]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cse.c
target.def (rtx_costs): Remove "code" param, add "mode".
[thirdparty/gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "df.h"
27 #include "tm_p.h"
28 #include "regs.h"
29 #include "cfgrtl.h"
30 #include "cfganal.h"
31 #include "cfgcleanup.h"
32 #include "flags.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "alias.h"
36 #include "expmed.h"
37 #include "dojump.h"
38 #include "explow.h"
39 #include "calls.h"
40 #include "emit-rtl.h"
41 #include "varasm.h"
42 #include "stmt.h"
43 #include "expr.h"
44 #include "diagnostic-core.h"
45 #include "toplev.h"
46 #include "except.h"
47 #include "target.h"
48 #include "params.h"
49 #include "rtlhooks-def.h"
50 #include "tree-pass.h"
51 #include "dbgcnt.h"
52 #include "rtl-iter.h"
53
54 /* The basic idea of common subexpression elimination is to go
55 through the code, keeping a record of expressions that would
56 have the same value at the current scan point, and replacing
57 expressions encountered with the cheapest equivalent expression.
58
59 It is too complicated to keep track of the different possibilities
60 when control paths merge in this code; so, at each label, we forget all
61 that is known and start fresh. This can be described as processing each
62 extended basic block separately. We have a separate pass to perform
63 global CSE.
64
65 Note CSE can turn a conditional or computed jump into a nop or
66 an unconditional jump. When this occurs we arrange to run the jump
67 optimizer after CSE to delete the unreachable code.
68
69 We use two data structures to record the equivalent expressions:
70 a hash table for most expressions, and a vector of "quantity
71 numbers" to record equivalent (pseudo) registers.
72
73 The use of the special data structure for registers is desirable
74 because it is faster. It is possible because registers references
75 contain a fairly small number, the register number, taken from
76 a contiguously allocated series, and two register references are
77 identical if they have the same number. General expressions
78 do not have any such thing, so the only way to retrieve the
79 information recorded on an expression other than a register
80 is to keep it in a hash table.
81
82 Registers and "quantity numbers":
83
84 At the start of each basic block, all of the (hardware and pseudo)
85 registers used in the function are given distinct quantity
86 numbers to indicate their contents. During scan, when the code
87 copies one register into another, we copy the quantity number.
88 When a register is loaded in any other way, we allocate a new
89 quantity number to describe the value generated by this operation.
90 `REG_QTY (N)' records what quantity register N is currently thought
91 of as containing.
92
93 All real quantity numbers are greater than or equal to zero.
94 If register N has not been assigned a quantity, `REG_QTY (N)' will
95 equal -N - 1, which is always negative.
96
97 Quantity numbers below zero do not exist and none of the `qty_table'
98 entries should be referenced with a negative index.
99
100 We also maintain a bidirectional chain of registers for each
101 quantity number. The `qty_table` members `first_reg' and `last_reg',
102 and `reg_eqv_table' members `next' and `prev' hold these chains.
103
104 The first register in a chain is the one whose lifespan is least local.
105 Among equals, it is the one that was seen first.
106 We replace any equivalent register with that one.
107
108 If two registers have the same quantity number, it must be true that
109 REG expressions with qty_table `mode' must be in the hash table for both
110 registers and must be in the same class.
111
112 The converse is not true. Since hard registers may be referenced in
113 any mode, two REG expressions might be equivalent in the hash table
114 but not have the same quantity number if the quantity number of one
115 of the registers is not the same mode as those expressions.
116
117 Constants and quantity numbers
118
119 When a quantity has a known constant value, that value is stored
120 in the appropriate qty_table `const_rtx'. This is in addition to
121 putting the constant in the hash table as is usual for non-regs.
122
123 Whether a reg or a constant is preferred is determined by the configuration
124 macro CONST_COSTS and will often depend on the constant value. In any
125 event, expressions containing constants can be simplified, by fold_rtx.
126
127 When a quantity has a known nearly constant value (such as an address
128 of a stack slot), that value is stored in the appropriate qty_table
129 `const_rtx'.
130
131 Integer constants don't have a machine mode. However, cse
132 determines the intended machine mode from the destination
133 of the instruction that moves the constant. The machine mode
134 is recorded in the hash table along with the actual RTL
135 constant expression so that different modes are kept separate.
136
137 Other expressions:
138
139 To record known equivalences among expressions in general
140 we use a hash table called `table'. It has a fixed number of buckets
141 that contain chains of `struct table_elt' elements for expressions.
142 These chains connect the elements whose expressions have the same
143 hash codes.
144
145 Other chains through the same elements connect the elements which
146 currently have equivalent values.
147
148 Register references in an expression are canonicalized before hashing
149 the expression. This is done using `reg_qty' and qty_table `first_reg'.
150 The hash code of a register reference is computed using the quantity
151 number, not the register number.
152
153 When the value of an expression changes, it is necessary to remove from the
154 hash table not just that expression but all expressions whose values
155 could be different as a result.
156
157 1. If the value changing is in memory, except in special cases
158 ANYTHING referring to memory could be changed. That is because
159 nobody knows where a pointer does not point.
160 The function `invalidate_memory' removes what is necessary.
161
162 The special cases are when the address is constant or is
163 a constant plus a fixed register such as the frame pointer
164 or a static chain pointer. When such addresses are stored in,
165 we can tell exactly which other such addresses must be invalidated
166 due to overlap. `invalidate' does this.
167 All expressions that refer to non-constant
168 memory addresses are also invalidated. `invalidate_memory' does this.
169
170 2. If the value changing is a register, all expressions
171 containing references to that register, and only those,
172 must be removed.
173
174 Because searching the entire hash table for expressions that contain
175 a register is very slow, we try to figure out when it isn't necessary.
176 Precisely, this is necessary only when expressions have been
177 entered in the hash table using this register, and then the value has
178 changed, and then another expression wants to be added to refer to
179 the register's new value. This sequence of circumstances is rare
180 within any one basic block.
181
182 `REG_TICK' and `REG_IN_TABLE', accessors for members of
183 cse_reg_info, are used to detect this case. REG_TICK (i) is
184 incremented whenever a value is stored in register i.
185 REG_IN_TABLE (i) holds -1 if no references to register i have been
186 entered in the table; otherwise, it contains the value REG_TICK (i)
187 had when the references were entered. If we want to enter a
188 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
189 remove old references. Until we want to enter a new entry, the
190 mere fact that the two vectors don't match makes the entries be
191 ignored if anyone tries to match them.
192
193 Registers themselves are entered in the hash table as well as in
194 the equivalent-register chains. However, `REG_TICK' and
195 `REG_IN_TABLE' do not apply to expressions which are simple
196 register references. These expressions are removed from the table
197 immediately when they become invalid, and this can be done even if
198 we do not immediately search for all the expressions that refer to
199 the register.
200
201 A CLOBBER rtx in an instruction invalidates its operand for further
202 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
203 invalidates everything that resides in memory.
204
205 Related expressions:
206
207 Constant expressions that differ only by an additive integer
208 are called related. When a constant expression is put in
209 the table, the related expression with no constant term
210 is also entered. These are made to point at each other
211 so that it is possible to find out if there exists any
212 register equivalent to an expression related to a given expression. */
213
214 /* Length of qty_table vector. We know in advance we will not need
215 a quantity number this big. */
216
217 static int max_qty;
218
219 /* Next quantity number to be allocated.
220 This is 1 + the largest number needed so far. */
221
222 static int next_qty;
223
224 /* Per-qty information tracking.
225
226 `first_reg' and `last_reg' track the head and tail of the
227 chain of registers which currently contain this quantity.
228
229 `mode' contains the machine mode of this quantity.
230
231 `const_rtx' holds the rtx of the constant value of this
232 quantity, if known. A summations of the frame/arg pointer
233 and a constant can also be entered here. When this holds
234 a known value, `const_insn' is the insn which stored the
235 constant value.
236
237 `comparison_{code,const,qty}' are used to track when a
238 comparison between a quantity and some constant or register has
239 been passed. In such a case, we know the results of the comparison
240 in case we see it again. These members record a comparison that
241 is known to be true. `comparison_code' holds the rtx code of such
242 a comparison, else it is set to UNKNOWN and the other two
243 comparison members are undefined. `comparison_const' holds
244 the constant being compared against, or zero if the comparison
245 is not against a constant. `comparison_qty' holds the quantity
246 being compared against when the result is known. If the comparison
247 is not with a register, `comparison_qty' is -1. */
248
249 struct qty_table_elem
250 {
251 rtx const_rtx;
252 rtx_insn *const_insn;
253 rtx comparison_const;
254 int comparison_qty;
255 unsigned int first_reg, last_reg;
256 /* The sizes of these fields should match the sizes of the
257 code and mode fields of struct rtx_def (see rtl.h). */
258 ENUM_BITFIELD(rtx_code) comparison_code : 16;
259 ENUM_BITFIELD(machine_mode) mode : 8;
260 };
261
262 /* The table of all qtys, indexed by qty number. */
263 static struct qty_table_elem *qty_table;
264
265 /* For machines that have a CC0, we do not record its value in the hash
266 table since its use is guaranteed to be the insn immediately following
267 its definition and any other insn is presumed to invalidate it.
268
269 Instead, we store below the current and last value assigned to CC0.
270 If it should happen to be a constant, it is stored in preference
271 to the actual assigned value. In case it is a constant, we store
272 the mode in which the constant should be interpreted. */
273
274 static rtx this_insn_cc0, prev_insn_cc0;
275 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
276
277 /* Insn being scanned. */
278
279 static rtx_insn *this_insn;
280 static bool optimize_this_for_speed_p;
281
282 /* Index by register number, gives the number of the next (or
283 previous) register in the chain of registers sharing the same
284 value.
285
286 Or -1 if this register is at the end of the chain.
287
288 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
289
290 /* Per-register equivalence chain. */
291 struct reg_eqv_elem
292 {
293 int next, prev;
294 };
295
296 /* The table of all register equivalence chains. */
297 static struct reg_eqv_elem *reg_eqv_table;
298
299 struct cse_reg_info
300 {
301 /* The timestamp at which this register is initialized. */
302 unsigned int timestamp;
303
304 /* The quantity number of the register's current contents. */
305 int reg_qty;
306
307 /* The number of times the register has been altered in the current
308 basic block. */
309 int reg_tick;
310
311 /* The REG_TICK value at which rtx's containing this register are
312 valid in the hash table. If this does not equal the current
313 reg_tick value, such expressions existing in the hash table are
314 invalid. */
315 int reg_in_table;
316
317 /* The SUBREG that was set when REG_TICK was last incremented. Set
318 to -1 if the last store was to the whole register, not a subreg. */
319 unsigned int subreg_ticked;
320 };
321
322 /* A table of cse_reg_info indexed by register numbers. */
323 static struct cse_reg_info *cse_reg_info_table;
324
325 /* The size of the above table. */
326 static unsigned int cse_reg_info_table_size;
327
328 /* The index of the first entry that has not been initialized. */
329 static unsigned int cse_reg_info_table_first_uninitialized;
330
331 /* The timestamp at the beginning of the current run of
332 cse_extended_basic_block. We increment this variable at the beginning of
333 the current run of cse_extended_basic_block. The timestamp field of a
334 cse_reg_info entry matches the value of this variable if and only
335 if the entry has been initialized during the current run of
336 cse_extended_basic_block. */
337 static unsigned int cse_reg_info_timestamp;
338
339 /* A HARD_REG_SET containing all the hard registers for which there is
340 currently a REG expression in the hash table. Note the difference
341 from the above variables, which indicate if the REG is mentioned in some
342 expression in the table. */
343
344 static HARD_REG_SET hard_regs_in_table;
345
346 /* True if CSE has altered the CFG. */
347 static bool cse_cfg_altered;
348
349 /* True if CSE has altered conditional jump insns in such a way
350 that jump optimization should be redone. */
351 static bool cse_jumps_altered;
352
353 /* True if we put a LABEL_REF into the hash table for an INSN
354 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
355 to put in the note. */
356 static bool recorded_label_ref;
357
358 /* canon_hash stores 1 in do_not_record
359 if it notices a reference to CC0, PC, or some other volatile
360 subexpression. */
361
362 static int do_not_record;
363
364 /* canon_hash stores 1 in hash_arg_in_memory
365 if it notices a reference to memory within the expression being hashed. */
366
367 static int hash_arg_in_memory;
368
369 /* The hash table contains buckets which are chains of `struct table_elt's,
370 each recording one expression's information.
371 That expression is in the `exp' field.
372
373 The canon_exp field contains a canonical (from the point of view of
374 alias analysis) version of the `exp' field.
375
376 Those elements with the same hash code are chained in both directions
377 through the `next_same_hash' and `prev_same_hash' fields.
378
379 Each set of expressions with equivalent values
380 are on a two-way chain through the `next_same_value'
381 and `prev_same_value' fields, and all point with
382 the `first_same_value' field at the first element in
383 that chain. The chain is in order of increasing cost.
384 Each element's cost value is in its `cost' field.
385
386 The `in_memory' field is nonzero for elements that
387 involve any reference to memory. These elements are removed
388 whenever a write is done to an unidentified location in memory.
389 To be safe, we assume that a memory address is unidentified unless
390 the address is either a symbol constant or a constant plus
391 the frame pointer or argument pointer.
392
393 The `related_value' field is used to connect related expressions
394 (that differ by adding an integer).
395 The related expressions are chained in a circular fashion.
396 `related_value' is zero for expressions for which this
397 chain is not useful.
398
399 The `cost' field stores the cost of this element's expression.
400 The `regcost' field stores the value returned by approx_reg_cost for
401 this element's expression.
402
403 The `is_const' flag is set if the element is a constant (including
404 a fixed address).
405
406 The `flag' field is used as a temporary during some search routines.
407
408 The `mode' field is usually the same as GET_MODE (`exp'), but
409 if `exp' is a CONST_INT and has no machine mode then the `mode'
410 field is the mode it was being used as. Each constant is
411 recorded separately for each mode it is used with. */
412
413 struct table_elt
414 {
415 rtx exp;
416 rtx canon_exp;
417 struct table_elt *next_same_hash;
418 struct table_elt *prev_same_hash;
419 struct table_elt *next_same_value;
420 struct table_elt *prev_same_value;
421 struct table_elt *first_same_value;
422 struct table_elt *related_value;
423 int cost;
424 int regcost;
425 /* The size of this field should match the size
426 of the mode field of struct rtx_def (see rtl.h). */
427 ENUM_BITFIELD(machine_mode) mode : 8;
428 char in_memory;
429 char is_const;
430 char flag;
431 };
432
433 /* We don't want a lot of buckets, because we rarely have very many
434 things stored in the hash table, and a lot of buckets slows
435 down a lot of loops that happen frequently. */
436 #define HASH_SHIFT 5
437 #define HASH_SIZE (1 << HASH_SHIFT)
438 #define HASH_MASK (HASH_SIZE - 1)
439
440 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
441 register (hard registers may require `do_not_record' to be set). */
442
443 #define HASH(X, M) \
444 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
445 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
446 : canon_hash (X, M)) & HASH_MASK)
447
448 /* Like HASH, but without side-effects. */
449 #define SAFE_HASH(X, M) \
450 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
451 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
452 : safe_hash (X, M)) & HASH_MASK)
453
454 /* Determine whether register number N is considered a fixed register for the
455 purpose of approximating register costs.
456 It is desirable to replace other regs with fixed regs, to reduce need for
457 non-fixed hard regs.
