferring access checks. */
159
160 void
161 stop_deferring_access_checks (void)
162 {
163 if (deferred_access_stack->deferring_access_checks_kind == dk_deferred)
164 deferred_access_stack->deferring_access_checks_kind = dk_no_deferred;
165 }
166
167 /* Discard the current deferred access checks and restore the
168 previous states. */
169
170 void
171 pop_deferring_access_checks (void)
172 {
173 deferred_access *d = deferred_access_stack;
174 deferred_access_stack = d->next;
175
176 /* Remove references to access checks TREE_LIST. */
177 d->deferred_access_checks = NULL_TREE;
178
179 /* Store in free list for later use. */
180 d->next = deferred_access_free_list;
181 deferred_access_free_list = d;
182 }
183
184 /* Returns a TREE_LIST representing the deferred checks.
185 The TREE_PURPOSE of each node is the type through which the
186 access occurred; the TREE_VALUE is the declaration named.
187 */
188
189 tree
190 get_deferred_access_checks (void)
191 {
192 return deferred_access_stack->deferred_access_checks;
193 }
194
195 /* Take current deferred checks and combine with the
196 previous states if we also defer checks previously.
197 Otherwise perform checks now. */
198
199 void
200 pop_to_parent_deferring_access_checks (void)
201 {
202 tree deferred_check = get_deferred_access_checks ();
203 deferred_access *d1 = deferred_access_stack;
204 deferred_access *d2 = deferred_access_stack->next;
205 deferred_access *d3 = deferred_access_stack->next->next;
206
207 /* Temporary swap the order of the top two states, just to make
208 sure the garbage collector will not reclaim the memory during
209 processing below. */
210 deferred_access_stack = d2;
211 d2->next = d1;
212 d1->next = d3;
213
214 for ( ; deferred_check; deferred_check = TREE_CHAIN (deferred_check))
215 /* Perform deferred check if required. */
216 perform_or_defer_access_check (TREE_PURPOSE (deferred_check),
217 TREE_VALUE (deferred_check));
218
219 deferred_access_stack = d1;
220 d1->next = d2;
221 d2->next = d3;
222 pop_deferring_access_checks ();
223 }
224
225 /* Perform the deferred access checks.
226
227 After performing the checks, we still have to keep the list
228 `deferred_access_stack->deferred_access_checks' since we may want
229 to check access for them again later in a different context.
230 For example:
231
232 class A {
233 typedef int X;
234 static X a;
235 };
236 A::X A::a, x; // No error for `A::a', error for `x'
237
238 We have to perform deferred access of `A::X', first with `A::a',
239 next with `x'. */
240
241 void
242 perform_deferred_access_checks (void)
243 {
244 tree deferred_check;
245 for (deferred_check = deferred_access_stack->deferred_access_checks;
246 deferred_check;
247 deferred_check = TREE_CHAIN (deferred_check))
248 /* Check access. */
249 enforce_access (TREE_PURPOSE (deferred_check),
250 TREE_VALUE (deferred_check));
251 }
252
253 /* Defer checking the accessibility of DECL, when looked up in
254 BINFO. */
255
256 void
257 perform_or_defer_access_check (tree binfo, tree decl)
258 {
259 tree check;
260
261 my_friendly_assert (TREE_CODE (binfo) == TREE_VEC, 20030623);
262
263 /* If we are not supposed to defer access checks, just check now. */
264 if (deferred_access_stack->deferring_access_checks_kind == dk_no_deferred)
265 {
266 enforce_access (binfo, decl);
267 return;
268 }
269 /* Exit if we are in a context that no access checking is performed. */
270 else if (deferred_access_stack->deferring_access_checks_kind == dk_no_check)
271 return;
272
273 /* See if we are already going to perform this check. */
274 for (check = deferred_access_stack->deferred_access_checks;
275 check;
276 check = TREE_CHAIN (check))
277 if (TREE_VALUE (check) == decl && TREE_PURPOSE (check) == binfo)
278 return;
279 /* If not, record the check. */
280 deferred_access_stack->deferred_access_checks
281 = tree_cons (binfo, decl,
282 deferred_access_stack->deferred_access_checks);
283 }
284
285 /* Returns nonzero if the current statement is a full expression,
286 i.e. temporaries created during that statement should be destroyed
287 at the end of the statement. */
288
289 int
290 stmts_are_full_exprs_p (void)
291 {
292 return current_stmt_tree ()->stmts_are_full_exprs_p;
293 }
294
295 /* Returns the stmt_tree (if any) to which statements are currently
296 being added. If there is no active statement-tree, NULL is
297 returned. */
298
299 stmt_tree
300 current_stmt_tree (void)
301 {
302 return (cfun
303 ? &cfun->language->base.x_stmt_tree
304 : &scope_chain->x_stmt_tree);
305 }
306
307 /* Nonzero if TYPE is an anonymous union or struct type. We have to use a
308 flag for this because "A union for which objects or pointers are
309 declared is not an anonymous union" [class.union]. */
310
311 int
312 anon_aggr_type_p (tree node)
313 {
314 return ANON_AGGR_TYPE_P (node);
315 }
316
317 /* Finish a scope. */
318
319 static tree
320 do_poplevel (tree stmt_list)
321 {
322 tree block = NULL;
323
324 if (stmts_are_full_exprs_p ())
325 block = poplevel (kept_level_p (), 1, 0);
326
327 stmt_list = pop_stmt_list (stmt_list);
328
329 if (!processing_template_decl)
330 {
331 stmt_list = c_build_bind_expr (block, stmt_list);
332 /* ??? See c_end_compound_stmt re statement expressions. */
333 }
334
335 return stmt_list;
336 }
337
338 /* Begin a new scope. */
339
340 static tree
341 do_pushlevel (scope_kind sk)
342 {
343 tree ret = push_stmt_list ();
344 if (stmts_are_full_exprs_p ())
345 begin_scope (sk, NULL);
346 return ret;
347 }
348
349 /* Finish processing a conditional. COND contains the raw expression;
350 STMT_P is a stacked statement list that will contain any other stmts
351 emitting during the processing of this conditional. Place the
352 resulting conditional back in STMT_P. */
353
354 static void
355 finish_cond (tree cond, tree *stmt_p)
356 {
357 tree stmt = *stmt_p;
358 stmt = pop_stmt_list (stmt);
359 if (TREE_SIDE_EFFECTS (stmt))
360 {
361 /* If stmt is set, it will be a DECL_STMT. When processing a template,
362 using this is enough, because tsubst_expr considers the result of a
363 DECL_STMT to be the DECL. When generating real code, we build a
364 funny little TREE_LIST thingy that's handled by the gimplifier. */
365 /* ??? The object of this thingy is to get the DECL declared in the
366 proper scope. Seems like this oughtn't be terribly hard with the
367 new explicit uses of BIND_EXPR and such. */
368 if (processing_template_decl)
369 {
370 stmt = expr_only (stmt);
371 if (!stmt)
372 abort ();
373 }
374 else
375 stmt = build_tree_list (stmt, cond);
376 }
377 else
378 stmt = cond;
379 *stmt_p = stmt;
380 }
381
382 /* If *COND_P specifies a conditional with a declaration, transform the
383 loop such that
384 while (A x = 42) { }
385 for (; A x = 42;) { }
386 becomes
387 while (true) { A x = 42; if (!x) break; }
388 for (;;) { A x = 42; if (!x) break; }
389 The statement list for the loop body should have been pushed. */
390
391 static void
392 simplify_loop_decl_cond (tree *cond_p)
393 {
394 tree cond = *cond_p;
395 if (TREE_CODE (cond) == TREE_LIST)
396 {
397 tree if_stmt;
398
399 *cond_p = boolean_true_node;
400
401 if_stmt = begin_if_stmt ();
402 add_stmt (TREE_PURPOSE (cond));
403 cond = build_unary_op (TRUTH_NOT_EXPR, TREE_VALUE (cond), 0);
404 finish_if_stmt_cond (cond, if_stmt);
405 finish_break_stmt ();
406 finish_then_clause (if_stmt);
407 finish_if_stmt (if_stmt);
408 }
409 }
410
411
412 /* Finish a goto-statement. */
413
414 tree
415 finish_goto_stmt (tree destination)
416 {
417 if (TREE_CODE (destination) == IDENTIFIER_NODE)
418 destination = lookup_label (destination);
419
420 /* We warn about unused labels with -Wunused. That means we have to
421 mark the used labels as used. */
422 if (TREE_CODE (destination) == LABEL_DECL)
423 TREE_USED (destination) = 1;
424 else
425 {
426 /* The DESTINATION is being used as an rvalue. */
427 if (!processing_template_decl)
428 destination = decay_conversion (destination);
429 /* We don't inline calls to functions with computed gotos.
430 Those functions are typically up to some funny business,
431 and may be depending on the labels being at particular
432 addresses, or some such. */
433 DECL_UNINLINABLE (current_function_decl) = 1;
434 }
435
436 check_goto (destination);
437
438 return add_stmt (build_stmt (GOTO_EXPR, destination));
439 }
440
441 /* COND is the condition-expression for an if, while, etc.,
442 statement. Convert it to a boolean value, if appropriate. */
443
444 static tree
445 maybe_convert_cond (tree cond)
446 {
447 /* Empty conditions remain empty. */
448 if (!cond)
449 return NULL_TREE;
450
451 /* Wait until we instantiate templates before doing conversion. */
452 if (processing_template_decl)
453 return cond;
454
455 /* Do the conversion. */
456 cond = convert_from_reference (cond);
457 return condition_conversion (cond);
458 }
459
460 /* Finish an expression-statement, whose EXPRESSION is as indicated. */
461
462 tree
463 finish_expr_stmt (tree expr)
464 {
465 tree r = NULL_TREE;
466
467 if (expr != NULL_TREE)
468 {
469 if (!processing_template_decl)
470 expr = convert_to_void (expr, "statement");
471 else if (!type_dependent_expression_p (expr))
472 convert_to_void (build_non_dependent_expr (expr), "statement");
473
474 /* Simplification of inner statement expressions, compound exprs,
475 etc can result in the us already having an EXPR_STMT. */
476 if (TREE_CODE (expr) != EXPR_STMT)
477 expr = build_stmt (EXPR_STMT, expr);
478 r = add_stmt (expr);
479 }
480
481 finish_stmt ();
482
483 return r;
484 }
485
486
487 /* Begin an if-statement. Returns a newly created IF_STMT if
488 appropriate. */
489
490 tree
491 begin_if_stmt (void)
492 {
493 tree r, scope;
494 scope = do_pushlevel (sk_block);
495 r = build_stmt (IF_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
496 TREE_CHAIN (r) = scope;
497 add_stmt (r);
498 IF_COND (r) = push_stmt_list ();
499 return r;
500 }
501
502 /* Process the COND of an if-statement, which may be given by
503 IF_STMT. */
504
505 void
506 finish_if_stmt_cond (tree cond, tree if_stmt)
507 {
508 cond = maybe_convert_cond (cond);
509 finish_cond (cond, &IF_COND (if_stmt));
510 THEN_CLAUSE (if_stmt) = push_stmt_list ();
511 }
512
513 /* Finish the then-clause of an if-statement, which may be given by
514 IF_STMT. */
515
516 tree
517 finish_then_clause (tree if_stmt)
518 {
519 THEN_CLAUSE (if_stmt) = pop_stmt_list (THEN_CLAUSE (if_stmt));
520 return if_stmt;
521 }
522
523 /* Begin the else-clause of an if-statement. */
524
525 void
526 begin_else_clause (tree if_stmt)
527 {
528 ELSE_CLAUSE (if_stmt) = push_stmt_list ();
529 }
530
531 /* Finish the else-clause of an if-statement, which may be given by
532 IF_STMT. */
533
534 void
535 finish_else_clause (tree if_stmt)
536 {
537 ELSE_CLAUSE (if_stmt) = pop_stmt_list (ELSE_CLAUSE (if_stmt));
538 }
539
540 /* Finish an if-statement. */
541
542 void
543 finish_if_stmt (tree if_stmt)
544 {
545 tree scope = TREE_CHAIN (if_stmt);
546 TREE_CHAIN (if_stmt) = NULL;
547 add_stmt (do_poplevel (scope));
548 finish_stmt ();
549 }
550
551 /* Begin a while-statement. Returns a newly created WHILE_STMT if
552 appropriate. */
553
554 tree
555 begin_while_stmt (void)
