]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cse.c
* combine.c (record_dead_and_set_regs): Iterate over hard register set
[thirdparty/gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "regs.h"
30 #include "basic-block.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "recog.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "diagnostic-core.h"
37 #include "toplev.h"
38 #include "ggc.h"
39 #include "except.h"
40 #include "target.h"
41 #include "params.h"
42 #include "rtlhooks-def.h"
43 #include "tree-pass.h"
44 #include "df.h"
45 #include "dbgcnt.h"
46 #include "pointer-set.h"
47
48 /* The basic idea of common subexpression elimination is to go
49 through the code, keeping a record of expressions that would
50 have the same value at the current scan point, and replacing
51 expressions encountered with the cheapest equivalent expression.
52
53 It is too complicated to keep track of the different possibilities
54 when control paths merge in this code; so, at each label, we forget all
55 that is known and start fresh. This can be described as processing each
56 extended basic block separately. We have a separate pass to perform
57 global CSE.
58
59 Note CSE can turn a conditional or computed jump into a nop or
60 an unconditional jump. When this occurs we arrange to run the jump
61 optimizer after CSE to delete the unreachable code.
62
63 We use two data structures to record the equivalent expressions:
64 a hash table for most expressions, and a vector of "quantity
65 numbers" to record equivalent (pseudo) registers.
66
67 The use of the special data structure for registers is desirable
68 because it is faster. It is possible because registers references
69 contain a fairly small number, the register number, taken from
70 a contiguously allocated series, and two register references are
71 identical if they have the same number. General expressions
72 do not have any such thing, so the only way to retrieve the
73 information recorded on an expression other than a register
74 is to keep it in a hash table.
75
76 Registers and "quantity numbers":
77
78 At the start of each basic block, all of the (hardware and pseudo)
79 registers used in the function are given distinct quantity
80 numbers to indicate their contents. During scan, when the code
81 copies one register into another, we copy the quantity number.
82 When a register is loaded in any other way, we allocate a new
83 quantity number to describe the value generated by this operation.
84 `REG_QTY (N)' records what quantity register N is currently thought
85 of as containing.
86
87 All real quantity numbers are greater than or equal to zero.
88 If register N has not been assigned a quantity, `REG_QTY (N)' will
89 equal -N - 1, which is always negative.
90
91 Quantity numbers below zero do not exist and none of the `qty_table'
92 entries should be referenced with a negative index.
93
94 We also maintain a bidirectional chain of registers for each
95 quantity number. The `qty_table` members `first_reg' and `last_reg',
96 and `reg_eqv_table' members `next' and `prev' hold these chains.
97
98 The first register in a chain is the one whose lifespan is least local.
99 Among equals, it is the one that was seen first.
100 We replace any equivalent register with that one.
101
102 If two registers have the same quantity number, it must be true that
103 REG expressions with qty_table `mode' must be in the hash table for both
104 registers and must be in the same class.
105
106 The converse is not true. Since hard registers may be referenced in
107 any mode, two REG expressions might be equivalent in the hash table
108 but not have the same quantity number if the quantity number of one
109 of the registers is not the same mode as those expressions.
110
111 Constants and quantity numbers
112
113 When a quantity has a known constant value, that value is stored
114 in the appropriate qty_table `const_rtx'. This is in addition to
115 putting the constant in the hash table as is usual for non-regs.
116
117 Whether a reg or a constant is preferred is determined by the configuration
118 macro CONST_COSTS and will often depend on the constant value. In any
119 event, expressions containing constants can be simplified, by fold_rtx.
120
121 When a quantity has a known nearly constant value (such as an address
122 of a stack slot), that value is stored in the appropriate qty_table
123 `const_rtx'.
124
125 Integer constants don't have a machine mode. However, cse
126 determines the intended machine mode from the destination
127 of the instruction that moves the constant. The machine mode
128 is recorded in the hash table along with the actual RTL
129 constant expression so that different modes are kept separate.
130
131 Other expressions:
132
133 To record known equivalences among expressions in general
134 we use a hash table called `table'. It has a fixed number of buckets
135 that contain chains of `struct table_elt' elements for expressions.
136 These chains connect the elements whose expressions have the same
137 hash codes.
138
139 Other chains through the same elements connect the elements which
140 currently have equivalent values.
141
142 Register references in an expression are canonicalized before hashing
143 the expression. This is done using `reg_qty' and qty_table `first_reg'.
144 The hash code of a register reference is computed using the quantity
145 number, not the register number.
146
147 When the value of an expression changes, it is necessary to remove from the
148 hash table not just that expression but all expressions whose values
149 could be different as a result.
150
151 1. If the value changing is in memory, except in special cases
152 ANYTHING referring to memory could be changed. That is because
153 nobody knows where a pointer does not point.
154 The function `invalidate_memory' removes what is necessary.
155
156 The special cases are when the address is constant or is
157 a constant plus a fixed register such as the frame pointer
158 or a static chain pointer. When such addresses are stored in,
159 we can tell exactly which other such addresses must be invalidated
160 due to overlap. `invalidate' does this.
161 All expressions that refer to non-constant
162 memory addresses are also invalidated. `invalidate_memory' does this.
163
164 2. If the value changing is a register, all expressions
165 containing references to that register, and only those,
166 must be removed.
167
168 Because searching the entire hash table for expressions that contain
169 a register is very slow, we try to figure out when it isn't necessary.
170 Precisely, this is necessary only when expressions have been
171 entered in the hash table using this register, and then the value has
172 changed, and then another expression wants to be added to refer to
173 the register's new value. This sequence of circumstances is rare
174 within any one basic block.
175
176 `REG_TICK' and `REG_IN_TABLE', accessors for members of
177 cse_reg_info, are used to detect this case. REG_TICK (i) is
178 incremented whenever a value is stored in register i.
179 REG_IN_TABLE (i) holds -1 if no references to register i have been
180 entered in the table; otherwise, it contains the value REG_TICK (i)
181 had when the references were entered. If we want to enter a
182 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
183 remove old references. Until we want to enter a new entry, the
184 mere fact that the two vectors don't match makes the entries be
185 ignored if anyone tries to match them.
186
187 Registers themselves are entered in the hash table as well as in
188 the equivalent-register chains. However, `REG_TICK' and
189 `REG_IN_TABLE' do not apply to expressions which are simple
190 register references. These expressions are removed from the table
191 immediately when they become invalid, and this can be done even if
192 we do not immediately search for all the expressions that refer to
193 the register.
194
195 A CLOBBER rtx in an instruction invalidates its operand for further
196 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
197 invalidates everything that resides in memory.
198
199 Related expressions:
200
201 Constant expressions that differ only by an additive integer
202 are called related. When a constant expression is put in
203 the table, the related expression with no constant term
204 is also entered. These are made to point at each other
205 so that it is possible to find out if there exists any
206 register equivalent to an expression related to a given expression. */
207
208 /* Length of qty_table vector. We know in advance we will not need
209 a quantity number this big. */
210
211 static int max_qty;
212
213 /* Next quantity number to be allocated.
214 This is 1 + the largest number needed so far. */
215
216 static int next_qty;
217
218 /* Per-qty information tracking.
219
220 `first_reg' and `last_reg' track the head and tail of the
221 chain of registers which currently contain this quantity.
222
223 `mode' contains the machine mode of this quantity.
224
225 `const_rtx' holds the rtx of the constant value of this
226 quantity, if known. A summations of the frame/arg pointer
227 and a constant can also be entered here. When this holds
228 a known value, `const_insn' is the insn which stored the
229 constant value.
230
231 `comparison_{code,const,qty}' are used to track when a
232 comparison between a quantity and some constant or register has
233 been passed. In such a case, we know the results of the comparison
234 in case we see it again. These members record a comparison that
235 is known to be true. `comparison_code' holds the rtx code of such
236 a comparison, else it is set to UNKNOWN and the other two
237 comparison members are undefined. `comparison_const' holds
238 the constant being compared against, or zero if the comparison
239 is not against a constant. `comparison_qty' holds the quantity
240 being compared against when the result is known. If the comparison
241 is not with a register, `comparison_qty' is -1. */
242
243 struct qty_table_elem
244 {
245 rtx const_rtx;
246 rtx const_insn;
247 rtx comparison_const;
248 int comparison_qty;
249 unsigned int first_reg, last_reg;
250 /* The sizes of these fields should match the sizes of the
251 code and mode fields of struct rtx_def (see rtl.h). */
252 ENUM_BITFIELD(rtx_code) comparison_code : 16;
253 ENUM_BITFIELD(machine_mode) mode : 8;
254 };
255
256 /* The table of all qtys, indexed by qty number. */
257 static struct qty_table_elem *qty_table;
258
259 /* Structure used to pass arguments via for_each_rtx to function
260 cse_change_cc_mode. */
261 struct change_cc_mode_args
262 {
263 rtx insn;
264 rtx newreg;
265 };
266
267 #ifdef HAVE_cc0
268 /* For machines that have a CC0, we do not record its value in the hash
269 table since its use is guaranteed to be the insn immediately following
270 its definition and any other insn is presumed to invalidate it.
271
272 Instead, we store below the current and last value assigned to CC0.
273 If it should happen to be a constant, it is stored in preference
274 to the actual assigned value. In case it is a constant, we store
275 the mode in which the constant should be interpreted. */
276
277 static rtx this_insn_cc0, prev_insn_cc0;
278 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
279 #endif
280
281 /* Insn being scanned. */
282
283 static rtx this_insn;
284 static bool optimize_this_for_speed_p;
285
286 /* Index by register number, gives the number of the next (or
287 previous) register in the chain of registers sharing the same
288 value.
289
290 Or -1 if this register is at the end of the chain.
291
292 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
293
294 /* Per-register equivalence chain. */
295 struct reg_eqv_elem
296 {
297 int next, prev;
298 };
299
300 /* The table of all register equivalence chains. */
301 static struct reg_eqv_elem *reg_eqv_table;
302
303 struct cse_reg_info
304 {
305 /* The timestamp at which this register is initialized. */
306 unsigned int timestamp;
307
308 /* The quantity number of the register's current contents. */
309 int reg_qty;
310
311 /* The number of times the register has been altered in the current
312 basic block. */
313 int reg_tick;
314
315 /* The REG_TICK value at which rtx's containing this register are
316 valid in the hash table. If this does not equal the current
317 reg_tick value, such expressions existing in the hash table are
318 invalid. */
319 int reg_in_table;
320
321 /* The SUBREG that was set when REG_TICK was last incremented. Set
322 to -1 if the last store was to the whole register, not a subreg. */
323 unsigned int subreg_ticked;
324 };
325
326 /* A table of cse_reg_info indexed by register numbers. */
327 static struct cse_reg_info *cse_reg_info_table;
328
329 /* The size of the above table. */
330 static unsigned int cse_reg_info_table_size;
331
332 /* The index of the first entry that has not been initialized. */
333 static unsigned int cse_reg_info_table_first_uninitialized;
334
335 /* The timestamp at the beginning of the current run of
336 cse_extended_basic_block. We increment this variable at the beginning of
337 the current run of cse_extended_basic_block. The timestamp field of a
338 cse_reg_info entry matches the value of this variable if and only
339 if the entry has been initialized during the current run of
340 cse_extended_basic_block. */
341 static unsigned int cse_reg_info_timestamp;
342
343 /* A HARD_REG_SET containing all the hard registers for which there is
344 currently a REG expression in the hash table. Note the difference
345 from the above variables, which indicate if the REG is mentioned in some
346 expression in the table. */
347
348 static HARD_REG_SET hard_regs_in_table;
349
350 /* True if CSE has altered the CFG. */
351 static bool cse_cfg_altered;
352
353 /* True if CSE has altered conditional jump insns in such a way
354 that jump optimization should be redone. */
355 static bool cse_jumps_altered;
356
357 /* True if we put a LABEL_REF into the hash table for an INSN
358 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
359 to put in the note. */
360 static bool recorded_label_ref;
361
362 /* canon_hash stores 1 in do_not_record
363 if it notices a reference to CC0, PC, or some other volatile
364 subexpression. */
365
366 static int do_not_record;
367
368 /* canon_hash stores 1 in hash_arg_in_memory
369 if it notices a reference to memory within the expression being hashed. */
370
371 static int hash_arg_in_memory;
372
373 /* The hash table contains buckets which are chains of `struct table_elt's,
374 each recording one expression's information.
375 That expression is in the `exp' field.
376
377 The canon_exp field contains a canonical (from the point of view of
378 alias analysis) version of the `exp' field.
379
380 Those elements with the same hash code are chained in both directions
381 through the `next_same_hash' and `prev_same_hash' fields.
382
383 Each set of expressions with equivalent values
384 are on a two-way chain through the `next_same_value'
385 and `prev_same_value' fields, and all point with
386 the `first_same_value' field at the first element in
387 that chain. The chain is in order of increasing cost.
388 Each element's cost value is in its `cost' field.
389
390 The `in_memory' field is nonzero for elements that
391 involve any reference to memory. These elements are removed
392 whenever a write is done to an unidentified location in memory.
393 To be safe, we assume that a memory address is unidentified unless
394 the address is either a symbol constant or a constant plus
395 the frame pointer or argument pointer.
396
397 The `related_value' field is used to connect related expressions
398 (that differ by adding an integer).
399 The related expressions are chained in a circular fashion.
400 `related_value' is zero for expressions for which this
401 chain is not useful.
402
403 The `cost' field stores the cost of this element's expression.
404 The `regcost' field stores the value returned by approx_reg_cost for
405 this element's expression.
406
407 The `is_const' flag is set if the element is a constant (including
408 a fixed address).
409
410 The `flag' field is used as a temporary during some search routines.
411
412 The `mode' field is usually the same as GET_MODE (`exp'), but
413 if `exp' is a CONST_INT and has no machine mode then the `mode'
414 field is the mode it was being used as. Each constant is
415 recorded separately for each mode it is used with. */
416
417 struct table_elt
418 {
419 rtx exp;
420 rtx canon_exp;
421 struct table_elt *next_same_hash;
422 struct table_elt *prev_same_hash;
423 struct table_elt *next_same_value;
424 struct table_elt *prev_same_value;
425 struct table_elt *first_same_value;
426 struct table_elt *related_value;
427 int cost;
428 int regcost;
429 /* The size of this field should match the size
430 of the mode field of struct rtx_def (see rtl.h). */
431 ENUM_BITFIELD(machine_mode) mode : 8;
432 char in_memory;
433 char is_const;
434 char flag;
435 };
436
437 /* We don't want a lot of buckets, because we rarely have very many
438 things stored in the hash table, and a lot of buckets slows
439 down a lot of loops that happen frequently. */
440 #define HASH_SHIFT 5
441 #define HASH_SIZE (1 << HASH_SHIFT)
442 #define HASH_MASK (HASH_SIZE - 1)
443
444 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
445 register (hard registers may require `do_not_record' to be set). */
446
447 #define HASH(X, M) \
448 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
449 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
450 : canon_hash (X, M)) & HASH_MASK)
451
452 /* Like HASH, but without side-effects. */
453 #define SAFE_HASH(X, M) \
454 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
455 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
456 : safe_hash (X, M)) & HASH_MASK)
457
458 /* Determine whether register number N is considered a fixed register for the
459 purpose of approximating register costs.
460 It is desirable to replace other regs with fixed regs, to reduce need for
461 non-fixed hard regs.
462 A reg wins if it is either the frame pointer or designated as fixed. */
463 #define FIXED_REGNO_P(N) \
464 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
465 || fixed_regs[N] || global_regs[N])
466
467 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
468 hard registers and pointers into the frame are the cheapest with a cost
469 of 0. Next come pseudos with a cost of one and other hard registers with
470 a cost of 2. Aside from these special cases, call `rtx_cost'. */
471
472 #define CHEAP_REGNO(N) \
473 (REGNO_PTR_FRAME_P(N) \
474 || (HARD_REGISTER_NUM_P (N) \
475 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
476
477 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
478 #define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
479
480 /* Get the number of times this register has been updated in this
481 basic block. */
482
483 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
484
485 /* Get the point at which REG was recorded in the table. */
486
487 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
488
489 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
490 SUBREG). */
491
492 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
493
494 /* Get the quantity number for REG. */
495
496 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
497
498 /* Determine if the quantity number for register X represents a valid index
499 into the qty_table. */
500
501 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
502
503 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
504
505 #define CHEAPER(X, Y) \
506 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
507
508 static struct table_elt *table[HASH_SIZE];
509
510 /* Chain of `struct table_elt's made so far for this function
511 but currently removed from the table. */
512
513 static struct table_elt *free_element_chain;
514
515 /* Set to the cost of a constant pool reference if one was found for a
516 symbolic constant. If this was found, it means we should try to
517 convert constants into constant pool entries if they don't fit in
518 the insn. */
519
520 static int constant_pool_entries_cost;
521 static int constant_pool_entries_regcost;
522
523 /* Trace a patch through the CFG. */
524
525 struct branch_path
526 {
527 /* The basic block for this path entry. */
528 basic_block bb;
529 };
530
531 /* This data describes a block that will be processed by
532 cse_extended_basic_block. */
533
534 struct cse_basic_block_data
535 {
536 /* Total number of SETs in block. */
537 int nsets;
538 /* Size of current branch path, if any. */
539 int path_size;
540 /* Current path, indicating which basic_blocks will be processed. */
541 struct branch_path *path;
542 };
543
544
545 /* Pointers to the live in/live out bitmaps for the boundaries of the
546 current EBB. */
547 static bitmap cse_ebb_live_in, cse_ebb_live_out;
548
549 /* A simple bitmap to track which basic blocks have been visited
550 already as part of an already processed extended basic block. */
551 static sbitmap cse_visited_basic_blocks;
552
553 static bool fixed_base_plus_p (rtx x);
554 static int notreg_cost (rtx, enum rtx_code, int);
555 static int approx_reg_cost_1 (rtx *, void *);
556 static int approx_reg_cost (rtx);
557 static int preferable (int, int, int, int);
558 static void new_basic_block (void);
559 static void make_new_qty (unsigned int, enum machine_mode);
560 static void make_regs_eqv (unsigned int, unsigned int);
561 static void delete_reg_equiv (unsigned int);
562 static int mention_regs (rtx);
563 static int insert_regs (rtx, struct table_elt *, int);
564 static void remove_from_table (struct table_elt *, unsigned);
565 static void remove_pseudo_from_table (rtx, unsigned);
566 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
567 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
568 static rtx lookup_as_function (rtx, enum rtx_code);
569 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
570 enum machine_mode, int, int);
571 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
572 enum machine_mode);
573 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
574 static void invalidate (rtx, enum machine_mode);
575 static void remove_invalid_refs (unsigned int);
576 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
577 enum machine_mode);
578 static void rehash_using_reg (rtx);
579 static void invalidate_memory (void);
580 static void invalidate_for_call (void);
581 static rtx use_related_value (rtx, struct table_elt *);
582
583 static inline unsigned canon_hash (rtx, enum machine_mode);
584 static inline unsigned safe_hash (rtx, enum machine_mode);
585 static inline unsigned hash_rtx_string (const char *);
586
587 static rtx canon_reg (rtx, rtx);
588 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
589 enum machine_mode *,
590 enum machine_mode *);
591 static rtx fold_rtx (rtx, rtx);
592 static rtx equiv_constant (rtx);
593 static void record_jump_equiv (rtx, bool);
594 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
595 int);
596 static void cse_insn (rtx);
597 static void cse_prescan_path (struct cse_basic_block_data *);
598 static void invalidate_from_clobbers (rtx);
599 static void invalidate_from_sets_and_clobbers (rtx);
600 static rtx cse_process_notes (rtx, rtx, bool *);
601 static void cse_extended_basic_block (struct cse_basic_block_data *);
602 static int check_for_label_ref (rtx *, void *);
603 extern void dump_class (struct table_elt*);
604 static void get_cse_reg_info_1 (unsigned int regno);
605 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
606 static int check_dependence (rtx *, void *);
607
608 static void flush_hash_table (void);
609 static bool insn_live_p (rtx, int *);
610 static bool set_live_p (rtx, rtx, int *);
611 static int cse_change_cc_mode (rtx *, void *);
612 static void cse_change_cc_mode_insn (rtx, rtx);
613 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
614 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
615 bool);
616 \f
617
618 #undef RTL_HOOKS_GEN_LOWPART
619 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
620
621 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
622 \f
623 /* Nonzero if X has the form (PLUS frame-pointer integer). */
624
625 static bool
626 fixed_base_plus_p (rtx x)
627 {
628 switch (GET_CODE (x))
629 {
630 case REG:
631 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
632 return true;
633 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
634 return true;
635 return false;
636
637 case PLUS:
638 if (!CONST_INT_P (XEXP (x, 1)))
639 return false;
640 return fixed_base_plus_p (XEXP (x, 0));
641
642 default:
643 return false;
644 }
645 }
646
647 /* Dump the expressions in the equivalence class indicated by CLASSP.
648 This function is used only for debugging. */
649 DEBUG_FUNCTION void
650 dump_class (struct table_elt *classp)
651 {
652 struct table_elt *elt;
653
654 fprintf (stderr, "Equivalence chain for ");
655 print_rtl (stderr, classp->exp);
656 fprintf (stderr, ": \n");
657
658 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
659 {
660 print_rtl (stderr, elt->exp);
661 fprintf (stderr, "\n");
662 }
663 }
664
665 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
666
667 static int
668 approx_reg_cost_1 (rtx *xp, void *data)
669 {
670 rtx x = *xp;
671 int *cost_p = (int *) data;
672
673 if (x && REG_P (x))
674 {
675 unsigned int regno = REGNO (x);
676
677 if (! CHEAP_REGNO (regno))
678 {
679 if (regno < FIRST_PSEUDO_REGISTER)
680 {
681 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
682 return 1;
683 *cost_p += 2;
684 }
685 else
686 *cost_p += 1;
687 }
688 }
689
690 return 0;
691 }
692
693 /* Return an estimate of the cost of the registers used in an rtx.
694 This is mostly the number of different REG expressions in the rtx;
695 however for some exceptions like fixed registers we use a cost of
696 0. If any other hard register reference occurs, return MAX_COST. */
697
698 static int
699 approx_reg_cost (rtx x)
700 {
701 int cost = 0;
702
703 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
704 return MAX_COST;
705
706 return cost;
707 }
708
709 /* Return a negative value if an rtx A, whose costs are given by COST_A
710 and REGCOST_A, is more desirable than an rtx B.
711 Return a positive value if A is less desirable, or 0 if the two are
712 equally good. */
713 static int
714 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
715 {
716 /* First, get rid of cases involving expressions that are entirely
717 unwanted. */
718 if (cost_a != cost_b)
719 {
720 if (cost_a == MAX_COST)
721 return 1;
722 if (cost_b == MAX_COST)
723 return -1;
724 }
725
726 /* Avoid extending lifetimes of hardregs. */
727 if (regcost_a != regcost_b)
728 {
729 if (regcost_a == MAX_COST)
730 return 1;
731 if (regcost_b == MAX_COST)
732 return -1;
733 }
734
735 /* Normal operation costs take precedence. */
736 if (cost_a != cost_b)
737 return cost_a - cost_b;
738 /* Only if these are identical consider effects on register pressure. */
739 if (regcost_a != regcost_b)
740 return regcost_a - regcost_b;
741 return 0;
742 }
743
744 /* Internal function, to compute cost when X is not a register; called
745 from COST macro to keep it simple. */
746
747 static int
748 notreg_cost (rtx x, enum rtx_code outer, int opno)
749 {
750 return ((GET_CODE (x) == SUBREG
751 && REG_P (SUBREG_REG (x))
752 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
753 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
754 && (GET_MODE_SIZE (GET_MODE (x))
755 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
756 && subreg_lowpart_p (x)
757 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
758 GET_MODE (SUBREG_REG (x))))
759 ? 0
760 : rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
761 }
762
763 \f
764 /* Initialize CSE_REG_INFO_TABLE. */
765
766 static void
767 init_cse_reg_info (unsigned int nregs)
768 {
769 /* Do we need to grow the table? */
770 if (nregs > cse_reg_info_table_size)
771 {
772 unsigned int new_size;
773
774 if (cse_reg_info_table_size < 2048)
775 {
776 /* Compute a new size that is a power of 2 and no smaller
777 than the large of NREGS and 64. */
778 new_size = (cse_reg_info_table_size
779 ? cse_reg_info_table_size : 64);
780
781 while (new_size < nregs)
782 new_size *= 2;
783 }
784 else
785 {
786 /* If we need a big table, allocate just enough to hold
787 NREGS registers. */
788 new_size = nregs;
789 }
790
791 /* Reallocate the table with NEW_SIZE entries. */
792 free (cse_reg_info_table);
793 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
794 cse_reg_info_table_size = new_size;
795 cse_reg_info_table_first_uninitialized = 0;
796 }
797
798 /* Do we have all of the first NREGS entries initialized? */
799 if (cse_reg_info_table_first_uninitialized < nregs)
800 {
801 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
802 unsigned int i;
803
804 /* Put the old timestamp on newly allocated entries so that they
805 will all be considered out of date. We do not touch those
806 entries beyond the first NREGS entries to be nice to the
807 virtual memory. */
808 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
809 cse_reg_info_table[i].timestamp = old_timestamp;
810
811 cse_reg_info_table_first_uninitialized = nregs;
812 }
813 }
814
815 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
816
817 static void
818 get_cse_reg_info_1 (unsigned int regno)
819 {
820 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
821 entry will be considered to have been initialized. */
822 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
823
824 /* Initialize the rest of the entry. */
825 cse_reg_info_table[regno].reg_tick = 1;
826 cse_reg_info_table[regno].reg_in_table = -1;
827 cse_reg_info_table[regno].subreg_ticked = -1;
828 cse_reg_info_table[regno].reg_qty = -regno - 1;
829 }
830
831 /* Find a cse_reg_info entry for REGNO. */
832
833 static inline struct cse_reg_info *
834 get_cse_reg_info (unsigned int regno)
835 {
836 struct cse_reg_info *p = &cse_reg_info_table[regno];
837
838 /* If this entry has not been initialized, go ahead and initialize
839 it. */
840 if (p->timestamp != cse_reg_info_timestamp)
841 get_cse_reg_info_1 (regno);
842
843 return p;
844 }
845
846 /* Clear the hash table and initialize each register with its own quantity,
847 for a new basic block. */
848
849 static void
850 new_basic_block (void)
851 {
852 int i;
853
854 next_qty = 0;
855
856 /* Invalidate cse_reg_info_table. */
857 cse_reg_info_timestamp++;
858
859 /* Clear out hash table state for this pass. */
860 CLEAR_HARD_REG_SET (hard_regs_in_table);
861
862 /* The per-quantity values used to be initialized here, but it is
863 much faster to initialize each as it is made in `make_new_qty'. */
864
865 for (i = 0; i < HASH_SIZE; i++)
866 {
867 struct table_elt *first;
868
869 first = table[i];
870 if (first != NULL)
871 {
872 struct table_elt *last = first;
873
874 table[i] = NULL;
875
876 while (last->next_same_hash != NULL)
877 last = last->next_same_hash;
878
879 /* Now relink this hash entire chain into
880 the free element list. */
881
882 last->next_same_hash = free_element_chain;
883 free_element_chain = first;
884 }
885 }
886
887 #ifdef HAVE_cc0
888 prev_insn_cc0 = 0;
889 #endif
890 }
891
892 /* Say that register REG contains a quantity in mode MODE not in any
893 register before and initialize that quantity. */
894
895 static void
896 make_new_qty (unsigned int reg, enum machine_mode mode)
897 {
898 int q;
899 struct qty_table_elem *ent;
900 struct reg_eqv_elem *eqv;
901
902 gcc_assert (next_qty < max_qty);
903
904 q = REG_QTY (reg) = next_qty++;
905 ent = &qty_table[q];
906 ent->first_reg = reg;
907 ent->last_reg = reg;
908 ent->mode = mode;
909 ent->const_rtx = ent->const_insn = NULL_RTX;
910 ent->comparison_code = UNKNOWN;
911
912 eqv = &reg_eqv_table[reg];
913 eqv->next = eqv->prev = -1;
914 }
915
916 /* Make reg NEW equivalent to reg OLD.
917 OLD is not changing; NEW is. */
918
919 static void
920 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
921 {
922 unsigned int lastr, firstr;
923 int q = REG_QTY (old_reg);
924 struct qty_table_elem *ent;
925
926 ent = &qty_table[q];
927
928 /* Nothing should become eqv until it has a "non-invalid" qty number. */
929 gcc_assert (REGNO_QTY_VALID_P (old_reg));
930
931 REG_QTY (new_reg) = q;
932 firstr = ent->first_reg;
933 lastr = ent->last_reg;
934
935 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
936 hard regs. Among pseudos, if NEW will live longer than any other reg
937 of the same qty, and that is beyond the current basic block,
938 make it the new canonical replacement for this qty. */
939 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
940 /* Certain fixed registers might be of the class NO_REGS. This means
941 that not only can they not be allocated by the compiler, but
942 they cannot be used in substitutions or canonicalizations
943 either. */
944 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
945 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
946 || (new_reg >= FIRST_PSEUDO_REGISTER
947 && (firstr < FIRST_PSEUDO_REGISTER
948 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
949 && !bitmap_bit_p (cse_ebb_live_out, firstr))
950 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
951 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
952 {
953 reg_eqv_table[firstr].prev = new_reg;
954 reg_eqv_table[new_reg].next = firstr;
955 reg_eqv_table[new_reg].prev = -1;
956 ent->first_reg = new_reg;
957 }
958 else
959 {
960 /* If NEW is a hard reg (known to be non-fixed), insert at end.