458 A reg wins if it is either the frame pointer or designated as fixed. */
459 #define FIXED_REGNO_P(N) \
460 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
461 || fixed_regs[N] || global_regs[N])
462
463 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
464 hard registers and pointers into the frame are the cheapest with a cost
465 of 0. Next come pseudos with a cost of one and other hard registers with
466 a cost of 2. Aside from these special cases, call `rtx_cost'. */
467
468 #define CHEAP_REGNO(N) \
469 (REGNO_PTR_FRAME_P (N) \
470 || (HARD_REGISTER_NUM_P (N) \
471 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
472
473 #define COST(X, MODE) \
474 (REG_P (X) ? 0 : notreg_cost (X, MODE, SET, 1))
475 #define COST_IN(X, MODE, OUTER, OPNO) \
476 (REG_P (X) ? 0 : notreg_cost (X, MODE, OUTER, OPNO))
477
478 /* Get the number of times this register has been updated in this
479 basic block. */
480
481 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
482
483 /* Get the point at which REG was recorded in the table. */
484
485 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
486
487 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
488 SUBREG). */
489
490 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
491
492 /* Get the quantity number for REG. */
493
494 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
495
496 /* Determine if the quantity number for register X represents a valid index
497 into the qty_table. */
498
499 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
500
501 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
502
503 #define CHEAPER(X, Y) \
504 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
505
506 static struct table_elt *table[HASH_SIZE];
507
508 /* Chain of `struct table_elt's made so far for this function
509 but currently removed from the table. */
510
511 static struct table_elt *free_element_chain;
512
513 /* Set to the cost of a constant pool reference if one was found for a
514 symbolic constant. If this was found, it means we should try to
515 convert constants into constant pool entries if they don't fit in
516 the insn. */
517
518 static int constant_pool_entries_cost;
519 static int constant_pool_entries_regcost;
520
521 /* Trace a patch through the CFG. */
522
523 struct branch_path
524 {
525 /* The basic block for this path entry. */
526 basic_block bb;
527 };
528
529 /* This data describes a block that will be processed by
530 cse_extended_basic_block. */
531
532 struct cse_basic_block_data
533 {
534 /* Total number of SETs in block. */
535 int nsets;
536 /* Size of current branch path, if any. */
537 int path_size;
538 /* Current path, indicating which basic_blocks will be processed. */
539 struct branch_path *path;
540 };
541
542
543 /* Pointers to the live in/live out bitmaps for the boundaries of the
544 current EBB. */
545 static bitmap cse_ebb_live_in, cse_ebb_live_out;
546
547 /* A simple bitmap to track which basic blocks have been visited
548 already as part of an already processed extended basic block. */
549 static sbitmap cse_visited_basic_blocks;
550
551 static bool fixed_base_plus_p (rtx x);
552 static int notreg_cost (rtx, machine_mode, enum rtx_code, int);
553 static int preferable (int, int, int, int);
554 static void new_basic_block (void);
555 static void make_new_qty (unsigned int, machine_mode);
556 static void make_regs_eqv (unsigned int, unsigned int);
557 static void delete_reg_equiv (unsigned int);
558 static int mention_regs (rtx);
559 static int insert_regs (rtx, struct table_elt *, int);
560 static void remove_from_table (struct table_elt *, unsigned);
561 static void remove_pseudo_from_table (rtx, unsigned);
562 static struct table_elt *lookup (rtx, unsigned, machine_mode);
563 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
564 static rtx lookup_as_function (rtx, enum rtx_code);
565 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
566 machine_mode, int, int);
567 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
568 machine_mode);
569 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
570 static void invalidate (rtx, machine_mode);
571 static void remove_invalid_refs (unsigned int);
572 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
573 machine_mode);
574 static void rehash_using_reg (rtx);
575 static void invalidate_memory (void);
576 static void invalidate_for_call (void);
577 static rtx use_related_value (rtx, struct table_elt *);
578
579 static inline unsigned canon_hash (rtx, machine_mode);
580 static inline unsigned safe_hash (rtx, machine_mode);
581 static inline unsigned hash_rtx_string (const char *);
582
583 static rtx canon_reg (rtx, rtx_insn *);
584 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
585 machine_mode *,
586 machine_mode *);
587 static rtx fold_rtx (rtx, rtx_insn *);
588 static rtx equiv_constant (rtx);
589 static void record_jump_equiv (rtx_insn *, bool);
590 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
591 int);
592 static void cse_insn (rtx_insn *);
593 static void cse_prescan_path (struct cse_basic_block_data *);
594 static void invalidate_from_clobbers (rtx_insn *);
595 static void invalidate_from_sets_and_clobbers (rtx_insn *);
596 static rtx cse_process_notes (rtx, rtx, bool *);
597 static void cse_extended_basic_block (struct cse_basic_block_data *);
598 extern void dump_class (struct table_elt*);
599 static void get_cse_reg_info_1 (unsigned int regno);
600 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
601
602 static void flush_hash_table (void);
603 static bool insn_live_p (rtx_insn *, int *);
604 static bool set_live_p (rtx, rtx_insn *, int *);
605 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
606 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
607 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
608 bool);
609 \f
610
611 #undef RTL_HOOKS_GEN_LOWPART
612 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
613
614 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
615 \f
616 /* Nonzero if X has the form (PLUS frame-pointer integer). */
617
618 static bool
619 fixed_base_plus_p (rtx x)
620 {
621 switch (GET_CODE (x))
622 {
623 case REG:
624 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
625 return true;
626 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
627 return true;
628 return false;
629
630 case PLUS:
631 if (!CONST_INT_P (XEXP (x, 1)))
632 return false;
633 return fixed_base_plus_p (XEXP (x, 0));
634
635 default:
636 return false;
637 }
638 }
639
640 /* Dump the expressions in the equivalence class indicated by CLASSP.
641 This function is used only for debugging. */
642 DEBUG_FUNCTION void
643 dump_class (struct table_elt *classp)
644 {
645 struct table_elt *elt;
646
647 fprintf (stderr, "Equivalence chain for ");
648 print_rtl (stderr, classp->exp);
649 fprintf (stderr, ": \n");
650
651 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
652 {
653 print_rtl (stderr, elt->exp);
654 fprintf (stderr, "\n");
655 }
656 }
657
658 /* Return an estimate of the cost of the registers used in an rtx.
659 This is mostly the number of different REG expressions in the rtx;
660 however for some exceptions like fixed registers we use a cost of
661 0. If any other hard register reference occurs, return MAX_COST. */
662
663 static int
664 approx_reg_cost (const_rtx x)
665 {
666 int cost = 0;
667 subrtx_iterator::array_type array;
668 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
669 {
670 const_rtx x = *iter;
671 if (REG_P (x))
672 {
673 unsigned int regno = REGNO (x);
674 if (!CHEAP_REGNO (regno))
675 {
676 if (regno < FIRST_PSEUDO_REGISTER)
677 {
678 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
679 return MAX_COST;
680 cost += 2;
681 }
682 else
683 cost += 1;
684 }
685 }
686 }
687 return cost;
688 }
689
690 /* Return a negative value if an rtx A, whose costs are given by COST_A
691 and REGCOST_A, is more desirable than an rtx B.
692 Return a positive value if A is less desirable, or 0 if the two are
693 equally good. */
694 static int
695 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
696 {
697 /* First, get rid of cases involving expressions that are entirely
698 unwanted. */
699 if (cost_a != cost_b)
700 {
701 if (cost_a == MAX_COST)
702 return 1;
703 if (cost_b == MAX_COST)
704 return -1;
705 }
706
707 /* Avoid extending lifetimes of hardregs. */
708 if (regcost_a != regcost_b)
709 {
710 if (regcost_a == MAX_COST)
711 return 1;
712 if (regcost_b == MAX_COST)
713 return -1;
714 }
715
716 /* Normal operation costs take precedence. */
717 if (cost_a != cost_b)
718 return cost_a - cost_b;
719 /* Only if these are identical consider effects on register pressure. */
720 if (regcost_a != regcost_b)
721 return regcost_a - regcost_b;
722 return 0;
723 }
724
725 /* Internal function, to compute cost when X is not a register; called
726 from COST macro to keep it simple. */
727
728 static int
729 notreg_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno)
730 {
731 return ((GET_CODE (x) == SUBREG
732 && REG_P (SUBREG_REG (x))
733 && GET_MODE_CLASS (mode) == MODE_INT
734 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
735 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
736 && subreg_lowpart_p (x)
737 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (SUBREG_REG (x))))
738 ? 0
739 : rtx_cost (x, mode, outer, opno, optimize_this_for_speed_p) * 2);
740 }
741
742 \f
743 /* Initialize CSE_REG_INFO_TABLE. */
744
745 static void
746 init_cse_reg_info (unsigned int nregs)
747 {
748 /* Do we need to grow the table? */
749 if (nregs > cse_reg_info_table_size)
750 {
751 unsigned int new_size;
752
753 if (cse_reg_info_table_size < 2048)
754 {
755 /* Compute a new size that is a power of 2 and no smaller
756 than the large of NREGS and 64. */
757 new_size = (cse_reg_info_table_size
758 ? cse_reg_info_table_size : 64);
759
760 while (new_size < nregs)
761 new_size *= 2;
762 }
763 else
764 {
765 /* If we need a big table, allocate just enough to hold
766 NREGS registers. */
767 new_size = nregs;
768 }
769
770 /* Reallocate the table with NEW_SIZE entries. */
771 free (cse_reg_info_table);
772 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
773 cse_reg_info_table_size = new_size;
774 cse_reg_info_table_first_uninitialized = 0;
775 }
776
777 /* Do we have all of the first NREGS entries initialized? */
778 if (cse_reg_info_table_first_uninitialized < nregs)
779 {
780 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
781 unsigned int i;
782
783 /* Put the old timestamp on newly allocated entries so that they
784 will all be considered out of date. We do not touch those
785 entries beyond the first NREGS entries to be nice to the
786 virtual memory. */
787 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
788 cse_reg_info_table[i].timestamp = old_timestamp;
789
790 cse_reg_info_table_first_uninitialized = nregs;
791 }
792 }
793
794 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
795
796 static void
797 get_cse_reg_info_1 (unsigned int regno)
798 {
799 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
800 entry will be considered to have been initialized. */
801 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
802
803 /* Initialize the rest of the entry. */
804 cse_reg_info_table[regno].reg_tick = 1;
805 cse_reg_info_table[regno].reg_in_table = -1;
806 cse_reg_info_table[regno].subreg_ticked = -1;
807 cse_reg_info_table[regno].reg_qty = -regno - 1;
808 }
809
810 /* Find a cse_reg_info entry for REGNO. */
811
812 static inline struct cse_reg_info *
813 get_cse_reg_info (unsigned int regno)
814 {
815 struct cse_reg_info *p = &cse_reg_info_table[regno];
816
817 /* If this entry has not been initialized, go ahead and initialize
818 it. */
819 if (p->timestamp != cse_reg_info_timestamp)
820 get_cse_reg_info_1 (regno);
821
822 return p;
823 }
824
825 /* Clear the hash table and initialize each register with its own quantity,
826 for a new basic block. */
827
828 static void
829 new_basic_block (void)
830 {
831 int i;
832
833 next_qty = 0;
834
835 /* Invalidate cse_reg_info_table. */
836 cse_reg_info_timestamp++;
837
838 /* Clear out hash table state for this pass. */
839 CLEAR_HARD_REG_SET (hard_regs_in_table);
840
841 /* The per-quantity values used to be initialized here, but it is
842 much faster to initialize each as it is made in `make_new_qty'. */
843
844 for (i = 0; i < HASH_SIZE; i++)
845 {
846 struct table_elt *first;
847
848 first = table[i];
849 if (first != NULL)
850 {
851 struct table_elt *last = first;
852
853 table[i] = NULL;
854
855 while (last->next_same_hash != NULL)
856 last = last->next_same_hash;
857
858 /* Now relink this hash entire chain into
859 the free element list. */
860
861 last->next_same_hash = free_element_chain;
862 free_element_chain = first;
863 }
864 }
865
866 prev_insn_cc0 = 0;
867 }
868
869 /* Say that register REG contains a quantity in mode MODE not in any
870 register before and initialize that quantity. */
871
872 static void
873 make_new_qty (unsigned int reg, machine_mode mode)
874 {
875 int q;
876 struct qty_table_elem *ent;
877 struct reg_eqv_elem *eqv;
878
879 gcc_assert (next_qty < max_qty);
880
881 q = REG_QTY (reg) = next_qty++;
882 ent = &qty_table[q];
883 ent->first_reg = reg;
884 ent->last_reg = reg;
885 ent->mode = mode;
886 ent->const_rtx = ent->const_insn = NULL;
887 ent->comparison_code = UNKNOWN;
888
889 eqv = &reg_eqv_table[reg];
890 eqv->next = eqv->prev = -1;
891 }
892
893 /* Make reg NEW equivalent to reg OLD.
894 OLD is not changing; NEW is. */
895
896 static void
897 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
898 {
899 unsigned int lastr, firstr;
900 int q = REG_QTY (old_reg);
901 struct qty_table_elem *ent;
902
903 ent = &qty_table[q];
904
905 /* Nothing should become eqv until it has a "non-invalid" qty number. */
906 gcc_assert (REGNO_QTY_VALID_P (old_reg));
907
908 REG_QTY (new_reg) = q;
909 firstr = ent->first_reg;
910 lastr = ent->last_reg;
911
912 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
913 hard regs. Among pseudos, if NEW will live longer than any other reg
914 of the same qty, and that is beyond the current basic block,
915 make it the new canonical replacement for this qty. */
916 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
917 /* Certain fixed registers might be of the class NO_REGS. This means
918 that not only can they not be allocated by the compiler, but
919 they cannot be used in substitutions or canonicalizations
920 either. */
921 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
922 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
923 || (new_reg >= FIRST_PSEUDO_REGISTER
924 && (firstr < FIRST_PSEUDO_REGISTER
925 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
926 && !bitmap_bit_p (cse_ebb_live_out, firstr))
927 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
928 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
929 {
930 reg_eqv_table[firstr].prev = new_reg;
931 reg_eqv_table[new_reg].next = firstr;
932 reg_eqv_table[new_reg].prev = -1;
933 ent->first_reg = new_reg;
934 }
935 else
936 {
937 /* If NEW is a hard reg (known to be non-fixed), insert at end.
938 Otherwise, insert before any non-fixed hard regs that are at the
939 end. Registers of class NO_REGS cannot be used as an
940 equivalent for anything. */
941 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
942 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
943 && new_reg >= FIRST_PSEUDO_REGISTER)
944 lastr = reg_eqv_table[lastr].prev;
945 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
946 if (reg_eqv_table[lastr].next >= 0)
947 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
948 else
949 qty_table[q].last_reg = new_reg;
950 reg_eqv_table[lastr].next = new_reg;
951 reg_eqv_table[new_reg].prev = lastr;
952 }
953 }
954
955 /* Remove REG from its equivalence class. */
956
957 static void
958 delete_reg_equiv (unsigned int reg)
959 {
960 struct qty_table_elem *ent;
961 int q = REG_QTY (reg);
962 int p, n;
963
964 /* If invalid, do nothing. */
965 if (! REGNO_QTY_VALID_P (reg))
966 return;
967
968 ent = &qty_table[q];
969
970 p = reg_eqv_table[reg].prev;
971 n = reg_eqv_table[reg].next;
972
973 if (n != -1)
974 reg_eqv_table[n].prev = p;
975 else
976 ent->last_reg = p;
977 if (p != -1)
978 reg_eqv_table[p].next = n;
979 else
980 ent->first_reg = n;
981
982 REG_QTY (reg) = -reg - 1;
983 }
984
985 /* Remove any invalid expressions from the hash table
986 that refer to any of the registers contained in expression X.
987
988 Make sure that newly inserted references to those registers
989 as subexpressions will be considered valid.
990
991 mention_regs is not called when a register itself
992 is being stored in the table.
993
994 Return 1 if we have done something that may have changed the hash code
995 of X. */
996
997 static int
998 mention_regs (rtx x)
999 {
1000 enum rtx_code code;
1001 int i, j;
1002 const char *fmt;
1003 int changed = 0;
1004
1005 if (x == 0)
1006 return 0;
1007
1008 code = GET_CODE (x);
1009 if (code == REG)
1010 {
1011 unsigned int regno = REGNO (x);
1012 unsigned int endregno = END_REGNO (x);
1013 unsigned int i;
1014
1015 for (i = regno; i < endregno; i++)
1016 {
1017 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1018 remove_invalid_refs (i);
1019
1020 REG_IN_TABLE (i) = REG_TICK (i);
1021 SUBREG_TICKED (i) = -1;
1022 }
1023
1024 return 0;
1025 }
1026
1027 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1028 pseudo if they don't use overlapping words. We handle only pseudos
1029 here for simplicity. */
1030 if (code == SUBREG && REG_P (SUBREG_REG (x))
1031 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1032 {
1033 unsigned int i = REGNO (SUBREG_REG (x));
1034
1035 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1036 {
1037 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1038 the last store to this register really stored into this
1039 subreg, then remove the memory of this subreg.
1040 Otherwise, remove any memory of the entire register and
1041 all its subregs from the table. */
1042 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1043 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1044 remove_invalid_refs (i);
1045 else
1046 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1047 }
1048
1049 REG_IN_TABLE (i) = REG_TICK (i);
1050 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1051 return 0;
1052 }
1053
1054 /* If X is a comparison or a COMPARE and either operand is a register
1055 that does not have a quantity, give it one. This is so that a later
1056 call to record_jump_equiv won't cause X to be assigned a different
1057 hash code and not found in the table after that call.
1058
1059 It is not necessary to do this here, since rehash_using_reg can
1060 fix up the table later, but doing this here eliminates the need to
1061 call that expensive function in the most common case where the only
1062 use of the register is in the comparison. */
1063
1064 if (code == COMPARE || COMPARISON_P (x))
1065 {
1066 if (REG_P (XEXP (x, 0))
1067 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1068 if (insert_regs (XEXP (x, 0), NULL, 0))
1069 {
1070 rehash_using_reg (XEXP (x, 0));
1071 changed = 1;
1072 }
1073
1074 if (REG_P (XEXP (x, 1))
1075 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1076 if (insert_regs (XEXP (x, 1), NULL, 0))
1077 {
1078 rehash_using_reg (XEXP (x, 1));
1079 changed = 1;
1080 }
1081 }
1082
1083 fmt = GET_RTX_FORMAT (code);
1084 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1085 if (fmt[i] == 'e')
1086 changed |= mention_regs (XEXP (x, i));
1087 else if (fmt[i] == 'E')
1088 for (j = 0; j < XVECLEN (x, i); j++)
1089 changed |= mention_regs (XVECEXP (x, i, j));
1090
1091 return changed;
1092 }
1093
1094 /* Update the register quantities for inserting X into the hash table
1095 with a value equivalent to CLASSP.
1096 (If the class does not contain a REG, it is irrelevant.)
1097 If MODIFIED is nonzero, X is a destination; it is being modified.
1098 Note that delete_reg_equiv should be called on a register
1099 before insert_regs is done on that register with MODIFIED != 0.
