]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cse.c
Merge in trunk.
[thirdparty/gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "diagnostic-core.h"
35 #include "toplev.h"
36 #include "ggc.h"
37 #include "except.h"
38 #include "target.h"
39 #include "params.h"
40 #include "rtlhooks-def.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "dbgcnt.h"
44 #include "pointer-set.h"
45
46 /* The basic idea of common subexpression elimination is to go
47 through the code, keeping a record of expressions that would
48 have the same value at the current scan point, and replacing
49 expressions encountered with the cheapest equivalent expression.
50
51 It is too complicated to keep track of the different possibilities
52 when control paths merge in this code; so, at each label, we forget all
53 that is known and start fresh. This can be described as processing each
54 extended basic block separately. We have a separate pass to perform
55 global CSE.
56
57 Note CSE can turn a conditional or computed jump into a nop or
58 an unconditional jump. When this occurs we arrange to run the jump
59 optimizer after CSE to delete the unreachable code.
60
61 We use two data structures to record the equivalent expressions:
62 a hash table for most expressions, and a vector of "quantity
63 numbers" to record equivalent (pseudo) registers.
64
65 The use of the special data structure for registers is desirable
66 because it is faster. It is possible because registers references
67 contain a fairly small number, the register number, taken from
68 a contiguously allocated series, and two register references are
69 identical if they have the same number. General expressions
70 do not have any such thing, so the only way to retrieve the
71 information recorded on an expression other than a register
72 is to keep it in a hash table.
73
74 Registers and "quantity numbers":
75
76 At the start of each basic block, all of the (hardware and pseudo)
77 registers used in the function are given distinct quantity
78 numbers to indicate their contents. During scan, when the code
79 copies one register into another, we copy the quantity number.
80 When a register is loaded in any other way, we allocate a new
81 quantity number to describe the value generated by this operation.
82 `REG_QTY (N)' records what quantity register N is currently thought
83 of as containing.
84
85 All real quantity numbers are greater than or equal to zero.
86 If register N has not been assigned a quantity, `REG_QTY (N)' will
87 equal -N - 1, which is always negative.
88
89 Quantity numbers below zero do not exist and none of the `qty_table'
90 entries should be referenced with a negative index.
91
92 We also maintain a bidirectional chain of registers for each
93 quantity number. The `qty_table` members `first_reg' and `last_reg',
94 and `reg_eqv_table' members `next' and `prev' hold these chains.
95
96 The first register in a chain is the one whose lifespan is least local.
97 Among equals, it is the one that was seen first.
98 We replace any equivalent register with that one.
99
100 If two registers have the same quantity number, it must be true that
101 REG expressions with qty_table `mode' must be in the hash table for both
102 registers and must be in the same class.
103
104 The converse is not true. Since hard registers may be referenced in
105 any mode, two REG expressions might be equivalent in the hash table
106 but not have the same quantity number if the quantity number of one
107 of the registers is not the same mode as those expressions.
108
109 Constants and quantity numbers
110
111 When a quantity has a known constant value, that value is stored
112 in the appropriate qty_table `const_rtx'. This is in addition to
113 putting the constant in the hash table as is usual for non-regs.
114
115 Whether a reg or a constant is preferred is determined by the configuration
116 macro CONST_COSTS and will often depend on the constant value. In any
117 event, expressions containing constants can be simplified, by fold_rtx.
118
119 When a quantity has a known nearly constant value (such as an address
120 of a stack slot), that value is stored in the appropriate qty_table
121 `const_rtx'.
122
123 Integer constants don't have a machine mode. However, cse
124 determines the intended machine mode from the destination
125 of the instruction that moves the constant. The machine mode
126 is recorded in the hash table along with the actual RTL
127 constant expression so that different modes are kept separate.
128
129 Other expressions:
130
131 To record known equivalences among expressions in general
132 we use a hash table called `table'. It has a fixed number of buckets
133 that contain chains of `struct table_elt' elements for expressions.
134 These chains connect the elements whose expressions have the same
135 hash codes.
136
137 Other chains through the same elements connect the elements which
138 currently have equivalent values.
139
140 Register references in an expression are canonicalized before hashing
141 the expression. This is done using `reg_qty' and qty_table `first_reg'.
142 The hash code of a register reference is computed using the quantity
143 number, not the register number.
144
145 When the value of an expression changes, it is necessary to remove from the
146 hash table not just that expression but all expressions whose values
147 could be different as a result.
148
149 1. If the value changing is in memory, except in special cases
150 ANYTHING referring to memory could be changed. That is because
151 nobody knows where a pointer does not point.
152 The function `invalidate_memory' removes what is necessary.
153
154 The special cases are when the address is constant or is
155 a constant plus a fixed register such as the frame pointer
156 or a static chain pointer. When such addresses are stored in,
157 we can tell exactly which other such addresses must be invalidated
158 due to overlap. `invalidate' does this.
159 All expressions that refer to non-constant
160 memory addresses are also invalidated. `invalidate_memory' does this.
161
162 2. If the value changing is a register, all expressions
163 containing references to that register, and only those,
164 must be removed.
165
166 Because searching the entire hash table for expressions that contain
167 a register is very slow, we try to figure out when it isn't necessary.
168 Precisely, this is necessary only when expressions have been
169 entered in the hash table using this register, and then the value has
170 changed, and then another expression wants to be added to refer to
171 the register's new value. This sequence of circumstances is rare
172 within any one basic block.
173
174 `REG_TICK' and `REG_IN_TABLE', accessors for members of
175 cse_reg_info, are used to detect this case. REG_TICK (i) is
176 incremented whenever a value is stored in register i.
177 REG_IN_TABLE (i) holds -1 if no references to register i have been
178 entered in the table; otherwise, it contains the value REG_TICK (i)
179 had when the references were entered. If we want to enter a
180 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
181 remove old references. Until we want to enter a new entry, the
182 mere fact that the two vectors don't match makes the entries be
183 ignored if anyone tries to match them.
184
185 Registers themselves are entered in the hash table as well as in
186 the equivalent-register chains. However, `REG_TICK' and
187 `REG_IN_TABLE' do not apply to expressions which are simple
188 register references. These expressions are removed from the table
189 immediately when they become invalid, and this can be done even if
190 we do not immediately search for all the expressions that refer to
191 the register.
192
193 A CLOBBER rtx in an instruction invalidates its operand for further
194 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
195 invalidates everything that resides in memory.
196
197 Related expressions:
198
199 Constant expressions that differ only by an additive integer
200 are called related. When a constant expression is put in
201 the table, the related expression with no constant term
202 is also entered. These are made to point at each other
203 so that it is possible to find out if there exists any
204 register equivalent to an expression related to a given expression. */
205
206 /* Length of qty_table vector. We know in advance we will not need
207 a quantity number this big. */
208
209 static int max_qty;
210
211 /* Next quantity number to be allocated.
212 This is 1 + the largest number needed so far. */
213
214 static int next_qty;
215
216 /* Per-qty information tracking.
217
218 `first_reg' and `last_reg' track the head and tail of the
219 chain of registers which currently contain this quantity.
220
221 `mode' contains the machine mode of this quantity.
222
223 `const_rtx' holds the rtx of the constant value of this
224 quantity, if known. A summations of the frame/arg pointer
225 and a constant can also be entered here. When this holds
226 a known value, `const_insn' is the insn which stored the
227 constant value.
228
229 `comparison_{code,const,qty}' are used to track when a
230 comparison between a quantity and some constant or register has
231 been passed. In such a case, we know the results of the comparison
232 in case we see it again. These members record a comparison that
233 is known to be true. `comparison_code' holds the rtx code of such
234 a comparison, else it is set to UNKNOWN and the other two
235 comparison members are undefined. `comparison_const' holds
236 the constant being compared against, or zero if the comparison
237 is not against a constant. `comparison_qty' holds the quantity
238 being compared against when the result is known. If the comparison
239 is not with a register, `comparison_qty' is -1. */
240
241 struct qty_table_elem
242 {
243 rtx const_rtx;
244 rtx const_insn;
245 rtx comparison_const;
246 int comparison_qty;
247 unsigned int first_reg, last_reg;
248 /* The sizes of these fields should match the sizes of the
249 code and mode fields of struct rtx_def (see rtl.h). */
250 ENUM_BITFIELD(rtx_code) comparison_code : 16;
251 ENUM_BITFIELD(machine_mode) mode : 8;
252 };
253
254 /* The table of all qtys, indexed by qty number. */
255 static struct qty_table_elem *qty_table;
256
257 /* Structure used to pass arguments via for_each_rtx to function
258 cse_change_cc_mode. */
259 struct change_cc_mode_args
260 {
261 rtx insn;
262 rtx newreg;
263 };
264
265 #ifdef HAVE_cc0
266 /* For machines that have a CC0, we do not record its value in the hash
267 table since its use is guaranteed to be the insn immediately following
268 its definition and any other insn is presumed to invalidate it.
269
270 Instead, we store below the current and last value assigned to CC0.
271 If it should happen to be a constant, it is stored in preference
272 to the actual assigned value. In case it is a constant, we store
273 the mode in which the constant should be interpreted. */
274
275 static rtx this_insn_cc0, prev_insn_cc0;
276 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
277 #endif
278
279 /* Insn being scanned. */
280
281 static rtx this_insn;
282 static bool optimize_this_for_speed_p;
283
284 /* Index by register number, gives the number of the next (or
285 previous) register in the chain of registers sharing the same
286 value.
287
288 Or -1 if this register is at the end of the chain.
289
290 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
291
292 /* Per-register equivalence chain. */
293 struct reg_eqv_elem
294 {
295 int next, prev;
296 };
297
298 /* The table of all register equivalence chains. */
299 static struct reg_eqv_elem *reg_eqv_table;
300
301 struct cse_reg_info
302 {
303 /* The timestamp at which this register is initialized. */
304 unsigned int timestamp;
305
306 /* The quantity number of the register's current contents. */
307 int reg_qty;
308
309 /* The number of times the register has been altered in the current
310 basic block. */
311 int reg_tick;
312
313 /* The REG_TICK value at which rtx's containing this register are
314 valid in the hash table. If this does not equal the current
315 reg_tick value, such expressions existing in the hash table are
316 invalid. */
317 int reg_in_table;
318
319 /* The SUBREG that was set when REG_TICK was last incremented. Set
320 to -1 if the last store was to the whole register, not a subreg. */
321 unsigned int subreg_ticked;
322 };
323
324 /* A table of cse_reg_info indexed by register numbers. */
325 static struct cse_reg_info *cse_reg_info_table;
326
327 /* The size of the above table. */
328 static unsigned int cse_reg_info_table_size;
329
330 /* The index of the first entry that has not been initialized. */
331 static unsigned int cse_reg_info_table_first_uninitialized;
332
333 /* The timestamp at the beginning of the current run of
334 cse_extended_basic_block. We increment this variable at the beginning of
335 the current run of cse_extended_basic_block. The timestamp field of a
336 cse_reg_info entry matches the value of this variable if and only
337 if the entry has been initialized during the current run of
338 cse_extended_basic_block. */
339 static unsigned int cse_reg_info_timestamp;
340
341 /* A HARD_REG_SET containing all the hard registers for which there is
342 currently a REG expression in the hash table. Note the difference
343 from the above variables, which indicate if the REG is mentioned in some
344 expression in the table. */
345
346 static HARD_REG_SET hard_regs_in_table;
347
348 /* True if CSE has altered the CFG. */
349 static bool cse_cfg_altered;
350
351 /* True if CSE has altered conditional jump insns in such a way
352 that jump optimization should be redone. */
353 static bool cse_jumps_altered;
354
355 /* True if we put a LABEL_REF into the hash table for an INSN
356 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
357 to put in the note. */
358 static bool recorded_label_ref;
359
360 /* canon_hash stores 1 in do_not_record
361 if it notices a reference to CC0, PC, or some other volatile
362 subexpression. */
363
364 static int do_not_record;
365
366 /* canon_hash stores 1 in hash_arg_in_memory
367 if it notices a reference to memory within the expression being hashed. */
368
369 static int hash_arg_in_memory;
370
371 /* The hash table contains buckets which are chains of `struct table_elt's,
372 each recording one expression's information.
373 That expression is in the `exp' field.
374
375 The canon_exp field contains a canonical (from the point of view of
376 alias analysis) version of the `exp' field.
377
378 Those elements with the same hash code are chained in both directions
379 through the `next_same_hash' and `prev_same_hash' fields.
380
381 Each set of expressions with equivalent values
382 are on a two-way chain through the `next_same_value'
383 and `prev_same_value' fields, and all point with
384 the `first_same_value' field at the first element in
385 that chain. The chain is in order of increasing cost.
386 Each element's cost value is in its `cost' field.
387
388 The `in_memory' field is nonzero for elements that
389 involve any reference to memory. These elements are removed
390 whenever a write is done to an unidentified location in memory.
391 To be safe, we assume that a memory address is unidentified unless
392 the address is either a symbol constant or a constant plus
393 the frame pointer or argument pointer.
394
395 The `related_value' field is used to connect related expressions
396 (that differ by adding an integer).
397 The related expressions are chained in a circular fashion.
398 `related_value' is zero for expressions for which this
399 chain is not useful.
400
401 The `cost' field stores the cost of this element's expression.
402 The `regcost' field stores the value returned by approx_reg_cost for
403 this element's expression.
404
405 The `is_const' flag is set if the element is a constant (including
406 a fixed address).
407
408 The `flag' field is used as a temporary during some search routines.
409
410 The `mode' field is usually the same as GET_MODE (`exp'), but
411 if `exp' is a CONST_INT and has no machine mode then the `mode'
412 field is the mode it was being used as. Each constant is
413 recorded separately for each mode it is used with. */
414
415 struct table_elt
416 {
417 rtx exp;
418 rtx canon_exp;
419 struct table_elt *next_same_hash;
420 struct table_elt *prev_same_hash;
421 struct table_elt *next_same_value;
422 struct table_elt *prev_same_value;
423 struct table_elt *first_same_value;
424 struct table_elt *related_value;
425 int cost;
426 int regcost;
427 /* The size of this field should match the size
428 of the mode field of struct rtx_def (see rtl.h). */
429 ENUM_BITFIELD(machine_mode) mode : 8;
430 char in_memory;
431 char is_const;
432 char flag;
433 };
434
435 /* We don't want a lot of buckets, because we rarely have very many
436 things stored in the hash table, and a lot of buckets slows
437 down a lot of loops that happen frequently. */
438 #define HASH_SHIFT 5
439 #define HASH_SIZE (1 << HASH_SHIFT)
440 #define HASH_MASK (HASH_SIZE - 1)
441
442 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
443 register (hard registers may require `do_not_record' to be set). */
444
445 #define HASH(X, M) \
446 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
447 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
448 : canon_hash (X, M)) & HASH_MASK)
449
450 /* Like HASH, but without side-effects. */
451 #define SAFE_HASH(X, M) \
452 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
453 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
454 : safe_hash (X, M)) & HASH_MASK)
455
456 /* Determine whether register number N is considered a fixed register for the
457 purpose of approximating register costs.
458 It is desirable to replace other regs with fixed regs, to reduce need for
459 non-fixed hard regs.
460 A reg wins if it is either the frame pointer or designated as fixed. */
461 #define FIXED_REGNO_P(N) \
462 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
463 || fixed_regs[N] || global_regs[N])
464
465 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
466 hard registers and pointers into the frame are the cheapest with a cost
467 of 0. Next come pseudos with a cost of one and other hard registers with
468 a cost of 2. Aside from these special cases, call `rtx_cost'. */
469
470 #define CHEAP_REGNO(N) \
471 (REGNO_PTR_FRAME_P (N) \
472 || (HARD_REGISTER_NUM_P (N) \
473 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
474
475 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
476 #define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
477
478 /* Get the number of times this register has been updated in this
479 basic block. */
480
481 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
482
483 /* Get the point at which REG was recorded in the table. */
484
485 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
486
487 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
488 SUBREG). */
489
490 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
491
492 /* Get the quantity number for REG. */
493
494 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
495
496 /* Determine if the quantity number for register X represents a valid index
497 into the qty_table. */
498
499 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
500
501 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
502
503 #define CHEAPER(X, Y) \
504 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
505
506 static struct table_elt *table[HASH_SIZE];
507
508 /* Chain of `struct table_elt's made so far for this function
509 but currently removed from the table. */
510
511 static struct table_elt *free_element_chain;
512
513 /* Set to the cost of a constant pool reference if one was found for a
514 symbolic constant. If this was found, it means we should try to
515 convert constants into constant pool entries if they don't fit in
516 the insn. */
517
518 static int constant_pool_entries_cost;
519 static int constant_pool_entries_regcost;
520
521 /* Trace a patch through the CFG. */
522
523 struct branch_path
524 {
525 /* The basic block for this path entry. */
526 basic_block bb;
527 };
528
529 /* This data describes a block that will be processed by
530 cse_extended_basic_block. */
531
532 struct cse_basic_block_data
533 {
534 /* Total number of SETs in block. */
535 int nsets;
536 /* Size of current branch path, if any. */
537 int path_size;
538 /* Current path, indicating which basic_blocks will be processed. */
539 struct branch_path *path;
540 };
541
542
543 /* Pointers to the live in/live out bitmaps for the boundaries of the
544 current EBB. */
545 static bitmap cse_ebb_live_in, cse_ebb_live_out;
546
547 /* A simple bitmap to track which basic blocks have been visited
548 already as part of an already processed extended basic block. */
549 static sbitmap cse_visited_basic_blocks;
550
551 static bool fixed_base_plus_p (rtx x);
552 static int notreg_cost (rtx, enum rtx_code, int);
553 static int approx_reg_cost_1 (rtx *, void *);
554 static int approx_reg_cost (rtx);
555 static int preferable (int, int, int, int);
556 static void new_basic_block (void);
557 static void make_new_qty (unsigned int, enum machine_mode);
558 static void make_regs_eqv (unsigned int, unsigned int);
559 static void delete_reg_equiv (unsigned int);
560 static int mention_regs (rtx);
561 static int insert_regs (rtx, struct table_elt *, int);
562 static void remove_from_table (struct table_elt *, unsigned);
563 static void remove_pseudo_from_table (rtx, unsigned);
564 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
565 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
566 static rtx lookup_as_function (rtx, enum rtx_code);
567 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
568 enum machine_mode, int, int);
569 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
570 enum machine_mode);
571 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
572 static void invalidate (rtx, enum machine_mode);
573 static void remove_invalid_refs (unsigned int);
574 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
575 enum machine_mode);
576 static void rehash_using_reg (rtx);
577 static void invalidate_memory (void);
578 static void invalidate_for_call (void);
579 static rtx use_related_value (rtx, struct table_elt *);
580
581 static inline unsigned canon_hash (rtx, enum machine_mode);
582 static inline unsigned safe_hash (rtx, enum machine_mode);
583 static inline unsigned hash_rtx_string (const char *);
584
585 static rtx canon_reg (rtx, rtx);
586 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
587 enum machine_mode *,
588 enum machine_mode *);
589 static rtx fold_rtx (rtx, rtx);
590 static rtx equiv_constant (rtx);
591 static void record_jump_equiv (rtx, bool);
592 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
593 int);
594 static void cse_insn (rtx);
595 static void cse_prescan_path (struct cse_basic_block_data *);
596 static void invalidate_from_clobbers (rtx);
597 static void invalidate_from_sets_and_clobbers (rtx);
598 static rtx cse_process_notes (rtx, rtx, bool *);
599 static void cse_extended_basic_block (struct cse_basic_block_data *);
600 static int check_for_label_ref (rtx *, void *);
601 extern void dump_class (struct table_elt*);
602 static void get_cse_reg_info_1 (unsigned int regno);
603 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
604 static int check_dependence (rtx *, void *);
605
606 static void flush_hash_table (void);
607 static bool insn_live_p (rtx, int *);
608 static bool set_live_p (rtx, rtx, int *);
609 static int cse_change_cc_mode (rtx *, void *);
610 static void cse_change_cc_mode_insn (rtx, rtx);
611 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
612 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
613 bool);
614 \f
615
616 #undef RTL_HOOKS_GEN_LOWPART
617 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
618
619 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
620 \f
621 /* Nonzero if X has the form (PLUS frame-pointer integer). */
622
623 static bool
624 fixed_base_plus_p (rtx x)
625 {
626 switch (GET_CODE (x))
627 {
628 case REG:
629 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
630 return true;
631 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
632 return true;
633 return false;
634
635 case PLUS:
636 if (!CONST_INT_P (XEXP (x, 1)))
637 return false;
638 return fixed_base_plus_p (XEXP (x, 0));
639
640 default:
641 return false;
642 }
643 }
644
645 /* Dump the expressions in the equivalence class indicated by CLASSP.
646 This function is used only for debugging. */
647 DEBUG_FUNCTION void
648 dump_class (struct table_elt *classp)
649 {
650 struct table_elt *elt;
651
652 fprintf (stderr, "Equivalence chain for ");
653 print_rtl (stderr, classp->exp);
654 fprintf (stderr, ": \n");
655
656 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
657 {
658 print_rtl (stderr, elt->exp);
659 fprintf (stderr, "\n");
660 }
661 }
662
663 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
664
665 static int
666 approx_reg_cost_1 (rtx *xp, void *data)
667 {
668 rtx x = *xp;
669 int *cost_p = (int *) data;
670
671 if (x && REG_P (x))
672 {
673 unsigned int regno = REGNO (x);
674
675 if (! CHEAP_REGNO (regno))
676 {
677 if (regno < FIRST_PSEUDO_REGISTER)
678 {
679 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
680 return 1;
681 *cost_p += 2;
682 }
683 else
684 *cost_p += 1;
685 }
686 }
687
688 return 0;
689 }
690
691 /* Return an estimate of the cost of the registers used in an rtx.
692 This is mostly the number of different REG expressions in the rtx;
693 however for some exceptions like fixed registers we use a cost of
694 0. If any other hard register reference occurs, return MAX_COST. */
695
696 static int
697 approx_reg_cost (rtx x)
698 {
699 int cost = 0;
700
701 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
702 return MAX_COST;
703
704 return cost;
705 }
706
707 /* Return a negative value if an rtx A, whose costs are given by COST_A
708 and REGCOST_A, is more desirable than an rtx B.
709 Return a positive value if A is less desirable, or 0 if the two are
710 equally good. */
711 static int
712 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
713 {
714 /* First, get rid of cases involving expressions that are entirely
715 unwanted. */
716 if (cost_a != cost_b)
717 {
718 if (cost_a == MAX_COST)
719 return 1;
720 if (cost_b == MAX_COST)
721 return -1;
722 }
723
724 /* Avoid extending lifetimes of hardregs. */
725 if (regcost_a != regcost_b)
726 {
727 if (regcost_a == MAX_COST)
728 return 1;
729 if (regcost_b == MAX_COST)
730 return -1;
731 }
732
733 /* Normal operation costs take precedence. */
734 if (cost_a != cost_b)
735 return cost_a - cost_b;
736 /* Only if these are identical consider effects on register pressure. */
737 if (regcost_a != regcost_b)
738 return regcost_a - regcost_b;
739 return 0;
740 }
741
742 /* Internal function, to compute cost when X is not a register; called
743 from COST macro to keep it simple. */
744
745 static int
746 notreg_cost (rtx x, enum rtx_code outer, int opno)
747 {
748 return ((GET_CODE (x) == SUBREG
749 && REG_P (SUBREG_REG (x))
750 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
751 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
752 && (GET_MODE_SIZE (GET_MODE (x))
753 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
754 && subreg_lowpart_p (x)
755 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
756 GET_MODE (SUBREG_REG (x))))
757 ? 0
758 : rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
759 }
760
761 \f
762 /* Initialize CSE_REG_INFO_TABLE. */
763
764 static void
765 init_cse_reg_info (unsigned int nregs)
766 {
767 /* Do we need to grow the table? */
768 if (nregs > cse_reg_info_table_size)
769 {
770 unsigned int new_size;
771
772 if (cse_reg_info_table_size < 2048)
773 {
774 /* Compute a new size that is a power of 2 and no smaller
775 than the large of NREGS and 64. */
776 new_size = (cse_reg_info_table_size
777 ? cse_reg_info_table_size : 64);
778
779 while (new_size < nregs)
780 new_size *= 2;
781 }
782 else
783 {
784 /* If we need a big table, allocate just enough to hold
785 NREGS registers. */
786 new_size = nregs;
787 }
788
789 /* Reallocate the table with NEW_SIZE entries. */
790 free (cse_reg_info_table);
791 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
792 cse_reg_info_table_size = new_size;
793 cse_reg_info_table_first_uninitialized = 0;
794 }
795
796 /* Do we have all of the first NREGS entries initialized? */
797 if (cse_reg_info_table_first_uninitialized < nregs)
798 {
799 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
800 unsigned int i;
801
802 /* Put the old timestamp on newly allocated entries so that they
803 will all be considered out of date. We do not touch those
804 entries beyond the first NREGS entries to be nice to the
805 virtual memory. */
806 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
807 cse_reg_info_table[i].timestamp = old_timestamp;
808
809 cse_reg_info_table_first_uninitialized = nregs;
810 }
811 }
812
813 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
814
815 static void
816 get_cse_reg_info_1 (unsigned int regno)
817 {
818 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
819 entry will be considered to have been initialized. */
820 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
821
822 /* Initialize the rest of the entry. */
823 cse_reg_info_table[regno].reg_tick = 1;
824 cse_reg_info_table[regno].reg_in_table = -1;
825 cse_reg_info_table[regno].subreg_ticked = -1;
826 cse_reg_info_table[regno].reg_qty = -regno - 1;
827 }
828
829 /* Find a cse_reg_info entry for REGNO. */
830
831 static inline struct cse_reg_info *
832 get_cse_reg_info (unsigned int regno)
833 {
834 struct cse_reg_info *p = &cse_reg_info_table[regno];
835
836 /* If this entry has not been initialized, go ahead and initialize
837 it. */
838 if (p->timestamp != cse_reg_info_timestamp)
839 get_cse_reg_info_1 (regno);
840
841 return p;
842 }
843
844 /* Clear the hash table and initialize each register with its own quantity,
845 for a new basic block. */
846
847 static void
848 new_basic_block (void)
849 {
850 int i;
851
852 next_qty = 0;
853
854 /* Invalidate cse_reg_info_table. */
855 cse_reg_info_timestamp++;
856
857 /* Clear out hash table state for this pass. */
858 CLEAR_HARD_REG_SET (hard_regs_in_table);
859
860 /* The per-quantity values used to be initialized here, but it is
861 much faster to initialize each as it is made in `make_new_qty'. */
862
863 for (i = 0; i < HASH_SIZE; i++)
864 {
865 struct table_elt *first;
866
867 first = table[i];
868 if (first != NULL)
869 {
870 struct table_elt *last = first;
871
872 table[i] = NULL;
873
874 while (last->next_same_hash != NULL)
875 last = last->next_same_hash;
876
877 /* Now relink this hash entire chain into
878 the free element list. */
879
880 last->next_same_hash = free_element_chain;
881 free_element_chain = first;
882 }
883 }
884
885 #ifdef HAVE_cc0
886 prev_insn_cc0 = 0;
887 #endif
888 }
889
890 /* Say that register REG contains a quantity in mode MODE not in any
891 register before and initialize that quantity. */
892
893 static void
894 make_new_qty (unsigned int reg, enum machine_mode mode)
895 {
896 int q;
897 struct qty_table_elem *ent;
898 struct reg_eqv_elem *eqv;
899
900 gcc_assert (next_qty < max_qty);
901
902 q = REG_QTY (reg) = next_qty++;
903 ent = &qty_table[q];
904 ent->first_reg = reg;
905 ent->last_reg = reg;
906 ent->mode = mode;
907 ent->const_rtx = ent->const_insn = NULL_RTX;
908 ent->comparison_code = UNKNOWN;
909
910 eqv = &reg_eqv_table[reg];
911 eqv->next = eqv->prev = -1;
912 }
913
914 /* Make reg NEW equivalent to reg OLD.
915 OLD is not changing; NEW is. */
916
917 static void
918 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
919 {
920 unsigned int lastr, firstr;
921 int q = REG_QTY (old_reg);
922 struct qty_table_elem *ent;
923
924 ent = &qty_table[q];
925
926 /* Nothing should become eqv until it has a "non-invalid" qty number. */
927 gcc_assert (REGNO_QTY_VALID_P (old_reg));
928
929 REG_QTY (new_reg) = q;
930 firstr = ent->first_reg;
931 lastr = ent->last_reg;
932
933 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
934 hard regs. Among pseudos, if NEW will live longer than any other reg
935 of the same qty, and that is beyond the current basic block,
936 make it the new canonical replacement for this qty. */
937 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
938 /* Certain fixed registers might be of the class NO_REGS. This means
939 that not only can they not be allocated by the compiler, but
940 they cannot be used in substitutions or canonicalizations
941 either. */
942 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
943 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
944 || (new_reg >= FIRST_PSEUDO_REGISTER
945 && (firstr < FIRST_PSEUDO_REGISTER
946 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
947 && !bitmap_bit_p (cse_ebb_live_out, firstr))
948 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
949 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
950 {
951 reg_eqv_table[firstr].prev = new_reg;
952 reg_eqv_table[new_reg].next = firstr;
953 reg_eqv_table[new_reg].prev = -1;
954 ent->first_reg = new_reg;
955 }
956 else
957 {
958 /* If NEW is a hard reg (known to be non-fixed), insert at end.
