]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cse.c
[Ada] Fold Enum_Rep attribute in evaluation and not in expansion
[thirdparty/gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "cfgrtl.h"
36 #include "cfganal.h"
37 #include "cfgcleanup.h"
38 #include "alias.h"
39 #include "toplev.h"
40 #include "rtlhooks-def.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43 #include "rtl-iter.h"
44 #include "regs.h"
45 #include "function-abi.h"
46
47 /* The basic idea of common subexpression elimination is to go
48 through the code, keeping a record of expressions that would
49 have the same value at the current scan point, and replacing
50 expressions encountered with the cheapest equivalent expression.
51
52 It is too complicated to keep track of the different possibilities
53 when control paths merge in this code; so, at each label, we forget all
54 that is known and start fresh. This can be described as processing each
55 extended basic block separately. We have a separate pass to perform
56 global CSE.
57
58 Note CSE can turn a conditional or computed jump into a nop or
59 an unconditional jump. When this occurs we arrange to run the jump
60 optimizer after CSE to delete the unreachable code.
61
62 We use two data structures to record the equivalent expressions:
63 a hash table for most expressions, and a vector of "quantity
64 numbers" to record equivalent (pseudo) registers.
65
66 The use of the special data structure for registers is desirable
67 because it is faster. It is possible because registers references
68 contain a fairly small number, the register number, taken from
69 a contiguously allocated series, and two register references are
70 identical if they have the same number. General expressions
71 do not have any such thing, so the only way to retrieve the
72 information recorded on an expression other than a register
73 is to keep it in a hash table.
74
75 Registers and "quantity numbers":
76
77 At the start of each basic block, all of the (hardware and pseudo)
78 registers used in the function are given distinct quantity
79 numbers to indicate their contents. During scan, when the code
80 copies one register into another, we copy the quantity number.
81 When a register is loaded in any other way, we allocate a new
82 quantity number to describe the value generated by this operation.
83 `REG_QTY (N)' records what quantity register N is currently thought
84 of as containing.
85
86 All real quantity numbers are greater than or equal to zero.
87 If register N has not been assigned a quantity, `REG_QTY (N)' will
88 equal -N - 1, which is always negative.
89
90 Quantity numbers below zero do not exist and none of the `qty_table'
91 entries should be referenced with a negative index.
92
93 We also maintain a bidirectional chain of registers for each
94 quantity number. The `qty_table` members `first_reg' and `last_reg',
95 and `reg_eqv_table' members `next' and `prev' hold these chains.
96
97 The first register in a chain is the one whose lifespan is least local.
98 Among equals, it is the one that was seen first.
99 We replace any equivalent register with that one.
100
101 If two registers have the same quantity number, it must be true that
102 REG expressions with qty_table `mode' must be in the hash table for both
103 registers and must be in the same class.
104
105 The converse is not true. Since hard registers may be referenced in
106 any mode, two REG expressions might be equivalent in the hash table
107 but not have the same quantity number if the quantity number of one
108 of the registers is not the same mode as those expressions.
109
110 Constants and quantity numbers
111
112 When a quantity has a known constant value, that value is stored
113 in the appropriate qty_table `const_rtx'. This is in addition to
114 putting the constant in the hash table as is usual for non-regs.
115
116 Whether a reg or a constant is preferred is determined by the configuration
117 macro CONST_COSTS and will often depend on the constant value. In any
118 event, expressions containing constants can be simplified, by fold_rtx.
119
120 When a quantity has a known nearly constant value (such as an address
121 of a stack slot), that value is stored in the appropriate qty_table
122 `const_rtx'.
123
124 Integer constants don't have a machine mode. However, cse
125 determines the intended machine mode from the destination
126 of the instruction that moves the constant. The machine mode
127 is recorded in the hash table along with the actual RTL
128 constant expression so that different modes are kept separate.
129
130 Other expressions:
131
132 To record known equivalences among expressions in general
133 we use a hash table called `table'. It has a fixed number of buckets
134 that contain chains of `struct table_elt' elements for expressions.
135 These chains connect the elements whose expressions have the same
136 hash codes.
137
138 Other chains through the same elements connect the elements which
139 currently have equivalent values.
140
141 Register references in an expression are canonicalized before hashing
142 the expression. This is done using `reg_qty' and qty_table `first_reg'.
143 The hash code of a register reference is computed using the quantity
144 number, not the register number.
145
146 When the value of an expression changes, it is necessary to remove from the
147 hash table not just that expression but all expressions whose values
148 could be different as a result.
149
150 1. If the value changing is in memory, except in special cases
151 ANYTHING referring to memory could be changed. That is because
152 nobody knows where a pointer does not point.
153 The function `invalidate_memory' removes what is necessary.
154
155 The special cases are when the address is constant or is
156 a constant plus a fixed register such as the frame pointer
157 or a static chain pointer. When such addresses are stored in,
158 we can tell exactly which other such addresses must be invalidated
159 due to overlap. `invalidate' does this.
160 All expressions that refer to non-constant
161 memory addresses are also invalidated. `invalidate_memory' does this.
162
163 2. If the value changing is a register, all expressions
164 containing references to that register, and only those,
165 must be removed.
166
167 Because searching the entire hash table for expressions that contain
168 a register is very slow, we try to figure out when it isn't necessary.
169 Precisely, this is necessary only when expressions have been
170 entered in the hash table using this register, and then the value has
171 changed, and then another expression wants to be added to refer to
172 the register's new value. This sequence of circumstances is rare
173 within any one basic block.
174
175 `REG_TICK' and `REG_IN_TABLE', accessors for members of
176 cse_reg_info, are used to detect this case. REG_TICK (i) is
177 incremented whenever a value is stored in register i.
178 REG_IN_TABLE (i) holds -1 if no references to register i have been
179 entered in the table; otherwise, it contains the value REG_TICK (i)
180 had when the references were entered. If we want to enter a
181 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
182 remove old references. Until we want to enter a new entry, the
183 mere fact that the two vectors don't match makes the entries be
184 ignored if anyone tries to match them.
185
186 Registers themselves are entered in the hash table as well as in
187 the equivalent-register chains. However, `REG_TICK' and
188 `REG_IN_TABLE' do not apply to expressions which are simple
189 register references. These expressions are removed from the table
190 immediately when they become invalid, and this can be done even if
191 we do not immediately search for all the expressions that refer to
192 the register.
193
194 A CLOBBER rtx in an instruction invalidates its operand for further
195 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
196 invalidates everything that resides in memory.
197
198 Related expressions:
199
200 Constant expressions that differ only by an additive integer
201 are called related. When a constant expression is put in
202 the table, the related expression with no constant term
203 is also entered. These are made to point at each other
204 so that it is possible to find out if there exists any
205 register equivalent to an expression related to a given expression. */
206
207 /* Length of qty_table vector. We know in advance we will not need
208 a quantity number this big. */
209
210 static int max_qty;
211
212 /* Next quantity number to be allocated.
213 This is 1 + the largest number needed so far. */
214
215 static int next_qty;
216
217 /* Per-qty information tracking.
218
219 `first_reg' and `last_reg' track the head and tail of the
220 chain of registers which currently contain this quantity.
221
222 `mode' contains the machine mode of this quantity.
223
224 `const_rtx' holds the rtx of the constant value of this
225 quantity, if known. A summations of the frame/arg pointer
226 and a constant can also be entered here. When this holds
227 a known value, `const_insn' is the insn which stored the
228 constant value.
229
230 `comparison_{code,const,qty}' are used to track when a
231 comparison between a quantity and some constant or register has
232 been passed. In such a case, we know the results of the comparison
233 in case we see it again. These members record a comparison that
234 is known to be true. `comparison_code' holds the rtx code of such
235 a comparison, else it is set to UNKNOWN and the other two
236 comparison members are undefined. `comparison_const' holds
237 the constant being compared against, or zero if the comparison
238 is not against a constant. `comparison_qty' holds the quantity
239 being compared against when the result is known. If the comparison
240 is not with a register, `comparison_qty' is -1. */
241
242 struct qty_table_elem
243 {
244 rtx const_rtx;
245 rtx_insn *const_insn;
246 rtx comparison_const;
247 int comparison_qty;
248 unsigned int first_reg, last_reg;
249 /* The sizes of these fields should match the sizes of the
250 code and mode fields of struct rtx_def (see rtl.h). */
251 ENUM_BITFIELD(rtx_code) comparison_code : 16;
252 ENUM_BITFIELD(machine_mode) mode : 8;
253 };
254
255 /* The table of all qtys, indexed by qty number. */
256 static struct qty_table_elem *qty_table;
257
258 /* For machines that have a CC0, we do not record its value in the hash
259 table since its use is guaranteed to be the insn immediately following
260 its definition and any other insn is presumed to invalidate it.
261
262 Instead, we store below the current and last value assigned to CC0.
263 If it should happen to be a constant, it is stored in preference
264 to the actual assigned value. In case it is a constant, we store
265 the mode in which the constant should be interpreted. */
266
267 static rtx this_insn_cc0, prev_insn_cc0;
268 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
269
270 /* Insn being scanned. */
271
272 static rtx_insn *this_insn;
273 static bool optimize_this_for_speed_p;
274
275 /* Index by register number, gives the number of the next (or
276 previous) register in the chain of registers sharing the same
277 value.
278
279 Or -1 if this register is at the end of the chain.
280
281 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
282
283 /* Per-register equivalence chain. */
284 struct reg_eqv_elem
285 {
286 int next, prev;
287 };
288
289 /* The table of all register equivalence chains. */
290 static struct reg_eqv_elem *reg_eqv_table;
291
292 struct cse_reg_info
293 {
294 /* The timestamp at which this register is initialized. */
295 unsigned int timestamp;
296
297 /* The quantity number of the register's current contents. */
298 int reg_qty;
299
300 /* The number of times the register has been altered in the current
301 basic block. */
302 int reg_tick;
303
304 /* The REG_TICK value at which rtx's containing this register are
305 valid in the hash table. If this does not equal the current
306 reg_tick value, such expressions existing in the hash table are
307 invalid. */
308 int reg_in_table;
309
310 /* The SUBREG that was set when REG_TICK was last incremented. Set
311 to -1 if the last store was to the whole register, not a subreg. */
312 unsigned int subreg_ticked;
313 };
314
315 /* A table of cse_reg_info indexed by register numbers. */
316 static struct cse_reg_info *cse_reg_info_table;
317
318 /* The size of the above table. */
319 static unsigned int cse_reg_info_table_size;
320
321 /* The index of the first entry that has not been initialized. */
322 static unsigned int cse_reg_info_table_first_uninitialized;
323
324 /* The timestamp at the beginning of the current run of
325 cse_extended_basic_block. We increment this variable at the beginning of
326 the current run of cse_extended_basic_block. The timestamp field of a
327 cse_reg_info entry matches the value of this variable if and only
328 if the entry has been initialized during the current run of
329 cse_extended_basic_block. */
330 static unsigned int cse_reg_info_timestamp;
331
332 /* A HARD_REG_SET containing all the hard registers for which there is
333 currently a REG expression in the hash table. Note the difference
334 from the above variables, which indicate if the REG is mentioned in some
335 expression in the table. */
336
337 static HARD_REG_SET hard_regs_in_table;
338
339 /* True if CSE has altered the CFG. */
340 static bool cse_cfg_altered;
341
342 /* True if CSE has altered conditional jump insns in such a way
343 that jump optimization should be redone. */
344 static bool cse_jumps_altered;
345
346 /* True if we put a LABEL_REF into the hash table for an INSN
347 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
348 to put in the note. */
349 static bool recorded_label_ref;
350
351 /* canon_hash stores 1 in do_not_record
352 if it notices a reference to CC0, PC, or some other volatile
353 subexpression. */
354
355 static int do_not_record;
356
357 /* canon_hash stores 1 in hash_arg_in_memory
358 if it notices a reference to memory within the expression being hashed. */
359
360 static int hash_arg_in_memory;
361
362 /* The hash table contains buckets which are chains of `struct table_elt's,
363 each recording one expression's information.
364 That expression is in the `exp' field.
365
366 The canon_exp field contains a canonical (from the point of view of
367 alias analysis) version of the `exp' field.
368
369 Those elements with the same hash code are chained in both directions
370 through the `next_same_hash' and `prev_same_hash' fields.
371
372 Each set of expressions with equivalent values
373 are on a two-way chain through the `next_same_value'
374 and `prev_same_value' fields, and all point with
375 the `first_same_value' field at the first element in
376 that chain. The chain is in order of increasing cost.
377 Each element's cost value is in its `cost' field.
378
379 The `in_memory' field is nonzero for elements that
380 involve any reference to memory. These elements are removed
381 whenever a write is done to an unidentified location in memory.
382 To be safe, we assume that a memory address is unidentified unless
383 the address is either a symbol constant or a constant plus
384 the frame pointer or argument pointer.
385
386 The `related_value' field is used to connect related expressions
387 (that differ by adding an integer).
388 The related expressions are chained in a circular fashion.
389 `related_value' is zero for expressions for which this
390 chain is not useful.
391
392 The `cost' field stores the cost of this element's expression.
393 The `regcost' field stores the value returned by approx_reg_cost for
394 this element's expression.
395
396 The `is_const' flag is set if the element is a constant (including
397 a fixed address).
398
399 The `flag' field is used as a temporary during some search routines.
400
401 The `mode' field is usually the same as GET_MODE (`exp'), but
402 if `exp' is a CONST_INT and has no machine mode then the `mode'
403 field is the mode it was being used as. Each constant is
404 recorded separately for each mode it is used with. */
405
406 struct table_elt
407 {
408 rtx exp;
409 rtx canon_exp;
410 struct table_elt *next_same_hash;
411 struct table_elt *prev_same_hash;
412 struct table_elt *next_same_value;
413 struct table_elt *prev_same_value;
414 struct table_elt *first_same_value;
415 struct table_elt *related_value;
416 int cost;
417 int regcost;
418 /* The size of this field should match the size
419 of the mode field of struct rtx_def (see rtl.h). */
420 ENUM_BITFIELD(machine_mode) mode : 8;
421 char in_memory;
422 char is_const;
423 char flag;
424 };
425
426 /* We don't want a lot of buckets, because we rarely have very many
427 things stored in the hash table, and a lot of buckets slows
428 down a lot of loops that happen frequently. */
429 #define HASH_SHIFT 5
430 #define HASH_SIZE (1 << HASH_SHIFT)
431 #define HASH_MASK (HASH_SIZE - 1)
432
433 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
434 register (hard registers may require `do_not_record' to be set). */
435
436 #define HASH(X, M) \
437 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
438 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
439 : canon_hash (X, M)) & HASH_MASK)
440
441 /* Like HASH, but without side-effects. */
442 #define SAFE_HASH(X, M) \
443 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
444 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
445 : safe_hash (X, M)) & HASH_MASK)
446
447 /* Determine whether register number N is considered a fixed register for the
448 purpose of approximating register costs.
449 It is desirable to replace other regs with fixed regs, to reduce need for
450 non-fixed hard regs.
451 A reg wins if it is either the frame pointer or designated as fixed. */
452 #define FIXED_REGNO_P(N) \
453 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
454 || fixed_regs[N] || global_regs[N])
455
456 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
457 hard registers and pointers into the frame are the cheapest with a cost
458 of 0. Next come pseudos with a cost of one and other hard registers with
459 a cost of 2. Aside from these special cases, call `rtx_cost'. */
460
461 #define CHEAP_REGNO(N) \
462 (REGNO_PTR_FRAME_P (N) \
463 || (HARD_REGISTER_NUM_P (N) \
464 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
465
466 #define COST(X, MODE) \
467 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
468 #define COST_IN(X, MODE, OUTER, OPNO) \
469 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
470
471 /* Get the number of times this register has been updated in this
472 basic block. */
473
474 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
475
476 /* Get the point at which REG was recorded in the table. */
477
478 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
479
480 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
481 SUBREG). */
482
483 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
484
485 /* Get the quantity number for REG. */
486
487 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
488
489 /* Determine if the quantity number for register X represents a valid index
490 into the qty_table. */
491
492 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
493
494 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
495
496 #define CHEAPER(X, Y) \
497 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
498
499 static struct table_elt *table[HASH_SIZE];
500
501 /* Chain of `struct table_elt's made so far for this function
502 but currently removed from the table. */
503
504 static struct table_elt *free_element_chain;
505
506 /* Set to the cost of a constant pool reference if one was found for a
507 symbolic constant. If this was found, it means we should try to
508 convert constants into constant pool entries if they don't fit in
509 the insn. */
510
511 static int constant_pool_entries_cost;
512 static int constant_pool_entries_regcost;
513
514 /* Trace a patch through the CFG. */
515
516 struct branch_path
517 {
518 /* The basic block for this path entry. */
519 basic_block bb;
520 };
521
522 /* This data describes a block that will be processed by
523 cse_extended_basic_block. */
524
525 struct cse_basic_block_data
526 {
527 /* Total number of SETs in block. */
528 int nsets;
529 /* Size of current branch path, if any. */
530 int path_size;
531 /* Current path, indicating which basic_blocks will be processed. */
532 struct branch_path *path;
533 };
534
535
536 /* Pointers to the live in/live out bitmaps for the boundaries of the
537 current EBB. */
538 static bitmap cse_ebb_live_in, cse_ebb_live_out;
539
540 /* A simple bitmap to track which basic blocks have been visited
541 already as part of an already processed extended basic block. */
542 static sbitmap cse_visited_basic_blocks;
543
544 static bool fixed_base_plus_p (rtx x);
545 static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
546 static int preferable (int, int, int, int);
547 static void new_basic_block (void);
548 static void make_new_qty (unsigned int, machine_mode);
549 static void make_regs_eqv (unsigned int, unsigned int);
550 static void delete_reg_equiv (unsigned int);
551 static int mention_regs (rtx);
552 static int insert_regs (rtx, struct table_elt *, int);
553 static void remove_from_table (struct table_elt *, unsigned);
554 static void remove_pseudo_from_table (rtx, unsigned);
555 static struct table_elt *lookup (rtx, unsigned, machine_mode);
556 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
557 static rtx lookup_as_function (rtx, enum rtx_code);
558 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
559 machine_mode, int, int);
560 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
561 machine_mode);
562 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
563 static void invalidate (rtx, machine_mode);
564 static void remove_invalid_refs (unsigned int);
565 static void remove_invalid_subreg_refs (unsigned int, poly_uint64,
566 machine_mode);
567 static void rehash_using_reg (rtx);
568 static void invalidate_memory (void);
569 static rtx use_related_value (rtx, struct table_elt *);
570
571 static inline unsigned canon_hash (rtx, machine_mode);
572 static inline unsigned safe_hash (rtx, machine_mode);
573 static inline unsigned hash_rtx_string (const char *);
574
575 static rtx canon_reg (rtx, rtx_insn *);
576 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
577 machine_mode *,
578 machine_mode *);
579 static rtx fold_rtx (rtx, rtx_insn *);
580 static rtx equiv_constant (rtx);
581 static void record_jump_equiv (rtx_insn *, bool);
582 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
583 int);
584 static void cse_insn (rtx_insn *);
585 static void cse_prescan_path (struct cse_basic_block_data *);
586 static void invalidate_from_clobbers (rtx_insn *);
587 static void invalidate_from_sets_and_clobbers (rtx_insn *);
588 static void cse_extended_basic_block (struct cse_basic_block_data *);
589 extern void dump_class (struct table_elt*);
590 static void get_cse_reg_info_1 (unsigned int regno);
591 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
592
593 static void flush_hash_table (void);
594 static bool insn_live_p (rtx_insn *, int *);
595 static bool set_live_p (rtx, rtx_insn *, int *);
596 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
597 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
598 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
599 bool);
600 \f
601
602 #undef RTL_HOOKS_GEN_LOWPART
603 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
604
605 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
606 \f
607 /* Nonzero if X has the form (PLUS frame-pointer integer). */
608
609 static bool
610 fixed_base_plus_p (rtx x)
611 {
612 switch (GET_CODE (x))
613 {
614 case REG:
615 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
616 return true;
617 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
618 return true;
619 return false;
620
621 case PLUS:
622 if (!CONST_INT_P (XEXP (x, 1)))
623 return false;
624 return fixed_base_plus_p (XEXP (x, 0));
625
626 default:
627 return false;
628 }
629 }
630
631 /* Dump the expressions in the equivalence class indicated by CLASSP.
632 This function is used only for debugging. */
633 DEBUG_FUNCTION void
634 dump_class (struct table_elt *classp)
635 {
636 struct table_elt *elt;
637
638 fprintf (stderr, "Equivalence chain for ");
639 print_rtl (stderr, classp->exp);
640 fprintf (stderr, ": \n");
641
642 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
643 {
644 print_rtl (stderr, elt->exp);
645 fprintf (stderr, "\n");
646 }
647 }
648
649 /* Return an estimate of the cost of the registers used in an rtx.
650 This is mostly the number of different REG expressions in the rtx;
651 however for some exceptions like fixed registers we use a cost of
652 0. If any other hard register reference occurs, return MAX_COST. */
653
654 static int
655 approx_reg_cost (const_rtx x)
656 {
657 int cost = 0;
658 subrtx_iterator::array_type array;
659 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
660 {
661 const_rtx x = *iter;
662 if (REG_P (x))
663 {
664 unsigned int regno = REGNO (x);
665 if (!CHEAP_REGNO (regno))
666 {
667 if (regno < FIRST_PSEUDO_REGISTER)
668 {
669 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
670 return MAX_COST;
671 cost += 2;
672 }
673 else
674 cost += 1;
675 }
676 }
677 }
678 return cost;
679 }
680
681 /* Return a negative value if an rtx A, whose costs are given by COST_A
682 and REGCOST_A, is more desirable than an rtx B.
683 Return a positive value if A is less desirable, or 0 if the two are
684 equally good. */
685 static int
686 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
687 {
688 /* First, get rid of cases involving expressions that are entirely
689 unwanted. */
690 if (cost_a != cost_b)
691 {
692 if (cost_a == MAX_COST)
693 return 1;
694 if (cost_b == MAX_COST)
695 return -1;
696 }
697
698 /* Avoid extending lifetimes of hardregs. */
699 if (regcost_a != regcost_b)
700 {
701 if (regcost_a == MAX_COST)
702 return 1;
703 if (regcost_b == MAX_COST)
704 return -1;
705 }
706
707 /* Normal operation costs take precedence. */
708 if (cost_a != cost_b)
709 return cost_a - cost_b;
710 /* Only if these are identical consider effects on register pressure. */
711 if (regcost_a != regcost_b)
712 return regcost_a - regcost_b;
713 return 0;
714 }
715
716 /* Internal function, to compute cost when X is not a register; called
717 from COST macro to keep it simple. */
718
719 static int
720 notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
721 {
722 scalar_int_mode int_mode, inner_mode;
723 return ((GET_CODE (x) == SUBREG
724 && REG_P (SUBREG_REG (x))
725 && is_int_mode (mode, &int_mode)
726 && is_int_mode (GET_MODE (SUBREG_REG (x)), &inner_mode)
727 && GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode)
728 && subreg_lowpart_p (x)
729 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, inner_mode))
730 ? 0
731 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
732 }
733
734 \f
735 /* Initialize CSE_REG_INFO_TABLE. */
736
737 static void
738 init_cse_reg_info (unsigned int nregs)
739 {
740 /* Do we need to grow the table? */
741 if (nregs > cse_reg_info_table_size)
742 {
743 unsigned int new_size;
744
745 if (cse_reg_info_table_size < 2048)
746 {
747 /* Compute a new size that is a power of 2 and no smaller
748 than the large of NREGS and 64. */
749 new_size = (cse_reg_info_table_size
750 ? cse_reg_info_table_size : 64);
751
752 while (new_size < nregs)
753 new_size *= 2;
754 }
755 else
756 {
757 /* If we need a big table, allocate just enough to hold
758 NREGS registers. */
759 new_size = nregs;
760 }
761
762 /* Reallocate the table with NEW_SIZE entries. */
763 free (cse_reg_info_table);
764 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
765 cse_reg_info_table_size = new_size;
766 cse_reg_info_table_first_uninitialized = 0;
767 }
768
769 /* Do we have all of the first NREGS entries initialized? */
770 if (cse_reg_info_table_first_uninitialized < nregs)
771 {
772 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
773 unsigned int i;
774
775 /* Put the old timestamp on newly allocated entries so that they
776 will all be considered out of date. We do not touch those
777 entries beyond the first NREGS entries to be nice to the
778 virtual memory. */
779 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
780 cse_reg_info_table[i].timestamp = old_timestamp;
781
782 cse_reg_info_table_first_uninitialized = nregs;
783 }
784 }
785
786 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
787
788 static void
789 get_cse_reg_info_1 (unsigned int regno)
790 {
791 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
792 entry will be considered to have been initialized. */
793 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
794
795 /* Initialize the rest of the entry. */
796 cse_reg_info_table[regno].reg_tick = 1;
797 cse_reg_info_table[regno].reg_in_table = -1;
798 cse_reg_info_table[regno].subreg_ticked = -1;
799 cse_reg_info_table[regno].reg_qty = -regno - 1;
800 }
801
802 /* Find a cse_reg_info entry for REGNO. */
803
804 static inline struct cse_reg_info *
805 get_cse_reg_info (unsigned int regno)
806 {
807 struct cse_reg_info *p = &cse_reg_info_table[regno];
808
809 /* If this entry has not been initialized, go ahead and initialize
810 it. */
811 if (p->timestamp != cse_reg_info_timestamp)
812 get_cse_reg_info_1 (regno);
813
814 return p;
815 }
816
817 /* Clear the hash table and initialize each register with its own quantity,
818 for a new basic block. */
819
820 static void
821 new_basic_block (void)
822 {
823 int i;
824
825 next_qty = 0;
826
827 /* Invalidate cse_reg_info_table. */
828 cse_reg_info_timestamp++;
829
830 /* Clear out hash table state for this pass. */
831 CLEAR_HARD_REG_SET (hard_regs_in_table);
832
833 /* The per-quantity values used to be initialized here, but it is
834 much faster to initialize each as it is made in `make_new_qty'. */
835
836 for (i = 0; i < HASH_SIZE; i++)
837 {
838 struct table_elt *first;
839
840 first = table[i];
841 if (first != NULL)
842 {
843 struct table_elt *last = first;
844
845 table[i] = NULL;
846
847 while (last->next_same_hash != NULL)
848 last = last->next_same_hash;
849
850 /* Now relink this hash entire chain into
851 the free element list. */
852
853 last->next_same_hash = free_element_chain;
854 free_element_chain = first;
855 }
856 }
857
858 prev_insn_cc0 = 0;
859 }
860
861 /* Say that register REG contains a quantity in mode MODE not in any
862 register before and initialize that quantity. */
863
864 static void
865 make_new_qty (unsigned int reg, machine_mode mode)
866 {
867 int q;
868 struct qty_table_elem *ent;
869 struct reg_eqv_elem *eqv;
870
871 gcc_assert (next_qty < max_qty);
872
873 q = REG_QTY (reg) = next_qty++;
874 ent = &qty_table[q];
875 ent->first_reg = reg;
876 ent->last_reg = reg;
877 ent->mode = mode;
878 ent->const_rtx = ent->const_insn = NULL;
879 ent->comparison_code = UNKNOWN;
880
881 eqv = &reg_eqv_table[reg];
882 eqv->next = eqv->prev = -1;
883 }
884
885 /* Make reg NEW equivalent to reg OLD.
886 OLD is not changing; NEW is. */
887
888 static void
889 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
890 {
891 unsigned int lastr, firstr;
892 int q = REG_QTY (old_reg);
893 struct qty_table_elem *ent;
894
895 ent = &qty_table[q];
896
897 /* Nothing should become eqv until it has a "non-invalid" qty number. */
898 gcc_assert (REGNO_QTY_VALID_P (old_reg));
899
900 REG_QTY (new_reg) = q;
901 firstr = ent->first_reg;
902 lastr = ent->last_reg;
903
904 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
905 hard regs. Among pseudos, if NEW will live longer than any other reg
906 of the same qty, and that is beyond the current basic block,
907 make it the new canonical replacement for this qty. */
908 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
909 /* Certain fixed registers might be of the class NO_REGS. This means
910 that not only can they not be allocated by the compiler, but
911 they cannot be used in substitutions or canonicalizations
912 either. */
913 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
914 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
915 || (new_reg >= FIRST_PSEUDO_REGISTER
916 && (firstr < FIRST_PSEUDO_REGISTER
917 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
918 && !bitmap_bit_p (cse_ebb_live_out, firstr))
919 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
920 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
921 {
922 reg_eqv_table[firstr].prev = new_reg;
923 reg_eqv_table[new_reg].next = firstr;
924 reg_eqv_table[new_reg].prev = -1;
925 ent->first_reg = new_reg;
926 }
927 else
928 {
929 /* If NEW is a hard reg (known to be non-fixed), insert at end.
930 Otherwise, insert before any non-fixed hard regs that are at the
931 end. Registers of class NO_REGS cannot be used as an
932 equivalent for anything. */
933 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
934 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
935 && new_reg >= FIRST_PSEUDO_REGISTER)
936 lastr = reg_eqv_table[lastr].prev;
937 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
938 if (reg_eqv_table[lastr].next >= 0)
939 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
940 else
941 qty_table[q].last_reg = new_reg;
942 reg_eqv_table[lastr].next = new_reg;
943 reg_eqv_table[new_reg].prev = lastr;
944 }
945 }
946
947 /* Remove REG from its equivalence class. */
948
949 static void
950 delete_reg_equiv (unsigned int reg)
951 {
952 struct qty_table_elem *ent;
953 int q = REG_QTY (reg);
954 int p, n;
955
956 /* If invalid, do nothing. */
957 if (! REGNO_QTY_VALID_P (reg))
958 return;
959
960 ent = &qty_table[q];
961
962 p = reg_eqv_table[reg].prev;
963 n = reg_eqv_table[reg].next;
964
965 if (n != -1)
966 reg_eqv_table[n].prev = p;
967 else
968 ent->last_reg = p;
969 if (p != -1)
970 reg_eqv_table[p].next = n;
971 else
972 ent->first_reg = n;
973
974 REG_QTY (reg) = -reg - 1;
975 }
976
977 /* Remove any invalid expressions from the hash table
978 that refer to any of the registers contained in expression X.
979
980 Make sure that newly inserted references to those registers
981 as subexpressions will be considered valid.
982
983 mention_regs is not called when a register itself
984 is being stored in the table.