1100
1101 Nonzero value means that elements of reg_qty have changed
1102 so X's hash code may be different. */
1103
1104 static int
1105 insert_regs (rtx x, struct table_elt *classp, int modified)
1106 {
1107 if (REG_P (x))
1108 {
1109 unsigned int regno = REGNO (x);
1110 int qty_valid;
1111
1112 /* If REGNO is in the equivalence table already but is of the
1113 wrong mode for that equivalence, don't do anything here. */
1114
1115 qty_valid = REGNO_QTY_VALID_P (regno);
1116 if (qty_valid)
1117 {
1118 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1119
1120 if (ent->mode != GET_MODE (x))
1121 return 0;
1122 }
1123
1124 if (modified || ! qty_valid)
1125 {
1126 if (classp)
1127 for (classp = classp->first_same_value;
1128 classp != 0;
1129 classp = classp->next_same_value)
1130 if (REG_P (classp->exp)
1131 && GET_MODE (classp->exp) == GET_MODE (x))
1132 {
1133 unsigned c_regno = REGNO (classp->exp);
1134
1135 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1136
1137 /* Suppose that 5 is hard reg and 100 and 101 are
1138 pseudos. Consider
1139
1140 (set (reg:si 100) (reg:si 5))
1141 (set (reg:si 5) (reg:si 100))
1142 (set (reg:di 101) (reg:di 5))
1143
1144 We would now set REG_QTY (101) = REG_QTY (5), but the
1145 entry for 5 is in SImode. When we use this later in
1146 copy propagation, we get the register in wrong mode. */
1147 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1148 continue;
1149
1150 make_regs_eqv (regno, c_regno);
1151 return 1;
1152 }
1153
1154 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1155 than REG_IN_TABLE to find out if there was only a single preceding
1156 invalidation - for the SUBREG - or another one, which would be
1157 for the full register. However, if we find here that REG_TICK
1158 indicates that the register is invalid, it means that it has
1159 been invalidated in a separate operation. The SUBREG might be used
1160 now (then this is a recursive call), or we might use the full REG
1161 now and a SUBREG of it later. So bump up REG_TICK so that
1162 mention_regs will do the right thing. */
1163 if (! modified
1164 && REG_IN_TABLE (regno) >= 0
1165 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1166 REG_TICK (regno)++;
1167 make_new_qty (regno, GET_MODE (x));
1168 return 1;
1169 }
1170
1171 return 0;
1172 }
1173
1174 /* If X is a SUBREG, we will likely be inserting the inner register in the
1175 table. If that register doesn't have an assigned quantity number at
1176 this point but does later, the insertion that we will be doing now will
1177 not be accessible because its hash code will have changed. So assign
1178 a quantity number now. */
1179
1180 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1181 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1182 {
1183 insert_regs (SUBREG_REG (x), NULL, 0);
1184 mention_regs (x);
1185 return 1;
1186 }
1187 else
1188 return mention_regs (x);
1189 }
1190 \f
1191
1192 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1193 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1194 CST is equal to an anchor. */
1195
1196 static bool
1197 compute_const_anchors (rtx cst,
1198 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1199 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1200 {
1201 HOST_WIDE_INT n = INTVAL (cst);
1202
1203 *lower_base = n & ~(targetm.const_anchor - 1);
1204 if (*lower_base == n)
1205 return false;
1206
1207 *upper_base =
1208 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1209 *upper_offs = n - *upper_base;
1210 *lower_offs = n - *lower_base;
1211 return true;
1212 }
1213
1214 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1215
1216 static void
1217 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1218 machine_mode mode)
1219 {
1220 struct table_elt *elt;
1221 unsigned hash;
1222 rtx anchor_exp;
1223 rtx exp;
1224
1225 anchor_exp = GEN_INT (anchor);
1226 hash = HASH (anchor_exp, mode);
1227 elt = lookup (anchor_exp, hash, mode);
1228 if (!elt)
1229 elt = insert (anchor_exp, NULL, hash, mode);
1230
1231 exp = plus_constant (mode, reg, offs);
1232 /* REG has just been inserted and the hash codes recomputed. */
1233 mention_regs (exp);
1234 hash = HASH (exp, mode);
1235
1236 /* Use the cost of the register rather than the whole expression. When
1237 looking up constant anchors we will further offset the corresponding
1238 expression therefore it does not make sense to prefer REGs over
1239 reg-immediate additions. Prefer instead the oldest expression. Also
1240 don't prefer pseudos over hard regs so that we derive constants in
1241 argument registers from other argument registers rather than from the
1242 original pseudo that was used to synthesize the constant. */
1243 insert_with_costs (exp, elt, hash, mode, COST (reg, mode), 1);
1244 }
1245
1246 /* The constant CST is equivalent to the register REG. Create
1247 equivalences between the two anchors of CST and the corresponding
1248 register-offset expressions using REG. */
1249
1250 static void
1251 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1252 {
1253 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1254
1255 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1256 &upper_base, &upper_offs))
1257 return;
1258
1259 /* Ignore anchors of value 0. Constants accessible from zero are
1260 simple. */
1261 if (lower_base != 0)
1262 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1263
1264 if (upper_base != 0)
1265 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1266 }
1267
1268 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1269 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1270 valid expression. Return the cheapest and oldest of such expressions. In
1271 *OLD, return how old the resulting expression is compared to the other
1272 equivalent expressions. */
1273
1274 static rtx
1275 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1276 unsigned *old)
1277 {
1278 struct table_elt *elt;
1279 unsigned idx;
1280 struct table_elt *match_elt;
1281 rtx match;
1282
1283 /* Find the cheapest and *oldest* expression to maximize the chance of
1284 reusing the same pseudo. */
1285
1286 match_elt = NULL;
1287 match = NULL_RTX;
1288 for (elt = anchor_elt->first_same_value, idx = 0;
1289 elt;
1290 elt = elt->next_same_value, idx++)
1291 {
1292 if (match_elt && CHEAPER (match_elt, elt))
1293 return match;
1294
1295 if (REG_P (elt->exp)
1296 || (GET_CODE (elt->exp) == PLUS
1297 && REG_P (XEXP (elt->exp, 0))
1298 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1299 {
1300 rtx x;
1301
1302 /* Ignore expressions that are no longer valid. */
1303 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1304 continue;
1305
1306 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1307 if (REG_P (x)
1308 || (GET_CODE (x) == PLUS
1309 && IN_RANGE (INTVAL (XEXP (x, 1)),
1310 -targetm.const_anchor,
1311 targetm.const_anchor - 1)))
1312 {
1313 match = x;
1314 match_elt = elt;
1315 *old = idx;
1316 }
1317 }
1318 }
1319
1320 return match;
1321 }
1322
1323 /* Try to express the constant SRC_CONST using a register+offset expression
1324 derived from a constant anchor. Return it if successful or NULL_RTX,
1325 otherwise. */
1326
1327 static rtx
1328 try_const_anchors (rtx src_const, machine_mode mode)
1329 {
1330 struct table_elt *lower_elt, *upper_elt;
1331 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1332 rtx lower_anchor_rtx, upper_anchor_rtx;
1333 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1334 unsigned lower_old, upper_old;
1335
1336 /* CONST_INT is used for CC modes, but we should leave those alone. */
1337 if (GET_MODE_CLASS (mode) == MODE_CC)
1338 return NULL_RTX;
1339
1340 gcc_assert (SCALAR_INT_MODE_P (mode));
1341 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1342 &upper_base, &upper_offs))
1343 return NULL_RTX;
1344
1345 lower_anchor_rtx = GEN_INT (lower_base);
1346 upper_anchor_rtx = GEN_INT (upper_base);
1347 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1348 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1349
1350 if (lower_elt)
1351 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1352 if (upper_elt)
1353 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1354
1355 if (!lower_exp)
1356 return upper_exp;
1357 if (!upper_exp)
1358 return lower_exp;
1359
1360 /* Return the older expression. */
1361 return (upper_old > lower_old ? upper_exp : lower_exp);
1362 }
1363 \f
1364 /* Look in or update the hash table. */
1365
1366 /* Remove table element ELT from use in the table.
1367 HASH is its hash code, made using the HASH macro.
1368 It's an argument because often that is known in advance
1369 and we save much time not recomputing it. */
1370
1371 static void
1372 remove_from_table (struct table_elt *elt, unsigned int hash)
1373 {
1374 if (elt == 0)
1375 return;
1376
1377 /* Mark this element as removed. See cse_insn. */
1378 elt->first_same_value = 0;
1379
1380 /* Remove the table element from its equivalence class. */
1381
1382 {
1383 struct table_elt *prev = elt->prev_same_value;
1384 struct table_elt *next = elt->next_same_value;
1385
1386 if (next)
1387 next->prev_same_value = prev;
1388
1389 if (prev)
1390 prev->next_same_value = next;
1391 else
1392 {
1393 struct table_elt *newfirst = next;
1394 while (next)
1395 {
1396 next->first_same_value = newfirst;
1397 next = next->next_same_value;
1398 }
1399 }
1400 }
1401
1402 /* Remove the table element from its hash bucket. */
1403
1404 {
1405 struct table_elt *prev = elt->prev_same_hash;
1406 struct table_elt *next = elt->next_same_hash;
1407
1408 if (next)
1409 next->prev_same_hash = prev;
1410
1411 if (prev)
1412 prev->next_same_hash = next;
1413 else if (table[hash] == elt)
1414 table[hash] = next;
1415 else
1416 {
1417 /* This entry is not in the proper hash bucket. This can happen
1418 when two classes were merged by `merge_equiv_classes'. Search
1419 for the hash bucket that it heads. This happens only very
1420 rarely, so the cost is acceptable. */
1421 for (hash = 0; hash < HASH_SIZE; hash++)
1422 if (table[hash] == elt)
1423 table[hash] = next;
1424 }
1425 }
1426
1427 /* Remove the table element from its related-value circular chain. */
1428
1429 if (elt->related_value != 0 && elt->related_value != elt)
1430 {
1431 struct table_elt *p = elt->related_value;
1432
1433 while (p->related_value != elt)
1434 p = p->related_value;
1435 p->related_value = elt->related_value;
1436 if (p->related_value == p)
1437 p->related_value = 0;
1438 }
1439
1440 /* Now add it to the free element chain. */
1441 elt->next_same_hash = free_element_chain;
1442 free_element_chain = elt;
1443 }
1444
1445 /* Same as above, but X is a pseudo-register. */
1446
1447 static void
1448 remove_pseudo_from_table (rtx x, unsigned int hash)
1449 {
1450 struct table_elt *elt;
1451
1452 /* Because a pseudo-register can be referenced in more than one
1453 mode, we might have to remove more than one table entry. */
1454 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1455 remove_from_table (elt, hash);
1456 }
1457
1458 /* Look up X in the hash table and return its table element,
1459 or 0 if X is not in the table.
1460
1461 MODE is the machine-mode of X, or if X is an integer constant
1462 with VOIDmode then MODE is the mode with which X will be used.
1463
1464 Here we are satisfied to find an expression whose tree structure
1465 looks like X. */
1466
1467 static struct table_elt *
1468 lookup (rtx x, unsigned int hash, machine_mode mode)
1469 {
1470 struct table_elt *p;
1471
1472 for (p = table[hash]; p; p = p->next_same_hash)
1473 if (mode == p->mode && ((x == p->exp && REG_P (x))
1474 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1475 return p;
1476
1477 return 0;
1478 }
1479
1480 /* Like `lookup' but don't care whether the table element uses invalid regs.
1481 Also ignore discrepancies in the machine mode of a register. */
1482
1483 static struct table_elt *
1484 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1485 {
1486 struct table_elt *p;
1487
1488 if (REG_P (x))
1489 {
1490 unsigned int regno = REGNO (x);
1491
1492 /* Don't check the machine mode when comparing registers;
1493 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1494 for (p = table[hash]; p; p = p->next_same_hash)
1495 if (REG_P (p->exp)
1496 && REGNO (p->exp) == regno)
1497 return p;
1498 }
1499 else
1500 {
1501 for (p = table[hash]; p; p = p->next_same_hash)
1502 if (mode == p->mode
1503 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1504 return p;
1505 }
1506
1507 return 0;
1508 }
1509
1510 /* Look for an expression equivalent to X and with code CODE.
1511 If one is found, return that expression. */
1512
1513 static rtx
1514 lookup_as_function (rtx x, enum rtx_code code)
1515 {
1516 struct table_elt *p
1517 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1518
1519 if (p == 0)
1520 return 0;
1521
1522 for (p = p->first_same_value; p; p = p->next_same_value)
1523 if (GET_CODE (p->exp) == code
1524 /* Make sure this is a valid entry in the table. */
1525 && exp_equiv_p (p->exp, p->exp, 1, false))
1526 return p->exp;
1527
1528 return 0;
1529 }
1530
1531 /* Insert X in the hash table, assuming HASH is its hash code and
1532 CLASSP is an element of the class it should go in (or 0 if a new
1533 class should be made). COST is the code of X and reg_cost is the
1534 cost of registers in X. It is inserted at the proper position to
1535 keep the class in the order cheapest first.
1536
1537 MODE is the machine-mode of X, or if X is an integer constant
1538 with VOIDmode then MODE is the mode with which X will be used.
1539
1540 For elements of equal cheapness, the most recent one
1541 goes in front, except that the first element in the list
1542 remains first unless a cheaper element is added. The order of
1543 pseudo-registers does not matter, as canon_reg will be called to
1544 find the cheapest when a register is retrieved from the table.
1545
1546 The in_memory field in the hash table element is set to 0.
1547 The caller must set it nonzero if appropriate.
1548
1549 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1550 and if insert_regs returns a nonzero value
1551 you must then recompute its hash code before calling here.
1552
1553 If necessary, update table showing constant values of quantities. */
1554
1555 static struct table_elt *
1556 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1557 machine_mode mode, int cost, int reg_cost)
1558 {
1559 struct table_elt *elt;
1560
1561 /* If X is a register and we haven't made a quantity for it,
1562 something is wrong. */
1563 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1564
1565 /* If X is a hard register, show it is being put in the table. */
1566 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1567 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1568
1569 /* Put an element for X into the right hash bucket. */
1570
1571 elt = free_element_chain;
1572 if (elt)
1573 free_element_chain = elt->next_same_hash;
1574 else
1575 elt = XNEW (struct table_elt);
1576
1577 elt->exp = x;
1578 elt->canon_exp = NULL_RTX;
1579 elt->cost = cost;
1580 elt->regcost = reg_cost;
1581 elt->next_same_value = 0;
1582 elt->prev_same_value = 0;
1583 elt->next_same_hash = table[hash];
1584 elt->prev_same_hash = 0;
1585 elt->related_value = 0;
1586 elt->in_memory = 0;
1587 elt->mode = mode;
1588 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1589
1590 if (table[hash])
1591 table[hash]->prev_same_hash = elt;
1592 table[hash] = elt;
1593
1594 /* Put it into the proper value-class. */
1595 if (classp)
1596 {
1597 classp = classp->first_same_value;
1598 if (CHEAPER (elt, classp))
1599 /* Insert at the head of the class. */
1600 {
1601 struct table_elt *p;
1602 elt->next_same_value = classp;
1603 classp->prev_same_value = elt;
1604 elt->first_same_value = elt;
1605
1606 for (p = classp; p; p = p->next_same_value)
1607 p->first_same_value = elt;
1608 }
1609 else
1610 {
1611 /* Insert not at head of the class. */
1612 /* Put it after the last element cheaper than X. */
1613 struct table_elt *p, *next;
1614
1615 for (p = classp;
1616 (next = p->next_same_value) && CHEAPER (next, elt);
1617 p = next)
1618 ;
1619
1620 /* Put it after P and before NEXT. */
1621 elt->next_same_value = next;
1622 if (next)
1623 next->prev_same_value = elt;
1624
1625 elt->prev_same_value = p;
1626 p->next_same_value = elt;
1627 elt->first_same_value = classp;
1628 }
1629 }
1630 else
1631 elt->first_same_value = elt;
1632
1633 /* If this is a constant being set equivalent to a register or a register
1634 being set equivalent to a constant, note the constant equivalence.
1635
1636 If this is a constant, it cannot be equivalent to a different constant,
1637 and a constant is the only thing that can be cheaper than a register. So
1638 we know the register is the head of the class (before the constant was
1639 inserted).
1640
1641 If this is a register that is not already known equivalent to a
1642 constant, we must check the entire class.
1643
1644 If this is a register that is already known equivalent to an insn,
1645 update the qtys `const_insn' to show that `this_insn' is the latest
1646 insn making that quantity equivalent to the constant. */
1647
1648 if (elt->is_const && classp && REG_P (classp->exp)
1649 && !REG_P (x))
1650 {
1651 int exp_q = REG_QTY (REGNO (classp->exp));
1652 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1653
1654 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1655 exp_ent->const_insn = this_insn;
1656 }
1657
1658 else if (REG_P (x)
1659 && classp
1660 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1661 && ! elt->is_const)
1662 {
1663 struct table_elt *p;
1664
1665 for (p = classp; p != 0; p = p->next_same_value)
1666 {
1667 if (p->is_const && !REG_P (p->exp))
1668 {
1669 int x_q = REG_QTY (REGNO (x));
1670 struct qty_table_elem *x_ent = &qty_table[x_q];
1671
1672 x_ent->const_rtx
1673 = gen_lowpart (GET_MODE (x), p->exp);
1674 x_ent->const_insn = this_insn;
1675 break;
1676 }
1677 }
1678 }
1679
1680 else if (REG_P (x)
1681 && qty_table[REG_QTY (REGNO (x))].const_rtx
1682 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1683 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1684
1685 /* If this is a constant with symbolic value,
1686 and it has a term with an explicit integer value,
1687 link it up with related expressions. */
1688 if (GET_CODE (x) == CONST)
1689 {
1690 rtx subexp = get_related_value (x);
1691 unsigned subhash;
1692 struct table_elt *subelt, *subelt_prev;
1693
1694 if (subexp != 0)
1695 {
1696 /* Get the integer-free subexpression in the hash table. */
1697 subhash = SAFE_HASH (subexp, mode);
1698 subelt = lookup (subexp, subhash, mode);
1699 if (subelt == 0)
1700 subelt = insert (subexp, NULL, subhash, mode);
1701 /* Initialize SUBELT's circular chain if it has none. */
1702 if (subelt->related_value == 0)
1703 subelt->related_value = subelt;
1704 /* Find the element in the circular chain that precedes SUBELT. */
1705 subelt_prev = subelt;
1706 while (subelt_prev->related_value != subelt)
1707 subelt_prev = subelt_prev->related_value;
1708 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1709 This way the element that follows SUBELT is the oldest one. */
1710 elt->related_value = subelt_prev->related_value;
1711 subelt_prev->related_value = elt;
1712 }
1713 }
1714
1715 return elt;
1716 }
1717
1718 /* Wrap insert_with_costs by passing the default costs. */
1719
1720 static struct table_elt *
1721 insert (rtx x, struct table_elt *classp, unsigned int hash,
1722 machine_mode mode)
1723 {
1724 return insert_with_costs (x, classp, hash, mode,
1725 COST (x, mode), approx_reg_cost (x));
1726 }
1727
1728 \f
1729 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1730 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1731 the two classes equivalent.
1732
1733 CLASS1 will be the surviving class; CLASS2 should not be used after this
1734 call.
