]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cse.c
Change copyright header to refer to version 3 of the GNU General Public License and...
[thirdparty/gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
47 #include "df.h"
48 #include "dbgcnt.h"
49
50 /* The basic idea of common subexpression elimination is to go
51 through the code, keeping a record of expressions that would
52 have the same value at the current scan point, and replacing
53 expressions encountered with the cheapest equivalent expression.
54
55 It is too complicated to keep track of the different possibilities
56 when control paths merge in this code; so, at each label, we forget all
57 that is known and start fresh. This can be described as processing each
58 extended basic block separately. We have a separate pass to perform
59 global CSE.
60
61 Note CSE can turn a conditional or computed jump into a nop or
62 an unconditional jump. When this occurs we arrange to run the jump
63 optimizer after CSE to delete the unreachable code.
64
65 We use two data structures to record the equivalent expressions:
66 a hash table for most expressions, and a vector of "quantity
67 numbers" to record equivalent (pseudo) registers.
68
69 The use of the special data structure for registers is desirable
70 because it is faster. It is possible because registers references
71 contain a fairly small number, the register number, taken from
72 a contiguously allocated series, and two register references are
73 identical if they have the same number. General expressions
74 do not have any such thing, so the only way to retrieve the
75 information recorded on an expression other than a register
76 is to keep it in a hash table.
77
78 Registers and "quantity numbers":
79
80 At the start of each basic block, all of the (hardware and pseudo)
81 registers used in the function are given distinct quantity
82 numbers to indicate their contents. During scan, when the code
83 copies one register into another, we copy the quantity number.
84 When a register is loaded in any other way, we allocate a new
85 quantity number to describe the value generated by this operation.
86 `REG_QTY (N)' records what quantity register N is currently thought
87 of as containing.
88
89 All real quantity numbers are greater than or equal to zero.
90 If register N has not been assigned a quantity, `REG_QTY (N)' will
91 equal -N - 1, which is always negative.
92
93 Quantity numbers below zero do not exist and none of the `qty_table'
94 entries should be referenced with a negative index.
95
96 We also maintain a bidirectional chain of registers for each
97 quantity number. The `qty_table` members `first_reg' and `last_reg',
98 and `reg_eqv_table' members `next' and `prev' hold these chains.
99
100 The first register in a chain is the one whose lifespan is least local.
101 Among equals, it is the one that was seen first.
102 We replace any equivalent register with that one.
103
104 If two registers have the same quantity number, it must be true that
105 REG expressions with qty_table `mode' must be in the hash table for both
106 registers and must be in the same class.
107
108 The converse is not true. Since hard registers may be referenced in
109 any mode, two REG expressions might be equivalent in the hash table
110 but not have the same quantity number if the quantity number of one
111 of the registers is not the same mode as those expressions.
112
113 Constants and quantity numbers
114
115 When a quantity has a known constant value, that value is stored
116 in the appropriate qty_table `const_rtx'. This is in addition to
117 putting the constant in the hash table as is usual for non-regs.
118
119 Whether a reg or a constant is preferred is determined by the configuration
120 macro CONST_COSTS and will often depend on the constant value. In any
121 event, expressions containing constants can be simplified, by fold_rtx.
122
123 When a quantity has a known nearly constant value (such as an address
124 of a stack slot), that value is stored in the appropriate qty_table
125 `const_rtx'.
126
127 Integer constants don't have a machine mode. However, cse
128 determines the intended machine mode from the destination
129 of the instruction that moves the constant. The machine mode
130 is recorded in the hash table along with the actual RTL
131 constant expression so that different modes are kept separate.
132
133 Other expressions:
134
135 To record known equivalences among expressions in general
136 we use a hash table called `table'. It has a fixed number of buckets
137 that contain chains of `struct table_elt' elements for expressions.
138 These chains connect the elements whose expressions have the same
139 hash codes.
140
141 Other chains through the same elements connect the elements which
142 currently have equivalent values.
143
144 Register references in an expression are canonicalized before hashing
145 the expression. This is done using `reg_qty' and qty_table `first_reg'.
146 The hash code of a register reference is computed using the quantity
147 number, not the register number.
148
149 When the value of an expression changes, it is necessary to remove from the
150 hash table not just that expression but all expressions whose values
151 could be different as a result.
152
153 1. If the value changing is in memory, except in special cases
154 ANYTHING referring to memory could be changed. That is because
155 nobody knows where a pointer does not point.
156 The function `invalidate_memory' removes what is necessary.
157
158 The special cases are when the address is constant or is
159 a constant plus a fixed register such as the frame pointer
160 or a static chain pointer. When such addresses are stored in,
161 we can tell exactly which other such addresses must be invalidated
162 due to overlap. `invalidate' does this.
163 All expressions that refer to non-constant
164 memory addresses are also invalidated. `invalidate_memory' does this.
165
166 2. If the value changing is a register, all expressions
167 containing references to that register, and only those,
168 must be removed.
169
170 Because searching the entire hash table for expressions that contain
171 a register is very slow, we try to figure out when it isn't necessary.
172 Precisely, this is necessary only when expressions have been
173 entered in the hash table using this register, and then the value has
174 changed, and then another expression wants to be added to refer to
175 the register's new value. This sequence of circumstances is rare
176 within any one basic block.
177
178 `REG_TICK' and `REG_IN_TABLE', accessors for members of
179 cse_reg_info, are used to detect this case. REG_TICK (i) is
180 incremented whenever a value is stored in register i.
181 REG_IN_TABLE (i) holds -1 if no references to register i have been
182 entered in the table; otherwise, it contains the value REG_TICK (i)
183 had when the references were entered. If we want to enter a
184 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
185 remove old references. Until we want to enter a new entry, the
186 mere fact that the two vectors don't match makes the entries be
187 ignored if anyone tries to match them.
188
189 Registers themselves are entered in the hash table as well as in
190 the equivalent-register chains. However, `REG_TICK' and
191 `REG_IN_TABLE' do not apply to expressions which are simple
192 register references. These expressions are removed from the table
193 immediately when they become invalid, and this can be done even if
194 we do not immediately search for all the expressions that refer to
195 the register.
196
197 A CLOBBER rtx in an instruction invalidates its operand for further
198 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
199 invalidates everything that resides in memory.
200
201 Related expressions:
202
203 Constant expressions that differ only by an additive integer
204 are called related. When a constant expression is put in
205 the table, the related expression with no constant term
206 is also entered. These are made to point at each other
207 so that it is possible to find out if there exists any
208 register equivalent to an expression related to a given expression. */
209
210 /* Length of qty_table vector. We know in advance we will not need
211 a quantity number this big. */
212
213 static int max_qty;
214
215 /* Next quantity number to be allocated.
216 This is 1 + the largest number needed so far. */
217
218 static int next_qty;
219
220 /* Per-qty information tracking.
221
222 `first_reg' and `last_reg' track the head and tail of the
223 chain of registers which currently contain this quantity.
224
225 `mode' contains the machine mode of this quantity.
226
227 `const_rtx' holds the rtx of the constant value of this
228 quantity, if known. A summations of the frame/arg pointer
229 and a constant can also be entered here. When this holds
230 a known value, `const_insn' is the insn which stored the
231 constant value.
232
233 `comparison_{code,const,qty}' are used to track when a
234 comparison between a quantity and some constant or register has
235 been passed. In such a case, we know the results of the comparison
236 in case we see it again. These members record a comparison that
237 is known to be true. `comparison_code' holds the rtx code of such
238 a comparison, else it is set to UNKNOWN and the other two
239 comparison members are undefined. `comparison_const' holds
240 the constant being compared against, or zero if the comparison
241 is not against a constant. `comparison_qty' holds the quantity
242 being compared against when the result is known. If the comparison
243 is not with a register, `comparison_qty' is -1. */
244
245 struct qty_table_elem
246 {
247 rtx const_rtx;
248 rtx const_insn;
249 rtx comparison_const;
250 int comparison_qty;
251 unsigned int first_reg, last_reg;
252 /* The sizes of these fields should match the sizes of the
253 code and mode fields of struct rtx_def (see rtl.h). */
254 ENUM_BITFIELD(rtx_code) comparison_code : 16;
255 ENUM_BITFIELD(machine_mode) mode : 8;
256 };
257
258 /* The table of all qtys, indexed by qty number. */
259 static struct qty_table_elem *qty_table;
260
261 /* Structure used to pass arguments via for_each_rtx to function
262 cse_change_cc_mode. */
263 struct change_cc_mode_args
264 {
265 rtx insn;
266 rtx newreg;
267 };
268
269 #ifdef HAVE_cc0
270 /* For machines that have a CC0, we do not record its value in the hash
271 table since its use is guaranteed to be the insn immediately following
272 its definition and any other insn is presumed to invalidate it.
273
274 Instead, we store below the current and last value assigned to CC0.
275 If it should happen to be a constant, it is stored in preference
276 to the actual assigned value. In case it is a constant, we store
277 the mode in which the constant should be interpreted. */
278
279 static rtx this_insn_cc0, prev_insn_cc0;
280 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
281 #endif
282
283 /* Insn being scanned. */
284
285 static rtx this_insn;
286
287 /* Index by register number, gives the number of the next (or
288 previous) register in the chain of registers sharing the same
289 value.
290
291 Or -1 if this register is at the end of the chain.
292
293 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
294
295 /* Per-register equivalence chain. */
296 struct reg_eqv_elem
297 {
298 int next, prev;
299 };
300
301 /* The table of all register equivalence chains. */
302 static struct reg_eqv_elem *reg_eqv_table;
303
304 struct cse_reg_info
305 {
306 /* The timestamp at which this register is initialized. */
307 unsigned int timestamp;
308
309 /* The quantity number of the register's current contents. */
310 int reg_qty;
311
312 /* The number of times the register has been altered in the current
313 basic block. */
314 int reg_tick;
315
316 /* The REG_TICK value at which rtx's containing this register are
317 valid in the hash table. If this does not equal the current
318 reg_tick value, such expressions existing in the hash table are
319 invalid. */
320 int reg_in_table;
321
322 /* The SUBREG that was set when REG_TICK was last incremented. Set
323 to -1 if the last store was to the whole register, not a subreg. */
324 unsigned int subreg_ticked;
325 };
326
327 /* A table of cse_reg_info indexed by register numbers. */
328 static struct cse_reg_info *cse_reg_info_table;
329
330 /* The size of the above table. */
331 static unsigned int cse_reg_info_table_size;
332
333 /* The index of the first entry that has not been initialized. */
334 static unsigned int cse_reg_info_table_first_uninitialized;
335
336 /* The timestamp at the beginning of the current run of
337 cse_extended_basic_block. We increment this variable at the beginning of
338 the current run of cse_extended_basic_block. The timestamp field of a
339 cse_reg_info entry matches the value of this variable if and only
340 if the entry has been initialized during the current run of
341 cse_extended_basic_block. */
342 static unsigned int cse_reg_info_timestamp;
343
344 /* A HARD_REG_SET containing all the hard registers for which there is
345 currently a REG expression in the hash table. Note the difference
346 from the above variables, which indicate if the REG is mentioned in some
347 expression in the table. */
348
349 static HARD_REG_SET hard_regs_in_table;
350
351 /* Nonzero if cse has altered conditional jump insns
352 in such a way that jump optimization should be redone. */
353
354 static int cse_jumps_altered;
355
356 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
357 REG_LABEL, we have to rerun jump after CSE to put in the note. */
358 static int recorded_label_ref;
359
360 /* canon_hash stores 1 in do_not_record
361 if it notices a reference to CC0, PC, or some other volatile
362 subexpression. */
363
364 static int do_not_record;
365
366 /* canon_hash stores 1 in hash_arg_in_memory
367 if it notices a reference to memory within the expression being hashed. */
368
369 static int hash_arg_in_memory;
370
371 /* The hash table contains buckets which are chains of `struct table_elt's,
372 each recording one expression's information.
373 That expression is in the `exp' field.
374
375 The canon_exp field contains a canonical (from the point of view of
376 alias analysis) version of the `exp' field.
377
378 Those elements with the same hash code are chained in both directions
379 through the `next_same_hash' and `prev_same_hash' fields.
380
381 Each set of expressions with equivalent values
382 are on a two-way chain through the `next_same_value'
383 and `prev_same_value' fields, and all point with
384 the `first_same_value' field at the first element in
385 that chain. The chain is in order of increasing cost.
386 Each element's cost value is in its `cost' field.
387
388 The `in_memory' field is nonzero for elements that
389 involve any reference to memory. These elements are removed
390 whenever a write is done to an unidentified location in memory.
391 To be safe, we assume that a memory address is unidentified unless
392 the address is either a symbol constant or a constant plus
393 the frame pointer or argument pointer.
394
395 The `related_value' field is used to connect related expressions
396 (that differ by adding an integer).
397 The related expressions are chained in a circular fashion.
398 `related_value' is zero for expressions for which this
399 chain is not useful.
400
401 The `cost' field stores the cost of this element's expression.
402 The `regcost' field stores the value returned by approx_reg_cost for
403 this element's expression.
404
405 The `is_const' flag is set if the element is a constant (including
406 a fixed address).
407
408 The `flag' field is used as a temporary during some search routines.
409
410 The `mode' field is usually the same as GET_MODE (`exp'), but
411 if `exp' is a CONST_INT and has no machine mode then the `mode'
412 field is the mode it was being used as. Each constant is
413 recorded separately for each mode it is used with. */
414
415 struct table_elt
416 {
417 rtx exp;
418 rtx canon_exp;
419 struct table_elt *next_same_hash;
420 struct table_elt *prev_same_hash;
421 struct table_elt *next_same_value;
422 struct table_elt *prev_same_value;
423 struct table_elt *first_same_value;
424 struct table_elt *related_value;
425 int cost;
426 int regcost;
427 /* The size of this field should match the size
428 of the mode field of struct rtx_def (see rtl.h). */
429 ENUM_BITFIELD(machine_mode) mode : 8;
430 char in_memory;
431 char is_const;
432 char flag;
433 };
434
435 /* We don't want a lot of buckets, because we rarely have very many
436 things stored in the hash table, and a lot of buckets slows
437 down a lot of loops that happen frequently. */
438 #define HASH_SHIFT 5
439 #define HASH_SIZE (1 << HASH_SHIFT)
440 #define HASH_MASK (HASH_SIZE - 1)
441
442 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
443 register (hard registers may require `do_not_record' to be set). */
444
445 #define HASH(X, M) \
446 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
447 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
448 : canon_hash (X, M)) & HASH_MASK)
449
450 /* Like HASH, but without side-effects. */
451 #define SAFE_HASH(X, M) \
452 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
453 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
454 : safe_hash (X, M)) & HASH_MASK)
455
456 /* Determine whether register number N is considered a fixed register for the
457 purpose of approximating register costs.
458 It is desirable to replace other regs with fixed regs, to reduce need for
459 non-fixed hard regs.
460 A reg wins if it is either the frame pointer or designated as fixed. */
461 #define FIXED_REGNO_P(N) \
462 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
463 || fixed_regs[N] || global_regs[N])
464
465 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
466 hard registers and pointers into the frame are the cheapest with a cost
467 of 0. Next come pseudos with a cost of one and other hard registers with
468 a cost of 2. Aside from these special cases, call `rtx_cost'. */
469
470 #define CHEAP_REGNO(N) \
471 (REGNO_PTR_FRAME_P(N) \
472 || (HARD_REGISTER_NUM_P (N) \
473 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
474
475 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
476 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
477
478 /* Get the number of times this register has been updated in this
479 basic block. */
480
481 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
482
483 /* Get the point at which REG was recorded in the table. */
484
485 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
486
487 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
488 SUBREG). */
489
490 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
491
492 /* Get the quantity number for REG. */
493
494 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
495
496 /* Determine if the quantity number for register X represents a valid index
497 into the qty_table. */
498
499 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
500
501 static struct table_elt *table[HASH_SIZE];
502
503 /* Chain of `struct table_elt's made so far for this function
504 but currently removed from the table. */
505
506 static struct table_elt *free_element_chain;
507
508 /* Set to the cost of a constant pool reference if one was found for a
509 symbolic constant. If this was found, it means we should try to
510 convert constants into constant pool entries if they don't fit in
511 the insn. */
512
513 static int constant_pool_entries_cost;
514 static int constant_pool_entries_regcost;
515
516 /* This data describes a block that will be processed by
517 cse_extended_basic_block. */
518
519 struct cse_basic_block_data
520 {
521 /* Total number of SETs in block. */
522 int nsets;
523 /* Size of current branch path, if any. */
524 int path_size;
525 /* Current path, indicating which basic_blocks will be processed. */
526 struct branch_path
527 {
528 /* The basic block for this path entry. */
529 basic_block bb;
530 } *path;
531 };
532
533
534 /* Pointers to the live in/live out bitmaps for the boundaries of the
535 current EBB. */
536 static bitmap cse_ebb_live_in, cse_ebb_live_out;
537
538 /* A simple bitmap to track which basic blocks have been visited
539 already as part of an already processed extended basic block. */
540 static sbitmap cse_visited_basic_blocks;
541
542 static bool fixed_base_plus_p (rtx x);
543 static int notreg_cost (rtx, enum rtx_code);
544 static int approx_reg_cost_1 (rtx *, void *);
545 static int approx_reg_cost (rtx);
546 static int preferable (int, int, int, int);
547 static void new_basic_block (void);
548 static void make_new_qty (unsigned int, enum machine_mode);
549 static void make_regs_eqv (unsigned int, unsigned int);
550 static void delete_reg_equiv (unsigned int);
551 static int mention_regs (rtx);
552 static int insert_regs (rtx, struct table_elt *, int);
553 static void remove_from_table (struct table_elt *, unsigned);
554 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
555 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
556 static rtx lookup_as_function (rtx, enum rtx_code);
557 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
558 enum machine_mode);
559 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
560 static void invalidate (rtx, enum machine_mode);
561 static int cse_rtx_varies_p (rtx, int);
562 static void remove_invalid_refs (unsigned int);
563 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
564 enum machine_mode);
565 static void rehash_using_reg (rtx);
566 static void invalidate_memory (void);
567 static void invalidate_for_call (void);
568 static rtx use_related_value (rtx, struct table_elt *);
569
570 static inline unsigned canon_hash (rtx, enum machine_mode);
571 static inline unsigned safe_hash (rtx, enum machine_mode);
572 static unsigned hash_rtx_string (const char *);
573
574 static rtx canon_reg (rtx, rtx);
575 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
576 enum machine_mode *,
577 enum machine_mode *);
578 static rtx fold_rtx (rtx, rtx);
579 static rtx equiv_constant (rtx);
580 static void record_jump_equiv (rtx, bool);
581 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
582 int);
583 static void cse_insn (rtx, rtx);
584 static void cse_prescan_path (struct cse_basic_block_data *);
585 static void invalidate_from_clobbers (rtx);
586 static rtx cse_process_notes (rtx, rtx, bool *);
587 static void cse_extended_basic_block (struct cse_basic_block_data *);
588 static void count_reg_usage (rtx, int *, rtx, int);
589 static int check_for_label_ref (rtx *, void *);
590 extern void dump_class (struct table_elt*);
591 static void get_cse_reg_info_1 (unsigned int regno);
592 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
593 static int check_dependence (rtx *, void *);
594
595 static void flush_hash_table (void);
596 static bool insn_live_p (rtx, int *);
597 static bool set_live_p (rtx, rtx, int *);
598 static bool dead_libcall_p (rtx, int *);
599 static int cse_change_cc_mode (rtx *, void *);
600 static void cse_change_cc_mode_insn (rtx, rtx);
601 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
602 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
603 \f
604
605 #undef RTL_HOOKS_GEN_LOWPART
606 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
607
608 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
609 \f
610 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
611 virtual regs here because the simplify_*_operation routines are called
612 by integrate.c, which is called before virtual register instantiation. */
613
614 static bool
615 fixed_base_plus_p (rtx x)
616 {
617 switch (GET_CODE (x))
618 {
619 case REG:
620 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
621 return true;
622 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
623 return true;
624 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
625 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
626 return true;
627 return false;
628
629 case PLUS:
630 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
631 return false;
632 return fixed_base_plus_p (XEXP (x, 0));
633
634 default:
635 return false;
636 }
637 }
638
639 /* Dump the expressions in the equivalence class indicated by CLASSP.
640 This function is used only for debugging. */
641 void
642 dump_class (struct table_elt *classp)
643 {
644 struct table_elt *elt;
645
646 fprintf (stderr, "Equivalence chain for ");
647 print_rtl (stderr, classp->exp);
648 fprintf (stderr, ": \n");
649
650 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
651 {
652 print_rtl (stderr, elt->exp);
653 fprintf (stderr, "\n");
654 }
655 }
656
657 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
658
659 static int
660 approx_reg_cost_1 (rtx *xp, void *data)
661 {
662 rtx x = *xp;
663 int *cost_p = data;
664
665 if (x && REG_P (x))
666 {
667 unsigned int regno = REGNO (x);
668
669 if (! CHEAP_REGNO (regno))
670 {
671 if (regno < FIRST_PSEUDO_REGISTER)
672 {
673 if (SMALL_REGISTER_CLASSES)
674 return 1;
675 *cost_p += 2;
676 }
677 else
678 *cost_p += 1;
679 }
680 }
681
682 return 0;
683 }
684
685 /* Return an estimate of the cost of the registers used in an rtx.
686 This is mostly the number of different REG expressions in the rtx;
687 however for some exceptions like fixed registers we use a cost of
688 0. If any other hard register reference occurs, return MAX_COST. */
689
690 static int
691 approx_reg_cost (rtx x)
692 {
693 int cost = 0;
694
695 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
696 return MAX_COST;
697
698 return cost;
699 }
700
701 /* Return a negative value if an rtx A, whose costs are given by COST_A
702 and REGCOST_A, is more desirable than an rtx B.
703 Return a positive value if A is less desirable, or 0 if the two are
704 equally good. */
705 static int
706 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
707 {
708 /* First, get rid of cases involving expressions that are entirely
709 unwanted. */
710 if (cost_a != cost_b)
711 {
712 if (cost_a == MAX_COST)
713 return 1;
714 if (cost_b == MAX_COST)
715 return -1;
716 }
717
718 /* Avoid extending lifetimes of hardregs. */
719 if (regcost_a != regcost_b)
720 {
721 if (regcost_a == MAX_COST)
722 return 1;
723 if (regcost_b == MAX_COST)
724 return -1;
725 }
726
727 /* Normal operation costs take precedence. */
728 if (cost_a != cost_b)
729 return cost_a - cost_b;
730 /* Only if these are identical consider effects on register pressure. */
731 if (regcost_a != regcost_b)
732 return regcost_a - regcost_b;
733 return 0;
734 }
735
736 /* Internal function, to compute cost when X is not a register; called
737 from COST macro to keep it simple. */
738
739 static int
740 notreg_cost (rtx x, enum rtx_code outer)
741 {
742 return ((GET_CODE (x) == SUBREG
743 && REG_P (SUBREG_REG (x))
744 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
745 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
746 && (GET_MODE_SIZE (GET_MODE (x))
747 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
748 && subreg_lowpart_p (x)
749 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
750 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
751 ? 0
752 : rtx_cost (x, outer) * 2);
753 }
754
755 \f
756 /* Initialize CSE_REG_INFO_TABLE. */
757
758 static void
759 init_cse_reg_info (unsigned int nregs)
760 {
761 /* Do we need to grow the table? */
762 if (nregs > cse_reg_info_table_size)
763 {
764 unsigned int new_size;
765
766 if (cse_reg_info_table_size < 2048)
767 {
768 /* Compute a new size that is a power of 2 and no smaller
769 than the large of NREGS and 64. */
770 new_size = (cse_reg_info_table_size
771 ? cse_reg_info_table_size : 64);
772
773 while (new_size < nregs)
774 new_size *= 2;
775 }
776 else
777 {
778 /* If we need a big table, allocate just enough to hold
779 NREGS registers. */
780 new_size = nregs;
781 }
782
783 /* Reallocate the table with NEW_SIZE entries. */
784 if (cse_reg_info_table)
785 free (cse_reg_info_table);
786 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
787 cse_reg_info_table_size = new_size;
788 cse_reg_info_table_first_uninitialized = 0;
789 }
790
791 /* Do we have all of the first NREGS entries initialized? */
792 if (cse_reg_info_table_first_uninitialized < nregs)
793 {
794 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
795 unsigned int i;
796
797 /* Put the old timestamp on newly allocated entries so that they
798 will all be considered out of date. We do not touch those
799 entries beyond the first NREGS entries to be nice to the
800 virtual memory. */
801 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
802 cse_reg_info_table[i].timestamp = old_timestamp;
803
804 cse_reg_info_table_first_uninitialized = nregs;
805 }
806 }
807
808 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
809
810 static void
811 get_cse_reg_info_1 (unsigned int regno)
812 {
813 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
814 entry will be considered to have been initialized. */
815 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
816
817 /* Initialize the rest of the entry. */
818 cse_reg_info_table[regno].reg_tick = 1;
819 cse_reg_info_table[regno].reg_in_table = -1;
820 cse_reg_info_table[regno].subreg_ticked = -1;
821 cse_reg_info_table[regno].reg_qty = -regno - 1;
822 }
823
824 /* Find a cse_reg_info entry for REGNO. */
825
826 static inline struct cse_reg_info *
827 get_cse_reg_info (unsigned int regno)
828 {
829 struct cse_reg_info *p = &cse_reg_info_table[regno];
830
831 /* If this entry has not been initialized, go ahead and initialize
832 it. */
833 if (p->timestamp != cse_reg_info_timestamp)
834 get_cse_reg_info_1 (regno);
835
836 return p;
837 }
838
839 /* Clear the hash table and initialize each register with its own quantity,
840 for a new basic block. */
841
842 static void
843 new_basic_block (void)
844 {
845 int i;
846
847 next_qty = 0;
848
849 /* Invalidate cse_reg_info_table. */
850 cse_reg_info_timestamp++;
851
852 /* Clear out hash table state for this pass. */
853 CLEAR_HARD_REG_SET (hard_regs_in_table);
854
855 /* The per-quantity values used to be initialized here, but it is
856 much faster to initialize each as it is made in `make_new_qty'. */
857
858 for (i = 0; i < HASH_SIZE; i++)
859 {
860 struct table_elt *first;
861
862 first = table[i];
863 if (first != NULL)
864 {
865 struct table_elt *last = first;
866
867 table[i] = NULL;
868
869 while (last->next_same_hash != NULL)
870 last = last->next_same_hash;
871
872 /* Now relink this hash entire chain into
873 the free element list. */
874
875 last->next_same_hash = free_element_chain;
876 free_element_chain = first;
877 }
878 }
879
880 #ifdef HAVE_cc0
881 prev_insn_cc0 = 0;
882 #endif
883 }
884
885 /* Say that register REG contains a quantity in mode MODE not in any
886 register before and initialize that quantity. */
887
888 static void
889 make_new_qty (unsigned int reg, enum machine_mode mode)
890 {
891 int q;
892 struct qty_table_elem *ent;
893 struct reg_eqv_elem *eqv;
894
895 gcc_assert (next_qty < max_qty);
896
897 q = REG_QTY (reg) = next_qty++;
898 ent = &qty_table[q];
899 ent->first_reg = reg;
900 ent->last_reg = reg;
901 ent->mode = mode;
902 ent->const_rtx = ent->const_insn = NULL_RTX;
903 ent->comparison_code = UNKNOWN;
904
905 eqv = &reg_eqv_table[reg];
906 eqv->next = eqv->prev = -1;
907 }
908
909 /* Make reg NEW equivalent to reg OLD.
