]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cp/tree.c
gimple.h: Remove all includes.
[thirdparty/gcc.git] / gcc / cp / tree.c
1 /* Language-dependent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3 Hacked by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "print-tree.h"
28 #include "tree-iterator.h"
29 #include "cp-tree.h"
30 #include "flags.h"
31 #include "tree-inline.h"
32 #include "debug.h"
33 #include "convert.h"
34 #include "cgraph.h"
35 #include "splay-tree.h"
36 #include "hash-table.h"
37 #include "gimple-expr.h"
38 #include "gimplify.h"
39
40 static tree bot_manip (tree *, int *, void *);
41 static tree bot_replace (tree *, int *, void *);
42 static int list_hash_eq (const void *, const void *);
43 static hashval_t list_hash_pieces (tree, tree, tree);
44 static hashval_t list_hash (const void *);
45 static tree build_target_expr (tree, tree, tsubst_flags_t);
46 static tree count_trees_r (tree *, int *, void *);
47 static tree verify_stmt_tree_r (tree *, int *, void *);
48 static tree build_local_temp (tree);
49
50 static tree handle_java_interface_attribute (tree *, tree, tree, int, bool *);
51 static tree handle_com_interface_attribute (tree *, tree, tree, int, bool *);
52 static tree handle_init_priority_attribute (tree *, tree, tree, int, bool *);
53 static tree handle_abi_tag_attribute (tree *, tree, tree, int, bool *);
54
55 /* If REF is an lvalue, returns the kind of lvalue that REF is.
56 Otherwise, returns clk_none. */
57
58 cp_lvalue_kind
59 lvalue_kind (const_tree ref)
60 {
61 cp_lvalue_kind op1_lvalue_kind = clk_none;
62 cp_lvalue_kind op2_lvalue_kind = clk_none;
63
64 /* Expressions of reference type are sometimes wrapped in
65 INDIRECT_REFs. INDIRECT_REFs are just internal compiler
66 representation, not part of the language, so we have to look
67 through them. */
68 if (REFERENCE_REF_P (ref))
69 return lvalue_kind (TREE_OPERAND (ref, 0));
70
71 if (TREE_TYPE (ref)
72 && TREE_CODE (TREE_TYPE (ref)) == REFERENCE_TYPE)
73 {
74 /* unnamed rvalue references are rvalues */
75 if (TYPE_REF_IS_RVALUE (TREE_TYPE (ref))
76 && TREE_CODE (ref) != PARM_DECL
77 && !VAR_P (ref)
78 && TREE_CODE (ref) != COMPONENT_REF
79 /* Functions are always lvalues. */
80 && TREE_CODE (TREE_TYPE (TREE_TYPE (ref))) != FUNCTION_TYPE)
81 return clk_rvalueref;
82
83 /* lvalue references and named rvalue references are lvalues. */
84 return clk_ordinary;
85 }
86
87 if (ref == current_class_ptr)
88 return clk_none;
89
90 switch (TREE_CODE (ref))
91 {
92 case SAVE_EXPR:
93 return clk_none;
94 /* preincrements and predecrements are valid lvals, provided
95 what they refer to are valid lvals. */
96 case PREINCREMENT_EXPR:
97 case PREDECREMENT_EXPR:
98 case TRY_CATCH_EXPR:
99 case WITH_CLEANUP_EXPR:
100 case REALPART_EXPR:
101 case IMAGPART_EXPR:
102 return lvalue_kind (TREE_OPERAND (ref, 0));
103
104 case COMPONENT_REF:
105 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
106 /* Look at the member designator. */
107 if (!op1_lvalue_kind)
108 ;
109 else if (is_overloaded_fn (TREE_OPERAND (ref, 1)))
110 /* The "field" can be a FUNCTION_DECL or an OVERLOAD in some
111 situations. If we're seeing a COMPONENT_REF, it's a non-static
112 member, so it isn't an lvalue. */
113 op1_lvalue_kind = clk_none;
114 else if (TREE_CODE (TREE_OPERAND (ref, 1)) != FIELD_DECL)
115 /* This can be IDENTIFIER_NODE in a template. */;
116 else if (DECL_C_BIT_FIELD (TREE_OPERAND (ref, 1)))
117 {
118 /* Clear the ordinary bit. If this object was a class
119 rvalue we want to preserve that information. */
120 op1_lvalue_kind &= ~clk_ordinary;
121 /* The lvalue is for a bitfield. */
122 op1_lvalue_kind |= clk_bitfield;
123 }
124 else if (DECL_PACKED (TREE_OPERAND (ref, 1)))
125 op1_lvalue_kind |= clk_packed;
126
127 return op1_lvalue_kind;
128
129 case STRING_CST:
130 case COMPOUND_LITERAL_EXPR:
131 return clk_ordinary;
132
133 case CONST_DECL:
134 /* CONST_DECL without TREE_STATIC are enumeration values and
135 thus not lvalues. With TREE_STATIC they are used by ObjC++
136 in objc_build_string_object and need to be considered as
137 lvalues. */
138 if (! TREE_STATIC (ref))
139 return clk_none;
140 case VAR_DECL:
141 if (TREE_READONLY (ref) && ! TREE_STATIC (ref)
142 && DECL_LANG_SPECIFIC (ref)
143 && DECL_IN_AGGR_P (ref))
144 return clk_none;
145 case INDIRECT_REF:
146 case ARROW_EXPR:
147 case ARRAY_REF:
148 case ARRAY_NOTATION_REF:
149 case PARM_DECL:
150 case RESULT_DECL:
151 return clk_ordinary;
152
153 /* A scope ref in a template, left as SCOPE_REF to support later
154 access checking. */
155 case SCOPE_REF:
156 gcc_assert (!type_dependent_expression_p (CONST_CAST_TREE (ref)));
157 {
158 tree op = TREE_OPERAND (ref, 1);
159 if (TREE_CODE (op) == FIELD_DECL)
160 return (DECL_C_BIT_FIELD (op) ? clk_bitfield : clk_ordinary);
161 else
162 return lvalue_kind (op);
163 }
164
165 case MAX_EXPR:
166 case MIN_EXPR:
167 /* Disallow <? and >? as lvalues if either argument side-effects. */
168 if (TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 0))
169 || TREE_SIDE_EFFECTS (TREE_OPERAND (ref, 1)))
170 return clk_none;
171 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 0));
172 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1));
173 break;
174
175 case COND_EXPR:
176 op1_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 1)
177 ? TREE_OPERAND (ref, 1)
178 : TREE_OPERAND (ref, 0));
179 op2_lvalue_kind = lvalue_kind (TREE_OPERAND (ref, 2));
180 break;
181
182 case MODIFY_EXPR:
183 case TYPEID_EXPR:
184 return clk_ordinary;
185
186 case COMPOUND_EXPR:
187 return lvalue_kind (TREE_OPERAND (ref, 1));
188
189 case TARGET_EXPR:
190 return clk_class;
191
192 case VA_ARG_EXPR:
193 return (CLASS_TYPE_P (TREE_TYPE (ref)) ? clk_class : clk_none);
194
195 case CALL_EXPR:
196 /* We can see calls outside of TARGET_EXPR in templates. */
197 if (CLASS_TYPE_P (TREE_TYPE (ref)))
198 return clk_class;
199 return clk_none;
200
201 case FUNCTION_DECL:
202 /* All functions (except non-static-member functions) are
203 lvalues. */
204 return (DECL_NONSTATIC_MEMBER_FUNCTION_P (ref)
205 ? clk_none : clk_ordinary);
206
207 case BASELINK:
208 /* We now represent a reference to a single static member function
209 with a BASELINK. */
210 /* This CONST_CAST is okay because BASELINK_FUNCTIONS returns
211 its argument unmodified and we assign it to a const_tree. */
212 return lvalue_kind (BASELINK_FUNCTIONS (CONST_CAST_TREE (ref)));
213
214 case NON_DEPENDENT_EXPR:
215 /* We just return clk_ordinary for NON_DEPENDENT_EXPR in C++98, but
216 in C++11 lvalues don't bind to rvalue references, so we need to
217 work harder to avoid bogus errors (c++/44870). */
218 if (cxx_dialect < cxx11)
219 return clk_ordinary;
220 else
221 return lvalue_kind (TREE_OPERAND (ref, 0));
222
223 default:
224 if (!TREE_TYPE (ref))
225 return clk_none;
226 if (CLASS_TYPE_P (TREE_TYPE (ref)))
227 return clk_class;
228 break;
229 }
230
231 /* If one operand is not an lvalue at all, then this expression is
232 not an lvalue. */
233 if (!op1_lvalue_kind || !op2_lvalue_kind)
234 return clk_none;
235
236 /* Otherwise, it's an lvalue, and it has all the odd properties
237 contributed by either operand. */
238 op1_lvalue_kind = op1_lvalue_kind | op2_lvalue_kind;
239 /* It's not an ordinary lvalue if it involves any other kind. */
240 if ((op1_lvalue_kind & ~clk_ordinary) != clk_none)
241 op1_lvalue_kind &= ~clk_ordinary;
242 /* It can't be both a pseudo-lvalue and a non-addressable lvalue.
243 A COND_EXPR of those should be wrapped in a TARGET_EXPR. */
244 if ((op1_lvalue_kind & (clk_rvalueref|clk_class))
245 && (op1_lvalue_kind & (clk_bitfield|clk_packed)))
246 op1_lvalue_kind = clk_none;
247 return op1_lvalue_kind;
248 }
249
250 /* Returns the kind of lvalue that REF is, in the sense of
251 [basic.lval]. This function should really be named lvalue_p; it
252 computes the C++ definition of lvalue. */
253
254 cp_lvalue_kind
255 real_lvalue_p (const_tree ref)
256 {
257 cp_lvalue_kind kind = lvalue_kind (ref);
258 if (kind & (clk_rvalueref|clk_class))
259 return clk_none;
260 else
261 return kind;
262 }
263
264 /* This differs from real_lvalue_p in that class rvalues are considered
265 lvalues. */
266
267 bool
268 lvalue_p (const_tree ref)
269 {
270 return (lvalue_kind (ref) != clk_none);
271 }
272
273 /* This differs from real_lvalue_p in that rvalues formed by dereferencing
274 rvalue references are considered rvalues. */
275
276 bool
277 lvalue_or_rvalue_with_address_p (const_tree ref)
278 {
279 cp_lvalue_kind kind = lvalue_kind (ref);
280 if (kind & clk_class)
281 return false;
282 else
283 return (kind != clk_none);
284 }
285
286 /* Returns true if REF is an xvalue, false otherwise. */
287
288 bool
289 xvalue_p (const_tree ref)
290 {
291 return (lvalue_kind (ref) == clk_rvalueref);
292 }
293
294 /* Test whether DECL is a builtin that may appear in a
295 constant-expression. */
296
297 bool
298 builtin_valid_in_constant_expr_p (const_tree decl)
299 {
300 /* At present BUILT_IN_CONSTANT_P is the only builtin we're allowing
301 in constant-expressions. We may want to add other builtins later. */
302 return DECL_IS_BUILTIN_CONSTANT_P (decl);
303 }
304
305 /* Build a TARGET_EXPR, initializing the DECL with the VALUE. */
306
307 static tree
308 build_target_expr (tree decl, tree value, tsubst_flags_t complain)
309 {
310 tree t;
311 tree type = TREE_TYPE (decl);
312
313 #ifdef ENABLE_CHECKING
314 gcc_assert (VOID_TYPE_P (TREE_TYPE (value))
315 || TREE_TYPE (decl) == TREE_TYPE (value)
316 /* On ARM ctors return 'this'. */
317 || (TYPE_PTR_P (TREE_TYPE (value))
318 && TREE_CODE (value) == CALL_EXPR)
319 || useless_type_conversion_p (TREE_TYPE (decl),
320 TREE_TYPE (value)));
321 #endif
322
323 t = cxx_maybe_build_cleanup (decl, complain);
324 if (t == error_mark_node)
325 return error_mark_node;
326 t = build4 (TARGET_EXPR, type, decl, value, t, NULL_TREE);
327 /* We always set TREE_SIDE_EFFECTS so that expand_expr does not
328 ignore the TARGET_EXPR. If there really turn out to be no
329 side-effects, then the optimizer should be able to get rid of
330 whatever code is generated anyhow. */
331 TREE_SIDE_EFFECTS (t) = 1;
332
333 return t;
334 }
335
336 /* Return an undeclared local temporary of type TYPE for use in building a
337 TARGET_EXPR. */
338
339 static tree
340 build_local_temp (tree type)
341 {
342 tree slot = build_decl (input_location,
343 VAR_DECL, NULL_TREE, type);
344 DECL_ARTIFICIAL (slot) = 1;
345 DECL_IGNORED_P (slot) = 1;
346 DECL_CONTEXT (slot) = current_function_decl;
347 layout_decl (slot, 0);
348 return slot;
349 }
350
351 /* Set various status flags when building an AGGR_INIT_EXPR object T. */
352
353 static void
354 process_aggr_init_operands (tree t)
355 {
356 bool side_effects;
357
358 side_effects = TREE_SIDE_EFFECTS (t);
359 if (!side_effects)
360 {
361 int i, n;
362 n = TREE_OPERAND_LENGTH (t);
363 for (i = 1; i < n; i++)
364 {
365 tree op = TREE_OPERAND (t, i);
366 if (op && TREE_SIDE_EFFECTS (op))
367 {
368 side_effects = 1;
369 break;
370 }
371 }
372 }
373 TREE_SIDE_EFFECTS (t) = side_effects;
374 }
375
376 /* Build an AGGR_INIT_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE,
377 FN, and SLOT. NARGS is the number of call arguments which are specified
378 as a tree array ARGS. */
379
380 static tree
381 build_aggr_init_array (tree return_type, tree fn, tree slot, int nargs,
382 tree *args)
383 {
384 tree t;
385 int i;
386
387 t = build_vl_exp (AGGR_INIT_EXPR, nargs + 3);
388 TREE_TYPE (t) = return_type;
389 AGGR_INIT_EXPR_FN (t) = fn;
390 AGGR_INIT_EXPR_SLOT (t) = slot;
391 for (i = 0; i < nargs; i++)
392 AGGR_INIT_EXPR_ARG (t, i) = args[i];
393 process_aggr_init_operands (t);
394 return t;
395 }
396
397 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
398 target. TYPE is the type to be initialized.
399
400 Build an AGGR_INIT_EXPR to represent the initialization. This function
401 differs from build_cplus_new in that an AGGR_INIT_EXPR can only be used
402 to initialize another object, whereas a TARGET_EXPR can either
403 initialize another object or create its own temporary object, and as a
404 result building up a TARGET_EXPR requires that the type's destructor be
405 callable. */
406
407 tree
408 build_aggr_init_expr (tree type, tree init)
409 {
410 tree fn;
411 tree slot;
412 tree rval;
413 int is_ctor;
414
415 /* Don't build AGGR_INIT_EXPR in a template. */
416 if (processing_template_decl)
417 return init;
418
419 if (TREE_CODE (init) == CALL_EXPR)
420 fn = CALL_EXPR_FN (init);
421 else if (TREE_CODE (init) == AGGR_INIT_EXPR)
422 fn = AGGR_INIT_EXPR_FN (init);
423 else
424 return convert (type, init);
425
426 is_ctor = (TREE_CODE (fn) == ADDR_EXPR
427 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL
428 && DECL_CONSTRUCTOR_P (TREE_OPERAND (fn, 0)));
429
430 /* We split the CALL_EXPR into its function and its arguments here.
431 Then, in expand_expr, we put them back together. The reason for
432 this is that this expression might be a default argument
433 expression. In that case, we need a new temporary every time the
434 expression is used. That's what break_out_target_exprs does; it
435 replaces every AGGR_INIT_EXPR with a copy that uses a fresh
436 temporary slot. Then, expand_expr builds up a call-expression
437 using the new slot. */
438
439 /* If we don't need to use a constructor to create an object of this
440 type, don't mess with AGGR_INIT_EXPR. */
441 if (is_ctor || TREE_ADDRESSABLE (type))
442 {
443 slot = build_local_temp (type);
444
445 if (TREE_CODE(init) == CALL_EXPR)
446 rval = build_aggr_init_array (void_type_node, fn, slot,
447 call_expr_nargs (init),
448 CALL_EXPR_ARGP (init));
449 else
450 rval = build_aggr_init_array (void_type_node, fn, slot,
451 aggr_init_expr_nargs (init),
452 AGGR_INIT_EXPR_ARGP (init));
453 TREE_SIDE_EFFECTS (rval) = 1;
454 AGGR_INIT_VIA_CTOR_P (rval) = is_ctor;
455 TREE_NOTHROW (rval) = TREE_NOTHROW (init);
456 }
457 else
458 rval = init;
459
460 return rval;
461 }
462
463 /* INIT is a CALL_EXPR or AGGR_INIT_EXPR which needs info about its
464 target. TYPE is the type that this initialization should appear to
465 have.
466
467 Build an encapsulation of the initialization to perform
468 and return it so that it can be processed by language-independent
469 and language-specific expression expanders. */
470
471 tree
472 build_cplus_new (tree type, tree init, tsubst_flags_t complain)
473 {
474 tree rval = build_aggr_init_expr (type, init);
475 tree slot;
476
477 if (!complete_type_or_maybe_complain (type, init, complain))
478 return error_mark_node;
479
480 /* Make sure that we're not trying to create an instance of an
481 abstract class. */
482 if (abstract_virtuals_error_sfinae (NULL_TREE, type, complain))
483 return error_mark_node;
484
485 if (TREE_CODE (rval) == AGGR_INIT_EXPR)
486 slot = AGGR_INIT_EXPR_SLOT (rval);
487 else if (TREE_CODE (rval) == CALL_EXPR
488 || TREE_CODE (rval) == CONSTRUCTOR)
489 slot = build_local_temp (type);
490 else
491 return rval;
492
493 rval = build_target_expr (slot, rval, complain);
494
495 if (rval != error_mark_node)
496 TARGET_EXPR_IMPLICIT_P (rval) = 1;
497
498 return rval;
499 }
500
501 /* Subroutine of build_vec_init_expr: Build up a single element
502 intialization as a proxy for the full array initialization to get things
503 marked as used and any appropriate diagnostics.