556 {
557 tree r;
558 r = build_stmt (WHILE_STMT, NULL_TREE, NULL_TREE);
559 add_stmt (r);
560 WHILE_BODY (r) = do_pushlevel (sk_block);
561 WHILE_COND (r) = push_stmt_list ();
562 return r;
563 }
564
565 /* Process the COND of a while-statement, which may be given by
566 WHILE_STMT. */
567
568 void
569 finish_while_stmt_cond (tree cond, tree while_stmt)
570 {
571 cond = maybe_convert_cond (cond);
572 finish_cond (cond, &WHILE_COND (while_stmt));
573 simplify_loop_decl_cond (&WHILE_COND (while_stmt));
574 }
575
576 /* Finish a while-statement, which may be given by WHILE_STMT. */
577
578 void
579 finish_while_stmt (tree while_stmt)
580 {
581 WHILE_BODY (while_stmt) = do_poplevel (WHILE_BODY (while_stmt));
582 finish_stmt ();
583 }
584
585 /* Begin a do-statement. Returns a newly created DO_STMT if
586 appropriate. */
587
588 tree
589 begin_do_stmt (void)
590 {
591 tree r = build_stmt (DO_STMT, NULL_TREE, NULL_TREE);
592 add_stmt (r);
593 DO_BODY (r) = push_stmt_list ();
594 return r;
595 }
596
597 /* Finish the body of a do-statement, which may be given by DO_STMT. */
598
599 void
600 finish_do_body (tree do_stmt)
601 {
602 DO_BODY (do_stmt) = pop_stmt_list (DO_BODY (do_stmt));
603 }
604
605 /* Finish a do-statement, which may be given by DO_STMT, and whose
606 COND is as indicated. */
607
608 void
609 finish_do_stmt (tree cond, tree do_stmt)
610 {
611 cond = maybe_convert_cond (cond);
612 DO_COND (do_stmt) = cond;
613 finish_stmt ();
614 }
615
616 /* Finish a return-statement. The EXPRESSION returned, if any, is as
617 indicated. */
618
619 tree
620 finish_return_stmt (tree expr)
621 {
622 tree r;
623
624 expr = check_return_expr (expr);
625 if (!processing_template_decl)
626 {
627 if (DECL_DESTRUCTOR_P (current_function_decl))
628 {
629 /* Similarly, all destructors must run destructors for
630 base-classes before returning. So, all returns in a
631 destructor get sent to the DTOR_LABEL; finish_function emits
632 code to return a value there. */
633 return finish_goto_stmt (dtor_label);
634 }
635 }
636 r = add_stmt (build_stmt (RETURN_STMT, expr));
637 finish_stmt ();
638
639 return r;
640 }
641
642 /* Begin a for-statement. Returns a new FOR_STMT if appropriate. */
643
644 tree
645 begin_for_stmt (void)
646 {
647 tree r;
648
649 r = build_stmt (FOR_STMT, NULL_TREE, NULL_TREE,
650 NULL_TREE, NULL_TREE);
651
652 if (flag_new_for_scope > 0)
653 TREE_CHAIN (r) = do_pushlevel (sk_for);
654
655 if (processing_template_decl)
656 FOR_INIT_STMT (r) = push_stmt_list ();
657
658 return r;
659 }
660
661 /* Finish the for-init-statement of a for-statement, which may be
662 given by FOR_STMT. */
663
664 void
665 finish_for_init_stmt (tree for_stmt)
666 {
667 if (processing_template_decl)
668 FOR_INIT_STMT (for_stmt) = pop_stmt_list (FOR_INIT_STMT (for_stmt));
669 add_stmt (for_stmt);
670 FOR_BODY (for_stmt) = do_pushlevel (sk_block);
671 FOR_COND (for_stmt) = push_stmt_list ();
672 }
673
674 /* Finish the COND of a for-statement, which may be given by
675 FOR_STMT. */
676
677 void
678 finish_for_cond (tree cond, tree for_stmt)
679 {
680 cond = maybe_convert_cond (cond);
681 finish_cond (cond, &FOR_COND (for_stmt));
682 if (FOR_COND (for_stmt))
683 simplify_loop_decl_cond (&FOR_COND (for_stmt));
684 }
685
686 /* Finish the increment-EXPRESSION in a for-statement, which may be
687 given by FOR_STMT. */
688
689 void
690 finish_for_expr (tree expr, tree for_stmt)
691 {
692 /* If EXPR is an overloaded function, issue an error; there is no
693 context available to use to perform overload resolution. */
694 if (expr && type_unknown_p (expr))
695 {
696 cxx_incomplete_type_error (expr, TREE_TYPE (expr));
697 expr = error_mark_node;
698 }
699 FOR_EXPR (for_stmt) = expr;
700 }
701
702 /* Finish the body of a for-statement, which may be given by
703 FOR_STMT. The increment-EXPR for the loop must be
704 provided. */
705
706 void
707 finish_for_stmt (tree for_stmt)
708 {
709 FOR_BODY (for_stmt) = do_poplevel (FOR_BODY (for_stmt));
710
711 /* Pop the scope for the body of the loop. */
712 if (flag_new_for_scope > 0)
713 {
714 tree scope = TREE_CHAIN (for_stmt);
715 TREE_CHAIN (for_stmt) = NULL;
716 add_stmt (do_poplevel (scope));
717 }
718
719 finish_stmt ();
720 }
721
722 /* Finish a break-statement. */
723
724 tree
725 finish_break_stmt (void)
726 {
727 return add_stmt (build_break_stmt ());
728 }
729
730 /* Finish a continue-statement. */
731
732 tree
733 finish_continue_stmt (void)
734 {
735 return add_stmt (build_continue_stmt ());
736 }
737
738 /* Begin a switch-statement. Returns a new SWITCH_STMT if
739 appropriate. */
740
741 tree
742 begin_switch_stmt (void)
743 {
744 tree r, scope;
745
746 r = build_stmt (SWITCH_STMT, NULL_TREE, NULL_TREE, NULL_TREE);
747
748 scope = do_pushlevel (sk_block);
749 TREE_CHAIN (r) = scope;
750
751 add_stmt (r);
752 SWITCH_COND (r) = push_stmt_list ();
753
754 return r;
755 }
756
757 /* Finish the cond of a switch-statement. */
758
759 void
760 finish_switch_cond (tree cond, tree switch_stmt)
761 {
762 tree orig_type = NULL;
763 if (!processing_template_decl)
764 {
765 tree index;
766
767 /* Convert the condition to an integer or enumeration type. */
768 cond = build_expr_type_conversion (WANT_INT | WANT_ENUM, cond, true);
769 if (cond == NULL_TREE)
770 {
771 error ("switch quantity not an integer");
772 cond = error_mark_node;
773 }
774 orig_type = TREE_TYPE (cond);
775 if (cond != error_mark_node)
776 {
777 /* [stmt.switch]
778
779 Integral promotions are performed. */
780 cond = perform_integral_promotions (cond);
781 cond = fold (build1 (CLEANUP_POINT_EXPR, TREE_TYPE (cond), cond));
782 }
783
784 if (cond != error_mark_node)
785 {
786 index = get_unwidened (cond, NULL_TREE);
787 /* We can't strip a conversion from a signed type to an unsigned,
788 because if we did, int_fits_type_p would do the wrong thing
789 when checking case values for being in range,
790 and it's too hard to do the right thing. */
791 if (TYPE_UNSIGNED (TREE_TYPE (cond))
792 == TYPE_UNSIGNED (TREE_TYPE (index)))
793 cond = index;
794 }
795 }
796 finish_cond (cond, &SWITCH_COND (switch_stmt));
797 SWITCH_TYPE (switch_stmt) = orig_type;
798 push_switch (switch_stmt);
799 SWITCH_BODY (switch_stmt) = push_stmt_list ();
800 }
801
802 /* Finish the body of a switch-statement, which may be given by
803 SWITCH_STMT. The COND to switch on is indicated. */
804
805 void
806 finish_switch_stmt (tree switch_stmt)
807 {
808 tree scope;
809
810 SWITCH_BODY (switch_stmt) = pop_stmt_list (SWITCH_BODY (switch_stmt));
811 pop_switch ();
812 finish_stmt ();
813
814 scope = TREE_CHAIN (switch_stmt);
815 TREE_CHAIN (switch_stmt) = NULL;
816 add_stmt (do_poplevel (scope));
817 }
818
819 /* Begin a try-block. Returns a newly-created TRY_BLOCK if
820 appropriate. */
821
822 tree
823 begin_try_block (void)
824 {
825 tree r = build_stmt (TRY_BLOCK, NULL_TREE, NULL_TREE);
826 add_stmt (r);
827 TRY_STMTS (r) = push_stmt_list ();
828 return r;
829 }
830
831 /* Likewise, for a function-try-block. */
832
833 tree
834 begin_function_try_block (void)
835 {
836 tree r = begin_try_block ();
837 FN_TRY_BLOCK_P (r) = 1;
838 return r;
839 }
840
841 /* Finish a try-block, which may be given by TRY_BLOCK. */
842
843 void
844 finish_try_block (tree try_block)
845 {
846 TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
847 TRY_HANDLERS (try_block) = push_stmt_list ();
848 }
849
850 /* Finish the body of a cleanup try-block, which may be given by
851 TRY_BLOCK. */
852
853 void
854 finish_cleanup_try_block (tree try_block)
855 {
856 TRY_STMTS (try_block) = pop_stmt_list (TRY_STMTS (try_block));
857 }
858
859 /* Finish an implicitly generated try-block, with a cleanup is given
860 by CLEANUP. */
861
862 void
863 finish_cleanup (tree cleanup, tree try_block)
864 {
865 TRY_HANDLERS (try_block) = cleanup;
866 CLEANUP_P (try_block) = 1;
867 }
868
869 /* Likewise, for a function-try-block. */
870
871 void
872 finish_function_try_block (tree try_block)
873 {
874 finish_try_block (try_block);
875 /* FIXME : something queer about CTOR_INITIALIZER somehow following
876 the try block, but moving it inside. */
877 in_function_try_handler = 1;
878 }
879
880 /* Finish a handler-sequence for a try-block, which may be given by
881 TRY_BLOCK. */
882
883 void
884 finish_handler_sequence (tree try_block)
885 {
886 TRY_HANDLERS (try_block) = pop_stmt_list (TRY_HANDLERS (try_block));
887 check_handlers (TRY_HANDLERS (try_block));
888 }
889
890 /* Likewise, for a function-try-block. */
891
892 void
893 finish_function_handler_sequence (tree try_block)
894 {
895 in_function_try_handler = 0;
896 finish_handler_sequence (try_block);
897 }
898
899 /* Begin a handler. Returns a HANDLER if appropriate. */
900
901 tree
902 begin_handler (void)
903 {
904 tree r;
905
906 r = build_stmt (HANDLER, NULL_TREE, NULL_TREE);
907 add_stmt (r);
908
909 /* Create a binding level for the eh_info and the exception object
910 cleanup. */
911 HANDLER_BODY (r) = do_pushlevel (sk_catch);
912
913 return r;
914 }
915
916 /* Finish the handler-parameters for a handler, which may be given by
917 HANDLER. DECL is the declaration for the catch parameter, or NULL
918 if this is a `catch (...)' clause. */
919
920 void
921 finish_handler_parms (tree decl, tree handler)
922 {
923 tree type = NULL_TREE;
924 if (processing_template_decl)
925 {
926 if (decl)
927 {
928 decl = pushdecl (decl);
929 decl = push_template_decl (decl);
930 HANDLER_PARMS (handler) = decl;
931 type = TREE_TYPE (decl);
932 }
933 }
934 else
935 type = expand_start_catch_block (decl);
936
937 HANDLER_TYPE (handler) = type;
938 if (!processing_template_decl && type)
939 mark_used (eh_type_info (type));
940 }
941
942 /* Finish a handler, which may be given by HANDLER. The BLOCKs are
943 the return value from the matching call to finish_handler_parms. */
944
945 void
946 finish_handler (tree handler)
947 {
948 if (!processing_template_decl)
949 expand_end_catch_block ();
950 HANDLER_BODY (handler) = do_poplevel (HANDLER_BODY (handler));
951 }
952
953 /* Begin a compound statement. FLAGS contains some bits that control the
954 behaviour and context. If BCS_NO_SCOPE is set, the compound statement
955 does not define a scope. If BCS_FN_BODY is set, this is the outermost
956 block of a function. If BCS_TRY_BLOCK is set, this is the block
957 created on behalf of a TRY statement. Returns a token to be passed to
958 finish_compound_stmt. */
959
960 tree
961 begin_compound_stmt (unsigned int flags)
962 {
963 tree r;
964
965 if (flags & BCS_NO_SCOPE)
966 {
967 r = push_stmt_list ();
968 STATEMENT_LIST_NO_SCOPE (r) = 1;
969
970 /* Normally, we try hard to keep the BLOCK for a statement-expression.
971 But, if it's a statement-expression with a scopeless block, there's
972 nothing to keep, and we don't want to accidentally keep a block
973 *inside* the scopeless block. */
974 keep_next_level (false);
975 }
976 else
977 r = do_pushlevel (flags & BCS_TRY_BLOCK ? sk_try : sk_block);
978
979 /* When processing a template, we need to remember where the braces were,
980 so that we can set up identical scopes when instantiating the template
981 later. BIND_EXPR is a handy candidate for this.
