]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/tree.c
Merge in trunk.
[thirdparty/gcc.git] / gcc / cp / tree.c
1 /* Language-dependent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3 Hacked by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "print-tree.h"
28 #include "tree-iterator.h"
29 #include "cp-tree.h"
30 #include "flags.h"
31 #include "tree-inline.h"
32 #include "debug.h"
33 #include "convert.h"
34 #include "cgraph.h"
35 #include "splay-tree.h"
36 #include "hash-table.h"
37 #include "gimple-expr.h"
38 #include "gimplify.h"
39 #include "wide-int.h"
40
41 static tree bot_manip (tree *, int *, void *);
42 static tree bot_replace (tree *, int *, void *);
43 static int list_hash_eq (const void *, const void *);
44 static hashval_t list_hash_pieces (tree, tree, tree);
45 static hashval_t list_hash (const void *);
46 static tree build_target_expr (tree, tree, tsubst_flags_t);
47 static tree count_trees_r (tree *, int *, void *);
48 static tree verify_stmt_tree_r (tree *, int *, void *);
49 static tree build_local_temp (tree);
50
51 static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
52 static tree handle_com_interface_attribute (tree *, tree, tree, int, bool *);
53 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
54 static tree handle_abi_tag_attribute (tree *, tree, tree, int, bool *);
55
56 /* If REF is an lvalue, returns the kind of lvalue that REF is.
57 Otherwise, returns clk_none. */
58
59 cp_lvalue_kind
60 lvalue_kind (const_tree ref)
61 {
62 cp_lvalue_kind op1_lvalue_kind = clk_none;
63 cp_lvalue_kind op2_lvalue_kind = clk_none;
64
65 /* Expressions of reference type are sometimes wrapped in
66 INDIRECT_REFs. INDIRECT_REFs are just internal compiler
67 representation, not part of the language, so we have to look
68 through them. */
69 if (REFERENCE_REF_P (ref))
70 return lvalue_kind (TREE_OPERAND (ref, 0));
71
72 if (TREE_TYPE (ref)
73 && TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
74 {
75 /* unnamed rvalue references are rvalues */
76 if (TYPE_REF_IS_RVALUE (TREE_TYPE (ref))
77 && TREE_CODE (ref) != PARM_DECL
78 && !VAR_P (ref)
79 && TREE_CODE (ref) != COMPONENT_REF
80 /* Functions are always lvalues. */
81 && TREE_CODE (TREE_TYPE (TREE_TYPE (ref))) != FUNCTION_TYPE)
82 return clk_rvalueref;
83
84 /* lvalue references and named rvalue references are lvalues. */
85 return clk_ordinary;
86 }
87
88 if (ref == current_class_ptr)
89 return clk_none;
90
91 switch (TREE_CODE (ref))
92 {
93 case SAVE_EXPR:
94 return clk_none;
95 /* preincrements and predecrements are valid lvals, provided
96 what they refer to are valid lvals. */
97 case PREINCREMENT_EXPR:
98 case PREDECREMENT_EXPR:
99 case TRY_CATCH_EXPR:
100 case WITH_CLEANUP_EXPR:
101 case REALPART_EXPR:
102 case IMAGPART_EXPR:
103 return lvalue_kind (TREE_OPERAND (ref, 0));
104
105 case COMPONENT_REF:
106 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
107 /* Look at the member designator. */
108 if (!op1_lvalue_kind)
109 ;
110 else if (is_overloaded_fn (TREE_OPERAND (ref, 1)))
111 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
112 situations. If we're seeing a COMPONENT_REF, it's a non-static
113 member, so it isn't an lvalue. */
114 op1_lvalue_kind = clk_none;
115 else if (TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
116 /* This can be IDENTIFIER_NODE in a template. */;
117 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
118 {
119 /* Clear the ordinary bit. If this object was a class
120 rvalue we want to preserve that information. */
121 op1_lvalue_kind &= ~clk_ordinary;
122 /* The lvalue is for a bitfield. */
123 op1_lvalue_kind |= clk_bitfield;
124 }
125 else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
126 op1_lvalue_kind |= clk_packed;
127
128 return op1_lvalue_kind;
129
130 case STRING_CST:
131 case COMPOUND_LITERAL_EXPR:
132 return clk_ordinary;
133
134 case CONST_DECL:
135 /* CONST_DECL without TREE_STATIC are enumeration values and
136 thus not lvalues. With TREE_STATIC they are used by ObjC++
137 in objc_build_string_object and need to be considered as
138 lvalues. */
139 if (! TREE_STATIC (ref))
140 return clk_none;
141 case VAR_DECL:
142 if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
143 && DECL_LANG_SPECIFIC (ref)
144 && DECL_IN_AGGR_P (ref))
145 return clk_none;
146 case INDIRECT_REF:
147 case ARROW_EXPR:
148 case ARRAY_REF:
149 case ARRAY_NOTATION_REF:
150 case PARM_DECL:
151 case RESULT_DECL:
152 return clk_ordinary;
153
154 /* A scope ref in a template, left as SCOPE_REF to support later
155 access checking. */
156 case SCOPE_REF:
157 gcc_assert (!type_dependent_expression_p (CONST_CAST_TREE (ref)));
158 {
159 tree op = TREE_OPERAND (ref, 1);
160 if (TREE_CODE (op) == FIELD_DECL)
161 return (DECL_C_BIT_FIELD (op) ? clk_bitfield : clk_ordinary);
162 else
163 return lvalue_kind (op);
164 }
165
166 case MAX_EXPR:
167 case MIN_EXPR:
168 /* Disallow <? and >? as lvalues if either argument side-effects. */
169 if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0))
170 || TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1)))
171 return clk_none;
172 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
173 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1));
174 break;
175
176 case COND_EXPR:
177 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1)
178 ? TREE_OPERAND (ref, 1)
179 : TREE_OPERAND (ref, 0));
180 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 2));
181 break;
182
183 case MODIFY_EXPR:
184 case TYPEID_EXPR:
185 return clk_ordinary;
186
187 case COMPOUND_EXPR:
188 return lvalue_kind (TREE_OPERAND (ref, 1));
189
190 case TARGET_EXPR:
191 return clk_class;
192
193 case VA_ARG_EXPR:
194 return (CLASS_TYPE_P (TREE_TYPE (ref)) ? clk_class : clk_none);
195
196 case CALL_EXPR:
197 /* We can see calls outside of TARGET_EXPR in templates. */
198 if (CLASS_TYPE_P (TREE_TYPE (ref)))
199 return clk_class;
200 return clk_none;
201
202 case FUNCTION_DECL:
203 /* All functions (except non-static-member functions) are
204 lvalues. */
205 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
206 ? clk_none : clk_ordinary);
207
208 case BASELINK:
209 /* We now represent a reference to a single static member function
210 with a BASELINK. */
211 /* This CONST_CAST is okay because BASELINK_FUNCTIONS returns
212 its argument unmodified and we assign it to a const_tree. */
213 return lvalue_kind (BASELINK_FUNCTIONS (CONST_CAST_TREE (ref)));
214
215 case NON_DEPENDENT_EXPR:
216 /* We just return clk_ordinary for NON_DEPENDENT_EXPR in C++98, but
217 in C++11 lvalues don't bind to rvalue references, so we need to
218 work harder to avoid bogus errors (c++/44870). */
219 if (cxx_dialect < cxx11)
220 return clk_ordinary;
221 else
222 return lvalue_kind (TREE_OPERAND (ref, 0));
223
224 default:
225 if (!TREE_TYPE (ref))
226 return clk_none;
227 if (CLASS_TYPE_P (TREE_TYPE (ref)))
228 return clk_class;
229 break;
230 }
231
232 /* If one operand is not an lvalue at all, then this expression is
233 not an lvalue. */
234 if (!op1_lvalue_kind || !op2_lvalue_kind)
235 return clk_none;
236
237 /* Otherwise, it's an lvalue, and it has all the odd properties
238 contributed by either operand. */
239 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
240 /* It's not an ordinary lvalue if it involves any other kind. */
241 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
242 op1_lvalue_kind &= ~clk_ordinary;
243 /* It can't be both a pseudo-lvalue and a non-addressable lvalue.
244 A COND_EXPR of those should be wrapped in a TARGET_EXPR. */
245 if ((op1_lvalue_kind & (clk_rvalueref|clk_class))
246 && (op1_lvalue_kind & (clk_bitfield|clk_packed)))
247 op1_lvalue_kind = clk_none;
248 return op1_lvalue_kind;
249 }
250
251 /* Returns the kind of lvalue that REF is, in the sense of
252 [basic.lval]. This function should really be named lvalue_p; it
253 computes the C++ definition of lvalue. */
254
255 cp_lvalue_kind
256 real_lvalue_p (const_tree ref)
257 {
258 cp_lvalue_kind kind = lvalue_kind (ref);
259 if (kind & (clk_rvalueref|clk_class))
260 return clk_none;
261 else
262 return kind;
263 }
264
265 /* This differs from real_lvalue_p in that class rvalues are considered
266 lvalues. */
267
268 bool
269 lvalue_p (const_tree ref)
270 {
271 return (lvalue_kind (ref) != clk_none);
272 }
273
274 /* This differs from real_lvalue_p in that rvalues formed by dereferencing
275 rvalue references are considered rvalues. */
276
277 bool
278 lvalue_or_rvalue_with_address_p (const_tree ref)
279 {
280 cp_lvalue_kind kind = lvalue_kind (ref);
281 if (kind & clk_class)
282 return false;
283 else
284 return (kind != clk_none);
285 }
286
287 /* Returns true if REF is an xvalue, false otherwise. */
288
289 bool
290 xvalue_p (const_tree ref)
291 {
292 return (lvalue_kind (ref) == clk_rvalueref);
293 }
294
295 /* Test whether DECL is a builtin that may appear in a
296 constant-expression. */
297
298 bool
299 builtin_valid_in_constant_expr_p (const_tree decl)
300 {
301 /* At present BUILT_IN_CONSTANT_P is the only builtin we're allowing
302 in constant-expressions. We may want to add other builtins later. */
303 return DECL_IS_BUILTIN_CONSTANT_P (decl);
304 }
305
306 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
307
308 static tree
309 build_target_expr (tree decl, tree value, tsubst_flags_t complain)
310 {
311 tree t;
312 tree type = TREE_TYPE (decl);
313
314 #ifdef ENABLE_CHECKING
315 gcc_assert (VOID_TYPE_P (TREE_TYPE (value))
316 || TREE_TYPE (decl) == TREE_TYPE (value)
317 /* On ARM ctors return 'this'. */
318 || (TYPE_PTR_P (TREE_TYPE (value))
319 && TREE_CODE (value) == CALL_EXPR)
320 || useless_type_conversion_p (TREE_TYPE (decl),
321 TREE_TYPE (value)));
322 #endif
323
324 t = cxx_maybe_build_cleanup (decl, complain);
325 if (t == error_mark_node)
326 return error_mark_node;
327 t = build4 (TARGET_EXPR, type, decl, value, t, NULL_TREE);
328 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not
329 ignore the TARGET_EXPR. If there really turn out to be no
330 side-effects, then the optimizer should be able to get rid of
331 whatever code is generated anyhow. */
332 TREE_SIDE_EFFECTS (t) = 1;
333
334 return t;
335 }
336
337 /* Return an undeclared local temporary of type TYPE for use in building a
338 TARGET_EXPR. */
339
340 static tree
341 build_local_temp (tree type)
342 {
343 tree slot = build_decl (input_location,
344 VAR_DECL, NULL_TREE, type);
345 DECL_ARTIFICIAL (slot) = 1;
346 DECL_IGNORED_P (slot) = 1;
347 DECL_CONTEXT (slot) = current_function_decl;
348 layout_decl (slot, 0);
349 return slot;
350 }
351
352 /* Set various status flags when building an AGGR_INIT_EXPR object T. */
353
354 static void
355 process_aggr_init_operands (tree t)
356 {
357 bool side_effects;
358
359 side_effects = TREE_SIDE_EFFECTS (t);
360 if (!side_effects)
361 {
362 int i, n;
363 n = TREE_OPERAND_LENGTH (t);
364 for (i = 1; i < n; i++)
365 {
366 tree op = TREE_OPERAND (t, i);
367 if (op && TREE_SIDE_EFFECTS (op))
368 {
369 side_effects = 1;
370 break;
371 }
372 }
373 }
374 TREE_SIDE_EFFECTS (t) = side_effects;
375 }
376
377 /* Build an AGGR_INIT_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE,
378 FN, and SLOT. NARGS is the number of call arguments which are specified
379 as a tree array ARGS. */
380
381 static tree
382 build_aggr_init_array (tree return_type, tree fn, tree slot, int nargs,
383 tree *args)
384 {
385 tree t;
386 int i;
387
388 t = build_vl_exp (AGGR_INIT_EXPR, nargs + 3);
389 TREE_TYPE (t) = return_type;
390 AGGR_INIT_EXPR_FN (t) = fn;
391 AGGR_INIT_EXPR_SLOT (t) = slot;
392 for (i = 0; i < nargs; i++)
393 AGGR_INIT_EXPR_ARG (t, i) = args[i];
394 process_aggr_init_operands (t);
395 return t;
396 }
397
398 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
399 target. TYPE is the type to be initialized.
400
401 Build an AGGR_INIT_EXPR to represent the initialization. This function
402 differs from build_cplus_new in that an AGGR_INIT_EXPR can only be used
403 to initialize another object, whereas a TARGET_EXPR can either
404 initialize another object or create its own temporary object, and as a
405 result building up a TARGET_EXPR requires that the type's destructor be
406 callable. */
407
408 tree
409 build_aggr_init_expr (tree type, tree init)
410 {
411 tree fn;
412 tree slot;
413 tree rval;
414 int is_ctor;
415
416 /* Don't build AGGR_INIT_EXPR in a template. */
417 if (processing_template_decl)
418 return init;
419
420 if (TREE_CODE (init) == CALL_EXPR)
421 fn = CALL_EXPR_FN (init);
422 else if (TREE_CODE (init) == AGGR_INIT_EXPR)
423 fn = AGGR_INIT_EXPR_FN (init);
424 else
425 return convert (type, init);
426
427 is_ctor = (TREE_CODE (fn) == ADDR_EXPR
428 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
429 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
430
431 /* We split the CALL_EXPR into its function and its arguments here.
432 Then, in expand_expr, we put them back together. The reason for
433 this is that this expression might be a default argument
434 expression. In that case, we need a new temporary every time the
435 expression is used. That's what break_out_target_exprs does; it
436 replaces every AGGR_INIT_EXPR with a copy that uses a fresh
437 temporary slot. Then, expand_expr builds up a call-expression
438 using the new slot. */
439
440 /* If we don't need to use a constructor to create an object of this
441 type, don't mess with AGGR_INIT_EXPR. */
442 if (is_ctor || TREE_ADDRESSABLE (type))
443 {
444 slot = build_local_temp (type);
445
446 if (TREE_CODE(init) == CALL_EXPR)
447 rval = build_aggr_init_array (void_type_node, fn, slot,
448 call_expr_nargs (init),
449 CALL_EXPR_ARGP (init));
450 else
451 rval = build_aggr_init_array (void_type_node, fn, slot,
452 aggr_init_expr_nargs (init),
453 AGGR_INIT_EXPR_ARGP (init));
454 TREE_SIDE_EFFECTS (rval) = 1;
455 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
456 TREE_NOTHROW (rval) = TREE_NOTHROW (init);
457 }
458 else
459 rval = init;
460
461 return rval;
462 }
463
464 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
465 target. TYPE is the type that this initialization should appear to
466 have.
467
468 Build an encapsulation of the initialization to perform
469 and return it so that it can be processed by language-independent
470 and language-specific expression expanders. */
471
472 tree
473 build_cplus_new (tree type, tree init, tsubst_flags_t complain)
474 {
475 tree rval = build_aggr_init_expr (type, init);
476 tree slot;
477
478 if (!complete_type_or_maybe_complain (type, init, complain))
479 return error_mark_node;
480
481 /* Make sure that we're not trying to create an instance of an
482 abstract class. */
483 if (abstract_virtuals_error_sfinae (NULL_TREE, type, complain))
484 return error_mark_node;
485
486 if (TREE_CODE (rval) == AGGR_INIT_EXPR)
487 slot = AGGR_INIT_EXPR_SLOT (rval);
488 else if (TREE_CODE (rval) == CALL_EXPR
489 || TREE_CODE (rval) == CONSTRUCTOR)
490 slot = build_local_temp (type);
491 else
492 return rval;
493
494 rval = build_target_expr (slot, rval, complain);
495
496 if (rval != error_mark_node)
497 TARGET_EXPR_IMPLICIT_P (rval) = 1;
498
499 return rval;
500 }
501
502 /* Subroutine of build_vec_init_expr: Build up a single element
503 intialization as a proxy for the full array initialization to get things
504 marked as used and any appropriate diagnostics.