504
505 Since we're deferring building the actual constructor calls until
506 gimplification time, we need to build one now and throw it away so
507 that the relevant constructor gets mark_used before cgraph decides
508 what functions are needed. Here we assume that init is either
509 NULL_TREE, void_type_node (indicating value-initialization), or
510 another array to copy. */
511
512 static tree
513 build_vec_init_elt (tree type, tree init, tsubst_flags_t complain)
514 {
515 tree inner_type = strip_array_types (type);
516 vec<tree, va_gc> *argvec;
517
518 if (integer_zerop (array_type_nelts_total (type))
519 || !CLASS_TYPE_P (inner_type))
520 /* No interesting initialization to do. */
521 return integer_zero_node;
522 else if (init == void_type_node)
523 return build_value_init (inner_type, complain);
524
525 gcc_assert (init == NULL_TREE
526 || (same_type_ignoring_top_level_qualifiers_p
527 (type, TREE_TYPE (init))));
528
529 argvec = make_tree_vector ();
530 if (init)
531 {
532 tree init_type = strip_array_types (TREE_TYPE (init));
533 tree dummy = build_dummy_object (init_type);
534 if (!real_lvalue_p (init))
535 dummy = move (dummy);
536 argvec->quick_push (dummy);
537 }
538 init = build_special_member_call (NULL_TREE, complete_ctor_identifier,
539 &argvec, inner_type, LOOKUP_NORMAL,
540 complain);
541 release_tree_vector (argvec);
542
543 /* For a trivial constructor, build_over_call creates a TARGET_EXPR. But
544 we don't want one here because we aren't creating a temporary. */
545 if (TREE_CODE (init) == TARGET_EXPR)
546 init = TARGET_EXPR_INITIAL (init);
547
548 return init;
549 }
550
551 /* Return a TARGET_EXPR which expresses the initialization of an array to
552 be named later, either default-initialization or copy-initialization
553 from another array of the same type. */
554
555 tree
556 build_vec_init_expr (tree type, tree init, tsubst_flags_t complain)
557 {
558 tree slot;
559 bool value_init = false;
560 tree elt_init = build_vec_init_elt (type, init, complain);
561
562 if (init == void_type_node)
563 {
564 value_init = true;
565 init = NULL_TREE;
566 }
567
568 slot = build_local_temp (type);
569 init = build2 (VEC_INIT_EXPR, type, slot, init);
570 TREE_SIDE_EFFECTS (init) = true;
571 SET_EXPR_LOCATION (init, input_location);
572
573 if (cxx_dialect >= cxx11
574 && potential_constant_expression (elt_init))
575 VEC_INIT_EXPR_IS_CONSTEXPR (init) = true;
576 VEC_INIT_EXPR_VALUE_INIT (init) = value_init;
577
578 return init;
579 }
580
581 /* Give a helpful diagnostic for a non-constexpr VEC_INIT_EXPR in a context
582 that requires a constant expression. */
583
584 void
585 diagnose_non_constexpr_vec_init (tree expr)
586 {
587 tree type = TREE_TYPE (VEC_INIT_EXPR_SLOT (expr));
588 tree init, elt_init;
589 if (VEC_INIT_EXPR_VALUE_INIT (expr))
590 init = void_type_node;
591 else
592 init = VEC_INIT_EXPR_INIT (expr);
593
594 elt_init = build_vec_init_elt (type, init, tf_warning_or_error);
595 require_potential_constant_expression (elt_init);
596 }
597
598 tree
599 build_array_copy (tree init)
600 {
601 return build_vec_init_expr (TREE_TYPE (init), init, tf_warning_or_error);
602 }
603
604 /* Build a TARGET_EXPR using INIT to initialize a new temporary of the
605 indicated TYPE. */
606
607 tree
608 build_target_expr_with_type (tree init, tree type, tsubst_flags_t complain)
609 {
610 gcc_assert (!VOID_TYPE_P (type));
611
612 if (TREE_CODE (init) == TARGET_EXPR
613 || init == error_mark_node)
614 return init;
615 else if (CLASS_TYPE_P (type) && type_has_nontrivial_copy_init (type)
616 && !VOID_TYPE_P (TREE_TYPE (init))
617 && TREE_CODE (init) != COND_EXPR
618 && TREE_CODE (init) != CONSTRUCTOR
619 && TREE_CODE (init) != VA_ARG_EXPR)
620 /* We need to build up a copy constructor call. A void initializer
621 means we're being called from bot_manip. COND_EXPR is a special
622 case because we already have copies on the arms and we don't want
623 another one here. A CONSTRUCTOR is aggregate initialization, which
624 is handled separately. A VA_ARG_EXPR is magic creation of an
625 aggregate; there's no additional work to be done. */
626 return force_rvalue (init, complain);
627
628 return force_target_expr (type, init, complain);
629 }
630
631 /* Like the above function, but without the checking. This function should
632 only be used by code which is deliberately trying to subvert the type
633 system, such as call_builtin_trap. Or build_over_call, to avoid
634 infinite recursion. */
635
636 tree
637 force_target_expr (tree type, tree init, tsubst_flags_t complain)
638 {
639 tree slot;
640
641 gcc_assert (!VOID_TYPE_P (type));
642
643 slot = build_local_temp (type);
644 return build_target_expr (slot, init, complain);
645 }
646
647 /* Like build_target_expr_with_type, but use the type of INIT. */
648
649 tree
650 get_target_expr_sfinae (tree init, tsubst_flags_t complain)
651 {
652 if (TREE_CODE (init) == AGGR_INIT_EXPR)
653 return build_target_expr (AGGR_INIT_EXPR_SLOT (init), init, complain);
654 else if (TREE_CODE (init) == VEC_INIT_EXPR)
655 return build_target_expr (VEC_INIT_EXPR_SLOT (init), init, complain);
656 else
657 return build_target_expr_with_type (init, TREE_TYPE (init), complain);
658 }
659
660 tree
661 get_target_expr (tree init)
662 {
663 return get_target_expr_sfinae (init, tf_warning_or_error);
664 }
665
666 /* If EXPR is a bitfield reference, convert it to the declared type of
667 the bitfield, and return the resulting expression. Otherwise,
668 return EXPR itself. */
669
670 tree
671 convert_bitfield_to_declared_type (tree expr)
672 {
673 tree bitfield_type;
674
675 bitfield_type = is_bitfield_expr_with_lowered_type (expr);
676 if (bitfield_type)
677 expr = convert_to_integer (TYPE_MAIN_VARIANT (bitfield_type),
678 expr);
679 return expr;
680 }
681
682 /* EXPR is being used in an rvalue context. Return a version of EXPR
683 that is marked as an rvalue. */
684
685 tree
686 rvalue (tree expr)
687 {
688 tree type;
689
690 if (error_operand_p (expr))
691 return expr;
692
693 expr = mark_rvalue_use (expr);
694
695 /* [basic.lval]
696
697 Non-class rvalues always have cv-unqualified types. */
698 type = TREE_TYPE (expr);
699 if (!CLASS_TYPE_P (type) && cv_qualified_p (type))
700 type = cv_unqualified (type);
701
702 /* We need to do this for rvalue refs as well to get the right answer
703 from decltype; see c++/36628. */
704 if (!processing_template_decl && lvalue_or_rvalue_with_address_p (expr))
705 expr = build1 (NON_LVALUE_EXPR, type, expr);
706 else if (type != TREE_TYPE (expr))
707 expr = build_nop (type, expr);
708
709 return expr;
710 }
711
712 \f
713 /* Hash an ARRAY_TYPE. K is really of type `tree'. */
714
715 static hashval_t
716 cplus_array_hash (const void* k)
717 {
718 hashval_t hash;
719 const_tree const t = (const_tree) k;
720
721 hash = TYPE_UID (TREE_TYPE (t));
722 if (TYPE_DOMAIN (t))
723 hash ^= TYPE_UID (TYPE_DOMAIN (t));
724 return hash;
725 }
726
727 typedef struct cplus_array_info {
728 tree type;
729 tree domain;
730 } cplus_array_info;
731
732 /* Compare two ARRAY_TYPEs. K1 is really of type `tree', K2 is really
733 of type `cplus_array_info*'. */
734
735 static int
736 cplus_array_compare (const void * k1, const void * k2)
737 {
738 const_tree const t1 = (const_tree) k1;
739 const cplus_array_info *const t2 = (const cplus_array_info*) k2;
740
741 return (TREE_TYPE (t1) == t2->type && TYPE_DOMAIN (t1) == t2->domain);
742 }
743
744 /* Hash table containing dependent array types, which are unsuitable for
745 the language-independent type hash table. */
746 static GTY ((param_is (union tree_node))) htab_t cplus_array_htab;
747
748 /* Like build_array_type, but handle special C++ semantics. */
749
750 tree
751 build_cplus_array_type (tree elt_type, tree index_type)
752 {
753 tree t;
754
755 if (elt_type == error_mark_node || index_type == error_mark_node)
756 return error_mark_node;
757
758 if (processing_template_decl
759 && (dependent_type_p (elt_type)
760 || (index_type && !TREE_CONSTANT (TYPE_MAX_VALUE (index_type)))))
761 {
762 void **e;
763 cplus_array_info cai;
764 hashval_t hash;
765
766 if (cplus_array_htab == NULL)
767 cplus_array_htab = htab_create_ggc (61, &cplus_array_hash,
768 &cplus_array_compare, NULL);
769
770 hash = TYPE_UID (elt_type);
771 if (index_type)
772 hash ^= TYPE_UID (index_type);
773 cai.type = elt_type;
774 cai.domain = index_type;
775
776 e = htab_find_slot_with_hash (cplus_array_htab, &cai, hash, INSERT);
777 if (*e)
778 /* We have found the type: we're done. */
779 return (tree) *e;
780 else
781 {
782 /* Build a new array type. */
783 t = cxx_make_type (ARRAY_TYPE);
784 TREE_TYPE (t) = elt_type;
785 TYPE_DOMAIN (t) = index_type;
786
787 /* Store it in the hash table. */
788 *e = t;
789
790 /* Set the canonical type for this new node. */
791 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
792 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
793 SET_TYPE_STRUCTURAL_EQUALITY (t);
794 else if (TYPE_CANONICAL (elt_type) != elt_type
795 || (index_type
796 && TYPE_CANONICAL (index_type) != index_type))
797 TYPE_CANONICAL (t)
798 = build_cplus_array_type
799 (TYPE_CANONICAL (elt_type),
800 index_type ? TYPE_CANONICAL (index_type) : index_type);
801 else
802 TYPE_CANONICAL (t) = t;
803 }
804 }
805 else
806 {
807 if (!TYPE_STRUCTURAL_EQUALITY_P (elt_type)
808 && !(index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
809 && (TYPE_CANONICAL (elt_type) != elt_type
810 || (index_type && TYPE_CANONICAL (index_type) != index_type)))
811 /* Make sure that the canonical type is on the appropriate
812 variants list. */
813 build_cplus_array_type
814 (TYPE_CANONICAL (elt_type),
815 index_type ? TYPE_CANONICAL (index_type) : index_type);
816 t = build_array_type (elt_type, index_type);
817 }
818
819 /* Push these needs up so that initialization takes place
820 more easily. */
821 bool needs_ctor
822 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (elt_type));
823 TYPE_NEEDS_CONSTRUCTING (t) = needs_ctor;
824 bool needs_dtor
825 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (elt_type));
826 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t) = needs_dtor;
827
828 /* We want TYPE_MAIN_VARIANT of an array to strip cv-quals from the
829 element type as well, so fix it up if needed. */
830 if (elt_type != TYPE_MAIN_VARIANT (elt_type))
831 {
832 tree m = build_cplus_array_type (TYPE_MAIN_VARIANT (elt_type),
833 index_type);
834
835 if (TYPE_MAIN_VARIANT (t) != m)
836 {
837 if (COMPLETE_TYPE_P (TREE_TYPE (t)) && !COMPLETE_TYPE_P (m))
838 {
839 /* m was built before the element type was complete, so we
840 also need to copy the layout info from t. We might
841 end up doing this multiple times if t is an array of
842 unknown bound. */
843 tree size = TYPE_SIZE (t);
844 tree size_unit = TYPE_SIZE_UNIT (t);
845 unsigned int align = TYPE_ALIGN (t);
846 unsigned int user_align = TYPE_USER_ALIGN (t);
847 enum machine_mode mode = TYPE_MODE (t);
848 for (tree var = m; var; var = TYPE_NEXT_VARIANT (var))
849 {
850 TYPE_SIZE (var) = size;
851 TYPE_SIZE_UNIT (var) = size_unit;
852 TYPE_ALIGN (var) = align;
853 TYPE_USER_ALIGN (var) = user_align;
854 SET_TYPE_MODE (var, mode);
855 TYPE_NEEDS_CONSTRUCTING (var) = needs_ctor;
856 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (var) = needs_dtor;
857 }
858 }
859
860 TYPE_MAIN_VARIANT (t) = m;
861 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
862 TYPE_NEXT_VARIANT (m) = t;
863 }
864 }
865
866 /* Avoid spurious warnings with VLAs (c++/54583). */
867 if (TYPE_SIZE (t) && EXPR_P (TYPE_SIZE (t)))
868 TREE_NO_WARNING (TYPE_SIZE (t)) = 1;
869
870 return t;
871 }
872
873 /* Return an ARRAY_TYPE with element type ELT and length N. */
874
875 tree
876 build_array_of_n_type (tree elt, int n)
877 {
878 return build_cplus_array_type (elt, build_index_type (size_int (n - 1)));
879 }
880
881 /* True iff T is a C++1y array of runtime bound (VLA). */
882
883 bool
884 array_of_runtime_bound_p (tree t)
885 {
886 if (!t || TREE_CODE (t) != ARRAY_TYPE)
887 return false;
888 tree dom = TYPE_DOMAIN (t);
889 if (!dom)
890 return false;
891 tree max = TYPE_MAX_VALUE (dom);
892 return (!potential_rvalue_constant_expression (max)
893 || (!value_dependent_expression_p (max) && !TREE_CONSTANT (max)));
894 }
895
896 /* Return a reference type node referring to TO_TYPE. If RVAL is
897 true, return an rvalue reference type, otherwise return an lvalue
898 reference type. If a type node exists, reuse it, otherwise create
899 a new one. */
900 tree
901 cp_build_reference_type (tree to_type, bool rval)
902 {
903 tree lvalue_ref, t;
904 lvalue_ref = build_reference_type (to_type);
905 if (!rval)
906 return lvalue_ref;
907
908 /* This code to create rvalue reference types is based on and tied
909 to the code creating lvalue reference types in the middle-end
910 functions build_reference_type_for_mode and build_reference_type.
911
912 It works by putting the rvalue reference type nodes after the
913 lvalue reference nodes in the TYPE_NEXT_REF_TO linked list, so
914 they will effectively be ignored by the middle end. */
915
916 for (t = lvalue_ref; (t = TYPE_NEXT_REF_TO (t)); )
917 if (TYPE_REF_IS_RVALUE (t))
918 return t;
919
920 t = build_distinct_type_copy (lvalue_ref);
921
922 TYPE_REF_IS_RVALUE (t) = true;
923 TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (lvalue_ref);
924 TYPE_NEXT_REF_TO (lvalue_ref) = t;
925
926 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
927 SET_TYPE_STRUCTURAL_EQUALITY (t);
928 else if (TYPE_CANONICAL (to_type) != to_type)
929 TYPE_CANONICAL (t)
930 = cp_build_reference_type (TYPE_CANONICAL (to_type), rval);
931 else
932 TYPE_CANONICAL (t) = t;
933
934 layout_type (t);
935
936 return t;
937
938 }
939
940 /* Returns EXPR cast to rvalue reference type, like std::move. */
941
942 tree
943 move (tree expr)
944 {
945 tree type = TREE_TYPE (expr);
946 gcc_assert (TREE_CODE (type) != REFERENCE_TYPE);
947 type = cp_build_reference_type (type, /*rval*/true);
948 return build_static_cast (type, expr, tf_warning_or_error);
949 }
950
951 /* Used by the C++ front end to build qualified array types. However,
952 the C version of this function does not properly maintain canonical
953 types (which are not used in C). */
954 tree
955 c_build_qualified_type (tree type, int type_quals)
956 {
957 return cp_build_qualified_type (type, type_quals);
958 }
959
960 \f
961 /* Make a variant of TYPE, qualified with the TYPE_QUALS. Handles
962 arrays correctly. In particular, if TYPE is an array of T's, and
963 TYPE_QUALS is non-empty, returns an array of qualified T's.
964
965 FLAGS determines how to deal with ill-formed qualifications. If
966 tf_ignore_bad_quals is set, then bad qualifications are dropped
967 (this is permitted if TYPE was introduced via a typedef or template
968 type parameter). If bad qualifications are dropped and tf_warning
969 is set, then a warning is issued for non-const qualifications. If
970 tf_ignore_bad_quals is not set and tf_error is not set, we
971 return error_mark_node. Otherwise, we issue an error, and ignore
972 the qualifications.
973
974 Qualification of a reference type is valid when the reference came
975 via a typedef or template type argument. [dcl.ref] No such
976 dispensation is provided for qualifying a function type. [dcl.fct]
977 DR 295 queries this and the proposed resolution brings it into line
978 with qualifying a reference. We implement the DR. We also behave
979 in a similar manner for restricting non-pointer types. */
980
981 tree
982 cp_build_qualified_type_real (tree type,
983 int type_quals,
984 tsubst_flags_t complain)
985 {
986 tree result;
987 int bad_quals = TYPE_UNQUALIFIED;
988
989 if (type == error_mark_node)
990 return type;
991
992 if (type_quals == cp_type_quals (type))
993 return type;
994
995 if (TREE_CODE (type) == ARRAY_TYPE)
996 {
997 /* In C++, the qualification really applies to the array element
998 type. Obtain the appropriately qualified element type. */
999 tree t;
1000 tree element_type
1001 = cp_build_qualified_type_real (TREE_TYPE (type),
1002 type_quals,
1003 complain);
1004
1005 if (element_type == error_mark_node)
1006 return error_mark_node;
1007
1008 /* See if we already have an identically qualified type. Tests
1009 should be equivalent to those in check_qualified_type. */
1010 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
1011 if (TREE_TYPE (t) == element_type
1012 && TYPE_NAME (t) == TYPE_NAME (type)
1013 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
1014 && attribute_list_equal (TYPE_ATTRIBUTES (t),
1015 TYPE_ATTRIBUTES (type)))
1016 break;
1017
1018 if (!t)
1019 {
1020 t = build_cplus_array_type (element_type, TYPE_DOMAIN (type));
1021
1022 /* Keep the typedef name. */
1023 if (TYPE_NAME (t) != TYPE_NAME (type))
1024 {
1025 t = build_variant_type_copy (t);
1026 TYPE_NAME (t) = TYPE_NAME (type);
1027 }
1028 }
1029
1030 /* Even if we already had this variant, we update
1031 TYPE_NEEDS_CONSTRUCTING and TYPE_HAS_NONTRIVIAL_DESTRUCTOR in case
1032 they changed since the variant was originally created.
