]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cse.c
gcc/
[thirdparty/gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "basic-block.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "function.h"
33 #include "expr.h"
34 #include "diagnostic-core.h"
35 #include "toplev.h"
36 #include "ggc.h"
37 #include "except.h"
38 #include "target.h"
39 #include "params.h"
40 #include "rtlhooks-def.h"
41 #include "tree-pass.h"
42 #include "df.h"
43 #include "dbgcnt.h"
44 #include "pointer-set.h"
45
46 /* The basic idea of common subexpression elimination is to go
47 through the code, keeping a record of expressions that would
48 have the same value at the current scan point, and replacing
49 expressions encountered with the cheapest equivalent expression.
50
51 It is too complicated to keep track of the different possibilities
52 when control paths merge in this code; so, at each label, we forget all
53 that is known and start fresh. This can be described as processing each
54 extended basic block separately. We have a separate pass to perform
55 global CSE.
56
57 Note CSE can turn a conditional or computed jump into a nop or
58 an unconditional jump. When this occurs we arrange to run the jump
59 optimizer after CSE to delete the unreachable code.
60
61 We use two data structures to record the equivalent expressions:
62 a hash table for most expressions, and a vector of "quantity
63 numbers" to record equivalent (pseudo) registers.
64
65 The use of the special data structure for registers is desirable
66 because it is faster. It is possible because registers references
67 contain a fairly small number, the register number, taken from
68 a contiguously allocated series, and two register references are
69 identical if they have the same number. General expressions
70 do not have any such thing, so the only way to retrieve the
71 information recorded on an expression other than a register
72 is to keep it in a hash table.
73
74 Registers and "quantity numbers":
75
76 At the start of each basic block, all of the (hardware and pseudo)
77 registers used in the function are given distinct quantity
78 numbers to indicate their contents. During scan, when the code
79 copies one register into another, we copy the quantity number.
80 When a register is loaded in any other way, we allocate a new
81 quantity number to describe the value generated by this operation.
82 `REG_QTY (N)' records what quantity register N is currently thought
83 of as containing.
84
85 All real quantity numbers are greater than or equal to zero.
86 If register N has not been assigned a quantity, `REG_QTY (N)' will
87 equal -N - 1, which is always negative.
88
89 Quantity numbers below zero do not exist and none of the `qty_table'
90 entries should be referenced with a negative index.
91
92 We also maintain a bidirectional chain of registers for each
93 quantity number. The `qty_table` members `first_reg' and `last_reg',
94 and `reg_eqv_table' members `next' and `prev' hold these chains.
95
96 The first register in a chain is the one whose lifespan is least local.
97 Among equals, it is the one that was seen first.
98 We replace any equivalent register with that one.
99
100 If two registers have the same quantity number, it must be true that
101 REG expressions with qty_table `mode' must be in the hash table for both
102 registers and must be in the same class.
103
104 The converse is not true. Since hard registers may be referenced in
105 any mode, two REG expressions might be equivalent in the hash table
106 but not have the same quantity number if the quantity number of one
107 of the registers is not the same mode as those expressions.
108
109 Constants and quantity numbers
110
111 When a quantity has a known constant value, that value is stored
112 in the appropriate qty_table `const_rtx'. This is in addition to
113 putting the constant in the hash table as is usual for non-regs.
114
115 Whether a reg or a constant is preferred is determined by the configuration
116 macro CONST_COSTS and will often depend on the constant value. In any
117 event, expressions containing constants can be simplified, by fold_rtx.
118
119 When a quantity has a known nearly constant value (such as an address
120 of a stack slot), that value is stored in the appropriate qty_table
121 `const_rtx'.
122
123 Integer constants don't have a machine mode. However, cse
124 determines the intended machine mode from the destination
125 of the instruction that moves the constant. The machine mode
126 is recorded in the hash table along with the actual RTL
127 constant expression so that different modes are kept separate.
128
129 Other expressions:
130
131 To record known equivalences among expressions in general
132 we use a hash table called `table'. It has a fixed number of buckets
133 that contain chains of `struct table_elt' elements for expressions.
134 These chains connect the elements whose expressions have the same
135 hash codes.
136
137 Other chains through the same elements connect the elements which
138 currently have equivalent values.
139
140 Register references in an expression are canonicalized before hashing
141 the expression. This is done using `reg_qty' and qty_table `first_reg'.
142 The hash code of a register reference is computed using the quantity
143 number, not the register number.
144
145 When the value of an expression changes, it is necessary to remove from the
146 hash table not just that expression but all expressions whose values
147 could be different as a result.
148
149 1. If the value changing is in memory, except in special cases
150 ANYTHING referring to memory could be changed. That is because
151 nobody knows where a pointer does not point.
152 The function `invalidate_memory' removes what is necessary.
153
154 The special cases are when the address is constant or is
155 a constant plus a fixed register such as the frame pointer
156 or a static chain pointer. When such addresses are stored in,
157 we can tell exactly which other such addresses must be invalidated
158 due to overlap. `invalidate' does this.
159 All expressions that refer to non-constant
160 memory addresses are also invalidated. `invalidate_memory' does this.
161
162 2. If the value changing is a register, all expressions
163 containing references to that register, and only those,
164 must be removed.
165
166 Because searching the entire hash table for expressions that contain
167 a register is very slow, we try to figure out when it isn't necessary.
168 Precisely, this is necessary only when expressions have been
169 entered in the hash table using this register, and then the value has
170 changed, and then another expression wants to be added to refer to
171 the register's new value. This sequence of circumstances is rare
172 within any one basic block.
173
174 `REG_TICK' and `REG_IN_TABLE', accessors for members of
175 cse_reg_info, are used to detect this case. REG_TICK (i) is
176 incremented whenever a value is stored in register i.
177 REG_IN_TABLE (i) holds -1 if no references to register i have been
178 entered in the table; otherwise, it contains the value REG_TICK (i)
179 had when the references were entered. If we want to enter a
180 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
181 remove old references. Until we want to enter a new entry, the
182 mere fact that the two vectors don't match makes the entries be
183 ignored if anyone tries to match them.
184
185 Registers themselves are entered in the hash table as well as in
186 the equivalent-register chains. However, `REG_TICK' and
187 `REG_IN_TABLE' do not apply to expressions which are simple
188 register references. These expressions are removed from the table
189 immediately when they become invalid, and this can be done even if
190 we do not immediately search for all the expressions that refer to
191 the register.
192
193 A CLOBBER rtx in an instruction invalidates its operand for further
194 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
195 invalidates everything that resides in memory.
196
197 Related expressions:
198
199 Constant expressions that differ only by an additive integer
200 are called related. When a constant expression is put in
201 the table, the related expression with no constant term
202 is also entered. These are made to point at each other
203 so that it is possible to find out if there exists any
204 register equivalent to an expression related to a given expression. */
205
206 /* Length of qty_table vector. We know in advance we will not need
207 a quantity number this big. */
208
209 static int max_qty;
210
211 /* Next quantity number to be allocated.
212 This is 1 + the largest number needed so far. */
213
214 static int next_qty;
215
216 /* Per-qty information tracking.
217
218 `first_reg' and `last_reg' track the head and tail of the
219 chain of registers which currently contain this quantity.
220
221 `mode' contains the machine mode of this quantity.
222
223 `const_rtx' holds the rtx of the constant value of this
224 quantity, if known. A summations of the frame/arg pointer
225 and a constant can also be entered here. When this holds
226 a known value, `const_insn' is the insn which stored the
227 constant value.
228
229 `comparison_{code,const,qty}' are used to track when a
230 comparison between a quantity and some constant or register has
231 been passed. In such a case, we know the results of the comparison
232 in case we see it again. These members record a comparison that
233 is known to be true. `comparison_code' holds the rtx code of such
234 a comparison, else it is set to UNKNOWN and the other two
235 comparison members are undefined. `comparison_const' holds
236 the constant being compared against, or zero if the comparison
237 is not against a constant. `comparison_qty' holds the quantity
238 being compared against when the result is known. If the comparison
239 is not with a register, `comparison_qty' is -1. */
240
241 struct qty_table_elem
242 {
243 rtx const_rtx;
244 rtx const_insn;
245 rtx comparison_const;
246 int comparison_qty;
247 unsigned int first_reg, last_reg;
248 /* The sizes of these fields should match the sizes of the
249 code and mode fields of struct rtx_def (see rtl.h). */
250 ENUM_BITFIELD(rtx_code) comparison_code : 16;
251 ENUM_BITFIELD(machine_mode) mode : 8;
252 };
253
254 /* The table of all qtys, indexed by qty number. */
255 static struct qty_table_elem *qty_table;
256
257 /* Structure used to pass arguments via for_each_rtx to function
258 cse_change_cc_mode. */
259 struct change_cc_mode_args
260 {
261 rtx insn;
262 rtx newreg;
263 };
264
265 #ifdef HAVE_cc0
266 /* For machines that have a CC0, we do not record its value in the hash
267 table since its use is guaranteed to be the insn immediately following
268 its definition and any other insn is presumed to invalidate it.
269
270 Instead, we store below the current and last value assigned to CC0.
271 If it should happen to be a constant, it is stored in preference
272 to the actual assigned value. In case it is a constant, we store
273 the mode in which the constant should be interpreted. */
274
275 static rtx this_insn_cc0, prev_insn_cc0;
276 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
277 #endif
278
279 /* Insn being scanned. */
280
281 static rtx this_insn;
282 static bool optimize_this_for_speed_p;
283
284 /* Index by register number, gives the number of the next (or
285 previous) register in the chain of registers sharing the same
286 value.
287
288 Or -1 if this register is at the end of the chain.
289
290 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
291
292 /* Per-register equivalence chain. */
293 struct reg_eqv_elem
294 {
295 int next, prev;
296 };
297
298 /* The table of all register equivalence chains. */
299 static struct reg_eqv_elem *reg_eqv_table;
300
301 struct cse_reg_info
302 {
303 /* The timestamp at which this register is initialized. */
304 unsigned int timestamp;
305
306 /* The quantity number of the register's current contents. */
307 int reg_qty;
308
309 /* The number of times the register has been altered in the current
310 basic block. */
311 int reg_tick;
312
313 /* The REG_TICK value at which rtx's containing this register are
314 valid in the hash table. If this does not equal the current
315 reg_tick value, such expressions existing in the hash table are
316 invalid. */
317 int reg_in_table;
318
319 /* The SUBREG that was set when REG_TICK was last incremented. Set
320 to -1 if the last store was to the whole register, not a subreg. */
321 unsigned int subreg_ticked;
322 };
323
324 /* A table of cse_reg_info indexed by register numbers. */
325 static struct cse_reg_info *cse_reg_info_table;
326
327 /* The size of the above table. */
328 static unsigned int cse_reg_info_table_size;
329
330 /* The index of the first entry that has not been initialized. */
331 static unsigned int cse_reg_info_table_first_uninitialized;
332
333 /* The timestamp at the beginning of the current run of
334 cse_extended_basic_block. We increment this variable at the beginning of
335 the current run of cse_extended_basic_block. The timestamp field of a
336 cse_reg_info entry matches the value of this variable if and only
337 if the entry has been initialized during the current run of
338 cse_extended_basic_block. */
339 static unsigned int cse_reg_info_timestamp;
340
341 /* A HARD_REG_SET containing all the hard registers for which there is
342 currently a REG expression in the hash table. Note the difference
343 from the above variables, which indicate if the REG is mentioned in some
344 expression in the table. */
345
346 static HARD_REG_SET hard_regs_in_table;
347
348 /* True if CSE has altered the CFG. */
349 static bool cse_cfg_altered;
350
351 /* True if CSE has altered conditional jump insns in such a way
352 that jump optimization should be redone. */
353 static bool cse_jumps_altered;
354
355 /* True if we put a LABEL_REF into the hash table for an INSN
356 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
357 to put in the note. */
358 static bool recorded_label_ref;
359
360 /* canon_hash stores 1 in do_not_record
361 if it notices a reference to CC0, PC, or some other volatile
362 subexpression. */
363
364 static int do_not_record;
365
366 /* canon_hash stores 1 in hash_arg_in_memory
367 if it notices a reference to memory within the expression being hashed. */
368
369 static int hash_arg_in_memory;
370
371 /* The hash table contains buckets which are chains of `struct table_elt's,
372 each recording one expression's information.
373 That expression is in the `exp' field.
374
375 The canon_exp field contains a canonical (from the point of view of
376 alias analysis) version of the `exp' field.
377
378 Those elements with the same hash code are chained in both directions
379 through the `next_same_hash' and `prev_same_hash' fields.
380
381 Each set of expressions with equivalent values
382 are on a two-way chain through the `next_same_value'
383 and `prev_same_value' fields, and all point with
384 the `first_same_value' field at the first element in
385 that chain. The chain is in order of increasing cost.
386 Each element's cost value is in its `cost' field.
387
388 The `in_memory' field is nonzero for elements that
389 involve any reference to memory. These elements are removed
390 whenever a write is done to an unidentified location in memory.
391 To be safe, we assume that a memory address is unidentified unless
392 the address is either a symbol constant or a constant plus
393 the frame pointer or argument pointer.
394
395 The `related_value' field is used to connect related expressions
396 (that differ by adding an integer).
397 The related expressions are chained in a circular fashion.
398 `related_value' is zero for expressions for which this
399 chain is not useful.
400
401 The `cost' field stores the cost of this element's expression.
402 The `regcost' field stores the value returned by approx_reg_cost for
403 this element's expression.
404
405 The `is_const' flag is set if the element is a constant (including
406 a fixed address).
407
408 The `flag' field is used as a temporary during some search routines.
409
410 The `mode' field is usually the same as GET_MODE (`exp'), but
411 if `exp' is a CONST_INT and has no machine mode then the `mode'
412 field is the mode it was being used as. Each constant is
413 recorded separately for each mode it is used with. */
414
415 struct table_elt
416 {
417 rtx exp;
418 rtx canon_exp;
419 struct table_elt *next_same_hash;
420 struct table_elt *prev_same_hash;
421 struct table_elt *next_same_value;
422 struct table_elt *prev_same_value;
423 struct table_elt *first_same_value;
424 struct table_elt *related_value;
425 int cost;
426 int regcost;
427 /* The size of this field should match the size
428 of the mode field of struct rtx_def (see rtl.h). */
429 ENUM_BITFIELD(machine_mode) mode : 8;
430 char in_memory;
431 char is_const;
432 char flag;
433 };
434
435 /* We don't want a lot of buckets, because we rarely have very many
436 things stored in the hash table, and a lot of buckets slows
437 down a lot of loops that happen frequently. */
438 #define HASH_SHIFT 5
439 #define HASH_SIZE (1 << HASH_SHIFT)
440 #define HASH_MASK (HASH_SIZE - 1)
441
442 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
443 register (hard registers may require `do_not_record' to be set). */
444
445 #define HASH(X, M) \
446 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
447 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
448 : canon_hash (X, M)) & HASH_MASK)
449
450 /* Like HASH, but without side-effects. */
451 #define SAFE_HASH(X, M) \
452 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
453 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
454 : safe_hash (X, M)) & HASH_MASK)
455
456 /* Determine whether register number N is considered a fixed register for the
457 purpose of approximating register costs.
458 It is desirable to replace other regs with fixed regs, to reduce need for
459 non-fixed hard regs.
460 A reg wins if it is either the frame pointer or designated as fixed. */
461 #define FIXED_REGNO_P(N) \
462 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
463 || fixed_regs[N] || global_regs[N])
464
465 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
466 hard registers and pointers into the frame are the cheapest with a cost
467 of 0. Next come pseudos with a cost of one and other hard registers with
468 a cost of 2. Aside from these special cases, call `rtx_cost'. */
469
470 #define CHEAP_REGNO(N) \
471 (REGNO_PTR_FRAME_P(N) \
472 || (HARD_REGISTER_NUM_P (N) \
473 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
474
475 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
476 #define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
477
478 /* Get the number of times this register has been updated in this
479 basic block. */
480
481 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
482
483 /* Get the point at which REG was recorded in the table. */
484
485 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
486
487 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
488 SUBREG). */
489
490 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
491
492 /* Get the quantity number for REG. */
493
494 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
495
496 /* Determine if the quantity number for register X represents a valid index
497 into the qty_table. */
498
499 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
500
501 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
502
503 #define CHEAPER(X, Y) \
504 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
505
506 static struct table_elt *table[HASH_SIZE];
507
508 /* Chain of `struct table_elt's made so far for this function
509 but currently removed from the table. */
510
511 static struct table_elt *free_element_chain;
512
513 /* Set to the cost of a constant pool reference if one was found for a
514 symbolic constant. If this was found, it means we should try to
515 convert constants into constant pool entries if they don't fit in
516 the insn. */
517
518 static int constant_pool_entries_cost;
519 static int constant_pool_entries_regcost;
520
521 /* Trace a patch through the CFG. */
522
523 struct branch_path
524 {
525 /* The basic block for this path entry. */
526 basic_block bb;
527 };
528
529 /* This data describes a block that will be processed by
530 cse_extended_basic_block. */
531
532 struct cse_basic_block_data
533 {
534 /* Total number of SETs in block. */
535 int nsets;
536 /* Size of current branch path, if any. */
537 int path_size;
538 /* Current path, indicating which basic_blocks will be processed. */
539 struct branch_path *path;
540 };
541
542
543 /* Pointers to the live in/live out bitmaps for the boundaries of the
544 current EBB. */
545 static bitmap cse_ebb_live_in, cse_ebb_live_out;
546
547 /* A simple bitmap to track which basic blocks have been visited
548 already as part of an already processed extended basic block. */
549 static sbitmap cse_visited_basic_blocks;
550
551 static bool fixed_base_plus_p (rtx x);
552 static int notreg_cost (rtx, enum rtx_code, int);
553 static int approx_reg_cost_1 (rtx *, void *);
554 static int approx_reg_cost (rtx);
555 static int preferable (int, int, int, int);
556 static void new_basic_block (void);
557 static void make_new_qty (unsigned int, enum machine_mode);
558 static void make_regs_eqv (unsigned int, unsigned int);
559 static void delete_reg_equiv (unsigned int);
560 static int mention_regs (rtx);
561 static int insert_regs (rtx, struct table_elt *, int);
562 static void remove_from_table (struct table_elt *, unsigned);
563 static void remove_pseudo_from_table (rtx, unsigned);
564 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
565 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
566 static rtx lookup_as_function (rtx, enum rtx_code);
567 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
568 enum machine_mode, int, int);
569 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
570 enum machine_mode);
571 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
572 static void invalidate (rtx, enum machine_mode);
573 static void remove_invalid_refs (unsigned int);
574 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
575 enum machine_mode);
576 static void rehash_using_reg (rtx);
577 static void invalidate_memory (void);
578 static void invalidate_for_call (void);
579 static rtx use_related_value (rtx, struct table_elt *);
580
581 static inline unsigned canon_hash (rtx, enum machine_mode);
582 static inline unsigned safe_hash (rtx, enum machine_mode);
583 static inline unsigned hash_rtx_string (const char *);
584
585 static rtx canon_reg (rtx, rtx);
586 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
587 enum machine_mode *,
588 enum machine_mode *);
589 static rtx fold_rtx (rtx, rtx);
590 static rtx equiv_constant (rtx);
591 static void record_jump_equiv (rtx, bool);
592 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
593 int);
594 static void cse_insn (rtx);
595 static void cse_prescan_path (struct cse_basic_block_data *);
596 static void invalidate_from_clobbers (rtx);
597 static void invalidate_from_sets_and_clobbers (rtx);
598 static rtx cse_process_notes (rtx, rtx, bool *);
599 static void cse_extended_basic_block (struct cse_basic_block_data *);
600 static int check_for_label_ref (rtx *, void *);
601 extern void dump_class (struct table_elt*);
602 static void get_cse_reg_info_1 (unsigned int regno);
603 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
604 static int check_dependence (rtx *, void *);
605
606 static void flush_hash_table (void);
607 static bool insn_live_p (rtx, int *);
608 static bool set_live_p (rtx, rtx, int *);
609 static int cse_change_cc_mode (rtx *, void *);
610 static void cse_change_cc_mode_insn (rtx, rtx);
611 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
612 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
613 bool);
614 \f
615
616 #undef RTL_HOOKS_GEN_LOWPART
617 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
618
619 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
620 \f
621 /* Nonzero if X has the form (PLUS frame-pointer integer). */
622
623 static bool
624 fixed_base_plus_p (rtx x)
625 {
626 switch (GET_CODE (x))
627 {
628 case REG:
629 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
630 return true;
631 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
632 return true;
633 return false;
634
635 case PLUS:
636 if (!CONST_INT_P (XEXP (x, 1)))
637 return false;
638 return fixed_base_plus_p (XEXP (x, 0));
639
640 default:
641 return false;
642 }
643 }
644
645 /* Dump the expressions in the equivalence class indicated by CLASSP.
646 This function is used only for debugging. */
647 DEBUG_FUNCTION void
648 dump_class (struct table_elt *classp)
649 {
650 struct table_elt *elt;
651
652 fprintf (stderr, "Equivalence chain for ");
653 print_rtl (stderr, classp->exp);
654 fprintf (stderr, ": \n");
655
656 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
657 {
658 print_rtl (stderr, elt->exp);
659 fprintf (stderr, "\n");
660 }
661 }
662
663 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
664
665 static int
666 approx_reg_cost_1 (rtx *xp, void *data)
667 {
668 rtx x = *xp;
669 int *cost_p = (int *) data;
670
671 if (x && REG_P (x))
672 {
673 unsigned int regno = REGNO (x);
674
675 if (! CHEAP_REGNO (regno))
676 {
677 if (regno < FIRST_PSEUDO_REGISTER)
678 {
679 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
680 return 1;
681 *cost_p += 2;
682 }
683 else
684 *cost_p += 1;
685 }
686 }
687
688 return 0;
689 }
690
691 /* Return an estimate of the cost of the registers used in an rtx.
692 This is mostly the number of different REG expressions in the rtx;
693 however for some exceptions like fixed registers we use a cost of
694 0. If any other hard register reference occurs, return MAX_COST. */
695
696 static int
697 approx_reg_cost (rtx x)
698 {
699 int cost = 0;
700
701 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
702 return MAX_COST;
703
704 return cost;
705 }
706
707 /* Return a negative value if an rtx A, whose costs are given by COST_A
708 and REGCOST_A, is more desirable than an rtx B.
709 Return a positive value if A is less desirable, or 0 if the two are
710 equally good. */
711 static int
712 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
713 {
714 /* First, get rid of cases involving expressions that are entirely
715 unwanted. */
716 if (cost_a != cost_b)
717 {
718 if (cost_a == MAX_COST)
719 return 1;
720 if (cost_b == MAX_COST)
721 return -1;
722 }
723
724 /* Avoid extending lifetimes of hardregs. */
725 if (regcost_a != regcost_b)
726 {
727 if (regcost_a == MAX_COST)
728 return 1;
729 if (regcost_b == MAX_COST)
730 return -1;
731 }
732
733 /* Normal operation costs take precedence. */
734 if (cost_a != cost_b)
735 return cost_a - cost_b;
736 /* Only if these are identical consider effects on register pressure. */
737 if (regcost_a != regcost_b)
738 return regcost_a - regcost_b;
739 return 0;
740 }
741
742 /* Internal function, to compute cost when X is not a register; called
743 from COST macro to keep it simple. */
744
745 static int
746 notreg_cost (rtx x, enum rtx_code outer, int opno)
747 {
748 return ((GET_CODE (x) == SUBREG
749 && REG_P (SUBREG_REG (x))
750 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
751 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
752 && (GET_MODE_SIZE (GET_MODE (x))
753 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
754 && subreg_lowpart_p (x)
755 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
756 GET_MODE (SUBREG_REG (x))))
757 ? 0
758 : rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
759 }
760
761 \f
762 /* Initialize CSE_REG_INFO_TABLE. */
763
764 static void
765 init_cse_reg_info (unsigned int nregs)
766 {
767 /* Do we need to grow the table? */
768 if (nregs > cse_reg_info_table_size)
769 {
770 unsigned int new_size;
771
772 if (cse_reg_info_table_size < 2048)
773 {
774 /* Compute a new size that is a power of 2 and no smaller
775 than the large of NREGS and 64. */
776 new_size = (cse_reg_info_table_size
777 ? cse_reg_info_table_size : 64);
778
779 while (new_size < nregs)
780 new_size *= 2;
781 }
782 else
783 {
784 /* If we need a big table, allocate just enough to hold
785 NREGS registers. */
786 new_size = nregs;
787 }
788
789 /* Reallocate the table with NEW_SIZE entries. */
790 free (cse_reg_info_table);
791 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
792 cse_reg_info_table_size = new_size;
793 cse_reg_info_table_first_uninitialized = 0;
794 }
795
796 /* Do we have all of the first NREGS entries initialized? */
797 if (cse_reg_info_table_first_uninitialized < nregs)
798 {
799 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
800 unsigned int i;
801
802 /* Put the old timestamp on newly allocated entries so that they
803 will all be considered out of date. We do not touch those
804 entries beyond the first NREGS entries to be nice to the
805 virtual memory. */
806 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
807 cse_reg_info_table[i].timestamp = old_timestamp;
808
809 cse_reg_info_table_first_uninitialized = nregs;
810 }
811 }
812
813 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
814
815 static void
816 get_cse_reg_info_1 (unsigned int regno)
817 {
818 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
819 entry will be considered to have been initialized. */
820 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
821
822 /* Initialize the rest of the entry. */
823 cse_reg_info_table[regno].reg_tick = 1;
824 cse_reg_info_table[regno].reg_in_table = -1;
825 cse_reg_info_table[regno].subreg_ticked = -1;
826 cse_reg_info_table[regno].reg_qty = -regno - 1;
827 }
828
829 /* Find a cse_reg_info entry for REGNO. */
830
831 static inline struct cse_reg_info *
832 get_cse_reg_info (unsigned int regno)
833 {
834 struct cse_reg_info *p = &cse_reg_info_table[regno];
835
836 /* If this entry has not been initialized, go ahead and initialize
837 it. */
838 if (p->timestamp != cse_reg_info_timestamp)
839 get_cse_reg_info_1 (regno);
840
841 return p;
842 }
843
844 /* Clear the hash table and initialize each register with its own quantity,
845 for a new basic block. */
846
847 static void
848 new_basic_block (void)
849 {
850 int i;
851
852 next_qty = 0;
853
854 /* Invalidate cse_reg_info_table. */
855 cse_reg_info_timestamp++;
856
857 /* Clear out hash table state for this pass. */
858 CLEAR_HARD_REG_SET (hard_regs_in_table);
859
860 /* The per-quantity values used to be initialized here, but it is
861 much faster to initialize each as it is made in `make_new_qty'. */
862
863 for (i = 0; i < HASH_SIZE; i++)
864 {
865 struct table_elt *first;
866
867 first = table[i];
868 if (first != NULL)
869 {
870 struct table_elt *last = first;
871
872 table[i] = NULL;
873
874 while (last->next_same_hash != NULL)
875 last = last->next_same_hash;
876
877 /* Now relink this hash entire chain into
878 the free element list. */
879
880 last->next_same_hash = free_element_chain;
881 free_element_chain = first;
882 }
883 }
884
885 #ifdef HAVE_cc0
886 prev_insn_cc0 = 0;
887 #endif
888 }
889
890 /* Say that register REG contains a quantity in mode MODE not in any
891 register before and initialize that quantity. */
892
893 static void
894 make_new_qty (unsigned int reg, enum machine_mode mode)
895 {
896 int q;
897 struct qty_table_elem *ent;
898 struct reg_eqv_elem *eqv;
899
900 gcc_assert (next_qty < max_qty);
901
902 q = REG_QTY (reg) = next_qty++;
903 ent = &qty_table[q];
904 ent->first_reg = reg;
905 ent->last_reg = reg;
906 ent->mode = mode;
907 ent->const_rtx = ent->const_insn = NULL_RTX;
908 ent->comparison_code = UNKNOWN;
909
910 eqv = &reg_eqv_table[reg];
911 eqv->next = eqv->prev = -1;
912 }
913
914 /* Make reg NEW equivalent to reg OLD.
915 OLD is not changing; NEW is. */
916
917 static void
918 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
919 {
920 unsigned int lastr, firstr;
921 int q = REG_QTY (old_reg);
922 struct qty_table_elem *ent;
923
924 ent = &qty_table[q];
925
926 /* Nothing should become eqv until it has a "non-invalid" qty number. */
927 gcc_assert (REGNO_QTY_VALID_P (old_reg));
928
929 REG_QTY (new_reg) = q;
930 firstr = ent->first_reg;
931 lastr = ent->last_reg;
932
933 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
934 hard regs. Among pseudos, if NEW will live longer than any other reg
935 of the same qty, and that is beyond the current basic block,
936 make it the new canonical replacement for this qty. */
937 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
938 /* Certain fixed registers might be of the class NO_REGS. This means
939 that not only can they not be allocated by the compiler, but
940 they cannot be used in substitutions or canonicalizations
941 either. */
942 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
943 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
944 || (new_reg >= FIRST_PSEUDO_REGISTER
945 && (firstr < FIRST_PSEUDO_REGISTER
946 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
947 && !bitmap_bit_p (cse_ebb_live_out, firstr))
948 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
949 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
950 {
951 reg_eqv_table[firstr].prev = new_reg;
952 reg_eqv_table[new_reg].next = firstr;
953 reg_eqv_table[new_reg].prev = -1;
954 ent->first_reg = new_reg;
955 }
956 else
957 {
958 /* If NEW is a hard reg (known to be non-fixed), insert at end.