961 Otherwise, insert before any non-fixed hard regs that are at the
962 end. Registers of class NO_REGS cannot be used as an
963 equivalent for anything. */
964 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
965 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
966 && new_reg >= FIRST_PSEUDO_REGISTER)
967 lastr = reg_eqv_table[lastr].prev;
968 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
969 if (reg_eqv_table[lastr].next >= 0)
970 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
971 else
972 qty_table[q].last_reg = new_reg;
973 reg_eqv_table[lastr].next = new_reg;
974 reg_eqv_table[new_reg].prev = lastr;
975 }
976 }
977
978 /* Remove REG from its equivalence class. */
979
980 static void
981 delete_reg_equiv (unsigned int reg)
982 {
983 struct qty_table_elem *ent;
984 int q = REG_QTY (reg);
985 int p, n;
986
987 /* If invalid, do nothing. */
988 if (! REGNO_QTY_VALID_P (reg))
989 return;
990
991 ent = &qty_table[q];
992
993 p = reg_eqv_table[reg].prev;
994 n = reg_eqv_table[reg].next;
995
996 if (n != -1)
997 reg_eqv_table[n].prev = p;
998 else
999 ent->last_reg = p;
1000 if (p != -1)
1001 reg_eqv_table[p].next = n;
1002 else
1003 ent->first_reg = n;
1004
1005 REG_QTY (reg) = -reg - 1;
1006 }
1007
1008 /* Remove any invalid expressions from the hash table
1009 that refer to any of the registers contained in expression X.
1010
1011 Make sure that newly inserted references to those registers
1012 as subexpressions will be considered valid.
1013
1014 mention_regs is not called when a register itself
1015 is being stored in the table.
1016
1017 Return 1 if we have done something that may have changed the hash code
1018 of X. */
1019
1020 static int
1021 mention_regs (rtx x)
1022 {
1023 enum rtx_code code;
1024 int i, j;
1025 const char *fmt;
1026 int changed = 0;
1027
1028 if (x == 0)
1029 return 0;
1030
1031 code = GET_CODE (x);
1032 if (code == REG)
1033 {
1034 unsigned int regno = REGNO (x);
1035 unsigned int endregno = END_REGNO (x);
1036 unsigned int i;
1037
1038 for (i = regno; i < endregno; i++)
1039 {
1040 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1041 remove_invalid_refs (i);
1042
1043 REG_IN_TABLE (i) = REG_TICK (i);
1044 SUBREG_TICKED (i) = -1;
1045 }
1046
1047 return 0;
1048 }
1049
1050 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1051 pseudo if they don't use overlapping words. We handle only pseudos
1052 here for simplicity. */
1053 if (code == SUBREG && REG_P (SUBREG_REG (x))
1054 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1055 {
1056 unsigned int i = REGNO (SUBREG_REG (x));
1057
1058 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1059 {
1060 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1061 the last store to this register really stored into this
1062 subreg, then remove the memory of this subreg.
1063 Otherwise, remove any memory of the entire register and
1064 all its subregs from the table. */
1065 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1066 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1067 remove_invalid_refs (i);
1068 else
1069 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1070 }
1071
1072 REG_IN_TABLE (i) = REG_TICK (i);
1073 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1074 return 0;
1075 }
1076
1077 /* If X is a comparison or a COMPARE and either operand is a register
1078 that does not have a quantity, give it one. This is so that a later
1079 call to record_jump_equiv won't cause X to be assigned a different
1080 hash code and not found in the table after that call.
1081
1082 It is not necessary to do this here, since rehash_using_reg can
1083 fix up the table later, but doing this here eliminates the need to
1084 call that expensive function in the most common case where the only
1085 use of the register is in the comparison. */
1086
1087 if (code == COMPARE || COMPARISON_P (x))
1088 {
1089 if (REG_P (XEXP (x, 0))
1090 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1091 if (insert_regs (XEXP (x, 0), NULL, 0))
1092 {
1093 rehash_using_reg (XEXP (x, 0));
1094 changed = 1;
1095 }
1096
1097 if (REG_P (XEXP (x, 1))
1098 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1099 if (insert_regs (XEXP (x, 1), NULL, 0))
1100 {
1101 rehash_using_reg (XEXP (x, 1));
1102 changed = 1;
1103 }
1104 }
1105
1106 fmt = GET_RTX_FORMAT (code);
1107 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1108 if (fmt[i] == 'e')
1109 changed |= mention_regs (XEXP (x, i));
1110 else if (fmt[i] == 'E')
1111 for (j = 0; j < XVECLEN (x, i); j++)
1112 changed |= mention_regs (XVECEXP (x, i, j));
1113
1114 return changed;
1115 }
1116
1117 /* Update the register quantities for inserting X into the hash table
1118 with a value equivalent to CLASSP.
1119 (If the class does not contain a REG, it is irrelevant.)
1120 If MODIFIED is nonzero, X is a destination; it is being modified.
1121 Note that delete_reg_equiv should be called on a register
1122 before insert_regs is done on that register with MODIFIED != 0.
1123
1124 Nonzero value means that elements of reg_qty have changed
1125 so X's hash code may be different. */
1126
1127 static int
1128 insert_regs (rtx x, struct table_elt *classp, int modified)
1129 {
1130 if (REG_P (x))
1131 {
1132 unsigned int regno = REGNO (x);
1133 int qty_valid;
1134
1135 /* If REGNO is in the equivalence table already but is of the
1136 wrong mode for that equivalence, don't do anything here. */
1137
1138 qty_valid = REGNO_QTY_VALID_P (regno);
1139 if (qty_valid)
1140 {
1141 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1142
1143 if (ent->mode != GET_MODE (x))
1144 return 0;
1145 }
1146
1147 if (modified || ! qty_valid)
1148 {
1149 if (classp)
1150 for (classp = classp->first_same_value;
1151 classp != 0;
1152 classp = classp->next_same_value)
1153 if (REG_P (classp->exp)
1154 && GET_MODE (classp->exp) == GET_MODE (x))
1155 {
1156 unsigned c_regno = REGNO (classp->exp);
1157
1158 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1159
1160 /* Suppose that 5 is hard reg and 100 and 101 are
1161 pseudos. Consider
1162
1163 (set (reg:si 100) (reg:si 5))
1164 (set (reg:si 5) (reg:si 100))
1165 (set (reg:di 101) (reg:di 5))
1166
1167 We would now set REG_QTY (101) = REG_QTY (5), but the
1168 entry for 5 is in SImode. When we use this later in
1169 copy propagation, we get the register in wrong mode. */
1170 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1171 continue;
1172
1173 make_regs_eqv (regno, c_regno);
1174 return 1;
1175 }
1176
1177 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1178 than REG_IN_TABLE to find out if there was only a single preceding
1179 invalidation - for the SUBREG - or another one, which would be
1180 for the full register. However, if we find here that REG_TICK
1181 indicates that the register is invalid, it means that it has
1182 been invalidated in a separate operation. The SUBREG might be used
1183 now (then this is a recursive call), or we might use the full REG
1184 now and a SUBREG of it later. So bump up REG_TICK so that
1185 mention_regs will do the right thing. */
1186 if (! modified
1187 && REG_IN_TABLE (regno) >= 0
1188 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1189 REG_TICK (regno)++;
1190 make_new_qty (regno, GET_MODE (x));
1191 return 1;
1192 }
1193
1194 return 0;
1195 }
1196
1197 /* If X is a SUBREG, we will likely be inserting the inner register in the
1198 table. If that register doesn't have an assigned quantity number at
1199 this point but does later, the insertion that we will be doing now will
1200 not be accessible because its hash code will have changed. So assign
1201 a quantity number now. */
1202
1203 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1204 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1205 {
1206 insert_regs (SUBREG_REG (x), NULL, 0);
1207 mention_regs (x);
1208 return 1;
1209 }
1210 else
1211 return mention_regs (x);
1212 }
1213 \f
1214
1215 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1216 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1217 CST is equal to an anchor. */
1218
1219 static bool
1220 compute_const_anchors (rtx cst,
1221 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1222 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1223 {
1224 HOST_WIDE_INT n = INTVAL (cst);
1225
1226 *lower_base = n & ~(targetm.const_anchor - 1);
1227 if (*lower_base == n)
1228 return false;
1229
1230 *upper_base =
1231 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1232 *upper_offs = n - *upper_base;
1233 *lower_offs = n - *lower_base;
1234 return true;
1235 }
1236
1237 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1238
1239 static void
1240 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1241 enum machine_mode mode)
1242 {
1243 struct table_elt *elt;
1244 unsigned hash;
1245 rtx anchor_exp;
1246 rtx exp;
1247
1248 anchor_exp = GEN_INT (anchor);
1249 hash = HASH (anchor_exp, mode);
1250 elt = lookup (anchor_exp, hash, mode);
1251 if (!elt)
1252 elt = insert (anchor_exp, NULL, hash, mode);
1253
1254 exp = plus_constant (mode, reg, offs);
1255 /* REG has just been inserted and the hash codes recomputed. */
1256 mention_regs (exp);
1257 hash = HASH (exp, mode);
1258
1259 /* Use the cost of the register rather than the whole expression. When
1260 looking up constant anchors we will further offset the corresponding
1261 expression therefore it does not make sense to prefer REGs over
1262 reg-immediate additions. Prefer instead the oldest expression. Also
1263 don't prefer pseudos over hard regs so that we derive constants in
1264 argument registers from other argument registers rather than from the
1265 original pseudo that was used to synthesize the constant. */
1266 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1267 }
1268
1269 /* The constant CST is equivalent to the register REG. Create
1270 equivalences between the two anchors of CST and the corresponding
1271 register-offset expressions using REG. */
1272
1273 static void
1274 insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1275 {
1276 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1277
1278 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1279 &upper_base, &upper_offs))
1280 return;
1281
1282 /* Ignore anchors of value 0. Constants accessible from zero are
1283 simple. */
1284 if (lower_base != 0)
1285 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1286
1287 if (upper_base != 0)
1288 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1289 }
1290
1291 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1292 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1293 valid expression. Return the cheapest and oldest of such expressions. In
1294 *OLD, return how old the resulting expression is compared to the other
1295 equivalent expressions. */
1296
1297 static rtx
1298 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1299 unsigned *old)
1300 {
1301 struct table_elt *elt;
1302 unsigned idx;
1303 struct table_elt *match_elt;
1304 rtx match;
1305
1306 /* Find the cheapest and *oldest* expression to maximize the chance of
1307 reusing the same pseudo. */
1308
1309 match_elt = NULL;
1310 match = NULL_RTX;
1311 for (elt = anchor_elt->first_same_value, idx = 0;
1312 elt;
1313 elt = elt->next_same_value, idx++)
1314 {
1315 if (match_elt && CHEAPER (match_elt, elt))
1316 return match;
1317
1318 if (REG_P (elt->exp)
1319 || (GET_CODE (elt->exp) == PLUS
1320 && REG_P (XEXP (elt->exp, 0))
1321 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1322 {
1323 rtx x;
1324
1325 /* Ignore expressions that are no longer valid. */
1326 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1327 continue;
1328
1329 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1330 if (REG_P (x)
1331 || (GET_CODE (x) == PLUS
1332 && IN_RANGE (INTVAL (XEXP (x, 1)),
1333 -targetm.const_anchor,
1334 targetm.const_anchor - 1)))
1335 {
1336 match = x;
1337 match_elt = elt;
1338 *old = idx;
1339 }
1340 }
1341 }
1342
1343 return match;
1344 }
1345
1346 /* Try to express the constant SRC_CONST using a register+offset expression
1347 derived from a constant anchor. Return it if successful or NULL_RTX,
1348 otherwise. */
1349
1350 static rtx
1351 try_const_anchors (rtx src_const, enum machine_mode mode)
1352 {
1353 struct table_elt *lower_elt, *upper_elt;
1354 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1355 rtx lower_anchor_rtx, upper_anchor_rtx;
1356 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1357 unsigned lower_old, upper_old;
1358
1359 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1360 &upper_base, &upper_offs))
1361 return NULL_RTX;
1362
1363 lower_anchor_rtx = GEN_INT (lower_base);
1364 upper_anchor_rtx = GEN_INT (upper_base);
1365 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1366 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1367
1368 if (lower_elt)
1369 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1370 if (upper_elt)
1371 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1372
1373 if (!lower_exp)
1374 return upper_exp;
1375 if (!upper_exp)
1376 return lower_exp;
1377
1378 /* Return the older expression. */
1379 return (upper_old > lower_old ? upper_exp : lower_exp);
1380 }
1381 \f
1382 /* Look in or update the hash table. */
1383
1384 /* Remove table element ELT from use in the table.
1385 HASH is its hash code, made using the HASH macro.
1386 It's an argument because often that is known in advance
1387 and we save much time not recomputing it. */
1388
1389 static void
1390 remove_from_table (struct table_elt *elt, unsigned int hash)
1391 {
1392 if (elt == 0)
1393 return;
1394
1395 /* Mark this element as removed. See cse_insn. */
1396 elt->first_same_value = 0;
1397
1398 /* Remove the table element from its equivalence class. */
1399
1400 {
1401 struct table_elt *prev = elt->prev_same_value;
1402 struct table_elt *next = elt->next_same_value;
1403
1404 if (next)
1405 next->prev_same_value = prev;
1406
1407 if (prev)
1408 prev->next_same_value = next;
1409 else
1410 {
1411 struct table_elt *newfirst = next;
1412 while (next)
1413 {
1414 next->first_same_value = newfirst;
1415 next = next->next_same_value;
1416 }
1417 }
1418 }
1419
1420 /* Remove the table element from its hash bucket. */
1421
1422 {
1423 struct table_elt *prev = elt->prev_same_hash;
1424 struct table_elt *next = elt->next_same_hash;
1425
1426 if (next)
1427 next->prev_same_hash = prev;
1428
1429 if (prev)
1430 prev->next_same_hash = next;
1431 else if (table[hash] == elt)
1432 table[hash] = next;
1433 else
1434 {
1435 /* This entry is not in the proper hash bucket. This can happen
1436 when two classes were merged by `merge_equiv_classes'. Search
1437 for the hash bucket that it heads. This happens only very
1438 rarely, so the cost is acceptable. */
1439 for (hash = 0; hash < HASH_SIZE; hash++)
1440 if (table[hash] == elt)
1441 table[hash] = next;
1442 }
1443 }
1444
1445 /* Remove the table element from its related-value circular chain. */
1446
1447 if (elt->related_value != 0 && elt->related_value != elt)
1448 {
1449 struct table_elt *p = elt->related_value;
1450
1451 while (p->related_value != elt)
1452 p = p->related_value;
1453 p->related_value = elt->related_value;
1454 if (p->related_value == p)
1455 p->related_value = 0;
1456 }
1457
1458 /* Now add it to the free element chain. */
1459 elt->next_same_hash = free_element_chain;
1460 free_element_chain = elt;
1461 }
1462
1463 /* Same as above, but X is a pseudo-register. */
1464
1465 static void
1466 remove_pseudo_from_table (rtx x, unsigned int hash)
1467 {
1468 struct table_elt *elt;
1469
1470 /* Because a pseudo-register can be referenced in more than one
1471 mode, we might have to remove more than one table entry. */
1472 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1473 remove_from_table (elt, hash);
1474 }
1475
1476 /* Look up X in the hash table and return its table element,
1477 or 0 if X is not in the table.
1478
1479 MODE is the machine-mode of X, or if X is an integer constant
1480 with VOIDmode then MODE is the mode with which X will be used.
1481
1482 Here we are satisfied to find an expression whose tree structure
1483 looks like X. */
1484
1485 static struct table_elt *
1486 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1487 {
1488 struct table_elt *p;
1489
1490 for (p = table[hash]; p; p = p->next_same_hash)
1491 if (mode == p->mode && ((x == p->exp && REG_P (x))
1492 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1493 return p;
1494
1495 return 0;
1496 }
1497
1498 /* Like `lookup' but don't care whether the table element uses invalid regs.
1499 Also ignore discrepancies in the machine mode of a register. */
1500
1501 static struct table_elt *
1502 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1503 {
1504 struct table_elt *p;
1505
1506 if (REG_P (x))
1507 {
1508 unsigned int regno = REGNO (x);
1509
1510 /* Don't check the machine mode when comparing registers;
1511 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1512 for (p = table[hash]; p; p = p->next_same_hash)
1513 if (REG_P (p->exp)
1514 && REGNO (p->exp) == regno)
1515 return p;
1516 }
1517 else
1518 {
1519 for (p = table[hash]; p; p = p->next_same_hash)
1520 if (mode == p->mode
1521 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1522 return p;
1523 }
1524
1525 return 0;
1526 }
1527
1528 /* Look for an expression equivalent to X and with code CODE.
1529 If one is found, return that expression. */
1530
1531 static rtx
1532 lookup_as_function (rtx x, enum rtx_code code)
1533 {
1534 struct table_elt *p
1535 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1536
1537 if (p == 0)
1538 return 0;
1539
1540 for (p = p->first_same_value; p; p = p->next_same_value)
1541 if (GET_CODE (p->exp) == code
1542 /* Make sure this is a valid entry in the table. */
1543 && exp_equiv_p (p->exp, p->exp, 1, false))
1544 return p->exp;
1545
1546 return 0;
1547 }
1548
1549 /* Insert X in the hash table, assuming HASH is its hash code and
1550 CLASSP is an element of the class it should go in (or 0 if a new
1551 class should be made). COST is the code of X and reg_cost is the
1552 cost of registers in X. It is inserted at the proper position to
1553 keep the class in the order cheapest first.
1554
1555 MODE is the machine-mode of X, or if X is an integer constant
1556 with VOIDmode then MODE is the mode with which X will be used.
1557
1558 For elements of equal cheapness, the most recent one
1559 goes in front, except that the first element in the list
1560 remains first unless a cheaper element is added. The order of
1561 pseudo-registers does not matter, as canon_reg will be called to
1562 find the cheapest when a register is retrieved from the table.
1563
1564 The in_memory field in the hash table element is set to 0.
1565 The caller must set it nonzero if appropriate.
1566
1567 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1568 and if insert_regs returns a nonzero value
1569 you must then recompute its hash code before calling here.
1570
1571 If necessary, update table showing constant values of quantities. */
1572
1573 static struct table_elt *
1574 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1575 enum machine_mode mode, int cost, int reg_cost)
1576 {
1577 struct table_elt *elt;
1578
1579 /* If X is a register and we haven't made a quantity for it,
1580 something is wrong. */
1581 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1582
1583 /* If X is a hard register, show it is being put in the table. */
1584 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1585 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1586
1587 /* Put an element for X into the right hash bucket. */
1588
1589 elt = free_element_chain;
1590 if (elt)
1591 free_element_chain = elt->next_same_hash;
1592 else
1593 elt = XNEW (struct table_elt);
1594
1595 elt->exp = x;
1596 elt->canon_exp = NULL_RTX;
1597 elt->cost = cost;
1598 elt->regcost = reg_cost;
1599 elt->next_same_value = 0;
1600 elt->prev_same_value = 0;
1601 elt->next_same_hash = table[hash];
1602 elt->prev_same_hash = 0;
1603 elt->related_value = 0;
1604 elt->in_memory = 0;
1605 elt->mode = mode;
1606 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1607
1608 if (table[hash])
1609 table[hash]->prev_same_hash = elt;
1610 table[hash] = elt;
1611
1612 /* Put it into the proper value-class. */
1613 if (classp)
1614 {
1615 classp = classp->first_same_value;
1616 if (CHEAPER (elt, classp))
1617 /* Insert at the head of the class. */
1618 {
1619 struct table_elt *p;
1620 elt->next_same_value = classp;
1621 classp->prev_same_value = elt;
1622 elt->first_same_value = elt;
1623
1624 for (p = classp; p; p = p->next_same_value)
1625 p->first_same_value = elt;
1626 }
1627 else
1628 {
1629 /* Insert not at head of the class. */
1630 /* Put it after the last element cheaper than X. */
1631 struct table_elt *p, *next;
1632
1633 for (p = classp;
1634 (next = p->next_same_value) && CHEAPER (next, elt);
1635 p = next)
1636 ;
1637
1638 /* Put it after P and before NEXT. */
1639 elt->next_same_value = next;
1640 if (next)
1641 next->prev_same_value = elt;
1642
1643 elt->prev_same_value = p;
1644 p->next_same_value = elt;
1645 elt->first_same_value = classp;
1646 }
1647 }
1648 else
1649 elt->first_same_value = elt;
1650
1651 /* If this is a constant being set equivalent to a register or a register
1652 being set equivalent to a constant, note the constant equivalence.
1653
1654 If this is a constant, it cannot be equivalent to a different constant,
1655 and a constant is the only thing that can be cheaper than a register. So
1656 we know the register is the head of the class (before the constant was
1657 inserted).
1658
1659 If this is a register that is not already known equivalent to a
1660 constant, we must check the entire class.
1661
1662 If this is a register that is already known equivalent to an insn,
1663 update the qtys `const_insn' to show that `this_insn' is the latest
1664 insn making that quantity equivalent to the constant. */
1665
1666 if (elt->is_const && classp && REG_P (classp->exp)
1667 && !REG_P (x))
1668 {
1669 int exp_q = REG_QTY (REGNO (classp->exp));
1670 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1671
1672 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1673 exp_ent->const_insn = this_insn;
1674 }
1675
1676 else if (REG_P (x)
1677 && classp
1678 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1679 && ! elt->is_const)
1680 {
1681 struct table_elt *p;
1682
1683 for (p = classp; p != 0; p = p->next_same_value)
1684 {
1685 if (p->is_const && !REG_P (p->exp))
1686 {
1687 int x_q = REG_QTY (REGNO (x));
1688 struct qty_table_elem *x_ent = &qty_table[x_q];
1689
1690 x_ent->const_rtx
1691 = gen_lowpart (GET_MODE (x), p->exp);
1692 x_ent->const_insn = this_insn;
1693 break;
1694 }
1695 }
1696 }
1697
1698 else if (REG_P (x)
1699 && qty_table[REG_QTY (REGNO (x))].const_rtx
1700 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1701 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1702
1703 /* If this is a constant with symbolic value,
1704 and it has a term with an explicit integer value,
1705 link it up with related expressions. */
1706 if (GET_CODE (x) == CONST)
1707 {
1708 rtx subexp = get_related_value (x);
1709 unsigned subhash;
1710 struct table_elt *subelt, *subelt_prev;
1711
1712 if (subexp != 0)
1713 {
1714 /* Get the integer-free subexpression in the hash table. */
1715 subhash = SAFE_HASH (subexp, mode);
1716 subelt = lookup (subexp, subhash, mode);
1717 if (subelt == 0)
1718 subelt = insert (subexp, NULL, subhash, mode);
1719 /* Initialize SUBELT's circular chain if it has none. */
1720 if (subelt->related_value == 0)
1721 subelt->related_value = subelt;
1722 /* Find the element in the circular chain that precedes SUBELT. */
1723 subelt_prev = subelt;
1724 while (subelt_prev->related_value != subelt)
1725 subelt_prev = subelt_prev->related_value;
1726 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1727 This way the element that follows SUBELT is the oldest one. */
1728 elt->related_value = subelt_prev->related_value;
1729 subelt_prev->related_value = elt;
1730 }
1731 }
1732
1733 return elt;
1734 }
1735
1736 /* Wrap insert_with_costs by passing the default costs. */
1737
1738 static struct table_elt *
1739 insert (rtx x, struct table_elt *classp, unsigned int hash,
1740 enum machine_mode mode)
1741 {
1742 return
1743 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1744 }
1745
1746 \f
1747 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1748 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1749 the two classes equivalent.
1750
1751 CLASS1 will be the surviving class; CLASS2 should not be used after this
1752 call.
1753
1754 Any invalid entries in CLASS2 will not be copied. */
1755
1756 static void
1757 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1758 {
1759 struct table_elt *elt, *next, *new_elt;
1760
1761 /* Ensure we start with the head of the classes. */
1762 class1 = class1->first_same_value;
1763 class2 = class2->first_same_value;
1764
1765 /* If they were already equal, forget it. */
1766 if (class1 == class2)
1767 return;
1768
1769 for (elt = class2; elt; elt = next)
1770 {
1771 unsigned int hash;
1772 rtx exp = elt->exp;
1773 enum machine_mode mode = elt->mode;
1774
1775 next = elt->next_same_value;
1776
1777 /* Remove old entry, make a new one in CLASS1's class.
1778 Don't do this for invalid entries as we cannot find their
1779 hash code (it also isn't necessary). */
1780 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1781 {
1782 bool need_rehash = false;
1783
1784 hash_arg_in_memory = 0;
1785 hash = HASH (exp, mode);
1786
1787 if (REG_P (exp))
1788 {
1789 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1790 delete_reg_equiv (REGNO (exp));
1791 }
1792
1793 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1794 remove_pseudo_from_table (exp, hash);
1795 else
1796 remove_from_table (elt, hash);
1797
1798 if (insert_regs (exp, class1, 0) || need_rehash)
1799 {
1800 rehash_using_reg (exp);
1801 hash = HASH (exp, mode);
1802 }
1803 new_elt = insert (exp, class1, hash, mode);
1804 new_elt->in_memory = hash_arg_in_memory;
1805 }
1806 }
1807 }
1808 \f
1809 /* Flush the entire hash table. */
1810
1811 static void
1812 flush_hash_table (void)
1813 {
1814 int i;
1815 struct table_elt *p;
1816
1817 for (i = 0; i < HASH_SIZE; i++)
1818 for (p = table[i]; p; p = table[i])
1819 {
1820 /* Note that invalidate can remove elements
1821 after P in the current hash chain. */
1822 if (REG_P (p->exp))
1823 invalidate (p->exp, VOIDmode);
1824 else
1825 remove_from_table (p, i);
1826 }
1827 }
1828 \f
1829 /* Function called for each rtx to check whether true dependence exist. */
1830 struct check_dependence_data
1831 {
1832 enum machine_mode mode;
1833 rtx exp;
1834 rtx addr;
1835 };
1836
1837 static int
1838 check_dependence (rtx *x, void *data)
1839 {
1840 struct check_dependence_data *d = (struct check_dependence_data *) data;
1841 if (*x && MEM_P (*x))
1842 return canon_true_dependence (d->exp, d->mode, d->addr, *x, NULL_RTX);
1843 else
1844 return 0;
1845 }
1846 \f
1847 /* Remove from the hash table, or mark as invalid, all expressions whose
1848 values could be altered by storing in X. X is a register, a subreg, or
1849 a memory reference with nonvarying address (because, when a memory
1850 reference with a varying address is stored in, all memory references are
1851 removed by invalidate_memory so specific invalidation is superfluous).
1852 FULL_MODE, if not VOIDmode, indicates that this much should be
1853 invalidated instead of just the amount indicated by the mode of X. This
1854 is only used for bitfield stores into memory.
1855
1856 A nonvarying address may be just a register or just a symbol reference,
1857 or it may be either of those plus a numeric offset. */
1858
1859 static void
1860 invalidate (rtx x, enum machine_mode full_mode)
1861 {
1862 int i;
1863 struct table_elt *p;
1864 rtx addr;
1865
1866 switch (GET_CODE (x))
1867 {
1868 case REG:
1869 {
1870 /* If X is a register, dependencies on its contents are recorded
1871 through the qty number mechanism. Just change the qty number of
1872 the register, mark it as invalid for expressions that refer to it,
1873 and remove it itself. */
1874 unsigned int regno = REGNO (x);
1875 unsigned int hash = HASH (x, GET_MODE (x));
1876
1877 /* Remove REGNO from any quantity list it might be on and indicate
1878 that its value might have changed. If it is a pseudo, remove its
1879 entry from the hash table.
