]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cse.c
[28/77] Use is_a <scalar_int_mode> for miscellaneous types of test
[thirdparty/gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "cfgrtl.h"
36 #include "cfganal.h"
37 #include "cfgcleanup.h"
38 #include "alias.h"
39 #include "toplev.h"
40 #include "params.h"
41 #include "rtlhooks-def.h"
42 #include "tree-pass.h"
43 #include "dbgcnt.h"
44 #include "rtl-iter.h"
45
46 /* The basic idea of common subexpression elimination is to go
47 through the code, keeping a record of expressions that would
48 have the same value at the current scan point, and replacing
49 expressions encountered with the cheapest equivalent expression.
50
51 It is too complicated to keep track of the different possibilities
52 when control paths merge in this code; so, at each label, we forget all
53 that is known and start fresh. This can be described as processing each
54 extended basic block separately. We have a separate pass to perform
55 global CSE.
56
57 Note CSE can turn a conditional or computed jump into a nop or
58 an unconditional jump. When this occurs we arrange to run the jump
59 optimizer after CSE to delete the unreachable code.
60
61 We use two data structures to record the equivalent expressions:
62 a hash table for most expressions, and a vector of "quantity
63 numbers" to record equivalent (pseudo) registers.
64
65 The use of the special data structure for registers is desirable
66 because it is faster. It is possible because registers references
67 contain a fairly small number, the register number, taken from
68 a contiguously allocated series, and two register references are
69 identical if they have the same number. General expressions
70 do not have any such thing, so the only way to retrieve the
71 information recorded on an expression other than a register
72 is to keep it in a hash table.
73
74 Registers and "quantity numbers":
75
76 At the start of each basic block, all of the (hardware and pseudo)
77 registers used in the function are given distinct quantity
78 numbers to indicate their contents. During scan, when the code
79 copies one register into another, we copy the quantity number.
80 When a register is loaded in any other way, we allocate a new
81 quantity number to describe the value generated by this operation.
82 `REG_QTY (N)' records what quantity register N is currently thought
83 of as containing.
84
85 All real quantity numbers are greater than or equal to zero.
86 If register N has not been assigned a quantity, `REG_QTY (N)' will
87 equal -N - 1, which is always negative.
88
89 Quantity numbers below zero do not exist and none of the `qty_table'
90 entries should be referenced with a negative index.
91
92 We also maintain a bidirectional chain of registers for each
93 quantity number. The `qty_table` members `first_reg' and `last_reg',
94 and `reg_eqv_table' members `next' and `prev' hold these chains.
95
96 The first register in a chain is the one whose lifespan is least local.
97 Among equals, it is the one that was seen first.
98 We replace any equivalent register with that one.
99
100 If two registers have the same quantity number, it must be true that
101 REG expressions with qty_table `mode' must be in the hash table for both
102 registers and must be in the same class.
103
104 The converse is not true. Since hard registers may be referenced in
105 any mode, two REG expressions might be equivalent in the hash table
106 but not have the same quantity number if the quantity number of one
107 of the registers is not the same mode as those expressions.
108
109 Constants and quantity numbers
110
111 When a quantity has a known constant value, that value is stored
112 in the appropriate qty_table `const_rtx'. This is in addition to
113 putting the constant in the hash table as is usual for non-regs.
114
115 Whether a reg or a constant is preferred is determined by the configuration
116 macro CONST_COSTS and will often depend on the constant value. In any
117 event, expressions containing constants can be simplified, by fold_rtx.
118
119 When a quantity has a known nearly constant value (such as an address
120 of a stack slot), that value is stored in the appropriate qty_table
121 `const_rtx'.
122
123 Integer constants don't have a machine mode. However, cse
124 determines the intended machine mode from the destination
125 of the instruction that moves the constant. The machine mode
126 is recorded in the hash table along with the actual RTL
127 constant expression so that different modes are kept separate.
128
129 Other expressions:
130
131 To record known equivalences among expressions in general
132 we use a hash table called `table'. It has a fixed number of buckets
133 that contain chains of `struct table_elt' elements for expressions.
134 These chains connect the elements whose expressions have the same
135 hash codes.
136
137 Other chains through the same elements connect the elements which
138 currently have equivalent values.
139
140 Register references in an expression are canonicalized before hashing
141 the expression. This is done using `reg_qty' and qty_table `first_reg'.
142 The hash code of a register reference is computed using the quantity
143 number, not the register number.
144
145 When the value of an expression changes, it is necessary to remove from the
146 hash table not just that expression but all expressions whose values
147 could be different as a result.
148
149 1. If the value changing is in memory, except in special cases
150 ANYTHING referring to memory could be changed. That is because
151 nobody knows where a pointer does not point.
152 The function `invalidate_memory' removes what is necessary.
153
154 The special cases are when the address is constant or is
155 a constant plus a fixed register such as the frame pointer
156 or a static chain pointer. When such addresses are stored in,
157 we can tell exactly which other such addresses must be invalidated
158 due to overlap. `invalidate' does this.
159 All expressions that refer to non-constant
160 memory addresses are also invalidated. `invalidate_memory' does this.
161
162 2. If the value changing is a register, all expressions
163 containing references to that register, and only those,
164 must be removed.
165
166 Because searching the entire hash table for expressions that contain
167 a register is very slow, we try to figure out when it isn't necessary.
168 Precisely, this is necessary only when expressions have been
169 entered in the hash table using this register, and then the value has
170 changed, and then another expression wants to be added to refer to
171 the register's new value. This sequence of circumstances is rare
172 within any one basic block.
173
174 `REG_TICK' and `REG_IN_TABLE', accessors for members of
175 cse_reg_info, are used to detect this case. REG_TICK (i) is
176 incremented whenever a value is stored in register i.
177 REG_IN_TABLE (i) holds -1 if no references to register i have been
178 entered in the table; otherwise, it contains the value REG_TICK (i)
179 had when the references were entered. If we want to enter a
180 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
181 remove old references. Until we want to enter a new entry, the
182 mere fact that the two vectors don't match makes the entries be
183 ignored if anyone tries to match them.
184
185 Registers themselves are entered in the hash table as well as in
186 the equivalent-register chains. However, `REG_TICK' and
187 `REG_IN_TABLE' do not apply to expressions which are simple
188 register references. These expressions are removed from the table
189 immediately when they become invalid, and this can be done even if
190 we do not immediately search for all the expressions that refer to
191 the register.
192
193 A CLOBBER rtx in an instruction invalidates its operand for further
194 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
195 invalidates everything that resides in memory.
196
197 Related expressions:
198
199 Constant expressions that differ only by an additive integer
200 are called related. When a constant expression is put in
201 the table, the related expression with no constant term
202 is also entered. These are made to point at each other
203 so that it is possible to find out if there exists any
204 register equivalent to an expression related to a given expression. */
205
206 /* Length of qty_table vector. We know in advance we will not need
207 a quantity number this big. */
208
209 static int max_qty;
210
211 /* Next quantity number to be allocated.
212 This is 1 + the largest number needed so far. */
213
214 static int next_qty;
215
216 /* Per-qty information tracking.
217
218 `first_reg' and `last_reg' track the head and tail of the
219 chain of registers which currently contain this quantity.
220
221 `mode' contains the machine mode of this quantity.
222
223 `const_rtx' holds the rtx of the constant value of this
224 quantity, if known. A summations of the frame/arg pointer
225 and a constant can also be entered here. When this holds
226 a known value, `const_insn' is the insn which stored the
227 constant value.
228
229 `comparison_{code,const,qty}' are used to track when a
230 comparison between a quantity and some constant or register has
231 been passed. In such a case, we know the results of the comparison
232 in case we see it again. These members record a comparison that
233 is known to be true. `comparison_code' holds the rtx code of such
234 a comparison, else it is set to UNKNOWN and the other two
235 comparison members are undefined. `comparison_const' holds
236 the constant being compared against, or zero if the comparison
237 is not against a constant. `comparison_qty' holds the quantity
238 being compared against when the result is known. If the comparison
239 is not with a register, `comparison_qty' is -1. */
240
241 struct qty_table_elem
242 {
243 rtx const_rtx;
244 rtx_insn *const_insn;
245 rtx comparison_const;
246 int comparison_qty;
247 unsigned int first_reg, last_reg;
248 /* The sizes of these fields should match the sizes of the
249 code and mode fields of struct rtx_def (see rtl.h). */
250 ENUM_BITFIELD(rtx_code) comparison_code : 16;
251 ENUM_BITFIELD(machine_mode) mode : 8;
252 };
253
254 /* The table of all qtys, indexed by qty number. */
255 static struct qty_table_elem *qty_table;
256
257 /* For machines that have a CC0, we do not record its value in the hash
258 table since its use is guaranteed to be the insn immediately following
259 its definition and any other insn is presumed to invalidate it.
260
261 Instead, we store below the current and last value assigned to CC0.
262 If it should happen to be a constant, it is stored in preference
263 to the actual assigned value. In case it is a constant, we store
264 the mode in which the constant should be interpreted. */
265
266 static rtx this_insn_cc0, prev_insn_cc0;
267 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
268
269 /* Insn being scanned. */
270
271 static rtx_insn *this_insn;
272 static bool optimize_this_for_speed_p;
273
274 /* Index by register number, gives the number of the next (or
275 previous) register in the chain of registers sharing the same
276 value.
277
278 Or -1 if this register is at the end of the chain.
279
280 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
281
282 /* Per-register equivalence chain. */
283 struct reg_eqv_elem
284 {
285 int next, prev;
286 };
287
288 /* The table of all register equivalence chains. */
289 static struct reg_eqv_elem *reg_eqv_table;
290
291 struct cse_reg_info
292 {
293 /* The timestamp at which this register is initialized. */
294 unsigned int timestamp;
295
296 /* The quantity number of the register's current contents. */
297 int reg_qty;
298
299 /* The number of times the register has been altered in the current
300 basic block. */
301 int reg_tick;
302
303 /* The REG_TICK value at which rtx's containing this register are
304 valid in the hash table. If this does not equal the current
305 reg_tick value, such expressions existing in the hash table are
306 invalid. */
307 int reg_in_table;
308
309 /* The SUBREG that was set when REG_TICK was last incremented. Set
310 to -1 if the last store was to the whole register, not a subreg. */
311 unsigned int subreg_ticked;
312 };
313
314 /* A table of cse_reg_info indexed by register numbers. */
315 static struct cse_reg_info *cse_reg_info_table;
316
317 /* The size of the above table. */
318 static unsigned int cse_reg_info_table_size;
319
320 /* The index of the first entry that has not been initialized. */
321 static unsigned int cse_reg_info_table_first_uninitialized;
322
323 /* The timestamp at the beginning of the current run of
324 cse_extended_basic_block. We increment this variable at the beginning of
325 the current run of cse_extended_basic_block. The timestamp field of a
326 cse_reg_info entry matches the value of this variable if and only
327 if the entry has been initialized during the current run of
328 cse_extended_basic_block. */
329 static unsigned int cse_reg_info_timestamp;
330
331 /* A HARD_REG_SET containing all the hard registers for which there is
332 currently a REG expression in the hash table. Note the difference
333 from the above variables, which indicate if the REG is mentioned in some
334 expression in the table. */
335
336 static HARD_REG_SET hard_regs_in_table;
337
338 /* True if CSE has altered the CFG. */
339 static bool cse_cfg_altered;
340
341 /* True if CSE has altered conditional jump insns in such a way
342 that jump optimization should be redone. */
343 static bool cse_jumps_altered;
344
345 /* True if we put a LABEL_REF into the hash table for an INSN
346 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
347 to put in the note. */
348 static bool recorded_label_ref;
349
350 /* canon_hash stores 1 in do_not_record
351 if it notices a reference to CC0, PC, or some other volatile
352 subexpression. */
353
354 static int do_not_record;
355
356 /* canon_hash stores 1 in hash_arg_in_memory
357 if it notices a reference to memory within the expression being hashed. */
358
359 static int hash_arg_in_memory;
360
361 /* The hash table contains buckets which are chains of `struct table_elt's,
362 each recording one expression's information.
363 That expression is in the `exp' field.
364
365 The canon_exp field contains a canonical (from the point of view of
366 alias analysis) version of the `exp' field.
367
368 Those elements with the same hash code are chained in both directions
369 through the `next_same_hash' and `prev_same_hash' fields.
370
371 Each set of expressions with equivalent values
372 are on a two-way chain through the `next_same_value'
373 and `prev_same_value' fields, and all point with
374 the `first_same_value' field at the first element in
375 that chain. The chain is in order of increasing cost.
376 Each element's cost value is in its `cost' field.
377
378 The `in_memory' field is nonzero for elements that
379 involve any reference to memory. These elements are removed
380 whenever a write is done to an unidentified location in memory.
381 To be safe, we assume that a memory address is unidentified unless
382 the address is either a symbol constant or a constant plus
383 the frame pointer or argument pointer.
384
385 The `related_value' field is used to connect related expressions
386 (that differ by adding an integer).
387 The related expressions are chained in a circular fashion.
388 `related_value' is zero for expressions for which this
389 chain is not useful.
390
391 The `cost' field stores the cost of this element's expression.
392 The `regcost' field stores the value returned by approx_reg_cost for
393 this element's expression.
394
395 The `is_const' flag is set if the element is a constant (including
396 a fixed address).
397
398 The `flag' field is used as a temporary during some search routines.
399
400 The `mode' field is usually the same as GET_MODE (`exp'), but
401 if `exp' is a CONST_INT and has no machine mode then the `mode'
402 field is the mode it was being used as. Each constant is
403 recorded separately for each mode it is used with. */
404
405 struct table_elt
406 {
407 rtx exp;
408 rtx canon_exp;
409 struct table_elt *next_same_hash;
410 struct table_elt *prev_same_hash;
411 struct table_elt *next_same_value;
412 struct table_elt *prev_same_value;
413 struct table_elt *first_same_value;
414 struct table_elt *related_value;
415 int cost;
416 int regcost;
417 /* The size of this field should match the size
418 of the mode field of struct rtx_def (see rtl.h). */
419 ENUM_BITFIELD(machine_mode) mode : 8;
420 char in_memory;
421 char is_const;
422 char flag;
423 };
424
425 /* We don't want a lot of buckets, because we rarely have very many
426 things stored in the hash table, and a lot of buckets slows
427 down a lot of loops that happen frequently. */
428 #define HASH_SHIFT 5
429 #define HASH_SIZE (1 << HASH_SHIFT)
430 #define HASH_MASK (HASH_SIZE - 1)
431
432 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
433 register (hard registers may require `do_not_record' to be set). */
434
435 #define HASH(X, M) \
436 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
437 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
438 : canon_hash (X, M)) & HASH_MASK)
439
440 /* Like HASH, but without side-effects. */
441 #define SAFE_HASH(X, M) \
442 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
443 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
444 : safe_hash (X, M)) & HASH_MASK)
445
446 /* Determine whether register number N is considered a fixed register for the
447 purpose of approximating register costs.
448 It is desirable to replace other regs with fixed regs, to reduce need for
449 non-fixed hard regs.
450 A reg wins if it is either the frame pointer or designated as fixed. */
451 #define FIXED_REGNO_P(N) \
452 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
453 || fixed_regs[N] || global_regs[N])
454
455 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
456 hard registers and pointers into the frame are the cheapest with a cost
457 of 0. Next come pseudos with a cost of one and other hard registers with
458 a cost of 2. Aside from these special cases, call `rtx_cost'. */
459
460 #define CHEAP_REGNO(N) \
461 (REGNO_PTR_FRAME_P (N) \
462 || (HARD_REGISTER_NUM_P (N) \
463 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
464
465 #define COST(X, MODE) \
466 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
467 #define COST_IN(X, MODE, OUTER, OPNO) \
468 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
469
470 /* Get the number of times this register has been updated in this
471 basic block. */
472
473 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
474
475 /* Get the point at which REG was recorded in the table. */
476
477 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
478
479 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
480 SUBREG). */
481
482 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
483
484 /* Get the quantity number for REG. */
485
486 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
487
488 /* Determine if the quantity number for register X represents a valid index
489 into the qty_table. */
490
491 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
492
493 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
494
495 #define CHEAPER(X, Y) \
496 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
497
498 static struct table_elt *table[HASH_SIZE];
499
500 /* Chain of `struct table_elt's made so far for this function
501 but currently removed from the table. */
502
503 static struct table_elt *free_element_chain;
504
505 /* Set to the cost of a constant pool reference if one was found for a
506 symbolic constant. If this was found, it means we should try to
507 convert constants into constant pool entries if they don't fit in
508 the insn. */
509
510 static int constant_pool_entries_cost;
511 static int constant_pool_entries_regcost;
512
513 /* Trace a patch through the CFG. */
514
515 struct branch_path
516 {
517 /* The basic block for this path entry. */
518 basic_block bb;
519 };
520
521 /* This data describes a block that will be processed by
522 cse_extended_basic_block. */
523
524 struct cse_basic_block_data
525 {
526 /* Total number of SETs in block. */
527 int nsets;
528 /* Size of current branch path, if any. */
529 int path_size;
530 /* Current path, indicating which basic_blocks will be processed. */
531 struct branch_path *path;
532 };
533
534
535 /* Pointers to the live in/live out bitmaps for the boundaries of the
536 current EBB. */
537 static bitmap cse_ebb_live_in, cse_ebb_live_out;
538
539 /* A simple bitmap to track which basic blocks have been visited
540 already as part of an already processed extended basic block. */
541 static sbitmap cse_visited_basic_blocks;
542
543 static bool fixed_base_plus_p (rtx x);
544 static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
545 static int preferable (int, int, int, int);
546 static void new_basic_block (void);
547 static void make_new_qty (unsigned int, machine_mode);
548 static void make_regs_eqv (unsigned int, unsigned int);
549 static void delete_reg_equiv (unsigned int);
550 static int mention_regs (rtx);
551 static int insert_regs (rtx, struct table_elt *, int);
552 static void remove_from_table (struct table_elt *, unsigned);
553 static void remove_pseudo_from_table (rtx, unsigned);
554 static struct table_elt *lookup (rtx, unsigned, machine_mode);
555 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
556 static rtx lookup_as_function (rtx, enum rtx_code);
557 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
558 machine_mode, int, int);
559 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
560 machine_mode);
561 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
562 static void invalidate (rtx, machine_mode);
563 static void remove_invalid_refs (unsigned int);
564 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
565 machine_mode);
566 static void rehash_using_reg (rtx);
567 static void invalidate_memory (void);
568 static void invalidate_for_call (void);
569 static rtx use_related_value (rtx, struct table_elt *);
570
571 static inline unsigned canon_hash (rtx, machine_mode);
572 static inline unsigned safe_hash (rtx, machine_mode);
573 static inline unsigned hash_rtx_string (const char *);
574
575 static rtx canon_reg (rtx, rtx_insn *);
576 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
577 machine_mode *,
578 machine_mode *);
579 static rtx fold_rtx (rtx, rtx_insn *);
580 static rtx equiv_constant (rtx);
581 static void record_jump_equiv (rtx_insn *, bool);
582 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
583 int);
584 static void cse_insn (rtx_insn *);
585 static void cse_prescan_path (struct cse_basic_block_data *);
586 static void invalidate_from_clobbers (rtx_insn *);
587 static void invalidate_from_sets_and_clobbers (rtx_insn *);
588 static rtx cse_process_notes (rtx, rtx, bool *);
589 static void cse_extended_basic_block (struct cse_basic_block_data *);
590 extern void dump_class (struct table_elt*);
591 static void get_cse_reg_info_1 (unsigned int regno);
592 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
593
594 static void flush_hash_table (void);
595 static bool insn_live_p (rtx_insn *, int *);
596 static bool set_live_p (rtx, rtx_insn *, int *);
597 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
598 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
599 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
600 bool);
601 \f
602
603 #undef RTL_HOOKS_GEN_LOWPART
604 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
605
606 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
607 \f
608 /* Nonzero if X has the form (PLUS frame-pointer integer). */
609
610 static bool
611 fixed_base_plus_p (rtx x)
612 {
613 switch (GET_CODE (x))
614 {
615 case REG:
616 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
617 return true;
618 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
619 return true;
620 return false;
621
622 case PLUS:
623 if (!CONST_INT_P (XEXP (x, 1)))
624 return false;
625 return fixed_base_plus_p (XEXP (x, 0));
626
627 default:
628 return false;
629 }
630 }
631
632 /* Dump the expressions in the equivalence class indicated by CLASSP.
633 This function is used only for debugging. */
634 DEBUG_FUNCTION void
635 dump_class (struct table_elt *classp)
636 {
637 struct table_elt *elt;
638
639 fprintf (stderr, "Equivalence chain for ");
640 print_rtl (stderr, classp->exp);
641 fprintf (stderr, ": \n");
642
643 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
644 {
645 print_rtl (stderr, elt->exp);
646 fprintf (stderr, "\n");
647 }
648 }
649
650 /* Return an estimate of the cost of the registers used in an rtx.
651 This is mostly the number of different REG expressions in the rtx;
652 however for some exceptions like fixed registers we use a cost of
653 0. If any other hard register reference occurs, return MAX_COST. */
654
655 static int
656 approx_reg_cost (const_rtx x)
657 {
658 int cost = 0;
659 subrtx_iterator::array_type array;
660 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
661 {
662 const_rtx x = *iter;
663 if (REG_P (x))
664 {
665 unsigned int regno = REGNO (x);
666 if (!CHEAP_REGNO (regno))
667 {
668 if (regno < FIRST_PSEUDO_REGISTER)
669 {
670 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
671 return MAX_COST;
672 cost += 2;
673 }
674 else
675 cost += 1;
676 }
677 }
678 }
679 return cost;
680 }
681
682 /* Return a negative value if an rtx A, whose costs are given by COST_A
683 and REGCOST_A, is more desirable than an rtx B.
684 Return a positive value if A is less desirable, or 0 if the two are
685 equally good. */
686 static int
687 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
688 {
689 /* First, get rid of cases involving expressions that are entirely
690 unwanted. */
691 if (cost_a != cost_b)
692 {
693 if (cost_a == MAX_COST)
694 return 1;
695 if (cost_b == MAX_COST)
696 return -1;
697 }
698
699 /* Avoid extending lifetimes of hardregs. */
700 if (regcost_a != regcost_b)
701 {
702 if (regcost_a == MAX_COST)
703 return 1;
704 if (regcost_b == MAX_COST)
705 return -1;
706 }
707
708 /* Normal operation costs take precedence. */
709 if (cost_a != cost_b)
710 return cost_a - cost_b;
711 /* Only if these are identical consider effects on register pressure. */
712 if (regcost_a != regcost_b)
713 return regcost_a - regcost_b;
714 return 0;
715 }
716
717 /* Internal function, to compute cost when X is not a register; called
718 from COST macro to keep it simple. */
719
720 static int
721 notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
722 {
723 scalar_int_mode int_mode, inner_mode;
724 return ((GET_CODE (x) == SUBREG
725 && REG_P (SUBREG_REG (x))
726 && is_int_mode (mode, &int_mode)
727 && is_int_mode (GET_MODE (SUBREG_REG (x)), &inner_mode)
728 && GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (inner_mode)
729 && subreg_lowpart_p (x)
730 && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, inner_mode))
731 ? 0
732 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
733 }
734
735 \f
736 /* Initialize CSE_REG_INFO_TABLE. */
737
738 static void
739 init_cse_reg_info (unsigned int nregs)
740 {
741 /* Do we need to grow the table? */
742 if (nregs > cse_reg_info_table_size)
743 {
744 unsigned int new_size;
745
746 if (cse_reg_info_table_size < 2048)
747 {
748 /* Compute a new size that is a power of 2 and no smaller
749 than the large of NREGS and 64. */
750 new_size = (cse_reg_info_table_size
751 ? cse_reg_info_table_size : 64);
752
753 while (new_size < nregs)
754 new_size *= 2;
755 }
756 else
757 {
758 /* If we need a big table, allocate just enough to hold
759 NREGS registers. */
760 new_size = nregs;
761 }
762
763 /* Reallocate the table with NEW_SIZE entries. */
764 free (cse_reg_info_table);
765 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
766 cse_reg_info_table_size = new_size;
767 cse_reg_info_table_first_uninitialized = 0;
768 }
769
770 /* Do we have all of the first NREGS entries initialized? */
771 if (cse_reg_info_table_first_uninitialized < nregs)
772 {
773 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
774 unsigned int i;
775
776 /* Put the old timestamp on newly allocated entries so that they
777 will all be considered out of date. We do not touch those
778 entries beyond the first NREGS entries to be nice to the
779 virtual memory. */
780 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
781 cse_reg_info_table[i].timestamp = old_timestamp;
782
783 cse_reg_info_table_first_uninitialized = nregs;
784 }
785 }
786
787 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
788
789 static void
790 get_cse_reg_info_1 (unsigned int regno)
791 {
792 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
793 entry will be considered to have been initialized. */
794 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
795
796 /* Initialize the rest of the entry. */
797 cse_reg_info_table[regno].reg_tick = 1;
798 cse_reg_info_table[regno].reg_in_table = -1;
799 cse_reg_info_table[regno].subreg_ticked = -1;
800 cse_reg_info_table[regno].reg_qty = -regno - 1;
801 }
802
803 /* Find a cse_reg_info entry for REGNO. */
804
805 static inline struct cse_reg_info *
806 get_cse_reg_info (unsigned int regno)
807 {
808 struct cse_reg_info *p = &cse_reg_info_table[regno];
809
810 /* If this entry has not been initialized, go ahead and initialize
811 it. */
812 if (p->timestamp != cse_reg_info_timestamp)
813 get_cse_reg_info_1 (regno);
814
815 return p;
816 }
817
818 /* Clear the hash table and initialize each register with its own quantity,
819 for a new basic block. */
820
821 static void
822 new_basic_block (void)
823 {
824 int i;
825
826 next_qty = 0;
827
828 /* Invalidate cse_reg_info_table. */
829 cse_reg_info_timestamp++;
830
831 /* Clear out hash table state for this pass. */
832 CLEAR_HARD_REG_SET (hard_regs_in_table);
833
834 /* The per-quantity values used to be initialized here, but it is
835 much faster to initialize each as it is made in `make_new_qty'. */
836
837 for (i = 0; i < HASH_SIZE; i++)
838 {
839 struct table_elt *first;
840
841 first = table[i];
842 if (first != NULL)
843 {
844 struct table_elt *last = first;
845
846 table[i] = NULL;
847
848 while (last->next_same_hash != NULL)
849 last = last->next_same_hash;
850
851 /* Now relink this hash entire chain into
852 the free element list. */
853
854 last->next_same_hash = free_element_chain;
855 free_element_chain = first;
856 }
857 }
858
859 prev_insn_cc0 = 0;
860 }
861
862 /* Say that register REG contains a quantity in mode MODE not in any
863 register before and initialize that quantity. */
864
865 static void
866 make_new_qty (unsigned int reg, machine_mode mode)
867 {
868 int q;
869 struct qty_table_elem *ent;
870 struct reg_eqv_elem *eqv;
871
872 gcc_assert (next_qty < max_qty);
873
874 q = REG_QTY (reg) = next_qty++;
875 ent = &qty_table[q];
876 ent->first_reg = reg;
877 ent->last_reg = reg;
878 ent->mode = mode;
879 ent->const_rtx = ent->const_insn = NULL;
880 ent->comparison_code = UNKNOWN;
881
882 eqv = &reg_eqv_table[reg];
883 eqv->next = eqv->prev = -1;
884 }
885
886 /* Make reg NEW equivalent to reg OLD.
887 OLD is not changing; NEW is. */
888
889 static void
890 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
891 {
892 unsigned int lastr, firstr;
893 int q = REG_QTY (old_reg);
894 struct qty_table_elem *ent;
895
896 ent = &qty_table[q];
897
898 /* Nothing should become eqv until it has a "non-invalid" qty number. */
899 gcc_assert (REGNO_QTY_VALID_P (old_reg));
900
901 REG_QTY (new_reg) = q;
902 firstr = ent->first_reg;
903 lastr = ent->last_reg;
904
905 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
906 hard regs. Among pseudos, if NEW will live longer than any other reg
907 of the same qty, and that is beyond the current basic block,
908 make it the new canonical replacement for this qty. */
909 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
910 /* Certain fixed registers might be of the class NO_REGS. This means
911 that not only can they not be allocated by the compiler, but
912 they cannot be used in substitutions or canonicalizations
913 either. */
914 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
915 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
916 || (new_reg >= FIRST_PSEUDO_REGISTER
917 && (firstr < FIRST_PSEUDO_REGISTER
918 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
919 && !bitmap_bit_p (cse_ebb_live_out, firstr))
920 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
921 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
922 {
923 reg_eqv_table[firstr].prev = new_reg;
924 reg_eqv_table[new_reg].next = firstr;
925 reg_eqv_table[new_reg].prev = -1;
926 ent->first_reg = new_reg;
927 }
928 else
929 {
930 /* If NEW is a hard reg (known to be non-fixed), insert at end.
931 Otherwise, insert before any non-fixed hard regs that are at the
932 end. Registers of class NO_REGS cannot be used as an
933 equivalent for anything. */
934 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
935 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
936 && new_reg >= FIRST_PSEUDO_REGISTER)
937 lastr = reg_eqv_table[lastr].prev;
938 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
939 if (reg_eqv_table[lastr].next >= 0)
940 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
941 else
942 qty_table[q].last_reg = new_reg;
943 reg_eqv_table[lastr].next = new_reg;
944 reg_eqv_table[new_reg].prev = lastr;
945 }
946 }
947
948 /* Remove REG from its equivalence class. */
949
950 static void
951 delete_reg_equiv (unsigned int reg)
952 {
953 struct qty_table_elem *ent;
954 int q = REG_QTY (reg);
955 int p, n;
956
957 /* If invalid, do nothing. */
958 if (! REGNO_QTY_VALID_P (reg))
959 return;
960
961 ent = &qty_table[q];
962
963 p = reg_eqv_table[reg].prev;
964 n = reg_eqv_table[reg].next;
965
966 if (n != -1)
967 reg_eqv_table[n].prev = p;
968 else
969 ent->last_reg = p;
970 if (p != -1)
971 reg_eqv_table[p].next = n;
972 else
973 ent->first_reg = n;
974
975 REG_QTY (reg) = -reg - 1;
976 }
977
978 /* Remove any invalid expressions from the hash table
979 that refer to any of the registers contained in expression X.