505
506 Since we're deferring building the actual constructor calls until
507 gimplification time, we need to build one now and throw it away so
508 that the relevant constructor gets mark_used before cgraph decides
509 what functions are needed. Here we assume that init is either
510 NULL_TREE, void_type_node (indicating value-initialization), or
511 another array to copy. */
512
513 static tree
514 build_vec_init_elt (tree type, tree init, tsubst_flags_t complain)
515 {
516 tree inner_type = strip_array_types (type);
517 vec<tree, va_gc> *argvec;
518
519 if (integer_zerop (array_type_nelts_total (type))
520 || !CLASS_TYPE_P (inner_type))
521 /* No interesting initialization to do. */
522 return integer_zero_node;
523 else if (init == void_type_node)
524 return build_value_init (inner_type, complain);
525
526 gcc_assert (init == NULL_TREE
527 || (same_type_ignoring_top_level_qualifiers_p
528 (type, TREE_TYPE (init))));
529
530 argvec = make_tree_vector ();
531 if (init)
532 {
533 tree init_type = strip_array_types (TREE_TYPE (init));
534 tree dummy = build_dummy_object (init_type);
535 if (!real_lvalue_p (init))
536 dummy = move (dummy);
537 argvec->quick_push (dummy);
538 }
539 init = build_special_member_call (NULL_TREE, complete_ctor_identifier,
540 &argvec, inner_type, LOOKUP_NORMAL,
541 complain);
542 release_tree_vector (argvec);
543
544 /* For a trivial constructor, build_over_call creates a TARGET_EXPR. But
545 we don't want one here because we aren't creating a temporary. */
546 if (TREE_CODE (init) == TARGET_EXPR)
547 init = TARGET_EXPR_INITIAL (init);
548
549 return init;
550 }
551
552 /* Return a TARGET_EXPR which expresses the initialization of an array to
553 be named later, either default-initialization or copy-initialization
554 from another array of the same type. */
555
556 tree
557 build_vec_init_expr (tree type, tree init, tsubst_flags_t complain)
558 {
559 tree slot;
560 bool value_init = false;
561 tree elt_init = build_vec_init_elt (type, init, complain);
562
563 if (init == void_type_node)
564 {
565 value_init = true;
566 init = NULL_TREE;
567 }
568
569 slot = build_local_temp (type);
570 init = build2 (VEC_INIT_EXPR, type, slot, init);
571 TREE_SIDE_EFFECTS (init) = true;
572 SET_EXPR_LOCATION (init, input_location);
573
574 if (cxx_dialect >= cxx11
575 && potential_constant_expression (elt_init))
576 VEC_INIT_EXPR_IS_CONSTEXPR (init) = true;
577 VEC_INIT_EXPR_VALUE_INIT (init) = value_init;
578
579 return init;
580 }
581
582 /* Give a helpful diagnostic for a non-constexpr VEC_INIT_EXPR in a context
583 that requires a constant expression. */
584
585 void
586 diagnose_non_constexpr_vec_init (tree expr)
587 {
588 tree type = TREE_TYPE (VEC_INIT_EXPR_SLOT (expr));
589 tree init, elt_init;
590 if (VEC_INIT_EXPR_VALUE_INIT (expr))
591 init = void_type_node;
592 else
593 init = VEC_INIT_EXPR_INIT (expr);
594
595 elt_init = build_vec_init_elt (type, init, tf_warning_or_error);
596 require_potential_constant_expression (elt_init);
597 }
598
599 tree
600 build_array_copy (tree init)
601 {
602 return build_vec_init_expr (TREE_TYPE (init), init, tf_warning_or_error);
603 }
604
605 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the
606 indicated TYPE. */
607
608 tree
609 build_target_expr_with_type (tree init, tree type, tsubst_flags_t complain)
610 {
611 gcc_assert (!VOID_TYPE_P (type));
612
613 if (TREE_CODE (init) == TARGET_EXPR
614 || init == error_mark_node)
615 return init;
616 else if (CLASS_TYPE_P (type) && type_has_nontrivial_copy_init (type)
617 && !VOID_TYPE_P (TREE_TYPE (init))
618 && TREE_CODE (init) != COND_EXPR
619 && TREE_CODE (init) != CONSTRUCTOR
620 && TREE_CODE (init) != VA_ARG_EXPR)
621 /* We need to build up a copy constructor call. A void initializer
622 means we're being called from bot_manip. COND_EXPR is a special
623 case because we already have copies on the arms and we don't want
624 another one here. A CONSTRUCTOR is aggregate initialization, which
625 is handled separately. A VA_ARG_EXPR is magic creation of an
626 aggregate; there's no additional work to be done. */
627 return force_rvalue (init, complain);
628
629 return force_target_expr (type, init, complain);
630 }
631
632 /* Like the above function, but without the checking. This function should
633 only be used by code which is deliberately trying to subvert the type
634 system, such as call_builtin_trap. Or build_over_call, to avoid
635 infinite recursion. */
636
637 tree
638 force_target_expr (tree type, tree init, tsubst_flags_t complain)
639 {
640 tree slot;
641
642 gcc_assert (!VOID_TYPE_P (type));
643
644 slot = build_local_temp (type);
645 return build_target_expr (slot, init, complain);
646 }
647
648 /* Like build_target_expr_with_type, but use the type of INIT. */
649
650 tree
651 get_target_expr_sfinae (tree init, tsubst_flags_t complain)
652 {
653 if (TREE_CODE (init) == AGGR_INIT_EXPR)
654 return build_target_expr (AGGR_INIT_EXPR_SLOT (init), init, complain);
655 else if (TREE_CODE (init) == VEC_INIT_EXPR)
656 return build_target_expr (VEC_INIT_EXPR_SLOT (init), init, complain);
657 else
658 return build_target_expr_with_type (init, TREE_TYPE (init), complain);
659 }
660
661 tree
662 get_target_expr (tree init)
663 {
664 return get_target_expr_sfinae (init, tf_warning_or_error);
665 }
666
667 /* If EXPR is a bitfield reference, convert it to the declared type of
668 the bitfield, and return the resulting expression. Otherwise,
669 return EXPR itself. */
670
671 tree
672 convert_bitfield_to_declared_type (tree expr)
673 {
674 tree bitfield_type;
675
676 bitfield_type = is_bitfield_expr_with_lowered_type (expr);
677 if (bitfield_type)
678 expr = convert_to_integer (TYPE_MAIN_VARIANT (bitfield_type),
679 expr);
680 return expr;
681 }
682
683 /* EXPR is being used in an rvalue context. Return a version of EXPR
684 that is marked as an rvalue. */
685
686 tree
687 rvalue (tree expr)
688 {
689 tree type;
690
691 if (error_operand_p (expr))
692 return expr;
693
694 expr = mark_rvalue_use (expr);
695
696 /* [basic.lval]
697
698 Non-class rvalues always have cv-unqualified types. */
699 type = TREE_TYPE (expr);
700 if (!CLASS_TYPE_P (type) && cv_qualified_p (type))
701 type = cv_unqualified (type);
702
703 /* We need to do this for rvalue refs as well to get the right answer
704 from decltype; see c++/36628. */
705 if (!processing_template_decl && lvalue_or_rvalue_with_address_p (expr))
706 expr = build1 (NON_LVALUE_EXPR, type, expr);
707 else if (type != TREE_TYPE (expr))
708 expr = build_nop (type, expr);
709
710 return expr;
711 }
712
713 \f
714 /* Hash an ARRAY_TYPE. K is really of type `tree'. */
715
716 static hashval_t
717 cplus_array_hash (const void* k)
718 {
719 hashval_t hash;
720 const_tree const t = (const_tree) k;
721
722 hash = TYPE_UID (TREE_TYPE (t));
723 if (TYPE_DOMAIN (t))
724 hash ^= TYPE_UID (TYPE_DOMAIN (t));
725 return hash;
726 }
727
728 typedef struct cplus_array_info {
729 tree type;
730 tree domain;
731 } cplus_array_info;
732
733 /* Compare two ARRAY_TYPEs. K1 is really of type `tree', K2 is really
734 of type `cplus_array_info*'. */
735
736 static int
737 cplus_array_compare (const void * k1, const void * k2)
738 {
739 const_tree const t1 = (const_tree) k1;
740 const cplus_array_info *const t2 = (const cplus_array_info*) k2;
741
742 return (TREE_TYPE (t1) == t2->type && TYPE_DOMAIN (t1) == t2->domain);
743 }
744
745 /* Hash table containing dependent array types, which are unsuitable for
746 the language-independent type hash table. */
747 static GTY ((param_is (union tree_node))) htab_t cplus_array_htab;
748
749 /* Like build_array_type, but handle special C++ semantics. */
750
751 tree
752 build_cplus_array_type (tree elt_type, tree index_type)
753 {
754 tree t;
755
756 if (elt_type == error_mark_node || index_type == error_mark_node)
757 return error_mark_node;
758
759 if (processing_template_decl
760 && (dependent_type_p (elt_type)
761 || (index_type && !TREE_CONSTANT (TYPE_MAX_VALUE (index_type)))))
762 {
763 void **e;
764 cplus_array_info cai;
765 hashval_t hash;
766
767 if (cplus_array_htab == NULL)
768 cplus_array_htab = htab_create_ggc (61, &cplus_array_hash,
769 &cplus_array_compare, NULL);
770
771 hash = TYPE_UID (elt_type);
772 if (index_type)
773 hash ^= TYPE_UID (index_type);
774 cai.type = elt_type;
775 cai.domain = index_type;
776
777 e = htab_find_slot_with_hash (cplus_array_htab, &cai, hash, INSERT);
778 if (*e)
779 /* We have found the type: we're done. */
780 return (tree) *e;
781 else
782 {
783 /* Build a new array type. */
784 t = cxx_make_type (ARRAY_TYPE);
785 TREE_TYPE (t) = elt_type;
786 TYPE_DOMAIN (t) = index_type;
787
788 /* Store it in the hash table. */
789 *e = t;
790
791 /* Set the canonical type for this new node. */
792 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
793 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
794 SET_TYPE_STRUCTURAL_EQUALITY (t);
795 else if (TYPE_CANONICAL (elt_type) != elt_type
796 || (index_type
797 && TYPE_CANONICAL (index_type) != index_type))
798 TYPE_CANONICAL (t)
799 = build_cplus_array_type
800 (TYPE_CANONICAL (elt_type),
801 index_type ? TYPE_CANONICAL (index_type) : index_type);
802 else
803 TYPE_CANONICAL (t) = t;
804 }
805 }
806 else
807 {
808 if (!TYPE_STRUCTURAL_EQUALITY_P (elt_type)
809 && !(index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
810 && (TYPE_CANONICAL (elt_type) != elt_type
811 || (index_type && TYPE_CANONICAL (index_type) != index_type)))
812 /* Make sure that the canonical type is on the appropriate
813 variants list. */
814 build_cplus_array_type
815 (TYPE_CANONICAL (elt_type),
816 index_type ? TYPE_CANONICAL (index_type) : index_type);
817 t = build_array_type (elt_type, index_type);
818 }
819
820 /* Push these needs up so that initialization takes place
821 more easily. */
822 bool needs_ctor
823 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (elt_type));
824 TYPE_NEEDS_CONSTRUCTING (t) = needs_ctor;
825 bool needs_dtor
826 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (elt_type));
827 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = needs_dtor;
828
829 /* We want TYPE_MAIN_VARIANT of an array to strip cv-quals from the
830 element type as well, so fix it up if needed. */
831 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
832 {
833 tree m = build_cplus_array_type (TYPE_MAIN_VARIANT (elt_type),
834 index_type);
835
836 if (TYPE_MAIN_VARIANT (t) != m)
837 {
838 if (COMPLETE_TYPE_P (TREE_TYPE (t)) && !COMPLETE_TYPE_P (m))
839 {
840 /* m was built before the element type was complete, so we
841 also need to copy the layout info from t. We might
842 end up doing this multiple times if t is an array of
843 unknown bound. */
844 tree size = TYPE_SIZE (t);
845 tree size_unit = TYPE_SIZE_UNIT (t);
846 unsigned int align = TYPE_ALIGN (t);
847 unsigned int user_align = TYPE_USER_ALIGN (t);
848 enum machine_mode mode = TYPE_MODE (t);
849 for (tree var = m; var; var = TYPE_NEXT_VARIANT (var))
850 {
851 TYPE_SIZE (var) = size;
852 TYPE_SIZE_UNIT (var) = size_unit;
853 TYPE_ALIGN (var) = align;
854 TYPE_USER_ALIGN (var) = user_align;
855 SET_TYPE_MODE (var, mode);
856 TYPE_NEEDS_CONSTRUCTING (var) = needs_ctor;
857 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (var) = needs_dtor;
858 }
859 }
860
861 TYPE_MAIN_VARIANT (t) = m;
862 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
863 TYPE_NEXT_VARIANT (m) = t;
864 }
865 }
866
867 /* Avoid spurious warnings with VLAs (c++/54583). */
868 if (TYPE_SIZE (t) && EXPR_P (TYPE_SIZE (t)))
869 TREE_NO_WARNING (TYPE_SIZE (t)) = 1;
870
871 return t;
872 }
873
874 /* Return an ARRAY_TYPE with element type ELT and length N. */
875
876 tree
877 build_array_of_n_type (tree elt, int n)
878 {
879 return build_cplus_array_type (elt, build_index_type (size_int (n - 1)));
880 }
881
882 /* True iff T is a C++1y array of runtime bound (VLA). */
883
884 bool
885 array_of_runtime_bound_p (tree t)
886 {
887 if (!t || TREE_CODE (t) != ARRAY_TYPE)
888 return false;
889 tree dom = TYPE_DOMAIN (t);
890 if (!dom)
891 return false;
892 tree max = TYPE_MAX_VALUE (dom);
893 return (!potential_rvalue_constant_expression (max)
894 || (!value_dependent_expression_p (max) && !TREE_CONSTANT (max)));
895 }
896
897 /* Return a reference type node referring to TO_TYPE. If RVAL is
898 true, return an rvalue reference type, otherwise return an lvalue
899 reference type. If a type node exists, reuse it, otherwise create
900 a new one. */
901 tree
902 cp_build_reference_type (tree to_type, bool rval)
903 {
904 tree lvalue_ref, t;
905 lvalue_ref = build_reference_type (to_type);
906 if (!rval)
907 return lvalue_ref;
908
909 /* This code to create rvalue reference types is based on and tied
910 to the code creating lvalue reference types in the middle-end
911 functions build_reference_type_for_mode and build_reference_type.
912
913 It works by putting the rvalue reference type nodes after the
914 lvalue reference nodes in the TYPE_NEXT_REF_TO linked list, so
915 they will effectively be ignored by the middle end. */
916
917 for (t = lvalue_ref; (t = TYPE_NEXT_REF_TO (t)); )
918 if (TYPE_REF_IS_RVALUE (t))
919 return t;
920
921 t = build_distinct_type_copy (lvalue_ref);
922
923 TYPE_REF_IS_RVALUE (t) = true;
924 TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (lvalue_ref);
925 TYPE_NEXT_REF_TO (lvalue_ref) = t;
926
927 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
928 SET_TYPE_STRUCTURAL_EQUALITY (t);
929 else if (TYPE_CANONICAL (to_type) != to_type)
930 TYPE_CANONICAL (t)
931 = cp_build_reference_type (TYPE_CANONICAL (to_type), rval);
932 else
933 TYPE_CANONICAL (t) = t;
934
935 layout_type (t);
936
937 return t;
938
939 }
940
941 /* Returns EXPR cast to rvalue reference type, like std::move. */
942
943 tree
944 move (tree expr)
945 {
946 tree type = TREE_TYPE (expr);
947 gcc_assert (TREE_CODE (type) != REFERENCE_TYPE);
948 type = cp_build_reference_type (type, /*rval*/true);
949 return build_static_cast (type, expr, tf_warning_or_error);
950 }
951
952 /* Used by the C++ front end to build qualified array types. However,
953 the C version of this function does not properly maintain canonical
954 types (which are not used in C). */
955 tree
956 c_build_qualified_type (tree type, int type_quals)
957 {
958 return cp_build_qualified_type (type, type_quals);
959 }
960
961 \f
962 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
963 arrays correctly. In particular, if TYPE is an array of T's, and
964 TYPE_QUALS is non-empty, returns an array of qualified T's.
965
966 FLAGS determines how to deal with ill-formed qualifications. If
967 tf_ignore_bad_quals is set, then bad qualifications are dropped
968 (this is permitted if TYPE was introduced via a typedef or template
969 type parameter). If bad qualifications are dropped and tf_warning
970 is set, then a warning is issued for non-const qualifications. If
971 tf_ignore_bad_quals is not set and tf_error is not set, we
972 return error_mark_node. Otherwise, we issue an error, and ignore
973 the qualifications.
974
975 Qualification of a reference type is valid when the reference came
976 via a typedef or template type argument. [dcl.ref] No such
977 dispensation is provided for qualifying a function type. [dcl.fct]
978 DR 295 queries this and the proposed resolution brings it into line
979 with qualifying a reference. We implement the DR. We also behave
980 in a similar manner for restricting non-pointer types. */
981
982 tree
983 cp_build_qualified_type_real (tree type,
984 int type_quals,
985 tsubst_flags_t complain)
986 {
987 tree result;
988 int bad_quals = TYPE_UNQUALIFIED;
989
990 if (type == error_mark_node)
991 return type;
992
993 if (type_quals == cp_type_quals (type))
994 return type;
995
996 if (TREE_CODE (type) == ARRAY_TYPE)
997 {
998 /* In C++, the qualification really applies to the array element
999 type. Obtain the appropriately qualified element type. */
1000 tree t;
1001 tree element_type
1002 = cp_build_qualified_type_real (TREE_TYPE (type),
1003 type_quals,
1004 complain);
1005
1006 if (element_type == error_mark_node)
1007 return error_mark_node;
1008
1009 /* See if we already have an identically qualified type. Tests
1010 should be equivalent to those in check_qualified_type. */
1011 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
1012 if (TREE_TYPE (t) == element_type
1013 && TYPE_NAME (t) == TYPE_NAME (type)
1014 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
1015 && attribute_list_equal (TYPE_ATTRIBUTES (t),
1016 TYPE_ATTRIBUTES (type)))
1017 break;
1018
1019 if (!t)
1020 {
1021 t = build_cplus_array_type (element_type, TYPE_DOMAIN (type));
1022
1023 /* Keep the typedef name. */
1024 if (TYPE_NAME (t) != TYPE_NAME (type))
1025 {
1026 t = build_variant_type_copy (t);
1027 TYPE_NAME (t) = TYPE_NAME (type);
1028 }
1029 }
1030
1031 /* Even if we already had this variant, we update
1032 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
1033 they changed since the variant was originally created.