1033
1034 This seems hokey; if there is some way to use a previous
1035 variant *without* coming through here,
1036 TYPE_NEEDS_CONSTRUCTING will never be updated. */
1037 TYPE_NEEDS_CONSTRUCTING (t)
1038 = TYPE_NEEDS_CONSTRUCTING (TYPE_MAIN_VARIANT (element_type));
1039 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t)
1040 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TYPE_MAIN_VARIANT (element_type));
1041 return t;
1042 }
1043 else if (TYPE_PTRMEMFUNC_P (type))
1044 {
1045 /* For a pointer-to-member type, we can't just return a
1046 cv-qualified version of the RECORD_TYPE. If we do, we
1047 haven't changed the field that contains the actual pointer to
1048 a method, and so TYPE_PTRMEMFUNC_FN_TYPE will be wrong. */
1049 tree t;
1050
1051 t = TYPE_PTRMEMFUNC_FN_TYPE (type);
1052 t = cp_build_qualified_type_real (t, type_quals, complain);
1053 return build_ptrmemfunc_type (t);
1054 }
1055 else if (TREE_CODE (type) == TYPE_PACK_EXPANSION)
1056 {
1057 tree t = PACK_EXPANSION_PATTERN (type);
1058
1059 t = cp_build_qualified_type_real (t, type_quals, complain);
1060 return make_pack_expansion (t);
1061 }
1062
1063 /* A reference or method type shall not be cv-qualified.
1064 [dcl.ref], [dcl.fct]. This used to be an error, but as of DR 295
1065 (in CD1) we always ignore extra cv-quals on functions. */
1066 if (type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE)
1067 && (TREE_CODE (type) == REFERENCE_TYPE
1068 || TREE_CODE (type) == FUNCTION_TYPE
1069 || TREE_CODE (type) == METHOD_TYPE))
1070 {
1071 if (TREE_CODE (type) == REFERENCE_TYPE)
1072 bad_quals |= type_quals & (TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1073 type_quals &= ~(TYPE_QUAL_CONST | TYPE_QUAL_VOLATILE);
1074 }
1075
1076 /* But preserve any function-cv-quals on a FUNCTION_TYPE. */
1077 if (TREE_CODE (type) == FUNCTION_TYPE)
1078 type_quals |= type_memfn_quals (type);
1079
1080 /* A restrict-qualified type must be a pointer (or reference)
1081 to object or incomplete type. */
1082 if ((type_quals & TYPE_QUAL_RESTRICT)
1083 && TREE_CODE (type) != TEMPLATE_TYPE_PARM
1084 && TREE_CODE (type) != TYPENAME_TYPE
1085 && !POINTER_TYPE_P (type))
1086 {
1087 bad_quals |= TYPE_QUAL_RESTRICT;
1088 type_quals &= ~TYPE_QUAL_RESTRICT;
1089 }
1090
1091 if (bad_quals == TYPE_UNQUALIFIED
1092 || (complain & tf_ignore_bad_quals))
1093 /*OK*/;
1094 else if (!(complain & tf_error))
1095 return error_mark_node;
1096 else
1097 {
1098 tree bad_type = build_qualified_type (ptr_type_node, bad_quals);
1099 error ("%qV qualifiers cannot be applied to %qT",
1100 bad_type, type);
1101 }
1102
1103 /* Retrieve (or create) the appropriately qualified variant. */
1104 result = build_qualified_type (type, type_quals);
1105
1106 /* Preserve exception specs and ref-qualifier since build_qualified_type
1107 doesn't know about them. */
1108 if (TREE_CODE (result) == FUNCTION_TYPE
1109 || TREE_CODE (result) == METHOD_TYPE)
1110 {
1111 result = build_exception_variant (result, TYPE_RAISES_EXCEPTIONS (type));
1112 result = build_ref_qualified_type (result, type_memfn_rqual (type));
1113 }
1114
1115 /* If this was a pointer-to-method type, and we just made a copy,
1116 then we need to unshare the record that holds the cached
1117 pointer-to-member-function type, because these will be distinct
1118 between the unqualified and qualified types. */
1119 if (result != type
1120 && TYPE_PTR_P (type)
1121 && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE
1122 && TYPE_LANG_SPECIFIC (result) == TYPE_LANG_SPECIFIC (type))
1123 TYPE_LANG_SPECIFIC (result) = NULL;
1124
1125 /* We may also have ended up building a new copy of the canonical
1126 type of a pointer-to-method type, which could have the same
1127 sharing problem described above. */
1128 if (TYPE_CANONICAL (result) != TYPE_CANONICAL (type)
1129 && TYPE_PTR_P (type)
1130 && TREE_CODE (TREE_TYPE (type)) == METHOD_TYPE
1131 && (TYPE_LANG_SPECIFIC (TYPE_CANONICAL (result))
1132 == TYPE_LANG_SPECIFIC (TYPE_CANONICAL (type))))
1133 TYPE_LANG_SPECIFIC (TYPE_CANONICAL (result)) = NULL;
1134
1135 return result;
1136 }
1137
1138 /* Return TYPE with const and volatile removed. */
1139
1140 tree
1141 cv_unqualified (tree type)
1142 {
1143 int quals;
1144
1145 if (type == error_mark_node)
1146 return type;
1147
1148 quals = cp_type_quals (type);
1149 quals &= ~(TYPE_QUAL_CONST|TYPE_QUAL_VOLATILE);
1150 return cp_build_qualified_type (type, quals);
1151 }
1152
1153 /* Builds a qualified variant of T that is not a typedef variant.
1154 E.g. consider the following declarations:
1155 typedef const int ConstInt;
1156 typedef ConstInt* PtrConstInt;
1157 If T is PtrConstInt, this function returns a type representing
1158 const int*.
1159 In other words, if T is a typedef, the function returns the underlying type.
1160 The cv-qualification and attributes of the type returned match the
1161 input type.
1162 They will always be compatible types.
1163 The returned type is built so that all of its subtypes
1164 recursively have their typedefs stripped as well.
1165
1166 This is different from just returning TYPE_CANONICAL (T)
1167 Because of several reasons:
1168 * If T is a type that needs structural equality
1169 its TYPE_CANONICAL (T) will be NULL.
1170 * TYPE_CANONICAL (T) desn't carry type attributes
1171 and loses template parameter names. */
1172
1173 tree
1174 strip_typedefs (tree t)
1175 {
1176 tree result = NULL, type = NULL, t0 = NULL;
1177
1178 if (!t || t == error_mark_node || t == TYPE_CANONICAL (t))
1179 return t;
1180
1181 gcc_assert (TYPE_P (t));
1182
1183 switch (TREE_CODE (t))
1184 {
1185 case POINTER_TYPE:
1186 type = strip_typedefs (TREE_TYPE (t));
1187 result = build_pointer_type (type);
1188 break;
1189 case REFERENCE_TYPE:
1190 type = strip_typedefs (TREE_TYPE (t));
1191 result = cp_build_reference_type (type, TYPE_REF_IS_RVALUE (t));
1192 break;
1193 case OFFSET_TYPE:
1194 t0 = strip_typedefs (TYPE_OFFSET_BASETYPE (t));
1195 type = strip_typedefs (TREE_TYPE (t));
1196 result = build_offset_type (t0, type);
1197 break;
1198 case RECORD_TYPE:
1199 if (TYPE_PTRMEMFUNC_P (t))
1200 {
1201 t0 = strip_typedefs (TYPE_PTRMEMFUNC_FN_TYPE (t));
1202 result = build_ptrmemfunc_type (t0);
1203 }
1204 break;
1205 case ARRAY_TYPE:
1206 type = strip_typedefs (TREE_TYPE (t));
1207 t0 = strip_typedefs (TYPE_DOMAIN (t));;
1208 result = build_cplus_array_type (type, t0);
1209 break;
1210 case FUNCTION_TYPE:
1211 case METHOD_TYPE:
1212 {
1213 tree arg_types = NULL, arg_node, arg_type;
1214 for (arg_node = TYPE_ARG_TYPES (t);
1215 arg_node;
1216 arg_node = TREE_CHAIN (arg_node))
1217 {
1218 if (arg_node == void_list_node)
1219 break;
1220 arg_type = strip_typedefs (TREE_VALUE (arg_node));
1221 gcc_assert (arg_type);
1222
1223 arg_types =
1224 tree_cons (TREE_PURPOSE (arg_node), arg_type, arg_types);
1225 }
1226
1227 if (arg_types)
1228 arg_types = nreverse (arg_types);
1229
1230 /* A list of parameters not ending with an ellipsis
1231 must end with void_list_node. */
1232 if (arg_node)
1233 arg_types = chainon (arg_types, void_list_node);
1234
1235 type = strip_typedefs (TREE_TYPE (t));
1236 if (TREE_CODE (t) == METHOD_TYPE)
1237 {
1238 tree class_type = TREE_TYPE (TREE_VALUE (arg_types));
1239 gcc_assert (class_type);
1240 result =
1241 build_method_type_directly (class_type, type,
1242 TREE_CHAIN (arg_types));
1243 result
1244 = build_ref_qualified_type (result, type_memfn_rqual (t));
1245 }
1246 else
1247 {
1248 result = build_function_type (type,
1249 arg_types);
1250 result = apply_memfn_quals (result,
1251 type_memfn_quals (t),
1252 type_memfn_rqual (t));
1253 }
1254
1255 if (TYPE_RAISES_EXCEPTIONS (t))
1256 result = build_exception_variant (result,
1257 TYPE_RAISES_EXCEPTIONS (t));
1258 }
1259 break;
1260 case TYPENAME_TYPE:
1261 {
1262 tree fullname = TYPENAME_TYPE_FULLNAME (t);
1263 if (TREE_CODE (fullname) == TEMPLATE_ID_EXPR
1264 && TREE_OPERAND (fullname, 1))
1265 {
1266 tree args = TREE_OPERAND (fullname, 1);
1267 tree new_args = copy_node (args);
1268 bool changed = false;
1269 for (int i = 0; i < TREE_VEC_LENGTH (args); ++i)
1270 {
1271 tree arg = TREE_VEC_ELT (args, i);
1272 tree strip_arg;
1273 if (TYPE_P (arg))
1274 strip_arg = strip_typedefs (arg);
1275 else
1276 strip_arg = strip_typedefs_expr (arg);
1277 TREE_VEC_ELT (new_args, i) = strip_arg;
1278 if (strip_arg != arg)
1279 changed = true;
1280 }
1281 if (changed)
1282 {
1283 NON_DEFAULT_TEMPLATE_ARGS_COUNT (new_args)
1284 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (args);
1285 fullname
1286 = lookup_template_function (TREE_OPERAND (fullname, 0),
1287 new_args);
1288 }
1289 else
1290 ggc_free (new_args);
1291 }
1292 result = make_typename_type (strip_typedefs (TYPE_CONTEXT (t)),
1293 fullname, typename_type, tf_none);
1294 }
1295 break;
1296 case DECLTYPE_TYPE:
1297 result = strip_typedefs_expr (DECLTYPE_TYPE_EXPR (t));
1298 if (result == DECLTYPE_TYPE_EXPR (t))
1299 return t;
1300 else
1301 result = (finish_decltype_type
1302 (result,
1303 DECLTYPE_TYPE_ID_EXPR_OR_MEMBER_ACCESS_P (t),
1304 tf_none));
1305 break;
1306 default:
1307 break;
1308 }
1309
1310 if (!result)
1311 result = TYPE_MAIN_VARIANT (t);
1312 if (TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (result)
1313 || TYPE_ALIGN (t) != TYPE_ALIGN (result))
1314 {
1315 gcc_assert (TYPE_USER_ALIGN (t));
1316 if (TYPE_ALIGN (t) == TYPE_ALIGN (result))
1317 result = build_variant_type_copy (result);
1318 else
1319 result = build_aligned_type (result, TYPE_ALIGN (t));
1320 TYPE_USER_ALIGN (result) = true;
1321 }
1322 if (TYPE_ATTRIBUTES (t))
1323 result = cp_build_type_attribute_variant (result, TYPE_ATTRIBUTES (t));
1324 return cp_build_qualified_type (result, cp_type_quals (t));
1325 }
1326
1327 /* Like strip_typedefs above, but works on expressions, so that in
1328
1329 template<class T> struct A
1330 {
1331 typedef T TT;
1332 B<sizeof(TT)> b;
1333 };
1334
1335 sizeof(TT) is replaced by sizeof(T). */
1336
1337 tree
1338 strip_typedefs_expr (tree t)
1339 {
1340 unsigned i,n;
1341 tree r, type, *ops;
1342 enum tree_code code;
1343
1344 if (t == NULL_TREE || t == error_mark_node)
1345 return t;
1346
1347 if (DECL_P (t) || CONSTANT_CLASS_P (t))
1348 return t;
1349
1350 /* Some expressions have type operands, so let's handle types here rather
1351 than check TYPE_P in multiple places below. */
1352 if (TYPE_P (t))
1353 return strip_typedefs (t);
1354
1355 code = TREE_CODE (t);
1356 switch (code)
1357 {
1358 case IDENTIFIER_NODE:
1359 case TEMPLATE_PARM_INDEX:
1360 case OVERLOAD:
1361 case BASELINK:
1362 case ARGUMENT_PACK_SELECT:
1363 return t;
1364
1365 case TRAIT_EXPR:
1366 {
1367 tree type1 = strip_typedefs (TRAIT_EXPR_TYPE1 (t));
1368 tree type2 = strip_typedefs (TRAIT_EXPR_TYPE2 (t));
1369 if (type1 == TRAIT_EXPR_TYPE1 (t)
1370 && type2 == TRAIT_EXPR_TYPE2 (t))
1371 return t;
1372 r = copy_node (t);
1373 TRAIT_EXPR_TYPE1 (t) = type1;
1374 TRAIT_EXPR_TYPE2 (t) = type2;
1375 return r;
1376 }
1377
1378 case TREE_LIST:
1379 {
1380 vec<tree, va_gc> *vec = make_tree_vector ();
1381 bool changed = false;
1382 tree it;
1383 for (it = t; it; it = TREE_CHAIN (it))
1384 {
1385 tree val = strip_typedefs_expr (TREE_VALUE (t));
1386 vec_safe_push (vec, val);
1387 if (val != TREE_VALUE (t))
1388 changed = true;
1389 gcc_assert (TREE_PURPOSE (it) == NULL_TREE);
1390 }
1391 if (changed)
1392 {
1393 r = NULL_TREE;
1394 FOR_EACH_VEC_ELT_REVERSE (*vec, i, it)
1395 r = tree_cons (NULL_TREE, it, r);
1396 }
1397 else
1398 r = t;
1399 release_tree_vector (vec);
1400 return r;
1401 }
1402
1403 case TREE_VEC:
1404 {
1405 bool changed = false;
1406 vec<tree, va_gc> *vec = make_tree_vector ();
1407 n = TREE_VEC_LENGTH (t);
1408 vec_safe_reserve (vec, n);
1409 for (i = 0; i < n; ++i)
1410 {
1411 tree op = strip_typedefs_expr (TREE_VEC_ELT (t, i));
1412 vec->quick_push (op);
1413 if (op != TREE_VEC_ELT (t, i))
1414 changed = true;
1415 }
1416 if (changed)
1417 {
1418 r = copy_node (t);
1419 for (i = 0; i < n; ++i)
1420 TREE_VEC_ELT (r, i) = (*vec)[i];
1421 NON_DEFAULT_TEMPLATE_ARGS_COUNT (r)
1422 = NON_DEFAULT_TEMPLATE_ARGS_COUNT (t);
1423 }
1424 else
1425 r = t;
1426 release_tree_vector (vec);
1427 return r;
1428 }
1429
1430 case CONSTRUCTOR:
1431 {
1432 bool changed = false;
1433 vec<constructor_elt, va_gc> *vec
1434 = vec_safe_copy (CONSTRUCTOR_ELTS (t));
1435 n = CONSTRUCTOR_NELTS (t);
1436 type = strip_typedefs (TREE_TYPE (t));
1437 for (i = 0; i < n; ++i)
1438 {
1439 constructor_elt *e = &(*vec)[i];
1440 tree op = strip_typedefs_expr (e->value);
1441 if (op != e->value)
1442 {
1443 changed = true;
1444 e->value = op;
1445 }
1446 gcc_checking_assert (e->index == strip_typedefs_expr (e->index));
1447 }
1448
1449 if (!changed && type == TREE_TYPE (t))
1450 {
1451 vec_free (vec);
1452 return t;
1453 }
1454 else
1455 {
1456 r = copy_node (t);
1457 TREE_TYPE (r) = type;
1458 CONSTRUCTOR_ELTS (r) = vec;
1459 return r;
1460 }
1461 }
1462
1463 case LAMBDA_EXPR:
1464 error ("lambda-expression in a constant expression");
1465 return error_mark_node;
1466
1467 default:
1468 break;
1469 }
1470
1471 gcc_assert (EXPR_P (t));
1472
1473 n = TREE_OPERAND_LENGTH (t);
1474 ops = XALLOCAVEC (tree, n);
1475 type = TREE_TYPE (t);
1476
1477 switch (code)
1478 {
1479 CASE_CONVERT:
1480 case IMPLICIT_CONV_EXPR:
1481 case DYNAMIC_CAST_EXPR:
1482 case STATIC_CAST_EXPR:
1483 case CONST_CAST_EXPR:
1484 case REINTERPRET_CAST_EXPR:
1485 case CAST_EXPR:
1486 case NEW_EXPR:
1487 type = strip_typedefs (type);
1488 /* fallthrough */
1489
1490 default:
1491 for (i = 0; i < n; ++i)
1492 ops[i] = strip_typedefs_expr (TREE_OPERAND (t, i));
1493 break;
1494 }
1495
1496 /* If nothing changed, return t. */
1497 for (i = 0; i < n; ++i)
1498 if (ops[i] != TREE_OPERAND (t, i))
1499 break;
1500 if (i == n && type == TREE_TYPE (t))
1501 return t;
1502
1503 r = copy_node (t);
1504 TREE_TYPE (r) = type;
1505 for (i = 0; i < n; ++i)
1506 TREE_OPERAND (r, i) = ops[i];
1507 return r;
1508 }
1509
1510 /* Makes a copy of BINFO and TYPE, which is to be inherited into a
1511 graph dominated by T. If BINFO is NULL, TYPE is a dependent base,
1512 and we do a shallow copy. If BINFO is non-NULL, we do a deep copy.
1513 VIRT indicates whether TYPE is inherited virtually or not.
1514 IGO_PREV points at the previous binfo of the inheritance graph
1515 order chain. The newly copied binfo's TREE_CHAIN forms this
1516 ordering.
1517
1518 The CLASSTYPE_VBASECLASSES vector of T is constructed in the
1519 correct order. That is in the order the bases themselves should be
1520 constructed in.
