]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cse.c
re PR middle-end/91708 ([ARM] Bootstrap fails in gen_movsi, at config/arm/arm.md...
[thirdparty/gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "cfgrtl.h"
36 #include "cfganal.h"
37 #include "cfgcleanup.h"
38 #include "alias.h"
39 #include "toplev.h"
40 #include "params.h"
41 #include "rtlhooks-def.h"
42 #include "tree-pass.h"
43 #include "dbgcnt.h"
44 #include "rtl-iter.h"
45
46 /* The basic idea of common subexpression elimination is to go
47 through the code, keeping a record of expressions that would
48 have the same value at the current scan point, and replacing
49 expressions encountered with the cheapest equivalent expression.
50
51 It is too complicated to keep track of the different possibilities
52 when control paths merge in this code; so, at each label, we forget all
53 that is known and start fresh. This can be described as processing each
54 extended basic block separately. We have a separate pass to perform
55 global CSE.
56
57 Note CSE can turn a conditional or computed jump into a nop or
58 an unconditional jump. When this occurs we arrange to run the jump
59 optimizer after CSE to delete the unreachable code.
60
61 We use two data structures to record the equivalent expressions:
62 a hash table for most expressions, and a vector of "quantity
63 numbers" to record equivalent (pseudo) registers.
64
65 The use of the special data structure for registers is desirable
66 because it is faster. It is possible because registers references
67 contain a fairly small number, the register number, taken from
68 a contiguously allocated series, and two register references are
69 identical if they have the same number. General expressions
70 do not have any such thing, so the only way to retrieve the
71 information recorded on an expression other than a register
72 is to keep it in a hash table.
73
74 Registers and "quantity numbers":
75
76 At the start of each basic block, all of the (hardware and pseudo)
77 registers used in the function are given distinct quantity
78 numbers to indicate their contents. During scan, when the code
79 copies one register into another, we copy the quantity number.
80 When a register is loaded in any other way, we allocate a new
81 quantity number to describe the value generated by this operation.
82 `REG_QTY (N)' records what quantity register N is currently thought
83 of as containing.
84
85 All real quantity numbers are greater than or equal to zero.
86 If register N has not been assigned a quantity, `REG_QTY (N)' will
87 equal -N - 1, which is always negative.
88
89 Quantity numbers below zero do not exist and none of the `qty_table'
90 entries should be referenced with a negative index.
91
92 We also maintain a bidirectional chain of registers for each
93 quantity number. The `qty_table` members `first_reg' and `last_reg',
94 and `reg_eqv_table' members `next' and `prev' hold these chains.
95
96 The first register in a chain is the one whose lifespan is least local.
97 Among equals, it is the one that was seen first.
98 We replace any equivalent register with that one.
99
100 If two registers have the same quantity number, it must be true that
101 REG expressions with qty_table `mode' must be in the hash table for both
102 registers and must be in the same class.
103
104 The converse is not true. Since hard registers may be referenced in
105 any mode, two REG expressions might be equivalent in the hash table
106 but not have the same quantity number if the quantity number of one
107 of the registers is not the same mode as those expressions.
108
109 Constants and quantity numbers
110
111 When a quantity has a known constant value, that value is stored
112 in the appropriate qty_table `const_rtx'. This is in addition to
113 putting the constant in the hash table as is usual for non-regs.
114
115 Whether a reg or a constant is preferred is determined by the configuration
116 macro CONST_COSTS and will often depend on the constant value. In any
117 event, expressions containing constants can be simplified, by fold_rtx.
118
119 When a quantity has a known nearly constant value (such as an address
120 of a stack slot), that value is stored in the appropriate qty_table
121 `const_rtx'.
122
123 Integer constants don't have a machine mode. However, cse
124 determines the intended machine mode from the destination
125 of the instruction that moves the constant. The machine mode
126 is recorded in the hash table along with the actual RTL
127 constant expression so that different modes are kept separate.
128
129 Other expressions:
130
131 To record known equivalences among expressions in general
132 we use a hash table called `table'. It has a fixed number of buckets
133 that contain chains of `struct table_elt' elements for expressions.
134 These chains connect the elements whose expressions have the same
135 hash codes.
136
137 Other chains through the same elements connect the elements which
138 currently have equivalent values.
139
140 Register references in an expression are canonicalized before hashing
141 the expression. This is done using `reg_qty' and qty_table `first_reg'.
142 The hash code of a register reference is computed using the quantity
143 number, not the register number.
144
145 When the value of an expression changes, it is necessary to remove from the
146 hash table not just that expression but all expressions whose values
147 could be different as a result.
148
149 1. If the value changing is in memory, except in special cases
150 ANYTHING referring to memory could be changed. That is because
151 nobody knows where a pointer does not point.
152 The function `invalidate_memory' removes what is necessary.
153
154 The special cases are when the address is constant or is
155 a constant plus a fixed register such as the frame pointer
156 or a static chain pointer. When such addresses are stored in,
157 we can tell exactly which other such addresses must be invalidated
158 due to overlap. `invalidate' does this.
159 All expressions that refer to non-constant
160 memory addresses are also invalidated. `invalidate_memory' does this.
161
162 2. If the value changing is a register, all expressions
163 containing references to that register, and only those,
164 must be removed.
165
166 Because searching the entire hash table for expressions that contain
167 a register is very slow, we try to figure out when it isn't necessary.
168 Precisely, this is necessary only when expressions have been
169 entered in the hash table using this register, and then the value has
170 changed, and then another expression wants to be added to refer to
171 the register's new value. This sequence of circumstances is rare
172 within any one basic block.
173
174 `REG_TICK' and `REG_IN_TABLE', accessors for members of
175 cse_reg_info, are used to detect this case. REG_TICK (i) is
176 incremented whenever a value is stored in register i.
177 REG_IN_TABLE (i) holds -1 if no references to register i have been
178 entered in the table; otherwise, it contains the value REG_TICK (i)
179 had when the references were entered. If we want to enter a
180 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
181 remove old references. Until we want to enter a new entry, the
182 mere fact that the two vectors don't match makes the entries be
183 ignored if anyone tries to match them.
184
185 Registers themselves are entered in the hash table as well as in
186 the equivalent-register chains. However, `REG_TICK' and
187 `REG_IN_TABLE' do not apply to expressions which are simple
188 register references. These expressions are removed from the table
189 immediately when they become invalid, and this can be done even if
190 we do not immediately search for all the expressions that refer to
191 the register.
192
193 A CLOBBER rtx in an instruction invalidates its operand for further
194 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
195 invalidates everything that resides in memory.
196
197 Related expressions:
198
199 Constant expressions that differ only by an additive integer
200 are called related. When a constant expression is put in
201 the table, the related expression with no constant term
202 is also entered. These are made to point at each other
203 so that it is possible to find out if there exists any
204 register equivalent to an expression related to a given expression. */
205
206 /* Length of qty_table vector. We know in advance we will not need
207 a quantity number this big. */
208
209 static int max_qty;
210
211 /* Next quantity number to be allocated.
212 This is 1 + the largest number needed so far. */
213
214 static int next_qty;
215
216 /* Per-qty information tracking.
217
218 `first_reg' and `last_reg' track the head and tail of the
219 chain of registers which currently contain this quantity.
220
221 `mode' contains the machine mode of this quantity.
222
223 `const_rtx' holds the rtx of the constant value of this
224 quantity, if known. A summations of the frame/arg pointer
225 and a constant can also be entered here. When this holds
226 a known value, `const_insn' is the insn which stored the
227 constant value.
228
229 `comparison_{code,const,qty}' are used to track when a
230 comparison between a quantity and some constant or register has
231 been passed. In such a case, we know the results of the comparison
232 in case we see it again. These members record a comparison that
233 is known to be true. `comparison_code' holds the rtx code of such
234 a comparison, else it is set to UNKNOWN and the other two
235 comparison members are undefined. `comparison_const' holds
236 the constant being compared against, or zero if the comparison
237 is not against a constant. `comparison_qty' holds the quantity
238 being compared against when the result is known. If the comparison
239 is not with a register, `comparison_qty' is -1. */
240
241 struct qty_table_elem
242 {
243 rtx const_rtx;
244 rtx_insn *const_insn;
245 rtx comparison_const;
246 int comparison_qty;
247 unsigned int first_reg, last_reg;
248 /* The sizes of these fields should match the sizes of the
249 code and mode fields of struct rtx_def (see rtl.h). */
250 ENUM_BITFIELD(rtx_code) comparison_code : 16;
251 ENUM_BITFIELD(machine_mode) mode : 8;
252 };
253
254 /* The table of all qtys, indexed by qty number. */
255 static struct qty_table_elem *qty_table;
256
257 /* For machines that have a CC0, we do not record its value in the hash
258 table since its use is guaranteed to be the insn immediately following
259 its definition and any other insn is presumed to invalidate it.
260
261 Instead, we store below the current and last value assigned to CC0.
262 If it should happen to be a constant, it is stored in preference
263 to the actual assigned value. In case it is a constant, we store
264 the mode in which the constant should be interpreted. */
265
266 static rtx this_insn_cc0, prev_insn_cc0;
267 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
268
269 /* Insn being scanned. */
270
271 static rtx_insn *this_insn;
272 static bool optimize_this_for_speed_p;
273
274 /* Index by register number, gives the number of the next (or
275 previous) register in the chain of registers sharing the same
276 value.
277
278 Or -1 if this register is at the end of the chain.
279
280 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
281
282 /* Per-register equivalence chain. */
283 struct reg_eqv_elem
284 {
285 int next, prev;
286 };
287
288 /* The table of all register equivalence chains. */
289 static struct reg_eqv_elem *reg_eqv_table;
290
291 struct cse_reg_info
292 {
293 /* The timestamp at which this register is initialized. */
294 unsigned int timestamp;
295
296 /* The quantity number of the register's current contents. */
297 int reg_qty;
298
299 /* The number of times the register has been altered in the current
300 basic block. */
301 int reg_tick;
302
303 /* The REG_TICK value at which rtx's containing this register are
304 valid in the hash table. If this does not equal the current
305 reg_tick value, such expressions existing in the hash table are
306 invalid. */
307 int reg_in_table;
308
309 /* The SUBREG that was set when REG_TICK was last incremented. Set
310 to -1 if the last store was to the whole register, not a subreg. */
311 unsigned int subreg_ticked;
312 };
313
314 /* A table of cse_reg_info indexed by register numbers. */
315 static struct cse_reg_info *cse_reg_info_table;
316
317 /* The size of the above table. */
318 static unsigned int cse_reg_info_table_size;
319
320 /* The index of the first entry that has not been initialized. */
321 static unsigned int cse_reg_info_table_first_uninitialized;
322
323 /* The timestamp at the beginning of the current run of
324 cse_extended_basic_block. We increment this variable at the beginning of
325 the current run of cse_extended_basic_block. The timestamp field of a
326 cse_reg_info entry matches the value of this variable if and only
327 if the entry has been initialized during the current run of
328 cse_extended_basic_block. */
329 static unsigned int cse_reg_info_timestamp;
330
331 /* A HARD_REG_SET containing all the hard registers for which there is
332 currently a REG expression in the hash table. Note the difference
333 from the above variables, which indicate if the REG is mentioned in some
334 expression in the table. */
335
336 static HARD_REG_SET hard_regs_in_table;
337
338 /* True if CSE has altered the CFG. */
339 static bool cse_cfg_altered;
340
341 /* True if CSE has altered conditional jump insns in such a way
342 that jump optimization should be redone. */
343 static bool cse_jumps_altered;
344
345 /* True if we put a LABEL_REF into the hash table for an INSN
346 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
347 to put in the note. */
348 static bool recorded_label_ref;
349
350 /* canon_hash stores 1 in do_not_record
351 if it notices a reference to CC0, PC, or some other volatile
352 subexpression. */
353
354 static int do_not_record;
355
356 /* canon_hash stores 1 in hash_arg_in_memory
357 if it notices a reference to memory within the expression being hashed. */
358
359 static int hash_arg_in_memory;
360
361 /* The hash table contains buckets which are chains of `struct table_elt's,
362 each recording one expression's information.
363 That expression is in the `exp' field.
364
365 The canon_exp field contains a canonical (from the point of view of
366 alias analysis) version of the `exp' field.
367
368 Those elements with the same hash code are chained in both directions
369 through the `next_same_hash' and `prev_same_hash' fields.
370
371 Each set of expressions with equivalent values
372 are on a two-way chain through the `next_same_value'
373 and `prev_same_value' fields, and all point with
374 the `first_same_value' field at the first element in
375 that chain. The chain is in order of increasing cost.
376 Each element's cost value is in its `cost' field.
377
378 The `in_memory' field is nonzero for elements that
379 involve any reference to memory. These elements are removed
380 whenever a write is done to an unidentified location in memory.
381 To be safe, we assume that a memory address is unidentified unless
382 the address is either a symbol constant or a constant plus
383 the frame pointer or argument pointer.
384
385 The `related_value' field is used to connect related expressions
386 (that differ by adding an integer).
387 The related expressions are chained in a circular fashion.
388 `related_value' is zero for expressions for which this
389 chain is not useful.
390
391 The `cost' field stores the cost of this element's expression.
392 The `regcost' field stores the value returned by approx_reg_cost for
393 this element's expression.
394
395 The `is_const' flag is set if the element is a constant (including
396 a fixed address).
397
398 The `flag' field is used as a temporary during some search routines.
399
400 The `mode' field is usually the same as GET_MODE (`exp'), but
401 if `exp' is a CONST_INT and has no machine mode then the `mode'
402 field is the mode it was being used as. Each constant is
403 recorded separately for each mode it is used with. */
404
405 struct table_elt
406 {
407 rtx exp;
408 rtx canon_exp;
409 struct table_elt *next_same_hash;
410 struct table_elt *prev_same_hash;
411 struct table_elt *next_same_value;
412 struct table_elt *prev_same_value;
413 struct table_elt *first_same_value;
414 struct table_elt *related_value;
415 int cost;
416 int regcost;
417 /* The size of this field should match the size
418 of the mode field of struct rtx_def (see rtl.h). */
419 ENUM_BITFIELD(machine_mode) mode : 8;
420 char in_memory;
421 char is_const;
422 char flag;
423 };
424
425 /* We don't want a lot of buckets, because we rarely have very many
426 things stored in the hash table, and a lot of buckets slows
427 down a lot of loops that happen frequently. */
428 #define HASH_SHIFT 5
429 #define HASH_SIZE (1 << HASH_SHIFT)
430 #define HASH_MASK (HASH_SIZE - 1)
431
432 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
433 register (hard registers may require `do_not_record' to be set). */
434
435 #define HASH(X, M) \
436 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
437 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
438 : canon_hash (X, M)) & HASH_MASK)
439
440 /* Like HASH, but without side-effects. */
441 #define SAFE_HASH(X, M) \
442 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
443 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
444 : safe_hash (X, M)) & HASH_MASK)
445
446 /* Determine whether register number N is considered a fixed register for the
447 purpose of approximating register costs.
448 It is desirable to replace other regs with fixed regs, to reduce need for
449 non-fixed hard regs.
450 A reg wins if it is either the frame pointer or designated as fixed. */
451 #define FIXED_REGNO_P(N) \
452 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
453 || fixed_regs[N] || global_regs[N])
454
455 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
456 hard registers and pointers into the frame are the cheapest with a cost
457 of 0. Next come pseudos with a cost of one and other hard registers with
458 a cost of 2. Aside from these special cases, call `rtx_cost'. */
459
460 #define CHEAP_REGNO(N) \
461 (REGNO_PTR_FRAME_P (N) \
462 || (HARD_REGISTER_NUM_P (N) \
463 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
464
465 #define COST(X, MODE) \
466 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
467 #define COST_IN(X, MODE, OUTER, OPNO) \
468 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
469
470 /* Get the number of times this register has been updated in this
471 basic block. */
472
473 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
474
475 /* Get the point at which REG was recorded in the table. */
476
477 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
478
479 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
480 SUBREG). */
481
482 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
483
484 /* Get the quantity number for REG. */
485
486 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
487
488 /* Determine if the quantity number for register X represents a valid index
489 into the qty_table. */
490
491 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
492
493 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
494
495 #define CHEAPER(X, Y) \
496 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
497
498 static struct table_elt *table[HASH_SIZE];
499
500 /* Chain of `struct table_elt's made so far for this function
501 but currently removed from the table. */
502
503 static struct table_elt *free_element_chain;
504
505 /* Set to the cost of a constant pool reference if one was found for a
506 symbolic constant. If this was found, it means we should try to
507 convert constants into constant pool entries if they don't fit in
508 the insn. */
509
510 static int constant_pool_entries_cost;
511 static int constant_pool_entries_regcost;
512
513 /* Trace a patch through the CFG. */
514
515 struct branch_path
516 {
517 /* The basic block for this path entry. */
518 basic_block bb;
519 };
520
521 /* This data describes a block that will be processed by
522 cse_extended_basic_block. */
523
524 struct cse_basic_block_data
525 {
526 /* Total number of SETs in block. */
527 int nsets;
528 /* Size of current branch path, if any. */
529 int path_size;
530 /* Current path, indicating which basic_blocks will be processed. */
531 struct branch_path *path;
532 };
533
534
535 /* Pointers to the live in/live out bitmaps for the boundaries of the
536 current EBB. */
537 static bitmap cse_ebb_live_in, cse_ebb_live_out;
538
539 /* A simple bitmap to track which basic blocks have been visited
540 already as part of an already processed extended basic block. */
541 static sbitmap cse_visited_basic_blocks;
542
543 static bool fixed_base_plus_p (rtx x);
544 static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
545 static int preferable (int, int, int, int);
546 static void new_basic_block (void);
547 static void make_new_qty (unsigned int, machine_mode);
548 static void make_regs_eqv (unsigned int, unsigned int);
549 static void delete_reg_equiv (unsigned int);
550 static int mention_regs (rtx);
551 static int insert_regs (rtx, struct table_elt *, int);
552 static void remove_from_table (struct table_elt *, unsigned);
553 static void remove_pseudo_from_table (rtx, unsigned);
554 static struct table_elt *lookup (rtx, unsigned, machine_mode);
555 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
556 static rtx lookup_as_function (rtx, enum rtx_code);
557 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
558 machine_mode, int, int);
559 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
560 machine_mode);
561 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
562 static void invalidate_reg (rtx, bool);
563 static void invalidate (rtx, machine_mode);
564 static void remove_invalid_refs (unsigned int);
565 static void remove_invalid_subreg_refs (unsigned int, poly_uint64,
566 machine_mode);
567 static void rehash_using_reg (rtx);
568 static void invalidate_memory (void);
569 static void invalidate_for_call (void);
570 static rtx use_related_value (rtx, struct table_elt *);
571
572 static inline unsigned canon_hash (rtx, machine_mode);
573 static inline unsigned safe_hash (rtx, machine_mode);
574 static inline unsigned hash_rtx_string (const char *);
575
576 static rtx canon_reg (rtx, rtx_insn *);
577 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
578 machine_mode *,
579 machine_mode *);
580 static rtx fold_rtx (rtx, rtx_insn *);
581 static rtx equiv_constant (rtx);
582 static void record_jump_equiv (rtx_insn *, bool);
583 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
584 int);
585 static void cse_insn (rtx_insn *);
586 static void cse_prescan_path (struct cse_basic_block_data *);
587 static void invalidate_from_clobbers (rtx_insn *);
588 static void invalidate_from_sets_and_clobbers (rtx_insn *);
589 static rtx cse_process_notes (rtx, rtx, bool *);
590 static void cse_extended_basic_block (struct cse_basic_block_data *);
591 extern void dump_class (struct table_elt*);
592 static void get_cse_reg_info_1 (unsigned int regno);
593 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
594
595 static void flush_hash_table (void);
596 static bool insn_live_p (rtx_insn *, int *);
597 static bool set_live_p (rtx, rtx_insn *, int *);
598 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
599 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
600 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
601 bool);
602 \f
603
604 #undef RTL_HOOKS_GEN_LOWPART
605 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
606
607 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
608 \f
609 /* Nonzero if X has the form (PLUS frame-pointer integer). */
610
611 static bool
612 fixed_base_plus_p (rtx x)
613 {
614 switch (GET_CODE (x))
615 {
616 case REG:
617 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
618 return true;
619 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
620 return true;
621 return false;
622
623 case PLUS:
624 if (!CONST_INT_P (XEXP (x, 1)))
625 return false;
626 return fixed_base_plus_p (XEXP (x, 0));
627
628 default:
629 return false;
630 }
631 }
632
633 /* Dump the expressions in the equivalence class indicated by CLASSP.
634 This function is used only for debugging. */
635 DEBUG_FUNCTION void
636 dump_class (struct table_elt *classp)
637 {
638 struct table_elt *elt;
639
640 fprintf (stderr, "Equivalence chain for ");
641 print_rtl (stderr, classp->exp);
642 fprintf (stderr, ": \n");
643
644 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
645 {
646 print_rtl (stderr, elt->exp);
647 fprintf (stderr, "\n");
648 }
649 }
650
651 /* Return an estimate of the cost of the registers used in an rtx.
652 This is mostly the number of different REG expressions in the rtx;
653 however for some exceptions like fixed registers we use a cost of
654 0. If any other hard register reference occurs, return MAX_COST. */
655
656 static int
657 approx_reg_cost (const_rtx x)
658 {
659 int cost = 0;
660 subrtx_iterator::array_type array;
661 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
662 {
663 const_rtx x = *iter;
664 if (REG_P (x))
665 {
666 unsigned int regno = REGNO (x);
667 if (!CHEAP_REGNO (regno))
668 {
669 if (regno < FIRST_PSEUDO_REGISTER)
670 {
671 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
672 return MAX_COST;
673 cost += 2;
674 }
675 else
676 cost += 1;
677 }
678 }
679 }
680 return cost;
681 }
682
683 /* Return a negative value if an rtx A, whose costs are given by COST_A
684 and REGCOST_A, is more desirable than an rtx B.
685 Return a positive value if A is less desirable, or 0 if the two are
686 equally good. */
687 static int
688 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
689 {
690 /* First, get rid of cases involving expressions that are entirely
691 unwanted. */
692 if (cost_a != cost_b)
693 {
694 if (cost_a == MAX_COST)
695 return 1;
696 if (cost_b == MAX_COST)
697 return -1;
698 }
699
700 /* Avoid extending lifetimes of hardregs. */
701 if (regcost_a != regcost_b)
702 {
703 if (regcost_a == MAX_COST)
704 return 1;
705 if (regcost_b == MAX_COST)
706 return -1;
707 }
708
709 /* Normal operation costs take precedence. */
710 if (cost_a != cost_b)
711 return cost_a - cost_b;
712 /* Only if these are identical consider effects on register pressure. */
713 if (regcost_a != regcost_b)
714 return regcost_a - regcost_b;
715 return 0;
716 }
717
718 /* Internal function, to compute cost when X is not a register; called
719 from COST macro to keep it simple. */
720
721 static int
722 notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
723 {
724 scalar_int_mode int_mode, inner_mode;
725 return ((GET_CODE (x) == SUBREG
726 && REG_P (SUBREG_REG (x))
727 && is_int_mode (mode, &int_mode)
728 && is_int_mode (GET_MODE (SUBREG_REG (x)), &inner_mode)
729 && GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode)
730 && subreg_lowpart_p (x)
731 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, inner_mode))
732 ? 0
733 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
734 }
735
736 \f
737 /* Initialize CSE_REG_INFO_TABLE. */
738
739 static void
740 init_cse_reg_info (unsigned int nregs)
741 {
742 /* Do we need to grow the table? */
743 if (nregs > cse_reg_info_table_size)
744 {
745 unsigned int new_size;
746
747 if (cse_reg_info_table_size < 2048)
748 {
749 /* Compute a new size that is a power of 2 and no smaller
750 than the large of NREGS and 64. */
751 new_size = (cse_reg_info_table_size
752 ? cse_reg_info_table_size : 64);
753
754 while (new_size < nregs)
755 new_size *= 2;
756 }
757 else
758 {
759 /* If we need a big table, allocate just enough to hold
760 NREGS registers. */
761 new_size = nregs;
762 }
763
764 /* Reallocate the table with NEW_SIZE entries. */
765 free (cse_reg_info_table);
766 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
767 cse_reg_info_table_size = new_size;
768 cse_reg_info_table_first_uninitialized = 0;
769 }
770
771 /* Do we have all of the first NREGS entries initialized? */
772 if (cse_reg_info_table_first_uninitialized < nregs)
773 {
774 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
775 unsigned int i;
776
777 /* Put the old timestamp on newly allocated entries so that they
778 will all be considered out of date. We do not touch those
779 entries beyond the first NREGS entries to be nice to the
780 virtual memory. */
781 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
782 cse_reg_info_table[i].timestamp = old_timestamp;
783
784 cse_reg_info_table_first_uninitialized = nregs;
785 }
786 }
787
788 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
789
790 static void
791 get_cse_reg_info_1 (unsigned int regno)
792 {
793 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
794 entry will be considered to have been initialized. */
795 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
796
797 /* Initialize the rest of the entry. */
798 cse_reg_info_table[regno].reg_tick = 1;
799 cse_reg_info_table[regno].reg_in_table = -1;
800 cse_reg_info_table[regno].subreg_ticked = -1;
801 cse_reg_info_table[regno].reg_qty = -regno - 1;
802 }
803
804 /* Find a cse_reg_info entry for REGNO. */
805
806 static inline struct cse_reg_info *
807 get_cse_reg_info (unsigned int regno)
808 {
809 struct cse_reg_info *p = &cse_reg_info_table[regno];
810
811 /* If this entry has not been initialized, go ahead and initialize
812 it. */
813 if (p->timestamp != cse_reg_info_timestamp)
814 get_cse_reg_info_1 (regno);
815
816 return p;
817 }
818
819 /* Clear the hash table and initialize each register with its own quantity,
820 for a new basic block. */
821
822 static void
823 new_basic_block (void)
824 {
825 int i;
826
827 next_qty = 0;
828
829 /* Invalidate cse_reg_info_table. */
830 cse_reg_info_timestamp++;
831
832 /* Clear out hash table state for this pass. */
833 CLEAR_HARD_REG_SET (hard_regs_in_table);
834
835 /* The per-quantity values used to be initialized here, but it is
836 much faster to initialize each as it is made in `make_new_qty'. */
837
838 for (i = 0; i < HASH_SIZE; i++)
839 {
840 struct table_elt *first;
841
842 first = table[i];
843 if (first != NULL)
844 {
845 struct table_elt *last = first;
846
847 table[i] = NULL;
848
849 while (last->next_same_hash != NULL)
850 last = last->next_same_hash;
851
852 /* Now relink this hash entire chain into
853 the free element list. */
854
855 last->next_same_hash = free_element_chain;
856 free_element_chain = first;
857 }
858 }
859
860 prev_insn_cc0 = 0;
861 }
862
863 /* Say that register REG contains a quantity in mode MODE not in any
864 register before and initialize that quantity. */
865
866 static void
867 make_new_qty (unsigned int reg, machine_mode mode)
868 {
869 int q;
870 struct qty_table_elem *ent;
871 struct reg_eqv_elem *eqv;
872
873 gcc_assert (next_qty < max_qty);
874
875 q = REG_QTY (reg) = next_qty++;
876 ent = &qty_table[q];
877 ent->first_reg = reg;
878 ent->last_reg = reg;
879 ent->mode = mode;
880 ent->const_rtx = ent->const_insn = NULL;
881 ent->comparison_code = UNKNOWN;
882
883 eqv = &reg_eqv_table[reg];
884 eqv->next = eqv->prev = -1;
885 }
886
887 /* Make reg NEW equivalent to reg OLD.
888 OLD is not changing; NEW is. */
889
890 static void
891 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
892 {
893 unsigned int lastr, firstr;
894 int q = REG_QTY (old_reg);
895 struct qty_table_elem *ent;
896
897 ent = &qty_table[q];
898
899 /* Nothing should become eqv until it has a "non-invalid" qty number. */
900 gcc_assert (REGNO_QTY_VALID_P (old_reg));
901
902 REG_QTY (new_reg) = q;
903 firstr = ent->first_reg;
904 lastr = ent->last_reg;
905
906 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
907 hard regs. Among pseudos, if NEW will live longer than any other reg
908 of the same qty, and that is beyond the current basic block,
909 make it the new canonical replacement for this qty. */
910 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
911 /* Certain fixed registers might be of the class NO_REGS. This means
912 that not only can they not be allocated by the compiler, but
913 they cannot be used in substitutions or canonicalizations
914 either. */
915 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
916 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
917 || (new_reg >= FIRST_PSEUDO_REGISTER
918 && (firstr < FIRST_PSEUDO_REGISTER
919 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
920 && !bitmap_bit_p (cse_ebb_live_out, firstr))
921 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
922 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
923 {
924 reg_eqv_table[firstr].prev = new_reg;
925 reg_eqv_table[new_reg].next = firstr;
926 reg_eqv_table[new_reg].prev = -1;
927 ent->first_reg = new_reg;
928 }
929 else
930 {
931 /* If NEW is a hard reg (known to be non-fixed), insert at end.
932 Otherwise, insert before any non-fixed hard regs that are at the
933 end. Registers of class NO_REGS cannot be used as an
934 equivalent for anything. */
935 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
936 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
937 && new_reg >= FIRST_PSEUDO_REGISTER)
938 lastr = reg_eqv_table[lastr].prev;
939 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
940 if (reg_eqv_table[lastr].next >= 0)
941 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
942 else
943 qty_table[q].last_reg = new_reg;
944 reg_eqv_table[lastr].next = new_reg;
945 reg_eqv_table[new_reg].prev = lastr;
946 }
947 }
948
949 /* Remove REG from its equivalence class. */
950
951 static void
952 delete_reg_equiv (unsigned int reg)
953 {
954 struct qty_table_elem *ent;
955 int q = REG_QTY (reg);
956 int p, n;
957
958 /* If invalid, do nothing. */
959 if (! REGNO_QTY_VALID_P (reg))
960 return;
961
962 ent = &qty_table[q];
963
964 p = reg_eqv_table[reg].prev;
965 n = reg_eqv_table[reg].next;
966
967 if (n != -1)
968 reg_eqv_table[n].prev = p;
969 else
970 ent->last_reg = p;
971 if (p != -1)
972 reg_eqv_table[p].next = n;
973 else
974 ent->first_reg = n;
975
976 REG_QTY (reg) = -reg - 1;
977 }
978
979 /* Remove any invalid expressions from the hash table
980 that refer to any of the registers contained in expression X.
981
982 Make sure that newly inserted references to those registers
983 as subexpressions will be considered valid.
