]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/tree.c
Remove Cilk Plus support.
[thirdparty/gcc.git] / gcc / cp / tree.c
1 /* Language-dependent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3 Hacked by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tree.h"
25 #include "cp-tree.h"
26 #include "gimple-expr.h"
27 #include "cgraph.h"
28 #include "stor-layout.h"
29 #include "print-tree.h"
30 #include "tree-iterator.h"
31 #include "tree-inline.h"
32 #include "debug.h"
33 #include "convert.h"
34 #include "gimplify.h"
35 #include "stringpool.h"
36 #include "attribs.h"
37 #include "flags.h"
38
39 static tree bot_manip (tree *, int *, void *);
40 static tree bot_replace (tree *, int *, void *);
41 static hashval_t list_hash_pieces (tree, tree, tree);
42 static tree build_target_expr (tree, tree, tsubst_flags_t);
43 static tree count_trees_r (tree *, int *, void *);
44 static tree verify_stmt_tree_r (tree *, int *, void *);
45 static tree build_local_temp (tree);
46
47 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
48 static tree handle_abi_tag_attribute (tree *, tree, tree, int, bool *);
49
50 /* If REF is an lvalue, returns the kind of lvalue that REF is.
51 Otherwise, returns clk_none. */
52
53 cp_lvalue_kind
54 lvalue_kind (const_tree ref)
55 {
56 cp_lvalue_kind op1_lvalue_kind = clk_none;
57 cp_lvalue_kind op2_lvalue_kind = clk_none;
58
59 /* Expressions of reference type are sometimes wrapped in
60 INDIRECT_REFs. INDIRECT_REFs are just internal compiler
61 representation, not part of the language, so we have to look
62 through them. */
63 if (REFERENCE_REF_P (ref))
64 return lvalue_kind (TREE_OPERAND (ref, 0));
65
66 if (TREE_TYPE (ref)
67 && TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
68 {
69 /* unnamed rvalue references are rvalues */
70 if (TYPE_REF_IS_RVALUE (TREE_TYPE (ref))
71 && TREE_CODE (ref) != PARM_DECL
72 && !VAR_P (ref)
73 && TREE_CODE (ref) != COMPONENT_REF
74 /* Functions are always lvalues. */
75 && TREE_CODE (TREE_TYPE (TREE_TYPE (ref))) != FUNCTION_TYPE)
76 return clk_rvalueref;
77
78 /* lvalue references and named rvalue references are lvalues. */
79 return clk_ordinary;
80 }
81
82 if (ref == current_class_ptr)
83 return clk_none;
84
85 switch (TREE_CODE (ref))
86 {
87 case SAVE_EXPR:
88 return clk_none;
89 /* preincrements and predecrements are valid lvals, provided
90 what they refer to are valid lvals. */
91 case PREINCREMENT_EXPR:
92 case PREDECREMENT_EXPR:
93 case TRY_CATCH_EXPR:
94 case REALPART_EXPR:
95 case IMAGPART_EXPR:
96 return lvalue_kind (TREE_OPERAND (ref, 0));
97
98 case MEMBER_REF:
99 case DOTSTAR_EXPR:
100 if (TREE_CODE (ref) == MEMBER_REF)
101 op1_lvalue_kind = clk_ordinary;
102 else
103 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
104 if (TYPE_PTRMEMFUNC_P (TREE_TYPE (TREE_OPERAND (ref, 1))))
105 op1_lvalue_kind = clk_none;
106 return op1_lvalue_kind;
107
108 case COMPONENT_REF:
109 if (BASELINK_P (TREE_OPERAND (ref, 1)))
110 {
111 tree fn = BASELINK_FUNCTIONS (TREE_OPERAND (ref, 1));
112
113 /* For static member function recurse on the BASELINK, we can get
114 here e.g. from reference_binding. If BASELINK_FUNCTIONS is
115 OVERLOAD, the overload is resolved first if possible through
116 resolve_address_of_overloaded_function. */
117 if (TREE_CODE (fn) == FUNCTION_DECL && DECL_STATIC_FUNCTION_P (fn))
118 return lvalue_kind (TREE_OPERAND (ref, 1));
119 }
120 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
121 /* Look at the member designator. */
122 if (!op1_lvalue_kind)
123 ;
124 else if (is_overloaded_fn (TREE_OPERAND (ref, 1)))
125 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
126 situations. If we're seeing a COMPONENT_REF, it's a non-static
127 member, so it isn't an lvalue. */
128 op1_lvalue_kind = clk_none;
129 else if (TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
130 /* This can be IDENTIFIER_NODE in a template. */;
131 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
132 {
133 /* Clear the ordinary bit. If this object was a class
134 rvalue we want to preserve that information. */
135 op1_lvalue_kind &= ~clk_ordinary;
136 /* The lvalue is for a bitfield. */
137 op1_lvalue_kind |= clk_bitfield;
138 }
139 else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
140 op1_lvalue_kind |= clk_packed;
141
142 return op1_lvalue_kind;
143
144 case STRING_CST:
145 case COMPOUND_LITERAL_EXPR:
146 return clk_ordinary;
147
148 case CONST_DECL:
149 /* CONST_DECL without TREE_STATIC are enumeration values and
150 thus not lvalues. With TREE_STATIC they are used by ObjC++
151 in objc_build_string_object and need to be considered as
152 lvalues. */
153 if (! TREE_STATIC (ref))
154 return clk_none;
155 /* FALLTHRU */
156 case VAR_DECL:
157 if (VAR_P (ref) && DECL_HAS_VALUE_EXPR_P (ref))
158 return lvalue_kind (DECL_VALUE_EXPR (CONST_CAST_TREE (ref)));
159
160 if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
161 && DECL_LANG_SPECIFIC (ref)
162 && DECL_IN_AGGR_P (ref))
163 return clk_none;
164 /* FALLTHRU */
165 case INDIRECT_REF:
166 case ARROW_EXPR:
167 case ARRAY_REF:
168 case PARM_DECL:
169 case RESULT_DECL:
170 case PLACEHOLDER_EXPR:
171 return clk_ordinary;
172
173 /* A scope ref in a template, left as SCOPE_REF to support later
174 access checking. */
175 case SCOPE_REF:
176 gcc_assert (!type_dependent_expression_p (CONST_CAST_TREE (ref)));
177 {
178 tree op = TREE_OPERAND (ref, 1);
179 if (TREE_CODE (op) == FIELD_DECL)
180 return (DECL_C_BIT_FIELD (op) ? clk_bitfield : clk_ordinary);
181 else
182 return lvalue_kind (op);
183 }
184
185 case MAX_EXPR:
186 case MIN_EXPR:
187 /* Disallow <? and >? as lvalues if either argument side-effects. */
188 if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0))
189 || TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1)))
190 return clk_none;
191 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
192 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1));
193 break;
194
195 case COND_EXPR:
196 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1)
197 ? TREE_OPERAND (ref, 1)
198 : TREE_OPERAND (ref, 0));
199 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 2));
200 break;
201
202 case MODOP_EXPR:
203 /* We expect to see unlowered MODOP_EXPRs only during
204 template processing. */
205 gcc_assert (processing_template_decl);
206 return clk_ordinary;
207
208 case MODIFY_EXPR:
209 case TYPEID_EXPR:
210 return clk_ordinary;
211
212 case COMPOUND_EXPR:
213 return lvalue_kind (TREE_OPERAND (ref, 1));
214
215 case TARGET_EXPR:
216 return clk_class;
217
218 case VA_ARG_EXPR:
219 return (CLASS_TYPE_P (TREE_TYPE (ref)) ? clk_class : clk_none);
220
221 case CALL_EXPR:
222 /* We can see calls outside of TARGET_EXPR in templates. */
223 if (CLASS_TYPE_P (TREE_TYPE (ref)))
224 return clk_class;
225 return clk_none;
226
227 case FUNCTION_DECL:
228 /* All functions (except non-static-member functions) are
229 lvalues. */
230 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
231 ? clk_none : clk_ordinary);
232
233 case BASELINK:
234 /* We now represent a reference to a single static member function
235 with a BASELINK. */
236 /* This CONST_CAST is okay because BASELINK_FUNCTIONS returns
237 its argument unmodified and we assign it to a const_tree. */
238 return lvalue_kind (BASELINK_FUNCTIONS (CONST_CAST_TREE (ref)));
239
240 case NON_DEPENDENT_EXPR:
241 return lvalue_kind (TREE_OPERAND (ref, 0));
242
243 default:
244 if (!TREE_TYPE (ref))
245 return clk_none;
246 if (CLASS_TYPE_P (TREE_TYPE (ref))
247 || TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE)
248 return clk_class;
249 break;
250 }
251
252 /* If one operand is not an lvalue at all, then this expression is
253 not an lvalue. */
254 if (!op1_lvalue_kind || !op2_lvalue_kind)
255 return clk_none;
256
257 /* Otherwise, it's an lvalue, and it has all the odd properties
258 contributed by either operand. */
259 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
260 /* It's not an ordinary lvalue if it involves any other kind. */
261 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
262 op1_lvalue_kind &= ~clk_ordinary;
263 /* It can't be both a pseudo-lvalue and a non-addressable lvalue.
264 A COND_EXPR of those should be wrapped in a TARGET_EXPR. */
265 if ((op1_lvalue_kind & (clk_rvalueref|clk_class))
266 && (op1_lvalue_kind & (clk_bitfield|clk_packed)))
267 op1_lvalue_kind = clk_none;
268 return op1_lvalue_kind;
269 }
270
271 /* Returns the kind of lvalue that REF is, in the sense of [basic.lval]. */
272
273 cp_lvalue_kind
274 real_lvalue_p (const_tree ref)
275 {
276 cp_lvalue_kind kind = lvalue_kind (ref);
277 if (kind & (clk_rvalueref|clk_class))
278 return clk_none;
279 else
280 return kind;
281 }
282
283 /* c-common wants us to return bool. */
284
285 bool
286 lvalue_p (const_tree t)
287 {
288 return real_lvalue_p (t);
289 }
290
291 /* This differs from lvalue_p in that xvalues are included. */
292
293 bool
294 glvalue_p (const_tree ref)
295 {
296 cp_lvalue_kind kind = lvalue_kind (ref);
297 if (kind & clk_class)
298 return false;
299 else
300 return (kind != clk_none);
301 }
302
303 /* This differs from glvalue_p in that class prvalues are included. */
304
305 bool
306 obvalue_p (const_tree ref)
307 {
308 return (lvalue_kind (ref) != clk_none);
309 }
310
311 /* Returns true if REF is an xvalue (the result of dereferencing an rvalue
312 reference), false otherwise. */
313
314 bool
315 xvalue_p (const_tree ref)
316 {
317 return (lvalue_kind (ref) == clk_rvalueref);
318 }
319
320 /* True if REF is a bit-field. */
321
322 bool
323 bitfield_p (const_tree ref)
324 {
325 return (lvalue_kind (ref) & clk_bitfield);
326 }
327
328 /* C++-specific version of stabilize_reference. */
329
330 tree
331 cp_stabilize_reference (tree ref)
332 {
333 switch (TREE_CODE (ref))
334 {
335 case NON_DEPENDENT_EXPR:
336 /* We aren't actually evaluating this. */
337 return ref;
338
339 /* We need to treat specially anything stabilize_reference doesn't
340 handle specifically. */
341 case VAR_DECL:
342 case PARM_DECL:
343 case RESULT_DECL:
344 CASE_CONVERT:
345 case FLOAT_EXPR:
346 case FIX_TRUNC_EXPR:
347 case INDIRECT_REF:
348 case COMPONENT_REF:
349 case BIT_FIELD_REF:
350 case ARRAY_REF:
351 case ARRAY_RANGE_REF:
352 case ERROR_MARK:
353 break;
354 default:
355 cp_lvalue_kind kind = lvalue_kind (ref);
356 if ((kind & ~clk_class) != clk_none)
357 {
358 tree type = unlowered_expr_type (ref);
359 bool rval = !!(kind & clk_rvalueref);
360 type = cp_build_reference_type (type, rval);
361 /* This inhibits warnings in, eg, cxx_mark_addressable
362 (c++/60955). */
363 warning_sentinel s (extra_warnings);
364 ref = build_static_cast (type, ref, tf_error);
365 }
366 }
367
368 return stabilize_reference (ref);
369 }
370
371 /* Test whether DECL is a builtin that may appear in a
372 constant-expression. */
373
374 bool
375 builtin_valid_in_constant_expr_p (const_tree decl)
376 {
377 if (!(TREE_CODE (decl) == FUNCTION_DECL
378 && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL))
379 /* Not a built-in. */
380 return false;
381 switch (DECL_FUNCTION_CODE (decl))
382 {
383 /* These always have constant results like the corresponding
384 macros/symbol. */
385 case BUILT_IN_FILE:
386 case BUILT_IN_FUNCTION:
387 case BUILT_IN_LINE:
388
389 /* The following built-ins are valid in constant expressions
390 when their arguments are. */
391 case BUILT_IN_ADD_OVERFLOW_P:
392 case BUILT_IN_SUB_OVERFLOW_P:
393 case BUILT_IN_MUL_OVERFLOW_P:
394
395 /* These have constant results even if their operands are
396 non-constant. */
397 case BUILT_IN_CONSTANT_P:
398 case BUILT_IN_ATOMIC_ALWAYS_LOCK_FREE:
399 return true;
400 default:
401 return false;
402 }
403 }
404
405 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
406
407 static tree
408 build_target_expr (tree decl, tree value, tsubst_flags_t complain)
409 {
410 tree t;
411 tree type = TREE_TYPE (decl);
412
413 value = mark_rvalue_use (value);
414
415 gcc_checking_assert (VOID_TYPE_P (TREE_TYPE (value))
416 || TREE_TYPE (decl) == TREE_TYPE (value)
417 /* On ARM ctors return 'this'. */
418 || (TYPE_PTR_P (TREE_TYPE (value))
419 && TREE_CODE (value) == CALL_EXPR)
420 || useless_type_conversion_p (TREE_TYPE (decl),
421 TREE_TYPE (value)));
422
423 if (complain & tf_no_cleanup)
424 /* The caller is building a new-expr and does not need a cleanup. */
425 t = NULL_TREE;
426 else
427 {
428 t = cxx_maybe_build_cleanup (decl, complain);
429 if (t == error_mark_node)
430 return error_mark_node;
431 }
432 t = build4 (TARGET_EXPR, type, decl, value, t, NULL_TREE);
433 if (EXPR_HAS_LOCATION (value))
434 SET_EXPR_LOCATION (t, EXPR_LOCATION (value));
435 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not
436 ignore the TARGET_EXPR. If there really turn out to be no
437 side-effects, then the optimizer should be able to get rid of
438 whatever code is generated anyhow. */
439 TREE_SIDE_EFFECTS (t) = 1;
440
441 return t;
442 }
443
444 /* Return an undeclared local temporary of type TYPE for use in building a
445 TARGET_EXPR. */
446
447 static tree
448 build_local_temp (tree type)
449 {
450 tree slot = build_decl (input_location,
451 VAR_DECL, NULL_TREE, type);
452 DECL_ARTIFICIAL (slot) = 1;
453 DECL_IGNORED_P (slot) = 1;
454 DECL_CONTEXT (slot) = current_function_decl;
455 layout_decl (slot, 0);
456 return slot;
457 }
458
459 /* Set various status flags when building an AGGR_INIT_EXPR object T. */
460
461 static void
462 process_aggr_init_operands (tree t)
463 {
464 bool side_effects;
465
466 side_effects = TREE_SIDE_EFFECTS (t);
467 if (!side_effects)
468 {
469 int i, n;
470 n = TREE_OPERAND_LENGTH (t);
471 for (i = 1; i < n; i++)
472 {
473 tree op = TREE_OPERAND (t, i);
474 if (op && TREE_SIDE_EFFECTS (op))
475 {
476 side_effects = 1;
477 break;
478 }
479 }
480 }
481 TREE_SIDE_EFFECTS (t) = side_effects;
482 }
483
484 /* Build an AGGR_INIT_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE,
485 FN, and SLOT. NARGS is the number of call arguments which are specified
486 as a tree array ARGS. */
487
488 static tree
489 build_aggr_init_array (tree return_type, tree fn, tree slot, int nargs,
490 tree *args)
491 {
492 tree t;
493 int i;
494
495 t = build_vl_exp (AGGR_INIT_EXPR, nargs + 3);
496 TREE_TYPE (t) = return_type;
497 AGGR_INIT_EXPR_FN (t) = fn;
498 AGGR_INIT_EXPR_SLOT (t) = slot;
499 for (i = 0; i < nargs; i++)
500 AGGR_INIT_EXPR_ARG (t, i) = args[i];
501 process_aggr_init_operands (t);
502 return t;
503 }
504
505 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
506 target. TYPE is the type to be initialized.
507
508 Build an AGGR_INIT_EXPR to represent the initialization. This function
509 differs from build_cplus_new in that an AGGR_INIT_EXPR can only be used
510 to initialize another object, whereas a TARGET_EXPR can either
511 initialize another object or create its own temporary object, and as a
512 result building up a TARGET_EXPR requires that the type's destructor be
513 callable. */
514
515 tree
516 build_aggr_init_expr (tree type, tree init)
517 {
518 tree fn;
519 tree slot;
520 tree rval;
521 int is_ctor;
522
523 /* Don't build AGGR_INIT_EXPR in a template. */
524 if (processing_template_decl)
525 return init;
526
527 fn = cp_get_callee (init);
528 if (fn == NULL_TREE)
529 return convert (type, init);
530
531 is_ctor = (TREE_CODE (fn) == ADDR_EXPR
532 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
533 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
534
535 /* We split the CALL_EXPR into its function and its arguments here.
536 Then, in expand_expr, we put them back together. The reason for
537 this is that this expression might be a default argument
538 expression. In that case, we need a new temporary every time the
539 expression is used. That's what break_out_target_exprs does; it
540 replaces every AGGR_INIT_EXPR with a copy that uses a fresh
541 temporary slot. Then, expand_expr builds up a call-expression
542 using the new slot. */
543
544 /* If we don't need to use a constructor to create an object of this
545 type, don't mess with AGGR_INIT_EXPR. */
546 if (is_ctor || TREE_ADDRESSABLE (type))
547 {
548 slot = build_local_temp (type);
549
550 if (TREE_CODE (init) == CALL_EXPR)
551 {
552 rval = build_aggr_init_array (void_type_node, fn, slot,
553 call_expr_nargs (init),
554 CALL_EXPR_ARGP (init));
555 AGGR_INIT_FROM_THUNK_P (rval)
556 = CALL_FROM_THUNK_P (init);
557 }
558 else
559 {
560 rval = build_aggr_init_array (void_type_node, fn, slot,
561 aggr_init_expr_nargs (init),
562 AGGR_INIT_EXPR_ARGP (init));
563 AGGR_INIT_FROM_THUNK_P (rval)
564 = AGGR_INIT_FROM_THUNK_P (init);
565 }
566 TREE_SIDE_EFFECTS (rval) = 1;
567 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
568 TREE_NOTHROW (rval) = TREE_NOTHROW (init);
569 CALL_EXPR_OPERATOR_SYNTAX (rval) = CALL_EXPR_OPERATOR_SYNTAX (init);
570 CALL_EXPR_ORDERED_ARGS (rval) = CALL_EXPR_ORDERED_ARGS (init);
571 CALL_EXPR_REVERSE_ARGS (rval) = CALL_EXPR_REVERSE_ARGS (init);
572 }
573 else
574 rval = init;
575
576 return rval;
577 }
578
579 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
580 target. TYPE is the type that this initialization should appear to
581 have.
582
583 Build an encapsulation of the initialization to perform
584 and return it so that it can be processed by language-independent
585 and language-specific expression expanders. */
586
587 tree
588 build_cplus_new (tree type, tree init, tsubst_flags_t complain)
589 {
590 tree rval = build_aggr_init_expr (type, init);
591 tree slot;
592
593 if (!complete_type_or_maybe_complain (type, init, complain))
594 return error_mark_node;
595
596 /* Make sure that we're not trying to create an instance of an
597 abstract class. */
598 if (abstract_virtuals_error_sfinae (NULL_TREE, type, complain))
599 return error_mark_node;
600
601 if (TREE_CODE (rval) == AGGR_INIT_EXPR)
602 slot = AGGR_INIT_EXPR_SLOT (rval);
603 else if (TREE_CODE (rval) == CALL_EXPR
604 || TREE_CODE (rval) == CONSTRUCTOR)
605 slot = build_local_temp (type);
606 else
607 return rval;
608
609 rval = build_target_expr (slot, rval, complain);
610
611 if (rval != error_mark_node)
612 TARGET_EXPR_IMPLICIT_P (rval) = 1;
613
614 return rval;
615 }
616
617 /* Subroutine of build_vec_init_expr: Build up a single element
618 intialization as a proxy for the full array initialization to get things
619 marked as used and any appropriate diagnostics.