959 Otherwise, insert before any non-fixed hard regs that are at the
960 end. Registers of class NO_REGS cannot be used as an
961 equivalent for anything. */
962 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
963 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
964 && new_reg >= FIRST_PSEUDO_REGISTER)
965 lastr = reg_eqv_table[lastr].prev;
966 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
967 if (reg_eqv_table[lastr].next >= 0)
968 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
969 else
970 qty_table[q].last_reg = new_reg;
971 reg_eqv_table[lastr].next = new_reg;
972 reg_eqv_table[new_reg].prev = lastr;
973 }
974 }
975
976 /* Remove REG from its equivalence class. */
977
978 static void
979 delete_reg_equiv (unsigned int reg)
980 {
981 struct qty_table_elem *ent;
982 int q = REG_QTY (reg);
983 int p, n;
984
985 /* If invalid, do nothing. */
986 if (! REGNO_QTY_VALID_P (reg))
987 return;
988
989 ent = &qty_table[q];
990
991 p = reg_eqv_table[reg].prev;
992 n = reg_eqv_table[reg].next;
993
994 if (n != -1)
995 reg_eqv_table[n].prev = p;
996 else
997 ent->last_reg = p;
998 if (p != -1)
999 reg_eqv_table[p].next = n;
1000 else
1001 ent->first_reg = n;
1002
1003 REG_QTY (reg) = -reg - 1;
1004 }
1005
1006 /* Remove any invalid expressions from the hash table
1007 that refer to any of the registers contained in expression X.
1008
1009 Make sure that newly inserted references to those registers
1010 as subexpressions will be considered valid.
1011
1012 mention_regs is not called when a register itself
1013 is being stored in the table.
1014
1015 Return 1 if we have done something that may have changed the hash code
1016 of X. */
1017
1018 static int
1019 mention_regs (rtx x)
1020 {
1021 enum rtx_code code;
1022 int i, j;
1023 const char *fmt;
1024 int changed = 0;
1025
1026 if (x == 0)
1027 return 0;
1028
1029 code = GET_CODE (x);
1030 if (code == REG)
1031 {
1032 unsigned int regno = REGNO (x);
1033 unsigned int endregno = END_REGNO (x);
1034 unsigned int i;
1035
1036 for (i = regno; i < endregno; i++)
1037 {
1038 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1039 remove_invalid_refs (i);
1040
1041 REG_IN_TABLE (i) = REG_TICK (i);
1042 SUBREG_TICKED (i) = -1;
1043 }
1044
1045 return 0;
1046 }
1047
1048 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1049 pseudo if they don't use overlapping words. We handle only pseudos
1050 here for simplicity. */
1051 if (code == SUBREG && REG_P (SUBREG_REG (x))
1052 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1053 {
1054 unsigned int i = REGNO (SUBREG_REG (x));
1055
1056 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1057 {
1058 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1059 the last store to this register really stored into this
1060 subreg, then remove the memory of this subreg.
1061 Otherwise, remove any memory of the entire register and
1062 all its subregs from the table. */
1063 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1064 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1065 remove_invalid_refs (i);
1066 else
1067 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1068 }
1069
1070 REG_IN_TABLE (i) = REG_TICK (i);
1071 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1072 return 0;
1073 }
1074
1075 /* If X is a comparison or a COMPARE and either operand is a register
1076 that does not have a quantity, give it one. This is so that a later
1077 call to record_jump_equiv won't cause X to be assigned a different
1078 hash code and not found in the table after that call.
1079
1080 It is not necessary to do this here, since rehash_using_reg can
1081 fix up the table later, but doing this here eliminates the need to
1082 call that expensive function in the most common case where the only
1083 use of the register is in the comparison. */
1084
1085 if (code == COMPARE || COMPARISON_P (x))
1086 {
1087 if (REG_P (XEXP (x, 0))
1088 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1089 if (insert_regs (XEXP (x, 0), NULL, 0))
1090 {
1091 rehash_using_reg (XEXP (x, 0));
1092 changed = 1;
1093 }
1094
1095 if (REG_P (XEXP (x, 1))
1096 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1097 if (insert_regs (XEXP (x, 1), NULL, 0))
1098 {
1099 rehash_using_reg (XEXP (x, 1));
1100 changed = 1;
1101 }
1102 }
1103
1104 fmt = GET_RTX_FORMAT (code);
1105 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1106 if (fmt[i] == 'e')
1107 changed |= mention_regs (XEXP (x, i));
1108 else if (fmt[i] == 'E')
1109 for (j = 0; j < XVECLEN (x, i); j++)
1110 changed |= mention_regs (XVECEXP (x, i, j));
1111
1112 return changed;
1113 }
1114
1115 /* Update the register quantities for inserting X into the hash table
1116 with a value equivalent to CLASSP.
1117 (If the class does not contain a REG, it is irrelevant.)
1118 If MODIFIED is nonzero, X is a destination; it is being modified.
1119 Note that delete_reg_equiv should be called on a register
1120 before insert_regs is done on that register with MODIFIED != 0.
1121
1122 Nonzero value means that elements of reg_qty have changed
1123 so X's hash code may be different. */
1124
1125 static int
1126 insert_regs (rtx x, struct table_elt *classp, int modified)
1127 {
1128 if (REG_P (x))
1129 {
1130 unsigned int regno = REGNO (x);
1131 int qty_valid;
1132
1133 /* If REGNO is in the equivalence table already but is of the
1134 wrong mode for that equivalence, don't do anything here. */
1135
1136 qty_valid = REGNO_QTY_VALID_P (regno);
1137 if (qty_valid)
1138 {
1139 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1140
1141 if (ent->mode != GET_MODE (x))
1142 return 0;
1143 }
1144
1145 if (modified || ! qty_valid)
1146 {
1147 if (classp)
1148 for (classp = classp->first_same_value;
1149 classp != 0;
1150 classp = classp->next_same_value)
1151 if (REG_P (classp->exp)
1152 && GET_MODE (classp->exp) == GET_MODE (x))
1153 {
1154 unsigned c_regno = REGNO (classp->exp);
1155
1156 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1157
1158 /* Suppose that 5 is hard reg and 100 and 101 are
1159 pseudos. Consider
1160
1161 (set (reg:si 100) (reg:si 5))
1162 (set (reg:si 5) (reg:si 100))
1163 (set (reg:di 101) (reg:di 5))
1164
1165 We would now set REG_QTY (101) = REG_QTY (5), but the
1166 entry for 5 is in SImode. When we use this later in
1167 copy propagation, we get the register in wrong mode. */
1168 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1169 continue;
1170
1171 make_regs_eqv (regno, c_regno);
1172 return 1;
1173 }
1174
1175 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1176 than REG_IN_TABLE to find out if there was only a single preceding
1177 invalidation - for the SUBREG - or another one, which would be
1178 for the full register. However, if we find here that REG_TICK
1179 indicates that the register is invalid, it means that it has
1180 been invalidated in a separate operation. The SUBREG might be used
1181 now (then this is a recursive call), or we might use the full REG
1182 now and a SUBREG of it later. So bump up REG_TICK so that
1183 mention_regs will do the right thing. */
1184 if (! modified
1185 && REG_IN_TABLE (regno) >= 0
1186 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1187 REG_TICK (regno)++;
1188 make_new_qty (regno, GET_MODE (x));
1189 return 1;
1190 }
1191
1192 return 0;
1193 }
1194
1195 /* If X is a SUBREG, we will likely be inserting the inner register in the
1196 table. If that register doesn't have an assigned quantity number at
1197 this point but does later, the insertion that we will be doing now will
1198 not be accessible because its hash code will have changed. So assign
1199 a quantity number now. */
1200
1201 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1202 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1203 {
1204 insert_regs (SUBREG_REG (x), NULL, 0);
1205 mention_regs (x);
1206 return 1;
1207 }
1208 else
1209 return mention_regs (x);
1210 }
1211 \f
1212
1213 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1214 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1215 CST is equal to an anchor. */
1216
1217 static bool
1218 compute_const_anchors (rtx cst,
1219 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1220 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1221 {
1222 HOST_WIDE_INT n = INTVAL (cst);
1223
1224 *lower_base = n & ~(targetm.const_anchor - 1);
1225 if (*lower_base == n)
1226 return false;
1227
1228 *upper_base =
1229 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1230 *upper_offs = n - *upper_base;
1231 *lower_offs = n - *lower_base;
1232 return true;
1233 }
1234
1235 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1236
1237 static void
1238 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1239 enum machine_mode mode)
1240 {
1241 struct table_elt *elt;
1242 unsigned hash;
1243 rtx anchor_exp;
1244 rtx exp;
1245
1246 anchor_exp = GEN_INT (anchor);
1247 hash = HASH (anchor_exp, mode);
1248 elt = lookup (anchor_exp, hash, mode);
1249 if (!elt)
1250 elt = insert (anchor_exp, NULL, hash, mode);
1251
1252 exp = plus_constant (mode, reg, offs);
1253 /* REG has just been inserted and the hash codes recomputed. */
1254 mention_regs (exp);
1255 hash = HASH (exp, mode);
1256
1257 /* Use the cost of the register rather than the whole expression. When
1258 looking up constant anchors we will further offset the corresponding
1259 expression therefore it does not make sense to prefer REGs over
1260 reg-immediate additions. Prefer instead the oldest expression. Also
1261 don't prefer pseudos over hard regs so that we derive constants in
1262 argument registers from other argument registers rather than from the
1263 original pseudo that was used to synthesize the constant. */
1264 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1265 }
1266
1267 /* The constant CST is equivalent to the register REG. Create
1268 equivalences between the two anchors of CST and the corresponding
1269 register-offset expressions using REG. */
1270
1271 static void
1272 insert_const_anchors (rtx reg, rtx cst, enum machine_mode mode)
1273 {
1274 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1275
1276 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1277 &upper_base, &upper_offs))
1278 return;
1279
1280 /* Ignore anchors of value 0. Constants accessible from zero are
1281 simple. */
1282 if (lower_base != 0)
1283 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1284
1285 if (upper_base != 0)
1286 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1287 }
1288
1289 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1290 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1291 valid expression. Return the cheapest and oldest of such expressions. In
1292 *OLD, return how old the resulting expression is compared to the other
1293 equivalent expressions. */
1294
1295 static rtx
1296 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1297 unsigned *old)
1298 {
1299 struct table_elt *elt;
1300 unsigned idx;
1301 struct table_elt *match_elt;
1302 rtx match;
1303
1304 /* Find the cheapest and *oldest* expression to maximize the chance of
1305 reusing the same pseudo. */
1306
1307 match_elt = NULL;
1308 match = NULL_RTX;
1309 for (elt = anchor_elt->first_same_value, idx = 0;
1310 elt;
1311 elt = elt->next_same_value, idx++)
1312 {
1313 if (match_elt && CHEAPER (match_elt, elt))
1314 return match;
1315
1316 if (REG_P (elt->exp)
1317 || (GET_CODE (elt->exp) == PLUS
1318 && REG_P (XEXP (elt->exp, 0))
1319 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1320 {
1321 rtx x;
1322
1323 /* Ignore expressions that are no longer valid. */
1324 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1325 continue;
1326
1327 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1328 if (REG_P (x)
1329 || (GET_CODE (x) == PLUS
1330 && IN_RANGE (INTVAL (XEXP (x, 1)),
1331 -targetm.const_anchor,
1332 targetm.const_anchor - 1)))
1333 {
1334 match = x;
1335 match_elt = elt;
1336 *old = idx;
1337 }
1338 }
1339 }
1340
1341 return match;
1342 }
1343
1344 /* Try to express the constant SRC_CONST using a register+offset expression
1345 derived from a constant anchor. Return it if successful or NULL_RTX,
1346 otherwise. */
1347
1348 static rtx
1349 try_const_anchors (rtx src_const, enum machine_mode mode)
1350 {
1351 struct table_elt *lower_elt, *upper_elt;
1352 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1353 rtx lower_anchor_rtx, upper_anchor_rtx;
1354 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1355 unsigned lower_old, upper_old;
1356
1357 /* CONST_INT is used for CC modes, but we should leave those alone. */
1358 if (GET_MODE_CLASS (mode) == MODE_CC)
1359 return NULL_RTX;
1360
1361 gcc_assert (SCALAR_INT_MODE_P (mode));
1362 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1363 &upper_base, &upper_offs))
1364 return NULL_RTX;
1365
1366 lower_anchor_rtx = GEN_INT (lower_base);
1367 upper_anchor_rtx = GEN_INT (upper_base);
1368 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1369 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1370
1371 if (lower_elt)
1372 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1373 if (upper_elt)
1374 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1375
1376 if (!lower_exp)
1377 return upper_exp;
1378 if (!upper_exp)
1379 return lower_exp;
1380
1381 /* Return the older expression. */
1382 return (upper_old > lower_old ? upper_exp : lower_exp);
1383 }
1384 \f
1385 /* Look in or update the hash table. */
1386
1387 /* Remove table element ELT from use in the table.
1388 HASH is its hash code, made using the HASH macro.
1389 It's an argument because often that is known in advance
1390 and we save much time not recomputing it. */
1391
1392 static void
1393 remove_from_table (struct table_elt *elt, unsigned int hash)
1394 {
1395 if (elt == 0)
1396 return;
1397
1398 /* Mark this element as removed. See cse_insn. */
1399 elt->first_same_value = 0;
1400
1401 /* Remove the table element from its equivalence class. */
1402
1403 {
1404 struct table_elt *prev = elt->prev_same_value;
1405 struct table_elt *next = elt->next_same_value;
1406
1407 if (next)
1408 next->prev_same_value = prev;
1409
1410 if (prev)
1411 prev->next_same_value = next;
1412 else
1413 {
1414 struct table_elt *newfirst = next;
1415 while (next)
1416 {
1417 next->first_same_value = newfirst;
1418 next = next->next_same_value;
1419 }
1420 }
1421 }
1422
1423 /* Remove the table element from its hash bucket. */
1424
1425 {
1426 struct table_elt *prev = elt->prev_same_hash;
1427 struct table_elt *next = elt->next_same_hash;
1428
1429 if (next)
1430 next->prev_same_hash = prev;
1431
1432 if (prev)
1433 prev->next_same_hash = next;
1434 else if (table[hash] == elt)
1435 table[hash] = next;
1436 else
1437 {
1438 /* This entry is not in the proper hash bucket. This can happen
1439 when two classes were merged by `merge_equiv_classes'. Search
1440 for the hash bucket that it heads. This happens only very
1441 rarely, so the cost is acceptable. */
1442 for (hash = 0; hash < HASH_SIZE; hash++)
1443 if (table[hash] == elt)
1444 table[hash] = next;
1445 }
1446 }
1447
1448 /* Remove the table element from its related-value circular chain. */
1449
1450 if (elt->related_value != 0 && elt->related_value != elt)
1451 {
1452 struct table_elt *p = elt->related_value;
1453
1454 while (p->related_value != elt)
1455 p = p->related_value;
1456 p->related_value = elt->related_value;
1457 if (p->related_value == p)
1458 p->related_value = 0;
1459 }
1460
1461 /* Now add it to the free element chain. */
1462 elt->next_same_hash = free_element_chain;
1463 free_element_chain = elt;
1464 }
1465
1466 /* Same as above, but X is a pseudo-register. */
1467
1468 static void
1469 remove_pseudo_from_table (rtx x, unsigned int hash)
1470 {
1471 struct table_elt *elt;
1472
1473 /* Because a pseudo-register can be referenced in more than one
1474 mode, we might have to remove more than one table entry. */
1475 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1476 remove_from_table (elt, hash);
1477 }
1478
1479 /* Look up X in the hash table and return its table element,
1480 or 0 if X is not in the table.
1481
1482 MODE is the machine-mode of X, or if X is an integer constant
1483 with VOIDmode then MODE is the mode with which X will be used.
1484
1485 Here we are satisfied to find an expression whose tree structure
1486 looks like X. */
1487
1488 static struct table_elt *
1489 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1490 {
1491 struct table_elt *p;
1492
1493 for (p = table[hash]; p; p = p->next_same_hash)
1494 if (mode == p->mode && ((x == p->exp && REG_P (x))
1495 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1496 return p;
1497
1498 return 0;
1499 }
1500
1501 /* Like `lookup' but don't care whether the table element uses invalid regs.
1502 Also ignore discrepancies in the machine mode of a register. */
1503
1504 static struct table_elt *
1505 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1506 {
1507 struct table_elt *p;
1508
1509 if (REG_P (x))
1510 {
1511 unsigned int regno = REGNO (x);
1512
1513 /* Don't check the machine mode when comparing registers;
1514 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1515 for (p = table[hash]; p; p = p->next_same_hash)
1516 if (REG_P (p->exp)
1517 && REGNO (p->exp) == regno)
1518 return p;
1519 }
1520 else
1521 {
1522 for (p = table[hash]; p; p = p->next_same_hash)
1523 if (mode == p->mode
1524 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1525 return p;
1526 }
1527
1528 return 0;
1529 }
1530
1531 /* Look for an expression equivalent to X and with code CODE.
1532 If one is found, return that expression. */
1533
1534 static rtx
1535 lookup_as_function (rtx x, enum rtx_code code)
1536 {
1537 struct table_elt *p
1538 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1539
1540 if (p == 0)
1541 return 0;
1542
1543 for (p = p->first_same_value; p; p = p->next_same_value)
1544 if (GET_CODE (p->exp) == code
1545 /* Make sure this is a valid entry in the table. */
1546 && exp_equiv_p (p->exp, p->exp, 1, false))
1547 return p->exp;
1548
1549 return 0;
1550 }
1551
1552 /* Insert X in the hash table, assuming HASH is its hash code and
1553 CLASSP is an element of the class it should go in (or 0 if a new
1554 class should be made). COST is the code of X and reg_cost is the
1555 cost of registers in X. It is inserted at the proper position to
1556 keep the class in the order cheapest first.
1557
1558 MODE is the machine-mode of X, or if X is an integer constant
1559 with VOIDmode then MODE is the mode with which X will be used.
1560
1561 For elements of equal cheapness, the most recent one
1562 goes in front, except that the first element in the list
1563 remains first unless a cheaper element is added. The order of
1564 pseudo-registers does not matter, as canon_reg will be called to
1565 find the cheapest when a register is retrieved from the table.
1566
1567 The in_memory field in the hash table element is set to 0.
1568 The caller must set it nonzero if appropriate.
1569
1570 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1571 and if insert_regs returns a nonzero value
1572 you must then recompute its hash code before calling here.
1573
1574 If necessary, update table showing constant values of quantities. */
1575
1576 static struct table_elt *
1577 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1578 enum machine_mode mode, int cost, int reg_cost)
1579 {
1580 struct table_elt *elt;
1581
1582 /* If X is a register and we haven't made a quantity for it,
1583 something is wrong. */
1584 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1585
1586 /* If X is a hard register, show it is being put in the table. */
1587 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1588 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1589
1590 /* Put an element for X into the right hash bucket. */
1591
1592 elt = free_element_chain;
1593 if (elt)
1594 free_element_chain = elt->next_same_hash;
1595 else
1596 elt = XNEW (struct table_elt);
1597
1598 elt->exp = x;
1599 elt->canon_exp = NULL_RTX;
1600 elt->cost = cost;
1601 elt->regcost = reg_cost;
1602 elt->next_same_value = 0;
1603 elt->prev_same_value = 0;
1604 elt->next_same_hash = table[hash];
1605 elt->prev_same_hash = 0;
1606 elt->related_value = 0;
1607 elt->in_memory = 0;
1608 elt->mode = mode;
1609 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1610
1611 if (table[hash])
1612 table[hash]->prev_same_hash = elt;
1613 table[hash] = elt;
1614
1615 /* Put it into the proper value-class. */
1616 if (classp)
1617 {
1618 classp = classp->first_same_value;
1619 if (CHEAPER (elt, classp))
1620 /* Insert at the head of the class. */
1621 {
1622 struct table_elt *p;
1623 elt->next_same_value = classp;
1624 classp->prev_same_value = elt;
1625 elt->first_same_value = elt;
1626
1627 for (p = classp; p; p = p->next_same_value)
1628 p->first_same_value = elt;
1629 }
1630 else
1631 {
1632 /* Insert not at head of the class. */
1633 /* Put it after the last element cheaper than X. */
1634 struct table_elt *p, *next;
1635
1636 for (p = classp;
1637 (next = p->next_same_value) && CHEAPER (next, elt);
1638 p = next)
1639 ;
1640
1641 /* Put it after P and before NEXT. */
1642 elt->next_same_value = next;
1643 if (next)
1644 next->prev_same_value = elt;
1645
1646 elt->prev_same_value = p;
1647 p->next_same_value = elt;
1648 elt->first_same_value = classp;
1649 }
1650 }
1651 else
1652 elt->first_same_value = elt;
1653
1654 /* If this is a constant being set equivalent to a register or a register
1655 being set equivalent to a constant, note the constant equivalence.
1656
1657 If this is a constant, it cannot be equivalent to a different constant,
1658 and a constant is the only thing that can be cheaper than a register. So
1659 we know the register is the head of the class (before the constant was
1660 inserted).
1661
1662 If this is a register that is not already known equivalent to a
1663 constant, we must check the entire class.
1664
1665 If this is a register that is already known equivalent to an insn,
1666 update the qtys `const_insn' to show that `this_insn' is the latest
1667 insn making that quantity equivalent to the constant. */
1668
1669 if (elt->is_const && classp && REG_P (classp->exp)
1670 && !REG_P (x))
1671 {
1672 int exp_q = REG_QTY (REGNO (classp->exp));
1673 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1674
1675 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1676 exp_ent->const_insn = this_insn;
1677 }
1678
1679 else if (REG_P (x)
1680 && classp
1681 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1682 && ! elt->is_const)
1683 {
1684 struct table_elt *p;
1685
1686 for (p = classp; p != 0; p = p->next_same_value)
1687 {
1688 if (p->is_const && !REG_P (p->exp))
1689 {
1690 int x_q = REG_QTY (REGNO (x));
1691 struct qty_table_elem *x_ent = &qty_table[x_q];
1692
1693 x_ent->const_rtx
1694 = gen_lowpart (GET_MODE (x), p->exp);
1695 x_ent->const_insn = this_insn;
1696 break;
1697 }
1698 }
1699 }
1700
1701 else if (REG_P (x)
1702 && qty_table[REG_QTY (REGNO (x))].const_rtx
1703 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1704 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1705
1706 /* If this is a constant with symbolic value,
1707 and it has a term with an explicit integer value,
1708 link it up with related expressions. */
1709 if (GET_CODE (x) == CONST)
1710 {
1711 rtx subexp = get_related_value (x);
1712 unsigned subhash;
1713 struct table_elt *subelt, *subelt_prev;
1714
1715 if (subexp != 0)
1716 {
1717 /* Get the integer-free subexpression in the hash table. */
1718 subhash = SAFE_HASH (subexp, mode);
1719 subelt = lookup (subexp, subhash, mode);
1720 if (subelt == 0)
1721 subelt = insert (subexp, NULL, subhash, mode);
1722 /* Initialize SUBELT's circular chain if it has none. */
1723 if (subelt->related_value == 0)
1724 subelt->related_value = subelt;
1725 /* Find the element in the circular chain that precedes SUBELT. */
1726 subelt_prev = subelt;
1727 while (subelt_prev->related_value != subelt)
1728 subelt_prev = subelt_prev->related_value;
1729 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1730 This way the element that follows SUBELT is the oldest one. */
1731 elt->related_value = subelt_prev->related_value;
1732 subelt_prev->related_value = elt;
1733 }
1734 }
1735
1736 return elt;
1737 }
1738
1739 /* Wrap insert_with_costs by passing the default costs. */
1740
1741 static struct table_elt *
1742 insert (rtx x, struct table_elt *classp, unsigned int hash,
1743 enum machine_mode mode)
1744 {
1745 return
1746 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1747 }
1748
1749 \f
1750 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1751 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1752 the two classes equivalent.
1753
1754 CLASS1 will be the surviving class; CLASS2 should not be used after this
1755 call.
1756
1757 Any invalid entries in CLASS2 will not be copied. */
1758
1759 static void
1760 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1761 {
1762 struct table_elt *elt, *next, *new_elt;
1763
1764 /* Ensure we start with the head of the classes. */
1765 class1 = class1->first_same_value;
1766 class2 = class2->first_same_value;
1767
1768 /* If they were already equal, forget it. */
1769 if (class1 == class2)
1770 return;
1771
1772 for (elt = class2; elt; elt = next)
1773 {
1774 unsigned int hash;
1775 rtx exp = elt->exp;
1776 enum machine_mode mode = elt->mode;
1777
1778 next = elt->next_same_value;
1779
1780 /* Remove old entry, make a new one in CLASS1's class.
1781 Don't do this for invalid entries as we cannot find their
1782 hash code (it also isn't necessary). */
1783 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1784 {
1785 bool need_rehash = false;
1786
1787 hash_arg_in_memory = 0;
1788 hash = HASH (exp, mode);
1789
1790 if (REG_P (exp))
1791 {
1792 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1793 delete_reg_equiv (REGNO (exp));
1794 }
1795
1796 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1797 remove_pseudo_from_table (exp, hash);
1798 else
1799 remove_from_table (elt, hash);
1800
1801 if (insert_regs (exp, class1, 0) || need_rehash)
1802 {
1803 rehash_using_reg (exp);
1804 hash = HASH (exp, mode);
1805 }
1806 new_elt = insert (exp, class1, hash, mode);
1807 new_elt->in_memory = hash_arg_in_memory;
1808 }
1809 }
1810 }
1811 \f
1812 /* Flush the entire hash table. */
1813
1814 static void
1815 flush_hash_table (void)
1816 {
1817 int i;
1818 struct table_elt *p;
1819
1820 for (i = 0; i < HASH_SIZE; i++)
1821 for (p = table[i]; p; p = table[i])
1822 {
1823 /* Note that invalidate can remove elements
1824 after P in the current hash chain. */
1825 if (REG_P (p->exp))
1826 invalidate (p->exp, VOIDmode);
1827 else
1828 remove_from_table (p, i);
1829 }
1830 }
1831 \f
1832 /* Function called for each rtx to check whether an anti dependence exist. */
1833 struct check_dependence_data
1834 {
1835 enum machine_mode mode;
1836 rtx exp;
1837 rtx addr;
1838 };
1839
1840 static int
1841 check_dependence (rtx *x, void *data)
1842 {
1843 struct check_dependence_data *d = (struct check_dependence_data *) data;
1844 if (*x && MEM_P (*x))
1845 return canon_anti_dependence (*x, true, d->exp, d->mode, d->addr);
1846 else
1847 return 0;
1848 }
1849 \f
1850 /* Remove from the hash table, or mark as invalid, all expressions whose
1851 values could be altered by storing in X. X is a register, a subreg, or
1852 a memory reference with nonvarying address (because, when a memory
1853 reference with a varying address is stored in, all memory references are
1854 removed by invalidate_memory so specific invalidation is superfluous).
1855 FULL_MODE, if not VOIDmode, indicates that this much should be
1856 invalidated instead of just the amount indicated by the mode of X. This
1857 is only used for bitfield stores into memory.
1858
1859 A nonvarying address may be just a register or just a symbol reference,
1860 or it may be either of those plus a numeric offset. */
1861
1862 static void
1863 invalidate (rtx x, enum machine_mode full_mode)
1864 {
1865 int i;
1866 struct table_elt *p;
1867 rtx addr;
1868
1869 switch (GET_CODE (x))
1870 {
1871 case REG:
1872 {
1873 /* If X is a register, dependencies on its contents are recorded
1874 through the qty number mechanism. Just change the qty number of
1875 the register, mark it as invalid for expressions that refer to it,
1876 and remove it itself. */
1877 unsigned int regno = REGNO (x);
1878 unsigned int hash = HASH (x, GET_MODE (x));
1879
1880 /* Remove REGNO from any quantity list it might be on and indicate
1881 that its value might have changed. If it is a pseudo, remove its
1882 entry from the hash table.