984
985 mention_regs is not called when a register itself
986 is being stored in the table.
987
988 Return 1 if we have done something that may have changed the hash code
989 of X. */
990
991 static int
992 mention_regs (rtx x)
993 {
994 enum rtx_code code;
995 int i, j;
996 const char *fmt;
997 int changed = 0;
998
999 if (x == 0)
1000 return 0;
1001
1002 code = GET_CODE (x);
1003 if (code == REG)
1004 {
1005 unsigned int regno = REGNO (x);
1006 unsigned int endregno = END_REGNO (x);
1007 unsigned int i;
1008
1009 for (i = regno; i < endregno; i++)
1010 {
1011 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1012 remove_invalid_refs (i);
1013
1014 REG_IN_TABLE (i) = REG_TICK (i);
1015 SUBREG_TICKED (i) = -1;
1016 }
1017
1018 return 0;
1019 }
1020
1021 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1022 pseudo if they don't use overlapping words. We handle only pseudos
1023 here for simplicity. */
1024 if (code == SUBREG && REG_P (SUBREG_REG (x))
1025 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1026 {
1027 unsigned int i = REGNO (SUBREG_REG (x));
1028
1029 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1030 {
1031 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1032 the last store to this register really stored into this
1033 subreg, then remove the memory of this subreg.
1034 Otherwise, remove any memory of the entire register and
1035 all its subregs from the table. */
1036 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1037 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1038 remove_invalid_refs (i);
1039 else
1040 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1041 }
1042
1043 REG_IN_TABLE (i) = REG_TICK (i);
1044 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1045 return 0;
1046 }
1047
1048 /* If X is a comparison or a COMPARE and either operand is a register
1049 that does not have a quantity, give it one. This is so that a later
1050 call to record_jump_equiv won't cause X to be assigned a different
1051 hash code and not found in the table after that call.
1052
1053 It is not necessary to do this here, since rehash_using_reg can
1054 fix up the table later, but doing this here eliminates the need to
1055 call that expensive function in the most common case where the only
1056 use of the register is in the comparison. */
1057
1058 if (code == COMPARE || COMPARISON_P (x))
1059 {
1060 if (REG_P (XEXP (x, 0))
1061 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1062 if (insert_regs (XEXP (x, 0), NULL, 0))
1063 {
1064 rehash_using_reg (XEXP (x, 0));
1065 changed = 1;
1066 }
1067
1068 if (REG_P (XEXP (x, 1))
1069 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1070 if (insert_regs (XEXP (x, 1), NULL, 0))
1071 {
1072 rehash_using_reg (XEXP (x, 1));
1073 changed = 1;
1074 }
1075 }
1076
1077 fmt = GET_RTX_FORMAT (code);
1078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1079 if (fmt[i] == 'e')
1080 changed |= mention_regs (XEXP (x, i));
1081 else if (fmt[i] == 'E')
1082 for (j = 0; j < XVECLEN (x, i); j++)
1083 changed |= mention_regs (XVECEXP (x, i, j));
1084
1085 return changed;
1086 }
1087
1088 /* Update the register quantities for inserting X into the hash table
1089 with a value equivalent to CLASSP.
1090 (If the class does not contain a REG, it is irrelevant.)
1091 If MODIFIED is nonzero, X is a destination; it is being modified.
1092 Note that delete_reg_equiv should be called on a register
1093 before insert_regs is done on that register with MODIFIED != 0.
1094
1095 Nonzero value means that elements of reg_qty have changed
1096 so X's hash code may be different. */
1097
1098 static int
1099 insert_regs (rtx x, struct table_elt *classp, int modified)
1100 {
1101 if (REG_P (x))
1102 {
1103 unsigned int regno = REGNO (x);
1104 int qty_valid;
1105
1106 /* If REGNO is in the equivalence table already but is of the
1107 wrong mode for that equivalence, don't do anything here. */
1108
1109 qty_valid = REGNO_QTY_VALID_P (regno);
1110 if (qty_valid)
1111 {
1112 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1113
1114 if (ent->mode != GET_MODE (x))
1115 return 0;
1116 }
1117
1118 if (modified || ! qty_valid)
1119 {
1120 if (classp)
1121 for (classp = classp->first_same_value;
1122 classp != 0;
1123 classp = classp->next_same_value)
1124 if (REG_P (classp->exp)
1125 && GET_MODE (classp->exp) == GET_MODE (x))
1126 {
1127 unsigned c_regno = REGNO (classp->exp);
1128
1129 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1130
1131 /* Suppose that 5 is hard reg and 100 and 101 are
1132 pseudos. Consider
1133
1134 (set (reg:si 100) (reg:si 5))
1135 (set (reg:si 5) (reg:si 100))
1136 (set (reg:di 101) (reg:di 5))
1137
1138 We would now set REG_QTY (101) = REG_QTY (5), but the
1139 entry for 5 is in SImode. When we use this later in
1140 copy propagation, we get the register in wrong mode. */
1141 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1142 continue;
1143
1144 make_regs_eqv (regno, c_regno);
1145 return 1;
1146 }
1147
1148 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1149 than REG_IN_TABLE to find out if there was only a single preceding
1150 invalidation - for the SUBREG - or another one, which would be
1151 for the full register. However, if we find here that REG_TICK
1152 indicates that the register is invalid, it means that it has
1153 been invalidated in a separate operation. The SUBREG might be used
1154 now (then this is a recursive call), or we might use the full REG
1155 now and a SUBREG of it later. So bump up REG_TICK so that
1156 mention_regs will do the right thing. */
1157 if (! modified
1158 && REG_IN_TABLE (regno) >= 0
1159 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1160 REG_TICK (regno)++;
1161 make_new_qty (regno, GET_MODE (x));
1162 return 1;
1163 }
1164
1165 return 0;
1166 }
1167
1168 /* If X is a SUBREG, we will likely be inserting the inner register in the
1169 table. If that register doesn't have an assigned quantity number at
1170 this point but does later, the insertion that we will be doing now will
1171 not be accessible because its hash code will have changed. So assign
1172 a quantity number now. */
1173
1174 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1175 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1176 {
1177 insert_regs (SUBREG_REG (x), NULL, 0);
1178 mention_regs (x);
1179 return 1;
1180 }
1181 else
1182 return mention_regs (x);
1183 }
1184 \f
1185
1186 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1187 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1188 CST is equal to an anchor. */
1189
1190 static bool
1191 compute_const_anchors (rtx cst,
1192 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1193 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1194 {
1195 HOST_WIDE_INT n = INTVAL (cst);
1196
1197 *lower_base = n & ~(targetm.const_anchor - 1);
1198 if (*lower_base == n)
1199 return false;
1200
1201 *upper_base =
1202 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1203 *upper_offs = n - *upper_base;
1204 *lower_offs = n - *lower_base;
1205 return true;
1206 }
1207
1208 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1209
1210 static void
1211 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1212 machine_mode mode)
1213 {
1214 struct table_elt *elt;
1215 unsigned hash;
1216 rtx anchor_exp;
1217 rtx exp;
1218
1219 anchor_exp = GEN_INT (anchor);
1220 hash = HASH (anchor_exp, mode);
1221 elt = lookup (anchor_exp, hash, mode);
1222 if (!elt)
1223 elt = insert (anchor_exp, NULL, hash, mode);
1224
1225 exp = plus_constant (mode, reg, offs);
1226 /* REG has just been inserted and the hash codes recomputed. */
1227 mention_regs (exp);
1228 hash = HASH (exp, mode);
1229
1230 /* Use the cost of the register rather than the whole expression. When
1231 looking up constant anchors we will further offset the corresponding
1232 expression therefore it does not make sense to prefer REGs over
1233 reg-immediate additions. Prefer instead the oldest expression. Also
1234 don't prefer pseudos over hard regs so that we derive constants in
1235 argument registers from other argument registers rather than from the
1236 original pseudo that was used to synthesize the constant. */
1237 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
1238 }
1239
1240 /* The constant CST is equivalent to the register REG. Create
1241 equivalences between the two anchors of CST and the corresponding
1242 register-offset expressions using REG. */
1243
1244 static void
1245 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1246 {
1247 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1248
1249 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1250 &upper_base, &upper_offs))
1251 return;
1252
1253 /* Ignore anchors of value 0. Constants accessible from zero are
1254 simple. */
1255 if (lower_base != 0)
1256 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1257
1258 if (upper_base != 0)
1259 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1260 }
1261
1262 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1263 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1264 valid expression. Return the cheapest and oldest of such expressions. In
1265 *OLD, return how old the resulting expression is compared to the other
1266 equivalent expressions. */
1267
1268 static rtx
1269 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1270 unsigned *old)
1271 {
1272 struct table_elt *elt;
1273 unsigned idx;
1274 struct table_elt *match_elt;
1275 rtx match;
1276
1277 /* Find the cheapest and *oldest* expression to maximize the chance of
1278 reusing the same pseudo. */
1279
1280 match_elt = NULL;
1281 match = NULL_RTX;
1282 for (elt = anchor_elt->first_same_value, idx = 0;
1283 elt;
1284 elt = elt->next_same_value, idx++)
1285 {
1286 if (match_elt && CHEAPER (match_elt, elt))
1287 return match;
1288
1289 if (REG_P (elt->exp)
1290 || (GET_CODE (elt->exp) == PLUS
1291 && REG_P (XEXP (elt->exp, 0))
1292 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1293 {
1294 rtx x;
1295
1296 /* Ignore expressions that are no longer valid. */
1297 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1298 continue;
1299
1300 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1301 if (REG_P (x)
1302 || (GET_CODE (x) == PLUS
1303 && IN_RANGE (INTVAL (XEXP (x, 1)),
1304 -targetm.const_anchor,
1305 targetm.const_anchor - 1)))
1306 {
1307 match = x;
1308 match_elt = elt;
1309 *old = idx;
1310 }
1311 }
1312 }
1313
1314 return match;
1315 }
1316
1317 /* Try to express the constant SRC_CONST using a register+offset expression
1318 derived from a constant anchor. Return it if successful or NULL_RTX,
1319 otherwise. */
1320
1321 static rtx
1322 try_const_anchors (rtx src_const, machine_mode mode)
1323 {
1324 struct table_elt *lower_elt, *upper_elt;
1325 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1326 rtx lower_anchor_rtx, upper_anchor_rtx;
1327 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1328 unsigned lower_old, upper_old;
1329
1330 /* CONST_INT is used for CC modes, but we should leave those alone. */
1331 if (GET_MODE_CLASS (mode) == MODE_CC)
1332 return NULL_RTX;
1333
1334 gcc_assert (SCALAR_INT_MODE_P (mode));
1335 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1336 &upper_base, &upper_offs))
1337 return NULL_RTX;
1338
1339 lower_anchor_rtx = GEN_INT (lower_base);
1340 upper_anchor_rtx = GEN_INT (upper_base);
1341 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1342 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1343
1344 if (lower_elt)
1345 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1346 if (upper_elt)
1347 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1348
1349 if (!lower_exp)
1350 return upper_exp;
1351 if (!upper_exp)
1352 return lower_exp;
1353
1354 /* Return the older expression. */
1355 return (upper_old > lower_old ? upper_exp : lower_exp);
1356 }
1357 \f
1358 /* Look in or update the hash table. */
1359
1360 /* Remove table element ELT from use in the table.
1361 HASH is its hash code, made using the HASH macro.
1362 It's an argument because often that is known in advance
1363 and we save much time not recomputing it. */
1364
1365 static void
1366 remove_from_table (struct table_elt *elt, unsigned int hash)
1367 {
1368 if (elt == 0)
1369 return;
1370
1371 /* Mark this element as removed. See cse_insn. */
1372 elt->first_same_value = 0;
1373
1374 /* Remove the table element from its equivalence class. */
1375
1376 {
1377 struct table_elt *prev = elt->prev_same_value;
1378 struct table_elt *next = elt->next_same_value;
1379
1380 if (next)
1381 next->prev_same_value = prev;
1382
1383 if (prev)
1384 prev->next_same_value = next;
1385 else
1386 {
1387 struct table_elt *newfirst = next;
1388 while (next)
1389 {
1390 next->first_same_value = newfirst;
1391 next = next->next_same_value;
1392 }
1393 }
1394 }
1395
1396 /* Remove the table element from its hash bucket. */
1397
1398 {
1399 struct table_elt *prev = elt->prev_same_hash;
1400 struct table_elt *next = elt->next_same_hash;
1401
1402 if (next)
1403 next->prev_same_hash = prev;
1404
1405 if (prev)
1406 prev->next_same_hash = next;
1407 else if (table[hash] == elt)
1408 table[hash] = next;
1409 else
1410 {
1411 /* This entry is not in the proper hash bucket. This can happen
1412 when two classes were merged by `merge_equiv_classes'. Search
1413 for the hash bucket that it heads. This happens only very
1414 rarely, so the cost is acceptable. */
1415 for (hash = 0; hash < HASH_SIZE; hash++)
1416 if (table[hash] == elt)
1417 table[hash] = next;
1418 }
1419 }
1420
1421 /* Remove the table element from its related-value circular chain. */
1422
1423 if (elt->related_value != 0 && elt->related_value != elt)
1424 {
1425 struct table_elt *p = elt->related_value;
1426
1427 while (p->related_value != elt)
1428 p = p->related_value;
1429 p->related_value = elt->related_value;
1430 if (p->related_value == p)
1431 p->related_value = 0;
1432 }
1433
1434 /* Now add it to the free element chain. */
1435 elt->next_same_hash = free_element_chain;
1436 free_element_chain = elt;
1437 }
1438
1439 /* Same as above, but X is a pseudo-register. */
1440
1441 static void
1442 remove_pseudo_from_table (rtx x, unsigned int hash)
1443 {
1444 struct table_elt *elt;
1445
1446 /* Because a pseudo-register can be referenced in more than one
1447 mode, we might have to remove more than one table entry. */
1448 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1449 remove_from_table (elt, hash);
1450 }
1451
1452 /* Look up X in the hash table and return its table element,
1453 or 0 if X is not in the table.
1454
1455 MODE is the machine-mode of X, or if X is an integer constant
1456 with VOIDmode then MODE is the mode with which X will be used.
1457
1458 Here we are satisfied to find an expression whose tree structure
1459 looks like X. */
1460
1461 static struct table_elt *
1462 lookup (rtx x, unsigned int hash, machine_mode mode)
1463 {
1464 struct table_elt *p;
1465
1466 for (p = table[hash]; p; p = p->next_same_hash)
1467 if (mode == p->mode && ((x == p->exp && REG_P (x))
1468 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1469 return p;
1470
1471 return 0;
1472 }
1473
1474 /* Like `lookup' but don't care whether the table element uses invalid regs.
1475 Also ignore discrepancies in the machine mode of a register. */
1476
1477 static struct table_elt *
1478 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1479 {
1480 struct table_elt *p;
1481
1482 if (REG_P (x))
1483 {
1484 unsigned int regno = REGNO (x);
1485
1486 /* Don't check the machine mode when comparing registers;
1487 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1488 for (p = table[hash]; p; p = p->next_same_hash)
1489 if (REG_P (p->exp)
1490 && REGNO (p->exp) == regno)
1491 return p;
1492 }
1493 else
1494 {
1495 for (p = table[hash]; p; p = p->next_same_hash)
1496 if (mode == p->mode
1497 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1498 return p;
1499 }
1500
1501 return 0;
1502 }
1503
1504 /* Look for an expression equivalent to X and with code CODE.
1505 If one is found, return that expression. */
1506
1507 static rtx
1508 lookup_as_function (rtx x, enum rtx_code code)
1509 {
1510 struct table_elt *p
1511 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1512
1513 if (p == 0)
1514 return 0;
1515
1516 for (p = p->first_same_value; p; p = p->next_same_value)
1517 if (GET_CODE (p->exp) == code
1518 /* Make sure this is a valid entry in the table. */
1519 && exp_equiv_p (p->exp, p->exp, 1, false))
1520 return p->exp;
1521
1522 return 0;
1523 }
1524
1525 /* Insert X in the hash table, assuming HASH is its hash code and
1526 CLASSP is an element of the class it should go in (or 0 if a new
1527 class should be made). COST is the code of X and reg_cost is the
1528 cost of registers in X. It is inserted at the proper position to
1529 keep the class in the order cheapest first.
1530
1531 MODE is the machine-mode of X, or if X is an integer constant
1532 with VOIDmode then MODE is the mode with which X will be used.
1533
1534 For elements of equal cheapness, the most recent one
1535 goes in front, except that the first element in the list
1536 remains first unless a cheaper element is added. The order of
1537 pseudo-registers does not matter, as canon_reg will be called to
1538 find the cheapest when a register is retrieved from the table.
1539
1540 The in_memory field in the hash table element is set to 0.
1541 The caller must set it nonzero if appropriate.
1542
1543 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1544 and if insert_regs returns a nonzero value
1545 you must then recompute its hash code before calling here.
1546
1547 If necessary, update table showing constant values of quantities. */
1548
1549 static struct table_elt *
1550 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1551 machine_mode mode, int cost, int reg_cost)
1552 {
1553 struct table_elt *elt;
1554
1555 /* If X is a register and we haven't made a quantity for it,
1556 something is wrong. */
1557 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1558
1559 /* If X is a hard register, show it is being put in the table. */
1560 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1561 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1562
1563 /* Put an element for X into the right hash bucket. */
1564
1565 elt = free_element_chain;
1566 if (elt)
1567 free_element_chain = elt->next_same_hash;
1568 else
1569 elt = XNEW (struct table_elt);
1570
1571 elt->exp = x;
1572 elt->canon_exp = NULL_RTX;
1573 elt->cost = cost;
1574 elt->regcost = reg_cost;
1575 elt->next_same_value = 0;
1576 elt->prev_same_value = 0;
1577 elt->next_same_hash = table[hash];
1578 elt->prev_same_hash = 0;
1579 elt->related_value = 0;
1580 elt->in_memory = 0;
1581 elt->mode = mode;
1582 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1583
1584 if (table[hash])
1585 table[hash]->prev_same_hash = elt;
1586 table[hash] = elt;
1587
1588 /* Put it into the proper value-class. */
1589 if (classp)
1590 {
1591 classp = classp->first_same_value;
1592 if (CHEAPER (elt, classp))
1593 /* Insert at the head of the class. */
1594 {
1595 struct table_elt *p;
1596 elt->next_same_value = classp;
1597 classp->prev_same_value = elt;
1598 elt->first_same_value = elt;
1599
1600 for (p = classp; p; p = p->next_same_value)
1601 p->first_same_value = elt;
1602 }
1603 else
1604 {
1605 /* Insert not at head of the class. */
1606 /* Put it after the last element cheaper than X. */
1607 struct table_elt *p, *next;
1608
1609 for (p = classp;
1610 (next = p->next_same_value) && CHEAPER (next, elt);
1611 p = next)
1612 ;
1613
1614 /* Put it after P and before NEXT. */
1615 elt->next_same_value = next;
1616 if (next)
1617 next->prev_same_value = elt;
1618
1619 elt->prev_same_value = p;
1620 p->next_same_value = elt;
1621 elt->first_same_value = classp;
1622 }
1623 }
1624 else
1625 elt->first_same_value = elt;
1626
1627 /* If this is a constant being set equivalent to a register or a register
1628 being set equivalent to a constant, note the constant equivalence.
1629
1630 If this is a constant, it cannot be equivalent to a different constant,
1631 and a constant is the only thing that can be cheaper than a register. So
1632 we know the register is the head of the class (before the constant was
1633 inserted).
1634
1635 If this is a register that is not already known equivalent to a
1636 constant, we must check the entire class.
1637
1638 If this is a register that is already known equivalent to an insn,
1639 update the qtys `const_insn' to show that `this_insn' is the latest
1640 insn making that quantity equivalent to the constant. */
1641
1642 if (elt->is_const && classp && REG_P (classp->exp)
1643 && !REG_P (x))
1644 {
1645 int exp_q = REG_QTY (REGNO (classp->exp));
1646 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1647
1648 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1649 exp_ent->const_insn = this_insn;
1650 }
1651
1652 else if (REG_P (x)
1653 && classp
1654 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1655 && ! elt->is_const)
1656 {
1657 struct table_elt *p;
1658
1659 for (p = classp; p != 0; p = p->next_same_value)
1660 {
1661 if (p->is_const && !REG_P (p->exp))
1662 {
1663 int x_q = REG_QTY (REGNO (x));
1664 struct qty_table_elem *x_ent = &qty_table[x_q];
1665
1666 x_ent->const_rtx
1667 = gen_lowpart (GET_MODE (x), p->exp);
1668 x_ent->const_insn = this_insn;
1669 break;
1670 }
1671 }
1672 }
1673
1674 else if (REG_P (x)
1675 && qty_table[REG_QTY (REGNO (x))].const_rtx
1676 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1677 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1678
1679 /* If this is a constant with symbolic value,
1680 and it has a term with an explicit integer value,
1681 link it up with related expressions. */
1682 if (GET_CODE (x) == CONST)
1683 {
1684 rtx subexp = get_related_value (x);
1685 unsigned subhash;
1686 struct table_elt *subelt, *subelt_prev;
1687
1688 if (subexp != 0)
1689 {
1690 /* Get the integer-free subexpression in the hash table. */
1691 subhash = SAFE_HASH (subexp, mode);
1692 subelt = lookup (subexp, subhash, mode);
1693 if (subelt == 0)
1694 subelt = insert (subexp, NULL, subhash, mode);
1695 /* Initialize SUBELT's circular chain if it has none. */
1696 if (subelt->related_value == 0)
1697 subelt->related_value = subelt;
1698 /* Find the element in the circular chain that precedes SUBELT. */
1699 subelt_prev = subelt;
1700 while (subelt_prev->related_value != subelt)
1701 subelt_prev = subelt_prev->related_value;
1702 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1703 This way the element that follows SUBELT is the oldest one. */
1704 elt->related_value = subelt_prev->related_value;
1705 subelt_prev->related_value = elt;
1706 }
1707 }
1708
1709 return elt;
1710 }
1711
1712 /* Wrap insert_with_costs by passing the default costs. */
1713
1714 static struct table_elt *
1715 insert (rtx x, struct table_elt *classp, unsigned int hash,
1716 machine_mode mode)
1717 {
1718 return insert_with_costs (x, classp, hash, mode,
1719 COST (x, mode), approx_reg_cost (x));
1720 }
1721
1722 \f
1723 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1724 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1725 the two classes equivalent.
1726
1727 CLASS1 will be the surviving class; CLASS2 should not be used after this
1728 call.
1729
1730 Any invalid entries in CLASS2 will not be copied. */
1731
1732 static void
1733 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1734 {
1735 struct table_elt *elt, *next, *new_elt;
1736
1737 /* Ensure we start with the head of the classes. */
1738 class1 = class1->first_same_value;
1739 class2 = class2->first_same_value;
1740
1741 /* If they were already equal, forget it. */
1742 if (class1 == class2)
1743 return;
1744
1745 for (elt = class2; elt; elt = next)
1746 {
1747 unsigned int hash;
1748 rtx exp = elt->exp;
1749 machine_mode mode = elt->mode;
1750
1751 next = elt->next_same_value;
1752
1753 /* Remove old entry, make a new one in CLASS1's class.
1754 Don't do this for invalid entries as we cannot find their
1755 hash code (it also isn't necessary). */
1756 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1757 {
1758 bool need_rehash = false;
1759
1760 hash_arg_in_memory = 0;
1761 hash = HASH (exp, mode);
1762
1763 if (REG_P (exp))
1764 {
1765 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1766 delete_reg_equiv (REGNO (exp));
1767 }
1768
1769 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1770 remove_pseudo_from_table (exp, hash);
1771 else
1772 remove_from_table (elt, hash);
1773
1774 if (insert_regs (exp, class1, 0) || need_rehash)
1775 {
1776 rehash_using_reg (exp);
1777 hash = HASH (exp, mode);
1778 }
1779 new_elt = insert (exp, class1, hash, mode);
1780 new_elt->in_memory = hash_arg_in_memory;
1781 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1782 new_elt->cost = MAX_COST;
1783 }
1784 }
1785 }
1786 \f
1787 /* Flush the entire hash table. */
1788
1789 static void
1790 flush_hash_table (void)
1791 {
1792 int i;
1793 struct table_elt *p;
1794
1795 for (i = 0; i < HASH_SIZE; i++)
1796 for (p = table[i]; p; p = table[i])
1797 {
1798 /* Note that invalidate can remove elements
1799 after P in the current hash chain. */
1800 if (REG_P (p->exp))
1801 invalidate (p->exp, VOIDmode);
1802 else
1803 remove_from_table (p, i);
1804 }
1805 }
1806 \f
1807 /* Check whether an anti dependence exists between X and EXP. MODE and
1808 ADDR are as for canon_anti_dependence. */
1809
1810 static bool
1811 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1812 {
1813 subrtx_iterator::array_type array;
1814 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1815 {
1816 const_rtx x = *iter;
1817 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1818 return true;
1819 }
1820 return false;
1821 }
1822
1823 /* Remove from the hash table, or mark as invalid, all expressions whose
1824 values could be altered by storing in register X.
1825
1826 CLOBBER_HIGH is set if X was part of a CLOBBER_HIGH expression. */
1827
1828 static void
1829 invalidate_reg (rtx x, bool clobber_high)
1830 {
1831 gcc_assert (GET_CODE (x) == REG);
1832
1833 /* If X is a register, dependencies on its contents are recorded
1834 through the qty number mechanism. Just change the qty number of
1835 the register, mark it as invalid for expressions that refer to it,
1836 and remove it itself. */
1837 unsigned int regno = REGNO (x);
1838 unsigned int hash = HASH (x, GET_MODE (x));
1839
1840 /* Remove REGNO from any quantity list it might be on and indicate
1841 that its value might have changed. If it is a pseudo, remove its
1842 entry from the hash table.
1843
1844 For a hard register, we do the first two actions above for any
1845 additional hard registers corresponding to X. Then, if any of these
1846 registers are in the table, we must remove any REG entries that
1847 overlap these registers. */
1848
1849 delete_reg_equiv (regno);
1850 REG_TICK (regno)++;
1851 SUBREG_TICKED (regno) = -1;
1852
1853 if (regno >= FIRST_PSEUDO_REGISTER)
1854 {
1855 gcc_assert (!clobber_high);
1856 remove_pseudo_from_table (x, hash);
1857 }
1858 else
1859 {
1860 HOST_WIDE_INT in_table = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1861 unsigned int endregno = END_REGNO (x);
1862 unsigned int rn;
1863 struct table_elt *p, *next;
1864
1865 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1866
1867 for (rn = regno + 1; rn < endregno; rn++)
1868 {
1869 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1870 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1871 delete_reg_equiv (rn);
1872 REG_TICK (rn)++;
1873 SUBREG_TICKED (rn) = -1;
1874 }
1875
1876 if (in_table)
1877 for (hash = 0; hash < HASH_SIZE; hash++)
1878 for (p = table[hash]; p; p = next)
1879 {
1880 next = p->next_same_hash;
1881
1882 if (!REG_P (p->exp) || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1883 continue;
1884
1885 if (clobber_high)
1886 {
1887 if (reg_is_clobbered_by_clobber_high (p->exp, x))
1888 remove_from_table (p, hash);
1889 }
1890 else
1891 {
1892 unsigned int tregno = REGNO (p->exp);
1893 unsigned int tendregno = END_REGNO (p->exp);
1894 if (tendregno > regno && tregno < endregno)
1895 remove_from_table (p, hash);
1896 }
1897 }
1898 }
1899 }
1900
1901 /* Remove from the hash table, or mark as invalid, all expressions whose
1902 values could be altered by storing in X. X is a register, a subreg, or
1903 a memory reference with nonvarying address (because, when a memory
1904 reference with a varying address is stored in, all memory references are
1905 removed by invalidate_memory so specific invalidation is superfluous).
1906 FULL_MODE, if not VOIDmode, indicates that this much should be
1907 invalidated instead of just the amount indicated by the mode of X. This
1908 is only used for bitfield stores into memory.
1909
1910 A nonvarying address may be just a register or just a symbol reference,
1911 or it may be either of those plus a numeric offset. */
1912
1913 static void
1914 invalidate (rtx x, machine_mode full_mode)
1915 {
1916 int i;
1917 struct table_elt *p;
1918 rtx addr;
1919
1920 switch (GET_CODE (x))
1921 {
1922 case REG:
1923 invalidate_reg (x, false);
1924 return;
1925
1926 case SUBREG:
1927 invalidate (SUBREG_REG (x), VOIDmode);
1928 return;
1929
1930 case PARALLEL:
1931 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1932 invalidate (XVECEXP (x, 0, i), VOIDmode);
1933 return;
1934
1935 case EXPR_LIST:
1936 /* This is part of a disjoint return value; extract the location in
1937 question ignoring the offset. */
1938 invalidate (XEXP (x, 0), VOIDmode);
1939 return;
1940
1941 case MEM:
1942 addr = canon_rtx (get_addr (XEXP (x, 0)));
1943 /* Calculate the canonical version of X here so that
1944 true_dependence doesn't generate new RTL for X on each call. */
1945 x = canon_rtx (x);
1946
1947 /* Remove all hash table elements that refer to overlapping pieces of
1948 memory. */
1949 if (full_mode == VOIDmode)
1950 full_mode = GET_MODE (x);
1951
1952 for (i = 0; i < HASH_SIZE; i++)
1953 {
1954 struct table_elt *next;
1955
1956 for (p = table[i]; p; p = next)
1957 {
1958 next = p->next_same_hash;
1959 if (p->in_memory)
1960 {
1961 /* Just canonicalize the expression once;
1962 otherwise each time we call invalidate
1963 true_dependence will canonicalize the
1964 expression again. */
1965 if (!p->canon_exp)
1966 p->canon_exp = canon_rtx (p->exp);
1967 if (check_dependence (p->canon_exp, x, full_mode, addr))
1968 remove_from_table (p, i);
1969 }
1970 }
1971 }
1972 return;
1973
1974 default:
1975 gcc_unreachable ();
1976 }
1977 }
1978
1979 /* Invalidate DEST. Used when DEST is not going to be added
1980 into the hash table for some reason, e.g. do_not_record
1981 flagged on it. */
1982
1983 static void
1984 invalidate_dest (rtx dest)
1985 {
1986 if (REG_P (dest)
1987 || GET_CODE (dest) == SUBREG
1988 || MEM_P (dest))
1989 invalidate (dest, VOIDmode);
1990 else if (GET_CODE (dest) == STRICT_LOW_PART
1991 || GET_CODE (dest) == ZERO_EXTRACT)
1992 invalidate (XEXP (dest, 0), GET_MODE (dest));
1993 }
1994 \f
1995 /* Remove all expressions that refer to register REGNO,
1996 since they are already invalid, and we are about to
1997 mark that register valid again and don't want the old
1998 expressions to reappear as valid. */
1999
2000 static void
2001 remove_invalid_refs (unsigned int regno)
2002 {
2003 unsigned int i;
2004 struct table_elt *p, *next;
2005
2006 for (i = 0; i < HASH_SIZE; i++)
2007 for (p = table[i]; p; p = next)
2008 {
2009 next = p->next_same_hash;
2010 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
2011 remove_from_table (p, i);
2012 }
2013 }
2014
2015 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2016 and mode MODE. */
2017 static void
2018 remove_invalid_subreg_refs (unsigned int regno, poly_uint64 offset,
2019 machine_mode mode)
2020 {
2021 unsigned int i;
2022 struct table_elt *p, *next;
2023
2024 for (i = 0; i < HASH_SIZE; i++)
2025 for (p = table[i]; p; p = next)
2026 {
2027 rtx exp = p->exp;
2028 next = p->next_same_hash;
2029
2030 if (!REG_P (exp)
2031 && (GET_CODE (exp) != SUBREG
2032 || !REG_P (SUBREG_REG (exp))
2033 || REGNO (SUBREG_REG (exp)) != regno
2034 || ranges_maybe_overlap_p (SUBREG_BYTE (exp),
2035 GET_MODE_SIZE (GET_MODE (exp)),
2036 offset, GET_MODE_SIZE (mode)))
2037 && refers_to_regno_p (regno, p->exp))
2038 remove_from_table (p, i);
2039 }
2040 }
2041 \f
2042 /* Recompute the hash codes of any valid entries in the hash table that
2043 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2044
2045 This is called when we make a jump equivalence. */
2046
2047 static void
2048 rehash_using_reg (rtx x)
2049 {
2050 unsigned int i;
2051 struct table_elt *p, *next;
2052 unsigned hash;
2053
2054 if (GET_CODE (x) == SUBREG)
2055 x = SUBREG_REG (x);
2056
2057 /* If X is not a register or if the register is known not to be in any
2058 valid entries in the table, we have no work to do. */
2059
2060 if (!REG_P (x)
2061 || REG_IN_TABLE (REGNO (x)) < 0
2062 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2063 return;
2064
2065 /* Scan all hash chains looking for valid entries that mention X.