620
621 Since we're deferring building the actual constructor calls until
622 gimplification time, we need to build one now and throw it away so
623 that the relevant constructor gets mark_used before cgraph decides
624 what functions are needed. Here we assume that init is either
625 NULL_TREE, void_type_node (indicating value-initialization), or
626 another array to copy. */
627
628 static tree
629 build_vec_init_elt (tree type, tree init, tsubst_flags_t complain)
630 {
631 tree inner_type = strip_array_types (type);
632 vec<tree, va_gc> *argvec;
633
634 if (integer_zerop (array_type_nelts_total (type))
635 || !CLASS_TYPE_P (inner_type))
636 /* No interesting initialization to do. */
637 return integer_zero_node;
638 else if (init == void_type_node)
639 return build_value_init (inner_type, complain);
640
641 gcc_assert (init == NULL_TREE
642 || (same_type_ignoring_top_level_qualifiers_p
643 (type, TREE_TYPE (init))));
644
645 argvec = make_tree_vector ();
646 if (init)
647 {
648 tree init_type = strip_array_types (TREE_TYPE (init));
649 tree dummy = build_dummy_object (init_type);
650 if (!lvalue_p (init))
651 dummy = move (dummy);
652 argvec->quick_push (dummy);
653 }
654 init = build_special_member_call (NULL_TREE, complete_ctor_identifier,
655 &argvec, inner_type, LOOKUP_NORMAL,
656 complain);
657 release_tree_vector (argvec);
658
659 /* For a trivial constructor, build_over_call creates a TARGET_EXPR. But
660 we don't want one here because we aren't creating a temporary. */
661 if (TREE_CODE (init) == TARGET_EXPR)
662 init = TARGET_EXPR_INITIAL (init);
663
664 return init;
665 }
666
667 /* Return a TARGET_EXPR which expresses the initialization of an array to
668 be named later, either default-initialization or copy-initialization
669 from another array of the same type. */
670
671 tree
672 build_vec_init_expr (tree type, tree init, tsubst_flags_t complain)
673 {
674 tree slot;
675 bool value_init = false;
676 tree elt_init = build_vec_init_elt (type, init, complain);
677
678 if (init == void_type_node)
679 {
680 value_init = true;
681 init = NULL_TREE;
682 }
683
684 slot = build_local_temp (type);
685 init = build2 (VEC_INIT_EXPR, type, slot, init);
686 TREE_SIDE_EFFECTS (init) = true;
687 SET_EXPR_LOCATION (init, input_location);
688
689 if (cxx_dialect >= cxx11
690 && potential_constant_expression (elt_init))
691 VEC_INIT_EXPR_IS_CONSTEXPR (init) = true;
692 VEC_INIT_EXPR_VALUE_INIT (init) = value_init;
693
694 return init;
695 }
696
697 /* Give a helpful diagnostic for a non-constexpr VEC_INIT_EXPR in a context
698 that requires a constant expression. */
699
700 void
701 diagnose_non_constexpr_vec_init (tree expr)
702 {
703 tree type = TREE_TYPE (VEC_INIT_EXPR_SLOT (expr));
704 tree init, elt_init;
705 if (VEC_INIT_EXPR_VALUE_INIT (expr))
706 init = void_type_node;
707 else
708 init = VEC_INIT_EXPR_INIT (expr);
709
710 elt_init = build_vec_init_elt (type, init, tf_warning_or_error);
711 require_potential_constant_expression (elt_init);
712 }
713
714 tree
715 build_array_copy (tree init)
716 {
717 return build_vec_init_expr (TREE_TYPE (init), init, tf_warning_or_error);
718 }
719
720 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the
721 indicated TYPE. */
722
723 tree
724 build_target_expr_with_type (tree init, tree type, tsubst_flags_t complain)
725 {
726 gcc_assert (!VOID_TYPE_P (type));
727
728 if (TREE_CODE (init) == TARGET_EXPR
729 || init == error_mark_node)
730 return init;
731 else if (CLASS_TYPE_P (type) && type_has_nontrivial_copy_init (type)
732 && !VOID_TYPE_P (TREE_TYPE (init))
733 && TREE_CODE (init) != COND_EXPR
734 && TREE_CODE (init) != CONSTRUCTOR
735 && TREE_CODE (init) != VA_ARG_EXPR)
736 /* We need to build up a copy constructor call. A void initializer
737 means we're being called from bot_manip. COND_EXPR is a special
738 case because we already have copies on the arms and we don't want
739 another one here. A CONSTRUCTOR is aggregate initialization, which
740 is handled separately. A VA_ARG_EXPR is magic creation of an
741 aggregate; there's no additional work to be done. */
742 return force_rvalue (init, complain);
743
744 return force_target_expr (type, init, complain);
745 }
746
747 /* Like the above function, but without the checking. This function should
748 only be used by code which is deliberately trying to subvert the type
749 system, such as call_builtin_trap. Or build_over_call, to avoid
750 infinite recursion. */
751
752 tree
753 force_target_expr (tree type, tree init, tsubst_flags_t complain)
754 {
755 tree slot;
756
757 gcc_assert (!VOID_TYPE_P (type));
758
759 slot = build_local_temp (type);
760 return build_target_expr (slot, init, complain);
761 }
762
763 /* Like build_target_expr_with_type, but use the type of INIT. */
764
765 tree
766 get_target_expr_sfinae (tree init, tsubst_flags_t complain)
767 {
768 if (TREE_CODE (init) == AGGR_INIT_EXPR)
769 return build_target_expr (AGGR_INIT_EXPR_SLOT (init), init, complain);
770 else if (TREE_CODE (init) == VEC_INIT_EXPR)
771 return build_target_expr (VEC_INIT_EXPR_SLOT (init), init, complain);
772 else
773 {
774 init = convert_bitfield_to_declared_type (init);
775 return build_target_expr_with_type (init, TREE_TYPE (init), complain);
776 }
777 }
778
779 tree
780 get_target_expr (tree init)
781 {
782 return get_target_expr_sfinae (init, tf_warning_or_error);
783 }
784
785 /* If EXPR is a bitfield reference, convert it to the declared type of
786 the bitfield, and return the resulting expression. Otherwise,
787 return EXPR itself. */
788
789 tree
790 convert_bitfield_to_declared_type (tree expr)
791 {
792 tree bitfield_type;
793
794 bitfield_type = is_bitfield_expr_with_lowered_type (expr);
795 if (bitfield_type)
796 expr = convert_to_integer_nofold (TYPE_MAIN_VARIANT (bitfield_type),
797 expr);
798 return expr;
799 }
800
801 /* EXPR is being used in an rvalue context. Return a version of EXPR
802 that is marked as an rvalue. */
803
804 tree
805 rvalue (tree expr)
806 {
807 tree type;
808
809 if (error_operand_p (expr))
810 return expr;
811
812 expr = mark_rvalue_use (expr);
813
814 /* [basic.lval]
815
816 Non-class rvalues always have cv-unqualified types. */
817 type = TREE_TYPE (expr);
818 if (!CLASS_TYPE_P (type) && cv_qualified_p (type))
819 type = cv_unqualified (type);
820
821 /* We need to do this for rvalue refs as well to get the right answer
822 from decltype; see c++/36628. */
823 if (!processing_template_decl && glvalue_p (expr))
824 expr = build1 (NON_LVALUE_EXPR, type, expr);
825 else if (type != TREE_TYPE (expr))
826 expr = build_nop (type, expr);
827
828 return expr;
829 }
830
831 \f
832 struct cplus_array_info
833 {
834 tree type;
835 tree domain;
836 };
837
838 struct cplus_array_hasher : ggc_ptr_hash<tree_node>
839 {
840 typedef cplus_array_info *compare_type;
841
842 static hashval_t hash (tree t);
843 static bool equal (tree, cplus_array_info *);
844 };
845
846 /* Hash an ARRAY_TYPE. K is really of type `tree'. */
847
848 hashval_t
849 cplus_array_hasher::hash (tree t)
850 {
851 hashval_t hash;
852
853 hash = TYPE_UID (TREE_TYPE (t));
854 if (TYPE_DOMAIN (t))
855 hash ^= TYPE_UID (TYPE_DOMAIN (t));
856 return hash;
857 }
858
859 /* Compare two ARRAY_TYPEs. K1 is really of type `tree', K2 is really
860 of type `cplus_array_info*'. */
861
862 bool
863 cplus_array_hasher::equal (tree t1, cplus_array_info *t2)
864 {
865 return (TREE_TYPE (t1) == t2->type && TYPE_DOMAIN (t1) == t2->domain);
866 }
867
868 /* Hash table containing dependent array types, which are unsuitable for
869 the language-independent type hash table. */
870 static GTY (()) hash_table<cplus_array_hasher> *cplus_array_htab;
871
872 /* Build an ARRAY_TYPE without laying it out. */
873
874 static tree
875 build_min_array_type (tree elt_type, tree index_type)
876 {
877 tree t = cxx_make_type (ARRAY_TYPE);
878 TREE_TYPE (t) = elt_type;
879 TYPE_DOMAIN (t) = index_type;
880 return t;
881 }
882
883 /* Set TYPE_CANONICAL like build_array_type_1, but using
884 build_cplus_array_type. */
885
886 static void
887 set_array_type_canon (tree t, tree elt_type, tree index_type)
888 {
889 /* Set the canonical type for this new node. */
890 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
891 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
892 SET_TYPE_STRUCTURAL_EQUALITY (t);
893 else if (TYPE_CANONICAL (elt_type) != elt_type
894 || (index_type && TYPE_CANONICAL (index_type) != index_type))
895 TYPE_CANONICAL (t)
896 = build_cplus_array_type (TYPE_CANONICAL (elt_type),
897 index_type
898 ? TYPE_CANONICAL (index_type) : index_type);
899 else
900 TYPE_CANONICAL (t) = t;
901 }
902
903 /* Like build_array_type, but handle special C++ semantics: an array of a
904 variant element type is a variant of the array of the main variant of
905 the element type. */
906
907 tree
908 build_cplus_array_type (tree elt_type, tree index_type)
909 {
910 tree t;
911
912 if (elt_type == error_mark_node || index_type == error_mark_node)
913 return error_mark_node;
914
915 bool dependent = (uses_template_parms (elt_type)
916 || (index_type && uses_template_parms (index_type)));
917
918 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
919 /* Start with an array of the TYPE_MAIN_VARIANT. */
920 t = build_cplus_array_type (TYPE_MAIN_VARIANT (elt_type),
921 index_type);
922 else if (dependent)
923 {
924 /* Since type_hash_canon calls layout_type, we need to use our own
925 hash table. */
926 cplus_array_info cai;
927 hashval_t hash;
928
929 if (cplus_array_htab == NULL)
930 cplus_array_htab = hash_table<cplus_array_hasher>::create_ggc (61);
931
932 hash = TYPE_UID (elt_type);
933 if (index_type)
934 hash ^= TYPE_UID (index_type);
935 cai.type = elt_type;
936 cai.domain = index_type;
937
938 tree *e = cplus_array_htab->find_slot_with_hash (&cai, hash, INSERT);
939 if (*e)
940 /* We have found the type: we're done. */
941 return (tree) *e;
942 else
943 {
944 /* Build a new array type. */
945 t = build_min_array_type (elt_type, index_type);
946
947 /* Store it in the hash table. */
948 *e = t;
949
950 /* Set the canonical type for this new node. */
951 set_array_type_canon (t, elt_type, index_type);
952 }
953 }
954 else
955 {
956 bool typeless_storage
957 = (elt_type == unsigned_char_type_node
958 || elt_type == signed_char_type_node
959 || elt_type == char_type_node
960 || (TREE_CODE (elt_type) == ENUMERAL_TYPE
961 && TYPE_CONTEXT (elt_type) == std_node
962 && !strcmp ("byte", TYPE_NAME_STRING (elt_type))));
963 t = build_array_type (elt_type, index_type, typeless_storage);
964 }
965
966 /* Now check whether we already have this array variant. */
967 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
968 {
969 tree m = t;
970 for (t = m; t; t = TYPE_NEXT_VARIANT (t))
971 if (TREE_TYPE (t) == elt_type
972 && TYPE_NAME (t) == NULL_TREE
973 && TYPE_ATTRIBUTES (t) == NULL_TREE)
974 break;
975 if (!t)
976 {
977 t = build_min_array_type (elt_type, index_type);
978 set_array_type_canon (t, elt_type, index_type);
979 if (!dependent)
980 {
981 layout_type (t);
982 /* Make sure sizes are shared with the main variant.
983 layout_type can't be called after setting TYPE_NEXT_VARIANT,
984 as it will overwrite alignment etc. of all variants. */
985 TYPE_SIZE (t) = TYPE_SIZE (m);
986 TYPE_SIZE_UNIT (t) = TYPE_SIZE_UNIT (m);
987 TYPE_TYPELESS_STORAGE (t) = TYPE_TYPELESS_STORAGE (m);
988 }
989
990 TYPE_MAIN_VARIANT (t) = m;
991 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
992 TYPE_NEXT_VARIANT (m) = t;
993 }
994 }
995
996 /* Avoid spurious warnings with VLAs (c++/54583). */
997 if (TYPE_SIZE (t) && EXPR_P (TYPE_SIZE (t)))
998 TREE_NO_WARNING (TYPE_SIZE (t)) = 1;
999
1000 /* Push these needs up to the ARRAY_TYPE so that initialization takes
1001 place more easily. */
1002 bool needs_ctor = (TYPE_NEEDS_CONSTRUCTING (t)
1003 = TYPE_NEEDS_CONSTRUCTING (elt_type));
1004 bool needs_dtor = (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1005 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (elt_type));
1006
1007 if (!dependent && t == TYPE_MAIN_VARIANT (t)
1008 && !COMPLETE_TYPE_P (t) && COMPLETE_TYPE_P (elt_type))
1009 {
1010 /* The element type has been completed since the last time we saw
1011 this array type; update the layout and 'tor flags for any variants
1012 that need it. */
1013 layout_type (t);
1014 for (tree v = TYPE_NEXT_VARIANT (t); v; v = TYPE_NEXT_VARIANT (v))
1015 {
1016 TYPE_NEEDS_CONSTRUCTING (v) = needs_ctor;
1017 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (v) = needs_dtor;
1018 }
1019 }
1020
1021 return t;
1022 }
1023
1024 /* Return an ARRAY_TYPE with element type ELT and length N. */
1025
1026 tree
1027 build_array_of_n_type (tree elt, int n)
1028 {
1029 return build_cplus_array_type (elt, build_index_type (size_int (n - 1)));
1030 }
1031
1032 /* True iff T is an N3639 array of runtime bound (VLA). These were
1033 approved for C++14 but then removed. */
1034
1035 bool
1036 array_of_runtime_bound_p (tree t)
1037 {
1038 if (!t || TREE_CODE (t) != ARRAY_TYPE)
1039 return false;
1040 tree dom = TYPE_DOMAIN (t);
1041 if (!dom)
1042 return false;
1043 tree max = TYPE_MAX_VALUE (dom);
1044 return (!potential_rvalue_constant_expression (max)
1045 || (!value_dependent_expression_p (max) && !TREE_CONSTANT (max)));
1046 }
1047
1048 /* Return a reference type node referring to TO_TYPE. If RVAL is
1049 true, return an rvalue reference type, otherwise return an lvalue
1050 reference type. If a type node exists, reuse it, otherwise create
1051 a new one. */
1052 tree
1053 cp_build_reference_type (tree to_type, bool rval)
1054 {
1055 tree lvalue_ref, t;
1056
1057 if (TREE_CODE (to_type) == REFERENCE_TYPE)
1058 {
1059 rval = rval && TYPE_REF_IS_RVALUE (to_type);
1060 to_type = TREE_TYPE (to_type);
1061 }
1062
1063 lvalue_ref = build_reference_type (to_type);
1064 if (!rval)
1065 return lvalue_ref;
1066
1067 /* This code to create rvalue reference types is based on and tied
1068 to the code creating lvalue reference types in the middle-end
1069 functions build_reference_type_for_mode and build_reference_type.
1070
1071 It works by putting the rvalue reference type nodes after the
1072 lvalue reference nodes in the TYPE_NEXT_REF_TO linked list, so
1073 they will effectively be ignored by the middle end. */
1074
1075 for (t = lvalue_ref; (t = TYPE_NEXT_REF_TO (t)); )
1076 if (TYPE_REF_IS_RVALUE (t))
1077 return t;
1078
1079 t = build_distinct_type_copy (lvalue_ref);
1080
1081 TYPE_REF_IS_RVALUE (t) = true;
1082 TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (lvalue_ref);
1083 TYPE_NEXT_REF_TO (lvalue_ref) = t;
1084
1085 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
1086 SET_TYPE_STRUCTURAL_EQUALITY (t);
1087 else if (TYPE_CANONICAL (to_type) != to_type)
1088 TYPE_CANONICAL (t)
1089 = cp_build_reference_type (TYPE_CANONICAL (to_type), rval);
1090 else
1091 TYPE_CANONICAL (t) = t;
1092
1093 layout_type (t);
1094
1095 return t;
1096
1097 }
1098
1099 /* Returns EXPR cast to rvalue reference type, like std::move. */
1100
1101 tree
1102 move (tree expr)
1103 {
1104 tree type = TREE_TYPE (expr);
1105 gcc_assert (TREE_CODE (type) != REFERENCE_TYPE);
1106 type = cp_build_reference_type (type, /*rval*/true);
1107 return build_static_cast (type, expr, tf_warning_or_error);
1108 }
1109
1110 /* Used by the C++ front end to build qualified array types. However,
1111 the C version of this function does not properly maintain canonical
1112 types (which are not used in C). */
1113 tree
1114 c_build_qualified_type (tree type, int type_quals, tree /* orig_qual_type */,
1115 size_t /* orig_qual_indirect */)
1116 {
1117 return cp_build_qualified_type (type, type_quals);
1118 }
1119
1120 \f
1121 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
1122 arrays correctly. In particular, if TYPE is an array of T's, and
1123 TYPE_QUALS is non-empty, returns an array of qualified T's.
1124
1125 FLAGS determines how to deal with ill-formed qualifications. If
1126 tf_ignore_bad_quals is set, then bad qualifications are dropped
1127 (this is permitted if TYPE was introduced via a typedef or template
1128 type parameter). If bad qualifications are dropped and tf_warning
1129 is set, then a warning is issued for non-const qualifications. If
1130 tf_ignore_bad_quals is not set and tf_error is not set, we
1131 return error_mark_node. Otherwise, we issue an error, and ignore
1132 the qualifications.
1133
1134 Qualification of a reference type is valid when the reference came
1135 via a typedef or template type argument. [dcl.ref] No such
1136 dispensation is provided for qualifying a function type. [dcl.fct]
1137 DR 295 queries this and the proposed resolution brings it into line
1138 with qualifying a reference. We implement the DR. We also behave
1139 in a similar manner for restricting non-pointer types. */
1140
1141 tree
1142 cp_build_qualified_type_real (tree type,
1143 int type_quals,
1144 tsubst_flags_t complain)
1145 {
1146 tree result;
1147 int bad_quals = TYPE_UNQUALIFIED;
1148
1149 if (type == error_mark_node)
1150 return type;
1151
1152 if (type_quals == cp_type_quals (type))
1153 return type;
1154
1155 if (TREE_CODE (type) == ARRAY_TYPE)
1156 {
1157 /* In C++, the qualification really applies to the array element
1158 type. Obtain the appropriately qualified element type. */
1159 tree t;
1160 tree element_type
1161 = cp_build_qualified_type_real (TREE_TYPE (type),
1162 type_quals,
1163 complain);
1164
1165 if (element_type == error_mark_node)
1166 return error_mark_node;
1167
1168 /* See if we already have an identically qualified type. Tests
1169 should be equivalent to those in check_qualified_type. */
1170 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
1171 if (TREE_TYPE (t) == element_type
1172 && TYPE_NAME (t) == TYPE_NAME (type)
1173 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
1174 && attribute_list_equal (TYPE_ATTRIBUTES (t),
1175 TYPE_ATTRIBUTES (type)))
1176 break;
1177
1178 if (!t)
1179 {
1180 t = build_cplus_array_type (element_type, TYPE_DOMAIN (type));
1181
1182 /* Keep the typedef name. */
1183 if (TYPE_NAME (t) != TYPE_NAME (type))
1184 {
1185 t = build_variant_type_copy (t);
1186 TYPE_NAME (t) = TYPE_NAME (type);
1187 SET_TYPE_ALIGN (t, TYPE_ALIGN (type));
1188 TYPE_USER_ALIGN (t) = TYPE_USER_ALIGN (type);
1189 }
1190 }
1191
1192 /* Even if we already had this variant, we update
1193 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
1194 they changed since the variant was originally created.
1195
1196 This seems hokey; if there is some way to use a previous
1197 variant *without* coming through here,
1198 TYPE_NEEDS_CONSTRUCTING will never be updated. */
1199 TYPE_NEEDS_CONSTRUCTING (t)
1200 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
1201 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1202 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
1203 return t;
1204 }
1205 else if (TREE_CODE (type) == TYPE_PACK_EXPANSION)
1206 {
1207 tree t = PACK_EXPANSION_PATTERN (type);
1208
1209 t = cp_build_qualified_type_real (t, type_quals, complain);
1210 return make_pack_expansion (t, complain);
1211 }
1212
1213 /* A reference or method type shall not be cv-qualified.
1214 [dcl.ref], [dcl.fct]. This used to be an error, but as of DR 295
1215 (in CD1) we always ignore extra cv-quals on functions. */
1216 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
1217 && (TREE_CODE (type) == REFERENCE_TYPE
1218 || TREE_CODE (type) == FUNCTION_TYPE
1219 || TREE_CODE (type) == METHOD_TYPE))
1220 {
1221 if (TREE_CODE (type) == REFERENCE_TYPE)
1222 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1223 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1224 }
1225
1226 /* But preserve any function-cv-quals on a FUNCTION_TYPE. */
1227 if (TREE_CODE (type) == FUNCTION_TYPE)
1228 type_quals |= type_memfn_quals (type);
1229
1230 /* A restrict-qualified type must be a pointer (or reference)
1231 to object or incomplete type. */
1232 if ((type_quals & TYPE_QUAL_RESTRICT)
1233 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1234 && TREE_CODE (type) != TYPENAME_TYPE
1235 && !POINTER_TYPE_P (type))
1236 {
1237 bad_quals |= TYPE_QUAL_RESTRICT;
1238 type_quals &= ~TYPE_QUAL_RESTRICT;
1239 }
1240
1241 if (bad_quals == TYPE_UNQUALIFIED
1242 || (complain & tf_ignore_bad_quals))
1243 /*OK*/;
1244 else if (!(complain & tf_error))
1245 return error_mark_node;
1246 else
1247 {
1248 tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
1249 error ("%qV qualifiers cannot be applied to %qT",
1250 bad_type, type);
1251 }
1252
1253 /* Retrieve (or create) the appropriately qualified variant. */
1254 result = build_qualified_type (type, type_quals);
1255
1256 /* Preserve exception specs and ref-qualifier since build_qualified_type
1257 doesn't know about them. */
1258 if (TREE_CODE (result) == FUNCTION_TYPE
1259 || TREE_CODE (result) == METHOD_TYPE)
1260 {
1261 result = build_exception_variant (result, TYPE_RAISES_EXCEPTIONS (type));
1262 result = build_ref_qualified_type (result, type_memfn_rqual (type));
1263 }
1264
1265 return result;
1266 }
1267
1268 /* Return TYPE with const and volatile removed. */
1269
1270 tree
1271 cv_unqualified (tree type)
1272 {
1273 int quals;
1274
1275 if (type == error_mark_node)
1276 return type;
1277
1278 quals = cp_type_quals (type);
1279 quals &= ~(TYPE_QUAL_CONST|TYPE_QUAL_VOLATILE);
1280 return cp_build_qualified_type (type, quals);
1281 }
1282
1283 /* Subroutine of strip_typedefs. We want to apply to RESULT the attributes
1284 from ATTRIBS that affect type identity, and no others. If any are not
1285 applied, set *remove_attributes to true. */
1286
1287 static tree
1288 apply_identity_attributes (tree result, tree attribs, bool *remove_attributes)
1289 {
1290 tree first_ident = NULL_TREE;
1291 tree new_attribs = NULL_TREE;
1292 tree *p = &new_attribs;
1293
1294 if (OVERLOAD_TYPE_P (result))
1295 {
1296 /* On classes and enums all attributes are ingrained. */
1297 gcc_assert (attribs == TYPE_ATTRIBUTES (result));
1298 return result;
1299 }
1300
1301 for (tree a = attribs; a; a = TREE_CHAIN (a))
1302 {
1303 const attribute_spec *as
1304 = lookup_attribute_spec (get_attribute_name (a));
1305 if (as && as->affects_type_identity)
1306 {
1307 if (!first_ident)
1308 first_ident = a;
1309 else if (first_ident == error_mark_node)
1310 {
1311 *p = tree_cons (TREE_PURPOSE (a), TREE_VALUE (a), NULL_TREE);
1312 p = &TREE_CHAIN (*p);
1313 }
1314 }
1315 else if (first_ident)
1316 {
1317 for (tree a2 = first_ident; a2; a2 = TREE_CHAIN (a2))
1318 {
1319 *p = tree_cons (TREE_PURPOSE (a2), TREE_VALUE (a2), NULL_TREE);
1320 p = &TREE_CHAIN (*p);
1321 }
1322 first_ident = error_mark_node;
1323 }
1324 }
1325 if (first_ident != error_mark_node)
1326 new_attribs = first_ident;
1327
1328 if (first_ident == attribs)
1329 /* All attributes affected type identity. */;
1330 else
1331 *remove_attributes = true;
1332
1333 return cp_build_type_attribute_variant (result, new_attribs);
1334 }
1335
1336 /* Builds a qualified variant of T that is not a typedef variant.
1337 E.g. consider the following declarations:
1338 typedef const int ConstInt;
1339 typedef ConstInt* PtrConstInt;
1340 If T is PtrConstInt, this function returns a type representing
1341 const int*.
1342 In other words, if T is a typedef, the function returns the underlying type.
1343 The cv-qualification and attributes of the type returned match the
1344 input type.