959 Otherwise, insert before any non-fixed hard regs that are at the
960 end. Registers of class NO_REGS cannot be used as an
961 equivalent for anything. */
962 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
963 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
964 && new_reg >= FIRST_PSEUDO_REGISTER)
965 lastr = reg_eqv_table[lastr].prev;
966 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
967 if (reg_eqv_table[lastr].next >= 0)
968 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
969 else
970 qty_table[q].last_reg = new_reg;
971 reg_eqv_table[lastr].next = new_reg;
972 reg_eqv_table[new_reg].prev = lastr;
973 }
974 }
975
976 /* Remove REG from its equivalence class. */
977
978 static void
979 delete_reg_equiv (unsigned int reg)
980 {
981 struct qty_table_elem *ent;
982 int q = REG_QTY (reg);
983 int p, n;
984
985 /* If invalid, do nothing. */
986 if (! REGNO_QTY_VALID_P (reg))
987 return;
988
989 ent = &qty_table[q];
990
991 p = reg_eqv_table[reg].prev;
992 n = reg_eqv_table[reg].next;
993
994 if (n != -1)
995 reg_eqv_table[n].prev = p;
996 else
997 ent->last_reg = p;
998 if (p != -1)
999 reg_eqv_table[p].next = n;
1000 else
1001 ent->first_reg = n;
1002
1003 REG_QTY (reg) = -reg - 1;
1004 }
1005
1006 /* Remove any invalid expressions from the hash table
1007 that refer to any of the registers contained in expression X.
1008
1009 Make sure that newly inserted references to those registers
1010 as subexpressions will be considered valid.
1011
1012 mention_regs is not called when a register itself
1013 is being stored in the table.
1014
1015 Return 1 if we have done something that may have changed the hash code
1016 of X. */
1017
1018 static int
1019 mention_regs (rtx x)
1020 {
1021 enum rtx_code code;
1022 int i, j;
1023 const char *fmt;
1024 int changed = 0;
1025
1026 if (x == 0)
1027 return 0;
1028
1029 code = GET_CODE (x);
1030 if (code == REG)
1031 {
1032 unsigned int regno = REGNO (x);
1033 unsigned int endregno = END_REGNO (x);
1034 unsigned int i;
1035
1036 for (i = regno; i < endregno; i++)
1037 {
1038 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1039 remove_invalid_refs (i);
1040
1041 REG_IN_TABLE (i) = REG_TICK (i);
1042 SUBREG_TICKED (i) = -1;
1043 }
1044
1045 return 0;
1046 }
1047
1048 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1049 pseudo if they don't use overlapping words. We handle only pseudos
1050 here for simplicity. */
1051 if (code == SUBREG && REG_P (SUBREG_REG (x))
1052 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1053 {
1054 unsigned int i = REGNO (SUBREG_REG (x));
1055
1056 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1057 {
1058 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1059 the last store to this register really stored into this
1060 subreg, then remove the memory of this subreg.
1061 Otherwise, remove any memory of the entire register and
1062 all its subregs from the table. */
1063 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1064 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1065 remove_invalid_refs (i);
1066 else
1067 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1068 }
1069
1070 REG_IN_TABLE (i) = REG_TICK (i);
1071 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1072 return 0;
1073 }
1074
1075 /* If X is a comparison or a COMPARE and either operand is a register
1076 that does not have a quantity, give it one. This is so that a later
1077 call to record_jump_equiv won't cause X to be assigned a different
1078 hash code and not found in the table after that call.
1079
1080 It is not necessary to do this here, since rehash_using_reg can
1081 fix up the table later, but doing this here eliminates the need to
1082 call that expensive function in the most common case where the only
1083 use of the register is in the comparison. */
1084
1085 if (code == COMPARE || COMPARISON_P (x))
1086 {
1087 if (REG_P (XEXP (x, 0))
1088 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1089 if (insert_regs (XEXP (x, 0), NULL, 0))
1090 {
1091 rehash_using_reg (XEXP (x, 0));
1092 changed = 1;
1093 }
1094
1095 if (REG_P (XEXP (x, 1))
1096 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1097 if (insert_regs (XEXP (x, 1), NULL, 0))
1098 {
1099 rehash_using_reg (XEXP (x, 1));
1100 changed = 1;
1101 }
1102 }
1103
1104 fmt = GET_RTX_FORMAT (code);
1105 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1106 if (fmt[i] == 'e')
1107 changed |= mention_regs (XEXP (x, i));
1108 else if (fmt[i] == 'E')
1109 for (j = 0; j < XVECLEN (x, i); j++)
1110 changed |= mention_regs (XVECEXP (x, i, j));
1111
1112 return changed;
1113 }
1114
1115 /* Update the register quantities for inserting X into the hash table
1116 with a value equivalent to CLASSP.
1117 (If the class does not contain a REG, it is irrelevant.)
1118 If MODIFIED is nonzero, X is a destination; it is being modified.
1119 Note that delete_reg_equiv should be called on a register
1120 before insert_regs is done on that register with MODIFIED != 0.
1121
1122 Nonzero value means that elements of reg_qty have changed
1123 so X's hash code may be different. */
1124
1125 static int
1126 insert_regs (rtx x, struct table_elt *classp, int modified)
1127 {
1128 if (REG_P (x))
1129 {
1130 unsigned int regno = REGNO (x);
1131 int qty_valid;
1132
1133 /* If REGNO is in the equivalence table already but is of the
1134 wrong mode for that equivalence, don't do anything here. */
1135
1136 qty_valid = REGNO_QTY_VALID_P (regno);
1137 if (qty_valid)
1138 {
1139 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1140
1141 if (ent->mode != GET_MODE (x))
1142 return 0;
1143 }
1144
1145 if (modified || ! qty_valid)
1146 {
1147 if (classp)
1148 for (classp = classp->first_same_value;
1149 classp != 0;
1150 classp = classp->next_same_value)
1151 if (REG_P (classp->exp)
1152 && GET_MODE (classp->exp) == GET_MODE (x))
1153 {
1154 unsigned c_regno = REGNO (classp->exp);
1155
1156 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1157
1158 /* Suppose that 5 is hard reg and 100 and 101 are
1159 pseudos. Consider
1160
1161 (set (reg:si 100) (reg:si 5))
1162 (set (reg:si 5) (reg:si 100))
1163 (set (reg:di 101) (reg:di 5))
1164
1165 We would now set REG_QTY (101) = REG_QTY (5), but the
1166 entry for 5 is in SImode. When we use this later in
1167 copy propagation, we get the register in wrong mode. */
1168 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1169 continue;
1170
1171 make_regs_eqv (regno, c_regno);
1172 return 1;
1173 }
1174
1175 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1176 than REG_IN_TABLE to find out if there was only a single preceding
1177 invalidation - for the SUBREG - or another one, which would be
1178 for the full register. However, if we find here that REG_TICK
1179 indicates that the register is invalid, it means that it has
1180 been invalidated in a separate operation. The SUBREG might be used
1181 now (then this is a recursive call), or we might use the full REG
1182 now and a SUBREG of it later. So bump up REG_TICK so that
1183 mention_regs will do the right thing. */
1184 if (! modified
1185 && REG_IN_TABLE (regno) >= 0
1186 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1187 REG_TICK (regno)++;
1188 make_new_qty (regno, GET_MODE (x));
1189 return 1;
1190 }
1191
1192 return 0;
1193 }
1194
1195 /* If X is a SUBREG, we will likely be inserting the inner register in the
1196 table. If that register doesn't have an assigned quantity number at
1197 this point but does later, the insertion that we will be doing now will
1198 not be accessible because its hash code will have changed. So assign
1199 a quantity number now. */
1200
1201 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1202 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1203 {
1204 insert_regs (SUBREG_REG (x), NULL, 0);
1205 mention_regs (x);
1206 return 1;
1207 }
1208 else
1209 return mention_regs (x);
1210 }
1211 \f
1212
1213 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1214 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1215 CST is equal to an anchor. */
1216
1217 static bool
1218 compute_const_anchors (rtx cst,
1219 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1220 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1221 {
1222 HOST_WIDE_INT n = INTVAL (cst);
1223
1224 *lower_base = n & ~(targetm.const_anchor - 1);
1225 if (*lower_base == n)
1226 return false;
1227
1228 *upper_base =
1229 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1230 *upper_offs = n - *upper_base;
1231 *lower_offs = n - *lower_base;
1232 return true;
1233 }
1234
1235 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1236
1237 static void
1238 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1239 enum machine_mode mode)
1240 {
1241 struct table_elt *elt;
1242 unsigned hash;
1243 rtx anchor_exp;
1244 rtx exp;
1245
1246 anchor_exp = GEN_INT (anchor);
1247 hash = HASH (anchor_exp, mode);
1248 elt = lookup (anchor_exp, hash, mode);
1249 if (!elt)
1250 elt = insert (anchor_exp, NULL, hash, mode);
1251
1252 exp = plus_constant (mode, reg, offs);
1253 /* REG has just been inserted and the hash codes recomputed. */
1254 mention_regs (exp);
1255 hash = HASH (exp, mode);
1256
1257 /* Use the cost of the register rather than the whole expression. When
1258 looking up constant anchors we will further offset the corresponding
1259 expression therefore it does not make sense to prefer REGs over
1260 reg-immediate additions. Prefer instead the oldest expression. Also
1261 don't prefer pseudos over hard regs so that we derive constants in
1262 argument registers from other argument registers rather than from the
1263 original pseudo that was used to synthesize the constant. */
1264 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1265 }
1266
1267 /* The constant CST is equivalent to the register REG. Create
1268 equivalences between the two anchors of CST and the corresponding
1269 register-offset expressions using REG. */
1270
1271 static void
1272 insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1273 {
1274 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1275
1276 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1277 &upper_base, &upper_offs))
1278 return;
1279
1280 /* Ignore anchors of value 0. Constants accessible from zero are
1281 simple. */
1282 if (lower_base != 0)
1283 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1284
1285 if (upper_base != 0)
1286 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1287 }
1288
1289 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1290 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1291 valid expression. Return the cheapest and oldest of such expressions. In
1292 *OLD, return how old the resulting expression is compared to the other
1293 equivalent expressions. */
1294
1295 static rtx
1296 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1297 unsigned *old)
1298 {
1299 struct table_elt *elt;
1300 unsigned idx;
1301 struct table_elt *match_elt;
1302 rtx match;
1303
1304 /* Find the cheapest and *oldest* expression to maximize the chance of
1305 reusing the same pseudo. */
1306
1307 match_elt = NULL;
1308 match = NULL_RTX;
1309 for (elt = anchor_elt->first_same_value, idx = 0;
1310 elt;
1311 elt = elt->next_same_value, idx++)
1312 {
1313 if (match_elt && CHEAPER (match_elt, elt))
1314 return match;
1315
1316 if (REG_P (elt->exp)
1317 || (GET_CODE (elt->exp) == PLUS
1318 && REG_P (XEXP (elt->exp, 0))
1319 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1320 {
1321 rtx x;
1322
1323 /* Ignore expressions that are no longer valid. */
1324 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1325 continue;
1326
1327 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1328 if (REG_P (x)
1329 || (GET_CODE (x) == PLUS
1330 && IN_RANGE (INTVAL (XEXP (x, 1)),
1331 -targetm.const_anchor,
1332 targetm.const_anchor - 1)))
1333 {
1334 match = x;
1335 match_elt = elt;
1336 *old = idx;
1337 }
1338 }
1339 }
1340
1341 return match;
1342 }
1343
1344 /* Try to express the constant SRC_CONST using a register+offset expression
1345 derived from a constant anchor. Return it if successful or NULL_RTX,
1346 otherwise. */
1347
1348 static rtx
1349 try_const_anchors (rtx src_const, enum machine_mode mode)
1350 {
1351 struct table_elt *lower_elt, *upper_elt;
1352 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1353 rtx lower_anchor_rtx, upper_anchor_rtx;
1354 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1355 unsigned lower_old, upper_old;
1356
1357 /* CONST_INT is used for CC modes, but we should leave those alone. */
1358 if (GET_MODE_CLASS (mode) == MODE_CC)
1359 return NULL_RTX;
1360
1361 gcc_assert (SCALAR_INT_MODE_P (mode));
1362 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1363 &upper_base, &upper_offs))
1364 return NULL_RTX;
1365
1366 lower_anchor_rtx = GEN_INT (lower_base);
1367 upper_anchor_rtx = GEN_INT (upper_base);
1368 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1369 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1370
1371 if (lower_elt)
1372 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1373 if (upper_elt)
1374 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1375
1376 if (!lower_exp)
1377 return upper_exp;
1378 if (!upper_exp)
1379 return lower_exp;
1380
1381 /* Return the older expression. */
1382 return (upper_old > lower_old ? upper_exp : lower_exp);
1383 }
1384 \f
1385 /* Look in or update the hash table. */
1386
1387 /* Remove table element ELT from use in the table.
1388 HASH is its hash code, made using the HASH macro.
1389 It's an argument because often that is known in advance
1390 and we save much time not recomputing it. */
1391
1392 static void
1393 remove_from_table (struct table_elt *elt, unsigned int hash)
1394 {
1395 if (elt == 0)
1396 return;
1397
1398 /* Mark this element as removed. See cse_insn. */
1399 elt->first_same_value = 0;
1400
1401 /* Remove the table element from its equivalence class. */
1402
1403 {
1404 struct table_elt *prev = elt->prev_same_value;
1405 struct table_elt *next = elt->next_same_value;
1406
1407 if (next)
1408 next->prev_same_value = prev;
1409
1410 if (prev)
1411 prev->next_same_value = next;
1412 else
1413 {
1414 struct table_elt *newfirst = next;
1415 while (next)
1416 {
1417 next->first_same_value = newfirst;
1418 next = next->next_same_value;
1419 }
1420 }
1421 }
1422
1423 /* Remove the table element from its hash bucket. */
1424
1425 {
1426 struct table_elt *prev = elt->prev_same_hash;
1427 struct table_elt *next = elt->next_same_hash;
1428
1429 if (next)
1430 next->prev_same_hash = prev;
1431
1432 if (prev)
1433 prev->next_same_hash = next;
1434 else if (table[hash] == elt)
1435 table[hash] = next;
1436 else
1437 {
1438 /* This entry is not in the proper hash bucket. This can happen
1439 when two classes were merged by `merge_equiv_classes'. Search
1440 for the hash bucket that it heads. This happens only very
1441 rarely, so the cost is acceptable. */
1442 for (hash = 0; hash < HASH_SIZE; hash++)
1443 if (table[hash] == elt)
1444 table[hash] = next;
1445 }
1446 }
1447
1448 /* Remove the table element from its related-value circular chain. */
1449
1450 if (elt->related_value != 0 && elt->related_value != elt)
1451 {
1452 struct table_elt *p = elt->related_value;
1453
1454 while (p->related_value != elt)
1455 p = p->related_value;
1456 p->related_value = elt->related_value;
1457 if (p->related_value == p)
1458 p->related_value = 0;
1459 }
1460
1461 /* Now add it to the free element chain. */
1462 elt->next_same_hash = free_element_chain;
1463 free_element_chain = elt;
1464 }
1465
1466 /* Same as above, but X is a pseudo-register. */
1467
1468 static void
1469 remove_pseudo_from_table (rtx x, unsigned int hash)
1470 {
1471 struct table_elt *elt;
1472
1473 /* Because a pseudo-register can be referenced in more than one
1474 mode, we might have to remove more than one table entry. */
1475 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1476 remove_from_table (elt, hash);
1477 }
1478
1479 /* Look up X in the hash table and return its table element,
1480 or 0 if X is not in the table.
1481
1482 MODE is the machine-mode of X, or if X is an integer constant
1483 with VOIDmode then MODE is the mode with which X will be used.
1484
1485 Here we are satisfied to find an expression whose tree structure
1486 looks like X. */
1487
1488 static struct table_elt *
1489 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1490 {
1491 struct table_elt *p;
1492
1493 for (p = table[hash]; p; p = p->next_same_hash)
1494 if (mode == p->mode && ((x == p->exp && REG_P (x))
1495 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1496 return p;
1497
1498 return 0;
1499 }
1500
1501 /* Like `lookup' but don't care whether the table element uses invalid regs.
1502 Also ignore discrepancies in the machine mode of a register. */
1503
1504 static struct table_elt *
1505 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1506 {
1507 struct table_elt *p;
1508
1509 if (REG_P (x))
1510 {
1511 unsigned int regno = REGNO (x);
1512
1513 /* Don't check the machine mode when comparing registers;
1514 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1515 for (p = table[hash]; p; p = p->next_same_hash)
1516 if (REG_P (p->exp)
1517 && REGNO (p->exp) == regno)
1518 return p;
1519 }
1520 else
1521 {
1522 for (p = table[hash]; p; p = p->next_same_hash)
1523 if (mode == p->mode
1524 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1525 return p;
1526 }
1527
1528 return 0;
1529 }
1530
1531 /* Look for an expression equivalent to X and with code CODE.
1532 If one is found, return that expression. */
1533
1534 static rtx
1535 lookup_as_function (rtx x, enum rtx_code code)
1536 {
1537 struct table_elt *p
1538 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1539
1540 if (p == 0)
1541 return 0;
1542
1543 for (p = p->first_same_value; p; p = p->next_same_value)
1544 if (GET_CODE (p->exp) == code
1545 /* Make sure this is a valid entry in the table. */
1546 && exp_equiv_p (p->exp, p->exp, 1, false))
1547 return p->exp;
1548
1549 return 0;
1550 }
1551
1552 /* Insert X in the hash table, assuming HASH is its hash code and
1553 CLASSP is an element of the class it should go in (or 0 if a new
1554 class should be made). COST is the code of X and reg_cost is the
1555 cost of registers in X. It is inserted at the proper position to
1556 keep the class in the order cheapest first.
1557
1558 MODE is the machine-mode of X, or if X is an integer constant
1559 with VOIDmode then MODE is the mode with which X will be used.
1560
1561 For elements of equal cheapness, the most recent one
1562 goes in front, except that the first element in the list
1563 remains first unless a cheaper element is added. The order of
1564 pseudo-registers does not matter, as canon_reg will be called to
1565 find the cheapest when a register is retrieved from the table.
1566
1567 The in_memory field in the hash table element is set to 0.
1568 The caller must set it nonzero if appropriate.
1569
1570 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1571 and if insert_regs returns a nonzero value
1572 you must then recompute its hash code before calling here.
1573
1574 If necessary, update table showing constant values of quantities. */
1575
1576 static struct table_elt *
1577 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1578 enum machine_mode mode, int cost, int reg_cost)
1579 {
1580 struct table_elt *elt;
1581
1582 /* If X is a register and we haven't made a quantity for it,
1583 something is wrong. */
1584 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1585
1586 /* If X is a hard register, show it is being put in the table. */
1587 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1588 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1589
1590 /* Put an element for X into the right hash bucket. */
1591
1592 elt = free_element_chain;
1593 if (elt)
1594 free_element_chain = elt->next_same_hash;
1595 else
1596 elt = XNEW (struct table_elt);
1597
1598 elt->exp = x;
1599 elt->canon_exp = NULL_RTX;
1600 elt->cost = cost;
1601 elt->regcost = reg_cost;
1602 elt->next_same_value = 0;
1603 elt->prev_same_value = 0;
1604 elt->next_same_hash = table[hash];
1605 elt->prev_same_hash = 0;
1606 elt->related_value = 0;
1607 elt->in_memory = 0;
1608 elt->mode = mode;
1609 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1610
1611 if (table[hash])
1612 table[hash]->prev_same_hash = elt;
1613 table[hash] = elt;
1614
1615 /* Put it into the proper value-class. */
1616 if (classp)
1617 {
1618 classp = classp->first_same_value;
1619 if (CHEAPER (elt, classp))
1620 /* Insert at the head of the class. */
1621 {
1622 struct table_elt *p;
1623 elt->next_same_value = classp;
1624 classp->prev_same_value = elt;
1625 elt->first_same_value = elt;
1626
1627 for (p = classp; p; p = p->next_same_value)
1628 p->first_same_value = elt;
1629 }
1630 else
1631 {
1632 /* Insert not at head of the class. */
1633 /* Put it after the last element cheaper than X. */
1634 struct table_elt *p, *next;
1635
1636 for (p = classp;
1637 (next = p->next_same_value) && CHEAPER (next, elt);
1638 p = next)
1639 ;
1640
1641 /* Put it after P and before NEXT. */
1642 elt->next_same_value = next;
1643 if (next)
1644 next->prev_same_value = elt;
1645
1646 elt->prev_same_value = p;
1647 p->next_same_value = elt;
1648 elt->first_same_value = classp;
1649 }
1650 }
1651 else
1652 elt->first_same_value = elt;
1653
1654 /* If this is a constant being set equivalent to a register or a register
1655 being set equivalent to a constant, note the constant equivalence.
1656
1657 If this is a constant, it cannot be equivalent to a different constant,
1658 and a constant is the only thing that can be cheaper than a register. So
1659 we know the register is the head of the class (before the constant was
1660 inserted).
1661
1662 If this is a register that is not already known equivalent to a
1663 constant, we must check the entire class.
1664
1665 If this is a register that is already known equivalent to an insn,
1666 update the qtys `const_insn' to show that `this_insn' is the latest
1667 insn making that quantity equivalent to the constant. */
1668
1669 if (elt->is_const && classp && REG_P (classp->exp)
1670 && !REG_P (x))
1671 {
1672 int exp_q = REG_QTY (REGNO (classp->exp));
1673 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1674
1675 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1676 exp_ent->const_insn = this_insn;
1677 }
1678
1679 else if (REG_P (x)
1680 && classp
1681 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1682 && ! elt->is_const)
1683 {
1684 struct table_elt *p;
1685
1686 for (p = classp; p != 0; p = p->next_same_value)
1687 {
1688 if (p->is_const && !REG_P (p->exp))
1689 {
1690 int x_q = REG_QTY (REGNO (x));
1691 struct qty_table_elem *x_ent = &qty_table[x_q];
1692
1693 x_ent->const_rtx
1694 = gen_lowpart (GET_MODE (x), p->exp);
1695 x_ent->const_insn = this_insn;
1696 break;
1697 }
1698 }
1699 }
1700
1701 else if (REG_P (x)
1702 && qty_table[REG_QTY (REGNO (x))].const_rtx
1703 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1704 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1705
1706 /* If this is a constant with symbolic value,
1707 and it has a term with an explicit integer value,
1708 link it up with related expressions. */
1709 if (GET_CODE (x) == CONST)
1710 {
1711 rtx subexp = get_related_value (x);
1712 unsigned subhash;
1713 struct table_elt *subelt, *subelt_prev;
1714
1715 if (subexp != 0)
1716 {
1717 /* Get the integer-free subexpression in the hash table. */
1718 subhash = SAFE_HASH (subexp, mode);
1719 subelt = lookup (subexp, subhash, mode);
1720 if (subelt == 0)
1721 subelt = insert (subexp, NULL, subhash, mode);
1722 /* Initialize SUBELT's circular chain if it has none. */
1723 if (subelt->related_value == 0)
1724 subelt->related_value = subelt;
1725 /* Find the element in the circular chain that precedes SUBELT. */
1726 subelt_prev = subelt;
1727 while (subelt_prev->related_value != subelt)
1728 subelt_prev = subelt_prev->related_value;
1729 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1730 This way the element that follows SUBELT is the oldest one. */
1731 elt->related_value = subelt_prev->related_value;
1732 subelt_prev->related_value = elt;
1733 }
1734 }
1735
1736 return elt;
1737 }
1738
1739 /* Wrap insert_with_costs by passing the default costs. */
1740
1741 static struct table_elt *
1742 insert (rtx x, struct table_elt *classp, unsigned int hash,
1743 enum machine_mode mode)
1744 {
1745 return
1746 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1747 }
1748
1749 \f
1750 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1751 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1752 the two classes equivalent.
1753
1754 CLASS1 will be the surviving class; CLASS2 should not be used after this
1755 call.
1756
1757 Any invalid entries in CLASS2 will not be copied. */
1758
1759 static void
1760 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1761 {
1762 struct table_elt *elt, *next, *new_elt;
1763
1764 /* Ensure we start with the head of the classes. */
1765 class1 = class1->first_same_value;
1766 class2 = class2->first_same_value;
1767
1768 /* If they were already equal, forget it. */
1769 if (class1 == class2)
1770 return;
1771
1772 for (elt = class2; elt; elt = next)
1773 {
1774 unsigned int hash;
1775 rtx exp = elt->exp;
1776 enum machine_mode mode = elt->mode;
1777
1778 next = elt->next_same_value;
1779
1780 /* Remove old entry, make a new one in CLASS1's class.
1781 Don't do this for invalid entries as we cannot find their
1782 hash code (it also isn't necessary). */
1783 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1784 {
1785 bool need_rehash = false;
1786
1787 hash_arg_in_memory = 0;
1788 hash = HASH (exp, mode);
1789
1790 if (REG_P (exp))
1791 {
1792 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1793 delete_reg_equiv (REGNO (exp));
1794 }
1795
1796 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1797 remove_pseudo_from_table (exp, hash);
1798 else
1799 remove_from_table (elt, hash);
1800
1801 if (insert_regs (exp, class1, 0) || need_rehash)
1802 {
1803 rehash_using_reg (exp);
1804 hash = HASH (exp, mode);
1805 }
1806 new_elt = insert (exp, class1, hash, mode);
1807 new_elt->in_memory = hash_arg_in_memory;
1808 }
1809 }
1810 }
1811 \f
1812 /* Flush the entire hash table. */
1813
1814 static void
1815 flush_hash_table (void)
1816 {
1817 int i;
1818 struct table_elt *p;
1819
1820 for (i = 0; i < HASH_SIZE; i++)
1821 for (p = table[i]; p; p = table[i])
1822 {
1823 /* Note that invalidate can remove elements
1824 after P in the current hash chain. */
1825 if (REG_P (p->exp))
1826 invalidate (p->exp, VOIDmode);
1827 else
1828 remove_from_table (p, i);
1829 }
1830 }
1831 \f
1832 /* Function called for each rtx to check whether an anti dependence exist. */
1833 struct check_dependence_data
1834 {
1835 enum machine_mode mode;
1836 rtx exp;
1837 rtx addr;
1838 };
1839
1840 static int
1841 check_dependence (rtx *x, void *data)
1842 {
1843 struct check_dependence_data *d = (struct check_dependence_data *) data;
1844 if (*x && MEM_P (*x))
1845 return canon_anti_dependence (*x, true, d->exp, d->mode, d->addr);
1846 else
1847 return 0;
1848 }
1849 \f
1850 /* Remove from the hash table, or mark as invalid, all expressions whose
1851 values could be altered by storing in X. X is a register, a subreg, or
1852 a memory reference with nonvarying address (because, when a memory
1853 reference with a varying address is stored in, all memory references are
1854 removed by invalidate_memory so specific invalidation is superfluous).
1855 FULL_MODE, if not VOIDmode, indicates that this much should be
1856 invalidated instead of just the amount indicated by the mode of X. This
1857 is only used for bitfield stores into memory.
1858
1859 A nonvarying address may be just a register or just a symbol reference,
1860 or it may be either of those plus a numeric offset. */
1861
1862 static void
1863 invalidate (rtx x, enum machine_mode full_mode)
1864 {
1865 int i;
1866 struct table_elt *p;
1867 rtx addr;
1868
1869 switch (GET_CODE (x))
1870 {
1871 case REG:
1872 {
1873 /* If X is a register, dependencies on its contents are recorded
1874 through the qty number mechanism. Just change the qty number of
1875 the register, mark it as invalid for expressions that refer to it,
1876 and remove it itself. */
1877 unsigned int regno = REGNO (x);
1878 unsigned int hash = HASH (x, GET_MODE (x));
1879
1880 /* Remove REGNO from any quantity list it might be on and indicate
1881 that its value might have changed. If it is a pseudo, remove its
1882 entry from the hash table.