1883
1884 For a hard register, we do the first two actions above for any
1885 additional hard registers corresponding to X. Then, if any of these
1886 registers are in the table, we must remove any REG entries that
1887 overlap these registers. */
1888
1889 delete_reg_equiv (regno);
1890 REG_TICK (regno)++;
1891 SUBREG_TICKED (regno) = -1;
1892
1893 if (regno >= FIRST_PSEUDO_REGISTER)
1894 remove_pseudo_from_table (x, hash);
1895 else
1896 {
1897 HOST_WIDE_INT in_table
1898 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1899 unsigned int endregno = END_HARD_REGNO (x);
1900 unsigned int tregno, tendregno, rn;
1901 struct table_elt *p, *next;
1902
1903 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1904
1905 for (rn = regno + 1; rn < endregno; rn++)
1906 {
1907 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1908 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1909 delete_reg_equiv (rn);
1910 REG_TICK (rn)++;
1911 SUBREG_TICKED (rn) = -1;
1912 }
1913
1914 if (in_table)
1915 for (hash = 0; hash < HASH_SIZE; hash++)
1916 for (p = table[hash]; p; p = next)
1917 {
1918 next = p->next_same_hash;
1919
1920 if (!REG_P (p->exp)
1921 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1922 continue;
1923
1924 tregno = REGNO (p->exp);
1925 tendregno = END_HARD_REGNO (p->exp);
1926 if (tendregno > regno && tregno < endregno)
1927 remove_from_table (p, hash);
1928 }
1929 }
1930 }
1931 return;
1932
1933 case SUBREG:
1934 invalidate (SUBREG_REG (x), VOIDmode);
1935 return;
1936
1937 case PARALLEL:
1938 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1939 invalidate (XVECEXP (x, 0, i), VOIDmode);
1940 return;
1941
1942 case EXPR_LIST:
1943 /* This is part of a disjoint return value; extract the location in
1944 question ignoring the offset. */
1945 invalidate (XEXP (x, 0), VOIDmode);
1946 return;
1947
1948 case MEM:
1949 addr = canon_rtx (get_addr (XEXP (x, 0)));
1950 /* Calculate the canonical version of X here so that
1951 true_dependence doesn't generate new RTL for X on each call. */
1952 x = canon_rtx (x);
1953
1954 /* Remove all hash table elements that refer to overlapping pieces of
1955 memory. */
1956 if (full_mode == VOIDmode)
1957 full_mode = GET_MODE (x);
1958
1959 for (i = 0; i < HASH_SIZE; i++)
1960 {
1961 struct table_elt *next;
1962
1963 for (p = table[i]; p; p = next)
1964 {
1965 next = p->next_same_hash;
1966 if (p->in_memory)
1967 {
1968 struct check_dependence_data d;
1969
1970 /* Just canonicalize the expression once;
1971 otherwise each time we call invalidate
1972 true_dependence will canonicalize the
1973 expression again. */
1974 if (!p->canon_exp)
1975 p->canon_exp = canon_rtx (p->exp);
1976 d.exp = x;
1977 d.addr = addr;
1978 d.mode = full_mode;
1979 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1980 remove_from_table (p, i);
1981 }
1982 }
1983 }
1984 return;
1985
1986 default:
1987 gcc_unreachable ();
1988 }
1989 }
1990 \f
1991 /* Remove all expressions that refer to register REGNO,
1992 since they are already invalid, and we are about to
1993 mark that register valid again and don't want the old
1994 expressions to reappear as valid. */
1995
1996 static void
1997 remove_invalid_refs (unsigned int regno)
1998 {
1999 unsigned int i;
2000 struct table_elt *p, *next;
2001
2002 for (i = 0; i < HASH_SIZE; i++)
2003 for (p = table[i]; p; p = next)
2004 {
2005 next = p->next_same_hash;
2006 if (!REG_P (p->exp)
2007 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2008 remove_from_table (p, i);
2009 }
2010 }
2011
2012 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2013 and mode MODE. */
2014 static void
2015 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2016 enum machine_mode mode)
2017 {
2018 unsigned int i;
2019 struct table_elt *p, *next;
2020 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2021
2022 for (i = 0; i < HASH_SIZE; i++)
2023 for (p = table[i]; p; p = next)
2024 {
2025 rtx exp = p->exp;
2026 next = p->next_same_hash;
2027
2028 if (!REG_P (exp)
2029 && (GET_CODE (exp) != SUBREG
2030 || !REG_P (SUBREG_REG (exp))
2031 || REGNO (SUBREG_REG (exp)) != regno
2032 || (((SUBREG_BYTE (exp)
2033 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2034 && SUBREG_BYTE (exp) <= end))
2035 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
2036 remove_from_table (p, i);
2037 }
2038 }
2039 \f
2040 /* Recompute the hash codes of any valid entries in the hash table that
2041 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2042
2043 This is called when we make a jump equivalence. */
2044
2045 static void
2046 rehash_using_reg (rtx x)
2047 {
2048 unsigned int i;
2049 struct table_elt *p, *next;
2050 unsigned hash;
2051
2052 if (GET_CODE (x) == SUBREG)
2053 x = SUBREG_REG (x);
2054
2055 /* If X is not a register or if the register is known not to be in any
2056 valid entries in the table, we have no work to do. */
2057
2058 if (!REG_P (x)
2059 || REG_IN_TABLE (REGNO (x)) < 0
2060 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2061 return;
2062
2063 /* Scan all hash chains looking for valid entries that mention X.
2064 If we find one and it is in the wrong hash chain, move it. */
2065
2066 for (i = 0; i < HASH_SIZE; i++)
2067 for (p = table[i]; p; p = next)
2068 {
2069 next = p->next_same_hash;
2070 if (reg_mentioned_p (x, p->exp)
2071 && exp_equiv_p (p->exp, p->exp, 1, false)
2072 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2073 {
2074 if (p->next_same_hash)
2075 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2076
2077 if (p->prev_same_hash)
2078 p->prev_same_hash->next_same_hash = p->next_same_hash;
2079 else
2080 table[i] = p->next_same_hash;
2081
2082 p->next_same_hash = table[hash];
2083 p->prev_same_hash = 0;
2084 if (table[hash])
2085 table[hash]->prev_same_hash = p;
2086 table[hash] = p;
2087 }
2088 }
2089 }
2090 \f
2091 /* Remove from the hash table any expression that is a call-clobbered
2092 register. Also update their TICK values. */
2093
2094 static void
2095 invalidate_for_call (void)
2096 {
2097 unsigned int regno, endregno;
2098 unsigned int i;
2099 unsigned hash;
2100 struct table_elt *p, *next;
2101 int in_table = 0;
2102 hard_reg_set_iterator hrsi;
2103
2104 /* Go through all the hard registers. For each that is clobbered in
2105 a CALL_INSN, remove the register from quantity chains and update
2106 reg_tick if defined. Also see if any of these registers is currently
2107 in the table. */
2108 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2109 {
2110 delete_reg_equiv (regno);
2111 if (REG_TICK (regno) >= 0)
2112 {
2113 REG_TICK (regno)++;
2114 SUBREG_TICKED (regno) = -1;
2115 }
2116 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2117 }
2118
2119 /* In the case where we have no call-clobbered hard registers in the
2120 table, we are done. Otherwise, scan the table and remove any
2121 entry that overlaps a call-clobbered register. */
2122
2123 if (in_table)
2124 for (hash = 0; hash < HASH_SIZE; hash++)
2125 for (p = table[hash]; p; p = next)
2126 {
2127 next = p->next_same_hash;
2128
2129 if (!REG_P (p->exp)
2130 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2131 continue;
2132
2133 regno = REGNO (p->exp);
2134 endregno = END_HARD_REGNO (p->exp);
2135
2136 for (i = regno; i < endregno; i++)
2137 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2138 {
2139 remove_from_table (p, hash);
2140 break;
2141 }
2142 }
2143 }
2144 \f
2145 /* Given an expression X of type CONST,
2146 and ELT which is its table entry (or 0 if it
2147 is not in the hash table),
2148 return an alternate expression for X as a register plus integer.
2149 If none can be found, return 0. */
2150
2151 static rtx
2152 use_related_value (rtx x, struct table_elt *elt)
2153 {
2154 struct table_elt *relt = 0;
2155 struct table_elt *p, *q;
2156 HOST_WIDE_INT offset;
2157
2158 /* First, is there anything related known?
2159 If we have a table element, we can tell from that.
2160 Otherwise, must look it up. */
2161
2162 if (elt != 0 && elt->related_value != 0)
2163 relt = elt;
2164 else if (elt == 0 && GET_CODE (x) == CONST)
2165 {
2166 rtx subexp = get_related_value (x);
2167 if (subexp != 0)
2168 relt = lookup (subexp,
2169 SAFE_HASH (subexp, GET_MODE (subexp)),
2170 GET_MODE (subexp));
2171 }
2172
2173 if (relt == 0)
2174 return 0;
2175
2176 /* Search all related table entries for one that has an
2177 equivalent register. */
2178
2179 p = relt;
2180 while (1)
2181 {
2182 /* This loop is strange in that it is executed in two different cases.
2183 The first is when X is already in the table. Then it is searching
2184 the RELATED_VALUE list of X's class (RELT). The second case is when
2185 X is not in the table. Then RELT points to a class for the related
2186 value.
2187
2188 Ensure that, whatever case we are in, that we ignore classes that have
2189 the same value as X. */
2190
2191 if (rtx_equal_p (x, p->exp))
2192 q = 0;
2193 else
2194 for (q = p->first_same_value; q; q = q->next_same_value)
2195 if (REG_P (q->exp))
2196 break;
2197
2198 if (q)
2199 break;
2200
2201 p = p->related_value;
2202
2203 /* We went all the way around, so there is nothing to be found.
2204 Alternatively, perhaps RELT was in the table for some other reason
2205 and it has no related values recorded. */
2206 if (p == relt || p == 0)
2207 break;
2208 }
2209
2210 if (q == 0)
2211 return 0;
2212
2213 offset = (get_integer_term (x) - get_integer_term (p->exp));
2214 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2215 return plus_constant (q->mode, q->exp, offset);
2216 }
2217 \f
2218
2219 /* Hash a string. Just add its bytes up. */
2220 static inline unsigned
2221 hash_rtx_string (const char *ps)
2222 {
2223 unsigned hash = 0;
2224 const unsigned char *p = (const unsigned char *) ps;
2225
2226 if (p)
2227 while (*p)
2228 hash += *p++;
2229
2230 return hash;
2231 }
2232
2233 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2234 When the callback returns true, we continue with the new rtx. */
2235
2236 unsigned
2237 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2238 int *do_not_record_p, int *hash_arg_in_memory_p,
2239 bool have_reg_qty, hash_rtx_callback_function cb)
2240 {
2241 int i, j;
2242 unsigned hash = 0;
2243 enum rtx_code code;
2244 const char *fmt;
2245 enum machine_mode newmode;
2246 rtx newx;
2247
2248 /* Used to turn recursion into iteration. We can't rely on GCC's
2249 tail-recursion elimination since we need to keep accumulating values
2250 in HASH. */
2251 repeat:
2252 if (x == 0)
2253 return hash;
2254
2255 /* Invoke the callback first. */
2256 if (cb != NULL
2257 && ((*cb) (x, mode, &newx, &newmode)))
2258 {
2259 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2260 hash_arg_in_memory_p, have_reg_qty, cb);
2261 return hash;
2262 }
2263
2264 code = GET_CODE (x);
2265 switch (code)
2266 {
2267 case REG:
2268 {
2269 unsigned int regno = REGNO (x);
2270
2271 if (do_not_record_p && !reload_completed)
2272 {
2273 /* On some machines, we can't record any non-fixed hard register,
2274 because extending its life will cause reload problems. We
2275 consider ap, fp, sp, gp to be fixed for this purpose.
2276
2277 We also consider CCmode registers to be fixed for this purpose;
2278 failure to do so leads to failure to simplify 0<100 type of
2279 conditionals.
2280
2281 On all machines, we can't record any global registers.
2282 Nor should we record any register that is in a small
2283 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2284 bool record;
2285
2286 if (regno >= FIRST_PSEUDO_REGISTER)
2287 record = true;
2288 else if (x == frame_pointer_rtx
2289 || x == hard_frame_pointer_rtx
2290 || x == arg_pointer_rtx
2291 || x == stack_pointer_rtx
2292 || x == pic_offset_table_rtx)
2293 record = true;
2294 else if (global_regs[regno])
2295 record = false;
2296 else if (fixed_regs[regno])
2297 record = true;
2298 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2299 record = true;
2300 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2301 record = false;
2302 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2303 record = false;
2304 else
2305 record = true;
2306
2307 if (!record)
2308 {
2309 *do_not_record_p = 1;
2310 return 0;
2311 }
2312 }
2313
2314 hash += ((unsigned int) REG << 7);
2315 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2316 return hash;
2317 }
2318
2319 /* We handle SUBREG of a REG specially because the underlying
2320 reg changes its hash value with every value change; we don't
2321 want to have to forget unrelated subregs when one subreg changes. */
2322 case SUBREG:
2323 {
2324 if (REG_P (SUBREG_REG (x)))
2325 {
2326 hash += (((unsigned int) SUBREG << 7)
2327 + REGNO (SUBREG_REG (x))
2328 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2329 return hash;
2330 }
2331 break;
2332 }
2333
2334 case CONST_INT:
2335 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2336 + (unsigned int) INTVAL (x));
2337 return hash;
2338
2339 case CONST_DOUBLE:
2340 /* This is like the general case, except that it only counts
2341 the integers representing the constant. */
2342 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2343 if (GET_MODE (x) != VOIDmode)
2344 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2345 else
2346 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2347 + (unsigned int) CONST_DOUBLE_HIGH (x));
2348 return hash;
2349
2350 case CONST_FIXED:
2351 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2352 hash += fixed_hash (CONST_FIXED_VALUE (x));
2353 return hash;
2354
2355 case CONST_VECTOR:
2356 {
2357 int units;
2358 rtx elt;
2359
2360 units = CONST_VECTOR_NUNITS (x);
2361
2362 for (i = 0; i < units; ++i)
2363 {
2364 elt = CONST_VECTOR_ELT (x, i);
2365 hash += hash_rtx_cb (elt, GET_MODE (elt),
2366 do_not_record_p, hash_arg_in_memory_p,
2367 have_reg_qty, cb);
2368 }
2369
2370 return hash;
2371 }
2372
2373 /* Assume there is only one rtx object for any given label. */
2374 case LABEL_REF:
2375 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2376 differences and differences between each stage's debugging dumps. */
2377 hash += (((unsigned int) LABEL_REF << 7)
2378 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2379 return hash;
2380
2381 case SYMBOL_REF:
2382 {
2383 /* Don't hash on the symbol's address to avoid bootstrap differences.
2384 Different hash values may cause expressions to be recorded in
2385 different orders and thus different registers to be used in the
2386 final assembler. This also avoids differences in the dump files
2387 between various stages. */
2388 unsigned int h = 0;
2389 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2390
2391 while (*p)
2392 h += (h << 7) + *p++; /* ??? revisit */
2393
2394 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2395 return hash;
2396 }
2397
2398 case MEM:
2399 /* We don't record if marked volatile or if BLKmode since we don't
2400 know the size of the move. */
2401 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2402 {
2403 *do_not_record_p = 1;
2404 return 0;
2405 }
2406 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2407 *hash_arg_in_memory_p = 1;
2408
2409 /* Now that we have already found this special case,
2410 might as well speed it up as much as possible. */
2411 hash += (unsigned) MEM;
2412 x = XEXP (x, 0);
2413 goto repeat;
2414
2415 case USE:
2416 /* A USE that mentions non-volatile memory needs special
2417 handling since the MEM may be BLKmode which normally
2418 prevents an entry from being made. Pure calls are
2419 marked by a USE which mentions BLKmode memory.
2420 See calls.c:emit_call_1. */
2421 if (MEM_P (XEXP (x, 0))
2422 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2423 {
2424 hash += (unsigned) USE;
2425 x = XEXP (x, 0);
2426
2427 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2428 *hash_arg_in_memory_p = 1;
2429
2430 /* Now that we have already found this special case,
2431 might as well speed it up as much as possible. */
2432 hash += (unsigned) MEM;
2433 x = XEXP (x, 0);
2434 goto repeat;
2435 }
2436 break;
2437
2438 case PRE_DEC:
2439 case PRE_INC:
2440 case POST_DEC:
2441 case POST_INC:
2442 case PRE_MODIFY:
2443 case POST_MODIFY:
2444 case PC:
2445 case CC0:
2446 case CALL:
2447 case UNSPEC_VOLATILE:
2448 if (do_not_record_p) {
2449 *do_not_record_p = 1;
2450 return 0;
2451 }
2452 else
2453 return hash;
2454 break;
2455
2456 case ASM_OPERANDS:
2457 if (do_not_record_p && MEM_VOLATILE_P (x))
2458 {
2459 *do_not_record_p = 1;
2460 return 0;
2461 }
2462 else
2463 {
2464 /* We don't want to take the filename and line into account. */
2465 hash += (unsigned) code + (unsigned) GET_MODE (x)
2466 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2467 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2468 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2469
2470 if (ASM_OPERANDS_INPUT_LENGTH (x))
2471 {
2472 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2473 {
2474 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2475 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2476 do_not_record_p, hash_arg_in_memory_p,
2477 have_reg_qty, cb)
2478 + hash_rtx_string
2479 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2480 }
2481
2482 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2483 x = ASM_OPERANDS_INPUT (x, 0);
2484 mode = GET_MODE (x);
2485 goto repeat;
2486 }
2487
2488 return hash;
2489 }
2490 break;
2491
2492 default:
2493 break;
2494 }
2495
2496 i = GET_RTX_LENGTH (code) - 1;
2497 hash += (unsigned) code + (unsigned) GET_MODE (x);
2498 fmt = GET_RTX_FORMAT (code);
2499 for (; i >= 0; i--)
2500 {
2501 switch (fmt[i])
2502 {
2503 case 'e':
2504 /* If we are about to do the last recursive call
2505 needed at this level, change it into iteration.
2506 This function is called enough to be worth it. */
2507 if (i == 0)
2508 {
2509 x = XEXP (x, i);
2510 goto repeat;
2511 }
2512
2513 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2514 hash_arg_in_memory_p,
2515 have_reg_qty, cb);
2516 break;
2517
2518 case 'E':
2519 for (j = 0; j < XVECLEN (x, i); j++)
2520 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2521 hash_arg_in_memory_p,
2522 have_reg_qty, cb);
2523 break;
2524
2525 case 's':
2526 hash += hash_rtx_string (XSTR (x, i));
2527 break;
2528
2529 case 'i':
2530 hash += (unsigned int) XINT (x, i);
2531 break;
2532
2533 case '0': case 't':
2534 /* Unused. */
2535 break;
2536
2537 default:
2538 gcc_unreachable ();
2539 }
2540 }
2541
2542 return hash;
2543 }
2544
2545 /* Hash an rtx. We are careful to make sure the value is never negative.
2546 Equivalent registers hash identically.
2547 MODE is used in hashing for CONST_INTs only;
2548 otherwise the mode of X is used.
2549
2550 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2551
2552 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2553 a MEM rtx which does not have the MEM_READONLY_P flag set.
2554
2555 Note that cse_insn knows that the hash code of a MEM expression
2556 is just (int) MEM plus the hash code of the address. */
2557
2558 unsigned
2559 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2560 int *hash_arg_in_memory_p, bool have_reg_qty)
2561 {
2562 return hash_rtx_cb (x, mode, do_not_record_p,
2563 hash_arg_in_memory_p, have_reg_qty, NULL);
2564 }
2565
2566 /* Hash an rtx X for cse via hash_rtx.
2567 Stores 1 in do_not_record if any subexpression is volatile.
2568 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2569 does not have the MEM_READONLY_P flag set. */
2570
2571 static inline unsigned
2572 canon_hash (rtx x, enum machine_mode mode)
2573 {
2574 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2575 }
2576
2577 /* Like canon_hash but with no side effects, i.e. do_not_record
2578 and hash_arg_in_memory are not changed. */
2579
2580 static inline unsigned
2581 safe_hash (rtx x, enum machine_mode mode)
2582 {
2583 int dummy_do_not_record;
2584 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2585 }
2586 \f
2587 /* Return 1 iff X and Y would canonicalize into the same thing,
2588 without actually constructing the canonicalization of either one.
2589 If VALIDATE is nonzero,
2590 we assume X is an expression being processed from the rtl
2591 and Y was found in the hash table. We check register refs
2592 in Y for being marked as valid.
2593
2594 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2595
2596 int
2597 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2598 {
2599 int i, j;
2600 enum rtx_code code;
2601 const char *fmt;
2602
2603 /* Note: it is incorrect to assume an expression is equivalent to itself
2604 if VALIDATE is nonzero. */
2605 if (x == y && !validate)
2606 return 1;
2607
2608 if (x == 0 || y == 0)
2609 return x == y;
2610
2611 code = GET_CODE (x);
2612 if (code != GET_CODE (y))
2613 return 0;
2614
2615 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2616 if (GET_MODE (x) != GET_MODE (y))
2617 return 0;
2618
2619 /* MEMs referring to different address space are not equivalent. */
2620 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2621 return 0;
2622
2623 switch (code)
2624 {
2625 case PC:
2626 case CC0:
2627 CASE_CONST_UNIQUE:
2628 return x == y;
2629
2630 case LABEL_REF:
2631 return XEXP (x, 0) == XEXP (y, 0);
2632
2633 case SYMBOL_REF:
2634 return XSTR (x, 0) == XSTR (y, 0);
2635
2636 case REG:
2637 if (for_gcse)
2638 return REGNO (x) == REGNO (y);
2639 else
2640 {
2641 unsigned int regno = REGNO (y);
2642 unsigned int i;
2643 unsigned int endregno = END_REGNO (y);
2644
2645 /* If the quantities are not the same, the expressions are not
2646 equivalent. If there are and we are not to validate, they
2647 are equivalent. Otherwise, ensure all regs are up-to-date. */
2648
2649 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2650 return 0;
2651
2652 if (! validate)
2653 return 1;
2654
2655 for (i = regno; i < endregno; i++)
2656 if (REG_IN_TABLE (i) != REG_TICK (i))
2657 return 0;
2658
2659 return 1;
2660 }
2661
2662 case MEM:
2663 if (for_gcse)
2664 {
2665 /* A volatile mem should not be considered equivalent to any
2666 other. */
2667 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2668 return 0;
2669
2670 /* Can't merge two expressions in different alias sets, since we
2671 can decide that the expression is transparent in a block when
2672 it isn't, due to it being set with the different alias set.
2673
2674 Also, can't merge two expressions with different MEM_ATTRS.
2675 They could e.g. be two different entities allocated into the
2676 same space on the stack (see e.g. PR25130). In that case, the
2677 MEM addresses can be the same, even though the two MEMs are
2678 absolutely not equivalent.
2679
2680 But because really all MEM attributes should be the same for
2681 equivalent MEMs, we just use the invariant that MEMs that have
2682 the same attributes share the same mem_attrs data structure. */
2683 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2684 return 0;
2685 }
2686 break;
2687
2688 /* For commutative operations, check both orders. */
2689 case PLUS:
2690 case MULT:
2691 case AND:
2692 case IOR:
2693 case XOR:
2694 case NE:
2695 case EQ:
2696 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2697 validate, for_gcse)
2698 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2699 validate, for_gcse))
2700 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2701 validate, for_gcse)
2702 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2703 validate, for_gcse)));
2704
2705 case ASM_OPERANDS:
2706 /* We don't use the generic code below because we want to
2707 disregard filename and line numbers. */
2708
2709 /* A volatile asm isn't equivalent to any other. */
2710 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2711 return 0;
2712
2713 if (GET_MODE (x) != GET_MODE (y)
2714 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2715 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2716 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2717 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2718 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2719 return 0;
2720
2721 if (ASM_OPERANDS_INPUT_LENGTH (x))
2722 {
2723 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2724 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2725 ASM_OPERANDS_INPUT (y, i),
2726 validate, for_gcse)
2727 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2728 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2729 return 0;
2730 }
2731
2732 return 1;
2733
2734 default:
2735 break;
2736 }
2737
2738 /* Compare the elements. If any pair of corresponding elements
2739 fail to match, return 0 for the whole thing. */
2740
2741 fmt = GET_RTX_FORMAT (code);
2742 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2743 {
2744 switch (fmt[i])
2745 {
2746 case 'e':
2747 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2748 validate, for_gcse))
2749 return 0;
2750 break;
2751
2752 case 'E':
2753 if (XVECLEN (x, i) != XVECLEN (y, i))
2754 return 0;
2755 for (j = 0; j < XVECLEN (x, i); j++)
2756 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2757 validate, for_gcse))
2758 return 0;
2759 break;
2760
2761 case 's':
2762 if (strcmp (XSTR (x, i), XSTR (y, i)))
2763 return 0;
2764 break;
2765
2766 case 'i':
2767 if (XINT (x, i) != XINT (y, i))
2768 return 0;
2769 break;
2770
2771 case 'w':
2772 if (XWINT (x, i) != XWINT (y, i))
2773 return 0;
2774 break;
2775
2776 case '0':
2777 case 't':
2778 break;
2779
2780 default:
2781 gcc_unreachable ();
2782 }
2783 }
2784
2785 return 1;
2786 }
2787 \f
2788 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2789 the result if necessary. INSN is as for canon_reg. */
2790
2791 static void
2792 validate_canon_reg (rtx *xloc, rtx insn)
2793 {
2794 if (*xloc)
2795 {
2796 rtx new_rtx = canon_reg (*xloc, insn);
2797
2798 /* If replacing pseudo with hard reg or vice versa, ensure the
2799 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2800 gcc_assert (insn && new_rtx);
2801 validate_change (insn, xloc, new_rtx, 1);
2802 }
2803 }
2804
2805 /* Canonicalize an expression:
2806 replace each register reference inside it
2807 with the "oldest" equivalent register.
2808
2809 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2810 after we make our substitution. The calls are made with IN_GROUP nonzero
2811 so apply_change_group must be called upon the outermost return from this
2812 function (unless INSN is zero). The result of apply_change_group can
2813 generally be discarded since the changes we are making are optional. */
2814
2815 static rtx
2816 canon_reg (rtx x, rtx insn)
2817 {
2818 int i;
2819 enum rtx_code code;
2820 const char *fmt;
2821
2822 if (x == 0)
2823 return x;
2824
2825 code = GET_CODE (x);
2826 switch (code)
2827 {
2828 case PC:
2829 case CC0:
2830 case CONST:
2831 CASE_CONST_ANY:
2832 case SYMBOL_REF:
2833 case LABEL_REF:
2834 case ADDR_VEC:
2835 case ADDR_DIFF_VEC:
2836 return x;
2837
2838 case REG:
2839 {
2840 int first;
2841 int q;
2842 struct qty_table_elem *ent;
2843
2844 /* Never replace a hard reg, because hard regs can appear
2845 in more than one machine mode, and we must preserve the mode
2846 of each occurrence. Also, some hard regs appear in
2847 MEMs that are shared and mustn't be altered. Don't try to
2848 replace any reg that maps to a reg of class NO_REGS. */
2849 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2850 || ! REGNO_QTY_VALID_P (REGNO (x)))
2851 return x;
2852
2853 q = REG_QTY (REGNO (x));
2854 ent = &qty_table[q];
2855 first = ent->first_reg;
2856 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2857 : REGNO_REG_CLASS (first) == NO_REGS ? x
2858 : gen_rtx_REG (ent->mode, first));
2859 }
2860
2861 default:
2862 break;
2863 }
2864
2865 fmt = GET_RTX_FORMAT (code);
2866 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2867 {
2868 int j;
2869
2870 if (fmt[i] == 'e')
2871 validate_canon_reg (&XEXP (x, i), insn);
2872 else if (fmt[i] == 'E')
2873 for (j = 0; j < XVECLEN (x, i); j++)
2874 validate_canon_reg (&XVECEXP (x, i, j), insn);
2875 }
2876
2877 return x;
2878 }
2879 \f
2880 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2881 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2882 what values are being compared.
2883
2884 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2885 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2886 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2887 compared to produce cc0.
2888
2889 The return value is the comparison operator and is either the code of
2890 A or the code corresponding to the inverse of the comparison. */
2891
2892 static enum rtx_code
2893 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2894 enum machine_mode *pmode1, enum machine_mode *pmode2)
2895 {
2896 rtx arg1, arg2;
2897 struct pointer_set_t *visited = NULL;
2898 /* Set nonzero when we find something of interest. */
2899 rtx x = NULL;
2900
2901 arg1 = *parg1, arg2 = *parg2;
2902
2903 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2904
2905 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2906 {
2907 int reverse_code = 0;
2908 struct table_elt *p = 0;
2909
2910 /* Remember state from previous iteration. */
2911 if (x)
2912 {
2913 if (!visited)
2914 visited = pointer_set_create ();
2915 pointer_set_insert (visited, x);
2916 x = 0;
2917 }
2918
2919 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2920 On machines with CC0, this is the only case that can occur, since
2921 fold_rtx will return the COMPARE or item being compared with zero
2922 when given CC0. */
2923
2924 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2925 x = arg1;
2926
2927 /* If ARG1 is a comparison operator and CODE is testing for
2928 STORE_FLAG_VALUE, get the inner arguments. */
2929
2930 else if (COMPARISON_P (arg1))
2931 {
2932 #ifdef FLOAT_STORE_FLAG_VALUE
2933 REAL_VALUE_TYPE fsfv;
2934 #endif
2935
2936 if (code == NE
2937 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2938 && code == LT && STORE_FLAG_VALUE == -1)
2939 #ifdef FLOAT_STORE_FLAG_VALUE
2940 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2941 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2942 REAL_VALUE_NEGATIVE (fsfv)))
2943 #endif
2944 )
2945 x = arg1;
2946 else if (code == EQ
2947 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2948 && code == GE && STORE_FLAG_VALUE == -1)
2949 #ifdef FLOAT_STORE_FLAG_VALUE
2950 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2951 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2952 REAL_VALUE_NEGATIVE (fsfv)))
2953 #endif
2954 )
2955 x = arg1, reverse_code = 1;
2956 }
2957
2958 /* ??? We could also check for
2959
2960 (ne (and (eq (...) (const_int 1))) (const_int 0))
2961
2962 and related forms, but let's wait until we see them occurring. */
2963
2964 if (x == 0)
2965 /* Look up ARG1 in the hash table and see if it has an equivalence
2966 that lets us see what is being compared. */
2967 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2968 if (p)
2969 {
2970 p = p->first_same_value;
2971
2972 /* If what we compare is already known to be constant, that is as
2973 good as it gets.