1345 They will always be compatible types.
1346 The returned type is built so that all of its subtypes
1347 recursively have their typedefs stripped as well.
1348
1349 This is different from just returning TYPE_CANONICAL (T)
1350 Because of several reasons:
1351 * If T is a type that needs structural equality
1352 its TYPE_CANONICAL (T) will be NULL.
1353 * TYPE_CANONICAL (T) desn't carry type attributes
1354 and loses template parameter names.
1355
1356 If REMOVE_ATTRIBUTES is non-null, also strip attributes that don't
1357 affect type identity, and set the referent to true if any were
1358 stripped. */
1359
1360 tree
1361 strip_typedefs (tree t, bool *remove_attributes)
1362 {
1363 tree result = NULL, type = NULL, t0 = NULL;
1364
1365 if (!t || t == error_mark_node)
1366 return t;
1367
1368 if (TREE_CODE (t) == TREE_LIST)
1369 {
1370 bool changed = false;
1371 vec<tree,va_gc> *vec = make_tree_vector ();
1372 tree r = t;
1373 for (; t; t = TREE_CHAIN (t))
1374 {
1375 gcc_assert (!TREE_PURPOSE (t));
1376 tree elt = strip_typedefs (TREE_VALUE (t), remove_attributes);
1377 if (elt != TREE_VALUE (t))
1378 changed = true;
1379 vec_safe_push (vec, elt);
1380 }
1381 if (changed)
1382 r = build_tree_list_vec (vec);
1383 release_tree_vector (vec);
1384 return r;
1385 }
1386
1387 gcc_assert (TYPE_P (t));
1388
1389 if (t == TYPE_CANONICAL (t))
1390 return t;
1391
1392 if (dependent_alias_template_spec_p (t))
1393 /* DR 1558: However, if the template-id is dependent, subsequent
1394 template argument substitution still applies to the template-id. */
1395 return t;
1396
1397 switch (TREE_CODE (t))
1398 {
1399 case POINTER_TYPE:
1400 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1401 result = build_pointer_type (type);
1402 break;
1403 case REFERENCE_TYPE:
1404 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1405 result = cp_build_reference_type (type, TYPE_REF_IS_RVALUE (t));
1406 break;
1407 case OFFSET_TYPE:
1408 t0 = strip_typedefs (TYPE_OFFSET_BASETYPE (t), remove_attributes);
1409 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1410 result = build_offset_type (t0, type);
1411 break;
1412 case RECORD_TYPE:
1413 if (TYPE_PTRMEMFUNC_P (t))
1414 {
1415 t0 = strip_typedefs (TYPE_PTRMEMFUNC_FN_TYPE (t), remove_attributes);
1416 result = build_ptrmemfunc_type (t0);
1417 }
1418 break;
1419 case ARRAY_TYPE:
1420 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1421 t0 = strip_typedefs (TYPE_DOMAIN (t), remove_attributes);
1422 result = build_cplus_array_type (type, t0);
1423 break;
1424 case FUNCTION_TYPE:
1425 case METHOD_TYPE:
1426 {
1427 tree arg_types = NULL, arg_node, arg_node2, arg_type;
1428 bool changed;
1429
1430 /* Because we stomp on TREE_PURPOSE of TYPE_ARG_TYPES in many places
1431 around the compiler (e.g. cp_parser_late_parsing_default_args), we
1432 can't expect that re-hashing a function type will find a previous
1433 equivalent type, so try to reuse the input type if nothing has
1434 changed. If the type is itself a variant, that will change. */
1435 bool is_variant = typedef_variant_p (t);
1436 if (remove_attributes
1437 && (TYPE_ATTRIBUTES (t) || TYPE_USER_ALIGN (t)))
1438 is_variant = true;
1439
1440 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1441 tree canon_spec = (flag_noexcept_type
1442 ? canonical_eh_spec (TYPE_RAISES_EXCEPTIONS (t))
1443 : NULL_TREE);
1444 changed = (type != TREE_TYPE (t) || is_variant
1445 || TYPE_RAISES_EXCEPTIONS (t) != canon_spec);
1446
1447 for (arg_node = TYPE_ARG_TYPES (t);
1448 arg_node;
1449 arg_node = TREE_CHAIN (arg_node))
1450 {
1451 if (arg_node == void_list_node)
1452 break;
1453 arg_type = strip_typedefs (TREE_VALUE (arg_node),
1454 remove_attributes);
1455 gcc_assert (arg_type);
1456 if (arg_type == TREE_VALUE (arg_node) && !changed)
1457 continue;
1458
1459 if (!changed)
1460 {
1461 changed = true;
1462 for (arg_node2 = TYPE_ARG_TYPES (t);
1463 arg_node2 != arg_node;
1464 arg_node2 = TREE_CHAIN (arg_node2))
1465 arg_types
1466 = tree_cons (TREE_PURPOSE (arg_node2),
1467 TREE_VALUE (arg_node2), arg_types);
1468 }
1469
1470 arg_types
1471 = tree_cons (TREE_PURPOSE (arg_node), arg_type, arg_types);
1472 }
1473
1474 if (!changed)
1475 return t;
1476
1477 if (arg_types)
1478 arg_types = nreverse (arg_types);
1479
1480 /* A list of parameters not ending with an ellipsis
1481 must end with void_list_node. */
1482 if (arg_node)
1483 arg_types = chainon (arg_types, void_list_node);
1484
1485 if (TREE_CODE (t) == METHOD_TYPE)
1486 {
1487 tree class_type = TREE_TYPE (TREE_VALUE (arg_types));
1488 gcc_assert (class_type);
1489 result =
1490 build_method_type_directly (class_type, type,
1491 TREE_CHAIN (arg_types));
1492 result
1493 = build_ref_qualified_type (result, type_memfn_rqual (t));
1494 }
1495 else
1496 {
1497 result = build_function_type (type,
1498 arg_types);
1499 result = apply_memfn_quals (result,
1500 type_memfn_quals (t),
1501 type_memfn_rqual (t));
1502 }
1503
1504 if (canon_spec)
1505 result = build_exception_variant (result, canon_spec);
1506 if (TYPE_HAS_LATE_RETURN_TYPE (t))
1507 TYPE_HAS_LATE_RETURN_TYPE (result) = 1;
1508 }
1509 break;
1510 case TYPENAME_TYPE:
1511 {
1512 bool changed = false;
1513 tree fullname = TYPENAME_TYPE_FULLNAME (t);
1514 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR
1515 && TREE_OPERAND (fullname, 1))
1516 {
1517 tree args = TREE_OPERAND (fullname, 1);
1518 tree new_args = copy_node (args);
1519 for (int i = 0; i < TREE_VEC_LENGTH (args); ++i)
1520 {
1521 tree arg = TREE_VEC_ELT (args, i);
1522 tree strip_arg;
1523 if (TYPE_P (arg))
1524 strip_arg = strip_typedefs (arg, remove_attributes);
1525 else
1526 strip_arg = strip_typedefs_expr (arg, remove_attributes);
1527 TREE_VEC_ELT (new_args, i) = strip_arg;
1528 if (strip_arg != arg)
1529 changed = true;
1530 }
1531 if (changed)
1532 {
1533 NON_DEFAULT_TEMPLATE_ARGS_COUNT (new_args)
1534 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (args);
1535 fullname
1536 = lookup_template_function (TREE_OPERAND (fullname, 0),
1537 new_args);
1538 }
1539 else
1540 ggc_free (new_args);
1541 }
1542 tree ctx = strip_typedefs (TYPE_CONTEXT (t), remove_attributes);
1543 if (!changed && ctx == TYPE_CONTEXT (t) && !typedef_variant_p (t))
1544 return t;
1545 tree name = fullname;
1546 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR)
1547 name = TREE_OPERAND (fullname, 0);
1548 /* Use build_typename_type rather than make_typename_type because we
1549 don't want to resolve it here, just strip typedefs. */
1550 result = build_typename_type (ctx, name, fullname, typename_type);
1551 }
1552 break;
1553 case DECLTYPE_TYPE:
1554 result = strip_typedefs_expr (DECLTYPE_TYPE_EXPR (t),
1555 remove_attributes);
1556 if (result == DECLTYPE_TYPE_EXPR (t))
1557 result = NULL_TREE;
1558 else
1559 result = (finish_decltype_type
1560 (result,
1561 DECLTYPE_TYPE_ID_EXPR_OR_MEMBER_ACCESS_P (t),
1562 tf_none));
1563 break;
1564 case UNDERLYING_TYPE:
1565 type = strip_typedefs (UNDERLYING_TYPE_TYPE (t), remove_attributes);
1566 result = finish_underlying_type (type);
1567 break;
1568 default:
1569 break;
1570 }
1571
1572 if (!result)
1573 {
1574 if (typedef_variant_p (t))
1575 {
1576 /* Explicitly get the underlying type, as TYPE_MAIN_VARIANT doesn't
1577 strip typedefs with attributes. */
1578 result = TYPE_MAIN_VARIANT (DECL_ORIGINAL_TYPE (TYPE_NAME (t)));
1579 result = strip_typedefs (result);
1580 }
1581 else
1582 result = TYPE_MAIN_VARIANT (t);
1583 }
1584 gcc_assert (!typedef_variant_p (result));
1585
1586 if (COMPLETE_TYPE_P (result) && !COMPLETE_TYPE_P (t))
1587 /* If RESULT is complete and T isn't, it's likely the case that T
1588 is a variant of RESULT which hasn't been updated yet. Skip the
1589 attribute handling. */;
1590 else
1591 {
1592 if (TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (result)
1593 || TYPE_ALIGN (t) != TYPE_ALIGN (result))
1594 {
1595 gcc_assert (TYPE_USER_ALIGN (t));
1596 if (remove_attributes)
1597 *remove_attributes = true;
1598 else
1599 {
1600 if (TYPE_ALIGN (t) == TYPE_ALIGN (result))
1601 result = build_variant_type_copy (result);
1602 else
1603 result = build_aligned_type (result, TYPE_ALIGN (t));
1604 TYPE_USER_ALIGN (result) = true;
1605 }
1606 }
1607
1608 if (TYPE_ATTRIBUTES (t))
1609 {
1610 if (remove_attributes)
1611 result = apply_identity_attributes (result, TYPE_ATTRIBUTES (t),
1612 remove_attributes);
1613 else
1614 result = cp_build_type_attribute_variant (result,
1615 TYPE_ATTRIBUTES (t));
1616 }
1617 }
1618
1619 return cp_build_qualified_type (result, cp_type_quals (t));
1620 }
1621
1622 /* Like strip_typedefs above, but works on expressions, so that in
1623
1624 template<class T> struct A
1625 {
1626 typedef T TT;
1627 B<sizeof(TT)> b;
1628 };
1629
1630 sizeof(TT) is replaced by sizeof(T). */
1631
1632 tree
1633 strip_typedefs_expr (tree t, bool *remove_attributes)
1634 {
1635 unsigned i,n;
1636 tree r, type, *ops;
1637 enum tree_code code;
1638
1639 if (t == NULL_TREE || t == error_mark_node)
1640 return t;
1641
1642 if (DECL_P (t) || CONSTANT_CLASS_P (t))
1643 return t;
1644
1645 /* Some expressions have type operands, so let's handle types here rather
1646 than check TYPE_P in multiple places below. */
1647 if (TYPE_P (t))
1648 return strip_typedefs (t, remove_attributes);
1649
1650 code = TREE_CODE (t);
1651 switch (code)
1652 {
1653 case IDENTIFIER_NODE:
1654 case TEMPLATE_PARM_INDEX:
1655 case OVERLOAD:
1656 case BASELINK:
1657 case ARGUMENT_PACK_SELECT:
1658 return t;
1659
1660 case TRAIT_EXPR:
1661 {
1662 tree type1 = strip_typedefs (TRAIT_EXPR_TYPE1 (t), remove_attributes);
1663 tree type2 = strip_typedefs (TRAIT_EXPR_TYPE2 (t), remove_attributes);
1664 if (type1 == TRAIT_EXPR_TYPE1 (t)
1665 && type2 == TRAIT_EXPR_TYPE2 (t))
1666 return t;
1667 r = copy_node (t);
1668 TRAIT_EXPR_TYPE1 (r) = type1;
1669 TRAIT_EXPR_TYPE2 (r) = type2;
1670 return r;
1671 }
1672
1673 case TREE_LIST:
1674 {
1675 vec<tree, va_gc> *vec = make_tree_vector ();
1676 bool changed = false;
1677 tree it;
1678 for (it = t; it; it = TREE_CHAIN (it))
1679 {
1680 tree val = strip_typedefs_expr (TREE_VALUE (t), remove_attributes);
1681 vec_safe_push (vec, val);
1682 if (val != TREE_VALUE (t))
1683 changed = true;
1684 gcc_assert (TREE_PURPOSE (it) == NULL_TREE);
1685 }
1686 if (changed)
1687 {
1688 r = NULL_TREE;
1689 FOR_EACH_VEC_ELT_REVERSE (*vec, i, it)
1690 r = tree_cons (NULL_TREE, it, r);
1691 }
1692 else
1693 r = t;
1694 release_tree_vector (vec);
1695 return r;
1696 }
1697
1698 case TREE_VEC:
1699 {
1700 bool changed = false;
1701 vec<tree, va_gc> *vec = make_tree_vector ();
1702 n = TREE_VEC_LENGTH (t);
1703 vec_safe_reserve (vec, n);
1704 for (i = 0; i < n; ++i)
1705 {
1706 tree op = strip_typedefs_expr (TREE_VEC_ELT (t, i),
1707 remove_attributes);
1708 vec->quick_push (op);
1709 if (op != TREE_VEC_ELT (t, i))
1710 changed = true;
1711 }
1712 if (changed)
1713 {
1714 r = copy_node (t);
1715 for (i = 0; i < n; ++i)
1716 TREE_VEC_ELT (r, i) = (*vec)[i];
1717 NON_DEFAULT_TEMPLATE_ARGS_COUNT (r)
1718 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (t);
1719 }
1720 else
1721 r = t;
1722 release_tree_vector (vec);
1723 return r;
1724 }
1725
1726 case CONSTRUCTOR:
1727 {
1728 bool changed = false;
1729 vec<constructor_elt, va_gc> *vec
1730 = vec_safe_copy (CONSTRUCTOR_ELTS (t));
1731 n = CONSTRUCTOR_NELTS (t);
1732 type = strip_typedefs (TREE_TYPE (t), remove_attributes);
1733 for (i = 0; i < n; ++i)
1734 {
1735 constructor_elt *e = &(*vec)[i];
1736 tree op = strip_typedefs_expr (e->value, remove_attributes);
1737 if (op != e->value)
1738 {
1739 changed = true;
1740 e->value = op;
1741 }
1742 gcc_checking_assert
1743 (e->index == strip_typedefs_expr (e->index, remove_attributes));
1744 }
1745
1746 if (!changed && type == TREE_TYPE (t))
1747 {
1748 vec_free (vec);
1749 return t;
1750 }
1751 else
1752 {
1753 r = copy_node (t);
1754 TREE_TYPE (r) = type;
1755 CONSTRUCTOR_ELTS (r) = vec;
1756 return r;
1757 }
1758 }
1759
1760 case LAMBDA_EXPR:
1761 error ("lambda-expression in a constant expression");
1762 return error_mark_node;
1763
1764 default:
1765 break;
1766 }
1767
1768 gcc_assert (EXPR_P (t));
1769
1770 n = TREE_OPERAND_LENGTH (t);
1771 ops = XALLOCAVEC (tree, n);
1772 type = TREE_TYPE (t);
1773
1774 switch (code)
1775 {
1776 CASE_CONVERT:
1777 case IMPLICIT_CONV_EXPR:
1778 case DYNAMIC_CAST_EXPR:
1779 case STATIC_CAST_EXPR:
1780 case CONST_CAST_EXPR:
1781 case REINTERPRET_CAST_EXPR:
1782 case CAST_EXPR:
1783 case NEW_EXPR:
1784 type = strip_typedefs (type, remove_attributes);
1785 /* fallthrough */
1786
1787 default:
1788 for (i = 0; i < n; ++i)
1789 ops[i] = strip_typedefs_expr (TREE_OPERAND (t, i), remove_attributes);
1790 break;
1791 }
1792
1793 /* If nothing changed, return t. */
1794 for (i = 0; i < n; ++i)
1795 if (ops[i] != TREE_OPERAND (t, i))
1796 break;
1797 if (i == n && type == TREE_TYPE (t))
1798 return t;
1799
1800 r = copy_node (t);
1801 TREE_TYPE (r) = type;
1802 for (i = 0; i < n; ++i)
1803 TREE_OPERAND (r, i) = ops[i];
1804 return r;
1805 }
1806
1807 /* Makes a copy of BINFO and TYPE, which is to be inherited into a
1808 graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
1809 and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
1810 VIRT indicates whether TYPE is inherited virtually or not.
1811 IGO_PREV points at the previous binfo of the inheritance graph
1812 order chain. The newly copied binfo's TREE_CHAIN forms this
1813 ordering.
1814
1815 The CLASSTYPE_VBASECLASSES vector of T is constructed in the
1816 correct order. That is in the order the bases themselves should be
1817 constructed in.
1818
1819 The BINFO_INHERITANCE of a virtual base class points to the binfo
1820 of the most derived type. ??? We could probably change this so that
1821 BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
1822 remove a field. They currently can only differ for primary virtual
1823 virtual bases. */
1824
1825 tree
1826 copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
1827 {
1828 tree new_binfo;
1829
1830 if (virt)
1831 {
1832 /* See if we've already made this virtual base. */
1833 new_binfo = binfo_for_vbase (type, t);
1834 if (new_binfo)
1835 return new_binfo;
1836 }
1837
1838 new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0);
1839 BINFO_TYPE (new_binfo) = type;
1840
1841 /* Chain it into the inheritance graph. */
1842 TREE_CHAIN (*igo_prev) = new_binfo;
1843 *igo_prev = new_binfo;
1844
1845 if (binfo && !BINFO_DEPENDENT_BASE_P (binfo))
1846 {
1847 int ix;
1848 tree base_binfo;
1849
1850 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type));
1851
1852 BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
1853 BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
1854
1855 /* We do not need to copy the accesses, as they are read only. */
1856 BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
1857
1858 /* Recursively copy base binfos of BINFO. */
1859 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1860 {
1861 tree new_base_binfo;
1862 new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
1863 t, igo_prev,
1864 BINFO_VIRTUAL_P (base_binfo));
1865
1866 if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
1867 BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
1868 BINFO_BASE_APPEND (new_binfo, new_base_binfo);
1869 }
1870 }
1871 else
1872 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
1873
1874 if (virt)
1875 {
1876 /* Push it onto the list after any virtual bases it contains
1877 will have been pushed. */
1878 CLASSTYPE_VBASECLASSES (t)->quick_push (new_binfo);
1879 BINFO_VIRTUAL_P (new_binfo) = 1;
1880 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
1881 }
1882
1883 return new_binfo;
1884 }
1885 \f
1886 /* Hashing of lists so that we don't make duplicates.
1887 The entry point is `list_hash_canon'. */
1888
1889 struct list_proxy
1890 {
1891 tree purpose;
1892 tree value;
1893 tree chain;
1894 };
1895
1896 struct list_hasher : ggc_ptr_hash<tree_node>
1897 {
1898 typedef list_proxy *compare_type;
1899
1900 static hashval_t hash (tree);
1901 static bool equal (tree, list_proxy *);
1902 };
1903
1904 /* Now here is the hash table. When recording a list, it is added
1905 to the slot whose index is the hash code mod the table size.
1906 Note that the hash table is used for several kinds of lists.
1907 While all these live in the same table, they are completely independent,
1908 and the hash code is computed differently for each of these. */
1909
1910 static GTY (()) hash_table<list_hasher> *list_hash_table;
1911
1912 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
1913 for a node we are thinking about adding). */
1914
1915 bool
1916 list_hasher::equal (tree t, list_proxy *proxy)
1917 {
1918 return (TREE_VALUE (t) == proxy->value
1919 && TREE_PURPOSE (t) == proxy->purpose
1920 && TREE_CHAIN (t) == proxy->chain);
1921 }
1922
1923 /* Compute a hash code for a list (chain of TREE_LIST nodes
1924 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
1925 TREE_COMMON slots), by adding the hash codes of the individual entries. */
1926
1927 static hashval_t
1928 list_hash_pieces (tree purpose, tree value, tree chain)
1929 {
1930 hashval_t hashcode = 0;
1931
1932 if (chain)
1933 hashcode += TREE_HASH (chain);
1934
1935 if (value)
1936 hashcode += TREE_HASH (value);
1937 else
1938 hashcode += 1007;
1939 if (purpose)
1940 hashcode += TREE_HASH (purpose);
1941 else
1942 hashcode += 1009;
1943 return hashcode;
1944 }
1945
1946 /* Hash an already existing TREE_LIST. */
1947
1948 hashval_t
1949 list_hasher::hash (tree t)
1950 {
1951 return list_hash_pieces (TREE_PURPOSE (t),
1952 TREE_VALUE (t),
1953 TREE_CHAIN (t));
1954 }
1955
1956 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
1957 object for an identical list if one already exists. Otherwise, build a
1958 new one, and record it as the canonical object. */
1959
1960 tree
1961 hash_tree_cons (tree purpose, tree value, tree chain)
1962 {
1963 int hashcode = 0;
1964 tree *slot;
1965 struct list_proxy proxy;
1966
1967 /* Hash the list node. */
1968 hashcode = list_hash_pieces (purpose, value, chain);
1969 /* Create a proxy for the TREE_LIST we would like to create. We
1970 don't actually create it so as to avoid creating garbage. */
1971 proxy.purpose = purpose;
1972 proxy.value = value;
1973 proxy.chain = chain;
1974 /* See if it is already in the table. */
1975 slot = list_hash_table->find_slot_with_hash (&proxy, hashcode, INSERT);
1976 /* If not, create a new node. */
1977 if (!*slot)
1978 *slot = tree_cons (purpose, value, chain);
1979 return (tree) *slot;
1980 }
1981
1982 /* Constructor for hashed lists. */
1983
1984 tree
1985 hash_tree_chain (tree value, tree chain)
1986 {
1987 return hash_tree_cons (NULL_TREE, value, chain);
1988 }
1989 \f
1990 void
1991 debug_binfo (tree elem)
1992 {
1993 HOST_WIDE_INT n;
1994 tree virtuals;
1995
1996 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
1997 "\nvtable type:\n",
1998 TYPE_NAME_STRING (BINFO_TYPE (elem)),
1999 TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
2000 debug_tree (BINFO_TYPE (elem));
2001 if (BINFO_VTABLE (elem))
2002 fprintf (stderr, "vtable decl \"%s\"\n",
2003 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
2004 else
2005 fprintf (stderr, "no vtable decl yet\n");
2006 fprintf (stderr, "virtuals:\n");
2007 virtuals = BINFO_VIRTUALS (elem);
2008 n = 0;
2009
2010 while (virtuals)
2011 {
2012 tree fndecl = TREE_VALUE (virtuals);
2013 fprintf (stderr, "%s [%ld =? %ld]\n",
2014 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
2015 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
2016 ++n;
2017 virtuals = TREE_CHAIN (virtuals);
2018 }
2019 }
2020
2021 /* Build a representation for the qualified name SCOPE::NAME. TYPE is
2022 the type of the result expression, if known, or NULL_TREE if the
2023 resulting expression is type-dependent. If TEMPLATE_P is true,
2024 NAME is known to be a template because the user explicitly used the
2025 "template" keyword after the "::".