982 Note that do_poplevel won't create a BIND_EXPR itself here (and thus
983 result in nested BIND_EXPRs), since we don't build BLOCK nodes when
984 processing templates. */
985 if (processing_template_decl)
986 {
987 r = build (BIND_EXPR, NULL, NULL, r, NULL);
988 BIND_EXPR_TRY_BLOCK (r) = (flags & BCS_TRY_BLOCK) != 0;
989 BIND_EXPR_BODY_BLOCK (r) = (flags & BCS_FN_BODY) != 0;
990 TREE_SIDE_EFFECTS (r) = 1;
991 }
992
993 return r;
994 }
995
996 /* Finish a compound-statement, which is given by STMT. */
997
998 void
999 finish_compound_stmt (tree stmt)
1000 {
1001 if (TREE_CODE (stmt) == BIND_EXPR)
1002 BIND_EXPR_BODY (stmt) = do_poplevel (BIND_EXPR_BODY (stmt));
1003 else if (STATEMENT_LIST_NO_SCOPE (stmt))
1004 stmt = pop_stmt_list (stmt);
1005 else
1006 stmt = do_poplevel (stmt);
1007
1008 /* ??? See c_end_compound_stmt wrt statement expressions. */
1009 add_stmt (stmt);
1010 finish_stmt ();
1011 }
1012
1013 /* Finish an asm-statement, whose components are a STRING, some
1014 OUTPUT_OPERANDS, some INPUT_OPERANDS, and some CLOBBERS. Also note
1015 whether the asm-statement should be considered volatile. */
1016
1017 tree
1018 finish_asm_stmt (int volatile_p, tree string, tree output_operands,
1019 tree input_operands, tree clobbers)
1020 {
1021 tree r;
1022 tree t;
1023
1024 if (!processing_template_decl)
1025 {
1026 int i;
1027 int ninputs;
1028 int noutputs;
1029
1030 for (t = input_operands; t; t = TREE_CHAIN (t))
1031 {
1032 tree converted_operand
1033 = decay_conversion (TREE_VALUE (t));
1034
1035 /* If the type of the operand hasn't been determined (e.g.,
1036 because it involves an overloaded function), then issue
1037 an error message. There's no context available to
1038 resolve the overloading. */
1039 if (TREE_TYPE (converted_operand) == unknown_type_node)
1040 {
1041 error ("type of asm operand `%E' could not be determined",
1042 TREE_VALUE (t));
1043 converted_operand = error_mark_node;
1044 }
1045 TREE_VALUE (t) = converted_operand;
1046 }
1047
1048 ninputs = list_length (input_operands);
1049 noutputs = list_length (output_operands);
1050
1051 for (i = 0, t = output_operands; t; t = TREE_CHAIN (t), ++i)
1052 {
1053 bool allows_mem;
1054 bool allows_reg;
1055 bool is_inout;
1056 const char *constraint;
1057 tree operand;
1058
1059 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
1060 operand = TREE_VALUE (t);
1061
1062 if (!parse_output_constraint (&constraint,
1063 i, ninputs, noutputs,
1064 &allows_mem,
1065 &allows_reg,
1066 &is_inout))
1067 {
1068 /* By marking this operand as erroneous, we will not try
1069 to process this operand again in expand_asm_operands. */
1070 TREE_VALUE (t) = error_mark_node;
1071 continue;
1072 }
1073
1074 /* If the operand is a DECL that is going to end up in
1075 memory, assume it is addressable. This is a bit more
1076 conservative than it would ideally be; the exact test is
1077 buried deep in expand_asm_operands and depends on the
1078 DECL_RTL for the OPERAND -- which we don't have at this
1079 point. */
1080 if (!allows_reg && DECL_P (operand))
1081 cxx_mark_addressable (operand);
1082 }
1083 }
1084
1085 r = build_stmt (ASM_EXPR, string,
1086 output_operands, input_operands,
1087 clobbers);
1088 ASM_VOLATILE_P (r) = volatile_p;
1089 return add_stmt (r);
1090 }
1091
1092 /* Finish a label with the indicated NAME. */
1093
1094 tree
1095 finish_label_stmt (tree name)
1096 {
1097 tree decl = define_label (input_location, name);
1098 return add_stmt (build_stmt (LABEL_EXPR, decl));
1099 }
1100
1101 /* Finish a series of declarations for local labels. G++ allows users
1102 to declare "local" labels, i.e., labels with scope. This extension
1103 is useful when writing code involving statement-expressions. */
1104
1105 void
1106 finish_label_decl (tree name)
1107 {
1108 tree decl = declare_local_label (name);
1109 add_decl_stmt (decl);
1110 }
1111
1112 /* When DECL goes out of scope, make sure that CLEANUP is executed. */
1113
1114 void
1115 finish_decl_cleanup (tree decl, tree cleanup)
1116 {
1117 push_cleanup (decl, cleanup, false);
1118 }
1119
1120 /* If the current scope exits with an exception, run CLEANUP. */
1121
1122 void
1123 finish_eh_cleanup (tree cleanup)
1124 {
1125 push_cleanup (NULL, cleanup, true);
1126 }
1127
1128 /* The MEM_INITS is a list of mem-initializers, in reverse of the
1129 order they were written by the user. Each node is as for
1130 emit_mem_initializers. */
1131
1132 void
1133 finish_mem_initializers (tree mem_inits)
1134 {
1135 /* Reorder the MEM_INITS so that they are in the order they appeared
1136 in the source program. */
1137 mem_inits = nreverse (mem_inits);
1138
1139 if (processing_template_decl)
1140 add_stmt (build_min_nt (CTOR_INITIALIZER, mem_inits));
1141 else
1142 emit_mem_initializers (mem_inits);
1143 }
1144
1145 /* Finish a parenthesized expression EXPR. */
1146
1147 tree
1148 finish_parenthesized_expr (tree expr)
1149 {
1150 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (TREE_CODE (expr))))
1151 /* This inhibits warnings in c_common_truthvalue_conversion. */
1152 C_SET_EXP_ORIGINAL_CODE (expr, ERROR_MARK);
1153
1154 if (TREE_CODE (expr) == OFFSET_REF)
1155 /* [expr.unary.op]/3 The qualified id of a pointer-to-member must not be
1156 enclosed in parentheses. */
1157 PTRMEM_OK_P (expr) = 0;
1158 return expr;
1159 }
1160
1161 /* Finish a reference to a non-static data member (DECL) that is not
1162 preceded by `.' or `->'. */
1163
1164 tree
1165 finish_non_static_data_member (tree decl, tree object, tree qualifying_scope)
1166 {
1167 my_friendly_assert (TREE_CODE (decl) == FIELD_DECL, 20020909);
1168
1169 if (!object)
1170 {
1171 if (current_function_decl
1172 && DECL_STATIC_FUNCTION_P (current_function_decl))
1173 cp_error_at ("invalid use of member `%D' in static member function",
1174 decl);
1175 else
1176 cp_error_at ("invalid use of non-static data member `%D'", decl);
1177 error ("from this location");
1178
1179 return error_mark_node;
1180 }
1181 TREE_USED (current_class_ptr) = 1;
1182 if (processing_template_decl && !qualifying_scope)
1183 {
1184 tree type = TREE_TYPE (decl);
1185
1186 if (TREE_CODE (type) == REFERENCE_TYPE)
1187 type = TREE_TYPE (type);
1188 else
1189 {
1190 /* Set the cv qualifiers. */
1191 int quals = cp_type_quals (TREE_TYPE (current_class_ref));
1192
1193 if (DECL_MUTABLE_P (decl))
1194 quals &= ~TYPE_QUAL_CONST;
1195
1196 quals |= cp_type_quals (TREE_TYPE (decl));
1197 type = cp_build_qualified_type (type, quals);
1198 }
1199
1200 return build_min (COMPONENT_REF, type, object, decl);
1201 }
1202 else
1203 {
1204 tree access_type = TREE_TYPE (object);
1205 tree lookup_context = context_for_name_lookup (decl);
1206
1207 while (!DERIVED_FROM_P (lookup_context, access_type))
1208 {
1209 access_type = TYPE_CONTEXT (access_type);
1210 while (access_type && DECL_P (access_type))
1211 access_type = DECL_CONTEXT (access_type);
1212
1213 if (!access_type)
1214 {
1215 cp_error_at ("object missing in reference to `%D'", decl);
1216 error ("from this location");
1217 return error_mark_node;
1218 }
1219 }
1220
1221 /* If PROCESSING_TEMPLATE_DECL is nonzero here, then
1222 QUALIFYING_SCOPE is also non-null. Wrap this in a SCOPE_REF
1223 for now. */
1224 if (processing_template_decl)
1225 return build_min (SCOPE_REF, TREE_TYPE (decl),
1226 qualifying_scope, DECL_NAME (decl));
1227
1228 perform_or_defer_access_check (TYPE_BINFO (access_type), decl);
1229
1230 /* If the data member was named `C::M', convert `*this' to `C'
1231 first. */
1232 if (qualifying_scope)
1233 {
1234 tree binfo = NULL_TREE;
1235 object = build_scoped_ref (object, qualifying_scope,
1236 &binfo);
1237 }
1238
1239 return build_class_member_access_expr (object, decl,
1240 /*access_path=*/NULL_TREE,
1241 /*preserve_reference=*/false);
1242 }
1243 }
1244
1245 /* DECL was the declaration to which a qualified-id resolved. Issue
1246 an error message if it is not accessible. If OBJECT_TYPE is
1247 non-NULL, we have just seen `x->' or `x.' and OBJECT_TYPE is the
1248 type of `*x', or `x', respectively. If the DECL was named as
1249 `A::B' then NESTED_NAME_SPECIFIER is `A'. */
1250
1251 void
1252 check_accessibility_of_qualified_id (tree decl,
1253 tree object_type,
1254 tree nested_name_specifier)
1255 {
1256 tree scope;
1257 tree qualifying_type = NULL_TREE;
1258
1259 /* Determine the SCOPE of DECL. */
1260 scope = context_for_name_lookup (decl);
1261 /* If the SCOPE is not a type, then DECL is not a member. */
1262 if (!TYPE_P (scope))
1263 return;
1264 /* Compute the scope through which DECL is being accessed. */
1265 if (object_type
1266 /* OBJECT_TYPE might not be a class type; consider:
1267
1268 class A { typedef int I; };
1269 I *p;
1270 p->A::I::~I();
1271
1272 In this case, we will have "A::I" as the DECL, but "I" as the
1273 OBJECT_TYPE. */
1274 && CLASS_TYPE_P (object_type)
1275 && DERIVED_FROM_P (scope, object_type))
1276 /* If we are processing a `->' or `.' expression, use the type of the
1277 left-hand side. */
1278 qualifying_type = object_type;
1279 else if (nested_name_specifier)
1280 {
1281 /* If the reference is to a non-static member of the
1282 current class, treat it as if it were referenced through
1283 `this'. */
1284 if (DECL_NONSTATIC_MEMBER_P (decl)
1285 && current_class_ptr
1286 && DERIVED_FROM_P (scope, current_class_type))
1287 qualifying_type = current_class_type;
1288 /* Otherwise, use the type indicated by the
1289 nested-name-specifier. */
1290 else
1291 qualifying_type = nested_name_specifier;
1292 }
1293 else
1294 /* Otherwise, the name must be from the current class or one of
1295 its bases. */
1296 qualifying_type = currently_open_derived_class (scope);
1297
1298 if (qualifying_type)
1299 perform_or_defer_access_check (TYPE_BINFO (qualifying_type), decl);
1300 }
1301
1302 /* EXPR is the result of a qualified-id. The QUALIFYING_CLASS was the
1303 class named to the left of the "::" operator. DONE is true if this
1304 expression is a complete postfix-expression; it is false if this
1305 expression is followed by '->', '[', '(', etc. ADDRESS_P is true
1306 iff this expression is the operand of '&'. */
1307
1308 tree
1309 finish_qualified_id_expr (tree qualifying_class, tree expr, bool done,
1310 bool address_p)
1311 {