985
986 Return 1 if we have done something that may have changed the hash code
987 of X. */
988
989 static int
990 mention_regs (rtx x)
991 {
992 enum rtx_code code;
993 int i, j;
994 const char *fmt;
995 int changed = 0;
996
997 if (x == 0)
998 return 0;
999
1000 code = GET_CODE (x);
1001 if (code == REG)
1002 {
1003 unsigned int regno = REGNO (x);
1004 unsigned int endregno = END_REGNO (x);
1005 unsigned int i;
1006
1007 for (i = regno; i < endregno; i++)
1008 {
1009 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1010 remove_invalid_refs (i);
1011
1012 REG_IN_TABLE (i) = REG_TICK (i);
1013 SUBREG_TICKED (i) = -1;
1014 }
1015
1016 return 0;
1017 }
1018
1019 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1020 pseudo if they don't use overlapping words. We handle only pseudos
1021 here for simplicity. */
1022 if (code == SUBREG && REG_P (SUBREG_REG (x))
1023 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1024 {
1025 unsigned int i = REGNO (SUBREG_REG (x));
1026
1027 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1028 {
1029 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1030 the last store to this register really stored into this
1031 subreg, then remove the memory of this subreg.
1032 Otherwise, remove any memory of the entire register and
1033 all its subregs from the table. */
1034 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1035 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1036 remove_invalid_refs (i);
1037 else
1038 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1039 }
1040
1041 REG_IN_TABLE (i) = REG_TICK (i);
1042 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1043 return 0;
1044 }
1045
1046 /* If X is a comparison or a COMPARE and either operand is a register
1047 that does not have a quantity, give it one. This is so that a later
1048 call to record_jump_equiv won't cause X to be assigned a different
1049 hash code and not found in the table after that call.
1050
1051 It is not necessary to do this here, since rehash_using_reg can
1052 fix up the table later, but doing this here eliminates the need to
1053 call that expensive function in the most common case where the only
1054 use of the register is in the comparison. */
1055
1056 if (code == COMPARE || COMPARISON_P (x))
1057 {
1058 if (REG_P (XEXP (x, 0))
1059 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1060 if (insert_regs (XEXP (x, 0), NULL, 0))
1061 {
1062 rehash_using_reg (XEXP (x, 0));
1063 changed = 1;
1064 }
1065
1066 if (REG_P (XEXP (x, 1))
1067 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1068 if (insert_regs (XEXP (x, 1), NULL, 0))
1069 {
1070 rehash_using_reg (XEXP (x, 1));
1071 changed = 1;
1072 }
1073 }
1074
1075 fmt = GET_RTX_FORMAT (code);
1076 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1077 if (fmt[i] == 'e')
1078 changed |= mention_regs (XEXP (x, i));
1079 else if (fmt[i] == 'E')
1080 for (j = 0; j < XVECLEN (x, i); j++)
1081 changed |= mention_regs (XVECEXP (x, i, j));
1082
1083 return changed;
1084 }
1085
1086 /* Update the register quantities for inserting X into the hash table
1087 with a value equivalent to CLASSP.
1088 (If the class does not contain a REG, it is irrelevant.)
1089 If MODIFIED is nonzero, X is a destination; it is being modified.
1090 Note that delete_reg_equiv should be called on a register
1091 before insert_regs is done on that register with MODIFIED != 0.
1092
1093 Nonzero value means that elements of reg_qty have changed
1094 so X's hash code may be different. */
1095
1096 static int
1097 insert_regs (rtx x, struct table_elt *classp, int modified)
1098 {
1099 if (REG_P (x))
1100 {
1101 unsigned int regno = REGNO (x);
1102 int qty_valid;
1103
1104 /* If REGNO is in the equivalence table already but is of the
1105 wrong mode for that equivalence, don't do anything here. */
1106
1107 qty_valid = REGNO_QTY_VALID_P (regno);
1108 if (qty_valid)
1109 {
1110 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1111
1112 if (ent->mode != GET_MODE (x))
1113 return 0;
1114 }
1115
1116 if (modified || ! qty_valid)
1117 {
1118 if (classp)
1119 for (classp = classp->first_same_value;
1120 classp != 0;
1121 classp = classp->next_same_value)
1122 if (REG_P (classp->exp)
1123 && GET_MODE (classp->exp) == GET_MODE (x))
1124 {
1125 unsigned c_regno = REGNO (classp->exp);
1126
1127 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1128
1129 /* Suppose that 5 is hard reg and 100 and 101 are
1130 pseudos. Consider
1131
1132 (set (reg:si 100) (reg:si 5))
1133 (set (reg:si 5) (reg:si 100))
1134 (set (reg:di 101) (reg:di 5))
1135
1136 We would now set REG_QTY (101) = REG_QTY (5), but the
1137 entry for 5 is in SImode. When we use this later in
1138 copy propagation, we get the register in wrong mode. */
1139 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1140 continue;
1141
1142 make_regs_eqv (regno, c_regno);
1143 return 1;
1144 }
1145
1146 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1147 than REG_IN_TABLE to find out if there was only a single preceding
1148 invalidation - for the SUBREG - or another one, which would be
1149 for the full register. However, if we find here that REG_TICK
1150 indicates that the register is invalid, it means that it has
1151 been invalidated in a separate operation. The SUBREG might be used
1152 now (then this is a recursive call), or we might use the full REG
1153 now and a SUBREG of it later. So bump up REG_TICK so that
1154 mention_regs will do the right thing. */
1155 if (! modified
1156 && REG_IN_TABLE (regno) >= 0
1157 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1158 REG_TICK (regno)++;
1159 make_new_qty (regno, GET_MODE (x));
1160 return 1;
1161 }
1162
1163 return 0;
1164 }
1165
1166 /* If X is a SUBREG, we will likely be inserting the inner register in the
1167 table. If that register doesn't have an assigned quantity number at
1168 this point but does later, the insertion that we will be doing now will
1169 not be accessible because its hash code will have changed. So assign
1170 a quantity number now. */
1171
1172 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1173 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1174 {
1175 insert_regs (SUBREG_REG (x), NULL, 0);
1176 mention_regs (x);
1177 return 1;
1178 }
1179 else
1180 return mention_regs (x);
1181 }
1182 \f
1183
1184 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1185 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1186 CST is equal to an anchor. */
1187
1188 static bool
1189 compute_const_anchors (rtx cst,
1190 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1191 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1192 {
1193 HOST_WIDE_INT n = INTVAL (cst);
1194
1195 *lower_base = n & ~(targetm.const_anchor - 1);
1196 if (*lower_base == n)
1197 return false;
1198
1199 *upper_base =
1200 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1201 *upper_offs = n - *upper_base;
1202 *lower_offs = n - *lower_base;
1203 return true;
1204 }
1205
1206 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1207
1208 static void
1209 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1210 machine_mode mode)
1211 {
1212 struct table_elt *elt;
1213 unsigned hash;
1214 rtx anchor_exp;
1215 rtx exp;
1216
1217 anchor_exp = GEN_INT (anchor);
1218 hash = HASH (anchor_exp, mode);
1219 elt = lookup (anchor_exp, hash, mode);
1220 if (!elt)
1221 elt = insert (anchor_exp, NULL, hash, mode);
1222
1223 exp = plus_constant (mode, reg, offs);
1224 /* REG has just been inserted and the hash codes recomputed. */
1225 mention_regs (exp);
1226 hash = HASH (exp, mode);
1227
1228 /* Use the cost of the register rather than the whole expression. When
1229 looking up constant anchors we will further offset the corresponding
1230 expression therefore it does not make sense to prefer REGs over
1231 reg-immediate additions. Prefer instead the oldest expression. Also
1232 don't prefer pseudos over hard regs so that we derive constants in
1233 argument registers from other argument registers rather than from the
1234 original pseudo that was used to synthesize the constant. */
1235 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
1236 }
1237
1238 /* The constant CST is equivalent to the register REG. Create
1239 equivalences between the two anchors of CST and the corresponding
1240 register-offset expressions using REG. */
1241
1242 static void
1243 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1244 {
1245 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1246
1247 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1248 &upper_base, &upper_offs))
1249 return;
1250
1251 /* Ignore anchors of value 0. Constants accessible from zero are
1252 simple. */
1253 if (lower_base != 0)
1254 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1255
1256 if (upper_base != 0)
1257 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1258 }
1259
1260 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1261 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1262 valid expression. Return the cheapest and oldest of such expressions. In
1263 *OLD, return how old the resulting expression is compared to the other
1264 equivalent expressions. */
1265
1266 static rtx
1267 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1268 unsigned *old)
1269 {
1270 struct table_elt *elt;
1271 unsigned idx;
1272 struct table_elt *match_elt;
1273 rtx match;
1274
1275 /* Find the cheapest and *oldest* expression to maximize the chance of
1276 reusing the same pseudo. */
1277
1278 match_elt = NULL;
1279 match = NULL_RTX;
1280 for (elt = anchor_elt->first_same_value, idx = 0;
1281 elt;
1282 elt = elt->next_same_value, idx++)
1283 {
1284 if (match_elt && CHEAPER (match_elt, elt))
1285 return match;
1286
1287 if (REG_P (elt->exp)
1288 || (GET_CODE (elt->exp) == PLUS
1289 && REG_P (XEXP (elt->exp, 0))
1290 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1291 {
1292 rtx x;
1293
1294 /* Ignore expressions that are no longer valid. */
1295 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1296 continue;
1297
1298 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1299 if (REG_P (x)
1300 || (GET_CODE (x) == PLUS
1301 && IN_RANGE (INTVAL (XEXP (x, 1)),
1302 -targetm.const_anchor,
1303 targetm.const_anchor - 1)))
1304 {
1305 match = x;
1306 match_elt = elt;
1307 *old = idx;
1308 }
1309 }
1310 }
1311
1312 return match;
1313 }
1314
1315 /* Try to express the constant SRC_CONST using a register+offset expression
1316 derived from a constant anchor. Return it if successful or NULL_RTX,
1317 otherwise. */
1318
1319 static rtx
1320 try_const_anchors (rtx src_const, machine_mode mode)
1321 {
1322 struct table_elt *lower_elt, *upper_elt;
1323 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1324 rtx lower_anchor_rtx, upper_anchor_rtx;
1325 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1326 unsigned lower_old, upper_old;
1327
1328 /* CONST_INT is used for CC modes, but we should leave those alone. */
1329 if (GET_MODE_CLASS (mode) == MODE_CC)
1330 return NULL_RTX;
1331
1332 gcc_assert (SCALAR_INT_MODE_P (mode));
1333 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1334 &upper_base, &upper_offs))
1335 return NULL_RTX;
1336
1337 lower_anchor_rtx = GEN_INT (lower_base);
1338 upper_anchor_rtx = GEN_INT (upper_base);
1339 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1340 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1341
1342 if (lower_elt)
1343 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1344 if (upper_elt)
1345 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1346
1347 if (!lower_exp)
1348 return upper_exp;
1349 if (!upper_exp)
1350 return lower_exp;
1351
1352 /* Return the older expression. */
1353 return (upper_old > lower_old ? upper_exp : lower_exp);
1354 }
1355 \f
1356 /* Look in or update the hash table. */
1357
1358 /* Remove table element ELT from use in the table.
1359 HASH is its hash code, made using the HASH macro.
1360 It's an argument because often that is known in advance
1361 and we save much time not recomputing it. */
1362
1363 static void
1364 remove_from_table (struct table_elt *elt, unsigned int hash)
1365 {
1366 if (elt == 0)
1367 return;
1368
1369 /* Mark this element as removed. See cse_insn. */
1370 elt->first_same_value = 0;
1371
1372 /* Remove the table element from its equivalence class. */
1373
1374 {
1375 struct table_elt *prev = elt->prev_same_value;
1376 struct table_elt *next = elt->next_same_value;
1377
1378 if (next)
1379 next->prev_same_value = prev;
1380
1381 if (prev)
1382 prev->next_same_value = next;
1383 else
1384 {
1385 struct table_elt *newfirst = next;
1386 while (next)
1387 {
1388 next->first_same_value = newfirst;
1389 next = next->next_same_value;
1390 }
1391 }
1392 }
1393
1394 /* Remove the table element from its hash bucket. */
1395
1396 {
1397 struct table_elt *prev = elt->prev_same_hash;
1398 struct table_elt *next = elt->next_same_hash;
1399
1400 if (next)
1401 next->prev_same_hash = prev;
1402
1403 if (prev)
1404 prev->next_same_hash = next;
1405 else if (table[hash] == elt)
1406 table[hash] = next;
1407 else
1408 {
1409 /* This entry is not in the proper hash bucket. This can happen
1410 when two classes were merged by `merge_equiv_classes'. Search
1411 for the hash bucket that it heads. This happens only very
1412 rarely, so the cost is acceptable. */
1413 for (hash = 0; hash < HASH_SIZE; hash++)
1414 if (table[hash] == elt)
1415 table[hash] = next;
1416 }
1417 }
1418
1419 /* Remove the table element from its related-value circular chain. */
1420
1421 if (elt->related_value != 0 && elt->related_value != elt)
1422 {
1423 struct table_elt *p = elt->related_value;
1424
1425 while (p->related_value != elt)
1426 p = p->related_value;
1427 p->related_value = elt->related_value;
1428 if (p->related_value == p)
1429 p->related_value = 0;
1430 }
1431
1432 /* Now add it to the free element chain. */
1433 elt->next_same_hash = free_element_chain;
1434 free_element_chain = elt;
1435 }
1436
1437 /* Same as above, but X is a pseudo-register. */
1438
1439 static void
1440 remove_pseudo_from_table (rtx x, unsigned int hash)
1441 {
1442 struct table_elt *elt;
1443
1444 /* Because a pseudo-register can be referenced in more than one
1445 mode, we might have to remove more than one table entry. */
1446 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1447 remove_from_table (elt, hash);
1448 }
1449
1450 /* Look up X in the hash table and return its table element,
1451 or 0 if X is not in the table.
1452
1453 MODE is the machine-mode of X, or if X is an integer constant
1454 with VOIDmode then MODE is the mode with which X will be used.
1455
1456 Here we are satisfied to find an expression whose tree structure
1457 looks like X. */
1458
1459 static struct table_elt *
1460 lookup (rtx x, unsigned int hash, machine_mode mode)
1461 {
1462 struct table_elt *p;
1463
1464 for (p = table[hash]; p; p = p->next_same_hash)
1465 if (mode == p->mode && ((x == p->exp && REG_P (x))
1466 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1467 return p;
1468
1469 return 0;
1470 }
1471
1472 /* Like `lookup' but don't care whether the table element uses invalid regs.
1473 Also ignore discrepancies in the machine mode of a register. */
1474
1475 static struct table_elt *
1476 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1477 {
1478 struct table_elt *p;
1479
1480 if (REG_P (x))
1481 {
1482 unsigned int regno = REGNO (x);
1483
1484 /* Don't check the machine mode when comparing registers;
1485 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1486 for (p = table[hash]; p; p = p->next_same_hash)
1487 if (REG_P (p->exp)
1488 && REGNO (p->exp) == regno)
1489 return p;
1490 }
1491 else
1492 {
1493 for (p = table[hash]; p; p = p->next_same_hash)
1494 if (mode == p->mode
1495 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1496 return p;
1497 }
1498
1499 return 0;
1500 }
1501
1502 /* Look for an expression equivalent to X and with code CODE.
1503 If one is found, return that expression. */
1504
1505 static rtx
1506 lookup_as_function (rtx x, enum rtx_code code)
1507 {
1508 struct table_elt *p
1509 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1510
1511 if (p == 0)
1512 return 0;
1513
1514 for (p = p->first_same_value; p; p = p->next_same_value)
1515 if (GET_CODE (p->exp) == code
1516 /* Make sure this is a valid entry in the table. */
1517 && exp_equiv_p (p->exp, p->exp, 1, false))
1518 return p->exp;
1519
1520 return 0;
1521 }
1522
1523 /* Insert X in the hash table, assuming HASH is its hash code and
1524 CLASSP is an element of the class it should go in (or 0 if a new
1525 class should be made). COST is the code of X and reg_cost is the
1526 cost of registers in X. It is inserted at the proper position to
1527 keep the class in the order cheapest first.
1528
1529 MODE is the machine-mode of X, or if X is an integer constant
1530 with VOIDmode then MODE is the mode with which X will be used.
1531
1532 For elements of equal cheapness, the most recent one
1533 goes in front, except that the first element in the list
1534 remains first unless a cheaper element is added. The order of
1535 pseudo-registers does not matter, as canon_reg will be called to
1536 find the cheapest when a register is retrieved from the table.
1537
1538 The in_memory field in the hash table element is set to 0.
1539 The caller must set it nonzero if appropriate.
1540
1541 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1542 and if insert_regs returns a nonzero value
1543 you must then recompute its hash code before calling here.
1544
1545 If necessary, update table showing constant values of quantities. */
1546
1547 static struct table_elt *
1548 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1549 machine_mode mode, int cost, int reg_cost)
1550 {
1551 struct table_elt *elt;
1552
1553 /* If X is a register and we haven't made a quantity for it,
1554 something is wrong. */
1555 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1556
1557 /* If X is a hard register, show it is being put in the table. */
1558 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1559 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1560
1561 /* Put an element for X into the right hash bucket. */
1562
1563 elt = free_element_chain;
1564 if (elt)
1565 free_element_chain = elt->next_same_hash;
1566 else
1567 elt = XNEW (struct table_elt);
1568
1569 elt->exp = x;
1570 elt->canon_exp = NULL_RTX;
1571 elt->cost = cost;
1572 elt->regcost = reg_cost;
1573 elt->next_same_value = 0;
1574 elt->prev_same_value = 0;
1575 elt->next_same_hash = table[hash];
1576 elt->prev_same_hash = 0;
1577 elt->related_value = 0;
1578 elt->in_memory = 0;
1579 elt->mode = mode;
1580 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1581
1582 if (table[hash])
1583 table[hash]->prev_same_hash = elt;
1584 table[hash] = elt;
1585
1586 /* Put it into the proper value-class. */
1587 if (classp)
1588 {
1589 classp = classp->first_same_value;
1590 if (CHEAPER (elt, classp))
1591 /* Insert at the head of the class. */
1592 {
1593 struct table_elt *p;
1594 elt->next_same_value = classp;
1595 classp->prev_same_value = elt;
1596 elt->first_same_value = elt;
1597
1598 for (p = classp; p; p = p->next_same_value)
1599 p->first_same_value = elt;
1600 }
1601 else
1602 {
1603 /* Insert not at head of the class. */
1604 /* Put it after the last element cheaper than X. */
1605 struct table_elt *p, *next;
1606
1607 for (p = classp;
1608 (next = p->next_same_value) && CHEAPER (next, elt);
1609 p = next)
1610 ;
1611
1612 /* Put it after P and before NEXT. */
1613 elt->next_same_value = next;
1614 if (next)
1615 next->prev_same_value = elt;
1616
1617 elt->prev_same_value = p;
1618 p->next_same_value = elt;
1619 elt->first_same_value = classp;
1620 }
1621 }
1622 else
1623 elt->first_same_value = elt;
1624
1625 /* If this is a constant being set equivalent to a register or a register
1626 being set equivalent to a constant, note the constant equivalence.
1627
1628 If this is a constant, it cannot be equivalent to a different constant,
1629 and a constant is the only thing that can be cheaper than a register. So
1630 we know the register is the head of the class (before the constant was
1631 inserted).
1632
1633 If this is a register that is not already known equivalent to a
1634 constant, we must check the entire class.
1635
1636 If this is a register that is already known equivalent to an insn,
1637 update the qtys `const_insn' to show that `this_insn' is the latest
1638 insn making that quantity equivalent to the constant. */
1639
1640 if (elt->is_const && classp && REG_P (classp->exp)
1641 && !REG_P (x))
1642 {
1643 int exp_q = REG_QTY (REGNO (classp->exp));
1644 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1645
1646 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1647 exp_ent->const_insn = this_insn;
1648 }
1649
1650 else if (REG_P (x)
1651 && classp
1652 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1653 && ! elt->is_const)
1654 {
1655 struct table_elt *p;
1656
1657 for (p = classp; p != 0; p = p->next_same_value)
1658 {
1659 if (p->is_const && !REG_P (p->exp))
1660 {
1661 int x_q = REG_QTY (REGNO (x));
1662 struct qty_table_elem *x_ent = &qty_table[x_q];
1663
1664 x_ent->const_rtx
1665 = gen_lowpart (GET_MODE (x), p->exp);
1666 x_ent->const_insn = this_insn;
1667 break;
1668 }
1669 }
1670 }
1671
1672 else if (REG_P (x)
1673 && qty_table[REG_QTY (REGNO (x))].const_rtx
1674 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1675 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1676
1677 /* If this is a constant with symbolic value,
1678 and it has a term with an explicit integer value,
1679 link it up with related expressions. */
1680 if (GET_CODE (x) == CONST)
1681 {
1682 rtx subexp = get_related_value (x);
1683 unsigned subhash;
1684 struct table_elt *subelt, *subelt_prev;
1685
1686 if (subexp != 0)
1687 {
1688 /* Get the integer-free subexpression in the hash table. */
1689 subhash = SAFE_HASH (subexp, mode);
1690 subelt = lookup (subexp, subhash, mode);
1691 if (subelt == 0)
1692 subelt = insert (subexp, NULL, subhash, mode);
1693 /* Initialize SUBELT's circular chain if it has none. */
1694 if (subelt->related_value == 0)
1695 subelt->related_value = subelt;
1696 /* Find the element in the circular chain that precedes SUBELT. */
1697 subelt_prev = subelt;
1698 while (subelt_prev->related_value != subelt)
1699 subelt_prev = subelt_prev->related_value;
1700 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1701 This way the element that follows SUBELT is the oldest one. */
1702 elt->related_value = subelt_prev->related_value;
1703 subelt_prev->related_value = elt;
1704 }
1705 }
1706
1707 return elt;
1708 }
1709
1710 /* Wrap insert_with_costs by passing the default costs. */
1711
1712 static struct table_elt *
1713 insert (rtx x, struct table_elt *classp, unsigned int hash,
1714 machine_mode mode)
1715 {
1716 return insert_with_costs (x, classp, hash, mode,
1717 COST (x, mode), approx_reg_cost (x));
1718 }
1719
1720 \f
1721 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1722 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1723 the two classes equivalent.
1724
1725 CLASS1 will be the surviving class; CLASS2 should not be used after this
1726 call.
1727
1728 Any invalid entries in CLASS2 will not be copied. */
1729
1730 static void
1731 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1732 {
1733 struct table_elt *elt, *next, *new_elt;
1734
1735 /* Ensure we start with the head of the classes. */
1736 class1 = class1->first_same_value;
1737 class2 = class2->first_same_value;
1738
1739 /* If they were already equal, forget it. */
1740 if (class1 == class2)
1741 return;
1742
1743 for (elt = class2; elt; elt = next)
1744 {
1745 unsigned int hash;
1746 rtx exp = elt->exp;
1747 machine_mode mode = elt->mode;
1748
1749 next = elt->next_same_value;
1750
1751 /* Remove old entry, make a new one in CLASS1's class.
1752 Don't do this for invalid entries as we cannot find their
1753 hash code (it also isn't necessary). */
1754 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1755 {
1756 bool need_rehash = false;
1757
1758 hash_arg_in_memory = 0;
1759 hash = HASH (exp, mode);
1760
1761 if (REG_P (exp))
1762 {
1763 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1764 delete_reg_equiv (REGNO (exp));
1765 }
1766
1767 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1768 remove_pseudo_from_table (exp, hash);
1769 else
1770 remove_from_table (elt, hash);
1771
1772 if (insert_regs (exp, class1, 0) || need_rehash)
1773 {
1774 rehash_using_reg (exp);
1775 hash = HASH (exp, mode);
1776 }
1777 new_elt = insert (exp, class1, hash, mode);
1778 new_elt->in_memory = hash_arg_in_memory;
1779 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1780 new_elt->cost = MAX_COST;
1781 }
1782 }
1783 }
1784 \f
1785 /* Flush the entire hash table. */
1786
1787 static void
1788 flush_hash_table (void)
1789 {
1790 int i;
1791 struct table_elt *p;
1792
1793 for (i = 0; i < HASH_SIZE; i++)
1794 for (p = table[i]; p; p = table[i])
1795 {
1796 /* Note that invalidate can remove elements
1797 after P in the current hash chain. */
1798 if (REG_P (p->exp))
1799 invalidate (p->exp, VOIDmode);
1800 else
1801 remove_from_table (p, i);
1802 }
1803 }
1804 \f
1805 /* Check whether an anti dependence exists between X and EXP. MODE and
1806 ADDR are as for canon_anti_dependence. */
1807
1808 static bool
1809 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1810 {
1811 subrtx_iterator::array_type array;
1812 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1813 {
1814 const_rtx x = *iter;
1815 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1816 return true;
1817 }
1818 return false;
1819 }
1820
1821 /* Remove from the hash table, or mark as invalid, all expressions whose
1822 values could be altered by storing in register X. */
1823
1824 static void
1825 invalidate_reg (rtx x)
1826 {
1827 gcc_assert (GET_CODE (x) == REG);
1828
1829 /* If X is a register, dependencies on its contents are recorded
1830 through the qty number mechanism. Just change the qty number of
1831 the register, mark it as invalid for expressions that refer to it,
1832 and remove it itself. */
1833 unsigned int regno = REGNO (x);
1834 unsigned int hash = HASH (x, GET_MODE (x));
1835
1836 /* Remove REGNO from any quantity list it might be on and indicate
1837 that its value might have changed. If it is a pseudo, remove its
1838 entry from the hash table.
1839
1840 For a hard register, we do the first two actions above for any
1841 additional hard registers corresponding to X. Then, if any of these
1842 registers are in the table, we must remove any REG entries that
1843 overlap these registers. */
1844
1845 delete_reg_equiv (regno);
1846 REG_TICK (regno)++;
1847 SUBREG_TICKED (regno) = -1;
1848
1849 if (regno >= FIRST_PSEUDO_REGISTER)
1850 remove_pseudo_from_table (x, hash);
1851 else
1852 {
1853 HOST_WIDE_INT in_table = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1854 unsigned int endregno = END_REGNO (x);
1855 unsigned int rn;
1856 struct table_elt *p, *next;
1857
1858 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1859
1860 for (rn = regno + 1; rn < endregno; rn++)
1861 {
1862 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1863 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1864 delete_reg_equiv (rn);
1865 REG_TICK (rn)++;
1866 SUBREG_TICKED (rn) = -1;
1867 }
1868
1869 if (in_table)
1870 for (hash = 0; hash < HASH_SIZE; hash++)
1871 for (p = table[hash]; p; p = next)
1872 {
1873 next = p->next_same_hash;
1874
1875 if (!REG_P (p->exp) || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1876 continue;
1877
1878 unsigned int tregno = REGNO (p->exp);
1879 unsigned int tendregno = END_REGNO (p->exp);
1880 if (tendregno > regno && tregno < endregno)
1881 remove_from_table (p, hash);
1882 }
1883 }
1884 }
1885
1886 /* Remove from the hash table, or mark as invalid, all expressions whose
1887 values could be altered by storing in X. X is a register, a subreg, or
1888 a memory reference with nonvarying address (because, when a memory
1889 reference with a varying address is stored in, all memory references are
1890 removed by invalidate_memory so specific invalidation is superfluous).
1891 FULL_MODE, if not VOIDmode, indicates that this much should be
1892 invalidated instead of just the amount indicated by the mode of X. This
1893 is only used for bitfield stores into memory.
1894
1895 A nonvarying address may be just a register or just a symbol reference,
1896 or it may be either of those plus a numeric offset. */
1897
1898 static void
1899 invalidate (rtx x, machine_mode full_mode)
1900 {
1901 int i;
1902 struct table_elt *p;
1903 rtx addr;
1904
1905 switch (GET_CODE (x))
1906 {
1907 case REG:
1908 invalidate_reg (x);
1909 return;
1910
1911 case SUBREG:
1912 invalidate (SUBREG_REG (x), VOIDmode);
1913 return;
1914
1915 case PARALLEL:
1916 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1917 invalidate (XVECEXP (x, 0, i), VOIDmode);
1918 return;
1919
1920 case EXPR_LIST:
1921 /* This is part of a disjoint return value; extract the location in
1922 question ignoring the offset. */
1923 invalidate (XEXP (x, 0), VOIDmode);
1924 return;
1925
1926 case MEM:
1927 addr = canon_rtx (get_addr (XEXP (x, 0)));
1928 /* Calculate the canonical version of X here so that
1929 true_dependence doesn't generate new RTL for X on each call. */
1930 x = canon_rtx (x);
1931
1932 /* Remove all hash table elements that refer to overlapping pieces of
1933 memory. */
1934 if (full_mode == VOIDmode)
1935 full_mode = GET_MODE (x);
1936
1937 for (i = 0; i < HASH_SIZE; i++)
1938 {
1939 struct table_elt *next;
1940
1941 for (p = table[i]; p; p = next)
1942 {
1943 next = p->next_same_hash;
1944 if (p->in_memory)
1945 {
1946 /* Just canonicalize the expression once;
1947 otherwise each time we call invalidate
1948 true_dependence will canonicalize the
1949 expression again. */
1950 if (!p->canon_exp)
1951 p->canon_exp = canon_rtx (p->exp);
1952 if (check_dependence (p->canon_exp, x, full_mode, addr))
1953 remove_from_table (p, i);
1954 }
1955 }
1956 }
1957 return;
1958
1959 default:
1960 gcc_unreachable ();
1961 }
1962 }
1963
1964 /* Invalidate DEST. Used when DEST is not going to be added
1965 into the hash table for some reason, e.g. do_not_record
1966 flagged on it. */
1967
1968 static void
1969 invalidate_dest (rtx dest)
1970 {
1971 if (REG_P (dest)
1972 || GET_CODE (dest) == SUBREG
1973 || MEM_P (dest))
1974 invalidate (dest, VOIDmode);
1975 else if (GET_CODE (dest) == STRICT_LOW_PART
1976 || GET_CODE (dest) == ZERO_EXTRACT)
1977 invalidate (XEXP (dest, 0), GET_MODE (dest));
1978 }
1979 \f
1980 /* Remove all expressions that refer to register REGNO,
1981 since they are already invalid, and we are about to
1982 mark that register valid again and don't want the old
1983 expressions to reappear as valid. */
1984
1985 static void
1986 remove_invalid_refs (unsigned int regno)
1987 {
1988 unsigned int i;
1989 struct table_elt *p, *next;
1990
1991 for (i = 0; i < HASH_SIZE; i++)
1992 for (p = table[i]; p; p = next)
1993 {
1994 next = p->next_same_hash;
1995 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
1996 remove_from_table (p, i);
1997 }
1998 }
1999
2000 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2001 and mode MODE. */
2002 static void
2003 remove_invalid_subreg_refs (unsigned int regno, poly_uint64 offset,
2004 machine_mode mode)
2005 {
2006 unsigned int i;
2007 struct table_elt *p, *next;
2008
2009 for (i = 0; i < HASH_SIZE; i++)
2010 for (p = table[i]; p; p = next)
2011 {
2012 rtx exp = p->exp;
2013 next = p->next_same_hash;
2014
2015 if (!REG_P (exp)
2016 && (GET_CODE (exp) != SUBREG
2017 || !REG_P (SUBREG_REG (exp))
2018 || REGNO (SUBREG_REG (exp)) != regno
2019 || ranges_maybe_overlap_p (SUBREG_BYTE (exp),
2020 GET_MODE_SIZE (GET_MODE (exp)),
2021 offset, GET_MODE_SIZE (mode)))
2022 && refers_to_regno_p (regno, p->exp))
2023 remove_from_table (p, i);
2024 }
2025 }
2026 \f
2027 /* Recompute the hash codes of any valid entries in the hash table that
2028 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2029
2030 This is called when we make a jump equivalence. */
2031
2032 static void
2033 rehash_using_reg (rtx x)
2034 {
2035 unsigned int i;
2036 struct table_elt *p, *next;
2037 unsigned hash;
2038
2039 if (GET_CODE (x) == SUBREG)
2040 x = SUBREG_REG (x);
2041
2042 /* If X is not a register or if the register is known not to be in any
2043 valid entries in the table, we have no work to do. */
2044
2045 if (!REG_P (x)
2046 || REG_IN_TABLE (REGNO (x)) < 0
2047 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2048 return;
2049
2050 /* Scan all hash chains looking for valid entries that mention X.