1883
1884 For a hard register, we do the first two actions above for any
1885 additional hard registers corresponding to X. Then, if any of these
1886 registers are in the table, we must remove any REG entries that
1887 overlap these registers. */
1888
1889 delete_reg_equiv (regno);
1890 REG_TICK (regno)++;
1891 SUBREG_TICKED (regno) = -1;
1892
1893 if (regno >= FIRST_PSEUDO_REGISTER)
1894 remove_pseudo_from_table (x, hash);
1895 else
1896 {
1897 HOST_WIDE_INT in_table
1898 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1899 unsigned int endregno = END_HARD_REGNO (x);
1900 unsigned int tregno, tendregno, rn;
1901 struct table_elt *p, *next;
1902
1903 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1904
1905 for (rn = regno + 1; rn < endregno; rn++)
1906 {
1907 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1908 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1909 delete_reg_equiv (rn);
1910 REG_TICK (rn)++;
1911 SUBREG_TICKED (rn) = -1;
1912 }
1913
1914 if (in_table)
1915 for (hash = 0; hash < HASH_SIZE; hash++)
1916 for (p = table[hash]; p; p = next)
1917 {
1918 next = p->next_same_hash;
1919
1920 if (!REG_P (p->exp)
1921 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1922 continue;
1923
1924 tregno = REGNO (p->exp);
1925 tendregno = END_HARD_REGNO (p->exp);
1926 if (tendregno > regno && tregno < endregno)
1927 remove_from_table (p, hash);
1928 }
1929 }
1930 }
1931 return;
1932
1933 case SUBREG:
1934 invalidate (SUBREG_REG (x), VOIDmode);
1935 return;
1936
1937 case PARALLEL:
1938 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1939 invalidate (XVECEXP (x, 0, i), VOIDmode);
1940 return;
1941
1942 case EXPR_LIST:
1943 /* This is part of a disjoint return value; extract the location in
1944 question ignoring the offset. */
1945 invalidate (XEXP (x, 0), VOIDmode);
1946 return;
1947
1948 case MEM:
1949 addr = canon_rtx (get_addr (XEXP (x, 0)));
1950 /* Calculate the canonical version of X here so that
1951 true_dependence doesn't generate new RTL for X on each call. */
1952 x = canon_rtx (x);
1953
1954 /* Remove all hash table elements that refer to overlapping pieces of
1955 memory. */
1956 if (full_mode == VOIDmode)
1957 full_mode = GET_MODE (x);
1958
1959 for (i = 0; i < HASH_SIZE; i++)
1960 {
1961 struct table_elt *next;
1962
1963 for (p = table[i]; p; p = next)
1964 {
1965 next = p->next_same_hash;
1966 if (p->in_memory)
1967 {
1968 struct check_dependence_data d;
1969
1970 /* Just canonicalize the expression once;
1971 otherwise each time we call invalidate
1972 true_dependence will canonicalize the
1973 expression again. */
1974 if (!p->canon_exp)
1975 p->canon_exp = canon_rtx (p->exp);
1976 d.exp = x;
1977 d.addr = addr;
1978 d.mode = full_mode;
1979 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1980 remove_from_table (p, i);
1981 }
1982 }
1983 }
1984 return;
1985
1986 default:
1987 gcc_unreachable ();
1988 }
1989 }
1990 \f
1991 /* Remove all expressions that refer to register REGNO,
1992 since they are already invalid, and we are about to
1993 mark that register valid again and don't want the old
1994 expressions to reappear as valid. */
1995
1996 static void
1997 remove_invalid_refs (unsigned int regno)
1998 {
1999 unsigned int i;
2000 struct table_elt *p, *next;
2001
2002 for (i = 0; i < HASH_SIZE; i++)
2003 for (p = table[i]; p; p = next)
2004 {
2005 next = p->next_same_hash;
2006 if (!REG_P (p->exp)
2007 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2008 remove_from_table (p, i);
2009 }
2010 }
2011
2012 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2013 and mode MODE. */
2014 static void
2015 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2016 enum machine_mode mode)
2017 {
2018 unsigned int i;
2019 struct table_elt *p, *next;
2020 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2021
2022 for (i = 0; i < HASH_SIZE; i++)
2023 for (p = table[i]; p; p = next)
2024 {
2025 rtx exp = p->exp;
2026 next = p->next_same_hash;
2027
2028 if (!REG_P (exp)
2029 && (GET_CODE (exp) != SUBREG
2030 || !REG_P (SUBREG_REG (exp))
2031 || REGNO (SUBREG_REG (exp)) != regno
2032 || (((SUBREG_BYTE (exp)
2033 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2034 && SUBREG_BYTE (exp) <= end))
2035 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2036 remove_from_table (p, i);
2037 }
2038 }
2039 \f
2040 /* Recompute the hash codes of any valid entries in the hash table that
2041 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2042
2043 This is called when we make a jump equivalence. */
2044
2045 static void
2046 rehash_using_reg (rtx x)
2047 {
2048 unsigned int i;
2049 struct table_elt *p, *next;
2050 unsigned hash;
2051
2052 if (GET_CODE (x) == SUBREG)
2053 x = SUBREG_REG (x);
2054
2055 /* If X is not a register or if the register is known not to be in any
2056 valid entries in the table, we have no work to do. */
2057
2058 if (!REG_P (x)
2059 || REG_IN_TABLE (REGNO (x)) < 0
2060 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2061 return;
2062
2063 /* Scan all hash chains looking for valid entries that mention X.
2064 If we find one and it is in the wrong hash chain, move it. */
2065
2066 for (i = 0; i < HASH_SIZE; i++)
2067 for (p = table[i]; p; p = next)
2068 {
2069 next = p->next_same_hash;
2070 if (reg_mentioned_p (x, p->exp)
2071 && exp_equiv_p (p->exp, p->exp, 1, false)
2072 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2073 {
2074 if (p->next_same_hash)
2075 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2076
2077 if (p->prev_same_hash)
2078 p->prev_same_hash->next_same_hash = p->next_same_hash;
2079 else
2080 table[i] = p->next_same_hash;
2081
2082 p->next_same_hash = table[hash];
2083 p->prev_same_hash = 0;
2084 if (table[hash])
2085 table[hash]->prev_same_hash = p;
2086 table[hash] = p;
2087 }
2088 }
2089 }
2090 \f
2091 /* Remove from the hash table any expression that is a call-clobbered
2092 register. Also update their TICK values. */
2093
2094 static void
2095 invalidate_for_call (void)
2096 {
2097 unsigned int regno, endregno;
2098 unsigned int i;
2099 unsigned hash;
2100 struct table_elt *p, *next;
2101 int in_table = 0;
2102 hard_reg_set_iterator hrsi;
2103
2104 /* Go through all the hard registers. For each that is clobbered in
2105 a CALL_INSN, remove the register from quantity chains and update
2106 reg_tick if defined. Also see if any of these registers is currently
2107 in the table. */
2108 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2109 {
2110 delete_reg_equiv (regno);
2111 if (REG_TICK (regno) >= 0)
2112 {
2113 REG_TICK (regno)++;
2114 SUBREG_TICKED (regno) = -1;
2115 }
2116 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2117 }
2118
2119 /* In the case where we have no call-clobbered hard registers in the
2120 table, we are done. Otherwise, scan the table and remove any
2121 entry that overlaps a call-clobbered register. */
2122
2123 if (in_table)
2124 for (hash = 0; hash < HASH_SIZE; hash++)
2125 for (p = table[hash]; p; p = next)
2126 {
2127 next = p->next_same_hash;
2128
2129 if (!REG_P (p->exp)
2130 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2131 continue;
2132
2133 regno = REGNO (p->exp);
2134 endregno = END_HARD_REGNO (p->exp);
2135
2136 for (i = regno; i < endregno; i++)
2137 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2138 {
2139 remove_from_table (p, hash);
2140 break;
2141 }
2142 }
2143 }
2144 \f
2145 /* Given an expression X of type CONST,
2146 and ELT which is its table entry (or 0 if it
2147 is not in the hash table),
2148 return an alternate expression for X as a register plus integer.
2149 If none can be found, return 0. */
2150
2151 static rtx
2152 use_related_value (rtx x, struct table_elt *elt)
2153 {
2154 struct table_elt *relt = 0;
2155 struct table_elt *p, *q;
2156 HOST_WIDE_INT offset;
2157
2158 /* First, is there anything related known?
2159 If we have a table element, we can tell from that.
2160 Otherwise, must look it up. */
2161
2162 if (elt != 0 && elt->related_value != 0)
2163 relt = elt;
2164 else if (elt == 0 && GET_CODE (x) == CONST)
2165 {
2166 rtx subexp = get_related_value (x);
2167 if (subexp != 0)
2168 relt = lookup (subexp,
2169 SAFE_HASH (subexp, GET_MODE (subexp)),
2170 GET_MODE (subexp));
2171 }
2172
2173 if (relt == 0)
2174 return 0;
2175
2176 /* Search all related table entries for one that has an
2177 equivalent register. */
2178
2179 p = relt;
2180 while (1)
2181 {
2182 /* This loop is strange in that it is executed in two different cases.
2183 The first is when X is already in the table. Then it is searching
2184 the RELATED_VALUE list of X's class (RELT). The second case is when
2185 X is not in the table. Then RELT points to a class for the related
2186 value.
2187
2188 Ensure that, whatever case we are in, that we ignore classes that have
2189 the same value as X. */
2190
2191 if (rtx_equal_p (x, p->exp))
2192 q = 0;
2193 else
2194 for (q = p->first_same_value; q; q = q->next_same_value)
2195 if (REG_P (q->exp))
2196 break;
2197
2198 if (q)
2199 break;
2200
2201 p = p->related_value;
2202
2203 /* We went all the way around, so there is nothing to be found.
2204 Alternatively, perhaps RELT was in the table for some other reason
2205 and it has no related values recorded. */
2206 if (p == relt || p == 0)
2207 break;
2208 }
2209
2210 if (q == 0)
2211 return 0;
2212
2213 offset = (get_integer_term (x) - get_integer_term (p->exp));
2214 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2215 return plus_constant (q->mode, q->exp, offset);
2216 }
2217 \f
2218
2219 /* Hash a string. Just add its bytes up. */
2220 static inline unsigned
2221 hash_rtx_string (const char *ps)
2222 {
2223 unsigned hash = 0;
2224 const unsigned char *p = (const unsigned char *) ps;
2225
2226 if (p)
2227 while (*p)
2228 hash += *p++;
2229
2230 return hash;
2231 }
2232
2233 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2234 When the callback returns true, we continue with the new rtx. */
2235
2236 unsigned
2237 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2238 int *do_not_record_p, int *hash_arg_in_memory_p,
2239 bool have_reg_qty, hash_rtx_callback_function cb)
2240 {
2241 int i, j;
2242 unsigned hash = 0;
2243 enum rtx_code code;
2244 const char *fmt;
2245 enum machine_mode newmode;
2246 rtx newx;
2247
2248 /* Used to turn recursion into iteration. We can't rely on GCC's
2249 tail-recursion elimination since we need to keep accumulating values
2250 in HASH. */
2251 repeat:
2252 if (x == 0)
2253 return hash;
2254
2255 /* Invoke the callback first. */
2256 if (cb != NULL
2257 && ((*cb) (x, mode, &newx, &newmode)))
2258 {
2259 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2260 hash_arg_in_memory_p, have_reg_qty, cb);
2261 return hash;
2262 }
2263
2264 code = GET_CODE (x);
2265 switch (code)
2266 {
2267 case REG:
2268 {
2269 unsigned int regno = REGNO (x);
2270
2271 if (do_not_record_p && !reload_completed)
2272 {
2273 /* On some machines, we can't record any non-fixed hard register,
2274 because extending its life will cause reload problems. We
2275 consider ap, fp, sp, gp to be fixed for this purpose.
2276
2277 We also consider CCmode registers to be fixed for this purpose;
2278 failure to do so leads to failure to simplify 0<100 type of
2279 conditionals.
2280
2281 On all machines, we can't record any global registers.
2282 Nor should we record any register that is in a small
2283 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2284 bool record;
2285
2286 if (regno >= FIRST_PSEUDO_REGISTER)
2287 record = true;
2288 else if (x == frame_pointer_rtx
2289 || x == hard_frame_pointer_rtx
2290 || x == arg_pointer_rtx
2291 || x == stack_pointer_rtx
2292 || x == pic_offset_table_rtx)
2293 record = true;
2294 else if (global_regs[regno])
2295 record = false;
2296 else if (fixed_regs[regno])
2297 record = true;
2298 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2299 record = true;
2300 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2301 record = false;
2302 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2303 record = false;
2304 else
2305 record = true;
2306
2307 if (!record)
2308 {
2309 *do_not_record_p = 1;
2310 return 0;
2311 }
2312 }
2313
2314 hash += ((unsigned int) REG << 7);
2315 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2316 return hash;
2317 }
2318
2319 /* We handle SUBREG of a REG specially because the underlying
2320 reg changes its hash value with every value change; we don't
2321 want to have to forget unrelated subregs when one subreg changes. */
2322 case SUBREG:
2323 {
2324 if (REG_P (SUBREG_REG (x)))
2325 {
2326 hash += (((unsigned int) SUBREG << 7)
2327 + REGNO (SUBREG_REG (x))
2328 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2329 return hash;
2330 }
2331 break;
2332 }
2333
2334 case CONST_INT:
2335 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2336 + (unsigned int) INTVAL (x));
2337 return hash;
2338
2339 case CONST_WIDE_INT:
2340 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2341 hash += CONST_WIDE_INT_ELT (x, i);
2342 return hash;
2343
2344 case CONST_DOUBLE:
2345 /* This is like the general case, except that it only counts
2346 the integers representing the constant. */
2347 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2348 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2349 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2350 + (unsigned int) CONST_DOUBLE_HIGH (x));
2351 else
2352 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2353 return hash;
2354
2355 case CONST_FIXED:
2356 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2357 hash += fixed_hash (CONST_FIXED_VALUE (x));
2358 return hash;
2359
2360 case CONST_VECTOR:
2361 {
2362 int units;
2363 rtx elt;
2364
2365 units = CONST_VECTOR_NUNITS (x);
2366
2367 for (i = 0; i < units; ++i)
2368 {
2369 elt = CONST_VECTOR_ELT (x, i);
2370 hash += hash_rtx_cb (elt, GET_MODE (elt),
2371 do_not_record_p, hash_arg_in_memory_p,
2372 have_reg_qty, cb);
2373 }
2374
2375 return hash;
2376 }
2377
2378 /* Assume there is only one rtx object for any given label. */
2379 case LABEL_REF:
2380 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2381 differences and differences between each stage's debugging dumps. */
2382 hash += (((unsigned int) LABEL_REF << 7)
2383 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2384 return hash;
2385
2386 case SYMBOL_REF:
2387 {
2388 /* Don't hash on the symbol's address to avoid bootstrap differences.
2389 Different hash values may cause expressions to be recorded in
2390 different orders and thus different registers to be used in the
2391 final assembler. This also avoids differences in the dump files
2392 between various stages. */
2393 unsigned int h = 0;
2394 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2395
2396 while (*p)
2397 h += (h << 7) + *p++; /* ??? revisit */
2398
2399 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2400 return hash;
2401 }
2402
2403 case MEM:
2404 /* We don't record if marked volatile or if BLKmode since we don't
2405 know the size of the move. */
2406 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2407 {
2408 *do_not_record_p = 1;
2409 return 0;
2410 }
2411 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2412 *hash_arg_in_memory_p = 1;
2413
2414 /* Now that we have already found this special case,
2415 might as well speed it up as much as possible. */
2416 hash += (unsigned) MEM;
2417 x = XEXP (x, 0);
2418 goto repeat;
2419
2420 case USE:
2421 /* A USE that mentions non-volatile memory needs special
2422 handling since the MEM may be BLKmode which normally
2423 prevents an entry from being made. Pure calls are
2424 marked by a USE which mentions BLKmode memory.
2425 See calls.c:emit_call_1. */
2426 if (MEM_P (XEXP (x, 0))
2427 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2428 {
2429 hash += (unsigned) USE;
2430 x = XEXP (x, 0);
2431
2432 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2433 *hash_arg_in_memory_p = 1;
2434
2435 /* Now that we have already found this special case,
2436 might as well speed it up as much as possible. */
2437 hash += (unsigned) MEM;
2438 x = XEXP (x, 0);
2439 goto repeat;
2440 }
2441 break;
2442
2443 case PRE_DEC:
2444 case PRE_INC:
2445 case POST_DEC:
2446 case POST_INC:
2447 case PRE_MODIFY:
2448 case POST_MODIFY:
2449 case PC:
2450 case CC0:
2451 case CALL:
2452 case UNSPEC_VOLATILE:
2453 if (do_not_record_p) {
2454 *do_not_record_p = 1;
2455 return 0;
2456 }
2457 else
2458 return hash;
2459 break;
2460
2461 case ASM_OPERANDS:
2462 if (do_not_record_p && MEM_VOLATILE_P (x))
2463 {
2464 *do_not_record_p = 1;
2465 return 0;
2466 }
2467 else
2468 {
2469 /* We don't want to take the filename and line into account. */
2470 hash += (unsigned) code + (unsigned) GET_MODE (x)
2471 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2472 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2473 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2474
2475 if (ASM_OPERANDS_INPUT_LENGTH (x))
2476 {
2477 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2478 {
2479 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2480 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2481 do_not_record_p, hash_arg_in_memory_p,
2482 have_reg_qty, cb)
2483 + hash_rtx_string
2484 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2485 }
2486
2487 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2488 x = ASM_OPERANDS_INPUT (x, 0);
2489 mode = GET_MODE (x);
2490 goto repeat;
2491 }
2492
2493 return hash;
2494 }
2495 break;
2496
2497 default:
2498 break;
2499 }
2500
2501 i = GET_RTX_LENGTH (code) - 1;
2502 hash += (unsigned) code + (unsigned) GET_MODE (x);
2503 fmt = GET_RTX_FORMAT (code);
2504 for (; i >= 0; i--)
2505 {
2506 switch (fmt[i])
2507 {
2508 case 'e':
2509 /* If we are about to do the last recursive call
2510 needed at this level, change it into iteration.
2511 This function is called enough to be worth it. */
2512 if (i == 0)
2513 {
2514 x = XEXP (x, i);
2515 goto repeat;
2516 }
2517
2518 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2519 hash_arg_in_memory_p,
2520 have_reg_qty, cb);
2521 break;
2522
2523 case 'E':
2524 for (j = 0; j < XVECLEN (x, i); j++)
2525 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2526 hash_arg_in_memory_p,
2527 have_reg_qty, cb);
2528 break;
2529
2530 case 's':
2531 hash += hash_rtx_string (XSTR (x, i));
2532 break;
2533
2534 case 'i':
2535 hash += (unsigned int) XINT (x, i);
2536 break;
2537
2538 case '0': case 't':
2539 /* Unused. */
2540 break;
2541
2542 default:
2543 gcc_unreachable ();
2544 }
2545 }
2546
2547 return hash;
2548 }
2549
2550 /* Hash an rtx. We are careful to make sure the value is never negative.
2551 Equivalent registers hash identically.
2552 MODE is used in hashing for CONST_INTs only;
2553 otherwise the mode of X is used.
2554
2555 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2556
2557 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2558 a MEM rtx which does not have the MEM_READONLY_P flag set.
2559
2560 Note that cse_insn knows that the hash code of a MEM expression
2561 is just (int) MEM plus the hash code of the address. */
2562
2563 unsigned
2564 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2565 int *hash_arg_in_memory_p, bool have_reg_qty)
2566 {
2567 return hash_rtx_cb (x, mode, do_not_record_p,
2568 hash_arg_in_memory_p, have_reg_qty, NULL);
2569 }
2570
2571 /* Hash an rtx X for cse via hash_rtx.
2572 Stores 1 in do_not_record if any subexpression is volatile.
2573 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2574 does not have the MEM_READONLY_P flag set. */
2575
2576 static inline unsigned
2577 canon_hash (rtx x, enum machine_mode mode)
2578 {
2579 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2580 }
2581
2582 /* Like canon_hash but with no side effects, i.e. do_not_record
2583 and hash_arg_in_memory are not changed. */
2584
2585 static inline unsigned
2586 safe_hash (rtx x, enum machine_mode mode)
2587 {
2588 int dummy_do_not_record;
2589 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2590 }
2591 \f
2592 /* Return 1 iff X and Y would canonicalize into the same thing,
2593 without actually constructing the canonicalization of either one.
2594 If VALIDATE is nonzero,
2595 we assume X is an expression being processed from the rtl
2596 and Y was found in the hash table. We check register refs
2597 in Y for being marked as valid.
2598
2599 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2600
2601 int
2602 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2603 {
2604 int i, j;
2605 enum rtx_code code;
2606 const char *fmt;
2607
2608 /* Note: it is incorrect to assume an expression is equivalent to itself
2609 if VALIDATE is nonzero. */
2610 if (x == y && !validate)
2611 return 1;
2612
2613 if (x == 0 || y == 0)
2614 return x == y;
2615
2616 code = GET_CODE (x);
2617 if (code != GET_CODE (y))
2618 return 0;
2619
2620 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2621 if (GET_MODE (x) != GET_MODE (y))
2622 return 0;
2623
2624 /* MEMs referring to different address space are not equivalent. */
2625 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2626 return 0;
2627
2628 switch (code)
2629 {
2630 case PC:
2631 case CC0:
2632 CASE_CONST_UNIQUE:
2633 return x == y;
2634
2635 case LABEL_REF:
2636 return XEXP (x, 0) == XEXP (y, 0);
2637
2638 case SYMBOL_REF:
2639 return XSTR (x, 0) == XSTR (y, 0);
2640
2641 case REG:
2642 if (for_gcse)
2643 return REGNO (x) == REGNO (y);
2644 else
2645 {
2646 unsigned int regno = REGNO (y);
2647 unsigned int i;
2648 unsigned int endregno = END_REGNO (y);
2649
2650 /* If the quantities are not the same, the expressions are not
2651 equivalent. If there are and we are not to validate, they
2652 are equivalent. Otherwise, ensure all regs are up-to-date. */
2653
2654 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2655 return 0;
2656
2657 if (! validate)
2658 return 1;
2659
2660 for (i = regno; i < endregno; i++)
2661 if (REG_IN_TABLE (i) != REG_TICK (i))
2662 return 0;
2663
2664 return 1;
2665 }
2666
2667 case MEM:
2668 if (for_gcse)
2669 {
2670 /* A volatile mem should not be considered equivalent to any
2671 other. */
2672 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2673 return 0;
2674
2675 /* Can't merge two expressions in different alias sets, since we
2676 can decide that the expression is transparent in a block when
2677 it isn't, due to it being set with the different alias set.
2678
2679 Also, can't merge two expressions with different MEM_ATTRS.
2680 They could e.g. be two different entities allocated into the
2681 same space on the stack (see e.g. PR25130). In that case, the
2682 MEM addresses can be the same, even though the two MEMs are
2683 absolutely not equivalent.
2684
2685 But because really all MEM attributes should be the same for
2686 equivalent MEMs, we just use the invariant that MEMs that have
2687 the same attributes share the same mem_attrs data structure. */
2688 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2689 return 0;
2690 }
2691 break;
2692
2693 /* For commutative operations, check both orders. */
2694 case PLUS:
2695 case MULT:
2696 case AND:
2697 case IOR:
2698 case XOR:
2699 case NE:
2700 case EQ:
2701 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2702 validate, for_gcse)
2703 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2704 validate, for_gcse))
2705 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2706 validate, for_gcse)
2707 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2708 validate, for_gcse)));
2709
2710 case ASM_OPERANDS:
2711 /* We don't use the generic code below because we want to
2712 disregard filename and line numbers. */
2713
2714 /* A volatile asm isn't equivalent to any other. */
2715 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2716 return 0;
2717
2718 if (GET_MODE (x) != GET_MODE (y)
2719 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2720 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2721 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2722 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2723 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2724 return 0;
2725
2726 if (ASM_OPERANDS_INPUT_LENGTH (x))
2727 {
2728 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2729 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2730 ASM_OPERANDS_INPUT (y, i),
2731 validate, for_gcse)
2732 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2733 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2734 return 0;
2735 }
2736
2737 return 1;
2738
2739 default:
2740 break;
2741 }
2742
2743 /* Compare the elements. If any pair of corresponding elements
2744 fail to match, return 0 for the whole thing. */
2745
2746 fmt = GET_RTX_FORMAT (code);
2747 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2748 {
2749 switch (fmt[i])
2750 {
2751 case 'e':
2752 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2753 validate, for_gcse))
2754 return 0;
2755 break;
2756
2757 case 'E':
2758 if (XVECLEN (x, i) != XVECLEN (y, i))
2759 return 0;
2760 for (j = 0; j < XVECLEN (x, i); j++)
2761 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2762 validate, for_gcse))
2763 return 0;
2764 break;
2765
2766 case 's':
2767 if (strcmp (XSTR (x, i), XSTR (y, i)))
2768 return 0;
2769 break;
2770
2771 case 'i':
2772 if (XINT (x, i) != XINT (y, i))
2773 return 0;
2774 break;
2775
2776 case 'w':
2777 if (XWINT (x, i) != XWINT (y, i))
2778 return 0;
2779 break;
2780
2781 case '0':
2782 case 't':
2783 break;
2784
2785 default:
2786 gcc_unreachable ();
2787 }
2788 }
2789
2790 return 1;
2791 }
2792 \f
2793 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2794 the result if necessary. INSN is as for canon_reg. */
2795
2796 static void
2797 validate_canon_reg (rtx *xloc, rtx insn)
2798 {
2799 if (*xloc)
2800 {
2801 rtx new_rtx = canon_reg (*xloc, insn);
2802
2803 /* If replacing pseudo with hard reg or vice versa, ensure the
2804 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2805 gcc_assert (insn && new_rtx);
2806 validate_change (insn, xloc, new_rtx, 1);
2807 }
2808 }
2809
2810 /* Canonicalize an expression:
2811 replace each register reference inside it
2812 with the "oldest" equivalent register.
2813
2814 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2815 after we make our substitution. The calls are made with IN_GROUP nonzero
2816 so apply_change_group must be called upon the outermost return from this
2817 function (unless INSN is zero). The result of apply_change_group can
2818 generally be discarded since the changes we are making are optional. */
2819
2820 static rtx
2821 canon_reg (rtx x, rtx insn)
2822 {
2823 int i;
2824 enum rtx_code code;
2825 const char *fmt;
2826
2827 if (x == 0)
2828 return x;
2829
2830 code = GET_CODE (x);
2831 switch (code)
2832 {
2833 case PC:
2834 case CC0:
2835 case CONST:
2836 CASE_CONST_ANY:
2837 case SYMBOL_REF:
2838 case LABEL_REF:
2839 case ADDR_VEC:
2840 case ADDR_DIFF_VEC:
2841 return x;
2842
2843 case REG:
2844 {
2845 int first;
2846 int q;
2847 struct qty_table_elem *ent;
2848
2849 /* Never replace a hard reg, because hard regs can appear
2850 in more than one machine mode, and we must preserve the mode
2851 of each occurrence. Also, some hard regs appear in
2852 MEMs that are shared and mustn't be altered. Don't try to
2853 replace any reg that maps to a reg of class NO_REGS. */
2854 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2855 || ! REGNO_QTY_VALID_P (REGNO (x)))
2856 return x;
2857
2858 q = REG_QTY (REGNO (x));
2859 ent = &qty_table[q];
2860 first = ent->first_reg;
2861 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2862 : REGNO_REG_CLASS (first) == NO_REGS ? x
2863 : gen_rtx_REG (ent->mode, first));
2864 }
2865
2866 default:
2867 break;
2868 }
2869
2870 fmt = GET_RTX_FORMAT (code);
2871 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2872 {
2873 int j;
2874
2875 if (fmt[i] == 'e')
2876 validate_canon_reg (&XEXP (x, i), insn);
2877 else if (fmt[i] == 'E')
2878 for (j = 0; j < XVECLEN (x, i); j++)
2879 validate_canon_reg (&XVECEXP (x, i, j), insn);
2880 }
2881
2882 return x;
2883 }
2884 \f
2885 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2886 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2887 what values are being compared.
2888
2889 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2890 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2891 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2892 compared to produce cc0.
2893
2894 The return value is the comparison operator and is either the code of
2895 A or the code corresponding to the inverse of the comparison. */
2896
2897 static enum rtx_code
2898 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2899 enum machine_mode *pmode1, enum machine_mode *pmode2)
2900 {
2901 rtx arg1, arg2;
2902 struct pointer_set_t *visited = NULL;
2903 /* Set nonzero when we find something of interest. */
2904 rtx x = NULL;
2905
2906 arg1 = *parg1, arg2 = *parg2;
2907
2908 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2909
2910 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2911 {
2912 int reverse_code = 0;
2913 struct table_elt *p = 0;
2914
2915 /* Remember state from previous iteration. */
2916 if (x)
2917 {
2918 if (!visited)
2919 visited = pointer_set_create ();
2920 pointer_set_insert (visited, x);
2921 x = 0;
2922 }
2923
2924 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2925 On machines with CC0, this is the only case that can occur, since
2926 fold_rtx will return the COMPARE or item being compared with zero
2927 when given CC0. */
2928
2929 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2930 x = arg1;
2931
2932 /* If ARG1 is a comparison operator and CODE is testing for
2933 STORE_FLAG_VALUE, get the inner arguments. */
2934
2935 else if (COMPARISON_P (arg1))
2936 {
2937 #ifdef FLOAT_STORE_FLAG_VALUE
2938 REAL_VALUE_TYPE fsfv;
2939 #endif
2940
2941 if (code == NE
2942 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2943 && code == LT && STORE_FLAG_VALUE == -1)
2944 #ifdef FLOAT_STORE_FLAG_VALUE
2945 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2946 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2947 REAL_VALUE_NEGATIVE (fsfv)))
2948 #endif
2949 )
2950 x = arg1;
2951 else if (code == EQ
2952 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2953 && code == GE && STORE_FLAG_VALUE == -1)
2954 #ifdef FLOAT_STORE_FLAG_VALUE
2955 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2956 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2957 REAL_VALUE_NEGATIVE (fsfv)))
2958 #endif
2959 )
2960 x = arg1, reverse_code = 1;
2961 }
2962
2963 /* ??? We could also check for
2964
2965 (ne (and (eq (...) (const_int 1))) (const_int 0))
2966
2967 and related forms, but let's wait until we see them occurring. */
2968
2969 if (x == 0)
2970 /* Look up ARG1 in the hash table and see if it has an equivalence
2971 that lets us see what is being compared. */
2972 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2973 if (p)
2974 {
2975 p = p->first_same_value;
2976
2977 /* If what we compare is already known to be constant, that is as
2978 good as it gets.