1521
1522 The BINFO_INHERITANCE of a virtual base class points to the binfo
1523 of the most derived type. ??? We could probably change this so that
1524 BINFO_INHERITANCE becomes synonymous with BINFO_PRIMARY, and hence
1525 remove a field. They currently can only differ for primary virtual
1526 virtual bases. */
1527
1528 tree
1529 copy_binfo (tree binfo, tree type, tree t, tree *igo_prev, int virt)
1530 {
1531 tree new_binfo;
1532
1533 if (virt)
1534 {
1535 /* See if we've already made this virtual base. */
1536 new_binfo = binfo_for_vbase (type, t);
1537 if (new_binfo)
1538 return new_binfo;
1539 }
1540
1541 new_binfo = make_tree_binfo (binfo ? BINFO_N_BASE_BINFOS (binfo) : 0);
1542 BINFO_TYPE (new_binfo) = type;
1543
1544 /* Chain it into the inheritance graph. */
1545 TREE_CHAIN (*igo_prev) = new_binfo;
1546 *igo_prev = new_binfo;
1547
1548 if (binfo && !BINFO_DEPENDENT_BASE_P (binfo))
1549 {
1550 int ix;
1551 tree base_binfo;
1552
1553 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo), type));
1554
1555 BINFO_OFFSET (new_binfo) = BINFO_OFFSET (binfo);
1556 BINFO_VIRTUALS (new_binfo) = BINFO_VIRTUALS (binfo);
1557
1558 /* We do not need to copy the accesses, as they are read only. */
1559 BINFO_BASE_ACCESSES (new_binfo) = BINFO_BASE_ACCESSES (binfo);
1560
1561 /* Recursively copy base binfos of BINFO. */
1562 for (ix = 0; BINFO_BASE_ITERATE (binfo, ix, base_binfo); ix++)
1563 {
1564 tree new_base_binfo;
1565 new_base_binfo = copy_binfo (base_binfo, BINFO_TYPE (base_binfo),
1566 t, igo_prev,
1567 BINFO_VIRTUAL_P (base_binfo));
1568
1569 if (!BINFO_INHERITANCE_CHAIN (new_base_binfo))
1570 BINFO_INHERITANCE_CHAIN (new_base_binfo) = new_binfo;
1571 BINFO_BASE_APPEND (new_binfo, new_base_binfo);
1572 }
1573 }
1574 else
1575 BINFO_DEPENDENT_BASE_P (new_binfo) = 1;
1576
1577 if (virt)
1578 {
1579 /* Push it onto the list after any virtual bases it contains
1580 will have been pushed. */
1581 CLASSTYPE_VBASECLASSES (t)->quick_push (new_binfo);
1582 BINFO_VIRTUAL_P (new_binfo) = 1;
1583 BINFO_INHERITANCE_CHAIN (new_binfo) = TYPE_BINFO (t);
1584 }
1585
1586 return new_binfo;
1587 }
1588 \f
1589 /* Hashing of lists so that we don't make duplicates.
1590 The entry point is `list_hash_canon'. */
1591
1592 /* Now here is the hash table. When recording a list, it is added
1593 to the slot whose index is the hash code mod the table size.
1594 Note that the hash table is used for several kinds of lists.
1595 While all these live in the same table, they are completely independent,
1596 and the hash code is computed differently for each of these. */
1597
1598 static GTY ((param_is (union tree_node))) htab_t list_hash_table;
1599
1600 struct list_proxy
1601 {
1602 tree purpose;
1603 tree value;
1604 tree chain;
1605 };
1606
1607 /* Compare ENTRY (an entry in the hash table) with DATA (a list_proxy
1608 for a node we are thinking about adding). */
1609
1610 static int
1611 list_hash_eq (const void* entry, const void* data)
1612 {
1613 const_tree const t = (const_tree) entry;
1614 const struct list_proxy *const proxy = (const struct list_proxy *) data;
1615
1616 return (TREE_VALUE (t) == proxy->value
1617 && TREE_PURPOSE (t) == proxy->purpose
1618 && TREE_CHAIN (t) == proxy->chain);
1619 }
1620
1621 /* Compute a hash code for a list (chain of TREE_LIST nodes
1622 with goodies in the TREE_PURPOSE, TREE_VALUE, and bits of the
1623 TREE_COMMON slots), by adding the hash codes of the individual entries. */
1624
1625 static hashval_t
1626 list_hash_pieces (tree purpose, tree value, tree chain)
1627 {
1628 hashval_t hashcode = 0;
1629
1630 if (chain)
1631 hashcode += TREE_HASH (chain);
1632
1633 if (value)
1634 hashcode += TREE_HASH (value);
1635 else
1636 hashcode += 1007;
1637 if (purpose)
1638 hashcode += TREE_HASH (purpose);
1639 else
1640 hashcode += 1009;
1641 return hashcode;
1642 }
1643
1644 /* Hash an already existing TREE_LIST. */
1645
1646 static hashval_t
1647 list_hash (const void* p)
1648 {
1649 const_tree const t = (const_tree) p;
1650 return list_hash_pieces (TREE_PURPOSE (t),
1651 TREE_VALUE (t),
1652 TREE_CHAIN (t));
1653 }
1654
1655 /* Given list components PURPOSE, VALUE, AND CHAIN, return the canonical
1656 object for an identical list if one already exists. Otherwise, build a
1657 new one, and record it as the canonical object. */
1658
1659 tree
1660 hash_tree_cons (tree purpose, tree value, tree chain)
1661 {
1662 int hashcode = 0;
1663 void **slot;
1664 struct list_proxy proxy;
1665
1666 /* Hash the list node. */
1667 hashcode = list_hash_pieces (purpose, value, chain);
1668 /* Create a proxy for the TREE_LIST we would like to create. We
1669 don't actually create it so as to avoid creating garbage. */
1670 proxy.purpose = purpose;
1671 proxy.value = value;
1672 proxy.chain = chain;
1673 /* See if it is already in the table. */
1674 slot = htab_find_slot_with_hash (list_hash_table, &proxy, hashcode,
1675 INSERT);
1676 /* If not, create a new node. */
1677 if (!*slot)
1678 *slot = tree_cons (purpose, value, chain);
1679 return (tree) *slot;
1680 }
1681
1682 /* Constructor for hashed lists. */
1683
1684 tree
1685 hash_tree_chain (tree value, tree chain)
1686 {
1687 return hash_tree_cons (NULL_TREE, value, chain);
1688 }
1689 \f
1690 void
1691 debug_binfo (tree elem)
1692 {
1693 HOST_WIDE_INT n;
1694 tree virtuals;
1695
1696 fprintf (stderr, "type \"%s\", offset = " HOST_WIDE_INT_PRINT_DEC
1697 "\nvtable type:\n",
1698 TYPE_NAME_STRING (BINFO_TYPE (elem)),
1699 TREE_INT_CST_LOW (BINFO_OFFSET (elem)));
1700 debug_tree (BINFO_TYPE (elem));
1701 if (BINFO_VTABLE (elem))
1702 fprintf (stderr, "vtable decl \"%s\"\n",
1703 IDENTIFIER_POINTER (DECL_NAME (get_vtbl_decl_for_binfo (elem))));
1704 else
1705 fprintf (stderr, "no vtable decl yet\n");
1706 fprintf (stderr, "virtuals:\n");
1707 virtuals = BINFO_VIRTUALS (elem);
1708 n = 0;
1709
1710 while (virtuals)
1711 {
1712 tree fndecl = TREE_VALUE (virtuals);
1713 fprintf (stderr, "%s [%ld =? %ld]\n",
1714 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (fndecl)),
1715 (long) n, (long) TREE_INT_CST_LOW (DECL_VINDEX (fndecl)));
1716 ++n;
1717 virtuals = TREE_CHAIN (virtuals);
1718 }
1719 }
1720
1721 /* Build a representation for the qualified name SCOPE::NAME. TYPE is
1722 the type of the result expression, if known, or NULL_TREE if the
1723 resulting expression is type-dependent. If TEMPLATE_P is true,
1724 NAME is known to be a template because the user explicitly used the
1725 "template" keyword after the "::".
1726
1727 All SCOPE_REFs should be built by use of this function. */
1728
1729 tree
1730 build_qualified_name (tree type, tree scope, tree name, bool template_p)
1731 {
1732 tree t;
1733 if (type == error_mark_node
1734 || scope == error_mark_node
1735 || name == error_mark_node)
1736 return error_mark_node;
1737 t = build2 (SCOPE_REF, type, scope, name);
1738 QUALIFIED_NAME_IS_TEMPLATE (t) = template_p;
1739 PTRMEM_OK_P (t) = true;
1740 if (type)
1741 t = convert_from_reference (t);
1742 return t;
1743 }
1744
1745 /* Like check_qualified_type, but also check ref-qualifier and exception
1746 specification. */
1747
1748 static bool
1749 cp_check_qualified_type (const_tree cand, const_tree base, int type_quals,
1750 cp_ref_qualifier rqual, tree raises)
1751 {
1752 return (check_qualified_type (cand, base, type_quals)
1753 && comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (cand),
1754 ce_exact)
1755 && type_memfn_rqual (cand) == rqual);
1756 }
1757
1758 /* Build the FUNCTION_TYPE or METHOD_TYPE with the ref-qualifier RQUAL. */
1759
1760 tree
1761 build_ref_qualified_type (tree type, cp_ref_qualifier rqual)
1762 {
1763 tree t;
1764
1765 if (rqual == type_memfn_rqual (type))
1766 return type;
1767
1768 int type_quals = TYPE_QUALS (type);
1769 tree raises = TYPE_RAISES_EXCEPTIONS (type);
1770 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
1771 if (cp_check_qualified_type (t, type, type_quals, rqual, raises))
1772 return t;
1773
1774 t = build_variant_type_copy (type);
1775 switch (rqual)
1776 {
1777 case REF_QUAL_RVALUE:
1778 FUNCTION_RVALUE_QUALIFIED (t) = 1;
1779 FUNCTION_REF_QUALIFIED (t) = 1;
1780 break;
1781 case REF_QUAL_LVALUE:
1782 FUNCTION_RVALUE_QUALIFIED (t) = 0;
1783 FUNCTION_REF_QUALIFIED (t) = 1;
1784 break;
1785 default:
1786 FUNCTION_REF_QUALIFIED (t) = 0;
1787 break;
1788 }
1789
1790 if (TYPE_STRUCTURAL_EQUALITY_P (type))
1791 /* Propagate structural equality. */
1792 SET_TYPE_STRUCTURAL_EQUALITY (t);
1793 else if (TYPE_CANONICAL (type) != type)
1794 /* Build the underlying canonical type, since it is different
1795 from TYPE. */
1796 TYPE_CANONICAL (t) = build_ref_qualified_type (TYPE_CANONICAL (type),
1797 rqual);
1798 else
1799 /* T is its own canonical type. */
1800 TYPE_CANONICAL (t) = t;
1801
1802 return t;
1803 }
1804
1805 /* Returns nonzero if X is an expression for a (possibly overloaded)
1806 function. If "f" is a function or function template, "f", "c->f",
1807 "c.f", "C::f", and "f<int>" will all be considered possibly
1808 overloaded functions. Returns 2 if the function is actually
1809 overloaded, i.e., if it is impossible to know the type of the
1810 function without performing overload resolution. */
1811
1812 int
1813 is_overloaded_fn (tree x)
1814 {
1815 /* A baselink is also considered an overloaded function. */
1816 if (TREE_CODE (x) == OFFSET_REF
1817 || TREE_CODE (x) == COMPONENT_REF)
1818 x = TREE_OPERAND (x, 1);
1819 if (BASELINK_P (x))
1820 x = BASELINK_FUNCTIONS (x);
1821 if (TREE_CODE (x) == TEMPLATE_ID_EXPR)
1822 x = TREE_OPERAND (x, 0);
1823 if (DECL_FUNCTION_TEMPLATE_P (OVL_CURRENT (x))
1824 || (TREE_CODE (x) == OVERLOAD && OVL_CHAIN (x)))
1825 return 2;
1826 return (TREE_CODE (x) == FUNCTION_DECL
1827 || TREE_CODE (x) == OVERLOAD);
1828 }
1829
1830 /* X is the CALL_EXPR_FN of a CALL_EXPR. If X represents a dependent name
1831 (14.6.2), return the IDENTIFIER_NODE for that name. Otherwise, return
1832 NULL_TREE. */
1833
1834 tree
1835 dependent_name (tree x)
1836 {
1837 if (identifier_p (x))
1838 return x;
1839 if (TREE_CODE (x) != COMPONENT_REF
1840 && TREE_CODE (x) != OFFSET_REF
1841 && TREE_CODE (x) != BASELINK
1842 && is_overloaded_fn (x))
1843 return DECL_NAME (get_first_fn (x));
1844 return NULL_TREE;
1845 }
1846
1847 /* Returns true iff X is an expression for an overloaded function
1848 whose type cannot be known without performing overload
1849 resolution. */
1850
1851 bool
1852 really_overloaded_fn (tree x)
1853 {
1854 return is_overloaded_fn (x) == 2;
1855 }
1856
1857 tree
1858 get_fns (tree from)
1859 {
1860 gcc_assert (is_overloaded_fn (from));
1861 /* A baselink is also considered an overloaded function. */
1862 if (TREE_CODE (from) == OFFSET_REF
1863 || TREE_CODE (from) == COMPONENT_REF)
1864 from = TREE_OPERAND (from, 1);
1865 if (BASELINK_P (from))
1866 from = BASELINK_FUNCTIONS (from);
1867 if (TREE_CODE (from) == TEMPLATE_ID_EXPR)
1868 from = TREE_OPERAND (from, 0);
1869 return from;
1870 }
1871
1872 tree
1873 get_first_fn (tree from)
1874 {
1875 return OVL_CURRENT (get_fns (from));
1876 }
1877
1878 /* Return a new OVL node, concatenating it with the old one. */
1879
1880 tree
1881 ovl_cons (tree decl, tree chain)
1882 {
1883 tree result = make_node (OVERLOAD);
1884 TREE_TYPE (result) = unknown_type_node;
1885 OVL_FUNCTION (result) = decl;
1886 TREE_CHAIN (result) = chain;
1887
1888 return result;
1889 }
1890
1891 /* Build a new overloaded function. If this is the first one,
1892 just return it; otherwise, ovl_cons the _DECLs */
1893
1894 tree
1895 build_overload (tree decl, tree chain)
1896 {
1897 if (! chain && TREE_CODE (decl) != TEMPLATE_DECL)
1898 return decl;
1899 return ovl_cons (decl, chain);
1900 }
1901
1902 /* Return the scope where the overloaded functions OVL were found. */
1903
1904 tree
1905 ovl_scope (tree ovl)
1906 {
1907 if (TREE_CODE (ovl) == OFFSET_REF
1908 || TREE_CODE (ovl) == COMPONENT_REF)
1909 ovl = TREE_OPERAND (ovl, 1);
1910 if (TREE_CODE (ovl) == BASELINK)
1911 return BINFO_TYPE (BASELINK_BINFO (ovl));
1912 if (TREE_CODE (ovl) == TEMPLATE_ID_EXPR)
1913 ovl = TREE_OPERAND (ovl, 0);
1914 /* Skip using-declarations. */
1915 while (TREE_CODE (ovl) == OVERLOAD && OVL_USED (ovl) && OVL_CHAIN (ovl))
1916 ovl = OVL_CHAIN (ovl);
1917 return CP_DECL_CONTEXT (OVL_CURRENT (ovl));
1918 }
1919
1920 /* Return TRUE if FN is a non-static member function, FALSE otherwise.