1034
1035 This seems hokey; if there is some way to use a previous
1036 variant *without* coming through here,
1037 TYPE_NEEDS_CONSTRUCTING will never be updated. */
1038 TYPE_NEEDS_CONSTRUCTING (t)
1039 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
1040 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1041 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
1042 return t;
1043 }
1044 else if (TYPE_PTRMEMFUNC_P (type))
1045 {
1046 /* For a pointer-to-member type, we can't just return a
1047 cv-qualified version of the RECORD_TYPE. If we do, we
1048 haven't changed the field that contains the actual pointer to
1049 a method, and so TYPE_PTRMEMFUNC_FN_TYPE will be wrong. */
1050 tree t;
1051
1052 t = TYPE_PTRMEMFUNC_FN_TYPE (type);
1053 t = cp_build_qualified_type_real (t, type_quals, complain);
1054 return build_ptrmemfunc_type (t);
1055 }
1056 else if (TREE_CODE (type) == TYPE_PACK_EXPANSION)
1057 {
1058 tree t = PACK_EXPANSION_PATTERN (type);
1059
1060 t = cp_build_qualified_type_real (t, type_quals, complain);
1061 return make_pack_expansion (t);
1062 }
1063
1064 /* A reference or method type shall not be cv-qualified.
1065 [dcl.ref], [dcl.fct]. This used to be an error, but as of DR 295
1066 (in CD1) we always ignore extra cv-quals on functions. */
1067 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
1068 && (TREE_CODE (type) == REFERENCE_TYPE
1069 || TREE_CODE (type) == FUNCTION_TYPE
1070 || TREE_CODE (type) == METHOD_TYPE))
1071 {
1072 if (TREE_CODE (type) == REFERENCE_TYPE)
1073 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1074 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1075 }
1076
1077 /* But preserve any function-cv-quals on a FUNCTION_TYPE. */
1078 if (TREE_CODE (type) == FUNCTION_TYPE)
1079 type_quals |= type_memfn_quals (type);
1080
1081 /* A restrict-qualified type must be a pointer (or reference)
1082 to object or incomplete type. */
1083 if ((type_quals & TYPE_QUAL_RESTRICT)
1084 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1085 && TREE_CODE (type) != TYPENAME_TYPE
1086 && !POINTER_TYPE_P (type))
1087 {
1088 bad_quals |= TYPE_QUAL_RESTRICT;
1089 type_quals &= ~TYPE_QUAL_RESTRICT;
1090 }
1091
1092 if (bad_quals == TYPE_UNQUALIFIED
1093 || (complain & tf_ignore_bad_quals))
1094 /*OK*/;
1095 else if (!(complain & tf_error))
1096 return error_mark_node;
1097 else
1098 {
1099 tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
1100 error ("%qV qualifiers cannot be applied to %qT",
1101 bad_type, type);
1102 }
1103
1104 /* Retrieve (or create) the appropriately qualified variant. */
1105 result = build_qualified_type (type, type_quals);
1106
1107 /* Preserve exception specs and ref-qualifier since build_qualified_type
1108 doesn't know about them. */
1109 if (TREE_CODE (result) == FUNCTION_TYPE
1110 || TREE_CODE (result) == METHOD_TYPE)
1111 {
1112 result = build_exception_variant (result, TYPE_RAISES_EXCEPTIONS (type));
1113 result = build_ref_qualified_type (result, type_memfn_rqual (type));
1114 }
1115
1116 /* If this was a pointer-to-method type, and we just made a copy,
1117 then we need to unshare the record that holds the cached
1118 pointer-to-member-function type, because these will be distinct
1119 between the unqualified and qualified types. */
1120 if (result != type
1121 && TYPE_PTR_P (type)
1122 && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE
1123 && TYPE_LANG_SPECIFIC (result) == TYPE_LANG_SPECIFIC (type))
1124 TYPE_LANG_SPECIFIC (result) = NULL;
1125
1126 /* We may also have ended up building a new copy of the canonical
1127 type of a pointer-to-method type, which could have the same
1128 sharing problem described above. */
1129 if (TYPE_CANONICAL (result) != TYPE_CANONICAL (type)
1130 && TYPE_PTR_P (type)
1131 && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE
1132 && (TYPE_LANG_SPECIFIC (TYPE_CANONICAL (result))
1133 == TYPE_LANG_SPECIFIC (TYPE_CANONICAL (type))))
1134 TYPE_LANG_SPECIFIC (TYPE_CANONICAL (result)) = NULL;
1135
1136 return result;
1137 }
1138
1139 /* Return TYPE with const and volatile removed. */
1140
1141 tree
1142 cv_unqualified (tree type)
1143 {
1144 int quals;
1145
1146 if (type == error_mark_node)
1147 return type;
1148
1149 quals = cp_type_quals (type);
1150 quals &= ~(TYPE_QUAL_CONST|TYPE_QUAL_VOLATILE);
1151 return cp_build_qualified_type (type, quals);
1152 }
1153
1154 /* Builds a qualified variant of T that is not a typedef variant.
1155 E.g. consider the following declarations:
1156 typedef const int ConstInt;
1157 typedef ConstInt* PtrConstInt;
1158 If T is PtrConstInt, this function returns a type representing
1159 const int*.
1160 In other words, if T is a typedef, the function returns the underlying type.
1161 The cv-qualification and attributes of the type returned match the
1162 input type.
1163 They will always be compatible types.
1164 The returned type is built so that all of its subtypes
1165 recursively have their typedefs stripped as well.
1166
1167 This is different from just returning TYPE_CANONICAL (T)
1168 Because of several reasons:
1169 * If T is a type that needs structural equality
1170 its TYPE_CANONICAL (T) will be NULL.
1171 * TYPE_CANONICAL (T) desn't carry type attributes
1172 and loses template parameter names. */
1173
1174 tree
1175 strip_typedefs (tree t)
1176 {
1177 tree result = NULL, type = NULL, t0 = NULL;
1178
1179 if (!t || t == error_mark_node || t == TYPE_CANONICAL (t))
1180 return t;
1181
1182 gcc_assert (TYPE_P (t));
1183
1184 switch (TREE_CODE (t))
1185 {
1186 case POINTER_TYPE:
1187 type = strip_typedefs (TREE_TYPE (t));
1188 result = build_pointer_type (type);
1189 break;
1190 case REFERENCE_TYPE:
1191 type = strip_typedefs (TREE_TYPE (t));
1192 result = cp_build_reference_type (type, TYPE_REF_IS_RVALUE (t));
1193 break;
1194 case OFFSET_TYPE:
1195 t0 = strip_typedefs (TYPE_OFFSET_BASETYPE (t));
1196 type = strip_typedefs (TREE_TYPE (t));
1197 result = build_offset_type (t0, type);
1198 break;
1199 case RECORD_TYPE:
1200 if (TYPE_PTRMEMFUNC_P (t))
1201 {
1202 t0 = strip_typedefs (TYPE_PTRMEMFUNC_FN_TYPE (t));
1203 result = build_ptrmemfunc_type (t0);
1204 }
1205 break;
1206 case ARRAY_TYPE:
1207 type = strip_typedefs (TREE_TYPE (t));
1208 t0 = strip_typedefs (TYPE_DOMAIN (t));;
1209 result = build_cplus_array_type (type, t0);
1210 break;
1211 case FUNCTION_TYPE:
1212 case METHOD_TYPE:
1213 {
1214 tree arg_types = NULL, arg_node, arg_type;
1215 for (arg_node = TYPE_ARG_TYPES (t);
1216 arg_node;
1217 arg_node = TREE_CHAIN (arg_node))
1218 {
1219 if (arg_node == void_list_node)
1220 break;
1221 arg_type = strip_typedefs (TREE_VALUE (arg_node));
1222 gcc_assert (arg_type);
1223
1224 arg_types =
1225 tree_cons (TREE_PURPOSE (arg_node), arg_type, arg_types);
1226 }
1227
1228 if (arg_types)
1229 arg_types = nreverse (arg_types);
1230
1231 /* A list of parameters not ending with an ellipsis
1232 must end with void_list_node. */
1233 if (arg_node)
1234 arg_types = chainon (arg_types, void_list_node);
1235
1236 type = strip_typedefs (TREE_TYPE (t));
1237 if (TREE_CODE (t) == METHOD_TYPE)
1238 {
1239 tree class_type = TREE_TYPE (TREE_VALUE (arg_types));
1240 gcc_assert (class_type);
1241 result =
1242 build_method_type_directly (class_type, type,
1243 TREE_CHAIN (arg_types));
1244 result
1245 = build_ref_qualified_type (result, type_memfn_rqual (t));
1246 }
1247 else
1248 {
1249 result = build_function_type (type,
1250 arg_types);
1251 result = apply_memfn_quals (result,
1252 type_memfn_quals (t),
1253 type_memfn_rqual (t));
1254 }
1255
1256 if (TYPE_RAISES_EXCEPTIONS (t))
1257 result = build_exception_variant (result,
1258 TYPE_RAISES_EXCEPTIONS (t));
1259 }
1260 break;
1261 case TYPENAME_TYPE:
1262 {
1263 tree fullname = TYPENAME_TYPE_FULLNAME (t);
1264 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR
1265 && TREE_OPERAND (fullname, 1))
1266 {
1267 tree args = TREE_OPERAND (fullname, 1);
1268 tree new_args = copy_node (args);
1269 bool changed = false;
1270 for (int i = 0; i < TREE_VEC_LENGTH (args); ++i)
1271 {
1272 tree arg = TREE_VEC_ELT (args, i);
1273 tree strip_arg;
1274 if (TYPE_P (arg))
1275 strip_arg = strip_typedefs (arg);
1276 else
1277 strip_arg = strip_typedefs_expr (arg);
1278 TREE_VEC_ELT (new_args, i) = strip_arg;
1279 if (strip_arg != arg)
1280 changed = true;
1281 }
1282 if (changed)
1283 {
1284 NON_DEFAULT_TEMPLATE_ARGS_COUNT (new_args)
1285 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (args);
1286 fullname
1287 = lookup_template_function (TREE_OPERAND (fullname, 0),
1288 new_args);
1289 }
1290 else
1291 ggc_free (new_args);
1292 }
1293 result = make_typename_type (strip_typedefs (TYPE_CONTEXT (t)),
1294 fullname, typename_type, tf_none);
1295 }
1296 break;
1297 case DECLTYPE_TYPE:
1298 result = strip_typedefs_expr (DECLTYPE_TYPE_EXPR (t));
1299 if (result == DECLTYPE_TYPE_EXPR (t))
1300 return t;
1301 else
1302 result = (finish_decltype_type
1303 (result,
1304 DECLTYPE_TYPE_ID_EXPR_OR_MEMBER_ACCESS_P (t),
1305 tf_none));
1306 break;
1307 default:
1308 break;
1309 }
1310
1311 if (!result)
1312 result = TYPE_MAIN_VARIANT (t);
1313 if (TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (result)
1314 || TYPE_ALIGN (t) != TYPE_ALIGN (result))
1315 {
1316 gcc_assert (TYPE_USER_ALIGN (t));
1317 if (TYPE_ALIGN (t) == TYPE_ALIGN (result))
1318 result = build_variant_type_copy (result);
1319 else
1320 result = build_aligned_type (result, TYPE_ALIGN (t));
1321 TYPE_USER_ALIGN (result) = true;
1322 }
1323 if (TYPE_ATTRIBUTES (t))
1324 result = cp_build_type_attribute_variant (result, TYPE_ATTRIBUTES (t));
1325 return cp_build_qualified_type (result, cp_type_quals (t));
1326 }
1327
1328 /* Like strip_typedefs above, but works on expressions, so that in
1329
1330 template<class T> struct A
1331 {
1332 typedef T TT;
1333 B<sizeof(TT)> b;
1334 };
1335
1336 sizeof(TT) is replaced by sizeof(T). */
1337
1338 tree
1339 strip_typedefs_expr (tree t)
1340 {
1341 unsigned i,n;
1342 tree r, type, *ops;
1343 enum tree_code code;
1344
1345 if (t == NULL_TREE || t == error_mark_node)
1346 return t;
1347
1348 if (DECL_P (t) || CONSTANT_CLASS_P (t))
1349 return t;
1350
1351 /* Some expressions have type operands, so let's handle types here rather
1352 than check TYPE_P in multiple places below. */
1353 if (TYPE_P (t))
1354 return strip_typedefs (t);
1355
1356 code = TREE_CODE (t);
1357 switch (code)
1358 {
1359 case IDENTIFIER_NODE:
1360 case TEMPLATE_PARM_INDEX:
1361 case OVERLOAD:
1362 case BASELINK:
1363 case ARGUMENT_PACK_SELECT:
1364 return t;
1365
1366 case TRAIT_EXPR:
1367 {
1368 tree type1 = strip_typedefs (TRAIT_EXPR_TYPE1 (t));
1369 tree type2 = strip_typedefs (TRAIT_EXPR_TYPE2 (t));
1370 if (type1 == TRAIT_EXPR_TYPE1 (t)
1371 && type2 == TRAIT_EXPR_TYPE2 (t))
1372 return t;
1373 r = copy_node (t);
1374 TRAIT_EXPR_TYPE1 (t) = type1;
1375 TRAIT_EXPR_TYPE2 (t) = type2;
1376 return r;
1377 }
1378
1379 case TREE_LIST:
1380 {
1381 vec<tree, va_gc> *vec = make_tree_vector ();
1382 bool changed = false;
1383 tree it;
1384 for (it = t; it; it = TREE_CHAIN (it))
1385 {
1386 tree val = strip_typedefs_expr (TREE_VALUE (t));
1387 vec_safe_push (vec, val);
1388 if (val != TREE_VALUE (t))
1389 changed = true;
1390 gcc_assert (TREE_PURPOSE (it) == NULL_TREE);
1391 }
1392 if (changed)
1393 {
1394 r = NULL_TREE;
1395 FOR_EACH_VEC_ELT_REVERSE (*vec, i, it)
1396 r = tree_cons (NULL_TREE, it, r);
1397 }
1398 else
1399 r = t;
1400 release_tree_vector (vec);
1401 return r;
1402 }
1403
1404 case TREE_VEC:
1405 {
1406 bool changed = false;
1407 vec<tree, va_gc> *vec = make_tree_vector ();
1408 n = TREE_VEC_LENGTH (t);
1409 vec_safe_reserve (vec, n);
1410 for (i = 0; i < n; ++i)
1411 {
1412 tree op = strip_typedefs_expr (TREE_VEC_ELT (t, i));
1413 vec->quick_push (op);
1414 if (op != TREE_VEC_ELT (t, i))
1415 changed = true;
1416 }
1417 if (changed)
1418 {
1419 r = copy_node (t);
1420 for (i = 0; i < n; ++i)
1421 TREE_VEC_ELT (r, i) = (*vec)[i];
1422 NON_DEFAULT_TEMPLATE_ARGS_COUNT (r)
1423 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (t);
1424 }
1425 else
1426 r = t;
1427 release_tree_vector (vec);
1428 return r;
1429 }
1430
1431 case CONSTRUCTOR:
1432 {
1433 bool changed = false;
1434 vec<constructor_elt, va_gc> *vec
1435 = vec_safe_copy (CONSTRUCTOR_ELTS (t));
1436 n = CONSTRUCTOR_NELTS (t);
1437 type = strip_typedefs (TREE_TYPE (t));
1438 for (i = 0; i < n; ++i)
1439 {
1440 constructor_elt *e = &(*vec)[i];
1441 tree op = strip_typedefs_expr (e->value);
1442 if (op != e->value)
1443 {
1444 changed = true;
1445 e->value = op;
1446 }
1447 gcc_checking_assert (e->index == strip_typedefs_expr (e->index));
1448 }
1449
1450 if (!changed && type == TREE_TYPE (t))
1451 {
1452 vec_free (vec);
1453 return t;
1454 }
1455 else
1456 {
1457 r = copy_node (t);
1458 TREE_TYPE (r) = type;
1459 CONSTRUCTOR_ELTS (r) = vec;
1460 return r;
1461 }
1462 }
1463
1464 case LAMBDA_EXPR:
1465 error ("lambda-expression in a constant expression");
1466 return error_mark_node;
1467
1468 default:
1469 break;
1470 }
1471
1472 gcc_assert (EXPR_P (t));
1473
1474 n = TREE_OPERAND_LENGTH (t);
1475 ops = XALLOCAVEC (tree, n);
1476 type = TREE_TYPE (t);
1477
1478 switch (code)
1479 {
1480 CASE_CONVERT:
1481 case IMPLICIT_CONV_EXPR:
1482 case DYNAMIC_CAST_EXPR:
1483 case STATIC_CAST_EXPR:
1484 case CONST_CAST_EXPR:
1485 case REINTERPRET_CAST_EXPR:
1486 case CAST_EXPR:
1487 case NEW_EXPR:
1488 type = strip_typedefs (type);
1489 /* fallthrough */
1490
1491 default:
1492 for (i = 0; i < n; ++i)
1493 ops[i] = strip_typedefs_expr (TREE_OPERAND (t, i));
1494 break;
1495 }
1496
1497 /* If nothing changed, return t. */
1498 for (i = 0; i < n; ++i)
1499 if (ops[i] != TREE_OPERAND (t, i))
1500 break;
1501 if (i == n && type == TREE_TYPE (t))
1502 return t;
1503
1504 r = copy_node (t);
1505 TREE_TYPE (r) = type;
1506 for (i = 0; i < n; ++i)
1507 TREE_OPERAND (r, i) = ops[i];
1508 return r;
1509 }
1510
1511 /* Makes a copy of BINFO and TYPE, which is to be inherited into a
1512 graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
1513 and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
1514 VIRT indicates whether TYPE is inherited virtually or not.
1515 IGO_PREV points at the previous binfo of the inheritance graph
1516 order chain. The newly copied binfo's TREE_CHAIN forms this
1517 ordering.
1518
1519 The CLASSTYPE_VBASECLASSES vector of T is constructed in the
1520 correct order. That is in the order the bases themselves should be
1521 constructed in.