1312 if (error_operand_p (expr))
1313 return error_mark_node;
1314
1315 /* If EXPR occurs as the operand of '&', use special handling that
1316 permits a pointer-to-member. */
1317 if (address_p && done)
1318 {
1319 if (TREE_CODE (expr) == SCOPE_REF)
1320 expr = TREE_OPERAND (expr, 1);
1321 expr = build_offset_ref (qualifying_class, expr,
1322 /*address_p=*/true);
1323 return expr;
1324 }
1325
1326 if (TREE_CODE (expr) == FIELD_DECL)
1327 expr = finish_non_static_data_member (expr, current_class_ref,
1328 qualifying_class);
1329 else if (BASELINK_P (expr) && !processing_template_decl)
1330 {
1331 tree fn;
1332 tree fns;
1333
1334 /* See if any of the functions are non-static members. */
1335 fns = BASELINK_FUNCTIONS (expr);
1336 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
1337 fns = TREE_OPERAND (fns, 0);
1338 for (fn = fns; fn; fn = OVL_NEXT (fn))
1339 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn))
1340 break;
1341 /* If so, the expression may be relative to the current
1342 class. */
1343 if (fn && current_class_type
1344 && DERIVED_FROM_P (qualifying_class, current_class_type))
1345 expr = (build_class_member_access_expr
1346 (maybe_dummy_object (qualifying_class, NULL),
1347 expr,
1348 BASELINK_ACCESS_BINFO (expr),
1349 /*preserve_reference=*/false));
1350 else if (done)
1351 /* The expression is a qualified name whose address is not
1352 being taken. */
1353 expr = build_offset_ref (qualifying_class, expr, /*address_p=*/false);
1354 }
1355
1356 return expr;
1357 }
1358
1359 /* Begin a statement-expression. The value returned must be passed to
1360 finish_stmt_expr. */
1361
1362 tree
1363 begin_stmt_expr (void)
1364 {
1365 return push_stmt_list ();
1366 }
1367
1368 /* Process the final expression of a statement expression. EXPR can be
1369 NULL, if the final expression is empty. Build up a TARGET_EXPR so
1370 that the result value can be safely returned to the enclosing
1371 expression. */
1372
1373 tree
1374 finish_stmt_expr_expr (tree expr, tree stmt_expr)
1375 {
1376 tree result = NULL_TREE;
1377
1378 if (expr)
1379 {
1380 if (!processing_template_decl && !VOID_TYPE_P (TREE_TYPE (expr)))
1381 {
1382 tree type = TREE_TYPE (expr);
1383
1384 if (TREE_CODE (type) == ARRAY_TYPE
1385 || TREE_CODE (type) == FUNCTION_TYPE)
1386 expr = decay_conversion (expr);
1387
1388 expr = convert_from_reference (expr);
1389 expr = require_complete_type (expr);
1390
1391 type = TREE_TYPE (expr);
1392
1393 /* Build a TARGET_EXPR for this aggregate. finish_stmt_expr
1394 will then pull it apart so the lifetime of the target is
1395 within the scope of the expression containing this statement
1396 expression. */
1397 if (TREE_CODE (expr) == TARGET_EXPR)
1398 ;
1399 else if (!IS_AGGR_TYPE (type) || TYPE_HAS_TRIVIAL_INIT_REF (type))
1400 expr = build_target_expr_with_type (expr, type);
1401 else
1402 {
1403 /* Copy construct. */
1404 expr = build_special_member_call
1405 (NULL_TREE, complete_ctor_identifier,
1406 build_tree_list (NULL_TREE, expr),
1407 TYPE_BINFO (type), LOOKUP_NORMAL);
1408 expr = build_cplus_new (type, expr);
1409 my_friendly_assert (TREE_CODE (expr) == TARGET_EXPR, 20030729);
1410 }
1411 }
1412
1413 if (expr != error_mark_node)
1414 {
1415 result = build_stmt (EXPR_STMT, expr);
1416 EXPR_STMT_STMT_EXPR_RESULT (result) = 1;
1417 add_stmt (result);
1418 }
1419 }
1420
1421 finish_stmt ();
1422
1423 /* Remember the last expression so that finish_stmt_expr
1424 can pull it apart. */
1425 TREE_TYPE (stmt_expr) = result;
1426
1427 return result;
1428 }
1429
1430 /* Finish a statement-expression. EXPR should be the value returned
1431 by the previous begin_stmt_expr. Returns an expression
1432 representing the statement-expression. */
1433
1434 tree
1435 finish_stmt_expr (tree stmt_expr, bool has_no_scope)
1436 {
1437 tree result, result_stmt, type;
1438 tree *result_stmt_p = NULL;
1439
1440 result_stmt = TREE_TYPE (stmt_expr);
1441 TREE_TYPE (stmt_expr) = void_type_node;
1442 result = pop_stmt_list (stmt_expr);
1443
1444 if (!result_stmt || VOID_TYPE_P (result_stmt))
1445 type = void_type_node;
1446 else
1447 {
1448 /* We need to search the statement expression for the result_stmt,
1449 since we'll need to replace it entirely. */
1450 tree t;
1451 result_stmt_p = &result;
1452 while (1)
1453 {
1454 t = *result_stmt_p;
1455 if (t == result_stmt)
1456 break;
1457
1458 switch (TREE_CODE (t))
1459 {
1460 case STATEMENT_LIST:
1461 {
1462 tree_stmt_iterator i = tsi_last (t);
1463 result_stmt_p = tsi_stmt_ptr (i);
1464 break;
1465 }
1466 case BIND_EXPR:
1467 result_stmt_p = &BIND_EXPR_BODY (t);
1468 break;
1469 case TRY_FINALLY_EXPR:
1470 case TRY_CATCH_EXPR:
1471 case CLEANUP_STMT:
1472 result_stmt_p = &TREE_OPERAND (t, 0);
1473 break;
1474 default:
1475 abort ();
1476 }
1477 }
1478 type = TREE_TYPE (EXPR_STMT_EXPR (result_stmt));
1479 }
1480
1481 if (processing_template_decl)
1482 {
1483 result = build_min (STMT_EXPR, type, result);
1484 TREE_SIDE_EFFECTS (result) = 1;
1485 STMT_EXPR_NO_SCOPE (result) = has_no_scope;
1486 }
1487 else if (!VOID_TYPE_P (type))
1488 {
1489 /* Pull out the TARGET_EXPR that is the final expression. Put
1490 the target's init_expr as the final expression and then put
1491 the statement expression itself as the target's init
1492 expr. Finally, return the target expression. */
1493 tree init, target_expr = EXPR_STMT_EXPR (result_stmt);
1494 my_friendly_assert (TREE_CODE (target_expr) == TARGET_EXPR, 20030729);
1495
1496 /* The initializer will be void if the initialization is done by
1497 AGGR_INIT_EXPR; propagate that out to the statement-expression as
1498 a whole. */
1499 init = TREE_OPERAND (target_expr, 1);
1500 type = TREE_TYPE (init);
1501
1502 if (stmts_are_full_exprs_p ())
1503 init = fold (build1 (CLEANUP_POINT_EXPR, type, init));
1504 *result_stmt_p = init;
1505
1506 if (VOID_TYPE_P (type))
1507 /* No frobbing needed. */;
1508 else if (TREE_CODE (result) == BIND_EXPR)
1509 {
1510 /* The BIND_EXPR created in finish_compound_stmt is void; if we're
1511 returning a value directly, give it the appropriate type. */
1512 if (VOID_TYPE_P (TREE_TYPE (result)))
1513 TREE_TYPE (result) = type;
1514 else if (same_type_p (TREE_TYPE (result), type))
1515 ;
1516 else
1517 abort ();
1518 }
1519 else if (TREE_CODE (result) == STATEMENT_LIST)
1520 /* We need to wrap a STATEMENT_LIST in a BIND_EXPR so it can have a
1521 type other than void. FIXME why can't we just return a value
1522 from STATEMENT_LIST? */
1523 result = build3 (BIND_EXPR, type, NULL, result, NULL);
1524
1525 TREE_OPERAND (target_expr, 1) = result;
1526 result = target_expr;
1527 }
1528
1529 return result;
1530 }
1531
1532 /* Perform Koenig lookup. FN is the postfix-expression representing
1533 the function (or functions) to call; ARGS are the arguments to the
1534 call. Returns the functions to be considered by overload
1535 resolution. */
1536
1537 tree
1538 perform_koenig_lookup (tree fn, tree args)
1539 {
1540 tree identifier = NULL_TREE;
1541 tree functions = NULL_TREE;
1542
1543 /* Find the name of the overloaded function. */
1544 if (TREE_CODE (fn) == IDENTIFIER_NODE)
1545 identifier = fn;
1546 else if (is_overloaded_fn (fn))
1547 {
1548 functions = fn;
1549 identifier = DECL_NAME (get_first_fn (functions));
1550 }
1551 else if (DECL_P (fn))
1552 {
1553 functions = fn;
1554 identifier = DECL_NAME (fn);
1555 }
1556
1557 /* A call to a namespace-scope function using an unqualified name.
1558
1559 Do Koenig lookup -- unless any of the arguments are
1560 type-dependent. */
1561 if (!any_type_dependent_arguments_p (args))
1562 {
1563 fn = lookup_arg_dependent (identifier, functions, args);
1564 if (!fn)
1565 /* The unqualified name could not be resolved. */
1566 fn = unqualified_fn_lookup_error (identifier);
1567 }
1568 else
1569 fn = identifier;
1570
1571 return fn;
1572 }
1573
1574 /* Generate an expression for `FN (ARGS)'.
1575
1576 If DISALLOW_VIRTUAL is true, the call to FN will be not generated
1577 as a virtual call, even if FN is virtual. (This flag is set when
1578 encountering an expression where the function name is explicitly
1579 qualified. For example a call to `X::f' never generates a virtual
1580 call.)
1581
1582 Returns code for the call. */
1583
1584 tree
1585 finish_call_expr (tree fn, tree args, bool disallow_virtual, bool koenig_p)
1586 {
1587 tree result;
1588 tree orig_fn;
1589 tree orig_args;
1590
1591 if (fn == error_mark_node || args == error_mark_node)
1592 return error_mark_node;
1593
1594 /* ARGS should be a list of arguments. */
1595 my_friendly_assert (!args || TREE_CODE (args) == TREE_LIST,
1596 20020712);
1597
1598 orig_fn = fn;
1599 orig_args = args;
1600
1601 if (processing_template_decl)
1602 {
1603 if (type_dependent_expression_p (fn)
1604 || any_type_dependent_arguments_p (args))
1605 {
1606 result = build_nt (CALL_EXPR, fn, args, NULL_TREE);
1607 KOENIG_LOOKUP_P (result) = koenig_p;
1608 return result;
1609 }
1610 if (!BASELINK_P (fn)
1611 && TREE_CODE (fn) != PSEUDO_DTOR_EXPR
1612 && TREE_TYPE (fn) != unknown_type_node)
1613 fn = build_non_dependent_expr (fn);
1614 args = build_non_dependent_args (orig_args);
1615 }
1616
1617 /* A reference to a member function will appear as an overloaded
1618 function (rather than a BASELINK) if an unqualified name was used
1619 to refer to it. */
1620 if (!BASELINK_P (fn) && is_overloaded_fn (fn))
1621 {
1622 tree f = fn;
1623
1624 if (TREE_CODE (f) == TEMPLATE_ID_EXPR)
1625 f = TREE_OPERAND (f, 0);
1626 f = get_first_fn (f);
1627 if (DECL_FUNCTION_MEMBER_P (f))
1628 {
1629 tree type = currently_open_derived_class (DECL_CONTEXT (f));
1630 if (!type)
1631 type = DECL_CONTEXT (f);
1632 fn = build_baselink (TYPE_BINFO (type),
1633 TYPE_BINFO (type),
1634 fn, /*optype=*/NULL_TREE);
1635 }
1636 }
1637
1638 result = NULL_TREE;
1639 if (BASELINK_P (fn))
1640 {
1641 tree object;
1642
1643 /* A call to a member function. From [over.call.func]:
1644
1645 If the keyword this is in scope and refers to the class of
1646 that member function, or a derived class thereof, then the
1647 function call is transformed into a qualified function call
1648 using (*this) as the postfix-expression to the left of the
1649 . operator.... [Otherwise] a contrived object of type T
1650 becomes the implied object argument.