2066 If we find one and it is in the wrong hash chain, move it. */
2067
2068 for (i = 0; i < HASH_SIZE; i++)
2069 for (p = table[i]; p; p = next)
2070 {
2071 next = p->next_same_hash;
2072 if (reg_mentioned_p (x, p->exp)
2073 && exp_equiv_p (p->exp, p->exp, 1, false)
2074 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2075 {
2076 if (p->next_same_hash)
2077 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2078
2079 if (p->prev_same_hash)
2080 p->prev_same_hash->next_same_hash = p->next_same_hash;
2081 else
2082 table[i] = p->next_same_hash;
2083
2084 p->next_same_hash = table[hash];
2085 p->prev_same_hash = 0;
2086 if (table[hash])
2087 table[hash]->prev_same_hash = p;
2088 table[hash] = p;
2089 }
2090 }
2091 }
2092 \f
2093 /* Remove from the hash table any expression that is a call-clobbered
2094 register. Also update their TICK values. */
2095
2096 static void
2097 invalidate_for_call (void)
2098 {
2099 unsigned int regno, endregno;
2100 unsigned int i;
2101 unsigned hash;
2102 struct table_elt *p, *next;
2103 int in_table = 0;
2104 hard_reg_set_iterator hrsi;
2105
2106 /* Go through all the hard registers. For each that is clobbered in
2107 a CALL_INSN, remove the register from quantity chains and update
2108 reg_tick if defined. Also see if any of these registers is currently
2109 in the table. */
2110 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2111 {
2112 delete_reg_equiv (regno);
2113 if (REG_TICK (regno) >= 0)
2114 {
2115 REG_TICK (regno)++;
2116 SUBREG_TICKED (regno) = -1;
2117 }
2118 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2119 }
2120
2121 /* In the case where we have no call-clobbered hard registers in the
2122 table, we are done. Otherwise, scan the table and remove any
2123 entry that overlaps a call-clobbered register. */
2124
2125 if (in_table)
2126 for (hash = 0; hash < HASH_SIZE; hash++)
2127 for (p = table[hash]; p; p = next)
2128 {
2129 next = p->next_same_hash;
2130
2131 if (!REG_P (p->exp)
2132 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2133 continue;
2134
2135 regno = REGNO (p->exp);
2136 endregno = END_REGNO (p->exp);
2137
2138 for (i = regno; i < endregno; i++)
2139 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2140 {
2141 remove_from_table (p, hash);
2142 break;
2143 }
2144 }
2145 }
2146 \f
2147 /* Given an expression X of type CONST,
2148 and ELT which is its table entry (or 0 if it
2149 is not in the hash table),
2150 return an alternate expression for X as a register plus integer.
2151 If none can be found, return 0. */
2152
2153 static rtx
2154 use_related_value (rtx x, struct table_elt *elt)
2155 {
2156 struct table_elt *relt = 0;
2157 struct table_elt *p, *q;
2158 HOST_WIDE_INT offset;
2159
2160 /* First, is there anything related known?
2161 If we have a table element, we can tell from that.
2162 Otherwise, must look it up. */
2163
2164 if (elt != 0 && elt->related_value != 0)
2165 relt = elt;
2166 else if (elt == 0 && GET_CODE (x) == CONST)
2167 {
2168 rtx subexp = get_related_value (x);
2169 if (subexp != 0)
2170 relt = lookup (subexp,
2171 SAFE_HASH (subexp, GET_MODE (subexp)),
2172 GET_MODE (subexp));
2173 }
2174
2175 if (relt == 0)
2176 return 0;
2177
2178 /* Search all related table entries for one that has an
2179 equivalent register. */
2180
2181 p = relt;
2182 while (1)
2183 {
2184 /* This loop is strange in that it is executed in two different cases.
2185 The first is when X is already in the table. Then it is searching
2186 the RELATED_VALUE list of X's class (RELT). The second case is when
2187 X is not in the table. Then RELT points to a class for the related
2188 value.
2189
2190 Ensure that, whatever case we are in, that we ignore classes that have
2191 the same value as X. */
2192
2193 if (rtx_equal_p (x, p->exp))
2194 q = 0;
2195 else
2196 for (q = p->first_same_value; q; q = q->next_same_value)
2197 if (REG_P (q->exp))
2198 break;
2199
2200 if (q)
2201 break;
2202
2203 p = p->related_value;
2204
2205 /* We went all the way around, so there is nothing to be found.
2206 Alternatively, perhaps RELT was in the table for some other reason
2207 and it has no related values recorded. */
2208 if (p == relt || p == 0)
2209 break;
2210 }
2211
2212 if (q == 0)
2213 return 0;
2214
2215 offset = (get_integer_term (x) - get_integer_term (p->exp));
2216 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2217 return plus_constant (q->mode, q->exp, offset);
2218 }
2219 \f
2220
2221 /* Hash a string. Just add its bytes up. */
2222 static inline unsigned
2223 hash_rtx_string (const char *ps)
2224 {
2225 unsigned hash = 0;
2226 const unsigned char *p = (const unsigned char *) ps;
2227
2228 if (p)
2229 while (*p)
2230 hash += *p++;
2231
2232 return hash;
2233 }
2234
2235 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2236 When the callback returns true, we continue with the new rtx. */
2237
2238 unsigned
2239 hash_rtx_cb (const_rtx x, machine_mode mode,
2240 int *do_not_record_p, int *hash_arg_in_memory_p,
2241 bool have_reg_qty, hash_rtx_callback_function cb)
2242 {
2243 int i, j;
2244 unsigned hash = 0;
2245 enum rtx_code code;
2246 const char *fmt;
2247 machine_mode newmode;
2248 rtx newx;
2249
2250 /* Used to turn recursion into iteration. We can't rely on GCC's
2251 tail-recursion elimination since we need to keep accumulating values
2252 in HASH. */
2253 repeat:
2254 if (x == 0)
2255 return hash;
2256
2257 /* Invoke the callback first. */
2258 if (cb != NULL
2259 && ((*cb) (x, mode, &newx, &newmode)))
2260 {
2261 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2262 hash_arg_in_memory_p, have_reg_qty, cb);
2263 return hash;
2264 }
2265
2266 code = GET_CODE (x);
2267 switch (code)
2268 {
2269 case REG:
2270 {
2271 unsigned int regno = REGNO (x);
2272
2273 if (do_not_record_p && !reload_completed)
2274 {
2275 /* On some machines, we can't record any non-fixed hard register,
2276 because extending its life will cause reload problems. We
2277 consider ap, fp, sp, gp to be fixed for this purpose.
2278
2279 We also consider CCmode registers to be fixed for this purpose;
2280 failure to do so leads to failure to simplify 0<100 type of
2281 conditionals.
2282
2283 On all machines, we can't record any global registers.
2284 Nor should we record any register that is in a small
2285 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2286 bool record;
2287
2288 if (regno >= FIRST_PSEUDO_REGISTER)
2289 record = true;
2290 else if (x == frame_pointer_rtx
2291 || x == hard_frame_pointer_rtx
2292 || x == arg_pointer_rtx
2293 || x == stack_pointer_rtx
2294 || x == pic_offset_table_rtx)
2295 record = true;
2296 else if (global_regs[regno])
2297 record = false;
2298 else if (fixed_regs[regno])
2299 record = true;
2300 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2301 record = true;
2302 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2303 record = false;
2304 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2305 record = false;
2306 else
2307 record = true;
2308
2309 if (!record)
2310 {
2311 *do_not_record_p = 1;
2312 return 0;
2313 }
2314 }
2315
2316 hash += ((unsigned int) REG << 7);
2317 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2318 return hash;
2319 }
2320
2321 /* We handle SUBREG of a REG specially because the underlying
2322 reg changes its hash value with every value change; we don't
2323 want to have to forget unrelated subregs when one subreg changes. */
2324 case SUBREG:
2325 {
2326 if (REG_P (SUBREG_REG (x)))
2327 {
2328 hash += (((unsigned int) SUBREG << 7)
2329 + REGNO (SUBREG_REG (x))
2330 + (constant_lower_bound (SUBREG_BYTE (x))
2331 / UNITS_PER_WORD));
2332 return hash;
2333 }
2334 break;
2335 }
2336
2337 case CONST_INT:
2338 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2339 + (unsigned int) INTVAL (x));
2340 return hash;
2341
2342 case CONST_WIDE_INT:
2343 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2344 hash += CONST_WIDE_INT_ELT (x, i);
2345 return hash;
2346
2347 case CONST_POLY_INT:
2348 {
2349 inchash::hash h;
2350 h.add_int (hash);
2351 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2352 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
2353 return h.end ();
2354 }
2355
2356 case CONST_DOUBLE:
2357 /* This is like the general case, except that it only counts
2358 the integers representing the constant. */
2359 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2360 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2361 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2362 + (unsigned int) CONST_DOUBLE_HIGH (x));
2363 else
2364 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2365 return hash;
2366
2367 case CONST_FIXED:
2368 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2369 hash += fixed_hash (CONST_FIXED_VALUE (x));
2370 return hash;
2371
2372 case CONST_VECTOR:
2373 {
2374 int units;
2375 rtx elt;
2376
2377 units = const_vector_encoded_nelts (x);
2378
2379 for (i = 0; i < units; ++i)
2380 {
2381 elt = CONST_VECTOR_ENCODED_ELT (x, i);
2382 hash += hash_rtx_cb (elt, GET_MODE (elt),
2383 do_not_record_p, hash_arg_in_memory_p,
2384 have_reg_qty, cb);
2385 }
2386
2387 return hash;
2388 }
2389
2390 /* Assume there is only one rtx object for any given label. */
2391 case LABEL_REF:
2392 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2393 differences and differences between each stage's debugging dumps. */
2394 hash += (((unsigned int) LABEL_REF << 7)
2395 + CODE_LABEL_NUMBER (label_ref_label (x)));
2396 return hash;
2397
2398 case SYMBOL_REF:
2399 {
2400 /* Don't hash on the symbol's address to avoid bootstrap differences.
2401 Different hash values may cause expressions to be recorded in
2402 different orders and thus different registers to be used in the
2403 final assembler. This also avoids differences in the dump files
2404 between various stages. */
2405 unsigned int h = 0;
2406 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2407
2408 while (*p)
2409 h += (h << 7) + *p++; /* ??? revisit */
2410
2411 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2412 return hash;
2413 }
2414
2415 case MEM:
2416 /* We don't record if marked volatile or if BLKmode since we don't
2417 know the size of the move. */
2418 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2419 {
2420 *do_not_record_p = 1;
2421 return 0;
2422 }
2423 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2424 *hash_arg_in_memory_p = 1;
2425
2426 /* Now that we have already found this special case,
2427 might as well speed it up as much as possible. */
2428 hash += (unsigned) MEM;
2429 x = XEXP (x, 0);
2430 goto repeat;
2431
2432 case USE:
2433 /* A USE that mentions non-volatile memory needs special
2434 handling since the MEM may be BLKmode which normally
2435 prevents an entry from being made. Pure calls are
2436 marked by a USE which mentions BLKmode memory.
2437 See calls.c:emit_call_1. */
2438 if (MEM_P (XEXP (x, 0))
2439 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2440 {
2441 hash += (unsigned) USE;
2442 x = XEXP (x, 0);
2443
2444 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2445 *hash_arg_in_memory_p = 1;
2446
2447 /* Now that we have already found this special case,
2448 might as well speed it up as much as possible. */
2449 hash += (unsigned) MEM;
2450 x = XEXP (x, 0);
2451 goto repeat;
2452 }
2453 break;
2454
2455 case PRE_DEC:
2456 case PRE_INC:
2457 case POST_DEC:
2458 case POST_INC:
2459 case PRE_MODIFY:
2460 case POST_MODIFY:
2461 case PC:
2462 case CC0:
2463 case CALL:
2464 case UNSPEC_VOLATILE:
2465 if (do_not_record_p) {
2466 *do_not_record_p = 1;
2467 return 0;
2468 }
2469 else
2470 return hash;
2471 break;
2472
2473 case ASM_OPERANDS:
2474 if (do_not_record_p && MEM_VOLATILE_P (x))
2475 {
2476 *do_not_record_p = 1;
2477 return 0;
2478 }
2479 else
2480 {
2481 /* We don't want to take the filename and line into account. */
2482 hash += (unsigned) code + (unsigned) GET_MODE (x)
2483 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2484 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2485 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2486
2487 if (ASM_OPERANDS_INPUT_LENGTH (x))
2488 {
2489 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2490 {
2491 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2492 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2493 do_not_record_p, hash_arg_in_memory_p,
2494 have_reg_qty, cb)
2495 + hash_rtx_string
2496 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2497 }
2498
2499 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2500 x = ASM_OPERANDS_INPUT (x, 0);
2501 mode = GET_MODE (x);
2502 goto repeat;
2503 }
2504
2505 return hash;
2506 }
2507 break;
2508
2509 default:
2510 break;
2511 }
2512
2513 i = GET_RTX_LENGTH (code) - 1;
2514 hash += (unsigned) code + (unsigned) GET_MODE (x);
2515 fmt = GET_RTX_FORMAT (code);
2516 for (; i >= 0; i--)
2517 {
2518 switch (fmt[i])
2519 {
2520 case 'e':
2521 /* If we are about to do the last recursive call
2522 needed at this level, change it into iteration.
2523 This function is called enough to be worth it. */
2524 if (i == 0)
2525 {
2526 x = XEXP (x, i);
2527 goto repeat;
2528 }
2529
2530 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2531 hash_arg_in_memory_p,
2532 have_reg_qty, cb);
2533 break;
2534
2535 case 'E':
2536 for (j = 0; j < XVECLEN (x, i); j++)
2537 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2538 hash_arg_in_memory_p,
2539 have_reg_qty, cb);
2540 break;
2541
2542 case 's':
2543 hash += hash_rtx_string (XSTR (x, i));
2544 break;
2545
2546 case 'i':
2547 hash += (unsigned int) XINT (x, i);
2548 break;
2549
2550 case 'p':
2551 hash += constant_lower_bound (SUBREG_BYTE (x));
2552 break;
2553
2554 case '0': case 't':
2555 /* Unused. */
2556 break;
2557
2558 default:
2559 gcc_unreachable ();
2560 }
2561 }
2562
2563 return hash;
2564 }
2565
2566 /* Hash an rtx. We are careful to make sure the value is never negative.
2567 Equivalent registers hash identically.
2568 MODE is used in hashing for CONST_INTs only;
2569 otherwise the mode of X is used.
2570
2571 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2572
2573 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2574 a MEM rtx which does not have the MEM_READONLY_P flag set.
2575
2576 Note that cse_insn knows that the hash code of a MEM expression
2577 is just (int) MEM plus the hash code of the address. */
2578
2579 unsigned
2580 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2581 int *hash_arg_in_memory_p, bool have_reg_qty)
2582 {
2583 return hash_rtx_cb (x, mode, do_not_record_p,
2584 hash_arg_in_memory_p, have_reg_qty, NULL);
2585 }
2586
2587 /* Hash an rtx X for cse via hash_rtx.
2588 Stores 1 in do_not_record if any subexpression is volatile.
2589 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2590 does not have the MEM_READONLY_P flag set. */
2591
2592 static inline unsigned
2593 canon_hash (rtx x, machine_mode mode)
2594 {
2595 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2596 }
2597
2598 /* Like canon_hash but with no side effects, i.e. do_not_record
2599 and hash_arg_in_memory are not changed. */
2600
2601 static inline unsigned
2602 safe_hash (rtx x, machine_mode mode)
2603 {
2604 int dummy_do_not_record;
2605 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2606 }
2607 \f
2608 /* Return 1 iff X and Y would canonicalize into the same thing,
2609 without actually constructing the canonicalization of either one.
2610 If VALIDATE is nonzero,
2611 we assume X is an expression being processed from the rtl
2612 and Y was found in the hash table. We check register refs
2613 in Y for being marked as valid.
2614
2615 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2616
2617 int
2618 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2619 {
2620 int i, j;
2621 enum rtx_code code;
2622 const char *fmt;
2623
2624 /* Note: it is incorrect to assume an expression is equivalent to itself
2625 if VALIDATE is nonzero. */
2626 if (x == y && !validate)
2627 return 1;
2628
2629 if (x == 0 || y == 0)
2630 return x == y;
2631
2632 code = GET_CODE (x);
2633 if (code != GET_CODE (y))
2634 return 0;
2635
2636 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2637 if (GET_MODE (x) != GET_MODE (y))
2638 return 0;
2639
2640 /* MEMs referring to different address space are not equivalent. */
2641 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2642 return 0;
2643
2644 switch (code)
2645 {
2646 case PC:
2647 case CC0:
2648 CASE_CONST_UNIQUE:
2649 return x == y;
2650
2651 case LABEL_REF:
2652 return label_ref_label (x) == label_ref_label (y);
2653
2654 case SYMBOL_REF:
2655 return XSTR (x, 0) == XSTR (y, 0);
2656
2657 case REG:
2658 if (for_gcse)
2659 return REGNO (x) == REGNO (y);
2660 else
2661 {
2662 unsigned int regno = REGNO (y);
2663 unsigned int i;
2664 unsigned int endregno = END_REGNO (y);
2665
2666 /* If the quantities are not the same, the expressions are not
2667 equivalent. If there are and we are not to validate, they
2668 are equivalent. Otherwise, ensure all regs are up-to-date. */
2669
2670 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2671 return 0;
2672
2673 if (! validate)
2674 return 1;
2675
2676 for (i = regno; i < endregno; i++)
2677 if (REG_IN_TABLE (i) != REG_TICK (i))
2678 return 0;
2679
2680 return 1;
2681 }
2682
2683 case MEM:
2684 if (for_gcse)
2685 {
2686 /* A volatile mem should not be considered equivalent to any
2687 other. */
2688 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2689 return 0;
2690
2691 /* Can't merge two expressions in different alias sets, since we
2692 can decide that the expression is transparent in a block when
2693 it isn't, due to it being set with the different alias set.
2694
2695 Also, can't merge two expressions with different MEM_ATTRS.
2696 They could e.g. be two different entities allocated into the
2697 same space on the stack (see e.g. PR25130). In that case, the
2698 MEM addresses can be the same, even though the two MEMs are
2699 absolutely not equivalent.
2700
2701 But because really all MEM attributes should be the same for
2702 equivalent MEMs, we just use the invariant that MEMs that have
2703 the same attributes share the same mem_attrs data structure. */
2704 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2705 return 0;
2706
2707 /* If we are handling exceptions, we cannot consider two expressions
2708 with different trapping status as equivalent, because simple_mem
2709 might accept one and reject the other. */
2710 if (cfun->can_throw_non_call_exceptions
2711 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2712 return 0;
2713 }
2714 break;
2715
2716 /* For commutative operations, check both orders. */
2717 case PLUS:
2718 case MULT:
2719 case AND:
2720 case IOR:
2721 case XOR:
2722 case NE:
2723 case EQ:
2724 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2725 validate, for_gcse)
2726 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2727 validate, for_gcse))
2728 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2729 validate, for_gcse)
2730 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2731 validate, for_gcse)));
2732
2733 case ASM_OPERANDS:
2734 /* We don't use the generic code below because we want to
2735 disregard filename and line numbers. */
2736
2737 /* A volatile asm isn't equivalent to any other. */
2738 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2739 return 0;
2740
2741 if (GET_MODE (x) != GET_MODE (y)
2742 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2743 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2744 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2745 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2746 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2747 return 0;
2748
2749 if (ASM_OPERANDS_INPUT_LENGTH (x))
2750 {
2751 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2752 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2753 ASM_OPERANDS_INPUT (y, i),
2754 validate, for_gcse)
2755 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2756 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2757 return 0;
2758 }
2759
2760 return 1;
2761
2762 default:
2763 break;
2764 }
2765
2766 /* Compare the elements. If any pair of corresponding elements
2767 fail to match, return 0 for the whole thing. */
2768
2769 fmt = GET_RTX_FORMAT (code);
2770 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2771 {
2772 switch (fmt[i])
2773 {
2774 case 'e':
2775 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2776 validate, for_gcse))
2777 return 0;
2778 break;
2779
2780 case 'E':
2781 if (XVECLEN (x, i) != XVECLEN (y, i))
2782 return 0;
2783 for (j = 0; j < XVECLEN (x, i); j++)
2784 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2785 validate, for_gcse))
2786 return 0;
2787 break;
2788
2789 case 's':
2790 if (strcmp (XSTR (x, i), XSTR (y, i)))
2791 return 0;
2792 break;
2793
2794 case 'i':
2795 if (XINT (x, i) != XINT (y, i))
2796 return 0;
2797 break;
2798
2799 case 'w':
2800 if (XWINT (x, i) != XWINT (y, i))
2801 return 0;
2802 break;
2803
2804 case 'p':
2805 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
2806 return 0;
2807 break;
2808
2809 case '0':
2810 case 't':
2811 break;
2812
2813 default:
2814 gcc_unreachable ();
2815 }
2816 }
2817
2818 return 1;
2819 }
2820 \f
2821 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2822 the result if necessary. INSN is as for canon_reg. */
2823
2824 static void
2825 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2826 {
2827 if (*xloc)
2828 {
2829 rtx new_rtx = canon_reg (*xloc, insn);
2830
2831 /* If replacing pseudo with hard reg or vice versa, ensure the
2832 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2833 gcc_assert (insn && new_rtx);
2834 validate_change (insn, xloc, new_rtx, 1);
2835 }
2836 }
2837
2838 /* Canonicalize an expression:
2839 replace each register reference inside it
2840 with the "oldest" equivalent register.
2841
2842 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2843 after we make our substitution. The calls are made with IN_GROUP nonzero
2844 so apply_change_group must be called upon the outermost return from this
2845 function (unless INSN is zero). The result of apply_change_group can
2846 generally be discarded since the changes we are making are optional. */
2847
2848 static rtx
2849 canon_reg (rtx x, rtx_insn *insn)
2850 {
2851 int i;
2852 enum rtx_code code;
2853 const char *fmt;
2854
2855 if (x == 0)
2856 return x;
2857
2858 code = GET_CODE (x);
2859 switch (code)
2860 {
2861 case PC:
2862 case CC0:
2863 case CONST:
2864 CASE_CONST_ANY:
2865 case SYMBOL_REF:
2866 case LABEL_REF:
2867 case ADDR_VEC:
2868 case ADDR_DIFF_VEC:
2869 return x;
2870
2871 case REG:
2872 {
2873 int first;
2874 int q;
2875 struct qty_table_elem *ent;
2876
2877 /* Never replace a hard reg, because hard regs can appear
2878 in more than one machine mode, and we must preserve the mode
2879 of each occurrence. Also, some hard regs appear in
2880 MEMs that are shared and mustn't be altered. Don't try to
2881 replace any reg that maps to a reg of class NO_REGS. */
2882 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2883 || ! REGNO_QTY_VALID_P (REGNO (x)))
2884 return x;
2885
2886 q = REG_QTY (REGNO (x));
2887 ent = &qty_table[q];
2888 first = ent->first_reg;
2889 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2890 : REGNO_REG_CLASS (first) == NO_REGS ? x
2891 : gen_rtx_REG (ent->mode, first));
2892 }
2893
2894 default:
2895 break;
2896 }
2897
2898 fmt = GET_RTX_FORMAT (code);
2899 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2900 {
2901 int j;
2902
2903 if (fmt[i] == 'e')
2904 validate_canon_reg (&XEXP (x, i), insn);
2905 else if (fmt[i] == 'E')
2906 for (j = 0; j < XVECLEN (x, i); j++)
2907 validate_canon_reg (&XVECEXP (x, i, j), insn);
2908 }
2909
2910 return x;
2911 }
2912 \f
2913 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2914 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2915 what values are being compared.
2916
2917 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2918 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2919 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2920 compared to produce cc0.
2921
2922 The return value is the comparison operator and is either the code of
2923 A or the code corresponding to the inverse of the comparison. */
2924
2925 static enum rtx_code
2926 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2927 machine_mode *pmode1, machine_mode *pmode2)
2928 {
2929 rtx arg1, arg2;
2930 hash_set<rtx> *visited = NULL;
2931 /* Set nonzero when we find something of interest. */
2932 rtx x = NULL;
2933
2934 arg1 = *parg1, arg2 = *parg2;
2935
2936 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2937
2938 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2939 {
2940 int reverse_code = 0;
2941 struct table_elt *p = 0;
2942
2943 /* Remember state from previous iteration. */
2944 if (x)
2945 {
2946 if (!visited)
2947 visited = new hash_set<rtx>;
2948 visited->add (x);
2949 x = 0;
2950 }
2951
2952 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2953 On machines with CC0, this is the only case that can occur, since
2954 fold_rtx will return the COMPARE or item being compared with zero
2955 when given CC0. */
2956
2957 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2958 x = arg1;
2959
2960 /* If ARG1 is a comparison operator and CODE is testing for
2961 STORE_FLAG_VALUE, get the inner arguments. */
2962
2963 else if (COMPARISON_P (arg1))
2964 {
2965 #ifdef FLOAT_STORE_FLAG_VALUE
2966 REAL_VALUE_TYPE fsfv;
2967 #endif
2968
2969 if (code == NE
2970 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2971 && code == LT && STORE_FLAG_VALUE == -1)
2972 #ifdef FLOAT_STORE_FLAG_VALUE
2973 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2974 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2975 REAL_VALUE_NEGATIVE (fsfv)))
2976 #endif
2977 )
2978 x = arg1;
2979 else if (code == EQ
2980 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2981 && code == GE && STORE_FLAG_VALUE == -1)
2982 #ifdef FLOAT_STORE_FLAG_VALUE
2983 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2984 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2985 REAL_VALUE_NEGATIVE (fsfv)))
2986 #endif
2987 )
2988 x = arg1, reverse_code = 1;
2989 }
2990
2991 /* ??? We could also check for
2992
2993 (ne (and (eq (...) (const_int 1))) (const_int 0))
2994
2995 and related forms, but let's wait until we see them occurring. */
2996
2997 if (x == 0)
2998 /* Look up ARG1 in the hash table and see if it has an equivalence
2999 that lets us see what is being compared. */
3000 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
3001 if (p)
3002 {
3003 p = p->first_same_value;
3004
3005 /* If what we compare is already known to be constant, that is as
3006 good as it gets.
3007 We need to break the loop in this case, because otherwise we
3008 can have an infinite loop when looking at a reg that is known
3009 to be a constant which is the same as a comparison of a reg
3010 against zero which appears later in the insn stream, which in
3011 turn is constant and the same as the comparison of the first reg
3012 against zero... */
3013 if (p->is_const)
3014 break;
3015 }
3016
3017 for (; p; p = p->next_same_value)
3018 {
3019 machine_mode inner_mode = GET_MODE (p->exp);
3020 #ifdef FLOAT_STORE_FLAG_VALUE
3021 REAL_VALUE_TYPE fsfv;
3022 #endif
3023
3024 /* If the entry isn't valid, skip it. */
3025 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3026 continue;
3027
3028 /* If it's a comparison we've used before, skip it. */
3029 if (visited && visited->contains (p->exp))
3030 continue;
3031
3032 if (GET_CODE (p->exp) == COMPARE
3033 /* Another possibility is that this machine has a compare insn
3034 that includes the comparison code. In that case, ARG1 would
3035 be equivalent to a comparison operation that would set ARG1 to
3036 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3037 ORIG_CODE is the actual comparison being done; if it is an EQ,
3038 we must reverse ORIG_CODE. On machine with a negative value
3039 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3040 || ((code == NE
3041 || (code == LT
3042 && val_signbit_known_set_p (inner_mode,
3043 STORE_FLAG_VALUE))
3044 #ifdef FLOAT_STORE_FLAG_VALUE
3045 || (code == LT
3046 && SCALAR_FLOAT_MODE_P (inner_mode)
3047 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3048 REAL_VALUE_NEGATIVE (fsfv)))
3049 #endif
3050 )
3051 && COMPARISON_P (p->exp)))
3052 {
3053 x = p->exp;
3054 break;
3055 }
3056 else if ((code == EQ
3057 || (code == GE
3058 && val_signbit_known_set_p (inner_mode,
3059 STORE_FLAG_VALUE))
3060 #ifdef FLOAT_STORE_FLAG_VALUE
3061 || (code == GE
3062 && SCALAR_FLOAT_MODE_P (inner_mode)
3063 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3064 REAL_VALUE_NEGATIVE (fsfv)))
3065 #endif
3066 )
3067 && COMPARISON_P (p->exp))
3068 {
3069 reverse_code = 1;
3070 x = p->exp;
3071 break;
3072 }
3073
3074 /* If this non-trapping address, e.g. fp + constant, the
3075 equivalent is a better operand since it may let us predict
3076 the value of the comparison. */
3077 else if (!rtx_addr_can_trap_p (p->exp))
3078 {
3079 arg1 = p->exp;
3080 continue;
3081 }
3082 }
3083
3084 /* If we didn't find a useful equivalence for ARG1, we are done.