2051 If we find one and it is in the wrong hash chain, move it. */
2052
2053 for (i = 0; i < HASH_SIZE; i++)
2054 for (p = table[i]; p; p = next)
2055 {
2056 next = p->next_same_hash;
2057 if (reg_mentioned_p (x, p->exp)
2058 && exp_equiv_p (p->exp, p->exp, 1, false)
2059 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2060 {
2061 if (p->next_same_hash)
2062 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2063
2064 if (p->prev_same_hash)
2065 p->prev_same_hash->next_same_hash = p->next_same_hash;
2066 else
2067 table[i] = p->next_same_hash;
2068
2069 p->next_same_hash = table[hash];
2070 p->prev_same_hash = 0;
2071 if (table[hash])
2072 table[hash]->prev_same_hash = p;
2073 table[hash] = p;
2074 }
2075 }
2076 }
2077 \f
2078 /* Remove from the hash table any expression that is a call-clobbered
2079 register in INSN. Also update their TICK values. */
2080
2081 static void
2082 invalidate_for_call (rtx_insn *insn)
2083 {
2084 unsigned int regno;
2085 unsigned hash;
2086 struct table_elt *p, *next;
2087 int in_table = 0;
2088 hard_reg_set_iterator hrsi;
2089
2090 /* Go through all the hard registers. For each that might be clobbered
2091 in call insn INSN, remove the register from quantity chains and update
2092 reg_tick if defined. Also see if any of these registers is currently
2093 in the table.
2094
2095 ??? We could be more precise for partially-clobbered registers,
2096 and only invalidate values that actually occupy the clobbered part
2097 of the registers. It doesn't seem worth the effort though, since
2098 we shouldn't see this situation much before RA. Whatever choice
2099 we make here has to be consistent with the table walk below,
2100 so any change to this test will require a change there too. */
2101 HARD_REG_SET callee_clobbers
2102 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
2103 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi)
2104 {
2105 delete_reg_equiv (regno);
2106 if (REG_TICK (regno) >= 0)
2107 {
2108 REG_TICK (regno)++;
2109 SUBREG_TICKED (regno) = -1;
2110 }
2111 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2112 }
2113
2114 /* In the case where we have no call-clobbered hard registers in the
2115 table, we are done. Otherwise, scan the table and remove any
2116 entry that overlaps a call-clobbered register. */
2117
2118 if (in_table)
2119 for (hash = 0; hash < HASH_SIZE; hash++)
2120 for (p = table[hash]; p; p = next)
2121 {
2122 next = p->next_same_hash;
2123
2124 if (!REG_P (p->exp)
2125 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2126 continue;
2127
2128 /* This must use the same test as above rather than the
2129 more accurate clobbers_reg_p. */
2130 if (overlaps_hard_reg_set_p (callee_clobbers, GET_MODE (p->exp),
2131 REGNO (p->exp)))
2132 remove_from_table (p, hash);
2133 }
2134 }
2135 \f
2136 /* Given an expression X of type CONST,
2137 and ELT which is its table entry (or 0 if it
2138 is not in the hash table),
2139 return an alternate expression for X as a register plus integer.
2140 If none can be found, return 0. */
2141
2142 static rtx
2143 use_related_value (rtx x, struct table_elt *elt)
2144 {
2145 struct table_elt *relt = 0;
2146 struct table_elt *p, *q;
2147 HOST_WIDE_INT offset;
2148
2149 /* First, is there anything related known?
2150 If we have a table element, we can tell from that.
2151 Otherwise, must look it up. */
2152
2153 if (elt != 0 && elt->related_value != 0)
2154 relt = elt;
2155 else if (elt == 0 && GET_CODE (x) == CONST)
2156 {
2157 rtx subexp = get_related_value (x);
2158 if (subexp != 0)
2159 relt = lookup (subexp,
2160 SAFE_HASH (subexp, GET_MODE (subexp)),
2161 GET_MODE (subexp));
2162 }
2163
2164 if (relt == 0)
2165 return 0;
2166
2167 /* Search all related table entries for one that has an
2168 equivalent register. */
2169
2170 p = relt;
2171 while (1)
2172 {
2173 /* This loop is strange in that it is executed in two different cases.
2174 The first is when X is already in the table. Then it is searching
2175 the RELATED_VALUE list of X's class (RELT). The second case is when
2176 X is not in the table. Then RELT points to a class for the related
2177 value.
2178
2179 Ensure that, whatever case we are in, that we ignore classes that have
2180 the same value as X. */
2181
2182 if (rtx_equal_p (x, p->exp))
2183 q = 0;
2184 else
2185 for (q = p->first_same_value; q; q = q->next_same_value)
2186 if (REG_P (q->exp))
2187 break;
2188
2189 if (q)
2190 break;
2191
2192 p = p->related_value;
2193
2194 /* We went all the way around, so there is nothing to be found.
2195 Alternatively, perhaps RELT was in the table for some other reason
2196 and it has no related values recorded. */
2197 if (p == relt || p == 0)
2198 break;
2199 }
2200
2201 if (q == 0)
2202 return 0;
2203
2204 offset = (get_integer_term (x) - get_integer_term (p->exp));
2205 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2206 return plus_constant (q->mode, q->exp, offset);
2207 }
2208 \f
2209
2210 /* Hash a string. Just add its bytes up. */
2211 static inline unsigned
2212 hash_rtx_string (const char *ps)
2213 {
2214 unsigned hash = 0;
2215 const unsigned char *p = (const unsigned char *) ps;
2216
2217 if (p)
2218 while (*p)
2219 hash += *p++;
2220
2221 return hash;
2222 }
2223
2224 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2225 When the callback returns true, we continue with the new rtx. */
2226
2227 unsigned
2228 hash_rtx_cb (const_rtx x, machine_mode mode,
2229 int *do_not_record_p, int *hash_arg_in_memory_p,
2230 bool have_reg_qty, hash_rtx_callback_function cb)
2231 {
2232 int i, j;
2233 unsigned hash = 0;
2234 enum rtx_code code;
2235 const char *fmt;
2236 machine_mode newmode;
2237 rtx newx;
2238
2239 /* Used to turn recursion into iteration. We can't rely on GCC's
2240 tail-recursion elimination since we need to keep accumulating values
2241 in HASH. */
2242 repeat:
2243 if (x == 0)
2244 return hash;
2245
2246 /* Invoke the callback first. */
2247 if (cb != NULL
2248 && ((*cb) (x, mode, &newx, &newmode)))
2249 {
2250 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2251 hash_arg_in_memory_p, have_reg_qty, cb);
2252 return hash;
2253 }
2254
2255 code = GET_CODE (x);
2256 switch (code)
2257 {
2258 case REG:
2259 {
2260 unsigned int regno = REGNO (x);
2261
2262 if (do_not_record_p && !reload_completed)
2263 {
2264 /* On some machines, we can't record any non-fixed hard register,
2265 because extending its life will cause reload problems. We
2266 consider ap, fp, sp, gp to be fixed for this purpose.
2267
2268 We also consider CCmode registers to be fixed for this purpose;
2269 failure to do so leads to failure to simplify 0<100 type of
2270 conditionals.
2271
2272 On all machines, we can't record any global registers.
2273 Nor should we record any register that is in a small
2274 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2275 bool record;
2276
2277 if (regno >= FIRST_PSEUDO_REGISTER)
2278 record = true;
2279 else if (x == frame_pointer_rtx
2280 || x == hard_frame_pointer_rtx
2281 || x == arg_pointer_rtx
2282 || x == stack_pointer_rtx
2283 || x == pic_offset_table_rtx)
2284 record = true;
2285 else if (global_regs[regno])
2286 record = false;
2287 else if (fixed_regs[regno])
2288 record = true;
2289 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2290 record = true;
2291 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2292 record = false;
2293 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2294 record = false;
2295 else
2296 record = true;
2297
2298 if (!record)
2299 {
2300 *do_not_record_p = 1;
2301 return 0;
2302 }
2303 }
2304
2305 hash += ((unsigned int) REG << 7);
2306 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2307 return hash;
2308 }
2309
2310 /* We handle SUBREG of a REG specially because the underlying
2311 reg changes its hash value with every value change; we don't
2312 want to have to forget unrelated subregs when one subreg changes. */
2313 case SUBREG:
2314 {
2315 if (REG_P (SUBREG_REG (x)))
2316 {
2317 hash += (((unsigned int) SUBREG << 7)
2318 + REGNO (SUBREG_REG (x))
2319 + (constant_lower_bound (SUBREG_BYTE (x))
2320 / UNITS_PER_WORD));
2321 return hash;
2322 }
2323 break;
2324 }
2325
2326 case CONST_INT:
2327 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2328 + (unsigned int) INTVAL (x));
2329 return hash;
2330
2331 case CONST_WIDE_INT:
2332 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2333 hash += CONST_WIDE_INT_ELT (x, i);
2334 return hash;
2335
2336 case CONST_POLY_INT:
2337 {
2338 inchash::hash h;
2339 h.add_int (hash);
2340 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2341 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
2342 return h.end ();
2343 }
2344
2345 case CONST_DOUBLE:
2346 /* This is like the general case, except that it only counts
2347 the integers representing the constant. */
2348 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2349 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2350 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2351 + (unsigned int) CONST_DOUBLE_HIGH (x));
2352 else
2353 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2354 return hash;
2355
2356 case CONST_FIXED:
2357 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2358 hash += fixed_hash (CONST_FIXED_VALUE (x));
2359 return hash;
2360
2361 case CONST_VECTOR:
2362 {
2363 int units;
2364 rtx elt;
2365
2366 units = const_vector_encoded_nelts (x);
2367
2368 for (i = 0; i < units; ++i)
2369 {
2370 elt = CONST_VECTOR_ENCODED_ELT (x, i);
2371 hash += hash_rtx_cb (elt, GET_MODE (elt),
2372 do_not_record_p, hash_arg_in_memory_p,
2373 have_reg_qty, cb);
2374 }
2375
2376 return hash;
2377 }
2378
2379 /* Assume there is only one rtx object for any given label. */
2380 case LABEL_REF:
2381 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2382 differences and differences between each stage's debugging dumps. */
2383 hash += (((unsigned int) LABEL_REF << 7)
2384 + CODE_LABEL_NUMBER (label_ref_label (x)));
2385 return hash;
2386
2387 case SYMBOL_REF:
2388 {
2389 /* Don't hash on the symbol's address to avoid bootstrap differences.
2390 Different hash values may cause expressions to be recorded in
2391 different orders and thus different registers to be used in the
2392 final assembler. This also avoids differences in the dump files
2393 between various stages. */
2394 unsigned int h = 0;
2395 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2396
2397 while (*p)
2398 h += (h << 7) + *p++; /* ??? revisit */
2399
2400 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2401 return hash;
2402 }
2403
2404 case MEM:
2405 /* We don't record if marked volatile or if BLKmode since we don't
2406 know the size of the move. */
2407 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2408 {
2409 *do_not_record_p = 1;
2410 return 0;
2411 }
2412 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2413 *hash_arg_in_memory_p = 1;
2414
2415 /* Now that we have already found this special case,
2416 might as well speed it up as much as possible. */
2417 hash += (unsigned) MEM;
2418 x = XEXP (x, 0);
2419 goto repeat;
2420
2421 case USE:
2422 /* A USE that mentions non-volatile memory needs special
2423 handling since the MEM may be BLKmode which normally
2424 prevents an entry from being made. Pure calls are
2425 marked by a USE which mentions BLKmode memory.
2426 See calls.c:emit_call_1. */
2427 if (MEM_P (XEXP (x, 0))
2428 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2429 {
2430 hash += (unsigned) USE;
2431 x = XEXP (x, 0);
2432
2433 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2434 *hash_arg_in_memory_p = 1;
2435
2436 /* Now that we have already found this special case,
2437 might as well speed it up as much as possible. */
2438 hash += (unsigned) MEM;
2439 x = XEXP (x, 0);
2440 goto repeat;
2441 }
2442 break;
2443
2444 case PRE_DEC:
2445 case PRE_INC:
2446 case POST_DEC:
2447 case POST_INC:
2448 case PRE_MODIFY:
2449 case POST_MODIFY:
2450 case PC:
2451 case CC0:
2452 case CALL:
2453 case UNSPEC_VOLATILE:
2454 if (do_not_record_p) {
2455 *do_not_record_p = 1;
2456 return 0;
2457 }
2458 else
2459 return hash;
2460 break;
2461
2462 case ASM_OPERANDS:
2463 if (do_not_record_p && MEM_VOLATILE_P (x))
2464 {
2465 *do_not_record_p = 1;
2466 return 0;
2467 }
2468 else
2469 {
2470 /* We don't want to take the filename and line into account. */
2471 hash += (unsigned) code + (unsigned) GET_MODE (x)
2472 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2473 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2474 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2475
2476 if (ASM_OPERANDS_INPUT_LENGTH (x))
2477 {
2478 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2479 {
2480 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2481 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2482 do_not_record_p, hash_arg_in_memory_p,
2483 have_reg_qty, cb)
2484 + hash_rtx_string
2485 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2486 }
2487
2488 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2489 x = ASM_OPERANDS_INPUT (x, 0);
2490 mode = GET_MODE (x);
2491 goto repeat;
2492 }
2493
2494 return hash;
2495 }
2496 break;
2497
2498 default:
2499 break;
2500 }
2501
2502 i = GET_RTX_LENGTH (code) - 1;
2503 hash += (unsigned) code + (unsigned) GET_MODE (x);
2504 fmt = GET_RTX_FORMAT (code);
2505 for (; i >= 0; i--)
2506 {
2507 switch (fmt[i])
2508 {
2509 case 'e':
2510 /* If we are about to do the last recursive call
2511 needed at this level, change it into iteration.
2512 This function is called enough to be worth it. */
2513 if (i == 0)
2514 {
2515 x = XEXP (x, i);
2516 goto repeat;
2517 }
2518
2519 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2520 hash_arg_in_memory_p,
2521 have_reg_qty, cb);
2522 break;
2523
2524 case 'E':
2525 for (j = 0; j < XVECLEN (x, i); j++)
2526 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2527 hash_arg_in_memory_p,
2528 have_reg_qty, cb);
2529 break;
2530
2531 case 's':
2532 hash += hash_rtx_string (XSTR (x, i));
2533 break;
2534
2535 case 'i':
2536 hash += (unsigned int) XINT (x, i);
2537 break;
2538
2539 case 'p':
2540 hash += constant_lower_bound (SUBREG_BYTE (x));
2541 break;
2542
2543 case '0': case 't':
2544 /* Unused. */
2545 break;
2546
2547 default:
2548 gcc_unreachable ();
2549 }
2550 }
2551
2552 return hash;
2553 }
2554
2555 /* Hash an rtx. We are careful to make sure the value is never negative.
2556 Equivalent registers hash identically.
2557 MODE is used in hashing for CONST_INTs only;
2558 otherwise the mode of X is used.
2559
2560 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2561
2562 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2563 a MEM rtx which does not have the MEM_READONLY_P flag set.
2564
2565 Note that cse_insn knows that the hash code of a MEM expression
2566 is just (int) MEM plus the hash code of the address. */
2567
2568 unsigned
2569 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2570 int *hash_arg_in_memory_p, bool have_reg_qty)
2571 {
2572 return hash_rtx_cb (x, mode, do_not_record_p,
2573 hash_arg_in_memory_p, have_reg_qty, NULL);
2574 }
2575
2576 /* Hash an rtx X for cse via hash_rtx.
2577 Stores 1 in do_not_record if any subexpression is volatile.
2578 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2579 does not have the MEM_READONLY_P flag set. */
2580
2581 static inline unsigned
2582 canon_hash (rtx x, machine_mode mode)
2583 {
2584 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2585 }
2586
2587 /* Like canon_hash but with no side effects, i.e. do_not_record
2588 and hash_arg_in_memory are not changed. */
2589
2590 static inline unsigned
2591 safe_hash (rtx x, machine_mode mode)
2592 {
2593 int dummy_do_not_record;
2594 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2595 }
2596 \f
2597 /* Return 1 iff X and Y would canonicalize into the same thing,
2598 without actually constructing the canonicalization of either one.
2599 If VALIDATE is nonzero,
2600 we assume X is an expression being processed from the rtl
2601 and Y was found in the hash table. We check register refs
2602 in Y for being marked as valid.
2603
2604 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2605
2606 int
2607 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2608 {
2609 int i, j;
2610 enum rtx_code code;
2611 const char *fmt;
2612
2613 /* Note: it is incorrect to assume an expression is equivalent to itself
2614 if VALIDATE is nonzero. */
2615 if (x == y && !validate)
2616 return 1;
2617
2618 if (x == 0 || y == 0)
2619 return x == y;
2620
2621 code = GET_CODE (x);
2622 if (code != GET_CODE (y))
2623 return 0;
2624
2625 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2626 if (GET_MODE (x) != GET_MODE (y))
2627 return 0;
2628
2629 /* MEMs referring to different address space are not equivalent. */
2630 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2631 return 0;
2632
2633 switch (code)
2634 {
2635 case PC:
2636 case CC0:
2637 CASE_CONST_UNIQUE:
2638 return x == y;
2639
2640 case LABEL_REF:
2641 return label_ref_label (x) == label_ref_label (y);
2642
2643 case SYMBOL_REF:
2644 return XSTR (x, 0) == XSTR (y, 0);
2645
2646 case REG:
2647 if (for_gcse)
2648 return REGNO (x) == REGNO (y);
2649 else
2650 {
2651 unsigned int regno = REGNO (y);
2652 unsigned int i;
2653 unsigned int endregno = END_REGNO (y);
2654
2655 /* If the quantities are not the same, the expressions are not
2656 equivalent. If there are and we are not to validate, they
2657 are equivalent. Otherwise, ensure all regs are up-to-date. */
2658
2659 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2660 return 0;
2661
2662 if (! validate)
2663 return 1;
2664
2665 for (i = regno; i < endregno; i++)
2666 if (REG_IN_TABLE (i) != REG_TICK (i))
2667 return 0;
2668
2669 return 1;
2670 }
2671
2672 case MEM:
2673 if (for_gcse)
2674 {
2675 /* A volatile mem should not be considered equivalent to any
2676 other. */
2677 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2678 return 0;
2679
2680 /* Can't merge two expressions in different alias sets, since we
2681 can decide that the expression is transparent in a block when
2682 it isn't, due to it being set with the different alias set.
2683
2684 Also, can't merge two expressions with different MEM_ATTRS.
2685 They could e.g. be two different entities allocated into the
2686 same space on the stack (see e.g. PR25130). In that case, the
2687 MEM addresses can be the same, even though the two MEMs are
2688 absolutely not equivalent.
2689
2690 But because really all MEM attributes should be the same for
2691 equivalent MEMs, we just use the invariant that MEMs that have
2692 the same attributes share the same mem_attrs data structure. */
2693 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2694 return 0;
2695
2696 /* If we are handling exceptions, we cannot consider two expressions
2697 with different trapping status as equivalent, because simple_mem
2698 might accept one and reject the other. */
2699 if (cfun->can_throw_non_call_exceptions
2700 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2701 return 0;
2702 }
2703 break;
2704
2705 /* For commutative operations, check both orders. */
2706 case PLUS:
2707 case MULT:
2708 case AND:
2709 case IOR:
2710 case XOR:
2711 case NE:
2712 case EQ:
2713 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2714 validate, for_gcse)
2715 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2716 validate, for_gcse))
2717 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2718 validate, for_gcse)
2719 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2720 validate, for_gcse)));
2721
2722 case ASM_OPERANDS:
2723 /* We don't use the generic code below because we want to
2724 disregard filename and line numbers. */
2725
2726 /* A volatile asm isn't equivalent to any other. */
2727 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2728 return 0;
2729
2730 if (GET_MODE (x) != GET_MODE (y)
2731 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2732 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2733 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2734 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2735 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2736 return 0;
2737
2738 if (ASM_OPERANDS_INPUT_LENGTH (x))
2739 {
2740 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2741 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2742 ASM_OPERANDS_INPUT (y, i),
2743 validate, for_gcse)
2744 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2745 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2746 return 0;
2747 }
2748
2749 return 1;
2750
2751 default:
2752 break;
2753 }
2754
2755 /* Compare the elements. If any pair of corresponding elements
2756 fail to match, return 0 for the whole thing. */
2757
2758 fmt = GET_RTX_FORMAT (code);
2759 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2760 {
2761 switch (fmt[i])
2762 {
2763 case 'e':
2764 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2765 validate, for_gcse))
2766 return 0;
2767 break;
2768
2769 case 'E':
2770 if (XVECLEN (x, i) != XVECLEN (y, i))
2771 return 0;
2772 for (j = 0; j < XVECLEN (x, i); j++)
2773 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2774 validate, for_gcse))
2775 return 0;
2776 break;
2777
2778 case 's':
2779 if (strcmp (XSTR (x, i), XSTR (y, i)))
2780 return 0;
2781 break;
2782
2783 case 'i':
2784 if (XINT (x, i) != XINT (y, i))
2785 return 0;
2786 break;
2787
2788 case 'w':
2789 if (XWINT (x, i) != XWINT (y, i))
2790 return 0;
2791 break;
2792
2793 case 'p':
2794 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2795 return 0;
2796 break;
2797
2798 case '0':
2799 case 't':
2800 break;
2801
2802 default:
2803 gcc_unreachable ();
2804 }
2805 }
2806
2807 return 1;
2808 }
2809 \f
2810 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2811 the result if necessary. INSN is as for canon_reg. */
2812
2813 static void
2814 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2815 {
2816 if (*xloc)
2817 {
2818 rtx new_rtx = canon_reg (*xloc, insn);
2819
2820 /* If replacing pseudo with hard reg or vice versa, ensure the
2821 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2822 gcc_assert (insn && new_rtx);
2823 validate_change (insn, xloc, new_rtx, 1);
2824 }
2825 }
2826
2827 /* Canonicalize an expression:
2828 replace each register reference inside it
2829 with the "oldest" equivalent register.
2830
2831 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2832 after we make our substitution. The calls are made with IN_GROUP nonzero
2833 so apply_change_group must be called upon the outermost return from this
2834 function (unless INSN is zero). The result of apply_change_group can
2835 generally be discarded since the changes we are making are optional. */
2836
2837 static rtx
2838 canon_reg (rtx x, rtx_insn *insn)
2839 {
2840 int i;
2841 enum rtx_code code;
2842 const char *fmt;
2843
2844 if (x == 0)
2845 return x;
2846
2847 code = GET_CODE (x);
2848 switch (code)
2849 {
2850 case PC:
2851 case CC0:
2852 case CONST:
2853 CASE_CONST_ANY:
2854 case SYMBOL_REF:
2855 case LABEL_REF:
2856 case ADDR_VEC:
2857 case ADDR_DIFF_VEC:
2858 return x;
2859
2860 case REG:
2861 {
2862 int first;
2863 int q;
2864 struct qty_table_elem *ent;
2865
2866 /* Never replace a hard reg, because hard regs can appear
2867 in more than one machine mode, and we must preserve the mode
2868 of each occurrence. Also, some hard regs appear in
2869 MEMs that are shared and mustn't be altered. Don't try to
2870 replace any reg that maps to a reg of class NO_REGS. */
2871 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2872 || ! REGNO_QTY_VALID_P (REGNO (x)))
2873 return x;
2874
2875 q = REG_QTY (REGNO (x));
2876 ent = &qty_table[q];
2877 first = ent->first_reg;
2878 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2879 : REGNO_REG_CLASS (first) == NO_REGS ? x
2880 : gen_rtx_REG (ent->mode, first));
2881 }
2882
2883 default:
2884 break;
2885 }
2886
2887 fmt = GET_RTX_FORMAT (code);
2888 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2889 {
2890 int j;
2891
2892 if (fmt[i] == 'e')
2893 validate_canon_reg (&XEXP (x, i), insn);
2894 else if (fmt[i] == 'E')
2895 for (j = 0; j < XVECLEN (x, i); j++)
2896 validate_canon_reg (&XVECEXP (x, i, j), insn);
2897 }
2898
2899 return x;
2900 }
2901 \f
2902 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2903 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2904 what values are being compared.
2905
2906 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2907 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2908 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2909 compared to produce cc0.
2910
2911 The return value is the comparison operator and is either the code of
2912 A or the code corresponding to the inverse of the comparison. */
2913
2914 static enum rtx_code
2915 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2916 machine_mode *pmode1, machine_mode *pmode2)
2917 {
2918 rtx arg1, arg2;
2919 hash_set<rtx> *visited = NULL;
2920 /* Set nonzero when we find something of interest. */
2921 rtx x = NULL;
2922
2923 arg1 = *parg1, arg2 = *parg2;
2924
2925 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2926
2927 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2928 {
2929 int reverse_code = 0;
2930 struct table_elt *p = 0;
2931
2932 /* Remember state from previous iteration. */
2933 if (x)
2934 {
2935 if (!visited)
2936 visited = new hash_set<rtx>;
2937 visited->add (x);
2938 x = 0;
2939 }
2940
2941 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2942 On machines with CC0, this is the only case that can occur, since
2943 fold_rtx will return the COMPARE or item being compared with zero
2944 when given CC0. */
2945
2946 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2947 x = arg1;
2948
2949 /* If ARG1 is a comparison operator and CODE is testing for
2950 STORE_FLAG_VALUE, get the inner arguments. */
2951
2952 else if (COMPARISON_P (arg1))
2953 {
2954 #ifdef FLOAT_STORE_FLAG_VALUE
2955 REAL_VALUE_TYPE fsfv;
2956 #endif
2957
2958 if (code == NE
2959 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2960 && code == LT && STORE_FLAG_VALUE == -1)
2961 #ifdef FLOAT_STORE_FLAG_VALUE
2962 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2963 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2964 REAL_VALUE_NEGATIVE (fsfv)))
2965 #endif
2966 )
2967 x = arg1;
2968 else if (code == EQ
2969 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2970 && code == GE && STORE_FLAG_VALUE == -1)
2971 #ifdef FLOAT_STORE_FLAG_VALUE
2972 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2973 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2974 REAL_VALUE_NEGATIVE (fsfv)))
2975 #endif
2976 )
2977 x = arg1, reverse_code = 1;
2978 }
2979
2980 /* ??? We could also check for
2981
2982 (ne (and (eq (...) (const_int 1))) (const_int 0))
2983
2984 and related forms, but let's wait until we see them occurring. */
2985
2986 if (x == 0)
2987 /* Look up ARG1 in the hash table and see if it has an equivalence
2988 that lets us see what is being compared. */
2989 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2990 if (p)
2991 {
2992 p = p->first_same_value;
2993
2994 /* If what we compare is already known to be constant, that is as
2995 good as it gets.
2996 We need to break the loop in this case, because otherwise we
2997 can have an infinite loop when looking at a reg that is known
2998 to be a constant which is the same as a comparison of a reg
2999 against zero which appears later in the insn stream, which in
3000 turn is constant and the same as the comparison of the first reg
3001 against zero... */
3002 if (p->is_const)
3003 break;
3004 }
3005
3006 for (; p; p = p->next_same_value)
3007 {
3008 machine_mode inner_mode = GET_MODE (p->exp);
3009 #ifdef FLOAT_STORE_FLAG_VALUE
3010 REAL_VALUE_TYPE fsfv;
3011 #endif
3012
3013 /* If the entry isn't valid, skip it. */
3014 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3015 continue;
3016
3017 /* If it's a comparison we've used before, skip it. */
3018 if (visited && visited->contains (p->exp))
3019 continue;
3020
3021 if (GET_CODE (p->exp) == COMPARE
3022 /* Another possibility is that this machine has a compare insn
3023 that includes the comparison code. In that case, ARG1 would
3024 be equivalent to a comparison operation that would set ARG1 to
3025 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3026 ORIG_CODE is the actual comparison being done; if it is an EQ,
3027 we must reverse ORIG_CODE. On machine with a negative value
3028 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3029 || ((code == NE
3030 || (code == LT
3031 && val_signbit_known_set_p (inner_mode,
3032 STORE_FLAG_VALUE))
3033 #ifdef FLOAT_STORE_FLAG_VALUE
3034 || (code == LT
3035 && SCALAR_FLOAT_MODE_P (inner_mode)
3036 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3037 REAL_VALUE_NEGATIVE (fsfv)))
3038 #endif
3039 )
3040 && COMPARISON_P (p->exp)))
3041 {
3042 x = p->exp;
3043 break;
3044 }
3045 else if ((code == EQ
3046 || (code == GE
3047 && val_signbit_known_set_p (inner_mode,
3048 STORE_FLAG_VALUE))
3049 #ifdef FLOAT_STORE_FLAG_VALUE
3050 || (code == GE
3051 && SCALAR_FLOAT_MODE_P (inner_mode)
3052 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3053 REAL_VALUE_NEGATIVE (fsfv)))
3054 #endif
3055 )
3056 && COMPARISON_P (p->exp))
3057 {
3058 reverse_code = 1;
3059 x = p->exp;
3060 break;
3061 }
3062
3063 /* If this non-trapping address, e.g. fp + constant, the
3064 equivalent is a better operand since it may let us predict
3065 the value of the comparison. */
3066 else if (!rtx_addr_can_trap_p (p->exp))
3067 {
3068 arg1 = p->exp;
3069 continue;
3070 }
3071 }
3072
3073 /* If we didn't find a useful equivalence for ARG1, we are done.