1522
1523 The BINFO_INHERITANCE of a virtual base class points to the binfo
1524 of the most derived type. ??? We could probably change this so that
1525 BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
1526 remove a field. They currently can only differ for primary virtual
1527 virtual bases. */
1528
1529 tree
1530 copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
1531 {
1532 tree new_binfo;
1533
1534 if (virt)
1535 {
1536 /* See if we've already made this virtual base. */
1537 new_binfo = binfo_for_vbase (type, t);
1538 if (new_binfo)
1539 return new_binfo;
1540 }
1541
1542 new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0);
1543 BINFO_TYPE (new_binfo) = type;
1544
1545 /* Chain it into the inheritance graph. */
1546 TREE_CHAIN (*igo_prev) = new_binfo;
1547 *igo_prev = new_binfo;
1548
1549 if (binfo && !BINFO_DEPENDENT_BASE_P (binfo))
1550 {
1551 int ix;
1552 tree base_binfo;
1553
1554 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type));
1555
1556 BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
1557 BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
1558
1559 /* We do not need to copy the accesses, as they are read only. */
1560 BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
1561
1562 /* Recursively copy base binfos of BINFO. */
1563 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1564 {
1565 tree new_base_binfo;
1566 new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
1567 t, igo_prev,
1568 BINFO_VIRTUAL_P (base_binfo));
1569
1570 if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
1571 BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
1572 BINFO_BASE_APPEND (new_binfo, new_base_binfo);
1573 }
1574 }
1575 else
1576 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
1577
1578 if (virt)
1579 {
1580 /* Push it onto the list after any virtual bases it contains
1581 will have been pushed. */
1582 CLASSTYPE_VBASECLASSES (t)->quick_push (new_binfo);
1583 BINFO_VIRTUAL_P (new_binfo) = 1;
1584 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
1585 }
1586
1587 return new_binfo;
1588 }
1589 \f
1590 /* Hashing of lists so that we don't make duplicates.
1591 The entry point is `list_hash_canon'. */
1592
1593 /* Now here is the hash table. When recording a list, it is added
1594 to the slot whose index is the hash code mod the table size.
1595 Note that the hash table is used for several kinds of lists.
1596 While all these live in the same table, they are completely independent,
1597 and the hash code is computed differently for each of these. */
1598
1599 static GTY ((param_is (union tree_node))) htab_t list_hash_table;
1600
1601 struct list_proxy
1602 {
1603 tree purpose;
1604 tree value;
1605 tree chain;
1606 };
1607
1608 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
1609 for a node we are thinking about adding). */
1610
1611 static int
1612 list_hash_eq (const void* entry, const void* data)
1613 {
1614 const_tree const t = (const_tree) entry;
1615 const struct list_proxy *const proxy = (const struct list_proxy *) data;
1616
1617 return (TREE_VALUE (t) == proxy->value
1618 && TREE_PURPOSE (t) == proxy->purpose
1619 && TREE_CHAIN (t) == proxy->chain);
1620 }
1621
1622 /* Compute a hash code for a list (chain of TREE_LIST nodes
1623 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
1624 TREE_COMMON slots), by adding the hash codes of the individual entries. */
1625
1626 static hashval_t
1627 list_hash_pieces (tree purpose, tree value, tree chain)
1628 {
1629 hashval_t hashcode = 0;
1630
1631 if (chain)
1632 hashcode += TREE_HASH (chain);
1633
1634 if (value)
1635 hashcode += TREE_HASH (value);
1636 else
1637 hashcode += 1007;
1638 if (purpose)
1639 hashcode += TREE_HASH (purpose);
1640 else
1641 hashcode += 1009;
1642 return hashcode;
1643 }
1644
1645 /* Hash an already existing TREE_LIST. */
1646
1647 static hashval_t
1648 list_hash (const void* p)
1649 {
1650 const_tree const t = (const_tree) p;
1651 return list_hash_pieces (TREE_PURPOSE (t),
1652 TREE_VALUE (t),
1653 TREE_CHAIN (t));
1654 }
1655
1656 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
1657 object for an identical list if one already exists. Otherwise, build a
1658 new one, and record it as the canonical object. */
1659
1660 tree
1661 hash_tree_cons (tree purpose, tree value, tree chain)
1662 {
1663 int hashcode = 0;
1664 void **slot;
1665 struct list_proxy proxy;
1666
1667 /* Hash the list node. */
1668 hashcode = list_hash_pieces (purpose, value, chain);
1669 /* Create a proxy for the TREE_LIST we would like to create. We
1670 don't actually create it so as to avoid creating garbage. */
1671 proxy.purpose = purpose;
1672 proxy.value = value;
1673 proxy.chain = chain;
1674 /* See if it is already in the table. */
1675 slot = htab_find_slot_with_hash (list_hash_table, &proxy, hashcode,
1676 INSERT);
1677 /* If not, create a new node. */
1678 if (!*slot)
1679 *slot = tree_cons (purpose, value, chain);
1680 return (tree) *slot;
1681 }
1682
1683 /* Constructor for hashed lists. */
1684
1685 tree
1686 hash_tree_chain (tree value, tree chain)
1687 {
1688 return hash_tree_cons (NULL_TREE, value, chain);
1689 }
1690 \f
1691 void
1692 debug_binfo (tree elem)
1693 {
1694 HOST_WIDE_INT n;
1695 tree virtuals;
1696
1697 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
1698 "\nvtable type:\n",
1699 TYPE_NAME_STRING (BINFO_TYPE (elem)),
1700 TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
1701 debug_tree (BINFO_TYPE (elem));
1702 if (BINFO_VTABLE (elem))
1703 fprintf (stderr, "vtable decl \"%s\"\n",
1704 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
1705 else
1706 fprintf (stderr, "no vtable decl yet\n");
1707 fprintf (stderr, "virtuals:\n");
1708 virtuals = BINFO_VIRTUALS (elem);
1709 n = 0;
1710
1711 while (virtuals)
1712 {
1713 tree fndecl = TREE_VALUE (virtuals);
1714 fprintf (stderr, "%s [%ld =? %ld]\n",
1715 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
1716 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
1717 ++n;
1718 virtuals = TREE_CHAIN (virtuals);
1719 }
1720 }
1721
1722 /* Build a representation for the qualified name SCOPE::NAME. TYPE is
1723 the type of the result expression, if known, or NULL_TREE if the
1724 resulting expression is type-dependent. If TEMPLATE_P is true,
1725 NAME is known to be a template because the user explicitly used the
1726 "template" keyword after the "::".
1727
1728 All SCOPE_REFs should be built by use of this function. */
1729
1730 tree
1731 build_qualified_name (tree type, tree scope, tree name, bool template_p)
1732 {
1733 tree t;
1734 if (type == error_mark_node
1735 || scope == error_mark_node
1736 || name == error_mark_node)
1737 return error_mark_node;
1738 t = build2 (SCOPE_REF, type, scope, name);
1739 QUALIFIED_NAME_IS_TEMPLATE (t) = template_p;
1740 PTRMEM_OK_P (t) = true;
1741 if (type)
1742 t = convert_from_reference (t);
1743 return t;
1744 }
1745
1746 /* Like check_qualified_type, but also check ref-qualifier and exception
1747 specification. */
1748
1749 static bool
1750 cp_check_qualified_type (const_tree cand, const_tree base, int type_quals,
1751 cp_ref_qualifier rqual, tree raises)
1752 {
1753 return (check_qualified_type (cand, base, type_quals)
1754 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (cand),
1755 ce_exact)
1756 && type_memfn_rqual (cand) == rqual);
1757 }
1758
1759 /* Build the FUNCTION_TYPE or METHOD_TYPE with the ref-qualifier RQUAL. */
1760
1761 tree
1762 build_ref_qualified_type (tree type, cp_ref_qualifier rqual)
1763 {
1764 tree t;
1765
1766 if (rqual == type_memfn_rqual (type))
1767 return type;
1768
1769 int type_quals = TYPE_QUALS (type);
1770 tree raises = TYPE_RAISES_EXCEPTIONS (type);
1771 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
1772 if (cp_check_qualified_type (t, type, type_quals, rqual, raises))
1773 return t;
1774
1775 t = build_variant_type_copy (type);
1776 switch (rqual)
1777 {
1778 case REF_QUAL_RVALUE:
1779 FUNCTION_RVALUE_QUALIFIED (t) = 1;
1780 FUNCTION_REF_QUALIFIED (t) = 1;
1781 break;
1782 case REF_QUAL_LVALUE:
1783 FUNCTION_RVALUE_QUALIFIED (t) = 0;
1784 FUNCTION_REF_QUALIFIED (t) = 1;
1785 break;
1786 default:
1787 FUNCTION_REF_QUALIFIED (t) = 0;
1788 break;
1789 }
1790
1791 if (TYPE_STRUCTURAL_EQUALITY_P (type))
1792 /* Propagate structural equality. */
1793 SET_TYPE_STRUCTURAL_EQUALITY (t);
1794 else if (TYPE_CANONICAL (type) != type)
1795 /* Build the underlying canonical type, since it is different
1796 from TYPE. */
1797 TYPE_CANONICAL (t) = build_ref_qualified_type (TYPE_CANONICAL (type),
1798 rqual);
1799 else
1800 /* T is its own canonical type. */
1801 TYPE_CANONICAL (t) = t;
1802
1803 return t;
1804 }
1805
1806 /* Returns nonzero if X is an expression for a (possibly overloaded)
1807 function. If "f" is a function or function template, "f", "c->f",
1808 "c.f", "C::f", and "f<int>" will all be considered possibly
1809 overloaded functions. Returns 2 if the function is actually
1810 overloaded, i.e., if it is impossible to know the type of the
1811 function without performing overload resolution. */
1812
1813 int
1814 is_overloaded_fn (tree x)
1815 {
1816 /* A baselink is also considered an overloaded function. */
1817 if (TREE_CODE (x) == OFFSET_REF
1818 || TREE_CODE (x) == COMPONENT_REF)
1819 x = TREE_OPERAND (x, 1);
1820 if (BASELINK_P (x))
1821 x = BASELINK_FUNCTIONS (x);
1822 if (TREE_CODE (x) == TEMPLATE_ID_EXPR)
1823 x = TREE_OPERAND (x, 0);
1824 if (DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
1825 || (TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x)))
1826 return 2;
1827 return (TREE_CODE (x) == FUNCTION_DECL
1828 || TREE_CODE (x) == OVERLOAD);
1829 }
1830
1831 /* X is the CALL_EXPR_FN of a CALL_EXPR. If X represents a dependent name
1832 (14.6.2), return the IDENTIFIER_NODE for that name. Otherwise, return
1833 NULL_TREE. */
1834
1835 tree
1836 dependent_name (tree x)
1837 {
1838 if (identifier_p (x))
1839 return x;
1840 if (TREE_CODE (x) != COMPONENT_REF
1841 && TREE_CODE (x) != OFFSET_REF
1842 && TREE_CODE (x) != BASELINK
1843 && is_overloaded_fn (x))
1844 return DECL_NAME (get_first_fn (x));
1845 return NULL_TREE;
1846 }
1847
1848 /* Returns true iff X is an expression for an overloaded function
1849 whose type cannot be known without performing overload
1850 resolution. */
1851
1852 bool
1853 really_overloaded_fn (tree x)
1854 {
1855 return is_overloaded_fn (x) == 2;
1856 }
1857
1858 tree
1859 get_fns (tree from)
1860 {
1861 gcc_assert (is_overloaded_fn (from));
1862 /* A baselink is also considered an overloaded function. */
1863 if (TREE_CODE (from) == OFFSET_REF
1864 || TREE_CODE (from) == COMPONENT_REF)
1865 from = TREE_OPERAND (from, 1);
1866 if (BASELINK_P (from))
1867 from = BASELINK_FUNCTIONS (from);
1868 if (TREE_CODE (from) == TEMPLATE_ID_EXPR)
1869 from = TREE_OPERAND (from, 0);
1870 return from;
1871 }
1872
1873 tree
1874 get_first_fn (tree from)
1875 {
1876 return OVL_CURRENT (get_fns (from));
1877 }
1878
1879 /* Return a new OVL node, concatenating it with the old one. */
1880
1881 tree
1882 ovl_cons (tree decl, tree chain)
1883 {
1884 tree result = make_node (OVERLOAD);
1885 TREE_TYPE (result) = unknown_type_node;
1886 OVL_FUNCTION (result) = decl;
1887 TREE_CHAIN (result) = chain;
1888
1889 return result;
1890 }
1891
1892 /* Build a new overloaded function. If this is the first one,
1893 just return it; otherwise, ovl_cons the _DECLs */
1894
1895 tree
1896 build_overload (tree decl, tree chain)
1897 {
1898 if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
1899 return decl;
1900 return ovl_cons (decl, chain);
1901 }
1902
1903 /* Return the scope where the overloaded functions OVL were found. */
1904
1905 tree
1906 ovl_scope (tree ovl)
1907 {
1908 if (TREE_CODE (ovl) == OFFSET_REF
1909 || TREE_CODE (ovl) == COMPONENT_REF)
1910 ovl = TREE_OPERAND (ovl, 1);
1911 if (TREE_CODE (ovl) == BASELINK)
1912 return BINFO_TYPE (BASELINK_BINFO (ovl));
1913 if (TREE_CODE (ovl) == TEMPLATE_ID_EXPR)
1914 ovl = TREE_OPERAND (ovl, 0);
1915 /* Skip using-declarations. */
1916 while (TREE_CODE (ovl) == OVERLOAD && OVL_USED (ovl) && OVL_CHAIN (ovl))
1917 ovl = OVL_CHAIN (ovl);
1918 return CP_DECL_CONTEXT (OVL_CURRENT (ovl));
1919 }
1920
1921 /* Return TRUE if FN is a non-static member function, FALSE otherwise.
1922 This function looks into BASELINK and OVERLOAD nodes. */
1923
1924 bool
1925 non_static_member_function_p (tree fn)
1926 {
1927 if (fn == NULL_TREE)
1928 return false;
1929
1930 if (is_overloaded_fn (fn))
1931 fn = get_first_fn (fn);
1932
1933 return (DECL_P (fn)
1934 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn));
1935 }
1936
1937 \f
1938 #define PRINT_RING_SIZE 4
1939
1940 static const char *
1941 cxx_printable_name_internal (tree decl, int v, bool translate)
1942 {
1943 static unsigned int uid_ring[PRINT_RING_SIZE];
1944 static char *print_ring[PRINT_RING_SIZE];
1945 static bool trans_ring[PRINT_RING_SIZE];
1946 static int ring_counter;
1947 int i;
1948
1949 /* Only cache functions. */
1950 if (v < 2
1951 || TREE_CODE (decl) != FUNCTION_DECL
1952 || DECL_LANG_SPECIFIC (decl) == 0)
1953 return lang_decl_name (decl, v, translate);
1954
1955 /* See if this print name is lying around. */
1956 for (i = 0; i < PRINT_RING_SIZE; i++)
1957 if (uid_ring[i] == DECL_UID (decl) && translate == trans_ring[i])
1958 /* yes, so return it. */
1959 return print_ring[i];
1960
1961 if (++ring_counter == PRINT_RING_SIZE)
1962 ring_counter = 0;
1963
1964 if (current_function_decl != NULL_TREE)
1965 {
1966 /* There may be both translated and untranslated versions of the
1967 name cached. */
1968 for (i = 0; i < 2; i++)
1969 {
1970 if (uid_ring[ring_counter] == DECL_UID (current_function_decl))
1971 ring_counter += 1;
1972 if (ring_counter == PRINT_RING_SIZE)
1973 ring_counter = 0;
1974 }
1975 gcc_assert (uid_ring[ring_counter] != DECL_UID (current_function_decl));
1976 }
1977
1978 free (print_ring[ring_counter]);
1979
1980 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v, translate));
1981 uid_ring[ring_counter] = DECL_UID (decl);
1982 trans_ring[ring_counter] = translate;
1983 return print_ring[ring_counter];
1984 }
1985
1986 const char *
1987 cxx_printable_name (tree decl, int v)
1988 {
1989 return cxx_printable_name_internal (decl, v, false);
1990 }
1991
1992 const char *
1993 cxx_printable_name_translate (tree decl, int v)
1994 {
1995 return cxx_printable_name_internal (decl, v, true);
1996 }
1997 \f
1998 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
1999 listed in RAISES. */
2000
2001 tree
2002 build_exception_variant (tree type, tree raises)
2003 {
2004 tree v;
2005 int type_quals;
2006
2007 if (comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (type), ce_exact))
2008 return type;
2009
2010 type_quals = TYPE_QUALS (type);
2011 cp_ref_qualifier rqual = type_memfn_rqual (type);
2012 for (v = TYPE_MAIN_VARIANT (type); v; v = TYPE_NEXT_VARIANT (v))
2013 if (cp_check_qualified_type (v, type, type_quals, rqual, raises))
2014 return v;
2015
2016 /* Need to build a new variant. */
2017 v = build_variant_type_copy (type);
2018 TYPE_RAISES_EXCEPTIONS (v) = raises;
2019 return v;
2020 }
2021
2022 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
2023 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
2024 arguments. */
2025
2026 tree
2027 bind_template_template_parm (tree t, tree newargs)
2028 {
2029 tree decl = TYPE_NAME (t);
2030 tree t2;
2031
2032 t2 = cxx_make_type (BOUND_TEMPLATE_TEMPLATE_PARM);
2033 decl = build_decl (input_location,
2034 TYPE_DECL, DECL_NAME (decl), NULL_TREE);
2035
2036 /* These nodes have to be created to reflect new TYPE_DECL and template
2037 arguments. */
2038 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
2039 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
2040 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
2041 = build_template_info (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t), newargs);
2042
2043 TREE_TYPE (decl) = t2;
2044 TYPE_NAME (t2) = decl;
2045 TYPE_STUB_DECL (t2) = decl;
2046 TYPE_SIZE (t2) = 0;
2047 SET_TYPE_STRUCTURAL_EQUALITY (t2);
2048
2049 return t2;
2050 }
2051
2052 /* Called from count_trees via walk_tree. */
2053
2054 static tree
2055 count_trees_r (tree *tp, int *walk_subtrees, void *data)
2056 {
2057 ++*((int *) data);
2058
2059 if (TYPE_P (*tp))
2060 *walk_subtrees = 0;
2061
2062 return NULL_TREE;
2063 }
2064
2065 /* Debugging function for measuring the rough complexity of a tree
2066 representation. */
2067
2068 int
2069 count_trees (tree t)
2070 {
2071 int n_trees = 0;
2072 cp_walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
2073 return n_trees;
2074 }
2075
2076 /* Called from verify_stmt_tree via walk_tree. */
2077
2078 static tree
2079 verify_stmt_tree_r (tree* tp, int * /*walk_subtrees*/, void* data)
2080 {
2081 tree t = *tp;
2082 hash_table <pointer_hash <tree_node> > *statements
2083 = static_cast <hash_table <pointer_hash <tree_node> > *> (data);
2084 tree_node **slot;
2085
2086 if (!STATEMENT_CODE_P (TREE_CODE (t)))
2087 return NULL_TREE;
2088
2089 /* If this statement is already present in the hash table, then
2090 there is a circularity in the statement tree. */
2091 gcc_assert (!statements->find (t));
2092
2093 slot = statements->find_slot (t, INSERT);
2094 *slot = t;
2095
2096 return NULL_TREE;
2097 }
2098
2099 /* Debugging function to check that the statement T has not been
2100 corrupted. For now, this function simply checks that T contains no
2101 circularities. */
2102
2103 void
2104 verify_stmt_tree (tree t)
2105 {
2106 hash_table <pointer_hash <tree_node> > statements;
2107 statements.create (37);
2108 cp_walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
2109 statements.dispose ();
2110 }
2111
2112 /* Check if the type T depends on a type with no linkage and if so, return
2113 it. If RELAXED_P then do not consider a class type declared within
2114 a vague-linkage function to have no linkage. */
2115
2116 tree
2117 no_linkage_check (tree t, bool relaxed_p)
2118 {
2119 tree r;
2120
2121 /* There's no point in checking linkage on template functions; we
2122 can't know their complete types. */
2123 if (processing_template_decl)
2124 return NULL_TREE;
2125
2126 switch (TREE_CODE (t))
2127 {
2128 case RECORD_TYPE:
2129 if (TYPE_PTRMEMFUNC_P (t))
2130 goto ptrmem;
2131 /* Lambda types that don't have mangling scope have no linkage. We
2132 check CLASSTYPE_LAMBDA_EXPR for error_mark_node because
2133 when we get here from pushtag none of the lambda information is
2134 set up yet, so we want to assume that the lambda has linkage and
2135 fix it up later if not. */
2136 if (CLASSTYPE_LAMBDA_EXPR (t)
2137 && CLASSTYPE_LAMBDA_EXPR (t) != error_mark_node
2138 && LAMBDA_TYPE_EXTRA_SCOPE (t) == NULL_TREE)
2139 return t;
2140 /* Fall through. */
2141 case UNION_TYPE:
2142 if (!CLASS_TYPE_P (t))
2143 return NULL_TREE;
2144 /* Fall through. */
2145 case ENUMERAL_TYPE:
2146 /* Only treat anonymous types as having no linkage if they're at
2147 namespace scope. This is core issue 966. */
2148 if (TYPE_ANONYMOUS_P (t) && TYPE_NAMESPACE_SCOPE_P (t))
2149 return t;
2150
2151 for (r = CP_TYPE_CONTEXT (t); ; )
2152 {
2153 /* If we're a nested type of a !TREE_PUBLIC class, we might not
2154 have linkage, or we might just be in an anonymous namespace.