1921 This function looks into BASELINK and OVERLOAD nodes. */
1922
1923 bool
1924 non_static_member_function_p (tree fn)
1925 {
1926 if (fn == NULL_TREE)
1927 return false;
1928
1929 if (is_overloaded_fn (fn))
1930 fn = get_first_fn (fn);
1931
1932 return (DECL_P (fn)
1933 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn));
1934 }
1935
1936 \f
1937 #define PRINT_RING_SIZE 4
1938
1939 static const char *
1940 cxx_printable_name_internal (tree decl, int v, bool translate)
1941 {
1942 static unsigned int uid_ring[PRINT_RING_SIZE];
1943 static char *print_ring[PRINT_RING_SIZE];
1944 static bool trans_ring[PRINT_RING_SIZE];
1945 static int ring_counter;
1946 int i;
1947
1948 /* Only cache functions. */
1949 if (v < 2
1950 || TREE_CODE (decl) != FUNCTION_DECL
1951 || DECL_LANG_SPECIFIC (decl) == 0)
1952 return lang_decl_name (decl, v, translate);
1953
1954 /* See if this print name is lying around. */
1955 for (i = 0; i < PRINT_RING_SIZE; i++)
1956 if (uid_ring[i] == DECL_UID (decl) && translate == trans_ring[i])
1957 /* yes, so return it. */
1958 return print_ring[i];
1959
1960 if (++ring_counter == PRINT_RING_SIZE)
1961 ring_counter = 0;
1962
1963 if (current_function_decl != NULL_TREE)
1964 {
1965 /* There may be both translated and untranslated versions of the
1966 name cached. */
1967 for (i = 0; i < 2; i++)
1968 {
1969 if (uid_ring[ring_counter] == DECL_UID (current_function_decl))
1970 ring_counter += 1;
1971 if (ring_counter == PRINT_RING_SIZE)
1972 ring_counter = 0;
1973 }
1974 gcc_assert (uid_ring[ring_counter] != DECL_UID (current_function_decl));
1975 }
1976
1977 free (print_ring[ring_counter]);
1978
1979 print_ring[ring_counter] = xstrdup (lang_decl_name (decl, v, translate));
1980 uid_ring[ring_counter] = DECL_UID (decl);
1981 trans_ring[ring_counter] = translate;
1982 return print_ring[ring_counter];
1983 }
1984
1985 const char *
1986 cxx_printable_name (tree decl, int v)
1987 {
1988 return cxx_printable_name_internal (decl, v, false);
1989 }
1990
1991 const char *
1992 cxx_printable_name_translate (tree decl, int v)
1993 {
1994 return cxx_printable_name_internal (decl, v, true);
1995 }
1996 \f
1997 /* Build the FUNCTION_TYPE or METHOD_TYPE which may throw exceptions
1998 listed in RAISES. */
1999
2000 tree
2001 build_exception_variant (tree type, tree raises)
2002 {
2003 tree v;
2004 int type_quals;
2005
2006 if (comp_except_specs (raises, TYPE_RAISES_EXCEPTIONS (type), ce_exact))
2007 return type;
2008
2009 type_quals = TYPE_QUALS (type);
2010 cp_ref_qualifier rqual = type_memfn_rqual (type);
2011 for (v = TYPE_MAIN_VARIANT (type); v; v = TYPE_NEXT_VARIANT (v))
2012 if (cp_check_qualified_type (v, type, type_quals, rqual, raises))
2013 return v;
2014
2015 /* Need to build a new variant. */
2016 v = build_variant_type_copy (type);
2017 TYPE_RAISES_EXCEPTIONS (v) = raises;
2018 return v;
2019 }
2020
2021 /* Given a TEMPLATE_TEMPLATE_PARM node T, create a new
2022 BOUND_TEMPLATE_TEMPLATE_PARM bound with NEWARGS as its template
2023 arguments. */
2024
2025 tree
2026 bind_template_template_parm (tree t, tree newargs)
2027 {
2028 tree decl = TYPE_NAME (t);
2029 tree t2;
2030
2031 t2 = cxx_make_type (BOUND_TEMPLATE_TEMPLATE_PARM);
2032 decl = build_decl (input_location,
2033 TYPE_DECL, DECL_NAME (decl), NULL_TREE);
2034
2035 /* These nodes have to be created to reflect new TYPE_DECL and template
2036 arguments. */
2037 TEMPLATE_TYPE_PARM_INDEX (t2) = copy_node (TEMPLATE_TYPE_PARM_INDEX (t));
2038 TEMPLATE_PARM_DECL (TEMPLATE_TYPE_PARM_INDEX (t2)) = decl;
2039 TEMPLATE_TEMPLATE_PARM_TEMPLATE_INFO (t2)
2040 = build_template_info (TEMPLATE_TEMPLATE_PARM_TEMPLATE_DECL (t), newargs);
2041
2042 TREE_TYPE (decl) = t2;
2043 TYPE_NAME (t2) = decl;
2044 TYPE_STUB_DECL (t2) = decl;
2045 TYPE_SIZE (t2) = 0;
2046 SET_TYPE_STRUCTURAL_EQUALITY (t2);
2047
2048 return t2;
2049 }
2050
2051 /* Called from count_trees via walk_tree. */
2052
2053 static tree
2054 count_trees_r (tree *tp, int *walk_subtrees, void *data)
2055 {
2056 ++*((int *) data);
2057
2058 if (TYPE_P (*tp))
2059 *walk_subtrees = 0;
2060
2061 return NULL_TREE;
2062 }
2063
2064 /* Debugging function for measuring the rough complexity of a tree
2065 representation. */
2066
2067 int
2068 count_trees (tree t)
2069 {
2070 int n_trees = 0;
2071 cp_walk_tree_without_duplicates (&t, count_trees_r, &n_trees);
2072 return n_trees;
2073 }
2074
2075 /* Called from verify_stmt_tree via walk_tree. */
2076
2077 static tree
2078 verify_stmt_tree_r (tree* tp, int * /*walk_subtrees*/, void* data)
2079 {
2080 tree t = *tp;
2081 hash_table <pointer_hash <tree_node> > *statements
2082 = static_cast <hash_table <pointer_hash <tree_node> > *> (data);
2083 tree_node **slot;
2084
2085 if (!STATEMENT_CODE_P (TREE_CODE (t)))
2086 return NULL_TREE;
2087
2088 /* If this statement is already present in the hash table, then
2089 there is a circularity in the statement tree. */
2090 gcc_assert (!statements->find (t));
2091
2092 slot = statements->find_slot (t, INSERT);
2093 *slot = t;
2094
2095 return NULL_TREE;
2096 }
2097
2098 /* Debugging function to check that the statement T has not been
2099 corrupted. For now, this function simply checks that T contains no
2100 circularities. */
2101
2102 void
2103 verify_stmt_tree (tree t)
2104 {
2105 hash_table <pointer_hash <tree_node> > statements;
2106 statements.create (37);
2107 cp_walk_tree (&t, verify_stmt_tree_r, &statements, NULL);
2108 statements.dispose ();
2109 }
2110
2111 /* Check if the type T depends on a type with no linkage and if so, return
2112 it. If RELAXED_P then do not consider a class type declared within
2113 a vague-linkage function to have no linkage. */
2114
2115 tree
2116 no_linkage_check (tree t, bool relaxed_p)
2117 {
2118 tree r;
2119
2120 /* There's no point in checking linkage on template functions; we
2121 can't know their complete types. */
2122 if (processing_template_decl)
2123 return NULL_TREE;
2124
2125 switch (TREE_CODE (t))
2126 {
2127 case RECORD_TYPE:
2128 if (TYPE_PTRMEMFUNC_P (t))
2129 goto ptrmem;
2130 /* Lambda types that don't have mangling scope have no linkage. We
2131 check CLASSTYPE_LAMBDA_EXPR for error_mark_node because
2132 when we get here from pushtag none of the lambda information is
2133 set up yet, so we want to assume that the lambda has linkage and
2134 fix it up later if not. */
2135 if (CLASSTYPE_LAMBDA_EXPR (t)
2136 && CLASSTYPE_LAMBDA_EXPR (t) != error_mark_node
2137 && LAMBDA_TYPE_EXTRA_SCOPE (t) == NULL_TREE)
2138 return t;
2139 /* Fall through. */
2140 case UNION_TYPE:
2141 if (!CLASS_TYPE_P (t))
2142 return NULL_TREE;
2143 /* Fall through. */
2144 case ENUMERAL_TYPE:
2145 /* Only treat anonymous types as having no linkage if they're at
2146 namespace scope. This is core issue 966. */
2147 if (TYPE_ANONYMOUS_P (t) && TYPE_NAMESPACE_SCOPE_P (t))
2148 return t;
2149
2150 for (r = CP_TYPE_CONTEXT (t); ; )
2151 {
2152 /* If we're a nested type of a !TREE_PUBLIC class, we might not
2153 have linkage, or we might just be in an anonymous namespace.
2154 If we're in a TREE_PUBLIC class, we have linkage. */
2155 if (TYPE_P (r) && !TREE_PUBLIC (TYPE_NAME (r)))
2156 return no_linkage_check (TYPE_CONTEXT (t), relaxed_p);
2157 else if (TREE_CODE (r) == FUNCTION_DECL)
2158 {
2159 if (!relaxed_p || !vague_linkage_p (r))
2160 return t;
2161 else
2162 r = CP_DECL_CONTEXT (r);
2163 }
2164 else
2165 break;
2166 }
2167
2168 return NULL_TREE;
2169
2170 case ARRAY_TYPE:
2171 case POINTER_TYPE:
2172 case REFERENCE_TYPE:
2173 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2174
2175 case OFFSET_TYPE:
2176 ptrmem:
2177 r = no_linkage_check (TYPE_PTRMEM_POINTED_TO_TYPE (t),
2178 relaxed_p);
2179 if (r)
2180 return r;
2181 return no_linkage_check (TYPE_PTRMEM_CLASS_TYPE (t), relaxed_p);
2182
2183 case METHOD_TYPE:
2184 r = no_linkage_check (TYPE_METHOD_BASETYPE (t), relaxed_p);
2185 if (r)
2186 return r;
2187 /* Fall through. */
2188 case FUNCTION_TYPE:
2189 {
2190 tree parm;
2191 for (parm = TYPE_ARG_TYPES (t);
2192 parm && parm != void_list_node;
2193 parm = TREE_CHAIN (parm))
2194 {
2195 r = no_linkage_check (TREE_VALUE (parm), relaxed_p);
2196 if (r)
2197 return r;
2198 }
2199 return no_linkage_check (TREE_TYPE (t), relaxed_p);
2200 }
2201
2202 default:
2203 return NULL_TREE;
2204 }
2205 }
2206
2207 extern int depth_reached;
2208
2209 void
2210 cxx_print_statistics (void)
2211 {
2212 print_search_statistics ();
2213 print_class_statistics ();
2214 print_template_statistics ();
2215 if (GATHER_STATISTICS)
2216 fprintf (stderr, "maximum template instantiation depth reached: %d\n",
2217 depth_reached);
2218 }
2219
2220 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2221 (which is an ARRAY_TYPE). This counts only elements of the top
2222 array. */
2223
2224 tree
2225 array_type_nelts_top (tree type)
2226 {
2227 return fold_build2_loc (input_location,
2228 PLUS_EXPR, sizetype,
2229 array_type_nelts (type),
2230 size_one_node);
2231 }
2232
2233 /* Return, as an INTEGER_CST node, the number of elements for TYPE
2234 (which is an ARRAY_TYPE). This one is a recursive count of all
2235 ARRAY_TYPEs that are clumped together. */
2236
2237 tree
2238 array_type_nelts_total (tree type)
2239 {
2240 tree sz = array_type_nelts_top (type);
2241 type = TREE_TYPE (type);
2242 while (TREE_CODE (type) == ARRAY_TYPE)
2243 {
2244 tree n = array_type_nelts_top (type);
2245 sz = fold_build2_loc (input_location,
2246 MULT_EXPR, sizetype, sz, n);
2247 type = TREE_TYPE (type);
2248 }
2249 return sz;
2250 }
2251
2252 /* Called from break_out_target_exprs via mapcar. */
2253
2254 static tree
2255 bot_manip (tree* tp, int* walk_subtrees, void* data)
2256 {
2257 splay_tree target_remap = ((splay_tree) data);
2258 tree t = *tp;
2259
2260 if (!TYPE_P (t) && TREE_CONSTANT (t) && !TREE_SIDE_EFFECTS (t))
2261 {
2262 /* There can't be any TARGET_EXPRs or their slot variables below this
2263 point. But we must make a copy, in case subsequent processing
2264 alters any part of it. For example, during gimplification a cast
2265 of the form (T) &X::f (where "f" is a member function) will lead
2266 to replacing the PTRMEM_CST for &X::f with a VAR_DECL. */
2267 *walk_subtrees = 0;
2268 *tp = unshare_expr (t);
2269 return NULL_TREE;
2270 }
2271 if (TREE_CODE (t) == TARGET_EXPR)
2272 {
2273 tree u;
2274
2275 if (TREE_CODE (TREE_OPERAND (t, 1)) == AGGR_INIT_EXPR)
2276 {
2277 u = build_cplus_new (TREE_TYPE (t), TREE_OPERAND (t, 1),
2278 tf_warning_or_error);
2279 if (AGGR_INIT_ZERO_FIRST (TREE_OPERAND (t, 1)))
2280 AGGR_INIT_ZERO_FIRST (TREE_OPERAND (u, 1)) = true;
2281 }
2282 else
2283 u = build_target_expr_with_type (TREE_OPERAND (t, 1), TREE_TYPE (t),
2284 tf_warning_or_error);
2285
2286 TARGET_EXPR_IMPLICIT_P (u) = TARGET_EXPR_IMPLICIT_P (t);
2287 TARGET_EXPR_LIST_INIT_P (u) = TARGET_EXPR_LIST_INIT_P (t);
2288 TARGET_EXPR_DIRECT_INIT_P (u) = TARGET_EXPR_DIRECT_INIT_P (t);
2289
2290 /* Map the old variable to the new one. */
2291 splay_tree_insert (target_remap,
2292 (splay_tree_key) TREE_OPERAND (t, 0),
2293 (splay_tree_value) TREE_OPERAND (u, 0));
2294
2295 TREE_OPERAND (u, 1) = break_out_target_exprs (TREE_OPERAND (u, 1));
2296
2297 /* Replace the old expression with the new version. */
2298 *tp = u;
2299 /* We don't have to go below this point; the recursive call to
2300 break_out_target_exprs will have handled anything below this
2301 point. */
2302 *walk_subtrees = 0;
2303 return NULL_TREE;
2304 }
2305
2306 /* Make a copy of this node. */
2307 t = copy_tree_r (tp, walk_subtrees, NULL);
2308 if (TREE_CODE (*tp) == CALL_EXPR)
2309 set_flags_from_callee (*tp);
2310 return t;
2311 }
2312
2313 /* Replace all remapped VAR_DECLs in T with their new equivalents.
2314 DATA is really a splay-tree mapping old variables to new
2315 variables. */
2316
2317 static tree
2318 bot_replace (tree* t, int* /*walk_subtrees*/, void* data)
2319 {
2320 splay_tree target_remap = ((splay_tree) data);
2321
2322 if (VAR_P (*t))
2323 {
2324 splay_tree_node n = splay_tree_lookup (target_remap,
2325 (splay_tree_key) *t);
2326 if (n)
2327 *t = (tree) n->value;
2328 }
2329 else if (TREE_CODE (*t) == PARM_DECL
2330 && DECL_NAME (*t) == this_identifier)
2331 {
2332 /* In an NSDMI we need to replace the 'this' parameter we used for
2333 parsing with the real one for this function. */
2334 *t = current_class_ptr;
2335 }
2336 else if (TREE_CODE (*t) == CONVERT_EXPR
2337 && CONVERT_EXPR_VBASE_PATH (*t))
2338 {
2339 /* In an NSDMI build_base_path defers building conversions to virtual
2340 bases, and we handle it here. */
2341 tree basetype = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (*t)));
2342 vec<tree, va_gc> *vbases = CLASSTYPE_VBASECLASSES (current_class_type);
2343 int i; tree binfo;
2344 FOR_EACH_VEC_SAFE_ELT (vbases, i, binfo)
2345 if (BINFO_TYPE (binfo) == basetype)
2346 break;
2347 *t = build_base_path (PLUS_EXPR, TREE_OPERAND (*t, 0), binfo, true,
2348 tf_warning_or_error);
2349 }
2350
2351 return NULL_TREE;
2352 }
2353
2354 /* When we parse a default argument expression, we may create
2355 temporary variables via TARGET_EXPRs. When we actually use the
2356 default-argument expression, we make a copy of the expression
2357 and replace the temporaries with appropriate local versions. */
2358
2359 tree
2360 break_out_target_exprs (tree t)
2361 {
2362 static int target_remap_count;
2363 static splay_tree target_remap;
2364
2365 if (!target_remap_count++)
2366 target_remap = splay_tree_new (splay_tree_compare_pointers,
2367 /*splay_tree_delete_key_fn=*/NULL,
2368 /*splay_tree_delete_value_fn=*/NULL);
2369 cp_walk_tree (&t, bot_manip, target_remap, NULL);
2370 cp_walk_tree (&t, bot_replace, target_remap, NULL);
2371
2372 if (!--target_remap_count)
2373 {
2374 splay_tree_delete (target_remap);
2375 target_remap = NULL;
2376 }
2377
2378 return t;
2379 }
2380
2381 /* Similar to `build_nt', but for template definitions of dependent
2382 expressions */
2383
2384 tree
2385 build_min_nt_loc (location_t loc, enum tree_code code, ...)
2386 {
2387 tree t;
2388 int length;
2389 int i;
2390 va_list p;
2391
2392 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2393
2394 va_start (p, code);
2395
2396 t = make_node (code);
2397 SET_EXPR_LOCATION (t, loc);
2398 length = TREE_CODE_LENGTH (code);
2399
2400 for (i = 0; i < length; i++)
2401 {
2402 tree x = va_arg (p, tree);
2403 TREE_OPERAND (t, i) = x;
2404 }
2405
2406 va_end (p);
2407 return t;
2408 }
2409
2410
2411 /* Similar to `build', but for template definitions. */
2412
2413 tree
2414 build_min (enum tree_code code, tree tt, ...)
2415 {
2416 tree t;
2417 int length;
2418 int i;
2419 va_list p;
2420
2421 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2422
2423 va_start (p, tt);
2424
2425 t = make_node (code);
2426 length = TREE_CODE_LENGTH (code);
2427 TREE_TYPE (t) = tt;
2428
2429 for (i = 0; i < length; i++)
2430 {
2431 tree x = va_arg (p, tree);
2432 TREE_OPERAND (t, i) = x;
2433 if (x && !TYPE_P (x) && TREE_SIDE_EFFECTS (x))
2434 TREE_SIDE_EFFECTS (t) = 1;
2435 }
2436
2437 va_end (p);
2438 return t;
2439 }
2440
2441 /* Similar to `build', but for template definitions of non-dependent
2442 expressions. NON_DEP is the non-dependent expression that has been
2443 built. */
2444
2445 tree
2446 build_min_non_dep (enum tree_code code, tree non_dep, ...)
2447 {
2448 tree t;
2449 int length;
2450 int i;
2451 va_list p;
2452
2453 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
2454
2455 va_start (p, non_dep);
2456
2457 if (REFERENCE_REF_P (non_dep))
2458 non_dep = TREE_OPERAND (non_dep, 0);
2459
2460 t = make_node (code);
2461 length = TREE_CODE_LENGTH (code);
2462 TREE_TYPE (t) = TREE_TYPE (non_dep);
2463 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
2464
2465 for (i = 0; i < length; i++)
2466 {
2467 tree x = va_arg (p, tree);
2468 TREE_OPERAND (t, i) = x;
2469 }
2470
2471 if (code == COMPOUND_EXPR && TREE_CODE (non_dep) != COMPOUND_EXPR)
2472 /* This should not be considered a COMPOUND_EXPR, because it
2473 resolves to an overload. */
2474 COMPOUND_EXPR_OVERLOADED (t) = 1;
2475
2476 va_end (p);
2477 return convert_from_reference (t);
2478 }
2479
2480 /* Similar to `build_nt_call_vec', but for template definitions of
2481 non-dependent expressions. NON_DEP is the non-dependent expression
2482 that has been built. */
2483
2484 tree
2485 build_min_non_dep_call_vec (tree non_dep, tree fn, vec<tree, va_gc> *argvec)
2486 {
2487 tree t = build_nt_call_vec (fn, argvec);
2488 if (REFERENCE_REF_P (non_dep))
2489 non_dep = TREE_OPERAND (non_dep, 0);
2490 TREE_TYPE (t) = TREE_TYPE (non_dep);
2491 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (non_dep);
2492 return convert_from_reference (t);
2493 }
2494
2495 tree
2496 get_type_decl (tree t)
2497 {
2498 if (TREE_CODE (t) == TYPE_DECL)
2499 return t;
2500 if (TYPE_P (t))
2501 return TYPE_STUB_DECL (t);
2502 gcc_assert (t == error_mark_node);
2503 return t;
2504 }
2505
2506 /* Returns the namespace that contains DECL, whether directly or
2507 indirectly. */
2508
2509 tree
2510 decl_namespace_context (tree decl)
2511 {
2512 while (1)
2513 {
2514 if (TREE_CODE (decl) == NAMESPACE_DECL)
2515 return decl;
2516 else if (TYPE_P (decl))
2517 decl = CP_DECL_CONTEXT (TYPE_MAIN_DECL (decl));
2518 else
2519 decl = CP_DECL_CONTEXT (decl);
2520 }
2521 }
2522
2523 /* Returns true if decl is within an anonymous namespace, however deeply
2524 nested, or false otherwise. */
2525
2526 bool
2527 decl_anon_ns_mem_p (const_tree decl)
2528 {
2529 while (1)
2530 {
2531 if (decl == NULL_TREE || decl == error_mark_node)
2532 return false;
2533 if (TREE_CODE (decl) == NAMESPACE_DECL
2534 && DECL_NAME (decl) == NULL_TREE)
2535 return true;
2536 /* Classes and namespaces inside anonymous namespaces have
2537 TREE_PUBLIC == 0, so we can shortcut the search. */
2538 else if (TYPE_P (decl))
2539 return (TREE_PUBLIC (TYPE_MAIN_DECL (decl)) == 0);
2540 else if (TREE_CODE (decl) == NAMESPACE_DECL)
2541 return (TREE_PUBLIC (decl) == 0);
2542 else
2543 decl = DECL_CONTEXT (decl);
2544 }
2545 }
2546
2547 /* Subroutine of cp_tree_equal: t1 and t2 are the CALL_EXPR_FNs of two
2548 CALL_EXPRS. Return whether they are equivalent. */
2549
2550 static bool
2551 called_fns_equal (tree t1, tree t2)
2552 {
2553 /* Core 1321: dependent names are equivalent even if the overload sets
2554 are different. But do compare explicit template arguments. */
2555 tree name1 = dependent_name (t1);
2556 tree name2 = dependent_name (t2);
2557 if (name1 || name2)
2558 {
2559 tree targs1 = NULL_TREE, targs2 = NULL_TREE;
2560
2561 if (name1 != name2)
2562 return false;
2563
2564 if (TREE_CODE (t1) == TEMPLATE_ID_EXPR)
2565 targs1 = TREE_OPERAND (t1, 1);
2566 if (TREE_CODE (t2) == TEMPLATE_ID_EXPR)
2567 targs2 = TREE_OPERAND (t2, 1);
2568 return cp_tree_equal (targs1, targs2);
2569 }
2570 else
2571 return cp_tree_equal (t1, t2);
2572 }
2573
2574 /* Return truthvalue of whether T1 is the same tree structure as T2.