1880
1881 For a hard register, we do the first two actions above for any
1882 additional hard registers corresponding to X. Then, if any of these
1883 registers are in the table, we must remove any REG entries that
1884 overlap these registers. */
1885
1886 delete_reg_equiv (regno);
1887 REG_TICK (regno)++;
1888 SUBREG_TICKED (regno) = -1;
1889
1890 if (regno >= FIRST_PSEUDO_REGISTER)
1891 remove_pseudo_from_table (x, hash);
1892 else
1893 {
1894 HOST_WIDE_INT in_table
1895 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1896 unsigned int endregno = END_HARD_REGNO (x);
1897 unsigned int tregno, tendregno, rn;
1898 struct table_elt *p, *next;
1899
1900 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1901
1902 for (rn = regno + 1; rn < endregno; rn++)
1903 {
1904 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1905 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1906 delete_reg_equiv (rn);
1907 REG_TICK (rn)++;
1908 SUBREG_TICKED (rn) = -1;
1909 }
1910
1911 if (in_table)
1912 for (hash = 0; hash < HASH_SIZE; hash++)
1913 for (p = table[hash]; p; p = next)
1914 {
1915 next = p->next_same_hash;
1916
1917 if (!REG_P (p->exp)
1918 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1919 continue;
1920
1921 tregno = REGNO (p->exp);
1922 tendregno = END_HARD_REGNO (p->exp);
1923 if (tendregno > regno && tregno < endregno)
1924 remove_from_table (p, hash);
1925 }
1926 }
1927 }
1928 return;
1929
1930 case SUBREG:
1931 invalidate (SUBREG_REG (x), VOIDmode);
1932 return;
1933
1934 case PARALLEL:
1935 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1936 invalidate (XVECEXP (x, 0, i), VOIDmode);
1937 return;
1938
1939 case EXPR_LIST:
1940 /* This is part of a disjoint return value; extract the location in
1941 question ignoring the offset. */
1942 invalidate (XEXP (x, 0), VOIDmode);
1943 return;
1944
1945 case MEM:
1946 addr = canon_rtx (get_addr (XEXP (x, 0)));
1947 /* Calculate the canonical version of X here so that
1948 true_dependence doesn't generate new RTL for X on each call. */
1949 x = canon_rtx (x);
1950
1951 /* Remove all hash table elements that refer to overlapping pieces of
1952 memory. */
1953 if (full_mode == VOIDmode)
1954 full_mode = GET_MODE (x);
1955
1956 for (i = 0; i < HASH_SIZE; i++)
1957 {
1958 struct table_elt *next;
1959
1960 for (p = table[i]; p; p = next)
1961 {
1962 next = p->next_same_hash;
1963 if (p->in_memory)
1964 {
1965 struct check_dependence_data d;
1966
1967 /* Just canonicalize the expression once;
1968 otherwise each time we call invalidate
1969 true_dependence will canonicalize the
1970 expression again. */
1971 if (!p->canon_exp)
1972 p->canon_exp = canon_rtx (p->exp);
1973 d.exp = x;
1974 d.addr = addr;
1975 d.mode = full_mode;
1976 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1977 remove_from_table (p, i);
1978 }
1979 }
1980 }
1981 return;
1982
1983 default:
1984 gcc_unreachable ();
1985 }
1986 }
1987 \f
1988 /* Remove all expressions that refer to register REGNO,
1989 since they are already invalid, and we are about to
1990 mark that register valid again and don't want the old
1991 expressions to reappear as valid. */
1992
1993 static void
1994 remove_invalid_refs (unsigned int regno)
1995 {
1996 unsigned int i;
1997 struct table_elt *p, *next;
1998
1999 for (i = 0; i < HASH_SIZE; i++)
2000 for (p = table[i]; p; p = next)
2001 {
2002 next = p->next_same_hash;
2003 if (!REG_P (p->exp)
2004 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2005 remove_from_table (p, i);
2006 }
2007 }
2008
2009 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2010 and mode MODE. */
2011 static void
2012 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2013 enum machine_mode mode)
2014 {
2015 unsigned int i;
2016 struct table_elt *p, *next;
2017 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2018
2019 for (i = 0; i < HASH_SIZE; i++)
2020 for (p = table[i]; p; p = next)
2021 {
2022 rtx exp = p->exp;
2023 next = p->next_same_hash;
2024
2025 if (!REG_P (exp)
2026 && (GET_CODE (exp) != SUBREG
2027 || !REG_P (SUBREG_REG (exp))
2028 || REGNO (SUBREG_REG (exp)) != regno
2029 || (((SUBREG_BYTE (exp)
2030 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2031 && SUBREG_BYTE (exp) <= end))
2032 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2033 remove_from_table (p, i);
2034 }
2035 }
2036 \f
2037 /* Recompute the hash codes of any valid entries in the hash table that
2038 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2039
2040 This is called when we make a jump equivalence. */
2041
2042 static void
2043 rehash_using_reg (rtx x)
2044 {
2045 unsigned int i;
2046 struct table_elt *p, *next;
2047 unsigned hash;
2048
2049 if (GET_CODE (x) == SUBREG)
2050 x = SUBREG_REG (x);
2051
2052 /* If X is not a register or if the register is known not to be in any
2053 valid entries in the table, we have no work to do. */
2054
2055 if (!REG_P (x)
2056 || REG_IN_TABLE (REGNO (x)) < 0
2057 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2058 return;
2059
2060 /* Scan all hash chains looking for valid entries that mention X.
2061 If we find one and it is in the wrong hash chain, move it. */
2062
2063 for (i = 0; i < HASH_SIZE; i++)
2064 for (p = table[i]; p; p = next)
2065 {
2066 next = p->next_same_hash;
2067 if (reg_mentioned_p (x, p->exp)
2068 && exp_equiv_p (p->exp, p->exp, 1, false)
2069 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2070 {
2071 if (p->next_same_hash)
2072 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2073
2074 if (p->prev_same_hash)
2075 p->prev_same_hash->next_same_hash = p->next_same_hash;
2076 else
2077 table[i] = p->next_same_hash;
2078
2079 p->next_same_hash = table[hash];
2080 p->prev_same_hash = 0;
2081 if (table[hash])
2082 table[hash]->prev_same_hash = p;
2083 table[hash] = p;
2084 }
2085 }
2086 }
2087 \f
2088 /* Remove from the hash table any expression that is a call-clobbered
2089 register. Also update their TICK values. */
2090
2091 static void
2092 invalidate_for_call (void)
2093 {
2094 unsigned int regno, endregno;
2095 unsigned int i;
2096 unsigned hash;
2097 struct table_elt *p, *next;
2098 int in_table = 0;
2099 hard_reg_set_iterator hrsi;
2100
2101 /* Go through all the hard registers. For each that is clobbered in
2102 a CALL_INSN, remove the register from quantity chains and update
2103 reg_tick if defined. Also see if any of these registers is currently
2104 in the table. */
2105 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2106 {
2107 delete_reg_equiv (regno);
2108 if (REG_TICK (regno) >= 0)
2109 {
2110 REG_TICK (regno)++;
2111 SUBREG_TICKED (regno) = -1;
2112 }
2113 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2114 }
2115
2116 /* In the case where we have no call-clobbered hard registers in the
2117 table, we are done. Otherwise, scan the table and remove any
2118 entry that overlaps a call-clobbered register. */
2119
2120 if (in_table)
2121 for (hash = 0; hash < HASH_SIZE; hash++)
2122 for (p = table[hash]; p; p = next)
2123 {
2124 next = p->next_same_hash;
2125
2126 if (!REG_P (p->exp)
2127 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2128 continue;
2129
2130 regno = REGNO (p->exp);
2131 endregno = END_HARD_REGNO (p->exp);
2132
2133 for (i = regno; i < endregno; i++)
2134 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2135 {
2136 remove_from_table (p, hash);
2137 break;
2138 }
2139 }
2140 }
2141 \f
2142 /* Given an expression X of type CONST,
2143 and ELT which is its table entry (or 0 if it
2144 is not in the hash table),
2145 return an alternate expression for X as a register plus integer.
2146 If none can be found, return 0. */
2147
2148 static rtx
2149 use_related_value (rtx x, struct table_elt *elt)
2150 {
2151 struct table_elt *relt = 0;
2152 struct table_elt *p, *q;
2153 HOST_WIDE_INT offset;
2154
2155 /* First, is there anything related known?
2156 If we have a table element, we can tell from that.
2157 Otherwise, must look it up. */
2158
2159 if (elt != 0 && elt->related_value != 0)
2160 relt = elt;
2161 else if (elt == 0 && GET_CODE (x) == CONST)
2162 {
2163 rtx subexp = get_related_value (x);
2164 if (subexp != 0)
2165 relt = lookup (subexp,
2166 SAFE_HASH (subexp, GET_MODE (subexp)),
2167 GET_MODE (subexp));
2168 }
2169
2170 if (relt == 0)
2171 return 0;
2172
2173 /* Search all related table entries for one that has an
2174 equivalent register. */
2175
2176 p = relt;
2177 while (1)
2178 {
2179 /* This loop is strange in that it is executed in two different cases.
2180 The first is when X is already in the table. Then it is searching
2181 the RELATED_VALUE list of X's class (RELT). The second case is when
2182 X is not in the table. Then RELT points to a class for the related
2183 value.
2184
2185 Ensure that, whatever case we are in, that we ignore classes that have
2186 the same value as X. */
2187
2188 if (rtx_equal_p (x, p->exp))
2189 q = 0;
2190 else
2191 for (q = p->first_same_value; q; q = q->next_same_value)
2192 if (REG_P (q->exp))
2193 break;
2194
2195 if (q)
2196 break;
2197
2198 p = p->related_value;
2199
2200 /* We went all the way around, so there is nothing to be found.
2201 Alternatively, perhaps RELT was in the table for some other reason
2202 and it has no related values recorded. */
2203 if (p == relt || p == 0)
2204 break;
2205 }
2206
2207 if (q == 0)
2208 return 0;
2209
2210 offset = (get_integer_term (x) - get_integer_term (p->exp));
2211 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2212 return plus_constant (q->mode, q->exp, offset);
2213 }
2214 \f
2215
2216 /* Hash a string. Just add its bytes up. */
2217 static inline unsigned
2218 hash_rtx_string (const char *ps)
2219 {
2220 unsigned hash = 0;
2221 const unsigned char *p = (const unsigned char *) ps;
2222
2223 if (p)
2224 while (*p)
2225 hash += *p++;
2226
2227 return hash;
2228 }
2229
2230 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2231 When the callback returns true, we continue with the new rtx. */
2232
2233 unsigned
2234 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2235 int *do_not_record_p, int *hash_arg_in_memory_p,
2236 bool have_reg_qty, hash_rtx_callback_function cb)
2237 {
2238 int i, j;
2239 unsigned hash = 0;
2240 enum rtx_code code;
2241 const char *fmt;
2242 enum machine_mode newmode;
2243 rtx newx;
2244
2245 /* Used to turn recursion into iteration. We can't rely on GCC's
2246 tail-recursion elimination since we need to keep accumulating values
2247 in HASH. */
2248 repeat:
2249 if (x == 0)
2250 return hash;
2251
2252 /* Invoke the callback first. */
2253 if (cb != NULL
2254 && ((*cb) (x, mode, &newx, &newmode)))
2255 {
2256 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2257 hash_arg_in_memory_p, have_reg_qty, cb);
2258 return hash;
2259 }
2260
2261 code = GET_CODE (x);
2262 switch (code)
2263 {
2264 case REG:
2265 {
2266 unsigned int regno = REGNO (x);
2267
2268 if (do_not_record_p && !reload_completed)
2269 {
2270 /* On some machines, we can't record any non-fixed hard register,
2271 because extending its life will cause reload problems. We
2272 consider ap, fp, sp, gp to be fixed for this purpose.
2273
2274 We also consider CCmode registers to be fixed for this purpose;
2275 failure to do so leads to failure to simplify 0<100 type of
2276 conditionals.
2277
2278 On all machines, we can't record any global registers.
2279 Nor should we record any register that is in a small
2280 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2281 bool record;
2282
2283 if (regno >= FIRST_PSEUDO_REGISTER)
2284 record = true;
2285 else if (x == frame_pointer_rtx
2286 || x == hard_frame_pointer_rtx
2287 || x == arg_pointer_rtx
2288 || x == stack_pointer_rtx
2289 || x == pic_offset_table_rtx)
2290 record = true;
2291 else if (global_regs[regno])
2292 record = false;
2293 else if (fixed_regs[regno])
2294 record = true;
2295 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2296 record = true;
2297 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2298 record = false;
2299 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2300 record = false;
2301 else
2302 record = true;
2303
2304 if (!record)
2305 {
2306 *do_not_record_p = 1;
2307 return 0;
2308 }
2309 }
2310
2311 hash += ((unsigned int) REG << 7);
2312 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2313 return hash;
2314 }
2315
2316 /* We handle SUBREG of a REG specially because the underlying
2317 reg changes its hash value with every value change; we don't
2318 want to have to forget unrelated subregs when one subreg changes. */
2319 case SUBREG:
2320 {
2321 if (REG_P (SUBREG_REG (x)))
2322 {
2323 hash += (((unsigned int) SUBREG << 7)
2324 + REGNO (SUBREG_REG (x))
2325 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2326 return hash;
2327 }
2328 break;
2329 }
2330
2331 case CONST_INT:
2332 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2333 + (unsigned int) INTVAL (x));
2334 return hash;
2335
2336 case CONST_DOUBLE:
2337 /* This is like the general case, except that it only counts
2338 the integers representing the constant. */
2339 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2340 if (GET_MODE (x) != VOIDmode)
2341 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2342 else
2343 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2344 + (unsigned int) CONST_DOUBLE_HIGH (x));
2345 return hash;
2346
2347 case CONST_FIXED:
2348 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2349 hash += fixed_hash (CONST_FIXED_VALUE (x));
2350 return hash;
2351
2352 case CONST_VECTOR:
2353 {
2354 int units;
2355 rtx elt;
2356
2357 units = CONST_VECTOR_NUNITS (x);
2358
2359 for (i = 0; i < units; ++i)
2360 {
2361 elt = CONST_VECTOR_ELT (x, i);
2362 hash += hash_rtx_cb (elt, GET_MODE (elt),
2363 do_not_record_p, hash_arg_in_memory_p,
2364 have_reg_qty, cb);
2365 }
2366
2367 return hash;
2368 }
2369
2370 /* Assume there is only one rtx object for any given label. */
2371 case LABEL_REF:
2372 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2373 differences and differences between each stage's debugging dumps. */
2374 hash += (((unsigned int) LABEL_REF << 7)
2375 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2376 return hash;
2377
2378 case SYMBOL_REF:
2379 {
2380 /* Don't hash on the symbol's address to avoid bootstrap differences.
2381 Different hash values may cause expressions to be recorded in
2382 different orders and thus different registers to be used in the
2383 final assembler. This also avoids differences in the dump files
2384 between various stages. */
2385 unsigned int h = 0;
2386 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2387
2388 while (*p)
2389 h += (h << 7) + *p++; /* ??? revisit */
2390
2391 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2392 return hash;
2393 }
2394
2395 case MEM:
2396 /* We don't record if marked volatile or if BLKmode since we don't
2397 know the size of the move. */
2398 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2399 {
2400 *do_not_record_p = 1;
2401 return 0;
2402 }
2403 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2404 *hash_arg_in_memory_p = 1;
2405
2406 /* Now that we have already found this special case,
2407 might as well speed it up as much as possible. */
2408 hash += (unsigned) MEM;
2409 x = XEXP (x, 0);
2410 goto repeat;
2411
2412 case USE:
2413 /* A USE that mentions non-volatile memory needs special
2414 handling since the MEM may be BLKmode which normally
2415 prevents an entry from being made. Pure calls are
2416 marked by a USE which mentions BLKmode memory.
2417 See calls.c:emit_call_1. */
2418 if (MEM_P (XEXP (x, 0))
2419 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2420 {
2421 hash += (unsigned) USE;
2422 x = XEXP (x, 0);
2423
2424 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2425 *hash_arg_in_memory_p = 1;
2426
2427 /* Now that we have already found this special case,
2428 might as well speed it up as much as possible. */
2429 hash += (unsigned) MEM;
2430 x = XEXP (x, 0);
2431 goto repeat;
2432 }
2433 break;
2434
2435 case PRE_DEC:
2436 case PRE_INC:
2437 case POST_DEC:
2438 case POST_INC:
2439 case PRE_MODIFY:
2440 case POST_MODIFY:
2441 case PC:
2442 case CC0:
2443 case CALL:
2444 case UNSPEC_VOLATILE:
2445 if (do_not_record_p) {
2446 *do_not_record_p = 1;
2447 return 0;
2448 }
2449 else
2450 return hash;
2451 break;
2452
2453 case ASM_OPERANDS:
2454 if (do_not_record_p && MEM_VOLATILE_P (x))
2455 {
2456 *do_not_record_p = 1;
2457 return 0;
2458 }
2459 else
2460 {
2461 /* We don't want to take the filename and line into account. */
2462 hash += (unsigned) code + (unsigned) GET_MODE (x)
2463 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2464 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2465 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2466
2467 if (ASM_OPERANDS_INPUT_LENGTH (x))
2468 {
2469 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2470 {
2471 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2472 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2473 do_not_record_p, hash_arg_in_memory_p,
2474 have_reg_qty, cb)
2475 + hash_rtx_string
2476 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2477 }
2478
2479 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2480 x = ASM_OPERANDS_INPUT (x, 0);
2481 mode = GET_MODE (x);
2482 goto repeat;
2483 }
2484
2485 return hash;
2486 }
2487 break;
2488
2489 default:
2490 break;
2491 }
2492
2493 i = GET_RTX_LENGTH (code) - 1;
2494 hash += (unsigned) code + (unsigned) GET_MODE (x);
2495 fmt = GET_RTX_FORMAT (code);
2496 for (; i >= 0; i--)
2497 {
2498 switch (fmt[i])
2499 {
2500 case 'e':
2501 /* If we are about to do the last recursive call
2502 needed at this level, change it into iteration.
2503 This function is called enough to be worth it. */
2504 if (i == 0)
2505 {
2506 x = XEXP (x, i);
2507 goto repeat;
2508 }
2509
2510 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2511 hash_arg_in_memory_p,
2512 have_reg_qty, cb);
2513 break;
2514
2515 case 'E':
2516 for (j = 0; j < XVECLEN (x, i); j++)
2517 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2518 hash_arg_in_memory_p,
2519 have_reg_qty, cb);
2520 break;
2521
2522 case 's':
2523 hash += hash_rtx_string (XSTR (x, i));
2524 break;
2525
2526 case 'i':
2527 hash += (unsigned int) XINT (x, i);
2528 break;
2529
2530 case '0': case 't':
2531 /* Unused. */
2532 break;
2533
2534 default:
2535 gcc_unreachable ();
2536 }
2537 }
2538
2539 return hash;
2540 }
2541
2542 /* Hash an rtx. We are careful to make sure the value is never negative.
2543 Equivalent registers hash identically.
2544 MODE is used in hashing for CONST_INTs only;
2545 otherwise the mode of X is used.
2546
2547 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2548
2549 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2550 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2551
2552 Note that cse_insn knows that the hash code of a MEM expression
2553 is just (int) MEM plus the hash code of the address. */
2554
2555 unsigned
2556 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2557 int *hash_arg_in_memory_p, bool have_reg_qty)
2558 {
2559 return hash_rtx_cb (x, mode, do_not_record_p,
2560 hash_arg_in_memory_p, have_reg_qty, NULL);
2561 }
2562
2563 /* Hash an rtx X for cse via hash_rtx.
2564 Stores 1 in do_not_record if any subexpression is volatile.
2565 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2566 does not have the RTX_UNCHANGING_P bit set. */
2567
2568 static inline unsigned
2569 canon_hash (rtx x, enum machine_mode mode)
2570 {
2571 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2572 }
2573
2574 /* Like canon_hash but with no side effects, i.e. do_not_record
2575 and hash_arg_in_memory are not changed. */
2576
2577 static inline unsigned
2578 safe_hash (rtx x, enum machine_mode mode)
2579 {
2580 int dummy_do_not_record;
2581 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2582 }
2583 \f
2584 /* Return 1 iff X and Y would canonicalize into the same thing,
2585 without actually constructing the canonicalization of either one.
2586 If VALIDATE is nonzero,
2587 we assume X is an expression being processed from the rtl
2588 and Y was found in the hash table. We check register refs
2589 in Y for being marked as valid.
2590
2591 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2592
2593 int
2594 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2595 {
2596 int i, j;
2597 enum rtx_code code;
2598 const char *fmt;
2599
2600 /* Note: it is incorrect to assume an expression is equivalent to itself
2601 if VALIDATE is nonzero. */
2602 if (x == y && !validate)
2603 return 1;
2604
2605 if (x == 0 || y == 0)
2606 return x == y;
2607
2608 code = GET_CODE (x);
2609 if (code != GET_CODE (y))
2610 return 0;
2611
2612 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2613 if (GET_MODE (x) != GET_MODE (y))
2614 return 0;
2615
2616 /* MEMs referring to different address space are not equivalent. */
2617 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2618 return 0;
2619
2620 switch (code)
2621 {
2622 case PC:
2623 case CC0:
2624 CASE_CONST_UNIQUE:
2625 return x == y;
2626
2627 case LABEL_REF:
2628 return XEXP (x, 0) == XEXP (y, 0);
2629
2630 case SYMBOL_REF:
2631 return XSTR (x, 0) == XSTR (y, 0);
2632
2633 case REG:
2634 if (for_gcse)
2635 return REGNO (x) == REGNO (y);
2636 else
2637 {
2638 unsigned int regno = REGNO (y);
2639 unsigned int i;
2640 unsigned int endregno = END_REGNO (y);
2641
2642 /* If the quantities are not the same, the expressions are not
2643 equivalent. If there are and we are not to validate, they
2644 are equivalent. Otherwise, ensure all regs are up-to-date. */
2645
2646 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2647 return 0;
2648
2649 if (! validate)
2650 return 1;
2651
2652 for (i = regno; i < endregno; i++)
2653 if (REG_IN_TABLE (i) != REG_TICK (i))
2654 return 0;
2655
2656 return 1;
2657 }
2658
2659 case MEM:
2660 if (for_gcse)
2661 {
2662 /* A volatile mem should not be considered equivalent to any
2663 other. */
2664 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2665 return 0;
2666
2667 /* Can't merge two expressions in different alias sets, since we
2668 can decide that the expression is transparent in a block when
2669 it isn't, due to it being set with the different alias set.
2670
2671 Also, can't merge two expressions with different MEM_ATTRS.
2672 They could e.g. be two different entities allocated into the
2673 same space on the stack (see e.g. PR25130). In that case, the
2674 MEM addresses can be the same, even though the two MEMs are
2675 absolutely not equivalent.
2676
2677 But because really all MEM attributes should be the same for
2678 equivalent MEMs, we just use the invariant that MEMs that have
2679 the same attributes share the same mem_attrs data structure. */
2680 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2681 return 0;
2682 }
2683 break;
2684
2685 /* For commutative operations, check both orders. */
2686 case PLUS:
2687 case MULT:
2688 case AND:
2689 case IOR:
2690 case XOR:
2691 case NE:
2692 case EQ:
2693 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2694 validate, for_gcse)
2695 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2696 validate, for_gcse))
2697 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2698 validate, for_gcse)
2699 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2700 validate, for_gcse)));
2701
2702 case ASM_OPERANDS:
2703 /* We don't use the generic code below because we want to
2704 disregard filename and line numbers. */
2705
2706 /* A volatile asm isn't equivalent to any other. */
2707 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2708 return 0;
2709
2710 if (GET_MODE (x) != GET_MODE (y)
2711 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2712 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2713 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2714 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2715 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2716 return 0;
2717
2718 if (ASM_OPERANDS_INPUT_LENGTH (x))
2719 {
2720 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2721 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2722 ASM_OPERANDS_INPUT (y, i),
2723 validate, for_gcse)
2724 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2725 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2726 return 0;
2727 }
2728
2729 return 1;
2730
2731 default:
2732 break;
2733 }
2734
2735 /* Compare the elements. If any pair of corresponding elements
2736 fail to match, return 0 for the whole thing. */
2737
2738 fmt = GET_RTX_FORMAT (code);
2739 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2740 {
2741 switch (fmt[i])
2742 {
2743 case 'e':
2744 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2745 validate, for_gcse))
2746 return 0;
2747 break;
2748
2749 case 'E':
2750 if (XVECLEN (x, i) != XVECLEN (y, i))
2751 return 0;
2752 for (j = 0; j < XVECLEN (x, i); j++)
2753 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2754 validate, for_gcse))
2755 return 0;
2756 break;
2757
2758 case 's':
2759 if (strcmp (XSTR (x, i), XSTR (y, i)))
2760 return 0;
2761 break;
2762
2763 case 'i':
2764 if (XINT (x, i) != XINT (y, i))
2765 return 0;
2766 break;
2767
2768 case 'w':
2769 if (XWINT (x, i) != XWINT (y, i))
2770 return 0;
2771 break;
2772
2773 case '0':
2774 case 't':
2775 break;
2776
2777 default:
2778 gcc_unreachable ();
2779 }
2780 }
2781
2782 return 1;
2783 }
2784 \f
2785 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2786 the result if necessary. INSN is as for canon_reg. */
2787
2788 static void
2789 validate_canon_reg (rtx *xloc, rtx insn)
2790 {
2791 if (*xloc)
2792 {
2793 rtx new_rtx = canon_reg (*xloc, insn);
2794
2795 /* If replacing pseudo with hard reg or vice versa, ensure the
2796 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2797 gcc_assert (insn && new_rtx);
2798 validate_change (insn, xloc, new_rtx, 1);
2799 }
2800 }
2801
2802 /* Canonicalize an expression:
2803 replace each register reference inside it
2804 with the "oldest" equivalent register.
2805
2806 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2807 after we make our substitution. The calls are made with IN_GROUP nonzero
2808 so apply_change_group must be called upon the outermost return from this
2809 function (unless INSN is zero). The result of apply_change_group can
2810 generally be discarded since the changes we are making are optional. */
2811
2812 static rtx
2813 canon_reg (rtx x, rtx insn)
2814 {
2815 int i;
2816 enum rtx_code code;
2817 const char *fmt;
2818
2819 if (x == 0)
2820 return x;
2821
2822 code = GET_CODE (x);
2823 switch (code)
2824 {
2825 case PC:
2826 case CC0:
2827 case CONST:
2828 CASE_CONST_ANY:
2829 case SYMBOL_REF:
2830 case LABEL_REF:
2831 case ADDR_VEC:
2832 case ADDR_DIFF_VEC:
2833 return x;
2834
2835 case REG:
2836 {
2837 int first;
2838 int q;
2839 struct qty_table_elem *ent;
2840
2841 /* Never replace a hard reg, because hard regs can appear
2842 in more than one machine mode, and we must preserve the mode
2843 of each occurrence. Also, some hard regs appear in
2844 MEMs that are shared and mustn't be altered. Don't try to
2845 replace any reg that maps to a reg of class NO_REGS. */
2846 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2847 || ! REGNO_QTY_VALID_P (REGNO (x)))
2848 return x;
2849
2850 q = REG_QTY (REGNO (x));
2851 ent = &qty_table[q];
2852 first = ent->first_reg;
2853 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2854 : REGNO_REG_CLASS (first) == NO_REGS ? x
2855 : gen_rtx_REG (ent->mode, first));
2856 }
2857
2858 default:
2859 break;
2860 }
2861
2862 fmt = GET_RTX_FORMAT (code);
2863 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2864 {
2865 int j;
2866
2867 if (fmt[i] == 'e')
2868 validate_canon_reg (&XEXP (x, i), insn);
2869 else if (fmt[i] == 'E')
2870 for (j = 0; j < XVECLEN (x, i); j++)
2871 validate_canon_reg (&XVECEXP (x, i, j), insn);
2872 }
2873
2874 return x;
2875 }
2876 \f
2877 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2878 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2879 what values are being compared.
2880
2881 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2882 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2883 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2884 compared to produce cc0.
2885
2886 The return value is the comparison operator and is either the code of
2887 A or the code corresponding to the inverse of the comparison. */
2888
2889 static enum rtx_code
2890 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2891 enum machine_mode *pmode1, enum machine_mode *pmode2)
2892 {
2893 rtx arg1, arg2;
2894 struct pointer_set_t *visited = NULL;
2895 /* Set nonzero when we find something of interest. */
2896 rtx x = NULL;
2897
2898 arg1 = *parg1, arg2 = *parg2;
2899
2900 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2901
2902 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2903 {
2904 int reverse_code = 0;
2905 struct table_elt *p = 0;
2906
2907 /* Remember state from previous iteration. */
2908 if (x)
2909 {
2910 if (!visited)
2911 visited = pointer_set_create ();
2912 pointer_set_insert (visited, x);
2913 x = 0;
2914 }
2915
2916 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2917 On machines with CC0, this is the only case that can occur, since
2918 fold_rtx will return the COMPARE or item being compared with zero
2919 when given CC0. */
2920
2921 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2922 x = arg1;
2923
2924 /* If ARG1 is a comparison operator and CODE is testing for
2925 STORE_FLAG_VALUE, get the inner arguments. */
2926
2927 else if (COMPARISON_P (arg1))
2928 {
2929 #ifdef FLOAT_STORE_FLAG_VALUE
2930 REAL_VALUE_TYPE fsfv;
2931 #endif
2932
2933 if (code == NE
2934 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2935 && code == LT && STORE_FLAG_VALUE == -1)
2936 #ifdef FLOAT_STORE_FLAG_VALUE
2937 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2938 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2939 REAL_VALUE_NEGATIVE (fsfv)))
2940 #endif
2941 )
2942 x = arg1;
2943 else if (code == EQ
2944 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2945 && code == GE && STORE_FLAG_VALUE == -1)
2946 #ifdef FLOAT_STORE_FLAG_VALUE
2947 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2948 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2949 REAL_VALUE_NEGATIVE (fsfv)))
2950 #endif
2951 )
2952 x = arg1, reverse_code = 1;
2953 }
2954
2955 /* ??? We could also check for
2956
2957 (ne (and (eq (...) (const_int 1))) (const_int 0))
2958
2959 and related forms, but let's wait until we see them occurring. */
2960
2961 if (x == 0)
2962 /* Look up ARG1 in the hash table and see if it has an equivalence
2963 that lets us see what is being compared. */
2964 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2965 if (p)
2966 {
2967 p = p->first_same_value;
2968
2969 /* If what we compare is already known to be constant, that is as
2970 good as it gets.