2026
2027 All SCOPE_REFs should be built by use of this function. */
2028
2029 tree
2030 build_qualified_name (tree type, tree scope, tree name, bool template_p)
2031 {
2032 tree t;
2033 if (type == error_mark_node
2034 || scope == error_mark_node
2035 || name == error_mark_node)
2036 return error_mark_node;
2037 gcc_assert (TREE_CODE (name) != SCOPE_REF);
2038 t = build2 (SCOPE_REF, type, scope, name);
2039 QUALIFIED_NAME_IS_TEMPLATE (t) = template_p;
2040 PTRMEM_OK_P (t) = true;
2041 if (type)
2042 t = convert_from_reference (t);
2043 return t;
2044 }
2045
2046 /* Like check_qualified_type, but also check ref-qualifier and exception
2047 specification. */
2048
2049 static bool
2050 cp_check_qualified_type (const_tree cand, const_tree base, int type_quals,
2051 cp_ref_qualifier rqual, tree raises)
2052 {
2053 return (TYPE_QUALS (cand) == type_quals
2054 && check_base_type (cand, base)
2055 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (cand),
2056 ce_exact)
2057 && type_memfn_rqual (cand) == rqual);
2058 }
2059
2060 /* Build the FUNCTION_TYPE or METHOD_TYPE with the ref-qualifier RQUAL. */
2061
2062 tree
2063 build_ref_qualified_type (tree type, cp_ref_qualifier rqual)
2064 {
2065 tree t;
2066
2067 if (rqual == type_memfn_rqual (type))
2068 return type;
2069
2070 int type_quals = TYPE_QUALS (type);
2071 tree raises = TYPE_RAISES_EXCEPTIONS (type);
2072 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2073 if (cp_check_qualified_type (t, type, type_quals, rqual, raises))
2074 return t;
2075
2076 t = build_variant_type_copy (type);
2077 switch (rqual)
2078 {
2079 case REF_QUAL_RVALUE:
2080 FUNCTION_RVALUE_QUALIFIED (t) = 1;
2081 FUNCTION_REF_QUALIFIED (t) = 1;
2082 break;
2083 case REF_QUAL_LVALUE:
2084 FUNCTION_RVALUE_QUALIFIED (t) = 0;
2085 FUNCTION_REF_QUALIFIED (t) = 1;
2086 break;
2087 default:
2088 FUNCTION_REF_QUALIFIED (t) = 0;
2089 break;
2090 }
2091
2092 if (TYPE_STRUCTURAL_EQUALITY_P (type))
2093 /* Propagate structural equality. */
2094 SET_TYPE_STRUCTURAL_EQUALITY (t);
2095 else if (TYPE_CANONICAL (type) != type)
2096 /* Build the underlying canonical type, since it is different
2097 from TYPE. */
2098 TYPE_CANONICAL (t) = build_ref_qualified_type (TYPE_CANONICAL (type),
2099 rqual);
2100 else
2101 /* T is its own canonical type. */
2102 TYPE_CANONICAL (t) = t;
2103
2104 return t;
2105 }
2106
2107 /* Cache of free ovl nodes. Uses OVL_FUNCTION for chaining. */
2108 static GTY((deletable)) tree ovl_cache;
2109
2110 /* Make a raw overload node containing FN. */
2111
2112 tree
2113 ovl_make (tree fn, tree next)
2114 {
2115 tree result = ovl_cache;
2116
2117 if (result)
2118 {
2119 ovl_cache = OVL_FUNCTION (result);
2120 /* Zap the flags. */
2121 memset (result, 0, sizeof (tree_base));
2122 TREE_SET_CODE (result, OVERLOAD);
2123 }
2124 else
2125 result = make_node (OVERLOAD);
2126
2127 if (TREE_CODE (fn) == OVERLOAD)
2128 OVL_NESTED_P (result) = true;
2129
2130 TREE_TYPE (result) = (next || TREE_CODE (fn) == TEMPLATE_DECL
2131 ? unknown_type_node : TREE_TYPE (fn));
2132 OVL_FUNCTION (result) = fn;
2133 OVL_CHAIN (result) = next;
2134 return result;
2135 }
2136
2137 static tree
2138 ovl_copy (tree ovl)
2139 {
2140 tree result = ovl_cache;
2141
2142 if (result)
2143 {
2144 ovl_cache = OVL_FUNCTION (result);
2145 /* Zap the flags. */
2146 memset (result, 0, sizeof (tree_base));
2147 TREE_SET_CODE (result, OVERLOAD);
2148 }
2149 else
2150 result = make_node (OVERLOAD);
2151
2152 gcc_checking_assert (!OVL_NESTED_P (ovl) && OVL_USED_P (ovl));
2153 TREE_TYPE (result) = TREE_TYPE (ovl);
2154 OVL_FUNCTION (result) = OVL_FUNCTION (ovl);
2155 OVL_CHAIN (result) = OVL_CHAIN (ovl);
2156 OVL_HIDDEN_P (result) = OVL_HIDDEN_P (ovl);
2157 OVL_USING_P (result) = OVL_USING_P (ovl);
2158 OVL_LOOKUP_P (result) = OVL_LOOKUP_P (ovl);
2159
2160 return result;
2161 }
2162
2163 /* Add FN to the (potentially NULL) overload set OVL. USING_P is
2164 true, if FN is via a using declaration. We also pay attention to
2165 DECL_HIDDEN. Overloads are ordered as hidden, using, regular. */
2166
2167 tree
2168 ovl_insert (tree fn, tree maybe_ovl, bool using_p)
2169 {
2170 bool copying = false; /* Checking use only. */
2171 bool hidden_p = DECL_HIDDEN_P (fn);
2172 int weight = (hidden_p << 1) | (using_p << 0);
2173
2174 tree result = NULL_TREE;
2175 tree insert_after = NULL_TREE;
2176
2177 /* Find insertion point. */
2178 while (maybe_ovl && TREE_CODE (maybe_ovl) == OVERLOAD
2179 && (weight < ((OVL_HIDDEN_P (maybe_ovl) << 1)
2180 | (OVL_USING_P (maybe_ovl) << 0))))
2181 {
2182 gcc_checking_assert (!OVL_LOOKUP_P (maybe_ovl)
2183 && (!copying || OVL_USED_P (maybe_ovl)));
2184 if (OVL_USED_P (maybe_ovl))
2185 {
2186 copying = true;
2187 maybe_ovl = ovl_copy (maybe_ovl);
2188 if (insert_after)
2189 OVL_CHAIN (insert_after) = maybe_ovl;
2190 }
2191 if (!result)
2192 result = maybe_ovl;
2193 insert_after = maybe_ovl;
2194 maybe_ovl = OVL_CHAIN (maybe_ovl);
2195 }
2196
2197 tree trail = fn;
2198 if (maybe_ovl || using_p || hidden_p || TREE_CODE (fn) == TEMPLATE_DECL)
2199 {
2200 trail = ovl_make (fn, maybe_ovl);
2201 if (hidden_p)
2202 OVL_HIDDEN_P (trail) = true;
2203 if (using_p)
2204 OVL_USING_P (trail) = true;
2205 }
2206
2207 if (insert_after)
2208 {
2209 OVL_CHAIN (insert_after) = trail;
2210 TREE_TYPE (insert_after) = unknown_type_node;
2211 }
2212 else
2213 result = trail;
2214
2215 return result;
2216 }
2217
2218 /* Skip any hidden names at the beginning of OVL. */
2219
2220 tree
2221 ovl_skip_hidden (tree ovl)
2222 {
2223 for (;
2224 ovl && TREE_CODE (ovl) == OVERLOAD && OVL_HIDDEN_P (ovl);
2225 ovl = OVL_CHAIN (ovl))
2226 gcc_checking_assert (DECL_HIDDEN_P (OVL_FUNCTION (ovl)));
2227
2228 if (ovl && TREE_CODE (ovl) != OVERLOAD && DECL_HIDDEN_P (ovl))
2229 {
2230 /* Any hidden functions should have been wrapped in an
2231 overload, but injected friend classes will not. */
2232 gcc_checking_assert (!DECL_DECLARES_FUNCTION_P (ovl));
2233 ovl = NULL_TREE;
2234 }
2235
2236 return ovl;
2237 }
2238
2239 /* NODE is an OVL_HIDDEN_P node which is now revealed. */
2240
2241 tree
2242 ovl_iterator::reveal_node (tree overload, tree node)
2243 {
2244 /* We cannot have returned NODE as part of a lookup overload, so it
2245 cannot be USED. */
2246 gcc_checking_assert (!OVL_USED_P (node));
2247
2248 OVL_HIDDEN_P (node) = false;
2249 if (tree chain = OVL_CHAIN (node))
2250 if (TREE_CODE (chain) == OVERLOAD
2251 && (OVL_USING_P (chain) || OVL_HIDDEN_P (chain)))
2252 {
2253 /* The node needs moving, and the simplest way is to remove it
2254 and reinsert. */
2255 overload = remove_node (overload, node);
2256 overload = ovl_insert (OVL_FUNCTION (node), overload);
2257 }
2258 return overload;
2259 }
2260
2261 /* NODE is on the overloads of OVL. Remove it. If a predecessor is
2262 OVL_USED_P we must copy OVL nodes, because those are immutable.
2263 The removed node is unaltered and may continue to be iterated
2264 from (i.e. it is safe to remove a node from an overload one is
2265 currently iterating over). */
2266
2267 tree
2268 ovl_iterator::remove_node (tree overload, tree node)
2269 {
2270 bool copying = false; /* Checking use only. */
2271
2272 tree *slot = &overload;
2273 while (*slot != node)
2274 {
2275 tree probe = *slot;
2276 gcc_checking_assert (!OVL_LOOKUP_P (probe)
2277 && (!copying || OVL_USED_P (probe)));
2278 if (OVL_USED_P (probe))
2279 {
2280 copying = true;
2281 probe = ovl_copy (probe);
2282 *slot = probe;
2283 }
2284
2285 slot = &OVL_CHAIN (probe);
2286 }
2287
2288 /* Stitch out NODE. We don't have to worry about now making a
2289 singleton overload (and consequently maybe setting its type),
2290 because all uses of this function will be followed by inserting a
2291 new node that must follow the place we've cut this out from. */
2292 if (TREE_CODE (node) != OVERLOAD)
2293 /* Cloned inherited ctors don't mark themselves as via_using. */
2294 *slot = NULL_TREE;
2295 else
2296 *slot = OVL_CHAIN (node);
2297
2298 return overload;
2299 }
2300
2301 /* Mark or unmark a lookup set. */
2302
2303 void
2304 lookup_mark (tree ovl, bool val)
2305 {
2306 for (lkp_iterator iter (ovl); iter; ++iter)
2307 {
2308 gcc_checking_assert (LOOKUP_SEEN_P (*iter) != val);
2309 LOOKUP_SEEN_P (*iter) = val;
2310 }
2311 }
2312
2313 /* Add a set of new FNS into a lookup. */
2314
2315 tree
2316 lookup_add (tree fns, tree lookup)
2317 {
2318 if (lookup || TREE_CODE (fns) == TEMPLATE_DECL)
2319 {
2320 lookup = ovl_make (fns, lookup);
2321 OVL_LOOKUP_P (lookup) = true;
2322 }
2323 else
2324 lookup = fns;
2325
2326 return lookup;
2327 }
2328
2329 /* FNS is a new overload set, add them to LOOKUP, if they are not
2330 already present there. */
2331
2332 tree
2333 lookup_maybe_add (tree fns, tree lookup, bool deduping)
2334 {
2335 if (deduping)
2336 for (tree next, probe = fns; probe; probe = next)
2337 {
2338 tree fn = probe;
2339 next = NULL_TREE;
2340
2341 if (TREE_CODE (probe) == OVERLOAD)
2342 {
2343 fn = OVL_FUNCTION (probe);
2344 next = OVL_CHAIN (probe);
2345 }
2346
2347 if (!LOOKUP_SEEN_P (fn))
2348 LOOKUP_SEEN_P (fn) = true;
2349 else
2350 {
2351 /* This function was already seen. Insert all the
2352 predecessors onto the lookup. */
2353 for (; fns != probe; fns = OVL_CHAIN (fns))
2354 {
2355 lookup = lookup_add (OVL_FUNCTION (fns), lookup);
2356 /* Propagate OVL_USING, but OVL_HIDDEN doesn't matter. */
2357 if (OVL_USING_P (fns))
2358 OVL_USING_P (lookup) = true;
2359 }
2360
2361 /* And now skip this function. */
2362 fns = next;
2363 }
2364 }
2365
2366 if (fns)
2367 /* We ended in a set of new functions. Add them all in one go. */
2368 lookup = lookup_add (fns, lookup);
2369
2370 return lookup;
2371 }
2372
2373 /* Regular overload OVL is part of a kept lookup. Mark the nodes on
2374 it as immutable. */
2375
2376 static void
2377 ovl_used (tree ovl)
2378 {
2379 for (;
2380 ovl && TREE_CODE (ovl) == OVERLOAD
2381 && !OVL_USED_P (ovl);
2382 ovl = OVL_CHAIN (ovl))
2383 {
2384 gcc_checking_assert (!OVL_LOOKUP_P (ovl));
2385 OVL_USED_P (ovl) = true;
2386 }
2387 }
2388
2389 /* If KEEP is true, preserve the contents of a lookup so that it is
2390 available for a later instantiation. Otherwise release the LOOKUP
2391 nodes for reuse. */
2392
2393 void
2394 lookup_keep (tree lookup, bool keep)
2395 {
2396 for (;
2397 lookup && TREE_CODE (lookup) == OVERLOAD
2398 && OVL_LOOKUP_P (lookup) && !OVL_USED_P (lookup);
2399 lookup = OVL_CHAIN (lookup))
2400 if (keep)
2401 {
2402 OVL_USED_P (lookup) = true;
2403 ovl_used (OVL_FUNCTION (lookup));
2404 }
2405 else
2406 {
2407 OVL_FUNCTION (lookup) = ovl_cache;
2408 ovl_cache = lookup;
2409 }
2410
2411 if (keep)
2412 ovl_used (lookup);
2413 }
2414
2415 /* Returns nonzero if X is an expression for a (possibly overloaded)
2416 function. If "f" is a function or function template, "f", "c->f",
2417 "c.f", "C::f", and "f<int>" will all be considered possibly
2418 overloaded functions. Returns 2 if the function is actually
2419 overloaded, i.e., if it is impossible to know the type of the
2420 function without performing overload resolution. */
2421
2422 int
2423 is_overloaded_fn (tree x)
2424 {
2425 /* A baselink is also considered an overloaded function. */
2426 if (TREE_CODE (x) == OFFSET_REF
2427 || TREE_CODE (x) == COMPONENT_REF)
2428 x = TREE_OPERAND (x, 1);
2429 x = MAYBE_BASELINK_FUNCTIONS (x);
2430 if (TREE_CODE (x) == TEMPLATE_ID_EXPR)
2431 x = TREE_OPERAND (x, 0);
2432
2433 if (DECL_FUNCTION_TEMPLATE_P (OVL_FIRST (x))
2434 || (TREE_CODE (x) == OVERLOAD && !OVL_SINGLE_P (x)))
2435 return 2;
2436
2437 return (TREE_CODE (x) == FUNCTION_DECL
2438 || TREE_CODE (x) == OVERLOAD);
2439 }
2440
2441 /* X is the CALL_EXPR_FN of a CALL_EXPR. If X represents a dependent name
2442 (14.6.2), return the IDENTIFIER_NODE for that name. Otherwise, return
2443 NULL_TREE. */
2444
2445 tree
2446 dependent_name (tree x)
2447 {
2448 if (identifier_p (x))
2449 return x;
2450 if (TREE_CODE (x) == TEMPLATE_ID_EXPR)
2451 x = TREE_OPERAND (x, 0);
2452 if (TREE_CODE (x) == OVERLOAD || TREE_CODE (x) == FUNCTION_DECL)
2453 return OVL_NAME (x);
2454 return NULL_TREE;
2455 }
2456
2457 /* Returns true iff X is an expression for an overloaded function
2458 whose type cannot be known without performing overload
2459 resolution. */
2460
2461 bool
2462 really_overloaded_fn (tree x)
2463 {
2464 return is_overloaded_fn (x) == 2;
2465 }
2466
2467 /* Get the overload set FROM refers to. */
2468
2469 tree
2470 get_fns (tree from)
2471 {
2472 /* A baselink is also considered an overloaded function. */
2473 if (TREE_CODE (from) == OFFSET_REF
2474 || TREE_CODE (from) == COMPONENT_REF)
2475 from = TREE_OPERAND (from, 1);
2476 if (BASELINK_P (from))
2477 from = BASELINK_FUNCTIONS (from);
2478 if (TREE_CODE (from) == TEMPLATE_ID_EXPR)
2479 from = TREE_OPERAND (from, 0);
2480 gcc_assert (TREE_CODE (from) == OVERLOAD
2481 || TREE_CODE (from) == FUNCTION_DECL);
2482 return from;
2483 }
2484
2485 /* Return the first function of the overload set FROM refers to. */
2486
2487 tree
2488 get_first_fn (tree from)
2489 {
2490 return OVL_FIRST (get_fns (from));
2491 }
2492
2493 /* Return the scope where the overloaded functions OVL were found. */
2494
2495 tree
2496 ovl_scope (tree ovl)
2497 {
2498 if (TREE_CODE (ovl) == OFFSET_REF
2499 || TREE_CODE (ovl) == COMPONENT_REF)
2500 ovl = TREE_OPERAND (ovl, 1);
2501 if (TREE_CODE (ovl) == BASELINK)
2502 return BINFO_TYPE (BASELINK_BINFO (ovl));
2503 if (TREE_CODE (ovl) == TEMPLATE_ID_EXPR)
2504 ovl = TREE_OPERAND (ovl, 0);
2505 /* Skip using-declarations. */
2506 lkp_iterator iter (ovl);
2507 do
2508 ovl = *iter;
2509 while (iter.using_p () && ++iter);
2510
2511 return CP_DECL_CONTEXT (ovl);
2512 }
2513 \f
2514 #define PRINT_RING_SIZE 4
2515
2516 static const char *
2517 cxx_printable_name_internal (tree decl, int v, bool translate)
2518 {
2519 static unsigned int uid_ring[PRINT_RING_SIZE];
2520 static char *print_ring[PRINT_RING_SIZE];
2521 static bool trans_ring[PRINT_RING_SIZE];
2522 static int ring_counter;
2523 int i;
2524
2525 /* Only cache functions. */
2526 if (v < 2
2527 || TREE_CODE (decl) != FUNCTION_DECL
2528 || DECL_LANG_SPECIFIC (decl) == 0)
2529 return lang_decl_name (decl, v, translate);
2530
2531 /* See if this print name is lying around. */
2532 for (i = 0; i < PRINT_RING_SIZE; i++)
2533 if (uid_ring[i] == DECL_UID (decl) && translate == trans_ring[i])
2534 /* yes, so return it. */
2535 return print_ring[i];
2536
2537 if (++ring_counter == PRINT_RING_SIZE)
2538 ring_counter = 0;
2539
2540 if (current_function_decl != NULL_TREE)
2541 {
2542 /* There may be both translated and untranslated versions of the
2543 name cached. */
2544 for (i = 0; i < 2; i++)
2545 {
2546 if (uid_ring[ring_counter] == DECL_UID (current_function_decl))
2547 ring_counter += 1;
2548 if (ring_counter == PRINT_RING_SIZE)
2549 ring_counter = 0;
2550 }
2551 gcc_assert (uid_ring[ring_counter] != DECL_UID (current_function_decl));
2552 }
2553
2554 free (print_ring[ring_counter]);
2555
2556 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v, translate));
2557 uid_ring[ring_counter] = DECL_UID (decl);
2558 trans_ring[ring_counter] = translate;
2559 return print_ring[ring_counter];
2560 }
2561
2562 const char *
2563 cxx_printable_name (tree decl, int v)
2564 {
2565 return cxx_printable_name_internal (decl, v, false);
2566 }
2567
2568 const char *
2569 cxx_printable_name_translate (tree decl, int v)
2570 {
2571 return cxx_printable_name_internal (decl, v, true);
2572 }
2573 \f
2574 /* Return the canonical version of exception-specification RAISES for a C++17
2575 function type, for use in type comparison and building TYPE_CANONICAL. */
2576
2577 tree
2578 canonical_eh_spec (tree raises)
2579 {
2580 if (raises == NULL_TREE)
2581 return raises;
2582 else if (DEFERRED_NOEXCEPT_SPEC_P (raises)
2583 || uses_template_parms (raises)
2584 || uses_template_parms (TREE_PURPOSE (raises)))
2585 /* Keep a dependent or deferred exception specification. */
2586 return raises;
2587 else if (nothrow_spec_p (raises))
2588 /* throw() -> noexcept. */
2589 return noexcept_true_spec;
2590 else
2591 /* For C++17 type matching, anything else -> nothing. */
2592 return NULL_TREE;
2593 }
2594
2595 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
2596 listed in RAISES. */
2597
2598 tree
2599 build_exception_variant (tree type, tree raises)
2600 {
2601 tree v;
2602 int type_quals;
2603
2604 if (comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (type), ce_exact))
2605 return type;
2606
2607 type_quals = TYPE_QUALS (type);
2608 cp_ref_qualifier rqual = type_memfn_rqual (type);
2609 for (v = TYPE_MAIN_VARIANT (type); v; v = TYPE_NEXT_VARIANT (v))
2610 if (cp_check_qualified_type (v, type, type_quals, rqual, raises))
2611 return v;
2612
2613 /* Need to build a new variant. */
2614 v = build_variant_type_copy (type);
2615 TYPE_RAISES_EXCEPTIONS (v) = raises;
2616
2617 if (!flag_noexcept_type)
2618 /* The exception-specification is not part of the canonical type. */
2619 return v;
2620
2621 /* Canonicalize the exception specification. */
2622 tree cr = canonical_eh_spec (raises);
2623
2624 if (TYPE_STRUCTURAL_EQUALITY_P (type))
2625 /* Propagate structural equality. */
2626 SET_TYPE_STRUCTURAL_EQUALITY (v);
2627 else if (TYPE_CANONICAL (type) != type || cr != raises)
2628 /* Build the underlying canonical type, since it is different
2629 from TYPE. */
2630 TYPE_CANONICAL (v) = build_exception_variant (TYPE_CANONICAL (type), cr);
2631 else
2632 /* T is its own canonical type. */
2633 TYPE_CANONICAL (v) = v;
2634
2635 return v;
2636 }
2637
2638 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
2639 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
2640 arguments. */
2641
2642 tree
2643 bind_template_template_parm (tree t, tree newargs)
2644 {
2645 tree decl = TYPE_NAME (t);
2646 tree t2;
2647
2648 t2 = cxx_make_type (BOUND_TEMPLATE_TEMPLATE_PARM);
2649 decl = build_decl (input_location,
2650 TYPE_DECL, DECL_NAME (decl), NULL_TREE);
2651
2652 /* These nodes have to be created to reflect new TYPE_DECL and template
2653 arguments. */
2654 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
2655 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
2656 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
2657 = build_template_info (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t), newargs);
2658
2659 TREE_TYPE (decl) = t2;
2660 TYPE_NAME (t2) = decl;
2661 TYPE_STUB_DECL (t2) = decl;
2662 TYPE_SIZE (t2) = 0;
2663 SET_TYPE_STRUCTURAL_EQUALITY (t2);
2664
2665 return t2;
2666 }
2667
2668 /* Called from count_trees via walk_tree. */
2669
2670 static tree
2671 count_trees_r (tree *tp, int *walk_subtrees, void *data)
2672 {
2673 ++*((int *) data);
2674
2675 if (TYPE_P (*tp))
2676 *walk_subtrees = 0;
2677
2678 return NULL_TREE;
2679 }
2680
2681 /* Debugging function for measuring the rough complexity of a tree
2682 representation. */
2683
2684 int
2685 count_trees (tree t)
2686 {
2687 int n_trees = 0;
2688 cp_walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
2689 return n_trees;
2690 }
2691
2692 /* Called from verify_stmt_tree via walk_tree. */
2693
2694 static tree
2695 verify_stmt_tree_r (tree* tp, int * /*walk_subtrees*/, void* data)
2696 {
2697 tree t = *tp;
2698 hash_table<nofree_ptr_hash <tree_node> > *statements
2699 = static_cast <hash_table<nofree_ptr_hash <tree_node> > *> (data);
2700 tree_node **slot;
2701
2702 if (!STATEMENT_CODE_P (TREE_CODE (t)))
2703 return NULL_TREE;
2704
2705 /* If this statement is already present in the hash table, then
2706 there is a circularity in the statement tree. */
2707 gcc_assert (!statements->find (t));
2708
2709 slot = statements->find_slot (t, INSERT);
2710 *slot = t;
2711
2712 return NULL_TREE;
2713 }
2714
2715 /* Debugging function to check that the statement T has not been
2716 corrupted. For now, this function simply checks that T contains no
2717 circularities. */
2718
2719 void
2720 verify_stmt_tree (tree t)
2721 {
2722 hash_table<nofree_ptr_hash <tree_node> > statements (37);
2723 cp_walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
2724 }
2725
2726 /* Check if the type T depends on a type with no linkage and if so, return
2727 it. If RELAXED_P then do not consider a class type declared within
2728 a vague-linkage function to have no linkage. */
2729
2730 tree
2731 no_linkage_check (tree t, bool relaxed_p)
2732 {
2733 tree r;
2734
2735 /* There's no point in checking linkage on template functions; we
2736 can't know their complete types. */
2737 if (processing_template_decl)
2738 return NULL_TREE;
2739
2740 switch (TREE_CODE (t))
2741 {
2742 case RECORD_TYPE:
2743 if (TYPE_PTRMEMFUNC_P (t))
2744 goto ptrmem;
2745 /* Lambda types that don't have mangling scope have no linkage. We
2746 check CLASSTYPE_LAMBDA_EXPR for error_mark_node because
2747 when we get here from pushtag none of the lambda information is
2748 set up yet, so we want to assume that the lambda has linkage and
2749 fix it up later if not. */
2750 if (CLASSTYPE_LAMBDA_EXPR (t)
2751 && CLASSTYPE_LAMBDA_EXPR (t) != error_mark_node
2752 && LAMBDA_TYPE_EXTRA_SCOPE (t) == NULL_TREE)
2753 return t;
2754 /* Fall through. */
2755 case UNION_TYPE:
2756 if (!CLASS_TYPE_P (t))
2757 return NULL_TREE;
2758 /* Fall through. */
2759 case ENUMERAL_TYPE:
2760 /* Only treat unnamed types as having no linkage if they're at
2761 namespace scope. This is core issue 966. */
2762 if (TYPE_UNNAMED_P (t) && TYPE_NAMESPACE_SCOPE_P (t))
2763 return t;
2764
2765 for (r = CP_TYPE_CONTEXT (t); ; )
2766 {
2767 /* If we're a nested type of a !TREE_PUBLIC class, we might not
2768 have linkage, or we might just be in an anonymous namespace.