1735
1736 Any invalid entries in CLASS2 will not be copied. */
1737
1738 static void
1739 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1740 {
1741 struct table_elt *elt, *next, *new_elt;
1742
1743 /* Ensure we start with the head of the classes. */
1744 class1 = class1->first_same_value;
1745 class2 = class2->first_same_value;
1746
1747 /* If they were already equal, forget it. */
1748 if (class1 == class2)
1749 return;
1750
1751 for (elt = class2; elt; elt = next)
1752 {
1753 unsigned int hash;
1754 rtx exp = elt->exp;
1755 machine_mode mode = elt->mode;
1756
1757 next = elt->next_same_value;
1758
1759 /* Remove old entry, make a new one in CLASS1's class.
1760 Don't do this for invalid entries as we cannot find their
1761 hash code (it also isn't necessary). */
1762 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1763 {
1764 bool need_rehash = false;
1765
1766 hash_arg_in_memory = 0;
1767 hash = HASH (exp, mode);
1768
1769 if (REG_P (exp))
1770 {
1771 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1772 delete_reg_equiv (REGNO (exp));
1773 }
1774
1775 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1776 remove_pseudo_from_table (exp, hash);
1777 else
1778 remove_from_table (elt, hash);
1779
1780 if (insert_regs (exp, class1, 0) || need_rehash)
1781 {
1782 rehash_using_reg (exp);
1783 hash = HASH (exp, mode);
1784 }
1785 new_elt = insert (exp, class1, hash, mode);
1786 new_elt->in_memory = hash_arg_in_memory;
1787 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1788 new_elt->cost = MAX_COST;
1789 }
1790 }
1791 }
1792 \f
1793 /* Flush the entire hash table. */
1794
1795 static void
1796 flush_hash_table (void)
1797 {
1798 int i;
1799 struct table_elt *p;
1800
1801 for (i = 0; i < HASH_SIZE; i++)
1802 for (p = table[i]; p; p = table[i])
1803 {
1804 /* Note that invalidate can remove elements
1805 after P in the current hash chain. */
1806 if (REG_P (p->exp))
1807 invalidate (p->exp, VOIDmode);
1808 else
1809 remove_from_table (p, i);
1810 }
1811 }
1812 \f
1813 /* Check whether an anti dependence exists between X and EXP. MODE and
1814 ADDR are as for canon_anti_dependence. */
1815
1816 static bool
1817 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1818 {
1819 subrtx_iterator::array_type array;
1820 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1821 {
1822 const_rtx x = *iter;
1823 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1824 return true;
1825 }
1826 return false;
1827 }
1828 \f
1829 /* Remove from the hash table, or mark as invalid, all expressions whose
1830 values could be altered by storing in X. X is a register, a subreg, or
1831 a memory reference with nonvarying address (because, when a memory
1832 reference with a varying address is stored in, all memory references are
1833 removed by invalidate_memory so specific invalidation is superfluous).
1834 FULL_MODE, if not VOIDmode, indicates that this much should be
1835 invalidated instead of just the amount indicated by the mode of X. This
1836 is only used for bitfield stores into memory.
1837
1838 A nonvarying address may be just a register or just a symbol reference,
1839 or it may be either of those plus a numeric offset. */
1840
1841 static void
1842 invalidate (rtx x, machine_mode full_mode)
1843 {
1844 int i;
1845 struct table_elt *p;
1846 rtx addr;
1847
1848 switch (GET_CODE (x))
1849 {
1850 case REG:
1851 {
1852 /* If X is a register, dependencies on its contents are recorded
1853 through the qty number mechanism. Just change the qty number of
1854 the register, mark it as invalid for expressions that refer to it,
1855 and remove it itself. */
1856 unsigned int regno = REGNO (x);
1857 unsigned int hash = HASH (x, GET_MODE (x));
1858
1859 /* Remove REGNO from any quantity list it might be on and indicate
1860 that its value might have changed. If it is a pseudo, remove its
1861 entry from the hash table.
1862
1863 For a hard register, we do the first two actions above for any
1864 additional hard registers corresponding to X. Then, if any of these
1865 registers are in the table, we must remove any REG entries that
1866 overlap these registers. */
1867
1868 delete_reg_equiv (regno);
1869 REG_TICK (regno)++;
1870 SUBREG_TICKED (regno) = -1;
1871
1872 if (regno >= FIRST_PSEUDO_REGISTER)
1873 remove_pseudo_from_table (x, hash);
1874 else
1875 {
1876 HOST_WIDE_INT in_table
1877 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1878 unsigned int endregno = END_REGNO (x);
1879 unsigned int tregno, tendregno, rn;
1880 struct table_elt *p, *next;
1881
1882 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1883
1884 for (rn = regno + 1; rn < endregno; rn++)
1885 {
1886 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1887 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1888 delete_reg_equiv (rn);
1889 REG_TICK (rn)++;
1890 SUBREG_TICKED (rn) = -1;
1891 }
1892
1893 if (in_table)
1894 for (hash = 0; hash < HASH_SIZE; hash++)
1895 for (p = table[hash]; p; p = next)
1896 {
1897 next = p->next_same_hash;
1898
1899 if (!REG_P (p->exp)
1900 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1901 continue;
1902
1903 tregno = REGNO (p->exp);
1904 tendregno = END_REGNO (p->exp);
1905 if (tendregno > regno && tregno < endregno)
1906 remove_from_table (p, hash);
1907 }
1908 }
1909 }
1910 return;
1911
1912 case SUBREG:
1913 invalidate (SUBREG_REG (x), VOIDmode);
1914 return;
1915
1916 case PARALLEL:
1917 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1918 invalidate (XVECEXP (x, 0, i), VOIDmode);
1919 return;
1920
1921 case EXPR_LIST:
1922 /* This is part of a disjoint return value; extract the location in
1923 question ignoring the offset. */
1924 invalidate (XEXP (x, 0), VOIDmode);
1925 return;
1926
1927 case MEM:
1928 addr = canon_rtx (get_addr (XEXP (x, 0)));
1929 /* Calculate the canonical version of X here so that
1930 true_dependence doesn't generate new RTL for X on each call. */
1931 x = canon_rtx (x);
1932
1933 /* Remove all hash table elements that refer to overlapping pieces of
1934 memory. */
1935 if (full_mode == VOIDmode)
1936 full_mode = GET_MODE (x);
1937
1938 for (i = 0; i < HASH_SIZE; i++)
1939 {
1940 struct table_elt *next;
1941
1942 for (p = table[i]; p; p = next)
1943 {
1944 next = p->next_same_hash;
1945 if (p->in_memory)
1946 {
1947 /* Just canonicalize the expression once;
1948 otherwise each time we call invalidate
1949 true_dependence will canonicalize the
1950 expression again. */
1951 if (!p->canon_exp)
1952 p->canon_exp = canon_rtx (p->exp);
1953 if (check_dependence (p->canon_exp, x, full_mode, addr))
1954 remove_from_table (p, i);
1955 }
1956 }
1957 }
1958 return;
1959
1960 default:
1961 gcc_unreachable ();
1962 }
1963 }
1964
1965 /* Invalidate DEST. Used when DEST is not going to be added
1966 into the hash table for some reason, e.g. do_not_record
1967 flagged on it. */
1968
1969 static void
1970 invalidate_dest (rtx dest)
1971 {
1972 if (REG_P (dest)
1973 || GET_CODE (dest) == SUBREG
1974 || MEM_P (dest))
1975 invalidate (dest, VOIDmode);
1976 else if (GET_CODE (dest) == STRICT_LOW_PART
1977 || GET_CODE (dest) == ZERO_EXTRACT)
1978 invalidate (XEXP (dest, 0), GET_MODE (dest));
1979 }
1980 \f
1981 /* Remove all expressions that refer to register REGNO,
1982 since they are already invalid, and we are about to
1983 mark that register valid again and don't want the old
1984 expressions to reappear as valid. */
1985
1986 static void
1987 remove_invalid_refs (unsigned int regno)
1988 {
1989 unsigned int i;
1990 struct table_elt *p, *next;
1991
1992 for (i = 0; i < HASH_SIZE; i++)
1993 for (p = table[i]; p; p = next)
1994 {
1995 next = p->next_same_hash;
1996 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
1997 remove_from_table (p, i);
1998 }
1999 }
2000
2001 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2002 and mode MODE. */
2003 static void
2004 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2005 machine_mode mode)
2006 {
2007 unsigned int i;
2008 struct table_elt *p, *next;
2009 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2010
2011 for (i = 0; i < HASH_SIZE; i++)
2012 for (p = table[i]; p; p = next)
2013 {
2014 rtx exp = p->exp;
2015 next = p->next_same_hash;
2016
2017 if (!REG_P (exp)
2018 && (GET_CODE (exp) != SUBREG
2019 || !REG_P (SUBREG_REG (exp))
2020 || REGNO (SUBREG_REG (exp)) != regno
2021 || (((SUBREG_BYTE (exp)
2022 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2023 && SUBREG_BYTE (exp) <= end))
2024 && refers_to_regno_p (regno, p->exp))
2025 remove_from_table (p, i);
2026 }
2027 }
2028 \f
2029 /* Recompute the hash codes of any valid entries in the hash table that
2030 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2031
2032 This is called when we make a jump equivalence. */
2033
2034 static void
2035 rehash_using_reg (rtx x)
2036 {
2037 unsigned int i;
2038 struct table_elt *p, *next;
2039 unsigned hash;
2040
2041 if (GET_CODE (x) == SUBREG)
2042 x = SUBREG_REG (x);
2043
2044 /* If X is not a register or if the register is known not to be in any
2045 valid entries in the table, we have no work to do. */
2046
2047 if (!REG_P (x)
2048 || REG_IN_TABLE (REGNO (x)) < 0
2049 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2050 return;
2051
2052 /* Scan all hash chains looking for valid entries that mention X.
2053 If we find one and it is in the wrong hash chain, move it. */
2054
2055 for (i = 0; i < HASH_SIZE; i++)
2056 for (p = table[i]; p; p = next)
2057 {
2058 next = p->next_same_hash;
2059 if (reg_mentioned_p (x, p->exp)
2060 && exp_equiv_p (p->exp, p->exp, 1, false)
2061 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2062 {
2063 if (p->next_same_hash)
2064 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2065
2066 if (p->prev_same_hash)
2067 p->prev_same_hash->next_same_hash = p->next_same_hash;
2068 else
2069 table[i] = p->next_same_hash;
2070
2071 p->next_same_hash = table[hash];
2072 p->prev_same_hash = 0;
2073 if (table[hash])
2074 table[hash]->prev_same_hash = p;
2075 table[hash] = p;
2076 }
2077 }
2078 }
2079 \f
2080 /* Remove from the hash table any expression that is a call-clobbered
2081 register. Also update their TICK values. */
2082
2083 static void
2084 invalidate_for_call (void)
2085 {
2086 unsigned int regno, endregno;
2087 unsigned int i;
2088 unsigned hash;
2089 struct table_elt *p, *next;
2090 int in_table = 0;
2091 hard_reg_set_iterator hrsi;
2092
2093 /* Go through all the hard registers. For each that is clobbered in
2094 a CALL_INSN, remove the register from quantity chains and update
2095 reg_tick if defined. Also see if any of these registers is currently
2096 in the table. */
2097 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2098 {
2099 delete_reg_equiv (regno);
2100 if (REG_TICK (regno) >= 0)
2101 {
2102 REG_TICK (regno)++;
2103 SUBREG_TICKED (regno) = -1;
2104 }
2105 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2106 }
2107
2108 /* In the case where we have no call-clobbered hard registers in the
2109 table, we are done. Otherwise, scan the table and remove any
2110 entry that overlaps a call-clobbered register. */
2111
2112 if (in_table)
2113 for (hash = 0; hash < HASH_SIZE; hash++)
2114 for (p = table[hash]; p; p = next)
2115 {
2116 next = p->next_same_hash;
2117
2118 if (!REG_P (p->exp)
2119 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2120 continue;
2121
2122 regno = REGNO (p->exp);
2123 endregno = END_REGNO (p->exp);
2124
2125 for (i = regno; i < endregno; i++)
2126 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2127 {
2128 remove_from_table (p, hash);
2129 break;
2130 }
2131 }
2132 }
2133 \f
2134 /* Given an expression X of type CONST,
2135 and ELT which is its table entry (or 0 if it
2136 is not in the hash table),
2137 return an alternate expression for X as a register plus integer.
2138 If none can be found, return 0. */
2139
2140 static rtx
2141 use_related_value (rtx x, struct table_elt *elt)
2142 {
2143 struct table_elt *relt = 0;
2144 struct table_elt *p, *q;
2145 HOST_WIDE_INT offset;
2146
2147 /* First, is there anything related known?
2148 If we have a table element, we can tell from that.
2149 Otherwise, must look it up. */
2150
2151 if (elt != 0 && elt->related_value != 0)
2152 relt = elt;
2153 else if (elt == 0 && GET_CODE (x) == CONST)
2154 {
2155 rtx subexp = get_related_value (x);
2156 if (subexp != 0)
2157 relt = lookup (subexp,
2158 SAFE_HASH (subexp, GET_MODE (subexp)),
2159 GET_MODE (subexp));
2160 }
2161
2162 if (relt == 0)
2163 return 0;
2164
2165 /* Search all related table entries for one that has an
2166 equivalent register. */
2167
2168 p = relt;
2169 while (1)
2170 {
2171 /* This loop is strange in that it is executed in two different cases.
2172 The first is when X is already in the table. Then it is searching
2173 the RELATED_VALUE list of X's class (RELT). The second case is when
2174 X is not in the table. Then RELT points to a class for the related
2175 value.
2176
2177 Ensure that, whatever case we are in, that we ignore classes that have
2178 the same value as X. */
2179
2180 if (rtx_equal_p (x, p->exp))
2181 q = 0;
2182 else
2183 for (q = p->first_same_value; q; q = q->next_same_value)
2184 if (REG_P (q->exp))
2185 break;
2186
2187 if (q)
2188 break;
2189
2190 p = p->related_value;
2191
2192 /* We went all the way around, so there is nothing to be found.
2193 Alternatively, perhaps RELT was in the table for some other reason
2194 and it has no related values recorded. */
2195 if (p == relt || p == 0)
2196 break;
2197 }
2198
2199 if (q == 0)
2200 return 0;
2201
2202 offset = (get_integer_term (x) - get_integer_term (p->exp));
2203 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2204 return plus_constant (q->mode, q->exp, offset);
2205 }
2206 \f
2207
2208 /* Hash a string. Just add its bytes up. */
2209 static inline unsigned
2210 hash_rtx_string (const char *ps)
2211 {
2212 unsigned hash = 0;
2213 const unsigned char *p = (const unsigned char *) ps;
2214
2215 if (p)
2216 while (*p)
2217 hash += *p++;
2218
2219 return hash;
2220 }
2221
2222 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2223 When the callback returns true, we continue with the new rtx. */
2224
2225 unsigned
2226 hash_rtx_cb (const_rtx x, machine_mode mode,
2227 int *do_not_record_p, int *hash_arg_in_memory_p,
2228 bool have_reg_qty, hash_rtx_callback_function cb)
2229 {
2230 int i, j;
2231 unsigned hash = 0;
2232 enum rtx_code code;
2233 const char *fmt;
2234 machine_mode newmode;
2235 rtx newx;
2236
2237 /* Used to turn recursion into iteration. We can't rely on GCC's
2238 tail-recursion elimination since we need to keep accumulating values
2239 in HASH. */
2240 repeat:
2241 if (x == 0)
2242 return hash;
2243
2244 /* Invoke the callback first. */
2245 if (cb != NULL
2246 && ((*cb) (x, mode, &newx, &newmode)))
2247 {
2248 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2249 hash_arg_in_memory_p, have_reg_qty, cb);
2250 return hash;
2251 }
2252
2253 code = GET_CODE (x);
2254 switch (code)
2255 {
2256 case REG:
2257 {
2258 unsigned int regno = REGNO (x);
2259
2260 if (do_not_record_p && !reload_completed)
2261 {
2262 /* On some machines, we can't record any non-fixed hard register,
2263 because extending its life will cause reload problems. We
2264 consider ap, fp, sp, gp to be fixed for this purpose.
2265
2266 We also consider CCmode registers to be fixed for this purpose;
2267 failure to do so leads to failure to simplify 0<100 type of
2268 conditionals.
2269
2270 On all machines, we can't record any global registers.
2271 Nor should we record any register that is in a small
2272 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2273 bool record;
2274
2275 if (regno >= FIRST_PSEUDO_REGISTER)
2276 record = true;
2277 else if (x == frame_pointer_rtx
2278 || x == hard_frame_pointer_rtx
2279 || x == arg_pointer_rtx
2280 || x == stack_pointer_rtx
2281 || x == pic_offset_table_rtx)
2282 record = true;
2283 else if (global_regs[regno])
2284 record = false;
2285 else if (fixed_regs[regno])
2286 record = true;
2287 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2288 record = true;
2289 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2290 record = false;
2291 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2292 record = false;
2293 else
2294 record = true;
2295
2296 if (!record)
2297 {
2298 *do_not_record_p = 1;
2299 return 0;
2300 }
2301 }
2302
2303 hash += ((unsigned int) REG << 7);
2304 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2305 return hash;
2306 }
2307
2308 /* We handle SUBREG of a REG specially because the underlying
2309 reg changes its hash value with every value change; we don't
2310 want to have to forget unrelated subregs when one subreg changes. */
2311 case SUBREG:
2312 {
2313 if (REG_P (SUBREG_REG (x)))
2314 {
2315 hash += (((unsigned int) SUBREG << 7)
2316 + REGNO (SUBREG_REG (x))
2317 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2318 return hash;
2319 }
2320 break;
2321 }
2322
2323 case CONST_INT:
2324 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2325 + (unsigned int) INTVAL (x));
2326 return hash;
2327
2328 case CONST_WIDE_INT:
2329 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2330 hash += CONST_WIDE_INT_ELT (x, i);
2331 return hash;
2332
2333 case CONST_DOUBLE:
2334 /* This is like the general case, except that it only counts
2335 the integers representing the constant. */
2336 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2337 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2338 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2339 + (unsigned int) CONST_DOUBLE_HIGH (x));
2340 else
2341 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2342 return hash;
2343
2344 case CONST_FIXED:
2345 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2346 hash += fixed_hash (CONST_FIXED_VALUE (x));
2347 return hash;
2348
2349 case CONST_VECTOR:
2350 {
2351 int units;
2352 rtx elt;
2353
2354 units = CONST_VECTOR_NUNITS (x);
2355
2356 for (i = 0; i < units; ++i)
2357 {
2358 elt = CONST_VECTOR_ELT (x, i);
2359 hash += hash_rtx_cb (elt, GET_MODE (elt),
2360 do_not_record_p, hash_arg_in_memory_p,
2361 have_reg_qty, cb);
2362 }
2363
2364 return hash;
2365 }
2366
2367 /* Assume there is only one rtx object for any given label. */
2368 case LABEL_REF:
2369 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2370 differences and differences between each stage's debugging dumps. */
2371 hash += (((unsigned int) LABEL_REF << 7)
2372 + CODE_LABEL_NUMBER (LABEL_REF_LABEL (x)));
2373 return hash;
2374
2375 case SYMBOL_REF:
2376 {
2377 /* Don't hash on the symbol's address to avoid bootstrap differences.