910 OLD is not changing; NEW is. */
911
912 static void
913 make_regs_eqv (unsigned int new, unsigned int old)
914 {
915 unsigned int lastr, firstr;
916 int q = REG_QTY (old);
917 struct qty_table_elem *ent;
918
919 ent = &qty_table[q];
920
921 /* Nothing should become eqv until it has a "non-invalid" qty number. */
922 gcc_assert (REGNO_QTY_VALID_P (old));
923
924 REG_QTY (new) = q;
925 firstr = ent->first_reg;
926 lastr = ent->last_reg;
927
928 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
929 hard regs. Among pseudos, if NEW will live longer than any other reg
930 of the same qty, and that is beyond the current basic block,
931 make it the new canonical replacement for this qty. */
932 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
933 /* Certain fixed registers might be of the class NO_REGS. This means
934 that not only can they not be allocated by the compiler, but
935 they cannot be used in substitutions or canonicalizations
936 either. */
937 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
938 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
939 || (new >= FIRST_PSEUDO_REGISTER
940 && (firstr < FIRST_PSEUDO_REGISTER
941 || (bitmap_bit_p (cse_ebb_live_out, new)
942 && !bitmap_bit_p (cse_ebb_live_out, firstr))
943 || (bitmap_bit_p (cse_ebb_live_in, new)
944 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
945 {
946 reg_eqv_table[firstr].prev = new;
947 reg_eqv_table[new].next = firstr;
948 reg_eqv_table[new].prev = -1;
949 ent->first_reg = new;
950 }
951 else
952 {
953 /* If NEW is a hard reg (known to be non-fixed), insert at end.
954 Otherwise, insert before any non-fixed hard regs that are at the
955 end. Registers of class NO_REGS cannot be used as an
956 equivalent for anything. */
957 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
958 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
959 && new >= FIRST_PSEUDO_REGISTER)
960 lastr = reg_eqv_table[lastr].prev;
961 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
962 if (reg_eqv_table[lastr].next >= 0)
963 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
964 else
965 qty_table[q].last_reg = new;
966 reg_eqv_table[lastr].next = new;
967 reg_eqv_table[new].prev = lastr;
968 }
969 }
970
971 /* Remove REG from its equivalence class. */
972
973 static void
974 delete_reg_equiv (unsigned int reg)
975 {
976 struct qty_table_elem *ent;
977 int q = REG_QTY (reg);
978 int p, n;
979
980 /* If invalid, do nothing. */
981 if (! REGNO_QTY_VALID_P (reg))
982 return;
983
984 ent = &qty_table[q];
985
986 p = reg_eqv_table[reg].prev;
987 n = reg_eqv_table[reg].next;
988
989 if (n != -1)
990 reg_eqv_table[n].prev = p;
991 else
992 ent->last_reg = p;
993 if (p != -1)
994 reg_eqv_table[p].next = n;
995 else
996 ent->first_reg = n;
997
998 REG_QTY (reg) = -reg - 1;
999 }
1000
1001 /* Remove any invalid expressions from the hash table
1002 that refer to any of the registers contained in expression X.
1003
1004 Make sure that newly inserted references to those registers
1005 as subexpressions will be considered valid.
1006
1007 mention_regs is not called when a register itself
1008 is being stored in the table.
1009
1010 Return 1 if we have done something that may have changed the hash code
1011 of X. */
1012
1013 static int
1014 mention_regs (rtx x)
1015 {
1016 enum rtx_code code;
1017 int i, j;
1018 const char *fmt;
1019 int changed = 0;
1020
1021 if (x == 0)
1022 return 0;
1023
1024 code = GET_CODE (x);
1025 if (code == REG)
1026 {
1027 unsigned int regno = REGNO (x);
1028 unsigned int endregno = END_REGNO (x);
1029 unsigned int i;
1030
1031 for (i = regno; i < endregno; i++)
1032 {
1033 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1034 remove_invalid_refs (i);
1035
1036 REG_IN_TABLE (i) = REG_TICK (i);
1037 SUBREG_TICKED (i) = -1;
1038 }
1039
1040 return 0;
1041 }
1042
1043 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1044 pseudo if they don't use overlapping words. We handle only pseudos
1045 here for simplicity. */
1046 if (code == SUBREG && REG_P (SUBREG_REG (x))
1047 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1048 {
1049 unsigned int i = REGNO (SUBREG_REG (x));
1050
1051 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1052 {
1053 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1054 the last store to this register really stored into this
1055 subreg, then remove the memory of this subreg.
1056 Otherwise, remove any memory of the entire register and
1057 all its subregs from the table. */
1058 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1059 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1060 remove_invalid_refs (i);
1061 else
1062 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1063 }
1064
1065 REG_IN_TABLE (i) = REG_TICK (i);
1066 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1067 return 0;
1068 }
1069
1070 /* If X is a comparison or a COMPARE and either operand is a register
1071 that does not have a quantity, give it one. This is so that a later
1072 call to record_jump_equiv won't cause X to be assigned a different
1073 hash code and not found in the table after that call.
1074
1075 It is not necessary to do this here, since rehash_using_reg can
1076 fix up the table later, but doing this here eliminates the need to
1077 call that expensive function in the most common case where the only
1078 use of the register is in the comparison. */
1079
1080 if (code == COMPARE || COMPARISON_P (x))
1081 {
1082 if (REG_P (XEXP (x, 0))
1083 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1084 if (insert_regs (XEXP (x, 0), NULL, 0))
1085 {
1086 rehash_using_reg (XEXP (x, 0));
1087 changed = 1;
1088 }
1089
1090 if (REG_P (XEXP (x, 1))
1091 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1092 if (insert_regs (XEXP (x, 1), NULL, 0))
1093 {
1094 rehash_using_reg (XEXP (x, 1));
1095 changed = 1;
1096 }
1097 }
1098
1099 fmt = GET_RTX_FORMAT (code);
1100 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1101 if (fmt[i] == 'e')
1102 changed |= mention_regs (XEXP (x, i));
1103 else if (fmt[i] == 'E')
1104 for (j = 0; j < XVECLEN (x, i); j++)
1105 changed |= mention_regs (XVECEXP (x, i, j));
1106
1107 return changed;
1108 }
1109
1110 /* Update the register quantities for inserting X into the hash table
1111 with a value equivalent to CLASSP.
1112 (If the class does not contain a REG, it is irrelevant.)
1113 If MODIFIED is nonzero, X is a destination; it is being modified.
1114 Note that delete_reg_equiv should be called on a register
1115 before insert_regs is done on that register with MODIFIED != 0.
1116
1117 Nonzero value means that elements of reg_qty have changed
1118 so X's hash code may be different. */
1119
1120 static int
1121 insert_regs (rtx x, struct table_elt *classp, int modified)
1122 {
1123 if (REG_P (x))
1124 {
1125 unsigned int regno = REGNO (x);
1126 int qty_valid;
1127
1128 /* If REGNO is in the equivalence table already but is of the
1129 wrong mode for that equivalence, don't do anything here. */
1130
1131 qty_valid = REGNO_QTY_VALID_P (regno);
1132 if (qty_valid)
1133 {
1134 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1135
1136 if (ent->mode != GET_MODE (x))
1137 return 0;
1138 }
1139
1140 if (modified || ! qty_valid)
1141 {
1142 if (classp)
1143 for (classp = classp->first_same_value;
1144 classp != 0;
1145 classp = classp->next_same_value)
1146 if (REG_P (classp->exp)
1147 && GET_MODE (classp->exp) == GET_MODE (x))
1148 {
1149 unsigned c_regno = REGNO (classp->exp);
1150
1151 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1152
1153 /* Suppose that 5 is hard reg and 100 and 101 are
1154 pseudos. Consider
1155
1156 (set (reg:si 100) (reg:si 5))
1157 (set (reg:si 5) (reg:si 100))
1158 (set (reg:di 101) (reg:di 5))
1159
1160 We would now set REG_QTY (101) = REG_QTY (5), but the
1161 entry for 5 is in SImode. When we use this later in
1162 copy propagation, we get the register in wrong mode. */
1163 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1164 continue;
1165
1166 make_regs_eqv (regno, c_regno);
1167 return 1;
1168 }
1169
1170 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1171 than REG_IN_TABLE to find out if there was only a single preceding
1172 invalidation - for the SUBREG - or another one, which would be
1173 for the full register. However, if we find here that REG_TICK
1174 indicates that the register is invalid, it means that it has
1175 been invalidated in a separate operation. The SUBREG might be used
1176 now (then this is a recursive call), or we might use the full REG
1177 now and a SUBREG of it later. So bump up REG_TICK so that
1178 mention_regs will do the right thing. */
1179 if (! modified
1180 && REG_IN_TABLE (regno) >= 0
1181 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1182 REG_TICK (regno)++;
1183 make_new_qty (regno, GET_MODE (x));
1184 return 1;
1185 }
1186
1187 return 0;
1188 }
1189
1190 /* If X is a SUBREG, we will likely be inserting the inner register in the
1191 table. If that register doesn't have an assigned quantity number at
1192 this point but does later, the insertion that we will be doing now will
1193 not be accessible because its hash code will have changed. So assign
1194 a quantity number now. */
1195
1196 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1197 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1198 {
1199 insert_regs (SUBREG_REG (x), NULL, 0);
1200 mention_regs (x);
1201 return 1;
1202 }
1203 else
1204 return mention_regs (x);
1205 }
1206 \f
1207 /* Look in or update the hash table. */
1208
1209 /* Remove table element ELT from use in the table.
1210 HASH is its hash code, made using the HASH macro.
1211 It's an argument because often that is known in advance
1212 and we save much time not recomputing it. */
1213
1214 static void
1215 remove_from_table (struct table_elt *elt, unsigned int hash)
1216 {
1217 if (elt == 0)
1218 return;
1219
1220 /* Mark this element as removed. See cse_insn. */
1221 elt->first_same_value = 0;
1222
1223 /* Remove the table element from its equivalence class. */
1224
1225 {
1226 struct table_elt *prev = elt->prev_same_value;
1227 struct table_elt *next = elt->next_same_value;
1228
1229 if (next)
1230 next->prev_same_value = prev;
1231
1232 if (prev)
1233 prev->next_same_value = next;
1234 else
1235 {
1236 struct table_elt *newfirst = next;
1237 while (next)
1238 {
1239 next->first_same_value = newfirst;
1240 next = next->next_same_value;
1241 }
1242 }
1243 }
1244
1245 /* Remove the table element from its hash bucket. */
1246
1247 {
1248 struct table_elt *prev = elt->prev_same_hash;
1249 struct table_elt *next = elt->next_same_hash;
1250
1251 if (next)
1252 next->prev_same_hash = prev;
1253
1254 if (prev)
1255 prev->next_same_hash = next;
1256 else if (table[hash] == elt)
1257 table[hash] = next;
1258 else
1259 {
1260 /* This entry is not in the proper hash bucket. This can happen
1261 when two classes were merged by `merge_equiv_classes'. Search
1262 for the hash bucket that it heads. This happens only very
1263 rarely, so the cost is acceptable. */
1264 for (hash = 0; hash < HASH_SIZE; hash++)
1265 if (table[hash] == elt)
1266 table[hash] = next;
1267 }
1268 }
1269
1270 /* Remove the table element from its related-value circular chain. */
1271
1272 if (elt->related_value != 0 && elt->related_value != elt)
1273 {
1274 struct table_elt *p = elt->related_value;
1275
1276 while (p->related_value != elt)
1277 p = p->related_value;
1278 p->related_value = elt->related_value;
1279 if (p->related_value == p)
1280 p->related_value = 0;
1281 }
1282
1283 /* Now add it to the free element chain. */
1284 elt->next_same_hash = free_element_chain;
1285 free_element_chain = elt;
1286 }
1287
1288 /* Look up X in the hash table and return its table element,
1289 or 0 if X is not in the table.
1290
1291 MODE is the machine-mode of X, or if X is an integer constant
1292 with VOIDmode then MODE is the mode with which X will be used.
1293
1294 Here we are satisfied to find an expression whose tree structure
1295 looks like X. */
1296
1297 static struct table_elt *
1298 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1299 {
1300 struct table_elt *p;
1301
1302 for (p = table[hash]; p; p = p->next_same_hash)
1303 if (mode == p->mode && ((x == p->exp && REG_P (x))
1304 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1305 return p;
1306
1307 return 0;
1308 }
1309
1310 /* Like `lookup' but don't care whether the table element uses invalid regs.
1311 Also ignore discrepancies in the machine mode of a register. */
1312
1313 static struct table_elt *
1314 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1315 {
1316 struct table_elt *p;
1317
1318 if (REG_P (x))
1319 {
1320 unsigned int regno = REGNO (x);
1321
1322 /* Don't check the machine mode when comparing registers;
1323 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1324 for (p = table[hash]; p; p = p->next_same_hash)
1325 if (REG_P (p->exp)
1326 && REGNO (p->exp) == regno)
1327 return p;
1328 }
1329 else
1330 {
1331 for (p = table[hash]; p; p = p->next_same_hash)
1332 if (mode == p->mode
1333 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1334 return p;
1335 }
1336
1337 return 0;
1338 }
1339
1340 /* Look for an expression equivalent to X and with code CODE.
1341 If one is found, return that expression. */
1342
1343 static rtx
1344 lookup_as_function (rtx x, enum rtx_code code)
1345 {
1346 struct table_elt *p
1347 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1348
1349 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1350 long as we are narrowing. So if we looked in vain for a mode narrower
1351 than word_mode before, look for word_mode now. */
1352 if (p == 0 && code == CONST_INT
1353 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1354 {
1355 x = copy_rtx (x);
1356 PUT_MODE (x, word_mode);
1357 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1358 }
1359
1360 if (p == 0)
1361 return 0;
1362
1363 for (p = p->first_same_value; p; p = p->next_same_value)
1364 if (GET_CODE (p->exp) == code
1365 /* Make sure this is a valid entry in the table. */
1366 && exp_equiv_p (p->exp, p->exp, 1, false))
1367 return p->exp;
1368
1369 return 0;
1370 }
1371
1372 /* Insert X in the hash table, assuming HASH is its hash code
1373 and CLASSP is an element of the class it should go in
1374 (or 0 if a new class should be made).
1375 It is inserted at the proper position to keep the class in
1376 the order cheapest first.
1377
1378 MODE is the machine-mode of X, or if X is an integer constant
1379 with VOIDmode then MODE is the mode with which X will be used.
1380
1381 For elements of equal cheapness, the most recent one
1382 goes in front, except that the first element in the list
1383 remains first unless a cheaper element is added. The order of
1384 pseudo-registers does not matter, as canon_reg will be called to
1385 find the cheapest when a register is retrieved from the table.
1386
1387 The in_memory field in the hash table element is set to 0.
1388 The caller must set it nonzero if appropriate.
1389
1390 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1391 and if insert_regs returns a nonzero value
1392 you must then recompute its hash code before calling here.
1393
1394 If necessary, update table showing constant values of quantities. */
1395
1396 #define CHEAPER(X, Y) \
1397 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1398
1399 static struct table_elt *
1400 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1401 {
1402 struct table_elt *elt;
1403
1404 /* If X is a register and we haven't made a quantity for it,
1405 something is wrong. */
1406 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1407
1408 /* If X is a hard register, show it is being put in the table. */
1409 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1410 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1411
1412 /* Put an element for X into the right hash bucket. */
1413
1414 elt = free_element_chain;
1415 if (elt)
1416 free_element_chain = elt->next_same_hash;
1417 else
1418 elt = XNEW (struct table_elt);
1419
1420 elt->exp = x;
1421 elt->canon_exp = NULL_RTX;
1422 elt->cost = COST (x);
1423 elt->regcost = approx_reg_cost (x);
1424 elt->next_same_value = 0;
1425 elt->prev_same_value = 0;
1426 elt->next_same_hash = table[hash];
1427 elt->prev_same_hash = 0;
1428 elt->related_value = 0;
1429 elt->in_memory = 0;
1430 elt->mode = mode;
1431 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1432
1433 if (table[hash])
1434 table[hash]->prev_same_hash = elt;
1435 table[hash] = elt;
1436
1437 /* Put it into the proper value-class. */
1438 if (classp)
1439 {
1440 classp = classp->first_same_value;
1441 if (CHEAPER (elt, classp))
1442 /* Insert at the head of the class. */
1443 {
1444 struct table_elt *p;
1445 elt->next_same_value = classp;
1446 classp->prev_same_value = elt;
1447 elt->first_same_value = elt;
1448
1449 for (p = classp; p; p = p->next_same_value)
1450 p->first_same_value = elt;
1451 }
1452 else
1453 {
1454 /* Insert not at head of the class. */
1455 /* Put it after the last element cheaper than X. */
1456 struct table_elt *p, *next;
1457
1458 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1459 p = next);
1460
1461 /* Put it after P and before NEXT. */
1462 elt->next_same_value = next;
1463 if (next)
1464 next->prev_same_value = elt;
1465
1466 elt->prev_same_value = p;
1467 p->next_same_value = elt;
1468 elt->first_same_value = classp;
1469 }
1470 }
1471 else
1472 elt->first_same_value = elt;
1473
1474 /* If this is a constant being set equivalent to a register or a register
1475 being set equivalent to a constant, note the constant equivalence.
1476
1477 If this is a constant, it cannot be equivalent to a different constant,
1478 and a constant is the only thing that can be cheaper than a register. So
1479 we know the register is the head of the class (before the constant was
1480 inserted).
1481
1482 If this is a register that is not already known equivalent to a
1483 constant, we must check the entire class.
1484
1485 If this is a register that is already known equivalent to an insn,
1486 update the qtys `const_insn' to show that `this_insn' is the latest
1487 insn making that quantity equivalent to the constant. */
1488
1489 if (elt->is_const && classp && REG_P (classp->exp)
1490 && !REG_P (x))
1491 {
1492 int exp_q = REG_QTY (REGNO (classp->exp));
1493 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1494
1495 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1496 exp_ent->const_insn = this_insn;
1497 }
1498
1499 else if (REG_P (x)
1500 && classp
1501 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1502 && ! elt->is_const)
1503 {
1504 struct table_elt *p;
1505
1506 for (p = classp; p != 0; p = p->next_same_value)
1507 {
1508 if (p->is_const && !REG_P (p->exp))
1509 {
1510 int x_q = REG_QTY (REGNO (x));
1511 struct qty_table_elem *x_ent = &qty_table[x_q];
1512
1513 x_ent->const_rtx
1514 = gen_lowpart (GET_MODE (x), p->exp);
1515 x_ent->const_insn = this_insn;
1516 break;
1517 }
1518 }
1519 }
1520
1521 else if (REG_P (x)
1522 && qty_table[REG_QTY (REGNO (x))].const_rtx
1523 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1524 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1525
1526 /* If this is a constant with symbolic value,
1527 and it has a term with an explicit integer value,
1528 link it up with related expressions. */
1529 if (GET_CODE (x) == CONST)
1530 {
1531 rtx subexp = get_related_value (x);
1532 unsigned subhash;
1533 struct table_elt *subelt, *subelt_prev;
1534
1535 if (subexp != 0)
1536 {
1537 /* Get the integer-free subexpression in the hash table. */
1538 subhash = SAFE_HASH (subexp, mode);
1539 subelt = lookup (subexp, subhash, mode);
1540 if (subelt == 0)
1541 subelt = insert (subexp, NULL, subhash, mode);
1542 /* Initialize SUBELT's circular chain if it has none. */
1543 if (subelt->related_value == 0)
1544 subelt->related_value = subelt;
1545 /* Find the element in the circular chain that precedes SUBELT. */
1546 subelt_prev = subelt;
1547 while (subelt_prev->related_value != subelt)
1548 subelt_prev = subelt_prev->related_value;
1549 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1550 This way the element that follows SUBELT is the oldest one. */
1551 elt->related_value = subelt_prev->related_value;
1552 subelt_prev->related_value = elt;
1553 }
1554 }
1555
1556 return elt;
1557 }
1558 \f
1559 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1560 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1561 the two classes equivalent.
1562
1563 CLASS1 will be the surviving class; CLASS2 should not be used after this
1564 call.
1565
1566 Any invalid entries in CLASS2 will not be copied. */
1567
1568 static void
1569 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1570 {
1571 struct table_elt *elt, *next, *new;
1572
1573 /* Ensure we start with the head of the classes. */
1574 class1 = class1->first_same_value;
1575 class2 = class2->first_same_value;
1576
1577 /* If they were already equal, forget it. */
1578 if (class1 == class2)
1579 return;
1580
1581 for (elt = class2; elt; elt = next)
1582 {
1583 unsigned int hash;
1584 rtx exp = elt->exp;
1585 enum machine_mode mode = elt->mode;
1586
1587 next = elt->next_same_value;
1588
1589 /* Remove old entry, make a new one in CLASS1's class.
1590 Don't do this for invalid entries as we cannot find their
1591 hash code (it also isn't necessary). */
1592 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1593 {
1594 bool need_rehash = false;
1595
1596 hash_arg_in_memory = 0;
1597 hash = HASH (exp, mode);
1598
1599 if (REG_P (exp))
1600 {
1601 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1602 delete_reg_equiv (REGNO (exp));
1603 }
1604
1605 remove_from_table (elt, hash);
1606
1607 if (insert_regs (exp, class1, 0) || need_rehash)
1608 {
1609 rehash_using_reg (exp);
1610 hash = HASH (exp, mode);
1611 }
1612 new = insert (exp, class1, hash, mode);
1613 new->in_memory = hash_arg_in_memory;
1614 }
1615 }
1616 }
1617 \f
1618 /* Flush the entire hash table. */
1619
1620 static void
1621 flush_hash_table (void)
1622 {
1623 int i;
1624 struct table_elt *p;
1625
1626 for (i = 0; i < HASH_SIZE; i++)
1627 for (p = table[i]; p; p = table[i])
1628 {
1629 /* Note that invalidate can remove elements
1630 after P in the current hash chain. */
1631 if (REG_P (p->exp))
1632 invalidate (p->exp, VOIDmode);
1633 else
1634 remove_from_table (p, i);
1635 }
1636 }
1637 \f
1638 /* Function called for each rtx to check whether true dependence exist. */
1639 struct check_dependence_data
1640 {
1641 enum machine_mode mode;
1642 rtx exp;
1643 rtx addr;
1644 };
1645
1646 static int
1647 check_dependence (rtx *x, void *data)
1648 {
1649 struct check_dependence_data *d = (struct check_dependence_data *) data;
1650 if (*x && MEM_P (*x))
1651 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1652 cse_rtx_varies_p);
1653 else
1654 return 0;
1655 }
1656 \f
1657 /* Remove from the hash table, or mark as invalid, all expressions whose
1658 values could be altered by storing in X. X is a register, a subreg, or
1659 a memory reference with nonvarying address (because, when a memory
1660 reference with a varying address is stored in, all memory references are
1661 removed by invalidate_memory so specific invalidation is superfluous).
1662 FULL_MODE, if not VOIDmode, indicates that this much should be
1663 invalidated instead of just the amount indicated by the mode of X. This
1664 is only used for bitfield stores into memory.
1665
1666 A nonvarying address may be just a register or just a symbol reference,
1667 or it may be either of those plus a numeric offset. */
1668
1669 static void
1670 invalidate (rtx x, enum machine_mode full_mode)
1671 {
1672 int i;
1673 struct table_elt *p;
1674 rtx addr;
1675
1676 switch (GET_CODE (x))
1677 {
1678 case REG:
1679 {
1680 /* If X is a register, dependencies on its contents are recorded
1681 through the qty number mechanism. Just change the qty number of
1682 the register, mark it as invalid for expressions that refer to it,
1683 and remove it itself. */
1684 unsigned int regno = REGNO (x);
1685 unsigned int hash = HASH (x, GET_MODE (x));
1686
1687 /* Remove REGNO from any quantity list it might be on and indicate
1688 that its value might have changed. If it is a pseudo, remove its
1689 entry from the hash table.
1690
1691 For a hard register, we do the first two actions above for any
1692 additional hard registers corresponding to X. Then, if any of these
1693 registers are in the table, we must remove any REG entries that
1694 overlap these registers. */
1695
1696 delete_reg_equiv (regno);
1697 REG_TICK (regno)++;
1698 SUBREG_TICKED (regno) = -1;
1699
1700 if (regno >= FIRST_PSEUDO_REGISTER)
1701 {
1702 /* Because a register can be referenced in more than one mode,
1703 we might have to remove more than one table entry. */
1704 struct table_elt *elt;
1705
1706 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1707 remove_from_table (elt, hash);
1708 }
1709 else
1710 {
1711 HOST_WIDE_INT in_table
1712 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1713 unsigned int endregno = END_HARD_REGNO (x);
1714 unsigned int tregno, tendregno, rn;
1715 struct table_elt *p, *next;
1716
1717 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1718
1719 for (rn = regno + 1; rn < endregno; rn++)
1720 {
1721 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1722 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1723 delete_reg_equiv (rn);
1724 REG_TICK (rn)++;
1725 SUBREG_TICKED (rn) = -1;
1726 }
1727
1728 if (in_table)
1729 for (hash = 0; hash < HASH_SIZE; hash++)
1730 for (p = table[hash]; p; p = next)
1731 {
1732 next = p->next_same_hash;
1733
1734 if (!REG_P (p->exp)
1735 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1736 continue;
1737
1738 tregno = REGNO (p->exp);
1739 tendregno = END_HARD_REGNO (p->exp);
1740 if (tendregno > regno && tregno < endregno)
1741 remove_from_table (p, hash);
1742 }
1743 }
1744 }
1745 return;
1746
1747 case SUBREG:
1748 invalidate (SUBREG_REG (x), VOIDmode);
1749 return;
1750
1751 case PARALLEL:
1752 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1753 invalidate (XVECEXP (x, 0, i), VOIDmode);
1754 return;
1755
1756 case EXPR_LIST:
1757 /* This is part of a disjoint return value; extract the location in
1758 question ignoring the offset. */
1759 invalidate (XEXP (x, 0), VOIDmode);
1760 return;
1761
1762 case MEM:
1763 addr = canon_rtx (get_addr (XEXP (x, 0)));
1764 /* Calculate the canonical version of X here so that
1765 true_dependence doesn't generate new RTL for X on each call. */
1766 x = canon_rtx (x);
1767
1768 /* Remove all hash table elements that refer to overlapping pieces of
1769 memory. */
1770 if (full_mode == VOIDmode)
1771 full_mode = GET_MODE (x);
1772
1773 for (i = 0; i < HASH_SIZE; i++)
1774 {
1775 struct table_elt *next;
1776
1777 for (p = table[i]; p; p = next)
1778 {
1779 next = p->next_same_hash;
1780 if (p->in_memory)
1781 {
1782 struct check_dependence_data d;
1783
1784 /* Just canonicalize the expression once;
1785 otherwise each time we call invalidate
1786 true_dependence will canonicalize the
1787 expression again. */
1788 if (!p->canon_exp)
1789 p->canon_exp = canon_rtx (p->exp);
1790 d.exp = x;
1791 d.addr = addr;
1792 d.mode = full_mode;
1793 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1794 remove_from_table (p, i);
1795 }
1796 }
1797 }
1798 return;
1799
1800 default:
1801 gcc_unreachable ();
1802 }
1803 }
1804 \f
1805 /* Remove all expressions that refer to register REGNO,
1806 since they are already invalid, and we are about to
1807 mark that register valid again and don't want the old
1808 expressions to reappear as valid. */
1809
1810 static void
1811 remove_invalid_refs (unsigned int regno)
1812 {
1813 unsigned int i;
1814 struct table_elt *p, *next;
1815
1816 for (i = 0; i < HASH_SIZE; i++)
1817 for (p = table[i]; p; p = next)
1818 {
1819 next = p->next_same_hash;
1820 if (!REG_P (p->exp)
1821 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1822 remove_from_table (p, i);
1823 }
1824 }
1825
1826 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1827 and mode MODE. */
1828 static void
1829 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1830 enum machine_mode mode)
1831 {
1832 unsigned int i;
1833 struct table_elt *p, *next;
1834 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1835
1836 for (i = 0; i < HASH_SIZE; i++)
1837 for (p = table[i]; p; p = next)
1838 {
1839 rtx exp = p->exp;
1840 next = p->next_same_hash;
1841
1842 if (!REG_P (exp)
1843 && (GET_CODE (exp) != SUBREG
1844 || !REG_P (SUBREG_REG (exp))
1845 || REGNO (SUBREG_REG (exp)) != regno
1846 || (((SUBREG_BYTE (exp)
1847 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1848 && SUBREG_BYTE (exp) <= end))
1849 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1850 remove_from_table (p, i);
1851 }
1852 }
1853 \f
1854 /* Recompute the hash codes of any valid entries in the hash table that
1855 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1856
1857 This is called when we make a jump equivalence. */
1858
1859 static void
1860 rehash_using_reg (rtx x)
1861 {
1862 unsigned int i;
1863 struct table_elt *p, *next;
1864 unsigned hash;
1865
1866 if (GET_CODE (x) == SUBREG)
1867 x = SUBREG_REG (x);
1868
1869 /* If X is not a register or if the register is known not to be in any
1870 valid entries in the table, we have no work to do. */
1871
1872 if (!REG_P (x)
1873 || REG_IN_TABLE (REGNO (x)) < 0
1874 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1875 return;
1876
1877 /* Scan all hash chains looking for valid entries that mention X.