2971 We need to break the loop in this case, because otherwise we
2972 can have an infinite loop when looking at a reg that is known
2973 to be a constant which is the same as a comparison of a reg
2974 against zero which appears later in the insn stream, which in
2975 turn is constant and the same as the comparison of the first reg
2976 against zero... */
2977 if (p->is_const)
2978 break;
2979 }
2980
2981 for (; p; p = p->next_same_value)
2982 {
2983 enum machine_mode inner_mode = GET_MODE (p->exp);
2984 #ifdef FLOAT_STORE_FLAG_VALUE
2985 REAL_VALUE_TYPE fsfv;
2986 #endif
2987
2988 /* If the entry isn't valid, skip it. */
2989 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2990 continue;
2991
2992 /* If it's a comparison we've used before, skip it. */
2993 if (visited && pointer_set_contains (visited, p->exp))
2994 continue;
2995
2996 if (GET_CODE (p->exp) == COMPARE
2997 /* Another possibility is that this machine has a compare insn
2998 that includes the comparison code. In that case, ARG1 would
2999 be equivalent to a comparison operation that would set ARG1 to
3000 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3001 ORIG_CODE is the actual comparison being done; if it is an EQ,
3002 we must reverse ORIG_CODE. On machine with a negative value
3003 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3004 || ((code == NE
3005 || (code == LT
3006 && val_signbit_known_set_p (inner_mode,
3007 STORE_FLAG_VALUE))
3008 #ifdef FLOAT_STORE_FLAG_VALUE
3009 || (code == LT
3010 && SCALAR_FLOAT_MODE_P (inner_mode)
3011 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3012 REAL_VALUE_NEGATIVE (fsfv)))
3013 #endif
3014 )
3015 && COMPARISON_P (p->exp)))
3016 {
3017 x = p->exp;
3018 break;
3019 }
3020 else if ((code == EQ
3021 || (code == GE
3022 && val_signbit_known_set_p (inner_mode,
3023 STORE_FLAG_VALUE))
3024 #ifdef FLOAT_STORE_FLAG_VALUE
3025 || (code == GE
3026 && SCALAR_FLOAT_MODE_P (inner_mode)
3027 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3028 REAL_VALUE_NEGATIVE (fsfv)))
3029 #endif
3030 )
3031 && COMPARISON_P (p->exp))
3032 {
3033 reverse_code = 1;
3034 x = p->exp;
3035 break;
3036 }
3037
3038 /* If this non-trapping address, e.g. fp + constant, the
3039 equivalent is a better operand since it may let us predict
3040 the value of the comparison. */
3041 else if (!rtx_addr_can_trap_p (p->exp))
3042 {
3043 arg1 = p->exp;
3044 continue;
3045 }
3046 }
3047
3048 /* If we didn't find a useful equivalence for ARG1, we are done.
3049 Otherwise, set up for the next iteration. */
3050 if (x == 0)
3051 break;
3052
3053 /* If we need to reverse the comparison, make sure that that is
3054 possible -- we can't necessarily infer the value of GE from LT
3055 with floating-point operands. */
3056 if (reverse_code)
3057 {
3058 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3059 if (reversed == UNKNOWN)
3060 break;
3061 else
3062 code = reversed;
3063 }
3064 else if (COMPARISON_P (x))
3065 code = GET_CODE (x);
3066 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3067 }
3068
3069 /* Return our results. Return the modes from before fold_rtx
3070 because fold_rtx might produce const_int, and then it's too late. */
3071 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3072 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3073
3074 if (visited)
3075 pointer_set_destroy (visited);
3076 return code;
3077 }
3078 \f
3079 /* If X is a nontrivial arithmetic operation on an argument for which
3080 a constant value can be determined, return the result of operating
3081 on that value, as a constant. Otherwise, return X, possibly with
3082 one or more operands changed to a forward-propagated constant.
3083
3084 If X is a register whose contents are known, we do NOT return
3085 those contents here; equiv_constant is called to perform that task.
3086 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3087
3088 INSN is the insn that we may be modifying. If it is 0, make a copy
3089 of X before modifying it. */
3090
3091 static rtx
3092 fold_rtx (rtx x, rtx insn)
3093 {
3094 enum rtx_code code;
3095 enum machine_mode mode;
3096 const char *fmt;
3097 int i;
3098 rtx new_rtx = 0;
3099 int changed = 0;
3100
3101 /* Operands of X. */
3102 rtx folded_arg0;
3103 rtx folded_arg1;
3104
3105 /* Constant equivalents of first three operands of X;
3106 0 when no such equivalent is known. */
3107 rtx const_arg0;
3108 rtx const_arg1;
3109 rtx const_arg2;
3110
3111 /* The mode of the first operand of X. We need this for sign and zero
3112 extends. */
3113 enum machine_mode mode_arg0;
3114
3115 if (x == 0)
3116 return x;
3117
3118 /* Try to perform some initial simplifications on X. */
3119 code = GET_CODE (x);
3120 switch (code)
3121 {
3122 case MEM:
3123 case SUBREG:
3124 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3125 return new_rtx;
3126 return x;
3127
3128 case CONST:
3129 CASE_CONST_ANY:
3130 case SYMBOL_REF:
3131 case LABEL_REF:
3132 case REG:
3133 case PC:
3134 /* No use simplifying an EXPR_LIST
3135 since they are used only for lists of args
3136 in a function call's REG_EQUAL note. */
3137 case EXPR_LIST:
3138 return x;
3139
3140 #ifdef HAVE_cc0
3141 case CC0:
3142 return prev_insn_cc0;
3143 #endif
3144
3145 case ASM_OPERANDS:
3146 if (insn)
3147 {
3148 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3149 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3150 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3151 }
3152 return x;
3153
3154 #ifdef NO_FUNCTION_CSE
3155 case CALL:
3156 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3157 return x;
3158 break;
3159 #endif
3160
3161 /* Anything else goes through the loop below. */
3162 default:
3163 break;
3164 }
3165
3166 mode = GET_MODE (x);
3167 const_arg0 = 0;
3168 const_arg1 = 0;
3169 const_arg2 = 0;
3170 mode_arg0 = VOIDmode;
3171
3172 /* Try folding our operands.
3173 Then see which ones have constant values known. */
3174
3175 fmt = GET_RTX_FORMAT (code);
3176 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3177 if (fmt[i] == 'e')
3178 {
3179 rtx folded_arg = XEXP (x, i), const_arg;
3180 enum machine_mode mode_arg = GET_MODE (folded_arg);
3181
3182 switch (GET_CODE (folded_arg))
3183 {
3184 case MEM:
3185 case REG:
3186 case SUBREG:
3187 const_arg = equiv_constant (folded_arg);
3188 break;
3189
3190 case CONST:
3191 CASE_CONST_ANY:
3192 case SYMBOL_REF:
3193 case LABEL_REF:
3194 const_arg = folded_arg;
3195 break;
3196
3197 #ifdef HAVE_cc0
3198 case CC0:
3199 folded_arg = prev_insn_cc0;
3200 mode_arg = prev_insn_cc0_mode;
3201 const_arg = equiv_constant (folded_arg);
3202 break;
3203 #endif
3204
3205 default:
3206 folded_arg = fold_rtx (folded_arg, insn);
3207 const_arg = equiv_constant (folded_arg);
3208 break;
3209 }
3210
3211 /* For the first three operands, see if the operand
3212 is constant or equivalent to a constant. */
3213 switch (i)
3214 {
3215 case 0:
3216 folded_arg0 = folded_arg;
3217 const_arg0 = const_arg;
3218 mode_arg0 = mode_arg;
3219 break;
3220 case 1:
3221 folded_arg1 = folded_arg;
3222 const_arg1 = const_arg;
3223 break;
3224 case 2:
3225 const_arg2 = const_arg;
3226 break;
3227 }
3228
3229 /* Pick the least expensive of the argument and an equivalent constant
3230 argument. */
3231 if (const_arg != 0
3232 && const_arg != folded_arg
3233 && COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
3234
3235 /* It's not safe to substitute the operand of a conversion
3236 operator with a constant, as the conversion's identity
3237 depends upon the mode of its operand. This optimization
3238 is handled by the call to simplify_unary_operation. */
3239 && (GET_RTX_CLASS (code) != RTX_UNARY
3240 || GET_MODE (const_arg) == mode_arg0
3241 || (code != ZERO_EXTEND
3242 && code != SIGN_EXTEND
3243 && code != TRUNCATE
3244 && code != FLOAT_TRUNCATE
3245 && code != FLOAT_EXTEND
3246 && code != FLOAT
3247 && code != FIX
3248 && code != UNSIGNED_FLOAT
3249 && code != UNSIGNED_FIX)))
3250 folded_arg = const_arg;
3251
3252 if (folded_arg == XEXP (x, i))
3253 continue;
3254
3255 if (insn == NULL_RTX && !changed)
3256 x = copy_rtx (x);
3257 changed = 1;
3258 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3259 }
3260
3261 if (changed)
3262 {
3263 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3264 consistent with the order in X. */
3265 if (canonicalize_change_group (insn, x))
3266 {
3267 rtx tem;
3268 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3269 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3270 }
3271
3272 apply_change_group ();
3273 }
3274
3275 /* If X is an arithmetic operation, see if we can simplify it. */
3276
3277 switch (GET_RTX_CLASS (code))
3278 {
3279 case RTX_UNARY:
3280 {
3281 /* We can't simplify extension ops unless we know the
3282 original mode. */
3283 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3284 && mode_arg0 == VOIDmode)
3285 break;
3286
3287 new_rtx = simplify_unary_operation (code, mode,
3288 const_arg0 ? const_arg0 : folded_arg0,
3289 mode_arg0);
3290 }
3291 break;
3292
3293 case RTX_COMPARE:
3294 case RTX_COMM_COMPARE:
3295 /* See what items are actually being compared and set FOLDED_ARG[01]
3296 to those values and CODE to the actual comparison code. If any are
3297 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3298 do anything if both operands are already known to be constant. */
3299
3300 /* ??? Vector mode comparisons are not supported yet. */
3301 if (VECTOR_MODE_P (mode))
3302 break;
3303
3304 if (const_arg0 == 0 || const_arg1 == 0)
3305 {
3306 struct table_elt *p0, *p1;
3307 rtx true_rtx, false_rtx;
3308 enum machine_mode mode_arg1;
3309
3310 if (SCALAR_FLOAT_MODE_P (mode))
3311 {
3312 #ifdef FLOAT_STORE_FLAG_VALUE
3313 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3314 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3315 #else
3316 true_rtx = NULL_RTX;
3317 #endif
3318 false_rtx = CONST0_RTX (mode);
3319 }
3320 else
3321 {
3322 true_rtx = const_true_rtx;
3323 false_rtx = const0_rtx;
3324 }
3325
3326 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3327 &mode_arg0, &mode_arg1);
3328
3329 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3330 what kinds of things are being compared, so we can't do
3331 anything with this comparison. */
3332
3333 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3334 break;
3335
3336 const_arg0 = equiv_constant (folded_arg0);
3337 const_arg1 = equiv_constant (folded_arg1);
3338
3339 /* If we do not now have two constants being compared, see
3340 if we can nevertheless deduce some things about the
3341 comparison. */
3342 if (const_arg0 == 0 || const_arg1 == 0)
3343 {
3344 if (const_arg1 != NULL)
3345 {
3346 rtx cheapest_simplification;
3347 int cheapest_cost;
3348 rtx simp_result;
3349 struct table_elt *p;
3350
3351 /* See if we can find an equivalent of folded_arg0
3352 that gets us a cheaper expression, possibly a
3353 constant through simplifications. */
3354 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3355 mode_arg0);
3356
3357 if (p != NULL)
3358 {
3359 cheapest_simplification = x;
3360 cheapest_cost = COST (x);
3361
3362 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3363 {
3364 int cost;
3365
3366 /* If the entry isn't valid, skip it. */
3367 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3368 continue;
3369
3370 /* Try to simplify using this equivalence. */
3371 simp_result
3372 = simplify_relational_operation (code, mode,
3373 mode_arg0,
3374 p->exp,
3375 const_arg1);
3376
3377 if (simp_result == NULL)
3378 continue;
3379
3380 cost = COST (simp_result);
3381 if (cost < cheapest_cost)
3382 {
3383 cheapest_cost = cost;
3384 cheapest_simplification = simp_result;
3385 }
3386 }
3387
3388 /* If we have a cheaper expression now, use that
3389 and try folding it further, from the top. */
3390 if (cheapest_simplification != x)
3391 return fold_rtx (copy_rtx (cheapest_simplification),
3392 insn);
3393 }
3394 }
3395
3396 /* See if the two operands are the same. */
3397
3398 if ((REG_P (folded_arg0)
3399 && REG_P (folded_arg1)
3400 && (REG_QTY (REGNO (folded_arg0))
3401 == REG_QTY (REGNO (folded_arg1))))
3402 || ((p0 = lookup (folded_arg0,
3403 SAFE_HASH (folded_arg0, mode_arg0),
3404 mode_arg0))
3405 && (p1 = lookup (folded_arg1,
3406 SAFE_HASH (folded_arg1, mode_arg0),
3407 mode_arg0))
3408 && p0->first_same_value == p1->first_same_value))
3409 folded_arg1 = folded_arg0;
3410
3411 /* If FOLDED_ARG0 is a register, see if the comparison we are
3412 doing now is either the same as we did before or the reverse
3413 (we only check the reverse if not floating-point). */
3414 else if (REG_P (folded_arg0))
3415 {
3416 int qty = REG_QTY (REGNO (folded_arg0));
3417
3418 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3419 {
3420 struct qty_table_elem *ent = &qty_table[qty];
3421
3422 if ((comparison_dominates_p (ent->comparison_code, code)
3423 || (! FLOAT_MODE_P (mode_arg0)
3424 && comparison_dominates_p (ent->comparison_code,
3425 reverse_condition (code))))
3426 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3427 || (const_arg1
3428 && rtx_equal_p (ent->comparison_const,
3429 const_arg1))
3430 || (REG_P (folded_arg1)
3431 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3432 {
3433 if (comparison_dominates_p (ent->comparison_code, code))
3434 {
3435 if (true_rtx)
3436 return true_rtx;
3437 else
3438 break;
3439 }
3440 else
3441 return false_rtx;
3442 }
3443 }
3444 }
3445 }
3446 }
3447
3448 /* If we are comparing against zero, see if the first operand is
3449 equivalent to an IOR with a constant. If so, we may be able to
3450 determine the result of this comparison. */
3451 if (const_arg1 == const0_rtx && !const_arg0)
3452 {
3453 rtx y = lookup_as_function (folded_arg0, IOR);
3454 rtx inner_const;
3455
3456 if (y != 0
3457 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3458 && CONST_INT_P (inner_const)
3459 && INTVAL (inner_const) != 0)
3460 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3461 }
3462
3463 {
3464 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3465 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3466 new_rtx = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3467 }
3468 break;
3469
3470 case RTX_BIN_ARITH:
3471 case RTX_COMM_ARITH:
3472 switch (code)
3473 {
3474 case PLUS:
3475 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3476 with that LABEL_REF as its second operand. If so, the result is
3477 the first operand of that MINUS. This handles switches with an
3478 ADDR_DIFF_VEC table. */
3479 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3480 {
3481 rtx y
3482 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3483 : lookup_as_function (folded_arg0, MINUS);
3484
3485 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3486 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3487 return XEXP (y, 0);
3488
3489 /* Now try for a CONST of a MINUS like the above. */
3490 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3491 : lookup_as_function (folded_arg0, CONST))) != 0
3492 && GET_CODE (XEXP (y, 0)) == MINUS
3493 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3494 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3495 return XEXP (XEXP (y, 0), 0);
3496 }
3497
3498 /* Likewise if the operands are in the other order. */
3499 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3500 {
3501 rtx y
3502 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3503 : lookup_as_function (folded_arg1, MINUS);
3504
3505 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3506 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3507 return XEXP (y, 0);
3508
3509 /* Now try for a CONST of a MINUS like the above. */
3510 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3511 : lookup_as_function (folded_arg1, CONST))) != 0
3512 && GET_CODE (XEXP (y, 0)) == MINUS
3513 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3514 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3515 return XEXP (XEXP (y, 0), 0);
3516 }
3517
3518 /* If second operand is a register equivalent to a negative
3519 CONST_INT, see if we can find a register equivalent to the
3520 positive constant. Make a MINUS if so. Don't do this for
3521 a non-negative constant since we might then alternate between
3522 choosing positive and negative constants. Having the positive
3523 constant previously-used is the more common case. Be sure
3524 the resulting constant is non-negative; if const_arg1 were
3525 the smallest negative number this would overflow: depending
3526 on the mode, this would either just be the same value (and
3527 hence not save anything) or be incorrect. */
3528 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3529 && INTVAL (const_arg1) < 0
3530 /* This used to test
3531
3532 -INTVAL (const_arg1) >= 0
3533
3534 But The Sun V5.0 compilers mis-compiled that test. So
3535 instead we test for the problematic value in a more direct
3536 manner and hope the Sun compilers get it correct. */
3537 && INTVAL (const_arg1) !=
3538 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3539 && REG_P (folded_arg1))
3540 {
3541 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3542 struct table_elt *p
3543 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3544
3545 if (p)
3546 for (p = p->first_same_value; p; p = p->next_same_value)
3547 if (REG_P (p->exp))
3548 return simplify_gen_binary (MINUS, mode, folded_arg0,
3549 canon_reg (p->exp, NULL_RTX));
3550 }
3551 goto from_plus;
3552
3553 case MINUS:
3554 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3555 If so, produce (PLUS Z C2-C). */
3556 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3557 {
3558 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3559 if (y && CONST_INT_P (XEXP (y, 1)))
3560 return fold_rtx (plus_constant (mode, copy_rtx (y),
3561 -INTVAL (const_arg1)),
3562 NULL_RTX);
3563 }
3564
3565 /* Fall through. */
3566
3567 from_plus:
3568 case SMIN: case SMAX: case UMIN: case UMAX:
3569 case IOR: case AND: case XOR:
3570 case MULT:
3571 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3572 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3573 is known to be of similar form, we may be able to replace the
3574 operation with a combined operation. This may eliminate the
3575 intermediate operation if every use is simplified in this way.
3576 Note that the similar optimization done by combine.c only works
3577 if the intermediate operation's result has only one reference. */
3578
3579 if (REG_P (folded_arg0)
3580 && const_arg1 && CONST_INT_P (const_arg1))
3581 {
3582 int is_shift
3583 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3584 rtx y, inner_const, new_const;
3585 rtx canon_const_arg1 = const_arg1;
3586 enum rtx_code associate_code;
3587
3588 if (is_shift
3589 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3590 || INTVAL (const_arg1) < 0))
3591 {
3592 if (SHIFT_COUNT_TRUNCATED)
3593 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3594 & (GET_MODE_BITSIZE (mode)
3595 - 1));
3596 else
3597 break;
3598 }
3599
3600 y = lookup_as_function (folded_arg0, code);
3601 if (y == 0)
3602 break;
3603
3604 /* If we have compiled a statement like
3605 "if (x == (x & mask1))", and now are looking at
3606 "x & mask2", we will have a case where the first operand
3607 of Y is the same as our first operand. Unless we detect
3608 this case, an infinite loop will result. */
3609 if (XEXP (y, 0) == folded_arg0)
3610 break;
3611
3612 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3613 if (!inner_const || !CONST_INT_P (inner_const))
3614 break;
3615
3616 /* Don't associate these operations if they are a PLUS with the
3617 same constant and it is a power of two. These might be doable
3618 with a pre- or post-increment. Similarly for two subtracts of
3619 identical powers of two with post decrement. */
3620
3621 if (code == PLUS && const_arg1 == inner_const
3622 && ((HAVE_PRE_INCREMENT
3623 && exact_log2 (INTVAL (const_arg1)) >= 0)
3624 || (HAVE_POST_INCREMENT
3625 && exact_log2 (INTVAL (const_arg1)) >= 0)
3626 || (HAVE_PRE_DECREMENT
3627 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3628 || (HAVE_POST_DECREMENT
3629 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3630 break;
3631
3632 /* ??? Vector mode shifts by scalar
3633 shift operand are not supported yet. */
3634 if (is_shift && VECTOR_MODE_P (mode))
3635 break;
3636
3637 if (is_shift
3638 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3639 || INTVAL (inner_const) < 0))
3640 {
3641 if (SHIFT_COUNT_TRUNCATED)
3642 inner_const = GEN_INT (INTVAL (inner_const)
3643 & (GET_MODE_BITSIZE (mode) - 1));
3644 else
3645 break;
3646 }
3647
3648 /* Compute the code used to compose the constants. For example,
3649 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3650
3651 associate_code = (is_shift || code == MINUS ? PLUS : code);
3652
3653 new_const = simplify_binary_operation (associate_code, mode,
3654 canon_const_arg1,
3655 inner_const);
3656
3657 if (new_const == 0)
3658 break;
3659
3660 /* If we are associating shift operations, don't let this
3661 produce a shift of the size of the object or larger.
3662 This could occur when we follow a sign-extend by a right
3663 shift on a machine that does a sign-extend as a pair
3664 of shifts. */
3665
3666 if (is_shift
3667 && CONST_INT_P (new_const)
3668 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3669 {
3670 /* As an exception, we can turn an ASHIFTRT of this
3671 form into a shift of the number of bits - 1. */
3672 if (code == ASHIFTRT)
3673 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3674 else if (!side_effects_p (XEXP (y, 0)))
3675 return CONST0_RTX (mode);
3676 else
3677 break;
3678 }
3679
3680 y = copy_rtx (XEXP (y, 0));
3681
3682 /* If Y contains our first operand (the most common way this
3683 can happen is if Y is a MEM), we would do into an infinite
3684 loop if we tried to fold it. So don't in that case. */
3685
3686 if (! reg_mentioned_p (folded_arg0, y))
3687 y = fold_rtx (y, insn);
3688
3689 return simplify_gen_binary (code, mode, y, new_const);
3690 }
3691 break;
3692
3693 case DIV: case UDIV:
3694 /* ??? The associative optimization performed immediately above is
3695 also possible for DIV and UDIV using associate_code of MULT.
3696 However, we would need extra code to verify that the
3697 multiplication does not overflow, that is, there is no overflow
3698 in the calculation of new_const. */
3699 break;
3700
3701 default:
3702 break;
3703 }
3704
3705 new_rtx = simplify_binary_operation (code, mode,
3706 const_arg0 ? const_arg0 : folded_arg0,
3707 const_arg1 ? const_arg1 : folded_arg1);
3708 break;
3709
3710 case RTX_OBJ:
3711 /* (lo_sum (high X) X) is simply X. */
3712 if (code == LO_SUM && const_arg0 != 0
3713 && GET_CODE (const_arg0) == HIGH
3714 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3715 return const_arg1;
3716 break;
3717
3718 case RTX_TERNARY:
3719 case RTX_BITFIELD_OPS:
3720 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3721 const_arg0 ? const_arg0 : folded_arg0,
3722 const_arg1 ? const_arg1 : folded_arg1,
3723 const_arg2 ? const_arg2 : XEXP (x, 2));
3724 break;
3725
3726 default:
3727 break;
3728 }
3729
3730 return new_rtx ? new_rtx : x;
3731 }
3732 \f
3733 /* Return a constant value currently equivalent to X.
3734 Return 0 if we don't know one. */
3735
3736 static rtx
3737 equiv_constant (rtx x)
3738 {
3739 if (REG_P (x)
3740 && REGNO_QTY_VALID_P (REGNO (x)))
3741 {
3742 int x_q = REG_QTY (REGNO (x));
3743 struct qty_table_elem *x_ent = &qty_table[x_q];
3744
3745 if (x_ent->const_rtx)
3746 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3747 }
3748
3749 if (x == 0 || CONSTANT_P (x))
3750 return x;
3751
3752 if (GET_CODE (x) == SUBREG)
3753 {
3754 enum machine_mode mode = GET_MODE (x);
3755 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3756 rtx new_rtx;
3757
3758 /* See if we previously assigned a constant value to this SUBREG. */
3759 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3760 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3761 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3762 return new_rtx;
3763
3764 /* If we didn't and if doing so makes sense, see if we previously
3765 assigned a constant value to the enclosing word mode SUBREG. */
3766 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3767 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3768 {
3769 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3770 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3771 {
3772 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3773 new_rtx = lookup_as_function (y, CONST_INT);
3774 if (new_rtx)
3775 return gen_lowpart (mode, new_rtx);
3776 }
3777 }
3778
3779 /* Otherwise see if we already have a constant for the inner REG,
3780 and if that is enough to calculate an equivalent constant for
3781 the subreg. Note that the upper bits of paradoxical subregs
3782 are undefined, so they cannot be said to equal anything. */
3783 if (REG_P (SUBREG_REG (x))
3784 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3785 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3786 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3787
3788 return 0;
3789 }
3790
3791 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3792 the hash table in case its value was seen before. */
3793
3794 if (MEM_P (x))
3795 {
3796 struct table_elt *elt;
3797
3798 x = avoid_constant_pool_reference (x);
3799 if (CONSTANT_P (x))
3800 return x;
3801
3802 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3803 if (elt == 0)
3804 return 0;
3805
3806 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3807 if (elt->is_const && CONSTANT_P (elt->exp))
3808 return elt->exp;
3809 }
3810
3811 return 0;
3812 }
3813 \f
3814 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3815 "taken" branch.
3816
3817 In certain cases, this can cause us to add an equivalence. For example,
3818 if we are following the taken case of
3819 if (i == 2)
3820 we can add the fact that `i' and '2' are now equivalent.
3821
3822 In any case, we can record that this comparison was passed. If the same
3823 comparison is seen later, we will know its value. */
3824
3825 static void
3826 record_jump_equiv (rtx insn, bool taken)
3827 {
3828 int cond_known_true;
3829 rtx op0, op1;
3830 rtx set;
3831 enum machine_mode mode, mode0, mode1;
3832 int reversed_nonequality = 0;
3833 enum rtx_code code;
3834
3835 /* Ensure this is the right kind of insn. */
3836 gcc_assert (any_condjump_p (insn));
3837
3838 set = pc_set (insn);
3839
3840 /* See if this jump condition is known true or false. */
3841 if (taken)
3842 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3843 else
3844 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3845
3846 /* Get the type of comparison being done and the operands being compared.