3074 Otherwise, set up for the next iteration. */
3075 if (x == 0)
3076 break;
3077
3078 /* If we need to reverse the comparison, make sure that is
3079 possible -- we can't necessarily infer the value of GE from LT
3080 with floating-point operands. */
3081 if (reverse_code)
3082 {
3083 enum rtx_code reversed = reversed_comparison_code (x, NULL);
3084 if (reversed == UNKNOWN)
3085 break;
3086 else
3087 code = reversed;
3088 }
3089 else if (COMPARISON_P (x))
3090 code = GET_CODE (x);
3091 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3092 }
3093
3094 /* Return our results. Return the modes from before fold_rtx
3095 because fold_rtx might produce const_int, and then it's too late. */
3096 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3097 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3098
3099 if (visited)
3100 delete visited;
3101 return code;
3102 }
3103 \f
3104 /* If X is a nontrivial arithmetic operation on an argument for which
3105 a constant value can be determined, return the result of operating
3106 on that value, as a constant. Otherwise, return X, possibly with
3107 one or more operands changed to a forward-propagated constant.
3108
3109 If X is a register whose contents are known, we do NOT return
3110 those contents here; equiv_constant is called to perform that task.
3111 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3112
3113 INSN is the insn that we may be modifying. If it is 0, make a copy
3114 of X before modifying it. */
3115
3116 static rtx
3117 fold_rtx (rtx x, rtx_insn *insn)
3118 {
3119 enum rtx_code code;
3120 machine_mode mode;
3121 const char *fmt;
3122 int i;
3123 rtx new_rtx = 0;
3124 int changed = 0;
3125 poly_int64 xval;
3126
3127 /* Operands of X. */
3128 /* Workaround -Wmaybe-uninitialized false positive during
3129 profiledbootstrap by initializing them. */
3130 rtx folded_arg0 = NULL_RTX;
3131 rtx folded_arg1 = NULL_RTX;
3132
3133 /* Constant equivalents of first three operands of X;
3134 0 when no such equivalent is known. */
3135 rtx const_arg0;
3136 rtx const_arg1;
3137 rtx const_arg2;
3138
3139 /* The mode of the first operand of X. We need this for sign and zero
3140 extends. */
3141 machine_mode mode_arg0;
3142
3143 if (x == 0)
3144 return x;
3145
3146 /* Try to perform some initial simplifications on X. */
3147 code = GET_CODE (x);
3148 switch (code)
3149 {
3150 case MEM:
3151 case SUBREG:
3152 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3153 than it would in other contexts. Basically its mode does not
3154 signify the size of the object read. That information is carried
3155 by size operand. If we happen to have a MEM of the appropriate
3156 mode in our tables with a constant value we could simplify the
3157 extraction incorrectly if we allowed substitution of that value
3158 for the MEM. */
3159 case ZERO_EXTRACT:
3160 case SIGN_EXTRACT:
3161 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3162 return new_rtx;
3163 return x;
3164
3165 case CONST:
3166 CASE_CONST_ANY:
3167 case SYMBOL_REF:
3168 case LABEL_REF:
3169 case REG:
3170 case PC:
3171 /* No use simplifying an EXPR_LIST
3172 since they are used only for lists of args
3173 in a function call's REG_EQUAL note. */
3174 case EXPR_LIST:
3175 return x;
3176
3177 case CC0:
3178 return prev_insn_cc0;
3179
3180 case ASM_OPERANDS:
3181 if (insn)
3182 {
3183 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3184 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3185 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3186 }
3187 return x;
3188
3189 case CALL:
3190 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3191 return x;
3192 break;
3193
3194 /* Anything else goes through the loop below. */
3195 default:
3196 break;
3197 }
3198
3199 mode = GET_MODE (x);
3200 const_arg0 = 0;
3201 const_arg1 = 0;
3202 const_arg2 = 0;
3203 mode_arg0 = VOIDmode;
3204
3205 /* Try folding our operands.
3206 Then see which ones have constant values known. */
3207
3208 fmt = GET_RTX_FORMAT (code);
3209 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3210 if (fmt[i] == 'e')
3211 {
3212 rtx folded_arg = XEXP (x, i), const_arg;
3213 machine_mode mode_arg = GET_MODE (folded_arg);
3214
3215 switch (GET_CODE (folded_arg))
3216 {
3217 case MEM:
3218 case REG:
3219 case SUBREG:
3220 const_arg = equiv_constant (folded_arg);
3221 break;
3222
3223 case CONST:
3224 CASE_CONST_ANY:
3225 case SYMBOL_REF:
3226 case LABEL_REF:
3227 const_arg = folded_arg;
3228 break;
3229
3230 case CC0:
3231 /* The cc0-user and cc0-setter may be in different blocks if
3232 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3233 will have been cleared as we exited the block with the
3234 setter.
3235
3236 While we could potentially track cc0 in this case, it just
3237 doesn't seem to be worth it given that cc0 targets are not
3238 terribly common or important these days and trapping math
3239 is rarely used. The combination of those two conditions
3240 necessary to trip this situation is exceedingly rare in the
3241 real world. */
3242 if (!prev_insn_cc0)
3243 {
3244 const_arg = NULL_RTX;
3245 }
3246 else
3247 {
3248 folded_arg = prev_insn_cc0;
3249 mode_arg = prev_insn_cc0_mode;
3250 const_arg = equiv_constant (folded_arg);
3251 }
3252 break;
3253
3254 default:
3255 folded_arg = fold_rtx (folded_arg, insn);
3256 const_arg = equiv_constant (folded_arg);
3257 break;
3258 }
3259
3260 /* For the first three operands, see if the operand
3261 is constant or equivalent to a constant. */
3262 switch (i)
3263 {
3264 case 0:
3265 folded_arg0 = folded_arg;
3266 const_arg0 = const_arg;
3267 mode_arg0 = mode_arg;
3268 break;
3269 case 1:
3270 folded_arg1 = folded_arg;
3271 const_arg1 = const_arg;
3272 break;
3273 case 2:
3274 const_arg2 = const_arg;
3275 break;
3276 }
3277
3278 /* Pick the least expensive of the argument and an equivalent constant
3279 argument. */
3280 if (const_arg != 0
3281 && const_arg != folded_arg
3282 && (COST_IN (const_arg, mode_arg, code, i)
3283 <= COST_IN (folded_arg, mode_arg, code, i))
3284
3285 /* It's not safe to substitute the operand of a conversion
3286 operator with a constant, as the conversion's identity
3287 depends upon the mode of its operand. This optimization
3288 is handled by the call to simplify_unary_operation. */
3289 && (GET_RTX_CLASS (code) != RTX_UNARY
3290 || GET_MODE (const_arg) == mode_arg0
3291 || (code != ZERO_EXTEND
3292 && code != SIGN_EXTEND
3293 && code != TRUNCATE
3294 && code != FLOAT_TRUNCATE
3295 && code != FLOAT_EXTEND
3296 && code != FLOAT
3297 && code != FIX
3298 && code != UNSIGNED_FLOAT
3299 && code != UNSIGNED_FIX)))
3300 folded_arg = const_arg;
3301
3302 if (folded_arg == XEXP (x, i))
3303 continue;
3304
3305 if (insn == NULL_RTX && !changed)
3306 x = copy_rtx (x);
3307 changed = 1;
3308 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3309 }
3310
3311 if (changed)
3312 {
3313 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3314 consistent with the order in X. */
3315 if (canonicalize_change_group (insn, x))
3316 {
3317 std::swap (const_arg0, const_arg1);
3318 std::swap (folded_arg0, folded_arg1);
3319 }
3320
3321 apply_change_group ();
3322 }
3323
3324 /* If X is an arithmetic operation, see if we can simplify it. */
3325
3326 switch (GET_RTX_CLASS (code))
3327 {
3328 case RTX_UNARY:
3329 {
3330 /* We can't simplify extension ops unless we know the
3331 original mode. */
3332 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3333 && mode_arg0 == VOIDmode)
3334 break;
3335
3336 new_rtx = simplify_unary_operation (code, mode,
3337 const_arg0 ? const_arg0 : folded_arg0,
3338 mode_arg0);
3339 }
3340 break;
3341
3342 case RTX_COMPARE:
3343 case RTX_COMM_COMPARE:
3344 /* See what items are actually being compared and set FOLDED_ARG[01]
3345 to those values and CODE to the actual comparison code. If any are
3346 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3347 do anything if both operands are already known to be constant. */
3348
3349 /* ??? Vector mode comparisons are not supported yet. */
3350 if (VECTOR_MODE_P (mode))
3351 break;
3352
3353 if (const_arg0 == 0 || const_arg1 == 0)
3354 {
3355 struct table_elt *p0, *p1;
3356 rtx true_rtx, false_rtx;
3357 machine_mode mode_arg1;
3358
3359 if (SCALAR_FLOAT_MODE_P (mode))
3360 {
3361 #ifdef FLOAT_STORE_FLAG_VALUE
3362 true_rtx = (const_double_from_real_value
3363 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3364 #else
3365 true_rtx = NULL_RTX;
3366 #endif
3367 false_rtx = CONST0_RTX (mode);
3368 }
3369 else
3370 {
3371 true_rtx = const_true_rtx;
3372 false_rtx = const0_rtx;
3373 }
3374
3375 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3376 &mode_arg0, &mode_arg1);
3377
3378 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3379 what kinds of things are being compared, so we can't do
3380 anything with this comparison. */
3381
3382 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3383 break;
3384
3385 const_arg0 = equiv_constant (folded_arg0);
3386 const_arg1 = equiv_constant (folded_arg1);
3387
3388 /* If we do not now have two constants being compared, see
3389 if we can nevertheless deduce some things about the
3390 comparison. */
3391 if (const_arg0 == 0 || const_arg1 == 0)
3392 {
3393 if (const_arg1 != NULL)
3394 {
3395 rtx cheapest_simplification;
3396 int cheapest_cost;
3397 rtx simp_result;
3398 struct table_elt *p;
3399
3400 /* See if we can find an equivalent of folded_arg0
3401 that gets us a cheaper expression, possibly a
3402 constant through simplifications. */
3403 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3404 mode_arg0);
3405
3406 if (p != NULL)
3407 {
3408 cheapest_simplification = x;
3409 cheapest_cost = COST (x, mode);
3410
3411 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3412 {
3413 int cost;
3414
3415 /* If the entry isn't valid, skip it. */
3416 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3417 continue;
3418
3419 /* Try to simplify using this equivalence. */
3420 simp_result
3421 = simplify_relational_operation (code, mode,
3422 mode_arg0,
3423 p->exp,
3424 const_arg1);
3425
3426 if (simp_result == NULL)
3427 continue;
3428
3429 cost = COST (simp_result, mode);
3430 if (cost < cheapest_cost)
3431 {
3432 cheapest_cost = cost;
3433 cheapest_simplification = simp_result;
3434 }
3435 }
3436
3437 /* If we have a cheaper expression now, use that
3438 and try folding it further, from the top. */
3439 if (cheapest_simplification != x)
3440 return fold_rtx (copy_rtx (cheapest_simplification),
3441 insn);
3442 }
3443 }
3444
3445 /* See if the two operands are the same. */
3446
3447 if ((REG_P (folded_arg0)
3448 && REG_P (folded_arg1)
3449 && (REG_QTY (REGNO (folded_arg0))
3450 == REG_QTY (REGNO (folded_arg1))))
3451 || ((p0 = lookup (folded_arg0,
3452 SAFE_HASH (folded_arg0, mode_arg0),
3453 mode_arg0))
3454 && (p1 = lookup (folded_arg1,
3455 SAFE_HASH (folded_arg1, mode_arg0),
3456 mode_arg0))
3457 && p0->first_same_value == p1->first_same_value))
3458 folded_arg1 = folded_arg0;
3459
3460 /* If FOLDED_ARG0 is a register, see if the comparison we are
3461 doing now is either the same as we did before or the reverse
3462 (we only check the reverse if not floating-point). */
3463 else if (REG_P (folded_arg0))
3464 {
3465 int qty = REG_QTY (REGNO (folded_arg0));
3466
3467 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3468 {
3469 struct qty_table_elem *ent = &qty_table[qty];
3470
3471 if ((comparison_dominates_p (ent->comparison_code, code)
3472 || (! FLOAT_MODE_P (mode_arg0)
3473 && comparison_dominates_p (ent->comparison_code,
3474 reverse_condition (code))))
3475 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3476 || (const_arg1
3477 && rtx_equal_p (ent->comparison_const,
3478 const_arg1))
3479 || (REG_P (folded_arg1)
3480 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3481 {
3482 if (comparison_dominates_p (ent->comparison_code, code))
3483 {
3484 if (true_rtx)
3485 return true_rtx;
3486 else
3487 break;
3488 }
3489 else
3490 return false_rtx;
3491 }
3492 }
3493 }
3494 }
3495 }
3496
3497 /* If we are comparing against zero, see if the first operand is
3498 equivalent to an IOR with a constant. If so, we may be able to
3499 determine the result of this comparison. */
3500 if (const_arg1 == const0_rtx && !const_arg0)
3501 {
3502 rtx y = lookup_as_function (folded_arg0, IOR);
3503 rtx inner_const;
3504
3505 if (y != 0
3506 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3507 && CONST_INT_P (inner_const)
3508 && INTVAL (inner_const) != 0)
3509 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3510 }
3511
3512 {
3513 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3514 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3515 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3516 op0, op1);
3517 }
3518 break;
3519
3520 case RTX_BIN_ARITH:
3521 case RTX_COMM_ARITH:
3522 switch (code)
3523 {
3524 case PLUS:
3525 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3526 with that LABEL_REF as its second operand. If so, the result is
3527 the first operand of that MINUS. This handles switches with an
3528 ADDR_DIFF_VEC table. */
3529 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3530 {
3531 rtx y
3532 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3533 : lookup_as_function (folded_arg0, MINUS);
3534
3535 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3536 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1))
3537 return XEXP (y, 0);
3538
3539 /* Now try for a CONST of a MINUS like the above. */
3540 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3541 : lookup_as_function (folded_arg0, CONST))) != 0
3542 && GET_CODE (XEXP (y, 0)) == MINUS
3543 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3544 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1))
3545 return XEXP (XEXP (y, 0), 0);
3546 }
3547
3548 /* Likewise if the operands are in the other order. */
3549 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3550 {
3551 rtx y
3552 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3553 : lookup_as_function (folded_arg1, MINUS);
3554
3555 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3556 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0))
3557 return XEXP (y, 0);
3558
3559 /* Now try for a CONST of a MINUS like the above. */
3560 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3561 : lookup_as_function (folded_arg1, CONST))) != 0
3562 && GET_CODE (XEXP (y, 0)) == MINUS
3563 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3564 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0))
3565 return XEXP (XEXP (y, 0), 0);
3566 }
3567
3568 /* If second operand is a register equivalent to a negative
3569 CONST_INT, see if we can find a register equivalent to the
3570 positive constant. Make a MINUS if so. Don't do this for
3571 a non-negative constant since we might then alternate between
3572 choosing positive and negative constants. Having the positive
3573 constant previously-used is the more common case. Be sure
3574 the resulting constant is non-negative; if const_arg1 were
3575 the smallest negative number this would overflow: depending
3576 on the mode, this would either just be the same value (and
3577 hence not save anything) or be incorrect. */
3578 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3579 && INTVAL (const_arg1) < 0
3580 /* This used to test
3581
3582 -INTVAL (const_arg1) >= 0
3583
3584 But The Sun V5.0 compilers mis-compiled that test. So
3585 instead we test for the problematic value in a more direct
3586 manner and hope the Sun compilers get it correct. */
3587 && INTVAL (const_arg1) !=
3588 (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1))
3589 && REG_P (folded_arg1))
3590 {
3591 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3592 struct table_elt *p
3593 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3594
3595 if (p)
3596 for (p = p->first_same_value; p; p = p->next_same_value)
3597 if (REG_P (p->exp))
3598 return simplify_gen_binary (MINUS, mode, folded_arg0,
3599 canon_reg (p->exp, NULL));
3600 }
3601 goto from_plus;
3602
3603 case MINUS:
3604 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3605 If so, produce (PLUS Z C2-C). */
3606 if (const_arg1 != 0 && poly_int_rtx_p (const_arg1, &xval))
3607 {
3608 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3609 if (y && poly_int_rtx_p (XEXP (y, 1)))
3610 return fold_rtx (plus_constant (mode, copy_rtx (y), -xval),
3611 NULL);
3612 }
3613
3614 /* Fall through. */
3615
3616 from_plus:
3617 case SMIN: case SMAX: case UMIN: case UMAX:
3618 case IOR: case AND: case XOR:
3619 case MULT:
3620 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3621 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3622 is known to be of similar form, we may be able to replace the
3623 operation with a combined operation. This may eliminate the
3624 intermediate operation if every use is simplified in this way.
3625 Note that the similar optimization done by combine.c only works
3626 if the intermediate operation's result has only one reference. */
3627
3628 if (REG_P (folded_arg0)
3629 && const_arg1 && CONST_INT_P (const_arg1))
3630 {
3631 int is_shift
3632 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3633 rtx y, inner_const, new_const;
3634 rtx canon_const_arg1 = const_arg1;
3635 enum rtx_code associate_code;
3636
3637 if (is_shift
3638 && (INTVAL (const_arg1) >= GET_MODE_UNIT_PRECISION (mode)
3639 || INTVAL (const_arg1) < 0))
3640 {
3641 if (SHIFT_COUNT_TRUNCATED)
3642 canon_const_arg1 = gen_int_shift_amount
3643 (mode, (INTVAL (const_arg1)
3644 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3645 else
3646 break;
3647 }
3648
3649 y = lookup_as_function (folded_arg0, code);
3650 if (y == 0)
3651 break;
3652
3653 /* If we have compiled a statement like
3654 "if (x == (x & mask1))", and now are looking at
3655 "x & mask2", we will have a case where the first operand
3656 of Y is the same as our first operand. Unless we detect
3657 this case, an infinite loop will result. */
3658 if (XEXP (y, 0) == folded_arg0)
3659 break;
3660
3661 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3662 if (!inner_const || !CONST_INT_P (inner_const))
3663 break;
3664
3665 /* Don't associate these operations if they are a PLUS with the
3666 same constant and it is a power of two. These might be doable
3667 with a pre- or post-increment. Similarly for two subtracts of
3668 identical powers of two with post decrement. */
3669
3670 if (code == PLUS && const_arg1 == inner_const
3671 && ((HAVE_PRE_INCREMENT
3672 && pow2p_hwi (INTVAL (const_arg1)))
3673 || (HAVE_POST_INCREMENT
3674 && pow2p_hwi (INTVAL (const_arg1)))
3675 || (HAVE_PRE_DECREMENT
3676 && pow2p_hwi (- INTVAL (const_arg1)))
3677 || (HAVE_POST_DECREMENT
3678 && pow2p_hwi (- INTVAL (const_arg1)))))
3679 break;
3680
3681 /* ??? Vector mode shifts by scalar
3682 shift operand are not supported yet. */
3683 if (is_shift && VECTOR_MODE_P (mode))
3684 break;
3685
3686 if (is_shift
3687 && (INTVAL (inner_const) >= GET_MODE_UNIT_PRECISION (mode)
3688 || INTVAL (inner_const) < 0))
3689 {
3690 if (SHIFT_COUNT_TRUNCATED)
3691 inner_const = gen_int_shift_amount
3692 (mode, (INTVAL (inner_const)
3693 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3694 else
3695 break;
3696 }
3697
3698 /* Compute the code used to compose the constants. For example,
3699 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3700
3701 associate_code = (is_shift || code == MINUS ? PLUS : code);
3702
3703 new_const = simplify_binary_operation (associate_code, mode,
3704 canon_const_arg1,
3705 inner_const);
3706
3707 if (new_const == 0)
3708 break;
3709
3710 /* If we are associating shift operations, don't let this
3711 produce a shift of the size of the object or larger.
3712 This could occur when we follow a sign-extend by a right
3713 shift on a machine that does a sign-extend as a pair
3714 of shifts. */
3715
3716 if (is_shift
3717 && CONST_INT_P (new_const)
3718 && INTVAL (new_const) >= GET_MODE_UNIT_PRECISION (mode))
3719 {
3720 /* As an exception, we can turn an ASHIFTRT of this
3721 form into a shift of the number of bits - 1. */
3722 if (code == ASHIFTRT)
3723 new_const = gen_int_shift_amount
3724 (mode, GET_MODE_UNIT_BITSIZE (mode) - 1);
3725 else if (!side_effects_p (XEXP (y, 0)))
3726 return CONST0_RTX (mode);
3727 else
3728 break;
3729 }
3730
3731 y = copy_rtx (XEXP (y, 0));
3732
3733 /* If Y contains our first operand (the most common way this
3734 can happen is if Y is a MEM), we would do into an infinite
3735 loop if we tried to fold it. So don't in that case. */
3736
3737 if (! reg_mentioned_p (folded_arg0, y))
3738 y = fold_rtx (y, insn);
3739
3740 return simplify_gen_binary (code, mode, y, new_const);
3741 }
3742 break;
3743
3744 case DIV: case UDIV:
3745 /* ??? The associative optimization performed immediately above is
3746 also possible for DIV and UDIV using associate_code of MULT.
3747 However, we would need extra code to verify that the
3748 multiplication does not overflow, that is, there is no overflow
3749 in the calculation of new_const. */
3750 break;
3751
3752 default:
3753 break;
3754 }
3755
3756 new_rtx = simplify_binary_operation (code, mode,
3757 const_arg0 ? const_arg0 : folded_arg0,
3758 const_arg1 ? const_arg1 : folded_arg1);
3759 break;
3760
3761 case RTX_OBJ:
3762 /* (lo_sum (high X) X) is simply X. */
3763 if (code == LO_SUM && const_arg0 != 0
3764 && GET_CODE (const_arg0) == HIGH
3765 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3766 return const_arg1;
3767 break;
3768
3769 case RTX_TERNARY:
3770 case RTX_BITFIELD_OPS:
3771 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3772 const_arg0 ? const_arg0 : folded_arg0,
3773 const_arg1 ? const_arg1 : folded_arg1,
3774 const_arg2 ? const_arg2 : XEXP (x, 2));
3775 break;
3776
3777 default:
3778 break;
3779 }
3780
3781 return new_rtx ? new_rtx : x;
3782 }
3783 \f
3784 /* Return a constant value currently equivalent to X.
3785 Return 0 if we don't know one. */
3786
3787 static rtx
3788 equiv_constant (rtx x)
3789 {
3790 if (REG_P (x)
3791 && REGNO_QTY_VALID_P (REGNO (x)))
3792 {
3793 int x_q = REG_QTY (REGNO (x));
3794 struct qty_table_elem *x_ent = &qty_table[x_q];
3795
3796 if (x_ent->const_rtx)
3797 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3798 }
3799
3800 if (x == 0 || CONSTANT_P (x))
3801 return x;
3802
3803 if (GET_CODE (x) == SUBREG)
3804 {
3805 machine_mode mode = GET_MODE (x);
3806 machine_mode imode = GET_MODE (SUBREG_REG (x));
3807 rtx new_rtx;
3808
3809 /* See if we previously assigned a constant value to this SUBREG. */
3810 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3811 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3812 || (NUM_POLY_INT_COEFFS > 1
3813 && (new_rtx = lookup_as_function (x, CONST_POLY_INT)) != 0)
3814 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3815 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3816 return new_rtx;
3817
3818 /* If we didn't and if doing so makes sense, see if we previously
3819 assigned a constant value to the enclosing word mode SUBREG. */
3820 if (known_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD)
3821 && known_lt (UNITS_PER_WORD, GET_MODE_SIZE (imode)))
3822 {
3823 poly_int64 byte = (SUBREG_BYTE (x)
3824 - subreg_lowpart_offset (mode, word_mode));
3825 if (known_ge (byte, 0) && multiple_p (byte, UNITS_PER_WORD))
3826 {
3827 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3828 new_rtx = lookup_as_function (y, CONST_INT);
3829 if (new_rtx)
3830 return gen_lowpart (mode, new_rtx);
3831 }
3832 }
3833
3834 /* Otherwise see if we already have a constant for the inner REG,
3835 and if that is enough to calculate an equivalent constant for
3836 the subreg. Note that the upper bits of paradoxical subregs
3837 are undefined, so they cannot be said to equal anything. */
3838 if (REG_P (SUBREG_REG (x))
3839 && !paradoxical_subreg_p (x)
3840 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3841 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3842
3843 return 0;
3844 }
3845
3846 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3847 the hash table in case its value was seen before. */
3848
3849 if (MEM_P (x))
3850 {
3851 struct table_elt *elt;
3852
3853 x = avoid_constant_pool_reference (x);
3854 if (CONSTANT_P (x))
3855 return x;
3856
3857 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3858 if (elt == 0)
3859 return 0;
3860
3861 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3862 if (elt->is_const && CONSTANT_P (elt->exp))
3863 return elt->exp;
3864 }
3865
3866 return 0;
3867 }
3868 \f
3869 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3870 "taken" branch.
3871
3872 In certain cases, this can cause us to add an equivalence. For example,
3873 if we are following the taken case of
3874 if (i == 2)
3875 we can add the fact that `i' and '2' are now equivalent.
3876
3877 In any case, we can record that this comparison was passed. If the same
3878 comparison is seen later, we will know its value. */
3879
3880 static void
3881 record_jump_equiv (rtx_insn *insn, bool taken)
3882 {
3883 int cond_known_true;
3884 rtx op0, op1;
3885 rtx set;
3886 machine_mode mode, mode0, mode1;
3887 int reversed_nonequality = 0;
3888 enum rtx_code code;
3889
3890 /* Ensure this is the right kind of insn. */
3891 gcc_assert (any_condjump_p (insn));
3892
3893 set = pc_set (insn);
3894
3895 /* See if this jump condition is known true or false. */
3896 if (taken)
3897 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3898 else
3899 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3900
3901 /* Get the type of comparison being done and the operands being compared.