1878 If we find one and it is in the wrong hash chain, move it. */
1879
1880 for (i = 0; i < HASH_SIZE; i++)
1881 for (p = table[i]; p; p = next)
1882 {
1883 next = p->next_same_hash;
1884 if (reg_mentioned_p (x, p->exp)
1885 && exp_equiv_p (p->exp, p->exp, 1, false)
1886 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1887 {
1888 if (p->next_same_hash)
1889 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1890
1891 if (p->prev_same_hash)
1892 p->prev_same_hash->next_same_hash = p->next_same_hash;
1893 else
1894 table[i] = p->next_same_hash;
1895
1896 p->next_same_hash = table[hash];
1897 p->prev_same_hash = 0;
1898 if (table[hash])
1899 table[hash]->prev_same_hash = p;
1900 table[hash] = p;
1901 }
1902 }
1903 }
1904 \f
1905 /* Remove from the hash table any expression that is a call-clobbered
1906 register. Also update their TICK values. */
1907
1908 static void
1909 invalidate_for_call (void)
1910 {
1911 unsigned int regno, endregno;
1912 unsigned int i;
1913 unsigned hash;
1914 struct table_elt *p, *next;
1915 int in_table = 0;
1916
1917 /* Go through all the hard registers. For each that is clobbered in
1918 a CALL_INSN, remove the register from quantity chains and update
1919 reg_tick if defined. Also see if any of these registers is currently
1920 in the table. */
1921
1922 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1923 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1924 {
1925 delete_reg_equiv (regno);
1926 if (REG_TICK (regno) >= 0)
1927 {
1928 REG_TICK (regno)++;
1929 SUBREG_TICKED (regno) = -1;
1930 }
1931
1932 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1933 }
1934
1935 /* In the case where we have no call-clobbered hard registers in the
1936 table, we are done. Otherwise, scan the table and remove any
1937 entry that overlaps a call-clobbered register. */
1938
1939 if (in_table)
1940 for (hash = 0; hash < HASH_SIZE; hash++)
1941 for (p = table[hash]; p; p = next)
1942 {
1943 next = p->next_same_hash;
1944
1945 if (!REG_P (p->exp)
1946 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1947 continue;
1948
1949 regno = REGNO (p->exp);
1950 endregno = END_HARD_REGNO (p->exp);
1951
1952 for (i = regno; i < endregno; i++)
1953 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1954 {
1955 remove_from_table (p, hash);
1956 break;
1957 }
1958 }
1959 }
1960 \f
1961 /* Given an expression X of type CONST,
1962 and ELT which is its table entry (or 0 if it
1963 is not in the hash table),
1964 return an alternate expression for X as a register plus integer.
1965 If none can be found, return 0. */
1966
1967 static rtx
1968 use_related_value (rtx x, struct table_elt *elt)
1969 {
1970 struct table_elt *relt = 0;
1971 struct table_elt *p, *q;
1972 HOST_WIDE_INT offset;
1973
1974 /* First, is there anything related known?
1975 If we have a table element, we can tell from that.
1976 Otherwise, must look it up. */
1977
1978 if (elt != 0 && elt->related_value != 0)
1979 relt = elt;
1980 else if (elt == 0 && GET_CODE (x) == CONST)
1981 {
1982 rtx subexp = get_related_value (x);
1983 if (subexp != 0)
1984 relt = lookup (subexp,
1985 SAFE_HASH (subexp, GET_MODE (subexp)),
1986 GET_MODE (subexp));
1987 }
1988
1989 if (relt == 0)
1990 return 0;
1991
1992 /* Search all related table entries for one that has an
1993 equivalent register. */
1994
1995 p = relt;
1996 while (1)
1997 {
1998 /* This loop is strange in that it is executed in two different cases.
1999 The first is when X is already in the table. Then it is searching
2000 the RELATED_VALUE list of X's class (RELT). The second case is when
2001 X is not in the table. Then RELT points to a class for the related
2002 value.
2003
2004 Ensure that, whatever case we are in, that we ignore classes that have
2005 the same value as X. */
2006
2007 if (rtx_equal_p (x, p->exp))
2008 q = 0;
2009 else
2010 for (q = p->first_same_value; q; q = q->next_same_value)
2011 if (REG_P (q->exp))
2012 break;
2013
2014 if (q)
2015 break;
2016
2017 p = p->related_value;
2018
2019 /* We went all the way around, so there is nothing to be found.
2020 Alternatively, perhaps RELT was in the table for some other reason
2021 and it has no related values recorded. */
2022 if (p == relt || p == 0)
2023 break;
2024 }
2025
2026 if (q == 0)
2027 return 0;
2028
2029 offset = (get_integer_term (x) - get_integer_term (p->exp));
2030 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2031 return plus_constant (q->exp, offset);
2032 }
2033 \f
2034 /* Hash a string. Just add its bytes up. */
2035 static inline unsigned
2036 hash_rtx_string (const char *ps)
2037 {
2038 unsigned hash = 0;
2039 const unsigned char *p = (const unsigned char *) ps;
2040
2041 if (p)
2042 while (*p)
2043 hash += *p++;
2044
2045 return hash;
2046 }
2047
2048 /* Hash an rtx. We are careful to make sure the value is never negative.
2049 Equivalent registers hash identically.
2050 MODE is used in hashing for CONST_INTs only;
2051 otherwise the mode of X is used.
2052
2053 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2054
2055 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2056 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2057
2058 Note that cse_insn knows that the hash code of a MEM expression
2059 is just (int) MEM plus the hash code of the address. */
2060
2061 unsigned
2062 hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2063 int *hash_arg_in_memory_p, bool have_reg_qty)
2064 {
2065 int i, j;
2066 unsigned hash = 0;
2067 enum rtx_code code;
2068 const char *fmt;
2069
2070 /* Used to turn recursion into iteration. We can't rely on GCC's
2071 tail-recursion elimination since we need to keep accumulating values
2072 in HASH. */
2073 repeat:
2074 if (x == 0)
2075 return hash;
2076
2077 code = GET_CODE (x);
2078 switch (code)
2079 {
2080 case REG:
2081 {
2082 unsigned int regno = REGNO (x);
2083
2084 if (!reload_completed)
2085 {
2086 /* On some machines, we can't record any non-fixed hard register,
2087 because extending its life will cause reload problems. We
2088 consider ap, fp, sp, gp to be fixed for this purpose.
2089
2090 We also consider CCmode registers to be fixed for this purpose;
2091 failure to do so leads to failure to simplify 0<100 type of
2092 conditionals.
2093
2094 On all machines, we can't record any global registers.
2095 Nor should we record any register that is in a small
2096 class, as defined by CLASS_LIKELY_SPILLED_P. */
2097 bool record;
2098
2099 if (regno >= FIRST_PSEUDO_REGISTER)
2100 record = true;
2101 else if (x == frame_pointer_rtx
2102 || x == hard_frame_pointer_rtx
2103 || x == arg_pointer_rtx
2104 || x == stack_pointer_rtx
2105 || x == pic_offset_table_rtx)
2106 record = true;
2107 else if (global_regs[regno])
2108 record = false;
2109 else if (fixed_regs[regno])
2110 record = true;
2111 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2112 record = true;
2113 else if (SMALL_REGISTER_CLASSES)
2114 record = false;
2115 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2116 record = false;
2117 else
2118 record = true;
2119
2120 if (!record)
2121 {
2122 *do_not_record_p = 1;
2123 return 0;
2124 }
2125 }
2126
2127 hash += ((unsigned int) REG << 7);
2128 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2129 return hash;
2130 }
2131
2132 /* We handle SUBREG of a REG specially because the underlying
2133 reg changes its hash value with every value change; we don't
2134 want to have to forget unrelated subregs when one subreg changes. */
2135 case SUBREG:
2136 {
2137 if (REG_P (SUBREG_REG (x)))
2138 {
2139 hash += (((unsigned int) SUBREG << 7)
2140 + REGNO (SUBREG_REG (x))
2141 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2142 return hash;
2143 }
2144 break;
2145 }
2146
2147 case CONST_INT:
2148 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2149 + (unsigned int) INTVAL (x));
2150 return hash;
2151
2152 case CONST_DOUBLE:
2153 /* This is like the general case, except that it only counts
2154 the integers representing the constant. */
2155 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2156 if (GET_MODE (x) != VOIDmode)
2157 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2158 else
2159 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2160 + (unsigned int) CONST_DOUBLE_HIGH (x));
2161 return hash;
2162
2163 case CONST_VECTOR:
2164 {
2165 int units;
2166 rtx elt;
2167
2168 units = CONST_VECTOR_NUNITS (x);
2169
2170 for (i = 0; i < units; ++i)
2171 {
2172 elt = CONST_VECTOR_ELT (x, i);
2173 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2174 hash_arg_in_memory_p, have_reg_qty);
2175 }
2176
2177 return hash;
2178 }
2179
2180 /* Assume there is only one rtx object for any given label. */
2181 case LABEL_REF:
2182 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2183 differences and differences between each stage's debugging dumps. */
2184 hash += (((unsigned int) LABEL_REF << 7)
2185 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2186 return hash;
2187
2188 case SYMBOL_REF:
2189 {
2190 /* Don't hash on the symbol's address to avoid bootstrap differences.
2191 Different hash values may cause expressions to be recorded in
2192 different orders and thus different registers to be used in the
2193 final assembler. This also avoids differences in the dump files
2194 between various stages. */
2195 unsigned int h = 0;
2196 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2197
2198 while (*p)
2199 h += (h << 7) + *p++; /* ??? revisit */
2200
2201 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2202 return hash;
2203 }
2204
2205 case MEM:
2206 /* We don't record if marked volatile or if BLKmode since we don't
2207 know the size of the move. */
2208 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2209 {
2210 *do_not_record_p = 1;
2211 return 0;
2212 }
2213 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2214 *hash_arg_in_memory_p = 1;
2215
2216 /* Now that we have already found this special case,
2217 might as well speed it up as much as possible. */
2218 hash += (unsigned) MEM;
2219 x = XEXP (x, 0);
2220 goto repeat;
2221
2222 case USE:
2223 /* A USE that mentions non-volatile memory needs special
2224 handling since the MEM may be BLKmode which normally
2225 prevents an entry from being made. Pure calls are
2226 marked by a USE which mentions BLKmode memory.
2227 See calls.c:emit_call_1. */
2228 if (MEM_P (XEXP (x, 0))
2229 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2230 {
2231 hash += (unsigned) USE;
2232 x = XEXP (x, 0);
2233
2234 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2235 *hash_arg_in_memory_p = 1;
2236
2237 /* Now that we have already found this special case,
2238 might as well speed it up as much as possible. */
2239 hash += (unsigned) MEM;
2240 x = XEXP (x, 0);
2241 goto repeat;
2242 }
2243 break;
2244
2245 case PRE_DEC:
2246 case PRE_INC:
2247 case POST_DEC:
2248 case POST_INC:
2249 case PRE_MODIFY:
2250 case POST_MODIFY:
2251 case PC:
2252 case CC0:
2253 case CALL:
2254 case UNSPEC_VOLATILE:
2255 *do_not_record_p = 1;
2256 return 0;
2257
2258 case ASM_OPERANDS:
2259 if (MEM_VOLATILE_P (x))
2260 {
2261 *do_not_record_p = 1;
2262 return 0;
2263 }
2264 else
2265 {
2266 /* We don't want to take the filename and line into account. */
2267 hash += (unsigned) code + (unsigned) GET_MODE (x)
2268 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2269 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2270 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2271
2272 if (ASM_OPERANDS_INPUT_LENGTH (x))
2273 {
2274 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2275 {
2276 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2277 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2278 do_not_record_p, hash_arg_in_memory_p,
2279 have_reg_qty)
2280 + hash_rtx_string
2281 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2282 }
2283
2284 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2285 x = ASM_OPERANDS_INPUT (x, 0);
2286 mode = GET_MODE (x);
2287 goto repeat;
2288 }
2289
2290 return hash;
2291 }
2292 break;
2293
2294 default:
2295 break;
2296 }
2297
2298 i = GET_RTX_LENGTH (code) - 1;
2299 hash += (unsigned) code + (unsigned) GET_MODE (x);
2300 fmt = GET_RTX_FORMAT (code);
2301 for (; i >= 0; i--)
2302 {
2303 switch (fmt[i])
2304 {
2305 case 'e':
2306 /* If we are about to do the last recursive call
2307 needed at this level, change it into iteration.
2308 This function is called enough to be worth it. */
2309 if (i == 0)
2310 {
2311 x = XEXP (x, i);
2312 goto repeat;
2313 }
2314
2315 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2316 hash_arg_in_memory_p, have_reg_qty);
2317 break;
2318
2319 case 'E':
2320 for (j = 0; j < XVECLEN (x, i); j++)
2321 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2322 hash_arg_in_memory_p, have_reg_qty);
2323 break;
2324
2325 case 's':
2326 hash += hash_rtx_string (XSTR (x, i));
2327 break;
2328
2329 case 'i':
2330 hash += (unsigned int) XINT (x, i);
2331 break;
2332
2333 case '0': case 't':
2334 /* Unused. */
2335 break;
2336
2337 default:
2338 gcc_unreachable ();
2339 }
2340 }
2341
2342 return hash;
2343 }
2344
2345 /* Hash an rtx X for cse via hash_rtx.
2346 Stores 1 in do_not_record if any subexpression is volatile.
2347 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2348 does not have the RTX_UNCHANGING_P bit set. */
2349
2350 static inline unsigned
2351 canon_hash (rtx x, enum machine_mode mode)
2352 {
2353 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2354 }
2355
2356 /* Like canon_hash but with no side effects, i.e. do_not_record
2357 and hash_arg_in_memory are not changed. */
2358
2359 static inline unsigned
2360 safe_hash (rtx x, enum machine_mode mode)
2361 {
2362 int dummy_do_not_record;
2363 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2364 }
2365 \f
2366 /* Return 1 iff X and Y would canonicalize into the same thing,
2367 without actually constructing the canonicalization of either one.
2368 If VALIDATE is nonzero,
2369 we assume X is an expression being processed from the rtl
2370 and Y was found in the hash table. We check register refs
2371 in Y for being marked as valid.
2372
2373 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2374
2375 int
2376 exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
2377 {
2378 int i, j;
2379 enum rtx_code code;
2380 const char *fmt;
2381
2382 /* Note: it is incorrect to assume an expression is equivalent to itself
2383 if VALIDATE is nonzero. */
2384 if (x == y && !validate)
2385 return 1;
2386
2387 if (x == 0 || y == 0)
2388 return x == y;
2389
2390 code = GET_CODE (x);
2391 if (code != GET_CODE (y))
2392 return 0;
2393
2394 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2395 if (GET_MODE (x) != GET_MODE (y))
2396 return 0;
2397
2398 switch (code)
2399 {
2400 case PC:
2401 case CC0:
2402 case CONST_INT:
2403 case CONST_DOUBLE:
2404 return x == y;
2405
2406 case LABEL_REF:
2407 return XEXP (x, 0) == XEXP (y, 0);
2408
2409 case SYMBOL_REF:
2410 return XSTR (x, 0) == XSTR (y, 0);
2411
2412 case REG:
2413 if (for_gcse)
2414 return REGNO (x) == REGNO (y);
2415 else
2416 {
2417 unsigned int regno = REGNO (y);
2418 unsigned int i;
2419 unsigned int endregno = END_REGNO (y);
2420
2421 /* If the quantities are not the same, the expressions are not
2422 equivalent. If there are and we are not to validate, they
2423 are equivalent. Otherwise, ensure all regs are up-to-date. */
2424
2425 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2426 return 0;
2427
2428 if (! validate)
2429 return 1;
2430
2431 for (i = regno; i < endregno; i++)
2432 if (REG_IN_TABLE (i) != REG_TICK (i))
2433 return 0;
2434
2435 return 1;
2436 }
2437
2438 case MEM:
2439 if (for_gcse)
2440 {
2441 /* A volatile mem should not be considered equivalent to any
2442 other. */
2443 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2444 return 0;
2445
2446 /* Can't merge two expressions in different alias sets, since we
2447 can decide that the expression is transparent in a block when
2448 it isn't, due to it being set with the different alias set.
2449
2450 Also, can't merge two expressions with different MEM_ATTRS.
2451 They could e.g. be two different entities allocated into the
2452 same space on the stack (see e.g. PR25130). In that case, the
2453 MEM addresses can be the same, even though the two MEMs are
2454 absolutely not equivalent.
2455
2456 But because really all MEM attributes should be the same for
2457 equivalent MEMs, we just use the invariant that MEMs that have
2458 the same attributes share the same mem_attrs data structure. */
2459 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2460 return 0;
2461 }
2462 break;
2463
2464 /* For commutative operations, check both orders. */
2465 case PLUS:
2466 case MULT:
2467 case AND:
2468 case IOR:
2469 case XOR:
2470 case NE:
2471 case EQ:
2472 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2473 validate, for_gcse)
2474 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2475 validate, for_gcse))
2476 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2477 validate, for_gcse)
2478 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2479 validate, for_gcse)));
2480
2481 case ASM_OPERANDS:
2482 /* We don't use the generic code below because we want to
2483 disregard filename and line numbers. */
2484
2485 /* A volatile asm isn't equivalent to any other. */
2486 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2487 return 0;
2488
2489 if (GET_MODE (x) != GET_MODE (y)
2490 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2491 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2492 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2493 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2494 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2495 return 0;
2496
2497 if (ASM_OPERANDS_INPUT_LENGTH (x))
2498 {
2499 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2500 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2501 ASM_OPERANDS_INPUT (y, i),
2502 validate, for_gcse)
2503 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2504 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2505 return 0;
2506 }
2507
2508 return 1;
2509
2510 default:
2511 break;
2512 }
2513
2514 /* Compare the elements. If any pair of corresponding elements
2515 fail to match, return 0 for the whole thing. */
2516
2517 fmt = GET_RTX_FORMAT (code);
2518 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2519 {
2520 switch (fmt[i])
2521 {
2522 case 'e':
2523 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2524 validate, for_gcse))
2525 return 0;
2526 break;
2527
2528 case 'E':
2529 if (XVECLEN (x, i) != XVECLEN (y, i))
2530 return 0;
2531 for (j = 0; j < XVECLEN (x, i); j++)
2532 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2533 validate, for_gcse))
2534 return 0;
2535 break;
2536
2537 case 's':
2538 if (strcmp (XSTR (x, i), XSTR (y, i)))
2539 return 0;
2540 break;
2541
2542 case 'i':
2543 if (XINT (x, i) != XINT (y, i))
2544 return 0;
2545 break;
2546
2547 case 'w':
2548 if (XWINT (x, i) != XWINT (y, i))
2549 return 0;
2550 break;
2551
2552 case '0':
2553 case 't':
2554 break;
2555
2556 default:
2557 gcc_unreachable ();
2558 }
2559 }
2560
2561 return 1;
2562 }
2563 \f
2564 /* Return 1 if X has a value that can vary even between two
2565 executions of the program. 0 means X can be compared reliably
2566 against certain constants or near-constants. */
2567
2568 static int
2569 cse_rtx_varies_p (rtx x, int from_alias)
2570 {
2571 /* We need not check for X and the equivalence class being of the same
2572 mode because if X is equivalent to a constant in some mode, it
2573 doesn't vary in any mode. */
2574
2575 if (REG_P (x)
2576 && REGNO_QTY_VALID_P (REGNO (x)))
2577 {
2578 int x_q = REG_QTY (REGNO (x));
2579 struct qty_table_elem *x_ent = &qty_table[x_q];
2580
2581 if (GET_MODE (x) == x_ent->mode
2582 && x_ent->const_rtx != NULL_RTX)
2583 return 0;
2584 }
2585
2586 if (GET_CODE (x) == PLUS
2587 && GET_CODE (XEXP (x, 1)) == CONST_INT
2588 && REG_P (XEXP (x, 0))
2589 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2590 {
2591 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2592 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2593
2594 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2595 && x0_ent->const_rtx != NULL_RTX)
2596 return 0;
2597 }
2598
2599 /* This can happen as the result of virtual register instantiation, if
2600 the initial constant is too large to be a valid address. This gives
2601 us a three instruction sequence, load large offset into a register,
2602 load fp minus a constant into a register, then a MEM which is the
2603 sum of the two `constant' registers. */
2604 if (GET_CODE (x) == PLUS
2605 && REG_P (XEXP (x, 0))
2606 && REG_P (XEXP (x, 1))
2607 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2608 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2609 {
2610 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2611 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2612 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2613 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2614
2615 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2616 && x0_ent->const_rtx != NULL_RTX
2617 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2618 && x1_ent->const_rtx != NULL_RTX)
2619 return 0;
2620 }
2621
2622 return rtx_varies_p (x, from_alias);
2623 }
2624 \f
2625 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2626 the result if necessary. INSN is as for canon_reg. */
2627
2628 static void
2629 validate_canon_reg (rtx *xloc, rtx insn)
2630 {
2631 if (*xloc)
2632 {
2633 rtx new = canon_reg (*xloc, insn);
2634
2635 /* If replacing pseudo with hard reg or vice versa, ensure the
2636 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2637 gcc_assert (insn && new);
2638 validate_change (insn, xloc, new, 1);
2639 }
2640 }
2641
2642 /* Canonicalize an expression:
2643 replace each register reference inside it
2644 with the "oldest" equivalent register.
2645
2646 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2647 after we make our substitution. The calls are made with IN_GROUP nonzero
2648 so apply_change_group must be called upon the outermost return from this
2649 function (unless INSN is zero). The result of apply_change_group can
2650 generally be discarded since the changes we are making are optional. */
2651
2652 static rtx
2653 canon_reg (rtx x, rtx insn)
2654 {
2655 int i;
2656 enum rtx_code code;
2657 const char *fmt;
2658
2659 if (x == 0)
2660 return x;
2661
2662 code = GET_CODE (x);
2663 switch (code)
2664 {
2665 case PC:
2666 case CC0:
2667 case CONST:
2668 case CONST_INT:
2669 case CONST_DOUBLE:
2670 case CONST_VECTOR:
2671 case SYMBOL_REF:
2672 case LABEL_REF:
2673 case ADDR_VEC:
2674 case ADDR_DIFF_VEC:
2675 return x;
2676
2677 case REG:
2678 {
2679 int first;
2680 int q;
2681 struct qty_table_elem *ent;
2682
2683 /* Never replace a hard reg, because hard regs can appear
2684 in more than one machine mode, and we must preserve the mode
2685 of each occurrence. Also, some hard regs appear in
2686 MEMs that are shared and mustn't be altered. Don't try to
2687 replace any reg that maps to a reg of class NO_REGS. */
2688 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2689 || ! REGNO_QTY_VALID_P (REGNO (x)))
2690 return x;
2691
2692 q = REG_QTY (REGNO (x));
2693 ent = &qty_table[q];
2694 first = ent->first_reg;
2695 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2696 : REGNO_REG_CLASS (first) == NO_REGS ? x
2697 : gen_rtx_REG (ent->mode, first));
2698 }
2699
2700 default:
2701 break;
2702 }
2703
2704 fmt = GET_RTX_FORMAT (code);
2705 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2706 {
2707 int j;
2708
2709 if (fmt[i] == 'e')
2710 validate_canon_reg (&XEXP (x, i), insn);
2711 else if (fmt[i] == 'E')
2712 for (j = 0; j < XVECLEN (x, i); j++)
2713 validate_canon_reg (&XVECEXP (x, i, j), insn);
2714 }
2715
2716 return x;
2717 }
2718 \f
2719 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2720 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2721 what values are being compared.
2722
2723 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2724 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2725 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2726 compared to produce cc0.
2727
2728 The return value is the comparison operator and is either the code of
2729 A or the code corresponding to the inverse of the comparison. */
2730
2731 static enum rtx_code
2732 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2733 enum machine_mode *pmode1, enum machine_mode *pmode2)
2734 {
2735 rtx arg1, arg2;
2736
2737 arg1 = *parg1, arg2 = *parg2;
2738
2739 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2740
2741 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2742 {
2743 /* Set nonzero when we find something of interest. */
2744 rtx x = 0;
2745 int reverse_code = 0;
2746 struct table_elt *p = 0;
2747
2748 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2749 On machines with CC0, this is the only case that can occur, since
2750 fold_rtx will return the COMPARE or item being compared with zero
2751 when given CC0. */
2752
2753 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2754 x = arg1;
2755
2756 /* If ARG1 is a comparison operator and CODE is testing for
2757 STORE_FLAG_VALUE, get the inner arguments. */
2758
2759 else if (COMPARISON_P (arg1))
2760 {
2761 #ifdef FLOAT_STORE_FLAG_VALUE
2762 REAL_VALUE_TYPE fsfv;
2763 #endif
2764
2765 if (code == NE
2766 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2767 && code == LT && STORE_FLAG_VALUE == -1)
2768 #ifdef FLOAT_STORE_FLAG_VALUE
2769 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2770 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2771 REAL_VALUE_NEGATIVE (fsfv)))
2772 #endif
2773 )
2774 x = arg1;
2775 else if (code == EQ
2776 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2777 && code == GE && STORE_FLAG_VALUE == -1)
2778 #ifdef FLOAT_STORE_FLAG_VALUE
2779 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2780 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2781 REAL_VALUE_NEGATIVE (fsfv)))
2782 #endif
2783 )
2784 x = arg1, reverse_code = 1;
2785 }
2786
2787 /* ??? We could also check for
2788
2789 (ne (and (eq (...) (const_int 1))) (const_int 0))
2790
2791 and related forms, but let's wait until we see them occurring. */
2792
2793 if (x == 0)
2794 /* Look up ARG1 in the hash table and see if it has an equivalence
2795 that lets us see what is being compared. */
2796 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2797 if (p)
2798 {
2799 p = p->first_same_value;
2800
2801 /* If what we compare is already known to be constant, that is as
2802 good as it gets.