2974 We need to break the loop in this case, because otherwise we
2975 can have an infinite loop when looking at a reg that is known
2976 to be a constant which is the same as a comparison of a reg
2977 against zero which appears later in the insn stream, which in
2978 turn is constant and the same as the comparison of the first reg
2979 against zero... */
2980 if (p->is_const)
2981 break;
2982 }
2983
2984 for (; p; p = p->next_same_value)
2985 {
2986 enum machine_mode inner_mode = GET_MODE (p->exp);
2987 #ifdef FLOAT_STORE_FLAG_VALUE
2988 REAL_VALUE_TYPE fsfv;
2989 #endif
2990
2991 /* If the entry isn't valid, skip it. */
2992 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2993 continue;
2994
2995 /* If it's a comparison we've used before, skip it. */
2996 if (visited && pointer_set_contains (visited, p->exp))
2997 continue;
2998
2999 if (GET_CODE (p->exp) == COMPARE
3000 /* Another possibility is that this machine has a compare insn
3001 that includes the comparison code. In that case, ARG1 would
3002 be equivalent to a comparison operation that would set ARG1 to
3003 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3004 ORIG_CODE is the actual comparison being done; if it is an EQ,
3005 we must reverse ORIG_CODE. On machine with a negative value
3006 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3007 || ((code == NE
3008 || (code == LT
3009 && val_signbit_known_set_p (inner_mode,
3010 STORE_FLAG_VALUE))
3011 #ifdef FLOAT_STORE_FLAG_VALUE
3012 || (code == LT
3013 && SCALAR_FLOAT_MODE_P (inner_mode)
3014 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3015 REAL_VALUE_NEGATIVE (fsfv)))
3016 #endif
3017 )
3018 && COMPARISON_P (p->exp)))
3019 {
3020 x = p->exp;
3021 break;
3022 }
3023 else if ((code == EQ
3024 || (code == GE
3025 && val_signbit_known_set_p (inner_mode,
3026 STORE_FLAG_VALUE))
3027 #ifdef FLOAT_STORE_FLAG_VALUE
3028 || (code == GE
3029 && SCALAR_FLOAT_MODE_P (inner_mode)
3030 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3031 REAL_VALUE_NEGATIVE (fsfv)))
3032 #endif
3033 )
3034 && COMPARISON_P (p->exp))
3035 {
3036 reverse_code = 1;
3037 x = p->exp;
3038 break;
3039 }
3040
3041 /* If this non-trapping address, e.g. fp + constant, the
3042 equivalent is a better operand since it may let us predict
3043 the value of the comparison. */
3044 else if (!rtx_addr_can_trap_p (p->exp))
3045 {
3046 arg1 = p->exp;
3047 continue;
3048 }
3049 }
3050
3051 /* If we didn't find a useful equivalence for ARG1, we are done.
3052 Otherwise, set up for the next iteration. */
3053 if (x == 0)
3054 break;
3055
3056 /* If we need to reverse the comparison, make sure that that is
3057 possible -- we can't necessarily infer the value of GE from LT
3058 with floating-point operands. */
3059 if (reverse_code)
3060 {
3061 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3062 if (reversed == UNKNOWN)
3063 break;
3064 else
3065 code = reversed;
3066 }
3067 else if (COMPARISON_P (x))
3068 code = GET_CODE (x);
3069 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3070 }
3071
3072 /* Return our results. Return the modes from before fold_rtx
3073 because fold_rtx might produce const_int, and then it's too late. */
3074 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3075 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3076
3077 if (visited)
3078 pointer_set_destroy (visited);
3079 return code;
3080 }
3081 \f
3082 /* If X is a nontrivial arithmetic operation on an argument for which
3083 a constant value can be determined, return the result of operating
3084 on that value, as a constant. Otherwise, return X, possibly with
3085 one or more operands changed to a forward-propagated constant.
3086
3087 If X is a register whose contents are known, we do NOT return
3088 those contents here; equiv_constant is called to perform that task.
3089 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3090
3091 INSN is the insn that we may be modifying. If it is 0, make a copy
3092 of X before modifying it. */
3093
3094 static rtx
3095 fold_rtx (rtx x, rtx insn)
3096 {
3097 enum rtx_code code;
3098 enum machine_mode mode;
3099 const char *fmt;
3100 int i;
3101 rtx new_rtx = 0;
3102 int changed = 0;
3103
3104 /* Operands of X. */
3105 rtx folded_arg0;
3106 rtx folded_arg1;
3107
3108 /* Constant equivalents of first three operands of X;
3109 0 when no such equivalent is known. */
3110 rtx const_arg0;
3111 rtx const_arg1;
3112 rtx const_arg2;
3113
3114 /* The mode of the first operand of X. We need this for sign and zero
3115 extends. */
3116 enum machine_mode mode_arg0;
3117
3118 if (x == 0)
3119 return x;
3120
3121 /* Try to perform some initial simplifications on X. */
3122 code = GET_CODE (x);
3123 switch (code)
3124 {
3125 case MEM:
3126 case SUBREG:
3127 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3128 return new_rtx;
3129 return x;
3130
3131 case CONST:
3132 CASE_CONST_ANY:
3133 case SYMBOL_REF:
3134 case LABEL_REF:
3135 case REG:
3136 case PC:
3137 /* No use simplifying an EXPR_LIST
3138 since they are used only for lists of args
3139 in a function call's REG_EQUAL note. */
3140 case EXPR_LIST:
3141 return x;
3142
3143 #ifdef HAVE_cc0
3144 case CC0:
3145 return prev_insn_cc0;
3146 #endif
3147
3148 case ASM_OPERANDS:
3149 if (insn)
3150 {
3151 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3152 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3153 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3154 }
3155 return x;
3156
3157 #ifdef NO_FUNCTION_CSE
3158 case CALL:
3159 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3160 return x;
3161 break;
3162 #endif
3163
3164 /* Anything else goes through the loop below. */
3165 default:
3166 break;
3167 }
3168
3169 mode = GET_MODE (x);
3170 const_arg0 = 0;
3171 const_arg1 = 0;
3172 const_arg2 = 0;
3173 mode_arg0 = VOIDmode;
3174
3175 /* Try folding our operands.
3176 Then see which ones have constant values known. */
3177
3178 fmt = GET_RTX_FORMAT (code);
3179 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3180 if (fmt[i] == 'e')
3181 {
3182 rtx folded_arg = XEXP (x, i), const_arg;
3183 enum machine_mode mode_arg = GET_MODE (folded_arg);
3184
3185 switch (GET_CODE (folded_arg))
3186 {
3187 case MEM:
3188 case REG:
3189 case SUBREG:
3190 const_arg = equiv_constant (folded_arg);
3191 break;
3192
3193 case CONST:
3194 CASE_CONST_ANY:
3195 case SYMBOL_REF:
3196 case LABEL_REF:
3197 const_arg = folded_arg;
3198 break;
3199
3200 #ifdef HAVE_cc0
3201 case CC0:
3202 folded_arg = prev_insn_cc0;
3203 mode_arg = prev_insn_cc0_mode;
3204 const_arg = equiv_constant (folded_arg);
3205 break;
3206 #endif
3207
3208 default:
3209 folded_arg = fold_rtx (folded_arg, insn);
3210 const_arg = equiv_constant (folded_arg);
3211 break;
3212 }
3213
3214 /* For the first three operands, see if the operand
3215 is constant or equivalent to a constant. */
3216 switch (i)
3217 {
3218 case 0:
3219 folded_arg0 = folded_arg;
3220 const_arg0 = const_arg;
3221 mode_arg0 = mode_arg;
3222 break;
3223 case 1:
3224 folded_arg1 = folded_arg;
3225 const_arg1 = const_arg;
3226 break;
3227 case 2:
3228 const_arg2 = const_arg;
3229 break;
3230 }
3231
3232 /* Pick the least expensive of the argument and an equivalent constant
3233 argument. */
3234 if (const_arg != 0
3235 && const_arg != folded_arg
3236 && COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
3237
3238 /* It's not safe to substitute the operand of a conversion
3239 operator with a constant, as the conversion's identity
3240 depends upon the mode of its operand. This optimization
3241 is handled by the call to simplify_unary_operation. */
3242 && (GET_RTX_CLASS (code) != RTX_UNARY
3243 || GET_MODE (const_arg) == mode_arg0
3244 || (code != ZERO_EXTEND
3245 && code != SIGN_EXTEND
3246 && code != TRUNCATE
3247 && code != FLOAT_TRUNCATE
3248 && code != FLOAT_EXTEND
3249 && code != FLOAT
3250 && code != FIX
3251 && code != UNSIGNED_FLOAT
3252 && code != UNSIGNED_FIX)))
3253 folded_arg = const_arg;
3254
3255 if (folded_arg == XEXP (x, i))
3256 continue;
3257
3258 if (insn == NULL_RTX && !changed)
3259 x = copy_rtx (x);
3260 changed = 1;
3261 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3262 }
3263
3264 if (changed)
3265 {
3266 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3267 consistent with the order in X. */
3268 if (canonicalize_change_group (insn, x))
3269 {
3270 rtx tem;
3271 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3272 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3273 }
3274
3275 apply_change_group ();
3276 }
3277
3278 /* If X is an arithmetic operation, see if we can simplify it. */
3279
3280 switch (GET_RTX_CLASS (code))
3281 {
3282 case RTX_UNARY:
3283 {
3284 /* We can't simplify extension ops unless we know the
3285 original mode. */
3286 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3287 && mode_arg0 == VOIDmode)
3288 break;
3289
3290 new_rtx = simplify_unary_operation (code, mode,
3291 const_arg0 ? const_arg0 : folded_arg0,
3292 mode_arg0);
3293 }
3294 break;
3295
3296 case RTX_COMPARE:
3297 case RTX_COMM_COMPARE:
3298 /* See what items are actually being compared and set FOLDED_ARG[01]
3299 to those values and CODE to the actual comparison code. If any are
3300 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3301 do anything if both operands are already known to be constant. */
3302
3303 /* ??? Vector mode comparisons are not supported yet. */
3304 if (VECTOR_MODE_P (mode))
3305 break;
3306
3307 if (const_arg0 == 0 || const_arg1 == 0)
3308 {
3309 struct table_elt *p0, *p1;
3310 rtx true_rtx, false_rtx;
3311 enum machine_mode mode_arg1;
3312
3313 if (SCALAR_FLOAT_MODE_P (mode))
3314 {
3315 #ifdef FLOAT_STORE_FLAG_VALUE
3316 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3317 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3318 #else
3319 true_rtx = NULL_RTX;
3320 #endif
3321 false_rtx = CONST0_RTX (mode);
3322 }
3323 else
3324 {
3325 true_rtx = const_true_rtx;
3326 false_rtx = const0_rtx;
3327 }
3328
3329 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3330 &mode_arg0, &mode_arg1);
3331
3332 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3333 what kinds of things are being compared, so we can't do
3334 anything with this comparison. */
3335
3336 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3337 break;
3338
3339 const_arg0 = equiv_constant (folded_arg0);
3340 const_arg1 = equiv_constant (folded_arg1);
3341
3342 /* If we do not now have two constants being compared, see
3343 if we can nevertheless deduce some things about the
3344 comparison. */
3345 if (const_arg0 == 0 || const_arg1 == 0)
3346 {
3347 if (const_arg1 != NULL)
3348 {
3349 rtx cheapest_simplification;
3350 int cheapest_cost;
3351 rtx simp_result;
3352 struct table_elt *p;
3353
3354 /* See if we can find an equivalent of folded_arg0
3355 that gets us a cheaper expression, possibly a
3356 constant through simplifications. */
3357 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3358 mode_arg0);
3359
3360 if (p != NULL)
3361 {
3362 cheapest_simplification = x;
3363 cheapest_cost = COST (x);
3364
3365 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3366 {
3367 int cost;
3368
3369 /* If the entry isn't valid, skip it. */
3370 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3371 continue;
3372
3373 /* Try to simplify using this equivalence. */
3374 simp_result
3375 = simplify_relational_operation (code, mode,
3376 mode_arg0,
3377 p->exp,
3378 const_arg1);
3379
3380 if (simp_result == NULL)
3381 continue;
3382
3383 cost = COST (simp_result);
3384 if (cost < cheapest_cost)
3385 {
3386 cheapest_cost = cost;
3387 cheapest_simplification = simp_result;
3388 }
3389 }
3390
3391 /* If we have a cheaper expression now, use that
3392 and try folding it further, from the top. */
3393 if (cheapest_simplification != x)
3394 return fold_rtx (copy_rtx (cheapest_simplification),
3395 insn);
3396 }
3397 }
3398
3399 /* See if the two operands are the same. */
3400
3401 if ((REG_P (folded_arg0)
3402 && REG_P (folded_arg1)
3403 && (REG_QTY (REGNO (folded_arg0))
3404 == REG_QTY (REGNO (folded_arg1))))
3405 || ((p0 = lookup (folded_arg0,
3406 SAFE_HASH (folded_arg0, mode_arg0),
3407 mode_arg0))
3408 && (p1 = lookup (folded_arg1,
3409 SAFE_HASH (folded_arg1, mode_arg0),
3410 mode_arg0))
3411 && p0->first_same_value == p1->first_same_value))
3412 folded_arg1 = folded_arg0;
3413
3414 /* If FOLDED_ARG0 is a register, see if the comparison we are
3415 doing now is either the same as we did before or the reverse
3416 (we only check the reverse if not floating-point). */
3417 else if (REG_P (folded_arg0))
3418 {
3419 int qty = REG_QTY (REGNO (folded_arg0));
3420
3421 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3422 {
3423 struct qty_table_elem *ent = &qty_table[qty];
3424
3425 if ((comparison_dominates_p (ent->comparison_code, code)
3426 || (! FLOAT_MODE_P (mode_arg0)
3427 && comparison_dominates_p (ent->comparison_code,
3428 reverse_condition (code))))
3429 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3430 || (const_arg1
3431 && rtx_equal_p (ent->comparison_const,
3432 const_arg1))
3433 || (REG_P (folded_arg1)
3434 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3435 {
3436 if (comparison_dominates_p (ent->comparison_code, code))
3437 {
3438 if (true_rtx)
3439 return true_rtx;
3440 else
3441 break;
3442 }
3443 else
3444 return false_rtx;
3445 }
3446 }
3447 }
3448 }
3449 }
3450
3451 /* If we are comparing against zero, see if the first operand is
3452 equivalent to an IOR with a constant. If so, we may be able to
3453 determine the result of this comparison. */
3454 if (const_arg1 == const0_rtx && !const_arg0)
3455 {
3456 rtx y = lookup_as_function (folded_arg0, IOR);
3457 rtx inner_const;
3458
3459 if (y != 0
3460 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3461 && CONST_INT_P (inner_const)
3462 && INTVAL (inner_const) != 0)
3463 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3464 }
3465
3466 {
3467 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3468 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3469 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3470 op0, op1);
3471 }
3472 break;
3473
3474 case RTX_BIN_ARITH:
3475 case RTX_COMM_ARITH:
3476 switch (code)
3477 {
3478 case PLUS:
3479 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3480 with that LABEL_REF as its second operand. If so, the result is
3481 the first operand of that MINUS. This handles switches with an
3482 ADDR_DIFF_VEC table. */
3483 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3484 {
3485 rtx y
3486 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3487 : lookup_as_function (folded_arg0, MINUS);
3488
3489 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3490 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3491 return XEXP (y, 0);
3492
3493 /* Now try for a CONST of a MINUS like the above. */
3494 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3495 : lookup_as_function (folded_arg0, CONST))) != 0
3496 && GET_CODE (XEXP (y, 0)) == MINUS
3497 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3498 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3499 return XEXP (XEXP (y, 0), 0);
3500 }
3501
3502 /* Likewise if the operands are in the other order. */
3503 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3504 {
3505 rtx y
3506 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3507 : lookup_as_function (folded_arg1, MINUS);
3508
3509 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3510 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3511 return XEXP (y, 0);
3512
3513 /* Now try for a CONST of a MINUS like the above. */
3514 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3515 : lookup_as_function (folded_arg1, CONST))) != 0
3516 && GET_CODE (XEXP (y, 0)) == MINUS
3517 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3518 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3519 return XEXP (XEXP (y, 0), 0);
3520 }
3521
3522 /* If second operand is a register equivalent to a negative
3523 CONST_INT, see if we can find a register equivalent to the
3524 positive constant. Make a MINUS if so. Don't do this for
3525 a non-negative constant since we might then alternate between
3526 choosing positive and negative constants. Having the positive
3527 constant previously-used is the more common case. Be sure
3528 the resulting constant is non-negative; if const_arg1 were
3529 the smallest negative number this would overflow: depending
3530 on the mode, this would either just be the same value (and
3531 hence not save anything) or be incorrect. */
3532 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3533 && INTVAL (const_arg1) < 0
3534 /* This used to test
3535
3536 -INTVAL (const_arg1) >= 0
3537
3538 But The Sun V5.0 compilers mis-compiled that test. So
3539 instead we test for the problematic value in a more direct
3540 manner and hope the Sun compilers get it correct. */
3541 && INTVAL (const_arg1) !=
3542 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3543 && REG_P (folded_arg1))
3544 {
3545 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3546 struct table_elt *p
3547 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3548
3549 if (p)
3550 for (p = p->first_same_value; p; p = p->next_same_value)
3551 if (REG_P (p->exp))
3552 return simplify_gen_binary (MINUS, mode, folded_arg0,
3553 canon_reg (p->exp, NULL_RTX));
3554 }
3555 goto from_plus;
3556
3557 case MINUS:
3558 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3559 If so, produce (PLUS Z C2-C). */
3560 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3561 {
3562 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3563 if (y && CONST_INT_P (XEXP (y, 1)))
3564 return fold_rtx (plus_constant (mode, copy_rtx (y),
3565 -INTVAL (const_arg1)),
3566 NULL_RTX);
3567 }
3568
3569 /* Fall through. */
3570
3571 from_plus:
3572 case SMIN: case SMAX: case UMIN: case UMAX:
3573 case IOR: case AND: case XOR:
3574 case MULT:
3575 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3576 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3577 is known to be of similar form, we may be able to replace the
3578 operation with a combined operation. This may eliminate the
3579 intermediate operation if every use is simplified in this way.
3580 Note that the similar optimization done by combine.c only works
3581 if the intermediate operation's result has only one reference. */
3582
3583 if (REG_P (folded_arg0)
3584 && const_arg1 && CONST_INT_P (const_arg1))
3585 {
3586 int is_shift
3587 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3588 rtx y, inner_const, new_const;
3589 rtx canon_const_arg1 = const_arg1;
3590 enum rtx_code associate_code;
3591
3592 if (is_shift
3593 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3594 || INTVAL (const_arg1) < 0))
3595 {
3596 if (SHIFT_COUNT_TRUNCATED)
3597 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3598 & (GET_MODE_BITSIZE (mode)
3599 - 1));
3600 else
3601 break;
3602 }
3603
3604 y = lookup_as_function (folded_arg0, code);
3605 if (y == 0)
3606 break;
3607
3608 /* If we have compiled a statement like
3609 "if (x == (x & mask1))", and now are looking at
3610 "x & mask2", we will have a case where the first operand
3611 of Y is the same as our first operand. Unless we detect
3612 this case, an infinite loop will result. */
3613 if (XEXP (y, 0) == folded_arg0)
3614 break;
3615
3616 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3617 if (!inner_const || !CONST_INT_P (inner_const))
3618 break;
3619
3620 /* Don't associate these operations if they are a PLUS with the
3621 same constant and it is a power of two. These might be doable
3622 with a pre- or post-increment. Similarly for two subtracts of
3623 identical powers of two with post decrement. */
3624
3625 if (code == PLUS && const_arg1 == inner_const
3626 && ((HAVE_PRE_INCREMENT
3627 && exact_log2 (INTVAL (const_arg1)) >= 0)
3628 || (HAVE_POST_INCREMENT
3629 && exact_log2 (INTVAL (const_arg1)) >= 0)
3630 || (HAVE_PRE_DECREMENT
3631 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3632 || (HAVE_POST_DECREMENT
3633 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3634 break;
3635
3636 /* ??? Vector mode shifts by scalar
3637 shift operand are not supported yet. */
3638 if (is_shift && VECTOR_MODE_P (mode))
3639 break;
3640
3641 if (is_shift
3642 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3643 || INTVAL (inner_const) < 0))
3644 {
3645 if (SHIFT_COUNT_TRUNCATED)
3646 inner_const = GEN_INT (INTVAL (inner_const)
3647 & (GET_MODE_BITSIZE (mode) - 1));
3648 else
3649 break;
3650 }
3651
3652 /* Compute the code used to compose the constants. For example,
3653 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3654
3655 associate_code = (is_shift || code == MINUS ? PLUS : code);
3656
3657 new_const = simplify_binary_operation (associate_code, mode,
3658 canon_const_arg1,
3659 inner_const);
3660
3661 if (new_const == 0)
3662 break;
3663
3664 /* If we are associating shift operations, don't let this
3665 produce a shift of the size of the object or larger.
3666 This could occur when we follow a sign-extend by a right
3667 shift on a machine that does a sign-extend as a pair
3668 of shifts. */
3669
3670 if (is_shift
3671 && CONST_INT_P (new_const)
3672 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3673 {
3674 /* As an exception, we can turn an ASHIFTRT of this
3675 form into a shift of the number of bits - 1. */
3676 if (code == ASHIFTRT)
3677 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3678 else if (!side_effects_p (XEXP (y, 0)))
3679 return CONST0_RTX (mode);
3680 else
3681 break;
3682 }
3683
3684 y = copy_rtx (XEXP (y, 0));
3685
3686 /* If Y contains our first operand (the most common way this
3687 can happen is if Y is a MEM), we would do into an infinite
3688 loop if we tried to fold it. So don't in that case. */
3689
3690 if (! reg_mentioned_p (folded_arg0, y))
3691 y = fold_rtx (y, insn);
3692
3693 return simplify_gen_binary (code, mode, y, new_const);
3694 }
3695 break;
3696
3697 case DIV: case UDIV:
3698 /* ??? The associative optimization performed immediately above is
3699 also possible for DIV and UDIV using associate_code of MULT.
3700 However, we would need extra code to verify that the
3701 multiplication does not overflow, that is, there is no overflow
3702 in the calculation of new_const. */
3703 break;
3704
3705 default:
3706 break;
3707 }
3708
3709 new_rtx = simplify_binary_operation (code, mode,
3710 const_arg0 ? const_arg0 : folded_arg0,
3711 const_arg1 ? const_arg1 : folded_arg1);
3712 break;
3713
3714 case RTX_OBJ:
3715 /* (lo_sum (high X) X) is simply X. */
3716 if (code == LO_SUM && const_arg0 != 0
3717 && GET_CODE (const_arg0) == HIGH
3718 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3719 return const_arg1;
3720 break;
3721
3722 case RTX_TERNARY:
3723 case RTX_BITFIELD_OPS:
3724 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3725 const_arg0 ? const_arg0 : folded_arg0,
3726 const_arg1 ? const_arg1 : folded_arg1,
3727 const_arg2 ? const_arg2 : XEXP (x, 2));
3728 break;
3729
3730 default:
3731 break;
3732 }
3733
3734 return new_rtx ? new_rtx : x;
3735 }
3736 \f
3737 /* Return a constant value currently equivalent to X.
3738 Return 0 if we don't know one. */
3739
3740 static rtx
3741 equiv_constant (rtx x)
3742 {
3743 if (REG_P (x)
3744 && REGNO_QTY_VALID_P (REGNO (x)))
3745 {
3746 int x_q = REG_QTY (REGNO (x));
3747 struct qty_table_elem *x_ent = &qty_table[x_q];
3748
3749 if (x_ent->const_rtx)
3750 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3751 }
3752
3753 if (x == 0 || CONSTANT_P (x))
3754 return x;
3755
3756 if (GET_CODE (x) == SUBREG)
3757 {
3758 enum machine_mode mode = GET_MODE (x);
3759 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3760 rtx new_rtx;
3761
3762 /* See if we previously assigned a constant value to this SUBREG. */
3763 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3764 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3765 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3766 return new_rtx;
3767
3768 /* If we didn't and if doing so makes sense, see if we previously
3769 assigned a constant value to the enclosing word mode SUBREG. */
3770 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3771 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3772 {
3773 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3774 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3775 {
3776 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3777 new_rtx = lookup_as_function (y, CONST_INT);
3778 if (new_rtx)
3779 return gen_lowpart (mode, new_rtx);
3780 }
3781 }
3782
3783 /* Otherwise see if we already have a constant for the inner REG,
3784 and if that is enough to calculate an equivalent constant for
3785 the subreg. Note that the upper bits of paradoxical subregs
3786 are undefined, so they cannot be said to equal anything. */
3787 if (REG_P (SUBREG_REG (x))
3788 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3789 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3790 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3791
3792 return 0;
3793 }
3794
3795 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3796 the hash table in case its value was seen before. */
3797
3798 if (MEM_P (x))
3799 {
3800 struct table_elt *elt;
3801
3802 x = avoid_constant_pool_reference (x);
3803 if (CONSTANT_P (x))
3804 return x;
3805
3806 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3807 if (elt == 0)
3808 return 0;
3809
3810 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3811 if (elt->is_const && CONSTANT_P (elt->exp))
3812 return elt->exp;
3813 }
3814
3815 return 0;
3816 }
3817 \f
3818 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3819 "taken" branch.
3820
3821 In certain cases, this can cause us to add an equivalence. For example,
3822 if we are following the taken case of
3823 if (i == 2)
3824 we can add the fact that `i' and '2' are now equivalent.
3825
3826 In any case, we can record that this comparison was passed. If the same
3827 comparison is seen later, we will know its value. */
3828
3829 static void
3830 record_jump_equiv (rtx insn, bool taken)
3831 {
3832 int cond_known_true;
3833 rtx op0, op1;
3834 rtx set;
3835 enum machine_mode mode, mode0, mode1;
3836 int reversed_nonequality = 0;
3837 enum rtx_code code;
3838
3839 /* Ensure this is the right kind of insn. */
3840 gcc_assert (any_condjump_p (insn));
3841
3842 set = pc_set (insn);
3843
3844 /* See if this jump condition is known true or false. */
3845 if (taken)
3846 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3847 else
3848 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3849
3850 /* Get the type of comparison being done and the operands being compared.