980
981 Make sure that newly inserted references to those registers
982 as subexpressions will be considered valid.
983
984 mention_regs is not called when a register itself
985 is being stored in the table.
986
987 Return 1 if we have done something that may have changed the hash code
988 of X. */
989
990 static int
991 mention_regs (rtx x)
992 {
993 enum rtx_code code;
994 int i, j;
995 const char *fmt;
996 int changed = 0;
997
998 if (x == 0)
999 return 0;
1000
1001 code = GET_CODE (x);
1002 if (code == REG)
1003 {
1004 unsigned int regno = REGNO (x);
1005 unsigned int endregno = END_REGNO (x);
1006 unsigned int i;
1007
1008 for (i = regno; i < endregno; i++)
1009 {
1010 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1011 remove_invalid_refs (i);
1012
1013 REG_IN_TABLE (i) = REG_TICK (i);
1014 SUBREG_TICKED (i) = -1;
1015 }
1016
1017 return 0;
1018 }
1019
1020 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1021 pseudo if they don't use overlapping words. We handle only pseudos
1022 here for simplicity. */
1023 if (code == SUBREG && REG_P (SUBREG_REG (x))
1024 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1025 {
1026 unsigned int i = REGNO (SUBREG_REG (x));
1027
1028 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1029 {
1030 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1031 the last store to this register really stored into this
1032 subreg, then remove the memory of this subreg.
1033 Otherwise, remove any memory of the entire register and
1034 all its subregs from the table. */
1035 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1036 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1037 remove_invalid_refs (i);
1038 else
1039 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1040 }
1041
1042 REG_IN_TABLE (i) = REG_TICK (i);
1043 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1044 return 0;
1045 }
1046
1047 /* If X is a comparison or a COMPARE and either operand is a register
1048 that does not have a quantity, give it one. This is so that a later
1049 call to record_jump_equiv won't cause X to be assigned a different
1050 hash code and not found in the table after that call.
1051
1052 It is not necessary to do this here, since rehash_using_reg can
1053 fix up the table later, but doing this here eliminates the need to
1054 call that expensive function in the most common case where the only
1055 use of the register is in the comparison. */
1056
1057 if (code == COMPARE || COMPARISON_P (x))
1058 {
1059 if (REG_P (XEXP (x, 0))
1060 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1061 if (insert_regs (XEXP (x, 0), NULL, 0))
1062 {
1063 rehash_using_reg (XEXP (x, 0));
1064 changed = 1;
1065 }
1066
1067 if (REG_P (XEXP (x, 1))
1068 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1069 if (insert_regs (XEXP (x, 1), NULL, 0))
1070 {
1071 rehash_using_reg (XEXP (x, 1));
1072 changed = 1;
1073 }
1074 }
1075
1076 fmt = GET_RTX_FORMAT (code);
1077 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1078 if (fmt[i] == 'e')
1079 changed |= mention_regs (XEXP (x, i));
1080 else if (fmt[i] == 'E')
1081 for (j = 0; j < XVECLEN (x, i); j++)
1082 changed |= mention_regs (XVECEXP (x, i, j));
1083
1084 return changed;
1085 }
1086
1087 /* Update the register quantities for inserting X into the hash table
1088 with a value equivalent to CLASSP.
1089 (If the class does not contain a REG, it is irrelevant.)
1090 If MODIFIED is nonzero, X is a destination; it is being modified.
1091 Note that delete_reg_equiv should be called on a register
1092 before insert_regs is done on that register with MODIFIED != 0.
1093
1094 Nonzero value means that elements of reg_qty have changed
1095 so X's hash code may be different. */
1096
1097 static int
1098 insert_regs (rtx x, struct table_elt *classp, int modified)
1099 {
1100 if (REG_P (x))
1101 {
1102 unsigned int regno = REGNO (x);
1103 int qty_valid;
1104
1105 /* If REGNO is in the equivalence table already but is of the
1106 wrong mode for that equivalence, don't do anything here. */
1107
1108 qty_valid = REGNO_QTY_VALID_P (regno);
1109 if (qty_valid)
1110 {
1111 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1112
1113 if (ent->mode != GET_MODE (x))
1114 return 0;
1115 }
1116
1117 if (modified || ! qty_valid)
1118 {
1119 if (classp)
1120 for (classp = classp->first_same_value;
1121 classp != 0;
1122 classp = classp->next_same_value)
1123 if (REG_P (classp->exp)
1124 && GET_MODE (classp->exp) == GET_MODE (x))
1125 {
1126 unsigned c_regno = REGNO (classp->exp);
1127
1128 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1129
1130 /* Suppose that 5 is hard reg and 100 and 101 are
1131 pseudos. Consider
1132
1133 (set (reg:si 100) (reg:si 5))
1134 (set (reg:si 5) (reg:si 100))
1135 (set (reg:di 101) (reg:di 5))
1136
1137 We would now set REG_QTY (101) = REG_QTY (5), but the
1138 entry for 5 is in SImode. When we use this later in
1139 copy propagation, we get the register in wrong mode. */
1140 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1141 continue;
1142
1143 make_regs_eqv (regno, c_regno);
1144 return 1;
1145 }
1146
1147 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1148 than REG_IN_TABLE to find out if there was only a single preceding
1149 invalidation - for the SUBREG - or another one, which would be
1150 for the full register. However, if we find here that REG_TICK
1151 indicates that the register is invalid, it means that it has
1152 been invalidated in a separate operation. The SUBREG might be used
1153 now (then this is a recursive call), or we might use the full REG
1154 now and a SUBREG of it later. So bump up REG_TICK so that
1155 mention_regs will do the right thing. */
1156 if (! modified
1157 && REG_IN_TABLE (regno) >= 0
1158 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1159 REG_TICK (regno)++;
1160 make_new_qty (regno, GET_MODE (x));
1161 return 1;
1162 }
1163
1164 return 0;
1165 }
1166
1167 /* If X is a SUBREG, we will likely be inserting the inner register in the
1168 table. If that register doesn't have an assigned quantity number at
1169 this point but does later, the insertion that we will be doing now will
1170 not be accessible because its hash code will have changed. So assign
1171 a quantity number now. */
1172
1173 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1174 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1175 {
1176 insert_regs (SUBREG_REG (x), NULL, 0);
1177 mention_regs (x);
1178 return 1;
1179 }
1180 else
1181 return mention_regs (x);
1182 }
1183 \f
1184
1185 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1186 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1187 CST is equal to an anchor. */
1188
1189 static bool
1190 compute_const_anchors (rtx cst,
1191 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1192 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1193 {
1194 HOST_WIDE_INT n = INTVAL (cst);
1195
1196 *lower_base = n & ~(targetm.const_anchor - 1);
1197 if (*lower_base == n)
1198 return false;
1199
1200 *upper_base =
1201 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1202 *upper_offs = n - *upper_base;
1203 *lower_offs = n - *lower_base;
1204 return true;
1205 }
1206
1207 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1208
1209 static void
1210 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1211 machine_mode mode)
1212 {
1213 struct table_elt *elt;
1214 unsigned hash;
1215 rtx anchor_exp;
1216 rtx exp;
1217
1218 anchor_exp = GEN_INT (anchor);
1219 hash = HASH (anchor_exp, mode);
1220 elt = lookup (anchor_exp, hash, mode);
1221 if (!elt)
1222 elt = insert (anchor_exp, NULL, hash, mode);
1223
1224 exp = plus_constant (mode, reg, offs);
1225 /* REG has just been inserted and the hash codes recomputed. */
1226 mention_regs (exp);
1227 hash = HASH (exp, mode);
1228
1229 /* Use the cost of the register rather than the whole expression. When
1230 looking up constant anchors we will further offset the corresponding
1231 expression therefore it does not make sense to prefer REGs over
1232 reg-immediate additions. Prefer instead the oldest expression. Also
1233 don't prefer pseudos over hard regs so that we derive constants in
1234 argument registers from other argument registers rather than from the
1235 original pseudo that was used to synthesize the constant. */
1236 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
1237 }
1238
1239 /* The constant CST is equivalent to the register REG. Create
1240 equivalences between the two anchors of CST and the corresponding
1241 register-offset expressions using REG. */
1242
1243 static void
1244 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1245 {
1246 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1247
1248 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1249 &upper_base, &upper_offs))
1250 return;
1251
1252 /* Ignore anchors of value 0. Constants accessible from zero are
1253 simple. */
1254 if (lower_base != 0)
1255 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1256
1257 if (upper_base != 0)
1258 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1259 }
1260
1261 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1262 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1263 valid expression. Return the cheapest and oldest of such expressions. In
1264 *OLD, return how old the resulting expression is compared to the other
1265 equivalent expressions. */
1266
1267 static rtx
1268 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1269 unsigned *old)
1270 {
1271 struct table_elt *elt;
1272 unsigned idx;
1273 struct table_elt *match_elt;
1274 rtx match;
1275
1276 /* Find the cheapest and *oldest* expression to maximize the chance of
1277 reusing the same pseudo. */
1278
1279 match_elt = NULL;
1280 match = NULL_RTX;
1281 for (elt = anchor_elt->first_same_value, idx = 0;
1282 elt;
1283 elt = elt->next_same_value, idx++)
1284 {
1285 if (match_elt && CHEAPER (match_elt, elt))
1286 return match;
1287
1288 if (REG_P (elt->exp)
1289 || (GET_CODE (elt->exp) == PLUS
1290 && REG_P (XEXP (elt->exp, 0))
1291 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1292 {
1293 rtx x;
1294
1295 /* Ignore expressions that are no longer valid. */
1296 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1297 continue;
1298
1299 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1300 if (REG_P (x)
1301 || (GET_CODE (x) == PLUS
1302 && IN_RANGE (INTVAL (XEXP (x, 1)),
1303 -targetm.const_anchor,
1304 targetm.const_anchor - 1)))
1305 {
1306 match = x;
1307 match_elt = elt;
1308 *old = idx;
1309 }
1310 }
1311 }
1312
1313 return match;
1314 }
1315
1316 /* Try to express the constant SRC_CONST using a register+offset expression
1317 derived from a constant anchor. Return it if successful or NULL_RTX,
1318 otherwise. */
1319
1320 static rtx
1321 try_const_anchors (rtx src_const, machine_mode mode)
1322 {
1323 struct table_elt *lower_elt, *upper_elt;
1324 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1325 rtx lower_anchor_rtx, upper_anchor_rtx;
1326 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1327 unsigned lower_old, upper_old;
1328
1329 /* CONST_INT is used for CC modes, but we should leave those alone. */
1330 if (GET_MODE_CLASS (mode) == MODE_CC)
1331 return NULL_RTX;
1332
1333 gcc_assert (SCALAR_INT_MODE_P (mode));
1334 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1335 &upper_base, &upper_offs))
1336 return NULL_RTX;
1337
1338 lower_anchor_rtx = GEN_INT (lower_base);
1339 upper_anchor_rtx = GEN_INT (upper_base);
1340 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1341 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1342
1343 if (lower_elt)
1344 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1345 if (upper_elt)
1346 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1347
1348 if (!lower_exp)
1349 return upper_exp;
1350 if (!upper_exp)
1351 return lower_exp;
1352
1353 /* Return the older expression. */
1354 return (upper_old > lower_old ? upper_exp : lower_exp);
1355 }
1356 \f
1357 /* Look in or update the hash table. */
1358
1359 /* Remove table element ELT from use in the table.
1360 HASH is its hash code, made using the HASH macro.
1361 It's an argument because often that is known in advance
1362 and we save much time not recomputing it. */
1363
1364 static void
1365 remove_from_table (struct table_elt *elt, unsigned int hash)
1366 {
1367 if (elt == 0)
1368 return;
1369
1370 /* Mark this element as removed. See cse_insn. */
1371 elt->first_same_value = 0;
1372
1373 /* Remove the table element from its equivalence class. */
1374
1375 {
1376 struct table_elt *prev = elt->prev_same_value;
1377 struct table_elt *next = elt->next_same_value;
1378
1379 if (next)
1380 next->prev_same_value = prev;
1381
1382 if (prev)
1383 prev->next_same_value = next;
1384 else
1385 {
1386 struct table_elt *newfirst = next;
1387 while (next)
1388 {
1389 next->first_same_value = newfirst;
1390 next = next->next_same_value;
1391 }
1392 }
1393 }
1394
1395 /* Remove the table element from its hash bucket. */
1396
1397 {
1398 struct table_elt *prev = elt->prev_same_hash;
1399 struct table_elt *next = elt->next_same_hash;
1400
1401 if (next)
1402 next->prev_same_hash = prev;
1403
1404 if (prev)
1405 prev->next_same_hash = next;
1406 else if (table[hash] == elt)
1407 table[hash] = next;
1408 else
1409 {
1410 /* This entry is not in the proper hash bucket. This can happen
1411 when two classes were merged by `merge_equiv_classes'. Search
1412 for the hash bucket that it heads. This happens only very
1413 rarely, so the cost is acceptable. */
1414 for (hash = 0; hash < HASH_SIZE; hash++)
1415 if (table[hash] == elt)
1416 table[hash] = next;
1417 }
1418 }
1419
1420 /* Remove the table element from its related-value circular chain. */
1421
1422 if (elt->related_value != 0 && elt->related_value != elt)
1423 {
1424 struct table_elt *p = elt->related_value;
1425
1426 while (p->related_value != elt)
1427 p = p->related_value;
1428 p->related_value = elt->related_value;
1429 if (p->related_value == p)
1430 p->related_value = 0;
1431 }
1432
1433 /* Now add it to the free element chain. */
1434 elt->next_same_hash = free_element_chain;
1435 free_element_chain = elt;
1436 }
1437
1438 /* Same as above, but X is a pseudo-register. */
1439
1440 static void
1441 remove_pseudo_from_table (rtx x, unsigned int hash)
1442 {
1443 struct table_elt *elt;
1444
1445 /* Because a pseudo-register can be referenced in more than one
1446 mode, we might have to remove more than one table entry. */
1447 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1448 remove_from_table (elt, hash);
1449 }
1450
1451 /* Look up X in the hash table and return its table element,
1452 or 0 if X is not in the table.
1453
1454 MODE is the machine-mode of X, or if X is an integer constant
1455 with VOIDmode then MODE is the mode with which X will be used.
1456
1457 Here we are satisfied to find an expression whose tree structure
1458 looks like X. */
1459
1460 static struct table_elt *
1461 lookup (rtx x, unsigned int hash, machine_mode mode)
1462 {
1463 struct table_elt *p;
1464
1465 for (p = table[hash]; p; p = p->next_same_hash)
1466 if (mode == p->mode && ((x == p->exp && REG_P (x))
1467 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1468 return p;
1469
1470 return 0;
1471 }
1472
1473 /* Like `lookup' but don't care whether the table element uses invalid regs.
1474 Also ignore discrepancies in the machine mode of a register. */
1475
1476 static struct table_elt *
1477 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1478 {
1479 struct table_elt *p;
1480
1481 if (REG_P (x))
1482 {
1483 unsigned int regno = REGNO (x);
1484
1485 /* Don't check the machine mode when comparing registers;
1486 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1487 for (p = table[hash]; p; p = p->next_same_hash)
1488 if (REG_P (p->exp)
1489 && REGNO (p->exp) == regno)
1490 return p;
1491 }
1492 else
1493 {
1494 for (p = table[hash]; p; p = p->next_same_hash)
1495 if (mode == p->mode
1496 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1497 return p;
1498 }
1499
1500 return 0;
1501 }
1502
1503 /* Look for an expression equivalent to X and with code CODE.
1504 If one is found, return that expression. */
1505
1506 static rtx
1507 lookup_as_function (rtx x, enum rtx_code code)
1508 {
1509 struct table_elt *p
1510 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1511
1512 if (p == 0)
1513 return 0;
1514
1515 for (p = p->first_same_value; p; p = p->next_same_value)
1516 if (GET_CODE (p->exp) == code
1517 /* Make sure this is a valid entry in the table. */
1518 && exp_equiv_p (p->exp, p->exp, 1, false))
1519 return p->exp;
1520
1521 return 0;
1522 }
1523
1524 /* Insert X in the hash table, assuming HASH is its hash code and
1525 CLASSP is an element of the class it should go in (or 0 if a new
1526 class should be made). COST is the code of X and reg_cost is the
1527 cost of registers in X. It is inserted at the proper position to
1528 keep the class in the order cheapest first.
1529
1530 MODE is the machine-mode of X, or if X is an integer constant
1531 with VOIDmode then MODE is the mode with which X will be used.
1532
1533 For elements of equal cheapness, the most recent one
1534 goes in front, except that the first element in the list
1535 remains first unless a cheaper element is added. The order of
1536 pseudo-registers does not matter, as canon_reg will be called to
1537 find the cheapest when a register is retrieved from the table.
1538
1539 The in_memory field in the hash table element is set to 0.
1540 The caller must set it nonzero if appropriate.
1541
1542 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1543 and if insert_regs returns a nonzero value
1544 you must then recompute its hash code before calling here.
1545
1546 If necessary, update table showing constant values of quantities. */
1547
1548 static struct table_elt *
1549 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1550 machine_mode mode, int cost, int reg_cost)
1551 {
1552 struct table_elt *elt;
1553
1554 /* If X is a register and we haven't made a quantity for it,
1555 something is wrong. */
1556 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1557
1558 /* If X is a hard register, show it is being put in the table. */
1559 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1560 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1561
1562 /* Put an element for X into the right hash bucket. */
1563
1564 elt = free_element_chain;
1565 if (elt)
1566 free_element_chain = elt->next_same_hash;
1567 else
1568 elt = XNEW (struct table_elt);
1569
1570 elt->exp = x;
1571 elt->canon_exp = NULL_RTX;
1572 elt->cost = cost;
1573 elt->regcost = reg_cost;
1574 elt->next_same_value = 0;
1575 elt->prev_same_value = 0;
1576 elt->next_same_hash = table[hash];
1577 elt->prev_same_hash = 0;
1578 elt->related_value = 0;
1579 elt->in_memory = 0;
1580 elt->mode = mode;
1581 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1582
1583 if (table[hash])
1584 table[hash]->prev_same_hash = elt;
1585 table[hash] = elt;
1586
1587 /* Put it into the proper value-class. */
1588 if (classp)
1589 {
1590 classp = classp->first_same_value;
1591 if (CHEAPER (elt, classp))
1592 /* Insert at the head of the class. */
1593 {
1594 struct table_elt *p;
1595 elt->next_same_value = classp;
1596 classp->prev_same_value = elt;
1597 elt->first_same_value = elt;
1598
1599 for (p = classp; p; p = p->next_same_value)
1600 p->first_same_value = elt;
1601 }
1602 else
1603 {
1604 /* Insert not at head of the class. */
1605 /* Put it after the last element cheaper than X. */
1606 struct table_elt *p, *next;
1607
1608 for (p = classp;
1609 (next = p->next_same_value) && CHEAPER (next, elt);
1610 p = next)
1611 ;
1612
1613 /* Put it after P and before NEXT. */
1614 elt->next_same_value = next;
1615 if (next)
1616 next->prev_same_value = elt;
1617
1618 elt->prev_same_value = p;
1619 p->next_same_value = elt;
1620 elt->first_same_value = classp;
1621 }
1622 }
1623 else
1624 elt->first_same_value = elt;
1625
1626 /* If this is a constant being set equivalent to a register or a register
1627 being set equivalent to a constant, note the constant equivalence.
1628
1629 If this is a constant, it cannot be equivalent to a different constant,
1630 and a constant is the only thing that can be cheaper than a register. So
1631 we know the register is the head of the class (before the constant was
1632 inserted).
1633
1634 If this is a register that is not already known equivalent to a
1635 constant, we must check the entire class.
1636
1637 If this is a register that is already known equivalent to an insn,
1638 update the qtys `const_insn' to show that `this_insn' is the latest
1639 insn making that quantity equivalent to the constant. */
1640
1641 if (elt->is_const && classp && REG_P (classp->exp)
1642 && !REG_P (x))
1643 {
1644 int exp_q = REG_QTY (REGNO (classp->exp));
1645 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1646
1647 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1648 exp_ent->const_insn = this_insn;
1649 }
1650
1651 else if (REG_P (x)
1652 && classp
1653 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1654 && ! elt->is_const)
1655 {
1656 struct table_elt *p;
1657
1658 for (p = classp; p != 0; p = p->next_same_value)
1659 {
1660 if (p->is_const && !REG_P (p->exp))
1661 {
1662 int x_q = REG_QTY (REGNO (x));
1663 struct qty_table_elem *x_ent = &qty_table[x_q];
1664
1665 x_ent->const_rtx
1666 = gen_lowpart (GET_MODE (x), p->exp);
1667 x_ent->const_insn = this_insn;
1668 break;
1669 }
1670 }
1671 }
1672
1673 else if (REG_P (x)
1674 && qty_table[REG_QTY (REGNO (x))].const_rtx
1675 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1676 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1677
1678 /* If this is a constant with symbolic value,
1679 and it has a term with an explicit integer value,
1680 link it up with related expressions. */
1681 if (GET_CODE (x) == CONST)
1682 {
1683 rtx subexp = get_related_value (x);
1684 unsigned subhash;
1685 struct table_elt *subelt, *subelt_prev;
1686
1687 if (subexp != 0)
1688 {
1689 /* Get the integer-free subexpression in the hash table. */
1690 subhash = SAFE_HASH (subexp, mode);
1691 subelt = lookup (subexp, subhash, mode);
1692 if (subelt == 0)
1693 subelt = insert (subexp, NULL, subhash, mode);
1694 /* Initialize SUBELT's circular chain if it has none. */
1695 if (subelt->related_value == 0)
1696 subelt->related_value = subelt;
1697 /* Find the element in the circular chain that precedes SUBELT. */
1698 subelt_prev = subelt;
1699 while (subelt_prev->related_value != subelt)
1700 subelt_prev = subelt_prev->related_value;
1701 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1702 This way the element that follows SUBELT is the oldest one. */
1703 elt->related_value = subelt_prev->related_value;
1704 subelt_prev->related_value = elt;
1705 }
1706 }
1707
1708 return elt;
1709 }
1710
1711 /* Wrap insert_with_costs by passing the default costs. */
1712
1713 static struct table_elt *
1714 insert (rtx x, struct table_elt *classp, unsigned int hash,
1715 machine_mode mode)
1716 {
1717 return insert_with_costs (x, classp, hash, mode,
1718 COST (x, mode), approx_reg_cost (x));
1719 }
1720
1721 \f
1722 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1723 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1724 the two classes equivalent.
1725
1726 CLASS1 will be the surviving class; CLASS2 should not be used after this
1727 call.
1728
1729 Any invalid entries in CLASS2 will not be copied. */
1730
1731 static void
1732 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1733 {
1734 struct table_elt *elt, *next, *new_elt;
1735
1736 /* Ensure we start with the head of the classes. */
1737 class1 = class1->first_same_value;
1738 class2 = class2->first_same_value;
1739
1740 /* If they were already equal, forget it. */
1741 if (class1 == class2)
1742 return;
1743
1744 for (elt = class2; elt; elt = next)
1745 {
1746 unsigned int hash;
1747 rtx exp = elt->exp;
1748 machine_mode mode = elt->mode;
1749
1750 next = elt->next_same_value;
1751
1752 /* Remove old entry, make a new one in CLASS1's class.
1753 Don't do this for invalid entries as we cannot find their
1754 hash code (it also isn't necessary). */
1755 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1756 {
1757 bool need_rehash = false;
1758
1759 hash_arg_in_memory = 0;
1760 hash = HASH (exp, mode);
1761
1762 if (REG_P (exp))
1763 {
1764 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1765 delete_reg_equiv (REGNO (exp));
1766 }
1767
1768 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1769 remove_pseudo_from_table (exp, hash);
1770 else
1771 remove_from_table (elt, hash);
1772
1773 if (insert_regs (exp, class1, 0) || need_rehash)
1774 {
1775 rehash_using_reg (exp);
1776 hash = HASH (exp, mode);
1777 }
1778 new_elt = insert (exp, class1, hash, mode);
1779 new_elt->in_memory = hash_arg_in_memory;
1780 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1781 new_elt->cost = MAX_COST;
1782 }
1783 }
1784 }
1785 \f
1786 /* Flush the entire hash table. */
1787
1788 static void
1789 flush_hash_table (void)
1790 {
1791 int i;
1792 struct table_elt *p;
1793
1794 for (i = 0; i < HASH_SIZE; i++)
1795 for (p = table[i]; p; p = table[i])
1796 {
1797 /* Note that invalidate can remove elements
1798 after P in the current hash chain. */
1799 if (REG_P (p->exp))
1800 invalidate (p->exp, VOIDmode);
1801 else
1802 remove_from_table (p, i);
1803 }
1804 }
1805 \f
1806 /* Check whether an anti dependence exists between X and EXP. MODE and
1807 ADDR are as for canon_anti_dependence. */
1808
1809 static bool
1810 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1811 {
1812 subrtx_iterator::array_type array;
1813 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1814 {
1815 const_rtx x = *iter;
1816 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1817 return true;
1818 }
1819 return false;
1820 }
1821 \f
1822 /* Remove from the hash table, or mark as invalid, all expressions whose
1823 values could be altered by storing in X. X is a register, a subreg, or
1824 a memory reference with nonvarying address (because, when a memory
1825 reference with a varying address is stored in, all memory references are
1826 removed by invalidate_memory so specific invalidation is superfluous).
1827 FULL_MODE, if not VOIDmode, indicates that this much should be
1828 invalidated instead of just the amount indicated by the mode of X. This
1829 is only used for bitfield stores into memory.
1830
1831 A nonvarying address may be just a register or just a symbol reference,
1832 or it may be either of those plus a numeric offset. */
1833
1834 static void
1835 invalidate (rtx x, machine_mode full_mode)
1836 {
1837 int i;
1838 struct table_elt *p;
1839 rtx addr;
1840
1841 switch (GET_CODE (x))
1842 {
1843 case REG:
1844 {
1845 /* If X is a register, dependencies on its contents are recorded
1846 through the qty number mechanism. Just change the qty number of
1847 the register, mark it as invalid for expressions that refer to it,
1848 and remove it itself. */
1849 unsigned int regno = REGNO (x);
1850 unsigned int hash = HASH (x, GET_MODE (x));
1851
1852 /* Remove REGNO from any quantity list it might be on and indicate
1853 that its value might have changed. If it is a pseudo, remove its
1854 entry from the hash table.
1855
1856 For a hard register, we do the first two actions above for any
1857 additional hard registers corresponding to X. Then, if any of these
1858 registers are in the table, we must remove any REG entries that
1859 overlap these registers. */
1860
1861 delete_reg_equiv (regno);
1862 REG_TICK (regno)++;
1863 SUBREG_TICKED (regno) = -1;
1864
1865 if (regno >= FIRST_PSEUDO_REGISTER)
1866 remove_pseudo_from_table (x, hash);
1867 else
1868 {
1869 HOST_WIDE_INT in_table
1870 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1871 unsigned int endregno = END_REGNO (x);
1872 unsigned int tregno, tendregno, rn;
1873 struct table_elt *p, *next;
1874
1875 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1876
1877 for (rn = regno + 1; rn < endregno; rn++)
1878 {
1879 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1880 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1881 delete_reg_equiv (rn);
1882 REG_TICK (rn)++;
1883 SUBREG_TICKED (rn) = -1;
1884 }
1885
1886 if (in_table)
1887 for (hash = 0; hash < HASH_SIZE; hash++)
1888 for (p = table[hash]; p; p = next)
1889 {
1890 next = p->next_same_hash;
1891
1892 if (!REG_P (p->exp)
1893 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1894 continue;
1895
1896 tregno = REGNO (p->exp);
1897 tendregno = END_REGNO (p->exp);
1898 if (tendregno > regno && tregno < endregno)
1899 remove_from_table (p, hash);
1900 }
1901 }
1902 }
1903 return;
1904
1905 case SUBREG:
1906 invalidate (SUBREG_REG (x), VOIDmode);
1907 return;
1908
1909 case PARALLEL:
1910 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1911 invalidate (XVECEXP (x, 0, i), VOIDmode);
1912 return;
1913
1914 case EXPR_LIST:
1915 /* This is part of a disjoint return value; extract the location in
1916 question ignoring the offset. */
1917 invalidate (XEXP (x, 0), VOIDmode);
1918 return;
1919
1920 case MEM:
1921 addr = canon_rtx (get_addr (XEXP (x, 0)));
1922 /* Calculate the canonical version of X here so that
1923 true_dependence doesn't generate new RTL for X on each call. */
1924 x = canon_rtx (x);
1925
1926 /* Remove all hash table elements that refer to overlapping pieces of
1927 memory. */
1928 if (full_mode == VOIDmode)
1929 full_mode = GET_MODE (x);
1930
1931 for (i = 0; i < HASH_SIZE; i++)
1932 {
1933 struct table_elt *next;
1934
1935 for (p = table[i]; p; p = next)
1936 {
1937 next = p->next_same_hash;
1938 if (p->in_memory)
1939 {
1940 /* Just canonicalize the expression once;
1941 otherwise each time we call invalidate
1942 true_dependence will canonicalize the
1943 expression again. */
1944 if (!p->canon_exp)
1945 p->canon_exp = canon_rtx (p->exp);
1946 if (check_dependence (p->canon_exp, x, full_mode, addr))
1947 remove_from_table (p, i);
1948 }
1949 }
1950 }
1951 return;
1952
1953 default:
1954 gcc_unreachable ();
1955 }
1956 }
1957
1958 /* Invalidate DEST. Used when DEST is not going to be added
1959 into the hash table for some reason, e.g. do_not_record
1960 flagged on it. */
1961
1962 static void
1963 invalidate_dest (rtx dest)
1964 {
1965 if (REG_P (dest)
1966 || GET_CODE (dest) == SUBREG
1967 || MEM_P (dest))
1968 invalidate (dest, VOIDmode);
1969 else if (GET_CODE (dest) == STRICT_LOW_PART
1970 || GET_CODE (dest) == ZERO_EXTRACT)
1971 invalidate (XEXP (dest, 0), GET_MODE (dest));
1972 }
1973 \f
1974 /* Remove all expressions that refer to register REGNO,
1975 since they are already invalid, and we are about to
1976 mark that register valid again and don't want the old
1977 expressions to reappear as valid. */
1978
1979 static void
1980 remove_invalid_refs (unsigned int regno)
1981 {
1982 unsigned int i;
1983 struct table_elt *p, *next;
1984
1985 for (i = 0; i < HASH_SIZE; i++)
1986 for (p = table[i]; p; p = next)
1987 {
1988 next = p->next_same_hash;
1989 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
1990 remove_from_table (p, i);
1991 }
1992 }
1993
1994 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1995 and mode MODE. */
1996 static void
1997 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1998 machine_mode mode)
1999 {
2000 unsigned int i;
2001 struct table_elt *p, *next;
2002 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2003
2004 for (i = 0; i < HASH_SIZE; i++)
2005 for (p = table[i]; p; p = next)
2006 {
2007 rtx exp = p->exp;
2008 next = p->next_same_hash;
2009
2010 if (!REG_P (exp)
2011 && (GET_CODE (exp) != SUBREG
2012 || !REG_P (SUBREG_REG (exp))
2013 || REGNO (SUBREG_REG (exp)) != regno
2014 || (((SUBREG_BYTE (exp)
2015 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2016 && SUBREG_BYTE (exp) <= end))
2017 && refers_to_regno_p (regno, p->exp))
2018 remove_from_table (p, i);
2019 }
2020 }
2021 \f
2022 /* Recompute the hash codes of any valid entries in the hash table that
2023 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2024
2025 This is called when we make a jump equivalence. */
2026
2027 static void
2028 rehash_using_reg (rtx x)
2029 {
2030 unsigned int i;
2031 struct table_elt *p, *next;
2032 unsigned hash;
2033
2034 if (GET_CODE (x) == SUBREG)
2035 x = SUBREG_REG (x);
2036
2037 /* If X is not a register or if the register is known not to be in any
2038 valid entries in the table, we have no work to do. */
2039
2040 if (!REG_P (x)
2041 || REG_IN_TABLE (REGNO (x)) < 0
2042 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2043 return;
2044
2045 /* Scan all hash chains looking for valid entries that mention X.