2979 We need to break the loop in this case, because otherwise we
2980 can have an infinite loop when looking at a reg that is known
2981 to be a constant which is the same as a comparison of a reg
2982 against zero which appears later in the insn stream, which in
2983 turn is constant and the same as the comparison of the first reg
2984 against zero... */
2985 if (p->is_const)
2986 break;
2987 }
2988
2989 for (; p; p = p->next_same_value)
2990 {
2991 enum machine_mode inner_mode = GET_MODE (p->exp);
2992 #ifdef FLOAT_STORE_FLAG_VALUE
2993 REAL_VALUE_TYPE fsfv;
2994 #endif
2995
2996 /* If the entry isn't valid, skip it. */
2997 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2998 continue;
2999
3000 /* If it's a comparison we've used before, skip it. */
3001 if (visited && pointer_set_contains (visited, p->exp))
3002 continue;
3003
3004 if (GET_CODE (p->exp) == COMPARE
3005 /* Another possibility is that this machine has a compare insn
3006 that includes the comparison code. In that case, ARG1 would
3007 be equivalent to a comparison operation that would set ARG1 to
3008 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3009 ORIG_CODE is the actual comparison being done; if it is an EQ,
3010 we must reverse ORIG_CODE. On machine with a negative value
3011 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3012 || ((code == NE
3013 || (code == LT
3014 && val_signbit_known_set_p (inner_mode,
3015 STORE_FLAG_VALUE))
3016 #ifdef FLOAT_STORE_FLAG_VALUE
3017 || (code == LT
3018 && SCALAR_FLOAT_MODE_P (inner_mode)
3019 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3020 REAL_VALUE_NEGATIVE (fsfv)))
3021 #endif
3022 )
3023 && COMPARISON_P (p->exp)))
3024 {
3025 x = p->exp;
3026 break;
3027 }
3028 else if ((code == EQ
3029 || (code == GE
3030 && val_signbit_known_set_p (inner_mode,
3031 STORE_FLAG_VALUE))
3032 #ifdef FLOAT_STORE_FLAG_VALUE
3033 || (code == GE
3034 && SCALAR_FLOAT_MODE_P (inner_mode)
3035 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3036 REAL_VALUE_NEGATIVE (fsfv)))
3037 #endif
3038 )
3039 && COMPARISON_P (p->exp))
3040 {
3041 reverse_code = 1;
3042 x = p->exp;
3043 break;
3044 }
3045
3046 /* If this non-trapping address, e.g. fp + constant, the
3047 equivalent is a better operand since it may let us predict
3048 the value of the comparison. */
3049 else if (!rtx_addr_can_trap_p (p->exp))
3050 {
3051 arg1 = p->exp;
3052 continue;
3053 }
3054 }
3055
3056 /* If we didn't find a useful equivalence for ARG1, we are done.
3057 Otherwise, set up for the next iteration. */
3058 if (x == 0)
3059 break;
3060
3061 /* If we need to reverse the comparison, make sure that that is
3062 possible -- we can't necessarily infer the value of GE from LT
3063 with floating-point operands. */
3064 if (reverse_code)
3065 {
3066 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3067 if (reversed == UNKNOWN)
3068 break;
3069 else
3070 code = reversed;
3071 }
3072 else if (COMPARISON_P (x))
3073 code = GET_CODE (x);
3074 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3075 }
3076
3077 /* Return our results. Return the modes from before fold_rtx
3078 because fold_rtx might produce const_int, and then it's too late. */
3079 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3080 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3081
3082 if (visited)
3083 pointer_set_destroy (visited);
3084 return code;
3085 }
3086 \f
3087 /* If X is a nontrivial arithmetic operation on an argument for which
3088 a constant value can be determined, return the result of operating
3089 on that value, as a constant. Otherwise, return X, possibly with
3090 one or more operands changed to a forward-propagated constant.
3091
3092 If X is a register whose contents are known, we do NOT return
3093 those contents here; equiv_constant is called to perform that task.
3094 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3095
3096 INSN is the insn that we may be modifying. If it is 0, make a copy
3097 of X before modifying it. */
3098
3099 static rtx
3100 fold_rtx (rtx x, rtx insn)
3101 {
3102 enum rtx_code code;
3103 enum machine_mode mode;
3104 const char *fmt;
3105 int i;
3106 rtx new_rtx = 0;
3107 int changed = 0;
3108
3109 /* Operands of X. */
3110 rtx folded_arg0;
3111 rtx folded_arg1;
3112
3113 /* Constant equivalents of first three operands of X;
3114 0 when no such equivalent is known. */
3115 rtx const_arg0;
3116 rtx const_arg1;
3117 rtx const_arg2;
3118
3119 /* The mode of the first operand of X. We need this for sign and zero
3120 extends. */
3121 enum machine_mode mode_arg0;
3122
3123 if (x == 0)
3124 return x;
3125
3126 /* Try to perform some initial simplifications on X. */
3127 code = GET_CODE (x);
3128 switch (code)
3129 {
3130 case MEM:
3131 case SUBREG:
3132 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3133 return new_rtx;
3134 return x;
3135
3136 case CONST:
3137 CASE_CONST_ANY:
3138 case SYMBOL_REF:
3139 case LABEL_REF:
3140 case REG:
3141 case PC:
3142 /* No use simplifying an EXPR_LIST
3143 since they are used only for lists of args
3144 in a function call's REG_EQUAL note. */
3145 case EXPR_LIST:
3146 return x;
3147
3148 #ifdef HAVE_cc0
3149 case CC0:
3150 return prev_insn_cc0;
3151 #endif
3152
3153 case ASM_OPERANDS:
3154 if (insn)
3155 {
3156 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3157 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3158 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3159 }
3160 return x;
3161
3162 #ifdef NO_FUNCTION_CSE
3163 case CALL:
3164 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3165 return x;
3166 break;
3167 #endif
3168
3169 /* Anything else goes through the loop below. */
3170 default:
3171 break;
3172 }
3173
3174 mode = GET_MODE (x);
3175 const_arg0 = 0;
3176 const_arg1 = 0;
3177 const_arg2 = 0;
3178 mode_arg0 = VOIDmode;
3179
3180 /* Try folding our operands.
3181 Then see which ones have constant values known. */
3182
3183 fmt = GET_RTX_FORMAT (code);
3184 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3185 if (fmt[i] == 'e')
3186 {
3187 rtx folded_arg = XEXP (x, i), const_arg;
3188 enum machine_mode mode_arg = GET_MODE (folded_arg);
3189
3190 switch (GET_CODE (folded_arg))
3191 {
3192 case MEM:
3193 case REG:
3194 case SUBREG:
3195 const_arg = equiv_constant (folded_arg);
3196 break;
3197
3198 case CONST:
3199 CASE_CONST_ANY:
3200 case SYMBOL_REF:
3201 case LABEL_REF:
3202 const_arg = folded_arg;
3203 break;
3204
3205 #ifdef HAVE_cc0
3206 case CC0:
3207 /* The cc0-user and cc0-setter may be in different blocks if
3208 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3209 will have been cleared as we exited the block with the
3210 setter.
3211
3212 While we could potentially track cc0 in this case, it just
3213 doesn't seem to be worth it given that cc0 targets are not
3214 terribly common or important these days and trapping math
3215 is rarely used. The combination of those two conditions
3216 necessary to trip this situation is exceedingly rare in the
3217 real world. */
3218 if (!prev_insn_cc0)
3219 {
3220 const_arg = NULL_RTX;
3221 }
3222 else
3223 {
3224 folded_arg = prev_insn_cc0;
3225 mode_arg = prev_insn_cc0_mode;
3226 const_arg = equiv_constant (folded_arg);
3227 }
3228 break;
3229 #endif
3230
3231 default:
3232 folded_arg = fold_rtx (folded_arg, insn);
3233 const_arg = equiv_constant (folded_arg);
3234 break;
3235 }
3236
3237 /* For the first three operands, see if the operand
3238 is constant or equivalent to a constant. */
3239 switch (i)
3240 {
3241 case 0:
3242 folded_arg0 = folded_arg;
3243 const_arg0 = const_arg;
3244 mode_arg0 = mode_arg;
3245 break;
3246 case 1:
3247 folded_arg1 = folded_arg;
3248 const_arg1 = const_arg;
3249 break;
3250 case 2:
3251 const_arg2 = const_arg;
3252 break;
3253 }
3254
3255 /* Pick the least expensive of the argument and an equivalent constant
3256 argument. */
3257 if (const_arg != 0
3258 && const_arg != folded_arg
3259 && COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
3260
3261 /* It's not safe to substitute the operand of a conversion
3262 operator with a constant, as the conversion's identity
3263 depends upon the mode of its operand. This optimization
3264 is handled by the call to simplify_unary_operation. */
3265 && (GET_RTX_CLASS (code) != RTX_UNARY
3266 || GET_MODE (const_arg) == mode_arg0
3267 || (code != ZERO_EXTEND
3268 && code != SIGN_EXTEND
3269 && code != TRUNCATE
3270 && code != FLOAT_TRUNCATE
3271 && code != FLOAT_EXTEND
3272 && code != FLOAT
3273 && code != FIX
3274 && code != UNSIGNED_FLOAT
3275 && code != UNSIGNED_FIX)))
3276 folded_arg = const_arg;
3277
3278 if (folded_arg == XEXP (x, i))
3279 continue;
3280
3281 if (insn == NULL_RTX && !changed)
3282 x = copy_rtx (x);
3283 changed = 1;
3284 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3285 }
3286
3287 if (changed)
3288 {
3289 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3290 consistent with the order in X. */
3291 if (canonicalize_change_group (insn, x))
3292 {
3293 rtx tem;
3294 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3295 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3296 }
3297
3298 apply_change_group ();
3299 }
3300
3301 /* If X is an arithmetic operation, see if we can simplify it. */
3302
3303 switch (GET_RTX_CLASS (code))
3304 {
3305 case RTX_UNARY:
3306 {
3307 /* We can't simplify extension ops unless we know the
3308 original mode. */
3309 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3310 && mode_arg0 == VOIDmode)
3311 break;
3312
3313 new_rtx = simplify_unary_operation (code, mode,
3314 const_arg0 ? const_arg0 : folded_arg0,
3315 mode_arg0);
3316 }
3317 break;
3318
3319 case RTX_COMPARE:
3320 case RTX_COMM_COMPARE:
3321 /* See what items are actually being compared and set FOLDED_ARG[01]
3322 to those values and CODE to the actual comparison code. If any are
3323 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3324 do anything if both operands are already known to be constant. */
3325
3326 /* ??? Vector mode comparisons are not supported yet. */
3327 if (VECTOR_MODE_P (mode))
3328 break;
3329
3330 if (const_arg0 == 0 || const_arg1 == 0)
3331 {
3332 struct table_elt *p0, *p1;
3333 rtx true_rtx, false_rtx;
3334 enum machine_mode mode_arg1;
3335
3336 if (SCALAR_FLOAT_MODE_P (mode))
3337 {
3338 #ifdef FLOAT_STORE_FLAG_VALUE
3339 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3340 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3341 #else
3342 true_rtx = NULL_RTX;
3343 #endif
3344 false_rtx = CONST0_RTX (mode);
3345 }
3346 else
3347 {
3348 true_rtx = const_true_rtx;
3349 false_rtx = const0_rtx;
3350 }
3351
3352 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3353 &mode_arg0, &mode_arg1);
3354
3355 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3356 what kinds of things are being compared, so we can't do
3357 anything with this comparison. */
3358
3359 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3360 break;
3361
3362 const_arg0 = equiv_constant (folded_arg0);
3363 const_arg1 = equiv_constant (folded_arg1);
3364
3365 /* If we do not now have two constants being compared, see
3366 if we can nevertheless deduce some things about the
3367 comparison. */
3368 if (const_arg0 == 0 || const_arg1 == 0)
3369 {
3370 if (const_arg1 != NULL)
3371 {
3372 rtx cheapest_simplification;
3373 int cheapest_cost;
3374 rtx simp_result;
3375 struct table_elt *p;
3376
3377 /* See if we can find an equivalent of folded_arg0
3378 that gets us a cheaper expression, possibly a
3379 constant through simplifications. */
3380 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3381 mode_arg0);
3382
3383 if (p != NULL)
3384 {
3385 cheapest_simplification = x;
3386 cheapest_cost = COST (x);
3387
3388 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3389 {
3390 int cost;
3391
3392 /* If the entry isn't valid, skip it. */
3393 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3394 continue;
3395
3396 /* Try to simplify using this equivalence. */
3397 simp_result
3398 = simplify_relational_operation (code, mode,
3399 mode_arg0,
3400 p->exp,
3401 const_arg1);
3402
3403 if (simp_result == NULL)
3404 continue;
3405
3406 cost = COST (simp_result);
3407 if (cost < cheapest_cost)
3408 {
3409 cheapest_cost = cost;
3410 cheapest_simplification = simp_result;
3411 }
3412 }
3413
3414 /* If we have a cheaper expression now, use that
3415 and try folding it further, from the top. */
3416 if (cheapest_simplification != x)
3417 return fold_rtx (copy_rtx (cheapest_simplification),
3418 insn);
3419 }
3420 }
3421
3422 /* See if the two operands are the same. */
3423
3424 if ((REG_P (folded_arg0)
3425 && REG_P (folded_arg1)
3426 && (REG_QTY (REGNO (folded_arg0))
3427 == REG_QTY (REGNO (folded_arg1))))
3428 || ((p0 = lookup (folded_arg0,
3429 SAFE_HASH (folded_arg0, mode_arg0),
3430 mode_arg0))
3431 && (p1 = lookup (folded_arg1,
3432 SAFE_HASH (folded_arg1, mode_arg0),
3433 mode_arg0))
3434 && p0->first_same_value == p1->first_same_value))
3435 folded_arg1 = folded_arg0;
3436
3437 /* If FOLDED_ARG0 is a register, see if the comparison we are
3438 doing now is either the same as we did before or the reverse
3439 (we only check the reverse if not floating-point). */
3440 else if (REG_P (folded_arg0))
3441 {
3442 int qty = REG_QTY (REGNO (folded_arg0));
3443
3444 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3445 {
3446 struct qty_table_elem *ent = &qty_table[qty];
3447
3448 if ((comparison_dominates_p (ent->comparison_code, code)
3449 || (! FLOAT_MODE_P (mode_arg0)
3450 && comparison_dominates_p (ent->comparison_code,
3451 reverse_condition (code))))
3452 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3453 || (const_arg1
3454 && rtx_equal_p (ent->comparison_const,
3455 const_arg1))
3456 || (REG_P (folded_arg1)
3457 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3458 {
3459 if (comparison_dominates_p (ent->comparison_code, code))
3460 {
3461 if (true_rtx)
3462 return true_rtx;
3463 else
3464 break;
3465 }
3466 else
3467 return false_rtx;
3468 }
3469 }
3470 }
3471 }
3472 }
3473
3474 /* If we are comparing against zero, see if the first operand is
3475 equivalent to an IOR with a constant. If so, we may be able to
3476 determine the result of this comparison. */
3477 if (const_arg1 == const0_rtx && !const_arg0)
3478 {
3479 rtx y = lookup_as_function (folded_arg0, IOR);
3480 rtx inner_const;
3481
3482 if (y != 0
3483 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3484 && CONST_INT_P (inner_const)
3485 && INTVAL (inner_const) != 0)
3486 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3487 }
3488
3489 {
3490 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3491 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3492 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3493 op0, op1);
3494 }
3495 break;
3496
3497 case RTX_BIN_ARITH:
3498 case RTX_COMM_ARITH:
3499 switch (code)
3500 {
3501 case PLUS:
3502 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3503 with that LABEL_REF as its second operand. If so, the result is
3504 the first operand of that MINUS. This handles switches with an
3505 ADDR_DIFF_VEC table. */
3506 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3507 {
3508 rtx y
3509 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3510 : lookup_as_function (folded_arg0, MINUS);
3511
3512 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3513 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3514 return XEXP (y, 0);
3515
3516 /* Now try for a CONST of a MINUS like the above. */
3517 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3518 : lookup_as_function (folded_arg0, CONST))) != 0
3519 && GET_CODE (XEXP (y, 0)) == MINUS
3520 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3521 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3522 return XEXP (XEXP (y, 0), 0);
3523 }
3524
3525 /* Likewise if the operands are in the other order. */
3526 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3527 {
3528 rtx y
3529 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3530 : lookup_as_function (folded_arg1, MINUS);
3531
3532 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3533 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3534 return XEXP (y, 0);
3535
3536 /* Now try for a CONST of a MINUS like the above. */
3537 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3538 : lookup_as_function (folded_arg1, CONST))) != 0
3539 && GET_CODE (XEXP (y, 0)) == MINUS
3540 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3541 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3542 return XEXP (XEXP (y, 0), 0);
3543 }
3544
3545 /* If second operand is a register equivalent to a negative
3546 CONST_INT, see if we can find a register equivalent to the
3547 positive constant. Make a MINUS if so. Don't do this for
3548 a non-negative constant since we might then alternate between
3549 choosing positive and negative constants. Having the positive
3550 constant previously-used is the more common case. Be sure
3551 the resulting constant is non-negative; if const_arg1 were
3552 the smallest negative number this would overflow: depending
3553 on the mode, this would either just be the same value (and
3554 hence not save anything) or be incorrect. */
3555 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3556 && INTVAL (const_arg1) < 0
3557 /* This used to test
3558
3559 -INTVAL (const_arg1) >= 0
3560
3561 But The Sun V5.0 compilers mis-compiled that test. So
3562 instead we test for the problematic value in a more direct
3563 manner and hope the Sun compilers get it correct. */
3564 && INTVAL (const_arg1) !=
3565 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3566 && REG_P (folded_arg1))
3567 {
3568 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3569 struct table_elt *p
3570 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3571
3572 if (p)
3573 for (p = p->first_same_value; p; p = p->next_same_value)
3574 if (REG_P (p->exp))
3575 return simplify_gen_binary (MINUS, mode, folded_arg0,
3576 canon_reg (p->exp, NULL_RTX));
3577 }
3578 goto from_plus;
3579
3580 case MINUS:
3581 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3582 If so, produce (PLUS Z C2-C). */
3583 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3584 {
3585 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3586 if (y && CONST_INT_P (XEXP (y, 1)))
3587 return fold_rtx (plus_constant (mode, copy_rtx (y),
3588 -INTVAL (const_arg1)),
3589 NULL_RTX);
3590 }
3591
3592 /* Fall through. */
3593
3594 from_plus:
3595 case SMIN: case SMAX: case UMIN: case UMAX:
3596 case IOR: case AND: case XOR:
3597 case MULT:
3598 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3599 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3600 is known to be of similar form, we may be able to replace the
3601 operation with a combined operation. This may eliminate the
3602 intermediate operation if every use is simplified in this way.
3603 Note that the similar optimization done by combine.c only works
3604 if the intermediate operation's result has only one reference. */
3605
3606 if (REG_P (folded_arg0)
3607 && const_arg1 && CONST_INT_P (const_arg1))
3608 {
3609 int is_shift
3610 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3611 rtx y, inner_const, new_const;
3612 rtx canon_const_arg1 = const_arg1;
3613 enum rtx_code associate_code;
3614
3615 if (is_shift
3616 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3617 || INTVAL (const_arg1) < 0))
3618 {
3619 if (SHIFT_COUNT_TRUNCATED)
3620 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3621 & (GET_MODE_BITSIZE (mode)
3622 - 1));
3623 else
3624 break;
3625 }
3626
3627 y = lookup_as_function (folded_arg0, code);
3628 if (y == 0)
3629 break;
3630
3631 /* If we have compiled a statement like
3632 "if (x == (x & mask1))", and now are looking at
3633 "x & mask2", we will have a case where the first operand
3634 of Y is the same as our first operand. Unless we detect
3635 this case, an infinite loop will result. */
3636 if (XEXP (y, 0) == folded_arg0)
3637 break;
3638
3639 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3640 if (!inner_const || !CONST_INT_P (inner_const))
3641 break;
3642
3643 /* Don't associate these operations if they are a PLUS with the
3644 same constant and it is a power of two. These might be doable
3645 with a pre- or post-increment. Similarly for two subtracts of
3646 identical powers of two with post decrement. */
3647
3648 if (code == PLUS && const_arg1 == inner_const
3649 && ((HAVE_PRE_INCREMENT
3650 && exact_log2 (INTVAL (const_arg1)) >= 0)
3651 || (HAVE_POST_INCREMENT
3652 && exact_log2 (INTVAL (const_arg1)) >= 0)
3653 || (HAVE_PRE_DECREMENT
3654 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3655 || (HAVE_POST_DECREMENT
3656 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3657 break;
3658
3659 /* ??? Vector mode shifts by scalar
3660 shift operand are not supported yet. */
3661 if (is_shift && VECTOR_MODE_P (mode))
3662 break;
3663
3664 if (is_shift
3665 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3666 || INTVAL (inner_const) < 0))
3667 {
3668 if (SHIFT_COUNT_TRUNCATED)
3669 inner_const = GEN_INT (INTVAL (inner_const)
3670 & (GET_MODE_BITSIZE (mode) - 1));
3671 else
3672 break;
3673 }
3674
3675 /* Compute the code used to compose the constants. For example,
3676 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3677
3678 associate_code = (is_shift || code == MINUS ? PLUS : code);
3679
3680 new_const = simplify_binary_operation (associate_code, mode,
3681 canon_const_arg1,
3682 inner_const);
3683
3684 if (new_const == 0)
3685 break;
3686
3687 /* If we are associating shift operations, don't let this
3688 produce a shift of the size of the object or larger.
3689 This could occur when we follow a sign-extend by a right
3690 shift on a machine that does a sign-extend as a pair
3691 of shifts. */
3692
3693 if (is_shift
3694 && CONST_INT_P (new_const)
3695 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3696 {
3697 /* As an exception, we can turn an ASHIFTRT of this
3698 form into a shift of the number of bits - 1. */
3699 if (code == ASHIFTRT)
3700 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3701 else if (!side_effects_p (XEXP (y, 0)))
3702 return CONST0_RTX (mode);
3703 else
3704 break;
3705 }
3706
3707 y = copy_rtx (XEXP (y, 0));
3708
3709 /* If Y contains our first operand (the most common way this
3710 can happen is if Y is a MEM), we would do into an infinite
3711 loop if we tried to fold it. So don't in that case. */
3712
3713 if (! reg_mentioned_p (folded_arg0, y))
3714 y = fold_rtx (y, insn);
3715
3716 return simplify_gen_binary (code, mode, y, new_const);
3717 }
3718 break;
3719
3720 case DIV: case UDIV:
3721 /* ??? The associative optimization performed immediately above is
3722 also possible for DIV and UDIV using associate_code of MULT.
3723 However, we would need extra code to verify that the
3724 multiplication does not overflow, that is, there is no overflow
3725 in the calculation of new_const. */
3726 break;
3727
3728 default:
3729 break;
3730 }
3731
3732 new_rtx = simplify_binary_operation (code, mode,
3733 const_arg0 ? const_arg0 : folded_arg0,
3734 const_arg1 ? const_arg1 : folded_arg1);
3735 break;
3736
3737 case RTX_OBJ:
3738 /* (lo_sum (high X) X) is simply X. */
3739 if (code == LO_SUM && const_arg0 != 0
3740 && GET_CODE (const_arg0) == HIGH
3741 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3742 return const_arg1;
3743 break;
3744
3745 case RTX_TERNARY:
3746 case RTX_BITFIELD_OPS:
3747 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3748 const_arg0 ? const_arg0 : folded_arg0,
3749 const_arg1 ? const_arg1 : folded_arg1,
3750 const_arg2 ? const_arg2 : XEXP (x, 2));
3751 break;
3752
3753 default:
3754 break;
3755 }
3756
3757 return new_rtx ? new_rtx : x;
3758 }
3759 \f
3760 /* Return a constant value currently equivalent to X.
3761 Return 0 if we don't know one. */
3762
3763 static rtx
3764 equiv_constant (rtx x)
3765 {
3766 if (REG_P (x)
3767 && REGNO_QTY_VALID_P (REGNO (x)))
3768 {
3769 int x_q = REG_QTY (REGNO (x));
3770 struct qty_table_elem *x_ent = &qty_table[x_q];
3771
3772 if (x_ent->const_rtx)
3773 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3774 }
3775
3776 if (x == 0 || CONSTANT_P (x))
3777 return x;
3778
3779 if (GET_CODE (x) == SUBREG)
3780 {
3781 enum machine_mode mode = GET_MODE (x);
3782 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3783 rtx new_rtx;
3784
3785 /* See if we previously assigned a constant value to this SUBREG. */
3786 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3787 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3788 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3789 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3790 return new_rtx;
3791
3792 /* If we didn't and if doing so makes sense, see if we previously
3793 assigned a constant value to the enclosing word mode SUBREG. */
3794 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3795 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3796 {
3797 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3798 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3799 {
3800 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3801 new_rtx = lookup_as_function (y, CONST_INT);
3802 if (new_rtx)
3803 return gen_lowpart (mode, new_rtx);
3804 }
3805 }
3806
3807 /* Otherwise see if we already have a constant for the inner REG,
3808 and if that is enough to calculate an equivalent constant for
3809 the subreg. Note that the upper bits of paradoxical subregs
3810 are undefined, so they cannot be said to equal anything. */
3811 if (REG_P (SUBREG_REG (x))
3812 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3813 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3814 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3815
3816 return 0;
3817 }
3818
3819 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3820 the hash table in case its value was seen before. */
3821
3822 if (MEM_P (x))
3823 {
3824 struct table_elt *elt;
3825
3826 x = avoid_constant_pool_reference (x);
3827 if (CONSTANT_P (x))
3828 return x;
3829
3830 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3831 if (elt == 0)
3832 return 0;
3833
3834 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3835 if (elt->is_const && CONSTANT_P (elt->exp))
3836 return elt->exp;
3837 }
3838
3839 return 0;
3840 }
3841 \f
3842 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3843 "taken" branch.
3844
3845 In certain cases, this can cause us to add an equivalence. For example,
3846 if we are following the taken case of
3847 if (i == 2)
3848 we can add the fact that `i' and '2' are now equivalent.
3849
3850 In any case, we can record that this comparison was passed. If the same
3851 comparison is seen later, we will know its value. */
3852
3853 static void
3854 record_jump_equiv (rtx insn, bool taken)
3855 {
3856 int cond_known_true;
3857 rtx op0, op1;
3858 rtx set;
3859 enum machine_mode mode, mode0, mode1;
3860 int reversed_nonequality = 0;
3861 enum rtx_code code;
3862
3863 /* Ensure this is the right kind of insn. */
3864 gcc_assert (any_condjump_p (insn));
3865
3866 set = pc_set (insn);
3867
3868 /* See if this jump condition is known true or false. */
3869 if (taken)
3870 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3871 else
3872 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3873
3874 /* Get the type of comparison being done and the operands being compared.