2155 If we're in a TREE_PUBLIC class, we have linkage. */
2156 if (TYPE_P (r) && !TREE_PUBLIC (TYPE_NAME (r)))
2157 return no_linkage_check (TYPE_CONTEXT (t), relaxed_p);
2158 else if (TREE_CODE (r) == FUNCTION_DECL)
2159 {
2160 if (!relaxed_p || !vague_linkage_p (r))
2161 return t;
2162 else
2163 r = CP_DECL_CONTEXT (r);
2164 }
2165 else
2166 break;
2167 }
2168
2169 return NULL_TREE;
2170
2171 case ARRAY_TYPE:
2172 case POINTER_TYPE:
2173 case REFERENCE_TYPE:
2174 case VECTOR_TYPE:
2175 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2176
2177 case OFFSET_TYPE:
2178 ptrmem:
2179 r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t),
2180 relaxed_p);
2181 if (r)
2182 return r;
2183 return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p);
2184
2185 case METHOD_TYPE:
2186 r = no_linkage_check (TYPE_METHOD_BASETYPE (t), relaxed_p);
2187 if (r)
2188 return r;
2189 /* Fall through. */
2190 case FUNCTION_TYPE:
2191 {
2192 tree parm;
2193 for (parm = TYPE_ARG_TYPES (t);
2194 parm && parm != void_list_node;
2195 parm = TREE_CHAIN (parm))
2196 {
2197 r = no_linkage_check (TREE_VALUE (parm), relaxed_p);
2198 if (r)
2199 return r;
2200 }
2201 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2202 }
2203
2204 default:
2205 return NULL_TREE;
2206 }
2207 }
2208
2209 extern int depth_reached;
2210
2211 void
2212 cxx_print_statistics (void)
2213 {
2214 print_search_statistics ();
2215 print_class_statistics ();
2216 print_template_statistics ();
2217 if (GATHER_STATISTICS)
2218 fprintf (stderr, "maximum template instantiation depth reached: %d\n",
2219 depth_reached);
2220 }
2221
2222 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2223 (which is an ARRAY_TYPE). This counts only elements of the top
2224 array. */
2225
2226 tree
2227 array_type_nelts_top (tree type)
2228 {
2229 return fold_build2_loc (input_location,
2230 PLUS_EXPR, sizetype,
2231 array_type_nelts (type),
2232 size_one_node);
2233 }
2234
2235 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2236 (which is an ARRAY_TYPE). This one is a recursive count of all
2237 ARRAY_TYPEs that are clumped together. */
2238
2239 tree
2240 array_type_nelts_total (tree type)
2241 {
2242 tree sz = array_type_nelts_top (type);
2243 type = TREE_TYPE (type);
2244 while (TREE_CODE (type) == ARRAY_TYPE)
2245 {
2246 tree n = array_type_nelts_top (type);
2247 sz = fold_build2_loc (input_location,
2248 MULT_EXPR, sizetype, sz, n);
2249 type = TREE_TYPE (type);
2250 }
2251 return sz;
2252 }
2253
2254 /* Called from break_out_target_exprs via mapcar. */
2255
2256 static tree
2257 bot_manip (tree* tp, int* walk_subtrees, void* data)
2258 {
2259 splay_tree target_remap = ((splay_tree) data);
2260 tree t = *tp;
2261
2262 if (!TYPE_P (t) && TREE_CONSTANT (t) && !TREE_SIDE_EFFECTS (t))
2263 {
2264 /* There can't be any TARGET_EXPRs or their slot variables below this
2265 point. But we must make a copy, in case subsequent processing
2266 alters any part of it. For example, during gimplification a cast
2267 of the form (T) &X::f (where "f" is a member function) will lead
2268 to replacing the PTRMEM_CST for &X::f with a VAR_DECL. */
2269 *walk_subtrees = 0;
2270 *tp = unshare_expr (t);
2271 return NULL_TREE;
2272 }
2273 if (TREE_CODE (t) == TARGET_EXPR)
2274 {
2275 tree u;
2276
2277 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
2278 {
2279 u = build_cplus_new (TREE_TYPE (t), TREE_OPERAND (t, 1),
2280 tf_warning_or_error);
2281 if (AGGR_INIT_ZERO_FIRST (TREE_OPERAND (t, 1)))
2282 AGGR_INIT_ZERO_FIRST (TREE_OPERAND (u, 1)) = true;
2283 }
2284 else
2285 u = build_target_expr_with_type (TREE_OPERAND (t, 1), TREE_TYPE (t),
2286 tf_warning_or_error);
2287
2288 TARGET_EXPR_IMPLICIT_P (u) = TARGET_EXPR_IMPLICIT_P (t);
2289 TARGET_EXPR_LIST_INIT_P (u) = TARGET_EXPR_LIST_INIT_P (t);
2290 TARGET_EXPR_DIRECT_INIT_P (u) = TARGET_EXPR_DIRECT_INIT_P (t);
2291
2292 /* Map the old variable to the new one. */
2293 splay_tree_insert (target_remap,
2294 (splay_tree_key) TREE_OPERAND (t, 0),
2295 (splay_tree_value) TREE_OPERAND (u, 0));
2296
2297 TREE_OPERAND (u, 1) = break_out_target_exprs (TREE_OPERAND (u, 1));
2298
2299 /* Replace the old expression with the new version. */
2300 *tp = u;
2301 /* We don't have to go below this point; the recursive call to
2302 break_out_target_exprs will have handled anything below this
2303 point. */
2304 *walk_subtrees = 0;
2305 return NULL_TREE;
2306 }
2307
2308 /* Make a copy of this node. */
2309 t = copy_tree_r (tp, walk_subtrees, NULL);
2310 if (TREE_CODE (*tp) == CALL_EXPR)
2311 {
2312 set_flags_from_callee (*tp);
2313
2314 /* builtin_LINE and builtin_FILE get the location where the default
2315 argument is expanded, not where the call was written. */
2316 tree callee = get_callee_fndecl (*tp);
2317 if (callee && DECL_BUILT_IN (callee))
2318 switch (DECL_FUNCTION_CODE (callee))
2319 {
2320 case BUILT_IN_FILE:
2321 case BUILT_IN_LINE:
2322 SET_EXPR_LOCATION (*tp, input_location);
2323 }
2324 }
2325 return t;
2326 }
2327
2328 /* Replace all remapped VAR_DECLs in T with their new equivalents.
2329 DATA is really a splay-tree mapping old variables to new
2330 variables. */
2331
2332 static tree
2333 bot_replace (tree* t, int* /*walk_subtrees*/, void* data)
2334 {
2335 splay_tree target_remap = ((splay_tree) data);
2336
2337 if (VAR_P (*t))
2338 {
2339 splay_tree_node n = splay_tree_lookup (target_remap,
2340 (splay_tree_key) *t);
2341 if (n)
2342 *t = (tree) n->value;
2343 }
2344 else if (TREE_CODE (*t) == PARM_DECL
2345 && DECL_NAME (*t) == this_identifier)
2346 {
2347 /* In an NSDMI we need to replace the 'this' parameter we used for
2348 parsing with the real one for this function. */
2349 *t = current_class_ptr;
2350 }
2351 else if (TREE_CODE (*t) == CONVERT_EXPR
2352 && CONVERT_EXPR_VBASE_PATH (*t))
2353 {
2354 /* In an NSDMI build_base_path defers building conversions to virtual
2355 bases, and we handle it here. */
2356 tree basetype = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (*t)));
2357 vec<tree, va_gc> *vbases = CLASSTYPE_VBASECLASSES (current_class_type);
2358 int i; tree binfo;
2359 FOR_EACH_VEC_SAFE_ELT (vbases, i, binfo)
2360 if (BINFO_TYPE (binfo) == basetype)
2361 break;
2362 *t = build_base_path (PLUS_EXPR, TREE_OPERAND (*t, 0), binfo, true,
2363 tf_warning_or_error);
2364 }
2365
2366 return NULL_TREE;
2367 }
2368
2369 /* When we parse a default argument expression, we may create
2370 temporary variables via TARGET_EXPRs. When we actually use the
2371 default-argument expression, we make a copy of the expression
2372 and replace the temporaries with appropriate local versions. */
2373
2374 tree
2375 break_out_target_exprs (tree t)
2376 {
2377 static int target_remap_count;
2378 static splay_tree target_remap;
2379
2380 if (!target_remap_count++)
2381 target_remap = splay_tree_new (splay_tree_compare_pointers,
2382 /*splay_tree_delete_key_fn=*/NULL,
2383 /*splay_tree_delete_value_fn=*/NULL);
2384 cp_walk_tree (&t, bot_manip, target_remap, NULL);
2385 cp_walk_tree (&t, bot_replace, target_remap, NULL);
2386
2387 if (!--target_remap_count)
2388 {
2389 splay_tree_delete (target_remap);
2390 target_remap = NULL;
2391 }
2392
2393 return t;
2394 }
2395
2396 /* Similar to `build_nt', but for template definitions of dependent
2397 expressions */
2398
2399 tree
2400 build_min_nt_loc (location_t loc, enum tree_code code, ...)
2401 {
2402 tree t;
2403 int length;
2404 int i;
2405 va_list p;
2406
2407 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2408
2409 va_start (p, code);
2410
2411 t = make_node (code);
2412 SET_EXPR_LOCATION (t, loc);
2413 length = TREE_CODE_LENGTH (code);
2414
2415 for (i = 0; i < length; i++)
2416 {
2417 tree x = va_arg (p, tree);
2418 TREE_OPERAND (t, i) = x;
2419 }
2420
2421 va_end (p);
2422 return t;
2423 }
2424
2425
2426 /* Similar to `build', but for template definitions. */
2427
2428 tree
2429 build_min (enum tree_code code, tree tt, ...)
2430 {
2431 tree t;
2432 int length;
2433 int i;
2434 va_list p;
2435
2436 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2437
2438 va_start (p, tt);
2439
2440 t = make_node (code);
2441 length = TREE_CODE_LENGTH (code);
2442 TREE_TYPE (t) = tt;
2443
2444 for (i = 0; i < length; i++)
2445 {
2446 tree x = va_arg (p, tree);
2447 TREE_OPERAND (t, i) = x;
2448 if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
2449 TREE_SIDE_EFFECTS (t) = 1;
2450 }
2451
2452 va_end (p);
2453 return t;
2454 }
2455
2456 /* Similar to `build', but for template definitions of non-dependent
2457 expressions. NON_DEP is the non-dependent expression that has been
2458 built. */
2459
2460 tree
2461 build_min_non_dep (enum tree_code code, tree non_dep, ...)
2462 {
2463 tree t;
2464 int length;
2465 int i;
2466 va_list p;
2467
2468 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2469
2470 va_start (p, non_dep);
2471
2472 if (REFERENCE_REF_P (non_dep))
2473 non_dep = TREE_OPERAND (non_dep, 0);
2474
2475 t = make_node (code);
2476 length = TREE_CODE_LENGTH (code);
2477 TREE_TYPE (t) = TREE_TYPE (non_dep);
2478 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
2479
2480 for (i = 0; i < length; i++)
2481 {
2482 tree x = va_arg (p, tree);
2483 TREE_OPERAND (t, i) = x;
2484 }
2485
2486 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
2487 /* This should not be considered a COMPOUND_EXPR, because it
2488 resolves to an overload. */
2489 COMPOUND_EXPR_OVERLOADED (t) = 1;
2490
2491 va_end (p);
2492 return convert_from_reference (t);
2493 }
2494
2495 /* Similar to `build_nt_call_vec', but for template definitions of
2496 non-dependent expressions. NON_DEP is the non-dependent expression
2497 that has been built. */
2498
2499 tree
2500 build_min_non_dep_call_vec (tree non_dep, tree fn, vec<tree, va_gc> *argvec)
2501 {
2502 tree t = build_nt_call_vec (fn, argvec);
2503 if (REFERENCE_REF_P (non_dep))
2504 non_dep = TREE_OPERAND (non_dep, 0);
2505 TREE_TYPE (t) = TREE_TYPE (non_dep);
2506 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
2507 return convert_from_reference (t);
2508 }
2509
2510 tree
2511 get_type_decl (tree t)
2512 {
2513 if (TREE_CODE (t) == TYPE_DECL)
2514 return t;
2515 if (TYPE_P (t))
2516 return TYPE_STUB_DECL (t);
2517 gcc_assert (t == error_mark_node);
2518 return t;
2519 }
2520
2521 /* Returns the namespace that contains DECL, whether directly or
2522 indirectly. */
2523
2524 tree
2525 decl_namespace_context (tree decl)
2526 {
2527 while (1)
2528 {
2529 if (TREE_CODE (decl) == NAMESPACE_DECL)
2530 return decl;
2531 else if (TYPE_P (decl))
2532 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
2533 else
2534 decl = CP_DECL_CONTEXT (decl);
2535 }
2536 }
2537
2538 /* Returns true if decl is within an anonymous namespace, however deeply
2539 nested, or false otherwise. */
2540
2541 bool
2542 decl_anon_ns_mem_p (const_tree decl)
2543 {
2544 while (1)
2545 {
2546 if (decl == NULL_TREE || decl == error_mark_node)
2547 return false;
2548 if (TREE_CODE (decl) == NAMESPACE_DECL
2549 && DECL_NAME (decl) == NULL_TREE)
2550 return true;
2551 /* Classes and namespaces inside anonymous namespaces have
2552 TREE_PUBLIC == 0, so we can shortcut the search. */
2553 else if (TYPE_P (decl))
2554 return (TREE_PUBLIC (TYPE_MAIN_DECL (decl)) == 0);
2555 else if (TREE_CODE (decl) == NAMESPACE_DECL)
2556 return (TREE_PUBLIC (decl) == 0);
2557 else
2558 decl = DECL_CONTEXT (decl);
2559 }
2560 }
2561
2562 /* Subroutine of cp_tree_equal: t1 and t2 are the CALL_EXPR_FNs of two
2563 CALL_EXPRS. Return whether they are equivalent. */
2564
2565 static bool
2566 called_fns_equal (tree t1, tree t2)
2567 {
2568 /* Core 1321: dependent names are equivalent even if the overload sets
2569 are different. But do compare explicit template arguments. */
2570 tree name1 = dependent_name (t1);
2571 tree name2 = dependent_name (t2);
2572 if (name1 || name2)
2573 {
2574 tree targs1 = NULL_TREE, targs2 = NULL_TREE;
2575
2576 if (name1 != name2)
2577 return false;
2578
2579 if (TREE_CODE (t1) == TEMPLATE_ID_EXPR)
2580 targs1 = TREE_OPERAND (t1, 1);
2581 if (TREE_CODE (t2) == TEMPLATE_ID_EXPR)
2582 targs2 = TREE_OPERAND (t2, 1);
2583 return cp_tree_equal (targs1, targs2);
2584 }
2585 else
2586 return cp_tree_equal (t1, t2);
2587 }
2588
2589 /* Return truthvalue of whether T1 is the same tree structure as T2.