2046 If we find one and it is in the wrong hash chain, move it. */
2047
2048 for (i = 0; i < HASH_SIZE; i++)
2049 for (p = table[i]; p; p = next)
2050 {
2051 next = p->next_same_hash;
2052 if (reg_mentioned_p (x, p->exp)
2053 && exp_equiv_p (p->exp, p->exp, 1, false)
2054 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2055 {
2056 if (p->next_same_hash)
2057 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2058
2059 if (p->prev_same_hash)
2060 p->prev_same_hash->next_same_hash = p->next_same_hash;
2061 else
2062 table[i] = p->next_same_hash;
2063
2064 p->next_same_hash = table[hash];
2065 p->prev_same_hash = 0;
2066 if (table[hash])
2067 table[hash]->prev_same_hash = p;
2068 table[hash] = p;
2069 }
2070 }
2071 }
2072 \f
2073 /* Remove from the hash table any expression that is a call-clobbered
2074 register. Also update their TICK values. */
2075
2076 static void
2077 invalidate_for_call (void)
2078 {
2079 unsigned int regno, endregno;
2080 unsigned int i;
2081 unsigned hash;
2082 struct table_elt *p, *next;
2083 int in_table = 0;
2084 hard_reg_set_iterator hrsi;
2085
2086 /* Go through all the hard registers. For each that is clobbered in
2087 a CALL_INSN, remove the register from quantity chains and update
2088 reg_tick if defined. Also see if any of these registers is currently
2089 in the table. */
2090 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2091 {
2092 delete_reg_equiv (regno);
2093 if (REG_TICK (regno) >= 0)
2094 {
2095 REG_TICK (regno)++;
2096 SUBREG_TICKED (regno) = -1;
2097 }
2098 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2099 }
2100
2101 /* In the case where we have no call-clobbered hard registers in the
2102 table, we are done. Otherwise, scan the table and remove any
2103 entry that overlaps a call-clobbered register. */
2104
2105 if (in_table)
2106 for (hash = 0; hash < HASH_SIZE; hash++)
2107 for (p = table[hash]; p; p = next)
2108 {
2109 next = p->next_same_hash;
2110
2111 if (!REG_P (p->exp)
2112 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2113 continue;
2114
2115 regno = REGNO (p->exp);
2116 endregno = END_REGNO (p->exp);
2117
2118 for (i = regno; i < endregno; i++)
2119 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2120 {
2121 remove_from_table (p, hash);
2122 break;
2123 }
2124 }
2125 }
2126 \f
2127 /* Given an expression X of type CONST,
2128 and ELT which is its table entry (or 0 if it
2129 is not in the hash table),
2130 return an alternate expression for X as a register plus integer.
2131 If none can be found, return 0. */
2132
2133 static rtx
2134 use_related_value (rtx x, struct table_elt *elt)
2135 {
2136 struct table_elt *relt = 0;
2137 struct table_elt *p, *q;
2138 HOST_WIDE_INT offset;
2139
2140 /* First, is there anything related known?
2141 If we have a table element, we can tell from that.
2142 Otherwise, must look it up. */
2143
2144 if (elt != 0 && elt->related_value != 0)
2145 relt = elt;
2146 else if (elt == 0 && GET_CODE (x) == CONST)
2147 {
2148 rtx subexp = get_related_value (x);
2149 if (subexp != 0)
2150 relt = lookup (subexp,
2151 SAFE_HASH (subexp, GET_MODE (subexp)),
2152 GET_MODE (subexp));
2153 }
2154
2155 if (relt == 0)
2156 return 0;
2157
2158 /* Search all related table entries for one that has an
2159 equivalent register. */
2160
2161 p = relt;
2162 while (1)
2163 {
2164 /* This loop is strange in that it is executed in two different cases.
2165 The first is when X is already in the table. Then it is searching
2166 the RELATED_VALUE list of X's class (RELT). The second case is when
2167 X is not in the table. Then RELT points to a class for the related
2168 value.
2169
2170 Ensure that, whatever case we are in, that we ignore classes that have
2171 the same value as X. */
2172
2173 if (rtx_equal_p (x, p->exp))
2174 q = 0;
2175 else
2176 for (q = p->first_same_value; q; q = q->next_same_value)
2177 if (REG_P (q->exp))
2178 break;
2179
2180 if (q)
2181 break;
2182
2183 p = p->related_value;
2184
2185 /* We went all the way around, so there is nothing to be found.
2186 Alternatively, perhaps RELT was in the table for some other reason
2187 and it has no related values recorded. */
2188 if (p == relt || p == 0)
2189 break;
2190 }
2191
2192 if (q == 0)
2193 return 0;
2194
2195 offset = (get_integer_term (x) - get_integer_term (p->exp));
2196 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2197 return plus_constant (q->mode, q->exp, offset);
2198 }
2199 \f
2200
2201 /* Hash a string. Just add its bytes up. */
2202 static inline unsigned
2203 hash_rtx_string (const char *ps)
2204 {
2205 unsigned hash = 0;
2206 const unsigned char *p = (const unsigned char *) ps;
2207
2208 if (p)
2209 while (*p)
2210 hash += *p++;
2211
2212 return hash;
2213 }
2214
2215 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2216 When the callback returns true, we continue with the new rtx. */
2217
2218 unsigned
2219 hash_rtx_cb (const_rtx x, machine_mode mode,
2220 int *do_not_record_p, int *hash_arg_in_memory_p,
2221 bool have_reg_qty, hash_rtx_callback_function cb)
2222 {
2223 int i, j;
2224 unsigned hash = 0;
2225 enum rtx_code code;
2226 const char *fmt;
2227 machine_mode newmode;
2228 rtx newx;
2229
2230 /* Used to turn recursion into iteration. We can't rely on GCC's
2231 tail-recursion elimination since we need to keep accumulating values
2232 in HASH. */
2233 repeat:
2234 if (x == 0)
2235 return hash;
2236
2237 /* Invoke the callback first. */
2238 if (cb != NULL
2239 && ((*cb) (x, mode, &newx, &newmode)))
2240 {
2241 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2242 hash_arg_in_memory_p, have_reg_qty, cb);
2243 return hash;
2244 }
2245
2246 code = GET_CODE (x);
2247 switch (code)
2248 {
2249 case REG:
2250 {
2251 unsigned int regno = REGNO (x);
2252
2253 if (do_not_record_p && !reload_completed)
2254 {
2255 /* On some machines, we can't record any non-fixed hard register,
2256 because extending its life will cause reload problems. We
2257 consider ap, fp, sp, gp to be fixed for this purpose.
2258
2259 We also consider CCmode registers to be fixed for this purpose;
2260 failure to do so leads to failure to simplify 0<100 type of
2261 conditionals.
2262
2263 On all machines, we can't record any global registers.
2264 Nor should we record any register that is in a small
2265 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2266 bool record;
2267
2268 if (regno >= FIRST_PSEUDO_REGISTER)
2269 record = true;
2270 else if (x == frame_pointer_rtx
2271 || x == hard_frame_pointer_rtx
2272 || x == arg_pointer_rtx
2273 || x == stack_pointer_rtx
2274 || x == pic_offset_table_rtx)
2275 record = true;
2276 else if (global_regs[regno])
2277 record = false;
2278 else if (fixed_regs[regno])
2279 record = true;
2280 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2281 record = true;
2282 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2283 record = false;
2284 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2285 record = false;
2286 else
2287 record = true;
2288
2289 if (!record)
2290 {
2291 *do_not_record_p = 1;
2292 return 0;
2293 }
2294 }
2295
2296 hash += ((unsigned int) REG << 7);
2297 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2298 return hash;
2299 }
2300
2301 /* We handle SUBREG of a REG specially because the underlying
2302 reg changes its hash value with every value change; we don't
2303 want to have to forget unrelated subregs when one subreg changes. */
2304 case SUBREG:
2305 {
2306 if (REG_P (SUBREG_REG (x)))
2307 {
2308 hash += (((unsigned int) SUBREG << 7)
2309 + REGNO (SUBREG_REG (x))
2310 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2311 return hash;
2312 }
2313 break;
2314 }
2315
2316 case CONST_INT:
2317 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2318 + (unsigned int) INTVAL (x));
2319 return hash;
2320
2321 case CONST_WIDE_INT:
2322 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2323 hash += CONST_WIDE_INT_ELT (x, i);
2324 return hash;
2325
2326 case CONST_DOUBLE:
2327 /* This is like the general case, except that it only counts
2328 the integers representing the constant. */
2329 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2330 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2331 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2332 + (unsigned int) CONST_DOUBLE_HIGH (x));
2333 else
2334 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2335 return hash;
2336
2337 case CONST_FIXED:
2338 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2339 hash += fixed_hash (CONST_FIXED_VALUE (x));
2340 return hash;
2341
2342 case CONST_VECTOR:
2343 {
2344 int units;
2345 rtx elt;
2346
2347 units = CONST_VECTOR_NUNITS (x);
2348
2349 for (i = 0; i < units; ++i)
2350 {
2351 elt = CONST_VECTOR_ELT (x, i);
2352 hash += hash_rtx_cb (elt, GET_MODE (elt),
2353 do_not_record_p, hash_arg_in_memory_p,
2354 have_reg_qty, cb);
2355 }
2356
2357 return hash;
2358 }
2359
2360 /* Assume there is only one rtx object for any given label. */
2361 case LABEL_REF:
2362 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2363 differences and differences between each stage's debugging dumps. */
2364 hash += (((unsigned int) LABEL_REF << 7)
2365 + CODE_LABEL_NUMBER (label_ref_label (x)));
2366 return hash;
2367
2368 case SYMBOL_REF:
2369 {
2370 /* Don't hash on the symbol's address to avoid bootstrap differences.
2371 Different hash values may cause expressions to be recorded in
2372 different orders and thus different registers to be used in the
2373 final assembler. This also avoids differences in the dump files
2374 between various stages. */
2375 unsigned int h = 0;
2376 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2377
2378 while (*p)
2379 h += (h << 7) + *p++; /* ??? revisit */
2380
2381 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2382 return hash;
2383 }
2384
2385 case MEM:
2386 /* We don't record if marked volatile or if BLKmode since we don't
2387 know the size of the move. */
2388 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2389 {
2390 *do_not_record_p = 1;
2391 return 0;
2392 }
2393 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2394 *hash_arg_in_memory_p = 1;
2395
2396 /* Now that we have already found this special case,
2397 might as well speed it up as much as possible. */
2398 hash += (unsigned) MEM;
2399 x = XEXP (x, 0);
2400 goto repeat;
2401
2402 case USE:
2403 /* A USE that mentions non-volatile memory needs special
2404 handling since the MEM may be BLKmode which normally
2405 prevents an entry from being made. Pure calls are
2406 marked by a USE which mentions BLKmode memory.
2407 See calls.c:emit_call_1. */
2408 if (MEM_P (XEXP (x, 0))
2409 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2410 {
2411 hash += (unsigned) USE;
2412 x = XEXP (x, 0);
2413
2414 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2415 *hash_arg_in_memory_p = 1;
2416
2417 /* Now that we have already found this special case,
2418 might as well speed it up as much as possible. */
2419 hash += (unsigned) MEM;
2420 x = XEXP (x, 0);
2421 goto repeat;
2422 }
2423 break;
2424
2425 case PRE_DEC:
2426 case PRE_INC:
2427 case POST_DEC:
2428 case POST_INC:
2429 case PRE_MODIFY:
2430 case POST_MODIFY:
2431 case PC:
2432 case CC0:
2433 case CALL:
2434 case UNSPEC_VOLATILE:
2435 if (do_not_record_p) {
2436 *do_not_record_p = 1;
2437 return 0;
2438 }
2439 else
2440 return hash;
2441 break;
2442
2443 case ASM_OPERANDS:
2444 if (do_not_record_p && MEM_VOLATILE_P (x))
2445 {
2446 *do_not_record_p = 1;
2447 return 0;
2448 }
2449 else
2450 {
2451 /* We don't want to take the filename and line into account. */
2452 hash += (unsigned) code + (unsigned) GET_MODE (x)
2453 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2454 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2455 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2456
2457 if (ASM_OPERANDS_INPUT_LENGTH (x))
2458 {
2459 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2460 {
2461 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2462 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2463 do_not_record_p, hash_arg_in_memory_p,
2464 have_reg_qty, cb)
2465 + hash_rtx_string
2466 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2467 }
2468
2469 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2470 x = ASM_OPERANDS_INPUT (x, 0);
2471 mode = GET_MODE (x);
2472 goto repeat;
2473 }
2474
2475 return hash;
2476 }
2477 break;
2478
2479 default:
2480 break;
2481 }
2482
2483 i = GET_RTX_LENGTH (code) - 1;
2484 hash += (unsigned) code + (unsigned) GET_MODE (x);
2485 fmt = GET_RTX_FORMAT (code);
2486 for (; i >= 0; i--)
2487 {
2488 switch (fmt[i])
2489 {
2490 case 'e':
2491 /* If we are about to do the last recursive call
2492 needed at this level, change it into iteration.
2493 This function is called enough to be worth it. */
2494 if (i == 0)
2495 {
2496 x = XEXP (x, i);
2497 goto repeat;
2498 }
2499
2500 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2501 hash_arg_in_memory_p,
2502 have_reg_qty, cb);
2503 break;
2504
2505 case 'E':
2506 for (j = 0; j < XVECLEN (x, i); j++)
2507 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2508 hash_arg_in_memory_p,
2509 have_reg_qty, cb);
2510 break;
2511
2512 case 's':
2513 hash += hash_rtx_string (XSTR (x, i));
2514 break;
2515
2516 case 'i':
2517 hash += (unsigned int) XINT (x, i);
2518 break;
2519
2520 case '0': case 't':
2521 /* Unused. */
2522 break;
2523
2524 default:
2525 gcc_unreachable ();
2526 }
2527 }
2528
2529 return hash;
2530 }
2531
2532 /* Hash an rtx. We are careful to make sure the value is never negative.
2533 Equivalent registers hash identically.
2534 MODE is used in hashing for CONST_INTs only;
2535 otherwise the mode of X is used.
2536
2537 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2538
2539 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2540 a MEM rtx which does not have the MEM_READONLY_P flag set.
2541
2542 Note that cse_insn knows that the hash code of a MEM expression
2543 is just (int) MEM plus the hash code of the address. */
2544
2545 unsigned
2546 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2547 int *hash_arg_in_memory_p, bool have_reg_qty)
2548 {
2549 return hash_rtx_cb (x, mode, do_not_record_p,
2550 hash_arg_in_memory_p, have_reg_qty, NULL);
2551 }
2552
2553 /* Hash an rtx X for cse via hash_rtx.
2554 Stores 1 in do_not_record if any subexpression is volatile.
2555 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2556 does not have the MEM_READONLY_P flag set. */
2557
2558 static inline unsigned
2559 canon_hash (rtx x, machine_mode mode)
2560 {
2561 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2562 }
2563
2564 /* Like canon_hash but with no side effects, i.e. do_not_record
2565 and hash_arg_in_memory are not changed. */
2566
2567 static inline unsigned
2568 safe_hash (rtx x, machine_mode mode)
2569 {
2570 int dummy_do_not_record;
2571 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2572 }
2573 \f
2574 /* Return 1 iff X and Y would canonicalize into the same thing,
2575 without actually constructing the canonicalization of either one.
2576 If VALIDATE is nonzero,
2577 we assume X is an expression being processed from the rtl
2578 and Y was found in the hash table. We check register refs
2579 in Y for being marked as valid.
2580
2581 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2582
2583 int
2584 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2585 {
2586 int i, j;
2587 enum rtx_code code;
2588 const char *fmt;
2589
2590 /* Note: it is incorrect to assume an expression is equivalent to itself
2591 if VALIDATE is nonzero. */
2592 if (x == y && !validate)
2593 return 1;
2594
2595 if (x == 0 || y == 0)
2596 return x == y;
2597
2598 code = GET_CODE (x);
2599 if (code != GET_CODE (y))
2600 return 0;
2601
2602 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2603 if (GET_MODE (x) != GET_MODE (y))
2604 return 0;
2605
2606 /* MEMs referring to different address space are not equivalent. */
2607 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2608 return 0;
2609
2610 switch (code)
2611 {
2612 case PC:
2613 case CC0:
2614 CASE_CONST_UNIQUE:
2615 return x == y;
2616
2617 case LABEL_REF:
2618 return label_ref_label (x) == label_ref_label (y);
2619
2620 case SYMBOL_REF:
2621 return XSTR (x, 0) == XSTR (y, 0);
2622
2623 case REG:
2624 if (for_gcse)
2625 return REGNO (x) == REGNO (y);
2626 else
2627 {
2628 unsigned int regno = REGNO (y);
2629 unsigned int i;
2630 unsigned int endregno = END_REGNO (y);
2631
2632 /* If the quantities are not the same, the expressions are not
2633 equivalent. If there are and we are not to validate, they
2634 are equivalent. Otherwise, ensure all regs are up-to-date. */
2635
2636 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2637 return 0;
2638
2639 if (! validate)
2640 return 1;
2641
2642 for (i = regno; i < endregno; i++)
2643 if (REG_IN_TABLE (i) != REG_TICK (i))
2644 return 0;
2645
2646 return 1;
2647 }
2648
2649 case MEM:
2650 if (for_gcse)
2651 {
2652 /* A volatile mem should not be considered equivalent to any
2653 other. */
2654 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2655 return 0;
2656
2657 /* Can't merge two expressions in different alias sets, since we
2658 can decide that the expression is transparent in a block when
2659 it isn't, due to it being set with the different alias set.
2660
2661 Also, can't merge two expressions with different MEM_ATTRS.
2662 They could e.g. be two different entities allocated into the
2663 same space on the stack (see e.g. PR25130). In that case, the
2664 MEM addresses can be the same, even though the two MEMs are
2665 absolutely not equivalent.
2666
2667 But because really all MEM attributes should be the same for
2668 equivalent MEMs, we just use the invariant that MEMs that have
2669 the same attributes share the same mem_attrs data structure. */
2670 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2671 return 0;
2672
2673 /* If we are handling exceptions, we cannot consider two expressions
2674 with different trapping status as equivalent, because simple_mem
2675 might accept one and reject the other. */
2676 if (cfun->can_throw_non_call_exceptions
2677 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2678 return 0;
2679 }
2680 break;
2681
2682 /* For commutative operations, check both orders. */
2683 case PLUS:
2684 case MULT:
2685 case AND:
2686 case IOR:
2687 case XOR:
2688 case NE:
2689 case EQ:
2690 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2691 validate, for_gcse)
2692 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2693 validate, for_gcse))
2694 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2695 validate, for_gcse)
2696 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2697 validate, for_gcse)));
2698
2699 case ASM_OPERANDS:
2700 /* We don't use the generic code below because we want to
2701 disregard filename and line numbers. */
2702
2703 /* A volatile asm isn't equivalent to any other. */
2704 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2705 return 0;
2706
2707 if (GET_MODE (x) != GET_MODE (y)
2708 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2709 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2710 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2711 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2712 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2713 return 0;
2714
2715 if (ASM_OPERANDS_INPUT_LENGTH (x))
2716 {
2717 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2718 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2719 ASM_OPERANDS_INPUT (y, i),
2720 validate, for_gcse)
2721 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2722 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2723 return 0;
2724 }
2725
2726 return 1;
2727
2728 default:
2729 break;
2730 }
2731
2732 /* Compare the elements. If any pair of corresponding elements
2733 fail to match, return 0 for the whole thing. */
2734
2735 fmt = GET_RTX_FORMAT (code);
2736 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2737 {
2738 switch (fmt[i])
2739 {
2740 case 'e':
2741 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2742 validate, for_gcse))
2743 return 0;
2744 break;
2745
2746 case 'E':
2747 if (XVECLEN (x, i) != XVECLEN (y, i))
2748 return 0;
2749 for (j = 0; j < XVECLEN (x, i); j++)
2750 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2751 validate, for_gcse))
2752 return 0;
2753 break;
2754
2755 case 's':
2756 if (strcmp (XSTR (x, i), XSTR (y, i)))
2757 return 0;
2758 break;
2759
2760 case 'i':
2761 if (XINT (x, i) != XINT (y, i))
2762 return 0;
2763 break;
2764
2765 case 'w':
2766 if (XWINT (x, i) != XWINT (y, i))
2767 return 0;
2768 break;
2769
2770 case '0':
2771 case 't':
2772 break;
2773
2774 default:
2775 gcc_unreachable ();
2776 }
2777 }
2778
2779 return 1;
2780 }
2781 \f
2782 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2783 the result if necessary. INSN is as for canon_reg. */
2784
2785 static void
2786 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2787 {
2788 if (*xloc)
2789 {
2790 rtx new_rtx = canon_reg (*xloc, insn);
2791
2792 /* If replacing pseudo with hard reg or vice versa, ensure the
2793 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2794 gcc_assert (insn && new_rtx);
2795 validate_change (insn, xloc, new_rtx, 1);
2796 }
2797 }
2798
2799 /* Canonicalize an expression:
2800 replace each register reference inside it
2801 with the "oldest" equivalent register.
2802
2803 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2804 after we make our substitution. The calls are made with IN_GROUP nonzero
2805 so apply_change_group must be called upon the outermost return from this
2806 function (unless INSN is zero). The result of apply_change_group can
2807 generally be discarded since the changes we are making are optional. */
2808
2809 static rtx
2810 canon_reg (rtx x, rtx_insn *insn)
2811 {
2812 int i;
2813 enum rtx_code code;
2814 const char *fmt;
2815
2816 if (x == 0)
2817 return x;
2818
2819 code = GET_CODE (x);
2820 switch (code)
2821 {
2822 case PC:
2823 case CC0:
2824 case CONST:
2825 CASE_CONST_ANY:
2826 case SYMBOL_REF:
2827 case LABEL_REF:
2828 case ADDR_VEC:
2829 case ADDR_DIFF_VEC:
2830 return x;
2831
2832 case REG:
2833 {
2834 int first;
2835 int q;
2836 struct qty_table_elem *ent;
2837
2838 /* Never replace a hard reg, because hard regs can appear
2839 in more than one machine mode, and we must preserve the mode
2840 of each occurrence. Also, some hard regs appear in
2841 MEMs that are shared and mustn't be altered. Don't try to
2842 replace any reg that maps to a reg of class NO_REGS. */
2843 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2844 || ! REGNO_QTY_VALID_P (REGNO (x)))
2845 return x;
2846
2847 q = REG_QTY (REGNO (x));
2848 ent = &qty_table[q];
2849 first = ent->first_reg;
2850 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2851 : REGNO_REG_CLASS (first) == NO_REGS ? x
2852 : gen_rtx_REG (ent->mode, first));
2853 }
2854
2855 default:
2856 break;
2857 }
2858
2859 fmt = GET_RTX_FORMAT (code);
2860 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2861 {
2862 int j;
2863
2864 if (fmt[i] == 'e')
2865 validate_canon_reg (&XEXP (x, i), insn);
2866 else if (fmt[i] == 'E')
2867 for (j = 0; j < XVECLEN (x, i); j++)
2868 validate_canon_reg (&XVECEXP (x, i, j), insn);
2869 }
2870
2871 return x;
2872 }
2873 \f
2874 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2875 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2876 what values are being compared.
2877
2878 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2879 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2880 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2881 compared to produce cc0.
2882
2883 The return value is the comparison operator and is either the code of
2884 A or the code corresponding to the inverse of the comparison. */
2885
2886 static enum rtx_code
2887 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2888 machine_mode *pmode1, machine_mode *pmode2)
2889 {
2890 rtx arg1, arg2;
2891 hash_set<rtx> *visited = NULL;
2892 /* Set nonzero when we find something of interest. */
2893 rtx x = NULL;
2894
2895 arg1 = *parg1, arg2 = *parg2;
2896
2897 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2898
2899 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2900 {
2901 int reverse_code = 0;
2902 struct table_elt *p = 0;
2903
2904 /* Remember state from previous iteration. */
2905 if (x)
2906 {
2907 if (!visited)
2908 visited = new hash_set<rtx>;
2909 visited->add (x);
2910 x = 0;
2911 }
2912
2913 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2914 On machines with CC0, this is the only case that can occur, since
2915 fold_rtx will return the COMPARE or item being compared with zero
2916 when given CC0. */
2917
2918 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2919 x = arg1;
2920
2921 /* If ARG1 is a comparison operator and CODE is testing for
2922 STORE_FLAG_VALUE, get the inner arguments. */
2923
2924 else if (COMPARISON_P (arg1))
2925 {
2926 #ifdef FLOAT_STORE_FLAG_VALUE
2927 REAL_VALUE_TYPE fsfv;
2928 #endif
2929
2930 if (code == NE
2931 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2932 && code == LT && STORE_FLAG_VALUE == -1)
2933 #ifdef FLOAT_STORE_FLAG_VALUE
2934 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2935 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2936 REAL_VALUE_NEGATIVE (fsfv)))
2937 #endif
2938 )
2939 x = arg1;
2940 else if (code == EQ
2941 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2942 && code == GE && STORE_FLAG_VALUE == -1)
2943 #ifdef FLOAT_STORE_FLAG_VALUE
2944 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2945 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2946 REAL_VALUE_NEGATIVE (fsfv)))
2947 #endif
2948 )
2949 x = arg1, reverse_code = 1;
2950 }
2951
2952 /* ??? We could also check for
2953
2954 (ne (and (eq (...) (const_int 1))) (const_int 0))
2955
2956 and related forms, but let's wait until we see them occurring. */
2957
2958 if (x == 0)
2959 /* Look up ARG1 in the hash table and see if it has an equivalence
2960 that lets us see what is being compared. */
2961 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2962 if (p)
2963 {
2964 p = p->first_same_value;
2965
2966 /* If what we compare is already known to be constant, that is as
2967 good as it gets.
2968 We need to break the loop in this case, because otherwise we
2969 can have an infinite loop when looking at a reg that is known
2970 to be a constant which is the same as a comparison of a reg
2971 against zero which appears later in the insn stream, which in
2972 turn is constant and the same as the comparison of the first reg
2973 against zero... */
2974 if (p->is_const)
2975 break;
2976 }
2977
2978 for (; p; p = p->next_same_value)
2979 {
2980 machine_mode inner_mode = GET_MODE (p->exp);
2981 #ifdef FLOAT_STORE_FLAG_VALUE
2982 REAL_VALUE_TYPE fsfv;
2983 #endif
2984
2985 /* If the entry isn't valid, skip it. */
2986 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2987 continue;
2988
2989 /* If it's a comparison we've used before, skip it. */
2990 if (visited && visited->contains (p->exp))
2991 continue;
2992
2993 if (GET_CODE (p->exp) == COMPARE
2994 /* Another possibility is that this machine has a compare insn
2995 that includes the comparison code. In that case, ARG1 would
2996 be equivalent to a comparison operation that would set ARG1 to
2997 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2998 ORIG_CODE is the actual comparison being done; if it is an EQ,
2999 we must reverse ORIG_CODE. On machine with a negative value
3000 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3001 || ((code == NE
3002 || (code == LT
3003 && val_signbit_known_set_p (inner_mode,
3004 STORE_FLAG_VALUE))
3005 #ifdef FLOAT_STORE_FLAG_VALUE
3006 || (code == LT
3007 && SCALAR_FLOAT_MODE_P (inner_mode)
3008 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3009 REAL_VALUE_NEGATIVE (fsfv)))
3010 #endif
3011 )
3012 && COMPARISON_P (p->exp)))
3013 {
3014 x = p->exp;
3015 break;
3016 }
3017 else if ((code == EQ
3018 || (code == GE
3019 && val_signbit_known_set_p (inner_mode,
3020 STORE_FLAG_VALUE))
3021 #ifdef FLOAT_STORE_FLAG_VALUE
3022 || (code == GE
3023 && SCALAR_FLOAT_MODE_P (inner_mode)
3024 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3025 REAL_VALUE_NEGATIVE (fsfv)))
3026 #endif
3027 )
3028 && COMPARISON_P (p->exp))
3029 {
3030 reverse_code = 1;
3031 x = p->exp;
3032 break;
3033 }
3034
3035 /* If this non-trapping address, e.g. fp + constant, the
3036 equivalent is a better operand since it may let us predict
3037 the value of the comparison. */
3038 else if (!rtx_addr_can_trap_p (p->exp))
3039 {
3040 arg1 = p->exp;
3041 continue;
3042 }
3043 }
3044
3045 /* If we didn't find a useful equivalence for ARG1, we are done.