2803 We need to break the loop in this case, because otherwise we
2804 can have an infinite loop when looking at a reg that is known
2805 to be a constant which is the same as a comparison of a reg
2806 against zero which appears later in the insn stream, which in
2807 turn is constant and the same as the comparison of the first reg
2808 against zero... */
2809 if (p->is_const)
2810 break;
2811 }
2812
2813 for (; p; p = p->next_same_value)
2814 {
2815 enum machine_mode inner_mode = GET_MODE (p->exp);
2816 #ifdef FLOAT_STORE_FLAG_VALUE
2817 REAL_VALUE_TYPE fsfv;
2818 #endif
2819
2820 /* If the entry isn't valid, skip it. */
2821 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2822 continue;
2823
2824 if (GET_CODE (p->exp) == COMPARE
2825 /* Another possibility is that this machine has a compare insn
2826 that includes the comparison code. In that case, ARG1 would
2827 be equivalent to a comparison operation that would set ARG1 to
2828 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2829 ORIG_CODE is the actual comparison being done; if it is an EQ,
2830 we must reverse ORIG_CODE. On machine with a negative value
2831 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2832 || ((code == NE
2833 || (code == LT
2834 && GET_MODE_CLASS (inner_mode) == MODE_INT
2835 && (GET_MODE_BITSIZE (inner_mode)
2836 <= HOST_BITS_PER_WIDE_INT)
2837 && (STORE_FLAG_VALUE
2838 & ((HOST_WIDE_INT) 1
2839 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2840 #ifdef FLOAT_STORE_FLAG_VALUE
2841 || (code == LT
2842 && SCALAR_FLOAT_MODE_P (inner_mode)
2843 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2844 REAL_VALUE_NEGATIVE (fsfv)))
2845 #endif
2846 )
2847 && COMPARISON_P (p->exp)))
2848 {
2849 x = p->exp;
2850 break;
2851 }
2852 else if ((code == EQ
2853 || (code == GE
2854 && GET_MODE_CLASS (inner_mode) == MODE_INT
2855 && (GET_MODE_BITSIZE (inner_mode)
2856 <= HOST_BITS_PER_WIDE_INT)
2857 && (STORE_FLAG_VALUE
2858 & ((HOST_WIDE_INT) 1
2859 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2860 #ifdef FLOAT_STORE_FLAG_VALUE
2861 || (code == GE
2862 && SCALAR_FLOAT_MODE_P (inner_mode)
2863 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2864 REAL_VALUE_NEGATIVE (fsfv)))
2865 #endif
2866 )
2867 && COMPARISON_P (p->exp))
2868 {
2869 reverse_code = 1;
2870 x = p->exp;
2871 break;
2872 }
2873
2874 /* If this non-trapping address, e.g. fp + constant, the
2875 equivalent is a better operand since it may let us predict
2876 the value of the comparison. */
2877 else if (!rtx_addr_can_trap_p (p->exp))
2878 {
2879 arg1 = p->exp;
2880 continue;
2881 }
2882 }
2883
2884 /* If we didn't find a useful equivalence for ARG1, we are done.
2885 Otherwise, set up for the next iteration. */
2886 if (x == 0)
2887 break;
2888
2889 /* If we need to reverse the comparison, make sure that that is
2890 possible -- we can't necessarily infer the value of GE from LT
2891 with floating-point operands. */
2892 if (reverse_code)
2893 {
2894 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
2895 if (reversed == UNKNOWN)
2896 break;
2897 else
2898 code = reversed;
2899 }
2900 else if (COMPARISON_P (x))
2901 code = GET_CODE (x);
2902 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2903 }
2904
2905 /* Return our results. Return the modes from before fold_rtx
2906 because fold_rtx might produce const_int, and then it's too late. */
2907 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2908 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2909
2910 return code;
2911 }
2912 \f
2913 /* If X is a nontrivial arithmetic operation on an argument for which
2914 a constant value can be determined, return the result of operating
2915 on that value, as a constant. Otherwise, return X, possibly with
2916 one or more operands changed to a forward-propagated constant.
2917
2918 If X is a register whose contents are known, we do NOT return
2919 those contents here; equiv_constant is called to perform that task.
2920 For SUBREGs and MEMs, we do that both here and in equiv_constant.
2921
2922 INSN is the insn that we may be modifying. If it is 0, make a copy
2923 of X before modifying it. */
2924
2925 static rtx
2926 fold_rtx (rtx x, rtx insn)
2927 {
2928 enum rtx_code code;
2929 enum machine_mode mode;
2930 const char *fmt;
2931 int i;
2932 rtx new = 0;
2933 int changed = 0;
2934
2935 /* Operands of X. */
2936 rtx folded_arg0;
2937 rtx folded_arg1;
2938
2939 /* Constant equivalents of first three operands of X;
2940 0 when no such equivalent is known. */
2941 rtx const_arg0;
2942 rtx const_arg1;
2943 rtx const_arg2;
2944
2945 /* The mode of the first operand of X. We need this for sign and zero
2946 extends. */
2947 enum machine_mode mode_arg0;
2948
2949 if (x == 0)
2950 return x;
2951
2952 /* Try to perform some initial simplifications on X. */
2953 code = GET_CODE (x);
2954 switch (code)
2955 {
2956 case MEM:
2957 case SUBREG:
2958 if ((new = equiv_constant (x)) != NULL_RTX)
2959 return new;
2960 return x;
2961
2962 case CONST:
2963 case CONST_INT:
2964 case CONST_DOUBLE:
2965 case CONST_VECTOR:
2966 case SYMBOL_REF:
2967 case LABEL_REF:
2968 case REG:
2969 case PC:
2970 /* No use simplifying an EXPR_LIST
2971 since they are used only for lists of args
2972 in a function call's REG_EQUAL note. */
2973 case EXPR_LIST:
2974 return x;
2975
2976 #ifdef HAVE_cc0
2977 case CC0:
2978 return prev_insn_cc0;
2979 #endif
2980
2981 case ASM_OPERANDS:
2982 if (insn)
2983 {
2984 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2985 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
2986 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
2987 }
2988 return x;
2989
2990 #ifdef NO_FUNCTION_CSE
2991 case CALL:
2992 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
2993 return x;
2994 break;
2995 #endif
2996
2997 /* Anything else goes through the loop below. */
2998 default:
2999 break;
3000 }
3001
3002 mode = GET_MODE (x);
3003 const_arg0 = 0;
3004 const_arg1 = 0;
3005 const_arg2 = 0;
3006 mode_arg0 = VOIDmode;
3007
3008 /* Try folding our operands.
3009 Then see which ones have constant values known. */
3010
3011 fmt = GET_RTX_FORMAT (code);
3012 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3013 if (fmt[i] == 'e')
3014 {
3015 rtx folded_arg = XEXP (x, i), const_arg;
3016 enum machine_mode mode_arg = GET_MODE (folded_arg);
3017
3018 switch (GET_CODE (folded_arg))
3019 {
3020 case MEM:
3021 case REG:
3022 case SUBREG:
3023 const_arg = equiv_constant (folded_arg);
3024 break;
3025
3026 case CONST:
3027 case CONST_INT:
3028 case SYMBOL_REF:
3029 case LABEL_REF:
3030 case CONST_DOUBLE:
3031 case CONST_VECTOR:
3032 const_arg = folded_arg;
3033 break;
3034
3035 #ifdef HAVE_cc0
3036 case CC0:
3037 folded_arg = prev_insn_cc0;
3038 mode_arg = prev_insn_cc0_mode;
3039 const_arg = equiv_constant (folded_arg);
3040 break;
3041 #endif
3042
3043 default:
3044 folded_arg = fold_rtx (folded_arg, insn);
3045 const_arg = equiv_constant (folded_arg);
3046 break;
3047 }
3048
3049 /* For the first three operands, see if the operand
3050 is constant or equivalent to a constant. */
3051 switch (i)
3052 {
3053 case 0:
3054 folded_arg0 = folded_arg;
3055 const_arg0 = const_arg;
3056 mode_arg0 = mode_arg;
3057 break;
3058 case 1:
3059 folded_arg1 = folded_arg;
3060 const_arg1 = const_arg;
3061 break;
3062 case 2:
3063 const_arg2 = const_arg;
3064 break;
3065 }
3066
3067 /* Pick the least expensive of the argument and an equivalent constant
3068 argument. */
3069 if (const_arg != 0
3070 && const_arg != folded_arg
3071 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3072
3073 /* It's not safe to substitute the operand of a conversion
3074 operator with a constant, as the conversion's identity
3075 depends upon the mode of its operand. This optimization
3076 is handled by the call to simplify_unary_operation. */
3077 && (GET_RTX_CLASS (code) != RTX_UNARY
3078 || GET_MODE (const_arg) == mode_arg0
3079 || (code != ZERO_EXTEND
3080 && code != SIGN_EXTEND
3081 && code != TRUNCATE
3082 && code != FLOAT_TRUNCATE
3083 && code != FLOAT_EXTEND
3084 && code != FLOAT
3085 && code != FIX
3086 && code != UNSIGNED_FLOAT
3087 && code != UNSIGNED_FIX)))
3088 folded_arg = const_arg;
3089
3090 if (folded_arg == XEXP (x, i))
3091 continue;
3092
3093 if (insn == NULL_RTX && !changed)
3094 x = copy_rtx (x);
3095 changed = 1;
3096 validate_change (insn, &XEXP (x, i), folded_arg, 1);
3097 }
3098
3099 if (changed)
3100 {
3101 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3102 consistent with the order in X. */
3103 if (canonicalize_change_group (insn, x))
3104 {
3105 rtx tem;
3106 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3107 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3108 }
3109
3110 apply_change_group ();
3111 }
3112
3113 /* If X is an arithmetic operation, see if we can simplify it. */
3114
3115 switch (GET_RTX_CLASS (code))
3116 {
3117 case RTX_UNARY:
3118 {
3119 int is_const = 0;
3120
3121 /* We can't simplify extension ops unless we know the
3122 original mode. */
3123 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3124 && mode_arg0 == VOIDmode)
3125 break;
3126
3127 /* If we had a CONST, strip it off and put it back later if we
3128 fold. */
3129 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3130 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3131
3132 new = simplify_unary_operation (code, mode,
3133 const_arg0 ? const_arg0 : folded_arg0,
3134 mode_arg0);
3135 /* NEG of PLUS could be converted into MINUS, but that causes
3136 expressions of the form
3137 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3138 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3139 FIXME: those ports should be fixed. */
3140 if (new != 0 && is_const
3141 && GET_CODE (new) == PLUS
3142 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3143 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3144 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3145 new = gen_rtx_CONST (mode, new);
3146 }
3147 break;
3148
3149 case RTX_COMPARE:
3150 case RTX_COMM_COMPARE:
3151 /* See what items are actually being compared and set FOLDED_ARG[01]
3152 to those values and CODE to the actual comparison code. If any are
3153 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3154 do anything if both operands are already known to be constant. */
3155
3156 /* ??? Vector mode comparisons are not supported yet. */
3157 if (VECTOR_MODE_P (mode))
3158 break;
3159
3160 if (const_arg0 == 0 || const_arg1 == 0)
3161 {
3162 struct table_elt *p0, *p1;
3163 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3164 enum machine_mode mode_arg1;
3165
3166 #ifdef FLOAT_STORE_FLAG_VALUE
3167 if (SCALAR_FLOAT_MODE_P (mode))
3168 {
3169 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3170 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3171 false_rtx = CONST0_RTX (mode);
3172 }
3173 #endif
3174
3175 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3176 &mode_arg0, &mode_arg1);
3177
3178 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3179 what kinds of things are being compared, so we can't do
3180 anything with this comparison. */
3181
3182 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3183 break;
3184
3185 const_arg0 = equiv_constant (folded_arg0);
3186 const_arg1 = equiv_constant (folded_arg1);
3187
3188 /* If we do not now have two constants being compared, see
3189 if we can nevertheless deduce some things about the
3190 comparison. */
3191 if (const_arg0 == 0 || const_arg1 == 0)
3192 {
3193 if (const_arg1 != NULL)
3194 {
3195 rtx cheapest_simplification;
3196 int cheapest_cost;
3197 rtx simp_result;
3198 struct table_elt *p;
3199
3200 /* See if we can find an equivalent of folded_arg0
3201 that gets us a cheaper expression, possibly a
3202 constant through simplifications. */
3203 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3204 mode_arg0);
3205
3206 if (p != NULL)
3207 {
3208 cheapest_simplification = x;
3209 cheapest_cost = COST (x);
3210
3211 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3212 {
3213 int cost;
3214
3215 /* If the entry isn't valid, skip it. */
3216 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3217 continue;
3218
3219 /* Try to simplify using this equivalence. */
3220 simp_result
3221 = simplify_relational_operation (code, mode,
3222 mode_arg0,
3223 p->exp,
3224 const_arg1);
3225
3226 if (simp_result == NULL)
3227 continue;
3228
3229 cost = COST (simp_result);
3230 if (cost < cheapest_cost)
3231 {
3232 cheapest_cost = cost;
3233 cheapest_simplification = simp_result;
3234 }
3235 }
3236
3237 /* If we have a cheaper expression now, use that
3238 and try folding it further, from the top. */
3239 if (cheapest_simplification != x)
3240 return fold_rtx (cheapest_simplification, insn);
3241 }
3242 }
3243
3244 /* Some addresses are known to be nonzero. We don't know
3245 their sign, but equality comparisons are known. */
3246 if (const_arg1 == const0_rtx
3247 && nonzero_address_p (folded_arg0))
3248 {
3249 if (code == EQ)
3250 return false_rtx;
3251 else if (code == NE)
3252 return true_rtx;
3253 }
3254
3255 /* See if the two operands are the same. */
3256
3257 if (folded_arg0 == folded_arg1
3258 || (REG_P (folded_arg0)
3259 && REG_P (folded_arg1)
3260 && (REG_QTY (REGNO (folded_arg0))
3261 == REG_QTY (REGNO (folded_arg1))))
3262 || ((p0 = lookup (folded_arg0,
3263 SAFE_HASH (folded_arg0, mode_arg0),
3264 mode_arg0))
3265 && (p1 = lookup (folded_arg1,
3266 SAFE_HASH (folded_arg1, mode_arg0),
3267 mode_arg0))
3268 && p0->first_same_value == p1->first_same_value))
3269 {
3270 /* Sadly two equal NaNs are not equivalent. */
3271 if (!HONOR_NANS (mode_arg0))
3272 return ((code == EQ || code == LE || code == GE
3273 || code == LEU || code == GEU || code == UNEQ
3274 || code == UNLE || code == UNGE
3275 || code == ORDERED)
3276 ? true_rtx : false_rtx);
3277 /* Take care for the FP compares we can resolve. */
3278 if (code == UNEQ || code == UNLE || code == UNGE)
3279 return true_rtx;
3280 if (code == LTGT || code == LT || code == GT)
3281 return false_rtx;
3282 }
3283
3284 /* If FOLDED_ARG0 is a register, see if the comparison we are
3285 doing now is either the same as we did before or the reverse
3286 (we only check the reverse if not floating-point). */
3287 else if (REG_P (folded_arg0))
3288 {
3289 int qty = REG_QTY (REGNO (folded_arg0));
3290
3291 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3292 {
3293 struct qty_table_elem *ent = &qty_table[qty];
3294
3295 if ((comparison_dominates_p (ent->comparison_code, code)
3296 || (! FLOAT_MODE_P (mode_arg0)
3297 && comparison_dominates_p (ent->comparison_code,
3298 reverse_condition (code))))
3299 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3300 || (const_arg1
3301 && rtx_equal_p (ent->comparison_const,
3302 const_arg1))
3303 || (REG_P (folded_arg1)
3304 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3305 return (comparison_dominates_p (ent->comparison_code, code)
3306 ? true_rtx : false_rtx);
3307 }
3308 }
3309 }
3310 }
3311
3312 /* If we are comparing against zero, see if the first operand is
3313 equivalent to an IOR with a constant. If so, we may be able to
3314 determine the result of this comparison. */
3315
3316 if (const_arg1 == const0_rtx)
3317 {
3318 rtx y = lookup_as_function (folded_arg0, IOR);
3319 rtx inner_const;
3320
3321 if (y != 0
3322 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3323 && GET_CODE (inner_const) == CONST_INT
3324 && INTVAL (inner_const) != 0)
3325 {
3326 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
3327 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
3328 && (INTVAL (inner_const)
3329 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
3330 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3331
3332 #ifdef FLOAT_STORE_FLAG_VALUE
3333 if (SCALAR_FLOAT_MODE_P (mode))
3334 {
3335 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3336 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3337 false_rtx = CONST0_RTX (mode);
3338 }
3339 #endif
3340
3341 switch (code)
3342 {
3343 case EQ:
3344 return false_rtx;
3345 case NE:
3346 return true_rtx;
3347 case LT: case LE:
3348 if (has_sign)
3349 return true_rtx;
3350 break;
3351 case GT: case GE:
3352 if (has_sign)
3353 return false_rtx;
3354 break;
3355 default:
3356 break;
3357 }
3358 }
3359 }
3360
3361 {
3362 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3363 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3364 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3365 }
3366 break;
3367
3368 case RTX_BIN_ARITH:
3369 case RTX_COMM_ARITH:
3370 switch (code)
3371 {
3372 case PLUS:
3373 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3374 with that LABEL_REF as its second operand. If so, the result is
3375 the first operand of that MINUS. This handles switches with an
3376 ADDR_DIFF_VEC table. */
3377 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3378 {
3379 rtx y
3380 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3381 : lookup_as_function (folded_arg0, MINUS);
3382
3383 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3384 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3385 return XEXP (y, 0);
3386
3387 /* Now try for a CONST of a MINUS like the above. */
3388 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3389 : lookup_as_function (folded_arg0, CONST))) != 0
3390 && GET_CODE (XEXP (y, 0)) == MINUS
3391 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3392 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3393 return XEXP (XEXP (y, 0), 0);
3394 }
3395
3396 /* Likewise if the operands are in the other order. */
3397 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3398 {
3399 rtx y
3400 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3401 : lookup_as_function (folded_arg1, MINUS);
3402
3403 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3404 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3405 return XEXP (y, 0);
3406
3407 /* Now try for a CONST of a MINUS like the above. */
3408 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3409 : lookup_as_function (folded_arg1, CONST))) != 0
3410 && GET_CODE (XEXP (y, 0)) == MINUS
3411 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3412 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3413 return XEXP (XEXP (y, 0), 0);
3414 }
3415
3416 /* If second operand is a register equivalent to a negative
3417 CONST_INT, see if we can find a register equivalent to the
3418 positive constant. Make a MINUS if so. Don't do this for
3419 a non-negative constant since we might then alternate between
3420 choosing positive and negative constants. Having the positive
3421 constant previously-used is the more common case. Be sure
3422 the resulting constant is non-negative; if const_arg1 were
3423 the smallest negative number this would overflow: depending
3424 on the mode, this would either just be the same value (and
3425 hence not save anything) or be incorrect. */
3426 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3427 && INTVAL (const_arg1) < 0
3428 /* This used to test
3429
3430 -INTVAL (const_arg1) >= 0
3431
3432 But The Sun V5.0 compilers mis-compiled that test. So
3433 instead we test for the problematic value in a more direct
3434 manner and hope the Sun compilers get it correct. */
3435 && INTVAL (const_arg1) !=
3436 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3437 && REG_P (folded_arg1))
3438 {
3439 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3440 struct table_elt *p
3441 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3442
3443 if (p)
3444 for (p = p->first_same_value; p; p = p->next_same_value)
3445 if (REG_P (p->exp))
3446 return simplify_gen_binary (MINUS, mode, folded_arg0,
3447 canon_reg (p->exp, NULL_RTX));
3448 }
3449 goto from_plus;
3450
3451 case MINUS:
3452 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3453 If so, produce (PLUS Z C2-C). */
3454 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3455 {
3456 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3457 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3458 return fold_rtx (plus_constant (copy_rtx (y),
3459 -INTVAL (const_arg1)),
3460 NULL_RTX);
3461 }
3462
3463 /* Fall through. */
3464
3465 from_plus:
3466 case SMIN: case SMAX: case UMIN: case UMAX:
3467 case IOR: case AND: case XOR:
3468 case MULT:
3469 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3470 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3471 is known to be of similar form, we may be able to replace the
3472 operation with a combined operation. This may eliminate the
3473 intermediate operation if every use is simplified in this way.
3474 Note that the similar optimization done by combine.c only works
3475 if the intermediate operation's result has only one reference. */
3476
3477 if (REG_P (folded_arg0)
3478 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3479 {
3480 int is_shift
3481 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3482 rtx y, inner_const, new_const;
3483 enum rtx_code associate_code;
3484
3485 if (is_shift
3486 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3487 || INTVAL (const_arg1) < 0))
3488 {
3489 if (SHIFT_COUNT_TRUNCATED)
3490 const_arg1 = GEN_INT (INTVAL (const_arg1)
3491 & (GET_MODE_BITSIZE (mode) - 1));
3492 else
3493 break;
3494 }
3495
3496 y = lookup_as_function (folded_arg0, code);
3497 if (y == 0)
3498 break;
3499
3500 /* If we have compiled a statement like
3501 "if (x == (x & mask1))", and now are looking at
3502 "x & mask2", we will have a case where the first operand
3503 of Y is the same as our first operand. Unless we detect
3504 this case, an infinite loop will result. */
3505 if (XEXP (y, 0) == folded_arg0)
3506 break;
3507
3508 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3509 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
3510 break;
3511
3512 /* Don't associate these operations if they are a PLUS with the
3513 same constant and it is a power of two. These might be doable
3514 with a pre- or post-increment. Similarly for two subtracts of
3515 identical powers of two with post decrement. */
3516
3517 if (code == PLUS && const_arg1 == inner_const
3518 && ((HAVE_PRE_INCREMENT
3519 && exact_log2 (INTVAL (const_arg1)) >= 0)
3520 || (HAVE_POST_INCREMENT
3521 && exact_log2 (INTVAL (const_arg1)) >= 0)
3522 || (HAVE_PRE_DECREMENT
3523 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3524 || (HAVE_POST_DECREMENT
3525 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3526 break;
3527
3528 if (is_shift
3529 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3530 || INTVAL (inner_const) < 0))
3531 {
3532 if (SHIFT_COUNT_TRUNCATED)
3533 inner_const = GEN_INT (INTVAL (inner_const)
3534 & (GET_MODE_BITSIZE (mode) - 1));
3535 else
3536 break;
3537 }
3538
3539 /* Compute the code used to compose the constants. For example,
3540 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3541
3542 associate_code = (is_shift || code == MINUS ? PLUS : code);
3543
3544 new_const = simplify_binary_operation (associate_code, mode,
3545 const_arg1, inner_const);
3546
3547 if (new_const == 0)
3548 break;
3549
3550 /* If we are associating shift operations, don't let this
3551 produce a shift of the size of the object or larger.
3552 This could occur when we follow a sign-extend by a right
3553 shift on a machine that does a sign-extend as a pair
3554 of shifts. */
3555
3556 if (is_shift
3557 && GET_CODE (new_const) == CONST_INT
3558 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3559 {
3560 /* As an exception, we can turn an ASHIFTRT of this
3561 form into a shift of the number of bits - 1. */
3562 if (code == ASHIFTRT)
3563 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3564 else if (!side_effects_p (XEXP (y, 0)))
3565 return CONST0_RTX (mode);
3566 else
3567 break;
3568 }
3569
3570 y = copy_rtx (XEXP (y, 0));
3571
3572 /* If Y contains our first operand (the most common way this
3573 can happen is if Y is a MEM), we would do into an infinite
3574 loop if we tried to fold it. So don't in that case. */
3575
3576 if (! reg_mentioned_p (folded_arg0, y))
3577 y = fold_rtx (y, insn);
3578
3579 return simplify_gen_binary (code, mode, y, new_const);
3580 }
3581 break;
3582
3583 case DIV: case UDIV:
3584 /* ??? The associative optimization performed immediately above is
3585 also possible for DIV and UDIV using associate_code of MULT.
3586 However, we would need extra code to verify that the
3587 multiplication does not overflow, that is, there is no overflow
3588 in the calculation of new_const. */
3589 break;
3590
3591 default:
3592 break;
3593 }
3594
3595 new = simplify_binary_operation (code, mode,
3596 const_arg0 ? const_arg0 : folded_arg0,
3597 const_arg1 ? const_arg1 : folded_arg1);
3598 break;
3599
3600 case RTX_OBJ:
3601 /* (lo_sum (high X) X) is simply X. */
3602 if (code == LO_SUM && const_arg0 != 0
3603 && GET_CODE (const_arg0) == HIGH
3604 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3605 return const_arg1;
3606 break;
3607
3608 case RTX_TERNARY:
3609 case RTX_BITFIELD_OPS:
3610 new = simplify_ternary_operation (code, mode, mode_arg0,
3611 const_arg0 ? const_arg0 : folded_arg0,
3612 const_arg1 ? const_arg1 : folded_arg1,
3613 const_arg2 ? const_arg2 : XEXP (x, 2));
3614 break;
3615
3616 default:
3617 break;
3618 }
3619
3620 return new ? new : x;
3621 }
3622 \f
3623 /* Return a constant value currently equivalent to X.
3624 Return 0 if we don't know one. */
3625
3626 static rtx
3627 equiv_constant (rtx x)
3628 {
3629 if (REG_P (x)
3630 && REGNO_QTY_VALID_P (REGNO (x)))
3631 {
3632 int x_q = REG_QTY (REGNO (x));
3633 struct qty_table_elem *x_ent = &qty_table[x_q];
3634
3635 if (x_ent->const_rtx)
3636 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3637 }
3638
3639 if (x == 0 || CONSTANT_P (x))
3640 return x;
3641
3642 if (GET_CODE (x) == SUBREG)
3643 {
3644 rtx new;
3645
3646 /* See if we previously assigned a constant value to this SUBREG. */
3647 if ((new = lookup_as_function (x, CONST_INT)) != 0
3648 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3649 return new;
3650
3651 if (REG_P (SUBREG_REG (x))
3652 && (new = equiv_constant (SUBREG_REG (x))) != 0)
3653 return simplify_subreg (GET_MODE (x), SUBREG_REG (x),
3654 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3655
3656 return 0;
3657 }
3658
3659 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3660 the hash table in case its value was seen before. */
3661
3662 if (MEM_P (x))
3663 {
3664 struct table_elt *elt;
3665
3666 x = avoid_constant_pool_reference (x);
3667 if (CONSTANT_P (x))
3668 return x;
3669
3670 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3671 if (elt == 0)
3672 return 0;
3673
3674 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3675 if (elt->is_const && CONSTANT_P (elt->exp))
3676 return elt->exp;
3677 }
3678
3679 return 0;
3680 }
3681 \f
3682 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3683 "taken" branch.