3085 Otherwise, set up for the next iteration. */
3086 if (x == 0)
3087 break;
3088
3089 /* If we need to reverse the comparison, make sure that is
3090 possible -- we can't necessarily infer the value of GE from LT
3091 with floating-point operands. */
3092 if (reverse_code)
3093 {
3094 enum rtx_code reversed = reversed_comparison_code (x, NULL);
3095 if (reversed == UNKNOWN)
3096 break;
3097 else
3098 code = reversed;
3099 }
3100 else if (COMPARISON_P (x))
3101 code = GET_CODE (x);
3102 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3103 }
3104
3105 /* Return our results. Return the modes from before fold_rtx
3106 because fold_rtx might produce const_int, and then it's too late. */
3107 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3108 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3109
3110 if (visited)
3111 delete visited;
3112 return code;
3113 }
3114 \f
3115 /* If X is a nontrivial arithmetic operation on an argument for which
3116 a constant value can be determined, return the result of operating
3117 on that value, as a constant. Otherwise, return X, possibly with
3118 one or more operands changed to a forward-propagated constant.
3119
3120 If X is a register whose contents are known, we do NOT return
3121 those contents here; equiv_constant is called to perform that task.
3122 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3123
3124 INSN is the insn that we may be modifying. If it is 0, make a copy
3125 of X before modifying it. */
3126
3127 static rtx
3128 fold_rtx (rtx x, rtx_insn *insn)
3129 {
3130 enum rtx_code code;
3131 machine_mode mode;
3132 const char *fmt;
3133 int i;
3134 rtx new_rtx = 0;
3135 int changed = 0;
3136 poly_int64 xval;
3137
3138 /* Operands of X. */
3139 /* Workaround -Wmaybe-uninitialized false positive during
3140 profiledbootstrap by initializing them. */
3141 rtx folded_arg0 = NULL_RTX;
3142 rtx folded_arg1 = NULL_RTX;
3143
3144 /* Constant equivalents of first three operands of X;
3145 0 when no such equivalent is known. */
3146 rtx const_arg0;
3147 rtx const_arg1;
3148 rtx const_arg2;
3149
3150 /* The mode of the first operand of X. We need this for sign and zero
3151 extends. */
3152 machine_mode mode_arg0;
3153
3154 if (x == 0)
3155 return x;
3156
3157 /* Try to perform some initial simplifications on X. */
3158 code = GET_CODE (x);
3159 switch (code)
3160 {
3161 case MEM:
3162 case SUBREG:
3163 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3164 than it would in other contexts. Basically its mode does not
3165 signify the size of the object read. That information is carried
3166 by size operand. If we happen to have a MEM of the appropriate
3167 mode in our tables with a constant value we could simplify the
3168 extraction incorrectly if we allowed substitution of that value
3169 for the MEM. */
3170 case ZERO_EXTRACT:
3171 case SIGN_EXTRACT:
3172 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3173 return new_rtx;
3174 return x;
3175
3176 case CONST:
3177 CASE_CONST_ANY:
3178 case SYMBOL_REF:
3179 case LABEL_REF:
3180 case REG:
3181 case PC:
3182 /* No use simplifying an EXPR_LIST
3183 since they are used only for lists of args
3184 in a function call's REG_EQUAL note. */
3185 case EXPR_LIST:
3186 return x;
3187
3188 case CC0:
3189 return prev_insn_cc0;
3190
3191 case ASM_OPERANDS:
3192 if (insn)
3193 {
3194 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3195 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3196 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3197 }
3198 return x;
3199
3200 case CALL:
3201 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3202 return x;
3203 break;
3204
3205 /* Anything else goes through the loop below. */
3206 default:
3207 break;
3208 }
3209
3210 mode = GET_MODE (x);
3211 const_arg0 = 0;
3212 const_arg1 = 0;
3213 const_arg2 = 0;
3214 mode_arg0 = VOIDmode;
3215
3216 /* Try folding our operands.
3217 Then see which ones have constant values known. */
3218
3219 fmt = GET_RTX_FORMAT (code);
3220 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3221 if (fmt[i] == 'e')
3222 {
3223 rtx folded_arg = XEXP (x, i), const_arg;
3224 machine_mode mode_arg = GET_MODE (folded_arg);
3225
3226 switch (GET_CODE (folded_arg))
3227 {
3228 case MEM:
3229 case REG:
3230 case SUBREG:
3231 const_arg = equiv_constant (folded_arg);
3232 break;
3233
3234 case CONST:
3235 CASE_CONST_ANY:
3236 case SYMBOL_REF:
3237 case LABEL_REF:
3238 const_arg = folded_arg;
3239 break;
3240
3241 case CC0:
3242 /* The cc0-user and cc0-setter may be in different blocks if
3243 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3244 will have been cleared as we exited the block with the
3245 setter.
3246
3247 While we could potentially track cc0 in this case, it just
3248 doesn't seem to be worth it given that cc0 targets are not
3249 terribly common or important these days and trapping math
3250 is rarely used. The combination of those two conditions
3251 necessary to trip this situation is exceedingly rare in the
3252 real world. */
3253 if (!prev_insn_cc0)
3254 {
3255 const_arg = NULL_RTX;
3256 }
3257 else
3258 {
3259 folded_arg = prev_insn_cc0;
3260 mode_arg = prev_insn_cc0_mode;
3261 const_arg = equiv_constant (folded_arg);
3262 }
3263 break;
3264
3265 default:
3266 folded_arg = fold_rtx (folded_arg, insn);
3267 const_arg = equiv_constant (folded_arg);
3268 break;
3269 }
3270
3271 /* For the first three operands, see if the operand
3272 is constant or equivalent to a constant. */
3273 switch (i)
3274 {
3275 case 0:
3276 folded_arg0 = folded_arg;
3277 const_arg0 = const_arg;
3278 mode_arg0 = mode_arg;
3279 break;
3280 case 1:
3281 folded_arg1 = folded_arg;
3282 const_arg1 = const_arg;
3283 break;
3284 case 2:
3285 const_arg2 = const_arg;
3286 break;
3287 }
3288
3289 /* Pick the least expensive of the argument and an equivalent constant
3290 argument. */
3291 if (const_arg != 0
3292 && const_arg != folded_arg
3293 && (COST_IN (const_arg, mode_arg, code, i)
3294 <= COST_IN (folded_arg, mode_arg, code, i))
3295
3296 /* It's not safe to substitute the operand of a conversion
3297 operator with a constant, as the conversion's identity
3298 depends upon the mode of its operand. This optimization
3299 is handled by the call to simplify_unary_operation. */
3300 && (GET_RTX_CLASS (code) != RTX_UNARY
3301 || GET_MODE (const_arg) == mode_arg0
3302 || (code != ZERO_EXTEND
3303 && code != SIGN_EXTEND
3304 && code != TRUNCATE
3305 && code != FLOAT_TRUNCATE
3306 && code != FLOAT_EXTEND
3307 && code != FLOAT
3308 && code != FIX
3309 && code != UNSIGNED_FLOAT
3310 && code != UNSIGNED_FIX)))
3311 folded_arg = const_arg;
3312
3313 if (folded_arg == XEXP (x, i))
3314 continue;
3315
3316 if (insn == NULL_RTX && !changed)
3317 x = copy_rtx (x);
3318 changed = 1;
3319 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3320 }
3321
3322 if (changed)
3323 {
3324 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3325 consistent with the order in X. */
3326 if (canonicalize_change_group (insn, x))
3327 {
3328 std::swap (const_arg0, const_arg1);
3329 std::swap (folded_arg0, folded_arg1);
3330 }
3331
3332 apply_change_group ();
3333 }
3334
3335 /* If X is an arithmetic operation, see if we can simplify it. */
3336
3337 switch (GET_RTX_CLASS (code))
3338 {
3339 case RTX_UNARY:
3340 {
3341 /* We can't simplify extension ops unless we know the
3342 original mode. */
3343 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3344 && mode_arg0 == VOIDmode)
3345 break;
3346
3347 new_rtx = simplify_unary_operation (code, mode,
3348 const_arg0 ? const_arg0 : folded_arg0,
3349 mode_arg0);
3350 }
3351 break;
3352
3353 case RTX_COMPARE:
3354 case RTX_COMM_COMPARE:
3355 /* See what items are actually being compared and set FOLDED_ARG[01]
3356 to those values and CODE to the actual comparison code. If any are
3357 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3358 do anything if both operands are already known to be constant. */
3359
3360 /* ??? Vector mode comparisons are not supported yet. */
3361 if (VECTOR_MODE_P (mode))
3362 break;
3363
3364 if (const_arg0 == 0 || const_arg1 == 0)
3365 {
3366 struct table_elt *p0, *p1;
3367 rtx true_rtx, false_rtx;
3368 machine_mode mode_arg1;
3369
3370 if (SCALAR_FLOAT_MODE_P (mode))
3371 {
3372 #ifdef FLOAT_STORE_FLAG_VALUE
3373 true_rtx = (const_double_from_real_value
3374 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3375 #else
3376 true_rtx = NULL_RTX;
3377 #endif
3378 false_rtx = CONST0_RTX (mode);
3379 }
3380 else
3381 {
3382 true_rtx = const_true_rtx;
3383 false_rtx = const0_rtx;
3384 }
3385
3386 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3387 &mode_arg0, &mode_arg1);
3388
3389 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3390 what kinds of things are being compared, so we can't do
3391 anything with this comparison. */
3392
3393 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3394 break;
3395
3396 const_arg0 = equiv_constant (folded_arg0);
3397 const_arg1 = equiv_constant (folded_arg1);
3398
3399 /* If we do not now have two constants being compared, see
3400 if we can nevertheless deduce some things about the
3401 comparison. */
3402 if (const_arg0 == 0 || const_arg1 == 0)
3403 {
3404 if (const_arg1 != NULL)
3405 {
3406 rtx cheapest_simplification;
3407 int cheapest_cost;
3408 rtx simp_result;
3409 struct table_elt *p;
3410
3411 /* See if we can find an equivalent of folded_arg0
3412 that gets us a cheaper expression, possibly a
3413 constant through simplifications. */
3414 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3415 mode_arg0);
3416
3417 if (p != NULL)
3418 {
3419 cheapest_simplification = x;
3420 cheapest_cost = COST (x, mode);
3421
3422 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3423 {
3424 int cost;
3425
3426 /* If the entry isn't valid, skip it. */
3427 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3428 continue;
3429
3430 /* Try to simplify using this equivalence. */
3431 simp_result
3432 = simplify_relational_operation (code, mode,
3433 mode_arg0,
3434 p->exp,
3435 const_arg1);
3436
3437 if (simp_result == NULL)
3438 continue;
3439
3440 cost = COST (simp_result, mode);
3441 if (cost < cheapest_cost)
3442 {
3443 cheapest_cost = cost;
3444 cheapest_simplification = simp_result;
3445 }
3446 }
3447
3448 /* If we have a cheaper expression now, use that
3449 and try folding it further, from the top. */
3450 if (cheapest_simplification != x)
3451 return fold_rtx (copy_rtx (cheapest_simplification),
3452 insn);
3453 }
3454 }
3455
3456 /* See if the two operands are the same. */
3457
3458 if ((REG_P (folded_arg0)
3459 && REG_P (folded_arg1)
3460 && (REG_QTY (REGNO (folded_arg0))
3461 == REG_QTY (REGNO (folded_arg1))))
3462 || ((p0 = lookup (folded_arg0,
3463 SAFE_HASH (folded_arg0, mode_arg0),
3464 mode_arg0))
3465 && (p1 = lookup (folded_arg1,
3466 SAFE_HASH (folded_arg1, mode_arg0),
3467 mode_arg0))
3468 && p0->first_same_value == p1->first_same_value))
3469 folded_arg1 = folded_arg0;
3470
3471 /* If FOLDED_ARG0 is a register, see if the comparison we are
3472 doing now is either the same as we did before or the reverse
3473 (we only check the reverse if not floating-point). */
3474 else if (REG_P (folded_arg0))
3475 {
3476 int qty = REG_QTY (REGNO (folded_arg0));
3477
3478 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3479 {
3480 struct qty_table_elem *ent = &qty_table[qty];
3481
3482 if ((comparison_dominates_p (ent->comparison_code, code)
3483 || (! FLOAT_MODE_P (mode_arg0)
3484 && comparison_dominates_p (ent->comparison_code,
3485 reverse_condition (code))))
3486 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3487 || (const_arg1
3488 && rtx_equal_p (ent->comparison_const,
3489 const_arg1))
3490 || (REG_P (folded_arg1)
3491 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3492 {
3493 if (comparison_dominates_p (ent->comparison_code, code))
3494 {
3495 if (true_rtx)
3496 return true_rtx;
3497 else
3498 break;
3499 }
3500 else
3501 return false_rtx;
3502 }
3503 }
3504 }
3505 }
3506 }
3507
3508 /* If we are comparing against zero, see if the first operand is
3509 equivalent to an IOR with a constant. If so, we may be able to
3510 determine the result of this comparison. */
3511 if (const_arg1 == const0_rtx && !const_arg0)
3512 {
3513 rtx y = lookup_as_function (folded_arg0, IOR);
3514 rtx inner_const;
3515
3516 if (y != 0
3517 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3518 && CONST_INT_P (inner_const)
3519 && INTVAL (inner_const) != 0)
3520 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3521 }
3522
3523 {
3524 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3525 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3526 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3527 op0, op1);
3528 }
3529 break;
3530
3531 case RTX_BIN_ARITH:
3532 case RTX_COMM_ARITH:
3533 switch (code)
3534 {
3535 case PLUS:
3536 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3537 with that LABEL_REF as its second operand. If so, the result is
3538 the first operand of that MINUS. This handles switches with an
3539 ADDR_DIFF_VEC table. */
3540 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3541 {
3542 rtx y
3543 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3544 : lookup_as_function (folded_arg0, MINUS);
3545
3546 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3547 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1))
3548 return XEXP (y, 0);
3549
3550 /* Now try for a CONST of a MINUS like the above. */
3551 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3552 : lookup_as_function (folded_arg0, CONST))) != 0
3553 && GET_CODE (XEXP (y, 0)) == MINUS
3554 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3555 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1))
3556 return XEXP (XEXP (y, 0), 0);
3557 }
3558
3559 /* Likewise if the operands are in the other order. */
3560 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3561 {
3562 rtx y
3563 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3564 : lookup_as_function (folded_arg1, MINUS);
3565
3566 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3567 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0))
3568 return XEXP (y, 0);
3569
3570 /* Now try for a CONST of a MINUS like the above. */
3571 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3572 : lookup_as_function (folded_arg1, CONST))) != 0
3573 && GET_CODE (XEXP (y, 0)) == MINUS
3574 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3575 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0))
3576 return XEXP (XEXP (y, 0), 0);
3577 }
3578
3579 /* If second operand is a register equivalent to a negative
3580 CONST_INT, see if we can find a register equivalent to the
3581 positive constant. Make a MINUS if so. Don't do this for
3582 a non-negative constant since we might then alternate between
3583 choosing positive and negative constants. Having the positive
3584 constant previously-used is the more common case. Be sure
3585 the resulting constant is non-negative; if const_arg1 were
3586 the smallest negative number this would overflow: depending
3587 on the mode, this would either just be the same value (and
3588 hence not save anything) or be incorrect. */
3589 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3590 && INTVAL (const_arg1) < 0
3591 /* This used to test
3592
3593 -INTVAL (const_arg1) >= 0
3594
3595 But The Sun V5.0 compilers mis-compiled that test. So
3596 instead we test for the problematic value in a more direct
3597 manner and hope the Sun compilers get it correct. */
3598 && INTVAL (const_arg1) !=
3599 (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1))
3600 && REG_P (folded_arg1))
3601 {
3602 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3603 struct table_elt *p
3604 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3605
3606 if (p)
3607 for (p = p->first_same_value; p; p = p->next_same_value)
3608 if (REG_P (p->exp))
3609 return simplify_gen_binary (MINUS, mode, folded_arg0,
3610 canon_reg (p->exp, NULL));
3611 }
3612 goto from_plus;
3613
3614 case MINUS:
3615 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3616 If so, produce (PLUS Z C2-C). */
3617 if (const_arg1 != 0 && poly_int_rtx_p (const_arg1, &xval))
3618 {
3619 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3620 if (y && poly_int_rtx_p (XEXP (y, 1)))
3621 return fold_rtx (plus_constant (mode, copy_rtx (y), -xval),
3622 NULL);
3623 }
3624
3625 /* Fall through. */
3626
3627 from_plus:
3628 case SMIN: case SMAX: case UMIN: case UMAX:
3629 case IOR: case AND: case XOR:
3630 case MULT:
3631 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3632 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3633 is known to be of similar form, we may be able to replace the
3634 operation with a combined operation. This may eliminate the
3635 intermediate operation if every use is simplified in this way.
3636 Note that the similar optimization done by combine.c only works
3637 if the intermediate operation's result has only one reference. */
3638
3639 if (REG_P (folded_arg0)
3640 && const_arg1 && CONST_INT_P (const_arg1))
3641 {
3642 int is_shift
3643 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3644 rtx y, inner_const, new_const;
3645 rtx canon_const_arg1 = const_arg1;
3646 enum rtx_code associate_code;
3647
3648 if (is_shift
3649 && (INTVAL (const_arg1) >= GET_MODE_UNIT_PRECISION (mode)
3650 || INTVAL (const_arg1) < 0))
3651 {
3652 if (SHIFT_COUNT_TRUNCATED)
3653 canon_const_arg1 = gen_int_shift_amount
3654 (mode, (INTVAL (const_arg1)
3655 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3656 else
3657 break;
3658 }
3659
3660 y = lookup_as_function (folded_arg0, code);
3661 if (y == 0)
3662 break;
3663
3664 /* If we have compiled a statement like
3665 "if (x == (x & mask1))", and now are looking at
3666 "x & mask2", we will have a case where the first operand
3667 of Y is the same as our first operand. Unless we detect
3668 this case, an infinite loop will result. */
3669 if (XEXP (y, 0) == folded_arg0)
3670 break;
3671
3672 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3673 if (!inner_const || !CONST_INT_P (inner_const))
3674 break;
3675
3676 /* Don't associate these operations if they are a PLUS with the
3677 same constant and it is a power of two. These might be doable
3678 with a pre- or post-increment. Similarly for two subtracts of
3679 identical powers of two with post decrement. */
3680
3681 if (code == PLUS && const_arg1 == inner_const
3682 && ((HAVE_PRE_INCREMENT
3683 && pow2p_hwi (INTVAL (const_arg1)))
3684 || (HAVE_POST_INCREMENT
3685 && pow2p_hwi (INTVAL (const_arg1)))
3686 || (HAVE_PRE_DECREMENT
3687 && pow2p_hwi (- INTVAL (const_arg1)))
3688 || (HAVE_POST_DECREMENT
3689 && pow2p_hwi (- INTVAL (const_arg1)))))
3690 break;
3691
3692 /* ??? Vector mode shifts by scalar
3693 shift operand are not supported yet. */
3694 if (is_shift && VECTOR_MODE_P (mode))
3695 break;
3696
3697 if (is_shift
3698 && (INTVAL (inner_const) >= GET_MODE_UNIT_PRECISION (mode)
3699 || INTVAL (inner_const) < 0))
3700 {
3701 if (SHIFT_COUNT_TRUNCATED)
3702 inner_const = gen_int_shift_amount
3703 (mode, (INTVAL (inner_const)
3704 & (GET_MODE_UNIT_BITSIZE (mode) - 1)));
3705 else
3706 break;
3707 }
3708
3709 /* Compute the code used to compose the constants. For example,
3710 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3711
3712 associate_code = (is_shift || code == MINUS ? PLUS : code);
3713
3714 new_const = simplify_binary_operation (associate_code, mode,
3715 canon_const_arg1,
3716 inner_const);
3717
3718 if (new_const == 0)
3719 break;
3720
3721 /* If we are associating shift operations, don't let this
3722 produce a shift of the size of the object or larger.
3723 This could occur when we follow a sign-extend by a right
3724 shift on a machine that does a sign-extend as a pair
3725 of shifts. */
3726
3727 if (is_shift
3728 && CONST_INT_P (new_const)
3729 && INTVAL (new_const) >= GET_MODE_UNIT_PRECISION (mode))
3730 {
3731 /* As an exception, we can turn an ASHIFTRT of this
3732 form into a shift of the number of bits - 1. */
3733 if (code == ASHIFTRT)
3734 new_const = gen_int_shift_amount
3735 (mode, GET_MODE_UNIT_BITSIZE (mode) - 1);
3736 else if (!side_effects_p (XEXP (y, 0)))
3737 return CONST0_RTX (mode);
3738 else
3739 break;
3740 }
3741
3742 y = copy_rtx (XEXP (y, 0));
3743
3744 /* If Y contains our first operand (the most common way this
3745 can happen is if Y is a MEM), we would do into an infinite
3746 loop if we tried to fold it. So don't in that case. */
3747
3748 if (! reg_mentioned_p (folded_arg0, y))
3749 y = fold_rtx (y, insn);
3750
3751 return simplify_gen_binary (code, mode, y, new_const);
3752 }
3753 break;
3754
3755 case DIV: case UDIV:
3756 /* ??? The associative optimization performed immediately above is
3757 also possible for DIV and UDIV using associate_code of MULT.
3758 However, we would need extra code to verify that the
3759 multiplication does not overflow, that is, there is no overflow
3760 in the calculation of new_const. */
3761 break;
3762
3763 default:
3764 break;
3765 }
3766
3767 new_rtx = simplify_binary_operation (code, mode,
3768 const_arg0 ? const_arg0 : folded_arg0,
3769 const_arg1 ? const_arg1 : folded_arg1);
3770 break;
3771
3772 case RTX_OBJ:
3773 /* (lo_sum (high X) X) is simply X. */
3774 if (code == LO_SUM && const_arg0 != 0
3775 && GET_CODE (const_arg0) == HIGH
3776 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3777 return const_arg1;
3778 break;
3779
3780 case RTX_TERNARY:
3781 case RTX_BITFIELD_OPS:
3782 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3783 const_arg0 ? const_arg0 : folded_arg0,
3784 const_arg1 ? const_arg1 : folded_arg1,
3785 const_arg2 ? const_arg2 : XEXP (x, 2));
3786 break;
3787
3788 default:
3789 break;
3790 }
3791
3792 return new_rtx ? new_rtx : x;
3793 }
3794 \f
3795 /* Return a constant value currently equivalent to X.
3796 Return 0 if we don't know one. */
3797
3798 static rtx
3799 equiv_constant (rtx x)
3800 {
3801 if (REG_P (x)
3802 && REGNO_QTY_VALID_P (REGNO (x)))
3803 {
3804 int x_q = REG_QTY (REGNO (x));
3805 struct qty_table_elem *x_ent = &qty_table[x_q];
3806
3807 if (x_ent->const_rtx)
3808 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3809 }
3810
3811 if (x == 0 || CONSTANT_P (x))
3812 return x;
3813
3814 if (GET_CODE (x) == SUBREG)
3815 {
3816 machine_mode mode = GET_MODE (x);
3817 machine_mode imode = GET_MODE (SUBREG_REG (x));
3818 rtx new_rtx;
3819
3820 /* See if we previously assigned a constant value to this SUBREG. */
3821 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3822 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3823 || (NUM_POLY_INT_COEFFS > 1
3824 && (new_rtx = lookup_as_function (x, CONST_POLY_INT)) != 0)
3825 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3826 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3827 return new_rtx;
3828
3829 /* If we didn't and if doing so makes sense, see if we previously
3830 assigned a constant value to the enclosing word mode SUBREG. */
3831 if (known_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD)
3832 && known_lt (UNITS_PER_WORD, GET_MODE_SIZE (imode)))
3833 {
3834 poly_int64 byte = (SUBREG_BYTE (x)
3835 - subreg_lowpart_offset (mode, word_mode));
3836 if (known_ge (byte, 0) && multiple_p (byte, UNITS_PER_WORD))
3837 {
3838 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3839 new_rtx = lookup_as_function (y, CONST_INT);
3840 if (new_rtx)
3841 return gen_lowpart (mode, new_rtx);
3842 }
3843 }
3844
3845 /* Otherwise see if we already have a constant for the inner REG,
3846 and if that is enough to calculate an equivalent constant for
3847 the subreg. Note that the upper bits of paradoxical subregs
3848 are undefined, so they cannot be said to equal anything. */
3849 if (REG_P (SUBREG_REG (x))
3850 && !paradoxical_subreg_p (x)
3851 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3852 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3853
3854 return 0;
3855 }
3856
3857 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3858 the hash table in case its value was seen before. */
3859
3860 if (MEM_P (x))
3861 {
3862 struct table_elt *elt;
3863
3864 x = avoid_constant_pool_reference (x);
3865 if (CONSTANT_P (x))
3866 return x;
3867
3868 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3869 if (elt == 0)
3870 return 0;
3871
3872 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3873 if (elt->is_const && CONSTANT_P (elt->exp))
3874 return elt->exp;
3875 }
3876
3877 return 0;
3878 }
3879 \f
3880 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3881 "taken" branch.
3882
3883 In certain cases, this can cause us to add an equivalence. For example,
3884 if we are following the taken case of
3885 if (i == 2)
3886 we can add the fact that `i' and '2' are now equivalent.
3887
3888 In any case, we can record that this comparison was passed. If the same
3889 comparison is seen later, we will know its value. */
3890
3891 static void
3892 record_jump_equiv (rtx_insn *insn, bool taken)
3893 {
3894 int cond_known_true;
3895 rtx op0, op1;
3896 rtx set;
3897 machine_mode mode, mode0, mode1;
3898 int reversed_nonequality = 0;
3899 enum rtx_code code;
3900
3901 /* Ensure this is the right kind of insn. */
3902 gcc_assert (any_condjump_p (insn));
3903
3904 set = pc_set (insn);
3905
3906 /* See if this jump condition is known true or false. */
3907 if (taken)
3908 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3909 else
3910 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3911
3912 /* Get the type of comparison being done and the operands being compared.
3913 If we had to reverse a non-equality condition, record that fact so we
3914 know that it isn't valid for floating-point. */
3915 code = GET_CODE (XEXP (SET_SRC (set), 0));
3916 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3917 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3918
3919 /* On a cc0 target the cc0-setter and cc0-user may end up in different
3920 blocks. When that happens the tracking of the cc0-setter via
3921 PREV_INSN_CC0 is spoiled. That means that fold_rtx may return
3922 NULL_RTX. In those cases, there's nothing to record. */
3923 if (op0 == NULL_RTX || op1 == NULL_RTX)
3924 return;
3925
3926 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3927 if (! cond_known_true)
3928 {
3929 code = reversed_comparison_code_parts (code, op0, op1, insn);
3930
3931 /* Don't remember if we can't find the inverse. */
3932 if (code == UNKNOWN)
3933 return;
3934 }
3935
3936 /* The mode is the mode of the non-constant. */
3937 mode = mode0;
3938 if (mode1 != VOIDmode)
3939 mode = mode1;
3940
3941 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3942 }
3943
3944 /* Yet another form of subreg creation. In this case, we want something in
3945 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3946
3947 static rtx
3948 record_jump_cond_subreg (machine_mode mode, rtx op)
3949 {
3950 machine_mode op_mode = GET_MODE (op);
3951 if (op_mode == mode || op_mode == VOIDmode)
3952 return op;
3953 return lowpart_subreg (mode, op, op_mode);
3954 }
3955
3956 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3957 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3958 Make any useful entries we can with that information. Called from
3959 above function and called recursively. */
3960
3961 static void
3962 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3963 rtx op1, int reversed_nonequality)
3964 {
3965 unsigned op0_hash, op1_hash;
3966 int op0_in_memory, op1_in_memory;
3967 struct table_elt *op0_elt, *op1_elt;
3968
3969 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3970 we know that they are also equal in the smaller mode (this is also
3971 true for all smaller modes whether or not there is a SUBREG, but
3972 is not worth testing for with no SUBREG). */
3973
3974 /* Note that GET_MODE (op0) may not equal MODE. */
3975 if (code == EQ && paradoxical_subreg_p (op0))
3976 {
3977 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3978 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3979 if (tem)
3980 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3981 reversed_nonequality);
3982 }
3983
3984 if (code == EQ && paradoxical_subreg_p (op1))
3985 {
3986 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3987 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3988 if (tem)
3989 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3990 reversed_nonequality);
3991 }
3992
3993 /* Similarly, if this is an NE comparison, and either is a SUBREG
3994 making a smaller mode, we know the whole thing is also NE. */
3995
3996 /* Note that GET_MODE (op0) may not equal MODE;
3997 if we test MODE instead, we can get an infinite recursion
3998 alternating between two modes each wider than MODE. */
3999
4000 if (code == NE
4001 && partial_subreg_p (op0)
4002 && subreg_lowpart_p (op0))
4003 {
4004 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4005 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4006 if (tem)
4007 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4008 reversed_nonequality);
4009 }
4010
4011 if (code == NE
4012 && partial_subreg_p (op1)
4013 && subreg_lowpart_p (op1))
4014 {
4015 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4016 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4017 if (tem)
4018 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4019 reversed_nonequality);
4020 }
4021
4022 /* Hash both operands. */
4023
4024 do_not_record = 0;
4025 hash_arg_in_memory = 0;
4026 op0_hash = HASH (op0, mode);
4027 op0_in_memory = hash_arg_in_memory;
4028
4029 if (do_not_record)
4030 return;
4031
4032 do_not_record = 0;
4033 hash_arg_in_memory = 0;
4034 op1_hash = HASH (op1, mode);
4035 op1_in_memory = hash_arg_in_memory;
4036
4037 if (do_not_record)
4038 return;
4039
4040 /* Look up both operands. */
4041 op0_elt = lookup (op0, op0_hash, mode);
4042 op1_elt = lookup (op1, op1_hash, mode);
4043
4044 /* If both operands are already equivalent or if they are not in the
4045 table but are identical, do nothing. */
4046 if ((op0_elt != 0 && op1_elt != 0
4047 && op0_elt->first_same_value == op1_elt->first_same_value)
4048 || op0 == op1 || rtx_equal_p (op0, op1))
4049 return;
4050
4051 /* If we aren't setting two things equal all we can do is save this
4052 comparison. Similarly if this is floating-point. In the latter
4053 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4054 If we record the equality, we might inadvertently delete code
4055 whose intent was to change -0 to +0. */
4056
4057 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4058 {
4059 struct qty_table_elem *ent;
4060 int qty;
4061
4062 /* If we reversed a floating-point comparison, if OP0 is not a
4063 register, or if OP1 is neither a register or constant, we can't
4064 do anything. */
4065
4066 if (!REG_P (op1))
4067 op1 = equiv_constant (op1);
4068
4069 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4070 || !REG_P (op0) || op1 == 0)
4071 return;
4072
4073 /* Put OP0 in the hash table if it isn't already. This gives it a
4074 new quantity number. */
4075 if (op0_elt == 0)
4076 {
4077 if (insert_regs (op0, NULL, 0))
4078 {
4079 rehash_using_reg (op0);
4080 op0_hash = HASH (op0, mode);
4081
4082 /* If OP0 is contained in OP1, this changes its hash code
4083 as well. Faster to rehash than to check, except
4084 for the simple case of a constant. */
4085 if (! CONSTANT_P (op1))
4086 op1_hash = HASH (op1,mode);
4087 }
4088
4089 op0_elt = insert (op0, NULL, op0_hash, mode);
4090 op0_elt->in_memory = op0_in_memory;
4091 }
4092
4093 qty = REG_QTY (REGNO (op0));
4094 ent = &qty_table[qty];
4095
4096 ent->comparison_code = code;
4097 if (REG_P (op1))
4098 {
4099 /* Look it up again--in case op0 and op1 are the same. */
4100 op1_elt = lookup (op1, op1_hash, mode);
4101
4102 /* Put OP1 in the hash table so it gets a new quantity number. */
4103 if (op1_elt == 0)
4104 {
4105 if (insert_regs (op1, NULL, 0))
4106 {
4107 rehash_using_reg (op1);
4108 op1_hash = HASH (op1, mode);
4109 }
4110
4111 op1_elt = insert (op1, NULL, op1_hash, mode);
4112 op1_elt->in_memory = op1_in_memory;
4113 }
4114
4115 ent->comparison_const = NULL_RTX;
4116 ent->comparison_qty = REG_QTY (REGNO (op1));
4117 }
4118 else
4119 {
4120 ent->comparison_const = op1;
4121 ent->comparison_qty = -1;
4122 }
4123
4124 return;
4125 }
4126
4127 /* If either side is still missing an equivalence, make it now,
4128 then merge the equivalences. */
4129
4130 if (op0_elt == 0)
4131 {
4132 if (insert_regs (op0, NULL, 0))
4133 {
4134 rehash_using_reg (op0);
4135 op0_hash = HASH (op0, mode);
4136 }
4137
4138 op0_elt = insert (op0, NULL, op0_hash, mode);
4139 op0_elt->in_memory = op0_in_memory;
4140 }
4141
4142 if (op1_elt == 0)
4143 {
4144 if (insert_regs (op1, NULL, 0))
4145 {
4146 rehash_using_reg (op1);
4147 op1_hash = HASH (op1, mode);
4148 }
4149
4150 op1_elt = insert (op1, NULL, op1_hash, mode);
4151 op1_elt->in_memory = op1_in_memory;
4152 }
4153
4154 merge_equiv_classes (op0_elt, op1_elt);
4155 }
4156 \f
4157 /* CSE processing for one instruction.