2378 Different hash values may cause expressions to be recorded in
2379 different orders and thus different registers to be used in the
2380 final assembler. This also avoids differences in the dump files
2381 between various stages. */
2382 unsigned int h = 0;
2383 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2384
2385 while (*p)
2386 h += (h << 7) + *p++; /* ??? revisit */
2387
2388 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2389 return hash;
2390 }
2391
2392 case MEM:
2393 /* We don't record if marked volatile or if BLKmode since we don't
2394 know the size of the move. */
2395 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2396 {
2397 *do_not_record_p = 1;
2398 return 0;
2399 }
2400 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2401 *hash_arg_in_memory_p = 1;
2402
2403 /* Now that we have already found this special case,
2404 might as well speed it up as much as possible. */
2405 hash += (unsigned) MEM;
2406 x = XEXP (x, 0);
2407 goto repeat;
2408
2409 case USE:
2410 /* A USE that mentions non-volatile memory needs special
2411 handling since the MEM may be BLKmode which normally
2412 prevents an entry from being made. Pure calls are
2413 marked by a USE which mentions BLKmode memory.
2414 See calls.c:emit_call_1. */
2415 if (MEM_P (XEXP (x, 0))
2416 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2417 {
2418 hash += (unsigned) USE;
2419 x = XEXP (x, 0);
2420
2421 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2422 *hash_arg_in_memory_p = 1;
2423
2424 /* Now that we have already found this special case,
2425 might as well speed it up as much as possible. */
2426 hash += (unsigned) MEM;
2427 x = XEXP (x, 0);
2428 goto repeat;
2429 }
2430 break;
2431
2432 case PRE_DEC:
2433 case PRE_INC:
2434 case POST_DEC:
2435 case POST_INC:
2436 case PRE_MODIFY:
2437 case POST_MODIFY:
2438 case PC:
2439 case CC0:
2440 case CALL:
2441 case UNSPEC_VOLATILE:
2442 if (do_not_record_p) {
2443 *do_not_record_p = 1;
2444 return 0;
2445 }
2446 else
2447 return hash;
2448 break;
2449
2450 case ASM_OPERANDS:
2451 if (do_not_record_p && MEM_VOLATILE_P (x))
2452 {
2453 *do_not_record_p = 1;
2454 return 0;
2455 }
2456 else
2457 {
2458 /* We don't want to take the filename and line into account. */
2459 hash += (unsigned) code + (unsigned) GET_MODE (x)
2460 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2461 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2462 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2463
2464 if (ASM_OPERANDS_INPUT_LENGTH (x))
2465 {
2466 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2467 {
2468 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2469 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2470 do_not_record_p, hash_arg_in_memory_p,
2471 have_reg_qty, cb)
2472 + hash_rtx_string
2473 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2474 }
2475
2476 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2477 x = ASM_OPERANDS_INPUT (x, 0);
2478 mode = GET_MODE (x);
2479 goto repeat;
2480 }
2481
2482 return hash;
2483 }
2484 break;
2485
2486 default:
2487 break;
2488 }
2489
2490 i = GET_RTX_LENGTH (code) - 1;
2491 hash += (unsigned) code + (unsigned) GET_MODE (x);
2492 fmt = GET_RTX_FORMAT (code);
2493 for (; i >= 0; i--)
2494 {
2495 switch (fmt[i])
2496 {
2497 case 'e':
2498 /* If we are about to do the last recursive call
2499 needed at this level, change it into iteration.
2500 This function is called enough to be worth it. */
2501 if (i == 0)
2502 {
2503 x = XEXP (x, i);
2504 goto repeat;
2505 }
2506
2507 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2508 hash_arg_in_memory_p,
2509 have_reg_qty, cb);
2510 break;
2511
2512 case 'E':
2513 for (j = 0; j < XVECLEN (x, i); j++)
2514 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2515 hash_arg_in_memory_p,
2516 have_reg_qty, cb);
2517 break;
2518
2519 case 's':
2520 hash += hash_rtx_string (XSTR (x, i));
2521 break;
2522
2523 case 'i':
2524 hash += (unsigned int) XINT (x, i);
2525 break;
2526
2527 case '0': case 't':
2528 /* Unused. */
2529 break;
2530
2531 default:
2532 gcc_unreachable ();
2533 }
2534 }
2535
2536 return hash;
2537 }
2538
2539 /* Hash an rtx. We are careful to make sure the value is never negative.
2540 Equivalent registers hash identically.
2541 MODE is used in hashing for CONST_INTs only;
2542 otherwise the mode of X is used.
2543
2544 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2545
2546 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2547 a MEM rtx which does not have the MEM_READONLY_P flag set.
2548
2549 Note that cse_insn knows that the hash code of a MEM expression
2550 is just (int) MEM plus the hash code of the address. */
2551
2552 unsigned
2553 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2554 int *hash_arg_in_memory_p, bool have_reg_qty)
2555 {
2556 return hash_rtx_cb (x, mode, do_not_record_p,
2557 hash_arg_in_memory_p, have_reg_qty, NULL);
2558 }
2559
2560 /* Hash an rtx X for cse via hash_rtx.
2561 Stores 1 in do_not_record if any subexpression is volatile.
2562 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2563 does not have the MEM_READONLY_P flag set. */
2564
2565 static inline unsigned
2566 canon_hash (rtx x, machine_mode mode)
2567 {
2568 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2569 }
2570
2571 /* Like canon_hash but with no side effects, i.e. do_not_record
2572 and hash_arg_in_memory are not changed. */
2573
2574 static inline unsigned
2575 safe_hash (rtx x, machine_mode mode)
2576 {
2577 int dummy_do_not_record;
2578 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2579 }
2580 \f
2581 /* Return 1 iff X and Y would canonicalize into the same thing,
2582 without actually constructing the canonicalization of either one.
2583 If VALIDATE is nonzero,
2584 we assume X is an expression being processed from the rtl
2585 and Y was found in the hash table. We check register refs
2586 in Y for being marked as valid.
2587
2588 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2589
2590 int
2591 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2592 {
2593 int i, j;
2594 enum rtx_code code;
2595 const char *fmt;
2596
2597 /* Note: it is incorrect to assume an expression is equivalent to itself
2598 if VALIDATE is nonzero. */
2599 if (x == y && !validate)
2600 return 1;
2601
2602 if (x == 0 || y == 0)
2603 return x == y;
2604
2605 code = GET_CODE (x);
2606 if (code != GET_CODE (y))
2607 return 0;
2608
2609 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2610 if (GET_MODE (x) != GET_MODE (y))
2611 return 0;
2612
2613 /* MEMs referring to different address space are not equivalent. */
2614 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2615 return 0;
2616
2617 switch (code)
2618 {
2619 case PC:
2620 case CC0:
2621 CASE_CONST_UNIQUE:
2622 return x == y;
2623
2624 case LABEL_REF:
2625 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
2626
2627 case SYMBOL_REF:
2628 return XSTR (x, 0) == XSTR (y, 0);
2629
2630 case REG:
2631 if (for_gcse)
2632 return REGNO (x) == REGNO (y);
2633 else
2634 {
2635 unsigned int regno = REGNO (y);
2636 unsigned int i;
2637 unsigned int endregno = END_REGNO (y);
2638
2639 /* If the quantities are not the same, the expressions are not
2640 equivalent. If there are and we are not to validate, they
2641 are equivalent. Otherwise, ensure all regs are up-to-date. */
2642
2643 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2644 return 0;
2645
2646 if (! validate)
2647 return 1;
2648
2649 for (i = regno; i < endregno; i++)
2650 if (REG_IN_TABLE (i) != REG_TICK (i))
2651 return 0;
2652
2653 return 1;
2654 }
2655
2656 case MEM:
2657 if (for_gcse)
2658 {
2659 /* A volatile mem should not be considered equivalent to any
2660 other. */
2661 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2662 return 0;
2663
2664 /* Can't merge two expressions in different alias sets, since we
2665 can decide that the expression is transparent in a block when
2666 it isn't, due to it being set with the different alias set.
2667
2668 Also, can't merge two expressions with different MEM_ATTRS.
2669 They could e.g. be two different entities allocated into the
2670 same space on the stack (see e.g. PR25130). In that case, the
2671 MEM addresses can be the same, even though the two MEMs are
2672 absolutely not equivalent.
2673
2674 But because really all MEM attributes should be the same for
2675 equivalent MEMs, we just use the invariant that MEMs that have
2676 the same attributes share the same mem_attrs data structure. */
2677 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2678 return 0;
2679
2680 /* If we are handling exceptions, we cannot consider two expressions
2681 with different trapping status as equivalent, because simple_mem
2682 might accept one and reject the other. */
2683 if (cfun->can_throw_non_call_exceptions
2684 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2685 return 0;
2686 }
2687 break;
2688
2689 /* For commutative operations, check both orders. */
2690 case PLUS:
2691 case MULT:
2692 case AND:
2693 case IOR:
2694 case XOR:
2695 case NE:
2696 case EQ:
2697 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2698 validate, for_gcse)
2699 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2700 validate, for_gcse))
2701 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2702 validate, for_gcse)
2703 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2704 validate, for_gcse)));
2705
2706 case ASM_OPERANDS:
2707 /* We don't use the generic code below because we want to
2708 disregard filename and line numbers. */
2709
2710 /* A volatile asm isn't equivalent to any other. */
2711 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2712 return 0;
2713
2714 if (GET_MODE (x) != GET_MODE (y)
2715 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2716 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2717 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2718 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2719 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2720 return 0;
2721
2722 if (ASM_OPERANDS_INPUT_LENGTH (x))
2723 {
2724 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2725 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2726 ASM_OPERANDS_INPUT (y, i),
2727 validate, for_gcse)
2728 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2729 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2730 return 0;
2731 }
2732
2733 return 1;
2734
2735 default:
2736 break;
2737 }
2738
2739 /* Compare the elements. If any pair of corresponding elements
2740 fail to match, return 0 for the whole thing. */
2741
2742 fmt = GET_RTX_FORMAT (code);
2743 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2744 {
2745 switch (fmt[i])
2746 {
2747 case 'e':
2748 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2749 validate, for_gcse))
2750 return 0;
2751 break;
2752
2753 case 'E':
2754 if (XVECLEN (x, i) != XVECLEN (y, i))
2755 return 0;
2756 for (j = 0; j < XVECLEN (x, i); j++)
2757 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2758 validate, for_gcse))
2759 return 0;
2760 break;
2761
2762 case 's':
2763 if (strcmp (XSTR (x, i), XSTR (y, i)))
2764 return 0;
2765 break;
2766
2767 case 'i':
2768 if (XINT (x, i) != XINT (y, i))
2769 return 0;
2770 break;
2771
2772 case 'w':
2773 if (XWINT (x, i) != XWINT (y, i))
2774 return 0;
2775 break;
2776
2777 case '0':
2778 case 't':
2779 break;
2780
2781 default:
2782 gcc_unreachable ();
2783 }
2784 }
2785
2786 return 1;
2787 }
2788 \f
2789 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2790 the result if necessary. INSN is as for canon_reg. */
2791
2792 static void
2793 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2794 {
2795 if (*xloc)
2796 {
2797 rtx new_rtx = canon_reg (*xloc, insn);
2798
2799 /* If replacing pseudo with hard reg or vice versa, ensure the
2800 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2801 gcc_assert (insn && new_rtx);
2802 validate_change (insn, xloc, new_rtx, 1);
2803 }
2804 }
2805
2806 /* Canonicalize an expression:
2807 replace each register reference inside it
2808 with the "oldest" equivalent register.
2809
2810 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2811 after we make our substitution. The calls are made with IN_GROUP nonzero
2812 so apply_change_group must be called upon the outermost return from this
2813 function (unless INSN is zero). The result of apply_change_group can
2814 generally be discarded since the changes we are making are optional. */
2815
2816 static rtx
2817 canon_reg (rtx x, rtx_insn *insn)
2818 {
2819 int i;
2820 enum rtx_code code;
2821 const char *fmt;
2822
2823 if (x == 0)
2824 return x;
2825
2826 code = GET_CODE (x);
2827 switch (code)
2828 {
2829 case PC:
2830 case CC0:
2831 case CONST:
2832 CASE_CONST_ANY:
2833 case SYMBOL_REF:
2834 case LABEL_REF:
2835 case ADDR_VEC:
2836 case ADDR_DIFF_VEC:
2837 return x;
2838
2839 case REG:
2840 {
2841 int first;
2842 int q;
2843 struct qty_table_elem *ent;
2844
2845 /* Never replace a hard reg, because hard regs can appear
2846 in more than one machine mode, and we must preserve the mode
2847 of each occurrence. Also, some hard regs appear in
2848 MEMs that are shared and mustn't be altered. Don't try to
2849 replace any reg that maps to a reg of class NO_REGS. */
2850 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2851 || ! REGNO_QTY_VALID_P (REGNO (x)))
2852 return x;
2853
2854 q = REG_QTY (REGNO (x));
2855 ent = &qty_table[q];
2856 first = ent->first_reg;
2857 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2858 : REGNO_REG_CLASS (first) == NO_REGS ? x
2859 : gen_rtx_REG (ent->mode, first));
2860 }
2861
2862 default:
2863 break;
2864 }
2865
2866 fmt = GET_RTX_FORMAT (code);
2867 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2868 {
2869 int j;
2870
2871 if (fmt[i] == 'e')
2872 validate_canon_reg (&XEXP (x, i), insn);
2873 else if (fmt[i] == 'E')
2874 for (j = 0; j < XVECLEN (x, i); j++)
2875 validate_canon_reg (&XVECEXP (x, i, j), insn);
2876 }
2877
2878 return x;
2879 }
2880 \f
2881 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2882 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2883 what values are being compared.
2884
2885 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2886 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2887 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2888 compared to produce cc0.
2889
2890 The return value is the comparison operator and is either the code of
2891 A or the code corresponding to the inverse of the comparison. */
2892
2893 static enum rtx_code
2894 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2895 machine_mode *pmode1, machine_mode *pmode2)
2896 {
2897 rtx arg1, arg2;
2898 hash_set<rtx> *visited = NULL;
2899 /* Set nonzero when we find something of interest. */
2900 rtx x = NULL;
2901
2902 arg1 = *parg1, arg2 = *parg2;
2903
2904 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2905
2906 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2907 {
2908 int reverse_code = 0;
2909 struct table_elt *p = 0;
2910
2911 /* Remember state from previous iteration. */
2912 if (x)
2913 {
2914 if (!visited)
2915 visited = new hash_set<rtx>;
2916 visited->add (x);
2917 x = 0;
2918 }
2919
2920 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2921 On machines with CC0, this is the only case that can occur, since
2922 fold_rtx will return the COMPARE or item being compared with zero
2923 when given CC0. */
2924
2925 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2926 x = arg1;
2927
2928 /* If ARG1 is a comparison operator and CODE is testing for
2929 STORE_FLAG_VALUE, get the inner arguments. */
2930
2931 else if (COMPARISON_P (arg1))
2932 {
2933 #ifdef FLOAT_STORE_FLAG_VALUE
2934 REAL_VALUE_TYPE fsfv;
2935 #endif
2936
2937 if (code == NE
2938 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2939 && code == LT && STORE_FLAG_VALUE == -1)
2940 #ifdef FLOAT_STORE_FLAG_VALUE
2941 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2942 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2943 REAL_VALUE_NEGATIVE (fsfv)))
2944 #endif
2945 )
2946 x = arg1;
2947 else if (code == EQ
2948 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2949 && code == GE && STORE_FLAG_VALUE == -1)
2950 #ifdef FLOAT_STORE_FLAG_VALUE
2951 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2952 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2953 REAL_VALUE_NEGATIVE (fsfv)))
2954 #endif
2955 )
2956 x = arg1, reverse_code = 1;
2957 }
2958
2959 /* ??? We could also check for
2960
2961 (ne (and (eq (...) (const_int 1))) (const_int 0))
2962
2963 and related forms, but let's wait until we see them occurring. */
2964
2965 if (x == 0)
2966 /* Look up ARG1 in the hash table and see if it has an equivalence
2967 that lets us see what is being compared. */
2968 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2969 if (p)
2970 {
2971 p = p->first_same_value;
2972
2973 /* If what we compare is already known to be constant, that is as
2974 good as it gets.