2769 If we're in a TREE_PUBLIC class, we have linkage. */
2770 if (TYPE_P (r) && !TREE_PUBLIC (TYPE_NAME (r)))
2771 return no_linkage_check (TYPE_CONTEXT (t), relaxed_p);
2772 else if (TREE_CODE (r) == FUNCTION_DECL)
2773 {
2774 if (!relaxed_p || !vague_linkage_p (r))
2775 return t;
2776 else
2777 r = CP_DECL_CONTEXT (r);
2778 }
2779 else
2780 break;
2781 }
2782
2783 return NULL_TREE;
2784
2785 case ARRAY_TYPE:
2786 case POINTER_TYPE:
2787 case REFERENCE_TYPE:
2788 case VECTOR_TYPE:
2789 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2790
2791 case OFFSET_TYPE:
2792 ptrmem:
2793 r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t),
2794 relaxed_p);
2795 if (r)
2796 return r;
2797 return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p);
2798
2799 case METHOD_TYPE:
2800 case FUNCTION_TYPE:
2801 {
2802 tree parm = TYPE_ARG_TYPES (t);
2803 if (TREE_CODE (t) == METHOD_TYPE)
2804 /* The 'this' pointer isn't interesting; a method has the same
2805 linkage (or lack thereof) as its enclosing class. */
2806 parm = TREE_CHAIN (parm);
2807 for (;
2808 parm && parm != void_list_node;
2809 parm = TREE_CHAIN (parm))
2810 {
2811 r = no_linkage_check (TREE_VALUE (parm), relaxed_p);
2812 if (r)
2813 return r;
2814 }
2815 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2816 }
2817
2818 default:
2819 return NULL_TREE;
2820 }
2821 }
2822
2823 extern int depth_reached;
2824
2825 void
2826 cxx_print_statistics (void)
2827 {
2828 print_class_statistics ();
2829 print_template_statistics ();
2830 if (GATHER_STATISTICS)
2831 fprintf (stderr, "maximum template instantiation depth reached: %d\n",
2832 depth_reached);
2833 }
2834
2835 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2836 (which is an ARRAY_TYPE). This counts only elements of the top
2837 array. */
2838
2839 tree
2840 array_type_nelts_top (tree type)
2841 {
2842 return fold_build2_loc (input_location,
2843 PLUS_EXPR, sizetype,
2844 array_type_nelts (type),
2845 size_one_node);
2846 }
2847
2848 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2849 (which is an ARRAY_TYPE). This one is a recursive count of all
2850 ARRAY_TYPEs that are clumped together. */
2851
2852 tree
2853 array_type_nelts_total (tree type)
2854 {
2855 tree sz = array_type_nelts_top (type);
2856 type = TREE_TYPE (type);
2857 while (TREE_CODE (type) == ARRAY_TYPE)
2858 {
2859 tree n = array_type_nelts_top (type);
2860 sz = fold_build2_loc (input_location,
2861 MULT_EXPR, sizetype, sz, n);
2862 type = TREE_TYPE (type);
2863 }
2864 return sz;
2865 }
2866
2867 /* Called from break_out_target_exprs via mapcar. */
2868
2869 static tree
2870 bot_manip (tree* tp, int* walk_subtrees, void* data)
2871 {
2872 splay_tree target_remap = ((splay_tree) data);
2873 tree t = *tp;
2874
2875 if (!TYPE_P (t) && TREE_CONSTANT (t) && !TREE_SIDE_EFFECTS (t))
2876 {
2877 /* There can't be any TARGET_EXPRs or their slot variables below this
2878 point. But we must make a copy, in case subsequent processing
2879 alters any part of it. For example, during gimplification a cast
2880 of the form (T) &X::f (where "f" is a member function) will lead
2881 to replacing the PTRMEM_CST for &X::f with a VAR_DECL. */
2882 *walk_subtrees = 0;
2883 *tp = unshare_expr (t);
2884 return NULL_TREE;
2885 }
2886 if (TREE_CODE (t) == TARGET_EXPR)
2887 {
2888 tree u;
2889
2890 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
2891 {
2892 u = build_cplus_new (TREE_TYPE (t), TREE_OPERAND (t, 1),
2893 tf_warning_or_error);
2894 if (AGGR_INIT_ZERO_FIRST (TREE_OPERAND (t, 1)))
2895 AGGR_INIT_ZERO_FIRST (TREE_OPERAND (u, 1)) = true;
2896 }
2897 else
2898 u = build_target_expr_with_type (TREE_OPERAND (t, 1), TREE_TYPE (t),
2899 tf_warning_or_error);
2900
2901 TARGET_EXPR_IMPLICIT_P (u) = TARGET_EXPR_IMPLICIT_P (t);
2902 TARGET_EXPR_LIST_INIT_P (u) = TARGET_EXPR_LIST_INIT_P (t);
2903 TARGET_EXPR_DIRECT_INIT_P (u) = TARGET_EXPR_DIRECT_INIT_P (t);
2904
2905 /* Map the old variable to the new one. */
2906 splay_tree_insert (target_remap,
2907 (splay_tree_key) TREE_OPERAND (t, 0),
2908 (splay_tree_value) TREE_OPERAND (u, 0));
2909
2910 TREE_OPERAND (u, 1) = break_out_target_exprs (TREE_OPERAND (u, 1));
2911
2912 /* Replace the old expression with the new version. */
2913 *tp = u;
2914 /* We don't have to go below this point; the recursive call to
2915 break_out_target_exprs will have handled anything below this
2916 point. */
2917 *walk_subtrees = 0;
2918 return NULL_TREE;
2919 }
2920 if (TREE_CODE (*tp) == SAVE_EXPR)
2921 {
2922 t = *tp;
2923 splay_tree_node n = splay_tree_lookup (target_remap,
2924 (splay_tree_key) t);
2925 if (n)
2926 {
2927 *tp = (tree)n->value;
2928 *walk_subtrees = 0;
2929 }
2930 else
2931 {
2932 copy_tree_r (tp, walk_subtrees, NULL);
2933 splay_tree_insert (target_remap,
2934 (splay_tree_key)t,
2935 (splay_tree_value)*tp);
2936 /* Make sure we don't remap an already-remapped SAVE_EXPR. */
2937 splay_tree_insert (target_remap,
2938 (splay_tree_key)*tp,
2939 (splay_tree_value)*tp);
2940 }
2941 return NULL_TREE;
2942 }
2943
2944 /* Make a copy of this node. */
2945 t = copy_tree_r (tp, walk_subtrees, NULL);
2946 if (TREE_CODE (*tp) == CALL_EXPR)
2947 {
2948 set_flags_from_callee (*tp);
2949
2950 /* builtin_LINE and builtin_FILE get the location where the default
2951 argument is expanded, not where the call was written. */
2952 tree callee = get_callee_fndecl (*tp);
2953 if (callee && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL)
2954 switch (DECL_FUNCTION_CODE (callee))
2955 {
2956 case BUILT_IN_FILE:
2957 case BUILT_IN_LINE:
2958 SET_EXPR_LOCATION (*tp, input_location);
2959 default:
2960 break;
2961 }
2962 }
2963 return t;
2964 }
2965
2966 /* Replace all remapped VAR_DECLs in T with their new equivalents.
2967 DATA is really a splay-tree mapping old variables to new
2968 variables. */
2969
2970 static tree
2971 bot_replace (tree* t, int* /*walk_subtrees*/, void* data)
2972 {
2973 splay_tree target_remap = ((splay_tree) data);
2974
2975 if (VAR_P (*t))
2976 {
2977 splay_tree_node n = splay_tree_lookup (target_remap,
2978 (splay_tree_key) *t);
2979 if (n)
2980 *t = (tree) n->value;
2981 }
2982 else if (TREE_CODE (*t) == PARM_DECL
2983 && DECL_NAME (*t) == this_identifier
2984 && !DECL_CONTEXT (*t))
2985 {
2986 /* In an NSDMI we need to replace the 'this' parameter we used for
2987 parsing with the real one for this function. */
2988 *t = current_class_ptr;
2989 }
2990 else if (TREE_CODE (*t) == CONVERT_EXPR
2991 && CONVERT_EXPR_VBASE_PATH (*t))
2992 {
2993 /* In an NSDMI build_base_path defers building conversions to virtual
2994 bases, and we handle it here. */
2995 tree basetype = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (*t)));
2996 vec<tree, va_gc> *vbases = CLASSTYPE_VBASECLASSES (current_class_type);
2997 int i; tree binfo;
2998 FOR_EACH_VEC_SAFE_ELT (vbases, i, binfo)
2999 if (BINFO_TYPE (binfo) == basetype)
3000 break;
3001 *t = build_base_path (PLUS_EXPR, TREE_OPERAND (*t, 0), binfo, true,
3002 tf_warning_or_error);
3003 }
3004
3005 return NULL_TREE;
3006 }
3007
3008 /* When we parse a default argument expression, we may create
3009 temporary variables via TARGET_EXPRs. When we actually use the
3010 default-argument expression, we make a copy of the expression
3011 and replace the temporaries with appropriate local versions. */
3012
3013 tree
3014 break_out_target_exprs (tree t)
3015 {
3016 static int target_remap_count;
3017 static splay_tree target_remap;
3018
3019 if (!target_remap_count++)
3020 target_remap = splay_tree_new (splay_tree_compare_pointers,
3021 /*splay_tree_delete_key_fn=*/NULL,
3022 /*splay_tree_delete_value_fn=*/NULL);
3023 cp_walk_tree (&t, bot_manip, target_remap, NULL);
3024 cp_walk_tree (&t, bot_replace, target_remap, NULL);
3025
3026 if (!--target_remap_count)
3027 {
3028 splay_tree_delete (target_remap);
3029 target_remap = NULL;
3030 }
3031
3032 return t;
3033 }
3034
3035 /* Build an expression for the subobject of OBJ at CONSTRUCTOR index INDEX,
3036 which we expect to have type TYPE. */
3037
3038 tree
3039 build_ctor_subob_ref (tree index, tree type, tree obj)
3040 {
3041 if (index == NULL_TREE)
3042 /* Can't refer to a particular member of a vector. */
3043 obj = NULL_TREE;
3044 else if (TREE_CODE (index) == INTEGER_CST)
3045 obj = cp_build_array_ref (input_location, obj, index, tf_none);
3046 else
3047 obj = build_class_member_access_expr (obj, index, NULL_TREE,
3048 /*reference*/false, tf_none);
3049 if (obj)
3050 {
3051 tree objtype = TREE_TYPE (obj);
3052 if (TREE_CODE (objtype) == ARRAY_TYPE && !TYPE_DOMAIN (objtype))
3053 {
3054 /* When the destination object refers to a flexible array member
3055 verify that it matches the type of the source object except
3056 for its domain and qualifiers. */
3057 gcc_assert (comptypes (TYPE_MAIN_VARIANT (type),
3058 TYPE_MAIN_VARIANT (objtype),
3059 COMPARE_REDECLARATION));
3060 }
3061 else
3062 gcc_assert (same_type_ignoring_top_level_qualifiers_p (type, objtype));
3063 }
3064
3065 return obj;
3066 }
3067
3068 struct replace_placeholders_t
3069 {
3070 tree obj; /* The object to be substituted for a PLACEHOLDER_EXPR. */
3071 bool seen; /* Whether we've encountered a PLACEHOLDER_EXPR. */
3072 hash_set<tree> *pset; /* To avoid walking same trees multiple times. */
3073 };
3074
3075 /* Like substitute_placeholder_in_expr, but handle C++ tree codes and
3076 build up subexpressions as we go deeper. */
3077
3078 static tree
3079 replace_placeholders_r (tree* t, int* walk_subtrees, void* data_)
3080 {
3081 replace_placeholders_t *d = static_cast<replace_placeholders_t*>(data_);
3082 tree obj = d->obj;
3083
3084 if (TREE_CONSTANT (*t))
3085 {
3086 *walk_subtrees = false;
3087 return NULL_TREE;
3088 }
3089
3090 switch (TREE_CODE (*t))
3091 {
3092 case PLACEHOLDER_EXPR:
3093 {
3094 tree x = obj;
3095 for (; !same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (*t),
3096 TREE_TYPE (x));
3097 x = TREE_OPERAND (x, 0))
3098 gcc_assert (TREE_CODE (x) == COMPONENT_REF);
3099 *t = x;
3100 *walk_subtrees = false;
3101 d->seen = true;
3102 }
3103 break;
3104
3105 case CONSTRUCTOR:
3106 {
3107 constructor_elt *ce;
3108 vec<constructor_elt,va_gc> *v = CONSTRUCTOR_ELTS (*t);
3109 for (unsigned i = 0; vec_safe_iterate (v, i, &ce); ++i)
3110 {
3111 tree *valp = &ce->value;
3112 tree type = TREE_TYPE (*valp);
3113 tree subob = obj;
3114
3115 if (TREE_CODE (*valp) == CONSTRUCTOR
3116 && AGGREGATE_TYPE_P (type))
3117 {
3118 /* If we're looking at the initializer for OBJ, then build
3119 a sub-object reference. If we're looking at an
3120 initializer for another object, just pass OBJ down. */
3121 if (same_type_ignoring_top_level_qualifiers_p
3122 (TREE_TYPE (*t), TREE_TYPE (obj)))
3123 subob = build_ctor_subob_ref (ce->index, type, obj);
3124 if (TREE_CODE (*valp) == TARGET_EXPR)
3125 valp = &TARGET_EXPR_INITIAL (*valp);
3126 }
3127 d->obj = subob;
3128 cp_walk_tree (valp, replace_placeholders_r, data_, d->pset);
3129 d->obj = obj;
3130 }
3131 *walk_subtrees = false;
3132 break;
3133 }
3134
3135 default:
3136 break;
3137 }
3138
3139 return NULL_TREE;
3140 }
3141
3142 /* Replace PLACEHOLDER_EXPRs in EXP with object OBJ. SEEN_P is set if
3143 a PLACEHOLDER_EXPR has been encountered. */
3144
3145 tree
3146 replace_placeholders (tree exp, tree obj, bool *seen_p)
3147 {
3148 /* This is only relevant for C++14. */
3149 if (cxx_dialect < cxx14)
3150 return exp;
3151
3152 /* If the object isn't a (member of a) class, do nothing. */
3153 tree op0 = obj;
3154 while (TREE_CODE (op0) == COMPONENT_REF)
3155 op0 = TREE_OPERAND (op0, 0);
3156 if (!CLASS_TYPE_P (strip_array_types (TREE_TYPE (op0))))
3157 return exp;
3158
3159 tree *tp = &exp;
3160 hash_set<tree> pset;
3161 replace_placeholders_t data = { obj, false, &pset };
3162 if (TREE_CODE (exp) == TARGET_EXPR)
3163 tp = &TARGET_EXPR_INITIAL (exp);
3164 cp_walk_tree (tp, replace_placeholders_r, &data, &pset);
3165 if (seen_p)
3166 *seen_p = data.seen;
3167 return exp;
3168 }
3169
3170 /* Similar to `build_nt', but for template definitions of dependent
3171 expressions */
3172
3173 tree
3174 build_min_nt_loc (location_t loc, enum tree_code code, ...)
3175 {
3176 tree t;
3177 int length;
3178 int i;
3179 va_list p;
3180
3181 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3182
3183 va_start (p, code);
3184
3185 t = make_node (code);
3186 SET_EXPR_LOCATION (t, loc);
3187 length = TREE_CODE_LENGTH (code);
3188
3189 for (i = 0; i < length; i++)
3190 {
3191 tree x = va_arg (p, tree);
3192 TREE_OPERAND (t, i) = x;
3193 if (x && TREE_CODE (x) == OVERLOAD)
3194 lookup_keep (x, true);
3195 }
3196
3197 va_end (p);
3198 return t;
3199 }
3200
3201 /* Similar to `build', but for template definitions. */
3202
3203 tree
3204 build_min (enum tree_code code, tree tt, ...)
3205 {
3206 tree t;
3207 int length;
3208 int i;
3209 va_list p;
3210
3211 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3212
3213 va_start (p, tt);
3214
3215 t = make_node (code);
3216 length = TREE_CODE_LENGTH (code);
3217 TREE_TYPE (t) = tt;
3218
3219 for (i = 0; i < length; i++)
3220 {
3221 tree x = va_arg (p, tree);
3222 TREE_OPERAND (t, i) = x;
3223 if (x)
3224 {
3225 if (!TYPE_P (x) && TREE_SIDE_EFFECTS (x))
3226 TREE_SIDE_EFFECTS (t) = 1;
3227 if (TREE_CODE (x) == OVERLOAD)
3228 lookup_keep (x, true);
3229 }
3230 }
3231
3232 va_end (p);
3233 return t;
3234 }
3235
3236 /* Similar to `build', but for template definitions of non-dependent
3237 expressions. NON_DEP is the non-dependent expression that has been
3238 built. */
3239
3240 tree
3241 build_min_non_dep (enum tree_code code, tree non_dep, ...)
3242 {
3243 tree t;
3244 int length;
3245 int i;
3246 va_list p;
3247
3248 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3249
3250 va_start (p, non_dep);
3251
3252 if (REFERENCE_REF_P (non_dep))
3253 non_dep = TREE_OPERAND (non_dep, 0);
3254
3255 t = make_node (code);
3256 length = TREE_CODE_LENGTH (code);
3257 TREE_TYPE (t) = unlowered_expr_type (non_dep);
3258 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
3259
3260 for (i = 0; i < length; i++)
3261 {
3262 tree x = va_arg (p, tree);
3263 TREE_OPERAND (t, i) = x;
3264 if (x && TREE_CODE (x) == OVERLOAD)
3265 lookup_keep (x, true);
3266 }
3267
3268 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
3269 /* This should not be considered a COMPOUND_EXPR, because it
3270 resolves to an overload. */
3271 COMPOUND_EXPR_OVERLOADED (t) = 1;
3272
3273 va_end (p);
3274 return convert_from_reference (t);
3275 }
3276
3277 /* Similar to build_min_nt, but call expressions */
3278
3279 tree
3280 build_min_nt_call_vec (tree fn, vec<tree, va_gc> *args)
3281 {
3282 tree ret, t;
3283 unsigned int ix;
3284
3285 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
3286 CALL_EXPR_FN (ret) = fn;
3287 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3288 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
3289 {
3290 CALL_EXPR_ARG (ret, ix) = t;
3291 if (TREE_CODE (t) == OVERLOAD)
3292 lookup_keep (t, true);
3293 }
3294 return ret;
3295 }
3296
3297 /* Similar to `build_min_nt_call_vec', but for template definitions of
3298 non-dependent expressions. NON_DEP is the non-dependent expression
3299 that has been built. */
3300
3301 tree
3302 build_min_non_dep_call_vec (tree non_dep, tree fn, vec<tree, va_gc> *argvec)
3303 {
3304 tree t = build_min_nt_call_vec (fn, argvec);
3305 if (REFERENCE_REF_P (non_dep))
3306 non_dep = TREE_OPERAND (non_dep, 0);
3307 TREE_TYPE (t) = TREE_TYPE (non_dep);
3308 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
3309 return convert_from_reference (t);
3310 }
3311
3312 /* Similar to build_min_non_dep, but for expressions that have been resolved to
3313 a call to an operator overload. OP is the operator that has been
3314 overloaded. NON_DEP is the non-dependent expression that's been built,
3315 which should be a CALL_EXPR or an INDIRECT_REF to a CALL_EXPR. OVERLOAD is
3316 the overload that NON_DEP is calling. */
3317
3318 tree
3319 build_min_non_dep_op_overload (enum tree_code op,
3320 tree non_dep,
3321 tree overload, ...)