3875 If we had to reverse a non-equality condition, record that fact so we
3876 know that it isn't valid for floating-point. */
3877 code = GET_CODE (XEXP (SET_SRC (set), 0));
3878 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3879 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3880
3881 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3882 if (! cond_known_true)
3883 {
3884 code = reversed_comparison_code_parts (code, op0, op1, insn);
3885
3886 /* Don't remember if we can't find the inverse. */
3887 if (code == UNKNOWN)
3888 return;
3889 }
3890
3891 /* The mode is the mode of the non-constant. */
3892 mode = mode0;
3893 if (mode1 != VOIDmode)
3894 mode = mode1;
3895
3896 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3897 }
3898
3899 /* Yet another form of subreg creation. In this case, we want something in
3900 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3901
3902 static rtx
3903 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3904 {
3905 enum machine_mode op_mode = GET_MODE (op);
3906 if (op_mode == mode || op_mode == VOIDmode)
3907 return op;
3908 return lowpart_subreg (mode, op, op_mode);
3909 }
3910
3911 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3912 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3913 Make any useful entries we can with that information. Called from
3914 above function and called recursively. */
3915
3916 static void
3917 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3918 rtx op1, int reversed_nonequality)
3919 {
3920 unsigned op0_hash, op1_hash;
3921 int op0_in_memory, op1_in_memory;
3922 struct table_elt *op0_elt, *op1_elt;
3923
3924 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3925 we know that they are also equal in the smaller mode (this is also
3926 true for all smaller modes whether or not there is a SUBREG, but
3927 is not worth testing for with no SUBREG). */
3928
3929 /* Note that GET_MODE (op0) may not equal MODE. */
3930 if (code == EQ && paradoxical_subreg_p (op0))
3931 {
3932 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3933 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3934 if (tem)
3935 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3936 reversed_nonequality);
3937 }
3938
3939 if (code == EQ && paradoxical_subreg_p (op1))
3940 {
3941 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3942 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3943 if (tem)
3944 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3945 reversed_nonequality);
3946 }
3947
3948 /* Similarly, if this is an NE comparison, and either is a SUBREG
3949 making a smaller mode, we know the whole thing is also NE. */
3950
3951 /* Note that GET_MODE (op0) may not equal MODE;
3952 if we test MODE instead, we can get an infinite recursion
3953 alternating between two modes each wider than MODE. */
3954
3955 if (code == NE && GET_CODE (op0) == SUBREG
3956 && subreg_lowpart_p (op0)
3957 && (GET_MODE_SIZE (GET_MODE (op0))
3958 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3959 {
3960 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3961 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3962 if (tem)
3963 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3964 reversed_nonequality);
3965 }
3966
3967 if (code == NE && GET_CODE (op1) == SUBREG
3968 && subreg_lowpart_p (op1)
3969 && (GET_MODE_SIZE (GET_MODE (op1))
3970 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3971 {
3972 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3973 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3974 if (tem)
3975 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3976 reversed_nonequality);
3977 }
3978
3979 /* Hash both operands. */
3980
3981 do_not_record = 0;
3982 hash_arg_in_memory = 0;
3983 op0_hash = HASH (op0, mode);
3984 op0_in_memory = hash_arg_in_memory;
3985
3986 if (do_not_record)
3987 return;
3988
3989 do_not_record = 0;
3990 hash_arg_in_memory = 0;
3991 op1_hash = HASH (op1, mode);
3992 op1_in_memory = hash_arg_in_memory;
3993
3994 if (do_not_record)
3995 return;
3996
3997 /* Look up both operands. */
3998 op0_elt = lookup (op0, op0_hash, mode);
3999 op1_elt = lookup (op1, op1_hash, mode);
4000
4001 /* If both operands are already equivalent or if they are not in the
4002 table but are identical, do nothing. */
4003 if ((op0_elt != 0 && op1_elt != 0
4004 && op0_elt->first_same_value == op1_elt->first_same_value)
4005 || op0 == op1 || rtx_equal_p (op0, op1))
4006 return;
4007
4008 /* If we aren't setting two things equal all we can do is save this
4009 comparison. Similarly if this is floating-point. In the latter
4010 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4011 If we record the equality, we might inadvertently delete code
4012 whose intent was to change -0 to +0. */
4013
4014 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4015 {
4016 struct qty_table_elem *ent;
4017 int qty;
4018
4019 /* If we reversed a floating-point comparison, if OP0 is not a
4020 register, or if OP1 is neither a register or constant, we can't
4021 do anything. */
4022
4023 if (!REG_P (op1))
4024 op1 = equiv_constant (op1);
4025
4026 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4027 || !REG_P (op0) || op1 == 0)
4028 return;
4029
4030 /* Put OP0 in the hash table if it isn't already. This gives it a
4031 new quantity number. */
4032 if (op0_elt == 0)
4033 {
4034 if (insert_regs (op0, NULL, 0))
4035 {
4036 rehash_using_reg (op0);
4037 op0_hash = HASH (op0, mode);
4038
4039 /* If OP0 is contained in OP1, this changes its hash code
4040 as well. Faster to rehash than to check, except
4041 for the simple case of a constant. */
4042 if (! CONSTANT_P (op1))
4043 op1_hash = HASH (op1,mode);
4044 }
4045
4046 op0_elt = insert (op0, NULL, op0_hash, mode);
4047 op0_elt->in_memory = op0_in_memory;
4048 }
4049
4050 qty = REG_QTY (REGNO (op0));
4051 ent = &qty_table[qty];
4052
4053 ent->comparison_code = code;
4054 if (REG_P (op1))
4055 {
4056 /* Look it up again--in case op0 and op1 are the same. */
4057 op1_elt = lookup (op1, op1_hash, mode);
4058
4059 /* Put OP1 in the hash table so it gets a new quantity number. */
4060 if (op1_elt == 0)
4061 {
4062 if (insert_regs (op1, NULL, 0))
4063 {
4064 rehash_using_reg (op1);
4065 op1_hash = HASH (op1, mode);
4066 }
4067
4068 op1_elt = insert (op1, NULL, op1_hash, mode);
4069 op1_elt->in_memory = op1_in_memory;
4070 }
4071
4072 ent->comparison_const = NULL_RTX;
4073 ent->comparison_qty = REG_QTY (REGNO (op1));
4074 }
4075 else
4076 {
4077 ent->comparison_const = op1;
4078 ent->comparison_qty = -1;
4079 }
4080
4081 return;
4082 }
4083
4084 /* If either side is still missing an equivalence, make it now,
4085 then merge the equivalences. */
4086
4087 if (op0_elt == 0)
4088 {
4089 if (insert_regs (op0, NULL, 0))
4090 {
4091 rehash_using_reg (op0);
4092 op0_hash = HASH (op0, mode);
4093 }
4094
4095 op0_elt = insert (op0, NULL, op0_hash, mode);
4096 op0_elt->in_memory = op0_in_memory;
4097 }
4098
4099 if (op1_elt == 0)
4100 {
4101 if (insert_regs (op1, NULL, 0))
4102 {
4103 rehash_using_reg (op1);
4104 op1_hash = HASH (op1, mode);
4105 }
4106
4107 op1_elt = insert (op1, NULL, op1_hash, mode);
4108 op1_elt->in_memory = op1_in_memory;
4109 }
4110
4111 merge_equiv_classes (op0_elt, op1_elt);
4112 }
4113 \f
4114 /* CSE processing for one instruction.
4115
4116 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4117 but the few that "leak through" are cleaned up by cse_insn, and complex
4118 addressing modes are often formed here.
4119
4120 The main function is cse_insn, and between here and that function
4121 a couple of helper functions is defined to keep the size of cse_insn
4122 within reasonable proportions.
4123
4124 Data is shared between the main and helper functions via STRUCT SET,
4125 that contains all data related for every set in the instruction that
4126 is being processed.
4127
4128 Note that cse_main processes all sets in the instruction. Most
4129 passes in GCC only process simple SET insns or single_set insns, but
4130 CSE processes insns with multiple sets as well. */
4131
4132 /* Data on one SET contained in the instruction. */
4133
4134 struct set
4135 {
4136 /* The SET rtx itself. */
4137 rtx rtl;
4138 /* The SET_SRC of the rtx (the original value, if it is changing). */
4139 rtx src;
4140 /* The hash-table element for the SET_SRC of the SET. */
4141 struct table_elt *src_elt;
4142 /* Hash value for the SET_SRC. */
4143 unsigned src_hash;
4144 /* Hash value for the SET_DEST. */
4145 unsigned dest_hash;
4146 /* The SET_DEST, with SUBREG, etc., stripped. */
4147 rtx inner_dest;
4148 /* Nonzero if the SET_SRC is in memory. */
4149 char src_in_memory;
4150 /* Nonzero if the SET_SRC contains something
4151 whose value cannot be predicted and understood. */
4152 char src_volatile;
4153 /* Original machine mode, in case it becomes a CONST_INT.
4154 The size of this field should match the size of the mode
4155 field of struct rtx_def (see rtl.h). */
4156 ENUM_BITFIELD(machine_mode) mode : 8;
4157 /* A constant equivalent for SET_SRC, if any. */
4158 rtx src_const;
4159 /* Hash value of constant equivalent for SET_SRC. */
4160 unsigned src_const_hash;
4161 /* Table entry for constant equivalent for SET_SRC, if any. */
4162 struct table_elt *src_const_elt;
4163 /* Table entry for the destination address. */
4164 struct table_elt *dest_addr_elt;
4165 };
4166 \f
4167 /* Special handling for (set REG0 REG1) where REG0 is the
4168 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4169 be used in the sequel, so (if easily done) change this insn to
4170 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4171 that computed their value. Then REG1 will become a dead store
4172 and won't cloud the situation for later optimizations.
4173
4174 Do not make this change if REG1 is a hard register, because it will
4175 then be used in the sequel and we may be changing a two-operand insn
4176 into a three-operand insn.
4177
4178 This is the last transformation that cse_insn will try to do. */
4179
4180 static void
4181 try_back_substitute_reg (rtx set, rtx insn)
4182 {
4183 rtx dest = SET_DEST (set);
4184 rtx src = SET_SRC (set);
4185
4186 if (REG_P (dest)
4187 && REG_P (src) && ! HARD_REGISTER_P (src)
4188 && REGNO_QTY_VALID_P (REGNO (src)))
4189 {
4190 int src_q = REG_QTY (REGNO (src));
4191 struct qty_table_elem *src_ent = &qty_table[src_q];
4192
4193 if (src_ent->first_reg == REGNO (dest))
4194 {
4195 /* Scan for the previous nonnote insn, but stop at a basic
4196 block boundary. */
4197 rtx prev = insn;
4198 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4199 do
4200 {
4201 prev = PREV_INSN (prev);
4202 }
4203 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4204
4205 /* Do not swap the registers around if the previous instruction
4206 attaches a REG_EQUIV note to REG1.
4207
4208 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4209 from the pseudo that originally shadowed an incoming argument
4210 to another register. Some uses of REG_EQUIV might rely on it
4211 being attached to REG1 rather than REG2.
4212
4213 This section previously turned the REG_EQUIV into a REG_EQUAL
4214 note. We cannot do that because REG_EQUIV may provide an
4215 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4216 if (NONJUMP_INSN_P (prev)
4217 && GET_CODE (PATTERN (prev)) == SET
4218 && SET_DEST (PATTERN (prev)) == src
4219 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4220 {
4221 rtx note;
4222
4223 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4224 validate_change (insn, &SET_DEST (set), src, 1);
4225 validate_change (insn, &SET_SRC (set), dest, 1);
4226 apply_change_group ();
4227
4228 /* If INSN has a REG_EQUAL note, and this note mentions
4229 REG0, then we must delete it, because the value in
4230 REG0 has changed. If the note's value is REG1, we must
4231 also delete it because that is now this insn's dest. */
4232 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4233 if (note != 0
4234 && (reg_mentioned_p (dest, XEXP (note, 0))
4235 || rtx_equal_p (src, XEXP (note, 0))))
4236 remove_note (insn, note);
4237 }
4238 }
4239 }
4240 }
4241 \f
4242 /* Record all the SETs in this instruction into SETS_PTR,
4243 and return the number of recorded sets. */
4244 static int
4245 find_sets_in_insn (rtx insn, struct set **psets)
4246 {
4247 struct set *sets = *psets;
4248 int n_sets = 0;
4249 rtx x = PATTERN (insn);
4250
4251 if (GET_CODE (x) == SET)
4252 {
4253 /* Ignore SETs that are unconditional jumps.
4254 They never need cse processing, so this does not hurt.
4255 The reason is not efficiency but rather
4256 so that we can test at the end for instructions
4257 that have been simplified to unconditional jumps
4258 and not be misled by unchanged instructions
4259 that were unconditional jumps to begin with. */
4260 if (SET_DEST (x) == pc_rtx
4261 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4262 ;
4263 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4264 The hard function value register is used only once, to copy to
4265 someplace else, so it isn't worth cse'ing. */
4266 else if (GET_CODE (SET_SRC (x)) == CALL)
4267 ;
4268 else
4269 sets[n_sets++].rtl = x;
4270 }
4271 else if (GET_CODE (x) == PARALLEL)
4272 {
4273 int i, lim = XVECLEN (x, 0);
4274
4275 /* Go over the epressions of the PARALLEL in forward order, to
4276 put them in the same order in the SETS array. */
4277 for (i = 0; i < lim; i++)
4278 {
4279 rtx y = XVECEXP (x, 0, i);
4280 if (GET_CODE (y) == SET)
4281 {
4282 /* As above, we ignore unconditional jumps and call-insns and
4283 ignore the result of apply_change_group. */
4284 if (SET_DEST (y) == pc_rtx
4285 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4286 ;
4287 else if (GET_CODE (SET_SRC (y)) == CALL)
4288 ;
4289 else
4290 sets[n_sets++].rtl = y;
4291 }
4292 }
4293 }
4294
4295 return n_sets;
4296 }
4297 \f
4298 /* Where possible, substitute every register reference in the N_SETS
4299 number of SETS in INSN with the the canonical register.
4300
4301 Register canonicalization propagatest the earliest register (i.e.
4302 one that is set before INSN) with the same value. This is a very
4303 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4304 to RTL. For instance, a CONST for an address is usually expanded
4305 multiple times to loads into different registers, thus creating many
4306 subexpressions of the form:
4307
4308 (set (reg1) (some_const))
4309 (set (mem (... reg1 ...) (thing)))
4310 (set (reg2) (some_const))
4311 (set (mem (... reg2 ...) (thing)))
4312
4313 After canonicalizing, the code takes the following form:
4314
4315 (set (reg1) (some_const))
4316 (set (mem (... reg1 ...) (thing)))
4317 (set (reg2) (some_const))
4318 (set (mem (... reg1 ...) (thing)))
4319
4320 The set to reg2 is now trivially dead, and the memory reference (or
4321 address, or whatever) may be a candidate for further CSEing.
4322
4323 In this function, the result of apply_change_group can be ignored;
4324 see canon_reg. */
4325
4326 static void
4327 canonicalize_insn (rtx insn, struct set **psets, int n_sets)
4328 {
4329 struct set *sets = *psets;
4330 rtx tem;
4331 rtx x = PATTERN (insn);
4332 int i;
4333
4334 if (CALL_P (insn))
4335 {
4336 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4337 if (GET_CODE (XEXP (tem, 0)) != SET)
4338 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4339 }
4340
4341 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4342 {
4343 canon_reg (SET_SRC (x), insn);
4344 apply_change_group ();
4345 fold_rtx (SET_SRC (x), insn);
4346 }
4347 else if (GET_CODE (x) == CLOBBER)
4348 {
4349 /* If we clobber memory, canon the address.
4350 This does nothing when a register is clobbered
4351 because we have already invalidated the reg. */
4352 if (MEM_P (XEXP (x, 0)))
4353 canon_reg (XEXP (x, 0), insn);
4354 }
4355 else if (GET_CODE (x) == USE
4356 && ! (REG_P (XEXP (x, 0))
4357 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4358 /* Canonicalize a USE of a pseudo register or memory location. */
4359 canon_reg (x, insn);
4360 else if (GET_CODE (x) == ASM_OPERANDS)
4361 {
4362 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4363 {
4364 rtx input = ASM_OPERANDS_INPUT (x, i);
4365 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4366 {
4367 input = canon_reg (input, insn);
4368 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4369 }
4370 }
4371 }
4372 else if (GET_CODE (x) == CALL)
4373 {
4374 canon_reg (x, insn);
4375 apply_change_group ();
4376 fold_rtx (x, insn);
4377 }
4378 else if (DEBUG_INSN_P (insn))
4379 canon_reg (PATTERN (insn), insn);
4380 else if (GET_CODE (x) == PARALLEL)
4381 {
4382 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4383 {
4384 rtx y = XVECEXP (x, 0, i);
4385 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4386 {
4387 canon_reg (SET_SRC (y), insn);
4388 apply_change_group ();
4389 fold_rtx (SET_SRC (y), insn);
4390 }
4391 else if (GET_CODE (y) == CLOBBER)
4392 {
4393 if (MEM_P (XEXP (y, 0)))
4394 canon_reg (XEXP (y, 0), insn);
4395 }
4396 else if (GET_CODE (y) == USE
4397 && ! (REG_P (XEXP (y, 0))
4398 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4399 canon_reg (y, insn);
4400 else if (GET_CODE (y) == CALL)
4401 {
4402 canon_reg (y, insn);
4403 apply_change_group ();
4404 fold_rtx (y, insn);
4405 }
4406 }
4407 }
4408
4409 if (n_sets == 1 && REG_NOTES (insn) != 0
4410 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4411 {
4412 /* We potentially will process this insn many times. Therefore,
4413 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4414 unique set in INSN.
4415
4416 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4417 because cse_insn handles those specially. */
4418 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4419 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4420 remove_note (insn, tem);
4421 else
4422 {
4423 canon_reg (XEXP (tem, 0), insn);
4424 apply_change_group ();
4425 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4426 df_notes_rescan (insn);
4427 }
4428 }
4429
4430 /* Canonicalize sources and addresses of destinations.
4431 We do this in a separate pass to avoid problems when a MATCH_DUP is
4432 present in the insn pattern. In that case, we want to ensure that
4433 we don't break the duplicate nature of the pattern. So we will replace
4434 both operands at the same time. Otherwise, we would fail to find an
4435 equivalent substitution in the loop calling validate_change below.
4436
4437 We used to suppress canonicalization of DEST if it appears in SRC,
4438 but we don't do this any more. */
4439
4440 for (i = 0; i < n_sets; i++)
4441 {
4442 rtx dest = SET_DEST (sets[i].rtl);
4443 rtx src = SET_SRC (sets[i].rtl);
4444 rtx new_rtx = canon_reg (src, insn);
4445
4446 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4447
4448 if (GET_CODE (dest) == ZERO_EXTRACT)
4449 {
4450 validate_change (insn, &XEXP (dest, 1),
4451 canon_reg (XEXP (dest, 1), insn), 1);
4452 validate_change (insn, &XEXP (dest, 2),
4453 canon_reg (XEXP (dest, 2), insn), 1);
4454 }
4455
4456 while (GET_CODE (dest) == SUBREG
4457 || GET_CODE (dest) == ZERO_EXTRACT
4458 || GET_CODE (dest) == STRICT_LOW_PART)
4459 dest = XEXP (dest, 0);
4460
4461 if (MEM_P (dest))
4462 canon_reg (dest, insn);
4463 }
4464
4465 /* Now that we have done all the replacements, we can apply the change
4466 group and see if they all work. Note that this will cause some
4467 canonicalizations that would have worked individually not to be applied
4468 because some other canonicalization didn't work, but this should not
4469 occur often.
4470
4471 The result of apply_change_group can be ignored; see canon_reg. */
4472
4473 apply_change_group ();
4474 }
4475 \f
4476 /* Main function of CSE.
4477 First simplify sources and addresses of all assignments
4478 in the instruction, using previously-computed equivalents values.
4479 Then install the new sources and destinations in the table
4480 of available values. */
4481
4482 static void
4483 cse_insn (rtx insn)
4484 {
4485 rtx x = PATTERN (insn);
4486 int i;
4487 rtx tem;
4488 int n_sets = 0;
4489
4490 rtx src_eqv = 0;
4491 struct table_elt *src_eqv_elt = 0;
4492 int src_eqv_volatile = 0;
4493 int src_eqv_in_memory = 0;
4494 unsigned src_eqv_hash = 0;
4495
4496 struct set *sets = (struct set *) 0;
4497
4498 if (GET_CODE (x) == SET)
4499 sets = XALLOCA (struct set);
4500 else if (GET_CODE (x) == PARALLEL)
4501 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4502
4503 this_insn = insn;
4504 #ifdef HAVE_cc0
4505 /* Records what this insn does to set CC0. */
4506 this_insn_cc0 = 0;
4507 this_insn_cc0_mode = VOIDmode;
4508 #endif
4509
4510 /* Find all regs explicitly clobbered in this insn,
4511 to ensure they are not replaced with any other regs
4512 elsewhere in this insn. */
4513 invalidate_from_sets_and_clobbers (insn);
4514
4515 /* Record all the SETs in this instruction. */
4516 n_sets = find_sets_in_insn (insn, &sets);
4517
4518 /* Substitute the canonical register where possible. */
4519 canonicalize_insn (insn, &sets, n_sets);
4520
4521 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4522 if different, or if the DEST is a STRICT_LOW_PART. The latter condition
4523 is necessary because SRC_EQV is handled specially for this case, and if
4524 it isn't set, then there will be no equivalence for the destination. */
4525 if (n_sets == 1 && REG_NOTES (insn) != 0
4526 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4527 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4528 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4529 src_eqv = copy_rtx (XEXP (tem, 0));
4530
4531 /* Set sets[i].src_elt to the class each source belongs to.
4532 Detect assignments from or to volatile things
4533 and set set[i] to zero so they will be ignored
4534 in the rest of this function.
4535
4536 Nothing in this loop changes the hash table or the register chains. */
4537
4538 for (i = 0; i < n_sets; i++)
4539 {
4540 bool repeat = false;
4541 rtx src, dest;
4542 rtx src_folded;
4543 struct table_elt *elt = 0, *p;
4544 enum machine_mode mode;
4545 rtx src_eqv_here;
4546 rtx src_const = 0;
4547 rtx src_related = 0;
4548 bool src_related_is_const_anchor = false;
4549 struct table_elt *src_const_elt = 0;
4550 int src_cost = MAX_COST;
4551 int src_eqv_cost = MAX_COST;
4552 int src_folded_cost = MAX_COST;
4553 int src_related_cost = MAX_COST;
4554 int src_elt_cost = MAX_COST;
4555 int src_regcost = MAX_COST;
4556 int src_eqv_regcost = MAX_COST;
4557 int src_folded_regcost = MAX_COST;
4558 int src_related_regcost = MAX_COST;
4559 int src_elt_regcost = MAX_COST;
4560 /* Set nonzero if we need to call force_const_mem on with the
4561 contents of src_folded before using it. */
4562 int src_folded_force_flag = 0;
4563
4564 dest = SET_DEST (sets[i].rtl);
4565 src = SET_SRC (sets[i].rtl);
4566
4567 /* If SRC is a constant that has no machine mode,
4568 hash it with the destination's machine mode.
4569 This way we can keep different modes separate. */
4570
4571 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4572 sets[i].mode = mode;
4573
4574 if (src_eqv)
4575 {
4576 enum machine_mode eqvmode = mode;
4577 if (GET_CODE (dest) == STRICT_LOW_PART)
4578 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4579 do_not_record = 0;
4580 hash_arg_in_memory = 0;
4581 src_eqv_hash = HASH (src_eqv, eqvmode);
4582
4583 /* Find the equivalence class for the equivalent expression. */
4584
4585 if (!do_not_record)
4586 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4587
4588 src_eqv_volatile = do_not_record;
4589 src_eqv_in_memory = hash_arg_in_memory;
4590 }
4591
4592 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4593 value of the INNER register, not the destination. So it is not
4594 a valid substitution for the source. But save it for later. */
4595 if (GET_CODE (dest) == STRICT_LOW_PART)
4596 src_eqv_here = 0;
4597 else
4598 src_eqv_here = src_eqv;
4599
4600 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4601 simplified result, which may not necessarily be valid. */
4602 src_folded = fold_rtx (src, insn);
4603
4604 #if 0
4605 /* ??? This caused bad code to be generated for the m68k port with -O2.
4606 Suppose src is (CONST_INT -1), and that after truncation src_folded
4607 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4608 At the end we will add src and src_const to the same equivalence
4609 class. We now have 3 and -1 on the same equivalence class. This
4610 causes later instructions to be mis-optimized. */
4611 /* If storing a constant in a bitfield, pre-truncate the constant
4612 so we will be able to record it later. */
4613 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4614 {
4615 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4616
4617 if (CONST_INT_P (src)
4618 && CONST_INT_P (width)
4619 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4620 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4621 src_folded
4622 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4623 << INTVAL (width)) - 1));
4624 }
4625 #endif
4626
4627 /* Compute SRC's hash code, and also notice if it
4628 should not be recorded at all. In that case,
4629 prevent any further processing of this assignment. */
4630 do_not_record = 0;
4631 hash_arg_in_memory = 0;
4632
4633 sets[i].src = src;
4634 sets[i].src_hash = HASH (src, mode);
4635 sets[i].src_volatile = do_not_record;
4636 sets[i].src_in_memory = hash_arg_in_memory;
4637
4638 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4639 a pseudo, do not record SRC. Using SRC as a replacement for
4640 anything else will be incorrect in that situation. Note that
4641 this usually occurs only for stack slots, in which case all the
4642 RTL would be referring to SRC, so we don't lose any optimization
4643 opportunities by not having SRC in the hash table. */
4644
4645 if (MEM_P (src)
4646 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4647 && REG_P (dest)
4648 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4649 sets[i].src_volatile = 1;
4650
4651 #if 0
4652 /* It is no longer clear why we used to do this, but it doesn't
4653 appear to still be needed. So let's try without it since this
4654 code hurts cse'ing widened ops. */
4655 /* If source is a paradoxical subreg (such as QI treated as an SI),
4656 treat it as volatile. It may do the work of an SI in one context
4657 where the extra bits are not being used, but cannot replace an SI
4658 in general. */
4659 if (paradoxical_subreg_p (src))
4660 sets[i].src_volatile = 1;
4661 #endif
4662
4663 /* Locate all possible equivalent forms for SRC. Try to replace
4664 SRC in the insn with each cheaper equivalent.
4665
4666 We have the following types of equivalents: SRC itself, a folded
4667 version, a value given in a REG_EQUAL note, or a value related
4668 to a constant.
4669
4670 Each of these equivalents may be part of an additional class
4671 of equivalents (if more than one is in the table, they must be in
4672 the same class; we check for this).
4673
4674 If the source is volatile, we don't do any table lookups.
4675
4676 We note any constant equivalent for possible later use in a
4677 REG_NOTE. */
4678
4679 if (!sets[i].src_volatile)
4680 elt = lookup (src, sets[i].src_hash, mode);
4681
4682 sets[i].src_elt = elt;
4683
4684 if (elt && src_eqv_here && src_eqv_elt)
4685 {
4686 if (elt->first_same_value != src_eqv_elt->first_same_value)
4687 {
4688 /* The REG_EQUAL is indicating that two formerly distinct
4689 classes are now equivalent. So merge them. */
4690 merge_equiv_classes (elt, src_eqv_elt);
4691 src_eqv_hash = HASH (src_eqv, elt->mode);
4692 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4693 }
4694
4695 src_eqv_here = 0;
4696 }
4697
4698 else if (src_eqv_elt)
4699 elt = src_eqv_elt;
4700
4701 /* Try to find a constant somewhere and record it in `src_const'.
4702 Record its table element, if any, in `src_const_elt'. Look in
4703 any known equivalences first. (If the constant is not in the
4704 table, also set `sets[i].src_const_hash'). */
4705 if (elt)
4706 for (p = elt->first_same_value; p; p = p->next_same_value)
4707 if (p->is_const)
4708 {
4709 src_const = p->exp;
4710 src_const_elt = elt;
4711 break;
4712 }
4713
4714 if (src_const == 0
4715 && (CONSTANT_P (src_folded)
4716 /* Consider (minus (label_ref L1) (label_ref L2)) as
4717 "constant" here so we will record it. This allows us
4718 to fold switch statements when an ADDR_DIFF_VEC is used. */
4719 || (GET_CODE (src_folded) == MINUS
4720 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4721 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4722 src_const = src_folded, src_const_elt = elt;
4723 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4724 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4725
4726 /* If we don't know if the constant is in the table, get its
4727 hash code and look it up. */
4728 if (src_const && src_const_elt == 0)
4729 {
4730 sets[i].src_const_hash = HASH (src_const, mode);
4731 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4732 }
4733
4734 sets[i].src_const = src_const;
4735 sets[i].src_const_elt = src_const_elt;
4736
4737 /* If the constant and our source are both in the table, mark them as
4738 equivalent. Otherwise, if a constant is in the table but the source
4739 isn't, set ELT to it. */
4740 if (src_const_elt && elt
4741 && src_const_elt->first_same_value != elt->first_same_value)
4742 merge_equiv_classes (elt, src_const_elt);
4743 else if (src_const_elt && elt == 0)
4744 elt = src_const_elt;
4745
4746 /* See if there is a register linearly related to a constant
4747 equivalent of SRC. */
4748 if (src_const
4749 && (GET_CODE (src_const) == CONST
4750 || (src_const_elt && src_const_elt->related_value != 0)))
4751 {
4752 src_related = use_related_value (src_const, src_const_elt);
4753 if (src_related)
4754 {
4755 struct table_elt *src_related_elt
4756 = lookup (src_related, HASH (src_related, mode), mode);
4757 if (src_related_elt && elt)
4758 {
4759 if (elt->first_same_value
4760 != src_related_elt->first_same_value)
4761 /* This can occur when we previously saw a CONST
4762 involving a SYMBOL_REF and then see the SYMBOL_REF
4763 twice. Merge the involved classes. */
4764 merge_equiv_classes (elt, src_related_elt);
4765
4766 src_related = 0;
4767 src_related_elt = 0;
4768 }
4769 else if (src_related_elt && elt == 0)
4770 elt = src_related_elt;
4771 }
4772 }
4773
4774 /* See if we have a CONST_INT that is already in a register in a
4775 wider mode. */
4776
4777 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4778 && GET_MODE_CLASS (mode) == MODE_INT
4779 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4780 {
4781 enum machine_mode wider_mode;
4782
4783 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4784 wider_mode != VOIDmode
4785 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4786 && src_related == 0;
4787 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4788 {
4789 struct table_elt *const_elt
4790 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4791
4792 if (const_elt == 0)
4793 continue;
4794
4795 for (const_elt = const_elt->first_same_value;
4796 const_elt; const_elt = const_elt->next_same_value)
4797 if (REG_P (const_elt->exp))
4798 {
4799 src_related = gen_lowpart (mode, const_elt->exp);
4800 break;
4801 }
4802 }
4803 }
4804
4805 /* Another possibility is that we have an AND with a constant in
4806 a mode narrower than a word. If so, it might have been generated
4807 as part of an "if" which would narrow the AND. If we already
4808 have done the AND in a wider mode, we can use a SUBREG of that
4809 value. */
4810
4811 if (flag_expensive_optimizations && ! src_related
4812 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4813 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4814 {
4815 enum machine_mode tmode;
4816 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4817
4818 for (tmode = GET_MODE_WIDER_MODE (mode);
4819 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4820 tmode = GET_MODE_WIDER_MODE (tmode))
4821 {
4822 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4823 struct table_elt *larger_elt;
4824
4825 if (inner)
4826 {
4827 PUT_MODE (new_and, tmode);
4828 XEXP (new_and, 0) = inner;
4829 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4830 if (larger_elt == 0)
4831 continue;
4832
4833 for (larger_elt = larger_elt->first_same_value;
4834 larger_elt; larger_elt = larger_elt->next_same_value)
4835 if (REG_P (larger_elt->exp))
4836 {
4837 src_related
4838 = gen_lowpart (mode, larger_elt->exp);
4839 break;
4840 }
4841
4842 if (src_related)
4843 break;
4844 }
4845 }
4846 }
4847
4848 #ifdef LOAD_EXTEND_OP
4849 /* See if a MEM has already been loaded with a widening operation;
4850 if it has, we can use a subreg of that. Many CISC machines
4851 also have such operations, but this is only likely to be
4852 beneficial on these machines. */
4853
4854 if (flag_expensive_optimizations && src_related == 0
4855 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4856 && GET_MODE_CLASS (mode) == MODE_INT
4857 && MEM_P (src) && ! do_not_record
4858 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4859 {
4860 struct rtx_def memory_extend_buf;
4861 rtx memory_extend_rtx = &memory_extend_buf;
4862 enum machine_mode tmode;
4863
4864 /* Set what we are trying to extend and the operation it might
4865 have been extended with. */
4866 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4867 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4868 XEXP (memory_extend_rtx, 0) = src;
4869
4870 for (tmode = GET_MODE_WIDER_MODE (mode);
4871 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4872 tmode = GET_MODE_WIDER_MODE (tmode))
4873 {
4874 struct table_elt *larger_elt;
4875
4876 PUT_MODE (memory_extend_rtx, tmode);
4877 larger_elt = lookup (memory_extend_rtx,
4878 HASH (memory_extend_rtx, tmode), tmode);
4879 if (larger_elt == 0)
4880 continue;
4881
4882 for (larger_elt = larger_elt->first_same_value;
4883 larger_elt; larger_elt = larger_elt->next_same_value)
4884 if (REG_P (larger_elt->exp))
4885 {
4886 src_related = gen_lowpart (mode, larger_elt->exp);
4887 break;
4888 }
4889
4890 if (src_related)
4891 break;
4892 }
4893 }
4894 #endif /* LOAD_EXTEND_OP */
4895
4896 /* Try to express the constant using a register+offset expression
4897 derived from a constant anchor. */
4898
4899 if (targetm.const_anchor
4900 && !src_related
4901 && src_const
4902 && GET_CODE (src_const) == CONST_INT)
4903 {
4904 src_related = try_const_anchors (src_const, mode);
4905 src_related_is_const_anchor = src_related != NULL_RTX;
4906 }
4907
4908
4909 if (src == src_folded)
4910 src_folded = 0;
4911
4912 /* At this point, ELT, if nonzero, points to a class of expressions
4913 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4914 and SRC_RELATED, if nonzero, each contain additional equivalent
4915 expressions. Prune these latter expressions by deleting expressions
4916 already in the equivalence class.