4158
4159 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4160 but the few that "leak through" are cleaned up by cse_insn, and complex
4161 addressing modes are often formed here.
4162
4163 The main function is cse_insn, and between here and that function
4164 a couple of helper functions is defined to keep the size of cse_insn
4165 within reasonable proportions.
4166
4167 Data is shared between the main and helper functions via STRUCT SET,
4168 that contains all data related for every set in the instruction that
4169 is being processed.
4170
4171 Note that cse_main processes all sets in the instruction. Most
4172 passes in GCC only process simple SET insns or single_set insns, but
4173 CSE processes insns with multiple sets as well. */
4174
4175 /* Data on one SET contained in the instruction. */
4176
4177 struct set
4178 {
4179 /* The SET rtx itself. */
4180 rtx rtl;
4181 /* The SET_SRC of the rtx (the original value, if it is changing). */
4182 rtx src;
4183 /* The hash-table element for the SET_SRC of the SET. */
4184 struct table_elt *src_elt;
4185 /* Hash value for the SET_SRC. */
4186 unsigned src_hash;
4187 /* Hash value for the SET_DEST. */
4188 unsigned dest_hash;
4189 /* The SET_DEST, with SUBREG, etc., stripped. */
4190 rtx inner_dest;
4191 /* Nonzero if the SET_SRC is in memory. */
4192 char src_in_memory;
4193 /* Nonzero if the SET_SRC contains something
4194 whose value cannot be predicted and understood. */
4195 char src_volatile;
4196 /* Original machine mode, in case it becomes a CONST_INT.
4197 The size of this field should match the size of the mode
4198 field of struct rtx_def (see rtl.h). */
4199 ENUM_BITFIELD(machine_mode) mode : 8;
4200 /* Hash value of constant equivalent for SET_SRC. */
4201 unsigned src_const_hash;
4202 /* A constant equivalent for SET_SRC, if any. */
4203 rtx src_const;
4204 /* Table entry for constant equivalent for SET_SRC, if any. */
4205 struct table_elt *src_const_elt;
4206 /* Table entry for the destination address. */
4207 struct table_elt *dest_addr_elt;
4208 };
4209 \f
4210 /* Special handling for (set REG0 REG1) where REG0 is the
4211 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4212 be used in the sequel, so (if easily done) change this insn to
4213 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4214 that computed their value. Then REG1 will become a dead store
4215 and won't cloud the situation for later optimizations.
4216
4217 Do not make this change if REG1 is a hard register, because it will
4218 then be used in the sequel and we may be changing a two-operand insn
4219 into a three-operand insn.
4220
4221 This is the last transformation that cse_insn will try to do. */
4222
4223 static void
4224 try_back_substitute_reg (rtx set, rtx_insn *insn)
4225 {
4226 rtx dest = SET_DEST (set);
4227 rtx src = SET_SRC (set);
4228
4229 if (REG_P (dest)
4230 && REG_P (src) && ! HARD_REGISTER_P (src)
4231 && REGNO_QTY_VALID_P (REGNO (src)))
4232 {
4233 int src_q = REG_QTY (REGNO (src));
4234 struct qty_table_elem *src_ent = &qty_table[src_q];
4235
4236 if (src_ent->first_reg == REGNO (dest))
4237 {
4238 /* Scan for the previous nonnote insn, but stop at a basic
4239 block boundary. */
4240 rtx_insn *prev = insn;
4241 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4242 do
4243 {
4244 prev = PREV_INSN (prev);
4245 }
4246 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4247
4248 /* Do not swap the registers around if the previous instruction
4249 attaches a REG_EQUIV note to REG1.
4250
4251 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4252 from the pseudo that originally shadowed an incoming argument
4253 to another register. Some uses of REG_EQUIV might rely on it
4254 being attached to REG1 rather than REG2.
4255
4256 This section previously turned the REG_EQUIV into a REG_EQUAL
4257 note. We cannot do that because REG_EQUIV may provide an
4258 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4259 if (NONJUMP_INSN_P (prev)
4260 && GET_CODE (PATTERN (prev)) == SET
4261 && SET_DEST (PATTERN (prev)) == src
4262 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4263 {
4264 rtx note;
4265
4266 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4267 validate_change (insn, &SET_DEST (set), src, 1);
4268 validate_change (insn, &SET_SRC (set), dest, 1);
4269 apply_change_group ();
4270
4271 /* If INSN has a REG_EQUAL note, and this note mentions
4272 REG0, then we must delete it, because the value in
4273 REG0 has changed. If the note's value is REG1, we must
4274 also delete it because that is now this insn's dest. */
4275 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4276 if (note != 0
4277 && (reg_mentioned_p (dest, XEXP (note, 0))
4278 || rtx_equal_p (src, XEXP (note, 0))))
4279 remove_note (insn, note);
4280
4281 /* If INSN has a REG_ARGS_SIZE note, move it to PREV. */
4282 note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4283 if (note != 0)
4284 {
4285 remove_note (insn, note);
4286 gcc_assert (!find_reg_note (prev, REG_ARGS_SIZE, NULL_RTX));
4287 set_unique_reg_note (prev, REG_ARGS_SIZE, XEXP (note, 0));
4288 }
4289 }
4290 }
4291 }
4292 }
4293 \f
4294 /* Record all the SETs in this instruction into SETS_PTR,
4295 and return the number of recorded sets. */
4296 static int
4297 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4298 {
4299 struct set *sets = *psets;
4300 int n_sets = 0;
4301 rtx x = PATTERN (insn);
4302
4303 if (GET_CODE (x) == SET)
4304 {
4305 /* Ignore SETs that are unconditional jumps.
4306 They never need cse processing, so this does not hurt.
4307 The reason is not efficiency but rather
4308 so that we can test at the end for instructions
4309 that have been simplified to unconditional jumps
4310 and not be misled by unchanged instructions
4311 that were unconditional jumps to begin with. */
4312 if (SET_DEST (x) == pc_rtx
4313 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4314 ;
4315 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4316 The hard function value register is used only once, to copy to
4317 someplace else, so it isn't worth cse'ing. */
4318 else if (GET_CODE (SET_SRC (x)) == CALL)
4319 ;
4320 else
4321 sets[n_sets++].rtl = x;
4322 }
4323 else if (GET_CODE (x) == PARALLEL)
4324 {
4325 int i, lim = XVECLEN (x, 0);
4326
4327 /* Go over the expressions of the PARALLEL in forward order, to
4328 put them in the same order in the SETS array. */
4329 for (i = 0; i < lim; i++)
4330 {
4331 rtx y = XVECEXP (x, 0, i);
4332 if (GET_CODE (y) == SET)
4333 {
4334 /* As above, we ignore unconditional jumps and call-insns and
4335 ignore the result of apply_change_group. */
4336 if (SET_DEST (y) == pc_rtx
4337 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4338 ;
4339 else if (GET_CODE (SET_SRC (y)) == CALL)
4340 ;
4341 else
4342 sets[n_sets++].rtl = y;
4343 }
4344 }
4345 }
4346
4347 return n_sets;
4348 }
4349 \f
4350 /* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */
4351
4352 static void
4353 canon_asm_operands (rtx x, rtx_insn *insn)
4354 {
4355 for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4356 {
4357 rtx input = ASM_OPERANDS_INPUT (x, i);
4358 if (!(REG_P (input) && HARD_REGISTER_P (input)))
4359 {
4360 input = canon_reg (input, insn);
4361 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4362 }
4363 }
4364 }
4365
4366 /* Where possible, substitute every register reference in the N_SETS
4367 number of SETS in INSN with the canonical register.
4368
4369 Register canonicalization propagatest the earliest register (i.e.
4370 one that is set before INSN) with the same value. This is a very
4371 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4372 to RTL. For instance, a CONST for an address is usually expanded
4373 multiple times to loads into different registers, thus creating many
4374 subexpressions of the form:
4375
4376 (set (reg1) (some_const))
4377 (set (mem (... reg1 ...) (thing)))
4378 (set (reg2) (some_const))
4379 (set (mem (... reg2 ...) (thing)))
4380
4381 After canonicalizing, the code takes the following form:
4382
4383 (set (reg1) (some_const))
4384 (set (mem (... reg1 ...) (thing)))
4385 (set (reg2) (some_const))
4386 (set (mem (... reg1 ...) (thing)))
4387
4388 The set to reg2 is now trivially dead, and the memory reference (or
4389 address, or whatever) may be a candidate for further CSEing.
4390
4391 In this function, the result of apply_change_group can be ignored;
4392 see canon_reg. */
4393
4394 static void
4395 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4396 {
4397 struct set *sets = *psets;
4398 rtx tem;
4399 rtx x = PATTERN (insn);
4400 int i;
4401
4402 if (CALL_P (insn))
4403 {
4404 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4405 if (GET_CODE (XEXP (tem, 0)) != SET)
4406 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4407 }
4408
4409 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4410 {
4411 canon_reg (SET_SRC (x), insn);
4412 apply_change_group ();
4413 fold_rtx (SET_SRC (x), insn);
4414 }
4415 else if (GET_CODE (x) == CLOBBER)
4416 {
4417 /* If we clobber memory, canon the address.
4418 This does nothing when a register is clobbered
4419 because we have already invalidated the reg. */
4420 if (MEM_P (XEXP (x, 0)))
4421 canon_reg (XEXP (x, 0), insn);
4422 }
4423 else if (GET_CODE (x) == CLOBBER_HIGH)
4424 gcc_assert (REG_P (XEXP (x, 0)));
4425 else if (GET_CODE (x) == USE
4426 && ! (REG_P (XEXP (x, 0))
4427 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4428 /* Canonicalize a USE of a pseudo register or memory location. */
4429 canon_reg (x, insn);
4430 else if (GET_CODE (x) == ASM_OPERANDS)
4431 canon_asm_operands (x, insn);
4432 else if (GET_CODE (x) == CALL)
4433 {
4434 canon_reg (x, insn);
4435 apply_change_group ();
4436 fold_rtx (x, insn);
4437 }
4438 else if (DEBUG_INSN_P (insn))
4439 canon_reg (PATTERN (insn), insn);
4440 else if (GET_CODE (x) == PARALLEL)
4441 {
4442 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4443 {
4444 rtx y = XVECEXP (x, 0, i);
4445 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4446 {
4447 canon_reg (SET_SRC (y), insn);
4448 apply_change_group ();
4449 fold_rtx (SET_SRC (y), insn);
4450 }
4451 else if (GET_CODE (y) == CLOBBER)
4452 {
4453 if (MEM_P (XEXP (y, 0)))
4454 canon_reg (XEXP (y, 0), insn);
4455 }
4456 else if (GET_CODE (y) == CLOBBER_HIGH)
4457 gcc_assert (REG_P (XEXP (y, 0)));
4458 else if (GET_CODE (y) == USE
4459 && ! (REG_P (XEXP (y, 0))
4460 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4461 canon_reg (y, insn);
4462 else if (GET_CODE (y) == ASM_OPERANDS)
4463 canon_asm_operands (y, insn);
4464 else if (GET_CODE (y) == CALL)
4465 {
4466 canon_reg (y, insn);
4467 apply_change_group ();
4468 fold_rtx (y, insn);
4469 }
4470 }
4471 }
4472
4473 if (n_sets == 1 && REG_NOTES (insn) != 0
4474 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4475 {
4476 /* We potentially will process this insn many times. Therefore,
4477 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4478 unique set in INSN.
4479
4480 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4481 because cse_insn handles those specially. */
4482 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4483 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4484 remove_note (insn, tem);
4485 else
4486 {
4487 canon_reg (XEXP (tem, 0), insn);
4488 apply_change_group ();
4489 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4490 df_notes_rescan (insn);
4491 }
4492 }
4493
4494 /* Canonicalize sources and addresses of destinations.
4495 We do this in a separate pass to avoid problems when a MATCH_DUP is
4496 present in the insn pattern. In that case, we want to ensure that
4497 we don't break the duplicate nature of the pattern. So we will replace
4498 both operands at the same time. Otherwise, we would fail to find an
4499 equivalent substitution in the loop calling validate_change below.
4500
4501 We used to suppress canonicalization of DEST if it appears in SRC,
4502 but we don't do this any more. */
4503
4504 for (i = 0; i < n_sets; i++)
4505 {
4506 rtx dest = SET_DEST (sets[i].rtl);
4507 rtx src = SET_SRC (sets[i].rtl);
4508 rtx new_rtx = canon_reg (src, insn);
4509
4510 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4511
4512 if (GET_CODE (dest) == ZERO_EXTRACT)
4513 {
4514 validate_change (insn, &XEXP (dest, 1),
4515 canon_reg (XEXP (dest, 1), insn), 1);
4516 validate_change (insn, &XEXP (dest, 2),
4517 canon_reg (XEXP (dest, 2), insn), 1);
4518 }
4519
4520 while (GET_CODE (dest) == SUBREG
4521 || GET_CODE (dest) == ZERO_EXTRACT
4522 || GET_CODE (dest) == STRICT_LOW_PART)
4523 dest = XEXP (dest, 0);
4524
4525 if (MEM_P (dest))
4526 canon_reg (dest, insn);
4527 }
4528
4529 /* Now that we have done all the replacements, we can apply the change
4530 group and see if they all work. Note that this will cause some
4531 canonicalizations that would have worked individually not to be applied
4532 because some other canonicalization didn't work, but this should not
4533 occur often.
4534
4535 The result of apply_change_group can be ignored; see canon_reg. */
4536
4537 apply_change_group ();
4538 }
4539 \f
4540 /* Main function of CSE.
4541 First simplify sources and addresses of all assignments
4542 in the instruction, using previously-computed equivalents values.
4543 Then install the new sources and destinations in the table
4544 of available values. */
4545
4546 static void
4547 cse_insn (rtx_insn *insn)
4548 {
4549 rtx x = PATTERN (insn);
4550 int i;
4551 rtx tem;
4552 int n_sets = 0;
4553
4554 rtx src_eqv = 0;
4555 struct table_elt *src_eqv_elt = 0;
4556 int src_eqv_volatile = 0;
4557 int src_eqv_in_memory = 0;
4558 unsigned src_eqv_hash = 0;
4559
4560 struct set *sets = (struct set *) 0;
4561
4562 if (GET_CODE (x) == SET)
4563 sets = XALLOCA (struct set);
4564 else if (GET_CODE (x) == PARALLEL)
4565 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4566
4567 this_insn = insn;
4568 /* Records what this insn does to set CC0. */
4569 this_insn_cc0 = 0;
4570 this_insn_cc0_mode = VOIDmode;
4571
4572 /* Find all regs explicitly clobbered in this insn,
4573 to ensure they are not replaced with any other regs
4574 elsewhere in this insn. */
4575 invalidate_from_sets_and_clobbers (insn);
4576
4577 /* Record all the SETs in this instruction. */
4578 n_sets = find_sets_in_insn (insn, &sets);
4579
4580 /* Substitute the canonical register where possible. */
4581 canonicalize_insn (insn, &sets, n_sets);
4582
4583 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4584 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The
4585 latter condition is necessary because SRC_EQV is handled specially for
4586 this case, and if it isn't set, then there will be no equivalence
4587 for the destination. */
4588 if (n_sets == 1 && REG_NOTES (insn) != 0
4589 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4590 {
4591
4592 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4593 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4594 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4595 src_eqv = copy_rtx (XEXP (tem, 0));
4596 /* If DEST is of the form ZERO_EXTACT, as in:
4597 (set (zero_extract:SI (reg:SI 119)
4598 (const_int 16 [0x10])
4599 (const_int 16 [0x10]))
4600 (const_int 51154 [0xc7d2]))
4601 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4602 point. Note that this is different from SRC_EQV. We can however
4603 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */
4604 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
4605 && CONST_INT_P (XEXP (tem, 0))
4606 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4607 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4608 {
4609 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
4610 /* This is the mode of XEXP (tem, 0) as well. */
4611 scalar_int_mode dest_mode
4612 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
4613 rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4614 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
4615 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
4616 HOST_WIDE_INT mask;
4617 unsigned int shift;
4618 if (BITS_BIG_ENDIAN)
4619 shift = (GET_MODE_PRECISION (dest_mode)
4620 - INTVAL (pos) - INTVAL (width));
4621 else
4622 shift = INTVAL (pos);
4623 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
4624 mask = HOST_WIDE_INT_M1;
4625 else
4626 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
4627 val = (val >> shift) & mask;
4628 src_eqv = GEN_INT (val);
4629 }
4630 }
4631
4632 /* Set sets[i].src_elt to the class each source belongs to.
4633 Detect assignments from or to volatile things
4634 and set set[i] to zero so they will be ignored
4635 in the rest of this function.
4636
4637 Nothing in this loop changes the hash table or the register chains. */
4638
4639 for (i = 0; i < n_sets; i++)
4640 {
4641 bool repeat = false;
4642 bool mem_noop_insn = false;
4643 rtx src, dest;
4644 rtx src_folded;
4645 struct table_elt *elt = 0, *p;
4646 machine_mode mode;
4647 rtx src_eqv_here;
4648 rtx src_const = 0;
4649 rtx src_related = 0;
4650 bool src_related_is_const_anchor = false;
4651 struct table_elt *src_const_elt = 0;
4652 int src_cost = MAX_COST;
4653 int src_eqv_cost = MAX_COST;
4654 int src_folded_cost = MAX_COST;
4655 int src_related_cost = MAX_COST;
4656 int src_elt_cost = MAX_COST;
4657 int src_regcost = MAX_COST;
4658 int src_eqv_regcost = MAX_COST;
4659 int src_folded_regcost = MAX_COST;
4660 int src_related_regcost = MAX_COST;
4661 int src_elt_regcost = MAX_COST;
4662 /* Set nonzero if we need to call force_const_mem on with the
4663 contents of src_folded before using it. */
4664 int src_folded_force_flag = 0;
4665 scalar_int_mode int_mode;
4666
4667 dest = SET_DEST (sets[i].rtl);
4668 src = SET_SRC (sets[i].rtl);
4669
4670 /* If SRC is a constant that has no machine mode,
4671 hash it with the destination's machine mode.
4672 This way we can keep different modes separate. */
4673
4674 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4675 sets[i].mode = mode;
4676
4677 if (src_eqv)
4678 {
4679 machine_mode eqvmode = mode;
4680 if (GET_CODE (dest) == STRICT_LOW_PART)
4681 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4682 do_not_record = 0;
4683 hash_arg_in_memory = 0;
4684 src_eqv_hash = HASH (src_eqv, eqvmode);
4685
4686 /* Find the equivalence class for the equivalent expression. */
4687
4688 if (!do_not_record)
4689 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4690
4691 src_eqv_volatile = do_not_record;
4692 src_eqv_in_memory = hash_arg_in_memory;
4693 }
4694
4695 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4696 value of the INNER register, not the destination. So it is not
4697 a valid substitution for the source. But save it for later. */
4698 if (GET_CODE (dest) == STRICT_LOW_PART)
4699 src_eqv_here = 0;
4700 else
4701 src_eqv_here = src_eqv;
4702
4703 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4704 simplified result, which may not necessarily be valid. */
4705 src_folded = fold_rtx (src, NULL);
4706
4707 #if 0
4708 /* ??? This caused bad code to be generated for the m68k port with -O2.
4709 Suppose src is (CONST_INT -1), and that after truncation src_folded
4710 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4711 At the end we will add src and src_const to the same equivalence
4712 class. We now have 3 and -1 on the same equivalence class. This
4713 causes later instructions to be mis-optimized. */
4714 /* If storing a constant in a bitfield, pre-truncate the constant
4715 so we will be able to record it later. */
4716 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4717 {
4718 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4719
4720 if (CONST_INT_P (src)
4721 && CONST_INT_P (width)
4722 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4723 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4724 src_folded
4725 = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1
4726 << INTVAL (width)) - 1));
4727 }
4728 #endif
4729
4730 /* Compute SRC's hash code, and also notice if it
4731 should not be recorded at all. In that case,
4732 prevent any further processing of this assignment. */
4733 do_not_record = 0;
4734 hash_arg_in_memory = 0;
4735
4736 sets[i].src = src;
4737 sets[i].src_hash = HASH (src, mode);
4738 sets[i].src_volatile = do_not_record;
4739 sets[i].src_in_memory = hash_arg_in_memory;
4740
4741 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4742 a pseudo, do not record SRC. Using SRC as a replacement for
4743 anything else will be incorrect in that situation. Note that
4744 this usually occurs only for stack slots, in which case all the
4745 RTL would be referring to SRC, so we don't lose any optimization
4746 opportunities by not having SRC in the hash table. */
4747
4748 if (MEM_P (src)
4749 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4750 && REG_P (dest)
4751 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4752 sets[i].src_volatile = 1;
4753
4754 else if (GET_CODE (src) == ASM_OPERANDS
4755 && GET_CODE (x) == PARALLEL)
4756 {
4757 /* Do not record result of a non-volatile inline asm with
4758 more than one result. */
4759 if (n_sets > 1)
4760 sets[i].src_volatile = 1;
4761
4762 int j, lim = XVECLEN (x, 0);
4763 for (j = 0; j < lim; j++)
4764 {
4765 rtx y = XVECEXP (x, 0, j);
4766 /* And do not record result of a non-volatile inline asm
4767 with "memory" clobber. */
4768 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4769 {
4770 sets[i].src_volatile = 1;
4771 break;
4772 }
4773 }
4774 }
4775
4776 #if 0
4777 /* It is no longer clear why we used to do this, but it doesn't
4778 appear to still be needed. So let's try without it since this
4779 code hurts cse'ing widened ops. */
4780 /* If source is a paradoxical subreg (such as QI treated as an SI),
4781 treat it as volatile. It may do the work of an SI in one context
4782 where the extra bits are not being used, but cannot replace an SI
4783 in general. */
4784 if (paradoxical_subreg_p (src))
4785 sets[i].src_volatile = 1;
4786 #endif
4787
4788 /* Locate all possible equivalent forms for SRC. Try to replace
4789 SRC in the insn with each cheaper equivalent.
4790
4791 We have the following types of equivalents: SRC itself, a folded
4792 version, a value given in a REG_EQUAL note, or a value related
4793 to a constant.
4794
4795 Each of these equivalents may be part of an additional class
4796 of equivalents (if more than one is in the table, they must be in
4797 the same class; we check for this).
4798
4799 If the source is volatile, we don't do any table lookups.
4800
4801 We note any constant equivalent for possible later use in a
4802 REG_NOTE. */
4803
4804 if (!sets[i].src_volatile)
4805 elt = lookup (src, sets[i].src_hash, mode);
4806
4807 sets[i].src_elt = elt;
4808
4809 if (elt && src_eqv_here && src_eqv_elt)
4810 {
4811 if (elt->first_same_value != src_eqv_elt->first_same_value)
4812 {
4813 /* The REG_EQUAL is indicating that two formerly distinct
4814 classes are now equivalent. So merge them. */
4815 merge_equiv_classes (elt, src_eqv_elt);
4816 src_eqv_hash = HASH (src_eqv, elt->mode);
4817 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4818 }
4819
4820 src_eqv_here = 0;
4821 }
4822
4823 else if (src_eqv_elt)
4824 elt = src_eqv_elt;
4825
4826 /* Try to find a constant somewhere and record it in `src_const'.
4827 Record its table element, if any, in `src_const_elt'. Look in
4828 any known equivalences first. (If the constant is not in the
4829 table, also set `sets[i].src_const_hash'). */
4830 if (elt)
4831 for (p = elt->first_same_value; p; p = p->next_same_value)
4832 if (p->is_const)
4833 {
4834 src_const = p->exp;
4835 src_const_elt = elt;
4836 break;
4837 }
4838
4839 if (src_const == 0
4840 && (CONSTANT_P (src_folded)
4841 /* Consider (minus (label_ref L1) (label_ref L2)) as
4842 "constant" here so we will record it. This allows us
4843 to fold switch statements when an ADDR_DIFF_VEC is used. */
4844 || (GET_CODE (src_folded) == MINUS
4845 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4846 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4847 src_const = src_folded, src_const_elt = elt;
4848 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4849 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4850
4851 /* If we don't know if the constant is in the table, get its
4852 hash code and look it up. */
4853 if (src_const && src_const_elt == 0)
4854 {
4855 sets[i].src_const_hash = HASH (src_const, mode);
4856 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4857 }
4858
4859 sets[i].src_const = src_const;
4860 sets[i].src_const_elt = src_const_elt;
4861
4862 /* If the constant and our source are both in the table, mark them as
4863 equivalent. Otherwise, if a constant is in the table but the source
4864 isn't, set ELT to it. */
4865 if (src_const_elt && elt
4866 && src_const_elt->first_same_value != elt->first_same_value)
4867 merge_equiv_classes (elt, src_const_elt);
4868 else if (src_const_elt && elt == 0)
4869 elt = src_const_elt;
4870
4871 /* See if there is a register linearly related to a constant
4872 equivalent of SRC. */
4873 if (src_const
4874 && (GET_CODE (src_const) == CONST
4875 || (src_const_elt && src_const_elt->related_value != 0)))
4876 {
4877 src_related = use_related_value (src_const, src_const_elt);
4878 if (src_related)
4879 {
4880 struct table_elt *src_related_elt
4881 = lookup (src_related, HASH (src_related, mode), mode);
4882 if (src_related_elt && elt)
4883 {
4884 if (elt->first_same_value
4885 != src_related_elt->first_same_value)
4886 /* This can occur when we previously saw a CONST
4887 involving a SYMBOL_REF and then see the SYMBOL_REF
4888 twice. Merge the involved classes. */
4889 merge_equiv_classes (elt, src_related_elt);
4890
4891 src_related = 0;
4892 src_related_elt = 0;
4893 }
4894 else if (src_related_elt && elt == 0)
4895 elt = src_related_elt;
4896 }
4897 }
4898
4899 /* See if we have a CONST_INT that is already in a register in a
4900 wider mode. */
4901
4902 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4903 && is_int_mode (mode, &int_mode)
4904 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4905 {
4906 opt_scalar_int_mode wider_mode_iter;
4907 FOR_EACH_WIDER_MODE (wider_mode_iter, int_mode)
4908 {
4909 scalar_int_mode wider_mode = wider_mode_iter.require ();
4910 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
4911 break;
4912
4913 struct table_elt *const_elt
4914 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4915
4916 if (const_elt == 0)
4917 continue;
4918
4919 for (const_elt = const_elt->first_same_value;
4920 const_elt; const_elt = const_elt->next_same_value)
4921 if (REG_P (const_elt->exp))
4922 {
4923 src_related = gen_lowpart (int_mode, const_elt->exp);
4924 break;
4925 }
4926
4927 if (src_related != 0)
4928 break;
4929 }
4930 }
4931
4932 /* Another possibility is that we have an AND with a constant in
4933 a mode narrower than a word. If so, it might have been generated
4934 as part of an "if" which would narrow the AND. If we already
4935 have done the AND in a wider mode, we can use a SUBREG of that
4936 value. */
4937
4938 if (flag_expensive_optimizations && ! src_related
4939 && is_a <scalar_int_mode> (mode, &int_mode)
4940 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4941 && GET_MODE_SIZE (int_mode) < UNITS_PER_WORD)
4942 {
4943 opt_scalar_int_mode tmode_iter;
4944 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4945
4946 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
4947 {
4948 scalar_int_mode tmode = tmode_iter.require ();
4949 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4950 break;
4951
4952 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4953 struct table_elt *larger_elt;
4954
4955 if (inner)
4956 {
4957 PUT_MODE (new_and, tmode);
4958 XEXP (new_and, 0) = inner;
4959 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4960 if (larger_elt == 0)
4961 continue;
4962
4963 for (larger_elt = larger_elt->first_same_value;
4964 larger_elt; larger_elt = larger_elt->next_same_value)
4965 if (REG_P (larger_elt->exp))
4966 {
4967 src_related
4968 = gen_lowpart (int_mode, larger_elt->exp);
4969 break;
4970 }
4971
4972 if (src_related)
4973 break;
4974 }
4975 }
4976 }
4977
4978 /* See if a MEM has already been loaded with a widening operation;
4979 if it has, we can use a subreg of that. Many CISC machines
4980 also have such operations, but this is only likely to be
4981 beneficial on these machines. */
4982
4983 rtx_code extend_op;
4984 if (flag_expensive_optimizations && src_related == 0
4985 && MEM_P (src) && ! do_not_record
4986 && is_a <scalar_int_mode> (mode, &int_mode)
4987 && (extend_op = load_extend_op (int_mode)) != UNKNOWN)
4988 {
4989 struct rtx_def memory_extend_buf;
4990 rtx memory_extend_rtx = &memory_extend_buf;
4991
4992 /* Set what we are trying to extend and the operation it might
4993 have been extended with. */
4994 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4995 PUT_CODE (memory_extend_rtx, extend_op);
4996 XEXP (memory_extend_rtx, 0) = src;
4997
4998 opt_scalar_int_mode tmode_iter;
4999 FOR_EACH_WIDER_MODE (tmode_iter, int_mode)
5000 {
5001 struct table_elt *larger_elt;
5002
5003 scalar_int_mode tmode = tmode_iter.require ();
5004 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
5005 break;
5006
5007 PUT_MODE (memory_extend_rtx, tmode);
5008 larger_elt = lookup (memory_extend_rtx,
5009 HASH (memory_extend_rtx, tmode), tmode);
5010 if (larger_elt == 0)
5011 continue;
5012
5013 for (larger_elt = larger_elt->first_same_value;
5014 larger_elt; larger_elt = larger_elt->next_same_value)
5015 if (REG_P (larger_elt->exp))
5016 {
5017 src_related = gen_lowpart (int_mode, larger_elt->exp);
5018 break;
5019 }
5020
5021 if (src_related)
5022 break;
5023 }
5024 }
5025
5026 /* Try to express the constant using a register+offset expression
5027 derived from a constant anchor. */
5028
5029 if (targetm.const_anchor
5030 && !src_related
5031 && src_const
5032 && GET_CODE (src_const) == CONST_INT)
5033 {
5034 src_related = try_const_anchors (src_const, mode);
5035 src_related_is_const_anchor = src_related != NULL_RTX;
5036 }
5037
5038
5039 if (src == src_folded)
5040 src_folded = 0;
5041
5042 /* At this point, ELT, if nonzero, points to a class of expressions
5043 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5044 and SRC_RELATED, if nonzero, each contain additional equivalent
5045 expressions. Prune these latter expressions by deleting expressions
5046 already in the equivalence class.