3322 {
3323 va_list p;
3324 int nargs, expected_nargs;
3325 tree fn, call;
3326 vec<tree, va_gc> *args;
3327
3328 non_dep = extract_call_expr (non_dep);
3329
3330 nargs = call_expr_nargs (non_dep);
3331
3332 expected_nargs = cp_tree_code_length (op);
3333 if ((op == POSTINCREMENT_EXPR
3334 || op == POSTDECREMENT_EXPR)
3335 /* With -fpermissive non_dep could be operator++(). */
3336 && (!flag_permissive || nargs != expected_nargs))
3337 expected_nargs += 1;
3338 gcc_assert (nargs == expected_nargs);
3339
3340 args = make_tree_vector ();
3341 va_start (p, overload);
3342
3343 if (TREE_CODE (TREE_TYPE (overload)) == FUNCTION_TYPE)
3344 {
3345 fn = overload;
3346 for (int i = 0; i < nargs; i++)
3347 {
3348 tree arg = va_arg (p, tree);
3349 vec_safe_push (args, arg);
3350 }
3351 }
3352 else if (TREE_CODE (TREE_TYPE (overload)) == METHOD_TYPE)
3353 {
3354 tree object = va_arg (p, tree);
3355 tree binfo = TYPE_BINFO (TREE_TYPE (object));
3356 tree method = build_baselink (binfo, binfo, overload, NULL_TREE);
3357 fn = build_min (COMPONENT_REF, TREE_TYPE (overload),
3358 object, method, NULL_TREE);
3359 for (int i = 1; i < nargs; i++)
3360 {
3361 tree arg = va_arg (p, tree);
3362 vec_safe_push (args, arg);
3363 }
3364 }
3365 else
3366 gcc_unreachable ();
3367
3368 va_end (p);
3369 call = build_min_non_dep_call_vec (non_dep, fn, args);
3370 release_tree_vector (args);
3371
3372 tree call_expr = extract_call_expr (call);
3373 KOENIG_LOOKUP_P (call_expr) = KOENIG_LOOKUP_P (non_dep);
3374 CALL_EXPR_OPERATOR_SYNTAX (call_expr) = true;
3375 CALL_EXPR_ORDERED_ARGS (call_expr) = CALL_EXPR_ORDERED_ARGS (non_dep);
3376 CALL_EXPR_REVERSE_ARGS (call_expr) = CALL_EXPR_REVERSE_ARGS (non_dep);
3377
3378 return call;
3379 }
3380
3381 /* Return a new tree vec copied from VEC, with ELT inserted at index IDX. */
3382
3383 vec<tree, va_gc> *
3384 vec_copy_and_insert (vec<tree, va_gc> *old_vec, tree elt, unsigned idx)
3385 {
3386 unsigned len = vec_safe_length (old_vec);
3387 gcc_assert (idx <= len);
3388
3389 vec<tree, va_gc> *new_vec = NULL;
3390 vec_alloc (new_vec, len + 1);
3391
3392 unsigned i;
3393 for (i = 0; i < len; ++i)
3394 {
3395 if (i == idx)
3396 new_vec->quick_push (elt);
3397 new_vec->quick_push ((*old_vec)[i]);
3398 }
3399 if (i == idx)
3400 new_vec->quick_push (elt);
3401
3402 return new_vec;
3403 }
3404
3405 tree
3406 get_type_decl (tree t)
3407 {
3408 if (TREE_CODE (t) == TYPE_DECL)
3409 return t;
3410 if (TYPE_P (t))
3411 return TYPE_STUB_DECL (t);
3412 gcc_assert (t == error_mark_node);
3413 return t;
3414 }
3415
3416 /* Returns the namespace that contains DECL, whether directly or
3417 indirectly. */
3418
3419 tree
3420 decl_namespace_context (tree decl)
3421 {
3422 while (1)
3423 {
3424 if (TREE_CODE (decl) == NAMESPACE_DECL)
3425 return decl;
3426 else if (TYPE_P (decl))
3427 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
3428 else
3429 decl = CP_DECL_CONTEXT (decl);
3430 }
3431 }
3432
3433 /* Returns true if decl is within an anonymous namespace, however deeply
3434 nested, or false otherwise. */
3435
3436 bool
3437 decl_anon_ns_mem_p (const_tree decl)
3438 {
3439 while (TREE_CODE (decl) != NAMESPACE_DECL)
3440 {
3441 /* Classes inside anonymous namespaces have TREE_PUBLIC == 0. */
3442 if (TYPE_P (decl))
3443 return !TREE_PUBLIC (TYPE_MAIN_DECL (decl));
3444
3445 decl = CP_DECL_CONTEXT (decl);
3446 }
3447 return !TREE_PUBLIC (decl);
3448 }
3449
3450 /* Subroutine of cp_tree_equal: t1 and t2 are the CALL_EXPR_FNs of two
3451 CALL_EXPRS. Return whether they are equivalent. */
3452
3453 static bool
3454 called_fns_equal (tree t1, tree t2)
3455 {
3456 /* Core 1321: dependent names are equivalent even if the overload sets
3457 are different. But do compare explicit template arguments. */
3458 tree name1 = dependent_name (t1);
3459 tree name2 = dependent_name (t2);
3460 if (name1 || name2)
3461 {
3462 tree targs1 = NULL_TREE, targs2 = NULL_TREE;
3463
3464 if (name1 != name2)
3465 return false;
3466
3467 if (TREE_CODE (t1) == TEMPLATE_ID_EXPR)
3468 targs1 = TREE_OPERAND (t1, 1);
3469 if (TREE_CODE (t2) == TEMPLATE_ID_EXPR)
3470 targs2 = TREE_OPERAND (t2, 1);
3471 return cp_tree_equal (targs1, targs2);
3472 }
3473 else
3474 return cp_tree_equal (t1, t2);
3475 }
3476
3477 /* Return truthvalue of whether T1 is the same tree structure as T2.
3478 Return 1 if they are the same. Return 0 if they are different. */
3479
3480 bool
3481 cp_tree_equal (tree t1, tree t2)
3482 {
3483 enum tree_code code1, code2;
3484
3485 if (t1 == t2)
3486 return true;
3487 if (!t1 || !t2)
3488 return false;
3489
3490 code1 = TREE_CODE (t1);
3491 code2 = TREE_CODE (t2);
3492
3493 if (code1 != code2)
3494 return false;
3495
3496 if (CONSTANT_CLASS_P (t1)
3497 && !same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3498 return false;
3499
3500 switch (code1)
3501 {
3502 case VOID_CST:
3503 /* There's only a single VOID_CST node, so we should never reach
3504 here. */
3505 gcc_unreachable ();
3506
3507 case INTEGER_CST:
3508 return tree_int_cst_equal (t1, t2);
3509
3510 case REAL_CST:
3511 return real_equal (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
3512
3513 case STRING_CST:
3514 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3515 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3516 TREE_STRING_LENGTH (t1));
3517
3518 case FIXED_CST:
3519 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
3520 TREE_FIXED_CST (t2));
3521
3522 case COMPLEX_CST:
3523 return cp_tree_equal (TREE_REALPART (t1), TREE_REALPART (t2))
3524 && cp_tree_equal (TREE_IMAGPART (t1), TREE_IMAGPART (t2));
3525
3526 case VECTOR_CST:
3527 return operand_equal_p (t1, t2, OEP_ONLY_CONST);
3528
3529 case CONSTRUCTOR:
3530 /* We need to do this when determining whether or not two
3531 non-type pointer to member function template arguments
3532 are the same. */
3533 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
3534 || CONSTRUCTOR_NELTS (t1) != CONSTRUCTOR_NELTS (t2))
3535 return false;
3536 {
3537 tree field, value;
3538 unsigned int i;
3539 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t1), i, field, value)
3540 {
3541 constructor_elt *elt2 = CONSTRUCTOR_ELT (t2, i);
3542 if (!cp_tree_equal (field, elt2->index)
3543 || !cp_tree_equal (value, elt2->value))
3544 return false;
3545 }
3546 }
3547 return true;
3548
3549 case TREE_LIST:
3550 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
3551 return false;
3552 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
3553 return false;
3554 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
3555
3556 case SAVE_EXPR:
3557 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3558
3559 case CALL_EXPR:
3560 {
3561 tree arg1, arg2;
3562 call_expr_arg_iterator iter1, iter2;
3563 if (!called_fns_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2)))
3564 return false;
3565 for (arg1 = first_call_expr_arg (t1, &iter1),
3566 arg2 = first_call_expr_arg (t2, &iter2);
3567 arg1 && arg2;
3568 arg1 = next_call_expr_arg (&iter1),
3569 arg2 = next_call_expr_arg (&iter2))
3570 if (!cp_tree_equal (arg1, arg2))
3571 return false;
3572 if (arg1 || arg2)
3573 return false;
3574 return true;
3575 }
3576
3577 case TARGET_EXPR:
3578 {
3579 tree o1 = TREE_OPERAND (t1, 0);
3580 tree o2 = TREE_OPERAND (t2, 0);
3581
3582 /* Special case: if either target is an unallocated VAR_DECL,
3583 it means that it's going to be unified with whatever the
3584 TARGET_EXPR is really supposed to initialize, so treat it
3585 as being equivalent to anything. */
3586 if (VAR_P (o1) && DECL_NAME (o1) == NULL_TREE
3587 && !DECL_RTL_SET_P (o1))
3588 /*Nop*/;
3589 else if (VAR_P (o2) && DECL_NAME (o2) == NULL_TREE
3590 && !DECL_RTL_SET_P (o2))
3591 /*Nop*/;
3592 else if (!cp_tree_equal (o1, o2))
3593 return false;
3594
3595 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3596 }
3597
3598 case PARM_DECL:
3599 /* For comparing uses of parameters in late-specified return types
3600 with an out-of-class definition of the function, but can also come
3601 up for expressions that involve 'this' in a member function
3602 template. */
3603
3604 if (comparing_specializations && !CONSTRAINT_VAR_P (t1))
3605 /* When comparing hash table entries, only an exact match is
3606 good enough; we don't want to replace 'this' with the
3607 version from another function. But be more flexible
3608 with local parameters in a requires-expression. */
3609 return false;
3610
3611 if (same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3612 {
3613 if (DECL_ARTIFICIAL (t1) ^ DECL_ARTIFICIAL (t2))
3614 return false;
3615 if (CONSTRAINT_VAR_P (t1) ^ CONSTRAINT_VAR_P (t2))
3616 return false;
3617 if (DECL_ARTIFICIAL (t1)
3618 || (DECL_PARM_LEVEL (t1) == DECL_PARM_LEVEL (t2)
3619 && DECL_PARM_INDEX (t1) == DECL_PARM_INDEX (t2)))
3620 return true;
3621 }
3622 return false;
3623
3624 case VAR_DECL:
3625 case CONST_DECL:
3626 case FIELD_DECL:
3627 case FUNCTION_DECL:
3628 case TEMPLATE_DECL:
3629 case IDENTIFIER_NODE:
3630 case SSA_NAME:
3631 return false;
3632
3633 case BASELINK:
3634 return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2)
3635 && BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2)
3636 && BASELINK_QUALIFIED_P (t1) == BASELINK_QUALIFIED_P (t2)
3637 && cp_tree_equal (BASELINK_FUNCTIONS (t1),
3638 BASELINK_FUNCTIONS (t2)));
3639
3640 case TEMPLATE_PARM_INDEX:
3641 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
3642 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
3643 && (TEMPLATE_PARM_PARAMETER_PACK (t1)
3644 == TEMPLATE_PARM_PARAMETER_PACK (t2))
3645 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
3646 TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
3647
3648 case TEMPLATE_ID_EXPR:
3649 return (cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
3650 && cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)));
3651
3652 case CONSTRAINT_INFO:
3653 return cp_tree_equal (CI_ASSOCIATED_CONSTRAINTS (t1),
3654 CI_ASSOCIATED_CONSTRAINTS (t2));
3655
3656 case CHECK_CONSTR:
3657 return (CHECK_CONSTR_CONCEPT (t1) == CHECK_CONSTR_CONCEPT (t2)
3658 && comp_template_args (CHECK_CONSTR_ARGS (t1),
3659 CHECK_CONSTR_ARGS (t2)));
3660
3661 case TREE_VEC:
3662 {
3663 unsigned ix;
3664 if (TREE_VEC_LENGTH (t1) != TREE_VEC_LENGTH (t2))
3665 return false;
3666 for (ix = TREE_VEC_LENGTH (t1); ix--;)
3667 if (!cp_tree_equal (TREE_VEC_ELT (t1, ix),
3668 TREE_VEC_ELT (t2, ix)))
3669 return false;
3670 return true;
3671 }
3672
3673 case SIZEOF_EXPR:
3674 case ALIGNOF_EXPR:
3675 {
3676 tree o1 = TREE_OPERAND (t1, 0);
3677 tree o2 = TREE_OPERAND (t2, 0);
3678
3679 if (code1 == SIZEOF_EXPR)
3680 {
3681 if (SIZEOF_EXPR_TYPE_P (t1))
3682 o1 = TREE_TYPE (o1);
3683 if (SIZEOF_EXPR_TYPE_P (t2))
3684 o2 = TREE_TYPE (o2);
3685 }
3686 if (TREE_CODE (o1) != TREE_CODE (o2))
3687 return false;
3688 if (TYPE_P (o1))
3689 return same_type_p (o1, o2);
3690 else
3691 return cp_tree_equal (o1, o2);
3692 }
3693
3694 case MODOP_EXPR:
3695 {
3696 tree t1_op1, t2_op1;
3697
3698 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
3699 return false;
3700
3701 t1_op1 = TREE_OPERAND (t1, 1);
3702 t2_op1 = TREE_OPERAND (t2, 1);
3703 if (TREE_CODE (t1_op1) != TREE_CODE (t2_op1))
3704 return false;
3705
3706 return cp_tree_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2));
3707 }
3708
3709 case PTRMEM_CST:
3710 /* Two pointer-to-members are the same if they point to the same
3711 field or function in the same class. */
3712 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
3713 return false;
3714
3715 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
3716
3717 case OVERLOAD:
3718 {
3719 /* Two overloads. Must be exactly the same set of decls. */
3720 lkp_iterator first (t1);
3721 lkp_iterator second (t2);
3722
3723 for (; first && second; ++first, ++second)
3724 if (*first != *second)
3725 return false;
3726 return !(first || second);
3727 }
3728
3729 case TRAIT_EXPR:
3730 if (TRAIT_EXPR_KIND (t1) != TRAIT_EXPR_KIND (t2))
3731 return false;
3732 return same_type_p (TRAIT_EXPR_TYPE1 (t1), TRAIT_EXPR_TYPE1 (t2))
3733 && cp_tree_equal (TRAIT_EXPR_TYPE2 (t1), TRAIT_EXPR_TYPE2 (t2));
3734
3735 case CAST_EXPR:
3736 case STATIC_CAST_EXPR:
3737 case REINTERPRET_CAST_EXPR:
3738 case CONST_CAST_EXPR:
3739 case DYNAMIC_CAST_EXPR:
3740 case IMPLICIT_CONV_EXPR:
3741 case NEW_EXPR:
3742 CASE_CONVERT:
3743 case NON_LVALUE_EXPR:
3744 case VIEW_CONVERT_EXPR:
3745 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
3746 return false;
3747 /* Now compare operands as usual. */
3748 break;
3749
3750 case DEFERRED_NOEXCEPT:
3751 return (cp_tree_equal (DEFERRED_NOEXCEPT_PATTERN (t1),
3752 DEFERRED_NOEXCEPT_PATTERN (t2))
3753 && comp_template_args (DEFERRED_NOEXCEPT_ARGS (t1),
3754 DEFERRED_NOEXCEPT_ARGS (t2)));
3755 break;
3756
3757 default:
3758 break;
3759 }
3760
3761 switch (TREE_CODE_CLASS (code1))
3762 {
3763 case tcc_unary:
3764 case tcc_binary:
3765 case tcc_comparison:
3766 case tcc_expression:
3767 case tcc_vl_exp:
3768 case tcc_reference:
3769 case tcc_statement:
3770 {
3771 int i, n;
3772
3773 n = cp_tree_operand_length (t1);
3774 if (TREE_CODE_CLASS (code1) == tcc_vl_exp
3775 && n != TREE_OPERAND_LENGTH (t2))
3776 return false;
3777
3778 for (i = 0; i < n; ++i)
3779 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
3780 return false;
3781
3782 return true;
3783 }
3784
3785 case tcc_type:
3786 return same_type_p (t1, t2);
3787 default:
3788 gcc_unreachable ();
3789 }
3790 /* We can get here with --disable-checking. */
3791 return false;
3792 }
3793
3794 /* The type of ARG when used as an lvalue. */
3795
3796 tree
3797 lvalue_type (tree arg)
3798 {
3799 tree type = TREE_TYPE (arg);
3800 return type;
3801 }
3802
3803 /* The type of ARG for printing error messages; denote lvalues with
3804 reference types. */
3805
3806 tree
3807 error_type (tree arg)
3808 {
3809 tree type = TREE_TYPE (arg);
3810
3811 if (TREE_CODE (type) == ARRAY_TYPE)
3812 ;
3813 else if (TREE_CODE (type) == ERROR_MARK)
3814 ;
3815 else if (lvalue_p (arg))
3816 type = build_reference_type (lvalue_type (arg));
3817 else if (MAYBE_CLASS_TYPE_P (type))
3818 type = lvalue_type (arg);
3819
3820 return type;
3821 }
3822
3823 /* Does FUNCTION use a variable-length argument list? */
3824
3825 int
3826 varargs_function_p (const_tree function)
3827 {
3828 return stdarg_p (TREE_TYPE (function));
3829 }
3830
3831 /* Returns 1 if decl is a member of a class. */
3832
3833 int
3834 member_p (const_tree decl)
3835 {
3836 const_tree const ctx = DECL_CONTEXT (decl);
3837 return (ctx && TYPE_P (ctx));
3838 }
3839
3840 /* Create a placeholder for member access where we don't actually have an
3841 object that the access is against. */
3842
3843 tree
3844 build_dummy_object (tree type)
3845 {
3846 tree decl = build1 (CONVERT_EXPR, build_pointer_type (type), void_node);
3847 return cp_build_fold_indirect_ref (decl);
3848 }
3849
3850 /* We've gotten a reference to a member of TYPE. Return *this if appropriate,
3851 or a dummy object otherwise. If BINFOP is non-0, it is filled with the
3852 binfo path from current_class_type to TYPE, or 0. */
3853
3854 tree
3855 maybe_dummy_object (tree type, tree* binfop)
3856 {
3857 tree decl, context;
3858 tree binfo;
3859 tree current = current_nonlambda_class_type ();
3860
3861 if (current
3862 && (binfo = lookup_base (current, type, ba_any, NULL,
3863 tf_warning_or_error)))
3864 context = current;
3865 else
3866 {
3867 /* Reference from a nested class member function. */
3868 context = type;
3869 binfo = TYPE_BINFO (type);
3870 }
3871
3872 if (binfop)
3873 *binfop = binfo;
3874
3875 if (current_class_ref
3876 /* current_class_ref might not correspond to current_class_type if
3877 we're in tsubst_default_argument or a lambda-declarator; in either
3878 case, we want to use current_class_ref if it matches CONTEXT. */
3879 && (same_type_ignoring_top_level_qualifiers_p
3880 (TREE_TYPE (current_class_ref), context)))
3881 decl = current_class_ref;
3882 else
3883 decl = build_dummy_object (context);
3884
3885 return decl;
3886 }
3887
3888 /* Returns 1 if OB is a placeholder object, or a pointer to one. */
3889
3890 int
3891 is_dummy_object (const_tree ob)
3892 {
3893 if (INDIRECT_REF_P (ob))
3894 ob = TREE_OPERAND (ob, 0);
3895 return (TREE_CODE (ob) == CONVERT_EXPR
3896 && TREE_OPERAND (ob, 0) == void_node);
3897 }
3898
3899 /* Returns 1 iff type T is something we want to treat as a scalar type for
3900 the purpose of deciding whether it is trivial/POD/standard-layout. */
3901
3902 bool
3903 scalarish_type_p (const_tree t)
3904 {
3905 if (t == error_mark_node)
3906 return 1;
3907
3908 return (SCALAR_TYPE_P (t) || VECTOR_TYPE_P (t));
3909 }
3910
3911 /* Returns true iff T requires non-trivial default initialization. */
3912
3913 bool
3914 type_has_nontrivial_default_init (const_tree t)
3915 {
3916 t = strip_array_types (CONST_CAST_TREE (t));
3917
3918 if (CLASS_TYPE_P (t))
3919 return TYPE_HAS_COMPLEX_DFLT (t);
3920 else
3921 return 0;
3922 }
3923
3924 /* Track classes with only deleted copy/move constructors so that we can warn
3925 if they are used in call/return by value. */
3926
3927 static GTY(()) hash_set<tree>* deleted_copy_types;
3928 static void
3929 remember_deleted_copy (const_tree t)
3930 {
3931 if (!deleted_copy_types)
3932 deleted_copy_types = hash_set<tree>::create_ggc(37);
3933 deleted_copy_types->add (CONST_CAST_TREE (t));
3934 }
3935 void
3936 maybe_warn_parm_abi (tree t, location_t loc)
3937 {
3938 if (!deleted_copy_types
3939 || !deleted_copy_types->contains (t))
3940 return;
3941
3942 warning_at (loc, OPT_Wabi, "the calling convention for %qT changes in "
3943 "-fabi-version=12 (GCC 8)", t);
3944 static bool explained = false;
3945 if (!explained)
3946 {
3947 inform (loc, " because all of its copy and move constructors "
3948 "are deleted");
3949 explained = true;
3950 }
3951 }
3952
3953 /* Returns true iff copying an object of type T (including via move
3954 constructor) is non-trivial. That is, T has no non-trivial copy
3955 constructors and no non-trivial move constructors, and not all copy/move
3956 constructors are deleted. This function implements the ABI notion of
3957 non-trivial copy, which has diverged from the one in the standard. */
3958
3959 bool
3960 type_has_nontrivial_copy_init (const_tree type)
3961 {
3962 tree t = strip_array_types (CONST_CAST_TREE (type));
3963
3964 if (CLASS_TYPE_P (t))
3965 {
3966 gcc_assert (COMPLETE_TYPE_P (t));
3967
3968 if (TYPE_HAS_COMPLEX_COPY_CTOR (t)
3969 || TYPE_HAS_COMPLEX_MOVE_CTOR (t))
3970 /* Nontrivial. */
3971 return true;
3972
3973 if (cxx_dialect < cxx11)
3974 /* No deleted functions before C++11. */
3975 return false;
3976
3977 /* Before ABI v12 we did a bitwise copy of types with only deleted
3978 copy/move constructors. */
3979 if (!abi_version_at_least (12)
3980 && !(warn_abi && abi_version_crosses (12)))
3981 return false;
3982
3983 bool saw_copy = false;
3984 bool saw_non_deleted = false;
3985
3986 if (CLASSTYPE_LAZY_MOVE_CTOR (t))
3987 saw_copy = saw_non_deleted = true;
3988 else if (CLASSTYPE_LAZY_COPY_CTOR (t))
3989 {
3990 saw_copy = true;
3991 if (classtype_has_move_assign_or_move_ctor_p (t, true))
3992 /* [class.copy]/8 If the class definition declares a move
3993 constructor or move assignment operator, the implicitly declared
3994 copy constructor is defined as deleted.... */;
3995 else
3996 /* Any other reason the implicitly-declared function would be
3997 deleted would also cause TYPE_HAS_COMPLEX_COPY_CTOR to be
3998 set. */
3999 saw_non_deleted = true;
4000 }
4001
4002 if (!saw_non_deleted)
4003 for (ovl_iterator iter (CLASSTYPE_CONSTRUCTORS (t)); iter; ++iter)
4004 {
4005 tree fn = *iter;
4006 if (copy_fn_p (fn))
4007 {
4008 saw_copy = true;
4009 if (!DECL_DELETED_FN (fn))
4010 {
4011 /* Not deleted, therefore trivial. */
4012 saw_non_deleted = true;
4013 break;
4014 }
4015 }
4016 }
4017
4018 gcc_assert (saw_copy);
4019
4020 if (saw_copy && !saw_non_deleted)
4021 {
4022 if (warn_abi && abi_version_crosses (12))
4023 remember_deleted_copy (t);
4024 if (abi_version_at_least (12))
4025 return true;
4026 }
4027
4028 return false;
4029 }
4030 else
4031 return 0;
4032 }
4033
4034 /* Returns 1 iff type T is a trivially copyable type, as defined in
4035 [basic.types] and [class]. */
4036
4037 bool
4038 trivially_copyable_p (const_tree t)
4039 {
4040 t = strip_array_types (CONST_CAST_TREE (t));
4041
4042 if (CLASS_TYPE_P (t))
4043 return ((!TYPE_HAS_COPY_CTOR (t)
4044 || !TYPE_HAS_COMPLEX_COPY_CTOR (t))
4045 && !TYPE_HAS_COMPLEX_MOVE_CTOR (t)
4046 && (!TYPE_HAS_COPY_ASSIGN (t)
4047 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (t))
4048 && !TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
4049 && TYPE_HAS_TRIVIAL_DESTRUCTOR (t));
4050 else
4051 return !CP_TYPE_VOLATILE_P (t) && scalarish_type_p (t);
4052 }
4053
4054 /* Returns 1 iff type T is a trivial type, as defined in [basic.types] and
4055 [class]. */
4056
4057 bool
4058 trivial_type_p (const_tree t)
4059 {
4060 t = strip_array_types (CONST_CAST_TREE (t));
4061
4062 if (CLASS_TYPE_P (t))
4063 return (TYPE_HAS_TRIVIAL_DFLT (t)
4064 && trivially_copyable_p (t));
4065 else
4066 return scalarish_type_p (t);
4067 }
4068
4069 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
4070
4071 bool
4072 pod_type_p (const_tree t)
4073 {
4074 /* This CONST_CAST is okay because strip_array_types returns its
4075 argument unmodified and we assign it to a const_tree. */
4076 t = strip_array_types (CONST_CAST_TREE(t));
4077
4078 if (!CLASS_TYPE_P (t))
4079 return scalarish_type_p (t);
4080 else if (cxx_dialect > cxx98)
4081 /* [class]/10: A POD struct is a class that is both a trivial class and a
4082 standard-layout class, and has no non-static data members of type
4083 non-POD struct, non-POD union (or array of such types).