4917
4918 Check for an equivalent identical to the destination. If found,
4919 this is the preferred equivalent since it will likely lead to
4920 elimination of the insn. Indicate this by placing it in
4921 `src_related'. */
4922
4923 if (elt)
4924 elt = elt->first_same_value;
4925 for (p = elt; p; p = p->next_same_value)
4926 {
4927 enum rtx_code code = GET_CODE (p->exp);
4928
4929 /* If the expression is not valid, ignore it. Then we do not
4930 have to check for validity below. In most cases, we can use
4931 `rtx_equal_p', since canonicalization has already been done. */
4932 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4933 continue;
4934
4935 /* Also skip paradoxical subregs, unless that's what we're
4936 looking for. */
4937 if (paradoxical_subreg_p (p->exp)
4938 && ! (src != 0
4939 && GET_CODE (src) == SUBREG
4940 && GET_MODE (src) == GET_MODE (p->exp)
4941 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4942 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4943 continue;
4944
4945 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4946 src = 0;
4947 else if (src_folded && GET_CODE (src_folded) == code
4948 && rtx_equal_p (src_folded, p->exp))
4949 src_folded = 0;
4950 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4951 && rtx_equal_p (src_eqv_here, p->exp))
4952 src_eqv_here = 0;
4953 else if (src_related && GET_CODE (src_related) == code
4954 && rtx_equal_p (src_related, p->exp))
4955 src_related = 0;
4956
4957 /* This is the same as the destination of the insns, we want
4958 to prefer it. Copy it to src_related. The code below will
4959 then give it a negative cost. */
4960 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4961 src_related = dest;
4962 }
4963
4964 /* Find the cheapest valid equivalent, trying all the available
4965 possibilities. Prefer items not in the hash table to ones
4966 that are when they are equal cost. Note that we can never
4967 worsen an insn as the current contents will also succeed.
4968 If we find an equivalent identical to the destination, use it as best,
4969 since this insn will probably be eliminated in that case. */
4970 if (src)
4971 {
4972 if (rtx_equal_p (src, dest))
4973 src_cost = src_regcost = -1;
4974 else
4975 {
4976 src_cost = COST (src);
4977 src_regcost = approx_reg_cost (src);
4978 }
4979 }
4980
4981 if (src_eqv_here)
4982 {
4983 if (rtx_equal_p (src_eqv_here, dest))
4984 src_eqv_cost = src_eqv_regcost = -1;
4985 else
4986 {
4987 src_eqv_cost = COST (src_eqv_here);
4988 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4989 }
4990 }
4991
4992 if (src_folded)
4993 {
4994 if (rtx_equal_p (src_folded, dest))
4995 src_folded_cost = src_folded_regcost = -1;
4996 else
4997 {
4998 src_folded_cost = COST (src_folded);
4999 src_folded_regcost = approx_reg_cost (src_folded);
5000 }
5001 }
5002
5003 if (src_related)
5004 {
5005 if (rtx_equal_p (src_related, dest))
5006 src_related_cost = src_related_regcost = -1;
5007 else
5008 {
5009 src_related_cost = COST (src_related);
5010 src_related_regcost = approx_reg_cost (src_related);
5011
5012 /* If a const-anchor is used to synthesize a constant that
5013 normally requires multiple instructions then slightly prefer
5014 it over the original sequence. These instructions are likely
5015 to become redundant now. We can't compare against the cost
5016 of src_eqv_here because, on MIPS for example, multi-insn
5017 constants have zero cost; they are assumed to be hoisted from
5018 loops. */
5019 if (src_related_is_const_anchor
5020 && src_related_cost == src_cost
5021 && src_eqv_here)
5022 src_related_cost--;
5023 }
5024 }
5025
5026 /* If this was an indirect jump insn, a known label will really be
5027 cheaper even though it looks more expensive. */
5028 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5029 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5030
5031 /* Terminate loop when replacement made. This must terminate since
5032 the current contents will be tested and will always be valid. */
5033 while (1)
5034 {
5035 rtx trial;
5036
5037 /* Skip invalid entries. */
5038 while (elt && !REG_P (elt->exp)
5039 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5040 elt = elt->next_same_value;
5041
5042 /* A paradoxical subreg would be bad here: it'll be the right
5043 size, but later may be adjusted so that the upper bits aren't
5044 what we want. So reject it. */
5045 if (elt != 0
5046 && paradoxical_subreg_p (elt->exp)
5047 /* It is okay, though, if the rtx we're trying to match
5048 will ignore any of the bits we can't predict. */
5049 && ! (src != 0
5050 && GET_CODE (src) == SUBREG
5051 && GET_MODE (src) == GET_MODE (elt->exp)
5052 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5053 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5054 {
5055 elt = elt->next_same_value;
5056 continue;
5057 }
5058
5059 if (elt)
5060 {
5061 src_elt_cost = elt->cost;
5062 src_elt_regcost = elt->regcost;
5063 }
5064
5065 /* Find cheapest and skip it for the next time. For items
5066 of equal cost, use this order:
5067 src_folded, src, src_eqv, src_related and hash table entry. */
5068 if (src_folded
5069 && preferable (src_folded_cost, src_folded_regcost,
5070 src_cost, src_regcost) <= 0
5071 && preferable (src_folded_cost, src_folded_regcost,
5072 src_eqv_cost, src_eqv_regcost) <= 0
5073 && preferable (src_folded_cost, src_folded_regcost,
5074 src_related_cost, src_related_regcost) <= 0
5075 && preferable (src_folded_cost, src_folded_regcost,
5076 src_elt_cost, src_elt_regcost) <= 0)
5077 {
5078 trial = src_folded, src_folded_cost = MAX_COST;
5079 if (src_folded_force_flag)
5080 {
5081 rtx forced = force_const_mem (mode, trial);
5082 if (forced)
5083 trial = forced;
5084 }
5085 }
5086 else if (src
5087 && preferable (src_cost, src_regcost,
5088 src_eqv_cost, src_eqv_regcost) <= 0
5089 && preferable (src_cost, src_regcost,
5090 src_related_cost, src_related_regcost) <= 0
5091 && preferable (src_cost, src_regcost,
5092 src_elt_cost, src_elt_regcost) <= 0)
5093 trial = src, src_cost = MAX_COST;
5094 else if (src_eqv_here
5095 && preferable (src_eqv_cost, src_eqv_regcost,
5096 src_related_cost, src_related_regcost) <= 0
5097 && preferable (src_eqv_cost, src_eqv_regcost,
5098 src_elt_cost, src_elt_regcost) <= 0)
5099 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5100 else if (src_related
5101 && preferable (src_related_cost, src_related_regcost,
5102 src_elt_cost, src_elt_regcost) <= 0)
5103 trial = src_related, src_related_cost = MAX_COST;
5104 else
5105 {
5106 trial = elt->exp;
5107 elt = elt->next_same_value;
5108 src_elt_cost = MAX_COST;
5109 }
5110
5111 /* Avoid creation of overlapping memory moves. */
5112 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5113 {
5114 rtx src, dest;
5115
5116 /* BLKmode moves are not handled by cse anyway. */
5117 if (GET_MODE (trial) == BLKmode)
5118 break;
5119
5120 src = canon_rtx (trial);
5121 dest = canon_rtx (SET_DEST (sets[i].rtl));
5122
5123 if (!MEM_P (src) || !MEM_P (dest)
5124 || !nonoverlapping_memrefs_p (src, dest, false))
5125 break;
5126 }
5127
5128 /* Try to optimize
5129 (set (reg:M N) (const_int A))
5130 (set (reg:M2 O) (const_int B))
5131 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5132 (reg:M2 O)). */
5133 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5134 && CONST_INT_P (trial)
5135 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5136 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5137 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5138 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5139 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5140 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5141 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5142 <= HOST_BITS_PER_WIDE_INT))
5143 {
5144 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5145 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5146 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5147 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5148 struct table_elt *dest_elt
5149 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5150 rtx dest_cst = NULL;
5151
5152 if (dest_elt)
5153 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5154 if (p->is_const && CONST_INT_P (p->exp))
5155 {
5156 dest_cst = p->exp;
5157 break;
5158 }
5159 if (dest_cst)
5160 {
5161 HOST_WIDE_INT val = INTVAL (dest_cst);
5162 HOST_WIDE_INT mask;
5163 unsigned int shift;
5164 if (BITS_BIG_ENDIAN)
5165 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5166 - INTVAL (pos) - INTVAL (width);
5167 else
5168 shift = INTVAL (pos);
5169 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5170 mask = ~(HOST_WIDE_INT) 0;
5171 else
5172 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5173 val &= ~(mask << shift);
5174 val |= (INTVAL (trial) & mask) << shift;
5175 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5176 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5177 dest_reg, 1);
5178 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5179 GEN_INT (val), 1);
5180 if (apply_change_group ())
5181 {
5182 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5183 if (note)
5184 {
5185 remove_note (insn, note);
5186 df_notes_rescan (insn);
5187 }
5188 src_eqv = NULL_RTX;
5189 src_eqv_elt = NULL;
5190 src_eqv_volatile = 0;
5191 src_eqv_in_memory = 0;
5192 src_eqv_hash = 0;
5193 repeat = true;
5194 break;
5195 }
5196 }
5197 }
5198
5199 /* We don't normally have an insn matching (set (pc) (pc)), so
5200 check for this separately here. We will delete such an
5201 insn below.
5202
5203 For other cases such as a table jump or conditional jump
5204 where we know the ultimate target, go ahead and replace the
5205 operand. While that may not make a valid insn, we will
5206 reemit the jump below (and also insert any necessary
5207 barriers). */
5208 if (n_sets == 1 && dest == pc_rtx
5209 && (trial == pc_rtx
5210 || (GET_CODE (trial) == LABEL_REF
5211 && ! condjump_p (insn))))
5212 {
5213 /* Don't substitute non-local labels, this confuses CFG. */
5214 if (GET_CODE (trial) == LABEL_REF
5215 && LABEL_REF_NONLOCAL_P (trial))
5216 continue;
5217
5218 SET_SRC (sets[i].rtl) = trial;
5219 cse_jumps_altered = true;
5220 break;
5221 }
5222
5223 /* Reject certain invalid forms of CONST that we create. */
5224 else if (CONSTANT_P (trial)
5225 && GET_CODE (trial) == CONST
5226 /* Reject cases that will cause decode_rtx_const to
5227 die. On the alpha when simplifying a switch, we
5228 get (const (truncate (minus (label_ref)
5229 (label_ref)))). */
5230 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5231 /* Likewise on IA-64, except without the
5232 truncate. */
5233 || (GET_CODE (XEXP (trial, 0)) == MINUS
5234 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5235 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5236 /* Do nothing for this case. */
5237 ;
5238
5239 /* Look for a substitution that makes a valid insn. */
5240 else if (validate_unshare_change
5241 (insn, &SET_SRC (sets[i].rtl), trial, 0))
5242 {
5243 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5244
5245 /* The result of apply_change_group can be ignored; see
5246 canon_reg. */
5247
5248 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5249 apply_change_group ();
5250
5251 break;
5252 }
5253
5254 /* If we previously found constant pool entries for
5255 constants and this is a constant, try making a
5256 pool entry. Put it in src_folded unless we already have done
5257 this since that is where it likely came from. */
5258
5259 else if (constant_pool_entries_cost
5260 && CONSTANT_P (trial)
5261 && (src_folded == 0
5262 || (!MEM_P (src_folded)
5263 && ! src_folded_force_flag))
5264 && GET_MODE_CLASS (mode) != MODE_CC
5265 && mode != VOIDmode)
5266 {
5267 src_folded_force_flag = 1;
5268 src_folded = trial;
5269 src_folded_cost = constant_pool_entries_cost;
5270 src_folded_regcost = constant_pool_entries_regcost;
5271 }
5272 }
5273
5274 /* If we changed the insn too much, handle this set from scratch. */
5275 if (repeat)
5276 {
5277 i--;
5278 continue;
5279 }
5280
5281 src = SET_SRC (sets[i].rtl);
5282
5283 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5284 However, there is an important exception: If both are registers
5285 that are not the head of their equivalence class, replace SET_SRC
5286 with the head of the class. If we do not do this, we will have
5287 both registers live over a portion of the basic block. This way,
5288 their lifetimes will likely abut instead of overlapping. */
5289 if (REG_P (dest)
5290 && REGNO_QTY_VALID_P (REGNO (dest)))
5291 {
5292 int dest_q = REG_QTY (REGNO (dest));
5293 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5294
5295 if (dest_ent->mode == GET_MODE (dest)
5296 && dest_ent->first_reg != REGNO (dest)
5297 && REG_P (src) && REGNO (src) == REGNO (dest)
5298 /* Don't do this if the original insn had a hard reg as
5299 SET_SRC or SET_DEST. */
5300 && (!REG_P (sets[i].src)
5301 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5302 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5303 /* We can't call canon_reg here because it won't do anything if
5304 SRC is a hard register. */
5305 {
5306 int src_q = REG_QTY (REGNO (src));
5307 struct qty_table_elem *src_ent = &qty_table[src_q];
5308 int first = src_ent->first_reg;
5309 rtx new_src
5310 = (first >= FIRST_PSEUDO_REGISTER
5311 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5312
5313 /* We must use validate-change even for this, because this
5314 might be a special no-op instruction, suitable only to
5315 tag notes onto. */
5316 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5317 {
5318 src = new_src;
5319 /* If we had a constant that is cheaper than what we are now
5320 setting SRC to, use that constant. We ignored it when we
5321 thought we could make this into a no-op. */
5322 if (src_const && COST (src_const) < COST (src)
5323 && validate_change (insn, &SET_SRC (sets[i].rtl),
5324 src_const, 0))
5325 src = src_const;
5326 }
5327 }
5328 }
5329
5330 /* If we made a change, recompute SRC values. */
5331 if (src != sets[i].src)
5332 {
5333 do_not_record = 0;
5334 hash_arg_in_memory = 0;
5335 sets[i].src = src;
5336 sets[i].src_hash = HASH (src, mode);
5337 sets[i].src_volatile = do_not_record;
5338 sets[i].src_in_memory = hash_arg_in_memory;
5339 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5340 }
5341
5342 /* If this is a single SET, we are setting a register, and we have an
5343 equivalent constant, we want to add a REG_EQUAL note if the constant
5344 is different from the source. We don't want to do it for a constant
5345 pseudo since verifying that this pseudo hasn't been eliminated is a
5346 pain; moreover such a note won't help anything.
5347
5348 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5349 which can be created for a reference to a compile time computable
5350 entry in a jump table. */
5351 if (n_sets == 1
5352 && REG_P (dest)
5353 && src_const
5354 && !REG_P (src_const)
5355 && !(GET_CODE (src_const) == SUBREG
5356 && REG_P (SUBREG_REG (src_const)))
5357 && !(GET_CODE (src_const) == CONST
5358 && GET_CODE (XEXP (src_const, 0)) == MINUS
5359 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5360 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5361 && !rtx_equal_p (src, src_const))
5362 {
5363 /* Make sure that the rtx is not shared. */
5364 src_const = copy_rtx (src_const);
5365
5366 /* Record the actual constant value in a REG_EQUAL note,
5367 making a new one if one does not already exist. */
5368 set_unique_reg_note (insn, REG_EQUAL, src_const);
5369 df_notes_rescan (insn);
5370 }
5371
5372 /* Now deal with the destination. */
5373 do_not_record = 0;
5374
5375 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5376 while (GET_CODE (dest) == SUBREG
5377 || GET_CODE (dest) == ZERO_EXTRACT
5378 || GET_CODE (dest) == STRICT_LOW_PART)
5379 dest = XEXP (dest, 0);
5380
5381 sets[i].inner_dest = dest;
5382
5383 if (MEM_P (dest))
5384 {
5385 #ifdef PUSH_ROUNDING
5386 /* Stack pushes invalidate the stack pointer. */
5387 rtx addr = XEXP (dest, 0);
5388 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5389 && XEXP (addr, 0) == stack_pointer_rtx)
5390 invalidate (stack_pointer_rtx, VOIDmode);
5391 #endif
5392 dest = fold_rtx (dest, insn);
5393 }
5394
5395 /* Compute the hash code of the destination now,
5396 before the effects of this instruction are recorded,
5397 since the register values used in the address computation
5398 are those before this instruction. */
5399 sets[i].dest_hash = HASH (dest, mode);
5400
5401 /* Don't enter a bit-field in the hash table
5402 because the value in it after the store
5403 may not equal what was stored, due to truncation. */
5404
5405 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5406 {
5407 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5408
5409 if (src_const != 0 && CONST_INT_P (src_const)
5410 && CONST_INT_P (width)
5411 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5412 && ! (INTVAL (src_const)
5413 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5414 /* Exception: if the value is constant,
5415 and it won't be truncated, record it. */
5416 ;
5417 else
5418 {
5419 /* This is chosen so that the destination will be invalidated
5420 but no new value will be recorded.
5421 We must invalidate because sometimes constant
5422 values can be recorded for bitfields. */
5423 sets[i].src_elt = 0;
5424 sets[i].src_volatile = 1;
5425 src_eqv = 0;
5426 src_eqv_elt = 0;
5427 }
5428 }
5429
5430 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5431 the insn. */
5432 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5433 {
5434 /* One less use of the label this insn used to jump to. */
5435 delete_insn_and_edges (insn);
5436 cse_jumps_altered = true;
5437 /* No more processing for this set. */
5438 sets[i].rtl = 0;
5439 }
5440
5441 /* If this SET is now setting PC to a label, we know it used to
5442 be a conditional or computed branch. */
5443 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5444 && !LABEL_REF_NONLOCAL_P (src))
5445 {
5446 /* We reemit the jump in as many cases as possible just in
5447 case the form of an unconditional jump is significantly
5448 different than a computed jump or conditional jump.
5449
5450 If this insn has multiple sets, then reemitting the
5451 jump is nontrivial. So instead we just force rerecognition
5452 and hope for the best. */
5453 if (n_sets == 1)
5454 {
5455 rtx new_rtx, note;
5456
5457 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5458 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5459 LABEL_NUSES (XEXP (src, 0))++;
5460
5461 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5462 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5463 if (note)
5464 {
5465 XEXP (note, 1) = NULL_RTX;
5466 REG_NOTES (new_rtx) = note;
5467 }
5468
5469 delete_insn_and_edges (insn);
5470 insn = new_rtx;
5471 }
5472 else
5473 INSN_CODE (insn) = -1;
5474
5475 /* Do not bother deleting any unreachable code, let jump do it. */
5476 cse_jumps_altered = true;
5477 sets[i].rtl = 0;
5478 }
5479
5480 /* If destination is volatile, invalidate it and then do no further
5481 processing for this assignment. */
5482
5483 else if (do_not_record)
5484 {
5485 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5486 invalidate (dest, VOIDmode);
5487 else if (MEM_P (dest))
5488 invalidate (dest, VOIDmode);
5489 else if (GET_CODE (dest) == STRICT_LOW_PART
5490 || GET_CODE (dest) == ZERO_EXTRACT)
5491 invalidate (XEXP (dest, 0), GET_MODE (dest));
5492 sets[i].rtl = 0;
5493 }
5494
5495 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5496 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5497
5498 #ifdef HAVE_cc0
5499 /* If setting CC0, record what it was set to, or a constant, if it
5500 is equivalent to a constant. If it is being set to a floating-point
5501 value, make a COMPARE with the appropriate constant of 0. If we
5502 don't do this, later code can interpret this as a test against
5503 const0_rtx, which can cause problems if we try to put it into an
5504 insn as a floating-point operand. */
5505 if (dest == cc0_rtx)
5506 {
5507 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5508 this_insn_cc0_mode = mode;
5509 if (FLOAT_MODE_P (mode))
5510 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5511 CONST0_RTX (mode));
5512 }
5513 #endif
5514 }
5515
5516 /* Now enter all non-volatile source expressions in the hash table
5517 if they are not already present.
5518 Record their equivalence classes in src_elt.
5519 This way we can insert the corresponding destinations into
5520 the same classes even if the actual sources are no longer in them
5521 (having been invalidated). */
5522
5523 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5524 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5525 {
5526 struct table_elt *elt;
5527 struct table_elt *classp = sets[0].src_elt;
5528 rtx dest = SET_DEST (sets[0].rtl);
5529 enum machine_mode eqvmode = GET_MODE (dest);
5530
5531 if (GET_CODE (dest) == STRICT_LOW_PART)
5532 {
5533 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5534 classp = 0;
5535 }
5536 if (insert_regs (src_eqv, classp, 0))
5537 {
5538 rehash_using_reg (src_eqv);
5539 src_eqv_hash = HASH (src_eqv, eqvmode);
5540 }
5541 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5542 elt->in_memory = src_eqv_in_memory;
5543 src_eqv_elt = elt;
5544
5545 /* Check to see if src_eqv_elt is the same as a set source which
5546 does not yet have an elt, and if so set the elt of the set source
5547 to src_eqv_elt. */
5548 for (i = 0; i < n_sets; i++)
5549 if (sets[i].rtl && sets[i].src_elt == 0
5550 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5551 sets[i].src_elt = src_eqv_elt;
5552 }
5553
5554 for (i = 0; i < n_sets; i++)
5555 if (sets[i].rtl && ! sets[i].src_volatile
5556 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5557 {
5558 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5559 {
5560 /* REG_EQUAL in setting a STRICT_LOW_PART
5561 gives an equivalent for the entire destination register,
5562 not just for the subreg being stored in now.
5563 This is a more interesting equivalence, so we arrange later
5564 to treat the entire reg as the destination. */
5565 sets[i].src_elt = src_eqv_elt;
5566 sets[i].src_hash = src_eqv_hash;
5567 }
5568 else
5569 {
5570 /* Insert source and constant equivalent into hash table, if not
5571 already present. */
5572 struct table_elt *classp = src_eqv_elt;
5573 rtx src = sets[i].src;
5574 rtx dest = SET_DEST (sets[i].rtl);
5575 enum machine_mode mode
5576 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5577
5578 /* It's possible that we have a source value known to be
5579 constant but don't have a REG_EQUAL note on the insn.
5580 Lack of a note will mean src_eqv_elt will be NULL. This
5581 can happen where we've generated a SUBREG to access a
5582 CONST_INT that is already in a register in a wider mode.
5583 Ensure that the source expression is put in the proper
5584 constant class. */
5585 if (!classp)
5586 classp = sets[i].src_const_elt;
5587
5588 if (sets[i].src_elt == 0)
5589 {
5590 struct table_elt *elt;
5591
5592 /* Note that these insert_regs calls cannot remove
5593 any of the src_elt's, because they would have failed to
5594 match if not still valid. */
5595 if (insert_regs (src, classp, 0))
5596 {
5597 rehash_using_reg (src);
5598 sets[i].src_hash = HASH (src, mode);
5599 }
5600 elt = insert (src, classp, sets[i].src_hash, mode);
5601 elt->in_memory = sets[i].src_in_memory;
5602 sets[i].src_elt = classp = elt;
5603 }
5604 if (sets[i].src_const && sets[i].src_const_elt == 0
5605 && src != sets[i].src_const
5606 && ! rtx_equal_p (sets[i].src_const, src))
5607 sets[i].src_elt = insert (sets[i].src_const, classp,
5608 sets[i].src_const_hash, mode);
5609 }
5610 }
5611 else if (sets[i].src_elt == 0)
5612 /* If we did not insert the source into the hash table (e.g., it was
5613 volatile), note the equivalence class for the REG_EQUAL value, if any,
5614 so that the destination goes into that class. */
5615 sets[i].src_elt = src_eqv_elt;
5616
5617 /* Record destination addresses in the hash table. This allows us to
5618 check if they are invalidated by other sets. */
5619 for (i = 0; i < n_sets; i++)
5620 {
5621 if (sets[i].rtl)
5622 {
5623 rtx x = sets[i].inner_dest;
5624 struct table_elt *elt;
5625 enum machine_mode mode;
5626 unsigned hash;
5627
5628 if (MEM_P (x))
5629 {
5630 x = XEXP (x, 0);
5631 mode = GET_MODE (x);
5632 hash = HASH (x, mode);
5633 elt = lookup (x, hash, mode);
5634 if (!elt)
5635 {
5636 if (insert_regs (x, NULL, 0))
5637 {
5638 rtx dest = SET_DEST (sets[i].rtl);
5639
5640 rehash_using_reg (x);
5641 hash = HASH (x, mode);
5642 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5643 }
5644 elt = insert (x, NULL, hash, mode);
5645 }
5646
5647 sets[i].dest_addr_elt = elt;
5648 }
5649 else
5650 sets[i].dest_addr_elt = NULL;
5651 }
5652 }
5653
5654 invalidate_from_clobbers (insn);
5655
5656 /* Some registers are invalidated by subroutine calls. Memory is
5657 invalidated by non-constant calls. */
5658
5659 if (CALL_P (insn))
5660 {
5661 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5662 invalidate_memory ();
5663 invalidate_for_call ();
5664 }
5665
5666 /* Now invalidate everything set by this instruction.
5667 If a SUBREG or other funny destination is being set,
5668 sets[i].rtl is still nonzero, so here we invalidate the reg
5669 a part of which is being set. */
5670
5671 for (i = 0; i < n_sets; i++)
5672 if (sets[i].rtl)
5673 {
5674 /* We can't use the inner dest, because the mode associated with
5675 a ZERO_EXTRACT is significant. */
5676 rtx dest = SET_DEST (sets[i].rtl);
5677
5678 /* Needed for registers to remove the register from its
5679 previous quantity's chain.
5680 Needed for memory if this is a nonvarying address, unless
5681 we have just done an invalidate_memory that covers even those. */
5682 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5683 invalidate (dest, VOIDmode);
5684 else if (MEM_P (dest))
5685 invalidate (dest, VOIDmode);
5686 else if (GET_CODE (dest) == STRICT_LOW_PART
5687 || GET_CODE (dest) == ZERO_EXTRACT)
5688 invalidate (XEXP (dest, 0), GET_MODE (dest));
5689 }
5690
5691 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5692 the regs restored by the longjmp come from a later time
5693 than the setjmp. */
5694 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5695 {
5696 flush_hash_table ();
5697 goto done;
5698 }
5699
5700 /* Make sure registers mentioned in destinations
5701 are safe for use in an expression to be inserted.
5702 This removes from the hash table
5703 any invalid entry that refers to one of these registers.
5704
5705 We don't care about the return value from mention_regs because
5706 we are going to hash the SET_DEST values unconditionally. */
5707
5708 for (i = 0; i < n_sets; i++)
5709 {
5710 if (sets[i].rtl)
5711 {
5712 rtx x = SET_DEST (sets[i].rtl);
5713
5714 if (!REG_P (x))
5715 mention_regs (x);
5716 else
5717 {
5718 /* We used to rely on all references to a register becoming
5719 inaccessible when a register changes to a new quantity,
5720 since that changes the hash code. However, that is not
5721 safe, since after HASH_SIZE new quantities we get a
5722 hash 'collision' of a register with its own invalid
5723 entries. And since SUBREGs have been changed not to
5724 change their hash code with the hash code of the register,
5725 it wouldn't work any longer at all. So we have to check
5726 for any invalid references lying around now.