5047
5048 Check for an equivalent identical to the destination. If found,
5049 this is the preferred equivalent since it will likely lead to
5050 elimination of the insn. Indicate this by placing it in
5051 `src_related'. */
5052
5053 if (elt)
5054 elt = elt->first_same_value;
5055 for (p = elt; p; p = p->next_same_value)
5056 {
5057 enum rtx_code code = GET_CODE (p->exp);
5058
5059 /* If the expression is not valid, ignore it. Then we do not
5060 have to check for validity below. In most cases, we can use
5061 `rtx_equal_p', since canonicalization has already been done. */
5062 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5063 continue;
5064
5065 /* Also skip paradoxical subregs, unless that's what we're
5066 looking for. */
5067 if (paradoxical_subreg_p (p->exp)
5068 && ! (src != 0
5069 && GET_CODE (src) == SUBREG
5070 && GET_MODE (src) == GET_MODE (p->exp)
5071 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5072 GET_MODE (SUBREG_REG (p->exp)))))
5073 continue;
5074
5075 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5076 src = 0;
5077 else if (src_folded && GET_CODE (src_folded) == code
5078 && rtx_equal_p (src_folded, p->exp))
5079 src_folded = 0;
5080 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5081 && rtx_equal_p (src_eqv_here, p->exp))
5082 src_eqv_here = 0;
5083 else if (src_related && GET_CODE (src_related) == code
5084 && rtx_equal_p (src_related, p->exp))
5085 src_related = 0;
5086
5087 /* This is the same as the destination of the insns, we want
5088 to prefer it. Copy it to src_related. The code below will
5089 then give it a negative cost. */
5090 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5091 src_related = dest;
5092 }
5093
5094 /* Find the cheapest valid equivalent, trying all the available
5095 possibilities. Prefer items not in the hash table to ones
5096 that are when they are equal cost. Note that we can never
5097 worsen an insn as the current contents will also succeed.
5098 If we find an equivalent identical to the destination, use it as best,
5099 since this insn will probably be eliminated in that case. */
5100 if (src)
5101 {
5102 if (rtx_equal_p (src, dest))
5103 src_cost = src_regcost = -1;
5104 else
5105 {
5106 src_cost = COST (src, mode);
5107 src_regcost = approx_reg_cost (src);
5108 }
5109 }
5110
5111 if (src_eqv_here)
5112 {
5113 if (rtx_equal_p (src_eqv_here, dest))
5114 src_eqv_cost = src_eqv_regcost = -1;
5115 else
5116 {
5117 src_eqv_cost = COST (src_eqv_here, mode);
5118 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5119 }
5120 }
5121
5122 if (src_folded)
5123 {
5124 if (rtx_equal_p (src_folded, dest))
5125 src_folded_cost = src_folded_regcost = -1;
5126 else
5127 {
5128 src_folded_cost = COST (src_folded, mode);
5129 src_folded_regcost = approx_reg_cost (src_folded);
5130 }
5131 }
5132
5133 if (src_related)
5134 {
5135 if (rtx_equal_p (src_related, dest))
5136 src_related_cost = src_related_regcost = -1;
5137 else
5138 {
5139 src_related_cost = COST (src_related, mode);
5140 src_related_regcost = approx_reg_cost (src_related);
5141
5142 /* If a const-anchor is used to synthesize a constant that
5143 normally requires multiple instructions then slightly prefer
5144 it over the original sequence. These instructions are likely
5145 to become redundant now. We can't compare against the cost
5146 of src_eqv_here because, on MIPS for example, multi-insn
5147 constants have zero cost; they are assumed to be hoisted from
5148 loops. */
5149 if (src_related_is_const_anchor
5150 && src_related_cost == src_cost
5151 && src_eqv_here)
5152 src_related_cost--;
5153 }
5154 }
5155
5156 /* If this was an indirect jump insn, a known label will really be
5157 cheaper even though it looks more expensive. */
5158 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5159 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5160
5161 /* Terminate loop when replacement made. This must terminate since
5162 the current contents will be tested and will always be valid. */
5163 while (1)
5164 {
5165 rtx trial;
5166
5167 /* Skip invalid entries. */
5168 while (elt && !REG_P (elt->exp)
5169 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5170 elt = elt->next_same_value;
5171
5172 /* A paradoxical subreg would be bad here: it'll be the right
5173 size, but later may be adjusted so that the upper bits aren't
5174 what we want. So reject it. */
5175 if (elt != 0
5176 && paradoxical_subreg_p (elt->exp)
5177 /* It is okay, though, if the rtx we're trying to match
5178 will ignore any of the bits we can't predict. */
5179 && ! (src != 0
5180 && GET_CODE (src) == SUBREG
5181 && GET_MODE (src) == GET_MODE (elt->exp)
5182 && partial_subreg_p (GET_MODE (SUBREG_REG (src)),
5183 GET_MODE (SUBREG_REG (elt->exp)))))
5184 {
5185 elt = elt->next_same_value;
5186 continue;
5187 }
5188
5189 if (elt)
5190 {
5191 src_elt_cost = elt->cost;
5192 src_elt_regcost = elt->regcost;
5193 }
5194
5195 /* Find cheapest and skip it for the next time. For items
5196 of equal cost, use this order:
5197 src_folded, src, src_eqv, src_related and hash table entry. */
5198 if (src_folded
5199 && preferable (src_folded_cost, src_folded_regcost,
5200 src_cost, src_regcost) <= 0
5201 && preferable (src_folded_cost, src_folded_regcost,
5202 src_eqv_cost, src_eqv_regcost) <= 0
5203 && preferable (src_folded_cost, src_folded_regcost,
5204 src_related_cost, src_related_regcost) <= 0
5205 && preferable (src_folded_cost, src_folded_regcost,
5206 src_elt_cost, src_elt_regcost) <= 0)
5207 {
5208 trial = src_folded, src_folded_cost = MAX_COST;
5209 if (src_folded_force_flag)
5210 {
5211 rtx forced = force_const_mem (mode, trial);
5212 if (forced)
5213 trial = forced;
5214 }
5215 }
5216 else if (src
5217 && preferable (src_cost, src_regcost,
5218 src_eqv_cost, src_eqv_regcost) <= 0
5219 && preferable (src_cost, src_regcost,
5220 src_related_cost, src_related_regcost) <= 0
5221 && preferable (src_cost, src_regcost,
5222 src_elt_cost, src_elt_regcost) <= 0)
5223 trial = src, src_cost = MAX_COST;
5224 else if (src_eqv_here
5225 && preferable (src_eqv_cost, src_eqv_regcost,
5226 src_related_cost, src_related_regcost) <= 0
5227 && preferable (src_eqv_cost, src_eqv_regcost,
5228 src_elt_cost, src_elt_regcost) <= 0)
5229 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5230 else if (src_related
5231 && preferable (src_related_cost, src_related_regcost,
5232 src_elt_cost, src_elt_regcost) <= 0)
5233 trial = src_related, src_related_cost = MAX_COST;
5234 else
5235 {
5236 trial = elt->exp;
5237 elt = elt->next_same_value;
5238 src_elt_cost = MAX_COST;
5239 }
5240
5241 /* Try to optimize
5242 (set (reg:M N) (const_int A))
5243 (set (reg:M2 O) (const_int B))
5244 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5245 (reg:M2 O)). */
5246 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5247 && CONST_INT_P (trial)
5248 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5249 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5250 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5251 && (known_ge
5252 (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl))),
5253 INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))))
5254 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5255 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5256 <= HOST_BITS_PER_WIDE_INT))
5257 {
5258 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5259 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5260 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5261 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5262 struct table_elt *dest_elt
5263 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5264 rtx dest_cst = NULL;
5265
5266 if (dest_elt)
5267 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5268 if (p->is_const && CONST_INT_P (p->exp))
5269 {
5270 dest_cst = p->exp;
5271 break;
5272 }
5273 if (dest_cst)
5274 {
5275 HOST_WIDE_INT val = INTVAL (dest_cst);
5276 HOST_WIDE_INT mask;
5277 unsigned int shift;
5278 /* This is the mode of DEST_CST as well. */
5279 scalar_int_mode dest_mode
5280 = as_a <scalar_int_mode> (GET_MODE (dest_reg));
5281 if (BITS_BIG_ENDIAN)
5282 shift = GET_MODE_PRECISION (dest_mode)
5283 - INTVAL (pos) - INTVAL (width);
5284 else
5285 shift = INTVAL (pos);
5286 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5287 mask = HOST_WIDE_INT_M1;
5288 else
5289 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
5290 val &= ~(mask << shift);
5291 val |= (INTVAL (trial) & mask) << shift;
5292 val = trunc_int_for_mode (val, dest_mode);
5293 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5294 dest_reg, 1);
5295 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5296 GEN_INT (val), 1);
5297 if (apply_change_group ())
5298 {
5299 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5300 if (note)
5301 {
5302 remove_note (insn, note);
5303 df_notes_rescan (insn);
5304 }
5305 src_eqv = NULL_RTX;
5306 src_eqv_elt = NULL;
5307 src_eqv_volatile = 0;
5308 src_eqv_in_memory = 0;
5309 src_eqv_hash = 0;
5310 repeat = true;
5311 break;
5312 }
5313 }
5314 }
5315
5316 /* We don't normally have an insn matching (set (pc) (pc)), so
5317 check for this separately here. We will delete such an
5318 insn below.
5319
5320 For other cases such as a table jump or conditional jump
5321 where we know the ultimate target, go ahead and replace the
5322 operand. While that may not make a valid insn, we will
5323 reemit the jump below (and also insert any necessary
5324 barriers). */
5325 if (n_sets == 1 && dest == pc_rtx
5326 && (trial == pc_rtx
5327 || (GET_CODE (trial) == LABEL_REF
5328 && ! condjump_p (insn))))
5329 {
5330 /* Don't substitute non-local labels, this confuses CFG. */
5331 if (GET_CODE (trial) == LABEL_REF
5332 && LABEL_REF_NONLOCAL_P (trial))
5333 continue;
5334
5335 SET_SRC (sets[i].rtl) = trial;
5336 cse_jumps_altered = true;
5337 break;
5338 }
5339
5340 /* Similarly, lots of targets don't allow no-op
5341 (set (mem x) (mem x)) moves. */
5342 else if (n_sets == 1
5343 && MEM_P (trial)
5344 && MEM_P (dest)
5345 && rtx_equal_p (trial, dest)
5346 && !side_effects_p (dest)
5347 && (cfun->can_delete_dead_exceptions
5348 || insn_nothrow_p (insn)))
5349 {
5350 SET_SRC (sets[i].rtl) = trial;
5351 mem_noop_insn = true;
5352 break;
5353 }
5354
5355 /* Reject certain invalid forms of CONST that we create. */
5356 else if (CONSTANT_P (trial)
5357 && GET_CODE (trial) == CONST
5358 /* Reject cases that will cause decode_rtx_const to
5359 die. On the alpha when simplifying a switch, we
5360 get (const (truncate (minus (label_ref)
5361 (label_ref)))). */
5362 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5363 /* Likewise on IA-64, except without the
5364 truncate. */
5365 || (GET_CODE (XEXP (trial, 0)) == MINUS
5366 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5367 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5368 /* Do nothing for this case. */
5369 ;
5370
5371 /* Do not replace anything with a MEM, except the replacement
5372 is a no-op. This allows this loop to terminate. */
5373 else if (MEM_P (trial) && !rtx_equal_p (trial, SET_SRC(sets[i].rtl)))
5374 /* Do nothing for this case. */
5375 ;
5376
5377 /* Look for a substitution that makes a valid insn. */
5378 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5379 trial, 0))
5380 {
5381 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5382
5383 /* The result of apply_change_group can be ignored; see
5384 canon_reg. */
5385
5386 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5387 apply_change_group ();
5388
5389 break;
5390 }
5391
5392 /* If we previously found constant pool entries for
5393 constants and this is a constant, try making a
5394 pool entry. Put it in src_folded unless we already have done
5395 this since that is where it likely came from. */
5396
5397 else if (constant_pool_entries_cost
5398 && CONSTANT_P (trial)
5399 && (src_folded == 0
5400 || (!MEM_P (src_folded)
5401 && ! src_folded_force_flag))
5402 && GET_MODE_CLASS (mode) != MODE_CC
5403 && mode != VOIDmode)
5404 {
5405 src_folded_force_flag = 1;
5406 src_folded = trial;
5407 src_folded_cost = constant_pool_entries_cost;
5408 src_folded_regcost = constant_pool_entries_regcost;
5409 }
5410 }
5411
5412 /* If we changed the insn too much, handle this set from scratch. */
5413 if (repeat)
5414 {
5415 i--;
5416 continue;
5417 }
5418
5419 src = SET_SRC (sets[i].rtl);
5420
5421 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5422 However, there is an important exception: If both are registers
5423 that are not the head of their equivalence class, replace SET_SRC
5424 with the head of the class. If we do not do this, we will have
5425 both registers live over a portion of the basic block. This way,
5426 their lifetimes will likely abut instead of overlapping. */
5427 if (REG_P (dest)
5428 && REGNO_QTY_VALID_P (REGNO (dest)))
5429 {
5430 int dest_q = REG_QTY (REGNO (dest));
5431 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5432
5433 if (dest_ent->mode == GET_MODE (dest)
5434 && dest_ent->first_reg != REGNO (dest)
5435 && REG_P (src) && REGNO (src) == REGNO (dest)
5436 /* Don't do this if the original insn had a hard reg as
5437 SET_SRC or SET_DEST. */
5438 && (!REG_P (sets[i].src)
5439 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5440 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5441 /* We can't call canon_reg here because it won't do anything if
5442 SRC is a hard register. */
5443 {
5444 int src_q = REG_QTY (REGNO (src));
5445 struct qty_table_elem *src_ent = &qty_table[src_q];
5446 int first = src_ent->first_reg;
5447 rtx new_src
5448 = (first >= FIRST_PSEUDO_REGISTER
5449 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5450
5451 /* We must use validate-change even for this, because this
5452 might be a special no-op instruction, suitable only to
5453 tag notes onto. */
5454 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5455 {
5456 src = new_src;
5457 /* If we had a constant that is cheaper than what we are now
5458 setting SRC to, use that constant. We ignored it when we
5459 thought we could make this into a no-op. */
5460 if (src_const && COST (src_const, mode) < COST (src, mode)
5461 && validate_change (insn, &SET_SRC (sets[i].rtl),
5462 src_const, 0))
5463 src = src_const;
5464 }
5465 }
5466 }
5467
5468 /* If we made a change, recompute SRC values. */
5469 if (src != sets[i].src)
5470 {
5471 do_not_record = 0;
5472 hash_arg_in_memory = 0;
5473 sets[i].src = src;
5474 sets[i].src_hash = HASH (src, mode);
5475 sets[i].src_volatile = do_not_record;
5476 sets[i].src_in_memory = hash_arg_in_memory;
5477 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5478 }
5479
5480 /* If this is a single SET, we are setting a register, and we have an
5481 equivalent constant, we want to add a REG_EQUAL note if the constant
5482 is different from the source. We don't want to do it for a constant
5483 pseudo since verifying that this pseudo hasn't been eliminated is a
5484 pain; moreover such a note won't help anything.
5485
5486 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5487 which can be created for a reference to a compile time computable
5488 entry in a jump table. */
5489 if (n_sets == 1
5490 && REG_P (dest)
5491 && src_const
5492 && !REG_P (src_const)
5493 && !(GET_CODE (src_const) == SUBREG
5494 && REG_P (SUBREG_REG (src_const)))
5495 && !(GET_CODE (src_const) == CONST
5496 && GET_CODE (XEXP (src_const, 0)) == MINUS
5497 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5498 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5499 && !rtx_equal_p (src, src_const))
5500 {
5501 /* Make sure that the rtx is not shared. */
5502 src_const = copy_rtx (src_const);
5503
5504 /* Record the actual constant value in a REG_EQUAL note,
5505 making a new one if one does not already exist. */
5506 set_unique_reg_note (insn, REG_EQUAL, src_const);
5507 df_notes_rescan (insn);
5508 }
5509
5510 /* Now deal with the destination. */
5511 do_not_record = 0;
5512
5513 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5514 while (GET_CODE (dest) == SUBREG
5515 || GET_CODE (dest) == ZERO_EXTRACT
5516 || GET_CODE (dest) == STRICT_LOW_PART)
5517 dest = XEXP (dest, 0);
5518
5519 sets[i].inner_dest = dest;
5520
5521 if (MEM_P (dest))
5522 {
5523 #ifdef PUSH_ROUNDING
5524 /* Stack pushes invalidate the stack pointer. */
5525 rtx addr = XEXP (dest, 0);
5526 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5527 && XEXP (addr, 0) == stack_pointer_rtx)
5528 invalidate (stack_pointer_rtx, VOIDmode);
5529 #endif
5530 dest = fold_rtx (dest, insn);
5531 }
5532
5533 /* Compute the hash code of the destination now,
5534 before the effects of this instruction are recorded,
5535 since the register values used in the address computation
5536 are those before this instruction. */
5537 sets[i].dest_hash = HASH (dest, mode);
5538
5539 /* Don't enter a bit-field in the hash table
5540 because the value in it after the store
5541 may not equal what was stored, due to truncation. */
5542
5543 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5544 {
5545 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5546
5547 if (src_const != 0 && CONST_INT_P (src_const)
5548 && CONST_INT_P (width)
5549 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5550 && ! (INTVAL (src_const)
5551 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5552 /* Exception: if the value is constant,
5553 and it won't be truncated, record it. */
5554 ;
5555 else
5556 {
5557 /* This is chosen so that the destination will be invalidated
5558 but no new value will be recorded.
5559 We must invalidate because sometimes constant
5560 values can be recorded for bitfields. */
5561 sets[i].src_elt = 0;
5562 sets[i].src_volatile = 1;
5563 src_eqv = 0;
5564 src_eqv_elt = 0;
5565 }
5566 }
5567
5568 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5569 the insn. */
5570 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5571 {
5572 /* One less use of the label this insn used to jump to. */
5573 cse_cfg_altered |= delete_insn_and_edges (insn);
5574 cse_jumps_altered = true;
5575 /* No more processing for this set. */
5576 sets[i].rtl = 0;
5577 }
5578
5579 /* Similarly for no-op MEM moves. */
5580 else if (mem_noop_insn)
5581 {
5582 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5583 cse_cfg_altered = true;
5584 cse_cfg_altered |= delete_insn_and_edges (insn);
5585 /* No more processing for this set. */
5586 sets[i].rtl = 0;
5587 }
5588
5589 /* If this SET is now setting PC to a label, we know it used to
5590 be a conditional or computed branch. */
5591 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5592 && !LABEL_REF_NONLOCAL_P (src))
5593 {
5594 /* We reemit the jump in as many cases as possible just in
5595 case the form of an unconditional jump is significantly
5596 different than a computed jump or conditional jump.
5597
5598 If this insn has multiple sets, then reemitting the
5599 jump is nontrivial. So instead we just force rerecognition
5600 and hope for the best. */
5601 if (n_sets == 1)
5602 {
5603 rtx_jump_insn *new_rtx;
5604 rtx note;
5605
5606 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5607 new_rtx = emit_jump_insn_before (seq, insn);
5608 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5609 LABEL_NUSES (XEXP (src, 0))++;
5610
5611 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5612 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5613 if (note)
5614 {
5615 XEXP (note, 1) = NULL_RTX;
5616 REG_NOTES (new_rtx) = note;
5617 }
5618
5619 cse_cfg_altered |= delete_insn_and_edges (insn);
5620 insn = new_rtx;
5621 }
5622 else
5623 INSN_CODE (insn) = -1;
5624
5625 /* Do not bother deleting any unreachable code, let jump do it. */
5626 cse_jumps_altered = true;
5627 sets[i].rtl = 0;
5628 }
5629
5630 /* If destination is volatile, invalidate it and then do no further
5631 processing for this assignment. */
5632
5633 else if (do_not_record)
5634 {
5635 invalidate_dest (dest);
5636 sets[i].rtl = 0;
5637 }
5638
5639 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5640 {
5641 do_not_record = 0;
5642 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5643 if (do_not_record)
5644 {
5645 invalidate_dest (SET_DEST (sets[i].rtl));
5646 sets[i].rtl = 0;
5647 }
5648 }
5649
5650 /* If setting CC0, record what it was set to, or a constant, if it
5651 is equivalent to a constant. If it is being set to a floating-point
5652 value, make a COMPARE with the appropriate constant of 0. If we
5653 don't do this, later code can interpret this as a test against
5654 const0_rtx, which can cause problems if we try to put it into an
5655 insn as a floating-point operand. */
5656 if (dest == cc0_rtx)
5657 {
5658 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5659 this_insn_cc0_mode = mode;
5660 if (FLOAT_MODE_P (mode))
5661 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5662 CONST0_RTX (mode));
5663 }
5664 }
5665
5666 /* Now enter all non-volatile source expressions in the hash table
5667 if they are not already present.
5668 Record their equivalence classes in src_elt.
5669 This way we can insert the corresponding destinations into
5670 the same classes even if the actual sources are no longer in them
5671 (having been invalidated). */
5672
5673 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5674 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5675 {
5676 struct table_elt *elt;
5677 struct table_elt *classp = sets[0].src_elt;
5678 rtx dest = SET_DEST (sets[0].rtl);
5679 machine_mode eqvmode = GET_MODE (dest);
5680
5681 if (GET_CODE (dest) == STRICT_LOW_PART)
5682 {
5683 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5684 classp = 0;
5685 }
5686 if (insert_regs (src_eqv, classp, 0))
5687 {
5688 rehash_using_reg (src_eqv);
5689 src_eqv_hash = HASH (src_eqv, eqvmode);
5690 }
5691 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5692 elt->in_memory = src_eqv_in_memory;
5693 src_eqv_elt = elt;
5694
5695 /* Check to see if src_eqv_elt is the same as a set source which
5696 does not yet have an elt, and if so set the elt of the set source
5697 to src_eqv_elt. */
5698 for (i = 0; i < n_sets; i++)
5699 if (sets[i].rtl && sets[i].src_elt == 0
5700 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5701 sets[i].src_elt = src_eqv_elt;
5702 }
5703
5704 for (i = 0; i < n_sets; i++)
5705 if (sets[i].rtl && ! sets[i].src_volatile
5706 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5707 {
5708 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5709 {
5710 /* REG_EQUAL in setting a STRICT_LOW_PART
5711 gives an equivalent for the entire destination register,
5712 not just for the subreg being stored in now.
5713 This is a more interesting equivalence, so we arrange later
5714 to treat the entire reg as the destination. */
5715 sets[i].src_elt = src_eqv_elt;
5716 sets[i].src_hash = src_eqv_hash;
5717 }
5718 else
5719 {
5720 /* Insert source and constant equivalent into hash table, if not
5721 already present. */
5722 struct table_elt *classp = src_eqv_elt;
5723 rtx src = sets[i].src;
5724 rtx dest = SET_DEST (sets[i].rtl);
5725 machine_mode mode
5726 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5727
5728 /* It's possible that we have a source value known to be
5729 constant but don't have a REG_EQUAL note on the insn.
5730 Lack of a note will mean src_eqv_elt will be NULL. This
5731 can happen where we've generated a SUBREG to access a
5732 CONST_INT that is already in a register in a wider mode.
5733 Ensure that the source expression is put in the proper
5734 constant class. */
5735 if (!classp)
5736 classp = sets[i].src_const_elt;
5737
5738 if (sets[i].src_elt == 0)
5739 {
5740 struct table_elt *elt;
5741
5742 /* Note that these insert_regs calls cannot remove
5743 any of the src_elt's, because they would have failed to
5744 match if not still valid. */
5745 if (insert_regs (src, classp, 0))
5746 {
5747 rehash_using_reg (src);
5748 sets[i].src_hash = HASH (src, mode);
5749 }
5750 elt = insert (src, classp, sets[i].src_hash, mode);
5751 elt->in_memory = sets[i].src_in_memory;
5752 /* If inline asm has any clobbers, ensure we only reuse
5753 existing inline asms and never try to put the ASM_OPERANDS
5754 into an insn that isn't inline asm. */
5755 if (GET_CODE (src) == ASM_OPERANDS
5756 && GET_CODE (x) == PARALLEL)
5757 elt->cost = MAX_COST;
5758 sets[i].src_elt = classp = elt;
5759 }
5760 if (sets[i].src_const && sets[i].src_const_elt == 0
5761 && src != sets[i].src_const
5762 && ! rtx_equal_p (sets[i].src_const, src))
5763 sets[i].src_elt = insert (sets[i].src_const, classp,
5764 sets[i].src_const_hash, mode);
5765 }
5766 }
5767 else if (sets[i].src_elt == 0)
5768 /* If we did not insert the source into the hash table (e.g., it was
5769 volatile), note the equivalence class for the REG_EQUAL value, if any,
5770 so that the destination goes into that class. */
5771 sets[i].src_elt = src_eqv_elt;
5772
5773 /* Record destination addresses in the hash table. This allows us to
5774 check if they are invalidated by other sets. */
5775 for (i = 0; i < n_sets; i++)
5776 {
5777 if (sets[i].rtl)
5778 {
5779 rtx x = sets[i].inner_dest;
5780 struct table_elt *elt;
5781 machine_mode mode;
5782 unsigned hash;
5783
5784 if (MEM_P (x))
5785 {
5786 x = XEXP (x, 0);
5787 mode = GET_MODE (x);
5788 hash = HASH (x, mode);
5789 elt = lookup (x, hash, mode);
5790 if (!elt)
5791 {
5792 if (insert_regs (x, NULL, 0))
5793 {
5794 rtx dest = SET_DEST (sets[i].rtl);
5795
5796 rehash_using_reg (x);
5797 hash = HASH (x, mode);
5798 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5799 }
5800 elt = insert (x, NULL, hash, mode);
5801 }
5802
5803 sets[i].dest_addr_elt = elt;
5804 }
5805 else
5806 sets[i].dest_addr_elt = NULL;
5807 }
5808 }
5809
5810 invalidate_from_clobbers (insn);
5811
5812 /* Some registers are invalidated by subroutine calls. Memory is
5813 invalidated by non-constant calls. */
5814
5815 if (CALL_P (insn))
5816 {
5817 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5818 invalidate_memory ();
5819 else
5820 /* For const/pure calls, invalidate any argument slots, because
5821 those are owned by the callee. */
5822 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5823 if (GET_CODE (XEXP (tem, 0)) == USE
5824 && MEM_P (XEXP (XEXP (tem, 0), 0)))
5825 invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode);
5826 invalidate_for_call ();
5827 }
5828
5829 /* Now invalidate everything set by this instruction.
5830 If a SUBREG or other funny destination is being set,
5831 sets[i].rtl is still nonzero, so here we invalidate the reg
5832 a part of which is being set. */
5833
5834 for (i = 0; i < n_sets; i++)
5835 if (sets[i].rtl)
5836 {
5837 /* We can't use the inner dest, because the mode associated with
5838 a ZERO_EXTRACT is significant. */
5839 rtx dest = SET_DEST (sets[i].rtl);
5840
5841 /* Needed for registers to remove the register from its
5842 previous quantity's chain.