3046 Otherwise, set up for the next iteration. */
3047 if (x == 0)
3048 break;
3049
3050 /* If we need to reverse the comparison, make sure that is
3051 possible -- we can't necessarily infer the value of GE from LT
3052 with floating-point operands. */
3053 if (reverse_code)
3054 {
3055 enum rtx_code reversed = reversed_comparison_code (x, NULL);
3056 if (reversed == UNKNOWN)
3057 break;
3058 else
3059 code = reversed;
3060 }
3061 else if (COMPARISON_P (x))
3062 code = GET_CODE (x);
3063 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3064 }
3065
3066 /* Return our results. Return the modes from before fold_rtx
3067 because fold_rtx might produce const_int, and then it's too late. */
3068 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3069 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3070
3071 if (visited)
3072 delete visited;
3073 return code;
3074 }
3075 \f
3076 /* If X is a nontrivial arithmetic operation on an argument for which
3077 a constant value can be determined, return the result of operating
3078 on that value, as a constant. Otherwise, return X, possibly with
3079 one or more operands changed to a forward-propagated constant.
3080
3081 If X is a register whose contents are known, we do NOT return
3082 those contents here; equiv_constant is called to perform that task.
3083 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3084
3085 INSN is the insn that we may be modifying. If it is 0, make a copy
3086 of X before modifying it. */
3087
3088 static rtx
3089 fold_rtx (rtx x, rtx_insn *insn)
3090 {
3091 enum rtx_code code;
3092 machine_mode mode;
3093 const char *fmt;
3094 int i;
3095 rtx new_rtx = 0;
3096 int changed = 0;
3097
3098 /* Operands of X. */
3099 /* Workaround -Wmaybe-uninitialized false positive during
3100 profiledbootstrap by initializing them. */
3101 rtx folded_arg0 = NULL_RTX;
3102 rtx folded_arg1 = NULL_RTX;
3103
3104 /* Constant equivalents of first three operands of X;
3105 0 when no such equivalent is known. */
3106 rtx const_arg0;
3107 rtx const_arg1;
3108 rtx const_arg2;
3109
3110 /* The mode of the first operand of X. We need this for sign and zero
3111 extends. */
3112 machine_mode mode_arg0;
3113
3114 if (x == 0)
3115 return x;
3116
3117 /* Try to perform some initial simplifications on X. */
3118 code = GET_CODE (x);
3119 switch (code)
3120 {
3121 case MEM:
3122 case SUBREG:
3123 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3124 than it would in other contexts. Basically its mode does not
3125 signify the size of the object read. That information is carried
3126 by size operand. If we happen to have a MEM of the appropriate
3127 mode in our tables with a constant value we could simplify the
3128 extraction incorrectly if we allowed substitution of that value
3129 for the MEM. */
3130 case ZERO_EXTRACT:
3131 case SIGN_EXTRACT:
3132 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3133 return new_rtx;
3134 return x;
3135
3136 case CONST:
3137 CASE_CONST_ANY:
3138 case SYMBOL_REF:
3139 case LABEL_REF:
3140 case REG:
3141 case PC:
3142 /* No use simplifying an EXPR_LIST
3143 since they are used only for lists of args
3144 in a function call's REG_EQUAL note. */
3145 case EXPR_LIST:
3146 return x;
3147
3148 case CC0:
3149 return prev_insn_cc0;
3150
3151 case ASM_OPERANDS:
3152 if (insn)
3153 {
3154 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3155 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3156 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3157 }
3158 return x;
3159
3160 case CALL:
3161 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3162 return x;
3163 break;
3164
3165 /* Anything else goes through the loop below. */
3166 default:
3167 break;
3168 }
3169
3170 mode = GET_MODE (x);
3171 const_arg0 = 0;
3172 const_arg1 = 0;
3173 const_arg2 = 0;
3174 mode_arg0 = VOIDmode;
3175
3176 /* Try folding our operands.
3177 Then see which ones have constant values known. */
3178
3179 fmt = GET_RTX_FORMAT (code);
3180 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3181 if (fmt[i] == 'e')
3182 {
3183 rtx folded_arg = XEXP (x, i), const_arg;
3184 machine_mode mode_arg = GET_MODE (folded_arg);
3185
3186 switch (GET_CODE (folded_arg))
3187 {
3188 case MEM:
3189 case REG:
3190 case SUBREG:
3191 const_arg = equiv_constant (folded_arg);
3192 break;
3193
3194 case CONST:
3195 CASE_CONST_ANY:
3196 case SYMBOL_REF:
3197 case LABEL_REF:
3198 const_arg = folded_arg;
3199 break;
3200
3201 case CC0:
3202 /* The cc0-user and cc0-setter may be in different blocks if
3203 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3204 will have been cleared as we exited the block with the
3205 setter.
3206
3207 While we could potentially track cc0 in this case, it just
3208 doesn't seem to be worth it given that cc0 targets are not
3209 terribly common or important these days and trapping math
3210 is rarely used. The combination of those two conditions
3211 necessary to trip this situation is exceedingly rare in the
3212 real world. */
3213 if (!prev_insn_cc0)
3214 {
3215 const_arg = NULL_RTX;
3216 }
3217 else
3218 {
3219 folded_arg = prev_insn_cc0;
3220 mode_arg = prev_insn_cc0_mode;
3221 const_arg = equiv_constant (folded_arg);
3222 }
3223 break;
3224
3225 default:
3226 folded_arg = fold_rtx (folded_arg, insn);
3227 const_arg = equiv_constant (folded_arg);
3228 break;
3229 }
3230
3231 /* For the first three operands, see if the operand
3232 is constant or equivalent to a constant. */
3233 switch (i)
3234 {
3235 case 0:
3236 folded_arg0 = folded_arg;
3237 const_arg0 = const_arg;
3238 mode_arg0 = mode_arg;
3239 break;
3240 case 1:
3241 folded_arg1 = folded_arg;
3242 const_arg1 = const_arg;
3243 break;
3244 case 2:
3245 const_arg2 = const_arg;
3246 break;
3247 }
3248
3249 /* Pick the least expensive of the argument and an equivalent constant
3250 argument. */
3251 if (const_arg != 0
3252 && const_arg != folded_arg
3253 && (COST_IN (const_arg, mode_arg, code, i)
3254 <= COST_IN (folded_arg, mode_arg, code, i))
3255
3256 /* It's not safe to substitute the operand of a conversion
3257 operator with a constant, as the conversion's identity
3258 depends upon the mode of its operand. This optimization
3259 is handled by the call to simplify_unary_operation. */
3260 && (GET_RTX_CLASS (code) != RTX_UNARY
3261 || GET_MODE (const_arg) == mode_arg0
3262 || (code != ZERO_EXTEND
3263 && code != SIGN_EXTEND
3264 && code != TRUNCATE
3265 && code != FLOAT_TRUNCATE
3266 && code != FLOAT_EXTEND
3267 && code != FLOAT
3268 && code != FIX
3269 && code != UNSIGNED_FLOAT
3270 && code != UNSIGNED_FIX)))
3271 folded_arg = const_arg;
3272
3273 if (folded_arg == XEXP (x, i))
3274 continue;
3275
3276 if (insn == NULL_RTX && !changed)
3277 x = copy_rtx (x);
3278 changed = 1;
3279 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3280 }
3281
3282 if (changed)
3283 {
3284 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3285 consistent with the order in X. */
3286 if (canonicalize_change_group (insn, x))
3287 {
3288 std::swap (const_arg0, const_arg1);
3289 std::swap (folded_arg0, folded_arg1);
3290 }
3291
3292 apply_change_group ();
3293 }
3294
3295 /* If X is an arithmetic operation, see if we can simplify it. */
3296
3297 switch (GET_RTX_CLASS (code))
3298 {
3299 case RTX_UNARY:
3300 {
3301 /* We can't simplify extension ops unless we know the
3302 original mode. */
3303 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3304 && mode_arg0 == VOIDmode)
3305 break;
3306
3307 new_rtx = simplify_unary_operation (code, mode,
3308 const_arg0 ? const_arg0 : folded_arg0,
3309 mode_arg0);
3310 }
3311 break;
3312
3313 case RTX_COMPARE:
3314 case RTX_COMM_COMPARE:
3315 /* See what items are actually being compared and set FOLDED_ARG[01]
3316 to those values and CODE to the actual comparison code. If any are
3317 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3318 do anything if both operands are already known to be constant. */
3319
3320 /* ??? Vector mode comparisons are not supported yet. */
3321 if (VECTOR_MODE_P (mode))
3322 break;
3323
3324 if (const_arg0 == 0 || const_arg1 == 0)
3325 {
3326 struct table_elt *p0, *p1;
3327 rtx true_rtx, false_rtx;
3328 machine_mode mode_arg1;
3329
3330 if (SCALAR_FLOAT_MODE_P (mode))
3331 {
3332 #ifdef FLOAT_STORE_FLAG_VALUE
3333 true_rtx = (const_double_from_real_value
3334 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3335 #else
3336 true_rtx = NULL_RTX;
3337 #endif
3338 false_rtx = CONST0_RTX (mode);
3339 }
3340 else
3341 {
3342 true_rtx = const_true_rtx;
3343 false_rtx = const0_rtx;
3344 }
3345
3346 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3347 &mode_arg0, &mode_arg1);
3348
3349 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3350 what kinds of things are being compared, so we can't do
3351 anything with this comparison. */
3352
3353 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3354 break;
3355
3356 const_arg0 = equiv_constant (folded_arg0);
3357 const_arg1 = equiv_constant (folded_arg1);
3358
3359 /* If we do not now have two constants being compared, see
3360 if we can nevertheless deduce some things about the
3361 comparison. */
3362 if (const_arg0 == 0 || const_arg1 == 0)
3363 {
3364 if (const_arg1 != NULL)
3365 {
3366 rtx cheapest_simplification;
3367 int cheapest_cost;
3368 rtx simp_result;
3369 struct table_elt *p;
3370
3371 /* See if we can find an equivalent of folded_arg0
3372 that gets us a cheaper expression, possibly a
3373 constant through simplifications. */
3374 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3375 mode_arg0);
3376
3377 if (p != NULL)
3378 {
3379 cheapest_simplification = x;
3380 cheapest_cost = COST (x, mode);
3381
3382 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3383 {
3384 int cost;
3385
3386 /* If the entry isn't valid, skip it. */
3387 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3388 continue;
3389
3390 /* Try to simplify using this equivalence. */
3391 simp_result
3392 = simplify_relational_operation (code, mode,
3393 mode_arg0,
3394 p->exp,
3395 const_arg1);
3396
3397 if (simp_result == NULL)
3398 continue;
3399
3400 cost = COST (simp_result, mode);
3401 if (cost < cheapest_cost)
3402 {
3403 cheapest_cost = cost;
3404 cheapest_simplification = simp_result;
3405 }
3406 }
3407
3408 /* If we have a cheaper expression now, use that
3409 and try folding it further, from the top. */
3410 if (cheapest_simplification != x)
3411 return fold_rtx (copy_rtx (cheapest_simplification),
3412 insn);
3413 }
3414 }
3415
3416 /* See if the two operands are the same. */
3417
3418 if ((REG_P (folded_arg0)
3419 && REG_P (folded_arg1)
3420 && (REG_QTY (REGNO (folded_arg0))
3421 == REG_QTY (REGNO (folded_arg1))))
3422 || ((p0 = lookup (folded_arg0,
3423 SAFE_HASH (folded_arg0, mode_arg0),
3424 mode_arg0))
3425 && (p1 = lookup (folded_arg1,
3426 SAFE_HASH (folded_arg1, mode_arg0),
3427 mode_arg0))
3428 && p0->first_same_value == p1->first_same_value))
3429 folded_arg1 = folded_arg0;
3430
3431 /* If FOLDED_ARG0 is a register, see if the comparison we are
3432 doing now is either the same as we did before or the reverse
3433 (we only check the reverse if not floating-point). */
3434 else if (REG_P (folded_arg0))
3435 {
3436 int qty = REG_QTY (REGNO (folded_arg0));
3437
3438 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3439 {
3440 struct qty_table_elem *ent = &qty_table[qty];
3441
3442 if ((comparison_dominates_p (ent->comparison_code, code)
3443 || (! FLOAT_MODE_P (mode_arg0)
3444 && comparison_dominates_p (ent->comparison_code,
3445 reverse_condition (code))))
3446 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3447 || (const_arg1
3448 && rtx_equal_p (ent->comparison_const,
3449 const_arg1))
3450 || (REG_P (folded_arg1)
3451 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3452 {
3453 if (comparison_dominates_p (ent->comparison_code, code))
3454 {
3455 if (true_rtx)
3456 return true_rtx;
3457 else
3458 break;
3459 }
3460 else
3461 return false_rtx;
3462 }
3463 }
3464 }
3465 }
3466 }
3467
3468 /* If we are comparing against zero, see if the first operand is
3469 equivalent to an IOR with a constant. If so, we may be able to
3470 determine the result of this comparison. */
3471 if (const_arg1 == const0_rtx && !const_arg0)
3472 {
3473 rtx y = lookup_as_function (folded_arg0, IOR);
3474 rtx inner_const;
3475
3476 if (y != 0
3477 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3478 && CONST_INT_P (inner_const)
3479 && INTVAL (inner_const) != 0)
3480 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3481 }
3482
3483 {
3484 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3485 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3486 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3487 op0, op1);
3488 }
3489 break;
3490
3491 case RTX_BIN_ARITH:
3492 case RTX_COMM_ARITH:
3493 switch (code)
3494 {
3495 case PLUS:
3496 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3497 with that LABEL_REF as its second operand. If so, the result is
3498 the first operand of that MINUS. This handles switches with an
3499 ADDR_DIFF_VEC table. */
3500 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3501 {
3502 rtx y
3503 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3504 : lookup_as_function (folded_arg0, MINUS);
3505
3506 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3507 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg1))
3508 return XEXP (y, 0);
3509
3510 /* Now try for a CONST of a MINUS like the above. */
3511 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3512 : lookup_as_function (folded_arg0, CONST))) != 0
3513 && GET_CODE (XEXP (y, 0)) == MINUS
3514 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3515 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg1))
3516 return XEXP (XEXP (y, 0), 0);
3517 }
3518
3519 /* Likewise if the operands are in the other order. */
3520 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3521 {
3522 rtx y
3523 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3524 : lookup_as_function (folded_arg1, MINUS);
3525
3526 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3527 && label_ref_label (XEXP (y, 1)) == label_ref_label (const_arg0))
3528 return XEXP (y, 0);
3529
3530 /* Now try for a CONST of a MINUS like the above. */
3531 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3532 : lookup_as_function (folded_arg1, CONST))) != 0
3533 && GET_CODE (XEXP (y, 0)) == MINUS
3534 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3535 && label_ref_label (XEXP (XEXP (y, 0), 1)) == label_ref_label (const_arg0))
3536 return XEXP (XEXP (y, 0), 0);
3537 }
3538
3539 /* If second operand is a register equivalent to a negative
3540 CONST_INT, see if we can find a register equivalent to the
3541 positive constant. Make a MINUS if so. Don't do this for
3542 a non-negative constant since we might then alternate between
3543 choosing positive and negative constants. Having the positive
3544 constant previously-used is the more common case. Be sure
3545 the resulting constant is non-negative; if const_arg1 were
3546 the smallest negative number this would overflow: depending
3547 on the mode, this would either just be the same value (and
3548 hence not save anything) or be incorrect. */
3549 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3550 && INTVAL (const_arg1) < 0
3551 /* This used to test
3552
3553 -INTVAL (const_arg1) >= 0
3554
3555 But The Sun V5.0 compilers mis-compiled that test. So
3556 instead we test for the problematic value in a more direct
3557 manner and hope the Sun compilers get it correct. */
3558 && INTVAL (const_arg1) !=
3559 (HOST_WIDE_INT_1 << (HOST_BITS_PER_WIDE_INT - 1))
3560 && REG_P (folded_arg1))
3561 {
3562 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3563 struct table_elt *p
3564 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3565
3566 if (p)
3567 for (p = p->first_same_value; p; p = p->next_same_value)
3568 if (REG_P (p->exp))
3569 return simplify_gen_binary (MINUS, mode, folded_arg0,
3570 canon_reg (p->exp, NULL));
3571 }
3572 goto from_plus;
3573
3574 case MINUS:
3575 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3576 If so, produce (PLUS Z C2-C). */
3577 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3578 {
3579 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3580 if (y && CONST_INT_P (XEXP (y, 1)))
3581 return fold_rtx (plus_constant (mode, copy_rtx (y),
3582 -INTVAL (const_arg1)),
3583 NULL);
3584 }
3585
3586 /* Fall through. */
3587
3588 from_plus:
3589 case SMIN: case SMAX: case UMIN: case UMAX:
3590 case IOR: case AND: case XOR:
3591 case MULT:
3592 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3593 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3594 is known to be of similar form, we may be able to replace the
3595 operation with a combined operation. This may eliminate the
3596 intermediate operation if every use is simplified in this way.
3597 Note that the similar optimization done by combine.c only works
3598 if the intermediate operation's result has only one reference. */
3599
3600 if (REG_P (folded_arg0)
3601 && const_arg1 && CONST_INT_P (const_arg1))
3602 {
3603 int is_shift
3604 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3605 rtx y, inner_const, new_const;
3606 rtx canon_const_arg1 = const_arg1;
3607 enum rtx_code associate_code;
3608
3609 if (is_shift
3610 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3611 || INTVAL (const_arg1) < 0))
3612 {
3613 if (SHIFT_COUNT_TRUNCATED)
3614 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3615 & (GET_MODE_BITSIZE (mode)
3616 - 1));
3617 else
3618 break;
3619 }
3620
3621 y = lookup_as_function (folded_arg0, code);
3622 if (y == 0)
3623 break;
3624
3625 /* If we have compiled a statement like
3626 "if (x == (x & mask1))", and now are looking at
3627 "x & mask2", we will have a case where the first operand
3628 of Y is the same as our first operand. Unless we detect
3629 this case, an infinite loop will result. */
3630 if (XEXP (y, 0) == folded_arg0)
3631 break;
3632
3633 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3634 if (!inner_const || !CONST_INT_P (inner_const))
3635 break;
3636
3637 /* Don't associate these operations if they are a PLUS with the
3638 same constant and it is a power of two. These might be doable
3639 with a pre- or post-increment. Similarly for two subtracts of
3640 identical powers of two with post decrement. */
3641
3642 if (code == PLUS && const_arg1 == inner_const
3643 && ((HAVE_PRE_INCREMENT
3644 && pow2p_hwi (INTVAL (const_arg1)))
3645 || (HAVE_POST_INCREMENT
3646 && pow2p_hwi (INTVAL (const_arg1)))
3647 || (HAVE_PRE_DECREMENT
3648 && pow2p_hwi (- INTVAL (const_arg1)))
3649 || (HAVE_POST_DECREMENT
3650 && pow2p_hwi (- INTVAL (const_arg1)))))
3651 break;
3652
3653 /* ??? Vector mode shifts by scalar
3654 shift operand are not supported yet. */
3655 if (is_shift && VECTOR_MODE_P (mode))
3656 break;
3657
3658 if (is_shift
3659 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3660 || INTVAL (inner_const) < 0))
3661 {
3662 if (SHIFT_COUNT_TRUNCATED)
3663 inner_const = GEN_INT (INTVAL (inner_const)
3664 & (GET_MODE_BITSIZE (mode) - 1));
3665 else
3666 break;
3667 }
3668
3669 /* Compute the code used to compose the constants. For example,
3670 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3671
3672 associate_code = (is_shift || code == MINUS ? PLUS : code);
3673
3674 new_const = simplify_binary_operation (associate_code, mode,
3675 canon_const_arg1,
3676 inner_const);
3677
3678 if (new_const == 0)
3679 break;
3680
3681 /* If we are associating shift operations, don't let this
3682 produce a shift of the size of the object or larger.
3683 This could occur when we follow a sign-extend by a right
3684 shift on a machine that does a sign-extend as a pair
3685 of shifts. */
3686
3687 if (is_shift
3688 && CONST_INT_P (new_const)
3689 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3690 {
3691 /* As an exception, we can turn an ASHIFTRT of this
3692 form into a shift of the number of bits - 1. */
3693 if (code == ASHIFTRT)
3694 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3695 else if (!side_effects_p (XEXP (y, 0)))
3696 return CONST0_RTX (mode);
3697 else
3698 break;
3699 }
3700
3701 y = copy_rtx (XEXP (y, 0));
3702
3703 /* If Y contains our first operand (the most common way this
3704 can happen is if Y is a MEM), we would do into an infinite
3705 loop if we tried to fold it. So don't in that case. */
3706
3707 if (! reg_mentioned_p (folded_arg0, y))
3708 y = fold_rtx (y, insn);
3709
3710 return simplify_gen_binary (code, mode, y, new_const);
3711 }
3712 break;
3713
3714 case DIV: case UDIV:
3715 /* ??? The associative optimization performed immediately above is
3716 also possible for DIV and UDIV using associate_code of MULT.
3717 However, we would need extra code to verify that the
3718 multiplication does not overflow, that is, there is no overflow
3719 in the calculation of new_const. */
3720 break;
3721
3722 default:
3723 break;
3724 }
3725
3726 new_rtx = simplify_binary_operation (code, mode,
3727 const_arg0 ? const_arg0 : folded_arg0,
3728 const_arg1 ? const_arg1 : folded_arg1);
3729 break;
3730
3731 case RTX_OBJ:
3732 /* (lo_sum (high X) X) is simply X. */
3733 if (code == LO_SUM && const_arg0 != 0
3734 && GET_CODE (const_arg0) == HIGH
3735 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3736 return const_arg1;
3737 break;
3738
3739 case RTX_TERNARY:
3740 case RTX_BITFIELD_OPS:
3741 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3742 const_arg0 ? const_arg0 : folded_arg0,
3743 const_arg1 ? const_arg1 : folded_arg1,
3744 const_arg2 ? const_arg2 : XEXP (x, 2));
3745 break;
3746
3747 default:
3748 break;
3749 }
3750
3751 return new_rtx ? new_rtx : x;
3752 }
3753 \f
3754 /* Return a constant value currently equivalent to X.
3755 Return 0 if we don't know one. */
3756
3757 static rtx
3758 equiv_constant (rtx x)
3759 {
3760 if (REG_P (x)
3761 && REGNO_QTY_VALID_P (REGNO (x)))
3762 {
3763 int x_q = REG_QTY (REGNO (x));
3764 struct qty_table_elem *x_ent = &qty_table[x_q];
3765
3766 if (x_ent->const_rtx)
3767 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3768 }
3769
3770 if (x == 0 || CONSTANT_P (x))
3771 return x;
3772
3773 if (GET_CODE (x) == SUBREG)
3774 {
3775 machine_mode mode = GET_MODE (x);
3776 machine_mode imode = GET_MODE (SUBREG_REG (x));
3777 rtx new_rtx;
3778
3779 /* See if we previously assigned a constant value to this SUBREG. */
3780 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3781 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3782 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3783 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3784 return new_rtx;
3785
3786 /* If we didn't and if doing so makes sense, see if we previously
3787 assigned a constant value to the enclosing word mode SUBREG. */
3788 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3789 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3790 {
3791 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3792 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3793 {
3794 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3795 new_rtx = lookup_as_function (y, CONST_INT);
3796 if (new_rtx)
3797 return gen_lowpart (mode, new_rtx);
3798 }
3799 }
3800
3801 /* Otherwise see if we already have a constant for the inner REG,
3802 and if that is enough to calculate an equivalent constant for
3803 the subreg. Note that the upper bits of paradoxical subregs
3804 are undefined, so they cannot be said to equal anything. */
3805 if (REG_P (SUBREG_REG (x))
3806 && !paradoxical_subreg_p (x)
3807 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3808 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3809
3810 return 0;
3811 }
3812
3813 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3814 the hash table in case its value was seen before. */
3815
3816 if (MEM_P (x))
3817 {
3818 struct table_elt *elt;
3819
3820 x = avoid_constant_pool_reference (x);
3821 if (CONSTANT_P (x))
3822 return x;
3823
3824 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3825 if (elt == 0)
3826 return 0;
3827
3828 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3829 if (elt->is_const && CONSTANT_P (elt->exp))
3830 return elt->exp;
3831 }
3832
3833 return 0;
3834 }
3835 \f
3836 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3837 "taken" branch.
3838
3839 In certain cases, this can cause us to add an equivalence. For example,
3840 if we are following the taken case of
3841 if (i == 2)
3842 we can add the fact that `i' and '2' are now equivalent.
3843
3844 In any case, we can record that this comparison was passed. If the same
3845 comparison is seen later, we will know its value. */
3846
3847 static void
3848 record_jump_equiv (rtx_insn *insn, bool taken)
3849 {
3850 int cond_known_true;
3851 rtx op0, op1;
3852 rtx set;
3853 machine_mode mode, mode0, mode1;
3854 int reversed_nonequality = 0;
3855 enum rtx_code code;
3856
3857 /* Ensure this is the right kind of insn. */
3858 gcc_assert (any_condjump_p (insn));
3859
3860 set = pc_set (insn);
3861
3862 /* See if this jump condition is known true or false. */
3863 if (taken)
3864 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3865 else
3866 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3867
3868 /* Get the type of comparison being done and the operands being compared.
3869 If we had to reverse a non-equality condition, record that fact so we
3870 know that it isn't valid for floating-point. */
3871 code = GET_CODE (XEXP (SET_SRC (set), 0));
3872 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3873 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3874
3875 /* On a cc0 target the cc0-setter and cc0-user may end up in different
3876 blocks. When that happens the tracking of the cc0-setter via
3877 PREV_INSN_CC0 is spoiled. That means that fold_rtx may return
3878 NULL_RTX. In those cases, there's nothing to record. */
3879 if (op0 == NULL_RTX || op1 == NULL_RTX)
3880 return;
3881
3882 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3883 if (! cond_known_true)
3884 {
3885 code = reversed_comparison_code_parts (code, op0, op1, insn);
3886
3887 /* Don't remember if we can't find the inverse. */
3888 if (code == UNKNOWN)
3889 return;
3890 }
3891
3892 /* The mode is the mode of the non-constant. */
3893 mode = mode0;
3894 if (mode1 != VOIDmode)
3895 mode = mode1;
3896
3897 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3898 }
3899
3900 /* Yet another form of subreg creation. In this case, we want something in
3901 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3902
3903 static rtx
3904 record_jump_cond_subreg (machine_mode mode, rtx op)
3905 {
3906 machine_mode op_mode = GET_MODE (op);
3907 if (op_mode == mode || op_mode == VOIDmode)
3908 return op;
3909 return lowpart_subreg (mode, op, op_mode);
3910 }
3911
3912 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3913 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3914 Make any useful entries we can with that information. Called from
3915 above function and called recursively. */
3916
3917 static void
3918 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3919 rtx op1, int reversed_nonequality)
3920 {
3921 unsigned op0_hash, op1_hash;
3922 int op0_in_memory, op1_in_memory;
3923 struct table_elt *op0_elt, *op1_elt;
3924
3925 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3926 we know that they are also equal in the smaller mode (this is also
3927 true for all smaller modes whether or not there is a SUBREG, but
3928 is not worth testing for with no SUBREG). */
3929
3930 /* Note that GET_MODE (op0) may not equal MODE. */
3931 if (code == EQ && paradoxical_subreg_p (op0))
3932 {
3933 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3934 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3935 if (tem)
3936 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3937 reversed_nonequality);
3938 }
3939
3940 if (code == EQ && paradoxical_subreg_p (op1))
3941 {
3942 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3943 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3944 if (tem)
3945 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3946 reversed_nonequality);
3947 }
3948
3949 /* Similarly, if this is an NE comparison, and either is a SUBREG
3950 making a smaller mode, we know the whole thing is also NE. */
3951
3952 /* Note that GET_MODE (op0) may not equal MODE;
3953 if we test MODE instead, we can get an infinite recursion
3954 alternating between two modes each wider than MODE. */
3955
3956 if (code == NE && GET_CODE (op0) == SUBREG
3957 && subreg_lowpart_p (op0)
3958 && (GET_MODE_SIZE (GET_MODE (op0))
3959 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3960 {
3961 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3962 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3963 if (tem)
3964 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3965 reversed_nonequality);
3966 }
3967
3968 if (code == NE && GET_CODE (op1) == SUBREG
3969 && subreg_lowpart_p (op1)
3970 && (GET_MODE_SIZE (GET_MODE (op1))
3971 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3972 {
3973 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3974 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3975 if (tem)
3976 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3977 reversed_nonequality);
3978 }
3979
3980 /* Hash both operands. */
3981
3982 do_not_record = 0;
3983 hash_arg_in_memory = 0;
3984 op0_hash = HASH (op0, mode);
3985 op0_in_memory = hash_arg_in_memory;
3986
3987 if (do_not_record)
3988 return;
3989
3990 do_not_record = 0;
3991 hash_arg_in_memory = 0;
3992 op1_hash = HASH (op1, mode);
3993 op1_in_memory = hash_arg_in_memory;
3994
3995 if (do_not_record)
3996 return;
3997
3998 /* Look up both operands. */
3999 op0_elt = lookup (op0, op0_hash, mode);
4000 op1_elt = lookup (op1, op1_hash, mode);
4001
4002 /* If both operands are already equivalent or if they are not in the
4003 table but are identical, do nothing. */
4004 if ((op0_elt != 0 && op1_elt != 0
4005 && op0_elt->first_same_value == op1_elt->first_same_value)
4006 || op0 == op1 || rtx_equal_p (op0, op1))
4007 return;
4008
4009 /* If we aren't setting two things equal all we can do is save this
4010 comparison. Similarly if this is floating-point. In the latter
4011 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4012 If we record the equality, we might inadvertently delete code
4013 whose intent was to change -0 to +0. */
4014
4015 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4016 {
4017 struct qty_table_elem *ent;
4018 int qty;
4019
4020 /* If we reversed a floating-point comparison, if OP0 is not a
4021 register, or if OP1 is neither a register or constant, we can't
4022 do anything. */
4023
4024 if (!REG_P (op1))
4025 op1 = equiv_constant (op1);
4026
4027 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4028 || !REG_P (op0) || op1 == 0)
4029 return;
4030
4031 /* Put OP0 in the hash table if it isn't already. This gives it a
4032 new quantity number. */
4033 if (op0_elt == 0)
4034 {
4035 if (insert_regs (op0, NULL, 0))
4036 {
4037 rehash_using_reg (op0);
4038 op0_hash = HASH (op0, mode);
4039
4040 /* If OP0 is contained in OP1, this changes its hash code
4041 as well. Faster to rehash than to check, except
4042 for the simple case of a constant. */
4043 if (! CONSTANT_P (op1))
4044 op1_hash = HASH (op1,mode);
4045 }
4046
4047 op0_elt = insert (op0, NULL, op0_hash, mode);
4048 op0_elt->in_memory = op0_in_memory;
4049 }
4050
4051 qty = REG_QTY (REGNO (op0));
4052 ent = &qty_table[qty];
4053
4054 ent->comparison_code = code;
4055 if (REG_P (op1))
4056 {
4057 /* Look it up again--in case op0 and op1 are the same. */
4058 op1_elt = lookup (op1, op1_hash, mode);
4059
4060 /* Put OP1 in the hash table so it gets a new quantity number. */
4061 if (op1_elt == 0)
4062 {
4063 if (insert_regs (op1, NULL, 0))
4064 {
4065 rehash_using_reg (op1);
4066 op1_hash = HASH (op1, mode);
4067 }
4068
4069 op1_elt = insert (op1, NULL, op1_hash, mode);
4070 op1_elt->in_memory = op1_in_memory;
4071 }
4072
4073 ent->comparison_const = NULL_RTX;
4074 ent->comparison_qty = REG_QTY (REGNO (op1));
4075 }
4076 else
4077 {
4078 ent->comparison_const = op1;
4079 ent->comparison_qty = -1;
4080 }
4081
4082 return;
4083 }
4084
4085 /* If either side is still missing an equivalence, make it now,
4086 then merge the equivalences. */
4087
4088 if (op0_elt == 0)
4089 {
4090 if (insert_regs (op0, NULL, 0))
4091 {
4092 rehash_using_reg (op0);
4093 op0_hash = HASH (op0, mode);
4094 }
4095
4096 op0_elt = insert (op0, NULL, op0_hash, mode);
4097 op0_elt->in_memory = op0_in_memory;
4098 }
4099
4100 if (op1_elt == 0)
4101 {
4102 if (insert_regs (op1, NULL, 0))
4103 {
4104 rehash_using_reg (op1);
4105 op1_hash = HASH (op1, mode);
4106 }
4107
4108 op1_elt = insert (op1, NULL, op1_hash, mode);
4109 op1_elt->in_memory = op1_in_memory;
4110 }
4111
4112 merge_equiv_classes (op0_elt, op1_elt);
4113 }
4114 \f
4115 /* CSE processing for one instruction.