3851 If we had to reverse a non-equality condition, record that fact so we
3852 know that it isn't valid for floating-point. */
3853 code = GET_CODE (XEXP (SET_SRC (set), 0));
3854 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3855 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3856
3857 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3858 if (! cond_known_true)
3859 {
3860 code = reversed_comparison_code_parts (code, op0, op1, insn);
3861
3862 /* Don't remember if we can't find the inverse. */
3863 if (code == UNKNOWN)
3864 return;
3865 }
3866
3867 /* The mode is the mode of the non-constant. */
3868 mode = mode0;
3869 if (mode1 != VOIDmode)
3870 mode = mode1;
3871
3872 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3873 }
3874
3875 /* Yet another form of subreg creation. In this case, we want something in
3876 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3877
3878 static rtx
3879 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3880 {
3881 enum machine_mode op_mode = GET_MODE (op);
3882 if (op_mode == mode || op_mode == VOIDmode)
3883 return op;
3884 return lowpart_subreg (mode, op, op_mode);
3885 }
3886
3887 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3888 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3889 Make any useful entries we can with that information. Called from
3890 above function and called recursively. */
3891
3892 static void
3893 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3894 rtx op1, int reversed_nonequality)
3895 {
3896 unsigned op0_hash, op1_hash;
3897 int op0_in_memory, op1_in_memory;
3898 struct table_elt *op0_elt, *op1_elt;
3899
3900 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3901 we know that they are also equal in the smaller mode (this is also
3902 true for all smaller modes whether or not there is a SUBREG, but
3903 is not worth testing for with no SUBREG). */
3904
3905 /* Note that GET_MODE (op0) may not equal MODE. */
3906 if (code == EQ && paradoxical_subreg_p (op0))
3907 {
3908 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3909 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3910 if (tem)
3911 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3912 reversed_nonequality);
3913 }
3914
3915 if (code == EQ && paradoxical_subreg_p (op1))
3916 {
3917 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3918 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3919 if (tem)
3920 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3921 reversed_nonequality);
3922 }
3923
3924 /* Similarly, if this is an NE comparison, and either is a SUBREG
3925 making a smaller mode, we know the whole thing is also NE. */
3926
3927 /* Note that GET_MODE (op0) may not equal MODE;
3928 if we test MODE instead, we can get an infinite recursion
3929 alternating between two modes each wider than MODE. */
3930
3931 if (code == NE && GET_CODE (op0) == SUBREG
3932 && subreg_lowpart_p (op0)
3933 && (GET_MODE_SIZE (GET_MODE (op0))
3934 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3935 {
3936 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3937 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3938 if (tem)
3939 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3940 reversed_nonequality);
3941 }
3942
3943 if (code == NE && GET_CODE (op1) == SUBREG
3944 && subreg_lowpart_p (op1)
3945 && (GET_MODE_SIZE (GET_MODE (op1))
3946 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3947 {
3948 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3949 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3950 if (tem)
3951 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3952 reversed_nonequality);
3953 }
3954
3955 /* Hash both operands. */
3956
3957 do_not_record = 0;
3958 hash_arg_in_memory = 0;
3959 op0_hash = HASH (op0, mode);
3960 op0_in_memory = hash_arg_in_memory;
3961
3962 if (do_not_record)
3963 return;
3964
3965 do_not_record = 0;
3966 hash_arg_in_memory = 0;
3967 op1_hash = HASH (op1, mode);
3968 op1_in_memory = hash_arg_in_memory;
3969
3970 if (do_not_record)
3971 return;
3972
3973 /* Look up both operands. */
3974 op0_elt = lookup (op0, op0_hash, mode);
3975 op1_elt = lookup (op1, op1_hash, mode);
3976
3977 /* If both operands are already equivalent or if they are not in the
3978 table but are identical, do nothing. */
3979 if ((op0_elt != 0 && op1_elt != 0
3980 && op0_elt->first_same_value == op1_elt->first_same_value)
3981 || op0 == op1 || rtx_equal_p (op0, op1))
3982 return;
3983
3984 /* If we aren't setting two things equal all we can do is save this
3985 comparison. Similarly if this is floating-point. In the latter
3986 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3987 If we record the equality, we might inadvertently delete code
3988 whose intent was to change -0 to +0. */
3989
3990 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3991 {
3992 struct qty_table_elem *ent;
3993 int qty;
3994
3995 /* If we reversed a floating-point comparison, if OP0 is not a
3996 register, or if OP1 is neither a register or constant, we can't
3997 do anything. */
3998
3999 if (!REG_P (op1))
4000 op1 = equiv_constant (op1);
4001
4002 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4003 || !REG_P (op0) || op1 == 0)
4004 return;
4005
4006 /* Put OP0 in the hash table if it isn't already. This gives it a
4007 new quantity number. */
4008 if (op0_elt == 0)
4009 {
4010 if (insert_regs (op0, NULL, 0))
4011 {
4012 rehash_using_reg (op0);
4013 op0_hash = HASH (op0, mode);
4014
4015 /* If OP0 is contained in OP1, this changes its hash code
4016 as well. Faster to rehash than to check, except
4017 for the simple case of a constant. */
4018 if (! CONSTANT_P (op1))
4019 op1_hash = HASH (op1,mode);
4020 }
4021
4022 op0_elt = insert (op0, NULL, op0_hash, mode);
4023 op0_elt->in_memory = op0_in_memory;
4024 }
4025
4026 qty = REG_QTY (REGNO (op0));
4027 ent = &qty_table[qty];
4028
4029 ent->comparison_code = code;
4030 if (REG_P (op1))
4031 {
4032 /* Look it up again--in case op0 and op1 are the same. */
4033 op1_elt = lookup (op1, op1_hash, mode);
4034
4035 /* Put OP1 in the hash table so it gets a new quantity number. */
4036 if (op1_elt == 0)
4037 {
4038 if (insert_regs (op1, NULL, 0))
4039 {
4040 rehash_using_reg (op1);
4041 op1_hash = HASH (op1, mode);
4042 }
4043
4044 op1_elt = insert (op1, NULL, op1_hash, mode);
4045 op1_elt->in_memory = op1_in_memory;
4046 }
4047
4048 ent->comparison_const = NULL_RTX;
4049 ent->comparison_qty = REG_QTY (REGNO (op1));
4050 }
4051 else
4052 {
4053 ent->comparison_const = op1;
4054 ent->comparison_qty = -1;
4055 }
4056
4057 return;
4058 }
4059
4060 /* If either side is still missing an equivalence, make it now,
4061 then merge the equivalences. */
4062
4063 if (op0_elt == 0)
4064 {
4065 if (insert_regs (op0, NULL, 0))
4066 {
4067 rehash_using_reg (op0);
4068 op0_hash = HASH (op0, mode);
4069 }
4070
4071 op0_elt = insert (op0, NULL, op0_hash, mode);
4072 op0_elt->in_memory = op0_in_memory;
4073 }
4074
4075 if (op1_elt == 0)
4076 {
4077 if (insert_regs (op1, NULL, 0))
4078 {
4079 rehash_using_reg (op1);
4080 op1_hash = HASH (op1, mode);
4081 }
4082
4083 op1_elt = insert (op1, NULL, op1_hash, mode);
4084 op1_elt->in_memory = op1_in_memory;
4085 }
4086
4087 merge_equiv_classes (op0_elt, op1_elt);
4088 }
4089 \f
4090 /* CSE processing for one instruction.
4091
4092 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4093 but the few that "leak through" are cleaned up by cse_insn, and complex
4094 addressing modes are often formed here.
4095
4096 The main function is cse_insn, and between here and that function
4097 a couple of helper functions is defined to keep the size of cse_insn
4098 within reasonable proportions.
4099
4100 Data is shared between the main and helper functions via STRUCT SET,
4101 that contains all data related for every set in the instruction that
4102 is being processed.
4103
4104 Note that cse_main processes all sets in the instruction. Most
4105 passes in GCC only process simple SET insns or single_set insns, but
4106 CSE processes insns with multiple sets as well. */
4107
4108 /* Data on one SET contained in the instruction. */
4109
4110 struct set
4111 {
4112 /* The SET rtx itself. */
4113 rtx rtl;
4114 /* The SET_SRC of the rtx (the original value, if it is changing). */
4115 rtx src;
4116 /* The hash-table element for the SET_SRC of the SET. */
4117 struct table_elt *src_elt;
4118 /* Hash value for the SET_SRC. */
4119 unsigned src_hash;
4120 /* Hash value for the SET_DEST. */
4121 unsigned dest_hash;
4122 /* The SET_DEST, with SUBREG, etc., stripped. */
4123 rtx inner_dest;
4124 /* Nonzero if the SET_SRC is in memory. */
4125 char src_in_memory;
4126 /* Nonzero if the SET_SRC contains something
4127 whose value cannot be predicted and understood. */
4128 char src_volatile;
4129 /* Original machine mode, in case it becomes a CONST_INT.
4130 The size of this field should match the size of the mode
4131 field of struct rtx_def (see rtl.h). */
4132 ENUM_BITFIELD(machine_mode) mode : 8;
4133 /* A constant equivalent for SET_SRC, if any. */
4134 rtx src_const;
4135 /* Hash value of constant equivalent for SET_SRC. */
4136 unsigned src_const_hash;
4137 /* Table entry for constant equivalent for SET_SRC, if any. */
4138 struct table_elt *src_const_elt;
4139 /* Table entry for the destination address. */
4140 struct table_elt *dest_addr_elt;
4141 };
4142 \f
4143 /* Special handling for (set REG0 REG1) where REG0 is the
4144 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4145 be used in the sequel, so (if easily done) change this insn to
4146 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4147 that computed their value. Then REG1 will become a dead store
4148 and won't cloud the situation for later optimizations.
4149
4150 Do not make this change if REG1 is a hard register, because it will
4151 then be used in the sequel and we may be changing a two-operand insn
4152 into a three-operand insn.
4153
4154 This is the last transformation that cse_insn will try to do. */
4155
4156 static void
4157 try_back_substitute_reg (rtx set, rtx insn)
4158 {
4159 rtx dest = SET_DEST (set);
4160 rtx src = SET_SRC (set);
4161
4162 if (REG_P (dest)
4163 && REG_P (src) && ! HARD_REGISTER_P (src)
4164 && REGNO_QTY_VALID_P (REGNO (src)))
4165 {
4166 int src_q = REG_QTY (REGNO (src));
4167 struct qty_table_elem *src_ent = &qty_table[src_q];
4168
4169 if (src_ent->first_reg == REGNO (dest))
4170 {
4171 /* Scan for the previous nonnote insn, but stop at a basic
4172 block boundary. */
4173 rtx prev = insn;
4174 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4175 do
4176 {
4177 prev = PREV_INSN (prev);
4178 }
4179 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4180
4181 /* Do not swap the registers around if the previous instruction
4182 attaches a REG_EQUIV note to REG1.
4183
4184 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4185 from the pseudo that originally shadowed an incoming argument
4186 to another register. Some uses of REG_EQUIV might rely on it
4187 being attached to REG1 rather than REG2.
4188
4189 This section previously turned the REG_EQUIV into a REG_EQUAL
4190 note. We cannot do that because REG_EQUIV may provide an
4191 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4192 if (NONJUMP_INSN_P (prev)
4193 && GET_CODE (PATTERN (prev)) == SET
4194 && SET_DEST (PATTERN (prev)) == src
4195 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4196 {
4197 rtx note;
4198
4199 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4200 validate_change (insn, &SET_DEST (set), src, 1);
4201 validate_change (insn, &SET_SRC (set), dest, 1);
4202 apply_change_group ();
4203
4204 /* If INSN has a REG_EQUAL note, and this note mentions
4205 REG0, then we must delete it, because the value in
4206 REG0 has changed. If the note's value is REG1, we must
4207 also delete it because that is now this insn's dest. */
4208 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4209 if (note != 0
4210 && (reg_mentioned_p (dest, XEXP (note, 0))
4211 || rtx_equal_p (src, XEXP (note, 0))))
4212 remove_note (insn, note);
4213 }
4214 }
4215 }
4216 }
4217 \f
4218 /* Record all the SETs in this instruction into SETS_PTR,
4219 and return the number of recorded sets. */
4220 static int
4221 find_sets_in_insn (rtx insn, struct set **psets)
4222 {
4223 struct set *sets = *psets;
4224 int n_sets = 0;
4225 rtx x = PATTERN (insn);
4226
4227 if (GET_CODE (x) == SET)
4228 {
4229 /* Ignore SETs that are unconditional jumps.
4230 They never need cse processing, so this does not hurt.
4231 The reason is not efficiency but rather
4232 so that we can test at the end for instructions
4233 that have been simplified to unconditional jumps
4234 and not be misled by unchanged instructions
4235 that were unconditional jumps to begin with. */
4236 if (SET_DEST (x) == pc_rtx
4237 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4238 ;
4239 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4240 The hard function value register is used only once, to copy to
4241 someplace else, so it isn't worth cse'ing. */
4242 else if (GET_CODE (SET_SRC (x)) == CALL)
4243 ;
4244 else
4245 sets[n_sets++].rtl = x;
4246 }
4247 else if (GET_CODE (x) == PARALLEL)
4248 {
4249 int i, lim = XVECLEN (x, 0);
4250
4251 /* Go over the epressions of the PARALLEL in forward order, to
4252 put them in the same order in the SETS array. */
4253 for (i = 0; i < lim; i++)
4254 {
4255 rtx y = XVECEXP (x, 0, i);
4256 if (GET_CODE (y) == SET)
4257 {
4258 /* As above, we ignore unconditional jumps and call-insns and
4259 ignore the result of apply_change_group. */
4260 if (SET_DEST (y) == pc_rtx
4261 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4262 ;
4263 else if (GET_CODE (SET_SRC (y)) == CALL)
4264 ;
4265 else
4266 sets[n_sets++].rtl = y;
4267 }
4268 }
4269 }
4270
4271 return n_sets;
4272 }
4273 \f
4274 /* Where possible, substitute every register reference in the N_SETS
4275 number of SETS in INSN with the the canonical register.
4276
4277 Register canonicalization propagatest the earliest register (i.e.
4278 one that is set before INSN) with the same value. This is a very
4279 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4280 to RTL. For instance, a CONST for an address is usually expanded
4281 multiple times to loads into different registers, thus creating many
4282 subexpressions of the form:
4283
4284 (set (reg1) (some_const))
4285 (set (mem (... reg1 ...) (thing)))
4286 (set (reg2) (some_const))
4287 (set (mem (... reg2 ...) (thing)))
4288
4289 After canonicalizing, the code takes the following form:
4290
4291 (set (reg1) (some_const))
4292 (set (mem (... reg1 ...) (thing)))
4293 (set (reg2) (some_const))
4294 (set (mem (... reg1 ...) (thing)))
4295
4296 The set to reg2 is now trivially dead, and the memory reference (or
4297 address, or whatever) may be a candidate for further CSEing.
4298
4299 In this function, the result of apply_change_group can be ignored;
4300 see canon_reg. */
4301
4302 static void
4303 canonicalize_insn (rtx insn, struct set **psets, int n_sets)
4304 {
4305 struct set *sets = *psets;
4306 rtx tem;
4307 rtx x = PATTERN (insn);
4308 int i;
4309
4310 if (CALL_P (insn))
4311 {
4312 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4313 if (GET_CODE (XEXP (tem, 0)) != SET)
4314 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4315 }
4316
4317 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4318 {
4319 canon_reg (SET_SRC (x), insn);
4320 apply_change_group ();
4321 fold_rtx (SET_SRC (x), insn);
4322 }
4323 else if (GET_CODE (x) == CLOBBER)
4324 {
4325 /* If we clobber memory, canon the address.
4326 This does nothing when a register is clobbered
4327 because we have already invalidated the reg. */
4328 if (MEM_P (XEXP (x, 0)))
4329 canon_reg (XEXP (x, 0), insn);
4330 }
4331 else if (GET_CODE (x) == USE
4332 && ! (REG_P (XEXP (x, 0))
4333 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4334 /* Canonicalize a USE of a pseudo register or memory location. */
4335 canon_reg (x, insn);
4336 else if (GET_CODE (x) == ASM_OPERANDS)
4337 {
4338 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4339 {
4340 rtx input = ASM_OPERANDS_INPUT (x, i);
4341 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4342 {
4343 input = canon_reg (input, insn);
4344 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4345 }
4346 }
4347 }
4348 else if (GET_CODE (x) == CALL)
4349 {
4350 canon_reg (x, insn);
4351 apply_change_group ();
4352 fold_rtx (x, insn);
4353 }
4354 else if (DEBUG_INSN_P (insn))
4355 canon_reg (PATTERN (insn), insn);
4356 else if (GET_CODE (x) == PARALLEL)
4357 {
4358 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4359 {
4360 rtx y = XVECEXP (x, 0, i);
4361 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4362 {
4363 canon_reg (SET_SRC (y), insn);
4364 apply_change_group ();
4365 fold_rtx (SET_SRC (y), insn);
4366 }
4367 else if (GET_CODE (y) == CLOBBER)
4368 {
4369 if (MEM_P (XEXP (y, 0)))
4370 canon_reg (XEXP (y, 0), insn);
4371 }
4372 else if (GET_CODE (y) == USE
4373 && ! (REG_P (XEXP (y, 0))
4374 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4375 canon_reg (y, insn);
4376 else if (GET_CODE (y) == CALL)
4377 {
4378 canon_reg (y, insn);
4379 apply_change_group ();
4380 fold_rtx (y, insn);
4381 }
4382 }
4383 }
4384
4385 if (n_sets == 1 && REG_NOTES (insn) != 0
4386 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4387 {
4388 /* We potentially will process this insn many times. Therefore,
4389 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4390 unique set in INSN.
4391
4392 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4393 because cse_insn handles those specially. */
4394 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4395 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4396 remove_note (insn, tem);
4397 else
4398 {
4399 canon_reg (XEXP (tem, 0), insn);
4400 apply_change_group ();
4401 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4402 df_notes_rescan (insn);
4403 }
4404 }
4405
4406 /* Canonicalize sources and addresses of destinations.
4407 We do this in a separate pass to avoid problems when a MATCH_DUP is
4408 present in the insn pattern. In that case, we want to ensure that
4409 we don't break the duplicate nature of the pattern. So we will replace
4410 both operands at the same time. Otherwise, we would fail to find an
4411 equivalent substitution in the loop calling validate_change below.
4412
4413 We used to suppress canonicalization of DEST if it appears in SRC,
4414 but we don't do this any more. */
4415
4416 for (i = 0; i < n_sets; i++)
4417 {
4418 rtx dest = SET_DEST (sets[i].rtl);
4419 rtx src = SET_SRC (sets[i].rtl);
4420 rtx new_rtx = canon_reg (src, insn);
4421
4422 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4423
4424 if (GET_CODE (dest) == ZERO_EXTRACT)
4425 {
4426 validate_change (insn, &XEXP (dest, 1),
4427 canon_reg (XEXP (dest, 1), insn), 1);
4428 validate_change (insn, &XEXP (dest, 2),
4429 canon_reg (XEXP (dest, 2), insn), 1);
4430 }
4431
4432 while (GET_CODE (dest) == SUBREG
4433 || GET_CODE (dest) == ZERO_EXTRACT
4434 || GET_CODE (dest) == STRICT_LOW_PART)
4435 dest = XEXP (dest, 0);
4436
4437 if (MEM_P (dest))
4438 canon_reg (dest, insn);
4439 }
4440
4441 /* Now that we have done all the replacements, we can apply the change
4442 group and see if they all work. Note that this will cause some
4443 canonicalizations that would have worked individually not to be applied
4444 because some other canonicalization didn't work, but this should not
4445 occur often.
4446
4447 The result of apply_change_group can be ignored; see canon_reg. */
4448
4449 apply_change_group ();
4450 }
4451 \f
4452 /* Main function of CSE.
4453 First simplify sources and addresses of all assignments
4454 in the instruction, using previously-computed equivalents values.
4455 Then install the new sources and destinations in the table
4456 of available values. */
4457
4458 static void
4459 cse_insn (rtx insn)
4460 {
4461 rtx x = PATTERN (insn);
4462 int i;
4463 rtx tem;
4464 int n_sets = 0;
4465
4466 rtx src_eqv = 0;
4467 struct table_elt *src_eqv_elt = 0;
4468 int src_eqv_volatile = 0;
4469 int src_eqv_in_memory = 0;
4470 unsigned src_eqv_hash = 0;
4471
4472 struct set *sets = (struct set *) 0;
4473
4474 if (GET_CODE (x) == SET)
4475 sets = XALLOCA (struct set);
4476 else if (GET_CODE (x) == PARALLEL)
4477 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4478
4479 this_insn = insn;
4480 #ifdef HAVE_cc0
4481 /* Records what this insn does to set CC0. */
4482 this_insn_cc0 = 0;
4483 this_insn_cc0_mode = VOIDmode;
4484 #endif
4485
4486 /* Find all regs explicitly clobbered in this insn,
4487 to ensure they are not replaced with any other regs
4488 elsewhere in this insn. */
4489 invalidate_from_sets_and_clobbers (insn);
4490
4491 /* Record all the SETs in this instruction. */
4492 n_sets = find_sets_in_insn (insn, &sets);
4493
4494 /* Substitute the canonical register where possible. */
4495 canonicalize_insn (insn, &sets, n_sets);
4496
4497 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4498 if different, or if the DEST is a STRICT_LOW_PART. The latter condition
4499 is necessary because SRC_EQV is handled specially for this case, and if
4500 it isn't set, then there will be no equivalence for the destination. */
4501 if (n_sets == 1 && REG_NOTES (insn) != 0
4502 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4503 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4504 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4505 src_eqv = copy_rtx (XEXP (tem, 0));
4506
4507 /* Set sets[i].src_elt to the class each source belongs to.
4508 Detect assignments from or to volatile things
4509 and set set[i] to zero so they will be ignored
4510 in the rest of this function.
4511
4512 Nothing in this loop changes the hash table or the register chains. */
4513
4514 for (i = 0; i < n_sets; i++)
4515 {
4516 bool repeat = false;
4517 rtx src, dest;
4518 rtx src_folded;
4519 struct table_elt *elt = 0, *p;
4520 enum machine_mode mode;
4521 rtx src_eqv_here;
4522 rtx src_const = 0;
4523 rtx src_related = 0;
4524 bool src_related_is_const_anchor = false;
4525 struct table_elt *src_const_elt = 0;
4526 int src_cost = MAX_COST;
4527 int src_eqv_cost = MAX_COST;
4528 int src_folded_cost = MAX_COST;
4529 int src_related_cost = MAX_COST;
4530 int src_elt_cost = MAX_COST;
4531 int src_regcost = MAX_COST;
4532 int src_eqv_regcost = MAX_COST;
4533 int src_folded_regcost = MAX_COST;
4534 int src_related_regcost = MAX_COST;
4535 int src_elt_regcost = MAX_COST;
4536 /* Set nonzero if we need to call force_const_mem on with the
4537 contents of src_folded before using it. */
4538 int src_folded_force_flag = 0;
4539
4540 dest = SET_DEST (sets[i].rtl);
4541 src = SET_SRC (sets[i].rtl);
4542
4543 /* If SRC is a constant that has no machine mode,
4544 hash it with the destination's machine mode.
4545 This way we can keep different modes separate. */
4546
4547 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4548 sets[i].mode = mode;
4549
4550 if (src_eqv)
4551 {
4552 enum machine_mode eqvmode = mode;
4553 if (GET_CODE (dest) == STRICT_LOW_PART)
4554 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4555 do_not_record = 0;
4556 hash_arg_in_memory = 0;
4557 src_eqv_hash = HASH (src_eqv, eqvmode);
4558
4559 /* Find the equivalence class for the equivalent expression. */
4560
4561 if (!do_not_record)
4562 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4563
4564 src_eqv_volatile = do_not_record;
4565 src_eqv_in_memory = hash_arg_in_memory;
4566 }
4567
4568 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4569 value of the INNER register, not the destination. So it is not
4570 a valid substitution for the source. But save it for later. */
4571 if (GET_CODE (dest) == STRICT_LOW_PART)
4572 src_eqv_here = 0;
4573 else
4574 src_eqv_here = src_eqv;
4575
4576 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4577 simplified result, which may not necessarily be valid. */
4578 src_folded = fold_rtx (src, insn);
4579
4580 #if 0
4581 /* ??? This caused bad code to be generated for the m68k port with -O2.
4582 Suppose src is (CONST_INT -1), and that after truncation src_folded
4583 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4584 At the end we will add src and src_const to the same equivalence
4585 class. We now have 3 and -1 on the same equivalence class. This
4586 causes later instructions to be mis-optimized. */
4587 /* If storing a constant in a bitfield, pre-truncate the constant
4588 so we will be able to record it later. */
4589 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4590 {
4591 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4592
4593 if (CONST_INT_P (src)
4594 && CONST_INT_P (width)
4595 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4596 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4597 src_folded
4598 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4599 << INTVAL (width)) - 1));
4600 }
4601 #endif
4602
4603 /* Compute SRC's hash code, and also notice if it
4604 should not be recorded at all. In that case,
4605 prevent any further processing of this assignment. */
4606 do_not_record = 0;
4607 hash_arg_in_memory = 0;
4608
4609 sets[i].src = src;
4610 sets[i].src_hash = HASH (src, mode);
4611 sets[i].src_volatile = do_not_record;
4612 sets[i].src_in_memory = hash_arg_in_memory;
4613
4614 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4615 a pseudo, do not record SRC. Using SRC as a replacement for
4616 anything else will be incorrect in that situation. Note that
4617 this usually occurs only for stack slots, in which case all the
4618 RTL would be referring to SRC, so we don't lose any optimization
4619 opportunities by not having SRC in the hash table. */
4620
4621 if (MEM_P (src)
4622 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4623 && REG_P (dest)
4624 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4625 sets[i].src_volatile = 1;
4626
4627 #if 0
4628 /* It is no longer clear why we used to do this, but it doesn't
4629 appear to still be needed. So let's try without it since this
4630 code hurts cse'ing widened ops. */
4631 /* If source is a paradoxical subreg (such as QI treated as an SI),
4632 treat it as volatile. It may do the work of an SI in one context
4633 where the extra bits are not being used, but cannot replace an SI
4634 in general. */
4635 if (paradoxical_subreg_p (src))
4636 sets[i].src_volatile = 1;
4637 #endif
4638
4639 /* Locate all possible equivalent forms for SRC. Try to replace
4640 SRC in the insn with each cheaper equivalent.
4641
4642 We have the following types of equivalents: SRC itself, a folded
4643 version, a value given in a REG_EQUAL note, or a value related
4644 to a constant.
4645
4646 Each of these equivalents may be part of an additional class
4647 of equivalents (if more than one is in the table, they must be in
4648 the same class; we check for this).
4649
4650 If the source is volatile, we don't do any table lookups.
4651
4652 We note any constant equivalent for possible later use in a
4653 REG_NOTE. */
4654
4655 if (!sets[i].src_volatile)
4656 elt = lookup (src, sets[i].src_hash, mode);
4657
4658 sets[i].src_elt = elt;
4659
4660 if (elt && src_eqv_here && src_eqv_elt)
4661 {
4662 if (elt->first_same_value != src_eqv_elt->first_same_value)
4663 {
4664 /* The REG_EQUAL is indicating that two formerly distinct
4665 classes are now equivalent. So merge them. */
4666 merge_equiv_classes (elt, src_eqv_elt);
4667 src_eqv_hash = HASH (src_eqv, elt->mode);
4668 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4669 }
4670
4671 src_eqv_here = 0;
4672 }
4673
4674 else if (src_eqv_elt)
4675 elt = src_eqv_elt;
4676
4677 /* Try to find a constant somewhere and record it in `src_const'.
4678 Record its table element, if any, in `src_const_elt'. Look in
4679 any known equivalences first. (If the constant is not in the
4680 table, also set `sets[i].src_const_hash'). */
4681 if (elt)
4682 for (p = elt->first_same_value; p; p = p->next_same_value)
4683 if (p->is_const)
4684 {
4685 src_const = p->exp;
4686 src_const_elt = elt;
4687 break;
4688 }
4689
4690 if (src_const == 0
4691 && (CONSTANT_P (src_folded)
4692 /* Consider (minus (label_ref L1) (label_ref L2)) as
4693 "constant" here so we will record it. This allows us
4694 to fold switch statements when an ADDR_DIFF_VEC is used. */
4695 || (GET_CODE (src_folded) == MINUS
4696 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4697 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4698 src_const = src_folded, src_const_elt = elt;
4699 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4700 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4701
4702 /* If we don't know if the constant is in the table, get its
4703 hash code and look it up. */
4704 if (src_const && src_const_elt == 0)
4705 {
4706 sets[i].src_const_hash = HASH (src_const, mode);
4707 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4708 }
4709
4710 sets[i].src_const = src_const;
4711 sets[i].src_const_elt = src_const_elt;
4712
4713 /* If the constant and our source are both in the table, mark them as
4714 equivalent. Otherwise, if a constant is in the table but the source
4715 isn't, set ELT to it. */
4716 if (src_const_elt && elt
4717 && src_const_elt->first_same_value != elt->first_same_value)
4718 merge_equiv_classes (elt, src_const_elt);
4719 else if (src_const_elt && elt == 0)
4720 elt = src_const_elt;
4721
4722 /* See if there is a register linearly related to a constant
4723 equivalent of SRC. */
4724 if (src_const
4725 && (GET_CODE (src_const) == CONST
4726 || (src_const_elt && src_const_elt->related_value != 0)))
4727 {
4728 src_related = use_related_value (src_const, src_const_elt);
4729 if (src_related)
4730 {
4731 struct table_elt *src_related_elt
4732 = lookup (src_related, HASH (src_related, mode), mode);
4733 if (src_related_elt && elt)
4734 {
4735 if (elt->first_same_value
4736 != src_related_elt->first_same_value)
4737 /* This can occur when we previously saw a CONST
4738 involving a SYMBOL_REF and then see the SYMBOL_REF
4739 twice. Merge the involved classes. */
4740 merge_equiv_classes (elt, src_related_elt);
4741
4742 src_related = 0;
4743 src_related_elt = 0;
4744 }
4745 else if (src_related_elt && elt == 0)
4746 elt = src_related_elt;
4747 }
4748 }
4749
4750 /* See if we have a CONST_INT that is already in a register in a
4751 wider mode. */
4752
4753 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4754 && GET_MODE_CLASS (mode) == MODE_INT
4755 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4756 {
4757 enum machine_mode wider_mode;
4758
4759 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4760 wider_mode != VOIDmode
4761 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4762 && src_related == 0;
4763 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4764 {
4765 struct table_elt *const_elt
4766 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4767
4768 if (const_elt == 0)
4769 continue;
4770
4771 for (const_elt = const_elt->first_same_value;
4772 const_elt; const_elt = const_elt->next_same_value)
4773 if (REG_P (const_elt->exp))
4774 {
4775 src_related = gen_lowpart (mode, const_elt->exp);
4776 break;
4777 }
4778 }
4779 }
4780
4781 /* Another possibility is that we have an AND with a constant in
4782 a mode narrower than a word. If so, it might have been generated
4783 as part of an "if" which would narrow the AND. If we already
4784 have done the AND in a wider mode, we can use a SUBREG of that
4785 value. */
4786
4787 if (flag_expensive_optimizations && ! src_related
4788 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4789 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4790 {
4791 enum machine_mode tmode;
4792 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4793
4794 for (tmode = GET_MODE_WIDER_MODE (mode);
4795 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4796 tmode = GET_MODE_WIDER_MODE (tmode))
4797 {
4798 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4799 struct table_elt *larger_elt;
4800
4801 if (inner)
4802 {
4803 PUT_MODE (new_and, tmode);
4804 XEXP (new_and, 0) = inner;
4805 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4806 if (larger_elt == 0)
4807 continue;
4808
4809 for (larger_elt = larger_elt->first_same_value;
4810 larger_elt; larger_elt = larger_elt->next_same_value)
4811 if (REG_P (larger_elt->exp))
4812 {
4813 src_related
4814 = gen_lowpart (mode, larger_elt->exp);
4815 break;
4816 }
4817
4818 if (src_related)
4819 break;
4820 }
4821 }
4822 }
4823
4824 #ifdef LOAD_EXTEND_OP
4825 /* See if a MEM has already been loaded with a widening operation;
4826 if it has, we can use a subreg of that. Many CISC machines
4827 also have such operations, but this is only likely to be
4828 beneficial on these machines. */
4829
4830 if (flag_expensive_optimizations && src_related == 0
4831 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4832 && GET_MODE_CLASS (mode) == MODE_INT
4833 && MEM_P (src) && ! do_not_record
4834 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4835 {
4836 struct rtx_def memory_extend_buf;
4837 rtx memory_extend_rtx = &memory_extend_buf;
4838 enum machine_mode tmode;
4839
4840 /* Set what we are trying to extend and the operation it might
4841 have been extended with. */
4842 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4843 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4844 XEXP (memory_extend_rtx, 0) = src;
4845
4846 for (tmode = GET_MODE_WIDER_MODE (mode);
4847 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4848 tmode = GET_MODE_WIDER_MODE (tmode))
4849 {
4850 struct table_elt *larger_elt;
4851
4852 PUT_MODE (memory_extend_rtx, tmode);
4853 larger_elt = lookup (memory_extend_rtx,
4854 HASH (memory_extend_rtx, tmode), tmode);
4855 if (larger_elt == 0)
4856 continue;
4857
4858 for (larger_elt = larger_elt->first_same_value;
4859 larger_elt; larger_elt = larger_elt->next_same_value)
4860 if (REG_P (larger_elt->exp))
4861 {
4862 src_related = gen_lowpart (mode, larger_elt->exp);
4863 break;
4864 }
4865
4866 if (src_related)
4867 break;
4868 }
4869 }
4870 #endif /* LOAD_EXTEND_OP */
4871
4872 /* Try to express the constant using a register+offset expression
4873 derived from a constant anchor. */
4874
4875 if (targetm.const_anchor
4876 && !src_related
4877 && src_const
4878 && GET_CODE (src_const) == CONST_INT)
4879 {
4880 src_related = try_const_anchors (src_const, mode);
4881 src_related_is_const_anchor = src_related != NULL_RTX;
4882 }
4883
4884
4885 if (src == src_folded)
4886 src_folded = 0;
4887
4888 /* At this point, ELT, if nonzero, points to a class of expressions
4889 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4890 and SRC_RELATED, if nonzero, each contain additional equivalent
4891 expressions. Prune these latter expressions by deleting expressions
4892 already in the equivalence class.