1651
1652 This paragraph is unclear about this situation:
1653
1654 struct A { void f(); };
1655 struct B : public A {};
1656 struct C : public A { void g() { B::f(); }};
1657
1658 In particular, for `B::f', this paragraph does not make clear
1659 whether "the class of that member function" refers to `A' or
1660 to `B'. We believe it refers to `B'. */
1661 if (current_class_type
1662 && DERIVED_FROM_P (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
1663 current_class_type)
1664 && current_class_ref)
1665 object = maybe_dummy_object (BINFO_TYPE (BASELINK_ACCESS_BINFO (fn)),
1666 NULL);
1667 else
1668 {
1669 tree representative_fn;
1670
1671 representative_fn = BASELINK_FUNCTIONS (fn);
1672 if (TREE_CODE (representative_fn) == TEMPLATE_ID_EXPR)
1673 representative_fn = TREE_OPERAND (representative_fn, 0);
1674 representative_fn = get_first_fn (representative_fn);
1675 object = build_dummy_object (DECL_CONTEXT (representative_fn));
1676 }
1677
1678 if (processing_template_decl)
1679 {
1680 if (type_dependent_expression_p (object))
1681 return build_nt (CALL_EXPR, orig_fn, orig_args, NULL_TREE);
1682 object = build_non_dependent_expr (object);
1683 }
1684
1685 result = build_new_method_call (object, fn, args, NULL_TREE,
1686 (disallow_virtual
1687 ? LOOKUP_NONVIRTUAL : 0));
1688 }
1689 else if (is_overloaded_fn (fn))
1690 /* A call to a namespace-scope function. */
1691 result = build_new_function_call (fn, args);
1692 else if (TREE_CODE (fn) == PSEUDO_DTOR_EXPR)
1693 {
1694 if (args)
1695 error ("arguments to destructor are not allowed");
1696 /* Mark the pseudo-destructor call as having side-effects so
1697 that we do not issue warnings about its use. */
1698 result = build1 (NOP_EXPR,
1699 void_type_node,
1700 TREE_OPERAND (fn, 0));
1701 TREE_SIDE_EFFECTS (result) = 1;
1702 }
1703 else if (CLASS_TYPE_P (TREE_TYPE (fn)))
1704 /* If the "function" is really an object of class type, it might
1705 have an overloaded `operator ()'. */
1706 result = build_new_op (CALL_EXPR, LOOKUP_NORMAL, fn, args, NULL_TREE,
1707 /*overloaded_p=*/NULL);
1708 if (!result)
1709 /* A call where the function is unknown. */
1710 result = build_function_call (fn, args);
1711
1712 if (processing_template_decl)
1713 {
1714 result = build (CALL_EXPR, TREE_TYPE (result), orig_fn,
1715 orig_args, NULL_TREE);
1716 KOENIG_LOOKUP_P (result) = koenig_p;
1717 }
1718 return result;
1719 }
1720
1721 /* Finish a call to a postfix increment or decrement or EXPR. (Which
1722 is indicated by CODE, which should be POSTINCREMENT_EXPR or
1723 POSTDECREMENT_EXPR.) */
1724
1725 tree
1726 finish_increment_expr (tree expr, enum tree_code code)
1727 {
1728 return build_x_unary_op (code, expr);
1729 }
1730
1731 /* Finish a use of `this'. Returns an expression for `this'. */
1732
1733 tree
1734 finish_this_expr (void)
1735 {
1736 tree result;
1737
1738 if (current_class_ptr)
1739 {
1740 result = current_class_ptr;
1741 }
1742 else if (current_function_decl
1743 && DECL_STATIC_FUNCTION_P (current_function_decl))
1744 {
1745 error ("`this' is unavailable for static member functions");
1746 result = error_mark_node;
1747 }
1748 else
1749 {
1750 if (current_function_decl)
1751 error ("invalid use of `this' in non-member function");
1752 else
1753 error ("invalid use of `this' at top level");
1754 result = error_mark_node;
1755 }
1756
1757 return result;
1758 }
1759
1760 /* Finish a pseudo-destructor expression. If SCOPE is NULL, the
1761 expression was of the form `OBJECT.~DESTRUCTOR' where DESTRUCTOR is
1762 the TYPE for the type given. If SCOPE is non-NULL, the expression
1763 was of the form `OBJECT.SCOPE::~DESTRUCTOR'. */
1764
1765 tree
1766 finish_pseudo_destructor_expr (tree object, tree scope, tree destructor)
1767 {
1768 if (destructor == error_mark_node)
1769 return error_mark_node;
1770
1771 my_friendly_assert (TYPE_P (destructor), 20010905);
1772
1773 if (!processing_template_decl)
1774 {
1775 if (scope == error_mark_node)
1776 {
1777 error ("invalid qualifying scope in pseudo-destructor name");
1778 return error_mark_node;
1779 }
1780
1781 /* [expr.pseudo] says both:
1782
1783 The type designated by the pseudo-destructor-name shall be
1784 the same as the object type.
1785
1786 and:
1787
1788 The cv-unqualified versions of the object type and of the
1789 type designated by the pseudo-destructor-name shall be the
1790 same type.
1791
1792 We implement the more generous second sentence, since that is
1793 what most other compilers do. */
1794 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (object),
1795 destructor))
1796 {
1797 error ("`%E' is not of type `%T'", object, destructor);
1798 return error_mark_node;
1799 }
1800 }
1801
1802 return build (PSEUDO_DTOR_EXPR, void_type_node, object, scope, destructor);
1803 }
1804
1805 /* Finish an expression of the form CODE EXPR. */
1806
1807 tree
1808 finish_unary_op_expr (enum tree_code code, tree expr)
1809 {
1810 tree result = build_x_unary_op (code, expr);
1811 /* Inside a template, build_x_unary_op does not fold the
1812 expression. So check whether the result is folded before
1813 setting TREE_NEGATED_INT. */
1814 if (code == NEGATE_EXPR && TREE_CODE (expr) == INTEGER_CST
1815 && TREE_CODE (result) == INTEGER_CST
1816 && !TYPE_UNSIGNED (TREE_TYPE (result))
1817 && INT_CST_LT (result, integer_zero_node))
1818 TREE_NEGATED_INT (result) = 1;
1819 overflow_warning (result);
1820 return result;
1821 }
1822
1823 /* Finish a compound-literal expression. TYPE is the type to which
1824 the INITIALIZER_LIST is being cast. */
1825
1826 tree
1827 finish_compound_literal (tree type, tree initializer_list)
1828 {
1829 tree compound_literal;
1830
1831 /* Build a CONSTRUCTOR for the INITIALIZER_LIST. */
1832 compound_literal = build_constructor (NULL_TREE, initializer_list);
1833 /* Mark it as a compound-literal. */
1834 TREE_HAS_CONSTRUCTOR (compound_literal) = 1;
1835 if (processing_template_decl)
1836 TREE_TYPE (compound_literal) = type;
1837 else
1838 {
1839 /* Check the initialization. */
1840 compound_literal = digest_init (type, compound_literal, NULL);
1841 /* If the TYPE was an array type with an unknown bound, then we can
1842 figure out the dimension now. For example, something like:
1843
1844 `(int []) { 2, 3 }'
1845
1846 implies that the array has two elements. */
1847 if (TREE_CODE (type) == ARRAY_TYPE && !COMPLETE_TYPE_P (type))
1848 complete_array_type (type, compound_literal, 1);
1849 }
1850
1851 return compound_literal;
1852 }
1853
1854 /* Return the declaration for the function-name variable indicated by
1855 ID. */
1856
1857 tree
1858 finish_fname (tree id)
1859 {
1860 tree decl;
1861
1862 decl = fname_decl (C_RID_CODE (id), id);
1863 if (processing_template_decl)
1864 decl = DECL_NAME (decl);
1865 return decl;
1866 }
1867
1868 /* Begin a function definition declared with DECL_SPECS, ATTRIBUTES,
1869 and DECLARATOR. Returns nonzero if the function-declaration is
1870 valid. */
1871
1872 int
1873 begin_function_definition (tree decl_specs, tree attributes, tree declarator)
1874 {
1875 if (!start_function (decl_specs, declarator, attributes, SF_DEFAULT))
1876 return 0;
1877
1878 /* The things we're about to see are not directly qualified by any
1879 template headers we've seen thus far. */
1880 reset_specialization ();
1881
1882 return 1;
1883 }
1884
1885 /* Finish a translation unit. */
1886
1887 void
1888 finish_translation_unit (void)
1889 {
1890 /* In case there were missing closebraces,
1891 get us back to the global binding level. */
1892 pop_everything ();
1893 while (current_namespace != global_namespace)
1894 pop_namespace ();
1895
1896 /* Do file scope __FUNCTION__ et al. */
1897 finish_fname_decls ();
1898 }
1899
1900 /* Finish a template type parameter, specified as AGGR IDENTIFIER.
1901 Returns the parameter. */
1902
1903 tree
1904 finish_template_type_parm (tree aggr, tree identifier)
1905 {
1906 if (aggr != class_type_node)
1907 {
1908 pedwarn ("template type parameters must use the keyword `class' or `typename'");
1909 aggr = class_type_node;
1910 }
1911
1912 return build_tree_list (aggr, identifier);
1913 }
1914
1915 /* Finish a template template parameter, specified as AGGR IDENTIFIER.
1916 Returns the parameter. */
1917
1918 tree
1919 finish_template_template_parm (tree aggr, tree identifier)
1920 {
1921 tree decl = build_decl (TYPE_DECL, identifier, NULL_TREE);
1922 tree tmpl = build_lang_decl (TEMPLATE_DECL, identifier, NULL_TREE);
1923 DECL_TEMPLATE_PARMS (tmpl) = current_template_parms;
1924 DECL_TEMPLATE_RESULT (tmpl) = decl;
1925 DECL_ARTIFICIAL (decl) = 1;
1926 end_template_decl ();
1927
1928 my_friendly_assert (DECL_TEMPLATE_PARMS (tmpl), 20010110);
1929
1930 return finish_template_type_parm (aggr, tmpl);
1931 }
1932
1933 /* ARGUMENT is the default-argument value for a template template
1934 parameter. If ARGUMENT is invalid, issue error messages and return
1935 the ERROR_MARK_NODE. Otherwise, ARGUMENT itself is returned. */
1936
1937 tree
1938 check_template_template_default_arg (tree argument)
1939 {
1940 if (TREE_CODE (argument) != TEMPLATE_DECL
1941 && TREE_CODE (argument) != TEMPLATE_TEMPLATE_PARM
1942 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
1943 {
1944 if (TREE_CODE (argument) == TYPE_DECL)
1945 {
1946 tree t = TREE_TYPE (argument);
1947
1948 /* Try to emit a slightly smarter error message if we detect
1949 that the user is using a template instantiation. */
1950 if (CLASSTYPE_TEMPLATE_INFO (t)
1951 && CLASSTYPE_TEMPLATE_INSTANTIATION (t))
1952 error ("invalid use of type `%T' as a default value for a "
1953 "template template-parameter", t);
1954 else
1955 error ("invalid use of `%D' as a default value for a template "
1956 "template-parameter", argument);
1957 }
1958 else
1959 error ("invalid default argument for a template template parameter");
1960 return error_mark_node;
1961 }
1962
1963 return argument;
1964 }
1965
1966 /* Finish a parameter list, indicated by PARMS. If ELLIPSIS is
1967 nonzero, the parameter list was terminated by a `...'. */
1968
1969 tree
1970 finish_parmlist (tree parms, int ellipsis)
1971 {
1972 if (parms)
1973 {
1974 /* We mark the PARMS as a parmlist so that declarator processing can
1975 disambiguate certain constructs. */
1976 TREE_PARMLIST (parms) = 1;
1977 /* We do not append void_list_node here, but leave it to grokparms
1978 to do that. */
1979 PARMLIST_ELLIPSIS_P (parms) = ellipsis;
1980 }
1981 return parms;
1982 }
1983
1984 /* Begin a class definition, as indicated by T. */
1985
1986 tree
1987 begin_class_definition (tree t)
1988 {
1989 if (t == error_mark_node)
1990 return error_mark_node;
1991
1992 if (processing_template_parmlist)
1993 {
1994 error ("definition of `%#T' inside template parameter list", t);
1995 return error_mark_node;
1996 }
1997 /* A non-implicit typename comes from code like:
1998
1999 template <typename T> struct A {
2000 template <typename U> struct A<T>::B ...