3684
3685 In certain cases, this can cause us to add an equivalence. For example,
3686 if we are following the taken case of
3687 if (i == 2)
3688 we can add the fact that `i' and '2' are now equivalent.
3689
3690 In any case, we can record that this comparison was passed. If the same
3691 comparison is seen later, we will know its value. */
3692
3693 static void
3694 record_jump_equiv (rtx insn, bool taken)
3695 {
3696 int cond_known_true;
3697 rtx op0, op1;
3698 rtx set;
3699 enum machine_mode mode, mode0, mode1;
3700 int reversed_nonequality = 0;
3701 enum rtx_code code;
3702
3703 /* Ensure this is the right kind of insn. */
3704 gcc_assert (any_condjump_p (insn));
3705
3706 set = pc_set (insn);
3707
3708 /* See if this jump condition is known true or false. */
3709 if (taken)
3710 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3711 else
3712 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3713
3714 /* Get the type of comparison being done and the operands being compared.
3715 If we had to reverse a non-equality condition, record that fact so we
3716 know that it isn't valid for floating-point. */
3717 code = GET_CODE (XEXP (SET_SRC (set), 0));
3718 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3719 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3720
3721 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3722 if (! cond_known_true)
3723 {
3724 code = reversed_comparison_code_parts (code, op0, op1, insn);
3725
3726 /* Don't remember if we can't find the inverse. */
3727 if (code == UNKNOWN)
3728 return;
3729 }
3730
3731 /* The mode is the mode of the non-constant. */
3732 mode = mode0;
3733 if (mode1 != VOIDmode)
3734 mode = mode1;
3735
3736 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3737 }
3738
3739 /* Yet another form of subreg creation. In this case, we want something in
3740 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3741
3742 static rtx
3743 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3744 {
3745 enum machine_mode op_mode = GET_MODE (op);
3746 if (op_mode == mode || op_mode == VOIDmode)
3747 return op;
3748 return lowpart_subreg (mode, op, op_mode);
3749 }
3750
3751 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3752 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3753 Make any useful entries we can with that information. Called from
3754 above function and called recursively. */
3755
3756 static void
3757 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3758 rtx op1, int reversed_nonequality)
3759 {
3760 unsigned op0_hash, op1_hash;
3761 int op0_in_memory, op1_in_memory;
3762 struct table_elt *op0_elt, *op1_elt;
3763
3764 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3765 we know that they are also equal in the smaller mode (this is also
3766 true for all smaller modes whether or not there is a SUBREG, but
3767 is not worth testing for with no SUBREG). */
3768
3769 /* Note that GET_MODE (op0) may not equal MODE. */
3770 if (code == EQ && GET_CODE (op0) == SUBREG
3771 && (GET_MODE_SIZE (GET_MODE (op0))
3772 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3773 {
3774 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3775 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3776 if (tem)
3777 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3778 reversed_nonequality);
3779 }
3780
3781 if (code == EQ && GET_CODE (op1) == SUBREG
3782 && (GET_MODE_SIZE (GET_MODE (op1))
3783 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3784 {
3785 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3786 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3787 if (tem)
3788 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3789 reversed_nonequality);
3790 }
3791
3792 /* Similarly, if this is an NE comparison, and either is a SUBREG
3793 making a smaller mode, we know the whole thing is also NE. */
3794
3795 /* Note that GET_MODE (op0) may not equal MODE;
3796 if we test MODE instead, we can get an infinite recursion
3797 alternating between two modes each wider than MODE. */
3798
3799 if (code == NE && GET_CODE (op0) == SUBREG
3800 && subreg_lowpart_p (op0)
3801 && (GET_MODE_SIZE (GET_MODE (op0))
3802 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3803 {
3804 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3805 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3806 if (tem)
3807 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3808 reversed_nonequality);
3809 }
3810
3811 if (code == NE && GET_CODE (op1) == SUBREG
3812 && subreg_lowpart_p (op1)
3813 && (GET_MODE_SIZE (GET_MODE (op1))
3814 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3815 {
3816 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3817 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3818 if (tem)
3819 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3820 reversed_nonequality);
3821 }
3822
3823 /* Hash both operands. */
3824
3825 do_not_record = 0;
3826 hash_arg_in_memory = 0;
3827 op0_hash = HASH (op0, mode);
3828 op0_in_memory = hash_arg_in_memory;
3829
3830 if (do_not_record)
3831 return;
3832
3833 do_not_record = 0;
3834 hash_arg_in_memory = 0;
3835 op1_hash = HASH (op1, mode);
3836 op1_in_memory = hash_arg_in_memory;
3837
3838 if (do_not_record)
3839 return;
3840
3841 /* Look up both operands. */
3842 op0_elt = lookup (op0, op0_hash, mode);
3843 op1_elt = lookup (op1, op1_hash, mode);
3844
3845 /* If both operands are already equivalent or if they are not in the
3846 table but are identical, do nothing. */
3847 if ((op0_elt != 0 && op1_elt != 0
3848 && op0_elt->first_same_value == op1_elt->first_same_value)
3849 || op0 == op1 || rtx_equal_p (op0, op1))
3850 return;
3851
3852 /* If we aren't setting two things equal all we can do is save this
3853 comparison. Similarly if this is floating-point. In the latter
3854 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3855 If we record the equality, we might inadvertently delete code
3856 whose intent was to change -0 to +0. */
3857
3858 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3859 {
3860 struct qty_table_elem *ent;
3861 int qty;
3862
3863 /* If we reversed a floating-point comparison, if OP0 is not a
3864 register, or if OP1 is neither a register or constant, we can't
3865 do anything. */
3866
3867 if (!REG_P (op1))
3868 op1 = equiv_constant (op1);
3869
3870 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3871 || !REG_P (op0) || op1 == 0)
3872 return;
3873
3874 /* Put OP0 in the hash table if it isn't already. This gives it a
3875 new quantity number. */
3876 if (op0_elt == 0)
3877 {
3878 if (insert_regs (op0, NULL, 0))
3879 {
3880 rehash_using_reg (op0);
3881 op0_hash = HASH (op0, mode);
3882
3883 /* If OP0 is contained in OP1, this changes its hash code
3884 as well. Faster to rehash than to check, except
3885 for the simple case of a constant. */
3886 if (! CONSTANT_P (op1))
3887 op1_hash = HASH (op1,mode);
3888 }
3889
3890 op0_elt = insert (op0, NULL, op0_hash, mode);
3891 op0_elt->in_memory = op0_in_memory;
3892 }
3893
3894 qty = REG_QTY (REGNO (op0));
3895 ent = &qty_table[qty];
3896
3897 ent->comparison_code = code;
3898 if (REG_P (op1))
3899 {
3900 /* Look it up again--in case op0 and op1 are the same. */
3901 op1_elt = lookup (op1, op1_hash, mode);
3902
3903 /* Put OP1 in the hash table so it gets a new quantity number. */
3904 if (op1_elt == 0)
3905 {
3906 if (insert_regs (op1, NULL, 0))
3907 {
3908 rehash_using_reg (op1);
3909 op1_hash = HASH (op1, mode);
3910 }
3911
3912 op1_elt = insert (op1, NULL, op1_hash, mode);
3913 op1_elt->in_memory = op1_in_memory;
3914 }
3915
3916 ent->comparison_const = NULL_RTX;
3917 ent->comparison_qty = REG_QTY (REGNO (op1));
3918 }
3919 else
3920 {
3921 ent->comparison_const = op1;
3922 ent->comparison_qty = -1;
3923 }
3924
3925 return;
3926 }
3927
3928 /* If either side is still missing an equivalence, make it now,
3929 then merge the equivalences. */
3930
3931 if (op0_elt == 0)
3932 {
3933 if (insert_regs (op0, NULL, 0))
3934 {
3935 rehash_using_reg (op0);
3936 op0_hash = HASH (op0, mode);
3937 }
3938
3939 op0_elt = insert (op0, NULL, op0_hash, mode);
3940 op0_elt->in_memory = op0_in_memory;
3941 }
3942
3943 if (op1_elt == 0)
3944 {
3945 if (insert_regs (op1, NULL, 0))
3946 {
3947 rehash_using_reg (op1);
3948 op1_hash = HASH (op1, mode);
3949 }
3950
3951 op1_elt = insert (op1, NULL, op1_hash, mode);
3952 op1_elt->in_memory = op1_in_memory;
3953 }
3954
3955 merge_equiv_classes (op0_elt, op1_elt);
3956 }
3957 \f
3958 /* CSE processing for one instruction.
3959 First simplify sources and addresses of all assignments
3960 in the instruction, using previously-computed equivalents values.
3961 Then install the new sources and destinations in the table
3962 of available values.
3963
3964 If LIBCALL_INSN is nonzero, don't record any equivalence made in
3965 the insn. It means that INSN is inside libcall block. In this
3966 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
3967
3968 /* Data on one SET contained in the instruction. */
3969
3970 struct set
3971 {
3972 /* The SET rtx itself. */
3973 rtx rtl;
3974 /* The SET_SRC of the rtx (the original value, if it is changing). */
3975 rtx src;
3976 /* The hash-table element for the SET_SRC of the SET. */
3977 struct table_elt *src_elt;
3978 /* Hash value for the SET_SRC. */
3979 unsigned src_hash;
3980 /* Hash value for the SET_DEST. */
3981 unsigned dest_hash;
3982 /* The SET_DEST, with SUBREG, etc., stripped. */
3983 rtx inner_dest;
3984 /* Nonzero if the SET_SRC is in memory. */
3985 char src_in_memory;
3986 /* Nonzero if the SET_SRC contains something
3987 whose value cannot be predicted and understood. */
3988 char src_volatile;
3989 /* Original machine mode, in case it becomes a CONST_INT.
3990 The size of this field should match the size of the mode
3991 field of struct rtx_def (see rtl.h). */
3992 ENUM_BITFIELD(machine_mode) mode : 8;
3993 /* A constant equivalent for SET_SRC, if any. */
3994 rtx src_const;
3995 /* Original SET_SRC value used for libcall notes. */
3996 rtx orig_src;
3997 /* Hash value of constant equivalent for SET_SRC. */
3998 unsigned src_const_hash;
3999 /* Table entry for constant equivalent for SET_SRC, if any. */
4000 struct table_elt *src_const_elt;
4001 /* Table entry for the destination address. */
4002 struct table_elt *dest_addr_elt;
4003 };
4004
4005 static void
4006 cse_insn (rtx insn, rtx libcall_insn)
4007 {
4008 rtx x = PATTERN (insn);
4009 int i;
4010 rtx tem;
4011 int n_sets = 0;
4012
4013 rtx src_eqv = 0;
4014 struct table_elt *src_eqv_elt = 0;
4015 int src_eqv_volatile = 0;
4016 int src_eqv_in_memory = 0;
4017 unsigned src_eqv_hash = 0;
4018
4019 struct set *sets = (struct set *) 0;
4020
4021 this_insn = insn;
4022 #ifdef HAVE_cc0
4023 /* Records what this insn does to set CC0. */
4024 this_insn_cc0 = 0;
4025 this_insn_cc0_mode = VOIDmode;
4026 #endif
4027
4028 /* Find all the SETs and CLOBBERs in this instruction.
4029 Record all the SETs in the array `set' and count them.
4030 Also determine whether there is a CLOBBER that invalidates
4031 all memory references, or all references at varying addresses. */
4032
4033 if (CALL_P (insn))
4034 {
4035 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4036 {
4037 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4038 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4039 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4040 }
4041 }
4042
4043 if (GET_CODE (x) == SET)
4044 {
4045 sets = alloca (sizeof (struct set));
4046 sets[0].rtl = x;
4047
4048 /* Ignore SETs that are unconditional jumps.
4049 They never need cse processing, so this does not hurt.
4050 The reason is not efficiency but rather
4051 so that we can test at the end for instructions
4052 that have been simplified to unconditional jumps
4053 and not be misled by unchanged instructions
4054 that were unconditional jumps to begin with. */
4055 if (SET_DEST (x) == pc_rtx
4056 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4057 ;
4058
4059 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4060 The hard function value register is used only once, to copy to
4061 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4062 Ensure we invalidate the destination register. On the 80386 no
4063 other code would invalidate it since it is a fixed_reg.
4064 We need not check the return of apply_change_group; see canon_reg. */
4065
4066 else if (GET_CODE (SET_SRC (x)) == CALL)
4067 {
4068 canon_reg (SET_SRC (x), insn);
4069 apply_change_group ();
4070 fold_rtx (SET_SRC (x), insn);
4071 invalidate (SET_DEST (x), VOIDmode);
4072 }
4073 else
4074 n_sets = 1;
4075 }
4076 else if (GET_CODE (x) == PARALLEL)
4077 {
4078 int lim = XVECLEN (x, 0);
4079
4080 sets = alloca (lim * sizeof (struct set));
4081
4082 /* Find all regs explicitly clobbered in this insn,
4083 and ensure they are not replaced with any other regs
4084 elsewhere in this insn.
4085 When a reg that is clobbered is also used for input,
4086 we should presume that that is for a reason,
4087 and we should not substitute some other register
4088 which is not supposed to be clobbered.
4089 Therefore, this loop cannot be merged into the one below
4090 because a CALL may precede a CLOBBER and refer to the
4091 value clobbered. We must not let a canonicalization do
4092 anything in that case. */
4093 for (i = 0; i < lim; i++)
4094 {
4095 rtx y = XVECEXP (x, 0, i);
4096 if (GET_CODE (y) == CLOBBER)
4097 {
4098 rtx clobbered = XEXP (y, 0);
4099
4100 if (REG_P (clobbered)
4101 || GET_CODE (clobbered) == SUBREG)
4102 invalidate (clobbered, VOIDmode);
4103 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4104 || GET_CODE (clobbered) == ZERO_EXTRACT)
4105 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4106 }
4107 }
4108
4109 for (i = 0; i < lim; i++)
4110 {
4111 rtx y = XVECEXP (x, 0, i);
4112 if (GET_CODE (y) == SET)
4113 {
4114 /* As above, we ignore unconditional jumps and call-insns and
4115 ignore the result of apply_change_group. */
4116 if (GET_CODE (SET_SRC (y)) == CALL)
4117 {
4118 canon_reg (SET_SRC (y), insn);
4119 apply_change_group ();
4120 fold_rtx (SET_SRC (y), insn);
4121 invalidate (SET_DEST (y), VOIDmode);
4122 }
4123 else if (SET_DEST (y) == pc_rtx
4124 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4125 ;
4126 else
4127 sets[n_sets++].rtl = y;
4128 }
4129 else if (GET_CODE (y) == CLOBBER)
4130 {
4131 /* If we clobber memory, canon the address.
4132 This does nothing when a register is clobbered
4133 because we have already invalidated the reg. */
4134 if (MEM_P (XEXP (y, 0)))
4135 canon_reg (XEXP (y, 0), insn);
4136 }
4137 else if (GET_CODE (y) == USE
4138 && ! (REG_P (XEXP (y, 0))
4139 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4140 canon_reg (y, insn);
4141 else if (GET_CODE (y) == CALL)
4142 {
4143 /* The result of apply_change_group can be ignored; see
4144 canon_reg. */
4145 canon_reg (y, insn);
4146 apply_change_group ();
4147 fold_rtx (y, insn);
4148 }
4149 }
4150 }
4151 else if (GET_CODE (x) == CLOBBER)
4152 {
4153 if (MEM_P (XEXP (x, 0)))
4154 canon_reg (XEXP (x, 0), insn);
4155 }
4156
4157 /* Canonicalize a USE of a pseudo register or memory location. */
4158 else if (GET_CODE (x) == USE
4159 && ! (REG_P (XEXP (x, 0))
4160 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4161 canon_reg (XEXP (x, 0), insn);
4162 else if (GET_CODE (x) == CALL)
4163 {
4164 /* The result of apply_change_group can be ignored; see canon_reg. */
4165 canon_reg (x, insn);
4166 apply_change_group ();
4167 fold_rtx (x, insn);
4168 }
4169
4170 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4171 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4172 is handled specially for this case, and if it isn't set, then there will
4173 be no equivalence for the destination. */
4174 if (n_sets == 1 && REG_NOTES (insn) != 0
4175 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4176 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4177 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4178 {
4179 /* The result of apply_change_group can be ignored; see canon_reg. */
4180 canon_reg (XEXP (tem, 0), insn);
4181 apply_change_group ();
4182 src_eqv = fold_rtx (XEXP (tem, 0), insn);
4183 XEXP (tem, 0) = copy_rtx (src_eqv);
4184 df_notes_rescan (insn);
4185 }
4186
4187 /* Canonicalize sources and addresses of destinations.
4188 We do this in a separate pass to avoid problems when a MATCH_DUP is
4189 present in the insn pattern. In that case, we want to ensure that
4190 we don't break the duplicate nature of the pattern. So we will replace
4191 both operands at the same time. Otherwise, we would fail to find an
4192 equivalent substitution in the loop calling validate_change below.
4193
4194 We used to suppress canonicalization of DEST if it appears in SRC,
4195 but we don't do this any more. */
4196
4197 for (i = 0; i < n_sets; i++)
4198 {
4199 rtx dest = SET_DEST (sets[i].rtl);
4200 rtx src = SET_SRC (sets[i].rtl);
4201 rtx new = canon_reg (src, insn);
4202
4203 sets[i].orig_src = src;
4204 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4205
4206 if (GET_CODE (dest) == ZERO_EXTRACT)
4207 {
4208 validate_change (insn, &XEXP (dest, 1),
4209 canon_reg (XEXP (dest, 1), insn), 1);
4210 validate_change (insn, &XEXP (dest, 2),
4211 canon_reg (XEXP (dest, 2), insn), 1);
4212 }
4213
4214 while (GET_CODE (dest) == SUBREG
4215 || GET_CODE (dest) == ZERO_EXTRACT
4216 || GET_CODE (dest) == STRICT_LOW_PART)
4217 dest = XEXP (dest, 0);
4218
4219 if (MEM_P (dest))
4220 canon_reg (dest, insn);
4221 }
4222
4223 /* Now that we have done all the replacements, we can apply the change
4224 group and see if they all work. Note that this will cause some
4225 canonicalizations that would have worked individually not to be applied
4226 because some other canonicalization didn't work, but this should not
4227 occur often.
4228
4229 The result of apply_change_group can be ignored; see canon_reg. */
4230
4231 apply_change_group ();
4232
4233 /* Set sets[i].src_elt to the class each source belongs to.
4234 Detect assignments from or to volatile things
4235 and set set[i] to zero so they will be ignored
4236 in the rest of this function.
4237
4238 Nothing in this loop changes the hash table or the register chains. */
4239
4240 for (i = 0; i < n_sets; i++)
4241 {
4242 rtx src, dest;
4243 rtx src_folded;
4244 struct table_elt *elt = 0, *p;
4245 enum machine_mode mode;
4246 rtx src_eqv_here;
4247 rtx src_const = 0;
4248 rtx src_related = 0;
4249 struct table_elt *src_const_elt = 0;
4250 int src_cost = MAX_COST;
4251 int src_eqv_cost = MAX_COST;
4252 int src_folded_cost = MAX_COST;
4253 int src_related_cost = MAX_COST;
4254 int src_elt_cost = MAX_COST;
4255 int src_regcost = MAX_COST;
4256 int src_eqv_regcost = MAX_COST;
4257 int src_folded_regcost = MAX_COST;
4258 int src_related_regcost = MAX_COST;
4259 int src_elt_regcost = MAX_COST;
4260 /* Set nonzero if we need to call force_const_mem on with the
4261 contents of src_folded before using it. */
4262 int src_folded_force_flag = 0;
4263
4264 dest = SET_DEST (sets[i].rtl);
4265 src = SET_SRC (sets[i].rtl);
4266
4267 /* If SRC is a constant that has no machine mode,
4268 hash it with the destination's machine mode.
4269 This way we can keep different modes separate. */
4270
4271 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4272 sets[i].mode = mode;
4273
4274 if (src_eqv)
4275 {
4276 enum machine_mode eqvmode = mode;
4277 if (GET_CODE (dest) == STRICT_LOW_PART)
4278 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4279 do_not_record = 0;
4280 hash_arg_in_memory = 0;
4281 src_eqv_hash = HASH (src_eqv, eqvmode);
4282
4283 /* Find the equivalence class for the equivalent expression. */
4284
4285 if (!do_not_record)
4286 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4287
4288 src_eqv_volatile = do_not_record;
4289 src_eqv_in_memory = hash_arg_in_memory;
4290 }
4291
4292 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4293 value of the INNER register, not the destination. So it is not
4294 a valid substitution for the source. But save it for later. */
4295 if (GET_CODE (dest) == STRICT_LOW_PART)
4296 src_eqv_here = 0;
4297 else
4298 src_eqv_here = src_eqv;
4299
4300 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4301 simplified result, which may not necessarily be valid. */
4302 src_folded = fold_rtx (src, insn);
4303
4304 #if 0
4305 /* ??? This caused bad code to be generated for the m68k port with -O2.
4306 Suppose src is (CONST_INT -1), and that after truncation src_folded
4307 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4308 At the end we will add src and src_const to the same equivalence
4309 class. We now have 3 and -1 on the same equivalence class. This
4310 causes later instructions to be mis-optimized. */
4311 /* If storing a constant in a bitfield, pre-truncate the constant
4312 so we will be able to record it later. */
4313 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4314 {
4315 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4316
4317 if (GET_CODE (src) == CONST_INT
4318 && GET_CODE (width) == CONST_INT
4319 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4320 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4321 src_folded
4322 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4323 << INTVAL (width)) - 1));
4324 }
4325 #endif
4326
4327 /* Compute SRC's hash code, and also notice if it
4328 should not be recorded at all. In that case,
4329 prevent any further processing of this assignment. */
4330 do_not_record = 0;
4331 hash_arg_in_memory = 0;
4332
4333 sets[i].src = src;
4334 sets[i].src_hash = HASH (src, mode);
4335 sets[i].src_volatile = do_not_record;
4336 sets[i].src_in_memory = hash_arg_in_memory;
4337
4338 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4339 a pseudo, do not record SRC. Using SRC as a replacement for
4340 anything else will be incorrect in that situation. Note that
4341 this usually occurs only for stack slots, in which case all the
4342 RTL would be referring to SRC, so we don't lose any optimization
4343 opportunities by not having SRC in the hash table. */
4344
4345 if (MEM_P (src)
4346 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4347 && REG_P (dest)
4348 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4349 sets[i].src_volatile = 1;
4350
4351 #if 0
4352 /* It is no longer clear why we used to do this, but it doesn't
4353 appear to still be needed. So let's try without it since this
4354 code hurts cse'ing widened ops. */
4355 /* If source is a paradoxical subreg (such as QI treated as an SI),
4356 treat it as volatile. It may do the work of an SI in one context
4357 where the extra bits are not being used, but cannot replace an SI
4358 in general. */
4359 if (GET_CODE (src) == SUBREG
4360 && (GET_MODE_SIZE (GET_MODE (src))
4361 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4362 sets[i].src_volatile = 1;
4363 #endif
4364
4365 /* Locate all possible equivalent forms for SRC. Try to replace
4366 SRC in the insn with each cheaper equivalent.
4367
4368 We have the following types of equivalents: SRC itself, a folded
4369 version, a value given in a REG_EQUAL note, or a value related
4370 to a constant.
4371
4372 Each of these equivalents may be part of an additional class
4373 of equivalents (if more than one is in the table, they must be in
4374 the same class; we check for this).
4375
4376 If the source is volatile, we don't do any table lookups.
4377
4378 We note any constant equivalent for possible later use in a
4379 REG_NOTE. */
4380
4381 if (!sets[i].src_volatile)
4382 elt = lookup (src, sets[i].src_hash, mode);
4383
4384 sets[i].src_elt = elt;
4385
4386 if (elt && src_eqv_here && src_eqv_elt)
4387 {
4388 if (elt->first_same_value != src_eqv_elt->first_same_value)
4389 {
4390 /* The REG_EQUAL is indicating that two formerly distinct
4391 classes are now equivalent. So merge them. */
4392 merge_equiv_classes (elt, src_eqv_elt);
4393 src_eqv_hash = HASH (src_eqv, elt->mode);
4394 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4395 }
4396
4397 src_eqv_here = 0;
4398 }
4399
4400 else if (src_eqv_elt)
4401 elt = src_eqv_elt;
4402
4403 /* Try to find a constant somewhere and record it in `src_const'.