2975 We need to break the loop in this case, because otherwise we
2976 can have an infinite loop when looking at a reg that is known
2977 to be a constant which is the same as a comparison of a reg
2978 against zero which appears later in the insn stream, which in
2979 turn is constant and the same as the comparison of the first reg
2980 against zero... */
2981 if (p->is_const)
2982 break;
2983 }
2984
2985 for (; p; p = p->next_same_value)
2986 {
2987 machine_mode inner_mode = GET_MODE (p->exp);
2988 #ifdef FLOAT_STORE_FLAG_VALUE
2989 REAL_VALUE_TYPE fsfv;
2990 #endif
2991
2992 /* If the entry isn't valid, skip it. */
2993 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2994 continue;
2995
2996 /* If it's a comparison we've used before, skip it. */
2997 if (visited && visited->contains (p->exp))
2998 continue;
2999
3000 if (GET_CODE (p->exp) == COMPARE
3001 /* Another possibility is that this machine has a compare insn
3002 that includes the comparison code. In that case, ARG1 would
3003 be equivalent to a comparison operation that would set ARG1 to
3004 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3005 ORIG_CODE is the actual comparison being done; if it is an EQ,
3006 we must reverse ORIG_CODE. On machine with a negative value
3007 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3008 || ((code == NE
3009 || (code == LT
3010 && val_signbit_known_set_p (inner_mode,
3011 STORE_FLAG_VALUE))
3012 #ifdef FLOAT_STORE_FLAG_VALUE
3013 || (code == LT
3014 && SCALAR_FLOAT_MODE_P (inner_mode)
3015 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3016 REAL_VALUE_NEGATIVE (fsfv)))
3017 #endif
3018 )
3019 && COMPARISON_P (p->exp)))
3020 {
3021 x = p->exp;
3022 break;
3023 }
3024 else if ((code == EQ
3025 || (code == GE
3026 && val_signbit_known_set_p (inner_mode,
3027 STORE_FLAG_VALUE))
3028 #ifdef FLOAT_STORE_FLAG_VALUE
3029 || (code == GE
3030 && SCALAR_FLOAT_MODE_P (inner_mode)
3031 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3032 REAL_VALUE_NEGATIVE (fsfv)))
3033 #endif
3034 )
3035 && COMPARISON_P (p->exp))
3036 {
3037 reverse_code = 1;
3038 x = p->exp;
3039 break;
3040 }
3041
3042 /* If this non-trapping address, e.g. fp + constant, the
3043 equivalent is a better operand since it may let us predict
3044 the value of the comparison. */
3045 else if (!rtx_addr_can_trap_p (p->exp))
3046 {
3047 arg1 = p->exp;
3048 continue;
3049 }
3050 }
3051
3052 /* If we didn't find a useful equivalence for ARG1, we are done.
3053 Otherwise, set up for the next iteration. */
3054 if (x == 0)
3055 break;
3056
3057 /* If we need to reverse the comparison, make sure that that is
3058 possible -- we can't necessarily infer the value of GE from LT
3059 with floating-point operands. */
3060 if (reverse_code)
3061 {
3062 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3063 if (reversed == UNKNOWN)
3064 break;
3065 else
3066 code = reversed;
3067 }
3068 else if (COMPARISON_P (x))
3069 code = GET_CODE (x);
3070 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3071 }
3072
3073 /* Return our results. Return the modes from before fold_rtx
3074 because fold_rtx might produce const_int, and then it's too late. */
3075 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3076 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3077
3078 if (visited)
3079 delete visited;
3080 return code;
3081 }
3082 \f
3083 /* If X is a nontrivial arithmetic operation on an argument for which
3084 a constant value can be determined, return the result of operating
3085 on that value, as a constant. Otherwise, return X, possibly with
3086 one or more operands changed to a forward-propagated constant.
3087
3088 If X is a register whose contents are known, we do NOT return
3089 those contents here; equiv_constant is called to perform that task.
3090 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3091
3092 INSN is the insn that we may be modifying. If it is 0, make a copy
3093 of X before modifying it. */
3094
3095 static rtx
3096 fold_rtx (rtx x, rtx_insn *insn)
3097 {
3098 enum rtx_code code;
3099 machine_mode mode;
3100 const char *fmt;
3101 int i;
3102 rtx new_rtx = 0;
3103 int changed = 0;
3104
3105 /* Operands of X. */
3106 /* Workaround -Wmaybe-uninitialized false positive during
3107 profiledbootstrap by initializing them. */
3108 rtx folded_arg0 = NULL_RTX;
3109 rtx folded_arg1 = NULL_RTX;
3110
3111 /* Constant equivalents of first three operands of X;
3112 0 when no such equivalent is known. */
3113 rtx const_arg0;
3114 rtx const_arg1;
3115 rtx const_arg2;
3116
3117 /* The mode of the first operand of X. We need this for sign and zero
3118 extends. */
3119 machine_mode mode_arg0;
3120
3121 if (x == 0)
3122 return x;
3123
3124 /* Try to perform some initial simplifications on X. */
3125 code = GET_CODE (x);
3126 switch (code)
3127 {
3128 case MEM:
3129 case SUBREG:
3130 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3131 than it would in other contexts. Basically its mode does not
3132 signify the size of the object read. That information is carried
3133 by size operand. If we happen to have a MEM of the appropriate
3134 mode in our tables with a constant value we could simplify the
3135 extraction incorrectly if we allowed substitution of that value
3136 for the MEM. */
3137 case ZERO_EXTRACT:
3138 case SIGN_EXTRACT:
3139 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3140 return new_rtx;
3141 return x;
3142
3143 case CONST:
3144 CASE_CONST_ANY:
3145 case SYMBOL_REF:
3146 case LABEL_REF:
3147 case REG:
3148 case PC:
3149 /* No use simplifying an EXPR_LIST
3150 since they are used only for lists of args
3151 in a function call's REG_EQUAL note. */
3152 case EXPR_LIST:
3153 return x;
3154
3155 case CC0:
3156 return prev_insn_cc0;
3157
3158 case ASM_OPERANDS:
3159 if (insn)
3160 {
3161 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3162 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3163 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3164 }
3165 return x;
3166
3167 case CALL:
3168 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3169 return x;
3170 break;
3171
3172 /* Anything else goes through the loop below. */
3173 default:
3174 break;
3175 }
3176
3177 mode = GET_MODE (x);
3178 const_arg0 = 0;
3179 const_arg1 = 0;
3180 const_arg2 = 0;
3181 mode_arg0 = VOIDmode;
3182
3183 /* Try folding our operands.
3184 Then see which ones have constant values known. */
3185
3186 fmt = GET_RTX_FORMAT (code);
3187 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3188 if (fmt[i] == 'e')
3189 {
3190 rtx folded_arg = XEXP (x, i), const_arg;
3191 machine_mode mode_arg = GET_MODE (folded_arg);
3192
3193 switch (GET_CODE (folded_arg))
3194 {
3195 case MEM:
3196 case REG:
3197 case SUBREG:
3198 const_arg = equiv_constant (folded_arg);
3199 break;
3200
3201 case CONST:
3202 CASE_CONST_ANY:
3203 case SYMBOL_REF:
3204 case LABEL_REF:
3205 const_arg = folded_arg;
3206 break;
3207
3208 case CC0:
3209 /* The cc0-user and cc0-setter may be in different blocks if
3210 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3211 will have been cleared as we exited the block with the
3212 setter.
3213
3214 While we could potentially track cc0 in this case, it just
3215 doesn't seem to be worth it given that cc0 targets are not
3216 terribly common or important these days and trapping math
3217 is rarely used. The combination of those two conditions
3218 necessary to trip this situation is exceedingly rare in the
3219 real world. */
3220 if (!prev_insn_cc0)
3221 {
3222 const_arg = NULL_RTX;
3223 }
3224 else
3225 {
3226 folded_arg = prev_insn_cc0;
3227 mode_arg = prev_insn_cc0_mode;
3228 const_arg = equiv_constant (folded_arg);
3229 }
3230 break;
3231
3232 default:
3233 folded_arg = fold_rtx (folded_arg, insn);
3234 const_arg = equiv_constant (folded_arg);
3235 break;
3236 }
3237
3238 /* For the first three operands, see if the operand
3239 is constant or equivalent to a constant. */
3240 switch (i)
3241 {
3242 case 0:
3243 folded_arg0 = folded_arg;
3244 const_arg0 = const_arg;
3245 mode_arg0 = mode_arg;
3246 break;
3247 case 1:
3248 folded_arg1 = folded_arg;
3249 const_arg1 = const_arg;
3250 break;
3251 case 2:
3252 const_arg2 = const_arg;
3253 break;
3254 }
3255
3256 /* Pick the least expensive of the argument and an equivalent constant
3257 argument. */
3258 if (const_arg != 0
3259 && const_arg != folded_arg
3260 && (COST_IN (const_arg, mode_arg, code, i)
3261 <= COST_IN (folded_arg, mode_arg, code, i))
3262
3263 /* It's not safe to substitute the operand of a conversion
3264 operator with a constant, as the conversion's identity
3265 depends upon the mode of its operand. This optimization
3266 is handled by the call to simplify_unary_operation. */
3267 && (GET_RTX_CLASS (code) != RTX_UNARY
3268 || GET_MODE (const_arg) == mode_arg0
3269 || (code != ZERO_EXTEND
3270 && code != SIGN_EXTEND
3271 && code != TRUNCATE
3272 && code != FLOAT_TRUNCATE
3273 && code != FLOAT_EXTEND
3274 && code != FLOAT
3275 && code != FIX
3276 && code != UNSIGNED_FLOAT
3277 && code != UNSIGNED_FIX)))
3278 folded_arg = const_arg;
3279
3280 if (folded_arg == XEXP (x, i))
3281 continue;
3282
3283 if (insn == NULL_RTX && !changed)
3284 x = copy_rtx (x);
3285 changed = 1;
3286 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3287 }
3288
3289 if (changed)
3290 {
3291 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3292 consistent with the order in X. */
3293 if (canonicalize_change_group (insn, x))
3294 {
3295 rtx tem;
3296 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3297 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3298 }
3299
3300 apply_change_group ();
3301 }
3302
3303 /* If X is an arithmetic operation, see if we can simplify it. */
3304
3305 switch (GET_RTX_CLASS (code))
3306 {
3307 case RTX_UNARY:
3308 {
3309 /* We can't simplify extension ops unless we know the
3310 original mode. */
3311 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3312 && mode_arg0 == VOIDmode)
3313 break;
3314
3315 new_rtx = simplify_unary_operation (code, mode,
3316 const_arg0 ? const_arg0 : folded_arg0,
3317 mode_arg0);
3318 }
3319 break;
3320
3321 case RTX_COMPARE:
3322 case RTX_COMM_COMPARE:
3323 /* See what items are actually being compared and set FOLDED_ARG[01]
3324 to those values and CODE to the actual comparison code. If any are
3325 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3326 do anything if both operands are already known to be constant. */
3327
3328 /* ??? Vector mode comparisons are not supported yet. */
3329 if (VECTOR_MODE_P (mode))
3330 break;
3331
3332 if (const_arg0 == 0 || const_arg1 == 0)
3333 {
3334 struct table_elt *p0, *p1;
3335 rtx true_rtx, false_rtx;
3336 machine_mode mode_arg1;
3337
3338 if (SCALAR_FLOAT_MODE_P (mode))
3339 {
3340 #ifdef FLOAT_STORE_FLAG_VALUE
3341 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3342 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3343 #else
3344 true_rtx = NULL_RTX;
3345 #endif
3346 false_rtx = CONST0_RTX (mode);
3347 }
3348 else
3349 {
3350 true_rtx = const_true_rtx;
3351 false_rtx = const0_rtx;
3352 }
3353
3354 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3355 &mode_arg0, &mode_arg1);
3356
3357 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3358 what kinds of things are being compared, so we can't do
3359 anything with this comparison. */
3360
3361 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3362 break;
3363
3364 const_arg0 = equiv_constant (folded_arg0);
3365 const_arg1 = equiv_constant (folded_arg1);
3366
3367 /* If we do not now have two constants being compared, see
3368 if we can nevertheless deduce some things about the
3369 comparison. */
3370 if (const_arg0 == 0 || const_arg1 == 0)
3371 {
3372 if (const_arg1 != NULL)
3373 {
3374 rtx cheapest_simplification;
3375 int cheapest_cost;
3376 rtx simp_result;
3377 struct table_elt *p;
3378
3379 /* See if we can find an equivalent of folded_arg0
3380 that gets us a cheaper expression, possibly a
3381 constant through simplifications. */
3382 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3383 mode_arg0);
3384
3385 if (p != NULL)
3386 {
3387 cheapest_simplification = x;
3388 cheapest_cost = COST (x, mode);
3389
3390 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3391 {
3392 int cost;
3393
3394 /* If the entry isn't valid, skip it. */
3395 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3396 continue;
3397
3398 /* Try to simplify using this equivalence. */
3399 simp_result
3400 = simplify_relational_operation (code, mode,
3401 mode_arg0,
3402 p->exp,
3403 const_arg1);
3404
3405 if (simp_result == NULL)
3406 continue;
3407
3408 cost = COST (simp_result, mode);
3409 if (cost < cheapest_cost)
3410 {
3411 cheapest_cost = cost;
3412 cheapest_simplification = simp_result;
3413 }
3414 }
3415
3416 /* If we have a cheaper expression now, use that
3417 and try folding it further, from the top. */
3418 if (cheapest_simplification != x)
3419 return fold_rtx (copy_rtx (cheapest_simplification),
3420 insn);
3421 }
3422 }
3423
3424 /* See if the two operands are the same. */
3425
3426 if ((REG_P (folded_arg0)
3427 && REG_P (folded_arg1)
3428 && (REG_QTY (REGNO (folded_arg0))
3429 == REG_QTY (REGNO (folded_arg1))))
3430 || ((p0 = lookup (folded_arg0,
3431 SAFE_HASH (folded_arg0, mode_arg0),
3432 mode_arg0))
3433 && (p1 = lookup (folded_arg1,
3434 SAFE_HASH (folded_arg1, mode_arg0),
3435 mode_arg0))
3436 && p0->first_same_value == p1->first_same_value))
3437 folded_arg1 = folded_arg0;
3438
3439 /* If FOLDED_ARG0 is a register, see if the comparison we are
3440 doing now is either the same as we did before or the reverse
3441 (we only check the reverse if not floating-point). */
3442 else if (REG_P (folded_arg0))
3443 {
3444 int qty = REG_QTY (REGNO (folded_arg0));
3445
3446 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3447 {
3448 struct qty_table_elem *ent = &qty_table[qty];
3449
3450 if ((comparison_dominates_p (ent->comparison_code, code)
3451 || (! FLOAT_MODE_P (mode_arg0)
3452 && comparison_dominates_p (ent->comparison_code,
3453 reverse_condition (code))))
3454 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3455 || (const_arg1
3456 && rtx_equal_p (ent->comparison_const,
3457 const_arg1))
3458 || (REG_P (folded_arg1)
3459 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3460 {
3461 if (comparison_dominates_p (ent->comparison_code, code))
3462 {
3463 if (true_rtx)
3464 return true_rtx;
3465 else
3466 break;
3467 }
3468 else
3469 return false_rtx;
3470 }
3471 }
3472 }
3473 }
3474 }
3475
3476 /* If we are comparing against zero, see if the first operand is
3477 equivalent to an IOR with a constant. If so, we may be able to
3478 determine the result of this comparison. */
3479 if (const_arg1 == const0_rtx && !const_arg0)
3480 {
3481 rtx y = lookup_as_function (folded_arg0, IOR);
3482 rtx inner_const;
3483
3484 if (y != 0
3485 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3486 && CONST_INT_P (inner_const)
3487 && INTVAL (inner_const) != 0)
3488 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3489 }
3490
3491 {
3492 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3493 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3494 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3495 op0, op1);
3496 }
3497 break;
3498
3499 case RTX_BIN_ARITH:
3500 case RTX_COMM_ARITH:
3501 switch (code)
3502 {
3503 case PLUS:
3504 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3505 with that LABEL_REF as its second operand. If so, the result is
3506 the first operand of that MINUS. This handles switches with an
3507 ADDR_DIFF_VEC table. */
3508 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3509 {
3510 rtx y
3511 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3512 : lookup_as_function (folded_arg0, MINUS);
3513
3514 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3515 && LABEL_REF_LABEL (XEXP (y, 1)) == LABEL_REF_LABEL (const_arg1))
3516 return XEXP (y, 0);
3517
3518 /* Now try for a CONST of a MINUS like the above. */
3519 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3520 : lookup_as_function (folded_arg0, CONST))) != 0
3521 && GET_CODE (XEXP (y, 0)) == MINUS
3522 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3523 && LABEL_REF_LABEL (XEXP (XEXP (y, 0), 1)) == LABEL_REF_LABEL (const_arg1))
3524 return XEXP (XEXP (y, 0), 0);
3525 }
3526
3527 /* Likewise if the operands are in the other order. */
3528 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3529 {
3530 rtx y
3531 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3532 : lookup_as_function (folded_arg1, MINUS);
3533
3534 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3535 && LABEL_REF_LABEL (XEXP (y, 1)) == LABEL_REF_LABEL (const_arg0))
3536 return XEXP (y, 0);
3537
3538 /* Now try for a CONST of a MINUS like the above. */
3539 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3540 : lookup_as_function (folded_arg1, CONST))) != 0
3541 && GET_CODE (XEXP (y, 0)) == MINUS
3542 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3543 && LABEL_REF_LABEL (XEXP (XEXP (y, 0), 1)) == LABEL_REF_LABEL (const_arg0))
3544 return XEXP (XEXP (y, 0), 0);
3545 }
3546
3547 /* If second operand is a register equivalent to a negative
3548 CONST_INT, see if we can find a register equivalent to the
3549 positive constant. Make a MINUS if so. Don't do this for
3550 a non-negative constant since we might then alternate between
3551 choosing positive and negative constants. Having the positive
3552 constant previously-used is the more common case. Be sure
3553 the resulting constant is non-negative; if const_arg1 were
3554 the smallest negative number this would overflow: depending
3555 on the mode, this would either just be the same value (and
3556 hence not save anything) or be incorrect. */
3557 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3558 && INTVAL (const_arg1) < 0
3559 /* This used to test
3560
3561 -INTVAL (const_arg1) >= 0
3562
3563 But The Sun V5.0 compilers mis-compiled that test. So
3564 instead we test for the problematic value in a more direct
3565 manner and hope the Sun compilers get it correct. */
3566 && INTVAL (const_arg1) !=
3567 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3568 && REG_P (folded_arg1))
3569 {
3570 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3571 struct table_elt *p
3572 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3573
3574 if (p)
3575 for (p = p->first_same_value; p; p = p->next_same_value)
3576 if (REG_P (p->exp))
3577 return simplify_gen_binary (MINUS, mode, folded_arg0,
3578 canon_reg (p->exp, NULL));
3579 }
3580 goto from_plus;
3581
3582 case MINUS:
3583 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3584 If so, produce (PLUS Z C2-C). */
3585 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3586 {
3587 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3588 if (y && CONST_INT_P (XEXP (y, 1)))
3589 return fold_rtx (plus_constant (mode, copy_rtx (y),
3590 -INTVAL (const_arg1)),
3591 NULL);
3592 }
3593
3594 /* Fall through. */
3595
3596 from_plus:
3597 case SMIN: case SMAX: case UMIN: case UMAX:
3598 case IOR: case AND: case XOR:
3599 case MULT:
3600 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3601 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3602 is known to be of similar form, we may be able to replace the
3603 operation with a combined operation. This may eliminate the
3604 intermediate operation if every use is simplified in this way.