5843 Needed for memory if this is a nonvarying address, unless
5844 we have just done an invalidate_memory that covers even those. */
5845 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5846 invalidate (dest, VOIDmode);
5847 else if (MEM_P (dest))
5848 invalidate (dest, VOIDmode);
5849 else if (GET_CODE (dest) == STRICT_LOW_PART
5850 || GET_CODE (dest) == ZERO_EXTRACT)
5851 invalidate (XEXP (dest, 0), GET_MODE (dest));
5852 }
5853
5854 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5855 the regs restored by the longjmp come from a later time
5856 than the setjmp. */
5857 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5858 {
5859 flush_hash_table ();
5860 goto done;
5861 }
5862
5863 /* Make sure registers mentioned in destinations
5864 are safe for use in an expression to be inserted.
5865 This removes from the hash table
5866 any invalid entry that refers to one of these registers.
5867
5868 We don't care about the return value from mention_regs because
5869 we are going to hash the SET_DEST values unconditionally. */
5870
5871 for (i = 0; i < n_sets; i++)
5872 {
5873 if (sets[i].rtl)
5874 {
5875 rtx x = SET_DEST (sets[i].rtl);
5876
5877 if (!REG_P (x))
5878 mention_regs (x);
5879 else
5880 {
5881 /* We used to rely on all references to a register becoming
5882 inaccessible when a register changes to a new quantity,
5883 since that changes the hash code. However, that is not
5884 safe, since after HASH_SIZE new quantities we get a
5885 hash 'collision' of a register with its own invalid
5886 entries. And since SUBREGs have been changed not to
5887 change their hash code with the hash code of the register,
5888 it wouldn't work any longer at all. So we have to check
5889 for any invalid references lying around now.
5890 This code is similar to the REG case in mention_regs,
5891 but it knows that reg_tick has been incremented, and
5892 it leaves reg_in_table as -1 . */
5893 unsigned int regno = REGNO (x);
5894 unsigned int endregno = END_REGNO (x);
5895 unsigned int i;
5896
5897 for (i = regno; i < endregno; i++)
5898 {
5899 if (REG_IN_TABLE (i) >= 0)
5900 {
5901 remove_invalid_refs (i);
5902 REG_IN_TABLE (i) = -1;
5903 }
5904 }
5905 }
5906 }
5907 }
5908
5909 /* We may have just removed some of the src_elt's from the hash table.
5910 So replace each one with the current head of the same class.
5911 Also check if destination addresses have been removed. */
5912
5913 for (i = 0; i < n_sets; i++)
5914 if (sets[i].rtl)
5915 {
5916 if (sets[i].dest_addr_elt
5917 && sets[i].dest_addr_elt->first_same_value == 0)
5918 {
5919 /* The elt was removed, which means this destination is not
5920 valid after this instruction. */
5921 sets[i].rtl = NULL_RTX;
5922 }
5923 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5924 /* If elt was removed, find current head of same class,
5925 or 0 if nothing remains of that class. */
5926 {
5927 struct table_elt *elt = sets[i].src_elt;
5928
5929 while (elt && elt->prev_same_value)
5930 elt = elt->prev_same_value;
5931
5932 while (elt && elt->first_same_value == 0)
5933 elt = elt->next_same_value;
5934 sets[i].src_elt = elt ? elt->first_same_value : 0;
5935 }
5936 }
5937
5938 /* Now insert the destinations into their equivalence classes. */
5939
5940 for (i = 0; i < n_sets; i++)
5941 if (sets[i].rtl)
5942 {
5943 rtx dest = SET_DEST (sets[i].rtl);
5944 struct table_elt *elt;
5945
5946 /* Don't record value if we are not supposed to risk allocating
5947 floating-point values in registers that might be wider than
5948 memory. */
5949 if ((flag_float_store
5950 && MEM_P (dest)
5951 && FLOAT_MODE_P (GET_MODE (dest)))
5952 /* Don't record BLKmode values, because we don't know the
5953 size of it, and can't be sure that other BLKmode values
5954 have the same or smaller size. */
5955 || GET_MODE (dest) == BLKmode
5956 /* If we didn't put a REG_EQUAL value or a source into the hash
5957 table, there is no point is recording DEST. */
5958 || sets[i].src_elt == 0)
5959 continue;
5960
5961 /* STRICT_LOW_PART isn't part of the value BEING set,
5962 and neither is the SUBREG inside it.
5963 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5964 if (GET_CODE (dest) == STRICT_LOW_PART)
5965 dest = SUBREG_REG (XEXP (dest, 0));
5966
5967 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5968 /* Registers must also be inserted into chains for quantities. */
5969 if (insert_regs (dest, sets[i].src_elt, 1))
5970 {
5971 /* If `insert_regs' changes something, the hash code must be
5972 recalculated. */
5973 rehash_using_reg (dest);
5974 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5975 }
5976
5977 /* If DEST is a paradoxical SUBREG, don't record DEST since the bits
5978 outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined. */
5979 if (paradoxical_subreg_p (dest))
5980 continue;
5981
5982 elt = insert (dest, sets[i].src_elt,
5983 sets[i].dest_hash, GET_MODE (dest));
5984
5985 /* If this is a constant, insert the constant anchors with the
5986 equivalent register-offset expressions using register DEST. */
5987 if (targetm.const_anchor
5988 && REG_P (dest)
5989 && SCALAR_INT_MODE_P (GET_MODE (dest))
5990 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5991 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5992
5993 elt->in_memory = (MEM_P (sets[i].inner_dest)
5994 && !MEM_READONLY_P (sets[i].inner_dest));
5995
5996 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5997 narrower than M2, and both M1 and M2 are the same number of words,
5998 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5999 make that equivalence as well.
6000
6001 However, BAR may have equivalences for which gen_lowpart
6002 will produce a simpler value than gen_lowpart applied to
6003 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6004 BAR's equivalences. If we don't get a simplified form, make
6005 the SUBREG. It will not be used in an equivalence, but will
6006 cause two similar assignments to be detected.
6007
6008 Note the loop below will find SUBREG_REG (DEST) since we have
6009 already entered SRC and DEST of the SET in the table. */
6010
6011 if (GET_CODE (dest) == SUBREG
6012 && (known_equal_after_align_down
6013 (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1,
6014 GET_MODE_SIZE (GET_MODE (dest)) - 1,
6015 UNITS_PER_WORD))
6016 && !partial_subreg_p (dest)
6017 && sets[i].src_elt != 0)
6018 {
6019 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6020 struct table_elt *elt, *classp = 0;
6021
6022 for (elt = sets[i].src_elt->first_same_value; elt;
6023 elt = elt->next_same_value)
6024 {
6025 rtx new_src = 0;
6026 unsigned src_hash;
6027 struct table_elt *src_elt;
6028
6029 /* Ignore invalid entries. */
6030 if (!REG_P (elt->exp)
6031 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6032 continue;
6033
6034 /* We may have already been playing subreg games. If the
6035 mode is already correct for the destination, use it. */
6036 if (GET_MODE (elt->exp) == new_mode)
6037 new_src = elt->exp;
6038 else
6039 {
6040 poly_uint64 byte
6041 = subreg_lowpart_offset (new_mode, GET_MODE (dest));
6042 new_src = simplify_gen_subreg (new_mode, elt->exp,
6043 GET_MODE (dest), byte);
6044 }
6045
6046 /* The call to simplify_gen_subreg fails if the value
6047 is VOIDmode, yet we can't do any simplification, e.g.
6048 for EXPR_LISTs denoting function call results.
6049 It is invalid to construct a SUBREG with a VOIDmode
6050 SUBREG_REG, hence a zero new_src means we can't do
6051 this substitution. */
6052 if (! new_src)
6053 continue;
6054
6055 src_hash = HASH (new_src, new_mode);
6056 src_elt = lookup (new_src, src_hash, new_mode);
6057
6058 /* Put the new source in the hash table is if isn't
6059 already. */
6060 if (src_elt == 0)
6061 {
6062 if (insert_regs (new_src, classp, 0))
6063 {
6064 rehash_using_reg (new_src);
6065 src_hash = HASH (new_src, new_mode);
6066 }
6067 src_elt = insert (new_src, classp, src_hash, new_mode);
6068 src_elt->in_memory = elt->in_memory;
6069 if (GET_CODE (new_src) == ASM_OPERANDS
6070 && elt->cost == MAX_COST)
6071 src_elt->cost = MAX_COST;
6072 }
6073 else if (classp && classp != src_elt->first_same_value)
6074 /* Show that two things that we've seen before are
6075 actually the same. */
6076 merge_equiv_classes (src_elt, classp);
6077
6078 classp = src_elt->first_same_value;
6079 /* Ignore invalid entries. */
6080 while (classp
6081 && !REG_P (classp->exp)
6082 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6083 classp = classp->next_same_value;
6084 }
6085 }
6086 }
6087
6088 /* Special handling for (set REG0 REG1) where REG0 is the
6089 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6090 be used in the sequel, so (if easily done) change this insn to
6091 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6092 that computed their value. Then REG1 will become a dead store
6093 and won't cloud the situation for later optimizations.
6094
6095 Do not make this change if REG1 is a hard register, because it will
6096 then be used in the sequel and we may be changing a two-operand insn
6097 into a three-operand insn.
6098
6099 Also do not do this if we are operating on a copy of INSN. */
6100
6101 if (n_sets == 1 && sets[0].rtl)
6102 try_back_substitute_reg (sets[0].rtl, insn);
6103
6104 done:;
6105 }
6106 \f
6107 /* Remove from the hash table all expressions that reference memory. */
6108
6109 static void
6110 invalidate_memory (void)
6111 {
6112 int i;
6113 struct table_elt *p, *next;
6114
6115 for (i = 0; i < HASH_SIZE; i++)
6116 for (p = table[i]; p; p = next)
6117 {
6118 next = p->next_same_hash;
6119 if (p->in_memory)
6120 remove_from_table (p, i);
6121 }
6122 }
6123
6124 /* Perform invalidation on the basis of everything about INSN,
6125 except for invalidating the actual places that are SET in it.
6126 This includes the places CLOBBERed, and anything that might
6127 alias with something that is SET or CLOBBERed. */
6128
6129 static void
6130 invalidate_from_clobbers (rtx_insn *insn)
6131 {
6132 rtx x = PATTERN (insn);
6133
6134 if (GET_CODE (x) == CLOBBER)
6135 {
6136 rtx ref = XEXP (x, 0);
6137 if (ref)
6138 {
6139 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6140 || MEM_P (ref))
6141 invalidate (ref, VOIDmode);
6142 else if (GET_CODE (ref) == STRICT_LOW_PART
6143 || GET_CODE (ref) == ZERO_EXTRACT)
6144 invalidate (XEXP (ref, 0), GET_MODE (ref));
6145 }
6146 }
6147 if (GET_CODE (x) == CLOBBER_HIGH)
6148 {
6149 rtx ref = XEXP (x, 0);
6150 gcc_assert (REG_P (ref));
6151 invalidate_reg (ref, true);
6152 }
6153 else if (GET_CODE (x) == PARALLEL)
6154 {
6155 int i;
6156 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6157 {
6158 rtx y = XVECEXP (x, 0, i);
6159 if (GET_CODE (y) == CLOBBER)
6160 {
6161 rtx ref = XEXP (y, 0);
6162 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6163 || MEM_P (ref))
6164 invalidate (ref, VOIDmode);
6165 else if (GET_CODE (ref) == STRICT_LOW_PART
6166 || GET_CODE (ref) == ZERO_EXTRACT)
6167 invalidate (XEXP (ref, 0), GET_MODE (ref));
6168 }
6169 else if (GET_CODE (y) == CLOBBER_HIGH)
6170 {
6171 rtx ref = XEXP (y, 0);
6172 gcc_assert (REG_P (ref));
6173 invalidate_reg (ref, true);
6174 }
6175 }
6176 }
6177 }
6178 \f
6179 /* Perform invalidation on the basis of everything about INSN.
6180 This includes the places CLOBBERed, and anything that might
6181 alias with something that is SET or CLOBBERed. */
6182
6183 static void
6184 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6185 {
6186 rtx tem;
6187 rtx x = PATTERN (insn);
6188
6189 if (CALL_P (insn))
6190 {
6191 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6192 {
6193 rtx temx = XEXP (tem, 0);
6194 if (GET_CODE (temx) == CLOBBER)
6195 invalidate (SET_DEST (temx), VOIDmode);
6196 else if (GET_CODE (temx) == CLOBBER_HIGH)
6197 {
6198 rtx temref = XEXP (temx, 0);
6199 gcc_assert (REG_P (temref));
6200 invalidate_reg (temref, true);
6201 }
6202 }
6203 }
6204
6205 /* Ensure we invalidate the destination register of a CALL insn.
6206 This is necessary for machines where this register is a fixed_reg,
6207 because no other code would invalidate it. */
6208 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6209 invalidate (SET_DEST (x), VOIDmode);
6210
6211 else if (GET_CODE (x) == PARALLEL)
6212 {
6213 int i;
6214
6215 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6216 {
6217 rtx y = XVECEXP (x, 0, i);
6218 if (GET_CODE (y) == CLOBBER)
6219 {
6220 rtx clobbered = XEXP (y, 0);
6221
6222 if (REG_P (clobbered)
6223 || GET_CODE (clobbered) == SUBREG)
6224 invalidate (clobbered, VOIDmode);
6225 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6226 || GET_CODE (clobbered) == ZERO_EXTRACT)
6227 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6228 }
6229 else if (GET_CODE (y) == CLOBBER_HIGH)
6230 {
6231 rtx ref = XEXP (y, 0);
6232 gcc_assert (REG_P (ref));
6233 invalidate_reg (ref, true);
6234 }
6235 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6236 invalidate (SET_DEST (y), VOIDmode);
6237 }
6238 }
6239 }
6240 \f
6241 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6242 and replace any registers in them with either an equivalent constant
6243 or the canonical form of the register. If we are inside an address,
6244 only do this if the address remains valid.
6245
6246 OBJECT is 0 except when within a MEM in which case it is the MEM.
6247
6248 Return the replacement for X. */
6249
6250 static rtx
6251 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6252 {
6253 enum rtx_code code = GET_CODE (x);
6254 const char *fmt = GET_RTX_FORMAT (code);
6255 int i;
6256
6257 switch (code)
6258 {
6259 case CONST:
6260 case SYMBOL_REF:
6261 case LABEL_REF:
6262 CASE_CONST_ANY:
6263 case PC:
6264 case CC0:
6265 case LO_SUM:
6266 return x;
6267
6268 case MEM:
6269 validate_change (x, &XEXP (x, 0),
6270 cse_process_notes (XEXP (x, 0), x, changed), 0);
6271 return x;
6272
6273 case EXPR_LIST:
6274 if (REG_NOTE_KIND (x) == REG_EQUAL)
6275 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6276 /* Fall through. */
6277
6278 case INSN_LIST:
6279 case INT_LIST:
6280 if (XEXP (x, 1))
6281 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6282 return x;
6283
6284 case SIGN_EXTEND:
6285 case ZERO_EXTEND:
6286 case SUBREG:
6287 {
6288 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6289 /* We don't substitute VOIDmode constants into these rtx,
6290 since they would impede folding. */
6291 if (GET_MODE (new_rtx) != VOIDmode)
6292 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6293 return x;
6294 }
6295
6296 case UNSIGNED_FLOAT:
6297 {
6298 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6299 /* We don't substitute negative VOIDmode constants into these rtx,
6300 since they would impede folding. */
6301 if (GET_MODE (new_rtx) != VOIDmode
6302 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6303 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6304 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6305 return x;
6306 }
6307
6308 case REG:
6309 i = REG_QTY (REGNO (x));
6310
6311 /* Return a constant or a constant register. */
6312 if (REGNO_QTY_VALID_P (REGNO (x)))
6313 {
6314 struct qty_table_elem *ent = &qty_table[i];
6315
6316 if (ent->const_rtx != NULL_RTX
6317 && (CONSTANT_P (ent->const_rtx)
6318 || REG_P (ent->const_rtx)))
6319 {
6320 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6321 if (new_rtx)
6322 return copy_rtx (new_rtx);
6323 }
6324 }
6325
6326 /* Otherwise, canonicalize this register. */
6327 return canon_reg (x, NULL);
6328
6329 default:
6330 break;
6331 }
6332
6333 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6334 if (fmt[i] == 'e')
6335 validate_change (object, &XEXP (x, i),
6336 cse_process_notes (XEXP (x, i), object, changed), 0);
6337
6338 return x;
6339 }
6340
6341 static rtx
6342 cse_process_notes (rtx x, rtx object, bool *changed)
6343 {
6344 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6345 if (new_rtx != x)
6346 *changed = true;
6347 return new_rtx;
6348 }
6349
6350 \f
6351 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6352
6353 DATA is a pointer to a struct cse_basic_block_data, that is used to
6354 describe the path.
6355 It is filled with a queue of basic blocks, starting with FIRST_BB
6356 and following a trace through the CFG.
6357
6358 If all paths starting at FIRST_BB have been followed, or no new path
6359 starting at FIRST_BB can be constructed, this function returns FALSE.
6360 Otherwise, DATA->path is filled and the function returns TRUE indicating
6361 that a path to follow was found.
6362
6363 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6364 block in the path will be FIRST_BB. */
6365
6366 static bool
6367 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6368 int follow_jumps)
6369 {
6370 basic_block bb;
6371 edge e;
6372 int path_size;
6373
6374 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6375
6376 /* See if there is a previous path. */
6377 path_size = data->path_size;
6378
6379 /* There is a previous path. Make sure it started with FIRST_BB. */
6380 if (path_size)
6381 gcc_assert (data->path[0].bb == first_bb);
6382
6383 /* There was only one basic block in the last path. Clear the path and
6384 return, so that paths starting at another basic block can be tried. */
6385 if (path_size == 1)
6386 {
6387 path_size = 0;
6388 goto done;
6389 }
6390
6391 /* If the path was empty from the beginning, construct a new path. */
6392 if (path_size == 0)
6393 data->path[path_size++].bb = first_bb;
6394 else
6395 {
6396 /* Otherwise, path_size must be equal to or greater than 2, because
6397 a previous path exists that is at least two basic blocks long.
6398
6399 Update the previous branch path, if any. If the last branch was
6400 previously along the branch edge, take the fallthrough edge now. */
6401 while (path_size >= 2)
6402 {
6403 basic_block last_bb_in_path, previous_bb_in_path;
6404 edge e;
6405
6406 --path_size;
6407 last_bb_in_path = data->path[path_size].bb;
6408 previous_bb_in_path = data->path[path_size - 1].bb;
6409
6410 /* If we previously followed a path along the branch edge, try
6411 the fallthru edge now. */
6412 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6413 && any_condjump_p (BB_END (previous_bb_in_path))
6414 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6415 && e == BRANCH_EDGE (previous_bb_in_path))
6416 {
6417 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6418 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6419 && single_pred_p (bb)
6420 /* We used to assert here that we would only see blocks
6421 that we have not visited yet. But we may end up
6422 visiting basic blocks twice if the CFG has changed
6423 in this run of cse_main, because when the CFG changes
6424 the topological sort of the CFG also changes. A basic
6425 blocks that previously had more than two predecessors
6426 may now have a single predecessor, and become part of
6427 a path that starts at another basic block.
6428
6429 We still want to visit each basic block only once, so
6430 halt the path here if we have already visited BB. */
6431 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6432 {
6433 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6434 data->path[path_size++].bb = bb;
6435 break;
6436 }
6437 }
6438
6439 data->path[path_size].bb = NULL;
6440 }
6441
6442 /* If only one block remains in the path, bail. */
6443 if (path_size == 1)
6444 {
6445 path_size = 0;
6446 goto done;
6447 }
6448 }
6449
6450 /* Extend the path if possible. */
6451 if (follow_jumps)
6452 {
6453 bb = data->path[path_size - 1].bb;
6454 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6455 {
6456 if (single_succ_p (bb))
6457 e = single_succ_edge (bb);
6458 else if (EDGE_COUNT (bb->succs) == 2
6459 && any_condjump_p (BB_END (bb)))
6460 {
6461 /* First try to follow the branch. If that doesn't lead
6462 to a useful path, follow the fallthru edge. */
6463 e = BRANCH_EDGE (bb);
6464 if (!single_pred_p (e->dest))
6465 e = FALLTHRU_EDGE (bb);
6466 }
6467 else
6468 e = NULL;
6469
6470 if (e
6471 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6472 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6473 && single_pred_p (e->dest)
6474 /* Avoid visiting basic blocks twice. The large comment
6475 above explains why this can happen. */
6476 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6477 {
6478 basic_block bb2 = e->dest;
6479 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6480 data->path[path_size++].bb = bb2;
6481 bb = bb2;
6482 }
6483 else
6484 bb = NULL;
6485 }
6486 }
6487
6488 done:
6489 data->path_size = path_size;
6490 return path_size != 0;
6491 }
6492 \f
6493 /* Dump the path in DATA to file F. NSETS is the number of sets
6494 in the path. */
6495
6496 static void
6497 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6498 {
6499 int path_entry;
6500
6501 fprintf (f, ";; Following path with %d sets: ", nsets);
6502 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6503 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6504 fputc ('\n', f);
6505 fflush (f);
6506 }
6507
6508 \f
6509 /* Return true if BB has exception handling successor edges. */
6510
6511 static bool
6512 have_eh_succ_edges (basic_block bb)
6513 {
6514 edge e;
6515 edge_iterator ei;
6516
6517 FOR_EACH_EDGE (e, ei, bb->succs)
6518 if (e->flags & EDGE_EH)
6519 return true;
6520
6521 return false;
6522 }
6523
6524 \f
6525 /* Scan to the end of the path described by DATA. Return an estimate of
6526 the total number of SETs of all insns in the path. */
6527
6528 static void
6529 cse_prescan_path (struct cse_basic_block_data *data)
6530 {
6531 int nsets = 0;
6532 int path_size = data->path_size;
6533 int path_entry;
6534
6535 /* Scan to end of each basic block in the path. */
6536 for (path_entry = 0; path_entry < path_size; path_entry++)
6537 {
6538 basic_block bb;
6539 rtx_insn *insn;
6540
6541 bb = data->path[path_entry].bb;
6542
6543 FOR_BB_INSNS (bb, insn)
6544 {
6545 if (!INSN_P (insn))
6546 continue;
6547
6548 /* A PARALLEL can have lots of SETs in it,
6549 especially if it is really an ASM_OPERANDS. */
6550 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6551 nsets += XVECLEN (PATTERN (insn), 0);
6552 else
6553 nsets += 1;
6554 }
6555 }
6556
6557 data->nsets = nsets;
6558 }
6559 \f
6560 /* Return true if the pattern of INSN uses a LABEL_REF for which
6561 there isn't a REG_LABEL_OPERAND note. */
6562
6563 static bool
6564 check_for_label_ref (rtx_insn *insn)
6565 {
6566 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6567 note for it, we must rerun jump since it needs to place the note. If
6568 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6569 don't do this since no REG_LABEL_OPERAND will be added. */
6570 subrtx_iterator::array_type array;
6571 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6572 {
6573 const_rtx x = *iter;
6574 if (GET_CODE (x) == LABEL_REF
6575 && !LABEL_REF_NONLOCAL_P (x)
6576 && (!JUMP_P (insn)
6577 || !label_is_jump_target_p (label_ref_label (x), insn))
6578 && LABEL_P (label_ref_label (x))
6579 && INSN_UID (label_ref_label (x)) != 0
6580 && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x)))
6581 return true;
6582 }
6583 return false;
6584 }
6585
6586 /* Process a single extended basic block described by EBB_DATA. */
6587
6588 static void
6589 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6590 {
6591 int path_size = ebb_data->path_size;
6592 int path_entry;
6593 int num_insns = 0;
6594
6595 /* Allocate the space needed by qty_table. */
6596 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6597
6598 new_basic_block ();
6599 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6600 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6601 for (path_entry = 0; path_entry < path_size; path_entry++)
6602 {
6603 basic_block bb;
6604 rtx_insn *insn;
6605
6606 bb = ebb_data->path[path_entry].bb;
6607
6608 /* Invalidate recorded information for eh regs if there is an EH
6609 edge pointing to that bb. */
6610 if (bb_has_eh_pred (bb))
6611 {
6612 df_ref def;
6613
6614 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6615 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6616 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6617 }
6618
6619 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6620 FOR_BB_INSNS (bb, insn)
6621 {
6622 /* If we have processed 1,000 insns, flush the hash table to
6623 avoid extreme quadratic behavior. We must not include NOTEs
6624 in the count since there may be more of them when generating
6625 debugging information. If we clear the table at different
6626 times, code generated with -g -O might be different than code
6627 generated with -O but not -g.
6628
6629 FIXME: This is a real kludge and needs to be done some other
6630 way. */
6631 if (NONDEBUG_INSN_P (insn)
6632 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6633 {
6634 flush_hash_table ();
6635 num_insns = 0;
6636 }
6637
6638 if (INSN_P (insn))
6639 {
6640 /* Process notes first so we have all notes in canonical forms
6641 when looking for duplicate operations. */
6642 if (REG_NOTES (insn))
6643 {
6644 bool changed = false;
6645 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6646 NULL_RTX, &changed);
6647 if (changed)
6648 df_notes_rescan (insn);
6649 }
6650
6651 cse_insn (insn);
6652
6653 /* If we haven't already found an insn where we added a LABEL_REF,
6654 check this one. */
6655 if (INSN_P (insn) && !recorded_label_ref
6656 && check_for_label_ref (insn))
6657 recorded_label_ref = true;
6658
6659 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6660 {
6661 /* If the previous insn sets CC0 and this insn no
6662 longer references CC0, delete the previous insn.
6663 Here we use fact that nothing expects CC0 to be
6664 valid over an insn, which is true until the final
6665 pass. */
6666 rtx_insn *prev_insn;
6667 rtx tem;
6668
6669 prev_insn = prev_nonnote_nondebug_insn (insn);
6670 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6671 && (tem = single_set (prev_insn)) != NULL_RTX
6672 && SET_DEST (tem) == cc0_rtx
6673 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6674 delete_insn (prev_insn);
6675
6676 /* If this insn is not the last insn in the basic
6677 block, it will be PREV_INSN(insn) in the next
6678 iteration. If we recorded any CC0-related
6679 information for this insn, remember it. */
6680 if (insn != BB_END (bb))
6681 {
6682 prev_insn_cc0 = this_insn_cc0;
6683 prev_insn_cc0_mode = this_insn_cc0_mode;
6684 }
6685 }
6686 }
6687 }
6688
6689 /* With non-call exceptions, we are not always able to update
6690 the CFG properly inside cse_insn. So clean up possibly
6691 redundant EH edges here. */
6692 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6693 cse_cfg_altered |= purge_dead_edges (bb);
6694
6695 /* If we changed a conditional jump, we may have terminated
6696 the path we are following. Check that by verifying that
6697 the edge we would take still exists. If the edge does
6698 not exist anymore, purge the remainder of the path.
6699 Note that this will cause us to return to the caller. */
6700 if (path_entry < path_size - 1)
6701 {
6702 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6703 if (!find_edge (bb, next_bb))
6704 {
6705 do
6706 {
6707 path_size--;
6708
6709 /* If we truncate the path, we must also reset the
6710 visited bit on the remaining blocks in the path,
6711 or we will never visit them at all. */
6712 bitmap_clear_bit (cse_visited_basic_blocks,
6713 ebb_data->path[path_size].bb->index);
6714 ebb_data->path[path_size].bb = NULL;
6715 }
6716 while (path_size - 1 != path_entry);
6717 ebb_data->path_size = path_size;
6718 }
6719 }
6720
6721 /* If this is a conditional jump insn, record any known
6722 equivalences due to the condition being tested. */
6723 insn = BB_END (bb);
6724 if (path_entry < path_size - 1
6725 && EDGE_COUNT (bb->succs) == 2
6726 && JUMP_P (insn)
6727 && single_set (insn)
6728 && any_condjump_p (insn))
6729 {
6730 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6731 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6732 record_jump_equiv (insn, taken);
6733 }
6734
6735 /* Clear the CC0-tracking related insns, they can't provide
6736 useful information across basic block boundaries. */
6737 prev_insn_cc0 = 0;
6738 }
6739
6740 gcc_assert (next_qty <= max_qty);
6741
6742 free (qty_table);
6743 }
6744
6745 \f
6746 /* Perform cse on the instructions of a function.
6747 F is the first instruction.
6748 NREGS is one plus the highest pseudo-reg number used in the instruction.
6749
6750 Return 2 if jump optimizations should be redone due to simplifications
6751 in conditional jump instructions.
6752 Return 1 if the CFG should be cleaned up because it has been modified.
6753 Return 0 otherwise. */
6754
6755 static int
6756 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6757 {
6758 struct cse_basic_block_data ebb_data;
6759 basic_block bb;
6760 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6761 int i, n_blocks;
6762
6763 /* CSE doesn't use dominane info but can invalidate it in different ways.
6764 For simplicity free dominance info here. */
6765 free_dominance_info (CDI_DOMINATORS);
6766
6767 df_set_flags (DF_LR_RUN_DCE);
6768 df_note_add_problem ();
6769 df_analyze ();
6770 df_set_flags (DF_DEFER_INSN_RESCAN);
6771
6772 reg_scan (get_insns (), max_reg_num ());
6773 init_cse_reg_info (nregs);
6774
6775 ebb_data.path = XNEWVEC (struct branch_path,
6776 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6777
6778 cse_cfg_altered = false;
6779 cse_jumps_altered = false;
6780 recorded_label_ref = false;
6781 constant_pool_entries_cost = 0;
6782 constant_pool_entries_regcost = 0;
6783 ebb_data.path_size = 0;
6784 ebb_data.nsets = 0;
6785 rtl_hooks = cse_rtl_hooks;
6786
6787 init_recog ();
6788 init_alias_analysis ();
6789
6790 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6791
6792 /* Set up the table of already visited basic blocks. */
6793 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6794 bitmap_clear (cse_visited_basic_blocks);
6795
6796 /* Loop over basic blocks in reverse completion order (RPO),
6797 excluding the ENTRY and EXIT blocks. */
6798 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6799 i = 0;
6800 while (i < n_blocks)
6801 {
6802 /* Find the first block in the RPO queue that we have not yet
6803 processed before. */
6804 do
6805 {
6806 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6807 }
6808 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6809 && i < n_blocks);
6810
6811 /* Find all paths starting with BB, and process them. */
6812 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6813 {
6814 /* Pre-scan the path. */
6815 cse_prescan_path (&ebb_data);
6816
6817 /* If this basic block has no sets, skip it. */
6818 if (ebb_data.nsets == 0)
6819 continue;
6820
6821 /* Get a reasonable estimate for the maximum number of qty's
6822 needed for this path. For this, we take the number of sets
6823 and multiply that by MAX_RECOG_OPERANDS. */
6824 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6825
6826 /* Dump the path we're about to process. */
6827 if (dump_file)
6828 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6829
6830 cse_extended_basic_block (&ebb_data);
6831 }
6832 }
6833
6834 /* Clean up. */
6835 end_alias_analysis ();
6836 free (reg_eqv_table);
6837 free (ebb_data.path);
6838 sbitmap_free (cse_visited_basic_blocks);
6839 free (rc_order);
6840 rtl_hooks = general_rtl_hooks;
6841
6842 if (cse_jumps_altered || recorded_label_ref)
6843 return 2;
6844 else if (cse_cfg_altered)
6845 return 1;
6846 else
6847 return 0;
6848 }
6849 \f
6850 /* Count the number of times registers are used (not set) in X.