2575 Return 1 if they are the same. Return 0 if they are different. */
2576
2577 bool
2578 cp_tree_equal (tree t1, tree t2)
2579 {
2580 enum tree_code code1, code2;
2581
2582 if (t1 == t2)
2583 return true;
2584 if (!t1 || !t2)
2585 return false;
2586
2587 for (code1 = TREE_CODE (t1);
2588 CONVERT_EXPR_CODE_P (code1)
2589 || code1 == NON_LVALUE_EXPR;
2590 code1 = TREE_CODE (t1))
2591 t1 = TREE_OPERAND (t1, 0);
2592 for (code2 = TREE_CODE (t2);
2593 CONVERT_EXPR_CODE_P (code2)
2594 || code2 == NON_LVALUE_EXPR;
2595 code2 = TREE_CODE (t2))
2596 t2 = TREE_OPERAND (t2, 0);
2597
2598 /* They might have become equal now. */
2599 if (t1 == t2)
2600 return true;
2601
2602 if (code1 != code2)
2603 return false;
2604
2605 switch (code1)
2606 {
2607 case INTEGER_CST:
2608 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
2609 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
2610
2611 case REAL_CST:
2612 return REAL_VALUES_EQUAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
2613
2614 case STRING_CST:
2615 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
2616 && !memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
2617 TREE_STRING_LENGTH (t1));
2618
2619 case FIXED_CST:
2620 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1),
2621 TREE_FIXED_CST (t2));
2622
2623 case COMPLEX_CST:
2624 return cp_tree_equal (TREE_REALPART (t1), TREE_REALPART (t2))
2625 && cp_tree_equal (TREE_IMAGPART (t1), TREE_IMAGPART (t2));
2626
2627 case VECTOR_CST:
2628 return operand_equal_p (t1, t2, OEP_ONLY_CONST);
2629
2630 case CONSTRUCTOR:
2631 /* We need to do this when determining whether or not two
2632 non-type pointer to member function template arguments
2633 are the same. */
2634 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2))
2635 || CONSTRUCTOR_NELTS (t1) != CONSTRUCTOR_NELTS (t2))
2636 return false;
2637 {
2638 tree field, value;
2639 unsigned int i;
2640 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t1), i, field, value)
2641 {
2642 constructor_elt *elt2 = CONSTRUCTOR_ELT (t2, i);
2643 if (!cp_tree_equal (field, elt2->index)
2644 || !cp_tree_equal (value, elt2->value))
2645 return false;
2646 }
2647 }
2648 return true;
2649
2650 case TREE_LIST:
2651 if (!cp_tree_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2)))
2652 return false;
2653 if (!cp_tree_equal (TREE_VALUE (t1), TREE_VALUE (t2)))
2654 return false;
2655 return cp_tree_equal (TREE_CHAIN (t1), TREE_CHAIN (t2));
2656
2657 case SAVE_EXPR:
2658 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2659
2660 case CALL_EXPR:
2661 {
2662 tree arg1, arg2;
2663 call_expr_arg_iterator iter1, iter2;
2664 if (!called_fns_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2)))
2665 return false;
2666 for (arg1 = first_call_expr_arg (t1, &iter1),
2667 arg2 = first_call_expr_arg (t2, &iter2);
2668 arg1 && arg2;
2669 arg1 = next_call_expr_arg (&iter1),
2670 arg2 = next_call_expr_arg (&iter2))
2671 if (!cp_tree_equal (arg1, arg2))
2672 return false;
2673 if (arg1 || arg2)
2674 return false;
2675 return true;
2676 }
2677
2678 case TARGET_EXPR:
2679 {
2680 tree o1 = TREE_OPERAND (t1, 0);
2681 tree o2 = TREE_OPERAND (t2, 0);
2682
2683 /* Special case: if either target is an unallocated VAR_DECL,
2684 it means that it's going to be unified with whatever the
2685 TARGET_EXPR is really supposed to initialize, so treat it
2686 as being equivalent to anything. */
2687 if (VAR_P (o1) && DECL_NAME (o1) == NULL_TREE
2688 && !DECL_RTL_SET_P (o1))
2689 /*Nop*/;
2690 else if (VAR_P (o2) && DECL_NAME (o2) == NULL_TREE
2691 && !DECL_RTL_SET_P (o2))
2692 /*Nop*/;
2693 else if (!cp_tree_equal (o1, o2))
2694 return false;
2695
2696 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
2697 }
2698
2699 case WITH_CLEANUP_EXPR:
2700 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
2701 return false;
2702 return cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
2703
2704 case COMPONENT_REF:
2705 if (TREE_OPERAND (t1, 1) != TREE_OPERAND (t2, 1))
2706 return false;
2707 return cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
2708
2709 case PARM_DECL:
2710 /* For comparing uses of parameters in late-specified return types
2711 with an out-of-class definition of the function, but can also come
2712 up for expressions that involve 'this' in a member function
2713 template. */
2714
2715 if (comparing_specializations)
2716 /* When comparing hash table entries, only an exact match is
2717 good enough; we don't want to replace 'this' with the
2718 version from another function. */
2719 return false;
2720
2721 if (same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
2722 {
2723 if (DECL_ARTIFICIAL (t1) ^ DECL_ARTIFICIAL (t2))
2724 return false;
2725 if (DECL_ARTIFICIAL (t1)
2726 || (DECL_PARM_LEVEL (t1) == DECL_PARM_LEVEL (t2)
2727 && DECL_PARM_INDEX (t1) == DECL_PARM_INDEX (t2)))
2728 return true;
2729 }
2730 return false;
2731
2732 case VAR_DECL:
2733 case CONST_DECL:
2734 case FIELD_DECL:
2735 case FUNCTION_DECL:
2736 case TEMPLATE_DECL:
2737 case IDENTIFIER_NODE:
2738 case SSA_NAME:
2739 return false;
2740
2741 case BASELINK:
2742 return (BASELINK_BINFO (t1) == BASELINK_BINFO (t2)
2743 && BASELINK_ACCESS_BINFO (t1) == BASELINK_ACCESS_BINFO (t2)
2744 && BASELINK_QUALIFIED_P (t1) == BASELINK_QUALIFIED_P (t2)
2745 && cp_tree_equal (BASELINK_FUNCTIONS (t1),
2746 BASELINK_FUNCTIONS (t2)));
2747
2748 case TEMPLATE_PARM_INDEX:
2749 return (TEMPLATE_PARM_IDX (t1) == TEMPLATE_PARM_IDX (t2)
2750 && TEMPLATE_PARM_LEVEL (t1) == TEMPLATE_PARM_LEVEL (t2)
2751 && (TEMPLATE_PARM_PARAMETER_PACK (t1)
2752 == TEMPLATE_PARM_PARAMETER_PACK (t2))
2753 && same_type_p (TREE_TYPE (TEMPLATE_PARM_DECL (t1)),
2754 TREE_TYPE (TEMPLATE_PARM_DECL (t2))));
2755
2756 case TEMPLATE_ID_EXPR:
2757 return (cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0))
2758 && cp_tree_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1)));
2759
2760 case TREE_VEC:
2761 {
2762 unsigned ix;
2763 if (TREE_VEC_LENGTH (t1) != TREE_VEC_LENGTH (t2))
2764 return false;
2765 for (ix = TREE_VEC_LENGTH (t1); ix--;)
2766 if (!cp_tree_equal (TREE_VEC_ELT (t1, ix),
2767 TREE_VEC_ELT (t2, ix)))
2768 return false;
2769 return true;
2770 }
2771
2772 case SIZEOF_EXPR:
2773 case ALIGNOF_EXPR:
2774 {
2775 tree o1 = TREE_OPERAND (t1, 0);
2776 tree o2 = TREE_OPERAND (t2, 0);
2777
2778 if (code1 == SIZEOF_EXPR)
2779 {
2780 if (SIZEOF_EXPR_TYPE_P (t1))
2781 o1 = TREE_TYPE (o1);
2782 if (SIZEOF_EXPR_TYPE_P (t2))
2783 o2 = TREE_TYPE (o2);
2784 }
2785 if (TREE_CODE (o1) != TREE_CODE (o2))
2786 return false;
2787 if (TYPE_P (o1))
2788 return same_type_p (o1, o2);
2789 else
2790 return cp_tree_equal (o1, o2);
2791 }
2792
2793 case MODOP_EXPR:
2794 {
2795 tree t1_op1, t2_op1;
2796
2797 if (!cp_tree_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0)))
2798 return false;
2799
2800 t1_op1 = TREE_OPERAND (t1, 1);
2801 t2_op1 = TREE_OPERAND (t2, 1);
2802 if (TREE_CODE (t1_op1) != TREE_CODE (t2_op1))
2803 return false;
2804
2805 return cp_tree_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t2, 2));
2806 }
2807
2808 case PTRMEM_CST:
2809 /* Two pointer-to-members are the same if they point to the same
2810 field or function in the same class. */
2811 if (PTRMEM_CST_MEMBER (t1) != PTRMEM_CST_MEMBER (t2))
2812 return false;
2813
2814 return same_type_p (PTRMEM_CST_CLASS (t1), PTRMEM_CST_CLASS (t2));
2815
2816 case OVERLOAD:
2817 if (OVL_FUNCTION (t1) != OVL_FUNCTION (t2))
2818 return false;
2819 return cp_tree_equal (OVL_CHAIN (t1), OVL_CHAIN (t2));
2820
2821 case TRAIT_EXPR:
2822 if (TRAIT_EXPR_KIND (t1) != TRAIT_EXPR_KIND (t2))
2823 return false;
2824 return same_type_p (TRAIT_EXPR_TYPE1 (t1), TRAIT_EXPR_TYPE1 (t2))
2825 && same_type_p (TRAIT_EXPR_TYPE2 (t1), TRAIT_EXPR_TYPE2 (t2));
2826
2827 case CAST_EXPR:
2828 case STATIC_CAST_EXPR:
2829 case REINTERPRET_CAST_EXPR:
2830 case CONST_CAST_EXPR:
2831 case DYNAMIC_CAST_EXPR:
2832 case IMPLICIT_CONV_EXPR:
2833 case NEW_EXPR:
2834 if (!same_type_p (TREE_TYPE (t1), TREE_TYPE (t2)))
2835 return false;
2836 /* Now compare operands as usual. */
2837 break;
2838
2839 case DEFERRED_NOEXCEPT:
2840 return (cp_tree_equal (DEFERRED_NOEXCEPT_PATTERN (t1),
2841 DEFERRED_NOEXCEPT_PATTERN (t2))
2842 && comp_template_args (DEFERRED_NOEXCEPT_ARGS (t1),
2843 DEFERRED_NOEXCEPT_ARGS (t2)));
2844 break;
2845
2846 default:
2847 break;
2848 }
2849
2850 switch (TREE_CODE_CLASS (code1))
2851 {
2852 case tcc_unary:
2853 case tcc_binary:
2854 case tcc_comparison:
2855 case tcc_expression:
2856 case tcc_vl_exp:
2857 case tcc_reference:
2858 case tcc_statement:
2859 {
2860 int i, n;
2861
2862 n = cp_tree_operand_length (t1);
2863 if (TREE_CODE_CLASS (code1) == tcc_vl_exp
2864 && n != TREE_OPERAND_LENGTH (t2))
2865 return false;
2866
2867 for (i = 0; i < n; ++i)
2868 if (!cp_tree_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i)))
2869 return false;
2870
2871 return true;
2872 }
2873
2874 case tcc_type:
2875 return same_type_p (t1, t2);
2876 default:
2877 gcc_unreachable ();
2878 }
2879 /* We can get here with --disable-checking. */
2880 return false;
2881 }
2882
2883 /* The type of ARG when used as an lvalue. */
2884
2885 tree
2886 lvalue_type (tree arg)
2887 {
2888 tree type = TREE_TYPE (arg);
2889 return type;
2890 }
2891
2892 /* The type of ARG for printing error messages; denote lvalues with
2893 reference types. */
2894
2895 tree
2896 error_type (tree arg)
2897 {
2898 tree type = TREE_TYPE (arg);
2899
2900 if (TREE_CODE (type) == ARRAY_TYPE)
2901 ;
2902 else if (TREE_CODE (type) == ERROR_MARK)
2903 ;
2904 else if (real_lvalue_p (arg))
2905 type = build_reference_type (lvalue_type (arg));
2906 else if (MAYBE_CLASS_TYPE_P (type))
2907 type = lvalue_type (arg);
2908
2909 return type;
2910 }
2911
2912 /* Does FUNCTION use a variable-length argument list? */
2913
2914 int
2915 varargs_function_p (const_tree function)
2916 {
2917 return stdarg_p (TREE_TYPE (function));
2918 }
2919
2920 /* Returns 1 if decl is a member of a class. */
2921
2922 int
2923 member_p (const_tree decl)
2924 {
2925 const_tree const ctx = DECL_CONTEXT (decl);
2926 return (ctx && TYPE_P (ctx));
2927 }
2928
2929 /* Create a placeholder for member access where we don't actually have an
2930 object that the access is against. */
2931
2932 tree
2933 build_dummy_object (tree type)
2934 {
2935 tree decl = build1 (NOP_EXPR, build_pointer_type (type), void_zero_node);
2936 return cp_build_indirect_ref (decl, RO_NULL, tf_warning_or_error);
2937 }
2938
2939 /* We've gotten a reference to a member of TYPE. Return *this if appropriate,
2940 or a dummy object otherwise. If BINFOP is non-0, it is filled with the
2941 binfo path from current_class_type to TYPE, or 0. */
2942
2943 tree
2944 maybe_dummy_object (tree type, tree* binfop)
2945 {
2946 tree decl, context;
2947 tree binfo;
2948 tree current = current_nonlambda_class_type ();
2949
2950 if (current
2951 && (binfo = lookup_base (current, type, ba_any, NULL,
2952 tf_warning_or_error)))
2953 context = current;
2954 else
2955 {
2956 /* Reference from a nested class member function. */
2957 context = type;
2958 binfo = TYPE_BINFO (type);
2959 }
2960
2961 if (binfop)
2962 *binfop = binfo;
2963
2964 if (current_class_ref
2965 /* current_class_ref might not correspond to current_class_type if
2966 we're in tsubst_default_argument or a lambda-declarator; in either
2967 case, we want to use current_class_ref if it matches CONTEXT. */
2968 && (same_type_ignoring_top_level_qualifiers_p
2969 (TREE_TYPE (current_class_ref), context)))
2970 decl = current_class_ref;
2971 else
2972 decl = build_dummy_object (context);
2973
2974 return decl;
2975 }
2976
2977 /* Returns 1 if OB is a placeholder object, or a pointer to one. */
2978
2979 int
2980 is_dummy_object (const_tree ob)
2981 {
2982 if (INDIRECT_REF_P (ob))
2983 ob = TREE_OPERAND (ob, 0);
2984 return (TREE_CODE (ob) == NOP_EXPR
2985 && TREE_OPERAND (ob, 0) == void_zero_node);
2986 }
2987
2988 /* Returns 1 iff type T is something we want to treat as a scalar type for
2989 the purpose of deciding whether it is trivial/POD/standard-layout. */
2990
2991 bool
2992 scalarish_type_p (const_tree t)
2993 {
2994 if (t == error_mark_node)
2995 return 1;
2996
2997 return (SCALAR_TYPE_P (t)
2998 || TREE_CODE (t) == VECTOR_TYPE);
2999 }
3000
3001 /* Returns true iff T requires non-trivial default initialization. */
3002
3003 bool
3004 type_has_nontrivial_default_init (const_tree t)
3005 {
3006 t = strip_array_types (CONST_CAST_TREE (t));
3007
3008 if (CLASS_TYPE_P (t))
3009 return TYPE_HAS_COMPLEX_DFLT (t);
3010 else
3011 return 0;
3012 }
3013
3014 /* Returns true iff copying an object of type T (including via move
3015 constructor) is non-trivial. That is, T has no non-trivial copy
3016 constructors and no non-trivial move constructors. */
3017
3018 bool
3019 type_has_nontrivial_copy_init (const_tree t)
3020 {
3021 t = strip_array_types (CONST_CAST_TREE (t));
3022
3023 if (CLASS_TYPE_P (t))
3024 {
3025 gcc_assert (COMPLETE_TYPE_P (t));
3026 return ((TYPE_HAS_COPY_CTOR (t)
3027 && TYPE_HAS_COMPLEX_COPY_CTOR (t))
3028 || TYPE_HAS_COMPLEX_MOVE_CTOR (t));
3029 }
3030 else
3031 return 0;
3032 }
3033
3034 /* Returns 1 iff type T is a trivially copyable type, as defined in
3035 [basic.types] and [class]. */
3036
3037 bool
3038 trivially_copyable_p (const_tree t)
3039 {
3040 t = strip_array_types (CONST_CAST_TREE (t));
3041
3042 if (CLASS_TYPE_P (t))
3043 return ((!TYPE_HAS_COPY_CTOR (t)
3044 || !TYPE_HAS_COMPLEX_COPY_CTOR (t))
3045 && !TYPE_HAS_COMPLEX_MOVE_CTOR (t)
3046 && (!TYPE_HAS_COPY_ASSIGN (t)
3047 || !TYPE_HAS_COMPLEX_COPY_ASSIGN (t))
3048 && !TYPE_HAS_COMPLEX_MOVE_ASSIGN (t)
3049 && TYPE_HAS_TRIVIAL_DESTRUCTOR (t));
3050 else
3051 return scalarish_type_p (t);
3052 }
3053
3054 /* Returns 1 iff type T is a trivial type, as defined in [basic.types] and
3055 [class]. */
3056
3057 bool
3058 trivial_type_p (const_tree t)
3059 {
3060 t = strip_array_types (CONST_CAST_TREE (t));
3061
3062 if (CLASS_TYPE_P (t))
3063 return (TYPE_HAS_TRIVIAL_DFLT (t)
3064 && trivially_copyable_p (t));
3065 else
3066 return scalarish_type_p (t);
3067 }
3068
3069 /* Returns 1 iff type T is a POD type, as defined in [basic.types]. */
3070
3071 bool
3072 pod_type_p (const_tree t)
3073 {
3074 /* This CONST_CAST is okay because strip_array_types returns its
3075 argument unmodified and we assign it to a const_tree. */
3076 t = strip_array_types (CONST_CAST_TREE(t));
3077
3078 if (!CLASS_TYPE_P (t))
3079 return scalarish_type_p (t);
3080 else if (cxx_dialect > cxx98)
3081 /* [class]/10: A POD struct is a class that is both a trivial class and a
3082 standard-layout class, and has no non-static data members of type
3083 non-POD struct, non-POD union (or array of such types).