3605 Note that the similar optimization done by combine.c only works
3606 if the intermediate operation's result has only one reference. */
3607
3608 if (REG_P (folded_arg0)
3609 && const_arg1 && CONST_INT_P (const_arg1))
3610 {
3611 int is_shift
3612 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3613 rtx y, inner_const, new_const;
3614 rtx canon_const_arg1 = const_arg1;
3615 enum rtx_code associate_code;
3616
3617 if (is_shift
3618 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3619 || INTVAL (const_arg1) < 0))
3620 {
3621 if (SHIFT_COUNT_TRUNCATED)
3622 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3623 & (GET_MODE_BITSIZE (mode)
3624 - 1));
3625 else
3626 break;
3627 }
3628
3629 y = lookup_as_function (folded_arg0, code);
3630 if (y == 0)
3631 break;
3632
3633 /* If we have compiled a statement like
3634 "if (x == (x & mask1))", and now are looking at
3635 "x & mask2", we will have a case where the first operand
3636 of Y is the same as our first operand. Unless we detect
3637 this case, an infinite loop will result. */
3638 if (XEXP (y, 0) == folded_arg0)
3639 break;
3640
3641 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3642 if (!inner_const || !CONST_INT_P (inner_const))
3643 break;
3644
3645 /* Don't associate these operations if they are a PLUS with the
3646 same constant and it is a power of two. These might be doable
3647 with a pre- or post-increment. Similarly for two subtracts of
3648 identical powers of two with post decrement. */
3649
3650 if (code == PLUS && const_arg1 == inner_const
3651 && ((HAVE_PRE_INCREMENT
3652 && exact_log2 (INTVAL (const_arg1)) >= 0)
3653 || (HAVE_POST_INCREMENT
3654 && exact_log2 (INTVAL (const_arg1)) >= 0)
3655 || (HAVE_PRE_DECREMENT
3656 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3657 || (HAVE_POST_DECREMENT
3658 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3659 break;
3660
3661 /* ??? Vector mode shifts by scalar
3662 shift operand are not supported yet. */
3663 if (is_shift && VECTOR_MODE_P (mode))
3664 break;
3665
3666 if (is_shift
3667 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3668 || INTVAL (inner_const) < 0))
3669 {
3670 if (SHIFT_COUNT_TRUNCATED)
3671 inner_const = GEN_INT (INTVAL (inner_const)
3672 & (GET_MODE_BITSIZE (mode) - 1));
3673 else
3674 break;
3675 }
3676
3677 /* Compute the code used to compose the constants. For example,
3678 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3679
3680 associate_code = (is_shift || code == MINUS ? PLUS : code);
3681
3682 new_const = simplify_binary_operation (associate_code, mode,
3683 canon_const_arg1,
3684 inner_const);
3685
3686 if (new_const == 0)
3687 break;
3688
3689 /* If we are associating shift operations, don't let this
3690 produce a shift of the size of the object or larger.
3691 This could occur when we follow a sign-extend by a right
3692 shift on a machine that does a sign-extend as a pair
3693 of shifts. */
3694
3695 if (is_shift
3696 && CONST_INT_P (new_const)
3697 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3698 {
3699 /* As an exception, we can turn an ASHIFTRT of this
3700 form into a shift of the number of bits - 1. */
3701 if (code == ASHIFTRT)
3702 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3703 else if (!side_effects_p (XEXP (y, 0)))
3704 return CONST0_RTX (mode);
3705 else
3706 break;
3707 }
3708
3709 y = copy_rtx (XEXP (y, 0));
3710
3711 /* If Y contains our first operand (the most common way this
3712 can happen is if Y is a MEM), we would do into an infinite
3713 loop if we tried to fold it. So don't in that case. */
3714
3715 if (! reg_mentioned_p (folded_arg0, y))
3716 y = fold_rtx (y, insn);
3717
3718 return simplify_gen_binary (code, mode, y, new_const);
3719 }
3720 break;
3721
3722 case DIV: case UDIV:
3723 /* ??? The associative optimization performed immediately above is
3724 also possible for DIV and UDIV using associate_code of MULT.
3725 However, we would need extra code to verify that the
3726 multiplication does not overflow, that is, there is no overflow
3727 in the calculation of new_const. */
3728 break;
3729
3730 default:
3731 break;
3732 }
3733
3734 new_rtx = simplify_binary_operation (code, mode,
3735 const_arg0 ? const_arg0 : folded_arg0,
3736 const_arg1 ? const_arg1 : folded_arg1);
3737 break;
3738
3739 case RTX_OBJ:
3740 /* (lo_sum (high X) X) is simply X. */
3741 if (code == LO_SUM && const_arg0 != 0
3742 && GET_CODE (const_arg0) == HIGH
3743 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3744 return const_arg1;
3745 break;
3746
3747 case RTX_TERNARY:
3748 case RTX_BITFIELD_OPS:
3749 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3750 const_arg0 ? const_arg0 : folded_arg0,
3751 const_arg1 ? const_arg1 : folded_arg1,
3752 const_arg2 ? const_arg2 : XEXP (x, 2));
3753 break;
3754
3755 default:
3756 break;
3757 }
3758
3759 return new_rtx ? new_rtx : x;
3760 }
3761 \f
3762 /* Return a constant value currently equivalent to X.
3763 Return 0 if we don't know one. */
3764
3765 static rtx
3766 equiv_constant (rtx x)
3767 {
3768 if (REG_P (x)
3769 && REGNO_QTY_VALID_P (REGNO (x)))
3770 {
3771 int x_q = REG_QTY (REGNO (x));
3772 struct qty_table_elem *x_ent = &qty_table[x_q];
3773
3774 if (x_ent->const_rtx)
3775 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3776 }
3777
3778 if (x == 0 || CONSTANT_P (x))
3779 return x;
3780
3781 if (GET_CODE (x) == SUBREG)
3782 {
3783 machine_mode mode = GET_MODE (x);
3784 machine_mode imode = GET_MODE (SUBREG_REG (x));
3785 rtx new_rtx;
3786
3787 /* See if we previously assigned a constant value to this SUBREG. */
3788 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3789 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3790 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3791 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3792 return new_rtx;
3793
3794 /* If we didn't and if doing so makes sense, see if we previously
3795 assigned a constant value to the enclosing word mode SUBREG. */
3796 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3797 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3798 {
3799 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3800 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3801 {
3802 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3803 new_rtx = lookup_as_function (y, CONST_INT);
3804 if (new_rtx)
3805 return gen_lowpart (mode, new_rtx);
3806 }
3807 }
3808
3809 /* Otherwise see if we already have a constant for the inner REG,
3810 and if that is enough to calculate an equivalent constant for
3811 the subreg. Note that the upper bits of paradoxical subregs
3812 are undefined, so they cannot be said to equal anything. */
3813 if (REG_P (SUBREG_REG (x))
3814 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3815 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3816 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3817
3818 return 0;
3819 }
3820
3821 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3822 the hash table in case its value was seen before. */
3823
3824 if (MEM_P (x))
3825 {
3826 struct table_elt *elt;
3827
3828 x = avoid_constant_pool_reference (x);
3829 if (CONSTANT_P (x))
3830 return x;
3831
3832 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3833 if (elt == 0)
3834 return 0;
3835
3836 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3837 if (elt->is_const && CONSTANT_P (elt->exp))
3838 return elt->exp;
3839 }
3840
3841 return 0;
3842 }
3843 \f
3844 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3845 "taken" branch.
3846
3847 In certain cases, this can cause us to add an equivalence. For example,
3848 if we are following the taken case of
3849 if (i == 2)
3850 we can add the fact that `i' and '2' are now equivalent.
3851
3852 In any case, we can record that this comparison was passed. If the same
3853 comparison is seen later, we will know its value. */
3854
3855 static void
3856 record_jump_equiv (rtx_insn *insn, bool taken)
3857 {
3858 int cond_known_true;
3859 rtx op0, op1;
3860 rtx set;
3861 machine_mode mode, mode0, mode1;
3862 int reversed_nonequality = 0;
3863 enum rtx_code code;
3864
3865 /* Ensure this is the right kind of insn. */
3866 gcc_assert (any_condjump_p (insn));
3867
3868 set = pc_set (insn);
3869
3870 /* See if this jump condition is known true or false. */
3871 if (taken)
3872 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3873 else
3874 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3875
3876 /* Get the type of comparison being done and the operands being compared.
3877 If we had to reverse a non-equality condition, record that fact so we
3878 know that it isn't valid for floating-point. */
3879 code = GET_CODE (XEXP (SET_SRC (set), 0));
3880 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3881 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3882
3883 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3884 if (! cond_known_true)
3885 {
3886 code = reversed_comparison_code_parts (code, op0, op1, insn);
3887
3888 /* Don't remember if we can't find the inverse. */
3889 if (code == UNKNOWN)
3890 return;
3891 }
3892
3893 /* The mode is the mode of the non-constant. */
3894 mode = mode0;
3895 if (mode1 != VOIDmode)
3896 mode = mode1;
3897
3898 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3899 }
3900
3901 /* Yet another form of subreg creation. In this case, we want something in
3902 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3903
3904 static rtx
3905 record_jump_cond_subreg (machine_mode mode, rtx op)
3906 {
3907 machine_mode op_mode = GET_MODE (op);
3908 if (op_mode == mode || op_mode == VOIDmode)
3909 return op;
3910 return lowpart_subreg (mode, op, op_mode);
3911 }
3912
3913 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3914 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3915 Make any useful entries we can with that information. Called from
3916 above function and called recursively. */
3917
3918 static void
3919 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3920 rtx op1, int reversed_nonequality)
3921 {
3922 unsigned op0_hash, op1_hash;
3923 int op0_in_memory, op1_in_memory;
3924 struct table_elt *op0_elt, *op1_elt;
3925
3926 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3927 we know that they are also equal in the smaller mode (this is also
3928 true for all smaller modes whether or not there is a SUBREG, but
3929 is not worth testing for with no SUBREG). */
3930
3931 /* Note that GET_MODE (op0) may not equal MODE. */
3932 if (code == EQ && paradoxical_subreg_p (op0))
3933 {
3934 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3935 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3936 if (tem)
3937 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3938 reversed_nonequality);
3939 }
3940
3941 if (code == EQ && paradoxical_subreg_p (op1))
3942 {
3943 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3944 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3945 if (tem)
3946 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3947 reversed_nonequality);
3948 }
3949
3950 /* Similarly, if this is an NE comparison, and either is a SUBREG
3951 making a smaller mode, we know the whole thing is also NE. */
3952
3953 /* Note that GET_MODE (op0) may not equal MODE;
3954 if we test MODE instead, we can get an infinite recursion
3955 alternating between two modes each wider than MODE. */
3956
3957 if (code == NE && GET_CODE (op0) == SUBREG
3958 && subreg_lowpart_p (op0)
3959 && (GET_MODE_SIZE (GET_MODE (op0))
3960 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3961 {
3962 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3963 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3964 if (tem)
3965 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3966 reversed_nonequality);
3967 }
3968
3969 if (code == NE && GET_CODE (op1) == SUBREG
3970 && subreg_lowpart_p (op1)
3971 && (GET_MODE_SIZE (GET_MODE (op1))
3972 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3973 {
3974 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3975 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3976 if (tem)
3977 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3978 reversed_nonequality);
3979 }
3980
3981 /* Hash both operands. */
3982
3983 do_not_record = 0;
3984 hash_arg_in_memory = 0;
3985 op0_hash = HASH (op0, mode);
3986 op0_in_memory = hash_arg_in_memory;
3987
3988 if (do_not_record)
3989 return;
3990
3991 do_not_record = 0;
3992 hash_arg_in_memory = 0;
3993 op1_hash = HASH (op1, mode);
3994 op1_in_memory = hash_arg_in_memory;
3995
3996 if (do_not_record)
3997 return;
3998
3999 /* Look up both operands. */
4000 op0_elt = lookup (op0, op0_hash, mode);
4001 op1_elt = lookup (op1, op1_hash, mode);
4002
4003 /* If both operands are already equivalent or if they are not in the
4004 table but are identical, do nothing. */
4005 if ((op0_elt != 0 && op1_elt != 0
4006 && op0_elt->first_same_value == op1_elt->first_same_value)
4007 || op0 == op1 || rtx_equal_p (op0, op1))
4008 return;
4009
4010 /* If we aren't setting two things equal all we can do is save this
4011 comparison. Similarly if this is floating-point. In the latter
4012 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4013 If we record the equality, we might inadvertently delete code
4014 whose intent was to change -0 to +0. */
4015
4016 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4017 {
4018 struct qty_table_elem *ent;
4019 int qty;
4020
4021 /* If we reversed a floating-point comparison, if OP0 is not a
4022 register, or if OP1 is neither a register or constant, we can't
4023 do anything. */
4024
4025 if (!REG_P (op1))
4026 op1 = equiv_constant (op1);
4027
4028 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4029 || !REG_P (op0) || op1 == 0)
4030 return;
4031
4032 /* Put OP0 in the hash table if it isn't already. This gives it a
4033 new quantity number. */
4034 if (op0_elt == 0)
4035 {
4036 if (insert_regs (op0, NULL, 0))
4037 {
4038 rehash_using_reg (op0);
4039 op0_hash = HASH (op0, mode);
4040
4041 /* If OP0 is contained in OP1, this changes its hash code
4042 as well. Faster to rehash than to check, except
4043 for the simple case of a constant. */
4044 if (! CONSTANT_P (op1))
4045 op1_hash = HASH (op1,mode);
4046 }
4047
4048 op0_elt = insert (op0, NULL, op0_hash, mode);
4049 op0_elt->in_memory = op0_in_memory;
4050 }
4051
4052 qty = REG_QTY (REGNO (op0));
4053 ent = &qty_table[qty];
4054
4055 ent->comparison_code = code;
4056 if (REG_P (op1))
4057 {
4058 /* Look it up again--in case op0 and op1 are the same. */
4059 op1_elt = lookup (op1, op1_hash, mode);
4060
4061 /* Put OP1 in the hash table so it gets a new quantity number. */
4062 if (op1_elt == 0)
4063 {
4064 if (insert_regs (op1, NULL, 0))
4065 {
4066 rehash_using_reg (op1);
4067 op1_hash = HASH (op1, mode);
4068 }
4069
4070 op1_elt = insert (op1, NULL, op1_hash, mode);
4071 op1_elt->in_memory = op1_in_memory;
4072 }
4073
4074 ent->comparison_const = NULL_RTX;
4075 ent->comparison_qty = REG_QTY (REGNO (op1));
4076 }
4077 else
4078 {
4079 ent->comparison_const = op1;
4080 ent->comparison_qty = -1;
4081 }
4082
4083 return;
4084 }
4085
4086 /* If either side is still missing an equivalence, make it now,
4087 then merge the equivalences. */
4088
4089 if (op0_elt == 0)
4090 {
4091 if (insert_regs (op0, NULL, 0))
4092 {
4093 rehash_using_reg (op0);
4094 op0_hash = HASH (op0, mode);
4095 }
4096
4097 op0_elt = insert (op0, NULL, op0_hash, mode);
4098 op0_elt->in_memory = op0_in_memory;
4099 }
4100
4101 if (op1_elt == 0)
4102 {
4103 if (insert_regs (op1, NULL, 0))
4104 {
4105 rehash_using_reg (op1);
4106 op1_hash = HASH (op1, mode);
4107 }
4108
4109 op1_elt = insert (op1, NULL, op1_hash, mode);
4110 op1_elt->in_memory = op1_in_memory;
4111 }
4112
4113 merge_equiv_classes (op0_elt, op1_elt);
4114 }
4115 \f
4116 /* CSE processing for one instruction.
4117
4118 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4119 but the few that "leak through" are cleaned up by cse_insn, and complex
4120 addressing modes are often formed here.
4121
4122 The main function is cse_insn, and between here and that function
4123 a couple of helper functions is defined to keep the size of cse_insn
4124 within reasonable proportions.
4125
4126 Data is shared between the main and helper functions via STRUCT SET,
4127 that contains all data related for every set in the instruction that
4128 is being processed.
4129
4130 Note that cse_main processes all sets in the instruction. Most
4131 passes in GCC only process simple SET insns or single_set insns, but
4132 CSE processes insns with multiple sets as well. */
4133
4134 /* Data on one SET contained in the instruction. */
4135
4136 struct set
4137 {
4138 /* The SET rtx itself. */
4139 rtx rtl;
4140 /* The SET_SRC of the rtx (the original value, if it is changing). */
4141 rtx src;
4142 /* The hash-table element for the SET_SRC of the SET. */
4143 struct table_elt *src_elt;
4144 /* Hash value for the SET_SRC. */
4145 unsigned src_hash;
4146 /* Hash value for the SET_DEST. */
4147 unsigned dest_hash;
4148 /* The SET_DEST, with SUBREG, etc., stripped. */
4149 rtx inner_dest;
4150 /* Nonzero if the SET_SRC is in memory. */
4151 char src_in_memory;
4152 /* Nonzero if the SET_SRC contains something
4153 whose value cannot be predicted and understood. */
4154 char src_volatile;
4155 /* Original machine mode, in case it becomes a CONST_INT.