4084
4085 We don't need to check individual members because if a member is
4086 non-std-layout or non-trivial, the class will be too. */
4087 return (std_layout_type_p (t) && trivial_type_p (t));
4088 else
4089 /* The C++98 definition of POD is different. */
4090 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
4091 }
4092
4093 /* Returns true iff T is POD for the purpose of layout, as defined in the
4094 C++ ABI. */
4095
4096 bool
4097 layout_pod_type_p (const_tree t)
4098 {
4099 t = strip_array_types (CONST_CAST_TREE (t));
4100
4101 if (CLASS_TYPE_P (t))
4102 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
4103 else
4104 return scalarish_type_p (t);
4105 }
4106
4107 /* Returns true iff T is a standard-layout type, as defined in
4108 [basic.types]. */
4109
4110 bool
4111 std_layout_type_p (const_tree t)
4112 {
4113 t = strip_array_types (CONST_CAST_TREE (t));
4114
4115 if (CLASS_TYPE_P (t))
4116 return !CLASSTYPE_NON_STD_LAYOUT (t);
4117 else
4118 return scalarish_type_p (t);
4119 }
4120
4121 static bool record_has_unique_obj_representations (const_tree, const_tree);
4122
4123 /* Returns true iff T satisfies std::has_unique_object_representations<T>,
4124 as defined in [meta.unary.prop]. */
4125
4126 bool
4127 type_has_unique_obj_representations (const_tree t)
4128 {
4129 bool ret;
4130
4131 t = strip_array_types (CONST_CAST_TREE (t));
4132
4133 if (!trivially_copyable_p (t))
4134 return false;
4135
4136 if (CLASS_TYPE_P (t) && CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS_SET (t))
4137 return CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS (t);
4138
4139 switch (TREE_CODE (t))
4140 {
4141 case INTEGER_TYPE:
4142 case POINTER_TYPE:
4143 case REFERENCE_TYPE:
4144 /* If some backend has any paddings in these types, we should add
4145 a target hook for this and handle it there. */
4146 return true;
4147
4148 case BOOLEAN_TYPE:
4149 /* For bool values other than 0 and 1 should only appear with
4150 undefined behavior. */
4151 return true;
4152
4153 case ENUMERAL_TYPE:
4154 return type_has_unique_obj_representations (ENUM_UNDERLYING_TYPE (t));
4155
4156 case REAL_TYPE:
4157 /* XFmode certainly contains padding on x86, which the CPU doesn't store
4158 when storing long double values, so for that we have to return false.
4159 Other kinds of floating point values are questionable due to +.0/-.0
4160 and NaNs, let's play safe for now. */
4161 return false;
4162
4163 case FIXED_POINT_TYPE:
4164 return false;
4165
4166 case OFFSET_TYPE:
4167 return true;
4168
4169 case COMPLEX_TYPE:
4170 case VECTOR_TYPE:
4171 return type_has_unique_obj_representations (TREE_TYPE (t));
4172
4173 case RECORD_TYPE:
4174 ret = record_has_unique_obj_representations (t, TYPE_SIZE (t));
4175 if (CLASS_TYPE_P (t))
4176 {
4177 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS_SET (t) = 1;
4178 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS (t) = ret;
4179 }
4180 return ret;
4181
4182 case UNION_TYPE:
4183 ret = true;
4184 bool any_fields;
4185 any_fields = false;
4186 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
4187 if (TREE_CODE (field) == FIELD_DECL)
4188 {
4189 any_fields = true;
4190 if (!type_has_unique_obj_representations (TREE_TYPE (field))
4191 || simple_cst_equal (DECL_SIZE (field), TYPE_SIZE (t)) != 1)
4192 {
4193 ret = false;
4194 break;
4195 }
4196 }
4197 if (!any_fields && !integer_zerop (TYPE_SIZE (t)))
4198 ret = false;
4199 if (CLASS_TYPE_P (t))
4200 {
4201 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS_SET (t) = 1;
4202 CLASSTYPE_UNIQUE_OBJ_REPRESENTATIONS (t) = ret;
4203 }
4204 return ret;
4205
4206 case NULLPTR_TYPE:
4207 return false;
4208
4209 case ERROR_MARK:
4210 return false;
4211
4212 default:
4213 gcc_unreachable ();
4214 }
4215 }
4216
4217 /* Helper function for type_has_unique_obj_representations. */
4218
4219 static bool
4220 record_has_unique_obj_representations (const_tree t, const_tree sz)
4221 {
4222 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
4223 if (TREE_CODE (field) != FIELD_DECL)
4224 ;
4225 /* For bases, can't use type_has_unique_obj_representations here, as in
4226 struct S { int i : 24; S (); };
4227 struct T : public S { int j : 8; T (); };
4228 S doesn't have unique obj representations, but T does. */
4229 else if (DECL_FIELD_IS_BASE (field))
4230 {
4231 if (!record_has_unique_obj_representations (TREE_TYPE (field),
4232 DECL_SIZE (field)))
4233 return false;
4234 }
4235 else if (DECL_C_BIT_FIELD (field))
4236 {
4237 tree btype = DECL_BIT_FIELD_TYPE (field);
4238 if (!type_has_unique_obj_representations (btype))
4239 return false;
4240 }
4241 else if (!type_has_unique_obj_representations (TREE_TYPE (field)))
4242 return false;
4243
4244 offset_int cur = 0;
4245 for (tree field = TYPE_FIELDS (t); field; field = DECL_CHAIN (field))
4246 if (TREE_CODE (field) == FIELD_DECL)
4247 {
4248 offset_int fld = wi::to_offset (DECL_FIELD_OFFSET (field));
4249 offset_int bitpos = wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
4250 fld = fld * BITS_PER_UNIT + bitpos;
4251 if (cur != fld)
4252 return false;
4253 if (DECL_SIZE (field))
4254 {
4255 offset_int size = wi::to_offset (DECL_SIZE (field));
4256 cur += size;
4257 }
4258 }
4259 if (cur != wi::to_offset (sz))
4260 return false;
4261
4262 return true;
4263 }
4264
4265 /* Nonzero iff type T is a class template implicit specialization. */
4266
4267 bool
4268 class_tmpl_impl_spec_p (const_tree t)
4269 {
4270 return CLASS_TYPE_P (t) && CLASSTYPE_TEMPLATE_INSTANTIATION (t);
4271 }
4272
4273 /* Returns 1 iff zero initialization of type T means actually storing
4274 zeros in it. */
4275
4276 int
4277 zero_init_p (const_tree t)
4278 {
4279 /* This CONST_CAST is okay because strip_array_types returns its
4280 argument unmodified and we assign it to a const_tree. */
4281 t = strip_array_types (CONST_CAST_TREE(t));
4282
4283 if (t == error_mark_node)
4284 return 1;
4285
4286 /* NULL pointers to data members are initialized with -1. */
4287 if (TYPE_PTRDATAMEM_P (t))
4288 return 0;
4289
4290 /* Classes that contain types that can't be zero-initialized, cannot
4291 be zero-initialized themselves. */
4292 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
4293 return 0;
4294
4295 return 1;
4296 }
4297
4298 /* Handle the C++17 [[nodiscard]] attribute, which is similar to the GNU
4299 warn_unused_result attribute. */
4300
4301 static tree
4302 handle_nodiscard_attribute (tree *node, tree name, tree /*args*/,
4303 int /*flags*/, bool *no_add_attrs)
4304 {
4305 if (TREE_CODE (*node) == FUNCTION_DECL)
4306 {
4307 if (VOID_TYPE_P (TREE_TYPE (TREE_TYPE (*node))))
4308 warning (OPT_Wattributes, "%qE attribute applied to %qD with void "
4309 "return type", name, *node);
4310 }
4311 else if (OVERLOAD_TYPE_P (*node))
4312 /* OK */;
4313 else
4314 {
4315 warning (OPT_Wattributes, "%qE attribute can only be applied to "
4316 "functions or to class or enumeration types", name);
4317 *no_add_attrs = true;
4318 }
4319 return NULL_TREE;
4320 }
4321
4322 /* Table of valid C++ attributes. */
4323 const struct attribute_spec cxx_attribute_table[] =
4324 {
4325 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
4326 affects_type_identity } */
4327 { "init_priority", 1, 1, true, false, false,
4328 handle_init_priority_attribute, false },
4329 { "abi_tag", 1, -1, false, false, false,
4330 handle_abi_tag_attribute, true },
4331 { NULL, 0, 0, false, false, false, NULL, false }
4332 };
4333
4334 /* Table of C++ standard attributes. */
4335 const struct attribute_spec std_attribute_table[] =
4336 {
4337 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
4338 affects_type_identity } */
4339 { "maybe_unused", 0, 0, false, false, false,
4340 handle_unused_attribute, false },
4341 { "nodiscard", 0, 0, false, false, false,
4342 handle_nodiscard_attribute, false },
4343 { NULL, 0, 0, false, false, false, NULL, false }
4344 };
4345
4346 /* Handle an "init_priority" attribute; arguments as in
4347 struct attribute_spec.handler. */
4348 static tree
4349 handle_init_priority_attribute (tree* node,
4350 tree name,
4351 tree args,
4352 int /*flags*/,
4353 bool* no_add_attrs)
4354 {
4355 tree initp_expr = TREE_VALUE (args);
4356 tree decl = *node;
4357 tree type = TREE_TYPE (decl);
4358 int pri;
4359
4360 STRIP_NOPS (initp_expr);
4361 initp_expr = default_conversion (initp_expr);
4362 if (initp_expr)
4363 initp_expr = maybe_constant_value (initp_expr);
4364
4365 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
4366 {
4367 error ("requested init_priority is not an integer constant");
4368 cxx_constant_value (initp_expr);
4369 *no_add_attrs = true;
4370 return NULL_TREE;
4371 }
4372
4373 pri = TREE_INT_CST_LOW (initp_expr);
4374
4375 type = strip_array_types (type);
4376
4377 if (decl == NULL_TREE
4378 || !VAR_P (decl)
4379 || !TREE_STATIC (decl)
4380 || DECL_EXTERNAL (decl)
4381 || (TREE_CODE (type) != RECORD_TYPE
4382 && TREE_CODE (type) != UNION_TYPE)
4383 /* Static objects in functions are initialized the
4384 first time control passes through that
4385 function. This is not precise enough to pin down an
4386 init_priority value, so don't allow it. */
4387 || current_function_decl)
4388 {
4389 error ("can only use %qE attribute on file-scope definitions "
4390 "of objects of class type", name);
4391 *no_add_attrs = true;
4392 return NULL_TREE;
4393 }
4394
4395 if (pri > MAX_INIT_PRIORITY || pri <= 0)
4396 {
4397 error ("requested init_priority is out of range");
4398 *no_add_attrs = true;
4399 return NULL_TREE;
4400 }
4401
4402 /* Check for init_priorities that are reserved for
4403 language and runtime support implementations.*/
4404 if (pri <= MAX_RESERVED_INIT_PRIORITY)
4405 {
4406 warning
4407 (0, "requested init_priority is reserved for internal use");
4408 }
4409
4410 if (SUPPORTS_INIT_PRIORITY)
4411 {
4412 SET_DECL_INIT_PRIORITY (decl, pri);
4413 DECL_HAS_INIT_PRIORITY_P (decl) = 1;
4414 return NULL_TREE;
4415 }
4416 else
4417 {
4418 error ("%qE attribute is not supported on this platform", name);
4419 *no_add_attrs = true;
4420 return NULL_TREE;
4421 }
4422 }
4423
4424 /* DECL is being redeclared; the old declaration had the abi tags in OLD,
4425 and the new one has the tags in NEW_. Give an error if there are tags
4426 in NEW_ that weren't in OLD. */
4427
4428 bool
4429 check_abi_tag_redeclaration (const_tree decl, const_tree old, const_tree new_)
4430 {
4431 if (old && TREE_CODE (TREE_VALUE (old)) == TREE_LIST)
4432 old = TREE_VALUE (old);
4433 if (new_ && TREE_CODE (TREE_VALUE (new_)) == TREE_LIST)
4434 new_ = TREE_VALUE (new_);
4435 bool err = false;
4436 for (const_tree t = new_; t; t = TREE_CHAIN (t))
4437 {
4438 tree str = TREE_VALUE (t);
4439 for (const_tree in = old; in; in = TREE_CHAIN (in))
4440 {
4441 tree ostr = TREE_VALUE (in);
4442 if (cp_tree_equal (str, ostr))
4443 goto found;
4444 }
4445 error ("redeclaration of %qD adds abi tag %qE", decl, str);
4446 err = true;
4447 found:;
4448 }
4449 if (err)
4450 {
4451 inform (DECL_SOURCE_LOCATION (decl), "previous declaration here");
4452 return false;
4453 }
4454 return true;
4455 }
4456
4457 /* The abi_tag attribute with the name NAME was given ARGS. If they are
4458 ill-formed, give an error and return false; otherwise, return true. */
4459
4460 bool
4461 check_abi_tag_args (tree args, tree name)
4462 {
4463 if (!args)
4464 {
4465 error ("the %qE attribute requires arguments", name);
4466 return false;
4467 }
4468 for (tree arg = args; arg; arg = TREE_CHAIN (arg))
4469 {
4470 tree elt = TREE_VALUE (arg);
4471 if (TREE_CODE (elt) != STRING_CST
4472 || (!same_type_ignoring_top_level_qualifiers_p
4473 (strip_array_types (TREE_TYPE (elt)),
4474 char_type_node)))
4475 {
4476 error ("arguments to the %qE attribute must be narrow string "
4477 "literals", name);
4478 return false;
4479 }
4480 const char *begin = TREE_STRING_POINTER (elt);
4481 const char *end = begin + TREE_STRING_LENGTH (elt);
4482 for (const char *p = begin; p != end; ++p)
4483 {
4484 char c = *p;
4485 if (p == begin)
4486 {
4487 if (!ISALPHA (c) && c != '_')
4488 {
4489 error ("arguments to the %qE attribute must contain valid "
4490 "identifiers", name);
4491 inform (input_location, "%<%c%> is not a valid first "
4492 "character for an identifier", c);
4493 return false;
4494 }
4495 }
4496 else if (p == end - 1)
4497 gcc_assert (c == 0);
4498 else
4499 {
4500 if (!ISALNUM (c) && c != '_')
4501 {
4502 error ("arguments to the %qE attribute must contain valid "
4503 "identifiers", name);
4504 inform (input_location, "%<%c%> is not a valid character "
4505 "in an identifier", c);
4506 return false;
4507 }
4508 }
4509 }
4510 }
4511 return true;
4512 }
4513
4514 /* Handle an "abi_tag" attribute; arguments as in
4515 struct attribute_spec.handler. */
4516
4517 static tree
4518 handle_abi_tag_attribute (tree* node, tree name, tree args,
4519 int flags, bool* no_add_attrs)
4520 {
4521 if (!check_abi_tag_args (args, name))
4522 goto fail;
4523
4524 if (TYPE_P (*node))
4525 {
4526 if (!OVERLOAD_TYPE_P (*node))
4527 {
4528 error ("%qE attribute applied to non-class, non-enum type %qT",
4529 name, *node);
4530 goto fail;
4531 }
4532 else if (!(flags & (int)ATTR_FLAG_TYPE_IN_PLACE))
4533 {
4534 error ("%qE attribute applied to %qT after its definition",
4535 name, *node);
4536 goto fail;
4537 }
4538 else if (CLASS_TYPE_P (*node)
4539 && CLASSTYPE_TEMPLATE_INSTANTIATION (*node))
4540 {
4541 warning (OPT_Wattributes, "ignoring %qE attribute applied to "
4542 "template instantiation %qT", name, *node);
4543 goto fail;
4544 }
4545 else if (CLASS_TYPE_P (*node)
4546 && CLASSTYPE_TEMPLATE_SPECIALIZATION (*node))
4547 {
4548 warning (OPT_Wattributes, "ignoring %qE attribute applied to "
4549 "template specialization %qT", name, *node);
4550 goto fail;
4551 }
4552
4553 tree attributes = TYPE_ATTRIBUTES (*node);
4554 tree decl = TYPE_NAME (*node);
4555
4556 /* Make sure all declarations have the same abi tags. */
4557 if (DECL_SOURCE_LOCATION (decl) != input_location)
4558 {
4559 if (!check_abi_tag_redeclaration (decl,
4560 lookup_attribute ("abi_tag",
4561 attributes),
4562 args))
4563 goto fail;
4564 }
4565 }
4566 else
4567 {
4568 if (!VAR_OR_FUNCTION_DECL_P (*node))
4569 {
4570 error ("%qE attribute applied to non-function, non-variable %qD",
4571 name, *node);
4572 goto fail;
4573 }
4574 else if (DECL_LANGUAGE (*node) == lang_c)
4575 {
4576 error ("%qE attribute applied to extern \"C\" declaration %qD",
4577 name, *node);
4578 goto fail;
4579 }
4580 }
4581
4582 return NULL_TREE;
4583
4584 fail:
4585 *no_add_attrs = true;
4586 return NULL_TREE;
4587 }
4588
4589 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
4590 thing pointed to by the constant. */
4591
4592 tree
4593 make_ptrmem_cst (tree type, tree member)
4594 {
4595 tree ptrmem_cst = make_node (PTRMEM_CST);
4596 TREE_TYPE (ptrmem_cst) = type;
4597 PTRMEM_CST_MEMBER (ptrmem_cst) = member;
4598 return ptrmem_cst;
4599 }
4600
4601 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May
4602 return an existing type if an appropriate type already exists. */
4603
4604 tree
4605 cp_build_type_attribute_variant (tree type, tree attributes)
4606 {
4607 tree new_type;
4608
4609 new_type = build_type_attribute_variant (type, attributes);
4610 if (TREE_CODE (new_type) == FUNCTION_TYPE
4611 || TREE_CODE (new_type) == METHOD_TYPE)
4612 {
4613 new_type = build_exception_variant (new_type,
4614 TYPE_RAISES_EXCEPTIONS (type));
4615 new_type = build_ref_qualified_type (new_type,
4616 type_memfn_rqual (type));
4617 }
4618
4619 /* Making a new main variant of a class type is broken. */
4620 gcc_assert (!CLASS_TYPE_P (type) || new_type == type);
4621
4622 return new_type;
4623 }
4624
4625 /* Return TRUE if TYPE1 and TYPE2 are identical for type hashing purposes.