5727 This code is similar to the REG case in mention_regs,
5728 but it knows that reg_tick has been incremented, and
5729 it leaves reg_in_table as -1 . */
5730 unsigned int regno = REGNO (x);
5731 unsigned int endregno = END_REGNO (x);
5732 unsigned int i;
5733
5734 for (i = regno; i < endregno; i++)
5735 {
5736 if (REG_IN_TABLE (i) >= 0)
5737 {
5738 remove_invalid_refs (i);
5739 REG_IN_TABLE (i) = -1;
5740 }
5741 }
5742 }
5743 }
5744 }
5745
5746 /* We may have just removed some of the src_elt's from the hash table.
5747 So replace each one with the current head of the same class.
5748 Also check if destination addresses have been removed. */
5749
5750 for (i = 0; i < n_sets; i++)
5751 if (sets[i].rtl)
5752 {
5753 if (sets[i].dest_addr_elt
5754 && sets[i].dest_addr_elt->first_same_value == 0)
5755 {
5756 /* The elt was removed, which means this destination is not
5757 valid after this instruction. */
5758 sets[i].rtl = NULL_RTX;
5759 }
5760 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5761 /* If elt was removed, find current head of same class,
5762 or 0 if nothing remains of that class. */
5763 {
5764 struct table_elt *elt = sets[i].src_elt;
5765
5766 while (elt && elt->prev_same_value)
5767 elt = elt->prev_same_value;
5768
5769 while (elt && elt->first_same_value == 0)
5770 elt = elt->next_same_value;
5771 sets[i].src_elt = elt ? elt->first_same_value : 0;
5772 }
5773 }
5774
5775 /* Now insert the destinations into their equivalence classes. */
5776
5777 for (i = 0; i < n_sets; i++)
5778 if (sets[i].rtl)
5779 {
5780 rtx dest = SET_DEST (sets[i].rtl);
5781 struct table_elt *elt;
5782
5783 /* Don't record value if we are not supposed to risk allocating
5784 floating-point values in registers that might be wider than
5785 memory. */
5786 if ((flag_float_store
5787 && MEM_P (dest)
5788 && FLOAT_MODE_P (GET_MODE (dest)))
5789 /* Don't record BLKmode values, because we don't know the
5790 size of it, and can't be sure that other BLKmode values
5791 have the same or smaller size. */
5792 || GET_MODE (dest) == BLKmode
5793 /* If we didn't put a REG_EQUAL value or a source into the hash
5794 table, there is no point is recording DEST. */
5795 || sets[i].src_elt == 0
5796 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5797 or SIGN_EXTEND, don't record DEST since it can cause
5798 some tracking to be wrong.
5799
5800 ??? Think about this more later. */
5801 || (paradoxical_subreg_p (dest)
5802 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5803 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5804 continue;
5805
5806 /* STRICT_LOW_PART isn't part of the value BEING set,
5807 and neither is the SUBREG inside it.
5808 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5809 if (GET_CODE (dest) == STRICT_LOW_PART)
5810 dest = SUBREG_REG (XEXP (dest, 0));
5811
5812 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5813 /* Registers must also be inserted into chains for quantities. */
5814 if (insert_regs (dest, sets[i].src_elt, 1))
5815 {
5816 /* If `insert_regs' changes something, the hash code must be
5817 recalculated. */
5818 rehash_using_reg (dest);
5819 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5820 }
5821
5822 elt = insert (dest, sets[i].src_elt,
5823 sets[i].dest_hash, GET_MODE (dest));
5824
5825 /* If this is a constant, insert the constant anchors with the
5826 equivalent register-offset expressions using register DEST. */
5827 if (targetm.const_anchor
5828 && REG_P (dest)
5829 && SCALAR_INT_MODE_P (GET_MODE (dest))
5830 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5831 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5832
5833 elt->in_memory = (MEM_P (sets[i].inner_dest)
5834 && !MEM_READONLY_P (sets[i].inner_dest));
5835
5836 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5837 narrower than M2, and both M1 and M2 are the same number of words,
5838 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5839 make that equivalence as well.
5840
5841 However, BAR may have equivalences for which gen_lowpart
5842 will produce a simpler value than gen_lowpart applied to
5843 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5844 BAR's equivalences. If we don't get a simplified form, make
5845 the SUBREG. It will not be used in an equivalence, but will
5846 cause two similar assignments to be detected.
5847
5848 Note the loop below will find SUBREG_REG (DEST) since we have
5849 already entered SRC and DEST of the SET in the table. */
5850
5851 if (GET_CODE (dest) == SUBREG
5852 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5853 / UNITS_PER_WORD)
5854 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5855 && (GET_MODE_SIZE (GET_MODE (dest))
5856 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5857 && sets[i].src_elt != 0)
5858 {
5859 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5860 struct table_elt *elt, *classp = 0;
5861
5862 for (elt = sets[i].src_elt->first_same_value; elt;
5863 elt = elt->next_same_value)
5864 {
5865 rtx new_src = 0;
5866 unsigned src_hash;
5867 struct table_elt *src_elt;
5868 int byte = 0;
5869
5870 /* Ignore invalid entries. */
5871 if (!REG_P (elt->exp)
5872 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5873 continue;
5874
5875 /* We may have already been playing subreg games. If the
5876 mode is already correct for the destination, use it. */
5877 if (GET_MODE (elt->exp) == new_mode)
5878 new_src = elt->exp;
5879 else
5880 {
5881 /* Calculate big endian correction for the SUBREG_BYTE.
5882 We have already checked that M1 (GET_MODE (dest))
5883 is not narrower than M2 (new_mode). */
5884 if (BYTES_BIG_ENDIAN)
5885 byte = (GET_MODE_SIZE (GET_MODE (dest))
5886 - GET_MODE_SIZE (new_mode));
5887
5888 new_src = simplify_gen_subreg (new_mode, elt->exp,
5889 GET_MODE (dest), byte);
5890 }
5891
5892 /* The call to simplify_gen_subreg fails if the value
5893 is VOIDmode, yet we can't do any simplification, e.g.
5894 for EXPR_LISTs denoting function call results.
5895 It is invalid to construct a SUBREG with a VOIDmode
5896 SUBREG_REG, hence a zero new_src means we can't do
5897 this substitution. */
5898 if (! new_src)
5899 continue;
5900
5901 src_hash = HASH (new_src, new_mode);
5902 src_elt = lookup (new_src, src_hash, new_mode);
5903
5904 /* Put the new source in the hash table is if isn't
5905 already. */
5906 if (src_elt == 0)
5907 {
5908 if (insert_regs (new_src, classp, 0))
5909 {
5910 rehash_using_reg (new_src);
5911 src_hash = HASH (new_src, new_mode);
5912 }
5913 src_elt = insert (new_src, classp, src_hash, new_mode);
5914 src_elt->in_memory = elt->in_memory;
5915 }
5916 else if (classp && classp != src_elt->first_same_value)
5917 /* Show that two things that we've seen before are
5918 actually the same. */
5919 merge_equiv_classes (src_elt, classp);
5920
5921 classp = src_elt->first_same_value;
5922 /* Ignore invalid entries. */
5923 while (classp
5924 && !REG_P (classp->exp)
5925 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5926 classp = classp->next_same_value;
5927 }
5928 }
5929 }
5930
5931 /* Special handling for (set REG0 REG1) where REG0 is the
5932 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5933 be used in the sequel, so (if easily done) change this insn to
5934 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5935 that computed their value. Then REG1 will become a dead store
5936 and won't cloud the situation for later optimizations.
5937
5938 Do not make this change if REG1 is a hard register, because it will
5939 then be used in the sequel and we may be changing a two-operand insn
5940 into a three-operand insn.
5941
5942 Also do not do this if we are operating on a copy of INSN. */
5943
5944 if (n_sets == 1 && sets[0].rtl)
5945 try_back_substitute_reg (sets[0].rtl, insn);
5946
5947 done:;
5948 }
5949 \f
5950 /* Remove from the hash table all expressions that reference memory. */
5951
5952 static void
5953 invalidate_memory (void)
5954 {
5955 int i;
5956 struct table_elt *p, *next;
5957
5958 for (i = 0; i < HASH_SIZE; i++)
5959 for (p = table[i]; p; p = next)
5960 {
5961 next = p->next_same_hash;
5962 if (p->in_memory)
5963 remove_from_table (p, i);
5964 }
5965 }
5966
5967 /* Perform invalidation on the basis of everything about INSN,
5968 except for invalidating the actual places that are SET in it.
5969 This includes the places CLOBBERed, and anything that might
5970 alias with something that is SET or CLOBBERed. */
5971
5972 static void
5973 invalidate_from_clobbers (rtx insn)
5974 {
5975 rtx x = PATTERN (insn);
5976
5977 if (GET_CODE (x) == CLOBBER)
5978 {
5979 rtx ref = XEXP (x, 0);
5980 if (ref)
5981 {
5982 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5983 || MEM_P (ref))
5984 invalidate (ref, VOIDmode);
5985 else if (GET_CODE (ref) == STRICT_LOW_PART
5986 || GET_CODE (ref) == ZERO_EXTRACT)
5987 invalidate (XEXP (ref, 0), GET_MODE (ref));
5988 }
5989 }
5990 else if (GET_CODE (x) == PARALLEL)
5991 {
5992 int i;
5993 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5994 {
5995 rtx y = XVECEXP (x, 0, i);
5996 if (GET_CODE (y) == CLOBBER)
5997 {
5998 rtx ref = XEXP (y, 0);
5999 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6000 || MEM_P (ref))
6001 invalidate (ref, VOIDmode);
6002 else if (GET_CODE (ref) == STRICT_LOW_PART
6003 || GET_CODE (ref) == ZERO_EXTRACT)
6004 invalidate (XEXP (ref, 0), GET_MODE (ref));
6005 }
6006 }
6007 }
6008 }
6009 \f
6010 /* Perform invalidation on the basis of everything about INSN.
6011 This includes the places CLOBBERed, and anything that might
6012 alias with something that is SET or CLOBBERed. */
6013
6014 static void
6015 invalidate_from_sets_and_clobbers (rtx insn)
6016 {
6017 rtx tem;
6018 rtx x = PATTERN (insn);
6019
6020 if (CALL_P (insn))
6021 {
6022 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6023 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6024 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6025 }
6026
6027 /* Ensure we invalidate the destination register of a CALL insn.
6028 This is necessary for machines where this register is a fixed_reg,
6029 because no other code would invalidate it. */
6030 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6031 invalidate (SET_DEST (x), VOIDmode);
6032
6033 else if (GET_CODE (x) == PARALLEL)
6034 {
6035 int i;
6036
6037 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6038 {
6039 rtx y = XVECEXP (x, 0, i);
6040 if (GET_CODE (y) == CLOBBER)
6041 {
6042 rtx clobbered = XEXP (y, 0);
6043
6044 if (REG_P (clobbered)
6045 || GET_CODE (clobbered) == SUBREG)
6046 invalidate (clobbered, VOIDmode);
6047 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6048 || GET_CODE (clobbered) == ZERO_EXTRACT)
6049 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6050 }
6051 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6052 invalidate (SET_DEST (y), VOIDmode);
6053 }
6054 }
6055 }
6056 \f
6057 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6058 and replace any registers in them with either an equivalent constant
6059 or the canonical form of the register. If we are inside an address,
6060 only do this if the address remains valid.
6061
6062 OBJECT is 0 except when within a MEM in which case it is the MEM.
6063
6064 Return the replacement for X. */
6065
6066 static rtx
6067 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6068 {
6069 enum rtx_code code = GET_CODE (x);
6070 const char *fmt = GET_RTX_FORMAT (code);
6071 int i;
6072
6073 switch (code)
6074 {
6075 case CONST:
6076 case SYMBOL_REF:
6077 case LABEL_REF:
6078 CASE_CONST_ANY:
6079 case PC:
6080 case CC0:
6081 case LO_SUM:
6082 return x;
6083
6084 case MEM:
6085 validate_change (x, &XEXP (x, 0),
6086 cse_process_notes (XEXP (x, 0), x, changed), 0);
6087 return x;
6088
6089 case EXPR_LIST:
6090 if (REG_NOTE_KIND (x) == REG_EQUAL)
6091 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6092 /* Fall through. */
6093
6094 case INSN_LIST:
6095 case INT_LIST:
6096 if (XEXP (x, 1))
6097 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6098 return x;
6099
6100 case SIGN_EXTEND:
6101 case ZERO_EXTEND:
6102 case SUBREG:
6103 {
6104 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6105 /* We don't substitute VOIDmode constants into these rtx,
6106 since they would impede folding. */
6107 if (GET_MODE (new_rtx) != VOIDmode)
6108 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6109 return x;
6110 }
6111
6112 case UNSIGNED_FLOAT:
6113 {
6114 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6115 /* We don't substitute negative VOIDmode constants into these rtx,
6116 since they would impede folding. */
6117 if (GET_MODE (new_rtx) != VOIDmode
6118 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6119 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6120 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6121 return x;
6122 }
6123
6124 case REG:
6125 i = REG_QTY (REGNO (x));
6126
6127 /* Return a constant or a constant register. */
6128 if (REGNO_QTY_VALID_P (REGNO (x)))
6129 {
6130 struct qty_table_elem *ent = &qty_table[i];
6131
6132 if (ent->const_rtx != NULL_RTX
6133 && (CONSTANT_P (ent->const_rtx)
6134 || REG_P (ent->const_rtx)))
6135 {
6136 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6137 if (new_rtx)
6138 return copy_rtx (new_rtx);
6139 }
6140 }
6141
6142 /* Otherwise, canonicalize this register. */
6143 return canon_reg (x, NULL_RTX);
6144
6145 default:
6146 break;
6147 }
6148
6149 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6150 if (fmt[i] == 'e')
6151 validate_change (object, &XEXP (x, i),
6152 cse_process_notes (XEXP (x, i), object, changed), 0);
6153
6154 return x;
6155 }
6156
6157 static rtx
6158 cse_process_notes (rtx x, rtx object, bool *changed)
6159 {
6160 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6161 if (new_rtx != x)
6162 *changed = true;
6163 return new_rtx;
6164 }
6165
6166 \f
6167 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6168
6169 DATA is a pointer to a struct cse_basic_block_data, that is used to
6170 describe the path.
6171 It is filled with a queue of basic blocks, starting with FIRST_BB
6172 and following a trace through the CFG.
6173
6174 If all paths starting at FIRST_BB have been followed, or no new path
6175 starting at FIRST_BB can be constructed, this function returns FALSE.
6176 Otherwise, DATA->path is filled and the function returns TRUE indicating
6177 that a path to follow was found.
6178
6179 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6180 block in the path will be FIRST_BB. */
6181
6182 static bool
6183 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6184 int follow_jumps)
6185 {
6186 basic_block bb;
6187 edge e;
6188 int path_size;
6189
6190 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6191
6192 /* See if there is a previous path. */
6193 path_size = data->path_size;
6194
6195 /* There is a previous path. Make sure it started with FIRST_BB. */
6196 if (path_size)
6197 gcc_assert (data->path[0].bb == first_bb);
6198
6199 /* There was only one basic block in the last path. Clear the path and
6200 return, so that paths starting at another basic block can be tried. */
6201 if (path_size == 1)
6202 {
6203 path_size = 0;
6204 goto done;
6205 }
6206
6207 /* If the path was empty from the beginning, construct a new path. */
6208 if (path_size == 0)
6209 data->path[path_size++].bb = first_bb;
6210 else
6211 {
6212 /* Otherwise, path_size must be equal to or greater than 2, because
6213 a previous path exists that is at least two basic blocks long.
6214
6215 Update the previous branch path, if any. If the last branch was
6216 previously along the branch edge, take the fallthrough edge now. */
6217 while (path_size >= 2)
6218 {
6219 basic_block last_bb_in_path, previous_bb_in_path;
6220 edge e;
6221
6222 --path_size;
6223 last_bb_in_path = data->path[path_size].bb;
6224 previous_bb_in_path = data->path[path_size - 1].bb;
6225
6226 /* If we previously followed a path along the branch edge, try
6227 the fallthru edge now. */
6228 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6229 && any_condjump_p (BB_END (previous_bb_in_path))
6230 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6231 && e == BRANCH_EDGE (previous_bb_in_path))
6232 {
6233 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6234 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6235 && single_pred_p (bb)
6236 /* We used to assert here that we would only see blocks
6237 that we have not visited yet. But we may end up
6238 visiting basic blocks twice if the CFG has changed
6239 in this run of cse_main, because when the CFG changes
6240 the topological sort of the CFG also changes. A basic
6241 blocks that previously had more than two predecessors
6242 may now have a single predecessor, and become part of
6243 a path that starts at another basic block.
6244
6245 We still want to visit each basic block only once, so
6246 halt the path here if we have already visited BB. */
6247 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6248 {
6249 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6250 data->path[path_size++].bb = bb;
6251 break;
6252 }
6253 }
6254
6255 data->path[path_size].bb = NULL;
6256 }
6257
6258 /* If only one block remains in the path, bail. */
6259 if (path_size == 1)
6260 {
6261 path_size = 0;
6262 goto done;
6263 }
6264 }
6265
6266 /* Extend the path if possible. */
6267 if (follow_jumps)
6268 {
6269 bb = data->path[path_size - 1].bb;
6270 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6271 {
6272 if (single_succ_p (bb))
6273 e = single_succ_edge (bb);
6274 else if (EDGE_COUNT (bb->succs) == 2
6275 && any_condjump_p (BB_END (bb)))
6276 {
6277 /* First try to follow the branch. If that doesn't lead
6278 to a useful path, follow the fallthru edge. */
6279 e = BRANCH_EDGE (bb);
6280 if (!single_pred_p (e->dest))
6281 e = FALLTHRU_EDGE (bb);
6282 }
6283 else
6284 e = NULL;
6285
6286 if (e
6287 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6288 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6289 && single_pred_p (e->dest)
6290 /* Avoid visiting basic blocks twice. The large comment
6291 above explains why this can happen. */
6292 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6293 {
6294 basic_block bb2 = e->dest;
6295 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6296 data->path[path_size++].bb = bb2;
6297 bb = bb2;
6298 }
6299 else
6300 bb = NULL;
6301 }
6302 }
6303
6304 done:
6305 data->path_size = path_size;
6306 return path_size != 0;
6307 }
6308 \f
6309 /* Dump the path in DATA to file F. NSETS is the number of sets
6310 in the path. */
6311
6312 static void
6313 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6314 {
6315 int path_entry;
6316
6317 fprintf (f, ";; Following path with %d sets: ", nsets);
6318 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6319 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6320 fputc ('\n', dump_file);
6321 fflush (f);
6322 }
6323
6324 \f
6325 /* Return true if BB has exception handling successor edges. */
6326
6327 static bool
6328 have_eh_succ_edges (basic_block bb)
6329 {
6330 edge e;
6331 edge_iterator ei;
6332
6333 FOR_EACH_EDGE (e, ei, bb->succs)
6334 if (e->flags & EDGE_EH)
6335 return true;
6336
6337 return false;
6338 }
6339
6340 \f
6341 /* Scan to the end of the path described by DATA. Return an estimate of
6342 the total number of SETs of all insns in the path. */
6343
6344 static void
6345 cse_prescan_path (struct cse_basic_block_data *data)
6346 {
6347 int nsets = 0;
6348 int path_size = data->path_size;
6349 int path_entry;
6350
6351 /* Scan to end of each basic block in the path. */
6352 for (path_entry = 0; path_entry < path_size; path_entry++)
6353 {
6354 basic_block bb;
6355 rtx insn;
6356
6357 bb = data->path[path_entry].bb;
6358
6359 FOR_BB_INSNS (bb, insn)
6360 {
6361 if (!INSN_P (insn))
6362 continue;
6363
6364 /* A PARALLEL can have lots of SETs in it,
6365 especially if it is really an ASM_OPERANDS. */
6366 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6367 nsets += XVECLEN (PATTERN (insn), 0);
6368 else
6369 nsets += 1;
6370 }
6371 }
6372
6373 data->nsets = nsets;
6374 }
6375 \f
6376 /* Process a single extended basic block described by EBB_DATA. */
6377
6378 static void
6379 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6380 {
6381 int path_size = ebb_data->path_size;
6382 int path_entry;
6383 int num_insns = 0;
6384
6385 /* Allocate the space needed by qty_table. */
6386 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6387
6388 new_basic_block ();
6389 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6390 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6391 for (path_entry = 0; path_entry < path_size; path_entry++)
6392 {
6393 basic_block bb;
6394 rtx insn;
6395
6396 bb = ebb_data->path[path_entry].bb;
6397
6398 /* Invalidate recorded information for eh regs if there is an EH
6399 edge pointing to that bb. */
6400 if (bb_has_eh_pred (bb))
6401 {
6402 df_ref *def_rec;
6403
6404 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6405 {
6406 df_ref def = *def_rec;
6407 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6408 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6409 }
6410 }
6411
6412 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6413 FOR_BB_INSNS (bb, insn)
6414 {
6415 /* If we have processed 1,000 insns, flush the hash table to
6416 avoid extreme quadratic behavior. We must not include NOTEs
6417 in the count since there may be more of them when generating
6418 debugging information. If we clear the table at different
6419 times, code generated with -g -O might be different than code
6420 generated with -O but not -g.
6421
6422 FIXME: This is a real kludge and needs to be done some other
6423 way. */
6424 if (NONDEBUG_INSN_P (insn)
6425 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6426 {
6427 flush_hash_table ();
6428 num_insns = 0;
6429 }
6430
6431 if (INSN_P (insn))
6432 {
6433 /* Process notes first so we have all notes in canonical forms
6434 when looking for duplicate operations. */
6435 if (REG_NOTES (insn))
6436 {
6437 bool changed = false;
6438 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6439 NULL_RTX, &changed);
6440 if (changed)
6441 df_notes_rescan (insn);
6442 }
6443
6444 cse_insn (insn);
6445
6446 /* If we haven't already found an insn where we added a LABEL_REF,
6447 check this one. */
6448 if (INSN_P (insn) && !recorded_label_ref
6449 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6450 (void *) insn))
6451 recorded_label_ref = true;
6452
6453 #ifdef HAVE_cc0
6454 if (NONDEBUG_INSN_P (insn))
6455 {
6456 /* If the previous insn sets CC0 and this insn no
6457 longer references CC0, delete the previous insn.
6458 Here we use fact that nothing expects CC0 to be
6459 valid over an insn, which is true until the final
6460 pass. */
6461 rtx prev_insn, tem;
6462
6463 prev_insn = prev_nonnote_nondebug_insn (insn);
6464 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6465 && (tem = single_set (prev_insn)) != NULL_RTX
6466 && SET_DEST (tem) == cc0_rtx
6467 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6468 delete_insn (prev_insn);
6469
6470 /* If this insn is not the last insn in the basic
6471 block, it will be PREV_INSN(insn) in the next
6472 iteration. If we recorded any CC0-related
6473 information for this insn, remember it. */
6474 if (insn != BB_END (bb))
6475 {
6476 prev_insn_cc0 = this_insn_cc0;
6477 prev_insn_cc0_mode = this_insn_cc0_mode;
6478 }
6479 }
6480 #endif
6481 }
6482 }
6483
6484 /* With non-call exceptions, we are not always able to update
6485 the CFG properly inside cse_insn. So clean up possibly
6486 redundant EH edges here. */
6487 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6488 cse_cfg_altered |= purge_dead_edges (bb);
6489
6490 /* If we changed a conditional jump, we may have terminated
6491 the path we are following. Check that by verifying that
6492 the edge we would take still exists. If the edge does
6493 not exist anymore, purge the remainder of the path.
6494 Note that this will cause us to return to the caller. */
6495 if (path_entry < path_size - 1)
6496 {
6497 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6498 if (!find_edge (bb, next_bb))
6499 {
6500 do
6501 {
6502 path_size--;
6503
6504 /* If we truncate the path, we must also reset the
6505 visited bit on the remaining blocks in the path,
6506 or we will never visit them at all. */
6507 bitmap_clear_bit (cse_visited_basic_blocks,
6508 ebb_data->path[path_size].bb->index);
6509 ebb_data->path[path_size].bb = NULL;
6510 }
6511 while (path_size - 1 != path_entry);
6512 ebb_data->path_size = path_size;
6513 }
6514 }
6515
6516 /* If this is a conditional jump insn, record any known
6517 equivalences due to the condition being tested. */
6518 insn = BB_END (bb);
6519 if (path_entry < path_size - 1
6520 && JUMP_P (insn)
6521 && single_set (insn)
6522 && any_condjump_p (insn))
6523 {
6524 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6525 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6526 record_jump_equiv (insn, taken);
6527 }
6528
6529 #ifdef HAVE_cc0
6530 /* Clear the CC0-tracking related insns, they can't provide
6531 useful information across basic block boundaries. */
6532 prev_insn_cc0 = 0;
6533 #endif
6534 }
6535
6536 gcc_assert (next_qty <= max_qty);
6537
6538 free (qty_table);
6539 }
6540
6541 \f
6542 /* Perform cse on the instructions of a function.
6543 F is the first instruction.
6544 NREGS is one plus the highest pseudo-reg number used in the instruction.
6545
6546 Return 2 if jump optimizations should be redone due to simplifications
6547 in conditional jump instructions.
6548 Return 1 if the CFG should be cleaned up because it has been modified.
6549 Return 0 otherwise. */
6550
6551 static int
6552 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6553 {
6554 struct cse_basic_block_data ebb_data;
6555 basic_block bb;
6556 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6557 int i, n_blocks;
6558
6559 df_set_flags (DF_LR_RUN_DCE);
6560 df_note_add_problem ();
6561 df_analyze ();
6562 df_set_flags (DF_DEFER_INSN_RESCAN);
6563
6564 reg_scan (get_insns (), max_reg_num ());
6565 init_cse_reg_info (nregs);
6566
6567 ebb_data.path = XNEWVEC (struct branch_path,
6568 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6569
6570 cse_cfg_altered = false;
6571 cse_jumps_altered = false;
6572 recorded_label_ref = false;
6573 constant_pool_entries_cost = 0;
6574 constant_pool_entries_regcost = 0;
6575 ebb_data.path_size = 0;
6576 ebb_data.nsets = 0;
6577 rtl_hooks = cse_rtl_hooks;
6578
6579 init_recog ();
6580 init_alias_analysis ();
6581
6582 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6583
6584 /* Set up the table of already visited basic blocks. */
6585 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6586 bitmap_clear (cse_visited_basic_blocks);
6587
6588 /* Loop over basic blocks in reverse completion order (RPO),
6589 excluding the ENTRY and EXIT blocks. */
6590 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6591 i = 0;
6592 while (i < n_blocks)
6593 {
6594 /* Find the first block in the RPO queue that we have not yet
6595 processed before. */
6596 do
6597 {
6598 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6599 }
6600 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6601 && i < n_blocks);
6602
6603 /* Find all paths starting with BB, and process them. */
6604 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6605 {
6606 /* Pre-scan the path. */
6607 cse_prescan_path (&ebb_data);
6608
6609 /* If this basic block has no sets, skip it. */
6610 if (ebb_data.nsets == 0)
6611 continue;
6612
6613 /* Get a reasonable estimate for the maximum number of qty's
6614 needed for this path. For this, we take the number of sets
6615 and multiply that by MAX_RECOG_OPERANDS. */
6616 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6617
6618 /* Dump the path we're about to process. */
6619 if (dump_file)
6620 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6621
6622 cse_extended_basic_block (&ebb_data);
6623 }
6624 }
6625
6626 /* Clean up. */
6627 end_alias_analysis ();
6628 free (reg_eqv_table);
6629 free (ebb_data.path);
6630 sbitmap_free (cse_visited_basic_blocks);
6631 free (rc_order);
6632 rtl_hooks = general_rtl_hooks;
6633
6634 if (cse_jumps_altered || recorded_label_ref)
6635 return 2;
6636 else if (cse_cfg_altered)
6637 return 1;
6638 else
6639 return 0;
6640 }
6641 \f
6642 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6643 which there isn't a REG_LABEL_OPERAND note.
6644 Return one if so. DATA is the insn. */
6645
6646 static int
6647 check_for_label_ref (rtx *rtl, void *data)
6648 {
6649 rtx insn = (rtx) data;
6650
6651 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6652 note for it, we must rerun jump since it needs to place the note. If
6653 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6654 don't do this since no REG_LABEL_OPERAND will be added. */
6655 return (GET_CODE (*rtl) == LABEL_REF
6656 && ! LABEL_REF_NONLOCAL_P (*rtl)
6657 && (!JUMP_P (insn)
6658 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6659 && LABEL_P (XEXP (*rtl, 0))
6660 && INSN_UID (XEXP (*rtl, 0)) != 0
6661 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6662 }
6663 \f
6664 /* Count the number of times registers are used (not set) in X.
6665 COUNTS is an array in which we accumulate the count, INCR is how much
6666 we count each register usage.
6667
6668 Don't count a usage of DEST, which is the SET_DEST of a SET which
6669 contains X in its SET_SRC. This is because such a SET does not
6670 modify the liveness of DEST.