4404 Record its table element, if any, in `src_const_elt'. Look in
4405 any known equivalences first. (If the constant is not in the
4406 table, also set `sets[i].src_const_hash'). */
4407 if (elt)
4408 for (p = elt->first_same_value; p; p = p->next_same_value)
4409 if (p->is_const)
4410 {
4411 src_const = p->exp;
4412 src_const_elt = elt;
4413 break;
4414 }
4415
4416 if (src_const == 0
4417 && (CONSTANT_P (src_folded)
4418 /* Consider (minus (label_ref L1) (label_ref L2)) as
4419 "constant" here so we will record it. This allows us
4420 to fold switch statements when an ADDR_DIFF_VEC is used. */
4421 || (GET_CODE (src_folded) == MINUS
4422 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4423 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4424 src_const = src_folded, src_const_elt = elt;
4425 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4426 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4427
4428 /* If we don't know if the constant is in the table, get its
4429 hash code and look it up. */
4430 if (src_const && src_const_elt == 0)
4431 {
4432 sets[i].src_const_hash = HASH (src_const, mode);
4433 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4434 }
4435
4436 sets[i].src_const = src_const;
4437 sets[i].src_const_elt = src_const_elt;
4438
4439 /* If the constant and our source are both in the table, mark them as
4440 equivalent. Otherwise, if a constant is in the table but the source
4441 isn't, set ELT to it. */
4442 if (src_const_elt && elt
4443 && src_const_elt->first_same_value != elt->first_same_value)
4444 merge_equiv_classes (elt, src_const_elt);
4445 else if (src_const_elt && elt == 0)
4446 elt = src_const_elt;
4447
4448 /* See if there is a register linearly related to a constant
4449 equivalent of SRC. */
4450 if (src_const
4451 && (GET_CODE (src_const) == CONST
4452 || (src_const_elt && src_const_elt->related_value != 0)))
4453 {
4454 src_related = use_related_value (src_const, src_const_elt);
4455 if (src_related)
4456 {
4457 struct table_elt *src_related_elt
4458 = lookup (src_related, HASH (src_related, mode), mode);
4459 if (src_related_elt && elt)
4460 {
4461 if (elt->first_same_value
4462 != src_related_elt->first_same_value)
4463 /* This can occur when we previously saw a CONST
4464 involving a SYMBOL_REF and then see the SYMBOL_REF
4465 twice. Merge the involved classes. */
4466 merge_equiv_classes (elt, src_related_elt);
4467
4468 src_related = 0;
4469 src_related_elt = 0;
4470 }
4471 else if (src_related_elt && elt == 0)
4472 elt = src_related_elt;
4473 }
4474 }
4475
4476 /* See if we have a CONST_INT that is already in a register in a
4477 wider mode. */
4478
4479 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4480 && GET_MODE_CLASS (mode) == MODE_INT
4481 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4482 {
4483 enum machine_mode wider_mode;
4484
4485 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4486 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4487 && src_related == 0;
4488 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4489 {
4490 struct table_elt *const_elt
4491 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4492
4493 if (const_elt == 0)
4494 continue;
4495
4496 for (const_elt = const_elt->first_same_value;
4497 const_elt; const_elt = const_elt->next_same_value)
4498 if (REG_P (const_elt->exp))
4499 {
4500 src_related = gen_lowpart (mode, const_elt->exp);
4501 break;
4502 }
4503 }
4504 }
4505
4506 /* Another possibility is that we have an AND with a constant in
4507 a mode narrower than a word. If so, it might have been generated
4508 as part of an "if" which would narrow the AND. If we already
4509 have done the AND in a wider mode, we can use a SUBREG of that
4510 value. */
4511
4512 if (flag_expensive_optimizations && ! src_related
4513 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4514 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4515 {
4516 enum machine_mode tmode;
4517 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4518
4519 for (tmode = GET_MODE_WIDER_MODE (mode);
4520 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4521 tmode = GET_MODE_WIDER_MODE (tmode))
4522 {
4523 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4524 struct table_elt *larger_elt;
4525
4526 if (inner)
4527 {
4528 PUT_MODE (new_and, tmode);
4529 XEXP (new_and, 0) = inner;
4530 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4531 if (larger_elt == 0)
4532 continue;
4533
4534 for (larger_elt = larger_elt->first_same_value;
4535 larger_elt; larger_elt = larger_elt->next_same_value)
4536 if (REG_P (larger_elt->exp))
4537 {
4538 src_related
4539 = gen_lowpart (mode, larger_elt->exp);
4540 break;
4541 }
4542
4543 if (src_related)
4544 break;
4545 }
4546 }
4547 }
4548
4549 #ifdef LOAD_EXTEND_OP
4550 /* See if a MEM has already been loaded with a widening operation;
4551 if it has, we can use a subreg of that. Many CISC machines
4552 also have such operations, but this is only likely to be
4553 beneficial on these machines. */
4554
4555 if (flag_expensive_optimizations && src_related == 0
4556 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4557 && GET_MODE_CLASS (mode) == MODE_INT
4558 && MEM_P (src) && ! do_not_record
4559 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4560 {
4561 struct rtx_def memory_extend_buf;
4562 rtx memory_extend_rtx = &memory_extend_buf;
4563 enum machine_mode tmode;
4564
4565 /* Set what we are trying to extend and the operation it might
4566 have been extended with. */
4567 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4568 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4569 XEXP (memory_extend_rtx, 0) = src;
4570
4571 for (tmode = GET_MODE_WIDER_MODE (mode);
4572 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4573 tmode = GET_MODE_WIDER_MODE (tmode))
4574 {
4575 struct table_elt *larger_elt;
4576
4577 PUT_MODE (memory_extend_rtx, tmode);
4578 larger_elt = lookup (memory_extend_rtx,
4579 HASH (memory_extend_rtx, tmode), tmode);
4580 if (larger_elt == 0)
4581 continue;
4582
4583 for (larger_elt = larger_elt->first_same_value;
4584 larger_elt; larger_elt = larger_elt->next_same_value)
4585 if (REG_P (larger_elt->exp))
4586 {
4587 src_related = gen_lowpart (mode, larger_elt->exp);
4588 break;
4589 }
4590
4591 if (src_related)
4592 break;
4593 }
4594 }
4595 #endif /* LOAD_EXTEND_OP */
4596
4597 if (src == src_folded)
4598 src_folded = 0;
4599
4600 /* At this point, ELT, if nonzero, points to a class of expressions
4601 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4602 and SRC_RELATED, if nonzero, each contain additional equivalent
4603 expressions. Prune these latter expressions by deleting expressions
4604 already in the equivalence class.
4605
4606 Check for an equivalent identical to the destination. If found,
4607 this is the preferred equivalent since it will likely lead to
4608 elimination of the insn. Indicate this by placing it in
4609 `src_related'. */
4610
4611 if (elt)
4612 elt = elt->first_same_value;
4613 for (p = elt; p; p = p->next_same_value)
4614 {
4615 enum rtx_code code = GET_CODE (p->exp);
4616
4617 /* If the expression is not valid, ignore it. Then we do not
4618 have to check for validity below. In most cases, we can use
4619 `rtx_equal_p', since canonicalization has already been done. */
4620 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4621 continue;
4622
4623 /* Also skip paradoxical subregs, unless that's what we're
4624 looking for. */
4625 if (code == SUBREG
4626 && (GET_MODE_SIZE (GET_MODE (p->exp))
4627 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4628 && ! (src != 0
4629 && GET_CODE (src) == SUBREG
4630 && GET_MODE (src) == GET_MODE (p->exp)
4631 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4632 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4633 continue;
4634
4635 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4636 src = 0;
4637 else if (src_folded && GET_CODE (src_folded) == code
4638 && rtx_equal_p (src_folded, p->exp))
4639 src_folded = 0;
4640 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4641 && rtx_equal_p (src_eqv_here, p->exp))
4642 src_eqv_here = 0;
4643 else if (src_related && GET_CODE (src_related) == code
4644 && rtx_equal_p (src_related, p->exp))
4645 src_related = 0;
4646
4647 /* This is the same as the destination of the insns, we want
4648 to prefer it. Copy it to src_related. The code below will
4649 then give it a negative cost. */
4650 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4651 src_related = dest;
4652 }
4653
4654 /* Find the cheapest valid equivalent, trying all the available
4655 possibilities. Prefer items not in the hash table to ones
4656 that are when they are equal cost. Note that we can never
4657 worsen an insn as the current contents will also succeed.
4658 If we find an equivalent identical to the destination, use it as best,
4659 since this insn will probably be eliminated in that case. */
4660 if (src)
4661 {
4662 if (rtx_equal_p (src, dest))
4663 src_cost = src_regcost = -1;
4664 else
4665 {
4666 src_cost = COST (src);
4667 src_regcost = approx_reg_cost (src);
4668 }
4669 }
4670
4671 if (src_eqv_here)
4672 {
4673 if (rtx_equal_p (src_eqv_here, dest))
4674 src_eqv_cost = src_eqv_regcost = -1;
4675 else
4676 {
4677 src_eqv_cost = COST (src_eqv_here);
4678 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4679 }
4680 }
4681
4682 if (src_folded)
4683 {
4684 if (rtx_equal_p (src_folded, dest))
4685 src_folded_cost = src_folded_regcost = -1;
4686 else
4687 {
4688 src_folded_cost = COST (src_folded);
4689 src_folded_regcost = approx_reg_cost (src_folded);
4690 }
4691 }
4692
4693 if (src_related)
4694 {
4695 if (rtx_equal_p (src_related, dest))
4696 src_related_cost = src_related_regcost = -1;
4697 else
4698 {
4699 src_related_cost = COST (src_related);
4700 src_related_regcost = approx_reg_cost (src_related);
4701 }
4702 }
4703
4704 /* If this was an indirect jump insn, a known label will really be
4705 cheaper even though it looks more expensive. */
4706 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4707 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4708
4709 /* Terminate loop when replacement made. This must terminate since
4710 the current contents will be tested and will always be valid. */
4711 while (1)
4712 {
4713 rtx trial;
4714
4715 /* Skip invalid entries. */
4716 while (elt && !REG_P (elt->exp)
4717 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4718 elt = elt->next_same_value;
4719
4720 /* A paradoxical subreg would be bad here: it'll be the right
4721 size, but later may be adjusted so that the upper bits aren't
4722 what we want. So reject it. */
4723 if (elt != 0
4724 && GET_CODE (elt->exp) == SUBREG
4725 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4726 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4727 /* It is okay, though, if the rtx we're trying to match
4728 will ignore any of the bits we can't predict. */
4729 && ! (src != 0
4730 && GET_CODE (src) == SUBREG
4731 && GET_MODE (src) == GET_MODE (elt->exp)
4732 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4733 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4734 {
4735 elt = elt->next_same_value;
4736 continue;
4737 }
4738
4739 if (elt)
4740 {
4741 src_elt_cost = elt->cost;
4742 src_elt_regcost = elt->regcost;
4743 }
4744
4745 /* Find cheapest and skip it for the next time. For items
4746 of equal cost, use this order:
4747 src_folded, src, src_eqv, src_related and hash table entry. */
4748 if (src_folded
4749 && preferable (src_folded_cost, src_folded_regcost,
4750 src_cost, src_regcost) <= 0
4751 && preferable (src_folded_cost, src_folded_regcost,
4752 src_eqv_cost, src_eqv_regcost) <= 0
4753 && preferable (src_folded_cost, src_folded_regcost,
4754 src_related_cost, src_related_regcost) <= 0
4755 && preferable (src_folded_cost, src_folded_regcost,
4756 src_elt_cost, src_elt_regcost) <= 0)
4757 {
4758 trial = src_folded, src_folded_cost = MAX_COST;
4759 if (src_folded_force_flag)
4760 {
4761 rtx forced = force_const_mem (mode, trial);
4762 if (forced)
4763 trial = forced;
4764 }
4765 }
4766 else if (src
4767 && preferable (src_cost, src_regcost,
4768 src_eqv_cost, src_eqv_regcost) <= 0
4769 && preferable (src_cost, src_regcost,
4770 src_related_cost, src_related_regcost) <= 0
4771 && preferable (src_cost, src_regcost,
4772 src_elt_cost, src_elt_regcost) <= 0)
4773 trial = src, src_cost = MAX_COST;
4774 else if (src_eqv_here
4775 && preferable (src_eqv_cost, src_eqv_regcost,
4776 src_related_cost, src_related_regcost) <= 0
4777 && preferable (src_eqv_cost, src_eqv_regcost,
4778 src_elt_cost, src_elt_regcost) <= 0)
4779 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
4780 else if (src_related
4781 && preferable (src_related_cost, src_related_regcost,
4782 src_elt_cost, src_elt_regcost) <= 0)
4783 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
4784 else
4785 {
4786 trial = copy_rtx (elt->exp);
4787 elt = elt->next_same_value;
4788 src_elt_cost = MAX_COST;
4789 }
4790
4791 /* We don't normally have an insn matching (set (pc) (pc)), so
4792 check for this separately here. We will delete such an
4793 insn below.
4794
4795 For other cases such as a table jump or conditional jump
4796 where we know the ultimate target, go ahead and replace the
4797 operand. While that may not make a valid insn, we will
4798 reemit the jump below (and also insert any necessary
4799 barriers). */
4800 if (n_sets == 1 && dest == pc_rtx
4801 && (trial == pc_rtx
4802 || (GET_CODE (trial) == LABEL_REF
4803 && ! condjump_p (insn))))
4804 {
4805 /* Don't substitute non-local labels, this confuses CFG. */
4806 if (GET_CODE (trial) == LABEL_REF
4807 && LABEL_REF_NONLOCAL_P (trial))
4808 continue;
4809
4810 SET_SRC (sets[i].rtl) = trial;
4811 cse_jumps_altered = 1;
4812 break;
4813 }
4814
4815 /* Reject certain invalid forms of CONST that we create. */
4816 else if (CONSTANT_P (trial)
4817 && GET_CODE (trial) == CONST
4818 /* Reject cases that will cause decode_rtx_const to
4819 die. On the alpha when simplifying a switch, we
4820 get (const (truncate (minus (label_ref)
4821 (label_ref)))). */
4822 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
4823 /* Likewise on IA-64, except without the
4824 truncate. */
4825 || (GET_CODE (XEXP (trial, 0)) == MINUS
4826 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
4827 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
4828 /* Do nothing for this case. */
4829 ;
4830
4831 /* Look for a substitution that makes a valid insn. */
4832 else if (validate_unshare_change
4833 (insn, &SET_SRC (sets[i].rtl), trial, 0))
4834 {
4835 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
4836
4837 /* If we just made a substitution inside a libcall, then we
4838 need to make the same substitution in any notes attached
4839 to the RETVAL insn. */
4840 if (libcall_insn
4841 && (REG_P (sets[i].orig_src)
4842 || GET_CODE (sets[i].orig_src) == SUBREG
4843 || MEM_P (sets[i].orig_src)))
4844 {
4845 rtx note = find_reg_equal_equiv_note (libcall_insn);
4846 if (note != 0)
4847 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
4848 sets[i].orig_src,
4849 copy_rtx (new));
4850 df_notes_rescan (libcall_insn);
4851 }
4852
4853 /* The result of apply_change_group can be ignored; see
4854 canon_reg. */
4855
4856 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4857 apply_change_group ();
4858
4859 break;
4860 }
4861
4862 /* If we previously found constant pool entries for
4863 constants and this is a constant, try making a
4864 pool entry. Put it in src_folded unless we already have done
4865 this since that is where it likely came from. */
4866
4867 else if (constant_pool_entries_cost
4868 && CONSTANT_P (trial)
4869 && (src_folded == 0
4870 || (!MEM_P (src_folded)
4871 && ! src_folded_force_flag))
4872 && GET_MODE_CLASS (mode) != MODE_CC
4873 && mode != VOIDmode)
4874 {
4875 src_folded_force_flag = 1;
4876 src_folded = trial;
4877 src_folded_cost = constant_pool_entries_cost;
4878 src_folded_regcost = constant_pool_entries_regcost;
4879 }
4880 }
4881
4882 src = SET_SRC (sets[i].rtl);
4883
4884 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
4885 However, there is an important exception: If both are registers
4886 that are not the head of their equivalence class, replace SET_SRC
4887 with the head of the class. If we do not do this, we will have
4888 both registers live over a portion of the basic block. This way,
4889 their lifetimes will likely abut instead of overlapping. */
4890 if (REG_P (dest)
4891 && REGNO_QTY_VALID_P (REGNO (dest)))
4892 {
4893 int dest_q = REG_QTY (REGNO (dest));
4894 struct qty_table_elem *dest_ent = &qty_table[dest_q];
4895
4896 if (dest_ent->mode == GET_MODE (dest)
4897 && dest_ent->first_reg != REGNO (dest)
4898 && REG_P (src) && REGNO (src) == REGNO (dest)
4899 /* Don't do this if the original insn had a hard reg as
4900 SET_SRC or SET_DEST. */
4901 && (!REG_P (sets[i].src)
4902 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
4903 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
4904 /* We can't call canon_reg here because it won't do anything if
4905 SRC is a hard register. */
4906 {
4907 int src_q = REG_QTY (REGNO (src));
4908 struct qty_table_elem *src_ent = &qty_table[src_q];
4909 int first = src_ent->first_reg;
4910 rtx new_src
4911 = (first >= FIRST_PSEUDO_REGISTER
4912 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
4913
4914 /* We must use validate-change even for this, because this
4915 might be a special no-op instruction, suitable only to
4916 tag notes onto. */
4917 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
4918 {
4919 src = new_src;
4920 /* If we had a constant that is cheaper than what we are now
4921 setting SRC to, use that constant. We ignored it when we
4922 thought we could make this into a no-op. */
4923 if (src_const && COST (src_const) < COST (src)
4924 && validate_change (insn, &SET_SRC (sets[i].rtl),
4925 src_const, 0))
4926 src = src_const;
4927 }
4928 }
4929 }
4930
4931 /* If we made a change, recompute SRC values. */
4932 if (src != sets[i].src)
4933 {
4934 do_not_record = 0;
4935 hash_arg_in_memory = 0;
4936 sets[i].src = src;
4937 sets[i].src_hash = HASH (src, mode);
4938 sets[i].src_volatile = do_not_record;
4939 sets[i].src_in_memory = hash_arg_in_memory;
4940 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
4941 }
4942
4943 /* If this is a single SET, we are setting a register, and we have an
4944 equivalent constant, we want to add a REG_NOTE. We don't want
4945 to write a REG_EQUAL note for a constant pseudo since verifying that
4946 that pseudo hasn't been eliminated is a pain. Such a note also
4947 won't help anything.
4948
4949 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
4950 which can be created for a reference to a compile time computable
4951 entry in a jump table. */
4952
4953 if (n_sets == 1 && src_const && REG_P (dest)
4954 && !REG_P (src_const)
4955 && ! (GET_CODE (src_const) == CONST
4956 && GET_CODE (XEXP (src_const, 0)) == MINUS
4957 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
4958 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
4959 {
4960 /* We only want a REG_EQUAL note if src_const != src. */
4961 if (! rtx_equal_p (src, src_const))
4962 {
4963 /* Make sure that the rtx is not shared. */
4964 src_const = copy_rtx (src_const);
4965
4966 /* Record the actual constant value in a REG_EQUAL note,
4967 making a new one if one does not already exist. */
4968 set_unique_reg_note (insn, REG_EQUAL, src_const);
4969 df_notes_rescan (insn);
4970 }
4971 }
4972
4973 /* Now deal with the destination. */
4974 do_not_record = 0;
4975
4976 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
4977 while (GET_CODE (dest) == SUBREG
4978 || GET_CODE (dest) == ZERO_EXTRACT
4979 || GET_CODE (dest) == STRICT_LOW_PART)
4980 dest = XEXP (dest, 0);
4981
4982 sets[i].inner_dest = dest;
4983
4984 if (MEM_P (dest))
4985 {
4986 #ifdef PUSH_ROUNDING
4987 /* Stack pushes invalidate the stack pointer. */
4988 rtx addr = XEXP (dest, 0);
4989 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
4990 && XEXP (addr, 0) == stack_pointer_rtx)
4991 invalidate (stack_pointer_rtx, VOIDmode);
4992 #endif
4993 dest = fold_rtx (dest, insn);
4994 }
4995
4996 /* Compute the hash code of the destination now,
4997 before the effects of this instruction are recorded,
4998 since the register values used in the address computation
4999 are those before this instruction. */
5000 sets[i].dest_hash = HASH (dest, mode);
5001
5002 /* Don't enter a bit-field in the hash table
5003 because the value in it after the store
5004 may not equal what was stored, due to truncation. */
5005
5006 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5007 {
5008 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5009
5010 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5011 && GET_CODE (width) == CONST_INT
5012 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5013 && ! (INTVAL (src_const)
5014 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5015 /* Exception: if the value is constant,
5016 and it won't be truncated, record it. */
5017 ;
5018 else
5019 {
5020 /* This is chosen so that the destination will be invalidated
5021 but no new value will be recorded.
5022 We must invalidate because sometimes constant
5023 values can be recorded for bitfields. */
5024 sets[i].src_elt = 0;
5025 sets[i].src_volatile = 1;
5026 src_eqv = 0;
5027 src_eqv_elt = 0;
5028 }
5029 }
5030
5031 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5032 the insn. */
5033 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5034 {
5035 /* One less use of the label this insn used to jump to. */
5036 delete_insn_and_edges (insn);
5037 cse_jumps_altered = 1;
5038 /* No more processing for this set. */
5039 sets[i].rtl = 0;
5040 }
5041
5042 /* If this SET is now setting PC to a label, we know it used to
5043 be a conditional or computed branch. */
5044 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5045 && !LABEL_REF_NONLOCAL_P (src))
5046 {
5047 /* We reemit the jump in as many cases as possible just in
5048 case the form of an unconditional jump is significantly
5049 different than a computed jump or conditional jump.
5050
5051 If this insn has multiple sets, then reemitting the
5052 jump is nontrivial. So instead we just force rerecognition
5053 and hope for the best. */
5054 if (n_sets == 1)
5055 {
5056 rtx new, note;
5057
5058 new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5059 JUMP_LABEL (new) = XEXP (src, 0);
5060 LABEL_NUSES (XEXP (src, 0))++;
5061
5062 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5063 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5064 if (note)
5065 {
5066 XEXP (note, 1) = NULL_RTX;
5067 REG_NOTES (new) = note;
5068 }
5069
5070 delete_insn_and_edges (insn);
5071 insn = new;
5072 }
5073 else
5074 INSN_CODE (insn) = -1;
5075
5076 /* Do not bother deleting any unreachable code,
5077 let jump/flow do that. */
5078
5079 cse_jumps_altered = 1;
5080 sets[i].rtl = 0;
5081 }
5082
5083 /* If destination is volatile, invalidate it and then do no further
5084 processing for this assignment. */
5085
5086 else if (do_not_record)
5087 {
5088 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5089 invalidate (dest, VOIDmode);
5090 else if (MEM_P (dest))
5091 invalidate (dest, VOIDmode);
5092 else if (GET_CODE (dest) == STRICT_LOW_PART
5093 || GET_CODE (dest) == ZERO_EXTRACT)
5094 invalidate (XEXP (dest, 0), GET_MODE (dest));
5095 sets[i].rtl = 0;
5096 }
5097
5098 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5099 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5100
5101 #ifdef HAVE_cc0
5102 /* If setting CC0, record what it was set to, or a constant, if it
5103 is equivalent to a constant. If it is being set to a floating-point
5104 value, make a COMPARE with the appropriate constant of 0. If we
5105 don't do this, later code can interpret this as a test against
5106 const0_rtx, which can cause problems if we try to put it into an
5107 insn as a floating-point operand. */
5108 if (dest == cc0_rtx)
5109 {
5110 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5111 this_insn_cc0_mode = mode;
5112 if (FLOAT_MODE_P (mode))
5113 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5114 CONST0_RTX (mode));
5115 }
5116 #endif
5117 }
5118
5119 /* Now enter all non-volatile source expressions in the hash table
5120 if they are not already present.
5121 Record their equivalence classes in src_elt.
5122 This way we can insert the corresponding destinations into
5123 the same classes even if the actual sources are no longer in them
5124 (having been invalidated). */
5125
5126 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5127 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5128 {
5129 struct table_elt *elt;
5130 struct table_elt *classp = sets[0].src_elt;
5131 rtx dest = SET_DEST (sets[0].rtl);
5132 enum machine_mode eqvmode = GET_MODE (dest);
5133
5134 if (GET_CODE (dest) == STRICT_LOW_PART)
5135 {
5136 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5137 classp = 0;
5138 }
5139 if (insert_regs (src_eqv, classp, 0))
5140 {
5141 rehash_using_reg (src_eqv);
5142 src_eqv_hash = HASH (src_eqv, eqvmode);
5143 }
5144 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5145 elt->in_memory = src_eqv_in_memory;
5146 src_eqv_elt = elt;
5147
5148 /* Check to see if src_eqv_elt is the same as a set source which
5149 does not yet have an elt, and if so set the elt of the set source
5150 to src_eqv_elt. */
5151 for (i = 0; i < n_sets; i++)
5152 if (sets[i].rtl && sets[i].src_elt == 0
5153 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5154 sets[i].src_elt = src_eqv_elt;
5155 }
5156
5157 for (i = 0; i < n_sets; i++)
5158 if (sets[i].rtl && ! sets[i].src_volatile
5159 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5160 {
5161 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5162 {
5163 /* REG_EQUAL in setting a STRICT_LOW_PART
5164 gives an equivalent for the entire destination register,
5165 not just for the subreg being stored in now.
5166 This is a more interesting equivalence, so we arrange later
5167 to treat the entire reg as the destination. */
5168 sets[i].src_elt = src_eqv_elt;
5169 sets[i].src_hash = src_eqv_hash;
5170 }
5171 else
5172 {
5173 /* Insert source and constant equivalent into hash table, if not
5174 already present. */
5175 struct table_elt *classp = src_eqv_elt;
5176 rtx src = sets[i].src;
5177 rtx dest = SET_DEST (sets[i].rtl);
5178 enum machine_mode mode
5179 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5180
5181 /* It's possible that we have a source value known to be
5182 constant but don't have a REG_EQUAL note on the insn.
5183 Lack of a note will mean src_eqv_elt will be NULL. This
5184 can happen where we've generated a SUBREG to access a
5185 CONST_INT that is already in a register in a wider mode.
5186 Ensure that the source expression is put in the proper
5187 constant class. */
5188 if (!classp)
5189 classp = sets[i].src_const_elt;
5190
5191 if (sets[i].src_elt == 0)
5192 {
5193 /* Don't put a hard register source into the table if this is
5194 the last insn of a libcall. In this case, we only need
5195 to put src_eqv_elt in src_elt. */
5196 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5197 {
5198 struct table_elt *elt;
5199
5200 /* Note that these insert_regs calls cannot remove
5201 any of the src_elt's, because they would have failed to
5202 match if not still valid. */
5203 if (insert_regs (src, classp, 0))
5204 {
5205 rehash_using_reg (src);
5206 sets[i].src_hash = HASH (src, mode);
5207 }
5208 elt = insert (src, classp, sets[i].src_hash, mode);
5209 elt->in_memory = sets[i].src_in_memory;
5210 sets[i].src_elt = classp = elt;
5211 }
5212 else
5213 sets[i].src_elt = classp;
5214 }
5215 if (sets[i].src_const && sets[i].src_const_elt == 0
5216 && src != sets[i].src_const
5217 && ! rtx_equal_p (sets[i].src_const, src))
5218 sets[i].src_elt = insert (sets[i].src_const, classp,
5219 sets[i].src_const_hash, mode);
5220 }
5221 }
5222 else if (sets[i].src_elt == 0)
5223 /* If we did not insert the source into the hash table (e.g., it was
5224 volatile), note the equivalence class for the REG_EQUAL value, if any,
5225 so that the destination goes into that class. */
5226 sets[i].src_elt = src_eqv_elt;
5227
5228 /* Record destination addresses in the hash table. This allows us to
5229 check if they are invalidated by other sets. */
5230 for (i = 0; i < n_sets; i++)
5231 {
5232 if (sets[i].rtl)
5233 {
5234 rtx x = sets[i].inner_dest;
5235 struct table_elt *elt;
5236 enum machine_mode mode;
5237 unsigned hash;
5238
5239 if (MEM_P (x))
5240 {
5241 x = XEXP (x, 0);
5242 mode = GET_MODE (x);
5243 hash = HASH (x, mode);
5244 elt = lookup (x, hash, mode);
5245 if (!elt)
5246 {
5247 if (insert_regs (x, NULL, 0))
5248 {
5249 rtx dest = SET_DEST (sets[i].rtl);
5250
5251 rehash_using_reg (x);
5252 hash = HASH (x, mode);
5253 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5254 }
5255 elt = insert (x, NULL, hash, mode);
5256 }
5257
5258 sets[i].dest_addr_elt = elt;
5259 }
5260 else
5261 sets[i].dest_addr_elt = NULL;
5262 }
5263 }
5264
5265 invalidate_from_clobbers (x);
5266
5267 /* Some registers are invalidated by subroutine calls. Memory is
5268 invalidated by non-constant calls. */
5269
5270 if (CALL_P (insn))
5271 {
5272 if (! CONST_OR_PURE_CALL_P (insn))
5273 invalidate_memory ();
5274 invalidate_for_call ();
5275 }
5276
5277 /* Now invalidate everything set by this instruction.
5278 If a SUBREG or other funny destination is being set,
5279 sets[i].rtl is still nonzero, so here we invalidate the reg
5280 a part of which is being set. */
5281
5282 for (i = 0; i < n_sets; i++)
5283 if (sets[i].rtl)
5284 {
5285 /* We can't use the inner dest, because the mode associated with
5286 a ZERO_EXTRACT is significant. */
5287 rtx dest = SET_DEST (sets[i].rtl);
5288
5289 /* Needed for registers to remove the register from its
5290 previous quantity's chain.