3847 If we had to reverse a non-equality condition, record that fact so we
3848 know that it isn't valid for floating-point. */
3849 code = GET_CODE (XEXP (SET_SRC (set), 0));
3850 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3851 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3852
3853 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3854 if (! cond_known_true)
3855 {
3856 code = reversed_comparison_code_parts (code, op0, op1, insn);
3857
3858 /* Don't remember if we can't find the inverse. */
3859 if (code == UNKNOWN)
3860 return;
3861 }
3862
3863 /* The mode is the mode of the non-constant. */
3864 mode = mode0;
3865 if (mode1 != VOIDmode)
3866 mode = mode1;
3867
3868 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3869 }
3870
3871 /* Yet another form of subreg creation. In this case, we want something in
3872 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3873
3874 static rtx
3875 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3876 {
3877 enum machine_mode op_mode = GET_MODE (op);
3878 if (op_mode == mode || op_mode == VOIDmode)
3879 return op;
3880 return lowpart_subreg (mode, op, op_mode);
3881 }
3882
3883 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3884 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3885 Make any useful entries we can with that information. Called from
3886 above function and called recursively. */
3887
3888 static void
3889 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3890 rtx op1, int reversed_nonequality)
3891 {
3892 unsigned op0_hash, op1_hash;
3893 int op0_in_memory, op1_in_memory;
3894 struct table_elt *op0_elt, *op1_elt;
3895
3896 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3897 we know that they are also equal in the smaller mode (this is also
3898 true for all smaller modes whether or not there is a SUBREG, but
3899 is not worth testing for with no SUBREG). */
3900
3901 /* Note that GET_MODE (op0) may not equal MODE. */
3902 if (code == EQ && paradoxical_subreg_p (op0))
3903 {
3904 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3905 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3906 if (tem)
3907 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3908 reversed_nonequality);
3909 }
3910
3911 if (code == EQ && paradoxical_subreg_p (op1))
3912 {
3913 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3914 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3915 if (tem)
3916 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3917 reversed_nonequality);
3918 }
3919
3920 /* Similarly, if this is an NE comparison, and either is a SUBREG
3921 making a smaller mode, we know the whole thing is also NE. */
3922
3923 /* Note that GET_MODE (op0) may not equal MODE;
3924 if we test MODE instead, we can get an infinite recursion
3925 alternating between two modes each wider than MODE. */
3926
3927 if (code == NE && GET_CODE (op0) == SUBREG
3928 && subreg_lowpart_p (op0)
3929 && (GET_MODE_SIZE (GET_MODE (op0))
3930 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3931 {
3932 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3933 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3934 if (tem)
3935 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3936 reversed_nonequality);
3937 }
3938
3939 if (code == NE && GET_CODE (op1) == SUBREG
3940 && subreg_lowpart_p (op1)
3941 && (GET_MODE_SIZE (GET_MODE (op1))
3942 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3943 {
3944 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3945 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3946 if (tem)
3947 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3948 reversed_nonequality);
3949 }
3950
3951 /* Hash both operands. */
3952
3953 do_not_record = 0;
3954 hash_arg_in_memory = 0;
3955 op0_hash = HASH (op0, mode);
3956 op0_in_memory = hash_arg_in_memory;
3957
3958 if (do_not_record)
3959 return;
3960
3961 do_not_record = 0;
3962 hash_arg_in_memory = 0;
3963 op1_hash = HASH (op1, mode);
3964 op1_in_memory = hash_arg_in_memory;
3965
3966 if (do_not_record)
3967 return;
3968
3969 /* Look up both operands. */
3970 op0_elt = lookup (op0, op0_hash, mode);
3971 op1_elt = lookup (op1, op1_hash, mode);
3972
3973 /* If both operands are already equivalent or if they are not in the
3974 table but are identical, do nothing. */
3975 if ((op0_elt != 0 && op1_elt != 0
3976 && op0_elt->first_same_value == op1_elt->first_same_value)
3977 || op0 == op1 || rtx_equal_p (op0, op1))
3978 return;
3979
3980 /* If we aren't setting two things equal all we can do is save this
3981 comparison. Similarly if this is floating-point. In the latter
3982 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3983 If we record the equality, we might inadvertently delete code
3984 whose intent was to change -0 to +0. */
3985
3986 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3987 {
3988 struct qty_table_elem *ent;
3989 int qty;
3990
3991 /* If we reversed a floating-point comparison, if OP0 is not a
3992 register, or if OP1 is neither a register or constant, we can't
3993 do anything. */
3994
3995 if (!REG_P (op1))
3996 op1 = equiv_constant (op1);
3997
3998 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3999 || !REG_P (op0) || op1 == 0)
4000 return;
4001
4002 /* Put OP0 in the hash table if it isn't already. This gives it a
4003 new quantity number. */
4004 if (op0_elt == 0)
4005 {
4006 if (insert_regs (op0, NULL, 0))
4007 {
4008 rehash_using_reg (op0);
4009 op0_hash = HASH (op0, mode);
4010
4011 /* If OP0 is contained in OP1, this changes its hash code
4012 as well. Faster to rehash than to check, except
4013 for the simple case of a constant. */
4014 if (! CONSTANT_P (op1))
4015 op1_hash = HASH (op1,mode);
4016 }
4017
4018 op0_elt = insert (op0, NULL, op0_hash, mode);
4019 op0_elt->in_memory = op0_in_memory;
4020 }
4021
4022 qty = REG_QTY (REGNO (op0));
4023 ent = &qty_table[qty];
4024
4025 ent->comparison_code = code;
4026 if (REG_P (op1))
4027 {
4028 /* Look it up again--in case op0 and op1 are the same. */
4029 op1_elt = lookup (op1, op1_hash, mode);
4030
4031 /* Put OP1 in the hash table so it gets a new quantity number. */
4032 if (op1_elt == 0)
4033 {
4034 if (insert_regs (op1, NULL, 0))
4035 {
4036 rehash_using_reg (op1);
4037 op1_hash = HASH (op1, mode);
4038 }
4039
4040 op1_elt = insert (op1, NULL, op1_hash, mode);
4041 op1_elt->in_memory = op1_in_memory;
4042 }
4043
4044 ent->comparison_const = NULL_RTX;
4045 ent->comparison_qty = REG_QTY (REGNO (op1));
4046 }
4047 else
4048 {
4049 ent->comparison_const = op1;
4050 ent->comparison_qty = -1;
4051 }
4052
4053 return;
4054 }
4055
4056 /* If either side is still missing an equivalence, make it now,
4057 then merge the equivalences. */
4058
4059 if (op0_elt == 0)
4060 {
4061 if (insert_regs (op0, NULL, 0))
4062 {
4063 rehash_using_reg (op0);
4064 op0_hash = HASH (op0, mode);
4065 }
4066
4067 op0_elt = insert (op0, NULL, op0_hash, mode);
4068 op0_elt->in_memory = op0_in_memory;
4069 }
4070
4071 if (op1_elt == 0)
4072 {
4073 if (insert_regs (op1, NULL, 0))
4074 {
4075 rehash_using_reg (op1);
4076 op1_hash = HASH (op1, mode);
4077 }
4078
4079 op1_elt = insert (op1, NULL, op1_hash, mode);
4080 op1_elt->in_memory = op1_in_memory;
4081 }
4082
4083 merge_equiv_classes (op0_elt, op1_elt);
4084 }
4085 \f
4086 /* CSE processing for one instruction.
4087
4088 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4089 but the few that "leak through" are cleaned up by cse_insn, and complex
4090 addressing modes are often formed here.
4091
4092 The main function is cse_insn, and between here and that function
4093 a couple of helper functions is defined to keep the size of cse_insn
4094 within reasonable proportions.
4095
4096 Data is shared between the main and helper functions via STRUCT SET,
4097 that contains all data related for every set in the instruction that
4098 is being processed.
4099
4100 Note that cse_main processes all sets in the instruction. Most
4101 passes in GCC only process simple SET insns or single_set insns, but
4102 CSE processes insns with multiple sets as well. */
4103
4104 /* Data on one SET contained in the instruction. */
4105
4106 struct set
4107 {
4108 /* The SET rtx itself. */
4109 rtx rtl;
4110 /* The SET_SRC of the rtx (the original value, if it is changing). */
4111 rtx src;
4112 /* The hash-table element for the SET_SRC of the SET. */
4113 struct table_elt *src_elt;
4114 /* Hash value for the SET_SRC. */
4115 unsigned src_hash;
4116 /* Hash value for the SET_DEST. */
4117 unsigned dest_hash;
4118 /* The SET_DEST, with SUBREG, etc., stripped. */
4119 rtx inner_dest;
4120 /* Nonzero if the SET_SRC is in memory. */
4121 char src_in_memory;
4122 /* Nonzero if the SET_SRC contains something
4123 whose value cannot be predicted and understood. */
4124 char src_volatile;
4125 /* Original machine mode, in case it becomes a CONST_INT.
4126 The size of this field should match the size of the mode
4127 field of struct rtx_def (see rtl.h). */
4128 ENUM_BITFIELD(machine_mode) mode : 8;
4129 /* A constant equivalent for SET_SRC, if any. */
4130 rtx src_const;
4131 /* Hash value of constant equivalent for SET_SRC. */
4132 unsigned src_const_hash;
4133 /* Table entry for constant equivalent for SET_SRC, if any. */
4134 struct table_elt *src_const_elt;
4135 /* Table entry for the destination address. */
4136 struct table_elt *dest_addr_elt;
4137 };
4138 \f
4139 /* Special handling for (set REG0 REG1) where REG0 is the
4140 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4141 be used in the sequel, so (if easily done) change this insn to
4142 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4143 that computed their value. Then REG1 will become a dead store
4144 and won't cloud the situation for later optimizations.
4145
4146 Do not make this change if REG1 is a hard register, because it will
4147 then be used in the sequel and we may be changing a two-operand insn
4148 into a three-operand insn.
4149
4150 This is the last transformation that cse_insn will try to do. */
4151
4152 static void
4153 try_back_substitute_reg (rtx set, rtx insn)
4154 {
4155 rtx dest = SET_DEST (set);
4156 rtx src = SET_SRC (set);
4157
4158 if (REG_P (dest)
4159 && REG_P (src) && ! HARD_REGISTER_P (src)
4160 && REGNO_QTY_VALID_P (REGNO (src)))
4161 {
4162 int src_q = REG_QTY (REGNO (src));
4163 struct qty_table_elem *src_ent = &qty_table[src_q];
4164
4165 if (src_ent->first_reg == REGNO (dest))
4166 {
4167 /* Scan for the previous nonnote insn, but stop at a basic
4168 block boundary. */
4169 rtx prev = insn;
4170 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4171 do
4172 {
4173 prev = PREV_INSN (prev);
4174 }
4175 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4176
4177 /* Do not swap the registers around if the previous instruction
4178 attaches a REG_EQUIV note to REG1.
4179
4180 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4181 from the pseudo that originally shadowed an incoming argument
4182 to another register. Some uses of REG_EQUIV might rely on it
4183 being attached to REG1 rather than REG2.
4184
4185 This section previously turned the REG_EQUIV into a REG_EQUAL
4186 note. We cannot do that because REG_EQUIV may provide an
4187 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4188 if (NONJUMP_INSN_P (prev)
4189 && GET_CODE (PATTERN (prev)) == SET
4190 && SET_DEST (PATTERN (prev)) == src
4191 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4192 {
4193 rtx note;
4194
4195 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4196 validate_change (insn, &SET_DEST (set), src, 1);
4197 validate_change (insn, &SET_SRC (set), dest, 1);
4198 apply_change_group ();
4199
4200 /* If INSN has a REG_EQUAL note, and this note mentions
4201 REG0, then we must delete it, because the value in
4202 REG0 has changed. If the note's value is REG1, we must
4203 also delete it because that is now this insn's dest. */
4204 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4205 if (note != 0
4206 && (reg_mentioned_p (dest, XEXP (note, 0))
4207 || rtx_equal_p (src, XEXP (note, 0))))
4208 remove_note (insn, note);
4209 }
4210 }
4211 }
4212 }
4213 \f
4214 /* Record all the SETs in this instruction into SETS_PTR,
4215 and return the number of recorded sets. */
4216 static int
4217 find_sets_in_insn (rtx insn, struct set **psets)
4218 {
4219 struct set *sets = *psets;
4220 int n_sets = 0;
4221 rtx x = PATTERN (insn);
4222
4223 if (GET_CODE (x) == SET)
4224 {
4225 /* Ignore SETs that are unconditional jumps.
4226 They never need cse processing, so this does not hurt.
4227 The reason is not efficiency but rather
4228 so that we can test at the end for instructions
4229 that have been simplified to unconditional jumps
4230 and not be misled by unchanged instructions
4231 that were unconditional jumps to begin with. */
4232 if (SET_DEST (x) == pc_rtx
4233 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4234 ;
4235 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4236 The hard function value register is used only once, to copy to
4237 someplace else, so it isn't worth cse'ing. */
4238 else if (GET_CODE (SET_SRC (x)) == CALL)
4239 ;
4240 else
4241 sets[n_sets++].rtl = x;
4242 }
4243 else if (GET_CODE (x) == PARALLEL)
4244 {
4245 int i, lim = XVECLEN (x, 0);
4246
4247 /* Go over the epressions of the PARALLEL in forward order, to
4248 put them in the same order in the SETS array. */
4249 for (i = 0; i < lim; i++)
4250 {
4251 rtx y = XVECEXP (x, 0, i);
4252 if (GET_CODE (y) == SET)
4253 {
4254 /* As above, we ignore unconditional jumps and call-insns and
4255 ignore the result of apply_change_group. */
4256 if (SET_DEST (y) == pc_rtx
4257 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4258 ;
4259 else if (GET_CODE (SET_SRC (y)) == CALL)
4260 ;
4261 else
4262 sets[n_sets++].rtl = y;
4263 }
4264 }
4265 }
4266
4267 return n_sets;
4268 }
4269 \f
4270 /* Where possible, substitute every register reference in the N_SETS
4271 number of SETS in INSN with the the canonical register.
4272
4273 Register canonicalization propagatest the earliest register (i.e.
4274 one that is set before INSN) with the same value. This is a very
4275 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4276 to RTL. For instance, a CONST for an address is usually expanded
4277 multiple times to loads into different registers, thus creating many
4278 subexpressions of the form:
4279
4280 (set (reg1) (some_const))
4281 (set (mem (... reg1 ...) (thing)))
4282 (set (reg2) (some_const))
4283 (set (mem (... reg2 ...) (thing)))
4284
4285 After canonicalizing, the code takes the following form:
4286
4287 (set (reg1) (some_const))
4288 (set (mem (... reg1 ...) (thing)))
4289 (set (reg2) (some_const))
4290 (set (mem (... reg1 ...) (thing)))
4291
4292 The set to reg2 is now trivially dead, and the memory reference (or
4293 address, or whatever) may be a candidate for further CSEing.
4294
4295 In this function, the result of apply_change_group can be ignored;
4296 see canon_reg. */
4297
4298 static void
4299 canonicalize_insn (rtx insn, struct set **psets, int n_sets)
4300 {
4301 struct set *sets = *psets;
4302 rtx tem;
4303 rtx x = PATTERN (insn);
4304 int i;
4305
4306 if (CALL_P (insn))
4307 {
4308 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4309 if (GET_CODE (XEXP (tem, 0)) != SET)
4310 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4311 }
4312
4313 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4314 {
4315 canon_reg (SET_SRC (x), insn);
4316 apply_change_group ();
4317 fold_rtx (SET_SRC (x), insn);
4318 }
4319 else if (GET_CODE (x) == CLOBBER)
4320 {
4321 /* If we clobber memory, canon the address.
4322 This does nothing when a register is clobbered
4323 because we have already invalidated the reg. */
4324 if (MEM_P (XEXP (x, 0)))
4325 canon_reg (XEXP (x, 0), insn);
4326 }
4327 else if (GET_CODE (x) == USE
4328 && ! (REG_P (XEXP (x, 0))
4329 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4330 /* Canonicalize a USE of a pseudo register or memory location. */
4331 canon_reg (x, insn);
4332 else if (GET_CODE (x) == ASM_OPERANDS)
4333 {
4334 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4335 {
4336 rtx input = ASM_OPERANDS_INPUT (x, i);
4337 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4338 {
4339 input = canon_reg (input, insn);
4340 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4341 }
4342 }
4343 }
4344 else if (GET_CODE (x) == CALL)
4345 {
4346 canon_reg (x, insn);
4347 apply_change_group ();
4348 fold_rtx (x, insn);
4349 }
4350 else if (DEBUG_INSN_P (insn))
4351 canon_reg (PATTERN (insn), insn);
4352 else if (GET_CODE (x) == PARALLEL)
4353 {
4354 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4355 {
4356 rtx y = XVECEXP (x, 0, i);
4357 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4358 {
4359 canon_reg (SET_SRC (y), insn);
4360 apply_change_group ();
4361 fold_rtx (SET_SRC (y), insn);
4362 }
4363 else if (GET_CODE (y) == CLOBBER)
4364 {
4365 if (MEM_P (XEXP (y, 0)))
4366 canon_reg (XEXP (y, 0), insn);
4367 }
4368 else if (GET_CODE (y) == USE
4369 && ! (REG_P (XEXP (y, 0))
4370 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4371 canon_reg (y, insn);
4372 else if (GET_CODE (y) == CALL)
4373 {
4374 canon_reg (y, insn);
4375 apply_change_group ();
4376 fold_rtx (y, insn);
4377 }
4378 }
4379 }
4380
4381 if (n_sets == 1 && REG_NOTES (insn) != 0
4382 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4383 {
4384 /* We potentially will process this insn many times. Therefore,
4385 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4386 unique set in INSN.
4387
4388 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4389 because cse_insn handles those specially. */
4390 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4391 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4392 remove_note (insn, tem);
4393 else
4394 {
4395 canon_reg (XEXP (tem, 0), insn);
4396 apply_change_group ();
4397 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4398 df_notes_rescan (insn);
4399 }
4400 }
4401
4402 /* Canonicalize sources and addresses of destinations.
4403 We do this in a separate pass to avoid problems when a MATCH_DUP is
4404 present in the insn pattern. In that case, we want to ensure that
4405 we don't break the duplicate nature of the pattern. So we will replace
4406 both operands at the same time. Otherwise, we would fail to find an
4407 equivalent substitution in the loop calling validate_change below.
4408
4409 We used to suppress canonicalization of DEST if it appears in SRC,
4410 but we don't do this any more. */
4411
4412 for (i = 0; i < n_sets; i++)
4413 {
4414 rtx dest = SET_DEST (sets[i].rtl);
4415 rtx src = SET_SRC (sets[i].rtl);
4416 rtx new_rtx = canon_reg (src, insn);
4417
4418 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4419
4420 if (GET_CODE (dest) == ZERO_EXTRACT)
4421 {
4422 validate_change (insn, &XEXP (dest, 1),
4423 canon_reg (XEXP (dest, 1), insn), 1);
4424 validate_change (insn, &XEXP (dest, 2),
4425 canon_reg (XEXP (dest, 2), insn), 1);
4426 }
4427
4428 while (GET_CODE (dest) == SUBREG
4429 || GET_CODE (dest) == ZERO_EXTRACT
4430 || GET_CODE (dest) == STRICT_LOW_PART)
4431 dest = XEXP (dest, 0);
4432
4433 if (MEM_P (dest))
4434 canon_reg (dest, insn);
4435 }
4436
4437 /* Now that we have done all the replacements, we can apply the change
4438 group and see if they all work. Note that this will cause some
4439 canonicalizations that would have worked individually not to be applied
4440 because some other canonicalization didn't work, but this should not
4441 occur often.
4442
4443 The result of apply_change_group can be ignored; see canon_reg. */
4444
4445 apply_change_group ();
4446 }
4447 \f
4448 /* Main function of CSE.
4449 First simplify sources and addresses of all assignments
4450 in the instruction, using previously-computed equivalents values.
4451 Then install the new sources and destinations in the table
4452 of available values. */
4453
4454 static void
4455 cse_insn (rtx insn)
4456 {
4457 rtx x = PATTERN (insn);
4458 int i;
4459 rtx tem;
4460 int n_sets = 0;
4461
4462 rtx src_eqv = 0;
4463 struct table_elt *src_eqv_elt = 0;
4464 int src_eqv_volatile = 0;
4465 int src_eqv_in_memory = 0;
4466 unsigned src_eqv_hash = 0;
4467
4468 struct set *sets = (struct set *) 0;
4469
4470 if (GET_CODE (x) == SET)
4471 sets = XALLOCA (struct set);
4472 else if (GET_CODE (x) == PARALLEL)
4473 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4474
4475 this_insn = insn;
4476 #ifdef HAVE_cc0
4477 /* Records what this insn does to set CC0. */
4478 this_insn_cc0 = 0;
4479 this_insn_cc0_mode = VOIDmode;
4480 #endif
4481
4482 /* Find all regs explicitly clobbered in this insn,
4483 to ensure they are not replaced with any other regs
4484 elsewhere in this insn. */
4485 invalidate_from_sets_and_clobbers (insn);
4486
4487 /* Record all the SETs in this instruction. */
4488 n_sets = find_sets_in_insn (insn, &sets);
4489
4490 /* Substitute the canonical register where possible. */
4491 canonicalize_insn (insn, &sets, n_sets);
4492
4493 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4494 if different, or if the DEST is a STRICT_LOW_PART. The latter condition
4495 is necessary because SRC_EQV is handled specially for this case, and if
4496 it isn't set, then there will be no equivalence for the destination. */
4497 if (n_sets == 1 && REG_NOTES (insn) != 0
4498 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4499 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4500 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4501 src_eqv = copy_rtx (XEXP (tem, 0));
4502
4503 /* Set sets[i].src_elt to the class each source belongs to.
4504 Detect assignments from or to volatile things
4505 and set set[i] to zero so they will be ignored
4506 in the rest of this function.
4507
4508 Nothing in this loop changes the hash table or the register chains. */
4509
4510 for (i = 0; i < n_sets; i++)
4511 {
4512 bool repeat = false;
4513 rtx src, dest;
4514 rtx src_folded;
4515 struct table_elt *elt = 0, *p;
4516 enum machine_mode mode;
4517 rtx src_eqv_here;
4518 rtx src_const = 0;
4519 rtx src_related = 0;
4520 bool src_related_is_const_anchor = false;
4521 struct table_elt *src_const_elt = 0;
4522 int src_cost = MAX_COST;
4523 int src_eqv_cost = MAX_COST;
4524 int src_folded_cost = MAX_COST;
4525 int src_related_cost = MAX_COST;
4526 int src_elt_cost = MAX_COST;
4527 int src_regcost = MAX_COST;
4528 int src_eqv_regcost = MAX_COST;
4529 int src_folded_regcost = MAX_COST;
4530 int src_related_regcost = MAX_COST;
4531 int src_elt_regcost = MAX_COST;
4532 /* Set nonzero if we need to call force_const_mem on with the
4533 contents of src_folded before using it. */
4534 int src_folded_force_flag = 0;
4535
4536 dest = SET_DEST (sets[i].rtl);
4537 src = SET_SRC (sets[i].rtl);
4538
4539 /* If SRC is a constant that has no machine mode,
4540 hash it with the destination's machine mode.
4541 This way we can keep different modes separate. */
4542
4543 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4544 sets[i].mode = mode;
4545
4546 if (src_eqv)
4547 {
4548 enum machine_mode eqvmode = mode;
4549 if (GET_CODE (dest) == STRICT_LOW_PART)
4550 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4551 do_not_record = 0;
4552 hash_arg_in_memory = 0;
4553 src_eqv_hash = HASH (src_eqv, eqvmode);
4554
4555 /* Find the equivalence class for the equivalent expression. */
4556
4557 if (!do_not_record)
4558 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4559
4560 src_eqv_volatile = do_not_record;
4561 src_eqv_in_memory = hash_arg_in_memory;
4562 }
4563
4564 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4565 value of the INNER register, not the destination. So it is not
4566 a valid substitution for the source. But save it for later. */
4567 if (GET_CODE (dest) == STRICT_LOW_PART)
4568 src_eqv_here = 0;
4569 else
4570 src_eqv_here = src_eqv;
4571
4572 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4573 simplified result, which may not necessarily be valid. */
4574 src_folded = fold_rtx (src, insn);
4575
4576 #if 0
4577 /* ??? This caused bad code to be generated for the m68k port with -O2.
4578 Suppose src is (CONST_INT -1), and that after truncation src_folded
4579 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4580 At the end we will add src and src_const to the same equivalence
4581 class. We now have 3 and -1 on the same equivalence class. This
4582 causes later instructions to be mis-optimized. */
4583 /* If storing a constant in a bitfield, pre-truncate the constant
4584 so we will be able to record it later. */
4585 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4586 {
4587 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4588
4589 if (CONST_INT_P (src)
4590 && CONST_INT_P (width)
4591 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4592 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4593 src_folded
4594 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4595 << INTVAL (width)) - 1));
4596 }
4597 #endif
4598
4599 /* Compute SRC's hash code, and also notice if it
4600 should not be recorded at all. In that case,
4601 prevent any further processing of this assignment. */
4602 do_not_record = 0;
4603 hash_arg_in_memory = 0;
4604
4605 sets[i].src = src;
4606 sets[i].src_hash = HASH (src, mode);
4607 sets[i].src_volatile = do_not_record;
4608 sets[i].src_in_memory = hash_arg_in_memory;
4609
4610 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4611 a pseudo, do not record SRC. Using SRC as a replacement for
4612 anything else will be incorrect in that situation. Note that
4613 this usually occurs only for stack slots, in which case all the
4614 RTL would be referring to SRC, so we don't lose any optimization
4615 opportunities by not having SRC in the hash table. */
4616
4617 if (MEM_P (src)
4618 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4619 && REG_P (dest)
4620 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4621 sets[i].src_volatile = 1;
4622
4623 #if 0
4624 /* It is no longer clear why we used to do this, but it doesn't
4625 appear to still be needed. So let's try without it since this
4626 code hurts cse'ing widened ops. */
4627 /* If source is a paradoxical subreg (such as QI treated as an SI),
4628 treat it as volatile. It may do the work of an SI in one context
4629 where the extra bits are not being used, but cannot replace an SI
4630 in general. */
4631 if (paradoxical_subreg_p (src))
4632 sets[i].src_volatile = 1;
4633 #endif
4634
4635 /* Locate all possible equivalent forms for SRC. Try to replace
4636 SRC in the insn with each cheaper equivalent.
4637
4638 We have the following types of equivalents: SRC itself, a folded
4639 version, a value given in a REG_EQUAL note, or a value related
4640 to a constant.
4641
4642 Each of these equivalents may be part of an additional class
4643 of equivalents (if more than one is in the table, they must be in
4644 the same class; we check for this).
4645
4646 If the source is volatile, we don't do any table lookups.
4647
4648 We note any constant equivalent for possible later use in a
4649 REG_NOTE. */
4650
4651 if (!sets[i].src_volatile)
4652 elt = lookup (src, sets[i].src_hash, mode);
4653
4654 sets[i].src_elt = elt;
4655
4656 if (elt && src_eqv_here && src_eqv_elt)
4657 {
4658 if (elt->first_same_value != src_eqv_elt->first_same_value)
4659 {
4660 /* The REG_EQUAL is indicating that two formerly distinct
4661 classes are now equivalent. So merge them. */
4662 merge_equiv_classes (elt, src_eqv_elt);
4663 src_eqv_hash = HASH (src_eqv, elt->mode);
4664 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4665 }
4666
4667 src_eqv_here = 0;
4668 }
4669
4670 else if (src_eqv_elt)
4671 elt = src_eqv_elt;
4672
4673 /* Try to find a constant somewhere and record it in `src_const'.
4674 Record its table element, if any, in `src_const_elt'. Look in
4675 any known equivalences first. (If the constant is not in the
4676 table, also set `sets[i].src_const_hash'). */
4677 if (elt)
4678 for (p = elt->first_same_value; p; p = p->next_same_value)
4679 if (p->is_const)
4680 {
4681 src_const = p->exp;
4682 src_const_elt = elt;
4683 break;
4684 }
4685
4686 if (src_const == 0
4687 && (CONSTANT_P (src_folded)
4688 /* Consider (minus (label_ref L1) (label_ref L2)) as
4689 "constant" here so we will record it. This allows us
4690 to fold switch statements when an ADDR_DIFF_VEC is used. */
4691 || (GET_CODE (src_folded) == MINUS
4692 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4693 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4694 src_const = src_folded, src_const_elt = elt;
4695 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4696 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4697
4698 /* If we don't know if the constant is in the table, get its
4699 hash code and look it up. */
4700 if (src_const && src_const_elt == 0)
4701 {
4702 sets[i].src_const_hash = HASH (src_const, mode);
4703 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4704 }
4705
4706 sets[i].src_const = src_const;
4707 sets[i].src_const_elt = src_const_elt;
4708
4709 /* If the constant and our source are both in the table, mark them as
4710 equivalent. Otherwise, if a constant is in the table but the source
4711 isn't, set ELT to it. */
4712 if (src_const_elt && elt
4713 && src_const_elt->first_same_value != elt->first_same_value)
4714 merge_equiv_classes (elt, src_const_elt);
4715 else if (src_const_elt && elt == 0)
4716 elt = src_const_elt;
4717
4718 /* See if there is a register linearly related to a constant
4719 equivalent of SRC. */
4720 if (src_const
4721 && (GET_CODE (src_const) == CONST
4722 || (src_const_elt && src_const_elt->related_value != 0)))
4723 {
4724 src_related = use_related_value (src_const, src_const_elt);
4725 if (src_related)
4726 {
4727 struct table_elt *src_related_elt
4728 = lookup (src_related, HASH (src_related, mode), mode);
4729 if (src_related_elt && elt)
4730 {
4731 if (elt->first_same_value
4732 != src_related_elt->first_same_value)
4733 /* This can occur when we previously saw a CONST
4734 involving a SYMBOL_REF and then see the SYMBOL_REF
4735 twice. Merge the involved classes. */
4736 merge_equiv_classes (elt, src_related_elt);
4737
4738 src_related = 0;
4739 src_related_elt = 0;
4740 }
4741 else if (src_related_elt && elt == 0)
4742 elt = src_related_elt;
4743 }
4744 }
4745
4746 /* See if we have a CONST_INT that is already in a register in a
4747 wider mode. */
4748
4749 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4750 && GET_MODE_CLASS (mode) == MODE_INT
4751 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4752 {
4753 enum machine_mode wider_mode;
4754
4755 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4756 wider_mode != VOIDmode
4757 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4758 && src_related == 0;
4759 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4760 {
4761 struct table_elt *const_elt
4762 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4763
4764 if (const_elt == 0)
4765 continue;
4766
4767 for (const_elt = const_elt->first_same_value;
4768 const_elt; const_elt = const_elt->next_same_value)
4769 if (REG_P (const_elt->exp))
4770 {
4771 src_related = gen_lowpart (mode, const_elt->exp);
4772 break;
4773 }
4774 }
4775 }
4776
4777 /* Another possibility is that we have an AND with a constant in
4778 a mode narrower than a word. If so, it might have been generated
4779 as part of an "if" which would narrow the AND. If we already
4780 have done the AND in a wider mode, we can use a SUBREG of that
4781 value. */
4782
4783 if (flag_expensive_optimizations && ! src_related
4784 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4785 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4786 {
4787 enum machine_mode tmode;
4788 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4789
4790 for (tmode = GET_MODE_WIDER_MODE (mode);
4791 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4792 tmode = GET_MODE_WIDER_MODE (tmode))
4793 {
4794 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4795 struct table_elt *larger_elt;
4796
4797 if (inner)
4798 {
4799 PUT_MODE (new_and, tmode);
4800 XEXP (new_and, 0) = inner;
4801 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4802 if (larger_elt == 0)
4803 continue;
4804
4805 for (larger_elt = larger_elt->first_same_value;
4806 larger_elt; larger_elt = larger_elt->next_same_value)
4807 if (REG_P (larger_elt->exp))
4808 {
4809 src_related
4810 = gen_lowpart (mode, larger_elt->exp);
4811 break;
4812 }
4813
4814 if (src_related)
4815 break;
4816 }
4817 }
4818 }
4819
4820 #ifdef LOAD_EXTEND_OP
4821 /* See if a MEM has already been loaded with a widening operation;
4822 if it has, we can use a subreg of that. Many CISC machines
4823 also have such operations, but this is only likely to be
4824 beneficial on these machines. */
4825
4826 if (flag_expensive_optimizations && src_related == 0
4827 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4828 && GET_MODE_CLASS (mode) == MODE_INT
4829 && MEM_P (src) && ! do_not_record
4830 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4831 {
4832 struct rtx_def memory_extend_buf;
4833 rtx memory_extend_rtx = &memory_extend_buf;
4834 enum machine_mode tmode;
4835
4836 /* Set what we are trying to extend and the operation it might
4837 have been extended with. */
4838 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4839 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4840 XEXP (memory_extend_rtx, 0) = src;
4841
4842 for (tmode = GET_MODE_WIDER_MODE (mode);
4843 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4844 tmode = GET_MODE_WIDER_MODE (tmode))
4845 {
4846 struct table_elt *larger_elt;
4847
4848 PUT_MODE (memory_extend_rtx, tmode);
4849 larger_elt = lookup (memory_extend_rtx,
4850 HASH (memory_extend_rtx, tmode), tmode);
4851 if (larger_elt == 0)
4852 continue;
4853
4854 for (larger_elt = larger_elt->first_same_value;
4855 larger_elt; larger_elt = larger_elt->next_same_value)
4856 if (REG_P (larger_elt->exp))
4857 {
4858 src_related = gen_lowpart (mode, larger_elt->exp);
4859 break;
4860 }
4861
4862 if (src_related)
4863 break;
4864 }
4865 }
4866 #endif /* LOAD_EXTEND_OP */
4867
4868 /* Try to express the constant using a register+offset expression
4869 derived from a constant anchor. */
4870
4871 if (targetm.const_anchor
4872 && !src_related
4873 && src_const
4874 && GET_CODE (src_const) == CONST_INT)
4875 {
4876 src_related = try_const_anchors (src_const, mode);
4877 src_related_is_const_anchor = src_related != NULL_RTX;
4878 }
4879
4880
4881 if (src == src_folded)
4882 src_folded = 0;
4883
4884 /* At this point, ELT, if nonzero, points to a class of expressions
4885 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4886 and SRC_RELATED, if nonzero, each contain additional equivalent
4887 expressions. Prune these latter expressions by deleting expressions
4888 already in the equivalence class.