3902 If we had to reverse a non-equality condition, record that fact so we
3903 know that it isn't valid for floating-point. */
3904 code = GET_CODE (XEXP (SET_SRC (set), 0));
3905 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3906 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3907
3908 /* On a cc0 target the cc0-setter and cc0-user may end up in different
3909 blocks. When that happens the tracking of the cc0-setter via
3910 PREV_INSN_CC0 is spoiled. That means that fold_rtx may return
3911 NULL_RTX. In those cases, there's nothing to record. */
3912 if (op0 == NULL_RTX || op1 == NULL_RTX)
3913 return;
3914
3915 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3916 if (! cond_known_true)
3917 {
3918 code = reversed_comparison_code_parts (code, op0, op1, insn);
3919
3920 /* Don't remember if we can't find the inverse. */
3921 if (code == UNKNOWN)
3922 return;
3923 }
3924
3925 /* The mode is the mode of the non-constant. */
3926 mode = mode0;
3927 if (mode1 != VOIDmode)
3928 mode = mode1;
3929
3930 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3931 }
3932
3933 /* Yet another form of subreg creation. In this case, we want something in
3934 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3935
3936 static rtx
3937 record_jump_cond_subreg (machine_mode mode, rtx op)
3938 {
3939 machine_mode op_mode = GET_MODE (op);
3940 if (op_mode == mode || op_mode == VOIDmode)
3941 return op;
3942 return lowpart_subreg (mode, op, op_mode);
3943 }
3944
3945 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3946 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3947 Make any useful entries we can with that information. Called from
3948 above function and called recursively. */
3949
3950 static void
3951 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3952 rtx op1, int reversed_nonequality)
3953 {
3954 unsigned op0_hash, op1_hash;
3955 int op0_in_memory, op1_in_memory;
3956 struct table_elt *op0_elt, *op1_elt;
3957
3958 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3959 we know that they are also equal in the smaller mode (this is also
3960 true for all smaller modes whether or not there is a SUBREG, but
3961 is not worth testing for with no SUBREG). */
3962
3963 /* Note that GET_MODE (op0) may not equal MODE. */
3964 if (code == EQ && paradoxical_subreg_p (op0))
3965 {
3966 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3967 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3968 if (tem)
3969 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3970 reversed_nonequality);
3971 }
3972
3973 if (code == EQ && paradoxical_subreg_p (op1))
3974 {
3975 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3976 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3977 if (tem)
3978 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3979 reversed_nonequality);
3980 }
3981
3982 /* Similarly, if this is an NE comparison, and either is a SUBREG
3983 making a smaller mode, we know the whole thing is also NE. */
3984
3985 /* Note that GET_MODE (op0) may not equal MODE;
3986 if we test MODE instead, we can get an infinite recursion
3987 alternating between two modes each wider than MODE. */
3988
3989 if (code == NE
3990 && partial_subreg_p (op0)
3991 && subreg_lowpart_p (op0))
3992 {
3993 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3994 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3995 if (tem)
3996 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3997 reversed_nonequality);
3998 }
3999
4000 if (code == NE
4001 && partial_subreg_p (op1)
4002 && subreg_lowpart_p (op1))
4003 {
4004 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4005 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4006 if (tem)
4007 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4008 reversed_nonequality);
4009 }
4010
4011 /* Hash both operands. */
4012
4013 do_not_record = 0;
4014 hash_arg_in_memory = 0;
4015 op0_hash = HASH (op0, mode);
4016 op0_in_memory = hash_arg_in_memory;
4017
4018 if (do_not_record)
4019 return;
4020
4021 do_not_record = 0;
4022 hash_arg_in_memory = 0;
4023 op1_hash = HASH (op1, mode);
4024 op1_in_memory = hash_arg_in_memory;
4025
4026 if (do_not_record)
4027 return;
4028
4029 /* Look up both operands. */
4030 op0_elt = lookup (op0, op0_hash, mode);
4031 op1_elt = lookup (op1, op1_hash, mode);
4032
4033 /* If both operands are already equivalent or if they are not in the
4034 table but are identical, do nothing. */
4035 if ((op0_elt != 0 && op1_elt != 0
4036 && op0_elt->first_same_value == op1_elt->first_same_value)
4037 || op0 == op1 || rtx_equal_p (op0, op1))
4038 return;
4039
4040 /* If we aren't setting two things equal all we can do is save this
4041 comparison. Similarly if this is floating-point. In the latter
4042 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4043 If we record the equality, we might inadvertently delete code
4044 whose intent was to change -0 to +0. */
4045
4046 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4047 {
4048 struct qty_table_elem *ent;
4049 int qty;
4050
4051 /* If we reversed a floating-point comparison, if OP0 is not a
4052 register, or if OP1 is neither a register or constant, we can't
4053 do anything. */
4054
4055 if (!REG_P (op1))
4056 op1 = equiv_constant (op1);
4057
4058 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4059 || !REG_P (op0) || op1 == 0)
4060 return;
4061
4062 /* Put OP0 in the hash table if it isn't already. This gives it a
4063 new quantity number. */
4064 if (op0_elt == 0)
4065 {
4066 if (insert_regs (op0, NULL, 0))
4067 {
4068 rehash_using_reg (op0);
4069 op0_hash = HASH (op0, mode);
4070
4071 /* If OP0 is contained in OP1, this changes its hash code
4072 as well. Faster to rehash than to check, except
4073 for the simple case of a constant. */
4074 if (! CONSTANT_P (op1))
4075 op1_hash = HASH (op1,mode);
4076 }
4077
4078 op0_elt = insert (op0, NULL, op0_hash, mode);
4079 op0_elt->in_memory = op0_in_memory;
4080 }
4081
4082 qty = REG_QTY (REGNO (op0));
4083 ent = &qty_table[qty];
4084
4085 ent->comparison_code = code;
4086 if (REG_P (op1))
4087 {
4088 /* Look it up again--in case op0 and op1 are the same. */
4089 op1_elt = lookup (op1, op1_hash, mode);
4090
4091 /* Put OP1 in the hash table so it gets a new quantity number. */
4092 if (op1_elt == 0)
4093 {
4094 if (insert_regs (op1, NULL, 0))
4095 {
4096 rehash_using_reg (op1);
4097 op1_hash = HASH (op1, mode);
4098 }
4099
4100 op1_elt = insert (op1, NULL, op1_hash, mode);
4101 op1_elt->in_memory = op1_in_memory;
4102 }
4103
4104 ent->comparison_const = NULL_RTX;
4105 ent->comparison_qty = REG_QTY (REGNO (op1));
4106 }
4107 else
4108 {
4109 ent->comparison_const = op1;
4110 ent->comparison_qty = -1;
4111 }
4112
4113 return;
4114 }
4115
4116 /* If either side is still missing an equivalence, make it now,
4117 then merge the equivalences. */
4118
4119 if (op0_elt == 0)
4120 {
4121 if (insert_regs (op0, NULL, 0))
4122 {
4123 rehash_using_reg (op0);
4124 op0_hash = HASH (op0, mode);
4125 }
4126
4127 op0_elt = insert (op0, NULL, op0_hash, mode);
4128 op0_elt->in_memory = op0_in_memory;
4129 }
4130
4131 if (op1_elt == 0)
4132 {
4133 if (insert_regs (op1, NULL, 0))
4134 {
4135 rehash_using_reg (op1);
4136 op1_hash = HASH (op1, mode);
4137 }
4138
4139 op1_elt = insert (op1, NULL, op1_hash, mode);
4140 op1_elt->in_memory = op1_in_memory;
4141 }
4142
4143 merge_equiv_classes (op0_elt, op1_elt);
4144 }
4145 \f
4146 /* CSE processing for one instruction.
4147
4148 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4149 but the few that "leak through" are cleaned up by cse_insn, and complex
4150 addressing modes are often formed here.
4151
4152 The main function is cse_insn, and between here and that function
4153 a couple of helper functions is defined to keep the size of cse_insn
4154 within reasonable proportions.
4155
4156 Data is shared between the main and helper functions via STRUCT SET,
4157 that contains all data related for every set in the instruction that
4158 is being processed.
4159
4160 Note that cse_main processes all sets in the instruction. Most
4161 passes in GCC only process simple SET insns or single_set insns, but
4162 CSE processes insns with multiple sets as well. */
4163
4164 /* Data on one SET contained in the instruction. */
4165
4166 struct set
4167 {
4168 /* The SET rtx itself. */
4169 rtx rtl;
4170 /* The SET_SRC of the rtx (the original value, if it is changing). */
4171 rtx src;
4172 /* The hash-table element for the SET_SRC of the SET. */
4173 struct table_elt *src_elt;
4174 /* Hash value for the SET_SRC. */
4175 unsigned src_hash;
4176 /* Hash value for the SET_DEST. */
4177 unsigned dest_hash;
4178 /* The SET_DEST, with SUBREG, etc., stripped. */
4179 rtx inner_dest;
4180 /* Nonzero if the SET_SRC is in memory. */
4181 char src_in_memory;
4182 /* Nonzero if the SET_SRC contains something
4183 whose value cannot be predicted and understood. */
4184 char src_volatile;
4185 /* Original machine mode, in case it becomes a CONST_INT.
4186 The size of this field should match the size of the mode
4187 field of struct rtx_def (see rtl.h). */
4188 ENUM_BITFIELD(machine_mode) mode : 8;
4189 /* Hash value of constant equivalent for SET_SRC. */
4190 unsigned src_const_hash;
4191 /* A constant equivalent for SET_SRC, if any. */
4192 rtx src_const;
4193 /* Table entry for constant equivalent for SET_SRC, if any. */
4194 struct table_elt *src_const_elt;
4195 /* Table entry for the destination address. */
4196 struct table_elt *dest_addr_elt;
4197 };
4198 \f
4199 /* Special handling for (set REG0 REG1) where REG0 is the
4200 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4201 be used in the sequel, so (if easily done) change this insn to
4202 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4203 that computed their value. Then REG1 will become a dead store
4204 and won't cloud the situation for later optimizations.
4205
4206 Do not make this change if REG1 is a hard register, because it will
4207 then be used in the sequel and we may be changing a two-operand insn
4208 into a three-operand insn.
4209
4210 This is the last transformation that cse_insn will try to do. */
4211
4212 static void
4213 try_back_substitute_reg (rtx set, rtx_insn *insn)
4214 {
4215 rtx dest = SET_DEST (set);
4216 rtx src = SET_SRC (set);
4217
4218 if (REG_P (dest)
4219 && REG_P (src) && ! HARD_REGISTER_P (src)
4220 && REGNO_QTY_VALID_P (REGNO (src)))
4221 {
4222 int src_q = REG_QTY (REGNO (src));
4223 struct qty_table_elem *src_ent = &qty_table[src_q];
4224
4225 if (src_ent->first_reg == REGNO (dest))
4226 {
4227 /* Scan for the previous nonnote insn, but stop at a basic
4228 block boundary. */
4229 rtx_insn *prev = insn;
4230 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4231 do
4232 {
4233 prev = PREV_INSN (prev);
4234 }
4235 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4236
4237 /* Do not swap the registers around if the previous instruction
4238 attaches a REG_EQUIV note to REG1.
4239
4240 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4241 from the pseudo that originally shadowed an incoming argument
4242 to another register. Some uses of REG_EQUIV might rely on it
4243 being attached to REG1 rather than REG2.
4244
4245 This section previously turned the REG_EQUIV into a REG_EQUAL
4246 note. We cannot do that because REG_EQUIV may provide an
4247 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4248 if (NONJUMP_INSN_P (prev)
4249 && GET_CODE (PATTERN (prev)) == SET
4250 && SET_DEST (PATTERN (prev)) == src
4251 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4252 {
4253 rtx note;
4254
4255 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4256 validate_change (insn, &SET_DEST (set), src, 1);
4257 validate_change (insn, &SET_SRC (set), dest, 1);
4258 apply_change_group ();
4259
4260 /* If INSN has a REG_EQUAL note, and this note mentions
4261 REG0, then we must delete it, because the value in
4262 REG0 has changed. If the note's value is REG1, we must
4263 also delete it because that is now this insn's dest. */
4264 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4265 if (note != 0
4266 && (reg_mentioned_p (dest, XEXP (note, 0))
4267 || rtx_equal_p (src, XEXP (note, 0))))
4268 remove_note (insn, note);
4269
4270 /* If INSN has a REG_ARGS_SIZE note, move it to PREV. */
4271 note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4272 if (note != 0)
4273 {
4274 remove_note (insn, note);
4275 gcc_assert (!find_reg_note (prev, REG_ARGS_SIZE, NULL_RTX));
4276 set_unique_reg_note (prev, REG_ARGS_SIZE, XEXP (note, 0));
4277 }
4278 }
4279 }
4280 }
4281 }
4282 \f
4283 /* Record all the SETs in this instruction into SETS_PTR,
4284 and return the number of recorded sets. */
4285 static int
4286 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4287 {
4288 struct set *sets = *psets;
4289 int n_sets = 0;
4290 rtx x = PATTERN (insn);
4291
4292 if (GET_CODE (x) == SET)
4293 {
4294 /* Ignore SETs that are unconditional jumps.
4295 They never need cse processing, so this does not hurt.
4296 The reason is not efficiency but rather
4297 so that we can test at the end for instructions
4298 that have been simplified to unconditional jumps
4299 and not be misled by unchanged instructions
4300 that were unconditional jumps to begin with. */
4301 if (SET_DEST (x) == pc_rtx
4302 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4303 ;
4304 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4305 The hard function value register is used only once, to copy to
4306 someplace else, so it isn't worth cse'ing. */
4307 else if (GET_CODE (SET_SRC (x)) == CALL)
4308 ;
4309 else
4310 sets[n_sets++].rtl = x;
4311 }
4312 else if (GET_CODE (x) == PARALLEL)
4313 {
4314 int i, lim = XVECLEN (x, 0);
4315
4316 /* Go over the expressions of the PARALLEL in forward order, to
4317 put them in the same order in the SETS array. */
4318 for (i = 0; i < lim; i++)
4319 {
4320 rtx y = XVECEXP (x, 0, i);
4321 if (GET_CODE (y) == SET)
4322 {
4323 /* As above, we ignore unconditional jumps and call-insns and
4324 ignore the result of apply_change_group. */
4325 if (SET_DEST (y) == pc_rtx
4326 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4327 ;
4328 else if (GET_CODE (SET_SRC (y)) == CALL)
4329 ;
4330 else
4331 sets[n_sets++].rtl = y;
4332 }
4333 }
4334 }
4335
4336 return n_sets;
4337 }
4338 \f
4339 /* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */
4340
4341 static void
4342 canon_asm_operands (rtx x, rtx_insn *insn)
4343 {
4344 for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4345 {
4346 rtx input = ASM_OPERANDS_INPUT (x, i);
4347 if (!(REG_P (input) && HARD_REGISTER_P (input)))
4348 {
4349 input = canon_reg (input, insn);
4350 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4351 }
4352 }
4353 }
4354
4355 /* Where possible, substitute every register reference in the N_SETS
4356 number of SETS in INSN with the canonical register.
4357
4358 Register canonicalization propagatest the earliest register (i.e.
4359 one that is set before INSN) with the same value. This is a very
4360 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4361 to RTL. For instance, a CONST for an address is usually expanded
4362 multiple times to loads into different registers, thus creating many
4363 subexpressions of the form:
4364
4365 (set (reg1) (some_const))
4366 (set (mem (... reg1 ...) (thing)))
4367 (set (reg2) (some_const))
4368 (set (mem (... reg2 ...) (thing)))
4369
4370 After canonicalizing, the code takes the following form:
4371
4372 (set (reg1) (some_const))
4373 (set (mem (... reg1 ...) (thing)))
4374 (set (reg2) (some_const))
4375 (set (mem (... reg1 ...) (thing)))
4376
4377 The set to reg2 is now trivially dead, and the memory reference (or
4378 address, or whatever) may be a candidate for further CSEing.
4379
4380 In this function, the result of apply_change_group can be ignored;
4381 see canon_reg. */
4382
4383 static void
4384 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4385 {
4386 struct set *sets = *psets;
4387 rtx tem;
4388 rtx x = PATTERN (insn);
4389 int i;
4390
4391 if (CALL_P (insn))
4392 {
4393 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4394 if (GET_CODE (XEXP (tem, 0)) != SET)
4395 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4396 }
4397
4398 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4399 {
4400 canon_reg (SET_SRC (x), insn);
4401 apply_change_group ();
4402 fold_rtx (SET_SRC (x), insn);
4403 }
4404 else if (GET_CODE (x) == CLOBBER)
4405 {
4406 /* If we clobber memory, canon the address.
4407 This does nothing when a register is clobbered
4408 because we have already invalidated the reg. */
4409 if (MEM_P (XEXP (x, 0)))
4410 canon_reg (XEXP (x, 0), insn);
4411 }
4412 else if (GET_CODE (x) == USE
4413 && ! (REG_P (XEXP (x, 0))
4414 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4415 /* Canonicalize a USE of a pseudo register or memory location. */
4416 canon_reg (x, insn);
4417 else if (GET_CODE (x) == ASM_OPERANDS)
4418 canon_asm_operands (x, insn);
4419 else if (GET_CODE (x) == CALL)
4420 {
4421 canon_reg (x, insn);
4422 apply_change_group ();
4423 fold_rtx (x, insn);
4424 }
4425 else if (DEBUG_INSN_P (insn))
4426 canon_reg (PATTERN (insn), insn);
4427 else if (GET_CODE (x) == PARALLEL)
4428 {
4429 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4430 {
4431 rtx y = XVECEXP (x, 0, i);
4432 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4433 {
4434 canon_reg (SET_SRC (y), insn);
4435 apply_change_group ();
4436 fold_rtx (SET_SRC (y), insn);
4437 }
4438 else if (GET_CODE (y) == CLOBBER)
4439 {
4440 if (MEM_P (XEXP (y, 0)))
4441 canon_reg (XEXP (y, 0), insn);
4442 }
4443 else if (GET_CODE (y) == USE
4444 && ! (REG_P (XEXP (y, 0))
4445 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4446 canon_reg (y, insn);
4447 else if (GET_CODE (y) == ASM_OPERANDS)
4448 canon_asm_operands (y, insn);
4449 else if (GET_CODE (y) == CALL)
4450 {
4451 canon_reg (y, insn);
4452 apply_change_group ();
4453 fold_rtx (y, insn);
4454 }
4455 }
4456 }
4457
4458 if (n_sets == 1 && REG_NOTES (insn) != 0
4459 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4460 {
4461 /* We potentially will process this insn many times. Therefore,
4462 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4463 unique set in INSN.
4464
4465 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4466 because cse_insn handles those specially. */
4467 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4468 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4469 remove_note (insn, tem);
4470 else
4471 {
4472 canon_reg (XEXP (tem, 0), insn);
4473 apply_change_group ();
4474 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4475 df_notes_rescan (insn);
4476 }
4477 }
4478
4479 /* Canonicalize sources and addresses of destinations.
4480 We do this in a separate pass to avoid problems when a MATCH_DUP is
4481 present in the insn pattern. In that case, we want to ensure that
4482 we don't break the duplicate nature of the pattern. So we will replace
4483 both operands at the same time. Otherwise, we would fail to find an
4484 equivalent substitution in the loop calling validate_change below.
4485
4486 We used to suppress canonicalization of DEST if it appears in SRC,
4487 but we don't do this any more. */
4488
4489 for (i = 0; i < n_sets; i++)
4490 {
4491 rtx dest = SET_DEST (sets[i].rtl);
4492 rtx src = SET_SRC (sets[i].rtl);
4493 rtx new_rtx = canon_reg (src, insn);
4494
4495 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4496
4497 if (GET_CODE (dest) == ZERO_EXTRACT)
4498 {
4499 validate_change (insn, &XEXP (dest, 1),
4500 canon_reg (XEXP (dest, 1), insn), 1);
4501 validate_change (insn, &XEXP (dest, 2),
4502 canon_reg (XEXP (dest, 2), insn), 1);
4503 }
4504
4505 while (GET_CODE (dest) == SUBREG
4506 || GET_CODE (dest) == ZERO_EXTRACT
4507 || GET_CODE (dest) == STRICT_LOW_PART)
4508 dest = XEXP (dest, 0);
4509
4510 if (MEM_P (dest))
4511 canon_reg (dest, insn);
4512 }
4513
4514 /* Now that we have done all the replacements, we can apply the change
4515 group and see if they all work. Note that this will cause some
4516 canonicalizations that would have worked individually not to be applied
4517 because some other canonicalization didn't work, but this should not
4518 occur often.
4519
4520 The result of apply_change_group can be ignored; see canon_reg. */
4521
4522 apply_change_group ();
4523 }
4524 \f
4525 /* Main function of CSE.
4526 First simplify sources and addresses of all assignments
4527 in the instruction, using previously-computed equivalents values.
4528 Then install the new sources and destinations in the table
4529 of available values. */
4530
4531 static void
4532 cse_insn (rtx_insn *insn)
4533 {
4534 rtx x = PATTERN (insn);
4535 int i;
4536 rtx tem;
4537 int n_sets = 0;
4538
4539 rtx src_eqv = 0;
4540 struct table_elt *src_eqv_elt = 0;
4541 int src_eqv_volatile = 0;
4542 int src_eqv_in_memory = 0;
4543 unsigned src_eqv_hash = 0;
4544
4545 struct set *sets = (struct set *) 0;
4546
4547 if (GET_CODE (x) == SET)
4548 sets = XALLOCA (struct set);
4549 else if (GET_CODE (x) == PARALLEL)
4550 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4551
4552 this_insn = insn;
4553 /* Records what this insn does to set CC0. */
4554 this_insn_cc0 = 0;
4555 this_insn_cc0_mode = VOIDmode;
4556
4557 /* Find all regs explicitly clobbered in this insn,
4558 to ensure they are not replaced with any other regs
4559 elsewhere in this insn. */
4560 invalidate_from_sets_and_clobbers (insn);
4561
4562 /* Record all the SETs in this instruction. */
4563 n_sets = find_sets_in_insn (insn, &sets);
4564
4565 /* Substitute the canonical register where possible. */
4566 canonicalize_insn (insn, &sets, n_sets);
4567
4568 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4569 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The
4570 latter condition is necessary because SRC_EQV is handled specially for
4571 this case, and if it isn't set, then there will be no equivalence
4572 for the destination. */
4573 if (n_sets == 1 && REG_NOTES (insn) != 0
4574 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4575 {
4576
4577 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4578 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4579 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4580 src_eqv = copy_rtx (XEXP (tem, 0));
4581 /* If DEST is of the form ZERO_EXTACT, as in:
4582 (set (zero_extract:SI (reg:SI 119)
4583 (const_int 16 [0x10])
4584 (const_int 16 [0x10]))
4585 (const_int 51154 [0xc7d2]))
4586 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4587 point. Note that this is different from SRC_EQV. We can however
4588 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */
4589 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
4590 && CONST_INT_P (XEXP (tem, 0))
4591 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4592 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4593 {
4594 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
4595 /* This is the mode of XEXP (tem, 0) as well. */
4596 scalar_int_mode dest_mode
4597 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
4598 rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4599 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
4600 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
4601 HOST_WIDE_INT mask;
4602 unsigned int shift;
4603 if (BITS_BIG_ENDIAN)
4604 shift = (GET_MODE_PRECISION (dest_mode)
4605 - INTVAL (pos) - INTVAL (width));
4606 else
4607 shift = INTVAL (pos);
4608 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
4609 mask = HOST_WIDE_INT_M1;
4610 else
4611 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
4612 val = (val >> shift) & mask;
4613 src_eqv = GEN_INT (val);
4614 }
4615 }
4616
4617 /* Set sets[i].src_elt to the class each source belongs to.
4618 Detect assignments from or to volatile things
4619 and set set[i] to zero so they will be ignored
4620 in the rest of this function.
4621
4622 Nothing in this loop changes the hash table or the register chains. */
4623
4624 for (i = 0; i < n_sets; i++)
4625 {
4626 bool repeat = false;
4627 bool noop_insn = false;
4628 rtx src, dest;
4629 rtx src_folded;
4630 struct table_elt *elt = 0, *p;
4631 machine_mode mode;
4632 rtx src_eqv_here;
4633 rtx src_const = 0;
4634 rtx src_related = 0;
4635 bool src_related_is_const_anchor = false;
4636 struct table_elt *src_const_elt = 0;
4637 int src_cost = MAX_COST;
4638 int src_eqv_cost = MAX_COST;
4639 int src_folded_cost = MAX_COST;
4640 int src_related_cost = MAX_COST;
4641 int src_elt_cost = MAX_COST;
4642 int src_regcost = MAX_COST;
4643 int src_eqv_regcost = MAX_COST;
4644 int src_folded_regcost = MAX_COST;
4645 int src_related_regcost = MAX_COST;
4646 int src_elt_regcost = MAX_COST;
4647 /* Set nonzero if we need to call force_const_mem on with the
4648 contents of src_folded before using it. */
4649 int src_folded_force_flag = 0;
4650 scalar_int_mode int_mode;
4651
4652 dest = SET_DEST (sets[i].rtl);
4653 src = SET_SRC (sets[i].rtl);
4654
4655 /* If SRC is a constant that has no machine mode,
4656 hash it with the destination's machine mode.
4657 This way we can keep different modes separate. */
4658
4659 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4660 sets[i].mode = mode;
4661
4662 if (src_eqv)
4663 {
4664 machine_mode eqvmode = mode;
4665 if (GET_CODE (dest) == STRICT_LOW_PART)
4666 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4667 do_not_record = 0;
4668 hash_arg_in_memory = 0;
4669 src_eqv_hash = HASH (src_eqv, eqvmode);
4670
4671 /* Find the equivalence class for the equivalent expression. */
4672
4673 if (!do_not_record)
4674 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4675
4676 src_eqv_volatile = do_not_record;
4677 src_eqv_in_memory = hash_arg_in_memory;
4678 }
4679
4680 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4681 value of the INNER register, not the destination. So it is not
4682 a valid substitution for the source. But save it for later. */
4683 if (GET_CODE (dest) == STRICT_LOW_PART)
4684 src_eqv_here = 0;
4685 else
4686 src_eqv_here = src_eqv;
4687
4688 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4689 simplified result, which may not necessarily be valid. */
4690 src_folded = fold_rtx (src, NULL);
4691
4692 #if 0
4693 /* ??? This caused bad code to be generated for the m68k port with -O2.
4694 Suppose src is (CONST_INT -1), and that after truncation src_folded
4695 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4696 At the end we will add src and src_const to the same equivalence
4697 class. We now have 3 and -1 on the same equivalence class. This
4698 causes later instructions to be mis-optimized. */
4699 /* If storing a constant in a bitfield, pre-truncate the constant
4700 so we will be able to record it later. */
4701 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4702 {
4703 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4704
4705 if (CONST_INT_P (src)
4706 && CONST_INT_P (width)
4707 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4708 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4709 src_folded
4710 = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1
4711 << INTVAL (width)) - 1));
4712 }
4713 #endif
4714
4715 /* Compute SRC's hash code, and also notice if it
4716 should not be recorded at all. In that case,
4717 prevent any further processing of this assignment.
4718
4719 We set DO_NOT_RECORD if the destination has a REG_UNUSED note.
4720 This avoids getting the source register into the tables, where it
4721 may be invalidated later (via REG_QTY), then trigger an ICE upon
4722 re-insertion.
4723
4724 This is only a problem in multi-set insns. If it were a single
4725 set the dead copy would have been removed. If the RHS were anything
4726 but a simple REG, then we won't call insert_regs and thus there's
4727 no potential for triggering the ICE. */
4728 do_not_record = (REG_P (dest)
4729 && REG_P (src)
4730 && find_reg_note (insn, REG_UNUSED, dest));
4731 hash_arg_in_memory = 0;
4732
4733 sets[i].src = src;
4734 sets[i].src_hash = HASH (src, mode);
4735 sets[i].src_volatile = do_not_record;
4736 sets[i].src_in_memory = hash_arg_in_memory;
4737
4738 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4739 a pseudo, do not record SRC. Using SRC as a replacement for
4740 anything else will be incorrect in that situation. Note that
4741 this usually occurs only for stack slots, in which case all the
4742 RTL would be referring to SRC, so we don't lose any optimization
4743 opportunities by not having SRC in the hash table. */
4744
4745 if (MEM_P (src)
4746 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4747 && REG_P (dest)
4748 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4749 sets[i].src_volatile = 1;
4750
4751 else if (GET_CODE (src) == ASM_OPERANDS
4752 && GET_CODE (x) == PARALLEL)
4753 {
4754 /* Do not record result of a non-volatile inline asm with
4755 more than one result. */
4756 if (n_sets > 1)
4757 sets[i].src_volatile = 1;
4758
4759 int j, lim = XVECLEN (x, 0);
4760 for (j = 0; j < lim; j++)
4761 {
4762 rtx y = XVECEXP (x, 0, j);
4763 /* And do not record result of a non-volatile inline asm
4764 with "memory" clobber. */
4765 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4766 {
4767 sets[i].src_volatile = 1;
4768 break;
4769 }
4770 }
4771 }
4772
4773 #if 0
4774 /* It is no longer clear why we used to do this, but it doesn't
4775 appear to still be needed. So let's try without it since this
4776 code hurts cse'ing widened ops. */
4777 /* If source is a paradoxical subreg (such as QI treated as an SI),
4778 treat it as volatile. It may do the work of an SI in one context
4779 where the extra bits are not being used, but cannot replace an SI
4780 in general. */
4781 if (paradoxical_subreg_p (src))
4782 sets[i].src_volatile = 1;
4783 #endif
4784
4785 /* Locate all possible equivalent forms for SRC. Try to replace
4786 SRC in the insn with each cheaper equivalent.
4787
4788 We have the following types of equivalents: SRC itself, a folded
4789 version, a value given in a REG_EQUAL note, or a value related
4790 to a constant.
4791
4792 Each of these equivalents may be part of an additional class
4793 of equivalents (if more than one is in the table, they must be in
4794 the same class; we check for this).
4795
4796 If the source is volatile, we don't do any table lookups.
4797
4798 We note any constant equivalent for possible later use in a
4799 REG_NOTE. */
4800
4801 if (!sets[i].src_volatile)
4802 elt = lookup (src, sets[i].src_hash, mode);
4803
4804 sets[i].src_elt = elt;
4805
4806 if (elt && src_eqv_here && src_eqv_elt)
4807 {
4808 if (elt->first_same_value != src_eqv_elt->first_same_value)
4809 {
4810 /* The REG_EQUAL is indicating that two formerly distinct
4811 classes are now equivalent. So merge them. */
4812 merge_equiv_classes (elt, src_eqv_elt);
4813 src_eqv_hash = HASH (src_eqv, elt->mode);
4814 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4815 }
4816
4817 src_eqv_here = 0;
4818 }
4819
4820 else if (src_eqv_elt)
4821 elt = src_eqv_elt;
4822
4823 /* Try to find a constant somewhere and record it in `src_const'.