5291 Needed for memory if this is a nonvarying address, unless
5292 we have just done an invalidate_memory that covers even those. */
5293 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5294 invalidate (dest, VOIDmode);
5295 else if (MEM_P (dest))
5296 invalidate (dest, VOIDmode);
5297 else if (GET_CODE (dest) == STRICT_LOW_PART
5298 || GET_CODE (dest) == ZERO_EXTRACT)
5299 invalidate (XEXP (dest, 0), GET_MODE (dest));
5300 }
5301
5302 /* A volatile ASM invalidates everything. */
5303 if (NONJUMP_INSN_P (insn)
5304 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5305 && MEM_VOLATILE_P (PATTERN (insn)))
5306 flush_hash_table ();
5307
5308 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5309 the regs restored by the longjmp come from a later time
5310 than the setjmp. */
5311 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5312 {
5313 flush_hash_table ();
5314 goto done;
5315 }
5316
5317 /* Make sure registers mentioned in destinations
5318 are safe for use in an expression to be inserted.
5319 This removes from the hash table
5320 any invalid entry that refers to one of these registers.
5321
5322 We don't care about the return value from mention_regs because
5323 we are going to hash the SET_DEST values unconditionally. */
5324
5325 for (i = 0; i < n_sets; i++)
5326 {
5327 if (sets[i].rtl)
5328 {
5329 rtx x = SET_DEST (sets[i].rtl);
5330
5331 if (!REG_P (x))
5332 mention_regs (x);
5333 else
5334 {
5335 /* We used to rely on all references to a register becoming
5336 inaccessible when a register changes to a new quantity,
5337 since that changes the hash code. However, that is not
5338 safe, since after HASH_SIZE new quantities we get a
5339 hash 'collision' of a register with its own invalid
5340 entries. And since SUBREGs have been changed not to
5341 change their hash code with the hash code of the register,
5342 it wouldn't work any longer at all. So we have to check
5343 for any invalid references lying around now.
5344 This code is similar to the REG case in mention_regs,
5345 but it knows that reg_tick has been incremented, and
5346 it leaves reg_in_table as -1 . */
5347 unsigned int regno = REGNO (x);
5348 unsigned int endregno = END_REGNO (x);
5349 unsigned int i;
5350
5351 for (i = regno; i < endregno; i++)
5352 {
5353 if (REG_IN_TABLE (i) >= 0)
5354 {
5355 remove_invalid_refs (i);
5356 REG_IN_TABLE (i) = -1;
5357 }
5358 }
5359 }
5360 }
5361 }
5362
5363 /* We may have just removed some of the src_elt's from the hash table.
5364 So replace each one with the current head of the same class.
5365 Also check if destination addresses have been removed. */
5366
5367 for (i = 0; i < n_sets; i++)
5368 if (sets[i].rtl)
5369 {
5370 if (sets[i].dest_addr_elt
5371 && sets[i].dest_addr_elt->first_same_value == 0)
5372 {
5373 /* The elt was removed, which means this destination is not
5374 valid after this instruction. */
5375 sets[i].rtl = NULL_RTX;
5376 }
5377 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5378 /* If elt was removed, find current head of same class,
5379 or 0 if nothing remains of that class. */
5380 {
5381 struct table_elt *elt = sets[i].src_elt;
5382
5383 while (elt && elt->prev_same_value)
5384 elt = elt->prev_same_value;
5385
5386 while (elt && elt->first_same_value == 0)
5387 elt = elt->next_same_value;
5388 sets[i].src_elt = elt ? elt->first_same_value : 0;
5389 }
5390 }
5391
5392 /* Now insert the destinations into their equivalence classes. */
5393
5394 for (i = 0; i < n_sets; i++)
5395 if (sets[i].rtl)
5396 {
5397 rtx dest = SET_DEST (sets[i].rtl);
5398 struct table_elt *elt;
5399
5400 /* Don't record value if we are not supposed to risk allocating
5401 floating-point values in registers that might be wider than
5402 memory. */
5403 if ((flag_float_store
5404 && MEM_P (dest)
5405 && FLOAT_MODE_P (GET_MODE (dest)))
5406 /* Don't record BLKmode values, because we don't know the
5407 size of it, and can't be sure that other BLKmode values
5408 have the same or smaller size. */
5409 || GET_MODE (dest) == BLKmode
5410 /* Don't record values of destinations set inside a libcall block
5411 since we might delete the libcall. Things should have been set
5412 up so we won't want to reuse such a value, but we play it safe
5413 here. */
5414 || libcall_insn
5415 /* If we didn't put a REG_EQUAL value or a source into the hash
5416 table, there is no point is recording DEST. */
5417 || sets[i].src_elt == 0
5418 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5419 or SIGN_EXTEND, don't record DEST since it can cause
5420 some tracking to be wrong.
5421
5422 ??? Think about this more later. */
5423 || (GET_CODE (dest) == SUBREG
5424 && (GET_MODE_SIZE (GET_MODE (dest))
5425 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5426 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5427 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5428 continue;
5429
5430 /* STRICT_LOW_PART isn't part of the value BEING set,
5431 and neither is the SUBREG inside it.
5432 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5433 if (GET_CODE (dest) == STRICT_LOW_PART)
5434 dest = SUBREG_REG (XEXP (dest, 0));
5435
5436 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5437 /* Registers must also be inserted into chains for quantities. */
5438 if (insert_regs (dest, sets[i].src_elt, 1))
5439 {
5440 /* If `insert_regs' changes something, the hash code must be
5441 recalculated. */
5442 rehash_using_reg (dest);
5443 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5444 }
5445
5446 elt = insert (dest, sets[i].src_elt,
5447 sets[i].dest_hash, GET_MODE (dest));
5448
5449 elt->in_memory = (MEM_P (sets[i].inner_dest)
5450 && !MEM_READONLY_P (sets[i].inner_dest));
5451
5452 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5453 narrower than M2, and both M1 and M2 are the same number of words,
5454 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5455 make that equivalence as well.
5456
5457 However, BAR may have equivalences for which gen_lowpart
5458 will produce a simpler value than gen_lowpart applied to
5459 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5460 BAR's equivalences. If we don't get a simplified form, make
5461 the SUBREG. It will not be used in an equivalence, but will
5462 cause two similar assignments to be detected.
5463
5464 Note the loop below will find SUBREG_REG (DEST) since we have
5465 already entered SRC and DEST of the SET in the table. */
5466
5467 if (GET_CODE (dest) == SUBREG
5468 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5469 / UNITS_PER_WORD)
5470 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5471 && (GET_MODE_SIZE (GET_MODE (dest))
5472 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5473 && sets[i].src_elt != 0)
5474 {
5475 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5476 struct table_elt *elt, *classp = 0;
5477
5478 for (elt = sets[i].src_elt->first_same_value; elt;
5479 elt = elt->next_same_value)
5480 {
5481 rtx new_src = 0;
5482 unsigned src_hash;
5483 struct table_elt *src_elt;
5484 int byte = 0;
5485
5486 /* Ignore invalid entries. */
5487 if (!REG_P (elt->exp)
5488 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5489 continue;
5490
5491 /* We may have already been playing subreg games. If the
5492 mode is already correct for the destination, use it. */
5493 if (GET_MODE (elt->exp) == new_mode)
5494 new_src = elt->exp;
5495 else
5496 {
5497 /* Calculate big endian correction for the SUBREG_BYTE.
5498 We have already checked that M1 (GET_MODE (dest))
5499 is not narrower than M2 (new_mode). */
5500 if (BYTES_BIG_ENDIAN)
5501 byte = (GET_MODE_SIZE (GET_MODE (dest))
5502 - GET_MODE_SIZE (new_mode));
5503
5504 new_src = simplify_gen_subreg (new_mode, elt->exp,
5505 GET_MODE (dest), byte);
5506 }
5507
5508 /* The call to simplify_gen_subreg fails if the value
5509 is VOIDmode, yet we can't do any simplification, e.g.
5510 for EXPR_LISTs denoting function call results.
5511 It is invalid to construct a SUBREG with a VOIDmode
5512 SUBREG_REG, hence a zero new_src means we can't do
5513 this substitution. */
5514 if (! new_src)
5515 continue;
5516
5517 src_hash = HASH (new_src, new_mode);
5518 src_elt = lookup (new_src, src_hash, new_mode);
5519
5520 /* Put the new source in the hash table is if isn't
5521 already. */
5522 if (src_elt == 0)
5523 {
5524 if (insert_regs (new_src, classp, 0))
5525 {
5526 rehash_using_reg (new_src);
5527 src_hash = HASH (new_src, new_mode);
5528 }
5529 src_elt = insert (new_src, classp, src_hash, new_mode);
5530 src_elt->in_memory = elt->in_memory;
5531 }
5532 else if (classp && classp != src_elt->first_same_value)
5533 /* Show that two things that we've seen before are
5534 actually the same. */
5535 merge_equiv_classes (src_elt, classp);
5536
5537 classp = src_elt->first_same_value;
5538 /* Ignore invalid entries. */
5539 while (classp
5540 && !REG_P (classp->exp)
5541 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5542 classp = classp->next_same_value;
5543 }
5544 }
5545 }
5546
5547 /* Special handling for (set REG0 REG1) where REG0 is the
5548 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5549 be used in the sequel, so (if easily done) change this insn to
5550 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5551 that computed their value. Then REG1 will become a dead store
5552 and won't cloud the situation for later optimizations.
5553
5554 Do not make this change if REG1 is a hard register, because it will
5555 then be used in the sequel and we may be changing a two-operand insn
5556 into a three-operand insn.
5557
5558 Also do not do this if we are operating on a copy of INSN.
5559
5560 Also don't do this if INSN ends a libcall; this would cause an unrelated
5561 register to be set in the middle of a libcall, and we then get bad code
5562 if the libcall is deleted. */
5563
5564 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5565 && NEXT_INSN (PREV_INSN (insn)) == insn
5566 && REG_P (SET_SRC (sets[0].rtl))
5567 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5568 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5569 {
5570 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5571 struct qty_table_elem *src_ent = &qty_table[src_q];
5572
5573 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5574 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5575 {
5576 /* Scan for the previous nonnote insn, but stop at a basic
5577 block boundary. */
5578 rtx prev = insn;
5579 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5580 do
5581 {
5582 prev = PREV_INSN (prev);
5583 }
5584 while (prev != bb_head && NOTE_P (prev));
5585
5586 /* Do not swap the registers around if the previous instruction
5587 attaches a REG_EQUIV note to REG1.
5588
5589 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5590 from the pseudo that originally shadowed an incoming argument
5591 to another register. Some uses of REG_EQUIV might rely on it
5592 being attached to REG1 rather than REG2.
5593
5594 This section previously turned the REG_EQUIV into a REG_EQUAL
5595 note. We cannot do that because REG_EQUIV may provide an
5596 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5597 if (NONJUMP_INSN_P (prev)
5598 && GET_CODE (PATTERN (prev)) == SET
5599 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5600 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5601 {
5602 rtx dest = SET_DEST (sets[0].rtl);
5603 rtx src = SET_SRC (sets[0].rtl);
5604 rtx note;
5605
5606 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5607 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5608 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5609 apply_change_group ();
5610
5611 /* If INSN has a REG_EQUAL note, and this note mentions
5612 REG0, then we must delete it, because the value in
5613 REG0 has changed. If the note's value is REG1, we must
5614 also delete it because that is now this insn's dest. */
5615 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5616 if (note != 0
5617 && (reg_mentioned_p (dest, XEXP (note, 0))
5618 || rtx_equal_p (src, XEXP (note, 0))))
5619 remove_note (insn, note);
5620 }
5621 }
5622 }
5623
5624 done:;
5625 }
5626 \f
5627 /* Remove from the hash table all expressions that reference memory. */
5628
5629 static void
5630 invalidate_memory (void)
5631 {
5632 int i;
5633 struct table_elt *p, *next;
5634
5635 for (i = 0; i < HASH_SIZE; i++)
5636 for (p = table[i]; p; p = next)
5637 {
5638 next = p->next_same_hash;
5639 if (p->in_memory)
5640 remove_from_table (p, i);
5641 }
5642 }
5643
5644 /* Perform invalidation on the basis of everything about an insn
5645 except for invalidating the actual places that are SET in it.
5646 This includes the places CLOBBERed, and anything that might
5647 alias with something that is SET or CLOBBERed.
5648
5649 X is the pattern of the insn. */
5650
5651 static void
5652 invalidate_from_clobbers (rtx x)
5653 {
5654 if (GET_CODE (x) == CLOBBER)
5655 {
5656 rtx ref = XEXP (x, 0);
5657 if (ref)
5658 {
5659 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5660 || MEM_P (ref))
5661 invalidate (ref, VOIDmode);
5662 else if (GET_CODE (ref) == STRICT_LOW_PART
5663 || GET_CODE (ref) == ZERO_EXTRACT)
5664 invalidate (XEXP (ref, 0), GET_MODE (ref));
5665 }
5666 }
5667 else if (GET_CODE (x) == PARALLEL)
5668 {
5669 int i;
5670 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5671 {
5672 rtx y = XVECEXP (x, 0, i);
5673 if (GET_CODE (y) == CLOBBER)
5674 {
5675 rtx ref = XEXP (y, 0);
5676 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5677 || MEM_P (ref))
5678 invalidate (ref, VOIDmode);
5679 else if (GET_CODE (ref) == STRICT_LOW_PART
5680 || GET_CODE (ref) == ZERO_EXTRACT)
5681 invalidate (XEXP (ref, 0), GET_MODE (ref));
5682 }
5683 }
5684 }
5685 }
5686 \f
5687 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5688 and replace any registers in them with either an equivalent constant
5689 or the canonical form of the register. If we are inside an address,
5690 only do this if the address remains valid.
5691
5692 OBJECT is 0 except when within a MEM in which case it is the MEM.
5693
5694 Return the replacement for X. */
5695
5696 static rtx
5697 cse_process_notes_1 (rtx x, rtx object, bool *changed)
5698 {
5699 enum rtx_code code = GET_CODE (x);
5700 const char *fmt = GET_RTX_FORMAT (code);
5701 int i;
5702
5703 switch (code)
5704 {
5705 case CONST_INT:
5706 case CONST:
5707 case SYMBOL_REF:
5708 case LABEL_REF:
5709 case CONST_DOUBLE:
5710 case CONST_VECTOR:
5711 case PC:
5712 case CC0:
5713 case LO_SUM:
5714 return x;
5715
5716 case MEM:
5717 validate_change (x, &XEXP (x, 0),
5718 cse_process_notes (XEXP (x, 0), x, changed), 0);
5719 return x;
5720
5721 case EXPR_LIST:
5722 case INSN_LIST:
5723 if (REG_NOTE_KIND (x) == REG_EQUAL)
5724 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
5725 if (XEXP (x, 1))
5726 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
5727 return x;
5728
5729 case SIGN_EXTEND:
5730 case ZERO_EXTEND:
5731 case SUBREG:
5732 {
5733 rtx new = cse_process_notes (XEXP (x, 0), object, changed);
5734 /* We don't substitute VOIDmode constants into these rtx,
5735 since they would impede folding. */
5736 if (GET_MODE (new) != VOIDmode)
5737 validate_change (object, &XEXP (x, 0), new, 0);
5738 return x;
5739 }
5740
5741 case REG:
5742 i = REG_QTY (REGNO (x));
5743
5744 /* Return a constant or a constant register. */
5745 if (REGNO_QTY_VALID_P (REGNO (x)))
5746 {
5747 struct qty_table_elem *ent = &qty_table[i];
5748
5749 if (ent->const_rtx != NULL_RTX
5750 && (CONSTANT_P (ent->const_rtx)
5751 || REG_P (ent->const_rtx)))
5752 {
5753 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
5754 if (new)
5755 return copy_rtx (new);
5756 }
5757 }
5758
5759 /* Otherwise, canonicalize this register. */
5760 return canon_reg (x, NULL_RTX);
5761
5762 default:
5763 break;
5764 }
5765
5766 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5767 if (fmt[i] == 'e')
5768 validate_change (object, &XEXP (x, i),
5769 cse_process_notes (XEXP (x, i), object, changed), 0);
5770
5771 return x;
5772 }
5773
5774 static rtx
5775 cse_process_notes (rtx x, rtx object, bool *changed)
5776 {
5777 rtx new = cse_process_notes_1 (x, object, changed);
5778 if (new != x)
5779 *changed = true;
5780 return new;
5781 }
5782
5783 \f
5784 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
5785
5786 DATA is a pointer to a struct cse_basic_block_data, that is used to
5787 describe the path.
5788 It is filled with a queue of basic blocks, starting with FIRST_BB
5789 and following a trace through the CFG.
5790
5791 If all paths starting at FIRST_BB have been followed, or no new path
5792 starting at FIRST_BB can be constructed, this function returns FALSE.
5793 Otherwise, DATA->path is filled and the function returns TRUE indicating
5794 that a path to follow was found.
5795
5796 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
5797 block in the path will be FIRST_BB. */
5798
5799 static bool
5800 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
5801 int follow_jumps)
5802 {
5803 basic_block bb;
5804 edge e;
5805 int path_size;
5806
5807 SET_BIT (cse_visited_basic_blocks, first_bb->index);
5808
5809 /* See if there is a previous path. */
5810 path_size = data->path_size;
5811
5812 /* There is a previous path. Make sure it started with FIRST_BB. */
5813 if (path_size)
5814 gcc_assert (data->path[0].bb == first_bb);
5815
5816 /* There was only one basic block in the last path. Clear the path and
5817 return, so that paths starting at another basic block can be tried. */
5818 if (path_size == 1)
5819 {
5820 path_size = 0;
5821 goto done;
5822 }
5823
5824 /* If the path was empty from the beginning, construct a new path. */
5825 if (path_size == 0)
5826 data->path[path_size++].bb = first_bb;
5827 else
5828 {
5829 /* Otherwise, path_size must be equal to or greater than 2, because
5830 a previous path exists that is at least two basic blocks long.
5831
5832 Update the previous branch path, if any. If the last branch was
5833 previously along the branch edge, take the fallthrough edge now. */
5834 while (path_size >= 2)
5835 {
5836 basic_block last_bb_in_path, previous_bb_in_path;
5837 edge e;
5838
5839 --path_size;
5840 last_bb_in_path = data->path[path_size].bb;
5841 previous_bb_in_path = data->path[path_size - 1].bb;
5842
5843 /* If we previously followed a path along the branch edge, try
5844 the fallthru edge now. */
5845 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
5846 && any_condjump_p (BB_END (previous_bb_in_path))
5847 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
5848 && e == BRANCH_EDGE (previous_bb_in_path))
5849 {
5850 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
5851 if (bb != EXIT_BLOCK_PTR
5852 && single_pred_p (bb)
5853 /* We used to assert here that we would only see blocks
5854 that we have not visited yet. But we may end up
5855 visiting basic blocks twice if the CFG has changed
5856 in this run of cse_main, because when the CFG changes
5857 the topological sort of the CFG also changes. A basic
5858 blocks that previously had more than two predecessors
5859 may now have a single predecessor, and become part of
5860 a path that starts at another basic block.
5861
5862 We still want to visit each basic block only once, so
5863 halt the path here if we have already visited BB. */
5864 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
5865 {
5866 SET_BIT (cse_visited_basic_blocks, bb->index);
5867 data->path[path_size++].bb = bb;
5868 break;
5869 }
5870 }
5871
5872 data->path[path_size].bb = NULL;
5873 }
5874
5875 /* If only one block remains in the path, bail. */
5876 if (path_size == 1)
5877 {
5878 path_size = 0;
5879 goto done;
5880 }
5881 }
5882
5883 /* Extend the path if possible. */
5884 if (follow_jumps)
5885 {
5886 bb = data->path[path_size - 1].bb;
5887 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
5888 {
5889 if (single_succ_p (bb))
5890 e = single_succ_edge (bb);
5891 else if (EDGE_COUNT (bb->succs) == 2
5892 && any_condjump_p (BB_END (bb)))
5893 {
5894 /* First try to follow the branch. If that doesn't lead
5895 to a useful path, follow the fallthru edge. */
5896 e = BRANCH_EDGE (bb);
5897 if (!single_pred_p (e->dest))
5898 e = FALLTHRU_EDGE (bb);
5899 }
5900 else
5901 e = NULL;
5902
5903 if (e && e->dest != EXIT_BLOCK_PTR
5904 && single_pred_p (e->dest)
5905 /* Avoid visiting basic blocks twice. The large comment
5906 above explains why this can happen. */
5907 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
5908 {
5909 basic_block bb2 = e->dest;
5910 SET_BIT (cse_visited_basic_blocks, bb2->index);
5911 data->path[path_size++].bb = bb2;
5912 bb = bb2;
5913 }
5914 else
5915 bb = NULL;
5916 }
5917 }
5918
5919 done:
5920 data->path_size = path_size;
5921 return path_size != 0;
5922 }
5923 \f
5924 /* Dump the path in DATA to file F. NSETS is the number of sets
5925 in the path. */
5926
5927 static void
5928 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
5929 {
5930 int path_entry;
5931
5932 fprintf (f, ";; Following path with %d sets: ", nsets);
5933 for (path_entry = 0; path_entry < data->path_size; path_entry++)
5934 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
5935 fputc ('\n', dump_file);
5936 fflush (f);
5937 }
5938
5939 \f
5940 /* Return true if BB has exception handling successor edges. */
5941
5942 static bool
5943 have_eh_succ_edges (basic_block bb)
5944 {
5945 edge e;
5946 edge_iterator ei;
5947
5948 FOR_EACH_EDGE (e, ei, bb->succs)
5949 if (e->flags & EDGE_EH)
5950 return true;
5951
5952 return false;
5953 }
5954
5955 \f
5956 /* Scan to the end of the path described by DATA. Return an estimate of
5957 the total number of SETs of all insns in the path. */
5958
5959 static void
5960 cse_prescan_path (struct cse_basic_block_data *data)
5961 {
5962 int nsets = 0;
5963 int path_size = data->path_size;
5964 int path_entry;
5965
5966 /* Scan to end of each basic block in the path. */
5967 for (path_entry = 0; path_entry < path_size; path_entry++)
5968 {
5969 basic_block bb;
5970 rtx insn;
5971
5972 bb = data->path[path_entry].bb;
5973
5974 FOR_BB_INSNS (bb, insn)
5975 {
5976 if (!INSN_P (insn))
5977 continue;
5978
5979 /* A PARALLEL can have lots of SETs in it,
5980 especially if it is really an ASM_OPERANDS. */
5981 if (GET_CODE (PATTERN (insn)) == PARALLEL)
5982 nsets += XVECLEN (PATTERN (insn), 0);
5983 else
5984 nsets += 1;
5985 }
5986 }
5987
5988 data->nsets = nsets;
5989 }
5990 \f
5991 /* Process a single extended basic block described by EBB_DATA. */
5992
5993 static void
5994 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
5995 {
5996 int path_size = ebb_data->path_size;
5997 int path_entry;
5998 int num_insns = 0;
5999
6000 /* Allocate the space needed by qty_table. */
6001 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6002
6003 new_basic_block ();
6004 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6005 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6006 for (path_entry = 0; path_entry < path_size; path_entry++)
6007 {
6008 basic_block bb;
6009 rtx insn;
6010 rtx libcall_insn = NULL_RTX;
6011 int no_conflict = 0;
6012
6013 bb = ebb_data->path[path_entry].bb;
6014 FOR_BB_INSNS (bb, insn)
6015 {
6016 /* If we have processed 1,000 insns, flush the hash table to
6017 avoid extreme quadratic behavior. We must not include NOTEs
6018 in the count since there may be more of them when generating
6019 debugging information. If we clear the table at different
6020 times, code generated with -g -O might be different than code
6021 generated with -O but not -g.
6022
6023 FIXME: This is a real kludge and needs to be done some other
6024 way. */
6025 if (INSN_P (insn)
6026 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6027 {
6028 flush_hash_table ();
6029 num_insns = 0;
6030 }
6031
6032 if (INSN_P (insn))
6033 {
6034 /* Process notes first so we have all notes in canonical forms
6035 when looking for duplicate operations. */
6036 if (REG_NOTES (insn))
6037 {
6038 bool changed = false;
6039 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6040 NULL_RTX, &changed);
6041 if (changed)
6042 df_notes_rescan (insn);
6043 }
6044
6045 /* Track when we are inside in LIBCALL block. Inside such
6046 a block we do not want to record destinations. The last
6047 insn of a LIBCALL block is not considered to be part of
6048 the block, since its destination is the result of the
6049 block and hence should be recorded. */
6050 if (REG_NOTES (insn) != 0)
6051 {
6052 rtx p;
6053
6054 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6055 libcall_insn = XEXP (p, 0);
6056 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6057 {
6058 /* Keep libcall_insn for the last SET insn of
6059 a no-conflict block to prevent changing the
6060 destination. */
6061 if (!no_conflict)
6062 libcall_insn = NULL_RTX;
6063 else
6064 no_conflict = -1;
6065 }
6066 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6067 no_conflict = 1;
6068 }
6069
6070 cse_insn (insn, libcall_insn);
6071
6072 /* If we kept libcall_insn for a no-conflict bock,
6073 clear it here. */
6074 if (no_conflict == -1)
6075 {
6076 libcall_insn = NULL_RTX;
6077 no_conflict = 0;
6078 }
6079
6080 /* If we haven't already found an insn where we added a LABEL_REF,
6081 check this one. */
6082 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
6083 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6084 (void *) insn))
6085 recorded_label_ref = 1;
6086
6087 #ifdef HAVE_cc0
6088 /* If the previous insn set CC0 and this insn no longer
6089 references CC0, delete the previous insn. Here we use
6090 fact that nothing expects CC0 to be valid over an insn,
6091 which is true until the final pass. */
6092 {
6093 rtx prev_insn, tem;
6094
6095 prev_insn = PREV_INSN (insn);
6096 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6097 && (tem = single_set (prev_insn)) != 0
6098 && SET_DEST (tem) == cc0_rtx
6099 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6100 delete_insn (prev_insn);
6101 }
6102
6103 /* If this insn is not the last insn in the basic block,
6104 it will be PREV_INSN(insn) in the next iteration. If
6105 we recorded any CC0-related information for this insn,
6106 remember it. */
6107 if (insn != BB_END (bb))
6108 {
6109 prev_insn_cc0 = this_insn_cc0;
6110 prev_insn_cc0_mode = this_insn_cc0_mode;
6111 }
6112 #endif
6113 }
6114 }
6115
6116 /* Make sure that libcalls don't span multiple basic blocks. */
6117 gcc_assert (libcall_insn == NULL_RTX);
6118
6119 /* With non-call exceptions, we are not always able to update
6120 the CFG properly inside cse_insn. So clean up possibly
6121 redundant EH edges here. */
6122 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6123 purge_dead_edges (bb);
6124
6125 /* If we changed a conditional jump, we may have terminated
6126 the path we are following. Check that by verifying that
6127 the edge we would take still exists. If the edge does
6128 not exist anymore, purge the remainder of the path.