2590 Return 1 if they are the same. Return 0 if they are different. */
2591
2592 bool
2593 cp_tree_equal (tree t1, tree t2)
2594 {
2595 enum tree_code code1, code2;
2596
2597 if (t1 == t2)
2598 return true;
2599 if (!t1 || !t2)
2600 return false;
2601
2602 for (code1 = TREE_CODE (t1);
2603 CONVERT_EXPR_CODE_P (code1)
2604 || code1 == NON_LVALUE_EXPR;
2605 code1 = TREE_CODE (t1))
2606 t1 = TREE_OPERAND (t1, 0);
2607 for (code2 = TREE_CODE (t2);
2608 CONVERT_EXPR_CODE_P (code2)
2609 || code2 == NON_LVALUE_EXPR;
2610 code2 = TREE_CODE (t2))
2611 t2 = TREE_OPERAND (t2, 0);
2612
2613 /* They might have become equal now. */
2614 if (t1 == t2)
2615 return true;
2616
2617 if (code1 != code2)
2618 return false;
2619
2620 switch (code1)
2621 {
2622 case INTEGER_CST:
2623 return tree_int_cst_equal (t1, t2);
2624
2625 case REAL_CST:
2626 return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
2627
2628 case STRING_CST:
2629 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
2630 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
2631 TREE_STRING_LENGTH (t1));
2632
2633 case FIXED_CST:
2634 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
2635 TREE_FIXED_CST (t2));
2636
2637 case COMPLEX_CST:
2638 return cp_tree_equal (TREE_REALPART (t1), TREE_REALPART (t2))
2639 && cp_tree_equal (TREE_IMAGPART (t1), TREE_IMAGPART (t2));
2640
2641 case VECTOR_CST:
2642 return operand_equal_p (t1, t2, OEP_ONLY_CONST);
2643
2644 case CONSTRUCTOR:
2645 /* We need to do this when determining whether or not two
2646 non-type pointer to member function template arguments
2647 are the same. */
2648 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
2649 || CONSTRUCTOR_NELTS (t1) != CONSTRUCTOR_NELTS (t2))
2650 return false;
2651 {
2652 tree field, value;
2653 unsigned int i;
2654 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t1), i, field, value)
2655 {
2656 constructor_elt *elt2 = CONSTRUCTOR_ELT (t2, i);
2657 if (!cp_tree_equal (field, elt2->index)
2658 || !cp_tree_equal (value, elt2->value))
2659 return false;
2660 }
2661 }
2662 return true;
2663
2664 case TREE_LIST:
2665 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
2666 return false;
2667 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
2668 return false;
2669 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
2670
2671 case SAVE_EXPR:
2672 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2673
2674 case CALL_EXPR:
2675 {
2676 tree arg1, arg2;
2677 call_expr_arg_iterator iter1, iter2;
2678 if (!called_fns_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2)))
2679 return false;
2680 for (arg1 = first_call_expr_arg (t1, &iter1),
2681 arg2 = first_call_expr_arg (t2, &iter2);
2682 arg1 && arg2;
2683 arg1 = next_call_expr_arg (&iter1),
2684 arg2 = next_call_expr_arg (&iter2))
2685 if (!cp_tree_equal (arg1, arg2))
2686 return false;
2687 if (arg1 || arg2)
2688 return false;
2689 return true;
2690 }
2691
2692 case TARGET_EXPR:
2693 {
2694 tree o1 = TREE_OPERAND (t1, 0);
2695 tree o2 = TREE_OPERAND (t2, 0);
2696
2697 /* Special case: if either target is an unallocated VAR_DECL,
2698 it means that it's going to be unified with whatever the
2699 TARGET_EXPR is really supposed to initialize, so treat it
2700 as being equivalent to anything. */
2701 if (VAR_P (o1) && DECL_NAME (o1) == NULL_TREE
2702 && !DECL_RTL_SET_P (o1))
2703 /*Nop*/;
2704 else if (VAR_P (o2) && DECL_NAME (o2) == NULL_TREE
2705 && !DECL_RTL_SET_P (o2))
2706 /*Nop*/;
2707 else if (!cp_tree_equal (o1, o2))
2708 return false;
2709
2710 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
2711 }
2712
2713 case WITH_CLEANUP_EXPR:
2714 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
2715 return false;
2716 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
2717
2718 case COMPONENT_REF:
2719 if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
2720 return false;
2721 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2722
2723 case PARM_DECL:
2724 /* For comparing uses of parameters in late-specified return types
2725 with an out-of-class definition of the function, but can also come
2726 up for expressions that involve 'this' in a member function
2727 template. */
2728
2729 if (comparing_specializations)
2730 /* When comparing hash table entries, only an exact match is
2731 good enough; we don't want to replace 'this' with the
2732 version from another function. */
2733 return false;
2734
2735 if (same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
2736 {
2737 if (DECL_ARTIFICIAL (t1) ^ DECL_ARTIFICIAL (t2))
2738 return false;
2739 if (DECL_ARTIFICIAL (t1)
2740 || (DECL_PARM_LEVEL (t1) == DECL_PARM_LEVEL (t2)
2741 && DECL_PARM_INDEX (t1) == DECL_PARM_INDEX (t2)))
2742 return true;
2743 }
2744 return false;
2745
2746 case VAR_DECL:
2747 case CONST_DECL:
2748 case FIELD_DECL:
2749 case FUNCTION_DECL:
2750 case TEMPLATE_DECL:
2751 case IDENTIFIER_NODE:
2752 case SSA_NAME:
2753 return false;
2754
2755 case BASELINK:
2756 return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2)
2757 && BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2)
2758 && BASELINK_QUALIFIED_P (t1) == BASELINK_QUALIFIED_P (t2)
2759 && cp_tree_equal (BASELINK_FUNCTIONS (t1),
2760 BASELINK_FUNCTIONS (t2)));
2761
2762 case TEMPLATE_PARM_INDEX:
2763 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
2764 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
2765 && (TEMPLATE_PARM_PARAMETER_PACK (t1)
2766 == TEMPLATE_PARM_PARAMETER_PACK (t2))
2767 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
2768 TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
2769
2770 case TEMPLATE_ID_EXPR:
2771 return (cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
2772 && cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)));
2773
2774 case TREE_VEC:
2775 {
2776 unsigned ix;
2777 if (TREE_VEC_LENGTH (t1) != TREE_VEC_LENGTH (t2))
2778 return false;
2779 for (ix = TREE_VEC_LENGTH (t1); ix--;)
2780 if (!cp_tree_equal (TREE_VEC_ELT (t1, ix),
2781 TREE_VEC_ELT (t2, ix)))
2782 return false;
2783 return true;
2784 }
2785
2786 case SIZEOF_EXPR:
2787 case ALIGNOF_EXPR:
2788 {
2789 tree o1 = TREE_OPERAND (t1, 0);
2790 tree o2 = TREE_OPERAND (t2, 0);
2791
2792 if (code1 == SIZEOF_EXPR)
2793 {
2794 if (SIZEOF_EXPR_TYPE_P (t1))
2795 o1 = TREE_TYPE (o1);
2796 if (SIZEOF_EXPR_TYPE_P (t2))
2797 o2 = TREE_TYPE (o2);
2798 }
2799 if (TREE_CODE (o1) != TREE_CODE (o2))
2800 return false;
2801 if (TYPE_P (o1))
2802 return same_type_p (o1, o2);
2803 else
2804 return cp_tree_equal (o1, o2);
2805 }
2806
2807 case MODOP_EXPR:
2808 {
2809 tree t1_op1, t2_op1;
2810
2811 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
2812 return false;
2813
2814 t1_op1 = TREE_OPERAND (t1, 1);
2815 t2_op1 = TREE_OPERAND (t2, 1);
2816 if (TREE_CODE (t1_op1) != TREE_CODE (t2_op1))
2817 return false;
2818
2819 return cp_tree_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2));
2820 }
2821
2822 case PTRMEM_CST:
2823 /* Two pointer-to-members are the same if they point to the same
2824 field or function in the same class. */
2825 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
2826 return false;
2827
2828 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
2829
2830 case OVERLOAD:
2831 if (OVL_FUNCTION (t1) != OVL_FUNCTION (t2))
2832 return false;
2833 return cp_tree_equal (OVL_CHAIN (t1), OVL_CHAIN (t2));
2834
2835 case TRAIT_EXPR:
2836 if (TRAIT_EXPR_KIND (t1) != TRAIT_EXPR_KIND (t2))
2837 return false;
2838 return same_type_p (TRAIT_EXPR_TYPE1 (t1), TRAIT_EXPR_TYPE1 (t2))
2839 && same_type_p (TRAIT_EXPR_TYPE2 (t1), TRAIT_EXPR_TYPE2 (t2));
2840
2841 case CAST_EXPR:
2842 case STATIC_CAST_EXPR:
2843 case REINTERPRET_CAST_EXPR:
2844 case CONST_CAST_EXPR:
2845 case DYNAMIC_CAST_EXPR:
2846 case IMPLICIT_CONV_EXPR:
2847 case NEW_EXPR:
2848 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
2849 return false;
2850 /* Now compare operands as usual. */
2851 break;
2852
2853 case DEFERRED_NOEXCEPT:
2854 return (cp_tree_equal (DEFERRED_NOEXCEPT_PATTERN (t1),
2855 DEFERRED_NOEXCEPT_PATTERN (t2))
2856 && comp_template_args (DEFERRED_NOEXCEPT_ARGS (t1),
2857 DEFERRED_NOEXCEPT_ARGS (t2)));
2858 break;
2859
2860 default:
2861 break;
2862 }
2863
2864 switch (TREE_CODE_CLASS (code1))
2865 {
2866 case tcc_unary:
2867 case tcc_binary:
2868 case tcc_comparison:
2869 case tcc_expression:
2870 case tcc_vl_exp:
2871 case tcc_reference:
2872 case tcc_statement:
2873 {
2874 int i, n;
2875
2876 n = cp_tree_operand_length (t1);
2877 if (TREE_CODE_CLASS (code1) == tcc_vl_exp
2878 && n != TREE_OPERAND_LENGTH (t2))
2879 return false;
2880
2881 for (i = 0; i < n; ++i)
2882 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
2883 return false;
2884
2885 return true;
2886 }
2887
2888 case tcc_type:
2889 return same_type_p (t1, t2);
2890 default:
2891 gcc_unreachable ();
2892 }
2893 /* We can get here with --disable-checking. */
2894 return false;
2895 }
2896
2897 /* The type of ARG when used as an lvalue. */
2898
2899 tree
2900 lvalue_type (tree arg)
2901 {
2902 tree type = TREE_TYPE (arg);
2903 return type;
2904 }
2905
2906 /* The type of ARG for printing error messages; denote lvalues with
2907 reference types. */
2908
2909 tree
2910 error_type (tree arg)
2911 {
2912 tree type = TREE_TYPE (arg);
2913
2914 if (TREE_CODE (type) == ARRAY_TYPE)
2915 ;
2916 else if (TREE_CODE (type) == ERROR_MARK)
2917 ;
2918 else if (real_lvalue_p (arg))
2919 type = build_reference_type (lvalue_type (arg));
2920 else if (MAYBE_CLASS_TYPE_P (type))
2921 type = lvalue_type (arg);
2922
2923 return type;
2924 }
2925
2926 /* Does FUNCTION use a variable-length argument list? */
2927
2928 int
2929 varargs_function_p (const_tree function)
2930 {
2931 return stdarg_p (TREE_TYPE (function));
2932 }
2933
2934 /* Returns 1 if decl is a member of a class. */
2935
2936 int
2937 member_p (const_tree decl)
2938 {
2939 const_tree const ctx = DECL_CONTEXT (decl);
2940 return (ctx && TYPE_P (ctx));
2941 }
2942
2943 /* Create a placeholder for member access where we don't actually have an
2944 object that the access is against. */
2945
2946 tree
2947 build_dummy_object (tree type)
2948 {
2949 tree decl = build1 (NOP_EXPR, build_pointer_type (type), void_zero_node);
2950 return cp_build_indirect_ref (decl, RO_NULL, tf_warning_or_error);
2951 }
2952
2953 /* We've gotten a reference to a member of TYPE. Return *this if appropriate,
2954 or a dummy object otherwise. If BINFOP is non-0, it is filled with the
2955 binfo path from current_class_type to TYPE, or 0. */
2956
2957 tree
2958 maybe_dummy_object (tree type, tree* binfop)
2959 {
2960 tree decl, context;
2961 tree binfo;
2962 tree current = current_nonlambda_class_type ();
2963
2964 if (current
2965 && (binfo = lookup_base (current, type, ba_any, NULL,
2966 tf_warning_or_error)))
2967 context = current;
2968 else
2969 {
2970 /* Reference from a nested class member function. */
2971 context = type;
2972 binfo = TYPE_BINFO (type);
2973 }
2974
2975 if (binfop)
2976 *binfop = binfo;
2977
2978 if (current_class_ref
2979 /* current_class_ref might not correspond to current_class_type if
2980 we're in tsubst_default_argument or a lambda-declarator; in either
2981 case, we want to use current_class_ref if it matches CONTEXT. */
2982 && (same_type_ignoring_top_level_qualifiers_p
2983 (TREE_TYPE (current_class_ref), context)))
2984 decl = current_class_ref;
2985 else
2986 decl = build_dummy_object (context);
2987
2988 return decl;
2989 }
2990
2991 /* Returns 1 if OB is a placeholder object, or a pointer to one. */
2992
2993 int
2994 is_dummy_object (const_tree ob)
2995 {
2996 if (INDIRECT_REF_P (ob))
2997 ob = TREE_OPERAND (ob, 0);
2998 return (TREE_CODE (ob) == NOP_EXPR
2999 && TREE_OPERAND (ob, 0) == void_zero_node);
3000 }
3001
3002 /* Returns 1 iff type T is something we want to treat as a scalar type for
3003 the purpose of deciding whether it is trivial/POD/standard-layout. */
3004
3005 bool
3006 scalarish_type_p (const_tree t)
3007 {
3008 if (t == error_mark_node)
3009 return 1;
3010
3011 return (SCALAR_TYPE_P (t)
3012 || TREE_CODE (t) == VECTOR_TYPE);
3013 }
3014
3015 /* Returns true iff T requires non-trivial default initialization. */
3016
3017 bool
3018 type_has_nontrivial_default_init (const_tree t)
3019 {
3020 t = strip_array_types (CONST_CAST_TREE (t));
3021
3022 if (CLASS_TYPE_P (t))
3023 return TYPE_HAS_COMPLEX_DFLT (t);
3024 else
3025 return 0;
3026 }
3027
3028 /* Returns true iff copying an object of type T (including via move
3029 constructor) is non-trivial. That is, T has no non-trivial copy
3030 constructors and no non-trivial move constructors. */
3031
3032 bool
3033 type_has_nontrivial_copy_init (const_tree t)
3034 {
3035 t = strip_array_types (CONST_CAST_TREE (t));
3036
3037 if (CLASS_TYPE_P (t))
3038 {
3039 gcc_assert (COMPLETE_TYPE_P (t));
3040 return ((TYPE_HAS_COPY_CTOR (t)
3041 && TYPE_HAS_COMPLEX_COPY_CTOR (t))
3042 || TYPE_HAS_COMPLEX_MOVE_CTOR (t));
3043 }
3044 else
3045 return 0;
3046 }
3047
3048 /* Returns 1 iff type T is a trivially copyable type, as defined in
3049 [basic.types] and [class]. */
3050
3051 bool
3052 trivially_copyable_p (const_tree t)
3053 {
3054 t = strip_array_types (CONST_CAST_TREE (t));
3055
3056 if (CLASS_TYPE_P (t))
3057 return ((!TYPE_HAS_COPY_CTOR (t)
3058 || !TYPE_HAS_COMPLEX_COPY_CTOR (t))
3059 && !TYPE_HAS_COMPLEX_MOVE_CTOR (t)
3060 && (!TYPE_HAS_COPY_ASSIGN (t)
3061 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (t))
3062 && !TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
3063 && TYPE_HAS_TRIVIAL_DESTRUCTOR (t));
3064 else
3065 return scalarish_type_p (t);
3066 }
3067
3068 /* Returns 1 iff type T is a trivial type, as defined in [basic.types] and
3069 [class]. */
3070
3071 bool
3072 trivial_type_p (const_tree t)
3073 {
3074 t = strip_array_types (CONST_CAST_TREE (t));
3075
3076 if (CLASS_TYPE_P (t))
3077 return (TYPE_HAS_TRIVIAL_DFLT (t)
3078 && trivially_copyable_p (t));
3079 else
3080 return scalarish_type_p (t);
3081 }
3082
3083 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
3084
3085 bool
3086 pod_type_p (const_tree t)
3087 {
3088 /* This CONST_CAST is okay because strip_array_types returns its
3089 argument unmodified and we assign it to a const_tree. */
3090 t = strip_array_types (CONST_CAST_TREE(t));
3091
3092 if (!CLASS_TYPE_P (t))
3093 return scalarish_type_p (t);
3094 else if (cxx_dialect > cxx98)
3095 /* [class]/10: A POD struct is a class that is both a trivial class and a
3096 standard-layout class, and has no non-static data members of type
3097 non-POD struct, non-POD union (or array of such types).