4116
4117 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4118 but the few that "leak through" are cleaned up by cse_insn, and complex
4119 addressing modes are often formed here.
4120
4121 The main function is cse_insn, and between here and that function
4122 a couple of helper functions is defined to keep the size of cse_insn
4123 within reasonable proportions.
4124
4125 Data is shared between the main and helper functions via STRUCT SET,
4126 that contains all data related for every set in the instruction that
4127 is being processed.
4128
4129 Note that cse_main processes all sets in the instruction. Most
4130 passes in GCC only process simple SET insns or single_set insns, but
4131 CSE processes insns with multiple sets as well. */
4132
4133 /* Data on one SET contained in the instruction. */
4134
4135 struct set
4136 {
4137 /* The SET rtx itself. */
4138 rtx rtl;
4139 /* The SET_SRC of the rtx (the original value, if it is changing). */
4140 rtx src;
4141 /* The hash-table element for the SET_SRC of the SET. */
4142 struct table_elt *src_elt;
4143 /* Hash value for the SET_SRC. */
4144 unsigned src_hash;
4145 /* Hash value for the SET_DEST. */
4146 unsigned dest_hash;
4147 /* The SET_DEST, with SUBREG, etc., stripped. */
4148 rtx inner_dest;
4149 /* Nonzero if the SET_SRC is in memory. */
4150 char src_in_memory;
4151 /* Nonzero if the SET_SRC contains something
4152 whose value cannot be predicted and understood. */
4153 char src_volatile;
4154 /* Original machine mode, in case it becomes a CONST_INT.
4155 The size of this field should match the size of the mode
4156 field of struct rtx_def (see rtl.h). */
4157 ENUM_BITFIELD(machine_mode) mode : 8;
4158 /* Hash value of constant equivalent for SET_SRC. */
4159 unsigned src_const_hash;
4160 /* A constant equivalent for SET_SRC, if any. */
4161 rtx src_const;
4162 /* Table entry for constant equivalent for SET_SRC, if any. */
4163 struct table_elt *src_const_elt;
4164 /* Table entry for the destination address. */
4165 struct table_elt *dest_addr_elt;
4166 };
4167 \f
4168 /* Special handling for (set REG0 REG1) where REG0 is the
4169 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4170 be used in the sequel, so (if easily done) change this insn to
4171 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4172 that computed their value. Then REG1 will become a dead store
4173 and won't cloud the situation for later optimizations.
4174
4175 Do not make this change if REG1 is a hard register, because it will
4176 then be used in the sequel and we may be changing a two-operand insn
4177 into a three-operand insn.
4178
4179 This is the last transformation that cse_insn will try to do. */
4180
4181 static void
4182 try_back_substitute_reg (rtx set, rtx_insn *insn)
4183 {
4184 rtx dest = SET_DEST (set);
4185 rtx src = SET_SRC (set);
4186
4187 if (REG_P (dest)
4188 && REG_P (src) && ! HARD_REGISTER_P (src)
4189 && REGNO_QTY_VALID_P (REGNO (src)))
4190 {
4191 int src_q = REG_QTY (REGNO (src));
4192 struct qty_table_elem *src_ent = &qty_table[src_q];
4193
4194 if (src_ent->first_reg == REGNO (dest))
4195 {
4196 /* Scan for the previous nonnote insn, but stop at a basic
4197 block boundary. */
4198 rtx_insn *prev = insn;
4199 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4200 do
4201 {
4202 prev = PREV_INSN (prev);
4203 }
4204 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4205
4206 /* Do not swap the registers around if the previous instruction
4207 attaches a REG_EQUIV note to REG1.
4208
4209 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4210 from the pseudo that originally shadowed an incoming argument
4211 to another register. Some uses of REG_EQUIV might rely on it
4212 being attached to REG1 rather than REG2.
4213
4214 This section previously turned the REG_EQUIV into a REG_EQUAL
4215 note. We cannot do that because REG_EQUIV may provide an
4216 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4217 if (NONJUMP_INSN_P (prev)
4218 && GET_CODE (PATTERN (prev)) == SET
4219 && SET_DEST (PATTERN (prev)) == src
4220 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4221 {
4222 rtx note;
4223
4224 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4225 validate_change (insn, &SET_DEST (set), src, 1);
4226 validate_change (insn, &SET_SRC (set), dest, 1);
4227 apply_change_group ();
4228
4229 /* If INSN has a REG_EQUAL note, and this note mentions
4230 REG0, then we must delete it, because the value in
4231 REG0 has changed. If the note's value is REG1, we must
4232 also delete it because that is now this insn's dest. */
4233 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4234 if (note != 0
4235 && (reg_mentioned_p (dest, XEXP (note, 0))
4236 || rtx_equal_p (src, XEXP (note, 0))))
4237 remove_note (insn, note);
4238 }
4239 }
4240 }
4241 }
4242 \f
4243 /* Record all the SETs in this instruction into SETS_PTR,
4244 and return the number of recorded sets. */
4245 static int
4246 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4247 {
4248 struct set *sets = *psets;
4249 int n_sets = 0;
4250 rtx x = PATTERN (insn);
4251
4252 if (GET_CODE (x) == SET)
4253 {
4254 /* Ignore SETs that are unconditional jumps.
4255 They never need cse processing, so this does not hurt.
4256 The reason is not efficiency but rather
4257 so that we can test at the end for instructions
4258 that have been simplified to unconditional jumps
4259 and not be misled by unchanged instructions
4260 that were unconditional jumps to begin with. */
4261 if (SET_DEST (x) == pc_rtx
4262 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4263 ;
4264 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4265 The hard function value register is used only once, to copy to
4266 someplace else, so it isn't worth cse'ing. */
4267 else if (GET_CODE (SET_SRC (x)) == CALL)
4268 ;
4269 else
4270 sets[n_sets++].rtl = x;
4271 }
4272 else if (GET_CODE (x) == PARALLEL)
4273 {
4274 int i, lim = XVECLEN (x, 0);
4275
4276 /* Go over the expressions of the PARALLEL in forward order, to
4277 put them in the same order in the SETS array. */
4278 for (i = 0; i < lim; i++)
4279 {
4280 rtx y = XVECEXP (x, 0, i);
4281 if (GET_CODE (y) == SET)
4282 {
4283 /* As above, we ignore unconditional jumps and call-insns and
4284 ignore the result of apply_change_group. */
4285 if (SET_DEST (y) == pc_rtx
4286 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4287 ;
4288 else if (GET_CODE (SET_SRC (y)) == CALL)
4289 ;
4290 else
4291 sets[n_sets++].rtl = y;
4292 }
4293 }
4294 }
4295
4296 return n_sets;
4297 }
4298 \f
4299 /* Subroutine of canonicalize_insn. X is an ASM_OPERANDS in INSN. */
4300
4301 static void
4302 canon_asm_operands (rtx x, rtx_insn *insn)
4303 {
4304 for (int i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4305 {
4306 rtx input = ASM_OPERANDS_INPUT (x, i);
4307 if (!(REG_P (input) && HARD_REGISTER_P (input)))
4308 {
4309 input = canon_reg (input, insn);
4310 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4311 }
4312 }
4313 }
4314
4315 /* Where possible, substitute every register reference in the N_SETS
4316 number of SETS in INSN with the canonical register.
4317
4318 Register canonicalization propagatest the earliest register (i.e.
4319 one that is set before INSN) with the same value. This is a very
4320 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4321 to RTL. For instance, a CONST for an address is usually expanded
4322 multiple times to loads into different registers, thus creating many
4323 subexpressions of the form:
4324
4325 (set (reg1) (some_const))
4326 (set (mem (... reg1 ...) (thing)))
4327 (set (reg2) (some_const))
4328 (set (mem (... reg2 ...) (thing)))
4329
4330 After canonicalizing, the code takes the following form:
4331
4332 (set (reg1) (some_const))
4333 (set (mem (... reg1 ...) (thing)))
4334 (set (reg2) (some_const))
4335 (set (mem (... reg1 ...) (thing)))
4336
4337 The set to reg2 is now trivially dead, and the memory reference (or
4338 address, or whatever) may be a candidate for further CSEing.
4339
4340 In this function, the result of apply_change_group can be ignored;
4341 see canon_reg. */
4342
4343 static void
4344 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4345 {
4346 struct set *sets = *psets;
4347 rtx tem;
4348 rtx x = PATTERN (insn);
4349 int i;
4350
4351 if (CALL_P (insn))
4352 {
4353 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4354 if (GET_CODE (XEXP (tem, 0)) != SET)
4355 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4356 }
4357
4358 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4359 {
4360 canon_reg (SET_SRC (x), insn);
4361 apply_change_group ();
4362 fold_rtx (SET_SRC (x), insn);
4363 }
4364 else if (GET_CODE (x) == CLOBBER)
4365 {
4366 /* If we clobber memory, canon the address.
4367 This does nothing when a register is clobbered
4368 because we have already invalidated the reg. */
4369 if (MEM_P (XEXP (x, 0)))
4370 canon_reg (XEXP (x, 0), insn);
4371 }
4372 else if (GET_CODE (x) == USE
4373 && ! (REG_P (XEXP (x, 0))
4374 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4375 /* Canonicalize a USE of a pseudo register or memory location. */
4376 canon_reg (x, insn);
4377 else if (GET_CODE (x) == ASM_OPERANDS)
4378 canon_asm_operands (x, insn);
4379 else if (GET_CODE (x) == CALL)
4380 {
4381 canon_reg (x, insn);
4382 apply_change_group ();
4383 fold_rtx (x, insn);
4384 }
4385 else if (DEBUG_INSN_P (insn))
4386 canon_reg (PATTERN (insn), insn);
4387 else if (GET_CODE (x) == PARALLEL)
4388 {
4389 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4390 {
4391 rtx y = XVECEXP (x, 0, i);
4392 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4393 {
4394 canon_reg (SET_SRC (y), insn);
4395 apply_change_group ();
4396 fold_rtx (SET_SRC (y), insn);
4397 }
4398 else if (GET_CODE (y) == CLOBBER)
4399 {
4400 if (MEM_P (XEXP (y, 0)))
4401 canon_reg (XEXP (y, 0), insn);
4402 }
4403 else if (GET_CODE (y) == USE
4404 && ! (REG_P (XEXP (y, 0))
4405 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4406 canon_reg (y, insn);
4407 else if (GET_CODE (y) == ASM_OPERANDS)
4408 canon_asm_operands (y, insn);
4409 else if (GET_CODE (y) == CALL)
4410 {
4411 canon_reg (y, insn);
4412 apply_change_group ();
4413 fold_rtx (y, insn);
4414 }
4415 }
4416 }
4417
4418 if (n_sets == 1 && REG_NOTES (insn) != 0
4419 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4420 {
4421 /* We potentially will process this insn many times. Therefore,
4422 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4423 unique set in INSN.
4424
4425 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4426 because cse_insn handles those specially. */
4427 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4428 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4429 remove_note (insn, tem);
4430 else
4431 {
4432 canon_reg (XEXP (tem, 0), insn);
4433 apply_change_group ();
4434 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4435 df_notes_rescan (insn);
4436 }
4437 }
4438
4439 /* Canonicalize sources and addresses of destinations.
4440 We do this in a separate pass to avoid problems when a MATCH_DUP is
4441 present in the insn pattern. In that case, we want to ensure that
4442 we don't break the duplicate nature of the pattern. So we will replace
4443 both operands at the same time. Otherwise, we would fail to find an
4444 equivalent substitution in the loop calling validate_change below.
4445
4446 We used to suppress canonicalization of DEST if it appears in SRC,
4447 but we don't do this any more. */
4448
4449 for (i = 0; i < n_sets; i++)
4450 {
4451 rtx dest = SET_DEST (sets[i].rtl);
4452 rtx src = SET_SRC (sets[i].rtl);
4453 rtx new_rtx = canon_reg (src, insn);
4454
4455 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4456
4457 if (GET_CODE (dest) == ZERO_EXTRACT)
4458 {
4459 validate_change (insn, &XEXP (dest, 1),
4460 canon_reg (XEXP (dest, 1), insn), 1);
4461 validate_change (insn, &XEXP (dest, 2),
4462 canon_reg (XEXP (dest, 2), insn), 1);
4463 }
4464
4465 while (GET_CODE (dest) == SUBREG
4466 || GET_CODE (dest) == ZERO_EXTRACT
4467 || GET_CODE (dest) == STRICT_LOW_PART)
4468 dest = XEXP (dest, 0);
4469
4470 if (MEM_P (dest))
4471 canon_reg (dest, insn);
4472 }
4473
4474 /* Now that we have done all the replacements, we can apply the change
4475 group and see if they all work. Note that this will cause some
4476 canonicalizations that would have worked individually not to be applied
4477 because some other canonicalization didn't work, but this should not
4478 occur often.
4479
4480 The result of apply_change_group can be ignored; see canon_reg. */
4481
4482 apply_change_group ();
4483 }
4484 \f
4485 /* Main function of CSE.
4486 First simplify sources and addresses of all assignments
4487 in the instruction, using previously-computed equivalents values.
4488 Then install the new sources and destinations in the table
4489 of available values. */
4490
4491 static void
4492 cse_insn (rtx_insn *insn)
4493 {
4494 rtx x = PATTERN (insn);
4495 int i;
4496 rtx tem;
4497 int n_sets = 0;
4498
4499 rtx src_eqv = 0;
4500 struct table_elt *src_eqv_elt = 0;
4501 int src_eqv_volatile = 0;
4502 int src_eqv_in_memory = 0;
4503 unsigned src_eqv_hash = 0;
4504
4505 struct set *sets = (struct set *) 0;
4506
4507 if (GET_CODE (x) == SET)
4508 sets = XALLOCA (struct set);
4509 else if (GET_CODE (x) == PARALLEL)
4510 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4511
4512 this_insn = insn;
4513 /* Records what this insn does to set CC0. */
4514 this_insn_cc0 = 0;
4515 this_insn_cc0_mode = VOIDmode;
4516
4517 /* Find all regs explicitly clobbered in this insn,
4518 to ensure they are not replaced with any other regs
4519 elsewhere in this insn. */
4520 invalidate_from_sets_and_clobbers (insn);
4521
4522 /* Record all the SETs in this instruction. */
4523 n_sets = find_sets_in_insn (insn, &sets);
4524
4525 /* Substitute the canonical register where possible. */
4526 canonicalize_insn (insn, &sets, n_sets);
4527
4528 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4529 if different, or if the DEST is a STRICT_LOW_PART/ZERO_EXTRACT. The
4530 latter condition is necessary because SRC_EQV is handled specially for
4531 this case, and if it isn't set, then there will be no equivalence
4532 for the destination. */
4533 if (n_sets == 1 && REG_NOTES (insn) != 0
4534 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4535 {
4536
4537 if (GET_CODE (SET_DEST (sets[0].rtl)) != ZERO_EXTRACT
4538 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4539 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4540 src_eqv = copy_rtx (XEXP (tem, 0));
4541 /* If DEST is of the form ZERO_EXTACT, as in:
4542 (set (zero_extract:SI (reg:SI 119)
4543 (const_int 16 [0x10])
4544 (const_int 16 [0x10]))
4545 (const_int 51154 [0xc7d2]))
4546 REG_EQUAL note will specify the value of register (reg:SI 119) at this
4547 point. Note that this is different from SRC_EQV. We can however
4548 calculate SRC_EQV with the position and width of ZERO_EXTRACT. */
4549 else if (GET_CODE (SET_DEST (sets[0].rtl)) == ZERO_EXTRACT
4550 && CONST_INT_P (XEXP (tem, 0))
4551 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 1))
4552 && CONST_INT_P (XEXP (SET_DEST (sets[0].rtl), 2)))
4553 {
4554 rtx dest_reg = XEXP (SET_DEST (sets[0].rtl), 0);
4555 rtx width = XEXP (SET_DEST (sets[0].rtl), 1);
4556 rtx pos = XEXP (SET_DEST (sets[0].rtl), 2);
4557 HOST_WIDE_INT val = INTVAL (XEXP (tem, 0));
4558 HOST_WIDE_INT mask;
4559 unsigned int shift;
4560 if (BITS_BIG_ENDIAN)
4561 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
4562 - INTVAL (pos) - INTVAL (width);
4563 else
4564 shift = INTVAL (pos);
4565 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
4566 mask = HOST_WIDE_INT_M1;
4567 else
4568 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
4569 val = (val >> shift) & mask;
4570 src_eqv = GEN_INT (val);
4571 }
4572 }
4573
4574 /* Set sets[i].src_elt to the class each source belongs to.
4575 Detect assignments from or to volatile things
4576 and set set[i] to zero so they will be ignored
4577 in the rest of this function.
4578
4579 Nothing in this loop changes the hash table or the register chains. */
4580
4581 for (i = 0; i < n_sets; i++)
4582 {
4583 bool repeat = false;
4584 bool mem_noop_insn = false;
4585 rtx src, dest;
4586 rtx src_folded;
4587 struct table_elt *elt = 0, *p;
4588 machine_mode mode;
4589 rtx src_eqv_here;
4590 rtx src_const = 0;
4591 rtx src_related = 0;
4592 bool src_related_is_const_anchor = false;
4593 struct table_elt *src_const_elt = 0;
4594 int src_cost = MAX_COST;
4595 int src_eqv_cost = MAX_COST;
4596 int src_folded_cost = MAX_COST;
4597 int src_related_cost = MAX_COST;
4598 int src_elt_cost = MAX_COST;
4599 int src_regcost = MAX_COST;
4600 int src_eqv_regcost = MAX_COST;
4601 int src_folded_regcost = MAX_COST;
4602 int src_related_regcost = MAX_COST;
4603 int src_elt_regcost = MAX_COST;
4604 /* Set nonzero if we need to call force_const_mem on with the
4605 contents of src_folded before using it. */
4606 int src_folded_force_flag = 0;
4607 scalar_int_mode int_mode;
4608
4609 dest = SET_DEST (sets[i].rtl);
4610 src = SET_SRC (sets[i].rtl);
4611
4612 /* If SRC is a constant that has no machine mode,
4613 hash it with the destination's machine mode.
4614 This way we can keep different modes separate. */
4615
4616 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4617 sets[i].mode = mode;
4618
4619 if (src_eqv)
4620 {
4621 machine_mode eqvmode = mode;
4622 if (GET_CODE (dest) == STRICT_LOW_PART)
4623 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4624 do_not_record = 0;
4625 hash_arg_in_memory = 0;
4626 src_eqv_hash = HASH (src_eqv, eqvmode);
4627
4628 /* Find the equivalence class for the equivalent expression. */
4629
4630 if (!do_not_record)
4631 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4632
4633 src_eqv_volatile = do_not_record;
4634 src_eqv_in_memory = hash_arg_in_memory;
4635 }
4636
4637 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4638 value of the INNER register, not the destination. So it is not
4639 a valid substitution for the source. But save it for later. */
4640 if (GET_CODE (dest) == STRICT_LOW_PART)
4641 src_eqv_here = 0;
4642 else
4643 src_eqv_here = src_eqv;
4644
4645 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4646 simplified result, which may not necessarily be valid. */
4647 src_folded = fold_rtx (src, NULL);
4648
4649 #if 0
4650 /* ??? This caused bad code to be generated for the m68k port with -O2.
4651 Suppose src is (CONST_INT -1), and that after truncation src_folded
4652 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4653 At the end we will add src and src_const to the same equivalence
4654 class. We now have 3 and -1 on the same equivalence class. This
4655 causes later instructions to be mis-optimized. */
4656 /* If storing a constant in a bitfield, pre-truncate the constant
4657 so we will be able to record it later. */
4658 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4659 {
4660 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4661
4662 if (CONST_INT_P (src)
4663 && CONST_INT_P (width)
4664 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4665 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4666 src_folded
4667 = GEN_INT (INTVAL (src) & ((HOST_WIDE_INT_1
4668 << INTVAL (width)) - 1));
4669 }
4670 #endif
4671
4672 /* Compute SRC's hash code, and also notice if it
4673 should not be recorded at all. In that case,
4674 prevent any further processing of this assignment. */
4675 do_not_record = 0;
4676 hash_arg_in_memory = 0;
4677
4678 sets[i].src = src;
4679 sets[i].src_hash = HASH (src, mode);
4680 sets[i].src_volatile = do_not_record;
4681 sets[i].src_in_memory = hash_arg_in_memory;
4682
4683 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4684 a pseudo, do not record SRC. Using SRC as a replacement for
4685 anything else will be incorrect in that situation. Note that
4686 this usually occurs only for stack slots, in which case all the
4687 RTL would be referring to SRC, so we don't lose any optimization
4688 opportunities by not having SRC in the hash table. */
4689
4690 if (MEM_P (src)
4691 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4692 && REG_P (dest)
4693 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4694 sets[i].src_volatile = 1;
4695
4696 else if (GET_CODE (src) == ASM_OPERANDS
4697 && GET_CODE (x) == PARALLEL)
4698 {
4699 /* Do not record result of a non-volatile inline asm with
4700 more than one result. */
4701 if (n_sets > 1)
4702 sets[i].src_volatile = 1;
4703
4704 int j, lim = XVECLEN (x, 0);
4705 for (j = 0; j < lim; j++)
4706 {
4707 rtx y = XVECEXP (x, 0, j);
4708 /* And do not record result of a non-volatile inline asm
4709 with "memory" clobber. */
4710 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4711 {
4712 sets[i].src_volatile = 1;
4713 break;
4714 }
4715 }
4716 }
4717
4718 #if 0
4719 /* It is no longer clear why we used to do this, but it doesn't
4720 appear to still be needed. So let's try without it since this
4721 code hurts cse'ing widened ops. */
4722 /* If source is a paradoxical subreg (such as QI treated as an SI),
4723 treat it as volatile. It may do the work of an SI in one context
4724 where the extra bits are not being used, but cannot replace an SI
4725 in general. */
4726 if (paradoxical_subreg_p (src))
4727 sets[i].src_volatile = 1;
4728 #endif
4729
4730 /* Locate all possible equivalent forms for SRC. Try to replace
4731 SRC in the insn with each cheaper equivalent.
4732
4733 We have the following types of equivalents: SRC itself, a folded
4734 version, a value given in a REG_EQUAL note, or a value related
4735 to a constant.
4736
4737 Each of these equivalents may be part of an additional class
4738 of equivalents (if more than one is in the table, they must be in
4739 the same class; we check for this).
4740
4741 If the source is volatile, we don't do any table lookups.
4742
4743 We note any constant equivalent for possible later use in a
4744 REG_NOTE. */
4745
4746 if (!sets[i].src_volatile)
4747 elt = lookup (src, sets[i].src_hash, mode);
4748
4749 sets[i].src_elt = elt;
4750
4751 if (elt && src_eqv_here && src_eqv_elt)
4752 {
4753 if (elt->first_same_value != src_eqv_elt->first_same_value)
4754 {
4755 /* The REG_EQUAL is indicating that two formerly distinct
4756 classes are now equivalent. So merge them. */
4757 merge_equiv_classes (elt, src_eqv_elt);
4758 src_eqv_hash = HASH (src_eqv, elt->mode);
4759 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4760 }
4761
4762 src_eqv_here = 0;
4763 }
4764
4765 else if (src_eqv_elt)
4766 elt = src_eqv_elt;
4767
4768 /* Try to find a constant somewhere and record it in `src_const'.
4769 Record its table element, if any, in `src_const_elt'. Look in
4770 any known equivalences first. (If the constant is not in the
4771 table, also set `sets[i].src_const_hash'). */
4772 if (elt)
4773 for (p = elt->first_same_value; p; p = p->next_same_value)
4774 if (p->is_const)
4775 {
4776 src_const = p->exp;
4777 src_const_elt = elt;
4778 break;
4779 }
4780
4781 if (src_const == 0
4782 && (CONSTANT_P (src_folded)
4783 /* Consider (minus (label_ref L1) (label_ref L2)) as
4784 "constant" here so we will record it. This allows us
4785 to fold switch statements when an ADDR_DIFF_VEC is used. */
4786 || (GET_CODE (src_folded) == MINUS
4787 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4788 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4789 src_const = src_folded, src_const_elt = elt;
4790 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4791 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4792
4793 /* If we don't know if the constant is in the table, get its
4794 hash code and look it up. */
4795 if (src_const && src_const_elt == 0)
4796 {
4797 sets[i].src_const_hash = HASH (src_const, mode);
4798 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4799 }
4800
4801 sets[i].src_const = src_const;
4802 sets[i].src_const_elt = src_const_elt;
4803
4804 /* If the constant and our source are both in the table, mark them as
4805 equivalent. Otherwise, if a constant is in the table but the source
4806 isn't, set ELT to it. */
4807 if (src_const_elt && elt
4808 && src_const_elt->first_same_value != elt->first_same_value)
4809 merge_equiv_classes (elt, src_const_elt);
4810 else if (src_const_elt && elt == 0)
4811 elt = src_const_elt;
4812
4813 /* See if there is a register linearly related to a constant
4814 equivalent of SRC. */
4815 if (src_const
4816 && (GET_CODE (src_const) == CONST
4817 || (src_const_elt && src_const_elt->related_value != 0)))
4818 {
4819 src_related = use_related_value (src_const, src_const_elt);
4820 if (src_related)
4821 {
4822 struct table_elt *src_related_elt
4823 = lookup (src_related, HASH (src_related, mode), mode);
4824 if (src_related_elt && elt)
4825 {
4826 if (elt->first_same_value
4827 != src_related_elt->first_same_value)
4828 /* This can occur when we previously saw a CONST
4829 involving a SYMBOL_REF and then see the SYMBOL_REF
4830 twice. Merge the involved classes. */
4831 merge_equiv_classes (elt, src_related_elt);
4832
4833 src_related = 0;
4834 src_related_elt = 0;
4835 }
4836 else if (src_related_elt && elt == 0)
4837 elt = src_related_elt;
4838 }
4839 }
4840
4841 /* See if we have a CONST_INT that is already in a register in a
4842 wider mode. */
4843
4844 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4845 && is_int_mode (mode, &int_mode)
4846 && GET_MODE_PRECISION (int_mode) < BITS_PER_WORD)
4847 {
4848 opt_scalar_int_mode wider_mode_iter;
4849 FOR_EACH_WIDER_MODE (wider_mode_iter, int_mode)
4850 {
4851 scalar_int_mode wider_mode = wider_mode_iter.require ();
4852 if (GET_MODE_PRECISION (wider_mode) > BITS_PER_WORD)
4853 break;
4854
4855 struct table_elt *const_elt
4856 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4857
4858 if (const_elt == 0)
4859 continue;
4860
4861 for (const_elt = const_elt->first_same_value;
4862 const_elt; const_elt = const_elt->next_same_value)
4863 if (REG_P (const_elt->exp))
4864 {
4865 src_related = gen_lowpart (int_mode, const_elt->exp);
4866 break;
4867 }
4868
4869 if (src_related != 0)
4870 break;
4871 }
4872 }
4873
4874 /* Another possibility is that we have an AND with a constant in
4875 a mode narrower than a word. If so, it might have been generated
4876 as part of an "if" which would narrow the AND. If we already
4877 have done the AND in a wider mode, we can use a SUBREG of that
4878 value. */
4879
4880 if (flag_expensive_optimizations && ! src_related
4881 && is_a <scalar_int_mode> (mode, &int_mode)
4882 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4883 && GET_MODE_SIZE (int_mode) < UNITS_PER_WORD)
4884 {
4885 machine_mode tmode;
4886 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4887
4888 FOR_EACH_WIDER_MODE (tmode, int_mode)
4889 {
4890 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4891 break;
4892
4893 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4894 struct table_elt *larger_elt;
4895
4896 if (inner)
4897 {
4898 PUT_MODE (new_and, tmode);
4899 XEXP (new_and, 0) = inner;
4900 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4901 if (larger_elt == 0)
4902 continue;
4903
4904 for (larger_elt = larger_elt->first_same_value;
4905 larger_elt; larger_elt = larger_elt->next_same_value)
4906 if (REG_P (larger_elt->exp))
4907 {
4908 src_related
4909 = gen_lowpart (int_mode, larger_elt->exp);
4910 break;
4911 }
4912
4913 if (src_related)
4914 break;
4915 }
4916 }
4917 }
4918
4919 /* See if a MEM has already been loaded with a widening operation;
4920 if it has, we can use a subreg of that. Many CISC machines
4921 also have such operations, but this is only likely to be
4922 beneficial on these machines. */
4923
4924 rtx_code extend_op;
4925 if (flag_expensive_optimizations && src_related == 0
4926 && MEM_P (src) && ! do_not_record
4927 && is_a <scalar_int_mode> (mode, &int_mode)
4928 && (extend_op = load_extend_op (int_mode)) != UNKNOWN)
4929 {
4930 struct rtx_def memory_extend_buf;
4931 rtx memory_extend_rtx = &memory_extend_buf;
4932 machine_mode tmode;
4933
4934 /* Set what we are trying to extend and the operation it might
4935 have been extended with. */
4936 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4937 PUT_CODE (memory_extend_rtx, extend_op);
4938 XEXP (memory_extend_rtx, 0) = src;
4939
4940 FOR_EACH_WIDER_MODE (tmode, int_mode)
4941 {
4942 struct table_elt *larger_elt;
4943
4944 if (GET_MODE_SIZE (tmode) > UNITS_PER_WORD)
4945 break;
4946
4947 PUT_MODE (memory_extend_rtx, tmode);
4948 larger_elt = lookup (memory_extend_rtx,
4949 HASH (memory_extend_rtx, tmode), tmode);
4950 if (larger_elt == 0)
4951 continue;
4952
4953 for (larger_elt = larger_elt->first_same_value;
4954 larger_elt; larger_elt = larger_elt->next_same_value)
4955 if (REG_P (larger_elt->exp))
4956 {
4957 src_related = gen_lowpart (int_mode, larger_elt->exp);
4958 break;
4959 }
4960
4961 if (src_related)
4962 break;
4963 }
4964 }
4965
4966 /* Try to express the constant using a register+offset expression
4967 derived from a constant anchor. */
4968
4969 if (targetm.const_anchor
4970 && !src_related
4971 && src_const
4972 && GET_CODE (src_const) == CONST_INT)
4973 {
4974 src_related = try_const_anchors (src_const, mode);
4975 src_related_is_const_anchor = src_related != NULL_RTX;
4976 }
4977
4978
4979 if (src == src_folded)
4980 src_folded = 0;
4981
4982 /* At this point, ELT, if nonzero, points to a class of expressions
4983 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4984 and SRC_RELATED, if nonzero, each contain additional equivalent
4985 expressions. Prune these latter expressions by deleting expressions
4986 already in the equivalence class.