4893
4894 Check for an equivalent identical to the destination. If found,
4895 this is the preferred equivalent since it will likely lead to
4896 elimination of the insn. Indicate this by placing it in
4897 `src_related'. */
4898
4899 if (elt)
4900 elt = elt->first_same_value;
4901 for (p = elt; p; p = p->next_same_value)
4902 {
4903 enum rtx_code code = GET_CODE (p->exp);
4904
4905 /* If the expression is not valid, ignore it. Then we do not
4906 have to check for validity below. In most cases, we can use
4907 `rtx_equal_p', since canonicalization has already been done. */
4908 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4909 continue;
4910
4911 /* Also skip paradoxical subregs, unless that's what we're
4912 looking for. */
4913 if (paradoxical_subreg_p (p->exp)
4914 && ! (src != 0
4915 && GET_CODE (src) == SUBREG
4916 && GET_MODE (src) == GET_MODE (p->exp)
4917 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4918 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4919 continue;
4920
4921 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4922 src = 0;
4923 else if (src_folded && GET_CODE (src_folded) == code
4924 && rtx_equal_p (src_folded, p->exp))
4925 src_folded = 0;
4926 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4927 && rtx_equal_p (src_eqv_here, p->exp))
4928 src_eqv_here = 0;
4929 else if (src_related && GET_CODE (src_related) == code
4930 && rtx_equal_p (src_related, p->exp))
4931 src_related = 0;
4932
4933 /* This is the same as the destination of the insns, we want
4934 to prefer it. Copy it to src_related. The code below will
4935 then give it a negative cost. */
4936 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4937 src_related = dest;
4938 }
4939
4940 /* Find the cheapest valid equivalent, trying all the available
4941 possibilities. Prefer items not in the hash table to ones
4942 that are when they are equal cost. Note that we can never
4943 worsen an insn as the current contents will also succeed.
4944 If we find an equivalent identical to the destination, use it as best,
4945 since this insn will probably be eliminated in that case. */
4946 if (src)
4947 {
4948 if (rtx_equal_p (src, dest))
4949 src_cost = src_regcost = -1;
4950 else
4951 {
4952 src_cost = COST (src);
4953 src_regcost = approx_reg_cost (src);
4954 }
4955 }
4956
4957 if (src_eqv_here)
4958 {
4959 if (rtx_equal_p (src_eqv_here, dest))
4960 src_eqv_cost = src_eqv_regcost = -1;
4961 else
4962 {
4963 src_eqv_cost = COST (src_eqv_here);
4964 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4965 }
4966 }
4967
4968 if (src_folded)
4969 {
4970 if (rtx_equal_p (src_folded, dest))
4971 src_folded_cost = src_folded_regcost = -1;
4972 else
4973 {
4974 src_folded_cost = COST (src_folded);
4975 src_folded_regcost = approx_reg_cost (src_folded);
4976 }
4977 }
4978
4979 if (src_related)
4980 {
4981 if (rtx_equal_p (src_related, dest))
4982 src_related_cost = src_related_regcost = -1;
4983 else
4984 {
4985 src_related_cost = COST (src_related);
4986 src_related_regcost = approx_reg_cost (src_related);
4987
4988 /* If a const-anchor is used to synthesize a constant that
4989 normally requires multiple instructions then slightly prefer
4990 it over the original sequence. These instructions are likely
4991 to become redundant now. We can't compare against the cost
4992 of src_eqv_here because, on MIPS for example, multi-insn
4993 constants have zero cost; they are assumed to be hoisted from
4994 loops. */
4995 if (src_related_is_const_anchor
4996 && src_related_cost == src_cost
4997 && src_eqv_here)
4998 src_related_cost--;
4999 }
5000 }
5001
5002 /* If this was an indirect jump insn, a known label will really be
5003 cheaper even though it looks more expensive. */
5004 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5005 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5006
5007 /* Terminate loop when replacement made. This must terminate since
5008 the current contents will be tested and will always be valid. */
5009 while (1)
5010 {
5011 rtx trial;
5012
5013 /* Skip invalid entries. */
5014 while (elt && !REG_P (elt->exp)
5015 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5016 elt = elt->next_same_value;
5017
5018 /* A paradoxical subreg would be bad here: it'll be the right
5019 size, but later may be adjusted so that the upper bits aren't
5020 what we want. So reject it. */
5021 if (elt != 0
5022 && paradoxical_subreg_p (elt->exp)
5023 /* It is okay, though, if the rtx we're trying to match
5024 will ignore any of the bits we can't predict. */
5025 && ! (src != 0
5026 && GET_CODE (src) == SUBREG
5027 && GET_MODE (src) == GET_MODE (elt->exp)
5028 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5029 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5030 {
5031 elt = elt->next_same_value;
5032 continue;
5033 }
5034
5035 if (elt)
5036 {
5037 src_elt_cost = elt->cost;
5038 src_elt_regcost = elt->regcost;
5039 }
5040
5041 /* Find cheapest and skip it for the next time. For items
5042 of equal cost, use this order:
5043 src_folded, src, src_eqv, src_related and hash table entry. */
5044 if (src_folded
5045 && preferable (src_folded_cost, src_folded_regcost,
5046 src_cost, src_regcost) <= 0
5047 && preferable (src_folded_cost, src_folded_regcost,
5048 src_eqv_cost, src_eqv_regcost) <= 0
5049 && preferable (src_folded_cost, src_folded_regcost,
5050 src_related_cost, src_related_regcost) <= 0
5051 && preferable (src_folded_cost, src_folded_regcost,
5052 src_elt_cost, src_elt_regcost) <= 0)
5053 {
5054 trial = src_folded, src_folded_cost = MAX_COST;
5055 if (src_folded_force_flag)
5056 {
5057 rtx forced = force_const_mem (mode, trial);
5058 if (forced)
5059 trial = forced;
5060 }
5061 }
5062 else if (src
5063 && preferable (src_cost, src_regcost,
5064 src_eqv_cost, src_eqv_regcost) <= 0
5065 && preferable (src_cost, src_regcost,
5066 src_related_cost, src_related_regcost) <= 0
5067 && preferable (src_cost, src_regcost,
5068 src_elt_cost, src_elt_regcost) <= 0)
5069 trial = src, src_cost = MAX_COST;
5070 else if (src_eqv_here
5071 && preferable (src_eqv_cost, src_eqv_regcost,
5072 src_related_cost, src_related_regcost) <= 0
5073 && preferable (src_eqv_cost, src_eqv_regcost,
5074 src_elt_cost, src_elt_regcost) <= 0)
5075 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5076 else if (src_related
5077 && preferable (src_related_cost, src_related_regcost,
5078 src_elt_cost, src_elt_regcost) <= 0)
5079 trial = src_related, src_related_cost = MAX_COST;
5080 else
5081 {
5082 trial = elt->exp;
5083 elt = elt->next_same_value;
5084 src_elt_cost = MAX_COST;
5085 }
5086
5087 /* Avoid creation of overlapping memory moves. */
5088 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5089 {
5090 rtx src, dest;
5091
5092 /* BLKmode moves are not handled by cse anyway. */
5093 if (GET_MODE (trial) == BLKmode)
5094 break;
5095
5096 src = canon_rtx (trial);
5097 dest = canon_rtx (SET_DEST (sets[i].rtl));
5098
5099 if (!MEM_P (src) || !MEM_P (dest)
5100 || !nonoverlapping_memrefs_p (src, dest, false))
5101 break;
5102 }
5103
5104 /* Try to optimize
5105 (set (reg:M N) (const_int A))
5106 (set (reg:M2 O) (const_int B))
5107 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5108 (reg:M2 O)). */
5109 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5110 && CONST_INT_P (trial)
5111 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5112 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5113 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5114 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5115 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5116 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5117 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5118 <= HOST_BITS_PER_WIDE_INT))
5119 {
5120 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5121 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5122 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5123 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5124 struct table_elt *dest_elt
5125 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5126 rtx dest_cst = NULL;
5127
5128 if (dest_elt)
5129 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5130 if (p->is_const && CONST_INT_P (p->exp))
5131 {
5132 dest_cst = p->exp;
5133 break;
5134 }
5135 if (dest_cst)
5136 {
5137 HOST_WIDE_INT val = INTVAL (dest_cst);
5138 HOST_WIDE_INT mask;
5139 unsigned int shift;
5140 if (BITS_BIG_ENDIAN)
5141 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5142 - INTVAL (pos) - INTVAL (width);
5143 else
5144 shift = INTVAL (pos);
5145 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5146 mask = ~(HOST_WIDE_INT) 0;
5147 else
5148 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5149 val &= ~(mask << shift);
5150 val |= (INTVAL (trial) & mask) << shift;
5151 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5152 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5153 dest_reg, 1);
5154 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5155 GEN_INT (val), 1);
5156 if (apply_change_group ())
5157 {
5158 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5159 if (note)
5160 {
5161 remove_note (insn, note);
5162 df_notes_rescan (insn);
5163 }
5164 src_eqv = NULL_RTX;
5165 src_eqv_elt = NULL;
5166 src_eqv_volatile = 0;
5167 src_eqv_in_memory = 0;
5168 src_eqv_hash = 0;
5169 repeat = true;
5170 break;
5171 }
5172 }
5173 }
5174
5175 /* We don't normally have an insn matching (set (pc) (pc)), so
5176 check for this separately here. We will delete such an
5177 insn below.
5178
5179 For other cases such as a table jump or conditional jump
5180 where we know the ultimate target, go ahead and replace the
5181 operand. While that may not make a valid insn, we will
5182 reemit the jump below (and also insert any necessary
5183 barriers). */
5184 if (n_sets == 1 && dest == pc_rtx
5185 && (trial == pc_rtx
5186 || (GET_CODE (trial) == LABEL_REF
5187 && ! condjump_p (insn))))
5188 {
5189 /* Don't substitute non-local labels, this confuses CFG. */
5190 if (GET_CODE (trial) == LABEL_REF
5191 && LABEL_REF_NONLOCAL_P (trial))
5192 continue;
5193
5194 SET_SRC (sets[i].rtl) = trial;
5195 cse_jumps_altered = true;
5196 break;
5197 }
5198
5199 /* Reject certain invalid forms of CONST that we create. */
5200 else if (CONSTANT_P (trial)
5201 && GET_CODE (trial) == CONST
5202 /* Reject cases that will cause decode_rtx_const to
5203 die. On the alpha when simplifying a switch, we
5204 get (const (truncate (minus (label_ref)
5205 (label_ref)))). */
5206 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5207 /* Likewise on IA-64, except without the
5208 truncate. */
5209 || (GET_CODE (XEXP (trial, 0)) == MINUS
5210 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5211 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5212 /* Do nothing for this case. */
5213 ;
5214
5215 /* Look for a substitution that makes a valid insn. */
5216 else if (validate_unshare_change
5217 (insn, &SET_SRC (sets[i].rtl), trial, 0))
5218 {
5219 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5220
5221 /* The result of apply_change_group can be ignored; see
5222 canon_reg. */
5223
5224 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5225 apply_change_group ();
5226
5227 break;
5228 }
5229
5230 /* If we previously found constant pool entries for
5231 constants and this is a constant, try making a
5232 pool entry. Put it in src_folded unless we already have done
5233 this since that is where it likely came from. */
5234
5235 else if (constant_pool_entries_cost
5236 && CONSTANT_P (trial)
5237 && (src_folded == 0
5238 || (!MEM_P (src_folded)
5239 && ! src_folded_force_flag))
5240 && GET_MODE_CLASS (mode) != MODE_CC
5241 && mode != VOIDmode)
5242 {
5243 src_folded_force_flag = 1;
5244 src_folded = trial;
5245 src_folded_cost = constant_pool_entries_cost;
5246 src_folded_regcost = constant_pool_entries_regcost;
5247 }
5248 }
5249
5250 /* If we changed the insn too much, handle this set from scratch. */
5251 if (repeat)
5252 {
5253 i--;
5254 continue;
5255 }
5256
5257 src = SET_SRC (sets[i].rtl);
5258
5259 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5260 However, there is an important exception: If both are registers
5261 that are not the head of their equivalence class, replace SET_SRC
5262 with the head of the class. If we do not do this, we will have
5263 both registers live over a portion of the basic block. This way,
5264 their lifetimes will likely abut instead of overlapping. */
5265 if (REG_P (dest)
5266 && REGNO_QTY_VALID_P (REGNO (dest)))
5267 {
5268 int dest_q = REG_QTY (REGNO (dest));
5269 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5270
5271 if (dest_ent->mode == GET_MODE (dest)
5272 && dest_ent->first_reg != REGNO (dest)
5273 && REG_P (src) && REGNO (src) == REGNO (dest)
5274 /* Don't do this if the original insn had a hard reg as
5275 SET_SRC or SET_DEST. */
5276 && (!REG_P (sets[i].src)
5277 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5278 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5279 /* We can't call canon_reg here because it won't do anything if
5280 SRC is a hard register. */
5281 {
5282 int src_q = REG_QTY (REGNO (src));
5283 struct qty_table_elem *src_ent = &qty_table[src_q];
5284 int first = src_ent->first_reg;
5285 rtx new_src
5286 = (first >= FIRST_PSEUDO_REGISTER
5287 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5288
5289 /* We must use validate-change even for this, because this
5290 might be a special no-op instruction, suitable only to
5291 tag notes onto. */
5292 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5293 {
5294 src = new_src;
5295 /* If we had a constant that is cheaper than what we are now
5296 setting SRC to, use that constant. We ignored it when we
5297 thought we could make this into a no-op. */
5298 if (src_const && COST (src_const) < COST (src)
5299 && validate_change (insn, &SET_SRC (sets[i].rtl),
5300 src_const, 0))
5301 src = src_const;
5302 }
5303 }
5304 }
5305
5306 /* If we made a change, recompute SRC values. */
5307 if (src != sets[i].src)
5308 {
5309 do_not_record = 0;
5310 hash_arg_in_memory = 0;
5311 sets[i].src = src;
5312 sets[i].src_hash = HASH (src, mode);
5313 sets[i].src_volatile = do_not_record;
5314 sets[i].src_in_memory = hash_arg_in_memory;
5315 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5316 }
5317
5318 /* If this is a single SET, we are setting a register, and we have an
5319 equivalent constant, we want to add a REG_EQUAL note if the constant
5320 is different from the source. We don't want to do it for a constant
5321 pseudo since verifying that this pseudo hasn't been eliminated is a
5322 pain; moreover such a note won't help anything.
5323
5324 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5325 which can be created for a reference to a compile time computable
5326 entry in a jump table. */
5327 if (n_sets == 1
5328 && REG_P (dest)
5329 && src_const
5330 && !REG_P (src_const)
5331 && !(GET_CODE (src_const) == SUBREG
5332 && REG_P (SUBREG_REG (src_const)))
5333 && !(GET_CODE (src_const) == CONST
5334 && GET_CODE (XEXP (src_const, 0)) == MINUS
5335 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5336 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5337 && !rtx_equal_p (src, src_const))
5338 {
5339 /* Make sure that the rtx is not shared. */
5340 src_const = copy_rtx (src_const);
5341
5342 /* Record the actual constant value in a REG_EQUAL note,
5343 making a new one if one does not already exist. */
5344 set_unique_reg_note (insn, REG_EQUAL, src_const);
5345 df_notes_rescan (insn);
5346 }
5347
5348 /* Now deal with the destination. */
5349 do_not_record = 0;
5350
5351 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5352 while (GET_CODE (dest) == SUBREG
5353 || GET_CODE (dest) == ZERO_EXTRACT
5354 || GET_CODE (dest) == STRICT_LOW_PART)
5355 dest = XEXP (dest, 0);
5356
5357 sets[i].inner_dest = dest;
5358
5359 if (MEM_P (dest))
5360 {
5361 #ifdef PUSH_ROUNDING
5362 /* Stack pushes invalidate the stack pointer. */
5363 rtx addr = XEXP (dest, 0);
5364 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5365 && XEXP (addr, 0) == stack_pointer_rtx)
5366 invalidate (stack_pointer_rtx, VOIDmode);
5367 #endif
5368 dest = fold_rtx (dest, insn);
5369 }
5370
5371 /* Compute the hash code of the destination now,
5372 before the effects of this instruction are recorded,
5373 since the register values used in the address computation
5374 are those before this instruction. */
5375 sets[i].dest_hash = HASH (dest, mode);
5376
5377 /* Don't enter a bit-field in the hash table
5378 because the value in it after the store
5379 may not equal what was stored, due to truncation. */
5380
5381 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5382 {
5383 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5384
5385 if (src_const != 0 && CONST_INT_P (src_const)
5386 && CONST_INT_P (width)
5387 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5388 && ! (INTVAL (src_const)
5389 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5390 /* Exception: if the value is constant,
5391 and it won't be truncated, record it. */
5392 ;
5393 else
5394 {
5395 /* This is chosen so that the destination will be invalidated
5396 but no new value will be recorded.
5397 We must invalidate because sometimes constant
5398 values can be recorded for bitfields. */
5399 sets[i].src_elt = 0;
5400 sets[i].src_volatile = 1;
5401 src_eqv = 0;
5402 src_eqv_elt = 0;
5403 }
5404 }
5405
5406 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5407 the insn. */
5408 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5409 {
5410 /* One less use of the label this insn used to jump to. */
5411 delete_insn_and_edges (insn);
5412 cse_jumps_altered = true;
5413 /* No more processing for this set. */
5414 sets[i].rtl = 0;
5415 }
5416
5417 /* If this SET is now setting PC to a label, we know it used to
5418 be a conditional or computed branch. */
5419 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5420 && !LABEL_REF_NONLOCAL_P (src))
5421 {
5422 /* We reemit the jump in as many cases as possible just in
5423 case the form of an unconditional jump is significantly
5424 different than a computed jump or conditional jump.
5425
5426 If this insn has multiple sets, then reemitting the
5427 jump is nontrivial. So instead we just force rerecognition
5428 and hope for the best. */
5429 if (n_sets == 1)
5430 {
5431 rtx new_rtx, note;
5432
5433 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5434 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5435 LABEL_NUSES (XEXP (src, 0))++;
5436
5437 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5438 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5439 if (note)
5440 {
5441 XEXP (note, 1) = NULL_RTX;
5442 REG_NOTES (new_rtx) = note;
5443 }
5444
5445 delete_insn_and_edges (insn);
5446 insn = new_rtx;
5447 }
5448 else
5449 INSN_CODE (insn) = -1;
5450
5451 /* Do not bother deleting any unreachable code, let jump do it. */
5452 cse_jumps_altered = true;
5453 sets[i].rtl = 0;
5454 }
5455
5456 /* If destination is volatile, invalidate it and then do no further
5457 processing for this assignment. */
5458
5459 else if (do_not_record)
5460 {
5461 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5462 invalidate (dest, VOIDmode);
5463 else if (MEM_P (dest))
5464 invalidate (dest, VOIDmode);
5465 else if (GET_CODE (dest) == STRICT_LOW_PART
5466 || GET_CODE (dest) == ZERO_EXTRACT)
5467 invalidate (XEXP (dest, 0), GET_MODE (dest));
5468 sets[i].rtl = 0;
5469 }
5470
5471 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5472 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5473
5474 #ifdef HAVE_cc0
5475 /* If setting CC0, record what it was set to, or a constant, if it
5476 is equivalent to a constant. If it is being set to a floating-point
5477 value, make a COMPARE with the appropriate constant of 0. If we
5478 don't do this, later code can interpret this as a test against
5479 const0_rtx, which can cause problems if we try to put it into an
5480 insn as a floating-point operand. */
5481 if (dest == cc0_rtx)
5482 {
5483 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5484 this_insn_cc0_mode = mode;
5485 if (FLOAT_MODE_P (mode))
5486 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5487 CONST0_RTX (mode));
5488 }
5489 #endif
5490 }
5491
5492 /* Now enter all non-volatile source expressions in the hash table
5493 if they are not already present.
5494 Record their equivalence classes in src_elt.
5495 This way we can insert the corresponding destinations into
5496 the same classes even if the actual sources are no longer in them
5497 (having been invalidated). */
5498
5499 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5500 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5501 {
5502 struct table_elt *elt;
5503 struct table_elt *classp = sets[0].src_elt;
5504 rtx dest = SET_DEST (sets[0].rtl);
5505 enum machine_mode eqvmode = GET_MODE (dest);
5506
5507 if (GET_CODE (dest) == STRICT_LOW_PART)
5508 {
5509 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5510 classp = 0;
5511 }
5512 if (insert_regs (src_eqv, classp, 0))
5513 {
5514 rehash_using_reg (src_eqv);
5515 src_eqv_hash = HASH (src_eqv, eqvmode);
5516 }
5517 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5518 elt->in_memory = src_eqv_in_memory;
5519 src_eqv_elt = elt;
5520
5521 /* Check to see if src_eqv_elt is the same as a set source which
5522 does not yet have an elt, and if so set the elt of the set source
5523 to src_eqv_elt. */
5524 for (i = 0; i < n_sets; i++)
5525 if (sets[i].rtl && sets[i].src_elt == 0
5526 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5527 sets[i].src_elt = src_eqv_elt;
5528 }
5529
5530 for (i = 0; i < n_sets; i++)
5531 if (sets[i].rtl && ! sets[i].src_volatile
5532 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5533 {
5534 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5535 {
5536 /* REG_EQUAL in setting a STRICT_LOW_PART
5537 gives an equivalent for the entire destination register,
5538 not just for the subreg being stored in now.
5539 This is a more interesting equivalence, so we arrange later
5540 to treat the entire reg as the destination. */
5541 sets[i].src_elt = src_eqv_elt;
5542 sets[i].src_hash = src_eqv_hash;
5543 }
5544 else
5545 {
5546 /* Insert source and constant equivalent into hash table, if not
5547 already present. */
5548 struct table_elt *classp = src_eqv_elt;
5549 rtx src = sets[i].src;
5550 rtx dest = SET_DEST (sets[i].rtl);
5551 enum machine_mode mode
5552 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5553
5554 /* It's possible that we have a source value known to be
5555 constant but don't have a REG_EQUAL note on the insn.
5556 Lack of a note will mean src_eqv_elt will be NULL. This
5557 can happen where we've generated a SUBREG to access a
5558 CONST_INT that is already in a register in a wider mode.
5559 Ensure that the source expression is put in the proper
5560 constant class. */
5561 if (!classp)
5562 classp = sets[i].src_const_elt;
5563
5564 if (sets[i].src_elt == 0)
5565 {
5566 struct table_elt *elt;
5567
5568 /* Note that these insert_regs calls cannot remove
5569 any of the src_elt's, because they would have failed to
5570 match if not still valid. */
5571 if (insert_regs (src, classp, 0))
5572 {
5573 rehash_using_reg (src);
5574 sets[i].src_hash = HASH (src, mode);
5575 }
5576 elt = insert (src, classp, sets[i].src_hash, mode);
5577 elt->in_memory = sets[i].src_in_memory;
5578 sets[i].src_elt = classp = elt;
5579 }
5580 if (sets[i].src_const && sets[i].src_const_elt == 0
5581 && src != sets[i].src_const
5582 && ! rtx_equal_p (sets[i].src_const, src))
5583 sets[i].src_elt = insert (sets[i].src_const, classp,
5584 sets[i].src_const_hash, mode);
5585 }
5586 }
5587 else if (sets[i].src_elt == 0)
5588 /* If we did not insert the source into the hash table (e.g., it was
5589 volatile), note the equivalence class for the REG_EQUAL value, if any,
5590 so that the destination goes into that class. */
5591 sets[i].src_elt = src_eqv_elt;
5592
5593 /* Record destination addresses in the hash table. This allows us to
5594 check if they are invalidated by other sets. */
5595 for (i = 0; i < n_sets; i++)
5596 {
5597 if (sets[i].rtl)
5598 {
5599 rtx x = sets[i].inner_dest;
5600 struct table_elt *elt;
5601 enum machine_mode mode;
5602 unsigned hash;
5603
5604 if (MEM_P (x))
5605 {
5606 x = XEXP (x, 0);
5607 mode = GET_MODE (x);
5608 hash = HASH (x, mode);
5609 elt = lookup (x, hash, mode);
5610 if (!elt)
5611 {
5612 if (insert_regs (x, NULL, 0))
5613 {
5614 rtx dest = SET_DEST (sets[i].rtl);
5615
5616 rehash_using_reg (x);
5617 hash = HASH (x, mode);
5618 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5619 }
5620 elt = insert (x, NULL, hash, mode);
5621 }
5622
5623 sets[i].dest_addr_elt = elt;
5624 }
5625 else
5626 sets[i].dest_addr_elt = NULL;
5627 }
5628 }
5629
5630 invalidate_from_clobbers (insn);
5631
5632 /* Some registers are invalidated by subroutine calls. Memory is
5633 invalidated by non-constant calls. */
5634
5635 if (CALL_P (insn))
5636 {
5637 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5638 invalidate_memory ();
5639 invalidate_for_call ();
5640 }
5641
5642 /* Now invalidate everything set by this instruction.
5643 If a SUBREG or other funny destination is being set,
5644 sets[i].rtl is still nonzero, so here we invalidate the reg
5645 a part of which is being set. */
5646
5647 for (i = 0; i < n_sets; i++)
5648 if (sets[i].rtl)
5649 {
5650 /* We can't use the inner dest, because the mode associated with
5651 a ZERO_EXTRACT is significant. */
5652 rtx dest = SET_DEST (sets[i].rtl);
5653
5654 /* Needed for registers to remove the register from its
5655 previous quantity's chain.
5656 Needed for memory if this is a nonvarying address, unless
5657 we have just done an invalidate_memory that covers even those. */
5658 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5659 invalidate (dest, VOIDmode);
5660 else if (MEM_P (dest))
5661 invalidate (dest, VOIDmode);
5662 else if (GET_CODE (dest) == STRICT_LOW_PART
5663 || GET_CODE (dest) == ZERO_EXTRACT)
5664 invalidate (XEXP (dest, 0), GET_MODE (dest));
5665 }
5666
5667 /* A volatile ASM or an UNSPEC_VOLATILE invalidates everything. */
5668 if (NONJUMP_INSN_P (insn)
5669 && volatile_insn_p (PATTERN (insn)))
5670 flush_hash_table ();
5671
5672 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5673 the regs restored by the longjmp come from a later time
5674 than the setjmp. */
5675 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5676 {
5677 flush_hash_table ();
5678 goto done;
5679 }
5680
5681 /* Make sure registers mentioned in destinations
5682 are safe for use in an expression to be inserted.
5683 This removes from the hash table
5684 any invalid entry that refers to one of these registers.
5685
5686 We don't care about the return value from mention_regs because
5687 we are going to hash the SET_DEST values unconditionally. */
5688
5689 for (i = 0; i < n_sets; i++)
5690 {
5691 if (sets[i].rtl)
5692 {
5693 rtx x = SET_DEST (sets[i].rtl);
5694
5695 if (!REG_P (x))
5696 mention_regs (x);
5697 else
5698 {
5699 /* We used to rely on all references to a register becoming
5700 inaccessible when a register changes to a new quantity,
5701 since that changes the hash code. However, that is not
5702 safe, since after HASH_SIZE new quantities we get a
5703 hash 'collision' of a register with its own invalid
5704 entries. And since SUBREGs have been changed not to
5705 change their hash code with the hash code of the register,
5706 it wouldn't work any longer at all. So we have to check
5707 for any invalid references lying around now.