4824 Record its table element, if any, in `src_const_elt'. Look in
4825 any known equivalences first. (If the constant is not in the
4826 table, also set `sets[i].src_const_hash'). */
4827 if (elt)
4828 for (p = elt->first_same_value; p; p = p->next_same_value)
4829 if (p->is_const)
4830 {
4831 src_const = p->exp;
4832 src_const_elt = elt;
4833 break;
4834 }
4835
4836 if (src_const == 0
4837 && (CONSTANT_P (src_folded)
4838 /* Consider (minus (label_ref L1) (label_ref L2)) as
4839 "constant" here so we will record it. This allows us
4840 to fold switch statements when an ADDR_DIFF_VEC is used. */
4841 || (GET_CODE (src_folded) == MINUS
4842 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4843 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4844 src_const = src_folded, src_const_elt = elt;
4845 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4846 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4847
4848 /* If we don't know if the constant is in the table, get its
4849 hash code and look it up. */
4850 if (src_const && src_const_elt == 0)
4851 {
4852 sets[i].src_const_hash = HASH (src_const, mode);
4853 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4854 }
4855
4856 sets[i].src_const = src_const;
4857 sets[i].src_const_elt = src_const_elt;
4858
4859 /* If the constant and our source are both in the table, mark them as
4860 equivalent. Otherwise, if a constant is in the table but the source
4861 isn't, set ELT to it. */
4862 if (src_const_elt && elt
4863 && src_const_elt->first_same_value != elt->first_same_value)
4864 merge_equiv_classes (elt, src_const_elt);
4865 else if (src_const_elt && elt == 0)
4866 elt = src_const_elt;
4867
4868 /* See if there is a register linearly related to a constant
4869 equivalent of SRC. */
4870 if (src_const
4871 && (GET_CODE (src_const) == CONST
4872 || (src_const_elt && src_const_elt->related_value != 0)))
4873 {
4874 src_related = use_related_value (src_const, src_const_elt);
4875 if (src_related)
4876 {
4877 struct table_elt *src_related_elt
4878 = lookup (src_related, HASH (src_related, mode), mode);
4879 if (src_related_elt && elt)
4880 {
4881 if (elt->first_same_value
4882 != src_related_elt->first_same_value)
4883 /* This can occur when we previously saw a CONST
4884 involving a SYMBOL_REF and then see the SYMBOL_REF
4885 twice. Merge the involved classes. */
4886 merge_equiv_classes (elt, src_related_elt);
4887
4888 src_related = 0;
4889 src_related_elt = 0;
4890 }
4891 else if (src_related_elt && elt == 0)
4892 elt = src_related_elt;
4893 }
4894 }
4895
4896 /* See if we have a CONST_INT that is already in a register in a
4897 wider mode. */
4898
4899 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4900 && is_int_mode (mode, &int_mode)
4901 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4902 {
4903 opt_scalar_int_mode wider_mode_iter;
4904 FOR_EACH_WIDER_MODE (wider_mode_iter, int_mode)
4905 {
4906 scalar_int_mode wider_mode = wider_mode_iter.require ();
4907 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
4908 break;
4909
4910 struct table_elt *const_elt
4911 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4912
4913 if (const_elt == 0)
4914 continue;
4915
4916 for (const_elt = const_elt->first_same_value;
4917 const_elt; const_elt = const_elt->next_same_value)
4918 if (REG_P (const_elt->exp))
4919 {
4920 src_related = gen_lowpart (int_mode, const_elt->exp);
4921 break;
4922 }
4923
4924 if (src_related != 0)
4925 break;
4926 }
4927 }
4928
4929 /* Another possibility is that we have an AND with a constant in
4930 a mode narrower than a word. If so, it might have been generated
4931 as part of an "if" which would narrow the AND. If we already
4932 have done the AND in a wider mode, we can use a SUBREG of that
4933 value. */
4934
4935 if (flag_expensive_optimizations && ! src_related
4936 && is_a <scalar_int_mode> (mode, &int_mode)
4937 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4938 && GET_MODE_SIZE (int_mode) < UNITS_PER_WORD)
4939 {
4940 opt_scalar_int_mode tmode_iter;
4941 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4942
4943 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
4944 {
4945 scalar_int_mode tmode = tmode_iter.require ();
4946 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4947 break;
4948
4949 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4950 struct table_elt *larger_elt;
4951
4952 if (inner)
4953 {
4954 PUT_MODE (new_and, tmode);
4955 XEXP (new_and, 0) = inner;
4956 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4957 if (larger_elt == 0)
4958 continue;
4959
4960 for (larger_elt = larger_elt->first_same_value;
4961 larger_elt; larger_elt = larger_elt->next_same_value)
4962 if (REG_P (larger_elt->exp))
4963 {
4964 src_related
4965 = gen_lowpart (int_mode, larger_elt->exp);
4966 break;
4967 }
4968
4969 if (src_related)
4970 break;
4971 }
4972 }
4973 }
4974
4975 /* See if a MEM has already been loaded with a widening operation;
4976 if it has, we can use a subreg of that. Many CISC machines
4977 also have such operations, but this is only likely to be
4978 beneficial on these machines. */
4979
4980 rtx_code extend_op;
4981 if (flag_expensive_optimizations && src_related == 0
4982 && MEM_P (src) && ! do_not_record
4983 && is_a <scalar_int_mode> (mode, &int_mode)
4984 && (extend_op = load_extend_op (int_mode)) != UNKNOWN)
4985 {
4986 struct rtx_def memory_extend_buf;
4987 rtx memory_extend_rtx = &memory_extend_buf;
4988
4989 /* Set what we are trying to extend and the operation it might
4990 have been extended with. */
4991 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4992 PUT_CODE (memory_extend_rtx, extend_op);
4993 XEXP (memory_extend_rtx, 0) = src;
4994
4995 opt_scalar_int_mode tmode_iter;
4996 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
4997 {
4998 struct table_elt *larger_elt;
4999
5000 scalar_int_mode tmode = tmode_iter.require ();
5001 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
5002 break;
5003
5004 PUT_MODE (memory_extend_rtx, tmode);
5005 larger_elt = lookup (memory_extend_rtx,
5006 HASH (memory_extend_rtx, tmode), tmode);
5007 if (larger_elt == 0)
5008 continue;
5009
5010 for (larger_elt = larger_elt->first_same_value;
5011 larger_elt; larger_elt = larger_elt->next_same_value)
5012 if (REG_P (larger_elt->exp))
5013 {
5014 src_related = gen_lowpart (int_mode, larger_elt->exp);
5015 break;
5016 }
5017
5018 if (src_related)
5019 break;
5020 }
5021 }
5022
5023 /* Try to express the constant using a register+offset expression
5024 derived from a constant anchor. */
5025
5026 if (targetm.const_anchor
5027 && !src_related
5028 && src_const
5029 && GET_CODE (src_const) == CONST_INT)
5030 {
5031 src_related = try_const_anchors (src_const, mode);
5032 src_related_is_const_anchor = src_related != NULL_RTX;
5033 }
5034
5035
5036 if (src == src_folded)
5037 src_folded = 0;
5038
5039 /* At this point, ELT, if nonzero, points to a class of expressions
5040 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5041 and SRC_RELATED, if nonzero, each contain additional equivalent
5042 expressions. Prune these latter expressions by deleting expressions
5043 already in the equivalence class.
5044
5045 Check for an equivalent identical to the destination. If found,
5046 this is the preferred equivalent since it will likely lead to
5047 elimination of the insn. Indicate this by placing it in
5048 `src_related'. */
5049
5050 if (elt)
5051 elt = elt->first_same_value;
5052 for (p = elt; p; p = p->next_same_value)
5053 {
5054 enum rtx_code code = GET_CODE (p->exp);
5055
5056 /* If the expression is not valid, ignore it. Then we do not
5057 have to check for validity below. In most cases, we can use
5058 `rtx_equal_p', since canonicalization has already been done. */
5059 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5060 continue;
5061
5062 /* Also skip paradoxical subregs, unless that's what we're
5063 looking for. */
5064 if (paradoxical_subreg_p (p->exp)
5065 && ! (src != 0
5066 && GET_CODE (src) == SUBREG
5067 && GET_MODE (src) == GET_MODE (p->exp)
5068 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5069 GET_MODE (SUBREG_REG (p->exp)))))
5070 continue;
5071
5072 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5073 src = 0;
5074 else if (src_folded && GET_CODE (src_folded) == code
5075 && rtx_equal_p (src_folded, p->exp))
5076 src_folded = 0;
5077 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5078 && rtx_equal_p (src_eqv_here, p->exp))
5079 src_eqv_here = 0;
5080 else if (src_related && GET_CODE (src_related) == code
5081 && rtx_equal_p (src_related, p->exp))
5082 src_related = 0;
5083
5084 /* This is the same as the destination of the insns, we want
5085 to prefer it. Copy it to src_related. The code below will
5086 then give it a negative cost. */
5087 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5088 src_related = p->exp;
5089 }
5090
5091 /* Find the cheapest valid equivalent, trying all the available
5092 possibilities. Prefer items not in the hash table to ones
5093 that are when they are equal cost. Note that we can never
5094 worsen an insn as the current contents will also succeed.
5095 If we find an equivalent identical to the destination, use it as best,
5096 since this insn will probably be eliminated in that case. */
5097 if (src)
5098 {
5099 if (rtx_equal_p (src, dest))
5100 src_cost = src_regcost = -1;
5101 else
5102 {
5103 src_cost = COST (src, mode);
5104 src_regcost = approx_reg_cost (src);
5105 }
5106 }
5107
5108 if (src_eqv_here)
5109 {
5110 if (rtx_equal_p (src_eqv_here, dest))
5111 src_eqv_cost = src_eqv_regcost = -1;
5112 else
5113 {
5114 src_eqv_cost = COST (src_eqv_here, mode);
5115 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5116 }
5117 }
5118
5119 if (src_folded)
5120 {
5121 if (rtx_equal_p (src_folded, dest))
5122 src_folded_cost = src_folded_regcost = -1;
5123 else
5124 {
5125 src_folded_cost = COST (src_folded, mode);
5126 src_folded_regcost = approx_reg_cost (src_folded);
5127 }
5128 }
5129
5130 if (src_related)
5131 {
5132 if (rtx_equal_p (src_related, dest))
5133 src_related_cost = src_related_regcost = -1;
5134 else
5135 {
5136 src_related_cost = COST (src_related, mode);
5137 src_related_regcost = approx_reg_cost (src_related);
5138
5139 /* If a const-anchor is used to synthesize a constant that
5140 normally requires multiple instructions then slightly prefer
5141 it over the original sequence. These instructions are likely
5142 to become redundant now. We can't compare against the cost
5143 of src_eqv_here because, on MIPS for example, multi-insn
5144 constants have zero cost; they are assumed to be hoisted from
5145 loops. */
5146 if (src_related_is_const_anchor
5147 && src_related_cost == src_cost
5148 && src_eqv_here)
5149 src_related_cost--;
5150 }
5151 }
5152
5153 /* If this was an indirect jump insn, a known label will really be
5154 cheaper even though it looks more expensive. */
5155 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5156 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5157
5158 /* Terminate loop when replacement made. This must terminate since
5159 the current contents will be tested and will always be valid. */
5160 while (1)
5161 {
5162 rtx trial;
5163
5164 /* Skip invalid entries. */
5165 while (elt && !REG_P (elt->exp)
5166 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5167 elt = elt->next_same_value;
5168
5169 /* A paradoxical subreg would be bad here: it'll be the right
5170 size, but later may be adjusted so that the upper bits aren't
5171 what we want. So reject it. */
5172 if (elt != 0
5173 && paradoxical_subreg_p (elt->exp)
5174 /* It is okay, though, if the rtx we're trying to match
5175 will ignore any of the bits we can't predict. */
5176 && ! (src != 0
5177 && GET_CODE (src) == SUBREG
5178 && GET_MODE (src) == GET_MODE (elt->exp)
5179 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5180 GET_MODE (SUBREG_REG (elt->exp)))))
5181 {
5182 elt = elt->next_same_value;
5183 continue;
5184 }
5185
5186 if (elt)
5187 {
5188 src_elt_cost = elt->cost;
5189 src_elt_regcost = elt->regcost;
5190 }
5191
5192 /* Find cheapest and skip it for the next time. For items
5193 of equal cost, use this order:
5194 src_folded, src, src_eqv, src_related and hash table entry. */
5195 if (src_folded
5196 && preferable (src_folded_cost, src_folded_regcost,
5197 src_cost, src_regcost) <= 0
5198 && preferable (src_folded_cost, src_folded_regcost,
5199 src_eqv_cost, src_eqv_regcost) <= 0
5200 && preferable (src_folded_cost, src_folded_regcost,
5201 src_related_cost, src_related_regcost) <= 0
5202 && preferable (src_folded_cost, src_folded_regcost,
5203 src_elt_cost, src_elt_regcost) <= 0)
5204 {
5205 trial = src_folded, src_folded_cost = MAX_COST;
5206 if (src_folded_force_flag)
5207 {
5208 rtx forced = force_const_mem (mode, trial);
5209 if (forced)
5210 trial = forced;
5211 }
5212 }
5213 else if (src
5214 && preferable (src_cost, src_regcost,
5215 src_eqv_cost, src_eqv_regcost) <= 0
5216 && preferable (src_cost, src_regcost,
5217 src_related_cost, src_related_regcost) <= 0
5218 && preferable (src_cost, src_regcost,
5219 src_elt_cost, src_elt_regcost) <= 0)
5220 trial = src, src_cost = MAX_COST;
5221 else if (src_eqv_here
5222 && preferable (src_eqv_cost, src_eqv_regcost,
5223 src_related_cost, src_related_regcost) <= 0
5224 && preferable (src_eqv_cost, src_eqv_regcost,
5225 src_elt_cost, src_elt_regcost) <= 0)
5226 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5227 else if (src_related
5228 && preferable (src_related_cost, src_related_regcost,
5229 src_elt_cost, src_elt_regcost) <= 0)
5230 trial = src_related, src_related_cost = MAX_COST;
5231 else
5232 {
5233 trial = elt->exp;
5234 elt = elt->next_same_value;
5235 src_elt_cost = MAX_COST;
5236 }
5237
5238 /* Try to optimize
5239 (set (reg:M N) (const_int A))
5240 (set (reg:M2 O) (const_int B))
5241 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5242 (reg:M2 O)). */
5243 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5244 && CONST_INT_P (trial)
5245 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5246 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5247 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5248 && (known_ge
5249 (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl))),
5250 INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))))
5251 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5252 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5253 <= HOST_BITS_PER_WIDE_INT))
5254 {
5255 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5256 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5257 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5258 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5259 struct table_elt *dest_elt
5260 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5261 rtx dest_cst = NULL;
5262
5263 if (dest_elt)
5264 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5265 if (p->is_const && CONST_INT_P (p->exp))
5266 {
5267 dest_cst = p->exp;
5268 break;
5269 }
5270 if (dest_cst)
5271 {
5272 HOST_WIDE_INT val = INTVAL (dest_cst);
5273 HOST_WIDE_INT mask;
5274 unsigned int shift;
5275 /* This is the mode of DEST_CST as well. */
5276 scalar_int_mode dest_mode
5277 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
5278 if (BITS_BIG_ENDIAN)
5279 shift = GET_MODE_PRECISION (dest_mode)
5280 - INTVAL (pos) - INTVAL (width);
5281 else
5282 shift = INTVAL (pos);
5283 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5284 mask = HOST_WIDE_INT_M1;
5285 else
5286 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
5287 val &= ~(mask << shift);
5288 val |= (INTVAL (trial) & mask) << shift;
5289 val = trunc_int_for_mode (val, dest_mode);
5290 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5291 dest_reg, 1);
5292 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5293 GEN_INT (val), 1);
5294 if (apply_change_group ())
5295 {
5296 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5297 if (note)
5298 {
5299 remove_note (insn, note);
5300 df_notes_rescan (insn);
5301 }
5302 src_eqv = NULL_RTX;
5303 src_eqv_elt = NULL;
5304 src_eqv_volatile = 0;
5305 src_eqv_in_memory = 0;
5306 src_eqv_hash = 0;
5307 repeat = true;
5308 break;
5309 }
5310 }
5311 }
5312
5313 /* We don't normally have an insn matching (set (pc) (pc)), so
5314 check for this separately here. We will delete such an
5315 insn below.
5316
5317 For other cases such as a table jump or conditional jump
5318 where we know the ultimate target, go ahead and replace the
5319 operand. While that may not make a valid insn, we will
5320 reemit the jump below (and also insert any necessary
5321 barriers). */
5322 if (n_sets == 1 && dest == pc_rtx
5323 && (trial == pc_rtx
5324 || (GET_CODE (trial) == LABEL_REF
5325 && ! condjump_p (insn))))
5326 {
5327 /* Don't substitute non-local labels, this confuses CFG. */
5328 if (GET_CODE (trial) == LABEL_REF
5329 && LABEL_REF_NONLOCAL_P (trial))
5330 continue;
5331
5332 SET_SRC (sets[i].rtl) = trial;
5333 cse_jumps_altered = true;
5334 break;
5335 }
5336
5337 /* Similarly, lots of targets don't allow no-op
5338 (set (mem x) (mem x)) moves. Even (set (reg x) (reg x))
5339 might be impossible for certain registers (like CC registers). */
5340 else if (n_sets == 1
5341 && !CALL_P (insn)
5342 && (MEM_P (trial) || REG_P (trial))
5343 && rtx_equal_p (trial, dest)
5344 && !side_effects_p (dest)
5345 && (cfun->can_delete_dead_exceptions
5346 || insn_nothrow_p (insn))
5347 /* We can only remove the later store if the earlier aliases
5348 at least all accesses the later one. */
5349 && (!MEM_P (trial)
5350 || ((MEM_ALIAS_SET (dest) == MEM_ALIAS_SET (trial)
5351 || alias_set_subset_of (MEM_ALIAS_SET (dest),
5352 MEM_ALIAS_SET (trial)))
5353 && (!MEM_EXPR (trial)
5354 || refs_same_for_tbaa_p (MEM_EXPR (trial),
5355 MEM_EXPR (dest))))))
5356 {
5357 SET_SRC (sets[i].rtl) = trial;
5358 noop_insn = true;
5359 break;
5360 }
5361
5362 /* Reject certain invalid forms of CONST that we create. */
5363 else if (CONSTANT_P (trial)
5364 && GET_CODE (trial) == CONST
5365 /* Reject cases that will cause decode_rtx_const to
5366 die. On the alpha when simplifying a switch, we
5367 get (const (truncate (minus (label_ref)
5368 (label_ref)))). */
5369 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5370 /* Likewise on IA-64, except without the
5371 truncate. */
5372 || (GET_CODE (XEXP (trial, 0)) == MINUS
5373 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5374 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5375 /* Do nothing for this case. */
5376 ;
5377
5378 /* Do not replace anything with a MEM, except the replacement
5379 is a no-op. This allows this loop to terminate. */
5380 else if (MEM_P (trial) && !rtx_equal_p (trial, SET_SRC(sets[i].rtl)))
5381 /* Do nothing for this case. */
5382 ;
5383
5384 /* Look for a substitution that makes a valid insn. */
5385 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5386 trial, 0))
5387 {
5388 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5389
5390 /* The result of apply_change_group can be ignored; see
5391 canon_reg. */
5392
5393 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5394 apply_change_group ();
5395
5396 break;
5397 }
5398
5399 /* If we previously found constant pool entries for
5400 constants and this is a constant, try making a
5401 pool entry. Put it in src_folded unless we already have done
5402 this since that is where it likely came from. */
5403
5404 else if (constant_pool_entries_cost
5405 && CONSTANT_P (trial)
5406 && (src_folded == 0
5407 || (!MEM_P (src_folded)
5408 && ! src_folded_force_flag))
5409 && GET_MODE_CLASS (mode) != MODE_CC
5410 && mode != VOIDmode)
5411 {
5412 src_folded_force_flag = 1;
5413 src_folded = trial;
5414 src_folded_cost = constant_pool_entries_cost;
5415 src_folded_regcost = constant_pool_entries_regcost;
5416 }
5417 }
5418
5419 /* If we changed the insn too much, handle this set from scratch. */
5420 if (repeat)
5421 {
5422 i--;
5423 continue;
5424 }
5425
5426 src = SET_SRC (sets[i].rtl);
5427
5428 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5429 However, there is an important exception: If both are registers
5430 that are not the head of their equivalence class, replace SET_SRC
5431 with the head of the class. If we do not do this, we will have
5432 both registers live over a portion of the basic block. This way,
5433 their lifetimes will likely abut instead of overlapping. */
5434 if (REG_P (dest)
5435 && REGNO_QTY_VALID_P (REGNO (dest)))
5436 {
5437 int dest_q = REG_QTY (REGNO (dest));
5438 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5439
5440 if (dest_ent->mode == GET_MODE (dest)
5441 && dest_ent->first_reg != REGNO (dest)
5442 && REG_P (src) && REGNO (src) == REGNO (dest)
5443 /* Don't do this if the original insn had a hard reg as
5444 SET_SRC or SET_DEST. */
5445 && (!REG_P (sets[i].src)
5446 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5447 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5448 /* We can't call canon_reg here because it won't do anything if
5449 SRC is a hard register. */
5450 {
5451 int src_q = REG_QTY (REGNO (src));
5452 struct qty_table_elem *src_ent = &qty_table[src_q];
5453 int first = src_ent->first_reg;
5454 rtx new_src
5455 = (first >= FIRST_PSEUDO_REGISTER
5456 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5457
5458 /* We must use validate-change even for this, because this
5459 might be a special no-op instruction, suitable only to
5460 tag notes onto. */
5461 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5462 {
5463 src = new_src;
5464 /* If we had a constant that is cheaper than what we are now
5465 setting SRC to, use that constant. We ignored it when we
5466 thought we could make this into a no-op. */
5467 if (src_const && COST (src_const, mode) < COST (src, mode)
5468 && validate_change (insn, &SET_SRC (sets[i].rtl),
5469 src_const, 0))
5470 src = src_const;
5471 }
5472 }
5473 }
5474
5475 /* If we made a change, recompute SRC values. */
5476 if (src != sets[i].src)
5477 {
5478 do_not_record = 0;
5479 hash_arg_in_memory = 0;
5480 sets[i].src = src;
5481 sets[i].src_hash = HASH (src, mode);
5482 sets[i].src_volatile = do_not_record;
5483 sets[i].src_in_memory = hash_arg_in_memory;
5484 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5485 }
5486
5487 /* If this is a single SET, we are setting a register, and we have an
5488 equivalent constant, we want to add a REG_EQUAL note if the constant
5489 is different from the source. We don't want to do it for a constant
5490 pseudo since verifying that this pseudo hasn't been eliminated is a
5491 pain; moreover such a note won't help anything.
5492
5493 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5494 which can be created for a reference to a compile time computable
5495 entry in a jump table. */
5496 if (n_sets == 1
5497 && REG_P (dest)
5498 && src_const
5499 && !REG_P (src_const)
5500 && !(GET_CODE (src_const) == SUBREG
5501 && REG_P (SUBREG_REG (src_const)))
5502 && !(GET_CODE (src_const) == CONST
5503 && GET_CODE (XEXP (src_const, 0)) == MINUS
5504 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5505 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5506 && !rtx_equal_p (src, src_const))
5507 {
5508 /* Make sure that the rtx is not shared. */
5509 src_const = copy_rtx (src_const);
5510
5511 /* Record the actual constant value in a REG_EQUAL note,
5512 making a new one if one does not already exist. */
5513 set_unique_reg_note (insn, REG_EQUAL, src_const);
5514 df_notes_rescan (insn);
5515 }
5516
5517 /* Now deal with the destination. */
5518 do_not_record = 0;
5519
5520 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5521 while (GET_CODE (dest) == SUBREG
5522 || GET_CODE (dest) == ZERO_EXTRACT
5523 || GET_CODE (dest) == STRICT_LOW_PART)
5524 dest = XEXP (dest, 0);
5525
5526 sets[i].inner_dest = dest;
5527
5528 if (MEM_P (dest))
5529 {
5530 #ifdef PUSH_ROUNDING
5531 /* Stack pushes invalidate the stack pointer. */
5532 rtx addr = XEXP (dest, 0);
5533 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5534 && XEXP (addr, 0) == stack_pointer_rtx)
5535 invalidate (stack_pointer_rtx, VOIDmode);
5536 #endif
5537 dest = fold_rtx (dest, insn);
5538 }
5539
5540 /* Compute the hash code of the destination now,
5541 before the effects of this instruction are recorded,
5542 since the register values used in the address computation
5543 are those before this instruction. */
5544 sets[i].dest_hash = HASH (dest, mode);
5545
5546 /* Don't enter a bit-field in the hash table
5547 because the value in it after the store
5548 may not equal what was stored, due to truncation. */
5549
5550 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5551 {
5552 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5553
5554 if (src_const != 0 && CONST_INT_P (src_const)
5555 && CONST_INT_P (width)
5556 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5557 && ! (INTVAL (src_const)
5558 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5559 /* Exception: if the value is constant,
5560 and it won't be truncated, record it. */
5561 ;
5562 else
5563 {
5564 /* This is chosen so that the destination will be invalidated
5565 but no new value will be recorded.
5566 We must invalidate because sometimes constant
5567 values can be recorded for bitfields. */
5568 sets[i].src_elt = 0;
5569 sets[i].src_volatile = 1;
5570 src_eqv = 0;
5571 src_eqv_elt = 0;
5572 }
5573 }
5574
5575 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5576 the insn. */
5577 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5578 {
5579 /* One less use of the label this insn used to jump to. */
5580 cse_cfg_altered |= delete_insn_and_edges (insn);
5581 cse_jumps_altered = true;
5582 /* No more processing for this set. */
5583 sets[i].rtl = 0;
5584 }
5585
5586 /* Similarly for no-op moves. */
5587 else if (noop_insn)
5588 {
5589 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5590 cse_cfg_altered = true;
5591 cse_cfg_altered |= delete_insn_and_edges (insn);
5592 /* No more processing for this set. */
5593 sets[i].rtl = 0;
5594 }
5595
5596 /* If this SET is now setting PC to a label, we know it used to
5597 be a conditional or computed branch. */
5598 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5599 && !LABEL_REF_NONLOCAL_P (src))
5600 {
5601 /* We reemit the jump in as many cases as possible just in
5602 case the form of an unconditional jump is significantly
5603 different than a computed jump or conditional jump.
5604
5605 If this insn has multiple sets, then reemitting the
5606 jump is nontrivial. So instead we just force rerecognition
5607 and hope for the best. */
5608 if (n_sets == 1)
5609 {
5610 rtx_jump_insn *new_rtx;
5611 rtx note;
5612
5613 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5614 new_rtx = emit_jump_insn_before (seq, insn);
5615 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5616 LABEL_NUSES (XEXP (src, 0))++;
5617
5618 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5619 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5620 if (note)
5621 {
5622 XEXP (note, 1) = NULL_RTX;
5623 REG_NOTES (new_rtx) = note;
5624 }
5625
5626 cse_cfg_altered |= delete_insn_and_edges (insn);
5627 insn = new_rtx;
5628 }
5629 else
5630 INSN_CODE (insn) = -1;
5631
5632 /* Do not bother deleting any unreachable code, let jump do it. */
5633 cse_jumps_altered = true;
5634 sets[i].rtl = 0;
5635 }
5636
5637 /* If destination is volatile, invalidate it and then do no further
5638 processing for this assignment. */
5639
5640 else if (do_not_record)
5641 {
5642 invalidate_dest (dest);
5643 sets[i].rtl = 0;
5644 }
5645
5646 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5647 {
5648 do_not_record = 0;
5649 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5650 if (do_not_record)
5651 {
5652 invalidate_dest (SET_DEST (sets[i].rtl));
5653 sets[i].rtl = 0;
5654 }
5655 }
5656
5657 /* If setting CC0, record what it was set to, or a constant, if it
5658 is equivalent to a constant. If it is being set to a floating-point
5659 value, make a COMPARE with the appropriate constant of 0. If we
5660 don't do this, later code can interpret this as a test against
5661 const0_rtx, which can cause problems if we try to put it into an
5662 insn as a floating-point operand. */
5663 if (dest == cc0_rtx)
5664 {
5665 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5666 this_insn_cc0_mode = mode;
5667 if (FLOAT_MODE_P (mode))
5668 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5669 CONST0_RTX (mode));
5670 }
5671 }
5672
5673 /* Now enter all non-volatile source expressions in the hash table
5674 if they are not already present.
5675 Record their equivalence classes in src_elt.
5676 This way we can insert the corresponding destinations into
5677 the same classes even if the actual sources are no longer in them
5678 (having been invalidated). */
5679
5680 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5681 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5682 {
5683 struct table_elt *elt;
5684 struct table_elt *classp = sets[0].src_elt;
5685 rtx dest = SET_DEST (sets[0].rtl);
5686 machine_mode eqvmode = GET_MODE (dest);
5687
5688 if (GET_CODE (dest) == STRICT_LOW_PART)
5689 {
5690 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5691 classp = 0;
5692 }
5693 if (insert_regs (src_eqv, classp, 0))
5694 {
5695 rehash_using_reg (src_eqv);
5696 src_eqv_hash = HASH (src_eqv, eqvmode);
5697 }
5698 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5699 elt->in_memory = src_eqv_in_memory;
5700 src_eqv_elt = elt;
5701
5702 /* Check to see if src_eqv_elt is the same as a set source which
5703 does not yet have an elt, and if so set the elt of the set source
5704 to src_eqv_elt. */
5705 for (i = 0; i < n_sets; i++)
5706 if (sets[i].rtl && sets[i].src_elt == 0
5707 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5708 sets[i].src_elt = src_eqv_elt;
5709 }
5710
5711 for (i = 0; i < n_sets; i++)
5712 if (sets[i].rtl && ! sets[i].src_volatile
5713 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5714 {
5715 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5716 {
5717 /* REG_EQUAL in setting a STRICT_LOW_PART
5718 gives an equivalent for the entire destination register,
5719 not just for the subreg being stored in now.
5720 This is a more interesting equivalence, so we arrange later
5721 to treat the entire reg as the destination. */
5722 sets[i].src_elt = src_eqv_elt;
5723 sets[i].src_hash = src_eqv_hash;
5724 }
5725 else
5726 {
5727 /* Insert source and constant equivalent into hash table, if not
5728 already present. */
5729 struct table_elt *classp = src_eqv_elt;
5730 rtx src = sets[i].src;
5731 rtx dest = SET_DEST (sets[i].rtl);
5732 machine_mode mode
5733 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5734
5735 /* It's possible that we have a source value known to be
5736 constant but don't have a REG_EQUAL note on the insn.
5737 Lack of a note will mean src_eqv_elt will be NULL. This
5738 can happen where we've generated a SUBREG to access a
5739 CONST_INT that is already in a register in a wider mode.
5740 Ensure that the source expression is put in the proper
5741 constant class. */
5742 if (!classp)
5743 classp = sets[i].src_const_elt;
5744
5745 if (sets[i].src_elt == 0)
5746 {
5747 struct table_elt *elt;
5748
5749 /* Note that these insert_regs calls cannot remove
5750 any of the src_elt's, because they would have failed to
5751 match if not still valid. */
5752 if (insert_regs (src, classp, 0))
5753 {
5754 rehash_using_reg (src);
5755 sets[i].src_hash = HASH (src, mode);
5756 }
5757 elt = insert (src, classp, sets[i].src_hash, mode);
5758 elt->in_memory = sets[i].src_in_memory;
5759 /* If inline asm has any clobbers, ensure we only reuse
5760 existing inline asms and never try to put the ASM_OPERANDS
5761 into an insn that isn't inline asm. */
5762 if (GET_CODE (src) == ASM_OPERANDS
5763 && GET_CODE (x) == PARALLEL)
5764 elt->cost = MAX_COST;
5765 sets[i].src_elt = classp = elt;
5766 }
5767 if (sets[i].src_const && sets[i].src_const_elt == 0
5768 && src != sets[i].src_const
5769 && ! rtx_equal_p (sets[i].src_const, src))
5770 sets[i].src_elt = insert (sets[i].src_const, classp,
5771 sets[i].src_const_hash, mode);
5772 }
5773 }
5774 else if (sets[i].src_elt == 0)
5775 /* If we did not insert the source into the hash table (e.g., it was
5776 volatile), note the equivalence class for the REG_EQUAL value, if any,
5777 so that the destination goes into that class. */
5778 sets[i].src_elt = src_eqv_elt;
5779
5780 /* Record destination addresses in the hash table. This allows us to
5781 check if they are invalidated by other sets. */
5782 for (i = 0; i < n_sets; i++)
5783 {
5784 if (sets[i].rtl)
5785 {
5786 rtx x = sets[i].inner_dest;
5787 struct table_elt *elt;
5788 machine_mode mode;
5789 unsigned hash;
5790
5791 if (MEM_P (x))
5792 {
5793 x = XEXP (x, 0);
5794 mode = GET_MODE (x);
5795 hash = HASH (x, mode);
5796 elt = lookup (x, hash, mode);
5797 if (!elt)
5798 {
5799 if (insert_regs (x, NULL, 0))
5800 {
5801 rtx dest = SET_DEST (sets[i].rtl);
5802
5803 rehash_using_reg (x);
5804 hash = HASH (x, mode);
5805 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5806 }
5807 elt = insert (x, NULL, hash, mode);
5808 }
5809
5810 sets[i].dest_addr_elt = elt;
5811 }
5812 else
5813 sets[i].dest_addr_elt = NULL;
5814 }
5815 }
5816
5817 invalidate_from_clobbers (insn);
5818
5819 /* Some registers are invalidated by subroutine calls. Memory is
5820 invalidated by non-constant calls. */
5821
5822 if (CALL_P (insn))
5823 {
5824 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5825 invalidate_memory ();
5826 else
5827 /* For const/pure calls, invalidate any argument slots, because
5828 those are owned by the callee. */
5829 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5830 if (GET_CODE (XEXP (tem, 0)) == USE
5831 && MEM_P (XEXP (XEXP (tem, 0), 0)))
5832 invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode);
5833 invalidate_for_call (insn);
5834 }
5835
5836 /* Now invalidate everything set by this instruction.