4987
4988 Check for an equivalent identical to the destination. If found,
4989 this is the preferred equivalent since it will likely lead to
4990 elimination of the insn. Indicate this by placing it in
4991 `src_related'. */
4992
4993 if (elt)
4994 elt = elt->first_same_value;
4995 for (p = elt; p; p = p->next_same_value)
4996 {
4997 enum rtx_code code = GET_CODE (p->exp);
4998
4999 /* If the expression is not valid, ignore it. Then we do not
5000 have to check for validity below. In most cases, we can use
5001 `rtx_equal_p', since canonicalization has already been done. */
5002 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5003 continue;
5004
5005 /* Also skip paradoxical subregs, unless that's what we're
5006 looking for. */
5007 if (paradoxical_subreg_p (p->exp)
5008 && ! (src != 0
5009 && GET_CODE (src) == SUBREG
5010 && GET_MODE (src) == GET_MODE (p->exp)
5011 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5012 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5013 continue;
5014
5015 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5016 src = 0;
5017 else if (src_folded && GET_CODE (src_folded) == code
5018 && rtx_equal_p (src_folded, p->exp))
5019 src_folded = 0;
5020 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5021 && rtx_equal_p (src_eqv_here, p->exp))
5022 src_eqv_here = 0;
5023 else if (src_related && GET_CODE (src_related) == code
5024 && rtx_equal_p (src_related, p->exp))
5025 src_related = 0;
5026
5027 /* This is the same as the destination of the insns, we want
5028 to prefer it. Copy it to src_related. The code below will
5029 then give it a negative cost. */
5030 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5031 src_related = dest;
5032 }
5033
5034 /* Find the cheapest valid equivalent, trying all the available
5035 possibilities. Prefer items not in the hash table to ones
5036 that are when they are equal cost. Note that we can never
5037 worsen an insn as the current contents will also succeed.
5038 If we find an equivalent identical to the destination, use it as best,
5039 since this insn will probably be eliminated in that case. */
5040 if (src)
5041 {
5042 if (rtx_equal_p (src, dest))
5043 src_cost = src_regcost = -1;
5044 else
5045 {
5046 src_cost = COST (src, mode);
5047 src_regcost = approx_reg_cost (src);
5048 }
5049 }
5050
5051 if (src_eqv_here)
5052 {
5053 if (rtx_equal_p (src_eqv_here, dest))
5054 src_eqv_cost = src_eqv_regcost = -1;
5055 else
5056 {
5057 src_eqv_cost = COST (src_eqv_here, mode);
5058 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5059 }
5060 }
5061
5062 if (src_folded)
5063 {
5064 if (rtx_equal_p (src_folded, dest))
5065 src_folded_cost = src_folded_regcost = -1;
5066 else
5067 {
5068 src_folded_cost = COST (src_folded, mode);
5069 src_folded_regcost = approx_reg_cost (src_folded);
5070 }
5071 }
5072
5073 if (src_related)
5074 {
5075 if (rtx_equal_p (src_related, dest))
5076 src_related_cost = src_related_regcost = -1;
5077 else
5078 {
5079 src_related_cost = COST (src_related, mode);
5080 src_related_regcost = approx_reg_cost (src_related);
5081
5082 /* If a const-anchor is used to synthesize a constant that
5083 normally requires multiple instructions then slightly prefer
5084 it over the original sequence. These instructions are likely
5085 to become redundant now. We can't compare against the cost
5086 of src_eqv_here because, on MIPS for example, multi-insn
5087 constants have zero cost; they are assumed to be hoisted from
5088 loops. */
5089 if (src_related_is_const_anchor
5090 && src_related_cost == src_cost
5091 && src_eqv_here)
5092 src_related_cost--;
5093 }
5094 }
5095
5096 /* If this was an indirect jump insn, a known label will really be
5097 cheaper even though it looks more expensive. */
5098 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5099 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5100
5101 /* Terminate loop when replacement made. This must terminate since
5102 the current contents will be tested and will always be valid. */
5103 while (1)
5104 {
5105 rtx trial;
5106
5107 /* Skip invalid entries. */
5108 while (elt && !REG_P (elt->exp)
5109 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5110 elt = elt->next_same_value;
5111
5112 /* A paradoxical subreg would be bad here: it'll be the right
5113 size, but later may be adjusted so that the upper bits aren't
5114 what we want. So reject it. */
5115 if (elt != 0
5116 && paradoxical_subreg_p (elt->exp)
5117 /* It is okay, though, if the rtx we're trying to match
5118 will ignore any of the bits we can't predict. */
5119 && ! (src != 0
5120 && GET_CODE (src) == SUBREG
5121 && GET_MODE (src) == GET_MODE (elt->exp)
5122 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5123 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5124 {
5125 elt = elt->next_same_value;
5126 continue;
5127 }
5128
5129 if (elt)
5130 {
5131 src_elt_cost = elt->cost;
5132 src_elt_regcost = elt->regcost;
5133 }
5134
5135 /* Find cheapest and skip it for the next time. For items
5136 of equal cost, use this order:
5137 src_folded, src, src_eqv, src_related and hash table entry. */
5138 if (src_folded
5139 && preferable (src_folded_cost, src_folded_regcost,
5140 src_cost, src_regcost) <= 0
5141 && preferable (src_folded_cost, src_folded_regcost,
5142 src_eqv_cost, src_eqv_regcost) <= 0
5143 && preferable (src_folded_cost, src_folded_regcost,
5144 src_related_cost, src_related_regcost) <= 0
5145 && preferable (src_folded_cost, src_folded_regcost,
5146 src_elt_cost, src_elt_regcost) <= 0)
5147 {
5148 trial = src_folded, src_folded_cost = MAX_COST;
5149 if (src_folded_force_flag)
5150 {
5151 rtx forced = force_const_mem (mode, trial);
5152 if (forced)
5153 trial = forced;
5154 }
5155 }
5156 else if (src
5157 && preferable (src_cost, src_regcost,
5158 src_eqv_cost, src_eqv_regcost) <= 0
5159 && preferable (src_cost, src_regcost,
5160 src_related_cost, src_related_regcost) <= 0
5161 && preferable (src_cost, src_regcost,
5162 src_elt_cost, src_elt_regcost) <= 0)
5163 trial = src, src_cost = MAX_COST;
5164 else if (src_eqv_here
5165 && preferable (src_eqv_cost, src_eqv_regcost,
5166 src_related_cost, src_related_regcost) <= 0
5167 && preferable (src_eqv_cost, src_eqv_regcost,
5168 src_elt_cost, src_elt_regcost) <= 0)
5169 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5170 else if (src_related
5171 && preferable (src_related_cost, src_related_regcost,
5172 src_elt_cost, src_elt_regcost) <= 0)
5173 trial = src_related, src_related_cost = MAX_COST;
5174 else
5175 {
5176 trial = elt->exp;
5177 elt = elt->next_same_value;
5178 src_elt_cost = MAX_COST;
5179 }
5180
5181 /* Avoid creation of overlapping memory moves. */
5182 if (MEM_P (trial) && MEM_P (dest) && !rtx_equal_p (trial, dest))
5183 {
5184 rtx src, dest;
5185
5186 /* BLKmode moves are not handled by cse anyway. */
5187 if (GET_MODE (trial) == BLKmode)
5188 break;
5189
5190 src = canon_rtx (trial);
5191 dest = canon_rtx (SET_DEST (sets[i].rtl));
5192
5193 if (!MEM_P (src) || !MEM_P (dest)
5194 || !nonoverlapping_memrefs_p (src, dest, false))
5195 break;
5196 }
5197
5198 /* Try to optimize
5199 (set (reg:M N) (const_int A))
5200 (set (reg:M2 O) (const_int B))
5201 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5202 (reg:M2 O)). */
5203 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5204 && CONST_INT_P (trial)
5205 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5206 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5207 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5208 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5209 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5210 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5211 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5212 <= HOST_BITS_PER_WIDE_INT))
5213 {
5214 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5215 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5216 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5217 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5218 struct table_elt *dest_elt
5219 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5220 rtx dest_cst = NULL;
5221
5222 if (dest_elt)
5223 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5224 if (p->is_const && CONST_INT_P (p->exp))
5225 {
5226 dest_cst = p->exp;
5227 break;
5228 }
5229 if (dest_cst)
5230 {
5231 HOST_WIDE_INT val = INTVAL (dest_cst);
5232 HOST_WIDE_INT mask;
5233 unsigned int shift;
5234 if (BITS_BIG_ENDIAN)
5235 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5236 - INTVAL (pos) - INTVAL (width);
5237 else
5238 shift = INTVAL (pos);
5239 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5240 mask = HOST_WIDE_INT_M1;
5241 else
5242 mask = (HOST_WIDE_INT_1 << INTVAL (width)) - 1;
5243 val &= ~(mask << shift);
5244 val |= (INTVAL (trial) & mask) << shift;
5245 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5246 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5247 dest_reg, 1);
5248 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5249 GEN_INT (val), 1);
5250 if (apply_change_group ())
5251 {
5252 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5253 if (note)
5254 {
5255 remove_note (insn, note);
5256 df_notes_rescan (insn);
5257 }
5258 src_eqv = NULL_RTX;
5259 src_eqv_elt = NULL;
5260 src_eqv_volatile = 0;
5261 src_eqv_in_memory = 0;
5262 src_eqv_hash = 0;
5263 repeat = true;
5264 break;
5265 }
5266 }
5267 }
5268
5269 /* We don't normally have an insn matching (set (pc) (pc)), so
5270 check for this separately here. We will delete such an
5271 insn below.
5272
5273 For other cases such as a table jump or conditional jump
5274 where we know the ultimate target, go ahead and replace the
5275 operand. While that may not make a valid insn, we will
5276 reemit the jump below (and also insert any necessary
5277 barriers). */
5278 if (n_sets == 1 && dest == pc_rtx
5279 && (trial == pc_rtx
5280 || (GET_CODE (trial) == LABEL_REF
5281 && ! condjump_p (insn))))
5282 {
5283 /* Don't substitute non-local labels, this confuses CFG. */
5284 if (GET_CODE (trial) == LABEL_REF
5285 && LABEL_REF_NONLOCAL_P (trial))
5286 continue;
5287
5288 SET_SRC (sets[i].rtl) = trial;
5289 cse_jumps_altered = true;
5290 break;
5291 }
5292
5293 /* Similarly, lots of targets don't allow no-op
5294 (set (mem x) (mem x)) moves. */
5295 else if (n_sets == 1
5296 && MEM_P (trial)
5297 && MEM_P (dest)
5298 && rtx_equal_p (trial, dest)
5299 && !side_effects_p (dest)
5300 && (cfun->can_delete_dead_exceptions
5301 || insn_nothrow_p (insn)))
5302 {
5303 SET_SRC (sets[i].rtl) = trial;
5304 mem_noop_insn = true;
5305 break;
5306 }
5307
5308 /* Reject certain invalid forms of CONST that we create. */
5309 else if (CONSTANT_P (trial)
5310 && GET_CODE (trial) == CONST
5311 /* Reject cases that will cause decode_rtx_const to
5312 die. On the alpha when simplifying a switch, we
5313 get (const (truncate (minus (label_ref)
5314 (label_ref)))). */
5315 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5316 /* Likewise on IA-64, except without the
5317 truncate. */
5318 || (GET_CODE (XEXP (trial, 0)) == MINUS
5319 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5320 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5321 /* Do nothing for this case. */
5322 ;
5323
5324 /* Look for a substitution that makes a valid insn. */
5325 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5326 trial, 0))
5327 {
5328 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5329
5330 /* The result of apply_change_group can be ignored; see
5331 canon_reg. */
5332
5333 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5334 apply_change_group ();
5335
5336 break;
5337 }
5338
5339 /* If we previously found constant pool entries for
5340 constants and this is a constant, try making a
5341 pool entry. Put it in src_folded unless we already have done
5342 this since that is where it likely came from. */
5343
5344 else if (constant_pool_entries_cost
5345 && CONSTANT_P (trial)
5346 && (src_folded == 0
5347 || (!MEM_P (src_folded)
5348 && ! src_folded_force_flag))
5349 && GET_MODE_CLASS (mode) != MODE_CC
5350 && mode != VOIDmode)
5351 {
5352 src_folded_force_flag = 1;
5353 src_folded = trial;
5354 src_folded_cost = constant_pool_entries_cost;
5355 src_folded_regcost = constant_pool_entries_regcost;
5356 }
5357 }
5358
5359 /* If we changed the insn too much, handle this set from scratch. */
5360 if (repeat)
5361 {
5362 i--;
5363 continue;
5364 }
5365
5366 src = SET_SRC (sets[i].rtl);
5367
5368 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5369 However, there is an important exception: If both are registers
5370 that are not the head of their equivalence class, replace SET_SRC
5371 with the head of the class. If we do not do this, we will have
5372 both registers live over a portion of the basic block. This way,
5373 their lifetimes will likely abut instead of overlapping. */
5374 if (REG_P (dest)
5375 && REGNO_QTY_VALID_P (REGNO (dest)))
5376 {
5377 int dest_q = REG_QTY (REGNO (dest));
5378 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5379
5380 if (dest_ent->mode == GET_MODE (dest)
5381 && dest_ent->first_reg != REGNO (dest)
5382 && REG_P (src) && REGNO (src) == REGNO (dest)
5383 /* Don't do this if the original insn had a hard reg as
5384 SET_SRC or SET_DEST. */
5385 && (!REG_P (sets[i].src)
5386 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5387 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5388 /* We can't call canon_reg here because it won't do anything if
5389 SRC is a hard register. */
5390 {
5391 int src_q = REG_QTY (REGNO (src));
5392 struct qty_table_elem *src_ent = &qty_table[src_q];
5393 int first = src_ent->first_reg;
5394 rtx new_src
5395 = (first >= FIRST_PSEUDO_REGISTER
5396 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5397
5398 /* We must use validate-change even for this, because this
5399 might be a special no-op instruction, suitable only to
5400 tag notes onto. */
5401 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5402 {
5403 src = new_src;
5404 /* If we had a constant that is cheaper than what we are now
5405 setting SRC to, use that constant. We ignored it when we
5406 thought we could make this into a no-op. */
5407 if (src_const && COST (src_const, mode) < COST (src, mode)
5408 && validate_change (insn, &SET_SRC (sets[i].rtl),
5409 src_const, 0))
5410 src = src_const;
5411 }
5412 }
5413 }
5414
5415 /* If we made a change, recompute SRC values. */
5416 if (src != sets[i].src)
5417 {
5418 do_not_record = 0;
5419 hash_arg_in_memory = 0;
5420 sets[i].src = src;
5421 sets[i].src_hash = HASH (src, mode);
5422 sets[i].src_volatile = do_not_record;
5423 sets[i].src_in_memory = hash_arg_in_memory;
5424 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5425 }
5426
5427 /* If this is a single SET, we are setting a register, and we have an
5428 equivalent constant, we want to add a REG_EQUAL note if the constant
5429 is different from the source. We don't want to do it for a constant
5430 pseudo since verifying that this pseudo hasn't been eliminated is a
5431 pain; moreover such a note won't help anything.
5432
5433 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5434 which can be created for a reference to a compile time computable
5435 entry in a jump table. */
5436 if (n_sets == 1
5437 && REG_P (dest)
5438 && src_const
5439 && !REG_P (src_const)
5440 && !(GET_CODE (src_const) == SUBREG
5441 && REG_P (SUBREG_REG (src_const)))
5442 && !(GET_CODE (src_const) == CONST
5443 && GET_CODE (XEXP (src_const, 0)) == MINUS
5444 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5445 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5446 && !rtx_equal_p (src, src_const))
5447 {
5448 /* Make sure that the rtx is not shared. */
5449 src_const = copy_rtx (src_const);
5450
5451 /* Record the actual constant value in a REG_EQUAL note,
5452 making a new one if one does not already exist. */
5453 set_unique_reg_note (insn, REG_EQUAL, src_const);
5454 df_notes_rescan (insn);
5455 }
5456
5457 /* Now deal with the destination. */
5458 do_not_record = 0;
5459
5460 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5461 while (GET_CODE (dest) == SUBREG
5462 || GET_CODE (dest) == ZERO_EXTRACT
5463 || GET_CODE (dest) == STRICT_LOW_PART)
5464 dest = XEXP (dest, 0);
5465
5466 sets[i].inner_dest = dest;
5467
5468 if (MEM_P (dest))
5469 {
5470 #ifdef PUSH_ROUNDING
5471 /* Stack pushes invalidate the stack pointer. */
5472 rtx addr = XEXP (dest, 0);
5473 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5474 && XEXP (addr, 0) == stack_pointer_rtx)
5475 invalidate (stack_pointer_rtx, VOIDmode);
5476 #endif
5477 dest = fold_rtx (dest, insn);
5478 }
5479
5480 /* Compute the hash code of the destination now,
5481 before the effects of this instruction are recorded,
5482 since the register values used in the address computation
5483 are those before this instruction. */
5484 sets[i].dest_hash = HASH (dest, mode);
5485
5486 /* Don't enter a bit-field in the hash table
5487 because the value in it after the store
5488 may not equal what was stored, due to truncation. */
5489
5490 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5491 {
5492 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5493
5494 if (src_const != 0 && CONST_INT_P (src_const)
5495 && CONST_INT_P (width)
5496 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5497 && ! (INTVAL (src_const)
5498 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5499 /* Exception: if the value is constant,
5500 and it won't be truncated, record it. */
5501 ;
5502 else
5503 {
5504 /* This is chosen so that the destination will be invalidated
5505 but no new value will be recorded.
5506 We must invalidate because sometimes constant
5507 values can be recorded for bitfields. */
5508 sets[i].src_elt = 0;
5509 sets[i].src_volatile = 1;
5510 src_eqv = 0;
5511 src_eqv_elt = 0;
5512 }
5513 }
5514
5515 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5516 the insn. */
5517 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5518 {
5519 /* One less use of the label this insn used to jump to. */
5520 cse_cfg_altered |= delete_insn_and_edges (insn);
5521 cse_jumps_altered = true;
5522 /* No more processing for this set. */
5523 sets[i].rtl = 0;
5524 }
5525
5526 /* Similarly for no-op MEM moves. */
5527 else if (mem_noop_insn)
5528 {
5529 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5530 cse_cfg_altered = true;
5531 cse_cfg_altered |= delete_insn_and_edges (insn);
5532 /* No more processing for this set. */
5533 sets[i].rtl = 0;
5534 }
5535
5536 /* If this SET is now setting PC to a label, we know it used to
5537 be a conditional or computed branch. */
5538 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5539 && !LABEL_REF_NONLOCAL_P (src))
5540 {
5541 /* We reemit the jump in as many cases as possible just in
5542 case the form of an unconditional jump is significantly
5543 different than a computed jump or conditional jump.
5544
5545 If this insn has multiple sets, then reemitting the
5546 jump is nontrivial. So instead we just force rerecognition
5547 and hope for the best. */
5548 if (n_sets == 1)
5549 {
5550 rtx_jump_insn *new_rtx;
5551 rtx note;
5552
5553 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5554 new_rtx = emit_jump_insn_before (seq, insn);
5555 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5556 LABEL_NUSES (XEXP (src, 0))++;
5557
5558 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5559 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5560 if (note)
5561 {
5562 XEXP (note, 1) = NULL_RTX;
5563 REG_NOTES (new_rtx) = note;
5564 }
5565
5566 cse_cfg_altered |= delete_insn_and_edges (insn);
5567 insn = new_rtx;
5568 }
5569 else
5570 INSN_CODE (insn) = -1;
5571
5572 /* Do not bother deleting any unreachable code, let jump do it. */
5573 cse_jumps_altered = true;
5574 sets[i].rtl = 0;
5575 }
5576
5577 /* If destination is volatile, invalidate it and then do no further
5578 processing for this assignment. */
5579
5580 else if (do_not_record)
5581 {
5582 invalidate_dest (dest);
5583 sets[i].rtl = 0;
5584 }
5585
5586 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5587 {
5588 do_not_record = 0;
5589 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5590 if (do_not_record)
5591 {
5592 invalidate_dest (SET_DEST (sets[i].rtl));
5593 sets[i].rtl = 0;
5594 }
5595 }
5596
5597 /* If setting CC0, record what it was set to, or a constant, if it
5598 is equivalent to a constant. If it is being set to a floating-point
5599 value, make a COMPARE with the appropriate constant of 0. If we
5600 don't do this, later code can interpret this as a test against
5601 const0_rtx, which can cause problems if we try to put it into an
5602 insn as a floating-point operand. */
5603 if (dest == cc0_rtx)
5604 {
5605 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5606 this_insn_cc0_mode = mode;
5607 if (FLOAT_MODE_P (mode))
5608 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5609 CONST0_RTX (mode));
5610 }
5611 }
5612
5613 /* Now enter all non-volatile source expressions in the hash table
5614 if they are not already present.
5615 Record their equivalence classes in src_elt.
5616 This way we can insert the corresponding destinations into
5617 the same classes even if the actual sources are no longer in them
5618 (having been invalidated). */
5619
5620 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5621 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5622 {
5623 struct table_elt *elt;
5624 struct table_elt *classp = sets[0].src_elt;
5625 rtx dest = SET_DEST (sets[0].rtl);
5626 machine_mode eqvmode = GET_MODE (dest);
5627
5628 if (GET_CODE (dest) == STRICT_LOW_PART)
5629 {
5630 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5631 classp = 0;
5632 }
5633 if (insert_regs (src_eqv, classp, 0))
5634 {
5635 rehash_using_reg (src_eqv);
5636 src_eqv_hash = HASH (src_eqv, eqvmode);
5637 }
5638 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5639 elt->in_memory = src_eqv_in_memory;
5640 src_eqv_elt = elt;
5641
5642 /* Check to see if src_eqv_elt is the same as a set source which
5643 does not yet have an elt, and if so set the elt of the set source
5644 to src_eqv_elt. */
5645 for (i = 0; i < n_sets; i++)
5646 if (sets[i].rtl && sets[i].src_elt == 0
5647 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5648 sets[i].src_elt = src_eqv_elt;
5649 }
5650
5651 for (i = 0; i < n_sets; i++)
5652 if (sets[i].rtl && ! sets[i].src_volatile
5653 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5654 {
5655 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5656 {
5657 /* REG_EQUAL in setting a STRICT_LOW_PART
5658 gives an equivalent for the entire destination register,
5659 not just for the subreg being stored in now.
5660 This is a more interesting equivalence, so we arrange later
5661 to treat the entire reg as the destination. */
5662 sets[i].src_elt = src_eqv_elt;
5663 sets[i].src_hash = src_eqv_hash;
5664 }
5665 else
5666 {
5667 /* Insert source and constant equivalent into hash table, if not
5668 already present. */
5669 struct table_elt *classp = src_eqv_elt;
5670 rtx src = sets[i].src;
5671 rtx dest = SET_DEST (sets[i].rtl);
5672 machine_mode mode
5673 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5674
5675 /* It's possible that we have a source value known to be
5676 constant but don't have a REG_EQUAL note on the insn.
5677 Lack of a note will mean src_eqv_elt will be NULL. This
5678 can happen where we've generated a SUBREG to access a
5679 CONST_INT that is already in a register in a wider mode.
5680 Ensure that the source expression is put in the proper
5681 constant class. */
5682 if (!classp)
5683 classp = sets[i].src_const_elt;
5684
5685 if (sets[i].src_elt == 0)
5686 {
5687 struct table_elt *elt;
5688
5689 /* Note that these insert_regs calls cannot remove
5690 any of the src_elt's, because they would have failed to
5691 match if not still valid. */
5692 if (insert_regs (src, classp, 0))
5693 {
5694 rehash_using_reg (src);
5695 sets[i].src_hash = HASH (src, mode);
5696 }
5697 elt = insert (src, classp, sets[i].src_hash, mode);
5698 elt->in_memory = sets[i].src_in_memory;
5699 /* If inline asm has any clobbers, ensure we only reuse
5700 existing inline asms and never try to put the ASM_OPERANDS
5701 into an insn that isn't inline asm. */
5702 if (GET_CODE (src) == ASM_OPERANDS
5703 && GET_CODE (x) == PARALLEL)
5704 elt->cost = MAX_COST;
5705 sets[i].src_elt = classp = elt;
5706 }
5707 if (sets[i].src_const && sets[i].src_const_elt == 0
5708 && src != sets[i].src_const
5709 && ! rtx_equal_p (sets[i].src_const, src))
5710 sets[i].src_elt = insert (sets[i].src_const, classp,
5711 sets[i].src_const_hash, mode);
5712 }
5713 }
5714 else if (sets[i].src_elt == 0)
5715 /* If we did not insert the source into the hash table (e.g., it was
5716 volatile), note the equivalence class for the REG_EQUAL value, if any,
5717 so that the destination goes into that class. */
5718 sets[i].src_elt = src_eqv_elt;
5719
5720 /* Record destination addresses in the hash table. This allows us to
5721 check if they are invalidated by other sets. */
5722 for (i = 0; i < n_sets; i++)
5723 {
5724 if (sets[i].rtl)
5725 {
5726 rtx x = sets[i].inner_dest;
5727 struct table_elt *elt;
5728 machine_mode mode;
5729 unsigned hash;
5730
5731 if (MEM_P (x))
5732 {
5733 x = XEXP (x, 0);
5734 mode = GET_MODE (x);
5735 hash = HASH (x, mode);
5736 elt = lookup (x, hash, mode);
5737 if (!elt)
5738 {
5739 if (insert_regs (x, NULL, 0))
5740 {
5741 rtx dest = SET_DEST (sets[i].rtl);
5742
5743 rehash_using_reg (x);
5744 hash = HASH (x, mode);
5745 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5746 }
5747 elt = insert (x, NULL, hash, mode);
5748 }
5749
5750 sets[i].dest_addr_elt = elt;
5751 }
5752 else
5753 sets[i].dest_addr_elt = NULL;
5754 }
5755 }
5756
5757 invalidate_from_clobbers (insn);
5758
5759 /* Some registers are invalidated by subroutine calls. Memory is
5760 invalidated by non-constant calls. */
5761
5762 if (CALL_P (insn))
5763 {
5764 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5765 invalidate_memory ();
5766 else
5767 /* For const/pure calls, invalidate any argument slots, because
5768 those are owned by the callee. */
5769 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
5770 if (GET_CODE (XEXP (tem, 0)) == USE
5771 && MEM_P (XEXP (XEXP (tem, 0), 0)))
5772 invalidate (XEXP (XEXP (tem, 0), 0), VOIDmode);
5773 invalidate_for_call ();
5774 }
5775
5776 /* Now invalidate everything set by this instruction.