6129 Note that this will cause us to return to the caller. */
6130 if (path_entry < path_size - 1)
6131 {
6132 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6133 if (!find_edge (bb, next_bb))
6134 {
6135 do
6136 {
6137 path_size--;
6138
6139 /* If we truncate the path, we must also reset the
6140 visited bit on the remaining blocks in the path,
6141 or we will never visit them at all. */
6142 RESET_BIT (cse_visited_basic_blocks,
6143 ebb_data->path[path_size].bb->index);
6144 ebb_data->path[path_size].bb = NULL;
6145 }
6146 while (path_size - 1 != path_entry);
6147 ebb_data->path_size = path_size;
6148 }
6149 }
6150
6151 /* If this is a conditional jump insn, record any known
6152 equivalences due to the condition being tested. */
6153 insn = BB_END (bb);
6154 if (path_entry < path_size - 1
6155 && JUMP_P (insn)
6156 && single_set (insn)
6157 && any_condjump_p (insn))
6158 {
6159 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6160 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6161 record_jump_equiv (insn, taken);
6162 }
6163
6164 #ifdef HAVE_cc0
6165 /* Clear the CC0-tracking related insns, they can't provide
6166 useful information across basic block boundaries. */
6167 prev_insn_cc0 = 0;
6168 #endif
6169 }
6170
6171 gcc_assert (next_qty <= max_qty);
6172
6173 free (qty_table);
6174 }
6175
6176 \f
6177 /* Perform cse on the instructions of a function.
6178 F is the first instruction.
6179 NREGS is one plus the highest pseudo-reg number used in the instruction.
6180
6181 Returns 1 if jump_optimize should be redone due to simplifications
6182 in conditional jump instructions. */
6183
6184 int
6185 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6186 {
6187 struct cse_basic_block_data ebb_data;
6188 basic_block bb;
6189 int *rc_order = XNEWVEC (int, last_basic_block);
6190 int i, n_blocks;
6191
6192 df_set_flags (DF_LR_RUN_DCE);
6193 df_analyze ();
6194 df_set_flags (DF_DEFER_INSN_RESCAN);
6195
6196 reg_scan (get_insns (), max_reg_num ());
6197 init_cse_reg_info (nregs);
6198
6199 ebb_data.path = XNEWVEC (struct branch_path,
6200 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6201
6202 cse_jumps_altered = 0;
6203 recorded_label_ref = 0;
6204 constant_pool_entries_cost = 0;
6205 constant_pool_entries_regcost = 0;
6206 ebb_data.path_size = 0;
6207 ebb_data.nsets = 0;
6208 rtl_hooks = cse_rtl_hooks;
6209
6210 init_recog ();
6211 init_alias_analysis ();
6212
6213 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6214
6215 /* Set up the table of already visited basic blocks. */
6216 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6217 sbitmap_zero (cse_visited_basic_blocks);
6218
6219 /* Loop over basic blocks in reverse completion order (RPO),
6220 excluding the ENTRY and EXIT blocks. */
6221 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6222 i = 0;
6223 while (i < n_blocks)
6224 {
6225 /* Find the first block in the RPO queue that we have not yet
6226 processed before. */
6227 do
6228 {
6229 bb = BASIC_BLOCK (rc_order[i++]);
6230 }
6231 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6232 && i < n_blocks);
6233
6234 /* Find all paths starting with BB, and process them. */
6235 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6236 {
6237 /* Pre-scan the path. */
6238 cse_prescan_path (&ebb_data);
6239
6240 /* If this basic block has no sets, skip it. */
6241 if (ebb_data.nsets == 0)
6242 continue;
6243
6244 /* Get a reasonable estimate for the maximum number of qty's
6245 needed for this path. For this, we take the number of sets
6246 and multiply that by MAX_RECOG_OPERANDS. */
6247 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6248
6249 /* Dump the path we're about to process. */
6250 if (dump_file)
6251 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6252
6253 cse_extended_basic_block (&ebb_data);
6254 }
6255 }
6256
6257 /* Clean up. */
6258 end_alias_analysis ();
6259 free (reg_eqv_table);
6260 free (ebb_data.path);
6261 sbitmap_free (cse_visited_basic_blocks);
6262 free (rc_order);
6263 rtl_hooks = general_rtl_hooks;
6264
6265 return cse_jumps_altered || recorded_label_ref;
6266 }
6267 \f
6268 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
6269 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
6270
6271 static int
6272 check_for_label_ref (rtx *rtl, void *data)
6273 {
6274 rtx insn = (rtx) data;
6275
6276 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
6277 we must rerun jump since it needs to place the note. If this is a
6278 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
6279 since no REG_LABEL will be added. */
6280 return (GET_CODE (*rtl) == LABEL_REF
6281 && ! LABEL_REF_NONLOCAL_P (*rtl)
6282 && LABEL_P (XEXP (*rtl, 0))
6283 && INSN_UID (XEXP (*rtl, 0)) != 0
6284 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
6285 }
6286 \f
6287 /* Count the number of times registers are used (not set) in X.
6288 COUNTS is an array in which we accumulate the count, INCR is how much
6289 we count each register usage.
6290
6291 Don't count a usage of DEST, which is the SET_DEST of a SET which
6292 contains X in its SET_SRC. This is because such a SET does not
6293 modify the liveness of DEST.
6294 DEST is set to pc_rtx for a trapping insn, which means that we must count
6295 uses of a SET_DEST regardless because the insn can't be deleted here. */
6296
6297 static void
6298 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6299 {
6300 enum rtx_code code;
6301 rtx note;
6302 const char *fmt;
6303 int i, j;
6304
6305 if (x == 0)
6306 return;
6307
6308 switch (code = GET_CODE (x))
6309 {
6310 case REG:
6311 if (x != dest)
6312 counts[REGNO (x)] += incr;
6313 return;
6314
6315 case PC:
6316 case CC0:
6317 case CONST:
6318 case CONST_INT:
6319 case CONST_DOUBLE:
6320 case CONST_VECTOR:
6321 case SYMBOL_REF:
6322 case LABEL_REF:
6323 return;
6324
6325 case CLOBBER:
6326 /* If we are clobbering a MEM, mark any registers inside the address
6327 as being used. */
6328 if (MEM_P (XEXP (x, 0)))
6329 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6330 return;
6331
6332 case SET:
6333 /* Unless we are setting a REG, count everything in SET_DEST. */
6334 if (!REG_P (SET_DEST (x)))
6335 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6336 count_reg_usage (SET_SRC (x), counts,
6337 dest ? dest : SET_DEST (x),
6338 incr);
6339 return;
6340
6341 case CALL_INSN:
6342 case INSN:
6343 case JUMP_INSN:
6344 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6345 this fact by setting DEST to pc_rtx. */
6346 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
6347 dest = pc_rtx;
6348 if (code == CALL_INSN)
6349 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6350 count_reg_usage (PATTERN (x), counts, dest, incr);
6351
6352 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6353 use them. */
6354
6355 note = find_reg_equal_equiv_note (x);
6356 if (note)
6357 {
6358 rtx eqv = XEXP (note, 0);
6359
6360 if (GET_CODE (eqv) == EXPR_LIST)
6361 /* This REG_EQUAL note describes the result of a function call.
6362 Process all the arguments. */
6363 do
6364 {
6365 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6366 eqv = XEXP (eqv, 1);
6367 }
6368 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6369 else
6370 count_reg_usage (eqv, counts, dest, incr);
6371 }
6372 return;
6373
6374 case EXPR_LIST:
6375 if (REG_NOTE_KIND (x) == REG_EQUAL
6376 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6377 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6378 involving registers in the address. */
6379 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6380 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6381
6382 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6383 return;
6384
6385 case ASM_OPERANDS:
6386 /* If the asm is volatile, then this insn cannot be deleted,
6387 and so the inputs *must* be live. */
6388 if (MEM_VOLATILE_P (x))
6389 dest = NULL_RTX;
6390 /* Iterate over just the inputs, not the constraints as well. */
6391 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6392 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6393 return;
6394
6395 case INSN_LIST:
6396 gcc_unreachable ();
6397
6398 default:
6399 break;
6400 }
6401
6402 fmt = GET_RTX_FORMAT (code);
6403 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6404 {
6405 if (fmt[i] == 'e')
6406 count_reg_usage (XEXP (x, i), counts, dest, incr);
6407 else if (fmt[i] == 'E')
6408 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6409 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6410 }
6411 }
6412 \f
6413 /* Return true if set is live. */
6414 static bool
6415 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6416 int *counts)
6417 {
6418 #ifdef HAVE_cc0
6419 rtx tem;
6420 #endif
6421
6422 if (set_noop_p (set))
6423 ;
6424
6425 #ifdef HAVE_cc0
6426 else if (GET_CODE (SET_DEST (set)) == CC0
6427 && !side_effects_p (SET_SRC (set))
6428 && ((tem = next_nonnote_insn (insn)) == 0
6429 || !INSN_P (tem)
6430 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6431 return false;
6432 #endif
6433 else if (!REG_P (SET_DEST (set))
6434 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
6435 || counts[REGNO (SET_DEST (set))] != 0
6436 || side_effects_p (SET_SRC (set)))
6437 return true;
6438 return false;
6439 }
6440
6441 /* Return true if insn is live. */
6442
6443 static bool
6444 insn_live_p (rtx insn, int *counts)
6445 {
6446 int i;
6447 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
6448 return true;
6449 else if (GET_CODE (PATTERN (insn)) == SET)
6450 return set_live_p (PATTERN (insn), insn, counts);
6451 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6452 {
6453 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6454 {
6455 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6456
6457 if (GET_CODE (elt) == SET)
6458 {
6459 if (set_live_p (elt, insn, counts))
6460 return true;
6461 }
6462 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6463 return true;
6464 }
6465 return false;
6466 }
6467 else
6468 return true;
6469 }
6470
6471 /* Return true if libcall is dead as a whole. */
6472
6473 static bool
6474 dead_libcall_p (rtx insn, int *counts)
6475 {
6476 rtx note, set, new;
6477
6478 /* See if there's a REG_EQUAL note on this insn and try to
6479 replace the source with the REG_EQUAL expression.
6480
6481 We assume that insns with REG_RETVALs can only be reg->reg
6482 copies at this point. */
6483 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6484 if (!note)
6485 return false;
6486
6487 set = single_set (insn);
6488 if (!set)
6489 return false;
6490
6491 new = simplify_rtx (XEXP (note, 0));
6492 if (!new)
6493 new = XEXP (note, 0);
6494
6495 /* While changing insn, we must update the counts accordingly. */
6496 count_reg_usage (insn, counts, NULL_RTX, -1);
6497
6498 if (validate_change (insn, &SET_SRC (set), new, 0))
6499 {
6500 count_reg_usage (insn, counts, NULL_RTX, 1);
6501 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6502 remove_note (insn, note);
6503 return true;
6504 }
6505
6506 if (CONSTANT_P (new))
6507 {
6508 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
6509 if (new && validate_change (insn, &SET_SRC (set), new, 0))
6510 {
6511 count_reg_usage (insn, counts, NULL_RTX, 1);
6512 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6513 remove_note (insn, note);
6514 return true;
6515 }
6516 }
6517
6518 count_reg_usage (insn, counts, NULL_RTX, 1);
6519 return false;
6520 }
6521
6522 /* Scan all the insns and delete any that are dead; i.e., they store a register
6523 that is never used or they copy a register to itself.
6524
6525 This is used to remove insns made obviously dead by cse, loop or other
6526 optimizations. It improves the heuristics in loop since it won't try to
6527 move dead invariants out of loops or make givs for dead quantities. The
6528 remaining passes of the compilation are also sped up. */
6529
6530 int
6531 delete_trivially_dead_insns (rtx insns, int nreg)
6532 {
6533 int *counts;
6534 rtx insn, prev;
6535 int in_libcall = 0, dead_libcall = 0;
6536 int ndead = 0;
6537
6538 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6539 /* First count the number of times each register is used. */
6540 counts = XCNEWVEC (int, nreg);
6541 for (insn = insns; insn; insn = NEXT_INSN (insn))
6542 if (INSN_P (insn))
6543 count_reg_usage (insn, counts, NULL_RTX, 1);
6544
6545 /* Go from the last insn to the first and delete insns that only set unused
6546 registers or copy a register to itself. As we delete an insn, remove
6547 usage counts for registers it uses.
6548
6549 The first jump optimization pass may leave a real insn as the last
6550 insn in the function. We must not skip that insn or we may end
6551 up deleting code that is not really dead. */
6552 for (insn = get_last_insn (); insn; insn = prev)
6553 {
6554 int live_insn = 0;
6555
6556 prev = PREV_INSN (insn);
6557 if (!INSN_P (insn))
6558 continue;
6559
6560 /* Don't delete any insns that are part of a libcall block unless
6561 we can delete the whole libcall block.
6562
6563 Flow or loop might get confused if we did that. Remember
6564 that we are scanning backwards. */
6565 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6566 {
6567 in_libcall = 1;
6568 live_insn = 1;
6569 dead_libcall = dead_libcall_p (insn, counts);
6570 }
6571 else if (in_libcall)
6572 live_insn = ! dead_libcall;
6573 else
6574 live_insn = insn_live_p (insn, counts);
6575
6576 /* If this is a dead insn, delete it and show registers in it aren't
6577 being used. */
6578
6579 if (! live_insn && dbg_cnt (delete_trivial_dead))
6580 {
6581 count_reg_usage (insn, counts, NULL_RTX, -1);
6582 delete_insn_and_edges (insn);
6583 ndead++;
6584 }
6585
6586 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
6587 {
6588 in_libcall = 0;
6589 dead_libcall = 0;
6590 }
6591 }
6592
6593 if (dump_file && ndead)
6594 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6595 ndead);
6596 /* Clean up. */
6597 free (counts);
6598 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6599 return ndead;
6600 }
6601
6602 /* This function is called via for_each_rtx. The argument, NEWREG, is
6603 a condition code register with the desired mode. If we are looking
6604 at the same register in a different mode, replace it with
6605 NEWREG. */
6606
6607 static int
6608 cse_change_cc_mode (rtx *loc, void *data)
6609 {
6610 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6611
6612 if (*loc
6613 && REG_P (*loc)
6614 && REGNO (*loc) == REGNO (args->newreg)
6615 && GET_MODE (*loc) != GET_MODE (args->newreg))
6616 {
6617 validate_change (args->insn, loc, args->newreg, 1);
6618
6619 return -1;
6620 }
6621 return 0;
6622 }
6623
6624 /* Change the mode of any reference to the register REGNO (NEWREG) to
6625 GET_MODE (NEWREG) in INSN. */
6626
6627 static void
6628 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6629 {
6630 struct change_cc_mode_args args;
6631 int success;
6632
6633 if (!INSN_P (insn))
6634 return;
6635
6636 args.insn = insn;
6637 args.newreg = newreg;
6638
6639 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6640 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6641
6642 /* If the following assertion was triggered, there is most probably
6643 something wrong with the cc_modes_compatible back end function.
6644 CC modes only can be considered compatible if the insn - with the mode
6645 replaced by any of the compatible modes - can still be recognized. */
6646 success = apply_change_group ();
6647 gcc_assert (success);
6648 }
6649
6650 /* Change the mode of any reference to the register REGNO (NEWREG) to
6651 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
6652 any instruction which modifies NEWREG. */
6653
6654 static void
6655 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6656 {
6657 rtx insn;
6658
6659 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6660 {
6661 if (! INSN_P (insn))
6662 continue;
6663
6664 if (reg_set_p (newreg, insn))
6665 return;
6666
6667 cse_change_cc_mode_insn (insn, newreg);
6668 }
6669 }
6670
6671 /* BB is a basic block which finishes with CC_REG as a condition code
6672 register which is set to CC_SRC. Look through the successors of BB
6673 to find blocks which have a single predecessor (i.e., this one),
6674 and look through those blocks for an assignment to CC_REG which is
6675 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6676 permitted to change the mode of CC_SRC to a compatible mode. This
6677 returns VOIDmode if no equivalent assignments were found.
6678 Otherwise it returns the mode which CC_SRC should wind up with.
6679
6680 The main complexity in this function is handling the mode issues.
6681 We may have more than one duplicate which we can eliminate, and we
6682 try to find a mode which will work for multiple duplicates. */
6683
6684 static enum machine_mode
6685 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
6686 {
6687 bool found_equiv;
6688 enum machine_mode mode;
6689 unsigned int insn_count;
6690 edge e;
6691 rtx insns[2];
6692 enum machine_mode modes[2];
6693 rtx last_insns[2];
6694 unsigned int i;
6695 rtx newreg;
6696 edge_iterator ei;
6697
6698 /* We expect to have two successors. Look at both before picking
6699 the final mode for the comparison. If we have more successors
6700 (i.e., some sort of table jump, although that seems unlikely),
6701 then we require all beyond the first two to use the same
6702 mode. */
6703
6704 found_equiv = false;
6705 mode = GET_MODE (cc_src);
6706 insn_count = 0;
6707 FOR_EACH_EDGE (e, ei, bb->succs)
6708 {
6709 rtx insn;
6710 rtx end;
6711
6712 if (e->flags & EDGE_COMPLEX)
6713 continue;
6714
6715 if (EDGE_COUNT (e->dest->preds) != 1
6716 || e->dest == EXIT_BLOCK_PTR)
6717 continue;
6718
6719 end = NEXT_INSN (BB_END (e->dest));
6720 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6721 {
6722 rtx set;
6723
6724 if (! INSN_P (insn))
6725 continue;
6726
6727 /* If CC_SRC is modified, we have to stop looking for
6728 something which uses it. */
6729 if (modified_in_p (cc_src, insn))
6730 break;
6731
6732 /* Check whether INSN sets CC_REG to CC_SRC. */
6733 set = single_set (insn);
6734 if (set
6735 && REG_P (SET_DEST (set))
6736 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6737 {
6738 bool found;
6739 enum machine_mode set_mode;
6740 enum machine_mode comp_mode;
6741
6742 found = false;
6743 set_mode = GET_MODE (SET_SRC (set));
6744 comp_mode = set_mode;
6745 if (rtx_equal_p (cc_src, SET_SRC (set)))
6746 found = true;
6747 else if (GET_CODE (cc_src) == COMPARE
6748 && GET_CODE (SET_SRC (set)) == COMPARE
6749 && mode != set_mode
6750 && rtx_equal_p (XEXP (cc_src, 0),
6751 XEXP (SET_SRC (set), 0))
6752 && rtx_equal_p (XEXP (cc_src, 1),
6753 XEXP (SET_SRC (set), 1)))
6754
6755 {
6756 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
6757 if (comp_mode != VOIDmode
6758 && (can_change_mode || comp_mode == mode))
6759 found = true;
6760 }
6761
6762 if (found)
6763 {
6764 found_equiv = true;
6765 if (insn_count < ARRAY_SIZE (insns))
6766 {
6767 insns[insn_count] = insn;
6768 modes[insn_count] = set_mode;
6769 last_insns[insn_count] = end;
6770 ++insn_count;
6771
6772 if (mode != comp_mode)
6773 {
6774 gcc_assert (can_change_mode);
6775 mode = comp_mode;
6776
6777 /* The modified insn will be re-recognized later. */
6778 PUT_MODE (cc_src, mode);
6779 }
6780 }
6781 else
6782 {
6783 if (set_mode != mode)
6784 {
6785 /* We found a matching expression in the
6786 wrong mode, but we don't have room to
6787 store it in the array. Punt. This case
6788 should be rare. */
6789 break;
6790 }
6791 /* INSN sets CC_REG to a value equal to CC_SRC
6792 with the right mode. We can simply delete
6793 it. */
6794 delete_insn (insn);
6795 }
6796
6797 /* We found an instruction to delete. Keep looking,
6798 in the hopes of finding a three-way jump. */
6799 continue;
6800 }
6801
6802 /* We found an instruction which sets the condition
6803 code, so don't look any farther. */
6804 break;
6805 }
6806
6807 /* If INSN sets CC_REG in some other way, don't look any
6808 farther. */
6809 if (reg_set_p (cc_reg, insn))
6810 break;
6811 }
6812
6813 /* If we fell off the bottom of the block, we can keep looking
6814 through successors. We pass CAN_CHANGE_MODE as false because
6815 we aren't prepared to handle compatibility between the
6816 further blocks and this block. */
6817 if (insn == end)
6818 {
6819 enum machine_mode submode;
6820
6821 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
6822 if (submode != VOIDmode)
6823 {
6824 gcc_assert (submode == mode);
6825 found_equiv = true;
6826 can_change_mode = false;
6827 }
6828 }
6829 }
6830
6831 if (! found_equiv)
6832 return VOIDmode;
6833
6834 /* Now INSN_COUNT is the number of instructions we found which set
6835 CC_REG to a value equivalent to CC_SRC. The instructions are in
6836 INSNS. The modes used by those instructions are in MODES. */
6837
6838 newreg = NULL_RTX;
6839 for (i = 0; i < insn_count; ++i)
6840 {
6841 if (modes[i] != mode)
6842 {
6843 /* We need to change the mode of CC_REG in INSNS[i] and
6844 subsequent instructions. */
6845 if (! newreg)
6846 {
6847 if (GET_MODE (cc_reg) == mode)
6848 newreg = cc_reg;
6849 else
6850 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6851 }
6852 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
6853 newreg);
6854 }
6855
6856 delete_insn (insns[i]);
6857 }
6858
6859 return mode;
6860 }
6861
6862 /* If we have a fixed condition code register (or two), walk through
6863 the instructions and try to eliminate duplicate assignments. */
6864
6865 static void
6866 cse_condition_code_reg (void)
6867 {
6868 unsigned int cc_regno_1;
6869 unsigned int cc_regno_2;
6870 rtx cc_reg_1;
6871 rtx cc_reg_2;
6872 basic_block bb;
6873
6874 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
6875 return;
6876
6877 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
6878 if (cc_regno_2 != INVALID_REGNUM)
6879 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
6880 else
6881 cc_reg_2 = NULL_RTX;
6882
6883 FOR_EACH_BB (bb)
6884 {
6885 rtx last_insn;
6886 rtx cc_reg;
6887 rtx insn;
6888 rtx cc_src_insn;
6889 rtx cc_src;
6890 enum machine_mode mode;
6891 enum machine_mode orig_mode;
6892
6893 /* Look for blocks which end with a conditional jump based on a
6894 condition code register. Then look for the instruction which
6895 sets the condition code register. Then look through the
6896 successor blocks for instructions which set the condition
6897 code register to the same value. There are other possible
6898 uses of the condition code register, but these are by far the
6899 most common and the ones which we are most likely to be able
6900 to optimize. */
6901
6902 last_insn = BB_END (bb);
6903 if (!JUMP_P (last_insn))
6904 continue;
6905
6906 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
6907 cc_reg = cc_reg_1;
6908 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
6909 cc_reg = cc_reg_2;
6910 else
6911 continue;
6912
6913 cc_src_insn = NULL_RTX;
6914 cc_src = NULL_RTX;
6915 for (insn = PREV_INSN (last_insn);
6916 insn && insn != PREV_INSN (BB_HEAD (bb));
6917 insn = PREV_INSN (insn))
6918 {
6919 rtx set;
6920
6921 if (! INSN_P (insn))
6922 continue;
6923 set = single_set (insn);
6924 if (set
6925 && REG_P (SET_DEST (set))
6926 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6927 {
6928 cc_src_insn = insn;
6929 cc_src = SET_SRC (set);
6930 break;
6931 }
6932 else if (reg_set_p (cc_reg, insn))
6933 break;
6934 }
6935
6936 if (! cc_src_insn)
6937 continue;
6938
6939 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
6940 continue;
6941
6942 /* Now CC_REG is a condition code register used for a
6943 conditional jump at the end of the block, and CC_SRC, in
6944 CC_SRC_INSN, is the value to which that condition code
6945 register is set, and CC_SRC is still meaningful at the end of
6946 the basic block. */
6947
6948 orig_mode = GET_MODE (cc_src);
6949 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
6950 if (mode != VOIDmode)
6951 {
6952 gcc_assert (mode == GET_MODE (cc_src));
6953 if (mode != orig_mode)
6954 {
6955 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6956
6957 cse_change_cc_mode_insn (cc_src_insn, newreg);
6958
6959 /* Do the same in the following insns that use the
6960 current value of CC_REG within BB. */
6961 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
6962 NEXT_INSN (last_insn),
6963 newreg);
6964 }
6965 }
6966 }
6967 }
6968 \f
6969
6970 /* Perform common subexpression elimination. Nonzero value from
6971 `cse_main' means that jumps were simplified and some code may now
6972 be unreachable, so do jump optimization again. */
6973 static bool
6974 gate_handle_cse (void)
6975 {
6976 return optimize > 0;
6977 }
6978
6979 static unsigned int
6980 rest_of_handle_cse (void)
6981 {
6982 int tem;
6983
6984 if (dump_file)
6985 dump_flow_info (dump_file, dump_flags);
6986
6987 tem = cse_main (get_insns (), max_reg_num ());
6988
6989 /* If we are not running more CSE passes, then we are no longer
6990 expecting CSE to be run. But always rerun it in a cheap mode. */
6991 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
6992
6993 if (tem)
6994 rebuild_jump_labels (get_insns ());
6995
6996 if (tem || optimize > 1)
6997 cleanup_cfg (0);
6998
6999 return 0;
7000 }
7001
7002 struct tree_opt_pass pass_cse =
7003 {
7004 "cse1", /* name */
7005 gate_handle_cse, /* gate */
7006 rest_of_handle_cse, /* execute */
7007 NULL, /* sub */
7008 NULL, /* next */
7009 0, /* static_pass_number */
7010 TV_CSE, /* tv_id */
7011 0, /* properties_required */
7012 0, /* properties_provided */
7013 0, /* properties_destroyed */
7014 0, /* todo_flags_start */
7015 TODO_df_finish |
7016 TODO_dump_func |
7017 TODO_ggc_collect |
7018 TODO_verify_flow, /* todo_flags_finish */
7019 's' /* letter */
7020 };
7021
7022
7023 static bool
7024 gate_handle_cse2 (void)
7025 {
7026 return optimize > 0 && flag_rerun_cse_after_loop;
7027 }
7028
7029 /* Run second CSE pass after loop optimizations. */
7030 static unsigned int
7031 rest_of_handle_cse2 (void)
7032 {
7033 int tem;
7034
7035 if (dump_file)
7036 dump_flow_info (dump_file, dump_flags);
7037
7038 tem = cse_main (get_insns (), max_reg_num ());
7039
7040 /* Run a pass to eliminate duplicated assignments to condition code
7041 registers. We have to run this after bypass_jumps, because it
7042 makes it harder for that pass to determine whether a jump can be
7043 bypassed safely. */
7044 cse_condition_code_reg ();
7045
7046 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7047
7048 if (tem)
7049 {
7050 timevar_push (TV_JUMP);
7051 rebuild_jump_labels (get_insns ());
7052 cleanup_cfg (0);
7053 timevar_pop (TV_JUMP);
7054 }
7055 cse_not_expected = 1;
7056 return 0;
7057 }
7058
7059
7060 struct tree_opt_pass pass_cse2 =
7061 {
7062 "cse2", /* name */
7063 gate_handle_cse2, /* gate */
7064 rest_of_handle_cse2, /* execute */
7065 NULL, /* sub */
7066 NULL, /* next */
7067 0, /* static_pass_number */
7068 TV_CSE2, /* tv_id */
7069 0, /* properties_required */
7070 0, /* properties_provided */
7071 0, /* properties_destroyed */
7072 0, /* todo_flags_start */
7073 TODO_df_finish |
7074 TODO_dump_func |
7075 TODO_ggc_collect |
7076 TODO_verify_flow, /* todo_flags_finish */
7077 't' /* letter */
7078 };
7079