5708 This code is similar to the REG case in mention_regs,
5709 but it knows that reg_tick has been incremented, and
5710 it leaves reg_in_table as -1 . */
5711 unsigned int regno = REGNO (x);
5712 unsigned int endregno = END_REGNO (x);
5713 unsigned int i;
5714
5715 for (i = regno; i < endregno; i++)
5716 {
5717 if (REG_IN_TABLE (i) >= 0)
5718 {
5719 remove_invalid_refs (i);
5720 REG_IN_TABLE (i) = -1;
5721 }
5722 }
5723 }
5724 }
5725 }
5726
5727 /* We may have just removed some of the src_elt's from the hash table.
5728 So replace each one with the current head of the same class.
5729 Also check if destination addresses have been removed. */
5730
5731 for (i = 0; i < n_sets; i++)
5732 if (sets[i].rtl)
5733 {
5734 if (sets[i].dest_addr_elt
5735 && sets[i].dest_addr_elt->first_same_value == 0)
5736 {
5737 /* The elt was removed, which means this destination is not
5738 valid after this instruction. */
5739 sets[i].rtl = NULL_RTX;
5740 }
5741 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5742 /* If elt was removed, find current head of same class,
5743 or 0 if nothing remains of that class. */
5744 {
5745 struct table_elt *elt = sets[i].src_elt;
5746
5747 while (elt && elt->prev_same_value)
5748 elt = elt->prev_same_value;
5749
5750 while (elt && elt->first_same_value == 0)
5751 elt = elt->next_same_value;
5752 sets[i].src_elt = elt ? elt->first_same_value : 0;
5753 }
5754 }
5755
5756 /* Now insert the destinations into their equivalence classes. */
5757
5758 for (i = 0; i < n_sets; i++)
5759 if (sets[i].rtl)
5760 {
5761 rtx dest = SET_DEST (sets[i].rtl);
5762 struct table_elt *elt;
5763
5764 /* Don't record value if we are not supposed to risk allocating
5765 floating-point values in registers that might be wider than
5766 memory. */
5767 if ((flag_float_store
5768 && MEM_P (dest)
5769 && FLOAT_MODE_P (GET_MODE (dest)))
5770 /* Don't record BLKmode values, because we don't know the
5771 size of it, and can't be sure that other BLKmode values
5772 have the same or smaller size. */
5773 || GET_MODE (dest) == BLKmode
5774 /* If we didn't put a REG_EQUAL value or a source into the hash
5775 table, there is no point is recording DEST. */
5776 || sets[i].src_elt == 0
5777 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5778 or SIGN_EXTEND, don't record DEST since it can cause
5779 some tracking to be wrong.
5780
5781 ??? Think about this more later. */
5782 || (paradoxical_subreg_p (dest)
5783 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5784 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5785 continue;
5786
5787 /* STRICT_LOW_PART isn't part of the value BEING set,
5788 and neither is the SUBREG inside it.
5789 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5790 if (GET_CODE (dest) == STRICT_LOW_PART)
5791 dest = SUBREG_REG (XEXP (dest, 0));
5792
5793 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5794 /* Registers must also be inserted into chains for quantities. */
5795 if (insert_regs (dest, sets[i].src_elt, 1))
5796 {
5797 /* If `insert_regs' changes something, the hash code must be
5798 recalculated. */
5799 rehash_using_reg (dest);
5800 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5801 }
5802
5803 elt = insert (dest, sets[i].src_elt,
5804 sets[i].dest_hash, GET_MODE (dest));
5805
5806 /* If this is a constant, insert the constant anchors with the
5807 equivalent register-offset expressions using register DEST. */
5808 if (targetm.const_anchor
5809 && REG_P (dest)
5810 && SCALAR_INT_MODE_P (GET_MODE (dest))
5811 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5812 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5813
5814 elt->in_memory = (MEM_P (sets[i].inner_dest)
5815 && !MEM_READONLY_P (sets[i].inner_dest));
5816
5817 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5818 narrower than M2, and both M1 and M2 are the same number of words,
5819 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5820 make that equivalence as well.
5821
5822 However, BAR may have equivalences for which gen_lowpart
5823 will produce a simpler value than gen_lowpart applied to
5824 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5825 BAR's equivalences. If we don't get a simplified form, make
5826 the SUBREG. It will not be used in an equivalence, but will
5827 cause two similar assignments to be detected.
5828
5829 Note the loop below will find SUBREG_REG (DEST) since we have
5830 already entered SRC and DEST of the SET in the table. */
5831
5832 if (GET_CODE (dest) == SUBREG
5833 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5834 / UNITS_PER_WORD)
5835 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5836 && (GET_MODE_SIZE (GET_MODE (dest))
5837 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5838 && sets[i].src_elt != 0)
5839 {
5840 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5841 struct table_elt *elt, *classp = 0;
5842
5843 for (elt = sets[i].src_elt->first_same_value; elt;
5844 elt = elt->next_same_value)
5845 {
5846 rtx new_src = 0;
5847 unsigned src_hash;
5848 struct table_elt *src_elt;
5849 int byte = 0;
5850
5851 /* Ignore invalid entries. */
5852 if (!REG_P (elt->exp)
5853 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5854 continue;
5855
5856 /* We may have already been playing subreg games. If the
5857 mode is already correct for the destination, use it. */
5858 if (GET_MODE (elt->exp) == new_mode)
5859 new_src = elt->exp;
5860 else
5861 {
5862 /* Calculate big endian correction for the SUBREG_BYTE.
5863 We have already checked that M1 (GET_MODE (dest))
5864 is not narrower than M2 (new_mode). */
5865 if (BYTES_BIG_ENDIAN)
5866 byte = (GET_MODE_SIZE (GET_MODE (dest))
5867 - GET_MODE_SIZE (new_mode));
5868
5869 new_src = simplify_gen_subreg (new_mode, elt->exp,
5870 GET_MODE (dest), byte);
5871 }
5872
5873 /* The call to simplify_gen_subreg fails if the value
5874 is VOIDmode, yet we can't do any simplification, e.g.
5875 for EXPR_LISTs denoting function call results.
5876 It is invalid to construct a SUBREG with a VOIDmode
5877 SUBREG_REG, hence a zero new_src means we can't do
5878 this substitution. */
5879 if (! new_src)
5880 continue;
5881
5882 src_hash = HASH (new_src, new_mode);
5883 src_elt = lookup (new_src, src_hash, new_mode);
5884
5885 /* Put the new source in the hash table is if isn't
5886 already. */
5887 if (src_elt == 0)
5888 {
5889 if (insert_regs (new_src, classp, 0))
5890 {
5891 rehash_using_reg (new_src);
5892 src_hash = HASH (new_src, new_mode);
5893 }
5894 src_elt = insert (new_src, classp, src_hash, new_mode);
5895 src_elt->in_memory = elt->in_memory;
5896 }
5897 else if (classp && classp != src_elt->first_same_value)
5898 /* Show that two things that we've seen before are
5899 actually the same. */
5900 merge_equiv_classes (src_elt, classp);
5901
5902 classp = src_elt->first_same_value;
5903 /* Ignore invalid entries. */
5904 while (classp
5905 && !REG_P (classp->exp)
5906 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5907 classp = classp->next_same_value;
5908 }
5909 }
5910 }
5911
5912 /* Special handling for (set REG0 REG1) where REG0 is the
5913 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5914 be used in the sequel, so (if easily done) change this insn to
5915 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5916 that computed their value. Then REG1 will become a dead store
5917 and won't cloud the situation for later optimizations.
5918
5919 Do not make this change if REG1 is a hard register, because it will
5920 then be used in the sequel and we may be changing a two-operand insn
5921 into a three-operand insn.
5922
5923 Also do not do this if we are operating on a copy of INSN. */
5924
5925 if (n_sets == 1 && sets[0].rtl)
5926 try_back_substitute_reg (sets[0].rtl, insn);
5927
5928 done:;
5929 }
5930 \f
5931 /* Remove from the hash table all expressions that reference memory. */
5932
5933 static void
5934 invalidate_memory (void)
5935 {
5936 int i;
5937 struct table_elt *p, *next;
5938
5939 for (i = 0; i < HASH_SIZE; i++)
5940 for (p = table[i]; p; p = next)
5941 {
5942 next = p->next_same_hash;
5943 if (p->in_memory)
5944 remove_from_table (p, i);
5945 }
5946 }
5947
5948 /* Perform invalidation on the basis of everything about INSN,
5949 except for invalidating the actual places that are SET in it.
5950 This includes the places CLOBBERed, and anything that might
5951 alias with something that is SET or CLOBBERed. */
5952
5953 static void
5954 invalidate_from_clobbers (rtx insn)
5955 {
5956 rtx x = PATTERN (insn);
5957
5958 if (GET_CODE (x) == CLOBBER)
5959 {
5960 rtx ref = XEXP (x, 0);
5961 if (ref)
5962 {
5963 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5964 || MEM_P (ref))
5965 invalidate (ref, VOIDmode);
5966 else if (GET_CODE (ref) == STRICT_LOW_PART
5967 || GET_CODE (ref) == ZERO_EXTRACT)
5968 invalidate (XEXP (ref, 0), GET_MODE (ref));
5969 }
5970 }
5971 else if (GET_CODE (x) == PARALLEL)
5972 {
5973 int i;
5974 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5975 {
5976 rtx y = XVECEXP (x, 0, i);
5977 if (GET_CODE (y) == CLOBBER)
5978 {
5979 rtx ref = XEXP (y, 0);
5980 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5981 || MEM_P (ref))
5982 invalidate (ref, VOIDmode);
5983 else if (GET_CODE (ref) == STRICT_LOW_PART
5984 || GET_CODE (ref) == ZERO_EXTRACT)
5985 invalidate (XEXP (ref, 0), GET_MODE (ref));
5986 }
5987 }
5988 }
5989 }
5990 \f
5991 /* Perform invalidation on the basis of everything about INSN.
5992 This includes the places CLOBBERed, and anything that might
5993 alias with something that is SET or CLOBBERed. */
5994
5995 static void
5996 invalidate_from_sets_and_clobbers (rtx insn)
5997 {
5998 rtx tem;
5999 rtx x = PATTERN (insn);
6000
6001 if (CALL_P (insn))
6002 {
6003 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6004 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6005 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6006 }
6007
6008 /* Ensure we invalidate the destination register of a CALL insn.
6009 This is necessary for machines where this register is a fixed_reg,
6010 because no other code would invalidate it. */
6011 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6012 invalidate (SET_DEST (x), VOIDmode);
6013
6014 else if (GET_CODE (x) == PARALLEL)
6015 {
6016 int i;
6017
6018 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6019 {
6020 rtx y = XVECEXP (x, 0, i);
6021 if (GET_CODE (y) == CLOBBER)
6022 {
6023 rtx clobbered = XEXP (y, 0);
6024
6025 if (REG_P (clobbered)
6026 || GET_CODE (clobbered) == SUBREG)
6027 invalidate (clobbered, VOIDmode);
6028 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6029 || GET_CODE (clobbered) == ZERO_EXTRACT)
6030 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6031 }
6032 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6033 invalidate (SET_DEST (y), VOIDmode);
6034 }
6035 }
6036 }
6037 \f
6038 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6039 and replace any registers in them with either an equivalent constant
6040 or the canonical form of the register. If we are inside an address,
6041 only do this if the address remains valid.
6042
6043 OBJECT is 0 except when within a MEM in which case it is the MEM.
6044
6045 Return the replacement for X. */
6046
6047 static rtx
6048 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6049 {
6050 enum rtx_code code = GET_CODE (x);
6051 const char *fmt = GET_RTX_FORMAT (code);
6052 int i;
6053
6054 switch (code)
6055 {
6056 case CONST:
6057 case SYMBOL_REF:
6058 case LABEL_REF:
6059 CASE_CONST_ANY:
6060 case PC:
6061 case CC0:
6062 case LO_SUM:
6063 return x;
6064
6065 case MEM:
6066 validate_change (x, &XEXP (x, 0),
6067 cse_process_notes (XEXP (x, 0), x, changed), 0);
6068 return x;
6069
6070 case EXPR_LIST:
6071 if (REG_NOTE_KIND (x) == REG_EQUAL)
6072 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6073 /* Fall through. */
6074
6075 case INSN_LIST:
6076 case INT_LIST:
6077 if (XEXP (x, 1))
6078 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6079 return x;
6080
6081 case SIGN_EXTEND:
6082 case ZERO_EXTEND:
6083 case SUBREG:
6084 {
6085 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6086 /* We don't substitute VOIDmode constants into these rtx,
6087 since they would impede folding. */
6088 if (GET_MODE (new_rtx) != VOIDmode)
6089 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6090 return x;
6091 }
6092
6093 case REG:
6094 i = REG_QTY (REGNO (x));
6095
6096 /* Return a constant or a constant register. */
6097 if (REGNO_QTY_VALID_P (REGNO (x)))
6098 {
6099 struct qty_table_elem *ent = &qty_table[i];
6100
6101 if (ent->const_rtx != NULL_RTX
6102 && (CONSTANT_P (ent->const_rtx)
6103 || REG_P (ent->const_rtx)))
6104 {
6105 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6106 if (new_rtx)
6107 return copy_rtx (new_rtx);
6108 }
6109 }
6110
6111 /* Otherwise, canonicalize this register. */
6112 return canon_reg (x, NULL_RTX);
6113
6114 default:
6115 break;
6116 }
6117
6118 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6119 if (fmt[i] == 'e')
6120 validate_change (object, &XEXP (x, i),
6121 cse_process_notes (XEXP (x, i), object, changed), 0);
6122
6123 return x;
6124 }
6125
6126 static rtx
6127 cse_process_notes (rtx x, rtx object, bool *changed)
6128 {
6129 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6130 if (new_rtx != x)
6131 *changed = true;
6132 return new_rtx;
6133 }
6134
6135 \f
6136 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6137
6138 DATA is a pointer to a struct cse_basic_block_data, that is used to
6139 describe the path.
6140 It is filled with a queue of basic blocks, starting with FIRST_BB
6141 and following a trace through the CFG.
6142
6143 If all paths starting at FIRST_BB have been followed, or no new path
6144 starting at FIRST_BB can be constructed, this function returns FALSE.
6145 Otherwise, DATA->path is filled and the function returns TRUE indicating
6146 that a path to follow was found.
6147
6148 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6149 block in the path will be FIRST_BB. */
6150
6151 static bool
6152 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6153 int follow_jumps)
6154 {
6155 basic_block bb;
6156 edge e;
6157 int path_size;
6158
6159 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6160
6161 /* See if there is a previous path. */
6162 path_size = data->path_size;
6163
6164 /* There is a previous path. Make sure it started with FIRST_BB. */
6165 if (path_size)
6166 gcc_assert (data->path[0].bb == first_bb);
6167
6168 /* There was only one basic block in the last path. Clear the path and
6169 return, so that paths starting at another basic block can be tried. */
6170 if (path_size == 1)
6171 {
6172 path_size = 0;
6173 goto done;
6174 }
6175
6176 /* If the path was empty from the beginning, construct a new path. */
6177 if (path_size == 0)
6178 data->path[path_size++].bb = first_bb;
6179 else
6180 {
6181 /* Otherwise, path_size must be equal to or greater than 2, because
6182 a previous path exists that is at least two basic blocks long.
6183
6184 Update the previous branch path, if any. If the last branch was
6185 previously along the branch edge, take the fallthrough edge now. */
6186 while (path_size >= 2)
6187 {
6188 basic_block last_bb_in_path, previous_bb_in_path;
6189 edge e;
6190
6191 --path_size;
6192 last_bb_in_path = data->path[path_size].bb;
6193 previous_bb_in_path = data->path[path_size - 1].bb;
6194
6195 /* If we previously followed a path along the branch edge, try
6196 the fallthru edge now. */
6197 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6198 && any_condjump_p (BB_END (previous_bb_in_path))
6199 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6200 && e == BRANCH_EDGE (previous_bb_in_path))
6201 {
6202 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6203 if (bb != EXIT_BLOCK_PTR
6204 && single_pred_p (bb)
6205 /* We used to assert here that we would only see blocks
6206 that we have not visited yet. But we may end up
6207 visiting basic blocks twice if the CFG has changed
6208 in this run of cse_main, because when the CFG changes
6209 the topological sort of the CFG also changes. A basic
6210 blocks that previously had more than two predecessors
6211 may now have a single predecessor, and become part of
6212 a path that starts at another basic block.
6213
6214 We still want to visit each basic block only once, so
6215 halt the path here if we have already visited BB. */
6216 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6217 {
6218 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6219 data->path[path_size++].bb = bb;
6220 break;
6221 }
6222 }
6223
6224 data->path[path_size].bb = NULL;
6225 }
6226
6227 /* If only one block remains in the path, bail. */
6228 if (path_size == 1)
6229 {
6230 path_size = 0;
6231 goto done;
6232 }
6233 }
6234
6235 /* Extend the path if possible. */
6236 if (follow_jumps)
6237 {
6238 bb = data->path[path_size - 1].bb;
6239 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6240 {
6241 if (single_succ_p (bb))
6242 e = single_succ_edge (bb);
6243 else if (EDGE_COUNT (bb->succs) == 2
6244 && any_condjump_p (BB_END (bb)))
6245 {
6246 /* First try to follow the branch. If that doesn't lead
6247 to a useful path, follow the fallthru edge. */
6248 e = BRANCH_EDGE (bb);
6249 if (!single_pred_p (e->dest))
6250 e = FALLTHRU_EDGE (bb);
6251 }
6252 else
6253 e = NULL;
6254
6255 if (e
6256 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6257 && e->dest != EXIT_BLOCK_PTR
6258 && single_pred_p (e->dest)
6259 /* Avoid visiting basic blocks twice. The large comment
6260 above explains why this can happen. */
6261 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6262 {
6263 basic_block bb2 = e->dest;
6264 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6265 data->path[path_size++].bb = bb2;
6266 bb = bb2;
6267 }
6268 else
6269 bb = NULL;
6270 }
6271 }
6272
6273 done:
6274 data->path_size = path_size;
6275 return path_size != 0;
6276 }
6277 \f
6278 /* Dump the path in DATA to file F. NSETS is the number of sets
6279 in the path. */
6280
6281 static void
6282 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6283 {
6284 int path_entry;
6285
6286 fprintf (f, ";; Following path with %d sets: ", nsets);
6287 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6288 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6289 fputc ('\n', dump_file);
6290 fflush (f);
6291 }
6292
6293 \f
6294 /* Return true if BB has exception handling successor edges. */
6295
6296 static bool
6297 have_eh_succ_edges (basic_block bb)
6298 {
6299 edge e;
6300 edge_iterator ei;
6301
6302 FOR_EACH_EDGE (e, ei, bb->succs)
6303 if (e->flags & EDGE_EH)
6304 return true;
6305
6306 return false;
6307 }
6308
6309 \f
6310 /* Scan to the end of the path described by DATA. Return an estimate of
6311 the total number of SETs of all insns in the path. */
6312
6313 static void
6314 cse_prescan_path (struct cse_basic_block_data *data)
6315 {
6316 int nsets = 0;
6317 int path_size = data->path_size;
6318 int path_entry;
6319
6320 /* Scan to end of each basic block in the path. */
6321 for (path_entry = 0; path_entry < path_size; path_entry++)
6322 {
6323 basic_block bb;
6324 rtx insn;
6325
6326 bb = data->path[path_entry].bb;
6327
6328 FOR_BB_INSNS (bb, insn)
6329 {
6330 if (!INSN_P (insn))
6331 continue;
6332
6333 /* A PARALLEL can have lots of SETs in it,
6334 especially if it is really an ASM_OPERANDS. */
6335 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6336 nsets += XVECLEN (PATTERN (insn), 0);
6337 else
6338 nsets += 1;
6339 }
6340 }
6341
6342 data->nsets = nsets;
6343 }
6344 \f
6345 /* Process a single extended basic block described by EBB_DATA. */
6346
6347 static void
6348 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6349 {
6350 int path_size = ebb_data->path_size;
6351 int path_entry;
6352 int num_insns = 0;
6353
6354 /* Allocate the space needed by qty_table. */
6355 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6356
6357 new_basic_block ();
6358 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6359 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6360 for (path_entry = 0; path_entry < path_size; path_entry++)
6361 {
6362 basic_block bb;
6363 rtx insn;
6364
6365 bb = ebb_data->path[path_entry].bb;
6366
6367 /* Invalidate recorded information for eh regs if there is an EH
6368 edge pointing to that bb. */
6369 if (bb_has_eh_pred (bb))
6370 {
6371 df_ref *def_rec;
6372
6373 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6374 {
6375 df_ref def = *def_rec;
6376 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6377 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6378 }
6379 }
6380
6381 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6382 FOR_BB_INSNS (bb, insn)
6383 {
6384 /* If we have processed 1,000 insns, flush the hash table to
6385 avoid extreme quadratic behavior. We must not include NOTEs
6386 in the count since there may be more of them when generating
6387 debugging information. If we clear the table at different
6388 times, code generated with -g -O might be different than code
6389 generated with -O but not -g.
6390
6391 FIXME: This is a real kludge and needs to be done some other
6392 way. */
6393 if (NONDEBUG_INSN_P (insn)
6394 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6395 {
6396 flush_hash_table ();
6397 num_insns = 0;
6398 }
6399
6400 if (INSN_P (insn))
6401 {
6402 /* Process notes first so we have all notes in canonical forms
6403 when looking for duplicate operations. */
6404 if (REG_NOTES (insn))
6405 {
6406 bool changed = false;
6407 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6408 NULL_RTX, &changed);
6409 if (changed)
6410 df_notes_rescan (insn);
6411 }
6412
6413 cse_insn (insn);
6414
6415 /* If we haven't already found an insn where we added a LABEL_REF,
6416 check this one. */
6417 if (INSN_P (insn) && !recorded_label_ref
6418 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6419 (void *) insn))
6420 recorded_label_ref = true;
6421
6422 #ifdef HAVE_cc0
6423 if (NONDEBUG_INSN_P (insn))
6424 {
6425 /* If the previous insn sets CC0 and this insn no
6426 longer references CC0, delete the previous insn.
6427 Here we use fact that nothing expects CC0 to be
6428 valid over an insn, which is true until the final
6429 pass. */
6430 rtx prev_insn, tem;
6431
6432 prev_insn = prev_nonnote_nondebug_insn (insn);
6433 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6434 && (tem = single_set (prev_insn)) != NULL_RTX
6435 && SET_DEST (tem) == cc0_rtx
6436 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6437 delete_insn (prev_insn);
6438
6439 /* If this insn is not the last insn in the basic
6440 block, it will be PREV_INSN(insn) in the next
6441 iteration. If we recorded any CC0-related
6442 information for this insn, remember it. */
6443 if (insn != BB_END (bb))
6444 {
6445 prev_insn_cc0 = this_insn_cc0;
6446 prev_insn_cc0_mode = this_insn_cc0_mode;
6447 }
6448 }
6449 #endif
6450 }
6451 }
6452
6453 /* With non-call exceptions, we are not always able to update
6454 the CFG properly inside cse_insn. So clean up possibly
6455 redundant EH edges here. */
6456 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6457 cse_cfg_altered |= purge_dead_edges (bb);
6458
6459 /* If we changed a conditional jump, we may have terminated
6460 the path we are following. Check that by verifying that
6461 the edge we would take still exists. If the edge does
6462 not exist anymore, purge the remainder of the path.
6463 Note that this will cause us to return to the caller. */
6464 if (path_entry < path_size - 1)
6465 {
6466 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6467 if (!find_edge (bb, next_bb))
6468 {
6469 do
6470 {
6471 path_size--;
6472
6473 /* If we truncate the path, we must also reset the
6474 visited bit on the remaining blocks in the path,
6475 or we will never visit them at all. */
6476 bitmap_clear_bit (cse_visited_basic_blocks,
6477 ebb_data->path[path_size].bb->index);
6478 ebb_data->path[path_size].bb = NULL;
6479 }
6480 while (path_size - 1 != path_entry);
6481 ebb_data->path_size = path_size;
6482 }
6483 }
6484
6485 /* If this is a conditional jump insn, record any known
6486 equivalences due to the condition being tested. */
6487 insn = BB_END (bb);
6488 if (path_entry < path_size - 1
6489 && JUMP_P (insn)
6490 && single_set (insn)
6491 && any_condjump_p (insn))
6492 {
6493 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6494 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6495 record_jump_equiv (insn, taken);
6496 }
6497
6498 #ifdef HAVE_cc0
6499 /* Clear the CC0-tracking related insns, they can't provide
6500 useful information across basic block boundaries. */
6501 prev_insn_cc0 = 0;
6502 #endif
6503 }
6504
6505 gcc_assert (next_qty <= max_qty);
6506
6507 free (qty_table);
6508 }
6509
6510 \f
6511 /* Perform cse on the instructions of a function.
6512 F is the first instruction.
6513 NREGS is one plus the highest pseudo-reg number used in the instruction.
6514
6515 Return 2 if jump optimizations should be redone due to simplifications
6516 in conditional jump instructions.
6517 Return 1 if the CFG should be cleaned up because it has been modified.
6518 Return 0 otherwise. */
6519
6520 static int
6521 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6522 {
6523 struct cse_basic_block_data ebb_data;
6524 basic_block bb;
6525 int *rc_order = XNEWVEC (int, last_basic_block);
6526 int i, n_blocks;
6527
6528 df_set_flags (DF_LR_RUN_DCE);
6529 df_note_add_problem ();
6530 df_analyze ();
6531 df_set_flags (DF_DEFER_INSN_RESCAN);
6532
6533 reg_scan (get_insns (), max_reg_num ());
6534 init_cse_reg_info (nregs);
6535
6536 ebb_data.path = XNEWVEC (struct branch_path,
6537 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6538
6539 cse_cfg_altered = false;
6540 cse_jumps_altered = false;
6541 recorded_label_ref = false;
6542 constant_pool_entries_cost = 0;
6543 constant_pool_entries_regcost = 0;
6544 ebb_data.path_size = 0;
6545 ebb_data.nsets = 0;
6546 rtl_hooks = cse_rtl_hooks;
6547
6548 init_recog ();
6549 init_alias_analysis ();
6550
6551 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6552
6553 /* Set up the table of already visited basic blocks. */
6554 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6555 bitmap_clear (cse_visited_basic_blocks);
6556
6557 /* Loop over basic blocks in reverse completion order (RPO),
6558 excluding the ENTRY and EXIT blocks. */
6559 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6560 i = 0;
6561 while (i < n_blocks)
6562 {
6563 /* Find the first block in the RPO queue that we have not yet
6564 processed before. */
6565 do
6566 {
6567 bb = BASIC_BLOCK (rc_order[i++]);
6568 }
6569 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6570 && i < n_blocks);
6571
6572 /* Find all paths starting with BB, and process them. */
6573 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6574 {
6575 /* Pre-scan the path. */
6576 cse_prescan_path (&ebb_data);
6577
6578 /* If this basic block has no sets, skip it. */
6579 if (ebb_data.nsets == 0)
6580 continue;
6581
6582 /* Get a reasonable estimate for the maximum number of qty's
6583 needed for this path. For this, we take the number of sets
6584 and multiply that by MAX_RECOG_OPERANDS. */
6585 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6586
6587 /* Dump the path we're about to process. */
6588 if (dump_file)
6589 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6590
6591 cse_extended_basic_block (&ebb_data);
6592 }
6593 }
6594
6595 /* Clean up. */
6596 end_alias_analysis ();
6597 free (reg_eqv_table);
6598 free (ebb_data.path);
6599 sbitmap_free (cse_visited_basic_blocks);
6600 free (rc_order);
6601 rtl_hooks = general_rtl_hooks;
6602
6603 if (cse_jumps_altered || recorded_label_ref)
6604 return 2;
6605 else if (cse_cfg_altered)
6606 return 1;
6607 else
6608 return 0;
6609 }
6610 \f
6611 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6612 which there isn't a REG_LABEL_OPERAND note.
6613 Return one if so. DATA is the insn. */
6614
6615 static int
6616 check_for_label_ref (rtx *rtl, void *data)
6617 {
6618 rtx insn = (rtx) data;
6619
6620 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6621 note for it, we must rerun jump since it needs to place the note. If
6622 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6623 don't do this since no REG_LABEL_OPERAND will be added. */
6624 return (GET_CODE (*rtl) == LABEL_REF
6625 && ! LABEL_REF_NONLOCAL_P (*rtl)
6626 && (!JUMP_P (insn)
6627 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6628 && LABEL_P (XEXP (*rtl, 0))
6629 && INSN_UID (XEXP (*rtl, 0)) != 0
6630 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6631 }
6632 \f
6633 /* Count the number of times registers are used (not set) in X.
6634 COUNTS is an array in which we accumulate the count, INCR is how much
6635 we count each register usage.
6636
6637 Don't count a usage of DEST, which is the SET_DEST of a SET which
6638 contains X in its SET_SRC. This is because such a SET does not
6639 modify the liveness of DEST.