5777 If a SUBREG or other funny destination is being set,
5778 sets[i].rtl is still nonzero, so here we invalidate the reg
5779 a part of which is being set. */
5780
5781 for (i = 0; i < n_sets; i++)
5782 if (sets[i].rtl)
5783 {
5784 /* We can't use the inner dest, because the mode associated with
5785 a ZERO_EXTRACT is significant. */
5786 rtx dest = SET_DEST (sets[i].rtl);
5787
5788 /* Needed for registers to remove the register from its
5789 previous quantity's chain.
5790 Needed for memory if this is a nonvarying address, unless
5791 we have just done an invalidate_memory that covers even those. */
5792 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5793 invalidate (dest, VOIDmode);
5794 else if (MEM_P (dest))
5795 invalidate (dest, VOIDmode);
5796 else if (GET_CODE (dest) == STRICT_LOW_PART
5797 || GET_CODE (dest) == ZERO_EXTRACT)
5798 invalidate (XEXP (dest, 0), GET_MODE (dest));
5799 }
5800
5801 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5802 the regs restored by the longjmp come from a later time
5803 than the setjmp. */
5804 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5805 {
5806 flush_hash_table ();
5807 goto done;
5808 }
5809
5810 /* Make sure registers mentioned in destinations
5811 are safe for use in an expression to be inserted.
5812 This removes from the hash table
5813 any invalid entry that refers to one of these registers.
5814
5815 We don't care about the return value from mention_regs because
5816 we are going to hash the SET_DEST values unconditionally. */
5817
5818 for (i = 0; i < n_sets; i++)
5819 {
5820 if (sets[i].rtl)
5821 {
5822 rtx x = SET_DEST (sets[i].rtl);
5823
5824 if (!REG_P (x))
5825 mention_regs (x);
5826 else
5827 {
5828 /* We used to rely on all references to a register becoming
5829 inaccessible when a register changes to a new quantity,
5830 since that changes the hash code. However, that is not
5831 safe, since after HASH_SIZE new quantities we get a
5832 hash 'collision' of a register with its own invalid
5833 entries. And since SUBREGs have been changed not to
5834 change their hash code with the hash code of the register,
5835 it wouldn't work any longer at all. So we have to check
5836 for any invalid references lying around now.
5837 This code is similar to the REG case in mention_regs,
5838 but it knows that reg_tick has been incremented, and
5839 it leaves reg_in_table as -1 . */
5840 unsigned int regno = REGNO (x);
5841 unsigned int endregno = END_REGNO (x);
5842 unsigned int i;
5843
5844 for (i = regno; i < endregno; i++)
5845 {
5846 if (REG_IN_TABLE (i) >= 0)
5847 {
5848 remove_invalid_refs (i);
5849 REG_IN_TABLE (i) = -1;
5850 }
5851 }
5852 }
5853 }
5854 }
5855
5856 /* We may have just removed some of the src_elt's from the hash table.
5857 So replace each one with the current head of the same class.
5858 Also check if destination addresses have been removed. */
5859
5860 for (i = 0; i < n_sets; i++)
5861 if (sets[i].rtl)
5862 {
5863 if (sets[i].dest_addr_elt
5864 && sets[i].dest_addr_elt->first_same_value == 0)
5865 {
5866 /* The elt was removed, which means this destination is not
5867 valid after this instruction. */
5868 sets[i].rtl = NULL_RTX;
5869 }
5870 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5871 /* If elt was removed, find current head of same class,
5872 or 0 if nothing remains of that class. */
5873 {
5874 struct table_elt *elt = sets[i].src_elt;
5875
5876 while (elt && elt->prev_same_value)
5877 elt = elt->prev_same_value;
5878
5879 while (elt && elt->first_same_value == 0)
5880 elt = elt->next_same_value;
5881 sets[i].src_elt = elt ? elt->first_same_value : 0;
5882 }
5883 }
5884
5885 /* Now insert the destinations into their equivalence classes. */
5886
5887 for (i = 0; i < n_sets; i++)
5888 if (sets[i].rtl)
5889 {
5890 rtx dest = SET_DEST (sets[i].rtl);
5891 struct table_elt *elt;
5892
5893 /* Don't record value if we are not supposed to risk allocating
5894 floating-point values in registers that might be wider than
5895 memory. */
5896 if ((flag_float_store
5897 && MEM_P (dest)
5898 && FLOAT_MODE_P (GET_MODE (dest)))
5899 /* Don't record BLKmode values, because we don't know the
5900 size of it, and can't be sure that other BLKmode values
5901 have the same or smaller size. */
5902 || GET_MODE (dest) == BLKmode
5903 /* If we didn't put a REG_EQUAL value or a source into the hash
5904 table, there is no point is recording DEST. */
5905 || sets[i].src_elt == 0)
5906 continue;
5907
5908 /* STRICT_LOW_PART isn't part of the value BEING set,
5909 and neither is the SUBREG inside it.
5910 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5911 if (GET_CODE (dest) == STRICT_LOW_PART)
5912 dest = SUBREG_REG (XEXP (dest, 0));
5913
5914 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5915 /* Registers must also be inserted into chains for quantities. */
5916 if (insert_regs (dest, sets[i].src_elt, 1))
5917 {
5918 /* If `insert_regs' changes something, the hash code must be
5919 recalculated. */
5920 rehash_using_reg (dest);
5921 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5922 }
5923
5924 /* If DEST is a paradoxical SUBREG, don't record DEST since the bits
5925 outside the mode of GET_MODE (SUBREG_REG (dest)) are undefined. */
5926 if (paradoxical_subreg_p (dest))
5927 continue;
5928
5929 elt = insert (dest, sets[i].src_elt,
5930 sets[i].dest_hash, GET_MODE (dest));
5931
5932 /* If this is a constant, insert the constant anchors with the
5933 equivalent register-offset expressions using register DEST. */
5934 if (targetm.const_anchor
5935 && REG_P (dest)
5936 && SCALAR_INT_MODE_P (GET_MODE (dest))
5937 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5938 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5939
5940 elt->in_memory = (MEM_P (sets[i].inner_dest)
5941 && !MEM_READONLY_P (sets[i].inner_dest));
5942
5943 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5944 narrower than M2, and both M1 and M2 are the same number of words,
5945 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5946 make that equivalence as well.
5947
5948 However, BAR may have equivalences for which gen_lowpart
5949 will produce a simpler value than gen_lowpart applied to
5950 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5951 BAR's equivalences. If we don't get a simplified form, make
5952 the SUBREG. It will not be used in an equivalence, but will
5953 cause two similar assignments to be detected.
5954
5955 Note the loop below will find SUBREG_REG (DEST) since we have
5956 already entered SRC and DEST of the SET in the table. */
5957
5958 if (GET_CODE (dest) == SUBREG
5959 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5960 / UNITS_PER_WORD)
5961 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5962 && (GET_MODE_SIZE (GET_MODE (dest))
5963 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5964 && sets[i].src_elt != 0)
5965 {
5966 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5967 struct table_elt *elt, *classp = 0;
5968
5969 for (elt = sets[i].src_elt->first_same_value; elt;
5970 elt = elt->next_same_value)
5971 {
5972 rtx new_src = 0;
5973 unsigned src_hash;
5974 struct table_elt *src_elt;
5975 int byte = 0;
5976
5977 /* Ignore invalid entries. */
5978 if (!REG_P (elt->exp)
5979 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5980 continue;
5981
5982 /* We may have already been playing subreg games. If the
5983 mode is already correct for the destination, use it. */
5984 if (GET_MODE (elt->exp) == new_mode)
5985 new_src = elt->exp;
5986 else
5987 {
5988 /* Calculate big endian correction for the SUBREG_BYTE.
5989 We have already checked that M1 (GET_MODE (dest))
5990 is not narrower than M2 (new_mode). */
5991 if (BYTES_BIG_ENDIAN)
5992 byte = (GET_MODE_SIZE (GET_MODE (dest))
5993 - GET_MODE_SIZE (new_mode));
5994
5995 new_src = simplify_gen_subreg (new_mode, elt->exp,
5996 GET_MODE (dest), byte);
5997 }
5998
5999 /* The call to simplify_gen_subreg fails if the value
6000 is VOIDmode, yet we can't do any simplification, e.g.
6001 for EXPR_LISTs denoting function call results.
6002 It is invalid to construct a SUBREG with a VOIDmode
6003 SUBREG_REG, hence a zero new_src means we can't do
6004 this substitution. */
6005 if (! new_src)
6006 continue;
6007
6008 src_hash = HASH (new_src, new_mode);
6009 src_elt = lookup (new_src, src_hash, new_mode);
6010
6011 /* Put the new source in the hash table is if isn't
6012 already. */
6013 if (src_elt == 0)
6014 {
6015 if (insert_regs (new_src, classp, 0))
6016 {
6017 rehash_using_reg (new_src);
6018 src_hash = HASH (new_src, new_mode);
6019 }
6020 src_elt = insert (new_src, classp, src_hash, new_mode);
6021 src_elt->in_memory = elt->in_memory;
6022 if (GET_CODE (new_src) == ASM_OPERANDS
6023 && elt->cost == MAX_COST)
6024 src_elt->cost = MAX_COST;
6025 }
6026 else if (classp && classp != src_elt->first_same_value)
6027 /* Show that two things that we've seen before are
6028 actually the same. */
6029 merge_equiv_classes (src_elt, classp);
6030
6031 classp = src_elt->first_same_value;
6032 /* Ignore invalid entries. */
6033 while (classp
6034 && !REG_P (classp->exp)
6035 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6036 classp = classp->next_same_value;
6037 }
6038 }
6039 }
6040
6041 /* Special handling for (set REG0 REG1) where REG0 is the
6042 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6043 be used in the sequel, so (if easily done) change this insn to
6044 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6045 that computed their value. Then REG1 will become a dead store
6046 and won't cloud the situation for later optimizations.
6047
6048 Do not make this change if REG1 is a hard register, because it will
6049 then be used in the sequel and we may be changing a two-operand insn
6050 into a three-operand insn.
6051
6052 Also do not do this if we are operating on a copy of INSN. */
6053
6054 if (n_sets == 1 && sets[0].rtl)
6055 try_back_substitute_reg (sets[0].rtl, insn);
6056
6057 done:;
6058 }
6059 \f
6060 /* Remove from the hash table all expressions that reference memory. */
6061
6062 static void
6063 invalidate_memory (void)
6064 {
6065 int i;
6066 struct table_elt *p, *next;
6067
6068 for (i = 0; i < HASH_SIZE; i++)
6069 for (p = table[i]; p; p = next)
6070 {
6071 next = p->next_same_hash;
6072 if (p->in_memory)
6073 remove_from_table (p, i);
6074 }
6075 }
6076
6077 /* Perform invalidation on the basis of everything about INSN,
6078 except for invalidating the actual places that are SET in it.
6079 This includes the places CLOBBERed, and anything that might
6080 alias with something that is SET or CLOBBERed. */
6081
6082 static void
6083 invalidate_from_clobbers (rtx_insn *insn)
6084 {
6085 rtx x = PATTERN (insn);
6086
6087 if (GET_CODE (x) == CLOBBER)
6088 {
6089 rtx ref = XEXP (x, 0);
6090 if (ref)
6091 {
6092 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6093 || MEM_P (ref))
6094 invalidate (ref, VOIDmode);
6095 else if (GET_CODE (ref) == STRICT_LOW_PART
6096 || GET_CODE (ref) == ZERO_EXTRACT)
6097 invalidate (XEXP (ref, 0), GET_MODE (ref));
6098 }
6099 }
6100 else if (GET_CODE (x) == PARALLEL)
6101 {
6102 int i;
6103 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6104 {
6105 rtx y = XVECEXP (x, 0, i);
6106 if (GET_CODE (y) == CLOBBER)
6107 {
6108 rtx ref = XEXP (y, 0);
6109 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6110 || MEM_P (ref))
6111 invalidate (ref, VOIDmode);
6112 else if (GET_CODE (ref) == STRICT_LOW_PART
6113 || GET_CODE (ref) == ZERO_EXTRACT)
6114 invalidate (XEXP (ref, 0), GET_MODE (ref));
6115 }
6116 }
6117 }
6118 }
6119 \f
6120 /* Perform invalidation on the basis of everything about INSN.
6121 This includes the places CLOBBERed, and anything that might
6122 alias with something that is SET or CLOBBERed. */
6123
6124 static void
6125 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6126 {
6127 rtx tem;
6128 rtx x = PATTERN (insn);
6129
6130 if (CALL_P (insn))
6131 {
6132 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6133 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6134 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6135 }
6136
6137 /* Ensure we invalidate the destination register of a CALL insn.
6138 This is necessary for machines where this register is a fixed_reg,
6139 because no other code would invalidate it. */
6140 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6141 invalidate (SET_DEST (x), VOIDmode);
6142
6143 else if (GET_CODE (x) == PARALLEL)
6144 {
6145 int i;
6146
6147 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6148 {
6149 rtx y = XVECEXP (x, 0, i);
6150 if (GET_CODE (y) == CLOBBER)
6151 {
6152 rtx clobbered = XEXP (y, 0);
6153
6154 if (REG_P (clobbered)
6155 || GET_CODE (clobbered) == SUBREG)
6156 invalidate (clobbered, VOIDmode);
6157 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6158 || GET_CODE (clobbered) == ZERO_EXTRACT)
6159 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6160 }
6161 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6162 invalidate (SET_DEST (y), VOIDmode);
6163 }
6164 }
6165 }
6166 \f
6167 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6168 and replace any registers in them with either an equivalent constant
6169 or the canonical form of the register. If we are inside an address,
6170 only do this if the address remains valid.
6171
6172 OBJECT is 0 except when within a MEM in which case it is the MEM.
6173
6174 Return the replacement for X. */
6175
6176 static rtx
6177 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6178 {
6179 enum rtx_code code = GET_CODE (x);
6180 const char *fmt = GET_RTX_FORMAT (code);
6181 int i;
6182
6183 switch (code)
6184 {
6185 case CONST:
6186 case SYMBOL_REF:
6187 case LABEL_REF:
6188 CASE_CONST_ANY:
6189 case PC:
6190 case CC0:
6191 case LO_SUM:
6192 return x;
6193
6194 case MEM:
6195 validate_change (x, &XEXP (x, 0),
6196 cse_process_notes (XEXP (x, 0), x, changed), 0);
6197 return x;
6198
6199 case EXPR_LIST:
6200 if (REG_NOTE_KIND (x) == REG_EQUAL)
6201 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6202 /* Fall through. */
6203
6204 case INSN_LIST:
6205 case INT_LIST:
6206 if (XEXP (x, 1))
6207 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6208 return x;
6209
6210 case SIGN_EXTEND:
6211 case ZERO_EXTEND:
6212 case SUBREG:
6213 {
6214 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6215 /* We don't substitute VOIDmode constants into these rtx,
6216 since they would impede folding. */
6217 if (GET_MODE (new_rtx) != VOIDmode)
6218 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6219 return x;
6220 }
6221
6222 case UNSIGNED_FLOAT:
6223 {
6224 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6225 /* We don't substitute negative VOIDmode constants into these rtx,
6226 since they would impede folding. */
6227 if (GET_MODE (new_rtx) != VOIDmode
6228 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6229 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6230 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6231 return x;
6232 }
6233
6234 case REG:
6235 i = REG_QTY (REGNO (x));
6236
6237 /* Return a constant or a constant register. */
6238 if (REGNO_QTY_VALID_P (REGNO (x)))
6239 {
6240 struct qty_table_elem *ent = &qty_table[i];
6241
6242 if (ent->const_rtx != NULL_RTX
6243 && (CONSTANT_P (ent->const_rtx)
6244 || REG_P (ent->const_rtx)))
6245 {
6246 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6247 if (new_rtx)
6248 return copy_rtx (new_rtx);
6249 }
6250 }
6251
6252 /* Otherwise, canonicalize this register. */
6253 return canon_reg (x, NULL);
6254
6255 default:
6256 break;
6257 }
6258
6259 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6260 if (fmt[i] == 'e')
6261 validate_change (object, &XEXP (x, i),
6262 cse_process_notes (XEXP (x, i), object, changed), 0);
6263
6264 return x;
6265 }
6266
6267 static rtx
6268 cse_process_notes (rtx x, rtx object, bool *changed)
6269 {
6270 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6271 if (new_rtx != x)
6272 *changed = true;
6273 return new_rtx;
6274 }
6275
6276 \f
6277 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6278
6279 DATA is a pointer to a struct cse_basic_block_data, that is used to
6280 describe the path.
6281 It is filled with a queue of basic blocks, starting with FIRST_BB
6282 and following a trace through the CFG.
6283
6284 If all paths starting at FIRST_BB have been followed, or no new path
6285 starting at FIRST_BB can be constructed, this function returns FALSE.
6286 Otherwise, DATA->path is filled and the function returns TRUE indicating
6287 that a path to follow was found.
6288
6289 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6290 block in the path will be FIRST_BB. */
6291
6292 static bool
6293 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6294 int follow_jumps)
6295 {
6296 basic_block bb;
6297 edge e;
6298 int path_size;
6299
6300 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6301
6302 /* See if there is a previous path. */
6303 path_size = data->path_size;
6304
6305 /* There is a previous path. Make sure it started with FIRST_BB. */
6306 if (path_size)
6307 gcc_assert (data->path[0].bb == first_bb);
6308
6309 /* There was only one basic block in the last path. Clear the path and
6310 return, so that paths starting at another basic block can be tried. */
6311 if (path_size == 1)
6312 {
6313 path_size = 0;
6314 goto done;
6315 }
6316
6317 /* If the path was empty from the beginning, construct a new path. */
6318 if (path_size == 0)
6319 data->path[path_size++].bb = first_bb;
6320 else
6321 {
6322 /* Otherwise, path_size must be equal to or greater than 2, because
6323 a previous path exists that is at least two basic blocks long.
6324
6325 Update the previous branch path, if any. If the last branch was
6326 previously along the branch edge, take the fallthrough edge now. */
6327 while (path_size >= 2)
6328 {
6329 basic_block last_bb_in_path, previous_bb_in_path;
6330 edge e;
6331
6332 --path_size;
6333 last_bb_in_path = data->path[path_size].bb;
6334 previous_bb_in_path = data->path[path_size - 1].bb;
6335
6336 /* If we previously followed a path along the branch edge, try
6337 the fallthru edge now. */
6338 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6339 && any_condjump_p (BB_END (previous_bb_in_path))
6340 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6341 && e == BRANCH_EDGE (previous_bb_in_path))
6342 {
6343 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6344 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6345 && single_pred_p (bb)
6346 /* We used to assert here that we would only see blocks
6347 that we have not visited yet. But we may end up
6348 visiting basic blocks twice if the CFG has changed
6349 in this run of cse_main, because when the CFG changes
6350 the topological sort of the CFG also changes. A basic
6351 blocks that previously had more than two predecessors
6352 may now have a single predecessor, and become part of
6353 a path that starts at another basic block.
6354
6355 We still want to visit each basic block only once, so
6356 halt the path here if we have already visited BB. */
6357 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6358 {
6359 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6360 data->path[path_size++].bb = bb;
6361 break;
6362 }
6363 }
6364
6365 data->path[path_size].bb = NULL;
6366 }
6367
6368 /* If only one block remains in the path, bail. */
6369 if (path_size == 1)
6370 {
6371 path_size = 0;
6372 goto done;
6373 }
6374 }
6375
6376 /* Extend the path if possible. */
6377 if (follow_jumps)
6378 {
6379 bb = data->path[path_size - 1].bb;
6380 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6381 {
6382 if (single_succ_p (bb))
6383 e = single_succ_edge (bb);
6384 else if (EDGE_COUNT (bb->succs) == 2
6385 && any_condjump_p (BB_END (bb)))
6386 {
6387 /* First try to follow the branch. If that doesn't lead
6388 to a useful path, follow the fallthru edge. */
6389 e = BRANCH_EDGE (bb);
6390 if (!single_pred_p (e->dest))
6391 e = FALLTHRU_EDGE (bb);
6392 }
6393 else
6394 e = NULL;
6395
6396 if (e
6397 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6398 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6399 && single_pred_p (e->dest)
6400 /* Avoid visiting basic blocks twice. The large comment
6401 above explains why this can happen. */
6402 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6403 {
6404 basic_block bb2 = e->dest;
6405 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6406 data->path[path_size++].bb = bb2;
6407 bb = bb2;
6408 }
6409 else
6410 bb = NULL;
6411 }
6412 }
6413
6414 done:
6415 data->path_size = path_size;
6416 return path_size != 0;
6417 }
6418 \f
6419 /* Dump the path in DATA to file F. NSETS is the number of sets
6420 in the path. */
6421
6422 static void
6423 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6424 {
6425 int path_entry;
6426
6427 fprintf (f, ";; Following path with %d sets: ", nsets);
6428 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6429 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6430 fputc ('\n', dump_file);
6431 fflush (f);
6432 }
6433
6434 \f
6435 /* Return true if BB has exception handling successor edges. */
6436
6437 static bool
6438 have_eh_succ_edges (basic_block bb)
6439 {
6440 edge e;
6441 edge_iterator ei;
6442
6443 FOR_EACH_EDGE (e, ei, bb->succs)
6444 if (e->flags & EDGE_EH)
6445 return true;
6446
6447 return false;
6448 }
6449
6450 \f
6451 /* Scan to the end of the path described by DATA. Return an estimate of
6452 the total number of SETs of all insns in the path. */
6453
6454 static void
6455 cse_prescan_path (struct cse_basic_block_data *data)
6456 {
6457 int nsets = 0;
6458 int path_size = data->path_size;
6459 int path_entry;
6460
6461 /* Scan to end of each basic block in the path. */
6462 for (path_entry = 0; path_entry < path_size; path_entry++)
6463 {
6464 basic_block bb;
6465 rtx_insn *insn;
6466
6467 bb = data->path[path_entry].bb;
6468
6469 FOR_BB_INSNS (bb, insn)
6470 {
6471 if (!INSN_P (insn))
6472 continue;
6473
6474 /* A PARALLEL can have lots of SETs in it,
6475 especially if it is really an ASM_OPERANDS. */
6476 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6477 nsets += XVECLEN (PATTERN (insn), 0);
6478 else
6479 nsets += 1;
6480 }
6481 }
6482
6483 data->nsets = nsets;
6484 }
6485 \f
6486 /* Return true if the pattern of INSN uses a LABEL_REF for which
6487 there isn't a REG_LABEL_OPERAND note. */
6488
6489 static bool
6490 check_for_label_ref (rtx_insn *insn)
6491 {
6492 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6493 note for it, we must rerun jump since it needs to place the note. If
6494 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6495 don't do this since no REG_LABEL_OPERAND will be added. */
6496 subrtx_iterator::array_type array;
6497 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6498 {
6499 const_rtx x = *iter;
6500 if (GET_CODE (x) == LABEL_REF
6501 && !LABEL_REF_NONLOCAL_P (x)
6502 && (!JUMP_P (insn)
6503 || !label_is_jump_target_p (label_ref_label (x), insn))
6504 && LABEL_P (label_ref_label (x))
6505 && INSN_UID (label_ref_label (x)) != 0
6506 && !find_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x)))
6507 return true;
6508 }
6509 return false;
6510 }
6511
6512 /* Process a single extended basic block described by EBB_DATA. */
6513
6514 static void
6515 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6516 {
6517 int path_size = ebb_data->path_size;
6518 int path_entry;
6519 int num_insns = 0;
6520
6521 /* Allocate the space needed by qty_table. */
6522 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6523
6524 new_basic_block ();
6525 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6526 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6527 for (path_entry = 0; path_entry < path_size; path_entry++)
6528 {
6529 basic_block bb;
6530 rtx_insn *insn;
6531
6532 bb = ebb_data->path[path_entry].bb;
6533
6534 /* Invalidate recorded information for eh regs if there is an EH
6535 edge pointing to that bb. */
6536 if (bb_has_eh_pred (bb))
6537 {
6538 df_ref def;
6539
6540 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6541 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6542 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6543 }
6544
6545 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6546 FOR_BB_INSNS (bb, insn)
6547 {
6548 /* If we have processed 1,000 insns, flush the hash table to
6549 avoid extreme quadratic behavior. We must not include NOTEs
6550 in the count since there may be more of them when generating
6551 debugging information. If we clear the table at different
6552 times, code generated with -g -O might be different than code
6553 generated with -O but not -g.
6554
6555 FIXME: This is a real kludge and needs to be done some other
6556 way. */
6557 if (NONDEBUG_INSN_P (insn)
6558 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6559 {
6560 flush_hash_table ();
6561 num_insns = 0;
6562 }
6563
6564 if (INSN_P (insn))
6565 {
6566 /* Process notes first so we have all notes in canonical forms
6567 when looking for duplicate operations. */
6568 if (REG_NOTES (insn))
6569 {
6570 bool changed = false;
6571 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6572 NULL_RTX, &changed);
6573 if (changed)
6574 df_notes_rescan (insn);
6575 }
6576
6577 cse_insn (insn);
6578
6579 /* If we haven't already found an insn where we added a LABEL_REF,
6580 check this one. */
6581 if (INSN_P (insn) && !recorded_label_ref
6582 && check_for_label_ref (insn))
6583 recorded_label_ref = true;
6584
6585 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6586 {
6587 /* If the previous insn sets CC0 and this insn no
6588 longer references CC0, delete the previous insn.
6589 Here we use fact that nothing expects CC0 to be
6590 valid over an insn, which is true until the final
6591 pass. */
6592 rtx_insn *prev_insn;
6593 rtx tem;
6594
6595 prev_insn = prev_nonnote_nondebug_insn (insn);
6596 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6597 && (tem = single_set (prev_insn)) != NULL_RTX
6598 && SET_DEST (tem) == cc0_rtx
6599 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6600 delete_insn (prev_insn);
6601
6602 /* If this insn is not the last insn in the basic
6603 block, it will be PREV_INSN(insn) in the next
6604 iteration. If we recorded any CC0-related
6605 information for this insn, remember it. */
6606 if (insn != BB_END (bb))
6607 {
6608 prev_insn_cc0 = this_insn_cc0;
6609 prev_insn_cc0_mode = this_insn_cc0_mode;
6610 }
6611 }
6612 }
6613 }
6614
6615 /* With non-call exceptions, we are not always able to update
6616 the CFG properly inside cse_insn. So clean up possibly
6617 redundant EH edges here. */
6618 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6619 cse_cfg_altered |= purge_dead_edges (bb);
6620
6621 /* If we changed a conditional jump, we may have terminated
6622 the path we are following. Check that by verifying that
6623 the edge we would take still exists. If the edge does
6624 not exist anymore, purge the remainder of the path.
6625 Note that this will cause us to return to the caller. */
6626 if (path_entry < path_size - 1)
6627 {
6628 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6629 if (!find_edge (bb, next_bb))
6630 {
6631 do
6632 {
6633 path_size--;
6634
6635 /* If we truncate the path, we must also reset the
6636 visited bit on the remaining blocks in the path,
6637 or we will never visit them at all. */
6638 bitmap_clear_bit (cse_visited_basic_blocks,
6639 ebb_data->path[path_size].bb->index);
6640 ebb_data->path[path_size].bb = NULL;
6641 }
6642 while (path_size - 1 != path_entry);
6643 ebb_data->path_size = path_size;
6644 }
6645 }
6646
6647 /* If this is a conditional jump insn, record any known
6648 equivalences due to the condition being tested. */
6649 insn = BB_END (bb);
6650 if (path_entry < path_size - 1
6651 && EDGE_COUNT (bb->succs) == 2
6652 && JUMP_P (insn)
6653 && single_set (insn)
6654 && any_condjump_p (insn))
6655 {
6656 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6657 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6658 record_jump_equiv (insn, taken);
6659 }
6660
6661 /* Clear the CC0-tracking related insns, they can't provide
6662 useful information across basic block boundaries. */
6663 prev_insn_cc0 = 0;
6664 }
6665
6666 gcc_assert (next_qty <= max_qty);
6667
6668 free (qty_table);
6669 }
6670
6671 \f
6672 /* Perform cse on the instructions of a function.
6673 F is the first instruction.
6674 NREGS is one plus the highest pseudo-reg number used in the instruction.
6675
6676 Return 2 if jump optimizations should be redone due to simplifications
6677 in conditional jump instructions.
6678 Return 1 if the CFG should be cleaned up because it has been modified.
6679 Return 0 otherwise. */
6680
6681 static int
6682 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6683 {
6684 struct cse_basic_block_data ebb_data;
6685 basic_block bb;
6686 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6687 int i, n_blocks;
6688
6689 /* CSE doesn't use dominane info but can invalidate it in different ways.
6690 For simplicity free dominance info here. */
6691 free_dominance_info (CDI_DOMINATORS);
6692
6693 df_set_flags (DF_LR_RUN_DCE);
6694 df_note_add_problem ();
6695 df_analyze ();
6696 df_set_flags (DF_DEFER_INSN_RESCAN);
6697
6698 reg_scan (get_insns (), max_reg_num ());
6699 init_cse_reg_info (nregs);
6700
6701 ebb_data.path = XNEWVEC (struct branch_path,
6702 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6703
6704 cse_cfg_altered = false;
6705 cse_jumps_altered = false;
6706 recorded_label_ref = false;
6707 constant_pool_entries_cost = 0;
6708 constant_pool_entries_regcost = 0;
6709 ebb_data.path_size = 0;
6710 ebb_data.nsets = 0;
6711 rtl_hooks = cse_rtl_hooks;
6712
6713 init_recog ();
6714 init_alias_analysis ();
6715
6716 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6717
6718 /* Set up the table of already visited basic blocks. */
6719 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6720 bitmap_clear (cse_visited_basic_blocks);
6721
6722 /* Loop over basic blocks in reverse completion order (RPO),
6723 excluding the ENTRY and EXIT blocks. */
6724 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6725 i = 0;
6726 while (i < n_blocks)
6727 {
6728 /* Find the first block in the RPO queue that we have not yet
6729 processed before. */
6730 do
6731 {
6732 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6733 }
6734 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6735 && i < n_blocks);
6736
6737 /* Find all paths starting with BB, and process them. */
6738 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6739 {
6740 /* Pre-scan the path. */
6741 cse_prescan_path (&ebb_data);
6742
6743 /* If this basic block has no sets, skip it. */
6744 if (ebb_data.nsets == 0)
6745 continue;
6746
6747 /* Get a reasonable estimate for the maximum number of qty's
6748 needed for this path. For this, we take the number of sets
6749 and multiply that by MAX_RECOG_OPERANDS. */
6750 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6751
6752 /* Dump the path we're about to process. */
6753 if (dump_file)
6754 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6755
6756 cse_extended_basic_block (&ebb_data);
6757 }
6758 }
6759
6760 /* Clean up. */
6761 end_alias_analysis ();
6762 free (reg_eqv_table);
6763 free (ebb_data.path);
6764 sbitmap_free (cse_visited_basic_blocks);
6765 free (rc_order);
6766 rtl_hooks = general_rtl_hooks;
6767
6768 if (cse_jumps_altered || recorded_label_ref)
6769 return 2;
6770 else if (cse_cfg_altered)
6771 return 1;
6772 else
6773 return 0;
6774 }
6775 \f
6776 /* Count the number of times registers are used (not set) in X.