3084
3085 We don't need to check individual members because if a member is
3086 non-std-layout or non-trivial, the class will be too. */
3087 return (std_layout_type_p (t) && trivial_type_p (t));
3088 else
3089 /* The C++98 definition of POD is different. */
3090 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
3091 }
3092
3093 /* Returns true iff T is POD for the purpose of layout, as defined in the
3094 C++ ABI. */
3095
3096 bool
3097 layout_pod_type_p (const_tree t)
3098 {
3099 t = strip_array_types (CONST_CAST_TREE (t));
3100
3101 if (CLASS_TYPE_P (t))
3102 return !CLASSTYPE_NON_LAYOUT_POD_P (t);
3103 else
3104 return scalarish_type_p (t);
3105 }
3106
3107 /* Returns true iff T is a standard-layout type, as defined in
3108 [basic.types]. */
3109
3110 bool
3111 std_layout_type_p (const_tree t)
3112 {
3113 t = strip_array_types (CONST_CAST_TREE (t));
3114
3115 if (CLASS_TYPE_P (t))
3116 return !CLASSTYPE_NON_STD_LAYOUT (t);
3117 else
3118 return scalarish_type_p (t);
3119 }
3120
3121 /* Nonzero iff type T is a class template implicit specialization. */
3122
3123 bool
3124 class_tmpl_impl_spec_p (const_tree t)
3125 {
3126 return CLASS_TYPE_P (t) && CLASSTYPE_TEMPLATE_INSTANTIATION (t);
3127 }
3128
3129 /* Returns 1 iff zero initialization of type T means actually storing
3130 zeros in it. */
3131
3132 int
3133 zero_init_p (const_tree t)
3134 {
3135 /* This CONST_CAST is okay because strip_array_types returns its
3136 argument unmodified and we assign it to a const_tree. */
3137 t = strip_array_types (CONST_CAST_TREE(t));
3138
3139 if (t == error_mark_node)
3140 return 1;
3141
3142 /* NULL pointers to data members are initialized with -1. */
3143 if (TYPE_PTRDATAMEM_P (t))
3144 return 0;
3145
3146 /* Classes that contain types that can't be zero-initialized, cannot
3147 be zero-initialized themselves. */
3148 if (CLASS_TYPE_P (t) && CLASSTYPE_NON_ZERO_INIT_P (t))
3149 return 0;
3150
3151 return 1;
3152 }
3153
3154 /* Table of valid C++ attributes. */
3155 const struct attribute_spec cxx_attribute_table[] =
3156 {
3157 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
3158 affects_type_identity } */
3159 { "java_interface", 0, 0, false, false, false,
3160 handle_java_interface_attribute, false },
3161 { "com_interface", 0, 0, false, false, false,
3162 handle_com_interface_attribute, false },
3163 { "init_priority", 1, 1, true, false, false,
3164 handle_init_priority_attribute, false },
3165 { "abi_tag", 1, -1, false, false, false,
3166 handle_abi_tag_attribute, true },
3167 { NULL, 0, 0, false, false, false, NULL, false }
3168 };
3169
3170 /* Handle a "java_interface" attribute; arguments as in
3171 struct attribute_spec.handler. */
3172 static tree
3173 handle_java_interface_attribute (tree* node,
3174 tree name,
3175 tree /*args*/,
3176 int flags,
3177 bool* no_add_attrs)
3178 {
3179 if (DECL_P (*node)
3180 || !CLASS_TYPE_P (*node)
3181 || !TYPE_FOR_JAVA (*node))
3182 {
3183 error ("%qE attribute can only be applied to Java class definitions",
3184 name);
3185 *no_add_attrs = true;
3186 return NULL_TREE;
3187 }
3188 if (!(flags & (int) ATTR_FLAG_TYPE_IN_PLACE))
3189 *node = build_variant_type_copy (*node);
3190 TYPE_JAVA_INTERFACE (*node) = 1;
3191
3192 return NULL_TREE;
3193 }
3194
3195 /* Handle a "com_interface" attribute; arguments as in
3196 struct attribute_spec.handler. */
3197 static tree
3198 handle_com_interface_attribute (tree* node,
3199 tree name,
3200 tree /*args*/,
3201 int /*flags*/,
3202 bool* no_add_attrs)
3203 {
3204 static int warned;
3205
3206 *no_add_attrs = true;
3207
3208 if (DECL_P (*node)
3209 || !CLASS_TYPE_P (*node)
3210 || *node != TYPE_MAIN_VARIANT (*node))
3211 {
3212 warning (OPT_Wattributes, "%qE attribute can only be applied "
3213 "to class definitions", name);
3214 return NULL_TREE;
3215 }
3216
3217 if (!warned++)
3218 warning (0, "%qE is obsolete; g++ vtables are now COM-compatible by default",
3219 name);
3220
3221 return NULL_TREE;
3222 }
3223
3224 /* Handle an "init_priority" attribute; arguments as in
3225 struct attribute_spec.handler. */
3226 static tree
3227 handle_init_priority_attribute (tree* node,
3228 tree name,
3229 tree args,
3230 int /*flags*/,
3231 bool* no_add_attrs)
3232 {
3233 tree initp_expr = TREE_VALUE (args);
3234 tree decl = *node;
3235 tree type = TREE_TYPE (decl);
3236 int pri;
3237
3238 STRIP_NOPS (initp_expr);
3239
3240 if (!initp_expr || TREE_CODE (initp_expr) != INTEGER_CST)
3241 {
3242 error ("requested init_priority is not an integer constant");
3243 *no_add_attrs = true;
3244 return NULL_TREE;
3245 }
3246
3247 pri = TREE_INT_CST_LOW (initp_expr);
3248
3249 type = strip_array_types (type);
3250
3251 if (decl == NULL_TREE
3252 || !VAR_P (decl)
3253 || !TREE_STATIC (decl)
3254 || DECL_EXTERNAL (decl)
3255 || (TREE_CODE (type) != RECORD_TYPE
3256 && TREE_CODE (type) != UNION_TYPE)
3257 /* Static objects in functions are initialized the
3258 first time control passes through that
3259 function. This is not precise enough to pin down an
3260 init_priority value, so don't allow it. */
3261 || current_function_decl)
3262 {
3263 error ("can only use %qE attribute on file-scope definitions "
3264 "of objects of class type", name);
3265 *no_add_attrs = true;
3266 return NULL_TREE;
3267 }
3268
3269 if (pri > MAX_INIT_PRIORITY || pri <= 0)
3270 {
3271 error ("requested init_priority is out of range");
3272 *no_add_attrs = true;
3273 return NULL_TREE;
3274 }
3275
3276 /* Check for init_priorities that are reserved for
3277 language and runtime support implementations.*/
3278 if (pri <= MAX_RESERVED_INIT_PRIORITY)
3279 {
3280 warning
3281 (0, "requested init_priority is reserved for internal use");
3282 }
3283
3284 if (SUPPORTS_INIT_PRIORITY)
3285 {
3286 SET_DECL_INIT_PRIORITY (decl, pri);
3287 DECL_HAS_INIT_PRIORITY_P (decl) = 1;
3288 return NULL_TREE;
3289 }
3290 else
3291 {
3292 error ("%qE attribute is not supported on this platform", name);
3293 *no_add_attrs = true;
3294 return NULL_TREE;
3295 }
3296 }
3297
3298 /* DECL is being redeclared; the old declaration had the abi tags in OLD,
3299 and the new one has the tags in NEW_. Give an error if there are tags
3300 in NEW_ that weren't in OLD. */
3301
3302 bool
3303 check_abi_tag_redeclaration (const_tree decl, const_tree old, const_tree new_)
3304 {
3305 if (old && TREE_CODE (TREE_VALUE (old)) == TREE_LIST)
3306 old = TREE_VALUE (old);
3307 if (new_ && TREE_CODE (TREE_VALUE (new_)) == TREE_LIST)
3308 new_ = TREE_VALUE (new_);
3309 bool err = false;
3310 for (const_tree t = new_; t; t = TREE_CHAIN (t))
3311 {
3312 tree str = TREE_VALUE (t);
3313 for (const_tree in = old; in; in = TREE_CHAIN (in))
3314 {
3315 tree ostr = TREE_VALUE (in);
3316 if (cp_tree_equal (str, ostr))
3317 goto found;
3318 }
3319 error ("redeclaration of %qD adds abi tag %E", decl, str);
3320 err = true;
3321 found:;
3322 }
3323 if (err)
3324 {
3325 inform (DECL_SOURCE_LOCATION (decl), "previous declaration here");
3326 return false;
3327 }
3328 return true;
3329 }
3330
3331 /* Handle an "abi_tag" attribute; arguments as in
3332 struct attribute_spec.handler. */
3333
3334 static tree
3335 handle_abi_tag_attribute (tree* node, tree name, tree args,
3336 int flags, bool* no_add_attrs)
3337 {
3338 if (TYPE_P (*node))
3339 {
3340 if (!OVERLOAD_TYPE_P (*node))
3341 {
3342 error ("%qE attribute applied to non-class, non-enum type %qT",
3343 name, *node);
3344 goto fail;
3345 }
3346 else if (!(flags & (int)ATTR_FLAG_TYPE_IN_PLACE))
3347 {
3348 error ("%qE attribute applied to %qT after its definition",
3349 name, *node);
3350 goto fail;
3351 }
3352
3353 tree attributes = TYPE_ATTRIBUTES (*node);
3354 tree decl = TYPE_NAME (*node);
3355
3356 /* Make sure all declarations have the same abi tags. */
3357 if (DECL_SOURCE_LOCATION (decl) != input_location)
3358 {
3359 if (!check_abi_tag_redeclaration (decl,
3360 lookup_attribute ("abi_tag",
3361 attributes),
3362 args))
3363 goto fail;
3364 }
3365 }
3366 else
3367 {
3368 if (TREE_CODE (*node) != FUNCTION_DECL)
3369 {
3370 error ("%qE attribute applied to non-function %qD", name, *node);
3371 goto fail;
3372 }
3373 else if (DECL_LANGUAGE (*node) == lang_c)
3374 {
3375 error ("%qE attribute applied to extern \"C\" function %qD",
3376 name, *node);
3377 goto fail;
3378 }
3379 }
3380
3381 return NULL_TREE;
3382
3383 fail:
3384 *no_add_attrs = true;
3385 return NULL_TREE;
3386 }
3387
3388 /* Return a new PTRMEM_CST of the indicated TYPE. The MEMBER is the
3389 thing pointed to by the constant. */
3390
3391 tree
3392 make_ptrmem_cst (tree type, tree member)
3393 {
3394 tree ptrmem_cst = make_node (PTRMEM_CST);
3395 TREE_TYPE (ptrmem_cst) = type;
3396 PTRMEM_CST_MEMBER (ptrmem_cst) = member;
3397 return ptrmem_cst;
3398 }
3399
3400 /* Build a variant of TYPE that has the indicated ATTRIBUTES. May
3401 return an existing type if an appropriate type already exists. */
3402
3403 tree
3404 cp_build_type_attribute_variant (tree type, tree attributes)
3405 {
3406 tree new_type;
3407
3408 new_type = build_type_attribute_variant (type, attributes);
3409 if (TREE_CODE (new_type) == FUNCTION_TYPE
3410 || TREE_CODE (new_type) == METHOD_TYPE)
3411 {
3412 new_type = build_exception_variant (new_type,
3413 TYPE_RAISES_EXCEPTIONS (type));
3414 new_type = build_ref_qualified_type (new_type,
3415 type_memfn_rqual (type));
3416 }
3417
3418 /* Making a new main variant of a class type is broken. */
3419 gcc_assert (!CLASS_TYPE_P (type) || new_type == type);
3420
3421 return new_type;
3422 }
3423
3424 /* Return TRUE if TYPE1 and TYPE2 are identical for type hashing purposes.
3425 Called only after doing all language independent checks. Only
3426 to check TYPE_RAISES_EXCEPTIONS for FUNCTION_TYPE, the rest is already
3427 compared in type_hash_eq. */
3428
3429 bool
3430 cxx_type_hash_eq (const_tree typea, const_tree typeb)
3431 {
3432 gcc_assert (TREE_CODE (typea) == FUNCTION_TYPE
3433 || TREE_CODE (typea) == METHOD_TYPE);
3434
3435 return comp_except_specs (TYPE_RAISES_EXCEPTIONS (typea),
3436 TYPE_RAISES_EXCEPTIONS (typeb), ce_exact);
3437 }
3438
3439 /* Apply FUNC to all language-specific sub-trees of TP in a pre-order
3440 traversal. Called from walk_tree. */
3441
3442 tree
3443 cp_walk_subtrees (tree *tp, int *walk_subtrees_p, walk_tree_fn func,
3444 void *data, struct pointer_set_t *pset)
3445 {
3446 enum tree_code code = TREE_CODE (*tp);
3447 tree result;
3448
3449 #define WALK_SUBTREE(NODE) \
3450 do \
3451 { \
3452 result = cp_walk_tree (&(NODE), func, data, pset); \
3453 if (result) goto out; \
3454 } \
3455 while (0)
3456
3457 /* Not one of the easy cases. We must explicitly go through the
3458 children. */
3459 result = NULL_TREE;
3460 switch (code)
3461 {
3462 case DEFAULT_ARG:
3463 case TEMPLATE_TEMPLATE_PARM:
3464 case BOUND_TEMPLATE_TEMPLATE_PARM:
3465 case UNBOUND_CLASS_TEMPLATE:
3466 case TEMPLATE_PARM_INDEX:
3467 case TEMPLATE_TYPE_PARM:
3468 case TYPENAME_TYPE:
3469 case TYPEOF_TYPE:
3470 case UNDERLYING_TYPE:
3471 /* None of these have subtrees other than those already walked
3472 above. */
3473 *walk_subtrees_p = 0;
3474 break;
3475
3476 case BASELINK:
3477 WALK_SUBTREE (BASELINK_FUNCTIONS (*tp));
3478 *walk_subtrees_p = 0;
3479 break;
3480
3481 case PTRMEM_CST:
3482 WALK_SUBTREE (TREE_TYPE (*tp));
3483 *walk_subtrees_p = 0;
3484 break;
3485
3486 case TREE_LIST:
3487 WALK_SUBTREE (TREE_PURPOSE (*tp));
3488 break;
3489
3490 case OVERLOAD:
3491 WALK_SUBTREE (OVL_FUNCTION (*tp));
3492 WALK_SUBTREE (OVL_CHAIN (*tp));
3493 *walk_subtrees_p = 0;
3494 break;
3495
3496 case USING_DECL:
3497 WALK_SUBTREE (DECL_NAME (*tp));
3498 WALK_SUBTREE (USING_DECL_SCOPE (*tp));
3499 WALK_SUBTREE (USING_DECL_DECLS (*tp));
3500 *walk_subtrees_p = 0;
3501 break;
3502
3503 case RECORD_TYPE:
3504 if (TYPE_PTRMEMFUNC_P (*tp))
3505 WALK_SUBTREE (TYPE_PTRMEMFUNC_FN_TYPE (*tp));
3506 break;
3507
3508 case TYPE_ARGUMENT_PACK:
3509 case NONTYPE_ARGUMENT_PACK:
3510 {
3511 tree args = ARGUMENT_PACK_ARGS (*tp);
3512 int i, len = TREE_VEC_LENGTH (args);
3513 for (i = 0; i < len; i++)
3514 WALK_SUBTREE (TREE_VEC_ELT (args, i));
3515 }
3516 break;
3517
3518 case TYPE_PACK_EXPANSION:
3519 WALK_SUBTREE (TREE_TYPE (*tp));
3520 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
3521 *walk_subtrees_p = 0;
3522 break;
3523
3524 case EXPR_PACK_EXPANSION:
3525 WALK_SUBTREE (TREE_OPERAND (*tp, 0));
3526 WALK_SUBTREE (PACK_EXPANSION_EXTRA_ARGS (*tp));
3527 *walk_subtrees_p = 0;
3528 break;
3529
3530 case CAST_EXPR:
3531 case REINTERPRET_CAST_EXPR:
3532 case STATIC_CAST_EXPR:
3533 case CONST_CAST_EXPR:
3534 case DYNAMIC_CAST_EXPR:
3535 case IMPLICIT_CONV_EXPR:
3536 if (TREE_TYPE (*tp))
3537 WALK_SUBTREE (TREE_TYPE (*tp));
3538
3539 {
3540 int i;
3541 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (*tp)); ++i)
3542 WALK_SUBTREE (TREE_OPERAND (*tp, i));
3543 }
3544 *walk_subtrees_p = 0;
3545 break;
3546
3547 case TRAIT_EXPR:
3548 WALK_SUBTREE (TRAIT_EXPR_TYPE1 (*tp));
3549 WALK_SUBTREE (TRAIT_EXPR_TYPE2 (*tp));
3550 *walk_subtrees_p = 0;
3551 break;
3552
3553 case DECLTYPE_TYPE:
3554 WALK_SUBTREE (DECLTYPE_TYPE_EXPR (*tp));
3555 *walk_subtrees_p = 0;
3556 break;
3557
3558
3559 default:
3560 return NULL_TREE;
3561 }
3562
3563 /* We didn't find what we were looking for. */
3564 out:
3565 return result;
3566
3567 #undef WALK_SUBTREE
3568 }
3569
3570 /* Like save_expr, but for C++. */
3571
3572 tree
3573 cp_save_expr (tree expr)
3574 {
3575 /* There is no reason to create a SAVE_EXPR within a template; if
3576 needed, we can create the SAVE_EXPR when instantiating the
3577 template. Furthermore, the middle-end cannot handle C++-specific
3578 tree codes. */
3579 if (processing_template_decl)
3580 return expr;
3581 return save_expr (expr);
3582 }
3583
3584 /* Initialize tree.c. */
3585
3586 void
3587 init_tree (void)
3588 {
3589 list_hash_table = htab_create_ggc (31, list_hash, list_hash_eq, NULL);
3590 }
3591
3592 /* Returns the kind of special function that DECL (a FUNCTION_DECL)
3593 is. Note that sfk_none is zero, so this function can be used as a
3594 predicate to test whether or not DECL is a special function. */
3595
3596 special_function_kind
3597 special_function_p (const_tree decl)
3598 {
3599 /* Rather than doing all this stuff with magic names, we should
3600 probably have a field of type `special_function_kind' in
3601 DECL_LANG_SPECIFIC. */
3602 if (DECL_INHERITED_CTOR_BASE (decl))
3603 return sfk_inheriting_constructor;
3604 if (DECL_COPY_CONSTRUCTOR_P (decl))
3605 return sfk_copy_constructor;
3606 if (DECL_MOVE_CONSTRUCTOR_P (decl))
3607 return sfk_move_constructor;
3608 if (DECL_CONSTRUCTOR_P (decl))
3609 return sfk_constructor;
3610 if (DECL_OVERLOADED_OPERATOR_P (decl) == NOP_EXPR)
3611 {
3612 if (copy_fn_p (decl))
3613 return sfk_copy_assignment;
3614 if (move_fn_p (decl))
3615 return sfk_move_assignment;
3616 }
3617 if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (decl))
3618 return sfk_destructor;
3619 if (DECL_COMPLETE_DESTRUCTOR_P (decl))
3620 return sfk_complete_destructor;
3621 if (DECL_BASE_DESTRUCTOR_P (decl))
3622 return sfk_base_destructor;
3623 if (DECL_DELETING_DESTRUCTOR_P (decl))
3624 return sfk_deleting_destructor;
3625 if (DECL_CONV_FN_P (decl))
3626 return sfk_conversion;
3627
3628 return sfk_none;
3629 }
3630
3631 /* Returns nonzero if TYPE is a character type, including wchar_t. */
3632
3633 int
3634 char_type_p (tree type)
3635 {
3636 return (same_type_p (type, char_type_node)
3637 || same_type_p (type, unsigned_char_type_node)
3638 || same_type_p (type, signed_char_type_node)
3639 || same_type_p (type, char16_type_node)
3640 || same_type_p (type, char32_type_node)
3641 || same_type_p (type, wchar_type_node));
3642 }
3643
3644 /* Returns the kind of linkage associated with the indicated DECL. Th
3645 value returned is as specified by the language standard; it is
3646 independent of implementation details regarding template
3647 instantiation, etc. For example, it is possible that a declaration
3648 to which this function assigns external linkage would not show up
3649 as a global symbol when you run `nm' on the resulting object file. */
3650
3651 linkage_kind
3652 decl_linkage (tree decl)
3653 {
3654 /* This function doesn't attempt to calculate the linkage from first
3655 principles as given in [basic.link]. Instead, it makes use of
3656 the fact that we have already set TREE_PUBLIC appropriately, and
3657 then handles a few special cases. Ideally, we would calculate
3658 linkage first, and then transform that into a concrete
3659 implementation. */
3660
3661 /* Things that don't have names have no linkage. */
3662 if (!DECL_NAME (decl))
3663 return lk_none;
3664
3665 /* Fields have no linkage. */
3666 if (TREE_CODE (decl) == FIELD_DECL)
3667 return lk_none;
3668
3669 /* Things that are TREE_PUBLIC have external linkage. */
3670 if (TREE_PUBLIC (decl))
3671 return lk_external;
3672
3673 if (TREE_CODE (decl) == NAMESPACE_DECL)
3674 return lk_external;
3675
3676 /* Linkage of a CONST_DECL depends on the linkage of the enumeration
3677 type. */
3678 if (TREE_CODE (decl) == CONST_DECL)
3679 return decl_linkage (TYPE_NAME (DECL_CONTEXT (decl)));
3680
3681 /* Some things that are not TREE_PUBLIC have external linkage, too.