6851 COUNTS is an array in which we accumulate the count, INCR is how much
6852 we count each register usage.
6853
6854 Don't count a usage of DEST, which is the SET_DEST of a SET which
6855 contains X in its SET_SRC. This is because such a SET does not
6856 modify the liveness of DEST.
6857 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6858 We must then count uses of a SET_DEST regardless, because the insn can't be
6859 deleted here. */
6860
6861 static void
6862 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6863 {
6864 enum rtx_code code;
6865 rtx note;
6866 const char *fmt;
6867 int i, j;
6868
6869 if (x == 0)
6870 return;
6871
6872 switch (code = GET_CODE (x))
6873 {
6874 case REG:
6875 if (x != dest)
6876 counts[REGNO (x)] += incr;
6877 return;
6878
6879 case PC:
6880 case CC0:
6881 case CONST:
6882 CASE_CONST_ANY:
6883 case SYMBOL_REF:
6884 case LABEL_REF:
6885 return;
6886
6887 case CLOBBER:
6888 /* If we are clobbering a MEM, mark any registers inside the address
6889 as being used. */
6890 if (MEM_P (XEXP (x, 0)))
6891 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6892 return;
6893
6894 case CLOBBER_HIGH:
6895 gcc_assert (REG_P ((XEXP (x, 0))));
6896 return;
6897
6898 case SET:
6899 /* Unless we are setting a REG, count everything in SET_DEST. */
6900 if (!REG_P (SET_DEST (x)))
6901 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6902 count_reg_usage (SET_SRC (x), counts,
6903 dest ? dest : SET_DEST (x),
6904 incr);
6905 return;
6906
6907 case DEBUG_INSN:
6908 return;
6909
6910 case CALL_INSN:
6911 case INSN:
6912 case JUMP_INSN:
6913 /* We expect dest to be NULL_RTX here. If the insn may throw,
6914 or if it cannot be deleted due to side-effects, mark this fact
6915 by setting DEST to pc_rtx. */
6916 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6917 || side_effects_p (PATTERN (x)))
6918 dest = pc_rtx;
6919 if (code == CALL_INSN)
6920 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6921 count_reg_usage (PATTERN (x), counts, dest, incr);
6922
6923 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6924 use them. */
6925
6926 note = find_reg_equal_equiv_note (x);
6927 if (note)
6928 {
6929 rtx eqv = XEXP (note, 0);
6930
6931 if (GET_CODE (eqv) == EXPR_LIST)
6932 /* This REG_EQUAL note describes the result of a function call.
6933 Process all the arguments. */
6934 do
6935 {
6936 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6937 eqv = XEXP (eqv, 1);
6938 }
6939 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6940 else
6941 count_reg_usage (eqv, counts, dest, incr);
6942 }
6943 return;
6944
6945 case EXPR_LIST:
6946 if (REG_NOTE_KIND (x) == REG_EQUAL
6947 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6948 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6949 involving registers in the address. */
6950 || GET_CODE (XEXP (x, 0)) == CLOBBER
6951 || GET_CODE (XEXP (x, 0)) == CLOBBER_HIGH)
6952 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6953
6954 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6955 return;
6956
6957 case ASM_OPERANDS:
6958 /* Iterate over just the inputs, not the constraints as well. */
6959 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6960 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6961 return;
6962
6963 case INSN_LIST:
6964 case INT_LIST:
6965 gcc_unreachable ();
6966
6967 default:
6968 break;
6969 }
6970
6971 fmt = GET_RTX_FORMAT (code);
6972 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6973 {
6974 if (fmt[i] == 'e')
6975 count_reg_usage (XEXP (x, i), counts, dest, incr);
6976 else if (fmt[i] == 'E')
6977 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6978 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6979 }
6980 }
6981 \f
6982 /* Return true if X is a dead register. */
6983
6984 static inline int
6985 is_dead_reg (const_rtx x, int *counts)
6986 {
6987 return (REG_P (x)
6988 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6989 && counts[REGNO (x)] == 0);
6990 }
6991
6992 /* Return true if set is live. */
6993 static bool
6994 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6995 int *counts)
6996 {
6997 rtx_insn *tem;
6998
6999 if (set_noop_p (set))
7000 ;
7001
7002 else if (GET_CODE (SET_DEST (set)) == CC0
7003 && !side_effects_p (SET_SRC (set))
7004 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
7005 || !INSN_P (tem)
7006 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7007 return false;
7008 else if (!is_dead_reg (SET_DEST (set), counts)
7009 || side_effects_p (SET_SRC (set)))
7010 return true;
7011 return false;
7012 }
7013
7014 /* Return true if insn is live. */
7015
7016 static bool
7017 insn_live_p (rtx_insn *insn, int *counts)
7018 {
7019 int i;
7020 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
7021 return true;
7022 else if (GET_CODE (PATTERN (insn)) == SET)
7023 return set_live_p (PATTERN (insn), insn, counts);
7024 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7025 {
7026 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7027 {
7028 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7029
7030 if (GET_CODE (elt) == SET)
7031 {
7032 if (set_live_p (elt, insn, counts))
7033 return true;
7034 }
7035 else if (GET_CODE (elt) != CLOBBER
7036 && GET_CODE (elt) != CLOBBER_HIGH
7037 && GET_CODE (elt) != USE)
7038 return true;
7039 }
7040 return false;
7041 }
7042 else if (DEBUG_INSN_P (insn))
7043 {
7044 rtx_insn *next;
7045
7046 if (DEBUG_MARKER_INSN_P (insn))
7047 return true;
7048
7049 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
7050 if (NOTE_P (next))
7051 continue;
7052 else if (!DEBUG_INSN_P (next))
7053 return true;
7054 /* If we find an inspection point, such as a debug begin stmt,
7055 we want to keep the earlier debug insn. */
7056 else if (DEBUG_MARKER_INSN_P (next))
7057 return true;
7058 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
7059 return false;
7060
7061 return true;
7062 }
7063 else
7064 return true;
7065 }
7066
7067 /* Count the number of stores into pseudo. Callback for note_stores. */
7068
7069 static void
7070 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
7071 {
7072 int *counts = (int *) data;
7073 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
7074 counts[REGNO (x)]++;
7075 }
7076
7077 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
7078 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
7079 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
7080 Set *SEEN_REPL to true if we see a dead register that does have
7081 a replacement. */
7082
7083 static bool
7084 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
7085 bool *seen_repl)
7086 {
7087 subrtx_iterator::array_type array;
7088 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
7089 {
7090 const_rtx x = *iter;
7091 if (is_dead_reg (x, counts))
7092 {
7093 if (replacements && replacements[REGNO (x)] != NULL_RTX)
7094 *seen_repl = true;
7095 else
7096 return true;
7097 }
7098 }
7099 return false;
7100 }
7101
7102 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
7103 Callback for simplify_replace_fn_rtx. */
7104
7105 static rtx
7106 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
7107 {
7108 rtx *replacements = (rtx *) data;
7109
7110 if (REG_P (x)
7111 && REGNO (x) >= FIRST_PSEUDO_REGISTER
7112 && replacements[REGNO (x)] != NULL_RTX)
7113 {
7114 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
7115 return replacements[REGNO (x)];
7116 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
7117 GET_MODE (replacements[REGNO (x)]));
7118 }
7119 return NULL_RTX;
7120 }
7121
7122 /* Scan all the insns and delete any that are dead; i.e., they store a register
7123 that is never used or they copy a register to itself.
7124
7125 This is used to remove insns made obviously dead by cse, loop or other
7126 optimizations. It improves the heuristics in loop since it won't try to
7127 move dead invariants out of loops or make givs for dead quantities. The
7128 remaining passes of the compilation are also sped up. */
7129
7130 int
7131 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
7132 {
7133 int *counts;
7134 rtx_insn *insn, *prev;
7135 rtx *replacements = NULL;
7136 int ndead = 0;
7137
7138 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7139 /* First count the number of times each register is used. */
7140 if (MAY_HAVE_DEBUG_BIND_INSNS)
7141 {
7142 counts = XCNEWVEC (int, nreg * 3);
7143 for (insn = insns; insn; insn = NEXT_INSN (insn))
7144 if (DEBUG_BIND_INSN_P (insn))
7145 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7146 NULL_RTX, 1);
7147 else if (INSN_P (insn))
7148 {
7149 count_reg_usage (insn, counts, NULL_RTX, 1);
7150 note_stores (insn, count_stores, counts + nreg * 2);
7151 }
7152 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7153 First one counts how many times each pseudo is used outside
7154 of debug insns, second counts how many times each pseudo is
7155 used in debug insns and third counts how many times a pseudo
7156 is stored. */
7157 }
7158 else
7159 {
7160 counts = XCNEWVEC (int, nreg);
7161 for (insn = insns; insn; insn = NEXT_INSN (insn))
7162 if (INSN_P (insn))
7163 count_reg_usage (insn, counts, NULL_RTX, 1);
7164 /* If no debug insns can be present, COUNTS is just an array
7165 which counts how many times each pseudo is used. */
7166 }
7167 /* Pseudo PIC register should be considered as used due to possible
7168 new usages generated. */
7169 if (!reload_completed
7170 && pic_offset_table_rtx
7171 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7172 counts[REGNO (pic_offset_table_rtx)]++;
7173 /* Go from the last insn to the first and delete insns that only set unused
7174 registers or copy a register to itself. As we delete an insn, remove
7175 usage counts for registers it uses.
7176
7177 The first jump optimization pass may leave a real insn as the last
7178 insn in the function. We must not skip that insn or we may end
7179 up deleting code that is not really dead.
7180
7181 If some otherwise unused register is only used in DEBUG_INSNs,
7182 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7183 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7184 has been created for the unused register, replace it with
7185 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
7186 for (insn = get_last_insn (); insn; insn = prev)
7187 {
7188 int live_insn = 0;
7189
7190 prev = PREV_INSN (insn);
7191 if (!INSN_P (insn))
7192 continue;
7193
7194 live_insn = insn_live_p (insn, counts);
7195
7196 /* If this is a dead insn, delete it and show registers in it aren't
7197 being used. */
7198
7199 if (! live_insn && dbg_cnt (delete_trivial_dead))
7200 {
7201 if (DEBUG_INSN_P (insn))
7202 {
7203 if (DEBUG_BIND_INSN_P (insn))
7204 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7205 NULL_RTX, -1);
7206 }
7207 else
7208 {
7209 rtx set;
7210 if (MAY_HAVE_DEBUG_BIND_INSNS
7211 && (set = single_set (insn)) != NULL_RTX
7212 && is_dead_reg (SET_DEST (set), counts)
7213 /* Used at least once in some DEBUG_INSN. */
7214 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7215 /* And set exactly once. */
7216 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7217 && !side_effects_p (SET_SRC (set))
7218 && asm_noperands (PATTERN (insn)) < 0)
7219 {
7220 rtx dval, bind_var_loc;
7221 rtx_insn *bind;
7222
7223 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7224 dval = make_debug_expr_from_rtl (SET_DEST (set));
7225
7226 /* Emit a debug bind insn before the insn in which
7227 reg dies. */
7228 bind_var_loc =
7229 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7230 DEBUG_EXPR_TREE_DECL (dval),
7231 SET_SRC (set),
7232 VAR_INIT_STATUS_INITIALIZED);
7233 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7234
7235 bind = emit_debug_insn_before (bind_var_loc, insn);
7236 df_insn_rescan (bind);
7237
7238 if (replacements == NULL)
7239 replacements = XCNEWVEC (rtx, nreg);
7240 replacements[REGNO (SET_DEST (set))] = dval;
7241 }
7242
7243 count_reg_usage (insn, counts, NULL_RTX, -1);
7244 ndead++;
7245 }
7246 cse_cfg_altered |= delete_insn_and_edges (insn);
7247 }
7248 }
7249
7250 if (MAY_HAVE_DEBUG_BIND_INSNS)
7251 {
7252 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7253 if (DEBUG_BIND_INSN_P (insn))
7254 {
7255 /* If this debug insn references a dead register that wasn't replaced
7256 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7257 bool seen_repl = false;
7258 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7259 counts, replacements, &seen_repl))
7260 {
7261 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7262 df_insn_rescan (insn);
7263 }
7264 else if (seen_repl)
7265 {
7266 INSN_VAR_LOCATION_LOC (insn)
7267 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7268 NULL_RTX, replace_dead_reg,
7269 replacements);
7270 df_insn_rescan (insn);
7271 }
7272 }
7273 free (replacements);
7274 }
7275
7276 if (dump_file && ndead)
7277 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7278 ndead);
7279 /* Clean up. */
7280 free (counts);
7281 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7282 return ndead;
7283 }
7284
7285 /* If LOC contains references to NEWREG in a different mode, change them
7286 to use NEWREG instead. */
7287
7288 static void
7289 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7290 rtx *loc, rtx_insn *insn, rtx newreg)
7291 {
7292 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7293 {
7294 rtx *loc = *iter;
7295 rtx x = *loc;
7296 if (x
7297 && REG_P (x)
7298 && REGNO (x) == REGNO (newreg)
7299 && GET_MODE (x) != GET_MODE (newreg))
7300 {
7301 validate_change (insn, loc, newreg, 1);
7302 iter.skip_subrtxes ();
7303 }
7304 }
7305 }
7306
7307 /* Change the mode of any reference to the register REGNO (NEWREG) to
7308 GET_MODE (NEWREG) in INSN. */
7309
7310 static void
7311 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7312 {
7313 int success;
7314
7315 if (!INSN_P (insn))
7316 return;
7317
7318 subrtx_ptr_iterator::array_type array;
7319 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7320 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7321
7322 /* If the following assertion was triggered, there is most probably
7323 something wrong with the cc_modes_compatible back end function.
7324 CC modes only can be considered compatible if the insn - with the mode
7325 replaced by any of the compatible modes - can still be recognized. */
7326 success = apply_change_group ();
7327 gcc_assert (success);
7328 }
7329
7330 /* Change the mode of any reference to the register REGNO (NEWREG) to
7331 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7332 any instruction which modifies NEWREG. */
7333
7334 static void
7335 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7336 {
7337 rtx_insn *insn;
7338
7339 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7340 {
7341 if (! INSN_P (insn))
7342 continue;
7343
7344 if (reg_set_p (newreg, insn))
7345 return;
7346
7347 cse_change_cc_mode_insn (insn, newreg);
7348 }
7349 }
7350
7351 /* BB is a basic block which finishes with CC_REG as a condition code
7352 register which is set to CC_SRC. Look through the successors of BB
7353 to find blocks which have a single predecessor (i.e., this one),
7354 and look through those blocks for an assignment to CC_REG which is
7355 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7356 permitted to change the mode of CC_SRC to a compatible mode. This
7357 returns VOIDmode if no equivalent assignments were found.
7358 Otherwise it returns the mode which CC_SRC should wind up with.
7359 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7360 but is passed unmodified down to recursive calls in order to prevent
7361 endless recursion.
7362
7363 The main complexity in this function is handling the mode issues.
7364 We may have more than one duplicate which we can eliminate, and we
7365 try to find a mode which will work for multiple duplicates. */
7366
7367 static machine_mode
7368 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7369 bool can_change_mode)
7370 {
7371 bool found_equiv;
7372 machine_mode mode;
7373 unsigned int insn_count;
7374 edge e;
7375 rtx_insn *insns[2];
7376 machine_mode modes[2];
7377 rtx_insn *last_insns[2];
7378 unsigned int i;
7379 rtx newreg;
7380 edge_iterator ei;
7381
7382 /* We expect to have two successors. Look at both before picking
7383 the final mode for the comparison. If we have more successors
7384 (i.e., some sort of table jump, although that seems unlikely),
7385 then we require all beyond the first two to use the same
7386 mode. */
7387
7388 found_equiv = false;
7389 mode = GET_MODE (cc_src);
7390 insn_count = 0;
7391 FOR_EACH_EDGE (e, ei, bb->succs)
7392 {
7393 rtx_insn *insn;
7394 rtx_insn *end;
7395
7396 if (e->flags & EDGE_COMPLEX)
7397 continue;
7398
7399 if (EDGE_COUNT (e->dest->preds) != 1
7400 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7401 /* Avoid endless recursion on unreachable blocks. */
7402 || e->dest == orig_bb)
7403 continue;
7404
7405 end = NEXT_INSN (BB_END (e->dest));
7406 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7407 {
7408 rtx set;
7409
7410 if (! INSN_P (insn))
7411 continue;
7412
7413 /* If CC_SRC is modified, we have to stop looking for
7414 something which uses it. */
7415 if (modified_in_p (cc_src, insn))
7416 break;
7417
7418 /* Check whether INSN sets CC_REG to CC_SRC. */
7419 set = single_set (insn);
7420 if (set
7421 && REG_P (SET_DEST (set))
7422 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7423 {
7424 bool found;
7425 machine_mode set_mode;
7426 machine_mode comp_mode;
7427
7428 found = false;
7429 set_mode = GET_MODE (SET_SRC (set));
7430 comp_mode = set_mode;
7431 if (rtx_equal_p (cc_src, SET_SRC (set)))
7432 found = true;
7433 else if (GET_CODE (cc_src) == COMPARE
7434 && GET_CODE (SET_SRC (set)) == COMPARE
7435 && mode != set_mode
7436 && rtx_equal_p (XEXP (cc_src, 0),
7437 XEXP (SET_SRC (set), 0))
7438 && rtx_equal_p (XEXP (cc_src, 1),
7439 XEXP (SET_SRC (set), 1)))
7440
7441 {
7442 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7443 if (comp_mode != VOIDmode
7444 && (can_change_mode || comp_mode == mode))
7445 found = true;
7446 }
7447
7448 if (found)
7449 {
7450 found_equiv = true;
7451 if (insn_count < ARRAY_SIZE (insns))
7452 {
7453 insns[insn_count] = insn;
7454 modes[insn_count] = set_mode;
7455 last_insns[insn_count] = end;
7456 ++insn_count;
7457
7458 if (mode != comp_mode)
7459 {
7460 gcc_assert (can_change_mode);
7461 mode = comp_mode;
7462
7463 /* The modified insn will be re-recognized later. */
7464 PUT_MODE (cc_src, mode);
7465 }
7466 }
7467 else
7468 {
7469 if (set_mode != mode)
7470 {
7471 /* We found a matching expression in the
7472 wrong mode, but we don't have room to
7473 store it in the array. Punt. This case
7474 should be rare. */
7475 break;
7476 }
7477 /* INSN sets CC_REG to a value equal to CC_SRC
7478 with the right mode. We can simply delete
7479 it. */
7480 delete_insn (insn);
7481 }
7482
7483 /* We found an instruction to delete. Keep looking,
7484 in the hopes of finding a three-way jump. */
7485 continue;
7486 }
7487
7488 /* We found an instruction which sets the condition
7489 code, so don't look any farther. */
7490 break;
7491 }
7492
7493 /* If INSN sets CC_REG in some other way, don't look any
7494 farther. */
7495 if (reg_set_p (cc_reg, insn))
7496 break;
7497 }
7498
7499 /* If we fell off the bottom of the block, we can keep looking
7500 through successors. We pass CAN_CHANGE_MODE as false because
7501 we aren't prepared to handle compatibility between the
7502 further blocks and this block. */
7503 if (insn == end)
7504 {
7505 machine_mode submode;
7506
7507 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7508 if (submode != VOIDmode)
7509 {
7510 gcc_assert (submode == mode);
7511 found_equiv = true;
7512 can_change_mode = false;
7513 }
7514 }
7515 }
7516
7517 if (! found_equiv)
7518 return VOIDmode;
7519
7520 /* Now INSN_COUNT is the number of instructions we found which set
7521 CC_REG to a value equivalent to CC_SRC. The instructions are in
7522 INSNS. The modes used by those instructions are in MODES. */
7523
7524 newreg = NULL_RTX;
7525 for (i = 0; i < insn_count; ++i)
7526 {
7527 if (modes[i] != mode)
7528 {
7529 /* We need to change the mode of CC_REG in INSNS[i] and
7530 subsequent instructions. */
7531 if (! newreg)
7532 {
7533 if (GET_MODE (cc_reg) == mode)
7534 newreg = cc_reg;
7535 else
7536 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7537 }
7538 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7539 newreg);
7540 }
7541
7542 cse_cfg_altered |= delete_insn_and_edges (insns[i]);
7543 }
7544
7545 return mode;
7546 }
7547
7548 /* If we have a fixed condition code register (or two), walk through
7549 the instructions and try to eliminate duplicate assignments. */
7550
7551 static void
7552 cse_condition_code_reg (void)
7553 {
7554 unsigned int cc_regno_1;
7555 unsigned int cc_regno_2;
7556 rtx cc_reg_1;
7557 rtx cc_reg_2;
7558 basic_block bb;
7559
7560 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7561 return;
7562
7563 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7564 if (cc_regno_2 != INVALID_REGNUM)
7565 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7566 else
7567 cc_reg_2 = NULL_RTX;
7568
7569 FOR_EACH_BB_FN (bb, cfun)
7570 {
7571 rtx_insn *last_insn;
7572 rtx cc_reg;
7573 rtx_insn *insn;
7574 rtx_insn *cc_src_insn;
7575 rtx cc_src;
7576 machine_mode mode;
7577 machine_mode orig_mode;
7578
7579 /* Look for blocks which end with a conditional jump based on a
7580 condition code register. Then look for the instruction which
7581 sets the condition code register. Then look through the
7582 successor blocks for instructions which set the condition
7583 code register to the same value. There are other possible
7584 uses of the condition code register, but these are by far the
7585 most common and the ones which we are most likely to be able
7586 to optimize. */
7587
7588 last_insn = BB_END (bb);
7589 if (!JUMP_P (last_insn))
7590 continue;
7591
7592 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7593 cc_reg = cc_reg_1;
7594 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7595 cc_reg = cc_reg_2;
7596 else
7597 continue;
7598
7599 cc_src_insn = NULL;
7600 cc_src = NULL_RTX;
7601 for (insn = PREV_INSN (last_insn);
7602 insn && insn != PREV_INSN (BB_HEAD (bb));
7603 insn = PREV_INSN (insn))
7604 {
7605 rtx set;
7606
7607 if (! INSN_P (insn))
7608 continue;
7609 set = single_set (insn);
7610 if (set
7611 && REG_P (SET_DEST (set))
7612 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7613 {
7614 cc_src_insn = insn;
7615 cc_src = SET_SRC (set);
7616 break;
7617 }
7618 else if (reg_set_p (cc_reg, insn))
7619 break;
7620 }
7621
7622 if (! cc_src_insn)
7623 continue;
7624
7625 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7626 continue;
7627
7628 /* Now CC_REG is a condition code register used for a
7629 conditional jump at the end of the block, and CC_SRC, in
7630 CC_SRC_INSN, is the value to which that condition code
7631 register is set, and CC_SRC is still meaningful at the end of
7632 the basic block. */
7633
7634 orig_mode = GET_MODE (cc_src);
7635 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7636 if (mode != VOIDmode)
7637 {
7638 gcc_assert (mode == GET_MODE (cc_src));
7639 if (mode != orig_mode)
7640 {
7641 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7642
7643 cse_change_cc_mode_insn (cc_src_insn, newreg);
7644
7645 /* Do the same in the following insns that use the
7646 current value of CC_REG within BB. */
7647 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7648 NEXT_INSN (last_insn),
7649 newreg);
7650 }
7651 }
7652 }
7653 }
7654 \f
7655
7656 /* Perform common subexpression elimination. Nonzero value from
7657 `cse_main' means that jumps were simplified and some code may now
7658 be unreachable, so do jump optimization again. */
7659 static unsigned int
7660 rest_of_handle_cse (void)
7661 {
7662 int tem;
7663
7664 if (dump_file)
7665 dump_flow_info (dump_file, dump_flags);
7666
7667 tem = cse_main (get_insns (), max_reg_num ());
7668
7669 /* If we are not running more CSE passes, then we are no longer
7670 expecting CSE to be run. But always rerun it in a cheap mode. */
7671 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7672
7673 if (tem == 2)
7674 {
7675 timevar_push (TV_JUMP);
7676 rebuild_jump_labels (get_insns ());
7677 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7678 timevar_pop (TV_JUMP);
7679 }
7680 else if (tem == 1 || optimize > 1)
7681 cse_cfg_altered |= cleanup_cfg (0);
7682
7683 return 0;
7684 }
7685
7686 namespace {
7687
7688 const pass_data pass_data_cse =
7689 {
7690 RTL_PASS, /* type */
7691 "cse1", /* name */
7692 OPTGROUP_NONE, /* optinfo_flags */
7693 TV_CSE, /* tv_id */
7694 0, /* properties_required */
7695 0, /* properties_provided */
7696 0, /* properties_destroyed */
7697 0, /* todo_flags_start */
7698 TODO_df_finish, /* todo_flags_finish */
7699 };
7700
7701 class pass_cse : public rtl_opt_pass
7702 {
7703 public:
7704 pass_cse (gcc::context *ctxt)
7705 : rtl_opt_pass (pass_data_cse, ctxt)
7706 {}
7707
7708 /* opt_pass methods: */
7709 virtual bool gate (function *) { return optimize > 0; }
7710 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7711
7712 }; // class pass_cse
7713
7714 } // anon namespace
7715
7716 rtl_opt_pass *
7717 make_pass_cse (gcc::context *ctxt)
7718 {
7719 return new pass_cse (ctxt);
7720 }
7721
7722
7723 /* Run second CSE pass after loop optimizations. */
7724 static unsigned int
7725 rest_of_handle_cse2 (void)
7726 {
7727 int tem;
7728
7729 if (dump_file)
7730 dump_flow_info (dump_file, dump_flags);
7731
7732 tem = cse_main (get_insns (), max_reg_num ());
7733
7734 /* Run a pass to eliminate duplicated assignments to condition code
7735 registers. We have to run this after bypass_jumps, because it
7736 makes it harder for that pass to determine whether a jump can be
7737 bypassed safely. */
7738 cse_condition_code_reg ();
7739
7740 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7741
7742 if (tem == 2)
7743 {
7744 timevar_push (TV_JUMP);
7745 rebuild_jump_labels (get_insns ());
7746 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7747 timevar_pop (TV_JUMP);
7748 }
7749 else if (tem == 1)
7750 cse_cfg_altered |= cleanup_cfg (0);
7751
7752 cse_not_expected = 1;
7753 return 0;
7754 }
7755
7756
7757 namespace {
7758
7759 const pass_data pass_data_cse2 =
7760 {
7761 RTL_PASS, /* type */
7762 "cse2", /* name */
7763 OPTGROUP_NONE, /* optinfo_flags */
7764 TV_CSE2, /* tv_id */
7765 0, /* properties_required */
7766 0, /* properties_provided */
7767 0, /* properties_destroyed */
7768 0, /* todo_flags_start */
7769 TODO_df_finish, /* todo_flags_finish */
7770 };
7771
7772 class pass_cse2 : public rtl_opt_pass
7773 {
7774 public:
7775 pass_cse2 (gcc::context *ctxt)
7776 : rtl_opt_pass (pass_data_cse2, ctxt)
7777 {}
7778
7779 /* opt_pass methods: */
7780 virtual bool gate (function *)
7781 {
7782 return optimize > 0 && flag_rerun_cse_after_loop;
7783 }
7784
7785 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7786
7787 }; // class pass_cse2
7788
7789 } // anon namespace
7790
7791 rtl_opt_pass *
7792 make_pass_cse2 (gcc::context *ctxt)
7793 {
7794 return new pass_cse2 (ctxt);
7795 }
7796
7797 /* Run second CSE pass after loop optimizations. */
7798 static unsigned int
7799 rest_of_handle_cse_after_global_opts (void)
7800 {
7801 int save_cfj;
7802 int tem;
7803
7804 /* We only want to do local CSE, so don't follow jumps. */
7805 save_cfj = flag_cse_follow_jumps;
7806 flag_cse_follow_jumps = 0;
7807
7808 rebuild_jump_labels (get_insns ());
7809 tem = cse_main (get_insns (), max_reg_num ());
7810 cse_cfg_altered |= purge_all_dead_edges ();
7811 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7812
7813 cse_not_expected = !flag_rerun_cse_after_loop;
7814
7815 /* If cse altered any jumps, rerun jump opts to clean things up. */
7816 if (tem == 2)
7817 {
7818 timevar_push (TV_JUMP);
7819 rebuild_jump_labels (get_insns ());
7820 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7821 timevar_pop (TV_JUMP);
7822 }
7823 else if (tem == 1)
7824 cse_cfg_altered |= cleanup_cfg (0);
7825
7826 flag_cse_follow_jumps = save_cfj;
7827 return 0;
7828 }
7829
7830 namespace {
7831
7832 const pass_data pass_data_cse_after_global_opts =
7833 {
7834 RTL_PASS, /* type */
7835 "cse_local", /* name */
7836 OPTGROUP_NONE, /* optinfo_flags */
7837 TV_CSE, /* tv_id */
7838 0, /* properties_required */
7839 0, /* properties_provided */
7840 0, /* properties_destroyed */
7841 0, /* todo_flags_start */
7842 TODO_df_finish, /* todo_flags_finish */
7843 };
7844
7845 class pass_cse_after_global_opts : public rtl_opt_pass
7846 {
7847 public:
7848 pass_cse_after_global_opts (gcc::context *ctxt)
7849 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7850 {}
7851
7852 /* opt_pass methods: */
7853 virtual bool gate (function *)
7854 {
7855 return optimize > 0 && flag_rerun_cse_after_global_opts;
7856 }
7857
7858 virtual unsigned int execute (function *)
7859 {
7860 return rest_of_handle_cse_after_global_opts ();
7861 }
7862
7863 }; // class pass_cse_after_global_opts
7864
7865 } // anon namespace
7866
7867 rtl_opt_pass *
7868 make_pass_cse_after_global_opts (gcc::context *ctxt)
7869 {
7870 return new pass_cse_after_global_opts (ctxt);
7871 }