6777 COUNTS is an array in which we accumulate the count, INCR is how much
6778 we count each register usage.
6779
6780 Don't count a usage of DEST, which is the SET_DEST of a SET which
6781 contains X in its SET_SRC. This is because such a SET does not
6782 modify the liveness of DEST.
6783 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6784 We must then count uses of a SET_DEST regardless, because the insn can't be
6785 deleted here. */
6786
6787 static void
6788 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6789 {
6790 enum rtx_code code;
6791 rtx note;
6792 const char *fmt;
6793 int i, j;
6794
6795 if (x == 0)
6796 return;
6797
6798 switch (code = GET_CODE (x))
6799 {
6800 case REG:
6801 if (x != dest)
6802 counts[REGNO (x)] += incr;
6803 return;
6804
6805 case PC:
6806 case CC0:
6807 case CONST:
6808 CASE_CONST_ANY:
6809 case SYMBOL_REF:
6810 case LABEL_REF:
6811 return;
6812
6813 case CLOBBER:
6814 /* If we are clobbering a MEM, mark any registers inside the address
6815 as being used. */
6816 if (MEM_P (XEXP (x, 0)))
6817 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6818 return;
6819
6820 case SET:
6821 /* Unless we are setting a REG, count everything in SET_DEST. */
6822 if (!REG_P (SET_DEST (x)))
6823 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6824 count_reg_usage (SET_SRC (x), counts,
6825 dest ? dest : SET_DEST (x),
6826 incr);
6827 return;
6828
6829 case DEBUG_INSN:
6830 return;
6831
6832 case CALL_INSN:
6833 case INSN:
6834 case JUMP_INSN:
6835 /* We expect dest to be NULL_RTX here. If the insn may throw,
6836 or if it cannot be deleted due to side-effects, mark this fact
6837 by setting DEST to pc_rtx. */
6838 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6839 || side_effects_p (PATTERN (x)))
6840 dest = pc_rtx;
6841 if (code == CALL_INSN)
6842 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6843 count_reg_usage (PATTERN (x), counts, dest, incr);
6844
6845 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6846 use them. */
6847
6848 note = find_reg_equal_equiv_note (x);
6849 if (note)
6850 {
6851 rtx eqv = XEXP (note, 0);
6852
6853 if (GET_CODE (eqv) == EXPR_LIST)
6854 /* This REG_EQUAL note describes the result of a function call.
6855 Process all the arguments. */
6856 do
6857 {
6858 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6859 eqv = XEXP (eqv, 1);
6860 }
6861 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6862 else
6863 count_reg_usage (eqv, counts, dest, incr);
6864 }
6865 return;
6866
6867 case EXPR_LIST:
6868 if (REG_NOTE_KIND (x) == REG_EQUAL
6869 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6870 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6871 involving registers in the address. */
6872 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6873 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6874
6875 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6876 return;
6877
6878 case ASM_OPERANDS:
6879 /* Iterate over just the inputs, not the constraints as well. */
6880 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6881 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6882 return;
6883
6884 case INSN_LIST:
6885 case INT_LIST:
6886 gcc_unreachable ();
6887
6888 default:
6889 break;
6890 }
6891
6892 fmt = GET_RTX_FORMAT (code);
6893 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6894 {
6895 if (fmt[i] == 'e')
6896 count_reg_usage (XEXP (x, i), counts, dest, incr);
6897 else if (fmt[i] == 'E')
6898 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6899 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6900 }
6901 }
6902 \f
6903 /* Return true if X is a dead register. */
6904
6905 static inline int
6906 is_dead_reg (const_rtx x, int *counts)
6907 {
6908 return (REG_P (x)
6909 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6910 && counts[REGNO (x)] == 0);
6911 }
6912
6913 /* Return true if set is live. */
6914 static bool
6915 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6916 int *counts)
6917 {
6918 rtx_insn *tem;
6919
6920 if (set_noop_p (set))
6921 ;
6922
6923 else if (GET_CODE (SET_DEST (set)) == CC0
6924 && !side_effects_p (SET_SRC (set))
6925 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6926 || !INSN_P (tem)
6927 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6928 return false;
6929 else if (!is_dead_reg (SET_DEST (set), counts)
6930 || side_effects_p (SET_SRC (set)))
6931 return true;
6932 return false;
6933 }
6934
6935 /* Return true if insn is live. */
6936
6937 static bool
6938 insn_live_p (rtx_insn *insn, int *counts)
6939 {
6940 int i;
6941 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6942 return true;
6943 else if (GET_CODE (PATTERN (insn)) == SET)
6944 return set_live_p (PATTERN (insn), insn, counts);
6945 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6946 {
6947 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6948 {
6949 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6950
6951 if (GET_CODE (elt) == SET)
6952 {
6953 if (set_live_p (elt, insn, counts))
6954 return true;
6955 }
6956 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6957 return true;
6958 }
6959 return false;
6960 }
6961 else if (DEBUG_INSN_P (insn))
6962 {
6963 rtx_insn *next;
6964
6965 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6966 if (NOTE_P (next))
6967 continue;
6968 else if (!DEBUG_INSN_P (next))
6969 return true;
6970 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6971 return false;
6972
6973 return true;
6974 }
6975 else
6976 return true;
6977 }
6978
6979 /* Count the number of stores into pseudo. Callback for note_stores. */
6980
6981 static void
6982 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6983 {
6984 int *counts = (int *) data;
6985 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6986 counts[REGNO (x)]++;
6987 }
6988
6989 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
6990 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
6991 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
6992 Set *SEEN_REPL to true if we see a dead register that does have
6993 a replacement. */
6994
6995 static bool
6996 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
6997 bool *seen_repl)
6998 {
6999 subrtx_iterator::array_type array;
7000 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
7001 {
7002 const_rtx x = *iter;
7003 if (is_dead_reg (x, counts))
7004 {
7005 if (replacements && replacements[REGNO (x)] != NULL_RTX)
7006 *seen_repl = true;
7007 else
7008 return true;
7009 }
7010 }
7011 return false;
7012 }
7013
7014 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
7015 Callback for simplify_replace_fn_rtx. */
7016
7017 static rtx
7018 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
7019 {
7020 rtx *replacements = (rtx *) data;
7021
7022 if (REG_P (x)
7023 && REGNO (x) >= FIRST_PSEUDO_REGISTER
7024 && replacements[REGNO (x)] != NULL_RTX)
7025 {
7026 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
7027 return replacements[REGNO (x)];
7028 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
7029 GET_MODE (replacements[REGNO (x)]));
7030 }
7031 return NULL_RTX;
7032 }
7033
7034 /* Scan all the insns and delete any that are dead; i.e., they store a register
7035 that is never used or they copy a register to itself.
7036
7037 This is used to remove insns made obviously dead by cse, loop or other
7038 optimizations. It improves the heuristics in loop since it won't try to
7039 move dead invariants out of loops or make givs for dead quantities. The
7040 remaining passes of the compilation are also sped up. */
7041
7042 int
7043 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
7044 {
7045 int *counts;
7046 rtx_insn *insn, *prev;
7047 rtx *replacements = NULL;
7048 int ndead = 0;
7049
7050 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7051 /* First count the number of times each register is used. */
7052 if (MAY_HAVE_DEBUG_INSNS)
7053 {
7054 counts = XCNEWVEC (int, nreg * 3);
7055 for (insn = insns; insn; insn = NEXT_INSN (insn))
7056 if (DEBUG_INSN_P (insn))
7057 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7058 NULL_RTX, 1);
7059 else if (INSN_P (insn))
7060 {
7061 count_reg_usage (insn, counts, NULL_RTX, 1);
7062 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
7063 }
7064 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
7065 First one counts how many times each pseudo is used outside
7066 of debug insns, second counts how many times each pseudo is
7067 used in debug insns and third counts how many times a pseudo
7068 is stored. */
7069 }
7070 else
7071 {
7072 counts = XCNEWVEC (int, nreg);
7073 for (insn = insns; insn; insn = NEXT_INSN (insn))
7074 if (INSN_P (insn))
7075 count_reg_usage (insn, counts, NULL_RTX, 1);
7076 /* If no debug insns can be present, COUNTS is just an array
7077 which counts how many times each pseudo is used. */
7078 }
7079 /* Pseudo PIC register should be considered as used due to possible
7080 new usages generated. */
7081 if (!reload_completed
7082 && pic_offset_table_rtx
7083 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7084 counts[REGNO (pic_offset_table_rtx)]++;
7085 /* Go from the last insn to the first and delete insns that only set unused
7086 registers or copy a register to itself. As we delete an insn, remove
7087 usage counts for registers it uses.
7088
7089 The first jump optimization pass may leave a real insn as the last
7090 insn in the function. We must not skip that insn or we may end
7091 up deleting code that is not really dead.
7092
7093 If some otherwise unused register is only used in DEBUG_INSNs,
7094 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7095 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7096 has been created for the unused register, replace it with
7097 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
7098 for (insn = get_last_insn (); insn; insn = prev)
7099 {
7100 int live_insn = 0;
7101
7102 prev = PREV_INSN (insn);
7103 if (!INSN_P (insn))
7104 continue;
7105
7106 live_insn = insn_live_p (insn, counts);
7107
7108 /* If this is a dead insn, delete it and show registers in it aren't
7109 being used. */
7110
7111 if (! live_insn && dbg_cnt (delete_trivial_dead))
7112 {
7113 if (DEBUG_INSN_P (insn))
7114 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7115 NULL_RTX, -1);
7116 else
7117 {
7118 rtx set;
7119 if (MAY_HAVE_DEBUG_INSNS
7120 && (set = single_set (insn)) != NULL_RTX
7121 && is_dead_reg (SET_DEST (set), counts)
7122 /* Used at least once in some DEBUG_INSN. */
7123 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7124 /* And set exactly once. */
7125 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7126 && !side_effects_p (SET_SRC (set))
7127 && asm_noperands (PATTERN (insn)) < 0)
7128 {
7129 rtx dval, bind_var_loc;
7130 rtx_insn *bind;
7131
7132 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7133 dval = make_debug_expr_from_rtl (SET_DEST (set));
7134
7135 /* Emit a debug bind insn before the insn in which
7136 reg dies. */
7137 bind_var_loc =
7138 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7139 DEBUG_EXPR_TREE_DECL (dval),
7140 SET_SRC (set),
7141 VAR_INIT_STATUS_INITIALIZED);
7142 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7143
7144 bind = emit_debug_insn_before (bind_var_loc, insn);
7145 df_insn_rescan (bind);
7146
7147 if (replacements == NULL)
7148 replacements = XCNEWVEC (rtx, nreg);
7149 replacements[REGNO (SET_DEST (set))] = dval;
7150 }
7151
7152 count_reg_usage (insn, counts, NULL_RTX, -1);
7153 ndead++;
7154 }
7155 cse_cfg_altered |= delete_insn_and_edges (insn);
7156 }
7157 }
7158
7159 if (MAY_HAVE_DEBUG_INSNS)
7160 {
7161 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7162 if (DEBUG_INSN_P (insn))
7163 {
7164 /* If this debug insn references a dead register that wasn't replaced
7165 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7166 bool seen_repl = false;
7167 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7168 counts, replacements, &seen_repl))
7169 {
7170 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7171 df_insn_rescan (insn);
7172 }
7173 else if (seen_repl)
7174 {
7175 INSN_VAR_LOCATION_LOC (insn)
7176 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7177 NULL_RTX, replace_dead_reg,
7178 replacements);
7179 df_insn_rescan (insn);
7180 }
7181 }
7182 free (replacements);
7183 }
7184
7185 if (dump_file && ndead)
7186 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7187 ndead);
7188 /* Clean up. */
7189 free (counts);
7190 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7191 return ndead;
7192 }
7193
7194 /* If LOC contains references to NEWREG in a different mode, change them
7195 to use NEWREG instead. */
7196
7197 static void
7198 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7199 rtx *loc, rtx_insn *insn, rtx newreg)
7200 {
7201 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7202 {
7203 rtx *loc = *iter;
7204 rtx x = *loc;
7205 if (x
7206 && REG_P (x)
7207 && REGNO (x) == REGNO (newreg)
7208 && GET_MODE (x) != GET_MODE (newreg))
7209 {
7210 validate_change (insn, loc, newreg, 1);
7211 iter.skip_subrtxes ();
7212 }
7213 }
7214 }
7215
7216 /* Change the mode of any reference to the register REGNO (NEWREG) to
7217 GET_MODE (NEWREG) in INSN. */
7218
7219 static void
7220 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7221 {
7222 int success;
7223
7224 if (!INSN_P (insn))
7225 return;
7226
7227 subrtx_ptr_iterator::array_type array;
7228 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7229 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7230
7231 /* If the following assertion was triggered, there is most probably
7232 something wrong with the cc_modes_compatible back end function.
7233 CC modes only can be considered compatible if the insn - with the mode
7234 replaced by any of the compatible modes - can still be recognized. */
7235 success = apply_change_group ();
7236 gcc_assert (success);
7237 }
7238
7239 /* Change the mode of any reference to the register REGNO (NEWREG) to
7240 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7241 any instruction which modifies NEWREG. */
7242
7243 static void
7244 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7245 {
7246 rtx_insn *insn;
7247
7248 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7249 {
7250 if (! INSN_P (insn))
7251 continue;
7252
7253 if (reg_set_p (newreg, insn))
7254 return;
7255
7256 cse_change_cc_mode_insn (insn, newreg);
7257 }
7258 }
7259
7260 /* BB is a basic block which finishes with CC_REG as a condition code
7261 register which is set to CC_SRC. Look through the successors of BB
7262 to find blocks which have a single predecessor (i.e., this one),
7263 and look through those blocks for an assignment to CC_REG which is
7264 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7265 permitted to change the mode of CC_SRC to a compatible mode. This
7266 returns VOIDmode if no equivalent assignments were found.
7267 Otherwise it returns the mode which CC_SRC should wind up with.
7268 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7269 but is passed unmodified down to recursive calls in order to prevent
7270 endless recursion.
7271
7272 The main complexity in this function is handling the mode issues.
7273 We may have more than one duplicate which we can eliminate, and we
7274 try to find a mode which will work for multiple duplicates. */
7275
7276 static machine_mode
7277 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7278 bool can_change_mode)
7279 {
7280 bool found_equiv;
7281 machine_mode mode;
7282 unsigned int insn_count;
7283 edge e;
7284 rtx_insn *insns[2];
7285 machine_mode modes[2];
7286 rtx_insn *last_insns[2];
7287 unsigned int i;
7288 rtx newreg;
7289 edge_iterator ei;
7290
7291 /* We expect to have two successors. Look at both before picking
7292 the final mode for the comparison. If we have more successors
7293 (i.e., some sort of table jump, although that seems unlikely),
7294 then we require all beyond the first two to use the same
7295 mode. */
7296
7297 found_equiv = false;
7298 mode = GET_MODE (cc_src);
7299 insn_count = 0;
7300 FOR_EACH_EDGE (e, ei, bb->succs)
7301 {
7302 rtx_insn *insn;
7303 rtx_insn *end;
7304
7305 if (e->flags & EDGE_COMPLEX)
7306 continue;
7307
7308 if (EDGE_COUNT (e->dest->preds) != 1
7309 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7310 /* Avoid endless recursion on unreachable blocks. */
7311 || e->dest == orig_bb)
7312 continue;
7313
7314 end = NEXT_INSN (BB_END (e->dest));
7315 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7316 {
7317 rtx set;
7318
7319 if (! INSN_P (insn))
7320 continue;
7321
7322 /* If CC_SRC is modified, we have to stop looking for
7323 something which uses it. */
7324 if (modified_in_p (cc_src, insn))
7325 break;
7326
7327 /* Check whether INSN sets CC_REG to CC_SRC. */
7328 set = single_set (insn);
7329 if (set
7330 && REG_P (SET_DEST (set))
7331 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7332 {
7333 bool found;
7334 machine_mode set_mode;
7335 machine_mode comp_mode;
7336
7337 found = false;
7338 set_mode = GET_MODE (SET_SRC (set));
7339 comp_mode = set_mode;
7340 if (rtx_equal_p (cc_src, SET_SRC (set)))
7341 found = true;
7342 else if (GET_CODE (cc_src) == COMPARE
7343 && GET_CODE (SET_SRC (set)) == COMPARE
7344 && mode != set_mode
7345 && rtx_equal_p (XEXP (cc_src, 0),
7346 XEXP (SET_SRC (set), 0))
7347 && rtx_equal_p (XEXP (cc_src, 1),
7348 XEXP (SET_SRC (set), 1)))
7349
7350 {
7351 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7352 if (comp_mode != VOIDmode
7353 && (can_change_mode || comp_mode == mode))
7354 found = true;
7355 }
7356
7357 if (found)
7358 {
7359 found_equiv = true;
7360 if (insn_count < ARRAY_SIZE (insns))
7361 {
7362 insns[insn_count] = insn;
7363 modes[insn_count] = set_mode;
7364 last_insns[insn_count] = end;
7365 ++insn_count;
7366
7367 if (mode != comp_mode)
7368 {
7369 gcc_assert (can_change_mode);
7370 mode = comp_mode;
7371
7372 /* The modified insn will be re-recognized later. */
7373 PUT_MODE (cc_src, mode);
7374 }
7375 }
7376 else
7377 {
7378 if (set_mode != mode)
7379 {
7380 /* We found a matching expression in the
7381 wrong mode, but we don't have room to
7382 store it in the array. Punt. This case
7383 should be rare. */
7384 break;
7385 }
7386 /* INSN sets CC_REG to a value equal to CC_SRC
7387 with the right mode. We can simply delete
7388 it. */
7389 delete_insn (insn);
7390 }
7391
7392 /* We found an instruction to delete. Keep looking,
7393 in the hopes of finding a three-way jump. */
7394 continue;
7395 }
7396
7397 /* We found an instruction which sets the condition
7398 code, so don't look any farther. */
7399 break;
7400 }
7401
7402 /* If INSN sets CC_REG in some other way, don't look any
7403 farther. */
7404 if (reg_set_p (cc_reg, insn))
7405 break;
7406 }
7407
7408 /* If we fell off the bottom of the block, we can keep looking
7409 through successors. We pass CAN_CHANGE_MODE as false because
7410 we aren't prepared to handle compatibility between the
7411 further blocks and this block. */
7412 if (insn == end)
7413 {
7414 machine_mode submode;
7415
7416 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7417 if (submode != VOIDmode)
7418 {
7419 gcc_assert (submode == mode);
7420 found_equiv = true;
7421 can_change_mode = false;
7422 }
7423 }
7424 }
7425
7426 if (! found_equiv)
7427 return VOIDmode;
7428
7429 /* Now INSN_COUNT is the number of instructions we found which set
7430 CC_REG to a value equivalent to CC_SRC. The instructions are in
7431 INSNS. The modes used by those instructions are in MODES. */
7432
7433 newreg = NULL_RTX;
7434 for (i = 0; i < insn_count; ++i)
7435 {
7436 if (modes[i] != mode)
7437 {
7438 /* We need to change the mode of CC_REG in INSNS[i] and
7439 subsequent instructions. */
7440 if (! newreg)
7441 {
7442 if (GET_MODE (cc_reg) == mode)
7443 newreg = cc_reg;
7444 else
7445 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7446 }
7447 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7448 newreg);
7449 }
7450
7451 cse_cfg_altered |= delete_insn_and_edges (insns[i]);
7452 }
7453
7454 return mode;
7455 }
7456
7457 /* If we have a fixed condition code register (or two), walk through
7458 the instructions and try to eliminate duplicate assignments. */
7459
7460 static void
7461 cse_condition_code_reg (void)
7462 {
7463 unsigned int cc_regno_1;
7464 unsigned int cc_regno_2;
7465 rtx cc_reg_1;
7466 rtx cc_reg_2;
7467 basic_block bb;
7468
7469 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7470 return;
7471
7472 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7473 if (cc_regno_2 != INVALID_REGNUM)
7474 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7475 else
7476 cc_reg_2 = NULL_RTX;
7477
7478 FOR_EACH_BB_FN (bb, cfun)
7479 {
7480 rtx_insn *last_insn;
7481 rtx cc_reg;
7482 rtx_insn *insn;
7483 rtx_insn *cc_src_insn;
7484 rtx cc_src;
7485 machine_mode mode;
7486 machine_mode orig_mode;
7487
7488 /* Look for blocks which end with a conditional jump based on a
7489 condition code register. Then look for the instruction which
7490 sets the condition code register. Then look through the
7491 successor blocks for instructions which set the condition
7492 code register to the same value. There are other possible
7493 uses of the condition code register, but these are by far the
7494 most common and the ones which we are most likely to be able
7495 to optimize. */
7496
7497 last_insn = BB_END (bb);
7498 if (!JUMP_P (last_insn))
7499 continue;
7500
7501 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7502 cc_reg = cc_reg_1;
7503 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7504 cc_reg = cc_reg_2;
7505 else
7506 continue;
7507
7508 cc_src_insn = NULL;
7509 cc_src = NULL_RTX;
7510 for (insn = PREV_INSN (last_insn);
7511 insn && insn != PREV_INSN (BB_HEAD (bb));
7512 insn = PREV_INSN (insn))
7513 {
7514 rtx set;
7515
7516 if (! INSN_P (insn))
7517 continue;
7518 set = single_set (insn);
7519 if (set
7520 && REG_P (SET_DEST (set))
7521 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7522 {
7523 cc_src_insn = insn;
7524 cc_src = SET_SRC (set);
7525 break;
7526 }
7527 else if (reg_set_p (cc_reg, insn))
7528 break;
7529 }
7530
7531 if (! cc_src_insn)
7532 continue;
7533
7534 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7535 continue;
7536
7537 /* Now CC_REG is a condition code register used for a
7538 conditional jump at the end of the block, and CC_SRC, in
7539 CC_SRC_INSN, is the value to which that condition code
7540 register is set, and CC_SRC is still meaningful at the end of
7541 the basic block. */
7542
7543 orig_mode = GET_MODE (cc_src);
7544 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7545 if (mode != VOIDmode)
7546 {
7547 gcc_assert (mode == GET_MODE (cc_src));
7548 if (mode != orig_mode)
7549 {
7550 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7551
7552 cse_change_cc_mode_insn (cc_src_insn, newreg);
7553
7554 /* Do the same in the following insns that use the
7555 current value of CC_REG within BB. */
7556 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7557 NEXT_INSN (last_insn),
7558 newreg);
7559 }
7560 }
7561 }
7562 }
7563 \f
7564
7565 /* Perform common subexpression elimination. Nonzero value from
7566 `cse_main' means that jumps were simplified and some code may now
7567 be unreachable, so do jump optimization again. */
7568 static unsigned int
7569 rest_of_handle_cse (void)
7570 {
7571 int tem;
7572
7573 if (dump_file)
7574 dump_flow_info (dump_file, dump_flags);
7575
7576 tem = cse_main (get_insns (), max_reg_num ());
7577
7578 /* If we are not running more CSE passes, then we are no longer
7579 expecting CSE to be run. But always rerun it in a cheap mode. */
7580 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7581
7582 if (tem == 2)
7583 {
7584 timevar_push (TV_JUMP);
7585 rebuild_jump_labels (get_insns ());
7586 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7587 timevar_pop (TV_JUMP);
7588 }
7589 else if (tem == 1 || optimize > 1)
7590 cse_cfg_altered |= cleanup_cfg (0);
7591
7592 return 0;
7593 }
7594
7595 namespace {
7596
7597 const pass_data pass_data_cse =
7598 {
7599 RTL_PASS, /* type */
7600 "cse1", /* name */
7601 OPTGROUP_NONE, /* optinfo_flags */
7602 TV_CSE, /* tv_id */
7603 0, /* properties_required */
7604 0, /* properties_provided */
7605 0, /* properties_destroyed */
7606 0, /* todo_flags_start */
7607 TODO_df_finish, /* todo_flags_finish */
7608 };
7609
7610 class pass_cse : public rtl_opt_pass
7611 {
7612 public:
7613 pass_cse (gcc::context *ctxt)
7614 : rtl_opt_pass (pass_data_cse, ctxt)
7615 {}
7616
7617 /* opt_pass methods: */
7618 virtual bool gate (function *) { return optimize > 0; }
7619 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7620
7621 }; // class pass_cse
7622
7623 } // anon namespace
7624
7625 rtl_opt_pass *
7626 make_pass_cse (gcc::context *ctxt)
7627 {
7628 return new pass_cse (ctxt);
7629 }
7630
7631
7632 /* Run second CSE pass after loop optimizations. */
7633 static unsigned int
7634 rest_of_handle_cse2 (void)
7635 {
7636 int tem;
7637
7638 if (dump_file)
7639 dump_flow_info (dump_file, dump_flags);
7640
7641 tem = cse_main (get_insns (), max_reg_num ());
7642
7643 /* Run a pass to eliminate duplicated assignments to condition code
7644 registers. We have to run this after bypass_jumps, because it
7645 makes it harder for that pass to determine whether a jump can be
7646 bypassed safely. */
7647 cse_condition_code_reg ();
7648
7649 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7650
7651 if (tem == 2)
7652 {
7653 timevar_push (TV_JUMP);
7654 rebuild_jump_labels (get_insns ());
7655 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7656 timevar_pop (TV_JUMP);
7657 }
7658 else if (tem == 1)
7659 cse_cfg_altered |= cleanup_cfg (0);
7660
7661 cse_not_expected = 1;
7662 return 0;
7663 }
7664
7665
7666 namespace {
7667
7668 const pass_data pass_data_cse2 =
7669 {
7670 RTL_PASS, /* type */
7671 "cse2", /* name */
7672 OPTGROUP_NONE, /* optinfo_flags */
7673 TV_CSE2, /* tv_id */
7674 0, /* properties_required */
7675 0, /* properties_provided */
7676 0, /* properties_destroyed */
7677 0, /* todo_flags_start */
7678 TODO_df_finish, /* todo_flags_finish */
7679 };
7680
7681 class pass_cse2 : public rtl_opt_pass
7682 {
7683 public:
7684 pass_cse2 (gcc::context *ctxt)
7685 : rtl_opt_pass (pass_data_cse2, ctxt)
7686 {}
7687
7688 /* opt_pass methods: */
7689 virtual bool gate (function *)
7690 {
7691 return optimize > 0 && flag_rerun_cse_after_loop;
7692 }
7693
7694 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7695
7696 }; // class pass_cse2
7697
7698 } // anon namespace
7699
7700 rtl_opt_pass *
7701 make_pass_cse2 (gcc::context *ctxt)
7702 {
7703 return new pass_cse2 (ctxt);
7704 }
7705
7706 /* Run second CSE pass after loop optimizations. */
7707 static unsigned int
7708 rest_of_handle_cse_after_global_opts (void)
7709 {
7710 int save_cfj;
7711 int tem;
7712
7713 /* We only want to do local CSE, so don't follow jumps. */
7714 save_cfj = flag_cse_follow_jumps;
7715 flag_cse_follow_jumps = 0;
7716
7717 rebuild_jump_labels (get_insns ());
7718 tem = cse_main (get_insns (), max_reg_num ());
7719 cse_cfg_altered |= purge_all_dead_edges ();
7720 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7721
7722 cse_not_expected = !flag_rerun_cse_after_loop;
7723
7724 /* If cse altered any jumps, rerun jump opts to clean things up. */
7725 if (tem == 2)
7726 {
7727 timevar_push (TV_JUMP);
7728 rebuild_jump_labels (get_insns ());
7729 cse_cfg_altered |= cleanup_cfg (CLEANUP_CFG_CHANGED);
7730 timevar_pop (TV_JUMP);
7731 }
7732 else if (tem == 1)
7733 cse_cfg_altered |= cleanup_cfg (0);
7734
7735 flag_cse_follow_jumps = save_cfj;
7736 return 0;
7737 }
7738
7739 namespace {
7740
7741 const pass_data pass_data_cse_after_global_opts =
7742 {
7743 RTL_PASS, /* type */
7744 "cse_local", /* name */
7745 OPTGROUP_NONE, /* optinfo_flags */
7746 TV_CSE, /* tv_id */
7747 0, /* properties_required */
7748 0, /* properties_provided */
7749 0, /* properties_destroyed */
7750 0, /* todo_flags_start */
7751 TODO_df_finish, /* todo_flags_finish */
7752 };
7753
7754 class pass_cse_after_global_opts : public rtl_opt_pass
7755 {
7756 public:
7757 pass_cse_after_global_opts (gcc::context *ctxt)
7758 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7759 {}
7760
7761 /* opt_pass methods: */
7762 virtual bool gate (function *)
7763 {
7764 return optimize > 0 && flag_rerun_cse_after_global_opts;
7765 }
7766
7767 virtual unsigned int execute (function *)
7768 {
7769 return rest_of_handle_cse_after_global_opts ();
7770 }
7771
7772 }; // class pass_cse_after_global_opts
7773
7774 } // anon namespace
7775
7776 rtl_opt_pass *
7777 make_pass_cse_after_global_opts (gcc::context *ctxt)
7778 {
7779 return new pass_cse_after_global_opts (ctxt);
7780 }