6640 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6641 We must then count uses of a SET_DEST regardless, because the insn can't be
6642 deleted here. */
6643
6644 static void
6645 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6646 {
6647 enum rtx_code code;
6648 rtx note;
6649 const char *fmt;
6650 int i, j;
6651
6652 if (x == 0)
6653 return;
6654
6655 switch (code = GET_CODE (x))
6656 {
6657 case REG:
6658 if (x != dest)
6659 counts[REGNO (x)] += incr;
6660 return;
6661
6662 case PC:
6663 case CC0:
6664 case CONST:
6665 CASE_CONST_ANY:
6666 case SYMBOL_REF:
6667 case LABEL_REF:
6668 return;
6669
6670 case CLOBBER:
6671 /* If we are clobbering a MEM, mark any registers inside the address
6672 as being used. */
6673 if (MEM_P (XEXP (x, 0)))
6674 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6675 return;
6676
6677 case SET:
6678 /* Unless we are setting a REG, count everything in SET_DEST. */
6679 if (!REG_P (SET_DEST (x)))
6680 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6681 count_reg_usage (SET_SRC (x), counts,
6682 dest ? dest : SET_DEST (x),
6683 incr);
6684 return;
6685
6686 case DEBUG_INSN:
6687 return;
6688
6689 case CALL_INSN:
6690 case INSN:
6691 case JUMP_INSN:
6692 /* We expect dest to be NULL_RTX here. If the insn may throw,
6693 or if it cannot be deleted due to side-effects, mark this fact
6694 by setting DEST to pc_rtx. */
6695 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6696 || side_effects_p (PATTERN (x)))
6697 dest = pc_rtx;
6698 if (code == CALL_INSN)
6699 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6700 count_reg_usage (PATTERN (x), counts, dest, incr);
6701
6702 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6703 use them. */
6704
6705 note = find_reg_equal_equiv_note (x);
6706 if (note)
6707 {
6708 rtx eqv = XEXP (note, 0);
6709
6710 if (GET_CODE (eqv) == EXPR_LIST)
6711 /* This REG_EQUAL note describes the result of a function call.
6712 Process all the arguments. */
6713 do
6714 {
6715 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6716 eqv = XEXP (eqv, 1);
6717 }
6718 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6719 else
6720 count_reg_usage (eqv, counts, dest, incr);
6721 }
6722 return;
6723
6724 case EXPR_LIST:
6725 if (REG_NOTE_KIND (x) == REG_EQUAL
6726 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6727 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6728 involving registers in the address. */
6729 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6730 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6731
6732 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6733 return;
6734
6735 case ASM_OPERANDS:
6736 /* Iterate over just the inputs, not the constraints as well. */
6737 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6738 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6739 return;
6740
6741 case INSN_LIST:
6742 gcc_unreachable ();
6743
6744 default:
6745 break;
6746 }
6747
6748 fmt = GET_RTX_FORMAT (code);
6749 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6750 {
6751 if (fmt[i] == 'e')
6752 count_reg_usage (XEXP (x, i), counts, dest, incr);
6753 else if (fmt[i] == 'E')
6754 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6755 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6756 }
6757 }
6758 \f
6759 /* Return true if X is a dead register. */
6760
6761 static inline int
6762 is_dead_reg (rtx x, int *counts)
6763 {
6764 return (REG_P (x)
6765 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6766 && counts[REGNO (x)] == 0);
6767 }
6768
6769 /* Return true if set is live. */
6770 static bool
6771 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6772 int *counts)
6773 {
6774 #ifdef HAVE_cc0
6775 rtx tem;
6776 #endif
6777
6778 if (set_noop_p (set))
6779 ;
6780
6781 #ifdef HAVE_cc0
6782 else if (GET_CODE (SET_DEST (set)) == CC0
6783 && !side_effects_p (SET_SRC (set))
6784 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6785 || !INSN_P (tem)
6786 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6787 return false;
6788 #endif
6789 else if (!is_dead_reg (SET_DEST (set), counts)
6790 || side_effects_p (SET_SRC (set)))
6791 return true;
6792 return false;
6793 }
6794
6795 /* Return true if insn is live. */
6796
6797 static bool
6798 insn_live_p (rtx insn, int *counts)
6799 {
6800 int i;
6801 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6802 return true;
6803 else if (GET_CODE (PATTERN (insn)) == SET)
6804 return set_live_p (PATTERN (insn), insn, counts);
6805 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6806 {
6807 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6808 {
6809 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6810
6811 if (GET_CODE (elt) == SET)
6812 {
6813 if (set_live_p (elt, insn, counts))
6814 return true;
6815 }
6816 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6817 return true;
6818 }
6819 return false;
6820 }
6821 else if (DEBUG_INSN_P (insn))
6822 {
6823 rtx next;
6824
6825 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6826 if (NOTE_P (next))
6827 continue;
6828 else if (!DEBUG_INSN_P (next))
6829 return true;
6830 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6831 return false;
6832
6833 return true;
6834 }
6835 else
6836 return true;
6837 }
6838
6839 /* Count the number of stores into pseudo. Callback for note_stores. */
6840
6841 static void
6842 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6843 {
6844 int *counts = (int *) data;
6845 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6846 counts[REGNO (x)]++;
6847 }
6848
6849 struct dead_debug_insn_data
6850 {
6851 int *counts;
6852 rtx *replacements;
6853 bool seen_repl;
6854 };
6855
6856 /* Return if a DEBUG_INSN needs to be reset because some dead
6857 pseudo doesn't have a replacement. Callback for for_each_rtx. */
6858
6859 static int
6860 is_dead_debug_insn (rtx *loc, void *data)
6861 {
6862 rtx x = *loc;
6863 struct dead_debug_insn_data *ddid = (struct dead_debug_insn_data *) data;
6864
6865 if (is_dead_reg (x, ddid->counts))
6866 {
6867 if (ddid->replacements && ddid->replacements[REGNO (x)] != NULL_RTX)
6868 ddid->seen_repl = true;
6869 else
6870 return 1;
6871 }
6872 return 0;
6873 }
6874
6875 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6876 Callback for simplify_replace_fn_rtx. */
6877
6878 static rtx
6879 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6880 {
6881 rtx *replacements = (rtx *) data;
6882
6883 if (REG_P (x)
6884 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6885 && replacements[REGNO (x)] != NULL_RTX)
6886 {
6887 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6888 return replacements[REGNO (x)];
6889 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6890 GET_MODE (replacements[REGNO (x)]));
6891 }
6892 return NULL_RTX;
6893 }
6894
6895 /* Scan all the insns and delete any that are dead; i.e., they store a register
6896 that is never used or they copy a register to itself.
6897
6898 This is used to remove insns made obviously dead by cse, loop or other
6899 optimizations. It improves the heuristics in loop since it won't try to
6900 move dead invariants out of loops or make givs for dead quantities. The
6901 remaining passes of the compilation are also sped up. */
6902
6903 int
6904 delete_trivially_dead_insns (rtx insns, int nreg)
6905 {
6906 int *counts;
6907 rtx insn, prev;
6908 rtx *replacements = NULL;
6909 int ndead = 0;
6910
6911 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6912 /* First count the number of times each register is used. */
6913 if (MAY_HAVE_DEBUG_INSNS)
6914 {
6915 counts = XCNEWVEC (int, nreg * 3);
6916 for (insn = insns; insn; insn = NEXT_INSN (insn))
6917 if (DEBUG_INSN_P (insn))
6918 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6919 NULL_RTX, 1);
6920 else if (INSN_P (insn))
6921 {
6922 count_reg_usage (insn, counts, NULL_RTX, 1);
6923 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6924 }
6925 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6926 First one counts how many times each pseudo is used outside
6927 of debug insns, second counts how many times each pseudo is
6928 used in debug insns and third counts how many times a pseudo
6929 is stored. */
6930 }
6931 else
6932 {
6933 counts = XCNEWVEC (int, nreg);
6934 for (insn = insns; insn; insn = NEXT_INSN (insn))
6935 if (INSN_P (insn))
6936 count_reg_usage (insn, counts, NULL_RTX, 1);
6937 /* If no debug insns can be present, COUNTS is just an array
6938 which counts how many times each pseudo is used. */
6939 }
6940 /* Go from the last insn to the first and delete insns that only set unused
6941 registers or copy a register to itself. As we delete an insn, remove
6942 usage counts for registers it uses.
6943
6944 The first jump optimization pass may leave a real insn as the last
6945 insn in the function. We must not skip that insn or we may end
6946 up deleting code that is not really dead.
6947
6948 If some otherwise unused register is only used in DEBUG_INSNs,
6949 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
6950 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
6951 has been created for the unused register, replace it with
6952 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
6953 for (insn = get_last_insn (); insn; insn = prev)
6954 {
6955 int live_insn = 0;
6956
6957 prev = PREV_INSN (insn);
6958 if (!INSN_P (insn))
6959 continue;
6960
6961 live_insn = insn_live_p (insn, counts);
6962
6963 /* If this is a dead insn, delete it and show registers in it aren't
6964 being used. */
6965
6966 if (! live_insn && dbg_cnt (delete_trivial_dead))
6967 {
6968 if (DEBUG_INSN_P (insn))
6969 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6970 NULL_RTX, -1);
6971 else
6972 {
6973 rtx set;
6974 if (MAY_HAVE_DEBUG_INSNS
6975 && (set = single_set (insn)) != NULL_RTX
6976 && is_dead_reg (SET_DEST (set), counts)
6977 /* Used at least once in some DEBUG_INSN. */
6978 && counts[REGNO (SET_DEST (set)) + nreg] > 0
6979 /* And set exactly once. */
6980 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
6981 && !side_effects_p (SET_SRC (set))
6982 && asm_noperands (PATTERN (insn)) < 0)
6983 {
6984 rtx dval, bind;
6985
6986 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
6987 dval = make_debug_expr_from_rtl (SET_DEST (set));
6988
6989 /* Emit a debug bind insn before the insn in which
6990 reg dies. */
6991 bind = gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
6992 DEBUG_EXPR_TREE_DECL (dval),
6993 SET_SRC (set),
6994 VAR_INIT_STATUS_INITIALIZED);
6995 count_reg_usage (bind, counts + nreg, NULL_RTX, 1);
6996
6997 bind = emit_debug_insn_before (bind, insn);
6998 df_insn_rescan (bind);
6999
7000 if (replacements == NULL)
7001 replacements = XCNEWVEC (rtx, nreg);
7002 replacements[REGNO (SET_DEST (set))] = dval;
7003 }
7004
7005 count_reg_usage (insn, counts, NULL_RTX, -1);
7006 ndead++;
7007 }
7008 delete_insn_and_edges (insn);
7009 }
7010 }
7011
7012 if (MAY_HAVE_DEBUG_INSNS)
7013 {
7014 struct dead_debug_insn_data ddid;
7015 ddid.counts = counts;
7016 ddid.replacements = replacements;
7017 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7018 if (DEBUG_INSN_P (insn))
7019 {
7020 /* If this debug insn references a dead register that wasn't replaced
7021 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7022 ddid.seen_repl = false;
7023 if (for_each_rtx (&INSN_VAR_LOCATION_LOC (insn),
7024 is_dead_debug_insn, &ddid))
7025 {
7026 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7027 df_insn_rescan (insn);
7028 }
7029 else if (ddid.seen_repl)
7030 {
7031 INSN_VAR_LOCATION_LOC (insn)
7032 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7033 NULL_RTX, replace_dead_reg,
7034 replacements);
7035 df_insn_rescan (insn);
7036 }
7037 }
7038 free (replacements);
7039 }
7040
7041 if (dump_file && ndead)
7042 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7043 ndead);
7044 /* Clean up. */
7045 free (counts);
7046 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7047 return ndead;
7048 }
7049
7050 /* This function is called via for_each_rtx. The argument, NEWREG, is
7051 a condition code register with the desired mode. If we are looking
7052 at the same register in a different mode, replace it with
7053 NEWREG. */
7054
7055 static int
7056 cse_change_cc_mode (rtx *loc, void *data)
7057 {
7058 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7059
7060 if (*loc
7061 && REG_P (*loc)
7062 && REGNO (*loc) == REGNO (args->newreg)
7063 && GET_MODE (*loc) != GET_MODE (args->newreg))
7064 {
7065 validate_change (args->insn, loc, args->newreg, 1);
7066
7067 return -1;
7068 }
7069 return 0;
7070 }
7071
7072 /* Change the mode of any reference to the register REGNO (NEWREG) to
7073 GET_MODE (NEWREG) in INSN. */
7074
7075 static void
7076 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7077 {
7078 struct change_cc_mode_args args;
7079 int success;
7080
7081 if (!INSN_P (insn))
7082 return;
7083
7084 args.insn = insn;
7085 args.newreg = newreg;
7086
7087 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7088 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7089
7090 /* If the following assertion was triggered, there is most probably
7091 something wrong with the cc_modes_compatible back end function.
7092 CC modes only can be considered compatible if the insn - with the mode
7093 replaced by any of the compatible modes - can still be recognized. */
7094 success = apply_change_group ();
7095 gcc_assert (success);
7096 }
7097
7098 /* Change the mode of any reference to the register REGNO (NEWREG) to
7099 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7100 any instruction which modifies NEWREG. */
7101
7102 static void
7103 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7104 {
7105 rtx insn;
7106
7107 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7108 {
7109 if (! INSN_P (insn))
7110 continue;
7111
7112 if (reg_set_p (newreg, insn))
7113 return;
7114
7115 cse_change_cc_mode_insn (insn, newreg);
7116 }
7117 }
7118
7119 /* BB is a basic block which finishes with CC_REG as a condition code
7120 register which is set to CC_SRC. Look through the successors of BB
7121 to find blocks which have a single predecessor (i.e., this one),
7122 and look through those blocks for an assignment to CC_REG which is
7123 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7124 permitted to change the mode of CC_SRC to a compatible mode. This
7125 returns VOIDmode if no equivalent assignments were found.
7126 Otherwise it returns the mode which CC_SRC should wind up with.
7127 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7128 but is passed unmodified down to recursive calls in order to prevent
7129 endless recursion.
7130
7131 The main complexity in this function is handling the mode issues.
7132 We may have more than one duplicate which we can eliminate, and we
7133 try to find a mode which will work for multiple duplicates. */
7134
7135 static enum machine_mode
7136 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7137 bool can_change_mode)
7138 {
7139 bool found_equiv;
7140 enum machine_mode mode;
7141 unsigned int insn_count;
7142 edge e;
7143 rtx insns[2];
7144 enum machine_mode modes[2];
7145 rtx last_insns[2];
7146 unsigned int i;
7147 rtx newreg;
7148 edge_iterator ei;
7149
7150 /* We expect to have two successors. Look at both before picking
7151 the final mode for the comparison. If we have more successors
7152 (i.e., some sort of table jump, although that seems unlikely),
7153 then we require all beyond the first two to use the same
7154 mode. */
7155
7156 found_equiv = false;
7157 mode = GET_MODE (cc_src);
7158 insn_count = 0;
7159 FOR_EACH_EDGE (e, ei, bb->succs)
7160 {
7161 rtx insn;
7162 rtx end;
7163
7164 if (e->flags & EDGE_COMPLEX)
7165 continue;
7166
7167 if (EDGE_COUNT (e->dest->preds) != 1
7168 || e->dest == EXIT_BLOCK_PTR
7169 /* Avoid endless recursion on unreachable blocks. */
7170 || e->dest == orig_bb)
7171 continue;
7172
7173 end = NEXT_INSN (BB_END (e->dest));
7174 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7175 {
7176 rtx set;
7177
7178 if (! INSN_P (insn))
7179 continue;
7180
7181 /* If CC_SRC is modified, we have to stop looking for
7182 something which uses it. */
7183 if (modified_in_p (cc_src, insn))
7184 break;
7185
7186 /* Check whether INSN sets CC_REG to CC_SRC. */
7187 set = single_set (insn);
7188 if (set
7189 && REG_P (SET_DEST (set))
7190 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7191 {
7192 bool found;
7193 enum machine_mode set_mode;
7194 enum machine_mode comp_mode;
7195
7196 found = false;
7197 set_mode = GET_MODE (SET_SRC (set));
7198 comp_mode = set_mode;
7199 if (rtx_equal_p (cc_src, SET_SRC (set)))
7200 found = true;
7201 else if (GET_CODE (cc_src) == COMPARE
7202 && GET_CODE (SET_SRC (set)) == COMPARE
7203 && mode != set_mode
7204 && rtx_equal_p (XEXP (cc_src, 0),
7205 XEXP (SET_SRC (set), 0))
7206 && rtx_equal_p (XEXP (cc_src, 1),
7207 XEXP (SET_SRC (set), 1)))
7208
7209 {
7210 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7211 if (comp_mode != VOIDmode
7212 && (can_change_mode || comp_mode == mode))
7213 found = true;
7214 }
7215
7216 if (found)
7217 {
7218 found_equiv = true;
7219 if (insn_count < ARRAY_SIZE (insns))
7220 {
7221 insns[insn_count] = insn;
7222 modes[insn_count] = set_mode;
7223 last_insns[insn_count] = end;
7224 ++insn_count;
7225
7226 if (mode != comp_mode)
7227 {
7228 gcc_assert (can_change_mode);
7229 mode = comp_mode;
7230
7231 /* The modified insn will be re-recognized later. */
7232 PUT_MODE (cc_src, mode);
7233 }
7234 }
7235 else
7236 {
7237 if (set_mode != mode)
7238 {
7239 /* We found a matching expression in the
7240 wrong mode, but we don't have room to
7241 store it in the array. Punt. This case
7242 should be rare. */
7243 break;
7244 }
7245 /* INSN sets CC_REG to a value equal to CC_SRC
7246 with the right mode. We can simply delete
7247 it. */
7248 delete_insn (insn);
7249 }
7250
7251 /* We found an instruction to delete. Keep looking,
7252 in the hopes of finding a three-way jump. */
7253 continue;
7254 }
7255
7256 /* We found an instruction which sets the condition
7257 code, so don't look any farther. */
7258 break;
7259 }
7260
7261 /* If INSN sets CC_REG in some other way, don't look any
7262 farther. */
7263 if (reg_set_p (cc_reg, insn))
7264 break;
7265 }
7266
7267 /* If we fell off the bottom of the block, we can keep looking
7268 through successors. We pass CAN_CHANGE_MODE as false because
7269 we aren't prepared to handle compatibility between the
7270 further blocks and this block. */
7271 if (insn == end)
7272 {
7273 enum machine_mode submode;
7274
7275 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7276 if (submode != VOIDmode)
7277 {
7278 gcc_assert (submode == mode);
7279 found_equiv = true;
7280 can_change_mode = false;
7281 }
7282 }
7283 }
7284
7285 if (! found_equiv)
7286 return VOIDmode;
7287
7288 /* Now INSN_COUNT is the number of instructions we found which set
7289 CC_REG to a value equivalent to CC_SRC. The instructions are in
7290 INSNS. The modes used by those instructions are in MODES. */
7291
7292 newreg = NULL_RTX;
7293 for (i = 0; i < insn_count; ++i)
7294 {
7295 if (modes[i] != mode)
7296 {
7297 /* We need to change the mode of CC_REG in INSNS[i] and
7298 subsequent instructions. */
7299 if (! newreg)
7300 {
7301 if (GET_MODE (cc_reg) == mode)
7302 newreg = cc_reg;
7303 else
7304 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7305 }
7306 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7307 newreg);
7308 }
7309
7310 delete_insn_and_edges (insns[i]);
7311 }
7312
7313 return mode;
7314 }
7315
7316 /* If we have a fixed condition code register (or two), walk through
7317 the instructions and try to eliminate duplicate assignments. */
7318
7319 static void
7320 cse_condition_code_reg (void)
7321 {
7322 unsigned int cc_regno_1;
7323 unsigned int cc_regno_2;
7324 rtx cc_reg_1;
7325 rtx cc_reg_2;
7326 basic_block bb;
7327
7328 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7329 return;
7330
7331 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7332 if (cc_regno_2 != INVALID_REGNUM)
7333 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7334 else
7335 cc_reg_2 = NULL_RTX;
7336
7337 FOR_EACH_BB (bb)
7338 {
7339 rtx last_insn;
7340 rtx cc_reg;
7341 rtx insn;
7342 rtx cc_src_insn;
7343 rtx cc_src;
7344 enum machine_mode mode;
7345 enum machine_mode orig_mode;
7346
7347 /* Look for blocks which end with a conditional jump based on a
7348 condition code register. Then look for the instruction which
7349 sets the condition code register. Then look through the
7350 successor blocks for instructions which set the condition
7351 code register to the same value. There are other possible
7352 uses of the condition code register, but these are by far the
7353 most common and the ones which we are most likely to be able
7354 to optimize. */
7355
7356 last_insn = BB_END (bb);
7357 if (!JUMP_P (last_insn))
7358 continue;
7359
7360 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7361 cc_reg = cc_reg_1;
7362 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7363 cc_reg = cc_reg_2;
7364 else
7365 continue;
7366
7367 cc_src_insn = NULL_RTX;
7368 cc_src = NULL_RTX;
7369 for (insn = PREV_INSN (last_insn);
7370 insn && insn != PREV_INSN (BB_HEAD (bb));
7371 insn = PREV_INSN (insn))
7372 {
7373 rtx set;
7374
7375 if (! INSN_P (insn))
7376 continue;
7377 set = single_set (insn);
7378 if (set
7379 && REG_P (SET_DEST (set))
7380 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7381 {
7382 cc_src_insn = insn;
7383 cc_src = SET_SRC (set);
7384 break;
7385 }
7386 else if (reg_set_p (cc_reg, insn))
7387 break;
7388 }
7389
7390 if (! cc_src_insn)
7391 continue;
7392
7393 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7394 continue;
7395
7396 /* Now CC_REG is a condition code register used for a
7397 conditional jump at the end of the block, and CC_SRC, in
7398 CC_SRC_INSN, is the value to which that condition code
7399 register is set, and CC_SRC is still meaningful at the end of
7400 the basic block. */
7401
7402 orig_mode = GET_MODE (cc_src);
7403 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7404 if (mode != VOIDmode)
7405 {
7406 gcc_assert (mode == GET_MODE (cc_src));
7407 if (mode != orig_mode)
7408 {
7409 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7410
7411 cse_change_cc_mode_insn (cc_src_insn, newreg);
7412
7413 /* Do the same in the following insns that use the
7414 current value of CC_REG within BB. */
7415 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7416 NEXT_INSN (last_insn),
7417 newreg);
7418 }
7419 }
7420 }
7421 }
7422 \f
7423
7424 /* Perform common subexpression elimination. Nonzero value from
7425 `cse_main' means that jumps were simplified and some code may now
7426 be unreachable, so do jump optimization again. */
7427 static bool
7428 gate_handle_cse (void)
7429 {
7430 return optimize > 0;
7431 }
7432
7433 static unsigned int
7434 rest_of_handle_cse (void)
7435 {
7436 int tem;
7437
7438 if (dump_file)
7439 dump_flow_info (dump_file, dump_flags);
7440
7441 tem = cse_main (get_insns (), max_reg_num ());
7442
7443 /* If we are not running more CSE passes, then we are no longer
7444 expecting CSE to be run. But always rerun it in a cheap mode. */
7445 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7446
7447 if (tem == 2)
7448 {
7449 timevar_push (TV_JUMP);
7450 rebuild_jump_labels (get_insns ());
7451 cleanup_cfg (CLEANUP_CFG_CHANGED);
7452 timevar_pop (TV_JUMP);
7453 }
7454 else if (tem == 1 || optimize > 1)
7455 cleanup_cfg (0);
7456
7457 return 0;
7458 }
7459
7460 namespace {
7461
7462 const pass_data pass_data_cse =
7463 {
7464 RTL_PASS, /* type */
7465 "cse1", /* name */
7466 OPTGROUP_NONE, /* optinfo_flags */
7467 true, /* has_gate */
7468 true, /* has_execute */
7469 TV_CSE, /* tv_id */
7470 0, /* properties_required */
7471 0, /* properties_provided */
7472 0, /* properties_destroyed */
7473 0, /* todo_flags_start */
7474 ( TODO_df_finish | TODO_verify_rtl_sharing
7475 | TODO_verify_flow ), /* todo_flags_finish */
7476 };
7477
7478 class pass_cse : public rtl_opt_pass
7479 {
7480 public:
7481 pass_cse(gcc::context *ctxt)
7482 : rtl_opt_pass(pass_data_cse, ctxt)
7483 {}
7484
7485 /* opt_pass methods: */
7486 bool gate () { return gate_handle_cse (); }
7487 unsigned int execute () { return rest_of_handle_cse (); }
7488
7489 }; // class pass_cse
7490
7491 } // anon namespace
7492
7493 rtl_opt_pass *
7494 make_pass_cse (gcc::context *ctxt)
7495 {
7496 return new pass_cse (ctxt);
7497 }
7498
7499
7500 static bool
7501 gate_handle_cse2 (void)
7502 {
7503 return optimize > 0 && flag_rerun_cse_after_loop;
7504 }
7505
7506 /* Run second CSE pass after loop optimizations. */
7507 static unsigned int
7508 rest_of_handle_cse2 (void)
7509 {
7510 int tem;
7511
7512 if (dump_file)
7513 dump_flow_info (dump_file, dump_flags);
7514
7515 tem = cse_main (get_insns (), max_reg_num ());
7516
7517 /* Run a pass to eliminate duplicated assignments to condition code
7518 registers. We have to run this after bypass_jumps, because it
7519 makes it harder for that pass to determine whether a jump can be
7520 bypassed safely. */
7521 cse_condition_code_reg ();
7522
7523 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7524
7525 if (tem == 2)
7526 {
7527 timevar_push (TV_JUMP);
7528 rebuild_jump_labels (get_insns ());
7529 cleanup_cfg (CLEANUP_CFG_CHANGED);
7530 timevar_pop (TV_JUMP);
7531 }
7532 else if (tem == 1)
7533 cleanup_cfg (0);
7534
7535 cse_not_expected = 1;
7536 return 0;
7537 }
7538
7539
7540 namespace {
7541
7542 const pass_data pass_data_cse2 =
7543 {
7544 RTL_PASS, /* type */
7545 "cse2", /* name */
7546 OPTGROUP_NONE, /* optinfo_flags */
7547 true, /* has_gate */
7548 true, /* has_execute */
7549 TV_CSE2, /* tv_id */
7550 0, /* properties_required */
7551 0, /* properties_provided */
7552 0, /* properties_destroyed */
7553 0, /* todo_flags_start */
7554 ( TODO_df_finish | TODO_verify_rtl_sharing
7555 | TODO_verify_flow ), /* todo_flags_finish */
7556 };
7557
7558 class pass_cse2 : public rtl_opt_pass
7559 {
7560 public:
7561 pass_cse2(gcc::context *ctxt)
7562 : rtl_opt_pass(pass_data_cse2, ctxt)
7563 {}
7564
7565 /* opt_pass methods: */
7566 bool gate () { return gate_handle_cse2 (); }
7567 unsigned int execute () { return rest_of_handle_cse2 (); }
7568
7569 }; // class pass_cse2
7570
7571 } // anon namespace
7572
7573 rtl_opt_pass *
7574 make_pass_cse2 (gcc::context *ctxt)
7575 {
7576 return new pass_cse2 (ctxt);
7577 }
7578
7579 static bool
7580 gate_handle_cse_after_global_opts (void)
7581 {
7582 return optimize > 0 && flag_rerun_cse_after_global_opts;
7583 }
7584
7585 /* Run second CSE pass after loop optimizations. */
7586 static unsigned int
7587 rest_of_handle_cse_after_global_opts (void)
7588 {
7589 int save_cfj;
7590 int tem;
7591
7592 /* We only want to do local CSE, so don't follow jumps. */
7593 save_cfj = flag_cse_follow_jumps;
7594 flag_cse_follow_jumps = 0;
7595
7596 rebuild_jump_labels (get_insns ());
7597 tem = cse_main (get_insns (), max_reg_num ());
7598 purge_all_dead_edges ();
7599 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7600
7601 cse_not_expected = !flag_rerun_cse_after_loop;
7602
7603 /* If cse altered any jumps, rerun jump opts to clean things up. */
7604 if (tem == 2)
7605 {
7606 timevar_push (TV_JUMP);
7607 rebuild_jump_labels (get_insns ());
7608 cleanup_cfg (CLEANUP_CFG_CHANGED);
7609 timevar_pop (TV_JUMP);
7610 }
7611 else if (tem == 1)
7612 cleanup_cfg (0);
7613
7614 flag_cse_follow_jumps = save_cfj;
7615 return 0;
7616 }
7617
7618 namespace {
7619
7620 const pass_data pass_data_cse_after_global_opts =
7621 {
7622 RTL_PASS, /* type */
7623 "cse_local", /* name */
7624 OPTGROUP_NONE, /* optinfo_flags */
7625 true, /* has_gate */
7626 true, /* has_execute */
7627 TV_CSE, /* tv_id */
7628 0, /* properties_required */
7629 0, /* properties_provided */
7630 0, /* properties_destroyed */
7631 0, /* todo_flags_start */
7632 ( TODO_df_finish | TODO_verify_rtl_sharing
7633 | TODO_verify_flow ), /* todo_flags_finish */
7634 };
7635
7636 class pass_cse_after_global_opts : public rtl_opt_pass
7637 {
7638 public:
7639 pass_cse_after_global_opts(gcc::context *ctxt)
7640 : rtl_opt_pass(pass_data_cse_after_global_opts, ctxt)
7641 {}
7642
7643 /* opt_pass methods: */
7644 bool gate () { return gate_handle_cse_after_global_opts (); }
7645 unsigned int execute () {
7646 return rest_of_handle_cse_after_global_opts ();
7647 }
7648
7649 }; // class pass_cse_after_global_opts
7650
7651 } // anon namespace
7652
7653 rtl_opt_pass *
7654 make_pass_cse_after_global_opts (gcc::context *ctxt)
7655 {
7656 return new pass_cse_after_global_opts (ctxt);
7657 }