4889
4890 Check for an equivalent identical to the destination. If found,
4891 this is the preferred equivalent since it will likely lead to
4892 elimination of the insn. Indicate this by placing it in
4893 `src_related'. */
4894
4895 if (elt)
4896 elt = elt->first_same_value;
4897 for (p = elt; p; p = p->next_same_value)
4898 {
4899 enum rtx_code code = GET_CODE (p->exp);
4900
4901 /* If the expression is not valid, ignore it. Then we do not
4902 have to check for validity below. In most cases, we can use
4903 `rtx_equal_p', since canonicalization has already been done. */
4904 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4905 continue;
4906
4907 /* Also skip paradoxical subregs, unless that's what we're
4908 looking for. */
4909 if (paradoxical_subreg_p (p->exp)
4910 && ! (src != 0
4911 && GET_CODE (src) == SUBREG
4912 && GET_MODE (src) == GET_MODE (p->exp)
4913 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4914 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4915 continue;
4916
4917 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4918 src = 0;
4919 else if (src_folded && GET_CODE (src_folded) == code
4920 && rtx_equal_p (src_folded, p->exp))
4921 src_folded = 0;
4922 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4923 && rtx_equal_p (src_eqv_here, p->exp))
4924 src_eqv_here = 0;
4925 else if (src_related && GET_CODE (src_related) == code
4926 && rtx_equal_p (src_related, p->exp))
4927 src_related = 0;
4928
4929 /* This is the same as the destination of the insns, we want
4930 to prefer it. Copy it to src_related. The code below will
4931 then give it a negative cost. */
4932 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4933 src_related = dest;
4934 }
4935
4936 /* Find the cheapest valid equivalent, trying all the available
4937 possibilities. Prefer items not in the hash table to ones
4938 that are when they are equal cost. Note that we can never
4939 worsen an insn as the current contents will also succeed.
4940 If we find an equivalent identical to the destination, use it as best,
4941 since this insn will probably be eliminated in that case. */
4942 if (src)
4943 {
4944 if (rtx_equal_p (src, dest))
4945 src_cost = src_regcost = -1;
4946 else
4947 {
4948 src_cost = COST (src);
4949 src_regcost = approx_reg_cost (src);
4950 }
4951 }
4952
4953 if (src_eqv_here)
4954 {
4955 if (rtx_equal_p (src_eqv_here, dest))
4956 src_eqv_cost = src_eqv_regcost = -1;
4957 else
4958 {
4959 src_eqv_cost = COST (src_eqv_here);
4960 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4961 }
4962 }
4963
4964 if (src_folded)
4965 {
4966 if (rtx_equal_p (src_folded, dest))
4967 src_folded_cost = src_folded_regcost = -1;
4968 else
4969 {
4970 src_folded_cost = COST (src_folded);
4971 src_folded_regcost = approx_reg_cost (src_folded);
4972 }
4973 }
4974
4975 if (src_related)
4976 {
4977 if (rtx_equal_p (src_related, dest))
4978 src_related_cost = src_related_regcost = -1;
4979 else
4980 {
4981 src_related_cost = COST (src_related);
4982 src_related_regcost = approx_reg_cost (src_related);
4983
4984 /* If a const-anchor is used to synthesize a constant that
4985 normally requires multiple instructions then slightly prefer
4986 it over the original sequence. These instructions are likely
4987 to become redundant now. We can't compare against the cost
4988 of src_eqv_here because, on MIPS for example, multi-insn
4989 constants have zero cost; they are assumed to be hoisted from
4990 loops. */
4991 if (src_related_is_const_anchor
4992 && src_related_cost == src_cost
4993 && src_eqv_here)
4994 src_related_cost--;
4995 }
4996 }
4997
4998 /* If this was an indirect jump insn, a known label will really be
4999 cheaper even though it looks more expensive. */
5000 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5001 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5002
5003 /* Terminate loop when replacement made. This must terminate since
5004 the current contents will be tested and will always be valid. */
5005 while (1)
5006 {
5007 rtx trial;
5008
5009 /* Skip invalid entries. */
5010 while (elt && !REG_P (elt->exp)
5011 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5012 elt = elt->next_same_value;
5013
5014 /* A paradoxical subreg would be bad here: it'll be the right
5015 size, but later may be adjusted so that the upper bits aren't
5016 what we want. So reject it. */
5017 if (elt != 0
5018 && paradoxical_subreg_p (elt->exp)
5019 /* It is okay, though, if the rtx we're trying to match
5020 will ignore any of the bits we can't predict. */
5021 && ! (src != 0
5022 && GET_CODE (src) == SUBREG
5023 && GET_MODE (src) == GET_MODE (elt->exp)
5024 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5025 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5026 {
5027 elt = elt->next_same_value;
5028 continue;
5029 }
5030
5031 if (elt)
5032 {
5033 src_elt_cost = elt->cost;
5034 src_elt_regcost = elt->regcost;
5035 }
5036
5037 /* Find cheapest and skip it for the next time. For items
5038 of equal cost, use this order:
5039 src_folded, src, src_eqv, src_related and hash table entry. */
5040 if (src_folded
5041 && preferable (src_folded_cost, src_folded_regcost,
5042 src_cost, src_regcost) <= 0
5043 && preferable (src_folded_cost, src_folded_regcost,
5044 src_eqv_cost, src_eqv_regcost) <= 0
5045 && preferable (src_folded_cost, src_folded_regcost,
5046 src_related_cost, src_related_regcost) <= 0
5047 && preferable (src_folded_cost, src_folded_regcost,
5048 src_elt_cost, src_elt_regcost) <= 0)
5049 {
5050 trial = src_folded, src_folded_cost = MAX_COST;
5051 if (src_folded_force_flag)
5052 {
5053 rtx forced = force_const_mem (mode, trial);
5054 if (forced)
5055 trial = forced;
5056 }
5057 }
5058 else if (src
5059 && preferable (src_cost, src_regcost,
5060 src_eqv_cost, src_eqv_regcost) <= 0
5061 && preferable (src_cost, src_regcost,
5062 src_related_cost, src_related_regcost) <= 0
5063 && preferable (src_cost, src_regcost,
5064 src_elt_cost, src_elt_regcost) <= 0)
5065 trial = src, src_cost = MAX_COST;
5066 else if (src_eqv_here
5067 && preferable (src_eqv_cost, src_eqv_regcost,
5068 src_related_cost, src_related_regcost) <= 0
5069 && preferable (src_eqv_cost, src_eqv_regcost,
5070 src_elt_cost, src_elt_regcost) <= 0)
5071 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5072 else if (src_related
5073 && preferable (src_related_cost, src_related_regcost,
5074 src_elt_cost, src_elt_regcost) <= 0)
5075 trial = src_related, src_related_cost = MAX_COST;
5076 else
5077 {
5078 trial = elt->exp;
5079 elt = elt->next_same_value;
5080 src_elt_cost = MAX_COST;
5081 }
5082
5083 /* Avoid creation of overlapping memory moves. */
5084 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5085 {
5086 rtx src, dest;
5087
5088 /* BLKmode moves are not handled by cse anyway. */
5089 if (GET_MODE (trial) == BLKmode)
5090 break;
5091
5092 src = canon_rtx (trial);
5093 dest = canon_rtx (SET_DEST (sets[i].rtl));
5094
5095 if (!MEM_P (src) || !MEM_P (dest)
5096 || !nonoverlapping_memrefs_p (src, dest, false))
5097 break;
5098 }
5099
5100 /* Try to optimize
5101 (set (reg:M N) (const_int A))
5102 (set (reg:M2 O) (const_int B))
5103 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5104 (reg:M2 O)). */
5105 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5106 && CONST_INT_P (trial)
5107 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5108 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5109 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5110 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5111 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5112 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5113 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5114 <= HOST_BITS_PER_WIDE_INT))
5115 {
5116 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5117 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5118 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5119 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5120 struct table_elt *dest_elt
5121 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5122 rtx dest_cst = NULL;
5123
5124 if (dest_elt)
5125 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5126 if (p->is_const && CONST_INT_P (p->exp))
5127 {
5128 dest_cst = p->exp;
5129 break;
5130 }
5131 if (dest_cst)
5132 {
5133 HOST_WIDE_INT val = INTVAL (dest_cst);
5134 HOST_WIDE_INT mask;
5135 unsigned int shift;
5136 if (BITS_BIG_ENDIAN)
5137 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5138 - INTVAL (pos) - INTVAL (width);
5139 else
5140 shift = INTVAL (pos);
5141 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5142 mask = ~(HOST_WIDE_INT) 0;
5143 else
5144 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5145 val &= ~(mask << shift);
5146 val |= (INTVAL (trial) & mask) << shift;
5147 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5148 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5149 dest_reg, 1);
5150 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5151 GEN_INT (val), 1);
5152 if (apply_change_group ())
5153 {
5154 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5155 if (note)
5156 {
5157 remove_note (insn, note);
5158 df_notes_rescan (insn);
5159 }
5160 src_eqv = NULL_RTX;
5161 src_eqv_elt = NULL;
5162 src_eqv_volatile = 0;
5163 src_eqv_in_memory = 0;
5164 src_eqv_hash = 0;
5165 repeat = true;
5166 break;
5167 }
5168 }
5169 }
5170
5171 /* We don't normally have an insn matching (set (pc) (pc)), so
5172 check for this separately here. We will delete such an
5173 insn below.
5174
5175 For other cases such as a table jump or conditional jump
5176 where we know the ultimate target, go ahead and replace the
5177 operand. While that may not make a valid insn, we will
5178 reemit the jump below (and also insert any necessary
5179 barriers). */
5180 if (n_sets == 1 && dest == pc_rtx
5181 && (trial == pc_rtx
5182 || (GET_CODE (trial) == LABEL_REF
5183 && ! condjump_p (insn))))
5184 {
5185 /* Don't substitute non-local labels, this confuses CFG. */
5186 if (GET_CODE (trial) == LABEL_REF
5187 && LABEL_REF_NONLOCAL_P (trial))
5188 continue;
5189
5190 SET_SRC (sets[i].rtl) = trial;
5191 cse_jumps_altered = true;
5192 break;
5193 }
5194
5195 /* Reject certain invalid forms of CONST that we create. */
5196 else if (CONSTANT_P (trial)
5197 && GET_CODE (trial) == CONST
5198 /* Reject cases that will cause decode_rtx_const to
5199 die. On the alpha when simplifying a switch, we
5200 get (const (truncate (minus (label_ref)
5201 (label_ref)))). */
5202 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5203 /* Likewise on IA-64, except without the
5204 truncate. */
5205 || (GET_CODE (XEXP (trial, 0)) == MINUS
5206 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5207 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5208 /* Do nothing for this case. */
5209 ;
5210
5211 /* Look for a substitution that makes a valid insn. */
5212 else if (validate_unshare_change
5213 (insn, &SET_SRC (sets[i].rtl), trial, 0))
5214 {
5215 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5216
5217 /* The result of apply_change_group can be ignored; see
5218 canon_reg. */
5219
5220 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5221 apply_change_group ();
5222
5223 break;
5224 }
5225
5226 /* If we previously found constant pool entries for
5227 constants and this is a constant, try making a
5228 pool entry. Put it in src_folded unless we already have done
5229 this since that is where it likely came from. */
5230
5231 else if (constant_pool_entries_cost
5232 && CONSTANT_P (trial)
5233 && (src_folded == 0
5234 || (!MEM_P (src_folded)
5235 && ! src_folded_force_flag))
5236 && GET_MODE_CLASS (mode) != MODE_CC
5237 && mode != VOIDmode)
5238 {
5239 src_folded_force_flag = 1;
5240 src_folded = trial;
5241 src_folded_cost = constant_pool_entries_cost;
5242 src_folded_regcost = constant_pool_entries_regcost;
5243 }
5244 }
5245
5246 /* If we changed the insn too much, handle this set from scratch. */
5247 if (repeat)
5248 {
5249 i--;
5250 continue;
5251 }
5252
5253 src = SET_SRC (sets[i].rtl);
5254
5255 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5256 However, there is an important exception: If both are registers
5257 that are not the head of their equivalence class, replace SET_SRC
5258 with the head of the class. If we do not do this, we will have
5259 both registers live over a portion of the basic block. This way,
5260 their lifetimes will likely abut instead of overlapping. */
5261 if (REG_P (dest)
5262 && REGNO_QTY_VALID_P (REGNO (dest)))
5263 {
5264 int dest_q = REG_QTY (REGNO (dest));
5265 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5266
5267 if (dest_ent->mode == GET_MODE (dest)
5268 && dest_ent->first_reg != REGNO (dest)
5269 && REG_P (src) && REGNO (src) == REGNO (dest)
5270 /* Don't do this if the original insn had a hard reg as
5271 SET_SRC or SET_DEST. */
5272 && (!REG_P (sets[i].src)
5273 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5274 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5275 /* We can't call canon_reg here because it won't do anything if
5276 SRC is a hard register. */
5277 {
5278 int src_q = REG_QTY (REGNO (src));
5279 struct qty_table_elem *src_ent = &qty_table[src_q];
5280 int first = src_ent->first_reg;
5281 rtx new_src
5282 = (first >= FIRST_PSEUDO_REGISTER
5283 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5284
5285 /* We must use validate-change even for this, because this
5286 might be a special no-op instruction, suitable only to
5287 tag notes onto. */
5288 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5289 {
5290 src = new_src;
5291 /* If we had a constant that is cheaper than what we are now
5292 setting SRC to, use that constant. We ignored it when we
5293 thought we could make this into a no-op. */
5294 if (src_const && COST (src_const) < COST (src)
5295 && validate_change (insn, &SET_SRC (sets[i].rtl),
5296 src_const, 0))
5297 src = src_const;
5298 }
5299 }
5300 }
5301
5302 /* If we made a change, recompute SRC values. */
5303 if (src != sets[i].src)
5304 {
5305 do_not_record = 0;
5306 hash_arg_in_memory = 0;
5307 sets[i].src = src;
5308 sets[i].src_hash = HASH (src, mode);
5309 sets[i].src_volatile = do_not_record;
5310 sets[i].src_in_memory = hash_arg_in_memory;
5311 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5312 }
5313
5314 /* If this is a single SET, we are setting a register, and we have an
5315 equivalent constant, we want to add a REG_NOTE. We don't want
5316 to write a REG_EQUAL note for a constant pseudo since verifying that
5317 that pseudo hasn't been eliminated is a pain. Such a note also
5318 won't help anything.
5319
5320 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5321 which can be created for a reference to a compile time computable
5322 entry in a jump table. */
5323
5324 if (n_sets == 1 && src_const && REG_P (dest)
5325 && !REG_P (src_const)
5326 && ! (GET_CODE (src_const) == CONST
5327 && GET_CODE (XEXP (src_const, 0)) == MINUS
5328 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5329 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5330 {
5331 /* We only want a REG_EQUAL note if src_const != src. */
5332 if (! rtx_equal_p (src, src_const))
5333 {
5334 /* Make sure that the rtx is not shared. */
5335 src_const = copy_rtx (src_const);
5336
5337 /* Record the actual constant value in a REG_EQUAL note,
5338 making a new one if one does not already exist. */
5339 set_unique_reg_note (insn, REG_EQUAL, src_const);
5340 df_notes_rescan (insn);
5341 }
5342 }
5343
5344 /* Now deal with the destination. */
5345 do_not_record = 0;
5346
5347 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5348 while (GET_CODE (dest) == SUBREG
5349 || GET_CODE (dest) == ZERO_EXTRACT
5350 || GET_CODE (dest) == STRICT_LOW_PART)
5351 dest = XEXP (dest, 0);
5352
5353 sets[i].inner_dest = dest;
5354
5355 if (MEM_P (dest))
5356 {
5357 #ifdef PUSH_ROUNDING
5358 /* Stack pushes invalidate the stack pointer. */
5359 rtx addr = XEXP (dest, 0);
5360 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5361 && XEXP (addr, 0) == stack_pointer_rtx)
5362 invalidate (stack_pointer_rtx, VOIDmode);
5363 #endif
5364 dest = fold_rtx (dest, insn);
5365 }
5366
5367 /* Compute the hash code of the destination now,
5368 before the effects of this instruction are recorded,
5369 since the register values used in the address computation
5370 are those before this instruction. */
5371 sets[i].dest_hash = HASH (dest, mode);
5372
5373 /* Don't enter a bit-field in the hash table
5374 because the value in it after the store
5375 may not equal what was stored, due to truncation. */
5376
5377 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5378 {
5379 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5380
5381 if (src_const != 0 && CONST_INT_P (src_const)
5382 && CONST_INT_P (width)
5383 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5384 && ! (INTVAL (src_const)
5385 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5386 /* Exception: if the value is constant,
5387 and it won't be truncated, record it. */
5388 ;
5389 else
5390 {
5391 /* This is chosen so that the destination will be invalidated
5392 but no new value will be recorded.
5393 We must invalidate because sometimes constant
5394 values can be recorded for bitfields. */
5395 sets[i].src_elt = 0;
5396 sets[i].src_volatile = 1;
5397 src_eqv = 0;
5398 src_eqv_elt = 0;
5399 }
5400 }
5401
5402 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5403 the insn. */
5404 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5405 {
5406 /* One less use of the label this insn used to jump to. */
5407 delete_insn_and_edges (insn);
5408 cse_jumps_altered = true;
5409 /* No more processing for this set. */
5410 sets[i].rtl = 0;
5411 }
5412
5413 /* If this SET is now setting PC to a label, we know it used to
5414 be a conditional or computed branch. */
5415 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5416 && !LABEL_REF_NONLOCAL_P (src))
5417 {
5418 /* We reemit the jump in as many cases as possible just in
5419 case the form of an unconditional jump is significantly
5420 different than a computed jump or conditional jump.
5421
5422 If this insn has multiple sets, then reemitting the
5423 jump is nontrivial. So instead we just force rerecognition
5424 and hope for the best. */
5425 if (n_sets == 1)
5426 {
5427 rtx new_rtx, note;
5428
5429 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5430 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5431 LABEL_NUSES (XEXP (src, 0))++;
5432
5433 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5434 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5435 if (note)
5436 {
5437 XEXP (note, 1) = NULL_RTX;
5438 REG_NOTES (new_rtx) = note;
5439 }
5440
5441 delete_insn_and_edges (insn);
5442 insn = new_rtx;
5443 }
5444 else
5445 INSN_CODE (insn) = -1;
5446
5447 /* Do not bother deleting any unreachable code, let jump do it. */
5448 cse_jumps_altered = true;
5449 sets[i].rtl = 0;
5450 }
5451
5452 /* If destination is volatile, invalidate it and then do no further
5453 processing for this assignment. */
5454
5455 else if (do_not_record)
5456 {
5457 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5458 invalidate (dest, VOIDmode);
5459 else if (MEM_P (dest))
5460 invalidate (dest, VOIDmode);
5461 else if (GET_CODE (dest) == STRICT_LOW_PART
5462 || GET_CODE (dest) == ZERO_EXTRACT)
5463 invalidate (XEXP (dest, 0), GET_MODE (dest));
5464 sets[i].rtl = 0;
5465 }
5466
5467 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5468 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5469
5470 #ifdef HAVE_cc0
5471 /* If setting CC0, record what it was set to, or a constant, if it
5472 is equivalent to a constant. If it is being set to a floating-point
5473 value, make a COMPARE with the appropriate constant of 0. If we
5474 don't do this, later code can interpret this as a test against
5475 const0_rtx, which can cause problems if we try to put it into an
5476 insn as a floating-point operand. */
5477 if (dest == cc0_rtx)
5478 {
5479 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5480 this_insn_cc0_mode = mode;
5481 if (FLOAT_MODE_P (mode))
5482 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5483 CONST0_RTX (mode));
5484 }
5485 #endif
5486 }
5487
5488 /* Now enter all non-volatile source expressions in the hash table
5489 if they are not already present.
5490 Record their equivalence classes in src_elt.
5491 This way we can insert the corresponding destinations into
5492 the same classes even if the actual sources are no longer in them
5493 (having been invalidated). */
5494
5495 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5496 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5497 {
5498 struct table_elt *elt;
5499 struct table_elt *classp = sets[0].src_elt;
5500 rtx dest = SET_DEST (sets[0].rtl);
5501 enum machine_mode eqvmode = GET_MODE (dest);
5502
5503 if (GET_CODE (dest) == STRICT_LOW_PART)
5504 {
5505 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5506 classp = 0;
5507 }
5508 if (insert_regs (src_eqv, classp, 0))
5509 {
5510 rehash_using_reg (src_eqv);
5511 src_eqv_hash = HASH (src_eqv, eqvmode);
5512 }
5513 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5514 elt->in_memory = src_eqv_in_memory;
5515 src_eqv_elt = elt;
5516
5517 /* Check to see if src_eqv_elt is the same as a set source which
5518 does not yet have an elt, and if so set the elt of the set source
5519 to src_eqv_elt. */
5520 for (i = 0; i < n_sets; i++)
5521 if (sets[i].rtl && sets[i].src_elt == 0
5522 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5523 sets[i].src_elt = src_eqv_elt;
5524 }
5525
5526 for (i = 0; i < n_sets; i++)
5527 if (sets[i].rtl && ! sets[i].src_volatile
5528 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5529 {
5530 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5531 {
5532 /* REG_EQUAL in setting a STRICT_LOW_PART
5533 gives an equivalent for the entire destination register,
5534 not just for the subreg being stored in now.
5535 This is a more interesting equivalence, so we arrange later
5536 to treat the entire reg as the destination. */
5537 sets[i].src_elt = src_eqv_elt;
5538 sets[i].src_hash = src_eqv_hash;
5539 }
5540 else
5541 {
5542 /* Insert source and constant equivalent into hash table, if not
5543 already present. */
5544 struct table_elt *classp = src_eqv_elt;
5545 rtx src = sets[i].src;
5546 rtx dest = SET_DEST (sets[i].rtl);
5547 enum machine_mode mode
5548 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5549
5550 /* It's possible that we have a source value known to be
5551 constant but don't have a REG_EQUAL note on the insn.
5552 Lack of a note will mean src_eqv_elt will be NULL. This
5553 can happen where we've generated a SUBREG to access a
5554 CONST_INT that is already in a register in a wider mode.
5555 Ensure that the source expression is put in the proper
5556 constant class. */
5557 if (!classp)
5558 classp = sets[i].src_const_elt;
5559
5560 if (sets[i].src_elt == 0)
5561 {
5562 struct table_elt *elt;
5563
5564 /* Note that these insert_regs calls cannot remove
5565 any of the src_elt's, because they would have failed to
5566 match if not still valid. */
5567 if (insert_regs (src, classp, 0))
5568 {
5569 rehash_using_reg (src);
5570 sets[i].src_hash = HASH (src, mode);
5571 }
5572 elt = insert (src, classp, sets[i].src_hash, mode);
5573 elt->in_memory = sets[i].src_in_memory;
5574 sets[i].src_elt = classp = elt;
5575 }
5576 if (sets[i].src_const && sets[i].src_const_elt == 0
5577 && src != sets[i].src_const
5578 && ! rtx_equal_p (sets[i].src_const, src))
5579 sets[i].src_elt = insert (sets[i].src_const, classp,
5580 sets[i].src_const_hash, mode);
5581 }
5582 }
5583 else if (sets[i].src_elt == 0)
5584 /* If we did not insert the source into the hash table (e.g., it was
5585 volatile), note the equivalence class for the REG_EQUAL value, if any,
5586 so that the destination goes into that class. */
5587 sets[i].src_elt = src_eqv_elt;
5588
5589 /* Record destination addresses in the hash table. This allows us to
5590 check if they are invalidated by other sets. */
5591 for (i = 0; i < n_sets; i++)
5592 {
5593 if (sets[i].rtl)
5594 {
5595 rtx x = sets[i].inner_dest;
5596 struct table_elt *elt;
5597 enum machine_mode mode;
5598 unsigned hash;
5599
5600 if (MEM_P (x))
5601 {
5602 x = XEXP (x, 0);
5603 mode = GET_MODE (x);
5604 hash = HASH (x, mode);
5605 elt = lookup (x, hash, mode);
5606 if (!elt)
5607 {
5608 if (insert_regs (x, NULL, 0))
5609 {
5610 rtx dest = SET_DEST (sets[i].rtl);
5611
5612 rehash_using_reg (x);
5613 hash = HASH (x, mode);
5614 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5615 }
5616 elt = insert (x, NULL, hash, mode);
5617 }
5618
5619 sets[i].dest_addr_elt = elt;
5620 }
5621 else
5622 sets[i].dest_addr_elt = NULL;
5623 }
5624 }
5625
5626 invalidate_from_clobbers (insn);
5627
5628 /* Some registers are invalidated by subroutine calls. Memory is
5629 invalidated by non-constant calls. */
5630
5631 if (CALL_P (insn))
5632 {
5633 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5634 invalidate_memory ();
5635 invalidate_for_call ();
5636 }
5637
5638 /* Now invalidate everything set by this instruction.
5639 If a SUBREG or other funny destination is being set,
5640 sets[i].rtl is still nonzero, so here we invalidate the reg
5641 a part of which is being set. */
5642
5643 for (i = 0; i < n_sets; i++)
5644 if (sets[i].rtl)
5645 {
5646 /* We can't use the inner dest, because the mode associated with
5647 a ZERO_EXTRACT is significant. */
5648 rtx dest = SET_DEST (sets[i].rtl);
5649
5650 /* Needed for registers to remove the register from its
5651 previous quantity's chain.
5652 Needed for memory if this is a nonvarying address, unless
5653 we have just done an invalidate_memory that covers even those. */
5654 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5655 invalidate (dest, VOIDmode);
5656 else if (MEM_P (dest))
5657 invalidate (dest, VOIDmode);
5658 else if (GET_CODE (dest) == STRICT_LOW_PART
5659 || GET_CODE (dest) == ZERO_EXTRACT)
5660 invalidate (XEXP (dest, 0), GET_MODE (dest));
5661 }
5662
5663 /* A volatile ASM invalidates everything. */
5664 if (NONJUMP_INSN_P (insn)
5665 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5666 && MEM_VOLATILE_P (PATTERN (insn)))
5667 flush_hash_table ();
5668
5669 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5670 the regs restored by the longjmp come from a later time
5671 than the setjmp. */
5672 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5673 {
5674 flush_hash_table ();
5675 goto done;
5676 }
5677
5678 /* Make sure registers mentioned in destinations
5679 are safe for use in an expression to be inserted.