3682 For example, on targets that don't have weak symbols, we make all
3683 template instantiations have internal linkage (in the object
3684 file), but the symbols should still be treated as having external
3685 linkage from the point of view of the language. */
3686 if (VAR_OR_FUNCTION_DECL_P (decl)
3687 && DECL_COMDAT (decl))
3688 return lk_external;
3689
3690 /* Things in local scope do not have linkage, if they don't have
3691 TREE_PUBLIC set. */
3692 if (decl_function_context (decl))
3693 return lk_none;
3694
3695 /* Members of the anonymous namespace also have TREE_PUBLIC unset, but
3696 are considered to have external linkage for language purposes. DECLs
3697 really meant to have internal linkage have DECL_THIS_STATIC set. */
3698 if (TREE_CODE (decl) == TYPE_DECL)
3699 return lk_external;
3700 if (VAR_OR_FUNCTION_DECL_P (decl))
3701 {
3702 if (!DECL_THIS_STATIC (decl))
3703 return lk_external;
3704
3705 /* Static data members and static member functions from classes
3706 in anonymous namespace also don't have TREE_PUBLIC set. */
3707 if (DECL_CLASS_CONTEXT (decl))
3708 return lk_external;
3709 }
3710
3711 /* Everything else has internal linkage. */
3712 return lk_internal;
3713 }
3714
3715 /* Returns the storage duration of the object or reference associated with
3716 the indicated DECL, which should be a VAR_DECL or PARM_DECL. */
3717
3718 duration_kind
3719 decl_storage_duration (tree decl)
3720 {
3721 if (TREE_CODE (decl) == PARM_DECL)
3722 return dk_auto;
3723 if (TREE_CODE (decl) == FUNCTION_DECL)
3724 return dk_static;
3725 gcc_assert (VAR_P (decl));
3726 if (!TREE_STATIC (decl)
3727 && !DECL_EXTERNAL (decl))
3728 return dk_auto;
3729 if (DECL_THREAD_LOCAL_P (decl))
3730 return dk_thread;
3731 return dk_static;
3732 }
3733 \f
3734 /* EXP is an expression that we want to pre-evaluate. Returns (in
3735 *INITP) an expression that will perform the pre-evaluation. The
3736 value returned by this function is a side-effect free expression
3737 equivalent to the pre-evaluated expression. Callers must ensure
3738 that *INITP is evaluated before EXP. */
3739
3740 tree
3741 stabilize_expr (tree exp, tree* initp)
3742 {
3743 tree init_expr;
3744
3745 if (!TREE_SIDE_EFFECTS (exp))
3746 init_expr = NULL_TREE;
3747 else if (VOID_TYPE_P (TREE_TYPE (exp)))
3748 {
3749 init_expr = exp;
3750 exp = void_zero_node;
3751 }
3752 /* There are no expressions with REFERENCE_TYPE, but there can be call
3753 arguments with such a type; just treat it as a pointer. */
3754 else if (TREE_CODE (TREE_TYPE (exp)) == REFERENCE_TYPE
3755 || SCALAR_TYPE_P (TREE_TYPE (exp))
3756 || !lvalue_or_rvalue_with_address_p (exp))
3757 {
3758 init_expr = get_target_expr (exp);
3759 exp = TARGET_EXPR_SLOT (init_expr);
3760 }
3761 else
3762 {
3763 bool xval = !real_lvalue_p (exp);
3764 exp = cp_build_addr_expr (exp, tf_warning_or_error);
3765 init_expr = get_target_expr (exp);
3766 exp = TARGET_EXPR_SLOT (init_expr);
3767 exp = cp_build_indirect_ref (exp, RO_NULL, tf_warning_or_error);
3768 if (xval)
3769 exp = move (exp);
3770 }
3771 *initp = init_expr;
3772
3773 gcc_assert (!TREE_SIDE_EFFECTS (exp));
3774 return exp;
3775 }
3776
3777 /* Add NEW_EXPR, an expression whose value we don't care about, after the
3778 similar expression ORIG. */
3779
3780 tree
3781 add_stmt_to_compound (tree orig, tree new_expr)
3782 {
3783 if (!new_expr || !TREE_SIDE_EFFECTS (new_expr))
3784 return orig;
3785 if (!orig || !TREE_SIDE_EFFECTS (orig))
3786 return new_expr;
3787 return build2 (COMPOUND_EXPR, void_type_node, orig, new_expr);
3788 }
3789
3790 /* Like stabilize_expr, but for a call whose arguments we want to
3791 pre-evaluate. CALL is modified in place to use the pre-evaluated
3792 arguments, while, upon return, *INITP contains an expression to
3793 compute the arguments. */
3794
3795 void
3796 stabilize_call (tree call, tree *initp)
3797 {
3798 tree inits = NULL_TREE;
3799 int i;
3800 int nargs = call_expr_nargs (call);
3801
3802 if (call == error_mark_node || processing_template_decl)
3803 {
3804 *initp = NULL_TREE;
3805 return;
3806 }
3807
3808 gcc_assert (TREE_CODE (call) == CALL_EXPR);
3809
3810 for (i = 0; i < nargs; i++)
3811 {
3812 tree init;
3813 CALL_EXPR_ARG (call, i) =
3814 stabilize_expr (CALL_EXPR_ARG (call, i), &init);
3815 inits = add_stmt_to_compound (inits, init);
3816 }
3817
3818 *initp = inits;
3819 }
3820
3821 /* Like stabilize_expr, but for an AGGR_INIT_EXPR whose arguments we want
3822 to pre-evaluate. CALL is modified in place to use the pre-evaluated
3823 arguments, while, upon return, *INITP contains an expression to
3824 compute the arguments. */
3825
3826 static void
3827 stabilize_aggr_init (tree call, tree *initp)
3828 {
3829 tree inits = NULL_TREE;
3830 int i;
3831 int nargs = aggr_init_expr_nargs (call);
3832
3833 if (call == error_mark_node)
3834 return;
3835
3836 gcc_assert (TREE_CODE (call) == AGGR_INIT_EXPR);
3837
3838 for (i = 0; i < nargs; i++)
3839 {
3840 tree init;
3841 AGGR_INIT_EXPR_ARG (call, i) =
3842 stabilize_expr (AGGR_INIT_EXPR_ARG (call, i), &init);
3843 inits = add_stmt_to_compound (inits, init);
3844 }
3845
3846 *initp = inits;
3847 }
3848
3849 /* Like stabilize_expr, but for an initialization.
3850
3851 If the initialization is for an object of class type, this function
3852 takes care not to introduce additional temporaries.
3853
3854 Returns TRUE iff the expression was successfully pre-evaluated,
3855 i.e., if INIT is now side-effect free, except for, possibly, a
3856 single call to a constructor. */
3857
3858 bool
3859 stabilize_init (tree init, tree *initp)
3860 {
3861 tree t = init;
3862
3863 *initp = NULL_TREE;
3864
3865 if (t == error_mark_node || processing_template_decl)
3866 return true;
3867
3868 if (TREE_CODE (t) == INIT_EXPR)
3869 t = TREE_OPERAND (t, 1);
3870 if (TREE_CODE (t) == TARGET_EXPR)
3871 t = TARGET_EXPR_INITIAL (t);
3872
3873 /* If the RHS can be stabilized without breaking copy elision, stabilize
3874 it. We specifically don't stabilize class prvalues here because that
3875 would mean an extra copy, but they might be stabilized below. */
3876 if (TREE_CODE (init) == INIT_EXPR
3877 && TREE_CODE (t) != CONSTRUCTOR
3878 && TREE_CODE (t) != AGGR_INIT_EXPR
3879 && (SCALAR_TYPE_P (TREE_TYPE (t))
3880 || lvalue_or_rvalue_with_address_p (t)))
3881 {
3882 TREE_OPERAND (init, 1) = stabilize_expr (t, initp);
3883 return true;
3884 }
3885
3886 if (TREE_CODE (t) == COMPOUND_EXPR
3887 && TREE_CODE (init) == INIT_EXPR)
3888 {
3889 tree last = expr_last (t);
3890 /* Handle stabilizing the EMPTY_CLASS_EXPR pattern. */
3891 if (!TREE_SIDE_EFFECTS (last))
3892 {
3893 *initp = t;
3894 TREE_OPERAND (init, 1) = last;
3895 return true;
3896 }
3897 }
3898
3899 if (TREE_CODE (t) == CONSTRUCTOR)
3900 {
3901 /* Aggregate initialization: stabilize each of the field
3902 initializers. */
3903 unsigned i;
3904 constructor_elt *ce;
3905 bool good = true;
3906 vec<constructor_elt, va_gc> *v = CONSTRUCTOR_ELTS (t);
3907 for (i = 0; vec_safe_iterate (v, i, &ce); ++i)
3908 {
3909 tree type = TREE_TYPE (ce->value);
3910 tree subinit;
3911 if (TREE_CODE (type) == REFERENCE_TYPE
3912 || SCALAR_TYPE_P (type))
3913 ce->value = stabilize_expr (ce->value, &subinit);
3914 else if (!stabilize_init (ce->value, &subinit))
3915 good = false;
3916 *initp = add_stmt_to_compound (*initp, subinit);
3917 }
3918 return good;
3919 }
3920
3921 if (TREE_CODE (t) == CALL_EXPR)
3922 {
3923 stabilize_call (t, initp);
3924 return true;
3925 }
3926
3927 if (TREE_CODE (t) == AGGR_INIT_EXPR)
3928 {
3929 stabilize_aggr_init (t, initp);
3930 return true;
3931 }
3932
3933 /* The initialization is being performed via a bitwise copy -- and
3934 the item copied may have side effects. */
3935 return !TREE_SIDE_EFFECTS (init);
3936 }
3937
3938 /* Like "fold", but should be used whenever we might be processing the
3939 body of a template. */
3940
3941 tree
3942 fold_if_not_in_template (tree expr)
3943 {
3944 /* In the body of a template, there is never any need to call
3945 "fold". We will call fold later when actually instantiating the
3946 template. Integral constant expressions in templates will be
3947 evaluated via fold_non_dependent_expr, as necessary. */
3948 if (processing_template_decl)
3949 return expr;
3950
3951 /* Fold C++ front-end specific tree codes. */
3952 if (TREE_CODE (expr) == UNARY_PLUS_EXPR)
3953 return fold_convert (TREE_TYPE (expr), TREE_OPERAND (expr, 0));
3954
3955 return fold (expr);
3956 }
3957
3958 /* Returns true if a cast to TYPE may appear in an integral constant
3959 expression. */
3960
3961 bool
3962 cast_valid_in_integral_constant_expression_p (tree type)
3963 {
3964 return (INTEGRAL_OR_ENUMERATION_TYPE_P (type)
3965 || cxx_dialect >= cxx11
3966 || dependent_type_p (type)
3967 || type == error_mark_node);
3968 }
3969
3970 /* Return true if we need to fix linkage information of DECL. */
3971
3972 static bool
3973 cp_fix_function_decl_p (tree decl)
3974 {
3975 /* Skip if DECL is not externally visible. */
3976 if (!TREE_PUBLIC (decl))
3977 return false;
3978
3979 /* We need to fix DECL if it a appears to be exported but with no
3980 function body. Thunks do not have CFGs and we may need to
3981 handle them specially later. */
3982 if (!gimple_has_body_p (decl)
3983 && !DECL_THUNK_P (decl)
3984 && !DECL_EXTERNAL (decl))
3985 {
3986 struct cgraph_node *node = cgraph_get_node (decl);
3987
3988 /* Don't fix same_body aliases. Although they don't have their own
3989 CFG, they share it with what they alias to. */
3990 if (!node || !node->alias
3991 || !vec_safe_length (node->ref_list.references))
3992 return true;
3993 }
3994
3995 return false;
3996 }
3997
3998 /* Clean the C++ specific parts of the tree T. */
3999
4000 void
4001 cp_free_lang_data (tree t)
4002 {
4003 if (TREE_CODE (t) == METHOD_TYPE
4004 || TREE_CODE (t) == FUNCTION_TYPE)
4005 {
4006 /* Default args are not interesting anymore. */
4007 tree argtypes = TYPE_ARG_TYPES (t);
4008 while (argtypes)
4009 {
4010 TREE_PURPOSE (argtypes) = 0;
4011 argtypes = TREE_CHAIN (argtypes);
4012 }
4013 }
4014 else if (TREE_CODE (t) == FUNCTION_DECL
4015 && cp_fix_function_decl_p (t))
4016 {
4017 /* If T is used in this translation unit at all, the definition
4018 must exist somewhere else since we have decided to not emit it
4019 in this TU. So make it an external reference. */
4020 DECL_EXTERNAL (t) = 1;
4021 TREE_STATIC (t) = 0;
4022 }
4023 if (TREE_CODE (t) == NAMESPACE_DECL)
4024 {
4025 /* The list of users of a namespace isn't useful for the middle-end
4026 or debug generators. */
4027 DECL_NAMESPACE_USERS (t) = NULL_TREE;
4028 /* Neither do we need the leftover chaining of namespaces
4029 from the binding level. */
4030 DECL_CHAIN (t) = NULL_TREE;
4031 }
4032 }
4033
4034 /* Stub for c-common. Please keep in sync with c-decl.c.
4035 FIXME: If address space support is target specific, then this
4036 should be a C target hook. But currently this is not possible,
4037 because this function is called via REGISTER_TARGET_PRAGMAS. */
4038 void
4039 c_register_addr_space (const char * /*word*/, addr_space_t /*as*/)
4040 {
4041 }
4042
4043 /* Return the number of operands in T that we care about for things like
4044 mangling. */
4045
4046 int
4047 cp_tree_operand_length (const_tree t)
4048 {
4049 enum tree_code code = TREE_CODE (t);
4050
4051 switch (code)
4052 {
4053 case PREINCREMENT_EXPR:
4054 case PREDECREMENT_EXPR:
4055 case POSTINCREMENT_EXPR:
4056 case POSTDECREMENT_EXPR:
4057 return 1;
4058
4059 case ARRAY_REF:
4060 return 2;
4061
4062 case EXPR_PACK_EXPANSION:
4063 return 1;
4064
4065 default:
4066 return TREE_OPERAND_LENGTH (t);
4067 }
4068 }
4069
4070 /* Implement -Wzero_as_null_pointer_constant. Return true if the
4071 conditions for the warning hold, false otherwise. */
4072 bool
4073 maybe_warn_zero_as_null_pointer_constant (tree expr, location_t loc)
4074 {
4075 if (c_inhibit_evaluation_warnings == 0
4076 && !NULLPTR_TYPE_P (TREE_TYPE (expr)))
4077 {
4078 warning_at (loc, OPT_Wzero_as_null_pointer_constant,
4079 "zero as null pointer constant");
4080 return true;
4081 }
4082 return false;
4083 }
4084 \f
4085 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4086 /* Complain that some language-specific thing hanging off a tree
4087 node has been accessed improperly. */
4088
4089 void
4090 lang_check_failed (const char* file, int line, const char* function)
4091 {
4092 internal_error ("lang_* check: failed in %s, at %s:%d",
4093 function, trim_filename (file), line);
4094 }
4095 #endif /* ENABLE_TREE_CHECKING */
4096
4097 #include "gt-cp-tree.h"