3098
3099 We don't need to check individual members because if a member is
3100 non-std-layout or non-trivial, the class will be too. */
3101 return (std_layout_type_p (t) && trivial_type_p (t));
3102 else
3103 /* The C++98 definition of POD is different. */
3104 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
3105 }
3106
3107 /* Returns true iff T is POD for the purpose of layout, as defined in the
3108 C++ ABI. */
3109
3110 bool
3111 layout_pod_type_p (const_tree t)
3112 {
3113 t = strip_array_types (CONST_CAST_TREE (t));
3114
3115 if (CLASS_TYPE_P (t))
3116 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
3117 else
3118 return scalarish_type_p (t);
3119 }
3120
3121 /* Returns true iff T is a standard-layout type, as defined in
3122 [basic.types]. */
3123
3124 bool
3125 std_layout_type_p (const_tree t)
3126 {
3127 t = strip_array_types (CONST_CAST_TREE (t));
3128
3129 if (CLASS_TYPE_P (t))
3130 return !CLASSTYPE_NON_STD_LAYOUT (t);
3131 else
3132 return scalarish_type_p (t);
3133 }
3134
3135 /* Nonzero iff type T is a class template implicit specialization. */
3136
3137 bool
3138 class_tmpl_impl_spec_p (const_tree t)
3139 {
3140 return CLASS_TYPE_P (t) && CLASSTYPE_TEMPLATE_INSTANTIATION (t);
3141 }
3142
3143 /* Returns 1 iff zero initialization of type T means actually storing
3144 zeros in it. */
3145
3146 int
3147 zero_init_p (const_tree t)
3148 {
3149 /* This CONST_CAST is okay because strip_array_types returns its
3150 argument unmodified and we assign it to a const_tree. */
3151 t = strip_array_types (CONST_CAST_TREE(t));
3152
3153 if (t == error_mark_node)
3154 return 1;
3155
3156 /* NULL pointers to data members are initialized with -1. */
3157 if (TYPE_PTRDATAMEM_P (t))
3158 return 0;
3159
3160 /* Classes that contain types that can't be zero-initialized, cannot
3161 be zero-initialized themselves. */
3162 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
3163 return 0;
3164
3165 return 1;
3166 }
3167
3168 /* Table of valid C++ attributes. */
3169 const struct attribute_spec cxx_attribute_table[] =
3170 {
3171 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
3172 affects_type_identity } */
3173 { "java_interface", 0, 0, false, false, false,
3174 handle_java_interface_attribute, false },
3175 { "com_interface", 0, 0, false, false, false,
3176 handle_com_interface_attribute, false },
3177 { "init_priority", 1, 1, true, false, false,
3178 handle_init_priority_attribute, false },
3179 { "abi_tag", 1, -1, false, false, false,
3180 handle_abi_tag_attribute, true },
3181 { NULL, 0, 0, false, false, false, NULL, false }
3182 };
3183
3184 /* Handle a "java_interface" attribute; arguments as in
3185 struct attribute_spec.handler. */
3186 static tree
3187 handle_java_interface_attribute (tree* node,
3188 tree name,
3189 tree /*args*/,
3190 int flags,
3191 bool* no_add_attrs)
3192 {
3193 if (DECL_P (*node)
3194 || !CLASS_TYPE_P (*node)
3195 || !TYPE_FOR_JAVA (*node))
3196 {
3197 error ("%qE attribute can only be applied to Java class definitions",
3198 name);
3199 *no_add_attrs = true;
3200 return NULL_TREE;
3201 }
3202 if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
3203 *node = build_variant_type_copy (*node);
3204 TYPE_JAVA_INTERFACE (*node) = 1;
3205
3206 return NULL_TREE;
3207 }
3208
3209 /* Handle a "com_interface" attribute; arguments as in
3210 struct attribute_spec.handler. */
3211 static tree
3212 handle_com_interface_attribute (tree* node,
3213 tree name,
3214 tree /*args*/,
3215 int /*flags*/,
3216 bool* no_add_attrs)
3217 {
3218 static int warned;
3219
3220 *no_add_attrs = true;
3221
3222 if (DECL_P (*node)
3223 || !CLASS_TYPE_P (*node)
3224 || *node != TYPE_MAIN_VARIANT (*node))
3225 {
3226 warning (OPT_Wattributes, "%qE attribute can only be applied "
3227 "to class definitions", name);
3228 return NULL_TREE;
3229 }
3230
3231 if (!warned++)
3232 warning (0, "%qE is obsolete; g++ vtables are now COM-compatible by default",
3233 name);
3234
3235 return NULL_TREE;
3236 }
3237
3238 /* Handle an "init_priority" attribute; arguments as in
3239 struct attribute_spec.handler. */
3240 static tree
3241 handle_init_priority_attribute (tree* node,
3242 tree name,
3243 tree args,
3244 int /*flags*/,
3245 bool* no_add_attrs)
3246 {
3247 tree initp_expr = TREE_VALUE (args);
3248 tree decl = *node;
3249 tree type = TREE_TYPE (decl);
3250 int pri;
3251
3252 STRIP_NOPS (initp_expr);
3253 initp_expr = default_conversion (initp_expr);
3254
3255 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
3256 {
3257 error ("requested init_priority is not an integer constant");
3258 *no_add_attrs = true;
3259 return NULL_TREE;
3260 }
3261
3262 pri = TREE_INT_CST_LOW (initp_expr);
3263
3264 type = strip_array_types (type);
3265
3266 if (decl == NULL_TREE
3267 || !VAR_P (decl)
3268 || !TREE_STATIC (decl)
3269 || DECL_EXTERNAL (decl)
3270 || (TREE_CODE (type) != RECORD_TYPE
3271 && TREE_CODE (type) != UNION_TYPE)
3272 /* Static objects in functions are initialized the
3273 first time control passes through that
3274 function. This is not precise enough to pin down an
3275 init_priority value, so don't allow it. */
3276 || current_function_decl)
3277 {
3278 error ("can only use %qE attribute on file-scope definitions "
3279 "of objects of class type", name);
3280 *no_add_attrs = true;
3281 return NULL_TREE;
3282 }
3283
3284 if (pri > MAX_INIT_PRIORITY || pri <= 0)
3285 {
3286 error ("requested init_priority is out of range");
3287 *no_add_attrs = true;
3288 return NULL_TREE;
3289 }
3290
3291 /* Check for init_priorities that are reserved for
3292 language and runtime support implementations.*/
3293 if (pri <= MAX_RESERVED_INIT_PRIORITY)
3294 {
3295 warning
3296 (0, "requested init_priority is reserved for internal use");
3297 }
3298
3299 if (SUPPORTS_INIT_PRIORITY)
3300 {
3301 SET_DECL_INIT_PRIORITY (decl, pri);
3302 DECL_HAS_INIT_PRIORITY_P (decl) = 1;
3303 return NULL_TREE;
3304 }
3305 else
3306 {
3307 error ("%qE attribute is not supported on this platform", name);
3308 *no_add_attrs = true;
3309 return NULL_TREE;
3310 }
3311 }
3312
3313 /* DECL is being redeclared; the old declaration had the abi tags in OLD,
3314 and the new one has the tags in NEW_. Give an error if there are tags
3315 in NEW_ that weren't in OLD. */
3316
3317 bool
3318 check_abi_tag_redeclaration (const_tree decl, const_tree old, const_tree new_)
3319 {
3320 if (old && TREE_CODE (TREE_VALUE (old)) == TREE_LIST)
3321 old = TREE_VALUE (old);
3322 if (new_ && TREE_CODE (TREE_VALUE (new_)) == TREE_LIST)
3323 new_ = TREE_VALUE (new_);
3324 bool err = false;
3325 for (const_tree t = new_; t; t = TREE_CHAIN (t))
3326 {
3327 tree str = TREE_VALUE (t);
3328 for (const_tree in = old; in; in = TREE_CHAIN (in))
3329 {
3330 tree ostr = TREE_VALUE (in);
3331 if (cp_tree_equal (str, ostr))
3332 goto found;
3333 }
3334 error ("redeclaration of %qD adds abi tag %E", decl, str);
3335 err = true;
3336 found:;
3337 }
3338 if (err)
3339 {
3340 inform (DECL_SOURCE_LOCATION (decl), "previous declaration here");
3341 return false;
3342 }
3343 return true;
3344 }
3345
3346 /* Handle an "abi_tag" attribute; arguments as in
3347 struct attribute_spec.handler. */
3348
3349 static tree
3350 handle_abi_tag_attribute (tree* node, tree name, tree args,
3351 int flags, bool* no_add_attrs)
3352 {
3353 if (TYPE_P (*node))
3354 {
3355 if (!OVERLOAD_TYPE_P (*node))
3356 {
3357 error ("%qE attribute applied to non-class, non-enum type %qT",
3358 name, *node);
3359 goto fail;
3360 }
3361 else if (!(flags & (int)ATTR_FLAG_TYPE_IN_PLACE))
3362 {
3363 error ("%qE attribute applied to %qT after its definition",
3364 name, *node);
3365 goto fail;
3366 }
3367 else if (CLASSTYPE_TEMPLATE_INSTANTIATION (*node))
3368 {
3369 warning (OPT_Wattributes, "ignoring %qE attribute applied to "
3370 "template instantiation %qT", name, *node);
3371 goto fail;
3372 }
3373 else if (CLASSTYPE_TEMPLATE_SPECIALIZATION (*node))
3374 {
3375 warning (OPT_Wattributes, "ignoring %qE attribute applied to "
3376 "template specialization %qT", name, *node);
3377 goto fail;
3378 }
3379
3380 tree attributes = TYPE_ATTRIBUTES (*node);
3381 tree decl = TYPE_NAME (*node);
3382
3383 /* Make sure all declarations have the same abi tags. */
3384 if (DECL_SOURCE_LOCATION (decl) != input_location)
3385 {
3386 if (!check_abi_tag_redeclaration (decl,
3387 lookup_attribute ("abi_tag",
3388 attributes),
3389 args))
3390 goto fail;
3391 }
3392 }
3393 else
3394 {
3395 if (TREE_CODE (*node) != FUNCTION_DECL)
3396 {
3397 error ("%qE attribute applied to non-function %qD", name, *node);
3398 goto fail;
3399 }
3400 else if (DECL_LANGUAGE (*node) == lang_c)
3401 {
3402 error ("%qE attribute applied to extern \"C\" function %qD",
3403 name, *node);
3404 goto fail;
3405 }
3406 }
3407
3408 return NULL_TREE;
3409
3410 fail:
3411 *no_add_attrs = true;
3412 return NULL_TREE;
3413 }
3414
3415 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
3416 thing pointed to by the constant. */
3417
3418 tree
3419 make_ptrmem_cst (tree type, tree member)
3420 {
3421 tree ptrmem_cst = make_node (PTRMEM_CST);
3422 TREE_TYPE (ptrmem_cst) = type;
3423 PTRMEM_CST_MEMBER (ptrmem_cst) = member;
3424 return ptrmem_cst;
3425 }
3426
3427 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May
3428 return an existing type if an appropriate type already exists. */
3429
3430 tree
3431 cp_build_type_attribute_variant (tree type, tree attributes)
3432 {
3433 tree new_type;
3434
3435 new_type = build_type_attribute_variant (type, attributes);
3436 if (TREE_CODE (new_type) == FUNCTION_TYPE
3437 || TREE_CODE (new_type) == METHOD_TYPE)
3438 {
3439 new_type = build_exception_variant (new_type,
3440 TYPE_RAISES_EXCEPTIONS (type));
3441 new_type = build_ref_qualified_type (new_type,
3442 type_memfn_rqual (type));
3443 }
3444
3445 /* Making a new main variant of a class type is broken. */
3446 gcc_assert (!CLASS_TYPE_P (type) || new_type == type);
3447
3448 return new_type;
3449 }
3450
3451 /* Return TRUE if TYPE1 and TYPE2 are identical for type hashing purposes.
3452 Called only after doing all language independent checks. Only
3453 to check TYPE_RAISES_EXCEPTIONS for FUNCTION_TYPE, the rest is already
3454 compared in type_hash_eq. */
3455
3456 bool
3457 cxx_type_hash_eq (const_tree typea, const_tree typeb)
3458 {
3459 gcc_assert (TREE_CODE (typea) == FUNCTION_TYPE
3460 || TREE_CODE (typea) == METHOD_TYPE);
3461
3462 return comp_except_specs (TYPE_RAISES_EXCEPTIONS (typea),
3463 TYPE_RAISES_EXCEPTIONS (typeb), ce_exact);
3464 }
3465
3466 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order
3467 traversal. Called from walk_tree. */
3468
3469 tree
3470 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
3471 void *data, struct pointer_set_t *pset)
3472 {
3473 enum tree_code code = TREE_CODE (*tp);
3474 tree result;
3475
3476 #define WALK_SUBTREE(NODE) \
3477 do \
3478 { \
3479 result = cp_walk_tree (&(NODE), func, data, pset); \
3480 if (result) goto out; \
3481 } \
3482 while (0)
3483
3484 /* Not one of the easy cases. We must explicitly go through the
3485 children. */
3486 result = NULL_TREE;
3487 switch (code)
3488 {
3489 case DEFAULT_ARG:
3490 case TEMPLATE_TEMPLATE_PARM:
3491 case BOUND_TEMPLATE_TEMPLATE_PARM:
3492 case UNBOUND_CLASS_TEMPLATE:
3493 case TEMPLATE_PARM_INDEX:
3494 case TEMPLATE_TYPE_PARM:
3495 case TYPENAME_TYPE:
3496 case TYPEOF_TYPE:
3497 case UNDERLYING_TYPE:
3498 /* None of these have subtrees other than those already walked
3499 above. */
3500 *walk_subtrees_p = 0;
3501 break;
3502
3503 case BASELINK:
3504 WALK_SUBTREE (BASELINK_FUNCTIONS (*tp));
3505 *walk_subtrees_p = 0;
3506 break;
3507
3508 case PTRMEM_CST:
3509 WALK_SUBTREE (TREE_TYPE (*tp));
3510 *walk_subtrees_p = 0;
3511 break;
3512
3513 case TREE_LIST:
3514 WALK_SUBTREE (TREE_PURPOSE (*tp));
3515 break;
3516
3517 case OVERLOAD:
3518 WALK_SUBTREE (OVL_FUNCTION (*tp));
3519 WALK_SUBTREE (OVL_CHAIN (*tp));
3520 *walk_subtrees_p = 0;
3521 break;
3522
3523 case USING_DECL:
3524 WALK_SUBTREE (DECL_NAME (*tp));
3525 WALK_SUBTREE (USING_DECL_SCOPE (*tp));
3526 WALK_SUBTREE (USING_DECL_DECLS (*tp));
3527 *walk_subtrees_p = 0;
3528 break;
3529
3530 case RECORD_TYPE:
3531 if (TYPE_PTRMEMFUNC_P (*tp))
3532 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE (*tp));
3533 break;
3534
3535 case TYPE_ARGUMENT_PACK:
3536 case NONTYPE_ARGUMENT_PACK:
3537 {
3538 tree args = ARGUMENT_PACK_ARGS (*tp);
3539 int i, len = TREE_VEC_LENGTH (args);
3540 for (i = 0; i < len; i++)
3541 WALK_SUBTREE (TREE_VEC_ELT (args, i));
3542 }
3543 break;
3544
3545 case TYPE_PACK_EXPANSION:
3546 WALK_SUBTREE (TREE_TYPE (*tp));
3547 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
3548 *walk_subtrees_p = 0;
3549 break;
3550
3551 case EXPR_PACK_EXPANSION:
3552 WALK_SUBTREE (TREE_OPERAND (*tp, 0));
3553 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
3554 *walk_subtrees_p = 0;
3555 break;
3556
3557 case CAST_EXPR:
3558 case REINTERPRET_CAST_EXPR:
3559 case STATIC_CAST_EXPR:
3560 case CONST_CAST_EXPR:
3561 case DYNAMIC_CAST_EXPR:
3562 case IMPLICIT_CONV_EXPR:
3563 if (TREE_TYPE (*tp))
3564 WALK_SUBTREE (TREE_TYPE (*tp));
3565
3566 {
3567 int i;
3568 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (*tp)); ++i)
3569 WALK_SUBTREE (TREE_OPERAND (*tp, i));
3570 }
3571 *walk_subtrees_p = 0;
3572 break;
3573
3574 case TRAIT_EXPR:
3575 WALK_SUBTREE (TRAIT_EXPR_TYPE1 (*tp));
3576 WALK_SUBTREE (TRAIT_EXPR_TYPE2 (*tp));
3577 *walk_subtrees_p = 0;
3578 break;
3579
3580 case DECLTYPE_TYPE:
3581 WALK_SUBTREE (DECLTYPE_TYPE_EXPR (*tp));
3582 *walk_subtrees_p = 0;
3583 break;
3584
3585
3586 default:
3587 return NULL_TREE;
3588 }
3589
3590 /* We didn't find what we were looking for. */
3591 out:
3592 return result;
3593
3594 #undef WALK_SUBTREE
3595 }
3596
3597 /* Like save_expr, but for C++. */
3598
3599 tree
3600 cp_save_expr (tree expr)
3601 {
3602 /* There is no reason to create a SAVE_EXPR within a template; if
3603 needed, we can create the SAVE_EXPR when instantiating the
3604 template. Furthermore, the middle-end cannot handle C++-specific
3605 tree codes. */
3606 if (processing_template_decl)
3607 return expr;
3608 return save_expr (expr);
3609 }
3610
3611 /* Initialize tree.c. */
3612
3613 void
3614 init_tree (void)
3615 {
3616 list_hash_table = htab_create_ggc (31, list_hash, list_hash_eq, NULL);
3617 }
3618
3619 /* Returns the kind of special function that DECL (a FUNCTION_DECL)
3620 is. Note that sfk_none is zero, so this function can be used as a
3621 predicate to test whether or not DECL is a special function. */
3622
3623 special_function_kind
3624 special_function_p (const_tree decl)
3625 {
3626 /* Rather than doing all this stuff with magic names, we should
3627 probably have a field of type `special_function_kind' in
3628 DECL_LANG_SPECIFIC. */
3629 if (DECL_INHERITED_CTOR_BASE (decl))
3630 return sfk_inheriting_constructor;
3631 if (DECL_COPY_CONSTRUCTOR_P (decl))
3632 return sfk_copy_constructor;
3633 if (DECL_MOVE_CONSTRUCTOR_P (decl))
3634 return sfk_move_constructor;
3635 if (DECL_CONSTRUCTOR_P (decl))
3636 return sfk_constructor;
3637 if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
3638 {
3639 if (copy_fn_p (decl))
3640 return sfk_copy_assignment;
3641 if (move_fn_p (decl))
3642 return sfk_move_assignment;
3643 }
3644 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
3645 return sfk_destructor;
3646 if (DECL_COMPLETE_DESTRUCTOR_P (decl))
3647 return sfk_complete_destructor;
3648 if (DECL_BASE_DESTRUCTOR_P (decl))
3649 return sfk_base_destructor;
3650 if (DECL_DELETING_DESTRUCTOR_P (decl))
3651 return sfk_deleting_destructor;
3652 if (DECL_CONV_FN_P (decl))
3653 return sfk_conversion;
3654
3655 return sfk_none;
3656 }
3657
3658 /* Returns nonzero if TYPE is a character type, including wchar_t. */
3659
3660 int
3661 char_type_p (tree type)
3662 {
3663 return (same_type_p (type, char_type_node)
3664 || same_type_p (type, unsigned_char_type_node)
3665 || same_type_p (type, signed_char_type_node)
3666 || same_type_p (type, char16_type_node)
3667 || same_type_p (type, char32_type_node)
3668 || same_type_p (type, wchar_type_node));
3669 }
3670
3671 /* Returns the kind of linkage associated with the indicated DECL. Th
3672 value returned is as specified by the language standard; it is
3673 independent of implementation details regarding template
3674 instantiation, etc. For example, it is possible that a declaration
3675 to which this function assigns external linkage would not show up
3676 as a global symbol when you run `nm' on the resulting object file. */
3677
3678 linkage_kind
3679 decl_linkage (tree decl)
3680 {
3681 /* This function doesn't attempt to calculate the linkage from first
3682 principles as given in [basic.link]. Instead, it makes use of
3683 the fact that we have already set TREE_PUBLIC appropriately, and
3684 then handles a few special cases. Ideally, we would calculate
3685 linkage first, and then transform that into a concrete
3686 implementation. */
3687
3688 /* Things that don't have names have no linkage. */
3689 if (!DECL_NAME (decl))
3690 return lk_none;
3691
3692 /* Fields have no linkage. */
3693 if (TREE_CODE (decl) == FIELD_DECL)
3694 return lk_none;
3695
3696 /* Things that are TREE_PUBLIC have external linkage. */
3697 if (TREE_PUBLIC (decl))
3698 return lk_external;
3699
3700 if (TREE_CODE (decl) == NAMESPACE_DECL)
3701 return lk_external;
3702
3703 /* Linkage of a CONST_DECL depends on the linkage of the enumeration
3704 type. */
3705 if (TREE_CODE (decl) == CONST_DECL)
3706 return decl_linkage (TYPE_NAME (DECL_CONTEXT (decl)));
3707
3708 /* Some things that are not TREE_PUBLIC have external linkage, too.