2001
2002 This is erroneous. */
2003 else if (TREE_CODE (t) == TYPENAME_TYPE)
2004 {
2005 error ("invalid definition of qualified type `%T'", t);
2006 t = error_mark_node;
2007 }
2008
2009 if (t == error_mark_node || ! IS_AGGR_TYPE (t))
2010 {
2011 t = make_aggr_type (RECORD_TYPE);
2012 pushtag (make_anon_name (), t, 0);
2013 }
2014
2015 /* If this type was already complete, and we see another definition,
2016 that's an error. */
2017 if (COMPLETE_TYPE_P (t))
2018 {
2019 error ("redefinition of `%#T'", t);
2020 cp_error_at ("previous definition of `%#T'", t);
2021 return error_mark_node;
2022 }
2023
2024 /* Update the location of the decl. */
2025 DECL_SOURCE_LOCATION (TYPE_NAME (t)) = input_location;
2026
2027 if (TYPE_BEING_DEFINED (t))
2028 {
2029 t = make_aggr_type (TREE_CODE (t));
2030 pushtag (TYPE_IDENTIFIER (t), t, 0);
2031 }
2032 maybe_process_partial_specialization (t);
2033 pushclass (t);
2034 TYPE_BEING_DEFINED (t) = 1;
2035 if (flag_pack_struct)
2036 {
2037 tree v;
2038 TYPE_PACKED (t) = 1;
2039 /* Even though the type is being defined for the first time
2040 here, there might have been a forward declaration, so there
2041 might be cv-qualified variants of T. */
2042 for (v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
2043 TYPE_PACKED (v) = 1;
2044 }
2045 /* Reset the interface data, at the earliest possible
2046 moment, as it might have been set via a class foo;
2047 before. */
2048 if (! TYPE_ANONYMOUS_P (t))
2049 {
2050 CLASSTYPE_INTERFACE_ONLY (t) = interface_only;
2051 SET_CLASSTYPE_INTERFACE_UNKNOWN_X
2052 (t, interface_unknown);
2053 }
2054 reset_specialization();
2055
2056 /* Make a declaration for this class in its own scope. */
2057 build_self_reference ();
2058
2059 return t;
2060 }
2061
2062 /* Finish the member declaration given by DECL. */
2063
2064 void
2065 finish_member_declaration (tree decl)
2066 {
2067 if (decl == error_mark_node || decl == NULL_TREE)
2068 return;
2069
2070 if (decl == void_type_node)
2071 /* The COMPONENT was a friend, not a member, and so there's
2072 nothing for us to do. */
2073 return;
2074
2075 /* We should see only one DECL at a time. */
2076 my_friendly_assert (TREE_CHAIN (decl) == NULL_TREE, 0);
2077
2078 /* Set up access control for DECL. */
2079 TREE_PRIVATE (decl)
2080 = (current_access_specifier == access_private_node);
2081 TREE_PROTECTED (decl)
2082 = (current_access_specifier == access_protected_node);
2083 if (TREE_CODE (decl) == TEMPLATE_DECL)
2084 {
2085 TREE_PRIVATE (DECL_TEMPLATE_RESULT (decl)) = TREE_PRIVATE (decl);
2086 TREE_PROTECTED (DECL_TEMPLATE_RESULT (decl)) = TREE_PROTECTED (decl);
2087 }
2088
2089 /* Mark the DECL as a member of the current class. */
2090 DECL_CONTEXT (decl) = current_class_type;
2091
2092 /* [dcl.link]
2093
2094 A C language linkage is ignored for the names of class members
2095 and the member function type of class member functions. */
2096 if (DECL_LANG_SPECIFIC (decl) && DECL_LANGUAGE (decl) == lang_c)
2097 SET_DECL_LANGUAGE (decl, lang_cplusplus);
2098
2099 /* Put functions on the TYPE_METHODS list and everything else on the
2100 TYPE_FIELDS list. Note that these are built up in reverse order.
2101 We reverse them (to obtain declaration order) in finish_struct. */
2102 if (TREE_CODE (decl) == FUNCTION_DECL
2103 || DECL_FUNCTION_TEMPLATE_P (decl))
2104 {
2105 /* We also need to add this function to the
2106 CLASSTYPE_METHOD_VEC. */
2107 add_method (current_class_type, decl, /*error_p=*/0);
2108
2109 TREE_CHAIN (decl) = TYPE_METHODS (current_class_type);
2110 TYPE_METHODS (current_class_type) = decl;
2111
2112 maybe_add_class_template_decl_list (current_class_type, decl,
2113 /*friend_p=*/0);
2114 }
2115 /* Enter the DECL into the scope of the class. */
2116 else if ((TREE_CODE (decl) == USING_DECL && TREE_TYPE (decl))
2117 || pushdecl_class_level (decl))
2118 {
2119 /* All TYPE_DECLs go at the end of TYPE_FIELDS. Ordinary fields
2120 go at the beginning. The reason is that lookup_field_1
2121 searches the list in order, and we want a field name to
2122 override a type name so that the "struct stat hack" will
2123 work. In particular:
2124
2125 struct S { enum E { }; int E } s;
2126 s.E = 3;
2127
2128 is valid. In addition, the FIELD_DECLs must be maintained in
2129 declaration order so that class layout works as expected.
2130 However, we don't need that order until class layout, so we
2131 save a little time by putting FIELD_DECLs on in reverse order
2132 here, and then reversing them in finish_struct_1. (We could
2133 also keep a pointer to the correct insertion points in the
2134 list.) */
2135
2136 if (TREE_CODE (decl) == TYPE_DECL)
2137 TYPE_FIELDS (current_class_type)
2138 = chainon (TYPE_FIELDS (current_class_type), decl);
2139 else
2140 {
2141 TREE_CHAIN (decl) = TYPE_FIELDS (current_class_type);
2142 TYPE_FIELDS (current_class_type) = decl;
2143 }
2144
2145 maybe_add_class_template_decl_list (current_class_type, decl,
2146 /*friend_p=*/0);
2147 }
2148 }
2149
2150 /* Finish processing the declaration of a member class template
2151 TYPES whose template parameters are given by PARMS. */
2152
2153 tree
2154 finish_member_class_template (tree types)
2155 {
2156 tree t;
2157
2158 /* If there are declared, but undefined, partial specializations
2159 mixed in with the typespecs they will not yet have passed through
2160 maybe_process_partial_specialization, so we do that here. */
2161 for (t = types; t != NULL_TREE; t = TREE_CHAIN (t))
2162 if (IS_AGGR_TYPE_CODE (TREE_CODE (TREE_VALUE (t))))
2163 maybe_process_partial_specialization (TREE_VALUE (t));
2164
2165 grok_x_components (types);
2166 if (TYPE_CONTEXT (TREE_VALUE (types)) != current_class_type)
2167 /* The component was in fact a friend declaration. We avoid
2168 finish_member_template_decl performing certain checks by
2169 unsetting TYPES. */
2170 types = NULL_TREE;
2171
2172 finish_member_template_decl (types);
2173
2174 /* As with other component type declarations, we do
2175 not store the new DECL on the list of
2176 component_decls. */
2177 return NULL_TREE;
2178 }
2179
2180 /* Finish processing a complete template declaration. The PARMS are
2181 the template parameters. */
2182
2183 void
2184 finish_template_decl (tree parms)
2185 {
2186 if (parms)
2187 end_template_decl ();
2188 else
2189 end_specialization ();
2190 }
2191
2192 /* Finish processing a template-id (which names a type) of the form
2193 NAME < ARGS >. Return the TYPE_DECL for the type named by the
2194 template-id. If ENTERING_SCOPE is nonzero we are about to enter
2195 the scope of template-id indicated. */
2196
2197 tree
2198 finish_template_type (tree name, tree args, int entering_scope)
2199 {
2200 tree decl;
2201
2202 decl = lookup_template_class (name, args,
2203 NULL_TREE, NULL_TREE, entering_scope,
2204 tf_error | tf_warning | tf_user);
2205 if (decl != error_mark_node)
2206 decl = TYPE_STUB_DECL (decl);
2207
2208 return decl;
2209 }
2210
2211 /* Finish processing a BASE_CLASS with the indicated ACCESS_SPECIFIER.
2212 Return a TREE_LIST containing the ACCESS_SPECIFIER and the
2213 BASE_CLASS, or NULL_TREE if an error occurred. The
2214 ACCESS_SPECIFIER is one of
2215 access_{default,public,protected_private}[_virtual]_node.*/
2216
2217 tree
2218 finish_base_specifier (tree base, tree access, bool virtual_p)
2219 {
2220 tree result;
2221
2222 if (base == error_mark_node)
2223 {
2224 error ("invalid base-class specification");
2225 result = NULL_TREE;
2226 }
2227 else if (! is_aggr_type (base, 1))
2228 result = NULL_TREE;
2229 else
2230 {
2231 if (cp_type_quals (base) != 0)
2232 {
2233 error ("base class `%T' has cv qualifiers", base);
2234 base = TYPE_MAIN_VARIANT (base);
2235 }
2236 result = build_tree_list (access, base);
2237 TREE_VIA_VIRTUAL (result) = virtual_p;
2238 }
2239
2240 return result;
2241 }
2242
2243 /* Called when multiple declarators are processed. If that is not
2244 permitted in this context, an error is issued. */
2245
2246 void
2247 check_multiple_declarators (void)
2248 {
2249 /* [temp]
2250
2251 In a template-declaration, explicit specialization, or explicit
2252 instantiation the init-declarator-list in the declaration shall
2253 contain at most one declarator.
2254
2255 We don't just use PROCESSING_TEMPLATE_DECL for the first
2256 condition since that would disallow the perfectly valid code,
2257 like `template <class T> struct S { int i, j; };'. */
2258 if (at_function_scope_p ())
2259 /* It's OK to write `template <class T> void f() { int i, j;}'. */
2260 return;
2261
2262 if (PROCESSING_REAL_TEMPLATE_DECL_P ()
2263 || processing_explicit_instantiation
2264 || processing_specialization)
2265 error ("multiple declarators in template declaration");
2266 }
2267
2268 /* Issue a diagnostic that NAME cannot be found in SCOPE. */
2269
2270 void
2271 qualified_name_lookup_error (tree scope, tree name)
2272 {
2273 if (TYPE_P (scope))
2274 {
2275 if (!COMPLETE_TYPE_P (scope))
2276 error ("incomplete type `%T' used in nested name specifier", scope);
2277 else
2278 error ("`%D' is not a member of `%T'", name, scope);
2279 }
2280 else if (scope != global_namespace)
2281 error ("`%D' is not a member of `%D'", name, scope);
2282 else
2283 error ("`::%D' has not been declared", name);
2284 }
2285
2286 /* ID_EXPRESSION is a representation of parsed, but unprocessed,
2287 id-expression. (See cp_parser_id_expression for details.) SCOPE,
2288 if non-NULL, is the type or namespace used to explicitly qualify
2289 ID_EXPRESSION. DECL is the entity to which that name has been
2290 resolved.
2291
2292 *CONSTANT_EXPRESSION_P is true if we are presently parsing a
2293 constant-expression. In that case, *NON_CONSTANT_EXPRESSION_P will
2294 be set to true if this expression isn't permitted in a
2295 constant-expression, but it is otherwise not set by this function.
2296 *ALLOW_NON_CONSTANT_EXPRESSION_P is true if we are parsing a
2297 constant-expression, but a non-constant expression is also
2298 permissible.
2299
2300 If an error occurs, and it is the kind of error that might cause
2301 the parser to abort a tentative parse, *ERROR_MSG is filled in. It
2302 is the caller's responsibility to issue the message. *ERROR_MSG
2303 will be a string with static storage duration, so the caller need
2304 not "free" it.
2305
2306 Return an expression for the entity, after issuing appropriate
2307 diagnostics. This function is also responsible for transforming a
2308 reference to a non-static member into a COMPONENT_REF that makes
2309 the use of "this" explicit.