5837 If a SUBREG or other funny destination is being set,
5838 sets[i].rtl is still nonzero, so here we invalidate the reg
5839 a part of which is being set. */
5840
5841 for (i = 0; i < n_sets; i++)
5842 if (sets[i].rtl)
5843 {
5844 /* We can't use the inner dest, because the mode associated with
5845 a ZERO_EXTRACT is significant. */
5846 rtx dest = SET_DEST (sets[i].rtl);
5847
5848 /* Needed for registers to remove the register from its
5849 previous quantity's chain.
5850 Needed for memory if this is a nonvarying address, unless
5851 we have just done an invalidate_memory that covers even those. */
5852 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5853 invalidate (dest, VOIDmode);
5854 else if (MEM_P (dest))
5855 invalidate (dest, VOIDmode);
5856 else if (GET_CODE (dest) == STRICT_LOW_PART
5857 || GET_CODE (dest) == ZERO_EXTRACT)
5858 invalidate (XEXP (dest, 0), GET_MODE (dest));
5859 }
5860
5861 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5862 the regs restored by the longjmp come from a later time
5863 than the setjmp. */
5864 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5865 {
5866 flush_hash_table ();
5867 goto done;
5868 }
5869
5870 /* Make sure registers mentioned in destinations
5871 are safe for use in an expression to be inserted.
5872 This removes from the hash table
5873 any invalid entry that refers to one of these registers.
5874
5875 We don't care about the return value from mention_regs because
5876 we are going to hash the SET_DEST values unconditionally. */
5877
5878 for (i = 0; i < n_sets; i++)
5879 {
5880 if (sets[i].rtl)
5881 {
5882 rtx x = SET_DEST (sets[i].rtl);
5883
5884 if (!REG_P (x))
5885 mention_regs (x);
5886 else
5887 {
5888 /* We used to rely on all references to a register becoming
5889 inaccessible when a register changes to a new quantity,
5890 since that changes the hash code. However, that is not
5891 safe, since after HASH_SIZE new quantities we get a
5892 hash 'collision' of a register with its own invalid
5893 entries. And since SUBREGs have been changed not to
5894 change their hash code with the hash code of the register,
5895 it wouldn't work any longer at all. So we have to check
5896 for any invalid references lying around now.
5897 This code is similar to the REG case in mention_regs,
5898 but it knows that reg_tick has been incremented, and
5899 it leaves reg_in_table as -1 . */
5900 unsigned int regno = REGNO (x);
5901 unsigned int endregno = END_REGNO (x);
5902 unsigned int i;
5903
5904 for (i = regno; i < endregno; i++)
5905 {
5906 if (REG_IN_TABLE (i) >= 0)
5907 {
5908 remove_invalid_refs (i);
5909 REG_IN_TABLE (i) = -1;
5910 }
5911 }
5912 }
5913 }
5914 }
5915
5916 /* We may have just removed some of the src_elt's from the hash table.
5917 So replace each one with the current head of the same class.
5918 Also check if destination addresses have been removed. */
5919
5920 for (i = 0; i < n_sets; i++)
5921 if (sets[i].rtl)
5922 {
5923 if (sets[i].dest_addr_elt
5924 && sets[i].dest_addr_elt->first_same_value == 0)
5925 {
5926 /* The elt was removed, which means this destination is not
5927 valid after this instruction. */
5928 sets[i].rtl = NULL_RTX;
5929 }
5930 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5931 /* If elt was removed, find current head of same class,
5932 or 0 if nothing remains of that class. */
5933 {
5934 struct table_elt *elt = sets[i].src_elt;
5935
5936 while (elt && elt->prev_same_value)
5937 elt = elt->prev_same_value;
5938
5939 while (elt && elt->first_same_value == 0)
5940 elt = elt->next_same_value;
5941 sets[i].src_elt = elt ? elt->first_same_value : 0;
5942 }
5943 }
5944
5945 /* Now insert the destinations into their equivalence classes. */
5946
5947 for (i = 0; i < n_sets; i++)
5948 if (sets[i].rtl)
5949 {
5950 rtx dest = SET_DEST (sets[i].rtl);
5951 struct table_elt *elt;
5952
5953 /* Don't record value if we are not supposed to risk allocating
5954 floating-point values in registers that might be wider than
5955 memory. */
5956 if ((flag_float_store
5957 && MEM_P (dest)
5958 && FLOAT_MODE_P (GET_MODE (dest)))
5959 /* Don't record BLKmode values, because we don't know the
5960 size of it, and can't be sure that other BLKmode values
5961 have the same or smaller size. */
5962 || GET_MODE (dest) == BLKmode
5963 /* If we didn't put a REG_EQUAL value or a source into the hash
5964 table, there is no point is recording DEST. */
5965 || sets[i].src_elt == 0)
5966 continue;
5967
5968 /* STRICT_LOW_PART isn't part of the value BEING set,
5969 and neither is the SUBREG inside it.
5970 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5971 if (GET_CODE (dest) == STRICT_LOW_PART)
5972 dest = SUBREG_REG (XEXP (dest, 0));
5973
5974 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5975 /* Registers must also be inserted into chains for quantities. */
5976 if (insert_regs (dest, sets[i].src_elt, 1))
5977 {
5978 /* If `insert_regs' changes something, the hash code must be
5979 recalculated. */
5980 rehash_using_reg (dest);
5981 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5982 }
5983
5984 /* If DEST is a paradoxical SUBREG, don't record DEST since the bits
5985 outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined. */
5986 if (paradoxical_subreg_p (dest))
5987 continue;
5988
5989 elt = insert (dest, sets[i].src_elt,
5990 sets[i].dest_hash, GET_MODE (dest));
5991
5992 /* If this is a constant, insert the constant anchors with the
5993 equivalent register-offset expressions using register DEST. */
5994 if (targetm.const_anchor
5995 && REG_P (dest)
5996 && SCALAR_INT_MODE_P (GET_MODE (dest))
5997 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5998 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5999
6000 elt->in_memory = (MEM_P (sets[i].inner_dest)
6001 && !MEM_READONLY_P (sets[i].inner_dest));
6002
6003 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6004 narrower than M2, and both M1 and M2 are the same number of words,
6005 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6006 make that equivalence as well.
6007
6008 However, BAR may have equivalences for which gen_lowpart
6009 will produce a simpler value than gen_lowpart applied to
6010 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6011 BAR's equivalences. If we don't get a simplified form, make
6012 the SUBREG. It will not be used in an equivalence, but will
6013 cause two similar assignments to be detected.
6014
6015 Note the loop below will find SUBREG_REG (DEST) since we have
6016 already entered SRC and DEST of the SET in the table. */
6017
6018 if (GET_CODE (dest) == SUBREG
6019 && (known_equal_after_align_down
6020 (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1,
6021 GET_MODE_SIZE (GET_MODE (dest)) - 1,
6022 UNITS_PER_WORD))
6023 && !partial_subreg_p (dest)
6024 && sets[i].src_elt != 0)
6025 {
6026 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6027 struct table_elt *elt, *classp = 0;
6028
6029 for (elt = sets[i].src_elt->first_same_value; elt;
6030 elt = elt->next_same_value)
6031 {
6032 rtx new_src = 0;
6033 unsigned src_hash;
6034 struct table_elt *src_elt;
6035
6036 /* Ignore invalid entries. */
6037 if (!REG_P (elt->exp)
6038 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6039 continue;
6040
6041 /* We may have already been playing subreg games. If the
6042 mode is already correct for the destination, use it. */
6043 if (GET_MODE (elt->exp) == new_mode)
6044 new_src = elt->exp;
6045 else
6046 {
6047 poly_uint64 byte
6048 = subreg_lowpart_offset (new_mode, GET_MODE (dest));
6049 new_src = simplify_gen_subreg (new_mode, elt->exp,
6050 GET_MODE (dest), byte);
6051 }
6052
6053 /* The call to simplify_gen_subreg fails if the value
6054 is VOIDmode, yet we can't do any simplification, e.g.
6055 for EXPR_LISTs denoting function call results.
6056 It is invalid to construct a SUBREG with a VOIDmode
6057 SUBREG_REG, hence a zero new_src means we can't do
6058 this substitution. */
6059 if (! new_src)
6060 continue;
6061
6062 src_hash = HASH (new_src, new_mode);
6063 src_elt = lookup (new_src, src_hash, new_mode);
6064
6065 /* Put the new source in the hash table is if isn't
6066 already. */
6067 if (src_elt == 0)
6068 {
6069 if (insert_regs (new_src, classp, 0))
6070 {
6071 rehash_using_reg (new_src);
6072 src_hash = HASH (new_src, new_mode);
6073 }
6074 src_elt = insert (new_src, classp, src_hash, new_mode);
6075 src_elt->in_memory = elt->in_memory;
6076 if (GET_CODE (new_src) == ASM_OPERANDS
6077 && elt->cost == MAX_COST)
6078 src_elt->cost = MAX_COST;
6079 }
6080 else if (classp && classp != src_elt->first_same_value)
6081 /* Show that two things that we've seen before are
6082 actually the same. */
6083 merge_equiv_classes (src_elt, classp);
6084
6085 classp = src_elt->first_same_value;
6086 /* Ignore invalid entries. */
6087 while (classp
6088 && !REG_P (classp->exp)
6089 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6090 classp = classp->next_same_value;
6091 }
6092 }
6093 }
6094
6095 /* Special handling for (set REG0 REG1) where REG0 is the
6096 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6097 be used in the sequel, so (if easily done) change this insn to
6098 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6099 that computed their value. Then REG1 will become a dead store
6100 and won't cloud the situation for later optimizations.
6101
6102 Do not make this change if REG1 is a hard register, because it will
6103 then be used in the sequel and we may be changing a two-operand insn
6104 into a three-operand insn.
6105
6106 Also do not do this if we are operating on a copy of INSN. */
6107
6108 if (n_sets == 1 && sets[0].rtl)
6109 try_back_substitute_reg (sets[0].rtl, insn);
6110
6111 done:;
6112 }
6113 \f
6114 /* Remove from the hash table all expressions that reference memory. */
6115
6116 static void
6117 invalidate_memory (void)
6118 {
6119 int i;
6120 struct table_elt *p, *next;
6121
6122 for (i = 0; i < HASH_SIZE; i++)
6123 for (p = table[i]; p; p = next)
6124 {
6125 next = p->next_same_hash;
6126 if (p->in_memory)
6127 remove_from_table (p, i);
6128 }
6129 }
6130
6131 /* Perform invalidation on the basis of everything about INSN,
6132 except for invalidating the actual places that are SET in it.
6133 This includes the places CLOBBERed, and anything that might
6134 alias with something that is SET or CLOBBERed. */
6135
6136 static void
6137 invalidate_from_clobbers (rtx_insn *insn)
6138 {
6139 rtx x = PATTERN (insn);
6140
6141 if (GET_CODE (x) == CLOBBER)
6142 {
6143 rtx ref = XEXP (x, 0);
6144 if (ref)
6145 {
6146 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6147 || MEM_P (ref))
6148 invalidate (ref, VOIDmode);
6149 else if (GET_CODE (ref) == STRICT_LOW_PART
6150 || GET_CODE (ref) == ZERO_EXTRACT)
6151 invalidate (XEXP (ref, 0), GET_MODE (ref));
6152 }
6153 }
6154 else if (GET_CODE (x) == PARALLEL)
6155 {
6156 int i;
6157 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6158 {
6159 rtx y = XVECEXP (x, 0, i);
6160 if (GET_CODE (y) == CLOBBER)
6161 {
6162 rtx ref = XEXP (y, 0);
6163 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6164 || MEM_P (ref))
6165 invalidate (ref, VOIDmode);
6166 else if (GET_CODE (ref) == STRICT_LOW_PART
6167 || GET_CODE (ref) == ZERO_EXTRACT)
6168 invalidate (XEXP (ref, 0), GET_MODE (ref));
6169 }
6170 }
6171 }
6172 }
6173 \f
6174 /* Perform invalidation on the basis of everything about INSN.
6175 This includes the places CLOBBERed, and anything that might
6176 alias with something that is SET or CLOBBERed. */
6177
6178 static void
6179 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6180 {
6181 rtx tem;
6182 rtx x = PATTERN (insn);
6183
6184 if (CALL_P (insn))
6185 {
6186 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6187 {
6188 rtx temx = XEXP (tem, 0);
6189 if (GET_CODE (temx) == CLOBBER)
6190 invalidate (SET_DEST (temx), VOIDmode);
6191 }
6192 }
6193
6194 /* Ensure we invalidate the destination register of a CALL insn.
6195 This is necessary for machines where this register is a fixed_reg,
6196 because no other code would invalidate it. */
6197 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6198 invalidate (SET_DEST (x), VOIDmode);
6199
6200 else if (GET_CODE (x) == PARALLEL)
6201 {
6202 int i;
6203
6204 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6205 {
6206 rtx y = XVECEXP (x, 0, i);
6207 if (GET_CODE (y) == CLOBBER)
6208 {
6209 rtx clobbered = XEXP (y, 0);
6210
6211 if (REG_P (clobbered)
6212 || GET_CODE (clobbered) == SUBREG)
6213 invalidate (clobbered, VOIDmode);
6214 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6215 || GET_CODE (clobbered) == ZERO_EXTRACT)
6216 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6217 }
6218 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6219 invalidate (SET_DEST (y), VOIDmode);
6220 }
6221 }
6222 }
6223 \f
6224 static rtx cse_process_note (rtx);
6225
6226 /* A simplify_replace_fn_rtx callback for cse_process_note. Process X,
6227 part of the REG_NOTES of an insn. Replace any registers with either
6228 an equivalent constant or the canonical form of the register.
6229 Only replace addresses if the containing MEM remains valid.
6230
6231 Return the replacement for X, or null if it should be simplified
6232 recursively. */
6233
6234 static rtx
6235 cse_process_note_1 (rtx x, const_rtx, void *)
6236 {
6237 if (MEM_P (x))
6238 {
6239 validate_change (x, &XEXP (x, 0), cse_process_note (XEXP (x, 0)), false);
6240 return x;
6241 }
6242
6243 if (REG_P (x))
6244 {
6245 int i = REG_QTY (REGNO (x));
6246
6247 /* Return a constant or a constant register. */
6248 if (REGNO_QTY_VALID_P (REGNO (x)))
6249 {
6250 struct qty_table_elem *ent = &qty_table[i];
6251
6252 if (ent->const_rtx != NULL_RTX
6253 && (CONSTANT_P (ent->const_rtx)
6254 || REG_P (ent->const_rtx)))
6255 {
6256 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6257 if (new_rtx)
6258 return copy_rtx (new_rtx);
6259 }
6260 }
6261
6262 /* Otherwise, canonicalize this register. */
6263 return canon_reg (x, NULL);
6264 }
6265
6266 return NULL_RTX;
6267 }
6268
6269 /* Process X, part of the REG_NOTES of an insn. Replace any registers in it
6270 with either an equivalent constant or the canonical form of the register.
6271 Only replace addresses if the containing MEM remains valid. */
6272
6273 static rtx
6274 cse_process_note (rtx x)
6275 {
6276 return simplify_replace_fn_rtx (x, NULL_RTX, cse_process_note_1, NULL);
6277 }
6278
6279 \f
6280 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6281
6282 DATA is a pointer to a struct cse_basic_block_data, that is used to
6283 describe the path.
6284 It is filled with a queue of basic blocks, starting with FIRST_BB
6285 and following a trace through the CFG.
6286
6287 If all paths starting at FIRST_BB have been followed, or no new path
6288 starting at FIRST_BB can be constructed, this function returns FALSE.
6289 Otherwise, DATA->path is filled and the function returns TRUE indicating
6290 that a path to follow was found.
6291
6292 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6293 block in the path will be FIRST_BB. */
6294
6295 static bool
6296 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6297 int follow_jumps)
6298 {
6299 basic_block bb;
6300 edge e;
6301 int path_size;
6302
6303 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6304
6305 /* See if there is a previous path. */
6306 path_size = data->path_size;
6307
6308 /* There is a previous path. Make sure it started with FIRST_BB. */
6309 if (path_size)
6310 gcc_assert (data->path[0].bb == first_bb);
6311
6312 /* There was only one basic block in the last path. Clear the path and
6313 return, so that paths starting at another basic block can be tried. */
6314 if (path_size == 1)
6315 {
6316 path_size = 0;
6317 goto done;
6318 }
6319
6320 /* If the path was empty from the beginning, construct a new path. */
6321 if (path_size == 0)
6322 data->path[path_size++].bb = first_bb;
6323 else
6324 {
6325 /* Otherwise, path_size must be equal to or greater than 2, because
6326 a previous path exists that is at least two basic blocks long.
6327
6328 Update the previous branch path, if any. If the last branch was
6329 previously along the branch edge, take the fallthrough edge now. */
6330 while (path_size >= 2)
6331 {
6332 basic_block last_bb_in_path, previous_bb_in_path;
6333 edge e;
6334
6335 --path_size;
6336 last_bb_in_path = data->path[path_size].bb;
6337 previous_bb_in_path = data->path[path_size - 1].bb;
6338
6339 /* If we previously followed a path along the branch edge, try
6340 the fallthru edge now. */
6341 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6342 && any_condjump_p (BB_END (previous_bb_in_path))
6343 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6344 && e == BRANCH_EDGE (previous_bb_in_path))
6345 {
6346 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6347 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6348 && single_pred_p (bb)
6349 /* We used to assert here that we would only see blocks
6350 that we have not visited yet. But we may end up
6351 visiting basic blocks twice if the CFG has changed
6352 in this run of cse_main, because when the CFG changes
6353 the topological sort of the CFG also changes. A basic
6354 blocks that previously had more than two predecessors
6355 may now have a single predecessor, and become part of
6356 a path that starts at another basic block.
6357
6358 We still want to visit each basic block only once, so
6359 halt the path here if we have already visited BB. */
6360 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6361 {
6362 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6363 data->path[path_size++].bb = bb;
6364 break;
6365 }
6366 }
6367
6368 data->path[path_size].bb = NULL;
6369 }
6370
6371 /* If only one block remains in the path, bail. */
6372 if (path_size == 1)
6373 {
6374 path_size = 0;
6375 goto done;
6376 }
6377 }
6378
6379 /* Extend the path if possible. */
6380 if (follow_jumps)
6381 {
6382 bb = data->path[path_size - 1].bb;
6383 while (bb && path_size < param_max_cse_path_length)
6384 {
6385 if (single_succ_p (bb))
6386 e = single_succ_edge (bb);
6387 else if (EDGE_COUNT (bb->succs) == 2
6388 && any_condjump_p (BB_END (bb)))
6389 {
6390 /* First try to follow the branch. If that doesn't lead
6391 to a useful path, follow the fallthru edge. */
6392 e = BRANCH_EDGE (bb);
6393 if (!single_pred_p (e->dest))
6394 e = FALLTHRU_EDGE (bb);
6395 }
6396 else
6397 e = NULL;
6398
6399 if (e
6400 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6401 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6402 && single_pred_p (e->dest)
6403 /* Avoid visiting basic blocks twice. The large comment
6404 above explains why this can happen. */
6405 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6406 {
6407 basic_block bb2 = e->dest;
6408 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6409 data->path[path_size++].bb = bb2;
6410 bb = bb2;
6411 }
6412 else
6413 bb = NULL;
6414 }
6415 }
6416
6417 done:
6418 data->path_size = path_size;
6419 return path_size != 0;
6420 }
6421 \f
6422 /* Dump the path in DATA to file F. NSETS is the number of sets
6423 in the path. */
6424
6425 static void
6426 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6427 {
6428 int path_entry;
6429
6430 fprintf (f, ";; Following path with %d sets: ", nsets);
6431 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6432 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6433 fputc ('\n', f);
6434 fflush (f);
6435 }
6436
6437 \f
6438 /* Return true if BB has exception handling successor edges. */
6439
6440 static bool
6441 have_eh_succ_edges (basic_block bb)
6442 {
6443 edge e;
6444 edge_iterator ei;
6445
6446 FOR_EACH_EDGE (e, ei, bb->succs)
6447 if (e->flags & EDGE_EH)
6448 return true;
6449
6450 return false;
6451 }
6452
6453 \f
6454 /* Scan to the end of the path described by DATA. Return an estimate of
6455 the total number of SETs of all insns in the path. */
6456
6457 static void
6458 cse_prescan_path (struct cse_basic_block_data *data)
6459 {
6460 int nsets = 0;
6461 int path_size = data->path_size;
6462 int path_entry;
6463
6464 /* Scan to end of each basic block in the path. */
6465 for (path_entry = 0; path_entry < path_size; path_entry++)
6466 {
6467 basic_block bb;
6468 rtx_insn *insn;
6469
6470 bb = data->path[path_entry].bb;
6471
6472 FOR_BB_INSNS (bb, insn)
6473 {
6474 if (!INSN_P (insn))
6475 continue;
6476
6477 /* A PARALLEL can have lots of SETs in it,
6478 especially if it is really an ASM_OPERANDS. */
6479 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6480 nsets += XVECLEN (PATTERN (insn), 0);
6481 else
6482 nsets += 1;
6483 }
6484 }
6485
6486 data->nsets = nsets;
6487 }
6488 \f
6489 /* Return true if the pattern of INSN uses a LABEL_REF for which
6490 there isn't a REG_LABEL_OPERAND note. */
6491
6492 static bool
6493 check_for_label_ref (rtx_insn *insn)
6494 {
6495 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6496 note for it, we must rerun jump since it needs to place the note. If
6497 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6498 don't do this since no REG_LABEL_OPERAND will be added. */
6499 subrtx_iterator::array_type array;
6500 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6501 {
6502 const_rtx x = *iter;
6503 if (GET_CODE (x) == LABEL_REF
6504 && !LABEL_REF_NONLOCAL_P (x)
6505 && (!JUMP_P (insn)
6506 || !label_is_jump_target_p (label_ref_label (x), insn))
6507 && LABEL_P (label_ref_label (x))
6508 && INSN_UID (label_ref_label (x)) != 0
6509 && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x)))
6510 return true;
6511 }
6512 return false;
6513 }
6514
6515 /* Process a single extended basic block described by EBB_DATA. */
6516
6517 static void
6518 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6519 {
6520 int path_size = ebb_data->path_size;
6521 int path_entry;
6522 int num_insns = 0;
6523
6524 /* Allocate the space needed by qty_table. */
6525 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6526
6527 new_basic_block ();
6528 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6529 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6530 for (path_entry = 0; path_entry < path_size; path_entry++)
6531 {
6532 basic_block bb;
6533 rtx_insn *insn;
6534
6535 bb = ebb_data->path[path_entry].bb;
6536
6537 /* Invalidate recorded information for eh regs if there is an EH
6538 edge pointing to that bb. */
6539 if (bb_has_eh_pred (bb))
6540 {
6541 df_ref def;
6542
6543 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6544 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6545 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6546 }
6547
6548 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6549 FOR_BB_INSNS (bb, insn)
6550 {
6551 /* If we have processed 1,000 insns, flush the hash table to
6552 avoid extreme quadratic behavior. We must not include NOTEs
6553 in the count since there may be more of them when generating
6554 debugging information. If we clear the table at different
6555 times, code generated with -g -O might be different than code
6556 generated with -O but not -g.
6557
6558 FIXME: This is a real kludge and needs to be done some other
6559 way. */
6560 if (NONDEBUG_INSN_P (insn)
6561 && num_insns++ > param_max_cse_insns)
6562 {
6563 flush_hash_table ();
6564 num_insns = 0;
6565 }
6566
6567 if (INSN_P (insn))
6568 {
6569 /* Process notes first so we have all notes in canonical forms
6570 when looking for duplicate operations. */
6571 bool changed = false;
6572 for (rtx note = REG_NOTES (insn); note; note = XEXP (note, 1))
6573 if (REG_NOTE_KIND (note) == REG_EQUAL)
6574 {
6575 rtx newval = cse_process_note (XEXP (note, 0));
6576 if (newval != XEXP (note, 0))
6577 {
6578 XEXP (note, 0) = newval;
6579 changed = true;
6580 }
6581 }
6582 if (changed)
6583 df_notes_rescan (insn);
6584
6585 cse_insn (insn);
6586
6587 /* If we haven't already found an insn where we added a LABEL_REF,
6588 check this one. */
6589 if (INSN_P (insn) && !recorded_label_ref
6590 && check_for_label_ref (insn))
6591 recorded_label_ref = true;
6592
6593 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6594 {
6595 /* If the previous insn sets CC0 and this insn no
6596 longer references CC0, delete the previous insn.
6597 Here we use fact that nothing expects CC0 to be
6598 valid over an insn, which is true until the final
6599 pass. */
6600 rtx_insn *prev_insn;
6601 rtx tem;
6602
6603 prev_insn = prev_nonnote_nondebug_insn (insn);
6604 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6605 && (tem = single_set (prev_insn)) != NULL_RTX
6606 && SET_DEST (tem) == cc0_rtx
6607 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6608 delete_insn (prev_insn);
6609
6610 /* If this insn is not the last insn in the basic
6611 block, it will be PREV_INSN(insn) in the next
6612 iteration. If we recorded any CC0-related
6613 information for this insn, remember it. */
6614 if (insn != BB_END (bb))
6615 {
6616 prev_insn_cc0 = this_insn_cc0;
6617 prev_insn_cc0_mode = this_insn_cc0_mode;
6618 }
6619 }
6620 }
6621 }
6622
6623 /* With non-call exceptions, we are not always able to update
6624 the CFG properly inside cse_insn. So clean up possibly
6625 redundant EH edges here. */
6626 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6627 cse_cfg_altered |= purge_dead_edges (bb);
6628
6629 /* If we changed a conditional jump, we may have terminated
6630 the path we are following. Check that by verifying that
6631 the edge we would take still exists. If the edge does
6632 not exist anymore, purge the remainder of the path.
6633 Note that this will cause us to return to the caller. */
6634 if (path_entry < path_size - 1)
6635 {
6636 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6637 if (!find_edge (bb, next_bb))
6638 {
6639 do
6640 {
6641 path_size--;
6642
6643 /* If we truncate the path, we must also reset the
6644 visited bit on the remaining blocks in the path,
6645 or we will never visit them at all. */
6646 bitmap_clear_bit (cse_visited_basic_blocks,
6647 ebb_data->path[path_size].bb->index);
6648 ebb_data->path[path_size].bb = NULL;
6649 }
6650 while (path_size - 1 != path_entry);
6651 ebb_data->path_size = path_size;
6652 }
6653 }
6654
6655 /* If this is a conditional jump insn, record any known
6656 equivalences due to the condition being tested. */
6657 insn = BB_END (bb);
6658 if (path_entry < path_size - 1
6659 && EDGE_COUNT (bb->succs) == 2
6660 && JUMP_P (insn)
6661 && single_set (insn)
6662 && any_condjump_p (insn))
6663 {
6664 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6665 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6666 record_jump_equiv (insn, taken);
6667 }
6668
6669 /* Clear the CC0-tracking related insns, they can't provide
6670 useful information across basic block boundaries. */
6671 prev_insn_cc0 = 0;
6672 }
6673
6674 gcc_assert (next_qty <= max_qty);
6675
6676 free (qty_table);
6677 }
6678
6679 \f
6680 /* Perform cse on the instructions of a function.
6681 F is the first instruction.
6682 NREGS is one plus the highest pseudo-reg number used in the instruction.
6683
6684 Return 2 if jump optimizations should be redone due to simplifications
6685 in conditional jump instructions.
6686 Return 1 if the CFG should be cleaned up because it has been modified.
6687 Return 0 otherwise. */
6688
6689 static int
6690 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6691 {
6692 struct cse_basic_block_data ebb_data;
6693 basic_block bb;
6694 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6695 int i, n_blocks;
6696
6697 /* CSE doesn't use dominane info but can invalidate it in different ways.
6698 For simplicity free dominance info here. */
6699 free_dominance_info (CDI_DOMINATORS);
6700
6701 df_set_flags (DF_LR_RUN_DCE);
6702 df_note_add_problem ();
6703 df_analyze ();
6704 df_set_flags (DF_DEFER_INSN_RESCAN);
6705
6706 reg_scan (get_insns (), max_reg_num ());
6707 init_cse_reg_info (nregs);
6708
6709 ebb_data.path = XNEWVEC (struct branch_path,
6710 param_max_cse_path_length);
6711
6712 cse_cfg_altered = false;
6713 cse_jumps_altered = false;
6714 recorded_label_ref = false;
6715 constant_pool_entries_cost = 0;
6716 constant_pool_entries_regcost = 0;
6717 ebb_data.path_size = 0;
6718 ebb_data.nsets = 0;
6719 rtl_hooks = cse_rtl_hooks;
6720
6721 init_recog ();
6722 init_alias_analysis ();
6723
6724 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6725
6726 /* Set up the table of already visited basic blocks. */
6727 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6728 bitmap_clear (cse_visited_basic_blocks);
6729
6730 /* Loop over basic blocks in reverse completion order (RPO),
6731 excluding the ENTRY and EXIT blocks. */
6732 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6733 i = 0;
6734 while (i < n_blocks)
6735 {
6736 /* Find the first block in the RPO queue that we have not yet
6737 processed before. */
6738 do
6739 {
6740 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6741 }
6742 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6743 && i < n_blocks);
6744
6745 /* Find all paths starting with BB, and process them. */
6746 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6747 {
6748 /* Pre-scan the path. */
6749 cse_prescan_path (&ebb_data);
6750
6751 /* If this basic block has no sets, skip it. */
6752 if (ebb_data.nsets == 0)
6753 continue;
6754
6755 /* Get a reasonable estimate for the maximum number of qty's
6756 needed for this path. For this, we take the number of sets
6757 and multiply that by MAX_RECOG_OPERANDS. */
6758 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6759
6760 /* Dump the path we're about to process. */
6761 if (dump_file)
6762 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6763
6764 cse_extended_basic_block (&ebb_data);
6765 }
6766 }
6767
6768 /* Clean up. */
6769 end_alias_analysis ();
6770 free (reg_eqv_table);
6771 free (ebb_data.path);
6772 sbitmap_free (cse_visited_basic_blocks);
6773 free (rc_order);
6774 rtl_hooks = general_rtl_hooks;
6775
6776 if (cse_jumps_altered || recorded_label_ref)
6777 return 2;
6778 else if (cse_cfg_altered)
6779 return 1;
6780 else
6781 return 0;
6782 }
6783 \f
6784 /* Count the number of times registers are used (not set) in X.