5680 This removes from the hash table
5681 any invalid entry that refers to one of these registers.
5682
5683 We don't care about the return value from mention_regs because
5684 we are going to hash the SET_DEST values unconditionally. */
5685
5686 for (i = 0; i < n_sets; i++)
5687 {
5688 if (sets[i].rtl)
5689 {
5690 rtx x = SET_DEST (sets[i].rtl);
5691
5692 if (!REG_P (x))
5693 mention_regs (x);
5694 else
5695 {
5696 /* We used to rely on all references to a register becoming
5697 inaccessible when a register changes to a new quantity,
5698 since that changes the hash code. However, that is not
5699 safe, since after HASH_SIZE new quantities we get a
5700 hash 'collision' of a register with its own invalid
5701 entries. And since SUBREGs have been changed not to
5702 change their hash code with the hash code of the register,
5703 it wouldn't work any longer at all. So we have to check
5704 for any invalid references lying around now.
5705 This code is similar to the REG case in mention_regs,
5706 but it knows that reg_tick has been incremented, and
5707 it leaves reg_in_table as -1 . */
5708 unsigned int regno = REGNO (x);
5709 unsigned int endregno = END_REGNO (x);
5710 unsigned int i;
5711
5712 for (i = regno; i < endregno; i++)
5713 {
5714 if (REG_IN_TABLE (i) >= 0)
5715 {
5716 remove_invalid_refs (i);
5717 REG_IN_TABLE (i) = -1;
5718 }
5719 }
5720 }
5721 }
5722 }
5723
5724 /* We may have just removed some of the src_elt's from the hash table.
5725 So replace each one with the current head of the same class.
5726 Also check if destination addresses have been removed. */
5727
5728 for (i = 0; i < n_sets; i++)
5729 if (sets[i].rtl)
5730 {
5731 if (sets[i].dest_addr_elt
5732 && sets[i].dest_addr_elt->first_same_value == 0)
5733 {
5734 /* The elt was removed, which means this destination is not
5735 valid after this instruction. */
5736 sets[i].rtl = NULL_RTX;
5737 }
5738 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5739 /* If elt was removed, find current head of same class,
5740 or 0 if nothing remains of that class. */
5741 {
5742 struct table_elt *elt = sets[i].src_elt;
5743
5744 while (elt && elt->prev_same_value)
5745 elt = elt->prev_same_value;
5746
5747 while (elt && elt->first_same_value == 0)
5748 elt = elt->next_same_value;
5749 sets[i].src_elt = elt ? elt->first_same_value : 0;
5750 }
5751 }
5752
5753 /* Now insert the destinations into their equivalence classes. */
5754
5755 for (i = 0; i < n_sets; i++)
5756 if (sets[i].rtl)
5757 {
5758 rtx dest = SET_DEST (sets[i].rtl);
5759 struct table_elt *elt;
5760
5761 /* Don't record value if we are not supposed to risk allocating
5762 floating-point values in registers that might be wider than
5763 memory. */
5764 if ((flag_float_store
5765 && MEM_P (dest)
5766 && FLOAT_MODE_P (GET_MODE (dest)))
5767 /* Don't record BLKmode values, because we don't know the
5768 size of it, and can't be sure that other BLKmode values
5769 have the same or smaller size. */
5770 || GET_MODE (dest) == BLKmode
5771 /* If we didn't put a REG_EQUAL value or a source into the hash
5772 table, there is no point is recording DEST. */
5773 || sets[i].src_elt == 0
5774 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5775 or SIGN_EXTEND, don't record DEST since it can cause
5776 some tracking to be wrong.
5777
5778 ??? Think about this more later. */
5779 || (paradoxical_subreg_p (dest)
5780 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5781 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5782 continue;
5783
5784 /* STRICT_LOW_PART isn't part of the value BEING set,
5785 and neither is the SUBREG inside it.
5786 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5787 if (GET_CODE (dest) == STRICT_LOW_PART)
5788 dest = SUBREG_REG (XEXP (dest, 0));
5789
5790 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5791 /* Registers must also be inserted into chains for quantities. */
5792 if (insert_regs (dest, sets[i].src_elt, 1))
5793 {
5794 /* If `insert_regs' changes something, the hash code must be
5795 recalculated. */
5796 rehash_using_reg (dest);
5797 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5798 }
5799
5800 elt = insert (dest, sets[i].src_elt,
5801 sets[i].dest_hash, GET_MODE (dest));
5802
5803 /* If this is a constant, insert the constant anchors with the
5804 equivalent register-offset expressions using register DEST. */
5805 if (targetm.const_anchor
5806 && REG_P (dest)
5807 && SCALAR_INT_MODE_P (GET_MODE (dest))
5808 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5809 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5810
5811 elt->in_memory = (MEM_P (sets[i].inner_dest)
5812 && !MEM_READONLY_P (sets[i].inner_dest));
5813
5814 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5815 narrower than M2, and both M1 and M2 are the same number of words,
5816 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5817 make that equivalence as well.
5818
5819 However, BAR may have equivalences for which gen_lowpart
5820 will produce a simpler value than gen_lowpart applied to
5821 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5822 BAR's equivalences. If we don't get a simplified form, make
5823 the SUBREG. It will not be used in an equivalence, but will
5824 cause two similar assignments to be detected.
5825
5826 Note the loop below will find SUBREG_REG (DEST) since we have
5827 already entered SRC and DEST of the SET in the table. */
5828
5829 if (GET_CODE (dest) == SUBREG
5830 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5831 / UNITS_PER_WORD)
5832 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5833 && (GET_MODE_SIZE (GET_MODE (dest))
5834 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5835 && sets[i].src_elt != 0)
5836 {
5837 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5838 struct table_elt *elt, *classp = 0;
5839
5840 for (elt = sets[i].src_elt->first_same_value; elt;
5841 elt = elt->next_same_value)
5842 {
5843 rtx new_src = 0;
5844 unsigned src_hash;
5845 struct table_elt *src_elt;
5846 int byte = 0;
5847
5848 /* Ignore invalid entries. */
5849 if (!REG_P (elt->exp)
5850 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5851 continue;
5852
5853 /* We may have already been playing subreg games. If the
5854 mode is already correct for the destination, use it. */
5855 if (GET_MODE (elt->exp) == new_mode)
5856 new_src = elt->exp;
5857 else
5858 {
5859 /* Calculate big endian correction for the SUBREG_BYTE.
5860 We have already checked that M1 (GET_MODE (dest))
5861 is not narrower than M2 (new_mode). */
5862 if (BYTES_BIG_ENDIAN)
5863 byte = (GET_MODE_SIZE (GET_MODE (dest))
5864 - GET_MODE_SIZE (new_mode));
5865
5866 new_src = simplify_gen_subreg (new_mode, elt->exp,
5867 GET_MODE (dest), byte);
5868 }
5869
5870 /* The call to simplify_gen_subreg fails if the value
5871 is VOIDmode, yet we can't do any simplification, e.g.
5872 for EXPR_LISTs denoting function call results.
5873 It is invalid to construct a SUBREG with a VOIDmode
5874 SUBREG_REG, hence a zero new_src means we can't do
5875 this substitution. */
5876 if (! new_src)
5877 continue;
5878
5879 src_hash = HASH (new_src, new_mode);
5880 src_elt = lookup (new_src, src_hash, new_mode);
5881
5882 /* Put the new source in the hash table is if isn't
5883 already. */
5884 if (src_elt == 0)
5885 {
5886 if (insert_regs (new_src, classp, 0))
5887 {
5888 rehash_using_reg (new_src);
5889 src_hash = HASH (new_src, new_mode);
5890 }
5891 src_elt = insert (new_src, classp, src_hash, new_mode);
5892 src_elt->in_memory = elt->in_memory;
5893 }
5894 else if (classp && classp != src_elt->first_same_value)
5895 /* Show that two things that we've seen before are
5896 actually the same. */
5897 merge_equiv_classes (src_elt, classp);
5898
5899 classp = src_elt->first_same_value;
5900 /* Ignore invalid entries. */
5901 while (classp
5902 && !REG_P (classp->exp)
5903 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5904 classp = classp->next_same_value;
5905 }
5906 }
5907 }
5908
5909 /* Special handling for (set REG0 REG1) where REG0 is the
5910 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5911 be used in the sequel, so (if easily done) change this insn to
5912 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5913 that computed their value. Then REG1 will become a dead store
5914 and won't cloud the situation for later optimizations.
5915
5916 Do not make this change if REG1 is a hard register, because it will
5917 then be used in the sequel and we may be changing a two-operand insn
5918 into a three-operand insn.
5919
5920 Also do not do this if we are operating on a copy of INSN. */
5921
5922 if (n_sets == 1 && sets[0].rtl)
5923 try_back_substitute_reg (sets[0].rtl, insn);
5924
5925 done:;
5926 }
5927 \f
5928 /* Remove from the hash table all expressions that reference memory. */
5929
5930 static void
5931 invalidate_memory (void)
5932 {
5933 int i;
5934 struct table_elt *p, *next;
5935
5936 for (i = 0; i < HASH_SIZE; i++)
5937 for (p = table[i]; p; p = next)
5938 {
5939 next = p->next_same_hash;
5940 if (p->in_memory)
5941 remove_from_table (p, i);
5942 }
5943 }
5944
5945 /* Perform invalidation on the basis of everything about INSN,
5946 except for invalidating the actual places that are SET in it.
5947 This includes the places CLOBBERed, and anything that might
5948 alias with something that is SET or CLOBBERed. */
5949
5950 static void
5951 invalidate_from_clobbers (rtx insn)
5952 {
5953 rtx x = PATTERN (insn);
5954
5955 if (GET_CODE (x) == CLOBBER)
5956 {
5957 rtx ref = XEXP (x, 0);
5958 if (ref)
5959 {
5960 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5961 || MEM_P (ref))
5962 invalidate (ref, VOIDmode);
5963 else if (GET_CODE (ref) == STRICT_LOW_PART
5964 || GET_CODE (ref) == ZERO_EXTRACT)
5965 invalidate (XEXP (ref, 0), GET_MODE (ref));
5966 }
5967 }
5968 else if (GET_CODE (x) == PARALLEL)
5969 {
5970 int i;
5971 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5972 {
5973 rtx y = XVECEXP (x, 0, i);
5974 if (GET_CODE (y) == CLOBBER)
5975 {
5976 rtx ref = XEXP (y, 0);
5977 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5978 || MEM_P (ref))
5979 invalidate (ref, VOIDmode);
5980 else if (GET_CODE (ref) == STRICT_LOW_PART
5981 || GET_CODE (ref) == ZERO_EXTRACT)
5982 invalidate (XEXP (ref, 0), GET_MODE (ref));
5983 }
5984 }
5985 }
5986 }
5987 \f
5988 /* Perform invalidation on the basis of everything about INSN.
5989 This includes the places CLOBBERed, and anything that might
5990 alias with something that is SET or CLOBBERed. */
5991
5992 static void
5993 invalidate_from_sets_and_clobbers (rtx insn)
5994 {
5995 rtx tem;
5996 rtx x = PATTERN (insn);
5997
5998 if (CALL_P (insn))
5999 {
6000 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6001 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6002 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6003 }
6004
6005 /* Ensure we invalidate the destination register of a CALL insn.
6006 This is necessary for machines where this register is a fixed_reg,
6007 because no other code would invalidate it. */
6008 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6009 invalidate (SET_DEST (x), VOIDmode);
6010
6011 else if (GET_CODE (x) == PARALLEL)
6012 {
6013 int i;
6014
6015 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6016 {
6017 rtx y = XVECEXP (x, 0, i);
6018 if (GET_CODE (y) == CLOBBER)
6019 {
6020 rtx clobbered = XEXP (y, 0);
6021
6022 if (REG_P (clobbered)
6023 || GET_CODE (clobbered) == SUBREG)
6024 invalidate (clobbered, VOIDmode);
6025 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6026 || GET_CODE (clobbered) == ZERO_EXTRACT)
6027 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6028 }
6029 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6030 invalidate (SET_DEST (y), VOIDmode);
6031 }
6032 }
6033 }
6034 \f
6035 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6036 and replace any registers in them with either an equivalent constant
6037 or the canonical form of the register. If we are inside an address,
6038 only do this if the address remains valid.
6039
6040 OBJECT is 0 except when within a MEM in which case it is the MEM.
6041
6042 Return the replacement for X. */
6043
6044 static rtx
6045 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6046 {
6047 enum rtx_code code = GET_CODE (x);
6048 const char *fmt = GET_RTX_FORMAT (code);
6049 int i;
6050
6051 switch (code)
6052 {
6053 case CONST:
6054 case SYMBOL_REF:
6055 case LABEL_REF:
6056 CASE_CONST_ANY:
6057 case PC:
6058 case CC0:
6059 case LO_SUM:
6060 return x;
6061
6062 case MEM:
6063 validate_change (x, &XEXP (x, 0),
6064 cse_process_notes (XEXP (x, 0), x, changed), 0);
6065 return x;
6066
6067 case EXPR_LIST:
6068 case INSN_LIST:
6069 if (REG_NOTE_KIND (x) == REG_EQUAL)
6070 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6071 if (XEXP (x, 1))
6072 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6073 return x;
6074
6075 case SIGN_EXTEND:
6076 case ZERO_EXTEND:
6077 case SUBREG:
6078 {
6079 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6080 /* We don't substitute VOIDmode constants into these rtx,
6081 since they would impede folding. */
6082 if (GET_MODE (new_rtx) != VOIDmode)
6083 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6084 return x;
6085 }
6086
6087 case REG:
6088 i = REG_QTY (REGNO (x));
6089
6090 /* Return a constant or a constant register. */
6091 if (REGNO_QTY_VALID_P (REGNO (x)))
6092 {
6093 struct qty_table_elem *ent = &qty_table[i];
6094
6095 if (ent->const_rtx != NULL_RTX
6096 && (CONSTANT_P (ent->const_rtx)
6097 || REG_P (ent->const_rtx)))
6098 {
6099 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6100 if (new_rtx)
6101 return copy_rtx (new_rtx);
6102 }
6103 }
6104
6105 /* Otherwise, canonicalize this register. */
6106 return canon_reg (x, NULL_RTX);
6107
6108 default:
6109 break;
6110 }
6111
6112 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6113 if (fmt[i] == 'e')
6114 validate_change (object, &XEXP (x, i),
6115 cse_process_notes (XEXP (x, i), object, changed), 0);
6116
6117 return x;
6118 }
6119
6120 static rtx
6121 cse_process_notes (rtx x, rtx object, bool *changed)
6122 {
6123 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6124 if (new_rtx != x)
6125 *changed = true;
6126 return new_rtx;
6127 }
6128
6129 \f
6130 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6131
6132 DATA is a pointer to a struct cse_basic_block_data, that is used to
6133 describe the path.
6134 It is filled with a queue of basic blocks, starting with FIRST_BB
6135 and following a trace through the CFG.
6136
6137 If all paths starting at FIRST_BB have been followed, or no new path
6138 starting at FIRST_BB can be constructed, this function returns FALSE.
6139 Otherwise, DATA->path is filled and the function returns TRUE indicating
6140 that a path to follow was found.
6141
6142 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6143 block in the path will be FIRST_BB. */
6144
6145 static bool
6146 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6147 int follow_jumps)
6148 {
6149 basic_block bb;
6150 edge e;
6151 int path_size;
6152
6153 SET_BIT (cse_visited_basic_blocks, first_bb->index);
6154
6155 /* See if there is a previous path. */
6156 path_size = data->path_size;
6157
6158 /* There is a previous path. Make sure it started with FIRST_BB. */
6159 if (path_size)
6160 gcc_assert (data->path[0].bb == first_bb);
6161
6162 /* There was only one basic block in the last path. Clear the path and
6163 return, so that paths starting at another basic block can be tried. */
6164 if (path_size == 1)
6165 {
6166 path_size = 0;
6167 goto done;
6168 }
6169
6170 /* If the path was empty from the beginning, construct a new path. */
6171 if (path_size == 0)
6172 data->path[path_size++].bb = first_bb;
6173 else
6174 {
6175 /* Otherwise, path_size must be equal to or greater than 2, because
6176 a previous path exists that is at least two basic blocks long.
6177
6178 Update the previous branch path, if any. If the last branch was
6179 previously along the branch edge, take the fallthrough edge now. */
6180 while (path_size >= 2)
6181 {
6182 basic_block last_bb_in_path, previous_bb_in_path;
6183 edge e;
6184
6185 --path_size;
6186 last_bb_in_path = data->path[path_size].bb;
6187 previous_bb_in_path = data->path[path_size - 1].bb;
6188
6189 /* If we previously followed a path along the branch edge, try
6190 the fallthru edge now. */
6191 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6192 && any_condjump_p (BB_END (previous_bb_in_path))
6193 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6194 && e == BRANCH_EDGE (previous_bb_in_path))
6195 {
6196 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6197 if (bb != EXIT_BLOCK_PTR
6198 && single_pred_p (bb)
6199 /* We used to assert here that we would only see blocks
6200 that we have not visited yet. But we may end up
6201 visiting basic blocks twice if the CFG has changed
6202 in this run of cse_main, because when the CFG changes
6203 the topological sort of the CFG also changes. A basic
6204 blocks that previously had more than two predecessors
6205 may now have a single predecessor, and become part of
6206 a path that starts at another basic block.
6207
6208 We still want to visit each basic block only once, so
6209 halt the path here if we have already visited BB. */
6210 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
6211 {
6212 SET_BIT (cse_visited_basic_blocks, bb->index);
6213 data->path[path_size++].bb = bb;
6214 break;
6215 }
6216 }
6217
6218 data->path[path_size].bb = NULL;
6219 }
6220
6221 /* If only one block remains in the path, bail. */
6222 if (path_size == 1)
6223 {
6224 path_size = 0;
6225 goto done;
6226 }
6227 }
6228
6229 /* Extend the path if possible. */
6230 if (follow_jumps)
6231 {
6232 bb = data->path[path_size - 1].bb;
6233 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6234 {
6235 if (single_succ_p (bb))
6236 e = single_succ_edge (bb);
6237 else if (EDGE_COUNT (bb->succs) == 2
6238 && any_condjump_p (BB_END (bb)))
6239 {
6240 /* First try to follow the branch. If that doesn't lead
6241 to a useful path, follow the fallthru edge. */
6242 e = BRANCH_EDGE (bb);
6243 if (!single_pred_p (e->dest))
6244 e = FALLTHRU_EDGE (bb);
6245 }
6246 else
6247 e = NULL;
6248
6249 if (e
6250 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6251 && e->dest != EXIT_BLOCK_PTR
6252 && single_pred_p (e->dest)
6253 /* Avoid visiting basic blocks twice. The large comment
6254 above explains why this can happen. */
6255 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
6256 {
6257 basic_block bb2 = e->dest;
6258 SET_BIT (cse_visited_basic_blocks, bb2->index);
6259 data->path[path_size++].bb = bb2;
6260 bb = bb2;
6261 }
6262 else
6263 bb = NULL;
6264 }
6265 }
6266
6267 done:
6268 data->path_size = path_size;
6269 return path_size != 0;
6270 }
6271 \f
6272 /* Dump the path in DATA to file F. NSETS is the number of sets
6273 in the path. */
6274
6275 static void
6276 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6277 {
6278 int path_entry;
6279
6280 fprintf (f, ";; Following path with %d sets: ", nsets);
6281 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6282 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6283 fputc ('\n', dump_file);
6284 fflush (f);
6285 }
6286
6287 \f
6288 /* Return true if BB has exception handling successor edges. */
6289
6290 static bool
6291 have_eh_succ_edges (basic_block bb)
6292 {
6293 edge e;
6294 edge_iterator ei;
6295
6296 FOR_EACH_EDGE (e, ei, bb->succs)
6297 if (e->flags & EDGE_EH)
6298 return true;
6299
6300 return false;
6301 }
6302
6303 \f
6304 /* Scan to the end of the path described by DATA. Return an estimate of
6305 the total number of SETs of all insns in the path. */
6306
6307 static void
6308 cse_prescan_path (struct cse_basic_block_data *data)
6309 {
6310 int nsets = 0;
6311 int path_size = data->path_size;
6312 int path_entry;
6313
6314 /* Scan to end of each basic block in the path. */
6315 for (path_entry = 0; path_entry < path_size; path_entry++)
6316 {
6317 basic_block bb;
6318 rtx insn;
6319
6320 bb = data->path[path_entry].bb;
6321
6322 FOR_BB_INSNS (bb, insn)
6323 {
6324 if (!INSN_P (insn))
6325 continue;
6326
6327 /* A PARALLEL can have lots of SETs in it,
6328 especially if it is really an ASM_OPERANDS. */
6329 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6330 nsets += XVECLEN (PATTERN (insn), 0);
6331 else
6332 nsets += 1;
6333 }
6334 }
6335
6336 data->nsets = nsets;
6337 }
6338 \f
6339 /* Process a single extended basic block described by EBB_DATA. */
6340
6341 static void
6342 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6343 {
6344 int path_size = ebb_data->path_size;
6345 int path_entry;
6346 int num_insns = 0;
6347
6348 /* Allocate the space needed by qty_table. */
6349 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6350
6351 new_basic_block ();
6352 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6353 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6354 for (path_entry = 0; path_entry < path_size; path_entry++)
6355 {
6356 basic_block bb;
6357 rtx insn;
6358
6359 bb = ebb_data->path[path_entry].bb;
6360
6361 /* Invalidate recorded information for eh regs if there is an EH
6362 edge pointing to that bb. */
6363 if (bb_has_eh_pred (bb))
6364 {
6365 df_ref *def_rec;
6366
6367 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6368 {
6369 df_ref def = *def_rec;
6370 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6371 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6372 }
6373 }
6374
6375 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6376 FOR_BB_INSNS (bb, insn)
6377 {
6378 /* If we have processed 1,000 insns, flush the hash table to
6379 avoid extreme quadratic behavior. We must not include NOTEs
6380 in the count since there may be more of them when generating
6381 debugging information. If we clear the table at different
6382 times, code generated with -g -O might be different than code
6383 generated with -O but not -g.
6384
6385 FIXME: This is a real kludge and needs to be done some other
6386 way. */
6387 if (NONDEBUG_INSN_P (insn)
6388 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6389 {
6390 flush_hash_table ();
6391 num_insns = 0;
6392 }
6393
6394 if (INSN_P (insn))
6395 {
6396 /* Process notes first so we have all notes in canonical forms
6397 when looking for duplicate operations. */
6398 if (REG_NOTES (insn))
6399 {
6400 bool changed = false;
6401 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6402 NULL_RTX, &changed);
6403 if (changed)
6404 df_notes_rescan (insn);
6405 }
6406
6407 cse_insn (insn);
6408
6409 /* If we haven't already found an insn where we added a LABEL_REF,
6410 check this one. */
6411 if (INSN_P (insn) && !recorded_label_ref
6412 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6413 (void *) insn))
6414 recorded_label_ref = true;
6415
6416 #ifdef HAVE_cc0
6417 if (NONDEBUG_INSN_P (insn))
6418 {
6419 /* If the previous insn sets CC0 and this insn no
6420 longer references CC0, delete the previous insn.
6421 Here we use fact that nothing expects CC0 to be
6422 valid over an insn, which is true until the final
6423 pass. */
6424 rtx prev_insn, tem;
6425
6426 prev_insn = prev_nonnote_nondebug_insn (insn);
6427 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6428 && (tem = single_set (prev_insn)) != NULL_RTX
6429 && SET_DEST (tem) == cc0_rtx
6430 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6431 delete_insn (prev_insn);
6432
6433 /* If this insn is not the last insn in the basic
6434 block, it will be PREV_INSN(insn) in the next
6435 iteration. If we recorded any CC0-related
6436 information for this insn, remember it. */
6437 if (insn != BB_END (bb))
6438 {
6439 prev_insn_cc0 = this_insn_cc0;
6440 prev_insn_cc0_mode = this_insn_cc0_mode;
6441 }
6442 }
6443 #endif
6444 }
6445 }
6446
6447 /* With non-call exceptions, we are not always able to update
6448 the CFG properly inside cse_insn. So clean up possibly
6449 redundant EH edges here. */
6450 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6451 cse_cfg_altered |= purge_dead_edges (bb);
6452
6453 /* If we changed a conditional jump, we may have terminated
6454 the path we are following. Check that by verifying that
6455 the edge we would take still exists. If the edge does
6456 not exist anymore, purge the remainder of the path.
6457 Note that this will cause us to return to the caller. */
6458 if (path_entry < path_size - 1)
6459 {
6460 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6461 if (!find_edge (bb, next_bb))
6462 {
6463 do
6464 {
6465 path_size--;
6466
6467 /* If we truncate the path, we must also reset the
6468 visited bit on the remaining blocks in the path,
6469 or we will never visit them at all. */
6470 RESET_BIT (cse_visited_basic_blocks,
6471 ebb_data->path[path_size].bb->index);
6472 ebb_data->path[path_size].bb = NULL;
6473 }
6474 while (path_size - 1 != path_entry);
6475 ebb_data->path_size = path_size;
6476 }
6477 }
6478
6479 /* If this is a conditional jump insn, record any known
6480 equivalences due to the condition being tested. */
6481 insn = BB_END (bb);
6482 if (path_entry < path_size - 1
6483 && JUMP_P (insn)
6484 && single_set (insn)
6485 && any_condjump_p (insn))
6486 {
6487 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6488 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6489 record_jump_equiv (insn, taken);
6490 }
6491
6492 #ifdef HAVE_cc0
6493 /* Clear the CC0-tracking related insns, they can't provide
6494 useful information across basic block boundaries. */
6495 prev_insn_cc0 = 0;
6496 #endif
6497 }
6498
6499 gcc_assert (next_qty <= max_qty);
6500
6501 free (qty_table);
6502 }
6503
6504 \f
6505 /* Perform cse on the instructions of a function.
6506 F is the first instruction.
6507 NREGS is one plus the highest pseudo-reg number used in the instruction.
6508
6509 Return 2 if jump optimizations should be redone due to simplifications
6510 in conditional jump instructions.
6511 Return 1 if the CFG should be cleaned up because it has been modified.
6512 Return 0 otherwise. */
6513
6514 static int
6515 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6516 {
6517 struct cse_basic_block_data ebb_data;
6518 basic_block bb;
6519 int *rc_order = XNEWVEC (int, last_basic_block);
6520 int i, n_blocks;
6521
6522 df_set_flags (DF_LR_RUN_DCE);
6523 df_analyze ();
6524 df_set_flags (DF_DEFER_INSN_RESCAN);
6525
6526 reg_scan (get_insns (), max_reg_num ());
6527 init_cse_reg_info (nregs);
6528
6529 ebb_data.path = XNEWVEC (struct branch_path,
6530 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6531
6532 cse_cfg_altered = false;
6533 cse_jumps_altered = false;
6534 recorded_label_ref = false;
6535 constant_pool_entries_cost = 0;
6536 constant_pool_entries_regcost = 0;
6537 ebb_data.path_size = 0;
6538 ebb_data.nsets = 0;
6539 rtl_hooks = cse_rtl_hooks;
6540
6541 init_recog ();
6542 init_alias_analysis ();
6543
6544 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6545
6546 /* Set up the table of already visited basic blocks. */
6547 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6548 sbitmap_zero (cse_visited_basic_blocks);
6549
6550 /* Loop over basic blocks in reverse completion order (RPO),
6551 excluding the ENTRY and EXIT blocks. */
6552 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6553 i = 0;
6554 while (i < n_blocks)
6555 {
6556 /* Find the first block in the RPO queue that we have not yet
6557 processed before. */
6558 do
6559 {
6560 bb = BASIC_BLOCK (rc_order[i++]);
6561 }
6562 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6563 && i < n_blocks);
6564
6565 /* Find all paths starting with BB, and process them. */
6566 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6567 {
6568 /* Pre-scan the path. */
6569 cse_prescan_path (&ebb_data);
6570
6571 /* If this basic block has no sets, skip it. */
6572 if (ebb_data.nsets == 0)
6573 continue;
6574
6575 /* Get a reasonable estimate for the maximum number of qty's
6576 needed for this path. For this, we take the number of sets
6577 and multiply that by MAX_RECOG_OPERANDS. */
6578 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6579
6580 /* Dump the path we're about to process. */
6581 if (dump_file)
6582 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6583
6584 cse_extended_basic_block (&ebb_data);
6585 }
6586 }
6587
6588 /* Clean up. */
6589 end_alias_analysis ();
6590 free (reg_eqv_table);
6591 free (ebb_data.path);
6592 sbitmap_free (cse_visited_basic_blocks);
6593 free (rc_order);
6594 rtl_hooks = general_rtl_hooks;
6595
6596 if (cse_jumps_altered || recorded_label_ref)
6597 return 2;
6598 else if (cse_cfg_altered)
6599 return 1;
6600 else
6601 return 0;
6602 }
6603 \f
6604 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6605 which there isn't a REG_LABEL_OPERAND note.