2310
2311 Upon return, *IDK will be filled in appropriately. */
2312
2313 tree
2314 finish_id_expression (tree id_expression,
2315 tree decl,
2316 tree scope,
2317 cp_id_kind *idk,
2318 tree *qualifying_class,
2319 bool integral_constant_expression_p,
2320 bool allow_non_integral_constant_expression_p,
2321 bool *non_integral_constant_expression_p,
2322 const char **error_msg)
2323 {
2324 /* Initialize the output parameters. */
2325 *idk = CP_ID_KIND_NONE;
2326 *error_msg = NULL;
2327
2328 if (id_expression == error_mark_node)
2329 return error_mark_node;
2330 /* If we have a template-id, then no further lookup is
2331 required. If the template-id was for a template-class, we
2332 will sometimes have a TYPE_DECL at this point. */
2333 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2334 || TREE_CODE (decl) == TYPE_DECL)
2335 ;
2336 /* Look up the name. */
2337 else
2338 {
2339 if (decl == error_mark_node)
2340 {
2341 /* Name lookup failed. */
2342 if (scope
2343 && (!TYPE_P (scope)
2344 || (!dependent_type_p (scope)
2345 && !(TREE_CODE (id_expression) == IDENTIFIER_NODE
2346 && IDENTIFIER_TYPENAME_P (id_expression)
2347 && dependent_type_p (TREE_TYPE (id_expression))))))
2348 {
2349 /* If the qualifying type is non-dependent (and the name
2350 does not name a conversion operator to a dependent
2351 type), issue an error. */
2352 qualified_name_lookup_error (scope, id_expression);
2353 return error_mark_node;
2354 }
2355 else if (!scope)
2356 {
2357 /* It may be resolved via Koenig lookup. */
2358 *idk = CP_ID_KIND_UNQUALIFIED;
2359 return id_expression;
2360 }
2361 else
2362 decl = id_expression;
2363 }
2364 /* If DECL is a variable that would be out of scope under
2365 ANSI/ISO rules, but in scope in the ARM, name lookup
2366 will succeed. Issue a diagnostic here. */
2367 else
2368 decl = check_for_out_of_scope_variable (decl);
2369
2370 /* Remember that the name was used in the definition of
2371 the current class so that we can check later to see if
2372 the meaning would have been different after the class
2373 was entirely defined. */
2374 if (!scope && decl != error_mark_node)
2375 maybe_note_name_used_in_class (id_expression, decl);
2376 }
2377
2378 /* If we didn't find anything, or what we found was a type,
2379 then this wasn't really an id-expression. */
2380 if (TREE_CODE (decl) == TEMPLATE_DECL
2381 && !DECL_FUNCTION_TEMPLATE_P (decl))
2382 {
2383 *error_msg = "missing template arguments";
2384 return error_mark_node;
2385 }
2386 else if (TREE_CODE (decl) == TYPE_DECL
2387 || TREE_CODE (decl) == NAMESPACE_DECL)
2388 {
2389 *error_msg = "expected primary-expression";
2390 return error_mark_node;
2391 }
2392
2393 /* If the name resolved to a template parameter, there is no
2394 need to look it up again later. */
2395 if ((TREE_CODE (decl) == CONST_DECL && DECL_TEMPLATE_PARM_P (decl))
2396 || TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
2397 {
2398 *idk = CP_ID_KIND_NONE;
2399 if (TREE_CODE (decl) == TEMPLATE_PARM_INDEX)
2400 decl = TEMPLATE_PARM_DECL (decl);
2401 if (integral_constant_expression_p
2402 && !dependent_type_p (TREE_TYPE (decl))
2403 && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (decl)))
2404 {
2405 if (!allow_non_integral_constant_expression_p)
2406 error ("template parameter `%D' of type `%T' is not allowed in "
2407 "an integral constant expression because it is not of "
2408 "integral or enumeration type", decl, TREE_TYPE (decl));
2409 *non_integral_constant_expression_p = true;
2410 }
2411 return DECL_INITIAL (decl);
2412 }
2413 /* Similarly, we resolve enumeration constants to their
2414 underlying values. */
2415 else if (TREE_CODE (decl) == CONST_DECL)
2416 {
2417 *idk = CP_ID_KIND_NONE;
2418 if (!processing_template_decl)
2419 return DECL_INITIAL (decl);
2420 return decl;
2421 }
2422 else
2423 {
2424 bool dependent_p;
2425
2426 /* If the declaration was explicitly qualified indicate
2427 that. The semantics of `A::f(3)' are different than
2428 `f(3)' if `f' is virtual. */
2429 *idk = (scope
2430 ? CP_ID_KIND_QUALIFIED
2431 : (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2432 ? CP_ID_KIND_TEMPLATE_ID
2433 : CP_ID_KIND_UNQUALIFIED));
2434
2435
2436 /* [temp.dep.expr]
2437
2438 An id-expression is type-dependent if it contains an
2439 identifier that was declared with a dependent type.
2440
2441 The standard is not very specific about an id-expression that
2442 names a set of overloaded functions. What if some of them
2443 have dependent types and some of them do not? Presumably,
2444 such a name should be treated as a dependent name. */
2445 /* Assume the name is not dependent. */
2446 dependent_p = false;
2447 if (!processing_template_decl)
2448 /* No names are dependent outside a template. */
2449 ;
2450 /* A template-id where the name of the template was not resolved
2451 is definitely dependent. */
2452 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
2453 && (TREE_CODE (TREE_OPERAND (decl, 0))
2454 == IDENTIFIER_NODE))
2455 dependent_p = true;
2456 /* For anything except an overloaded function, just check its
2457 type. */
2458 else if (!is_overloaded_fn (decl))
2459 dependent_p
2460 = dependent_type_p (TREE_TYPE (decl));
2461 /* For a set of overloaded functions, check each of the
2462 functions. */
2463 else
2464 {
2465 tree fns = decl;
2466
2467 if (BASELINK_P (fns))
2468 fns = BASELINK_FUNCTIONS (fns);
2469
2470 /* For a template-id, check to see if the template
2471 arguments are dependent. */
2472 if (TREE_CODE (fns) == TEMPLATE_ID_EXPR)
2473 {
2474 tree args = TREE_OPERAND (fns, 1);
2475 dependent_p = any_dependent_template_arguments_p (args);
2476 /* The functions are those referred to by the
2477 template-id. */
2478 fns = TREE_OPERAND (fns, 0);
2479 }
2480
2481 /* If there are no dependent template arguments, go through
2482 the overloaded functions. */
2483 while (fns && !dependent_p)
2484 {
2485 tree fn = OVL_CURRENT (fns);
2486
2487 /* Member functions of dependent classes are
2488 dependent. */
2489 if (TREE_CODE (fn) == FUNCTION_DECL
2490 && type_dependent_expression_p (fn))
2491 dependent_p = true;
2492 else if (TREE_CODE (fn) == TEMPLATE_DECL
2493 && dependent_template_p (fn))
2494 dependent_p = true;
2495
2496 fns = OVL_NEXT (fns);
2497 }
2498 }
2499
2500 /* If the name was dependent on a template parameter, we will
2501 resolve the name at instantiation time. */
2502 if (dependent_p)
2503 {
2504 /* Create a SCOPE_REF for qualified names, if the scope is
2505 dependent. */
2506 if (scope)
2507 {
2508 if (TYPE_P (scope))
2509 *qualifying_class = scope;
2510 /* Since this name was dependent, the expression isn't
2511 constant -- yet. No error is issued because it might
2512 be constant when things are instantiated. */
2513 if (integral_constant_expression_p)
2514 *non_integral_constant_expression_p = true;
2515 if (TYPE_P (scope) && dependent_type_p (scope))
2516 return build_nt (SCOPE_REF, scope, id_expression);
2517 else if (TYPE_P (scope) && DECL_P (decl))
2518 return build (SCOPE_REF, TREE_TYPE (decl), scope,
2519 id_expression);
2520 else
2521 return decl;
2522 }
2523 /* A TEMPLATE_ID already contains all the information we
2524 need. */
2525 if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR)
2526 return id_expression;
2527 /* Since this name was dependent, the expression isn't
2528 constant -- yet. No error is issued because it might be
2529 constant when things are instantiated. */
2530 if (integral_constant_expression_p)
2531 *non_integral_constant_expression_p = true;
2532 *idk = CP_ID_KIND_UNQUALIFIED_DEPENDENT;
2533 /* If we found a variable, then name lookup during the
2534 instantiation will always resolve to the same VAR_DECL
2535 (or an instantiation thereof). */
2536 if (TREE_CODE (decl) == VAR_DECL
2537 || TREE_CODE (decl) == PARM_DECL)
2538 return decl;
2539 return id_expression;
2540 }
2541
2542 /* Only certain kinds of names are allowed in constant
2543 expression. Enumerators and template parameters
2544 have already been handled above. */
2545 if (integral_constant_expression_p)
2546 {
2547 /* Const variables or static data members of integral or
2548 enumeration types initialized with constant expressions
2549 are OK. */
2550 if (TREE_CODE (decl) == VAR_DECL
2551 && CP_TYPE_CONST_P (TREE_TYPE (decl))
2552 && INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (decl))
2553 && DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2554 ;
2555 else
2556 {
2557 if (!allow_non_integral_constant_expression_p)
2558 {
2559 error ("`%D' cannot appear in a constant-expression", decl);
2560 return error_mark_node;
2561 }
2562 *non_integral_constant_expression_p = true;
2563 }
2564 }
2565
2566 if (TREE_CODE (decl) == NAMESPACE_DECL)
2567 {
2568 error ("use of namespace `%D' as expression", decl);
2569 return error_mark_node;
2570 }
2571 else if (DECL_CLASS_TEMPLATE_P (decl))
2572 {
2573 error ("use of class template `%T' as expression", decl);
2574 return error_mark_node;
2575 }
2576 else if (TREE_CODE (decl) == TREE_LIST)
2577 {
2578 /* Ambiguous reference to base members. */
2579 error ("request for member `%D' is ambiguous in "
2580 "multiple inheritance lattice", id_expression);
2581 print_candidates (decl);
2582 return error_mark_node;
2583 }
2584
2585 /* Mark variable-like entities as used. Functions are similarly
2586 marked either below or after overload resolution. */
2587 if (TREE_CODE (decl) == VAR_DECL
2588 || TREE_CODE (decl) == PARM_DECL
2589 || TREE_CODE (decl) == RESULT_DECL)
2590 mark_used (decl);
2591
2592 if (scope)
2593 {
2594 decl = (adjust_result_of_qualified_name_lookup
2595 (decl, scope, current_class_type));
2596
2597 if (TREE_CODE (decl) == FUNCTION_DECL)
2598 mark_used (decl);
2599
2600 if (TREE_CODE (decl) == FIELD_DECL || BASELINK_P (decl))
2601 *qualifying_class = scope;
2602 else if (!processing_template_decl)
2603 decl = convert_from_reference (decl);
2604 else if (TYPE_P (scope))
2605 decl = build (SCOPE_REF, TREE_TYPE (decl), scope, decl);
2606 }
2607 else if (TREE_CODE (decl) == FIELD_DECL)
2608 decl = finish_non_static_data_member (decl, current_class_ref,
2609 /*qualifying_scope=*/NULL_TREE);
2610 else if (is_overloaded_fn (decl))
2611 {
2612 tree first_fn = OVL_CURRENT (decl);
2613
2614 if (TREE_CODE (first_fn) == TEMPLATE_DECL)
2615 first_fn = DECL_TEMPLATE_RESULT (first_fn);
2616
2617 if (!really_overloaded_fn (decl))
2618 mark_used (first_fn);
2619
2620 if (TREE_CODE (first_fn) == FUNCTION_DECL
2621 && DECL_FUNCTION_MEMBER_P (first_fn))
2622 {
2623 /* A set of member functions. */
2624 decl = maybe_dummy_object (DECL_CONTEXT (first_fn), 0);
2625 return finish_class_member_access_expr (decl, id_expression);
2626 }
2627 }
2628 else
2629 {
2630 if (TREE_CODE (decl) == VAR_DECL
2631 || TREE_CODE (decl) == PARM_DECL
2632 || TREE_CODE (decl) == RESULT_DECL)
2633 {
2634 tree context = decl_function_context (decl);
2635
2636 if (context != NULL_TREE && context != current_function_decl
2637 && ! TREE_STATIC (decl))
2638 {
2639 error ("use of %s from containing function",
2640 (TREE_CODE (decl) == VAR_DECL
2641 ? "`auto' variable" : "parameter"));
2642 cp_error_at (" `%#D' declared here", decl);
2643 return error_mark_node;
2644 }
2645 }
2646
2647 if (DECL_P (decl) && DECL_NONLOCAL (decl)
2648 && DECL_CLASS_SCOPE_P (decl)
2649 && DECL_CONTEXT (decl) != current_class_type)
2650 {
2651 tree path;
2652
2653 path = currently_open_derived_class (DECL_CONTEXT (decl));
2654 perform_or_defer_access_check (TYPE_BINFO (path), decl);
2655 }
2656
2657 if (! processing_template_decl)
2658 decl = convert_from_reference (decl);
2659 }
2660
2661 /* Resolve references to variables of anonymous unions
2662 into COMPONENT_REFs. */
2663 if (TREE_CODE (decl) == ALIAS_DECL)
2664 decl = unshare_expr (DECL_INITIAL (decl));
2665 }
2666