6785 COUNTS is an array in which we accumulate the count, INCR is how much
6786 we count each register usage.
6787
6788 Don't count a usage of DEST, which is the SET_DEST of a SET which
6789 contains X in its SET_SRC. This is because such a SET does not
6790 modify the liveness of DEST.
6791 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6792 We must then count uses of a SET_DEST regardless, because the insn can't be
6793 deleted here. */
6794
6795 static void
6796 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6797 {
6798 enum rtx_code code;
6799 rtx note;
6800 const char *fmt;
6801 int i, j;
6802
6803 if (x == 0)
6804 return;
6805
6806 switch (code = GET_CODE (x))
6807 {
6808 case REG:
6809 if (x != dest)
6810 counts[REGNO (x)] += incr;
6811 return;
6812
6813 case PC:
6814 case CC0:
6815 case CONST:
6816 CASE_CONST_ANY:
6817 case SYMBOL_REF:
6818 case LABEL_REF:
6819 return;
6820
6821 case CLOBBER:
6822 /* If we are clobbering a MEM, mark any registers inside the address
6823 as being used. */
6824 if (MEM_P (XEXP (x, 0)))
6825 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6826 return;
6827
6828 case SET:
6829 /* Unless we are setting a REG, count everything in SET_DEST. */
6830 if (!REG_P (SET_DEST (x)))
6831 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6832 count_reg_usage (SET_SRC (x), counts,
6833 dest ? dest : SET_DEST (x),
6834 incr);
6835 return;
6836
6837 case DEBUG_INSN:
6838 return;
6839
6840 case CALL_INSN:
6841 case INSN:
6842 case JUMP_INSN:
6843 /* We expect dest to be NULL_RTX here. If the insn may throw,
6844 or if it cannot be deleted due to side-effects, mark this fact
6845 by setting DEST to pc_rtx. */
6846 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6847 || side_effects_p (PATTERN (x)))
6848 dest = pc_rtx;
6849 if (code == CALL_INSN)
6850 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6851 count_reg_usage (PATTERN (x), counts, dest, incr);
6852
6853 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6854 use them. */
6855
6856 note = find_reg_equal_equiv_note (x);
6857 if (note)
6858 {
6859 rtx eqv = XEXP (note, 0);
6860
6861 if (GET_CODE (eqv) == EXPR_LIST)
6862 /* This REG_EQUAL note describes the result of a function call.
6863 Process all the arguments. */
6864 do
6865 {
6866 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6867 eqv = XEXP (eqv, 1);
6868 }
6869 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6870 else
6871 count_reg_usage (eqv, counts, dest, incr);
6872 }
6873 return;
6874
6875 case EXPR_LIST:
6876 if (REG_NOTE_KIND (x) == REG_EQUAL
6877 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6878 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6879 involving registers in the address. */
6880 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6881 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6882
6883 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6884 return;
6885
6886 case ASM_OPERANDS:
6887 /* Iterate over just the inputs, not the constraints as well. */
6888 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6889 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6890 return;
6891
6892 case INSN_LIST:
6893 case INT_LIST:
6894 gcc_unreachable ();
6895
6896 default:
6897 break;
6898 }
6899
6900 fmt = GET_RTX_FORMAT (code);
6901 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6902 {
6903 if (fmt[i] == 'e')
6904 count_reg_usage (XEXP (x, i), counts, dest, incr);
6905 else if (fmt[i] == 'E')
6906 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6907 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6908 }
6909 }
6910 \f
6911 /* Return true if X is a dead register. */
6912
6913 static inline int
6914 is_dead_reg (const_rtx x, int *counts)
6915 {
6916 return (REG_P (x)
6917 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6918 && counts[REGNO (x)] == 0);
6919 }
6920
6921 /* Return true if set is live. */
6922 static bool
6923 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6924 int *counts)
6925 {
6926 rtx_insn *tem;
6927
6928 if (set_noop_p (set))
6929 ;
6930
6931 else if (GET_CODE (SET_DEST (set)) == CC0
6932 && !side_effects_p (SET_SRC (set))
6933 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6934 || !INSN_P (tem)
6935 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6936 return false;
6937 else if (!is_dead_reg (SET_DEST (set), counts)
6938 || side_effects_p (SET_SRC (set)))
6939 return true;
6940 return false;
6941 }
6942
6943 /* Return true if insn is live. */
6944
6945 static bool
6946 insn_live_p (rtx_insn *insn, int *counts)
6947 {
6948 int i;
6949 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6950 return true;
6951 else if (GET_CODE (PATTERN (insn)) == SET)
6952 return set_live_p (PATTERN (insn), insn, counts);
6953 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6954 {
6955 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6956 {
6957 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6958
6959 if (GET_CODE (elt) == SET)
6960 {
6961 if (set_live_p (elt, insn, counts))
6962 return true;
6963 }
6964 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6965 return true;
6966 }
6967 return false;
6968 }
6969 else if (DEBUG_INSN_P (insn))
6970 {
6971 rtx_insn *next;
6972
6973 if (DEBUG_MARKER_INSN_P (insn))
6974 return true;
6975
6976 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6977 if (NOTE_P (next))
6978 continue;
6979 else if (!DEBUG_INSN_P (next))
6980 return true;
6981 /* If we find an inspection point, such as a debug begin stmt,
6982 we want to keep the earlier debug insn. */
6983 else if (DEBUG_MARKER_INSN_P (next))
6984 return true;
6985 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6986 return false;
6987
6988 return true;
6989 }
6990 else
6991 return true;
6992 }
6993
6994 /* Count the number of stores into pseudo. Callback for note_stores. */
6995
6996 static void
6997 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6998 {
6999 int *counts = (int *) data;
7000 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
7001 counts[REGNO (x)]++;
7002 }
7003
7004 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
7005 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
7006 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
7007 Set *SEEN_REPL to true if we see a dead register that does have
7008 a replacement. */
7009
7010 static bool
7011 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
7012 bool *seen_repl)
7013 {
7014 subrtx_iterator::array_type array;
7015 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
7016 {
7017 const_rtx x = *iter;
7018 if (is_dead_reg (x, counts))
7019 {
7020 if (replacements && replacements[REGNO (x)] != NULL_RTX)
7021 *seen_repl = true;
7022 else
7023 return true;
7024 }
7025 }
7026 return false;
7027 }
7028
7029 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
7030 Callback for simplify_replace_fn_rtx. */
7031
7032 static rtx
7033 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
7034 {
7035 rtx *replacements = (rtx *) data;
7036
7037 if (REG_P (x)
7038 && REGNO (x) >= FIRST_PSEUDO_REGISTER
7039 && replacements[REGNO (x)] != NULL_RTX)
7040 {
7041 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
7042 return replacements[REGNO (x)];
7043 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
7044 GET_MODE (replacements[REGNO (x)]));
7045 }
7046 return NULL_RTX;
7047 }
7048
7049 /* Scan all the insns and delete any that are dead; i.e., they store a register
7050 that is never used or they copy a register to itself.
7051
7052 This is used to remove insns made obviously dead by cse, loop or other
7053 optimizations. It improves the heuristics in loop since it won't try to
7054 move dead invariants out of loops or make givs for dead quantities. The
7055 remaining passes of the compilation are also sped up. */
7056
7057 int
7058 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
7059 {
7060 int *counts;
7061 rtx_insn *insn, *prev;
7062 rtx *replacements = NULL;
7063 int ndead = 0;
7064
7065 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7066 /* First count the number of times each register is used. */
7067 if (MAY_HAVE_DEBUG_BIND_INSNS)
7068 {
7069 counts = XCNEWVEC (int, nreg * 3);
7070 for (insn = insns; insn; insn = NEXT_INSN (insn))
7071 if (DEBUG_BIND_INSN_P (insn))
7072 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7073 NULL_RTX, 1);
7074 else if (INSN_P (insn))
7075 {
7076 count_reg_usage (insn, counts, NULL_RTX, 1);
7077 note_stores (insn, count_stores, counts + nreg * 2);
7078 }
7079 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7080 First one counts how many times each pseudo is used outside
7081 of debug insns, second counts how many times each pseudo is
7082 used in debug insns and third counts how many times a pseudo
7083 is stored. */
7084 }
7085 else
7086 {
7087 counts = XCNEWVEC (int, nreg);
7088 for (insn = insns; insn; insn = NEXT_INSN (insn))
7089 if (INSN_P (insn))
7090 count_reg_usage (insn, counts, NULL_RTX, 1);
7091 /* If no debug insns can be present, COUNTS is just an array
7092 which counts how many times each pseudo is used. */
7093 }
7094 /* Pseudo PIC register should be considered as used due to possible
7095 new usages generated. */
7096 if (!reload_completed
7097 && pic_offset_table_rtx
7098 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7099 counts[REGNO (pic_offset_table_rtx)]++;
7100 /* Go from the last insn to the first and delete insns that only set unused
7101 registers or copy a register to itself. As we delete an insn, remove
7102 usage counts for registers it uses.
7103
7104 The first jump optimization pass may leave a real insn as the last
7105 insn in the function. We must not skip that insn or we may end
7106 up deleting code that is not really dead.
7107
7108 If some otherwise unused register is only used in DEBUG_INSNs,
7109 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7110 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7111 has been created for the unused register, replace it with
7112 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
7113 for (insn = get_last_insn (); insn; insn = prev)
7114 {
7115 int live_insn = 0;
7116
7117 prev = PREV_INSN (insn);
7118 if (!INSN_P (insn))
7119 continue;
7120
7121 live_insn = insn_live_p (insn, counts);
7122
7123 /* If this is a dead insn, delete it and show registers in it aren't
7124 being used. */
7125
7126 if (! live_insn && dbg_cnt (delete_trivial_dead))
7127 {
7128 if (DEBUG_INSN_P (insn))
7129 {
7130 if (DEBUG_BIND_INSN_P (insn))
7131 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7132 NULL_RTX, -1);
7133 }
7134 else
7135 {
7136 rtx set;
7137 if (MAY_HAVE_DEBUG_BIND_INSNS
7138 && (set = single_set (insn)) != NULL_RTX
7139 && is_dead_reg (SET_DEST (set), counts)
7140 /* Used at least once in some DEBUG_INSN. */
7141 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7142 /* And set exactly once. */
7143 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7144 && !side_effects_p (SET_SRC (set))
7145 && asm_noperands (PATTERN (insn)) < 0)
7146 {
7147 rtx dval, bind_var_loc;
7148 rtx_insn *bind;
7149
7150 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7151 dval = make_debug_expr_from_rtl (SET_DEST (set));
7152
7153 /* Emit a debug bind insn before the insn in which
7154 reg dies. */
7155 bind_var_loc =
7156 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7157 DEBUG_EXPR_TREE_DECL (dval),
7158 SET_SRC (set),
7159 VAR_INIT_STATUS_INITIALIZED);
7160 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7161
7162 bind = emit_debug_insn_before (bind_var_loc, insn);
7163 df_insn_rescan (bind);
7164
7165 if (replacements == NULL)
7166 replacements = XCNEWVEC (rtx, nreg);
7167 replacements[REGNO (SET_DEST (set))] = dval;
7168 }
7169
7170 count_reg_usage (insn, counts, NULL_RTX, -1);
7171 ndead++;
7172 }
7173 cse_cfg_altered |= delete_insn_and_edges (insn);
7174 }
7175 }
7176
7177 if (MAY_HAVE_DEBUG_BIND_INSNS)
7178 {
7179 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7180 if (DEBUG_BIND_INSN_P (insn))
7181 {
7182 /* If this debug insn references a dead register that wasn't replaced
7183 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7184 bool seen_repl = false;
7185 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7186 counts, replacements, &seen_repl))
7187 {
7188 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7189 df_insn_rescan (insn);
7190 }
7191 else if (seen_repl)
7192 {
7193 INSN_VAR_LOCATION_LOC (insn)
7194 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7195 NULL_RTX, replace_dead_reg,
7196 replacements);
7197 df_insn_rescan (insn);
7198 }
7199 }
7200 free (replacements);
7201 }
7202
7203 if (dump_file && ndead)
7204 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7205 ndead);
7206 /* Clean up. */
7207 free (counts);
7208 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7209 return ndead;
7210 }
7211
7212 /* If LOC contains references to NEWREG in a different mode, change them
7213 to use NEWREG instead. */
7214
7215 static void
7216 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7217 rtx *loc, rtx_insn *insn, rtx newreg)
7218 {
7219 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7220 {
7221 rtx *loc = *iter;
7222 rtx x = *loc;
7223 if (x
7224 && REG_P (x)
7225 && REGNO (x) == REGNO (newreg)
7226 && GET_MODE (x) != GET_MODE (newreg))
7227 {
7228 validate_change (insn, loc, newreg, 1);
7229 iter.skip_subrtxes ();
7230 }
7231 }
7232 }
7233
7234 /* Change the mode of any reference to the register REGNO (NEWREG) to
7235 GET_MODE (NEWREG) in INSN. */
7236
7237 static void
7238 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7239 {
7240 int success;
7241
7242 if (!INSN_P (insn))
7243 return;
7244
7245 subrtx_ptr_iterator::array_type array;
7246 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7247 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7248
7249 /* If the following assertion was triggered, there is most probably
7250 something wrong with the cc_modes_compatible back end function.
7251 CC modes only can be considered compatible if the insn - with the mode
7252 replaced by any of the compatible modes - can still be recognized. */
7253 success = apply_change_group ();
7254 gcc_assert (success);
7255 }
7256
7257 /* Change the mode of any reference to the register REGNO (NEWREG) to
7258 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7259 any instruction which modifies NEWREG. */
7260
7261 static void
7262 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7263 {
7264 rtx_insn *insn;
7265
7266 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7267 {
7268 if (! INSN_P (insn))
7269 continue;
7270
7271 if (reg_set_p (newreg, insn))
7272 return;
7273
7274 cse_change_cc_mode_insn (insn, newreg);
7275 }
7276 }
7277
7278 /* BB is a basic block which finishes with CC_REG as a condition code
7279 register which is set to CC_SRC. Look through the successors of BB
7280 to find blocks which have a single predecessor (i.e., this one),
7281 and look through those blocks for an assignment to CC_REG which is
7282 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7283 permitted to change the mode of CC_SRC to a compatible mode. This
7284 returns VOIDmode if no equivalent assignments were found.
7285 Otherwise it returns the mode which CC_SRC should wind up with.
7286 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7287 but is passed unmodified down to recursive calls in order to prevent
7288 endless recursion.
7289
7290 The main complexity in this function is handling the mode issues.
7291 We may have more than one duplicate which we can eliminate, and we
7292 try to find a mode which will work for multiple duplicates. */
7293
7294 static machine_mode
7295 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7296 bool can_change_mode)
7297 {
7298 bool found_equiv;
7299 machine_mode mode;
7300 unsigned int insn_count;
7301 edge e;
7302 rtx_insn *insns[2];
7303 machine_mode modes[2];
7304 rtx_insn *last_insns[2];
7305 unsigned int i;
7306 rtx newreg;
7307 edge_iterator ei;
7308
7309 /* We expect to have two successors. Look at both before picking
7310 the final mode for the comparison. If we have more successors
7311 (i.e., some sort of table jump, although that seems unlikely),
7312 then we require all beyond the first two to use the same
7313 mode. */
7314
7315 found_equiv = false;
7316 mode = GET_MODE (cc_src);
7317 insn_count = 0;
7318 FOR_EACH_EDGE (e, ei, bb->succs)
7319 {
7320 rtx_insn *insn;
7321 rtx_insn *end;
7322
7323 if (e->flags & EDGE_COMPLEX)
7324 continue;
7325
7326 if (EDGE_COUNT (e->dest->preds) != 1
7327 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7328 /* Avoid endless recursion on unreachable blocks. */
7329 || e->dest == orig_bb)
7330 continue;
7331
7332 end = NEXT_INSN (BB_END (e->dest));
7333 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7334 {
7335 rtx set;
7336
7337 if (! INSN_P (insn))
7338 continue;
7339
7340 /* If CC_SRC is modified, we have to stop looking for
7341 something which uses it. */
7342 if (modified_in_p (cc_src, insn))
7343 break;
7344
7345 /* Check whether INSN sets CC_REG to CC_SRC. */
7346 set = single_set (insn);
7347 if (set
7348 && REG_P (SET_DEST (set))
7349 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7350 {
7351 bool found;
7352 machine_mode set_mode;
7353 machine_mode comp_mode;
7354
7355 found = false;
7356 set_mode = GET_MODE (SET_SRC (set));
7357 comp_mode = set_mode;
7358 if (rtx_equal_p (cc_src, SET_SRC (set)))
7359 found = true;
7360 else if (GET_CODE (cc_src) == COMPARE
7361 && GET_CODE (SET_SRC (set)) == COMPARE
7362 && mode != set_mode
7363 && rtx_equal_p (XEXP (cc_src, 0),
7364 XEXP (SET_SRC (set), 0))
7365 && rtx_equal_p (XEXP (cc_src, 1),
7366 XEXP (SET_SRC (set), 1)))
7367
7368 {
7369 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7370 if (comp_mode != VOIDmode
7371 && (can_change_mode || comp_mode == mode))
7372 found = true;
7373 }
7374
7375 if (found)
7376 {
7377 found_equiv = true;
7378 if (insn_count < ARRAY_SIZE (insns))
7379 {
7380 insns[insn_count] = insn;
7381 modes[insn_count] = set_mode;
7382 last_insns[insn_count] = end;
7383 ++insn_count;
7384
7385 if (mode != comp_mode)
7386 {
7387 gcc_assert (can_change_mode);
7388 mode = comp_mode;
7389
7390 /* The modified insn will be re-recognized later. */
7391 PUT_MODE (cc_src, mode);
7392 }
7393 }
7394 else
7395 {
7396 if (set_mode != mode)
7397 {
7398 /* We found a matching expression in the
7399 wrong mode, but we don't have room to
7400 store it in the array. Punt. This case
7401 should be rare. */
7402 break;
7403 }
7404 /* INSN sets CC_REG to a value equal to CC_SRC
7405 with the right mode. We can simply delete
7406 it. */
7407 delete_insn (insn);
7408 }
7409
7410 /* We found an instruction to delete. Keep looking,
7411 in the hopes of finding a three-way jump. */
7412 continue;
7413 }
7414
7415 /* We found an instruction which sets the condition
7416 code, so don't look any farther. */
7417 break;
7418 }
7419
7420 /* If INSN sets CC_REG in some other way, don't look any
7421 farther. */
7422 if (reg_set_p (cc_reg, insn))
7423 break;
7424 }
7425
7426 /* If we fell off the bottom of the block, we can keep looking
7427 through successors. We pass CAN_CHANGE_MODE as false because
7428 we aren't prepared to handle compatibility between the
7429 further blocks and this block. */
7430 if (insn == end)
7431 {
7432 machine_mode submode;
7433
7434 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7435 if (submode != VOIDmode)
7436 {
7437 gcc_assert (submode == mode);
7438 found_equiv = true;
7439 can_change_mode = false;
7440 }
7441 }
7442 }
7443
7444 if (! found_equiv)
7445 return VOIDmode;
7446
7447 /* Now INSN_COUNT is the number of instructions we found which set
7448 CC_REG to a value equivalent to CC_SRC. The instructions are in
7449 INSNS. The modes used by those instructions are in MODES. */
7450
7451 newreg = NULL_RTX;
7452 for (i = 0; i < insn_count; ++i)
7453 {
7454 if (modes[i] != mode)
7455 {
7456 /* We need to change the mode of CC_REG in INSNS[i] and
7457 subsequent instructions. */
7458 if (! newreg)
7459 {
7460 if (GET_MODE (cc_reg) == mode)
7461 newreg = cc_reg;
7462 else
7463 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7464 }
7465 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7466 newreg);
7467 }
7468
7469 cse_cfg_altered |= delete_insn_and_edges (insns[i]);
7470 }
7471
7472 return mode;
7473 }
7474
7475 /* If we have a fixed condition code register (or two), walk through
7476 the instructions and try to eliminate duplicate assignments. */
7477
7478 static void
7479 cse_condition_code_reg (void)
7480 {
7481 unsigned int cc_regno_1;
7482 unsigned int cc_regno_2;
7483 rtx cc_reg_1;
7484 rtx cc_reg_2;
7485 basic_block bb;
7486
7487 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7488 return;
7489
7490 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7491 if (cc_regno_2 != INVALID_REGNUM)
7492 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7493 else
7494 cc_reg_2 = NULL_RTX;
7495
7496 FOR_EACH_BB_FN (bb, cfun)
7497 {
7498 rtx_insn *last_insn;
7499 rtx cc_reg;
7500 rtx_insn *insn;
7501 rtx_insn *cc_src_insn;
7502 rtx cc_src;
7503 machine_mode mode;
7504 machine_mode orig_mode;
7505
7506 /* Look for blocks which end with a conditional jump based on a
7507 condition code register. Then look for the instruction which
7508 sets the condition code register. Then look through the
7509 successor blocks for instructions which set the condition
7510 code register to the same value. There are other possible
7511 uses of the condition code register, but these are by far the
7512 most common and the ones which we are most likely to be able
7513 to optimize. */
7514
7515 last_insn = BB_END (bb);
7516 if (!JUMP_P (last_insn))
7517 continue;
7518
7519 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7520 cc_reg = cc_reg_1;
7521 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7522 cc_reg = cc_reg_2;
7523 else
7524 continue;
7525
7526 cc_src_insn = NULL;
7527 cc_src = NULL_RTX;
7528 for (insn = PREV_INSN (last_insn);
7529 insn && insn != PREV_INSN (BB_HEAD (bb));
7530 insn = PREV_INSN (insn))
7531 {
7532 rtx set;
7533
7534 if (! INSN_P (insn))
7535 continue;
7536 set = single_set (insn);
7537 if (set
7538 && REG_P (SET_DEST (set))
7539 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7540 {
7541 cc_src_insn = insn;
7542 cc_src = SET_SRC (set);
7543 break;
7544 }
7545 else if (reg_set_p (cc_reg, insn))
7546 break;
7547 }
7548
7549 if (! cc_src_insn)
7550 continue;
7551
7552 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7553 continue;
7554
7555 /* Now CC_REG is a condition code register used for a
7556 conditional jump at the end of the block, and CC_SRC, in
7557 CC_SRC_INSN, is the value to which that condition code
7558 register is set, and CC_SRC is still meaningful at the end of
7559 the basic block. */
7560
7561 orig_mode = GET_MODE (cc_src);
7562 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7563 if (mode != VOIDmode)
7564 {
7565 gcc_assert (mode == GET_MODE (cc_src));
7566 if (mode != orig_mode)
7567 {
7568 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7569
7570 cse_change_cc_mode_insn (cc_src_insn, newreg);
7571
7572 /* Do the same in the following insns that use the
7573 current value of CC_REG within BB. */
7574 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7575 NEXT_INSN (last_insn),
7576 newreg);
7577 }
7578 }
7579 }
7580 }
7581 \f
7582
7583 /* Perform common subexpression elimination. Nonzero value from
7584 `cse_main' means that jumps were simplified and some code may now
7585 be unreachable, so do jump optimization again. */
7586 static unsigned int
7587 rest_of_handle_cse (void)
7588 {
7589 int tem;
7590
7591 if (dump_file)
7592 dump_flow_info (dump_file, dump_flags);
7593
7594 tem = cse_main (get_insns (), max_reg_num ());
7595
7596 /* If we are not running more CSE passes, then we are no longer
7597 expecting CSE to be run. But always rerun it in a cheap mode. */
7598 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7599
7600 if (tem == 2)
7601 {
7602 timevar_push (TV_JUMP);
7603 rebuild_jump_labels (get_insns ());
7604 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7605 timevar_pop (TV_JUMP);
7606 }
7607 else if (tem == 1 || optimize > 1)
7608 cse_cfg_altered |= cleanup_cfg (0);
7609
7610 return 0;
7611 }
7612
7613 namespace {
7614
7615 const pass_data pass_data_cse =
7616 {
7617 RTL_PASS, /* type */
7618 "cse1", /* name */
7619 OPTGROUP_NONE, /* optinfo_flags */
7620 TV_CSE, /* tv_id */
7621 0, /* properties_required */
7622 0, /* properties_provided */
7623 0, /* properties_destroyed */
7624 0, /* todo_flags_start */
7625 TODO_df_finish, /* todo_flags_finish */
7626 };
7627
7628 class pass_cse : public rtl_opt_pass
7629 {
7630 public:
7631 pass_cse (gcc::context *ctxt)
7632 : rtl_opt_pass (pass_data_cse, ctxt)
7633 {}
7634
7635 /* opt_pass methods: */
7636 virtual bool gate (function *) { return optimize > 0; }
7637 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7638
7639 }; // class pass_cse
7640
7641 } // anon namespace
7642
7643 rtl_opt_pass *
7644 make_pass_cse (gcc::context *ctxt)
7645 {
7646 return new pass_cse (ctxt);
7647 }
7648
7649
7650 /* Run second CSE pass after loop optimizations. */
7651 static unsigned int
7652 rest_of_handle_cse2 (void)
7653 {
7654 int tem;
7655
7656 if (dump_file)
7657 dump_flow_info (dump_file, dump_flags);
7658
7659 tem = cse_main (get_insns (), max_reg_num ());
7660
7661 /* Run a pass to eliminate duplicated assignments to condition code
7662 registers. We have to run this after bypass_jumps, because it
7663 makes it harder for that pass to determine whether a jump can be
7664 bypassed safely. */
7665 cse_condition_code_reg ();
7666
7667 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7668
7669 if (tem == 2)
7670 {
7671 timevar_push (TV_JUMP);
7672 rebuild_jump_labels (get_insns ());
7673 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7674 timevar_pop (TV_JUMP);
7675 }
7676 else if (tem == 1 || cse_cfg_altered)
7677 cse_cfg_altered |= cleanup_cfg (0);
7678
7679 cse_not_expected = 1;
7680 return 0;
7681 }
7682
7683
7684 namespace {
7685
7686 const pass_data pass_data_cse2 =
7687 {
7688 RTL_PASS, /* type */
7689 "cse2", /* name */
7690 OPTGROUP_NONE, /* optinfo_flags */
7691 TV_CSE2, /* tv_id */
7692 0, /* properties_required */
7693 0, /* properties_provided */
7694 0, /* properties_destroyed */
7695 0, /* todo_flags_start */
7696 TODO_df_finish, /* todo_flags_finish */
7697 };
7698
7699 class pass_cse2 : public rtl_opt_pass
7700 {
7701 public:
7702 pass_cse2 (gcc::context *ctxt)
7703 : rtl_opt_pass (pass_data_cse2, ctxt)
7704 {}
7705
7706 /* opt_pass methods: */
7707 virtual bool gate (function *)
7708 {
7709 return optimize > 0 && flag_rerun_cse_after_loop;
7710 }
7711
7712 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7713
7714 }; // class pass_cse2
7715
7716 } // anon namespace
7717
7718 rtl_opt_pass *
7719 make_pass_cse2 (gcc::context *ctxt)
7720 {
7721 return new pass_cse2 (ctxt);
7722 }
7723
7724 /* Run second CSE pass after loop optimizations. */
7725 static unsigned int
7726 rest_of_handle_cse_after_global_opts (void)
7727 {
7728 int save_cfj;
7729 int tem;
7730
7731 /* We only want to do local CSE, so don't follow jumps. */
7732 save_cfj = flag_cse_follow_jumps;
7733 flag_cse_follow_jumps = 0;
7734
7735 rebuild_jump_labels (get_insns ());
7736 tem = cse_main (get_insns (), max_reg_num ());
7737 cse_cfg_altered |= purge_all_dead_edges ();
7738 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7739
7740 cse_not_expected = !flag_rerun_cse_after_loop;
7741
7742 /* If cse altered any jumps, rerun jump opts to clean things up. */
7743 if (tem == 2)
7744 {
7745 timevar_push (TV_JUMP);
7746 rebuild_jump_labels (get_insns ());
7747 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7748 timevar_pop (TV_JUMP);
7749 }
7750 else if (tem == 1 || cse_cfg_altered)
7751 cse_cfg_altered |= cleanup_cfg (0);
7752
7753 flag_cse_follow_jumps = save_cfj;
7754 return 0;
7755 }
7756
7757 namespace {
7758
7759 const pass_data pass_data_cse_after_global_opts =
7760 {
7761 RTL_PASS, /* type */
7762 "cse_local", /* name */
7763 OPTGROUP_NONE, /* optinfo_flags */
7764 TV_CSE, /* tv_id */
7765 0, /* properties_required */
7766 0, /* properties_provided */
7767 0, /* properties_destroyed */
7768 0, /* todo_flags_start */
7769 TODO_df_finish, /* todo_flags_finish */
7770 };
7771
7772 class pass_cse_after_global_opts : public rtl_opt_pass
7773 {
7774 public:
7775 pass_cse_after_global_opts (gcc::context *ctxt)
7776 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7777 {}
7778
7779 /* opt_pass methods: */
7780 virtual bool gate (function *)
7781 {
7782 return optimize > 0 && flag_rerun_cse_after_global_opts;
7783 }
7784
7785 virtual unsigned int execute (function *)
7786 {
7787 return rest_of_handle_cse_after_global_opts ();
7788 }
7789
7790 }; // class pass_cse_after_global_opts
7791
7792 } // anon namespace
7793
7794 rtl_opt_pass *
7795 make_pass_cse_after_global_opts (gcc::context *ctxt)
7796 {
7797 return new pass_cse_after_global_opts (ctxt);
7798 }