3709 For example, on targets that don't have weak symbols, we make all
3710 template instantiations have internal linkage (in the object
3711 file), but the symbols should still be treated as having external
3712 linkage from the point of view of the language. */
3713 if (VAR_OR_FUNCTION_DECL_P (decl)
3714 && DECL_COMDAT (decl))
3715 return lk_external;
3716
3717 /* Things in local scope do not have linkage, if they don't have
3718 TREE_PUBLIC set. */
3719 if (decl_function_context (decl))
3720 return lk_none;
3721
3722 /* Members of the anonymous namespace also have TREE_PUBLIC unset, but
3723 are considered to have external linkage for language purposes. DECLs
3724 really meant to have internal linkage have DECL_THIS_STATIC set. */
3725 if (TREE_CODE (decl) == TYPE_DECL)
3726 return lk_external;
3727 if (VAR_OR_FUNCTION_DECL_P (decl))
3728 {
3729 if (!DECL_THIS_STATIC (decl))
3730 return lk_external;
3731
3732 /* Static data members and static member functions from classes
3733 in anonymous namespace also don't have TREE_PUBLIC set. */
3734 if (DECL_CLASS_CONTEXT (decl))
3735 return lk_external;
3736 }
3737
3738 /* Everything else has internal linkage. */
3739 return lk_internal;
3740 }
3741
3742 /* Returns the storage duration of the object or reference associated with
3743 the indicated DECL, which should be a VAR_DECL or PARM_DECL. */
3744
3745 duration_kind
3746 decl_storage_duration (tree decl)
3747 {
3748 if (TREE_CODE (decl) == PARM_DECL)
3749 return dk_auto;
3750 if (TREE_CODE (decl) == FUNCTION_DECL)
3751 return dk_static;
3752 gcc_assert (VAR_P (decl));
3753 if (!TREE_STATIC (decl)
3754 && !DECL_EXTERNAL (decl))
3755 return dk_auto;
3756 if (DECL_THREAD_LOCAL_P (decl))
3757 return dk_thread;
3758 return dk_static;
3759 }
3760 \f
3761 /* EXP is an expression that we want to pre-evaluate. Returns (in
3762 *INITP) an expression that will perform the pre-evaluation. The
3763 value returned by this function is a side-effect free expression
3764 equivalent to the pre-evaluated expression. Callers must ensure
3765 that *INITP is evaluated before EXP. */
3766
3767 tree
3768 stabilize_expr (tree exp, tree* initp)
3769 {
3770 tree init_expr;
3771
3772 if (!TREE_SIDE_EFFECTS (exp))
3773 init_expr = NULL_TREE;
3774 else if (VOID_TYPE_P (TREE_TYPE (exp)))
3775 {
3776 init_expr = exp;
3777 exp = void_zero_node;
3778 }
3779 /* There are no expressions with REFERENCE_TYPE, but there can be call
3780 arguments with such a type; just treat it as a pointer. */
3781 else if (TREE_CODE (TREE_TYPE (exp)) == REFERENCE_TYPE
3782 || SCALAR_TYPE_P (TREE_TYPE (exp))
3783 || !lvalue_or_rvalue_with_address_p (exp))
3784 {
3785 init_expr = get_target_expr (exp);
3786 exp = TARGET_EXPR_SLOT (init_expr);
3787 }
3788 else
3789 {
3790 bool xval = !real_lvalue_p (exp);
3791 exp = cp_build_addr_expr (exp, tf_warning_or_error);
3792 init_expr = get_target_expr (exp);
3793 exp = TARGET_EXPR_SLOT (init_expr);
3794 exp = cp_build_indirect_ref (exp, RO_NULL, tf_warning_or_error);
3795 if (xval)
3796 exp = move (exp);
3797 }
3798 *initp = init_expr;
3799
3800 gcc_assert (!TREE_SIDE_EFFECTS (exp));
3801 return exp;
3802 }
3803
3804 /* Add NEW_EXPR, an expression whose value we don't care about, after the
3805 similar expression ORIG. */
3806
3807 tree
3808 add_stmt_to_compound (tree orig, tree new_expr)
3809 {
3810 if (!new_expr || !TREE_SIDE_EFFECTS (new_expr))
3811 return orig;
3812 if (!orig || !TREE_SIDE_EFFECTS (orig))
3813 return new_expr;
3814 return build2 (COMPOUND_EXPR, void_type_node, orig, new_expr);
3815 }
3816
3817 /* Like stabilize_expr, but for a call whose arguments we want to
3818 pre-evaluate. CALL is modified in place to use the pre-evaluated
3819 arguments, while, upon return, *INITP contains an expression to
3820 compute the arguments. */
3821
3822 void
3823 stabilize_call (tree call, tree *initp)
3824 {
3825 tree inits = NULL_TREE;
3826 int i;
3827 int nargs = call_expr_nargs (call);
3828
3829 if (call == error_mark_node || processing_template_decl)
3830 {
3831 *initp = NULL_TREE;
3832 return;
3833 }
3834
3835 gcc_assert (TREE_CODE (call) == CALL_EXPR);
3836
3837 for (i = 0; i < nargs; i++)
3838 {
3839 tree init;
3840 CALL_EXPR_ARG (call, i) =
3841 stabilize_expr (CALL_EXPR_ARG (call, i), &init);
3842 inits = add_stmt_to_compound (inits, init);
3843 }
3844
3845 *initp = inits;
3846 }
3847
3848 /* Like stabilize_expr, but for an AGGR_INIT_EXPR whose arguments we want
3849 to pre-evaluate. CALL is modified in place to use the pre-evaluated
3850 arguments, while, upon return, *INITP contains an expression to
3851 compute the arguments. */
3852
3853 static void
3854 stabilize_aggr_init (tree call, tree *initp)
3855 {
3856 tree inits = NULL_TREE;
3857 int i;
3858 int nargs = aggr_init_expr_nargs (call);
3859
3860 if (call == error_mark_node)
3861 return;
3862
3863 gcc_assert (TREE_CODE (call) == AGGR_INIT_EXPR);
3864
3865 for (i = 0; i < nargs; i++)
3866 {
3867 tree init;
3868 AGGR_INIT_EXPR_ARG (call, i) =
3869 stabilize_expr (AGGR_INIT_EXPR_ARG (call, i), &init);
3870 inits = add_stmt_to_compound (inits, init);
3871 }
3872
3873 *initp = inits;
3874 }
3875
3876 /* Like stabilize_expr, but for an initialization.
3877
3878 If the initialization is for an object of class type, this function
3879 takes care not to introduce additional temporaries.
3880
3881 Returns TRUE iff the expression was successfully pre-evaluated,
3882 i.e., if INIT is now side-effect free, except for, possibly, a
3883 single call to a constructor. */
3884
3885 bool
3886 stabilize_init (tree init, tree *initp)
3887 {
3888 tree t = init;
3889
3890 *initp = NULL_TREE;
3891
3892 if (t == error_mark_node || processing_template_decl)
3893 return true;
3894
3895 if (TREE_CODE (t) == INIT_EXPR)
3896 t = TREE_OPERAND (t, 1);
3897 if (TREE_CODE (t) == TARGET_EXPR)
3898 t = TARGET_EXPR_INITIAL (t);
3899
3900 /* If the RHS can be stabilized without breaking copy elision, stabilize
3901 it. We specifically don't stabilize class prvalues here because that
3902 would mean an extra copy, but they might be stabilized below. */
3903 if (TREE_CODE (init) == INIT_EXPR
3904 && TREE_CODE (t) != CONSTRUCTOR
3905 && TREE_CODE (t) != AGGR_INIT_EXPR
3906 && (SCALAR_TYPE_P (TREE_TYPE (t))
3907 || lvalue_or_rvalue_with_address_p (t)))
3908 {
3909 TREE_OPERAND (init, 1) = stabilize_expr (t, initp);
3910 return true;
3911 }
3912
3913 if (TREE_CODE (t) == COMPOUND_EXPR
3914 && TREE_CODE (init) == INIT_EXPR)
3915 {
3916 tree last = expr_last (t);
3917 /* Handle stabilizing the EMPTY_CLASS_EXPR pattern. */
3918 if (!TREE_SIDE_EFFECTS (last))
3919 {
3920 *initp = t;
3921 TREE_OPERAND (init, 1) = last;
3922 return true;
3923 }
3924 }
3925
3926 if (TREE_CODE (t) == CONSTRUCTOR)
3927 {
3928 /* Aggregate initialization: stabilize each of the field
3929 initializers. */
3930 unsigned i;
3931 constructor_elt *ce;
3932 bool good = true;
3933 vec<constructor_elt, va_gc> *v = CONSTRUCTOR_ELTS (t);
3934 for (i = 0; vec_safe_iterate (v, i, &ce); ++i)
3935 {
3936 tree type = TREE_TYPE (ce->value);
3937 tree subinit;
3938 if (TREE_CODE (type) == REFERENCE_TYPE
3939 || SCALAR_TYPE_P (type))
3940 ce->value = stabilize_expr (ce->value, &subinit);
3941 else if (!stabilize_init (ce->value, &subinit))
3942 good = false;
3943 *initp = add_stmt_to_compound (*initp, subinit);
3944 }
3945 return good;
3946 }
3947
3948 if (TREE_CODE (t) == CALL_EXPR)
3949 {
3950 stabilize_call (t, initp);
3951 return true;
3952 }
3953
3954 if (TREE_CODE (t) == AGGR_INIT_EXPR)
3955 {
3956 stabilize_aggr_init (t, initp);
3957 return true;
3958 }
3959
3960 /* The initialization is being performed via a bitwise copy -- and
3961 the item copied may have side effects. */
3962 return !TREE_SIDE_EFFECTS (init);
3963 }
3964
3965 /* Like "fold", but should be used whenever we might be processing the
3966 body of a template. */
3967
3968 tree
3969 fold_if_not_in_template (tree expr)
3970 {
3971 /* In the body of a template, there is never any need to call
3972 "fold". We will call fold later when actually instantiating the
3973 template. Integral constant expressions in templates will be
3974 evaluated via fold_non_dependent_expr, as necessary. */
3975 if (processing_template_decl)
3976 return expr;
3977
3978 /* Fold C++ front-end specific tree codes. */
3979 if (TREE_CODE (expr) == UNARY_PLUS_EXPR)
3980 return fold_convert (TREE_TYPE (expr), TREE_OPERAND (expr, 0));
3981
3982 return fold (expr);
3983 }
3984
3985 /* Returns true if a cast to TYPE may appear in an integral constant
3986 expression. */
3987
3988 bool
3989 cast_valid_in_integral_constant_expression_p (tree type)
3990 {
3991 return (INTEGRAL_OR_ENUMERATION_TYPE_P (type)
3992 || cxx_dialect >= cxx11
3993 || dependent_type_p (type)
3994 || type == error_mark_node);
3995 }
3996
3997 /* Return true if we need to fix linkage information of DECL. */
3998
3999 static bool
4000 cp_fix_function_decl_p (tree decl)
4001 {
4002 /* Skip if DECL is not externally visible. */
4003 if (!TREE_PUBLIC (decl))
4004 return false;
4005
4006 /* We need to fix DECL if it a appears to be exported but with no
4007 function body. Thunks do not have CFGs and we may need to
4008 handle them specially later. */
4009 if (!gimple_has_body_p (decl)
4010 && !DECL_THUNK_P (decl)
4011 && !DECL_EXTERNAL (decl))
4012 {
4013 struct cgraph_node *node = cgraph_get_node (decl);
4014
4015 /* Don't fix same_body aliases. Although they don't have their own
4016 CFG, they share it with what they alias to. */
4017 if (!node || !node->alias
4018 || !vec_safe_length (node->ref_list.references))
4019 return true;
4020 }
4021
4022 return false;
4023 }
4024
4025 /* Clean the C++ specific parts of the tree T. */
4026
4027 void
4028 cp_free_lang_data (tree t)
4029 {
4030 if (TREE_CODE (t) == METHOD_TYPE
4031 || TREE_CODE (t) == FUNCTION_TYPE)
4032 {
4033 /* Default args are not interesting anymore. */
4034 tree argtypes = TYPE_ARG_TYPES (t);
4035 while (argtypes)
4036 {
4037 TREE_PURPOSE (argtypes) = 0;
4038 argtypes = TREE_CHAIN (argtypes);
4039 }
4040 }
4041 else if (TREE_CODE (t) == FUNCTION_DECL
4042 && cp_fix_function_decl_p (t))
4043 {
4044 /* If T is used in this translation unit at all, the definition
4045 must exist somewhere else since we have decided to not emit it
4046 in this TU. So make it an external reference. */
4047 DECL_EXTERNAL (t) = 1;
4048 TREE_STATIC (t) = 0;
4049 }
4050 if (TREE_CODE (t) == NAMESPACE_DECL)
4051 {
4052 /* The list of users of a namespace isn't useful for the middle-end
4053 or debug generators. */
4054 DECL_NAMESPACE_USERS (t) = NULL_TREE;
4055 /* Neither do we need the leftover chaining of namespaces
4056 from the binding level. */
4057 DECL_CHAIN (t) = NULL_TREE;
4058 }
4059 }
4060
4061 /* Stub for c-common. Please keep in sync with c-decl.c.
4062 FIXME: If address space support is target specific, then this
4063 should be a C target hook. But currently this is not possible,
4064 because this function is called via REGISTER_TARGET_PRAGMAS. */
4065 void
4066 c_register_addr_space (const char * /*word*/, addr_space_t /*as*/)
4067 {
4068 }
4069
4070 /* Return the number of operands in T that we care about for things like
4071 mangling. */
4072
4073 int
4074 cp_tree_operand_length (const_tree t)
4075 {
4076 enum tree_code code = TREE_CODE (t);
4077
4078 switch (code)
4079 {
4080 case PREINCREMENT_EXPR:
4081 case PREDECREMENT_EXPR:
4082 case POSTINCREMENT_EXPR:
4083 case POSTDECREMENT_EXPR:
4084 return 1;
4085
4086 case ARRAY_REF:
4087 return 2;
4088
4089 case EXPR_PACK_EXPANSION:
4090 return 1;
4091
4092 default:
4093 return TREE_OPERAND_LENGTH (t);
4094 }
4095 }
4096
4097 /* Implement -Wzero_as_null_pointer_constant. Return true if the
4098 conditions for the warning hold, false otherwise. */
4099 bool
4100 maybe_warn_zero_as_null_pointer_constant (tree expr, location_t loc)
4101 {
4102 if (c_inhibit_evaluation_warnings == 0
4103 && !NULLPTR_TYPE_P (TREE_TYPE (expr)))
4104 {
4105 warning_at (loc, OPT_Wzero_as_null_pointer_constant,
4106 "zero as null pointer constant");
4107 return true;
4108 }
4109 return false;
4110 }
4111 \f
4112 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4113 /* Complain that some language-specific thing hanging off a tree
4114 node has been accessed improperly. */
4115
4116 void
4117 lang_check_failed (const char* file, int line, const char* function)
4118 {
4119 internal_error ("lang_* check: failed in %s, at %s:%d",
4120 function, trim_filename (file), line);
4121 }
4122 #endif /* ENABLE_TREE_CHECKING */
4123
4124 #include "gt-cp-tree.h"