2667 if (TREE_DEPRECATED (decl))
2668 warn_deprecated_use (decl);
2669
2670 return decl;
2671 }
2672
2673 /* Implement the __typeof keyword: Return the type of EXPR, suitable for
2674 use as a type-specifier. */
2675
2676 tree
2677 finish_typeof (tree expr)
2678 {
2679 tree type;
2680
2681 if (type_dependent_expression_p (expr))
2682 {
2683 type = make_aggr_type (TYPEOF_TYPE);
2684 TYPEOF_TYPE_EXPR (type) = expr;
2685
2686 return type;
2687 }
2688
2689 type = TREE_TYPE (expr);
2690
2691 if (!type || type == unknown_type_node)
2692 {
2693 error ("type of `%E' is unknown", expr);
2694 return error_mark_node;
2695 }
2696
2697 return type;
2698 }
2699
2700 /* Called from expand_body via walk_tree. Replace all AGGR_INIT_EXPRs
2701 with equivalent CALL_EXPRs. */
2702
2703 static tree
2704 simplify_aggr_init_exprs_r (tree* tp,
2705 int* walk_subtrees,
2706 void* data ATTRIBUTE_UNUSED)
2707 {
2708 /* We don't need to walk into types; there's nothing in a type that
2709 needs simplification. (And, furthermore, there are places we
2710 actively don't want to go. For example, we don't want to wander
2711 into the default arguments for a FUNCTION_DECL that appears in a
2712 CALL_EXPR.) */
2713 if (TYPE_P (*tp))
2714 {
2715 *walk_subtrees = 0;
2716 return NULL_TREE;
2717 }
2718 /* Only AGGR_INIT_EXPRs are interesting. */
2719 else if (TREE_CODE (*tp) != AGGR_INIT_EXPR)
2720 return NULL_TREE;
2721
2722 simplify_aggr_init_expr (tp);
2723
2724 /* Keep iterating. */
2725 return NULL_TREE;
2726 }
2727
2728 /* Replace the AGGR_INIT_EXPR at *TP with an equivalent CALL_EXPR. This
2729 function is broken out from the above for the benefit of the tree-ssa
2730 project. */
2731
2732 void
2733 simplify_aggr_init_expr (tree *tp)
2734 {
2735 tree aggr_init_expr = *tp;
2736
2737 /* Form an appropriate CALL_EXPR. */
2738 tree fn = TREE_OPERAND (aggr_init_expr, 0);
2739 tree args = TREE_OPERAND (aggr_init_expr, 1);
2740 tree slot = TREE_OPERAND (aggr_init_expr, 2);
2741 tree type = TREE_TYPE (slot);
2742
2743 tree call_expr;
2744 enum style_t { ctor, arg, pcc } style;
2745
2746 if (AGGR_INIT_VIA_CTOR_P (aggr_init_expr))
2747 style = ctor;
2748 #ifdef PCC_STATIC_STRUCT_RETURN
2749 else if (1)
2750 style = pcc;
2751 #endif
2752 else if (TREE_ADDRESSABLE (type))
2753 style = arg;
2754 else
2755 /* We shouldn't build an AGGR_INIT_EXPR if we don't need any special
2756 handling. See build_cplus_new. */
2757 abort ();
2758
2759 if (style == ctor || style == arg)
2760 {
2761 /* Pass the address of the slot. If this is a constructor, we
2762 replace the first argument; otherwise, we tack on a new one. */
2763 tree addr;
2764
2765 if (style == ctor)
2766 args = TREE_CHAIN (args);
2767
2768 cxx_mark_addressable (slot);
2769 addr = build1 (ADDR_EXPR, build_pointer_type (type), slot);
2770 if (style == arg)
2771 {
2772 /* The return type might have different cv-quals from the slot. */
2773 tree fntype = TREE_TYPE (TREE_TYPE (fn));
2774 #ifdef ENABLE_CHECKING
2775 if (TREE_CODE (fntype) != FUNCTION_TYPE
2776 && TREE_CODE (fntype) != METHOD_TYPE)
2777 abort ();
2778 #endif
2779 addr = convert (build_pointer_type (TREE_TYPE (fntype)), addr);
2780 }
2781
2782 args = tree_cons (NULL_TREE, addr, args);
2783 }
2784
2785 call_expr = build (CALL_EXPR,
2786 TREE_TYPE (TREE_TYPE (TREE_TYPE (fn))),
2787 fn, args, NULL_TREE);
2788
2789 if (style == arg)
2790 /* Tell the backend that we've added our return slot to the argument
2791 list. */
2792 CALL_EXPR_HAS_RETURN_SLOT_ADDR (call_expr) = 1;
2793 else if (style == pcc)
2794 {
2795 /* If we're using the non-reentrant PCC calling convention, then we
2796 need to copy the returned value out of the static buffer into the
2797 SLOT. */
2798 push_deferring_access_checks (dk_no_check);
2799 call_expr = build_aggr_init (slot, call_expr,
2800 DIRECT_BIND | LOOKUP_ONLYCONVERTING);
2801 pop_deferring_access_checks ();
2802 }
2803
2804 *tp = call_expr;
2805 }
2806
2807 /* Emit all thunks to FN that should be emitted when FN is emitted. */
2808
2809 static void
2810 emit_associated_thunks (tree fn)
2811 {
2812 /* When we use vcall offsets, we emit thunks with the virtual
2813 functions to which they thunk. The whole point of vcall offsets
2814 is so that you can know statically the entire set of thunks that
2815 will ever be needed for a given virtual function, thereby
2816 enabling you to output all the thunks with the function itself. */
2817 if (DECL_VIRTUAL_P (fn))
2818 {
2819 tree thunk;
2820
2821 for (thunk = DECL_THUNKS (fn); thunk; thunk = TREE_CHAIN (thunk))
2822 {
2823 if (!THUNK_ALIAS (thunk))
2824 {
2825 use_thunk (thunk, /*emit_p=*/1);
2826 if (DECL_RESULT_THUNK_P (thunk))
2827 {
2828 tree probe;
2829
2830 for (probe = DECL_THUNKS (thunk);
2831 probe; probe = TREE_CHAIN (probe))
2832 use_thunk (probe, /*emit_p=*/1);
2833 }
2834 }
2835 else
2836 my_friendly_assert (!DECL_THUNKS (thunk), 20031023);
2837 }
2838 }
2839 }
2840
2841 /* Generate RTL for FN. */
2842
2843 void
2844 expand_body (tree fn)
2845 {
2846 tree saved_function;
2847
2848 /* Compute the appropriate object-file linkage for inline
2849 functions. */
2850 if (DECL_DECLARED_INLINE_P (fn))
2851 import_export_decl (fn);
2852
2853 /* If FN is external, then there's no point in generating RTL for
2854 it. This situation can arise with an inline function under
2855 `-fexternal-templates'; we instantiate the function, even though
2856 we're not planning on emitting it, in case we get a chance to
2857 inline it. */
2858 if (DECL_EXTERNAL (fn))
2859 return;
2860
2861 /* ??? When is this needed? */
2862 saved_function = current_function_decl;
2863
2864 /* Emit any thunks that should be emitted at the same time as FN. */
2865 emit_associated_thunks (fn);
2866
2867 tree_rest_of_compilation (fn, function_depth > 1);
2868
2869 current_function_decl = saved_function;
2870
2871 extract_interface_info ();
2872
2873 /* If this function is marked with the constructor attribute, add it
2874 to the list of functions to be called along with constructors
2875 from static duration objects. */
2876 if (DECL_STATIC_CONSTRUCTOR (fn))
2877 static_ctors = tree_cons (NULL_TREE, fn, static_ctors);
2878
2879 /* If this function is marked with the destructor attribute, add it
2880 to the list of functions to be called along with destructors from
2881 static duration objects. */
2882 if (DECL_STATIC_DESTRUCTOR (fn))
2883 static_dtors = tree_cons (NULL_TREE, fn, static_dtors);
2884
2885 if (DECL_CLONED_FUNCTION_P (fn))
2886 {
2887 /* If this is a clone, go through the other clones now and mark
2888 their parameters used. We have to do that here, as we don't
2889 know whether any particular clone will be expanded, and
2890 therefore cannot pick one arbitrarily. */
2891 tree probe;
2892
2893 for (probe = TREE_CHAIN (DECL_CLONED_FUNCTION (fn));
2894 probe && DECL_CLONED_FUNCTION_P (probe);
2895 probe = TREE_CHAIN (probe))
2896 {
2897 tree parms;
2898
2899 for (parms = DECL_ARGUMENTS (probe);
2900 parms; parms = TREE_CHAIN (parms))
2901 TREE_USED (parms) = 1;
2902 }
2903 }
2904 }
2905
2906 /* Generate RTL for FN. */
2907
2908 void
2909 expand_or_defer_fn (tree fn)
2910 {
2911 /* When the parser calls us after finishing the body of a template
2912 function, we don't really want to expand the body. */
2913 if (processing_template_decl)
2914 {
2915 /* Normally, collection only occurs in rest_of_compilation. So,
2916 if we don't collect here, we never collect junk generated
2917 during the processing of templates until we hit a
2918 non-template function. */
2919 ggc_collect ();
2920 return;
2921 }
2922
2923 /* Replace AGGR_INIT_EXPRs with appropriate CALL_EXPRs. */
2924 walk_tree_without_duplicates (&DECL_SAVED_TREE (fn),
2925 simplify_aggr_init_exprs_r,
2926 NULL);
2927
2928 /* If this is a constructor or destructor body, we have to clone
2929 it. */
2930 if (maybe_clone_body (fn))
2931 {
2932 /* We don't want to process FN again, so pretend we've written
2933 it out, even though we haven't. */
2934 TREE_ASM_WRITTEN (fn) = 1;
2935 return;
2936 }
2937
2938 /* There's no reason to do any of the work here if we're only doing
2939 semantic analysis; this code just generates RTL. */
2940 if (flag_syntax_only)
2941 return;
2942
2943 /* Compute the appropriate object-file linkage for inline functions. */
2944 if (DECL_DECLARED_INLINE_P (fn))
2945 import_export_decl (fn);
2946
2947 function_depth++;
2948
2949 /* Expand or defer, at the whim of the compilation unit manager. */
2950 cgraph_finalize_function (fn, function_depth > 1);
2951
2952 function_depth--;
2953 }
2954
2955 struct nrv_data
2956 {
2957 tree var;
2958 tree result;
2959 htab_t visited;
2960 };
2961
2962 /* Helper function for walk_tree, used by finalize_nrv below. */
2963
2964 static tree
2965 finalize_nrv_r (tree* tp, int* walk_subtrees, void* data)
2966 {
2967 struct nrv_data *dp = (struct nrv_data *)data;
2968 void **slot;
2969
2970 /* No need to walk into types. There wouldn't be any need to walk into
2971 non-statements, except that we have to consider STMT_EXPRs. */
2972 if (TYPE_P (*tp))
2973 *walk_subtrees = 0;
2974 /* Change all returns to just refer to the RESULT_DECL; this is a nop,
2975 but differs from using NULL_TREE in that it indicates that we care
2976 about the value of the RESULT_DECL. */
2977 else if (TREE_CODE (*tp) == RETURN_STMT)
2978 RETURN_STMT_EXPR (*tp) = dp->result;
2979 /* Change all cleanups for the NRV to only run when an exception is
2980 thrown. */
2981 else if (TREE_CODE (*tp) == CLEANUP_STMT
2982 && CLEANUP_DECL (*tp) == dp->var)
2983 CLEANUP_EH_ONLY (*tp) = 1;
2984 /* Replace the DECL_STMT for the NRV with an initialization of the
2985 RESULT_DECL, if needed. */
2986 else if (TREE_CODE (*tp) == DECL_STMT
2987 && DECL_STMT_DECL (*tp) == dp->var)
2988 {
2989 tree init;
2990 if (DECL_INITIAL (dp->var)
2991 && DECL_INITIAL (dp->var) != error_mark_node)
2992 {
2993 init = build (INIT_EXPR, void_type_node, dp->result,
2994 DECL_INITIAL (dp->var));
2995 DECL_INITIAL (dp->var) = error_mark_node;
2996 }
2997 else
2998 init = NULL_TREE;
2999 init = build_stmt (EXPR_STMT, init);
3000 SET_EXPR_LOCUS (init, EXPR_LOCUS (*tp));
3001 TREE_CHAIN (init) = TREE_CHAIN (*tp);
3002 *tp = init;
3003 }
3004 /* And replace all uses of the NRV with the RESULT_DECL. */
3005 else if (*tp == dp->var)
3006 *tp = dp->result;
3007
3008 /* Avoid walking into the same tree more than once. Unfortunately, we
3009 can't just use walk_tree_without duplicates because it would only call
3010 us for the first occurrence of dp->var in the function body. */
3011 slot = htab_find_slot (dp->visited, *tp, INSERT);
3012 if (*slot)
3013 *walk_subtrees = 0;
3014 else
3015 *slot = *tp;
3016
3017 /* Keep iterating. */
3018 return NULL_TREE;
3019 }
3020
3021 /* Called from finish_function to implement the named return value
3022 optimization by overriding all the RETURN_STMTs and pertinent
3023 CLEANUP_STMTs and replacing all occurrences of VAR with RESULT, the
3024 RESULT_DECL for the function. */
3025
3026 void
3027 finalize_nrv (tree *tp, tree var, tree result)
3028 {
3029 struct nrv_data data;
3030
3031 /* Copy debugging information from VAR to RESULT. */
3032 DECL_NAME (result) = DECL_NAME (var);
3033 DECL_SOURCE_LOCATION (result) = DECL_SOURCE_LOCATION (var);
3034 DECL_ABSTRACT_ORIGIN (result) = DECL_ABSTRACT_ORIGIN (var);
3035 /* Don't forget that we take its address. */
3036 TREE_ADDRESSABLE (result) = TREE_ADDRESSABLE (var);
3037
3038 data.var = var;
3039 data.result = result;
3040 data.visited = htab_create (37, htab_hash_pointer, htab_eq_pointer, NULL);
3041 walk_tree (tp, finalize_nrv_r, &data, 0);
3042 htab_delete (data.visited);
3043 }
3044
3045 /* Perform initialization related to this module. */
3046
3047 void
3048 init_cp_semantics (void)
3049 {
3050 }
3051
3052 #include "gt-cp-semantics.h"