6606 Return one if so. DATA is the insn. */
6607
6608 static int
6609 check_for_label_ref (rtx *rtl, void *data)
6610 {
6611 rtx insn = (rtx) data;
6612
6613 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6614 note for it, we must rerun jump since it needs to place the note. If
6615 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6616 don't do this since no REG_LABEL_OPERAND will be added. */
6617 return (GET_CODE (*rtl) == LABEL_REF
6618 && ! LABEL_REF_NONLOCAL_P (*rtl)
6619 && (!JUMP_P (insn)
6620 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6621 && LABEL_P (XEXP (*rtl, 0))
6622 && INSN_UID (XEXP (*rtl, 0)) != 0
6623 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6624 }
6625 \f
6626 /* Count the number of times registers are used (not set) in X.
6627 COUNTS is an array in which we accumulate the count, INCR is how much
6628 we count each register usage.
6629
6630 Don't count a usage of DEST, which is the SET_DEST of a SET which
6631 contains X in its SET_SRC. This is because such a SET does not
6632 modify the liveness of DEST.
6633 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6634 We must then count uses of a SET_DEST regardless, because the insn can't be
6635 deleted here. */
6636
6637 static void
6638 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6639 {
6640 enum rtx_code code;
6641 rtx note;
6642 const char *fmt;
6643 int i, j;
6644
6645 if (x == 0)
6646 return;
6647
6648 switch (code = GET_CODE (x))
6649 {
6650 case REG:
6651 if (x != dest)
6652 counts[REGNO (x)] += incr;
6653 return;
6654
6655 case PC:
6656 case CC0:
6657 case CONST:
6658 CASE_CONST_ANY:
6659 case SYMBOL_REF:
6660 case LABEL_REF:
6661 return;
6662
6663 case CLOBBER:
6664 /* If we are clobbering a MEM, mark any registers inside the address
6665 as being used. */
6666 if (MEM_P (XEXP (x, 0)))
6667 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6668 return;
6669
6670 case SET:
6671 /* Unless we are setting a REG, count everything in SET_DEST. */
6672 if (!REG_P (SET_DEST (x)))
6673 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6674 count_reg_usage (SET_SRC (x), counts,
6675 dest ? dest : SET_DEST (x),
6676 incr);
6677 return;
6678
6679 case DEBUG_INSN:
6680 return;
6681
6682 case CALL_INSN:
6683 case INSN:
6684 case JUMP_INSN:
6685 /* We expect dest to be NULL_RTX here. If the insn may throw,
6686 or if it cannot be deleted due to side-effects, mark this fact
6687 by setting DEST to pc_rtx. */
6688 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6689 || side_effects_p (PATTERN (x)))
6690 dest = pc_rtx;
6691 if (code == CALL_INSN)
6692 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6693 count_reg_usage (PATTERN (x), counts, dest, incr);
6694
6695 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6696 use them. */
6697
6698 note = find_reg_equal_equiv_note (x);
6699 if (note)
6700 {
6701 rtx eqv = XEXP (note, 0);
6702
6703 if (GET_CODE (eqv) == EXPR_LIST)
6704 /* This REG_EQUAL note describes the result of a function call.
6705 Process all the arguments. */
6706 do
6707 {
6708 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6709 eqv = XEXP (eqv, 1);
6710 }
6711 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6712 else
6713 count_reg_usage (eqv, counts, dest, incr);
6714 }
6715 return;
6716
6717 case EXPR_LIST:
6718 if (REG_NOTE_KIND (x) == REG_EQUAL
6719 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6720 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6721 involving registers in the address. */
6722 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6723 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6724
6725 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6726 return;
6727
6728 case ASM_OPERANDS:
6729 /* Iterate over just the inputs, not the constraints as well. */
6730 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6731 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6732 return;
6733
6734 case INSN_LIST:
6735 gcc_unreachable ();
6736
6737 default:
6738 break;
6739 }
6740
6741 fmt = GET_RTX_FORMAT (code);
6742 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6743 {
6744 if (fmt[i] == 'e')
6745 count_reg_usage (XEXP (x, i), counts, dest, incr);
6746 else if (fmt[i] == 'E')
6747 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6748 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6749 }
6750 }
6751 \f
6752 /* Return true if X is a dead register. */
6753
6754 static inline int
6755 is_dead_reg (rtx x, int *counts)
6756 {
6757 return (REG_P (x)
6758 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6759 && counts[REGNO (x)] == 0);
6760 }
6761
6762 /* Return true if set is live. */
6763 static bool
6764 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6765 int *counts)
6766 {
6767 #ifdef HAVE_cc0
6768 rtx tem;
6769 #endif
6770
6771 if (set_noop_p (set))
6772 ;
6773
6774 #ifdef HAVE_cc0
6775 else if (GET_CODE (SET_DEST (set)) == CC0
6776 && !side_effects_p (SET_SRC (set))
6777 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6778 || !INSN_P (tem)
6779 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6780 return false;
6781 #endif
6782 else if (!is_dead_reg (SET_DEST (set), counts)
6783 || side_effects_p (SET_SRC (set)))
6784 return true;
6785 return false;
6786 }
6787
6788 /* Return true if insn is live. */
6789
6790 static bool
6791 insn_live_p (rtx insn, int *counts)
6792 {
6793 int i;
6794 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6795 return true;
6796 else if (GET_CODE (PATTERN (insn)) == SET)
6797 return set_live_p (PATTERN (insn), insn, counts);
6798 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6799 {
6800 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6801 {
6802 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6803
6804 if (GET_CODE (elt) == SET)
6805 {
6806 if (set_live_p (elt, insn, counts))
6807 return true;
6808 }
6809 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6810 return true;
6811 }
6812 return false;
6813 }
6814 else if (DEBUG_INSN_P (insn))
6815 {
6816 rtx next;
6817
6818 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6819 if (NOTE_P (next))
6820 continue;
6821 else if (!DEBUG_INSN_P (next))
6822 return true;
6823 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6824 return false;
6825
6826 return true;
6827 }
6828 else
6829 return true;
6830 }
6831
6832 /* Count the number of stores into pseudo. Callback for note_stores. */
6833
6834 static void
6835 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6836 {
6837 int *counts = (int *) data;
6838 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6839 counts[REGNO (x)]++;
6840 }
6841
6842 struct dead_debug_insn_data
6843 {
6844 int *counts;
6845 rtx *replacements;
6846 bool seen_repl;
6847 };
6848
6849 /* Return if a DEBUG_INSN needs to be reset because some dead
6850 pseudo doesn't have a replacement. Callback for for_each_rtx. */
6851
6852 static int
6853 is_dead_debug_insn (rtx *loc, void *data)
6854 {
6855 rtx x = *loc;
6856 struct dead_debug_insn_data *ddid = (struct dead_debug_insn_data *) data;
6857
6858 if (is_dead_reg (x, ddid->counts))
6859 {
6860 if (ddid->replacements && ddid->replacements[REGNO (x)] != NULL_RTX)
6861 ddid->seen_repl = true;
6862 else
6863 return 1;
6864 }
6865 return 0;
6866 }
6867
6868 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6869 Callback for simplify_replace_fn_rtx. */
6870
6871 static rtx
6872 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6873 {
6874 rtx *replacements = (rtx *) data;
6875
6876 if (REG_P (x)
6877 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6878 && replacements[REGNO (x)] != NULL_RTX)
6879 {
6880 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6881 return replacements[REGNO (x)];
6882 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6883 GET_MODE (replacements[REGNO (x)]));
6884 }
6885 return NULL_RTX;
6886 }
6887
6888 /* Scan all the insns and delete any that are dead; i.e., they store a register
6889 that is never used or they copy a register to itself.
6890
6891 This is used to remove insns made obviously dead by cse, loop or other
6892 optimizations. It improves the heuristics in loop since it won't try to
6893 move dead invariants out of loops or make givs for dead quantities. The
6894 remaining passes of the compilation are also sped up. */
6895
6896 int
6897 delete_trivially_dead_insns (rtx insns, int nreg)
6898 {
6899 int *counts;
6900 rtx insn, prev;
6901 rtx *replacements = NULL;
6902 int ndead = 0;
6903
6904 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6905 /* First count the number of times each register is used. */
6906 if (MAY_HAVE_DEBUG_INSNS)
6907 {
6908 counts = XCNEWVEC (int, nreg * 3);
6909 for (insn = insns; insn; insn = NEXT_INSN (insn))
6910 if (DEBUG_INSN_P (insn))
6911 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6912 NULL_RTX, 1);
6913 else if (INSN_P (insn))
6914 {
6915 count_reg_usage (insn, counts, NULL_RTX, 1);
6916 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6917 }
6918 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6919 First one counts how many times each pseudo is used outside
6920 of debug insns, second counts how many times each pseudo is
6921 used in debug insns and third counts how many times a pseudo
6922 is stored. */
6923 }
6924 else
6925 {
6926 counts = XCNEWVEC (int, nreg);
6927 for (insn = insns; insn; insn = NEXT_INSN (insn))
6928 if (INSN_P (insn))
6929 count_reg_usage (insn, counts, NULL_RTX, 1);
6930 /* If no debug insns can be present, COUNTS is just an array
6931 which counts how many times each pseudo is used. */
6932 }
6933 /* Go from the last insn to the first and delete insns that only set unused
6934 registers or copy a register to itself. As we delete an insn, remove
6935 usage counts for registers it uses.
6936
6937 The first jump optimization pass may leave a real insn as the last
6938 insn in the function. We must not skip that insn or we may end
6939 up deleting code that is not really dead.
6940
6941 If some otherwise unused register is only used in DEBUG_INSNs,
6942 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
6943 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
6944 has been created for the unused register, replace it with
6945 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
6946 for (insn = get_last_insn (); insn; insn = prev)
6947 {
6948 int live_insn = 0;
6949
6950 prev = PREV_INSN (insn);
6951 if (!INSN_P (insn))
6952 continue;
6953
6954 live_insn = insn_live_p (insn, counts);
6955
6956 /* If this is a dead insn, delete it and show registers in it aren't
6957 being used. */
6958
6959 if (! live_insn && dbg_cnt (delete_trivial_dead))
6960 {
6961 if (DEBUG_INSN_P (insn))
6962 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6963 NULL_RTX, -1);
6964 else
6965 {
6966 rtx set;
6967 if (MAY_HAVE_DEBUG_INSNS
6968 && (set = single_set (insn)) != NULL_RTX
6969 && is_dead_reg (SET_DEST (set), counts)
6970 /* Used at least once in some DEBUG_INSN. */
6971 && counts[REGNO (SET_DEST (set)) + nreg] > 0
6972 /* And set exactly once. */
6973 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
6974 && !side_effects_p (SET_SRC (set))
6975 && asm_noperands (PATTERN (insn)) < 0)
6976 {
6977 rtx dval, bind;
6978
6979 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
6980 dval = make_debug_expr_from_rtl (SET_DEST (set));
6981
6982 /* Emit a debug bind insn before the insn in which
6983 reg dies. */
6984 bind = gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
6985 DEBUG_EXPR_TREE_DECL (dval),
6986 SET_SRC (set),
6987 VAR_INIT_STATUS_INITIALIZED);
6988 count_reg_usage (bind, counts + nreg, NULL_RTX, 1);
6989
6990 bind = emit_debug_insn_before (bind, insn);
6991 df_insn_rescan (bind);
6992
6993 if (replacements == NULL)
6994 replacements = XCNEWVEC (rtx, nreg);
6995 replacements[REGNO (SET_DEST (set))] = dval;
6996 }
6997
6998 count_reg_usage (insn, counts, NULL_RTX, -1);
6999 ndead++;
7000 }
7001 delete_insn_and_edges (insn);
7002 }
7003 }
7004
7005 if (MAY_HAVE_DEBUG_INSNS)
7006 {
7007 struct dead_debug_insn_data ddid;
7008 ddid.counts = counts;
7009 ddid.replacements = replacements;
7010 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7011 if (DEBUG_INSN_P (insn))
7012 {
7013 /* If this debug insn references a dead register that wasn't replaced
7014 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7015 ddid.seen_repl = false;
7016 if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
7017 is_dead_debug_insn, &ddid))
7018 {
7019 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7020 df_insn_rescan (insn);
7021 }
7022 else if (ddid.seen_repl)
7023 {
7024 INSN_VAR_LOCATION_LOC (insn)
7025 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7026 NULL_RTX, replace_dead_reg,
7027 replacements);
7028 df_insn_rescan (insn);
7029 }
7030 }
7031 free (replacements);
7032 }
7033
7034 if (dump_file && ndead)
7035 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7036 ndead);
7037 /* Clean up. */
7038 free (counts);
7039 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7040 return ndead;
7041 }
7042
7043 /* This function is called via for_each_rtx. The argument, NEWREG, is
7044 a condition code register with the desired mode. If we are looking
7045 at the same register in a different mode, replace it with
7046 NEWREG. */
7047
7048 static int
7049 cse_change_cc_mode (rtx *loc, void *data)
7050 {
7051 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7052
7053 if (*loc
7054 && REG_P (*loc)
7055 && REGNO (*loc) == REGNO (args->newreg)
7056 && GET_MODE (*loc) != GET_MODE (args->newreg))
7057 {
7058 validate_change (args->insn, loc, args->newreg, 1);
7059
7060 return -1;
7061 }
7062 return 0;
7063 }
7064
7065 /* Change the mode of any reference to the register REGNO (NEWREG) to
7066 GET_MODE (NEWREG) in INSN. */
7067
7068 static void
7069 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7070 {
7071 struct change_cc_mode_args args;
7072 int success;
7073
7074 if (!INSN_P (insn))
7075 return;
7076
7077 args.insn = insn;
7078 args.newreg = newreg;
7079
7080 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7081 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7082
7083 /* If the following assertion was triggered, there is most probably
7084 something wrong with the cc_modes_compatible back end function.
7085 CC modes only can be considered compatible if the insn - with the mode
7086 replaced by any of the compatible modes - can still be recognized. */
7087 success = apply_change_group ();
7088 gcc_assert (success);
7089 }
7090
7091 /* Change the mode of any reference to the register REGNO (NEWREG) to
7092 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7093 any instruction which modifies NEWREG. */
7094
7095 static void
7096 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7097 {
7098 rtx insn;
7099
7100 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7101 {
7102 if (! INSN_P (insn))
7103 continue;
7104
7105 if (reg_set_p (newreg, insn))
7106 return;
7107
7108 cse_change_cc_mode_insn (insn, newreg);
7109 }
7110 }
7111
7112 /* BB is a basic block which finishes with CC_REG as a condition code
7113 register which is set to CC_SRC. Look through the successors of BB
7114 to find blocks which have a single predecessor (i.e., this one),
7115 and look through those blocks for an assignment to CC_REG which is
7116 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7117 permitted to change the mode of CC_SRC to a compatible mode. This
7118 returns VOIDmode if no equivalent assignments were found.
7119 Otherwise it returns the mode which CC_SRC should wind up with.
7120 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7121 but is passed unmodified down to recursive calls in order to prevent
7122 endless recursion.
7123
7124 The main complexity in this function is handling the mode issues.
7125 We may have more than one duplicate which we can eliminate, and we
7126 try to find a mode which will work for multiple duplicates. */
7127
7128 static enum machine_mode
7129 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7130 bool can_change_mode)
7131 {
7132 bool found_equiv;
7133 enum machine_mode mode;
7134 unsigned int insn_count;
7135 edge e;
7136 rtx insns[2];
7137 enum machine_mode modes[2];
7138 rtx last_insns[2];
7139 unsigned int i;
7140 rtx newreg;
7141 edge_iterator ei;
7142
7143 /* We expect to have two successors. Look at both before picking
7144 the final mode for the comparison. If we have more successors
7145 (i.e., some sort of table jump, although that seems unlikely),
7146 then we require all beyond the first two to use the same
7147 mode. */
7148
7149 found_equiv = false;
7150 mode = GET_MODE (cc_src);
7151 insn_count = 0;
7152 FOR_EACH_EDGE (e, ei, bb->succs)
7153 {
7154 rtx insn;
7155 rtx end;
7156
7157 if (e->flags & EDGE_COMPLEX)
7158 continue;
7159
7160 if (EDGE_COUNT (e->dest->preds) != 1
7161 || e->dest == EXIT_BLOCK_PTR
7162 /* Avoid endless recursion on unreachable blocks. */
7163 || e->dest == orig_bb)
7164 continue;
7165
7166 end = NEXT_INSN (BB_END (e->dest));
7167 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7168 {
7169 rtx set;
7170
7171 if (! INSN_P (insn))
7172 continue;
7173
7174 /* If CC_SRC is modified, we have to stop looking for
7175 something which uses it. */
7176 if (modified_in_p (cc_src, insn))
7177 break;
7178
7179 /* Check whether INSN sets CC_REG to CC_SRC. */
7180 set = single_set (insn);
7181 if (set
7182 && REG_P (SET_DEST (set))
7183 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7184 {
7185 bool found;
7186 enum machine_mode set_mode;
7187 enum machine_mode comp_mode;
7188
7189 found = false;
7190 set_mode = GET_MODE (SET_SRC (set));
7191 comp_mode = set_mode;
7192 if (rtx_equal_p (cc_src, SET_SRC (set)))
7193 found = true;
7194 else if (GET_CODE (cc_src) == COMPARE
7195 && GET_CODE (SET_SRC (set)) == COMPARE
7196 && mode != set_mode
7197 && rtx_equal_p (XEXP (cc_src, 0),
7198 XEXP (SET_SRC (set), 0))
7199 && rtx_equal_p (XEXP (cc_src, 1),
7200 XEXP (SET_SRC (set), 1)))
7201
7202 {
7203 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7204 if (comp_mode != VOIDmode
7205 && (can_change_mode || comp_mode == mode))
7206 found = true;
7207 }
7208
7209 if (found)
7210 {
7211 found_equiv = true;
7212 if (insn_count < ARRAY_SIZE (insns))
7213 {
7214 insns[insn_count] = insn;
7215 modes[insn_count] = set_mode;
7216 last_insns[insn_count] = end;
7217 ++insn_count;
7218
7219 if (mode != comp_mode)
7220 {
7221 gcc_assert (can_change_mode);
7222 mode = comp_mode;
7223
7224 /* The modified insn will be re-recognized later. */
7225 PUT_MODE (cc_src, mode);
7226 }
7227 }
7228 else
7229 {
7230 if (set_mode != mode)
7231 {
7232 /* We found a matching expression in the
7233 wrong mode, but we don't have room to
7234 store it in the array. Punt. This case
7235 should be rare. */
7236 break;
7237 }
7238 /* INSN sets CC_REG to a value equal to CC_SRC
7239 with the right mode. We can simply delete
7240 it. */
7241 delete_insn (insn);
7242 }
7243
7244 /* We found an instruction to delete. Keep looking,
7245 in the hopes of finding a three-way jump. */
7246 continue;
7247 }
7248
7249 /* We found an instruction which sets the condition
7250 code, so don't look any farther. */
7251 break;
7252 }
7253
7254 /* If INSN sets CC_REG in some other way, don't look any
7255 farther. */
7256 if (reg_set_p (cc_reg, insn))
7257 break;
7258 }
7259
7260 /* If we fell off the bottom of the block, we can keep looking
7261 through successors. We pass CAN_CHANGE_MODE as false because
7262 we aren't prepared to handle compatibility between the
7263 further blocks and this block. */
7264 if (insn == end)
7265 {
7266 enum machine_mode submode;
7267
7268 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7269 if (submode != VOIDmode)
7270 {
7271 gcc_assert (submode == mode);
7272 found_equiv = true;
7273 can_change_mode = false;
7274 }
7275 }
7276 }
7277
7278 if (! found_equiv)
7279 return VOIDmode;
7280
7281 /* Now INSN_COUNT is the number of instructions we found which set
7282 CC_REG to a value equivalent to CC_SRC. The instructions are in
7283 INSNS. The modes used by those instructions are in MODES. */
7284
7285 newreg = NULL_RTX;
7286 for (i = 0; i < insn_count; ++i)
7287 {
7288 if (modes[i] != mode)
7289 {
7290 /* We need to change the mode of CC_REG in INSNS[i] and
7291 subsequent instructions. */
7292 if (! newreg)
7293 {
7294 if (GET_MODE (cc_reg) == mode)
7295 newreg = cc_reg;
7296 else
7297 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7298 }
7299 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7300 newreg);
7301 }
7302
7303 delete_insn_and_edges (insns[i]);
7304 }
7305
7306 return mode;
7307 }
7308
7309 /* If we have a fixed condition code register (or two), walk through
7310 the instructions and try to eliminate duplicate assignments. */
7311
7312 static void
7313 cse_condition_code_reg (void)
7314 {
7315 unsigned int cc_regno_1;
7316 unsigned int cc_regno_2;
7317 rtx cc_reg_1;
7318 rtx cc_reg_2;
7319 basic_block bb;
7320
7321 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7322 return;
7323
7324 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7325 if (cc_regno_2 != INVALID_REGNUM)
7326 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7327 else
7328 cc_reg_2 = NULL_RTX;
7329
7330 FOR_EACH_BB (bb)
7331 {
7332 rtx last_insn;
7333 rtx cc_reg;
7334 rtx insn;
7335 rtx cc_src_insn;
7336 rtx cc_src;
7337 enum machine_mode mode;
7338 enum machine_mode orig_mode;
7339
7340 /* Look for blocks which end with a conditional jump based on a
7341 condition code register. Then look for the instruction which
7342 sets the condition code register. Then look through the
7343 successor blocks for instructions which set the condition
7344 code register to the same value. There are other possible
7345 uses of the condition code register, but these are by far the
7346 most common and the ones which we are most likely to be able
7347 to optimize. */
7348
7349 last_insn = BB_END (bb);
7350 if (!JUMP_P (last_insn))
7351 continue;
7352
7353 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7354 cc_reg = cc_reg_1;
7355 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7356 cc_reg = cc_reg_2;
7357 else
7358 continue;
7359
7360 cc_src_insn = NULL_RTX;
7361 cc_src = NULL_RTX;
7362 for (insn = PREV_INSN (last_insn);
7363 insn && insn != PREV_INSN (BB_HEAD (bb));
7364 insn = PREV_INSN (insn))
7365 {
7366 rtx set;
7367
7368 if (! INSN_P (insn))
7369 continue;
7370 set = single_set (insn);
7371 if (set
7372 && REG_P (SET_DEST (set))
7373 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7374 {
7375 cc_src_insn = insn;
7376 cc_src = SET_SRC (set);
7377 break;
7378 }
7379 else if (reg_set_p (cc_reg, insn))
7380 break;
7381 }
7382
7383 if (! cc_src_insn)
7384 continue;
7385
7386 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7387 continue;
7388
7389 /* Now CC_REG is a condition code register used for a
7390 conditional jump at the end of the block, and CC_SRC, in
7391 CC_SRC_INSN, is the value to which that condition code
7392 register is set, and CC_SRC is still meaningful at the end of
7393 the basic block. */
7394
7395 orig_mode = GET_MODE (cc_src);
7396 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7397 if (mode != VOIDmode)
7398 {
7399 gcc_assert (mode == GET_MODE (cc_src));
7400 if (mode != orig_mode)
7401 {
7402 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7403
7404 cse_change_cc_mode_insn (cc_src_insn, newreg);
7405
7406 /* Do the same in the following insns that use the
7407 current value of CC_REG within BB. */
7408 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7409 NEXT_INSN (last_insn),
7410 newreg);
7411 }
7412 }
7413 }
7414 }
7415 \f
7416
7417 /* Perform common subexpression elimination. Nonzero value from
7418 `cse_main' means that jumps were simplified and some code may now
7419 be unreachable, so do jump optimization again. */
7420 static bool
7421 gate_handle_cse (void)
7422 {
7423 return optimize > 0;
7424 }
7425
7426 static unsigned int
7427 rest_of_handle_cse (void)
7428 {
7429 int tem;
7430
7431 if (dump_file)
7432 dump_flow_info (dump_file, dump_flags);
7433
7434 tem = cse_main (get_insns (), max_reg_num ());
7435
7436 /* If we are not running more CSE passes, then we are no longer
7437 expecting CSE to be run. But always rerun it in a cheap mode. */
7438 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7439
7440 if (tem == 2)
7441 {
7442 timevar_push (TV_JUMP);
7443 rebuild_jump_labels (get_insns ());
7444 cleanup_cfg (CLEANUP_CFG_CHANGED);
7445 timevar_pop (TV_JUMP);
7446 }
7447 else if (tem == 1 || optimize > 1)
7448 cleanup_cfg (0);
7449
7450 return 0;
7451 }
7452
7453 struct rtl_opt_pass pass_cse =
7454 {
7455 {
7456 RTL_PASS,
7457 "cse1", /* name */
7458 gate_handle_cse, /* gate */
7459 rest_of_handle_cse, /* execute */
7460 NULL, /* sub */
7461 NULL, /* next */
7462 0, /* static_pass_number */
7463 TV_CSE, /* tv_id */
7464 0, /* properties_required */
7465 0, /* properties_provided */
7466 0, /* properties_destroyed */
7467 0, /* todo_flags_start */
7468 TODO_df_finish | TODO_verify_rtl_sharing |
7469 TODO_ggc_collect |
7470 TODO_verify_flow, /* todo_flags_finish */
7471 }
7472 };
7473
7474
7475 static bool
7476 gate_handle_cse2 (void)
7477 {
7478 return optimize > 0 && flag_rerun_cse_after_loop;
7479 }
7480
7481 /* Run second CSE pass after loop optimizations. */
7482 static unsigned int
7483 rest_of_handle_cse2 (void)
7484 {
7485 int tem;
7486
7487 if (dump_file)
7488 dump_flow_info (dump_file, dump_flags);
7489
7490 tem = cse_main (get_insns (), max_reg_num ());
7491
7492 /* Run a pass to eliminate duplicated assignments to condition code
7493 registers. We have to run this after bypass_jumps, because it
7494 makes it harder for that pass to determine whether a jump can be
7495 bypassed safely. */
7496 cse_condition_code_reg ();
7497
7498 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7499
7500 if (tem == 2)
7501 {
7502 timevar_push (TV_JUMP);
7503 rebuild_jump_labels (get_insns ());
7504 cleanup_cfg (CLEANUP_CFG_CHANGED);
7505 timevar_pop (TV_JUMP);
7506 }
7507 else if (tem == 1)
7508 cleanup_cfg (0);
7509
7510 cse_not_expected = 1;
7511 return 0;
7512 }
7513
7514
7515 struct rtl_opt_pass pass_cse2 =
7516 {
7517 {
7518 RTL_PASS,
7519 "cse2", /* name */
7520 gate_handle_cse2, /* gate */
7521 rest_of_handle_cse2, /* execute */
7522 NULL, /* sub */
7523 NULL, /* next */
7524 0, /* static_pass_number */
7525 TV_CSE2, /* tv_id */
7526 0, /* properties_required */
7527 0, /* properties_provided */
7528 0, /* properties_destroyed */
7529 0, /* todo_flags_start */
7530 TODO_df_finish | TODO_verify_rtl_sharing |
7531 TODO_ggc_collect |
7532 TODO_verify_flow /* todo_flags_finish */
7533 }
7534 };
7535
7536 static bool
7537 gate_handle_cse_after_global_opts (void)
7538 {
7539 return optimize > 0 && flag_rerun_cse_after_global_opts;
7540 }
7541
7542 /* Run second CSE pass after loop optimizations. */
7543 static unsigned int
7544 rest_of_handle_cse_after_global_opts (void)
7545 {
7546 int save_cfj;
7547 int tem;
7548
7549 /* We only want to do local CSE, so don't follow jumps. */
7550 save_cfj = flag_cse_follow_jumps;
7551 flag_cse_follow_jumps = 0;
7552
7553 rebuild_jump_labels (get_insns ());
7554 tem = cse_main (get_insns (), max_reg_num ());
7555 purge_all_dead_edges ();
7556 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7557
7558 cse_not_expected = !flag_rerun_cse_after_loop;
7559
7560 /* If cse altered any jumps, rerun jump opts to clean things up. */
7561 if (tem == 2)
7562 {
7563 timevar_push (TV_JUMP);
7564 rebuild_jump_labels (get_insns ());
7565 cleanup_cfg (CLEANUP_CFG_CHANGED);
7566 timevar_pop (TV_JUMP);
7567 }
7568 else if (tem == 1)
7569 cleanup_cfg (0);
7570
7571 flag_cse_follow_jumps = save_cfj;
7572 return 0;
7573 }
7574
7575 struct rtl_opt_pass pass_cse_after_global_opts =
7576 {
7577 {
7578 RTL_PASS,
7579 "cse_local", /* name */
7580 gate_handle_cse_after_global_opts, /* gate */
7581 rest_of_handle_cse_after_global_opts, /* execute */
7582 NULL, /* sub */
7583 NULL, /* next */
7584 0, /* static_pass_number */
7585 TV_CSE, /* tv_id */
7586 0, /* properties_required */
7587 0, /* properties_provided */
7588 0, /* properties_destroyed */
7589 0, /* todo_flags_start */
7590 TODO_df_finish | TODO_verify_rtl_sharing |
7591 TODO_ggc_collect |
7592 TODO_verify_flow /* todo_flags_finish */
7593 }
7594 };