4626 Called only after doing all language independent checks. */
4627
4628 bool
4629 cxx_type_hash_eq (const_tree typea, const_tree typeb)
4630 {
4631 gcc_assert (TREE_CODE (typea) == FUNCTION_TYPE
4632 || TREE_CODE (typea) == METHOD_TYPE);
4633
4634 if (type_memfn_rqual (typea) != type_memfn_rqual (typeb))
4635 return false;
4636 return comp_except_specs (TYPE_RAISES_EXCEPTIONS (typea),
4637 TYPE_RAISES_EXCEPTIONS (typeb), ce_exact);
4638 }
4639
4640 /* Copy the language-specific type variant modifiers from TYPEB to TYPEA. For
4641 C++, these are the exception-specifier and ref-qualifier. */
4642
4643 tree
4644 cxx_copy_lang_qualifiers (const_tree typea, const_tree typeb)
4645 {
4646 tree type = CONST_CAST_TREE (typea);
4647 if (TREE_CODE (type) == FUNCTION_TYPE || TREE_CODE (type) == METHOD_TYPE)
4648 {
4649 type = build_exception_variant (type, TYPE_RAISES_EXCEPTIONS (typeb));
4650 type = build_ref_qualified_type (type, type_memfn_rqual (typeb));
4651 }
4652 return type;
4653 }
4654
4655 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order
4656 traversal. Called from walk_tree. */
4657
4658 tree
4659 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
4660 void *data, hash_set<tree> *pset)
4661 {
4662 enum tree_code code = TREE_CODE (*tp);
4663 tree result;
4664
4665 #define WALK_SUBTREE(NODE) \
4666 do \
4667 { \
4668 result = cp_walk_tree (&(NODE), func, data, pset); \
4669 if (result) goto out; \
4670 } \
4671 while (0)
4672
4673 /* Not one of the easy cases. We must explicitly go through the
4674 children. */
4675 result = NULL_TREE;
4676 switch (code)
4677 {
4678 case DEFAULT_ARG:
4679 case TEMPLATE_TEMPLATE_PARM:
4680 case BOUND_TEMPLATE_TEMPLATE_PARM:
4681 case UNBOUND_CLASS_TEMPLATE:
4682 case TEMPLATE_PARM_INDEX:
4683 case TEMPLATE_TYPE_PARM:
4684 case TYPENAME_TYPE:
4685 case TYPEOF_TYPE:
4686 case UNDERLYING_TYPE:
4687 /* None of these have subtrees other than those already walked
4688 above. */
4689 *walk_subtrees_p = 0;
4690 break;
4691
4692 case BASELINK:
4693 if (BASELINK_QUALIFIED_P (*tp))
4694 WALK_SUBTREE (BINFO_TYPE (BASELINK_ACCESS_BINFO (*tp)));
4695 WALK_SUBTREE (BASELINK_FUNCTIONS (*tp));
4696 *walk_subtrees_p = 0;
4697 break;
4698
4699 case PTRMEM_CST:
4700 WALK_SUBTREE (TREE_TYPE (*tp));
4701 *walk_subtrees_p = 0;
4702 break;
4703
4704 case TREE_LIST:
4705 WALK_SUBTREE (TREE_PURPOSE (*tp));
4706 break;
4707
4708 case OVERLOAD:
4709 WALK_SUBTREE (OVL_FUNCTION (*tp));
4710 WALK_SUBTREE (OVL_CHAIN (*tp));
4711 *walk_subtrees_p = 0;
4712 break;
4713
4714 case USING_DECL:
4715 WALK_SUBTREE (DECL_NAME (*tp));
4716 WALK_SUBTREE (USING_DECL_SCOPE (*tp));
4717 WALK_SUBTREE (USING_DECL_DECLS (*tp));
4718 *walk_subtrees_p = 0;
4719 break;
4720
4721 case RECORD_TYPE:
4722 if (TYPE_PTRMEMFUNC_P (*tp))
4723 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE_RAW (*tp));
4724 break;
4725
4726 case TYPE_ARGUMENT_PACK:
4727 case NONTYPE_ARGUMENT_PACK:
4728 {
4729 tree args = ARGUMENT_PACK_ARGS (*tp);
4730 int i, len = TREE_VEC_LENGTH (args);
4731 for (i = 0; i < len; i++)
4732 WALK_SUBTREE (TREE_VEC_ELT (args, i));
4733 }
4734 break;
4735
4736 case TYPE_PACK_EXPANSION:
4737 WALK_SUBTREE (TREE_TYPE (*tp));
4738 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
4739 *walk_subtrees_p = 0;
4740 break;
4741
4742 case EXPR_PACK_EXPANSION:
4743 WALK_SUBTREE (TREE_OPERAND (*tp, 0));
4744 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
4745 *walk_subtrees_p = 0;
4746 break;
4747
4748 case CAST_EXPR:
4749 case REINTERPRET_CAST_EXPR:
4750 case STATIC_CAST_EXPR:
4751 case CONST_CAST_EXPR:
4752 case DYNAMIC_CAST_EXPR:
4753 case IMPLICIT_CONV_EXPR:
4754 if (TREE_TYPE (*tp))
4755 WALK_SUBTREE (TREE_TYPE (*tp));
4756
4757 {
4758 int i;
4759 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (*tp)); ++i)
4760 WALK_SUBTREE (TREE_OPERAND (*tp, i));
4761 }
4762 *walk_subtrees_p = 0;
4763 break;
4764
4765 case TRAIT_EXPR:
4766 WALK_SUBTREE (TRAIT_EXPR_TYPE1 (*tp));
4767 WALK_SUBTREE (TRAIT_EXPR_TYPE2 (*tp));
4768 *walk_subtrees_p = 0;
4769 break;
4770
4771 case DECLTYPE_TYPE:
4772 WALK_SUBTREE (DECLTYPE_TYPE_EXPR (*tp));
4773 *walk_subtrees_p = 0;
4774 break;
4775
4776 case REQUIRES_EXPR:
4777 // Only recurse through the nested expression. Do not
4778 // walk the parameter list. Doing so causes false
4779 // positives in the pack expansion checker since the
4780 // requires parameters are introduced as pack expansions.
4781 WALK_SUBTREE (TREE_OPERAND (*tp, 1));
4782 *walk_subtrees_p = 0;
4783 break;
4784
4785 case DECL_EXPR:
4786 /* User variables should be mentioned in BIND_EXPR_VARS
4787 and their initializers and sizes walked when walking
4788 the containing BIND_EXPR. Compiler temporaries are
4789 handled here. */
4790 if (VAR_P (TREE_OPERAND (*tp, 0))
4791 && DECL_ARTIFICIAL (TREE_OPERAND (*tp, 0))
4792 && !TREE_STATIC (TREE_OPERAND (*tp, 0)))
4793 {
4794 tree decl = TREE_OPERAND (*tp, 0);
4795 WALK_SUBTREE (DECL_INITIAL (decl));
4796 WALK_SUBTREE (DECL_SIZE (decl));
4797 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
4798 }
4799 break;
4800
4801 default:
4802 return NULL_TREE;
4803 }
4804
4805 /* We didn't find what we were looking for. */
4806 out:
4807 return result;
4808
4809 #undef WALK_SUBTREE
4810 }
4811
4812 /* Like save_expr, but for C++. */
4813
4814 tree
4815 cp_save_expr (tree expr)
4816 {
4817 /* There is no reason to create a SAVE_EXPR within a template; if
4818 needed, we can create the SAVE_EXPR when instantiating the
4819 template. Furthermore, the middle-end cannot handle C++-specific
4820 tree codes. */
4821 if (processing_template_decl)
4822 return expr;
4823 return save_expr (expr);
4824 }
4825
4826 /* Initialize tree.c. */
4827
4828 void
4829 init_tree (void)
4830 {
4831 list_hash_table = hash_table<list_hasher>::create_ggc (61);
4832 register_scoped_attributes (std_attribute_table, NULL);
4833 }
4834
4835 /* Returns the kind of special function that DECL (a FUNCTION_DECL)
4836 is. Note that sfk_none is zero, so this function can be used as a
4837 predicate to test whether or not DECL is a special function. */
4838
4839 special_function_kind
4840 special_function_p (const_tree decl)
4841 {
4842 /* Rather than doing all this stuff with magic names, we should
4843 probably have a field of type `special_function_kind' in
4844 DECL_LANG_SPECIFIC. */
4845 if (DECL_INHERITED_CTOR (decl))
4846 return sfk_inheriting_constructor;
4847 if (DECL_COPY_CONSTRUCTOR_P (decl))
4848 return sfk_copy_constructor;
4849 if (DECL_MOVE_CONSTRUCTOR_P (decl))
4850 return sfk_move_constructor;
4851 if (DECL_CONSTRUCTOR_P (decl))
4852 return sfk_constructor;
4853 if (DECL_ASSIGNMENT_OPERATOR_P (decl)
4854 && DECL_OVERLOADED_OPERATOR_IS (decl, NOP_EXPR))
4855 {
4856 if (copy_fn_p (decl))
4857 return sfk_copy_assignment;
4858 if (move_fn_p (decl))
4859 return sfk_move_assignment;
4860 }
4861 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
4862 return sfk_destructor;
4863 if (DECL_COMPLETE_DESTRUCTOR_P (decl))
4864 return sfk_complete_destructor;
4865 if (DECL_BASE_DESTRUCTOR_P (decl))
4866 return sfk_base_destructor;
4867 if (DECL_DELETING_DESTRUCTOR_P (decl))
4868 return sfk_deleting_destructor;
4869 if (DECL_CONV_FN_P (decl))
4870 return sfk_conversion;
4871 if (deduction_guide_p (decl))
4872 return sfk_deduction_guide;
4873
4874 return sfk_none;
4875 }
4876
4877 /* Returns nonzero if TYPE is a character type, including wchar_t. */
4878
4879 int
4880 char_type_p (tree type)
4881 {
4882 return (same_type_p (type, char_type_node)
4883 || same_type_p (type, unsigned_char_type_node)
4884 || same_type_p (type, signed_char_type_node)
4885 || same_type_p (type, char16_type_node)
4886 || same_type_p (type, char32_type_node)
4887 || same_type_p (type, wchar_type_node));
4888 }
4889
4890 /* Returns the kind of linkage associated with the indicated DECL. Th
4891 value returned is as specified by the language standard; it is
4892 independent of implementation details regarding template
4893 instantiation, etc. For example, it is possible that a declaration
4894 to which this function assigns external linkage would not show up
4895 as a global symbol when you run `nm' on the resulting object file. */
4896
4897 linkage_kind
4898 decl_linkage (tree decl)
4899 {
4900 /* This function doesn't attempt to calculate the linkage from first
4901 principles as given in [basic.link]. Instead, it makes use of
4902 the fact that we have already set TREE_PUBLIC appropriately, and
4903 then handles a few special cases. Ideally, we would calculate
4904 linkage first, and then transform that into a concrete
4905 implementation. */
4906
4907 /* Things that don't have names have no linkage. */
4908 if (!DECL_NAME (decl))
4909 return lk_none;
4910
4911 /* Fields have no linkage. */
4912 if (TREE_CODE (decl) == FIELD_DECL)
4913 return lk_none;
4914
4915 /* Things that are TREE_PUBLIC have external linkage. */
4916 if (TREE_PUBLIC (decl))
4917 return lk_external;
4918
4919 /* maybe_thunk_body clears TREE_PUBLIC on the maybe-in-charge 'tor variants,
4920 check one of the "clones" for the real linkage. */
4921 if ((DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl)
4922 || DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (decl))
4923 && DECL_CHAIN (decl)
4924 && DECL_CLONED_FUNCTION (DECL_CHAIN (decl)))
4925 return decl_linkage (DECL_CHAIN (decl));
4926
4927 if (TREE_CODE (decl) == NAMESPACE_DECL)
4928 return lk_external;
4929
4930 /* Linkage of a CONST_DECL depends on the linkage of the enumeration
4931 type. */
4932 if (TREE_CODE (decl) == CONST_DECL)
4933 return decl_linkage (TYPE_NAME (DECL_CONTEXT (decl)));
4934
4935 /* Things in local scope do not have linkage, if they don't have
4936 TREE_PUBLIC set. */
4937 if (decl_function_context (decl))
4938 return lk_none;
4939
4940 /* Members of the anonymous namespace also have TREE_PUBLIC unset, but
4941 are considered to have external linkage for language purposes, as do
4942 template instantiations on targets without weak symbols. DECLs really
4943 meant to have internal linkage have DECL_THIS_STATIC set. */
4944 if (TREE_CODE (decl) == TYPE_DECL)
4945 return lk_external;
4946 if (VAR_OR_FUNCTION_DECL_P (decl))
4947 {
4948 if (!DECL_THIS_STATIC (decl))
4949 return lk_external;
4950
4951 /* Static data members and static member functions from classes
4952 in anonymous namespace also don't have TREE_PUBLIC set. */
4953 if (DECL_CLASS_CONTEXT (decl))
4954 return lk_external;
4955 }
4956
4957 /* Everything else has internal linkage. */
4958 return lk_internal;
4959 }
4960
4961 /* Returns the storage duration of the object or reference associated with
4962 the indicated DECL, which should be a VAR_DECL or PARM_DECL. */
4963
4964 duration_kind
4965 decl_storage_duration (tree decl)
4966 {
4967 if (TREE_CODE (decl) == PARM_DECL)
4968 return dk_auto;
4969 if (TREE_CODE (decl) == FUNCTION_DECL)
4970 return dk_static;
4971 gcc_assert (VAR_P (decl));
4972 if (!TREE_STATIC (decl)
4973 && !DECL_EXTERNAL (decl))
4974 return dk_auto;
4975 if (CP_DECL_THREAD_LOCAL_P (decl))
4976 return dk_thread;
4977 return dk_static;
4978 }
4979 \f
4980 /* EXP is an expression that we want to pre-evaluate. Returns (in
4981 *INITP) an expression that will perform the pre-evaluation. The
4982 value returned by this function is a side-effect free expression
4983 equivalent to the pre-evaluated expression. Callers must ensure
4984 that *INITP is evaluated before EXP. */
4985
4986 tree
4987 stabilize_expr (tree exp, tree* initp)
4988 {
4989 tree init_expr;
4990
4991 if (!TREE_SIDE_EFFECTS (exp))
4992 init_expr = NULL_TREE;
4993 else if (VOID_TYPE_P (TREE_TYPE (exp)))
4994 {
4995 init_expr = exp;
4996 exp = void_node;
4997 }
4998 /* There are no expressions with REFERENCE_TYPE, but there can be call
4999 arguments with such a type; just treat it as a pointer. */
5000 else if (TREE_CODE (TREE_TYPE (exp)) == REFERENCE_TYPE
5001 || SCALAR_TYPE_P (TREE_TYPE (exp))
5002 || !glvalue_p (exp))
5003 {
5004 init_expr = get_target_expr (exp);
5005 exp = TARGET_EXPR_SLOT (init_expr);
5006 if (CLASS_TYPE_P (TREE_TYPE (exp)))
5007 exp = move (exp);
5008 else
5009 exp = rvalue (exp);
5010 }
5011 else
5012 {
5013 bool xval = !lvalue_p (exp);
5014 exp = cp_build_addr_expr (exp, tf_warning_or_error);
5015 init_expr = get_target_expr (exp);
5016 exp = TARGET_EXPR_SLOT (init_expr);
5017 exp = cp_build_fold_indirect_ref (exp);
5018 if (xval)
5019 exp = move (exp);
5020 }
5021 *initp = init_expr;
5022
5023 gcc_assert (!TREE_SIDE_EFFECTS (exp));
5024 return exp;
5025 }
5026
5027 /* Add NEW_EXPR, an expression whose value we don't care about, after the
5028 similar expression ORIG. */
5029
5030 tree
5031 add_stmt_to_compound (tree orig, tree new_expr)
5032 {
5033 if (!new_expr || !TREE_SIDE_EFFECTS (new_expr))
5034 return orig;
5035 if (!orig || !TREE_SIDE_EFFECTS (orig))
5036 return new_expr;
5037 return build2 (COMPOUND_EXPR, void_type_node, orig, new_expr);
5038 }
5039
5040 /* Like stabilize_expr, but for a call whose arguments we want to
5041 pre-evaluate. CALL is modified in place to use the pre-evaluated
5042 arguments, while, upon return, *INITP contains an expression to
5043 compute the arguments. */
5044
5045 void
5046 stabilize_call (tree call, tree *initp)
5047 {
5048 tree inits = NULL_TREE;
5049 int i;
5050 int nargs = call_expr_nargs (call);
5051
5052 if (call == error_mark_node || processing_template_decl)
5053 {
5054 *initp = NULL_TREE;
5055 return;
5056 }
5057
5058 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5059
5060 for (i = 0; i < nargs; i++)
5061 {
5062 tree init;
5063 CALL_EXPR_ARG (call, i) =
5064 stabilize_expr (CALL_EXPR_ARG (call, i), &init);
5065 inits = add_stmt_to_compound (inits, init);
5066 }
5067
5068 *initp = inits;
5069 }
5070
5071 /* Like stabilize_expr, but for an AGGR_INIT_EXPR whose arguments we want
5072 to pre-evaluate. CALL is modified in place to use the pre-evaluated
5073 arguments, while, upon return, *INITP contains an expression to
5074 compute the arguments. */
5075
5076 static void
5077 stabilize_aggr_init (tree call, tree *initp)
5078 {
5079 tree inits = NULL_TREE;
5080 int i;
5081 int nargs = aggr_init_expr_nargs (call);
5082
5083 if (call == error_mark_node)
5084 return;
5085
5086 gcc_assert (TREE_CODE (call) == AGGR_INIT_EXPR);
5087
5088 for (i = 0; i < nargs; i++)
5089 {
5090 tree init;
5091 AGGR_INIT_EXPR_ARG (call, i) =
5092 stabilize_expr (AGGR_INIT_EXPR_ARG (call, i), &init);
5093 inits = add_stmt_to_compound (inits, init);
5094 }
5095
5096 *initp = inits;
5097 }
5098
5099 /* Like stabilize_expr, but for an initialization.
5100
5101 If the initialization is for an object of class type, this function
5102 takes care not to introduce additional temporaries.
5103
5104 Returns TRUE iff the expression was successfully pre-evaluated,
5105 i.e., if INIT is now side-effect free, except for, possibly, a
5106 single call to a constructor. */
5107
5108 bool
5109 stabilize_init (tree init, tree *initp)
5110 {
5111 tree t = init;
5112
5113 *initp = NULL_TREE;
5114
5115 if (t == error_mark_node || processing_template_decl)
5116 return true;
5117
5118 if (TREE_CODE (t) == INIT_EXPR)
5119 t = TREE_OPERAND (t, 1);
5120 if (TREE_CODE (t) == TARGET_EXPR)
5121 t = TARGET_EXPR_INITIAL (t);
5122
5123 /* If the RHS can be stabilized without breaking copy elision, stabilize
5124 it. We specifically don't stabilize class prvalues here because that
5125 would mean an extra copy, but they might be stabilized below. */
5126 if (TREE_CODE (init) == INIT_EXPR
5127 && TREE_CODE (t) != CONSTRUCTOR
5128 && TREE_CODE (t) != AGGR_INIT_EXPR
5129 && (SCALAR_TYPE_P (TREE_TYPE (t))
5130 || glvalue_p (t)))
5131 {
5132 TREE_OPERAND (init, 1) = stabilize_expr (t, initp);
5133 return true;
5134 }
5135
5136 if (TREE_CODE (t) == COMPOUND_EXPR
5137 && TREE_CODE (init) == INIT_EXPR)
5138 {
5139 tree last = expr_last (t);
5140 /* Handle stabilizing the EMPTY_CLASS_EXPR pattern. */
5141 if (!TREE_SIDE_EFFECTS (last))
5142 {
5143 *initp = t;
5144 TREE_OPERAND (init, 1) = last;
5145 return true;
5146 }
5147 }
5148
5149 if (TREE_CODE (t) == CONSTRUCTOR)
5150 {
5151 /* Aggregate initialization: stabilize each of the field
5152 initializers. */
5153 unsigned i;
5154 constructor_elt *ce;
5155 bool good = true;
5156 vec<constructor_elt, va_gc> *v = CONSTRUCTOR_ELTS (t);
5157 for (i = 0; vec_safe_iterate (v, i, &ce); ++i)
5158 {
5159 tree type = TREE_TYPE (ce->value);
5160 tree subinit;
5161 if (TREE_CODE (type) == REFERENCE_TYPE
5162 || SCALAR_TYPE_P (type))
5163 ce->value = stabilize_expr (ce->value, &subinit);
5164 else if (!stabilize_init (ce->value, &subinit))
5165 good = false;
5166 *initp = add_stmt_to_compound (*initp, subinit);
5167 }
5168 return good;
5169 }
5170
5171 if (TREE_CODE (t) == CALL_EXPR)
5172 {
5173 stabilize_call (t, initp);
5174 return true;
5175 }
5176
5177 if (TREE_CODE (t) == AGGR_INIT_EXPR)
5178 {
5179 stabilize_aggr_init (t, initp);
5180 return true;
5181 }
5182
5183 /* The initialization is being performed via a bitwise copy -- and
5184 the item copied may have side effects. */
5185 return !TREE_SIDE_EFFECTS (init);
5186 }
5187
5188 /* Returns true if a cast to TYPE may appear in an integral constant
5189 expression. */
5190
5191 bool
5192 cast_valid_in_integral_constant_expression_p (tree type)
5193 {
5194 return (INTEGRAL_OR_ENUMERATION_TYPE_P (type)
5195 || cxx_dialect >= cxx11
5196 || dependent_type_p (type)
5197 || type == error_mark_node);
5198 }
5199
5200 /* Return true if we need to fix linkage information of DECL. */
5201
5202 static bool
5203 cp_fix_function_decl_p (tree decl)
5204 {
5205 /* Skip if DECL is not externally visible. */
5206 if (!TREE_PUBLIC (decl))
5207 return false;
5208
5209 /* We need to fix DECL if it a appears to be exported but with no
5210 function body. Thunks do not have CFGs and we may need to
5211 handle them specially later. */
5212 if (!gimple_has_body_p (decl)
5213 && !DECL_THUNK_P (decl)
5214 && !DECL_EXTERNAL (decl))
5215 {
5216 struct cgraph_node *node = cgraph_node::get (decl);
5217
5218 /* Don't fix same_body aliases. Although they don't have their own
5219 CFG, they share it with what they alias to. */
5220 if (!node || !node->alias
5221 || !vec_safe_length (node->ref_list.references))
5222 return true;
5223 }
5224
5225 return false;
5226 }
5227
5228 /* Clean the C++ specific parts of the tree T. */
5229
5230 void
5231 cp_free_lang_data (tree t)
5232 {
5233 if (TREE_CODE (t) == METHOD_TYPE
5234 || TREE_CODE (t) == FUNCTION_TYPE)
5235 {
5236 /* Default args are not interesting anymore. */
5237 tree argtypes = TYPE_ARG_TYPES (t);
5238 while (argtypes)
5239 {
5240 TREE_PURPOSE (argtypes) = 0;
5241 argtypes = TREE_CHAIN (argtypes);
5242 }
5243 }
5244 else if (TREE_CODE (t) == FUNCTION_DECL
5245 && cp_fix_function_decl_p (t))
5246 {
5247 /* If T is used in this translation unit at all, the definition
5248 must exist somewhere else since we have decided to not emit it
5249 in this TU. So make it an external reference. */
5250 DECL_EXTERNAL (t) = 1;
5251 TREE_STATIC (t) = 0;
5252 }
5253 if (TREE_CODE (t) == NAMESPACE_DECL)
5254 /* We do not need the leftover chaining of namespaces from the
5255 binding level. */
5256 DECL_CHAIN (t) = NULL_TREE;
5257 }
5258
5259 /* Stub for c-common. Please keep in sync with c-decl.c.
5260 FIXME: If address space support is target specific, then this
5261 should be a C target hook. But currently this is not possible,
5262 because this function is called via REGISTER_TARGET_PRAGMAS. */
5263 void
5264 c_register_addr_space (const char * /*word*/, addr_space_t /*as*/)
5265 {
5266 }
5267
5268 /* Return the number of operands in T that we care about for things like
5269 mangling. */
5270
5271 int
5272 cp_tree_operand_length (const_tree t)
5273 {
5274 enum tree_code code = TREE_CODE (t);
5275
5276 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
5277 return VL_EXP_OPERAND_LENGTH (t);
5278
5279 return cp_tree_code_length (code);
5280 }
5281
5282 /* Like cp_tree_operand_length, but takes a tree_code CODE. */
5283
5284 int
5285 cp_tree_code_length (enum tree_code code)
5286 {
5287 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
5288
5289 switch (code)
5290 {
5291 case PREINCREMENT_EXPR:
5292 case PREDECREMENT_EXPR:
5293 case POSTINCREMENT_EXPR:
5294 case POSTDECREMENT_EXPR:
5295 return 1;
5296
5297 case ARRAY_REF:
5298 return 2;
5299
5300 case EXPR_PACK_EXPANSION:
5301 return 1;
5302
5303 default:
5304 return TREE_CODE_LENGTH (code);
5305 }
5306 }
5307
5308 /* Implement -Wzero_as_null_pointer_constant. Return true if the
5309 conditions for the warning hold, false otherwise. */
5310 bool
5311 maybe_warn_zero_as_null_pointer_constant (tree expr, location_t loc)
5312 {
5313 if (c_inhibit_evaluation_warnings == 0
5314 && !NULLPTR_TYPE_P (TREE_TYPE (expr)))
5315 {
5316 warning_at (loc, OPT_Wzero_as_null_pointer_constant,
5317 "zero as null pointer constant");
5318 return true;
5319 }
5320 return false;
5321 }
5322 \f
5323 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5324 /* Complain that some language-specific thing hanging off a tree
5325 node has been accessed improperly. */
5326
5327 void
5328 lang_check_failed (const char* file, int line, const char* function)
5329 {
5330 internal_error ("lang_* check: failed in %s, at %s:%d",
5331 function, trim_filename (file), line);
5332 }
5333 #endif /* ENABLE_TREE_CHECKING */
5334
5335 #include "gt-cp-tree.h"