6671 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6672 We must then count uses of a SET_DEST regardless, because the insn can't be
6673 deleted here. */
6674
6675 static void
6676 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6677 {
6678 enum rtx_code code;
6679 rtx note;
6680 const char *fmt;
6681 int i, j;
6682
6683 if (x == 0)
6684 return;
6685
6686 switch (code = GET_CODE (x))
6687 {
6688 case REG:
6689 if (x != dest)
6690 counts[REGNO (x)] += incr;
6691 return;
6692
6693 case PC:
6694 case CC0:
6695 case CONST:
6696 CASE_CONST_ANY:
6697 case SYMBOL_REF:
6698 case LABEL_REF:
6699 return;
6700
6701 case CLOBBER:
6702 /* If we are clobbering a MEM, mark any registers inside the address
6703 as being used. */
6704 if (MEM_P (XEXP (x, 0)))
6705 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6706 return;
6707
6708 case SET:
6709 /* Unless we are setting a REG, count everything in SET_DEST. */
6710 if (!REG_P (SET_DEST (x)))
6711 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6712 count_reg_usage (SET_SRC (x), counts,
6713 dest ? dest : SET_DEST (x),
6714 incr);
6715 return;
6716
6717 case DEBUG_INSN:
6718 return;
6719
6720 case CALL_INSN:
6721 case INSN:
6722 case JUMP_INSN:
6723 /* We expect dest to be NULL_RTX here. If the insn may throw,
6724 or if it cannot be deleted due to side-effects, mark this fact
6725 by setting DEST to pc_rtx. */
6726 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6727 || side_effects_p (PATTERN (x)))
6728 dest = pc_rtx;
6729 if (code == CALL_INSN)
6730 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6731 count_reg_usage (PATTERN (x), counts, dest, incr);
6732
6733 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6734 use them. */
6735
6736 note = find_reg_equal_equiv_note (x);
6737 if (note)
6738 {
6739 rtx eqv = XEXP (note, 0);
6740
6741 if (GET_CODE (eqv) == EXPR_LIST)
6742 /* This REG_EQUAL note describes the result of a function call.
6743 Process all the arguments. */
6744 do
6745 {
6746 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6747 eqv = XEXP (eqv, 1);
6748 }
6749 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6750 else
6751 count_reg_usage (eqv, counts, dest, incr);
6752 }
6753 return;
6754
6755 case EXPR_LIST:
6756 if (REG_NOTE_KIND (x) == REG_EQUAL
6757 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6758 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6759 involving registers in the address. */
6760 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6761 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6762
6763 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6764 return;
6765
6766 case ASM_OPERANDS:
6767 /* Iterate over just the inputs, not the constraints as well. */
6768 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6769 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6770 return;
6771
6772 case INSN_LIST:
6773 case INT_LIST:
6774 gcc_unreachable ();
6775
6776 default:
6777 break;
6778 }
6779
6780 fmt = GET_RTX_FORMAT (code);
6781 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6782 {
6783 if (fmt[i] == 'e')
6784 count_reg_usage (XEXP (x, i), counts, dest, incr);
6785 else if (fmt[i] == 'E')
6786 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6787 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6788 }
6789 }
6790 \f
6791 /* Return true if X is a dead register. */
6792
6793 static inline int
6794 is_dead_reg (rtx x, int *counts)
6795 {
6796 return (REG_P (x)
6797 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6798 && counts[REGNO (x)] == 0);
6799 }
6800
6801 /* Return true if set is live. */
6802 static bool
6803 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6804 int *counts)
6805 {
6806 #ifdef HAVE_cc0
6807 rtx tem;
6808 #endif
6809
6810 if (set_noop_p (set))
6811 ;
6812
6813 #ifdef HAVE_cc0
6814 else if (GET_CODE (SET_DEST (set)) == CC0
6815 && !side_effects_p (SET_SRC (set))
6816 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6817 || !INSN_P (tem)
6818 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6819 return false;
6820 #endif
6821 else if (!is_dead_reg (SET_DEST (set), counts)
6822 || side_effects_p (SET_SRC (set)))
6823 return true;
6824 return false;
6825 }
6826
6827 /* Return true if insn is live. */
6828
6829 static bool
6830 insn_live_p (rtx insn, int *counts)
6831 {
6832 int i;
6833 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6834 return true;
6835 else if (GET_CODE (PATTERN (insn)) == SET)
6836 return set_live_p (PATTERN (insn), insn, counts);
6837 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6838 {
6839 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6840 {
6841 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6842
6843 if (GET_CODE (elt) == SET)
6844 {
6845 if (set_live_p (elt, insn, counts))
6846 return true;
6847 }
6848 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6849 return true;
6850 }
6851 return false;
6852 }
6853 else if (DEBUG_INSN_P (insn))
6854 {
6855 rtx next;
6856
6857 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6858 if (NOTE_P (next))
6859 continue;
6860 else if (!DEBUG_INSN_P (next))
6861 return true;
6862 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6863 return false;
6864
6865 return true;
6866 }
6867 else
6868 return true;
6869 }
6870
6871 /* Count the number of stores into pseudo. Callback for note_stores. */
6872
6873 static void
6874 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6875 {
6876 int *counts = (int *) data;
6877 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6878 counts[REGNO (x)]++;
6879 }
6880
6881 struct dead_debug_insn_data
6882 {
6883 int *counts;
6884 rtx *replacements;
6885 bool seen_repl;
6886 };
6887
6888 /* Return if a DEBUG_INSN needs to be reset because some dead
6889 pseudo doesn't have a replacement. Callback for for_each_rtx. */
6890
6891 static int
6892 is_dead_debug_insn (rtx *loc, void *data)
6893 {
6894 rtx x = *loc;
6895 struct dead_debug_insn_data *ddid = (struct dead_debug_insn_data *) data;
6896
6897 if (is_dead_reg (x, ddid->counts))
6898 {
6899 if (ddid->replacements && ddid->replacements[REGNO (x)] != NULL_RTX)
6900 ddid->seen_repl = true;
6901 else
6902 return 1;
6903 }
6904 return 0;
6905 }
6906
6907 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6908 Callback for simplify_replace_fn_rtx. */
6909
6910 static rtx
6911 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6912 {
6913 rtx *replacements = (rtx *) data;
6914
6915 if (REG_P (x)
6916 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6917 && replacements[REGNO (x)] != NULL_RTX)
6918 {
6919 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6920 return replacements[REGNO (x)];
6921 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6922 GET_MODE (replacements[REGNO (x)]));
6923 }
6924 return NULL_RTX;
6925 }
6926
6927 /* Scan all the insns and delete any that are dead; i.e., they store a register
6928 that is never used or they copy a register to itself.
6929
6930 This is used to remove insns made obviously dead by cse, loop or other
6931 optimizations. It improves the heuristics in loop since it won't try to
6932 move dead invariants out of loops or make givs for dead quantities. The
6933 remaining passes of the compilation are also sped up. */
6934
6935 int
6936 delete_trivially_dead_insns (rtx insns, int nreg)
6937 {
6938 int *counts;
6939 rtx insn, prev;
6940 rtx *replacements = NULL;
6941 int ndead = 0;
6942
6943 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6944 /* First count the number of times each register is used. */
6945 if (MAY_HAVE_DEBUG_INSNS)
6946 {
6947 counts = XCNEWVEC (int, nreg * 3);
6948 for (insn = insns; insn; insn = NEXT_INSN (insn))
6949 if (DEBUG_INSN_P (insn))
6950 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6951 NULL_RTX, 1);
6952 else if (INSN_P (insn))
6953 {
6954 count_reg_usage (insn, counts, NULL_RTX, 1);
6955 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6956 }
6957 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6958 First one counts how many times each pseudo is used outside
6959 of debug insns, second counts how many times each pseudo is
6960 used in debug insns and third counts how many times a pseudo
6961 is stored. */
6962 }
6963 else
6964 {
6965 counts = XCNEWVEC (int, nreg);
6966 for (insn = insns; insn; insn = NEXT_INSN (insn))
6967 if (INSN_P (insn))
6968 count_reg_usage (insn, counts, NULL_RTX, 1);
6969 /* If no debug insns can be present, COUNTS is just an array
6970 which counts how many times each pseudo is used. */
6971 }
6972 /* Go from the last insn to the first and delete insns that only set unused
6973 registers or copy a register to itself. As we delete an insn, remove
6974 usage counts for registers it uses.
6975
6976 The first jump optimization pass may leave a real insn as the last
6977 insn in the function. We must not skip that insn or we may end
6978 up deleting code that is not really dead.
6979
6980 If some otherwise unused register is only used in DEBUG_INSNs,
6981 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
6982 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
6983 has been created for the unused register, replace it with
6984 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
6985 for (insn = get_last_insn (); insn; insn = prev)
6986 {
6987 int live_insn = 0;
6988
6989 prev = PREV_INSN (insn);
6990 if (!INSN_P (insn))
6991 continue;
6992
6993 live_insn = insn_live_p (insn, counts);
6994
6995 /* If this is a dead insn, delete it and show registers in it aren't
6996 being used. */
6997
6998 if (! live_insn && dbg_cnt (delete_trivial_dead))
6999 {
7000 if (DEBUG_INSN_P (insn))
7001 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7002 NULL_RTX, -1);
7003 else
7004 {
7005 rtx set;
7006 if (MAY_HAVE_DEBUG_INSNS
7007 && (set = single_set (insn)) != NULL_RTX
7008 && is_dead_reg (SET_DEST (set), counts)
7009 /* Used at least once in some DEBUG_INSN. */
7010 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7011 /* And set exactly once. */
7012 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7013 && !side_effects_p (SET_SRC (set))
7014 && asm_noperands (PATTERN (insn)) < 0)
7015 {
7016 rtx dval, bind;
7017
7018 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7019 dval = make_debug_expr_from_rtl (SET_DEST (set));
7020
7021 /* Emit a debug bind insn before the insn in which
7022 reg dies. */
7023 bind = gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7024 DEBUG_EXPR_TREE_DECL (dval),
7025 SET_SRC (set),
7026 VAR_INIT_STATUS_INITIALIZED);
7027 count_reg_usage (bind, counts + nreg, NULL_RTX, 1);
7028
7029 bind = emit_debug_insn_before (bind, insn);
7030 df_insn_rescan (bind);
7031
7032 if (replacements == NULL)
7033 replacements = XCNEWVEC (rtx, nreg);
7034 replacements[REGNO (SET_DEST (set))] = dval;
7035 }
7036
7037 count_reg_usage (insn, counts, NULL_RTX, -1);
7038 ndead++;
7039 }
7040 delete_insn_and_edges (insn);
7041 }
7042 }
7043
7044 if (MAY_HAVE_DEBUG_INSNS)
7045 {
7046 struct dead_debug_insn_data ddid;
7047 ddid.counts = counts;
7048 ddid.replacements = replacements;
7049 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7050 if (DEBUG_INSN_P (insn))
7051 {
7052 /* If this debug insn references a dead register that wasn't replaced
7053 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7054 ddid.seen_repl = false;
7055 if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
7056 is_dead_debug_insn, &ddid))
7057 {
7058 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7059 df_insn_rescan (insn);
7060 }
7061 else if (ddid.seen_repl)
7062 {
7063 INSN_VAR_LOCATION_LOC (insn)
7064 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7065 NULL_RTX, replace_dead_reg,
7066 replacements);
7067 df_insn_rescan (insn);
7068 }
7069 }
7070 free (replacements);
7071 }
7072
7073 if (dump_file && ndead)
7074 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7075 ndead);
7076 /* Clean up. */
7077 free (counts);
7078 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7079 return ndead;
7080 }
7081
7082 /* This function is called via for_each_rtx. The argument, NEWREG, is
7083 a condition code register with the desired mode. If we are looking
7084 at the same register in a different mode, replace it with
7085 NEWREG. */
7086
7087 static int
7088 cse_change_cc_mode (rtx *loc, void *data)
7089 {
7090 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7091
7092 if (*loc
7093 && REG_P (*loc)
7094 && REGNO (*loc) == REGNO (args->newreg)
7095 && GET_MODE (*loc) != GET_MODE (args->newreg))
7096 {
7097 validate_change (args->insn, loc, args->newreg, 1);
7098
7099 return -1;
7100 }
7101 return 0;
7102 }
7103
7104 /* Change the mode of any reference to the register REGNO (NEWREG) to
7105 GET_MODE (NEWREG) in INSN. */
7106
7107 static void
7108 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7109 {
7110 struct change_cc_mode_args args;
7111 int success;
7112
7113 if (!INSN_P (insn))
7114 return;
7115
7116 args.insn = insn;
7117 args.newreg = newreg;
7118
7119 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7120 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7121
7122 /* If the following assertion was triggered, there is most probably
7123 something wrong with the cc_modes_compatible back end function.
7124 CC modes only can be considered compatible if the insn - with the mode
7125 replaced by any of the compatible modes - can still be recognized. */
7126 success = apply_change_group ();
7127 gcc_assert (success);
7128 }
7129
7130 /* Change the mode of any reference to the register REGNO (NEWREG) to
7131 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7132 any instruction which modifies NEWREG. */
7133
7134 static void
7135 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7136 {
7137 rtx insn;
7138
7139 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7140 {
7141 if (! INSN_P (insn))
7142 continue;
7143
7144 if (reg_set_p (newreg, insn))
7145 return;
7146
7147 cse_change_cc_mode_insn (insn, newreg);
7148 }
7149 }
7150
7151 /* BB is a basic block which finishes with CC_REG as a condition code
7152 register which is set to CC_SRC. Look through the successors of BB
7153 to find blocks which have a single predecessor (i.e., this one),
7154 and look through those blocks for an assignment to CC_REG which is
7155 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7156 permitted to change the mode of CC_SRC to a compatible mode. This
7157 returns VOIDmode if no equivalent assignments were found.
7158 Otherwise it returns the mode which CC_SRC should wind up with.
7159 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7160 but is passed unmodified down to recursive calls in order to prevent
7161 endless recursion.
7162
7163 The main complexity in this function is handling the mode issues.
7164 We may have more than one duplicate which we can eliminate, and we
7165 try to find a mode which will work for multiple duplicates. */
7166
7167 static enum machine_mode
7168 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7169 bool can_change_mode)
7170 {
7171 bool found_equiv;
7172 enum machine_mode mode;
7173 unsigned int insn_count;
7174 edge e;
7175 rtx insns[2];
7176 enum machine_mode modes[2];
7177 rtx last_insns[2];
7178 unsigned int i;
7179 rtx newreg;
7180 edge_iterator ei;
7181
7182 /* We expect to have two successors. Look at both before picking
7183 the final mode for the comparison. If we have more successors
7184 (i.e., some sort of table jump, although that seems unlikely),
7185 then we require all beyond the first two to use the same
7186 mode. */
7187
7188 found_equiv = false;
7189 mode = GET_MODE (cc_src);
7190 insn_count = 0;
7191 FOR_EACH_EDGE (e, ei, bb->succs)
7192 {
7193 rtx insn;
7194 rtx end;
7195
7196 if (e->flags & EDGE_COMPLEX)
7197 continue;
7198
7199 if (EDGE_COUNT (e->dest->preds) != 1
7200 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7201 /* Avoid endless recursion on unreachable blocks. */
7202 || e->dest == orig_bb)
7203 continue;
7204
7205 end = NEXT_INSN (BB_END (e->dest));
7206 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7207 {
7208 rtx set;
7209
7210 if (! INSN_P (insn))
7211 continue;
7212
7213 /* If CC_SRC is modified, we have to stop looking for
7214 something which uses it. */
7215 if (modified_in_p (cc_src, insn))
7216 break;
7217
7218 /* Check whether INSN sets CC_REG to CC_SRC. */
7219 set = single_set (insn);
7220 if (set
7221 && REG_P (SET_DEST (set))
7222 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7223 {
7224 bool found;
7225 enum machine_mode set_mode;
7226 enum machine_mode comp_mode;
7227
7228 found = false;
7229 set_mode = GET_MODE (SET_SRC (set));
7230 comp_mode = set_mode;
7231 if (rtx_equal_p (cc_src, SET_SRC (set)))
7232 found = true;
7233 else if (GET_CODE (cc_src) == COMPARE
7234 && GET_CODE (SET_SRC (set)) == COMPARE
7235 && mode != set_mode
7236 && rtx_equal_p (XEXP (cc_src, 0),
7237 XEXP (SET_SRC (set), 0))
7238 && rtx_equal_p (XEXP (cc_src, 1),
7239 XEXP (SET_SRC (set), 1)))
7240
7241 {
7242 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7243 if (comp_mode != VOIDmode
7244 && (can_change_mode || comp_mode == mode))
7245 found = true;
7246 }
7247
7248 if (found)
7249 {
7250 found_equiv = true;
7251 if (insn_count < ARRAY_SIZE (insns))
7252 {
7253 insns[insn_count] = insn;
7254 modes[insn_count] = set_mode;
7255 last_insns[insn_count] = end;
7256 ++insn_count;
7257
7258 if (mode != comp_mode)
7259 {
7260 gcc_assert (can_change_mode);
7261 mode = comp_mode;
7262
7263 /* The modified insn will be re-recognized later. */
7264 PUT_MODE (cc_src, mode);
7265 }
7266 }
7267 else
7268 {
7269 if (set_mode != mode)
7270 {
7271 /* We found a matching expression in the
7272 wrong mode, but we don't have room to
7273 store it in the array. Punt. This case
7274 should be rare. */
7275 break;
7276 }
7277 /* INSN sets CC_REG to a value equal to CC_SRC
7278 with the right mode. We can simply delete
7279 it. */
7280 delete_insn (insn);
7281 }
7282
7283 /* We found an instruction to delete. Keep looking,
7284 in the hopes of finding a three-way jump. */
7285 continue;
7286 }
7287
7288 /* We found an instruction which sets the condition
7289 code, so don't look any farther. */
7290 break;
7291 }
7292
7293 /* If INSN sets CC_REG in some other way, don't look any
7294 farther. */
7295 if (reg_set_p (cc_reg, insn))
7296 break;
7297 }
7298
7299 /* If we fell off the bottom of the block, we can keep looking
7300 through successors. We pass CAN_CHANGE_MODE as false because
7301 we aren't prepared to handle compatibility between the
7302 further blocks and this block. */
7303 if (insn == end)
7304 {
7305 enum machine_mode submode;
7306
7307 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7308 if (submode != VOIDmode)
7309 {
7310 gcc_assert (submode == mode);
7311 found_equiv = true;
7312 can_change_mode = false;
7313 }
7314 }
7315 }
7316
7317 if (! found_equiv)
7318 return VOIDmode;
7319
7320 /* Now INSN_COUNT is the number of instructions we found which set
7321 CC_REG to a value equivalent to CC_SRC. The instructions are in
7322 INSNS. The modes used by those instructions are in MODES. */
7323
7324 newreg = NULL_RTX;
7325 for (i = 0; i < insn_count; ++i)
7326 {
7327 if (modes[i] != mode)
7328 {
7329 /* We need to change the mode of CC_REG in INSNS[i] and
7330 subsequent instructions. */
7331 if (! newreg)
7332 {
7333 if (GET_MODE (cc_reg) == mode)
7334 newreg = cc_reg;
7335 else
7336 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7337 }
7338 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7339 newreg);
7340 }
7341
7342 delete_insn_and_edges (insns[i]);
7343 }
7344
7345 return mode;
7346 }
7347
7348 /* If we have a fixed condition code register (or two), walk through
7349 the instructions and try to eliminate duplicate assignments. */
7350
7351 static void
7352 cse_condition_code_reg (void)
7353 {
7354 unsigned int cc_regno_1;
7355 unsigned int cc_regno_2;
7356 rtx cc_reg_1;
7357 rtx cc_reg_2;
7358 basic_block bb;
7359
7360 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7361 return;
7362
7363 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7364 if (cc_regno_2 != INVALID_REGNUM)
7365 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7366 else
7367 cc_reg_2 = NULL_RTX;
7368
7369 FOR_EACH_BB_FN (bb, cfun)
7370 {
7371 rtx last_insn;
7372 rtx cc_reg;
7373 rtx insn;
7374 rtx cc_src_insn;
7375 rtx cc_src;
7376 enum machine_mode mode;
7377 enum machine_mode orig_mode;
7378
7379 /* Look for blocks which end with a conditional jump based on a
7380 condition code register. Then look for the instruction which
7381 sets the condition code register. Then look through the
7382 successor blocks for instructions which set the condition
7383 code register to the same value. There are other possible
7384 uses of the condition code register, but these are by far the
7385 most common and the ones which we are most likely to be able
7386 to optimize. */
7387
7388 last_insn = BB_END (bb);
7389 if (!JUMP_P (last_insn))
7390 continue;
7391
7392 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7393 cc_reg = cc_reg_1;
7394 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7395 cc_reg = cc_reg_2;
7396 else
7397 continue;
7398
7399 cc_src_insn = NULL_RTX;
7400 cc_src = NULL_RTX;
7401 for (insn = PREV_INSN (last_insn);
7402 insn && insn != PREV_INSN (BB_HEAD (bb));
7403 insn = PREV_INSN (insn))
7404 {
7405 rtx set;
7406
7407 if (! INSN_P (insn))
7408 continue;
7409 set = single_set (insn);
7410 if (set
7411 && REG_P (SET_DEST (set))
7412 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7413 {
7414 cc_src_insn = insn;
7415 cc_src = SET_SRC (set);
7416 break;
7417 }
7418 else if (reg_set_p (cc_reg, insn))
7419 break;
7420 }
7421
7422 if (! cc_src_insn)
7423 continue;
7424
7425 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7426 continue;
7427
7428 /* Now CC_REG is a condition code register used for a
7429 conditional jump at the end of the block, and CC_SRC, in
7430 CC_SRC_INSN, is the value to which that condition code
7431 register is set, and CC_SRC is still meaningful at the end of
7432 the basic block. */
7433
7434 orig_mode = GET_MODE (cc_src);
7435 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7436 if (mode != VOIDmode)
7437 {
7438 gcc_assert (mode == GET_MODE (cc_src));
7439 if (mode != orig_mode)
7440 {
7441 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7442
7443 cse_change_cc_mode_insn (cc_src_insn, newreg);
7444
7445 /* Do the same in the following insns that use the
7446 current value of CC_REG within BB. */
7447 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7448 NEXT_INSN (last_insn),
7449 newreg);
7450 }
7451 }
7452 }
7453 }
7454 \f
7455
7456 /* Perform common subexpression elimination. Nonzero value from
7457 `cse_main' means that jumps were simplified and some code may now
7458 be unreachable, so do jump optimization again. */
7459 static bool
7460 gate_handle_cse (void)
7461 {
7462 return optimize > 0;
7463 }
7464
7465 static unsigned int
7466 rest_of_handle_cse (void)
7467 {
7468 int tem;
7469
7470 if (dump_file)
7471 dump_flow_info (dump_file, dump_flags);
7472
7473 tem = cse_main (get_insns (), max_reg_num ());
7474
7475 /* If we are not running more CSE passes, then we are no longer
7476 expecting CSE to be run. But always rerun it in a cheap mode. */
7477 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7478
7479 if (tem == 2)
7480 {
7481 timevar_push (TV_JUMP);
7482 rebuild_jump_labels (get_insns ());
7483 cleanup_cfg (CLEANUP_CFG_CHANGED);
7484 timevar_pop (TV_JUMP);
7485 }
7486 else if (tem == 1 || optimize > 1)
7487 cleanup_cfg (0);
7488
7489 return 0;
7490 }
7491
7492 namespace {
7493
7494 const pass_data pass_data_cse =
7495 {
7496 RTL_PASS, /* type */
7497 "cse1", /* name */
7498 OPTGROUP_NONE, /* optinfo_flags */
7499 true, /* has_gate */
7500 true, /* has_execute */
7501 TV_CSE, /* tv_id */
7502 0, /* properties_required */
7503 0, /* properties_provided */
7504 0, /* properties_destroyed */
7505 0, /* todo_flags_start */
7506 ( TODO_df_finish | TODO_verify_rtl_sharing
7507 | TODO_verify_flow ), /* todo_flags_finish */
7508 };
7509
7510 class pass_cse : public rtl_opt_pass
7511 {
7512 public:
7513 pass_cse (gcc::context *ctxt)
7514 : rtl_opt_pass (pass_data_cse, ctxt)
7515 {}
7516
7517 /* opt_pass methods: */
7518 bool gate () { return gate_handle_cse (); }
7519 unsigned int execute () { return rest_of_handle_cse (); }
7520
7521 }; // class pass_cse
7522
7523 } // anon namespace
7524
7525 rtl_opt_pass *
7526 make_pass_cse (gcc::context *ctxt)
7527 {
7528 return new pass_cse (ctxt);
7529 }
7530
7531
7532 static bool
7533 gate_handle_cse2 (void)
7534 {
7535 return optimize > 0 && flag_rerun_cse_after_loop;
7536 }
7537
7538 /* Run second CSE pass after loop optimizations. */
7539 static unsigned int
7540 rest_of_handle_cse2 (void)
7541 {
7542 int tem;
7543
7544 if (dump_file)
7545 dump_flow_info (dump_file, dump_flags);
7546
7547 tem = cse_main (get_insns (), max_reg_num ());
7548
7549 /* Run a pass to eliminate duplicated assignments to condition code
7550 registers. We have to run this after bypass_jumps, because it
7551 makes it harder for that pass to determine whether a jump can be
7552 bypassed safely. */
7553 cse_condition_code_reg ();
7554
7555 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7556
7557 if (tem == 2)
7558 {
7559 timevar_push (TV_JUMP);
7560 rebuild_jump_labels (get_insns ());
7561 cleanup_cfg (CLEANUP_CFG_CHANGED);
7562 timevar_pop (TV_JUMP);
7563 }
7564 else if (tem == 1)
7565 cleanup_cfg (0);
7566
7567 cse_not_expected = 1;
7568 return 0;
7569 }
7570
7571
7572 namespace {
7573
7574 const pass_data pass_data_cse2 =
7575 {
7576 RTL_PASS, /* type */
7577 "cse2", /* name */
7578 OPTGROUP_NONE, /* optinfo_flags */
7579 true, /* has_gate */
7580 true, /* has_execute */
7581 TV_CSE2, /* tv_id */
7582 0, /* properties_required */
7583 0, /* properties_provided */
7584 0, /* properties_destroyed */
7585 0, /* todo_flags_start */
7586 ( TODO_df_finish | TODO_verify_rtl_sharing
7587 | TODO_verify_flow ), /* todo_flags_finish */
7588 };
7589
7590 class pass_cse2 : public rtl_opt_pass
7591 {
7592 public:
7593 pass_cse2 (gcc::context *ctxt)
7594 : rtl_opt_pass (pass_data_cse2, ctxt)
7595 {}
7596
7597 /* opt_pass methods: */
7598 bool gate () { return gate_handle_cse2 (); }
7599 unsigned int execute () { return rest_of_handle_cse2 (); }
7600
7601 }; // class pass_cse2
7602
7603 } // anon namespace
7604
7605 rtl_opt_pass *
7606 make_pass_cse2 (gcc::context *ctxt)
7607 {
7608 return new pass_cse2 (ctxt);
7609 }
7610
7611 static bool
7612 gate_handle_cse_after_global_opts (void)
7613 {
7614 return optimize > 0 && flag_rerun_cse_after_global_opts;
7615 }
7616
7617 /* Run second CSE pass after loop optimizations. */
7618 static unsigned int
7619 rest_of_handle_cse_after_global_opts (void)
7620 {
7621 int save_cfj;
7622 int tem;
7623
7624 /* We only want to do local CSE, so don't follow jumps. */
7625 save_cfj = flag_cse_follow_jumps;
7626 flag_cse_follow_jumps = 0;
7627
7628 rebuild_jump_labels (get_insns ());
7629 tem = cse_main (get_insns (), max_reg_num ());
7630 purge_all_dead_edges ();
7631 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7632
7633 cse_not_expected = !flag_rerun_cse_after_loop;
7634
7635 /* If cse altered any jumps, rerun jump opts to clean things up. */
7636 if (tem == 2)
7637 {
7638 timevar_push (TV_JUMP);
7639 rebuild_jump_labels (get_insns ());
7640 cleanup_cfg (CLEANUP_CFG_CHANGED);
7641 timevar_pop (TV_JUMP);
7642 }
7643 else if (tem == 1)
7644 cleanup_cfg (0);
7645
7646 flag_cse_follow_jumps = save_cfj;
7647 return 0;
7648 }
7649
7650 namespace {
7651
7652 const pass_data pass_data_cse_after_global_opts =
7653 {
7654 RTL_PASS, /* type */
7655 "cse_local", /* name */
7656 OPTGROUP_NONE, /* optinfo_flags */
7657 true, /* has_gate */
7658 true, /* has_execute */
7659 TV_CSE, /* tv_id */
7660 0, /* properties_required */
7661 0, /* properties_provided */
7662 0, /* properties_destroyed */
7663 0, /* todo_flags_start */
7664 ( TODO_df_finish | TODO_verify_rtl_sharing
7665 | TODO_verify_flow ), /* todo_flags_finish */
7666 };
7667
7668 class pass_cse_after_global_opts : public rtl_opt_pass
7669 {
7670 public:
7671 pass_cse_after_global_opts (gcc::context *ctxt)
7672 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7673 {}
7674
7675 /* opt_pass methods: */
7676 bool gate () { return gate_handle_cse_after_global_opts (); }
7677 unsigned int execute () {
7678 return rest_of_handle_cse_after_global_opts ();
7679 }
7680
7681 }; // class pass_cse_after_global_opts
7682
7683 } // anon namespace
7684
7685 rtl_opt_pass *
7686 make_pass_cse_after_global_opts (gcc::context *ctxt)
7687 {
7688 return new pass_cse_after_global_opts (ctxt);
7689 }