4156 The size of this field should match the size of the mode
4157 field of struct rtx_def (see rtl.h). */
4158 ENUM_BITFIELD(machine_mode) mode : 8;
4159 /* A constant equivalent for SET_SRC, if any. */
4160 rtx src_const;
4161 /* Hash value of constant equivalent for SET_SRC. */
4162 unsigned src_const_hash;
4163 /* Table entry for constant equivalent for SET_SRC, if any. */
4164 struct table_elt *src_const_elt;
4165 /* Table entry for the destination address. */
4166 struct table_elt *dest_addr_elt;
4167 };
4168 \f
4169 /* Special handling for (set REG0 REG1) where REG0 is the
4170 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4171 be used in the sequel, so (if easily done) change this insn to
4172 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4173 that computed their value. Then REG1 will become a dead store
4174 and won't cloud the situation for later optimizations.
4175
4176 Do not make this change if REG1 is a hard register, because it will
4177 then be used in the sequel and we may be changing a two-operand insn
4178 into a three-operand insn.
4179
4180 This is the last transformation that cse_insn will try to do. */
4181
4182 static void
4183 try_back_substitute_reg (rtx set, rtx_insn *insn)
4184 {
4185 rtx dest = SET_DEST (set);
4186 rtx src = SET_SRC (set);
4187
4188 if (REG_P (dest)
4189 && REG_P (src) && ! HARD_REGISTER_P (src)
4190 && REGNO_QTY_VALID_P (REGNO (src)))
4191 {
4192 int src_q = REG_QTY (REGNO (src));
4193 struct qty_table_elem *src_ent = &qty_table[src_q];
4194
4195 if (src_ent->first_reg == REGNO (dest))
4196 {
4197 /* Scan for the previous nonnote insn, but stop at a basic
4198 block boundary. */
4199 rtx_insn *prev = insn;
4200 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4201 do
4202 {
4203 prev = PREV_INSN (prev);
4204 }
4205 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4206
4207 /* Do not swap the registers around if the previous instruction
4208 attaches a REG_EQUIV note to REG1.
4209
4210 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4211 from the pseudo that originally shadowed an incoming argument
4212 to another register. Some uses of REG_EQUIV might rely on it
4213 being attached to REG1 rather than REG2.
4214
4215 This section previously turned the REG_EQUIV into a REG_EQUAL
4216 note. We cannot do that because REG_EQUIV may provide an
4217 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4218 if (NONJUMP_INSN_P (prev)
4219 && GET_CODE (PATTERN (prev)) == SET
4220 && SET_DEST (PATTERN (prev)) == src
4221 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4222 {
4223 rtx note;
4224
4225 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4226 validate_change (insn, &SET_DEST (set), src, 1);
4227 validate_change (insn, &SET_SRC (set), dest, 1);
4228 apply_change_group ();
4229
4230 /* If INSN has a REG_EQUAL note, and this note mentions
4231 REG0, then we must delete it, because the value in
4232 REG0 has changed. If the note's value is REG1, we must
4233 also delete it because that is now this insn's dest. */
4234 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4235 if (note != 0
4236 && (reg_mentioned_p (dest, XEXP (note, 0))
4237 || rtx_equal_p (src, XEXP (note, 0))))
4238 remove_note (insn, note);
4239 }
4240 }
4241 }
4242 }
4243 \f
4244 /* Record all the SETs in this instruction into SETS_PTR,
4245 and return the number of recorded sets. */
4246 static int
4247 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4248 {
4249 struct set *sets = *psets;
4250 int n_sets = 0;
4251 rtx x = PATTERN (insn);
4252
4253 if (GET_CODE (x) == SET)
4254 {
4255 /* Ignore SETs that are unconditional jumps.
4256 They never need cse processing, so this does not hurt.
4257 The reason is not efficiency but rather
4258 so that we can test at the end for instructions
4259 that have been simplified to unconditional jumps
4260 and not be misled by unchanged instructions
4261 that were unconditional jumps to begin with. */
4262 if (SET_DEST (x) == pc_rtx
4263 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4264 ;
4265 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4266 The hard function value register is used only once, to copy to
4267 someplace else, so it isn't worth cse'ing. */
4268 else if (GET_CODE (SET_SRC (x)) == CALL)
4269 ;
4270 else
4271 sets[n_sets++].rtl = x;
4272 }
4273 else if (GET_CODE (x) == PARALLEL)
4274 {
4275 int i, lim = XVECLEN (x, 0);
4276
4277 /* Go over the expressions of the PARALLEL in forward order, to
4278 put them in the same order in the SETS array. */
4279 for (i = 0; i < lim; i++)
4280 {
4281 rtx y = XVECEXP (x, 0, i);
4282 if (GET_CODE (y) == SET)
4283 {
4284 /* As above, we ignore unconditional jumps and call-insns and
4285 ignore the result of apply_change_group. */
4286 if (SET_DEST (y) == pc_rtx
4287 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4288 ;
4289 else if (GET_CODE (SET_SRC (y)) == CALL)
4290 ;
4291 else
4292 sets[n_sets++].rtl = y;
4293 }
4294 }
4295 }
4296
4297 return n_sets;
4298 }
4299 \f
4300 /* Where possible, substitute every register reference in the N_SETS
4301 number of SETS in INSN with the the canonical register.
4302
4303 Register canonicalization propagatest the earliest register (i.e.
4304 one that is set before INSN) with the same value. This is a very
4305 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4306 to RTL. For instance, a CONST for an address is usually expanded
4307 multiple times to loads into different registers, thus creating many
4308 subexpressions of the form:
4309
4310 (set (reg1) (some_const))
4311 (set (mem (... reg1 ...) (thing)))
4312 (set (reg2) (some_const))
4313 (set (mem (... reg2 ...) (thing)))
4314
4315 After canonicalizing, the code takes the following form:
4316
4317 (set (reg1) (some_const))
4318 (set (mem (... reg1 ...) (thing)))
4319 (set (reg2) (some_const))
4320 (set (mem (... reg1 ...) (thing)))
4321
4322 The set to reg2 is now trivially dead, and the memory reference (or
4323 address, or whatever) may be a candidate for further CSEing.
4324
4325 In this function, the result of apply_change_group can be ignored;
4326 see canon_reg. */
4327
4328 static void
4329 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4330 {
4331 struct set *sets = *psets;
4332 rtx tem;
4333 rtx x = PATTERN (insn);
4334 int i;
4335
4336 if (CALL_P (insn))
4337 {
4338 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4339 if (GET_CODE (XEXP (tem, 0)) != SET)
4340 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4341 }
4342
4343 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4344 {
4345 canon_reg (SET_SRC (x), insn);
4346 apply_change_group ();
4347 fold_rtx (SET_SRC (x), insn);
4348 }
4349 else if (GET_CODE (x) == CLOBBER)
4350 {
4351 /* If we clobber memory, canon the address.
4352 This does nothing when a register is clobbered
4353 because we have already invalidated the reg. */
4354 if (MEM_P (XEXP (x, 0)))
4355 canon_reg (XEXP (x, 0), insn);
4356 }
4357 else if (GET_CODE (x) == USE
4358 && ! (REG_P (XEXP (x, 0))
4359 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4360 /* Canonicalize a USE of a pseudo register or memory location. */
4361 canon_reg (x, insn);
4362 else if (GET_CODE (x) == ASM_OPERANDS)
4363 {
4364 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4365 {
4366 rtx input = ASM_OPERANDS_INPUT (x, i);
4367 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4368 {
4369 input = canon_reg (input, insn);
4370 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4371 }
4372 }
4373 }
4374 else if (GET_CODE (x) == CALL)
4375 {
4376 canon_reg (x, insn);
4377 apply_change_group ();
4378 fold_rtx (x, insn);
4379 }
4380 else if (DEBUG_INSN_P (insn))
4381 canon_reg (PATTERN (insn), insn);
4382 else if (GET_CODE (x) == PARALLEL)
4383 {
4384 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4385 {
4386 rtx y = XVECEXP (x, 0, i);
4387 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4388 {
4389 canon_reg (SET_SRC (y), insn);
4390 apply_change_group ();
4391 fold_rtx (SET_SRC (y), insn);
4392 }
4393 else if (GET_CODE (y) == CLOBBER)
4394 {
4395 if (MEM_P (XEXP (y, 0)))
4396 canon_reg (XEXP (y, 0), insn);
4397 }
4398 else if (GET_CODE (y) == USE
4399 && ! (REG_P (XEXP (y, 0))
4400 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4401 canon_reg (y, insn);
4402 else if (GET_CODE (y) == CALL)
4403 {
4404 canon_reg (y, insn);
4405 apply_change_group ();
4406 fold_rtx (y, insn);
4407 }
4408 }
4409 }
4410
4411 if (n_sets == 1 && REG_NOTES (insn) != 0
4412 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4413 {
4414 /* We potentially will process this insn many times. Therefore,
4415 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4416 unique set in INSN.
4417
4418 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4419 because cse_insn handles those specially. */
4420 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4421 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4422 remove_note (insn, tem);
4423 else
4424 {
4425 canon_reg (XEXP (tem, 0), insn);
4426 apply_change_group ();
4427 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4428 df_notes_rescan (insn);
4429 }
4430 }
4431
4432 /* Canonicalize sources and addresses of destinations.
4433 We do this in a separate pass to avoid problems when a MATCH_DUP is
4434 present in the insn pattern. In that case, we want to ensure that
4435 we don't break the duplicate nature of the pattern. So we will replace
4436 both operands at the same time. Otherwise, we would fail to find an
4437 equivalent substitution in the loop calling validate_change below.
4438
4439 We used to suppress canonicalization of DEST if it appears in SRC,
4440 but we don't do this any more. */
4441
4442 for (i = 0; i < n_sets; i++)
4443 {
4444 rtx dest = SET_DEST (sets[i].rtl);
4445 rtx src = SET_SRC (sets[i].rtl);
4446 rtx new_rtx = canon_reg (src, insn);
4447
4448 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4449
4450 if (GET_CODE (dest) == ZERO_EXTRACT)
4451 {
4452 validate_change (insn, &XEXP (dest, 1),
4453 canon_reg (XEXP (dest, 1), insn), 1);
4454 validate_change (insn, &XEXP (dest, 2),
4455 canon_reg (XEXP (dest, 2), insn), 1);
4456 }
4457
4458 while (GET_CODE (dest) == SUBREG
4459 || GET_CODE (dest) == ZERO_EXTRACT
4460 || GET_CODE (dest) == STRICT_LOW_PART)
4461 dest = XEXP (dest, 0);
4462
4463 if (MEM_P (dest))
4464 canon_reg (dest, insn);
4465 }
4466
4467 /* Now that we have done all the replacements, we can apply the change
4468 group and see if they all work. Note that this will cause some
4469 canonicalizations that would have worked individually not to be applied
4470 because some other canonicalization didn't work, but this should not
4471 occur often.
4472
4473 The result of apply_change_group can be ignored; see canon_reg. */
4474
4475 apply_change_group ();
4476 }
4477 \f
4478 /* Main function of CSE.
4479 First simplify sources and addresses of all assignments
4480 in the instruction, using previously-computed equivalents values.
4481 Then install the new sources and destinations in the table
4482 of available values. */
4483
4484 static void
4485 cse_insn (rtx_insn *insn)
4486 {
4487 rtx x = PATTERN (insn);
4488 int i;
4489 rtx tem;
4490 int n_sets = 0;
4491
4492 rtx src_eqv = 0;
4493 struct table_elt *src_eqv_elt = 0;
4494 int src_eqv_volatile = 0;
4495 int src_eqv_in_memory = 0;
4496 unsigned src_eqv_hash = 0;
4497
4498 struct set *sets = (struct set *) 0;
4499
4500 if (GET_CODE (x) == SET)
4501 sets = XALLOCA (struct set);
4502 else if (GET_CODE (x) == PARALLEL)
4503 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4504
4505 this_insn = insn;
4506 /* Records what this insn does to set CC0. */
4507 this_insn_cc0 = 0;
4508 this_insn_cc0_mode = VOIDmode;
4509
4510 /* Find all regs explicitly clobbered in this insn,
4511 to ensure they are not replaced with any other regs
4512 elsewhere in this insn. */
4513 invalidate_from_sets_and_clobbers (insn);
4514
4515 /* Record all the SETs in this instruction. */
4516 n_sets = find_sets_in_insn (insn, &sets);
4517
4518 /* Substitute the canonical register where possible. */
4519 canonicalize_insn (insn, &sets, n_sets);
4520
4521 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4522 if different, or if the DEST is a STRICT_LOW_PART. The latter condition
4523 is necessary because SRC_EQV is handled specially for this case, and if
4524 it isn't set, then there will be no equivalence for the destination. */
4525 if (n_sets == 1 && REG_NOTES (insn) != 0
4526 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4527 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4528 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4529 src_eqv = copy_rtx (XEXP (tem, 0));
4530
4531 /* Set sets[i].src_elt to the class each source belongs to.
4532 Detect assignments from or to volatile things
4533 and set set[i] to zero so they will be ignored
4534 in the rest of this function.
4535
4536 Nothing in this loop changes the hash table or the register chains. */
4537
4538 for (i = 0; i < n_sets; i++)
4539 {
4540 bool repeat = false;
4541 rtx src, dest;
4542 rtx src_folded;
4543 struct table_elt *elt = 0, *p;
4544 machine_mode mode;
4545 rtx src_eqv_here;
4546 rtx src_const = 0;
4547 rtx src_related = 0;
4548 bool src_related_is_const_anchor = false;
4549 struct table_elt *src_const_elt = 0;
4550 int src_cost = MAX_COST;
4551 int src_eqv_cost = MAX_COST;
4552 int src_folded_cost = MAX_COST;
4553 int src_related_cost = MAX_COST;
4554 int src_elt_cost = MAX_COST;
4555 int src_regcost = MAX_COST;
4556 int src_eqv_regcost = MAX_COST;
4557 int src_folded_regcost = MAX_COST;
4558 int src_related_regcost = MAX_COST;
4559 int src_elt_regcost = MAX_COST;
4560 /* Set nonzero if we need to call force_const_mem on with the
4561 contents of src_folded before using it. */
4562 int src_folded_force_flag = 0;
4563
4564 dest = SET_DEST (sets[i].rtl);
4565 src = SET_SRC (sets[i].rtl);
4566
4567 /* If SRC is a constant that has no machine mode,
4568 hash it with the destination's machine mode.
4569 This way we can keep different modes separate. */
4570
4571 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4572 sets[i].mode = mode;
4573
4574 if (src_eqv)
4575 {
4576 machine_mode eqvmode = mode;
4577 if (GET_CODE (dest) == STRICT_LOW_PART)
4578 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4579 do_not_record = 0;
4580 hash_arg_in_memory = 0;
4581 src_eqv_hash = HASH (src_eqv, eqvmode);
4582
4583 /* Find the equivalence class for the equivalent expression. */
4584
4585 if (!do_not_record)
4586 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4587
4588 src_eqv_volatile = do_not_record;
4589 src_eqv_in_memory = hash_arg_in_memory;
4590 }
4591
4592 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4593 value of the INNER register, not the destination. So it is not
4594 a valid substitution for the source. But save it for later. */
4595 if (GET_CODE (dest) == STRICT_LOW_PART)
4596 src_eqv_here = 0;
4597 else
4598 src_eqv_here = src_eqv;
4599
4600 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4601 simplified result, which may not necessarily be valid. */
4602 src_folded = fold_rtx (src, insn);
4603
4604 #if 0
4605 /* ??? This caused bad code to be generated for the m68k port with -O2.
4606 Suppose src is (CONST_INT -1), and that after truncation src_folded
4607 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4608 At the end we will add src and src_const to the same equivalence
4609 class. We now have 3 and -1 on the same equivalence class. This
4610 causes later instructions to be mis-optimized. */
4611 /* If storing a constant in a bitfield, pre-truncate the constant
4612 so we will be able to record it later. */
4613 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4614 {
4615 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4616
4617 if (CONST_INT_P (src)
4618 && CONST_INT_P (width)
4619 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4620 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4621 src_folded
4622 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4623 << INTVAL (width)) - 1));
4624 }
4625 #endif
4626
4627 /* Compute SRC's hash code, and also notice if it
4628 should not be recorded at all. In that case,
4629 prevent any further processing of this assignment. */
4630 do_not_record = 0;
4631 hash_arg_in_memory = 0;
4632
4633 sets[i].src = src;
4634 sets[i].src_hash = HASH (src, mode);
4635 sets[i].src_volatile = do_not_record;
4636 sets[i].src_in_memory = hash_arg_in_memory;
4637
4638 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4639 a pseudo, do not record SRC. Using SRC as a replacement for
4640 anything else will be incorrect in that situation. Note that
4641 this usually occurs only for stack slots, in which case all the
4642 RTL would be referring to SRC, so we don't lose any optimization
4643 opportunities by not having SRC in the hash table. */
4644
4645 if (MEM_P (src)
4646 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4647 && REG_P (dest)
4648 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4649 sets[i].src_volatile = 1;
4650
4651 else if (GET_CODE (src) == ASM_OPERANDS
4652 && GET_CODE (x) == PARALLEL)
4653 {
4654 /* Do not record result of a non-volatile inline asm with
4655 more than one result. */
4656 if (n_sets > 1)
4657 sets[i].src_volatile = 1;
4658
4659 int j, lim = XVECLEN (x, 0);
4660 for (j = 0; j < lim; j++)
4661 {
4662 rtx y = XVECEXP (x, 0, j);
4663 /* And do not record result of a non-volatile inline asm
4664 with "memory" clobber. */
4665 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4666 {
4667 sets[i].src_volatile = 1;
4668 break;
4669 }
4670 }
4671 }
4672
4673 #if 0
4674 /* It is no longer clear why we used to do this, but it doesn't
4675 appear to still be needed. So let's try without it since this
4676 code hurts cse'ing widened ops. */
4677 /* If source is a paradoxical subreg (such as QI treated as an SI),
4678 treat it as volatile. It may do the work of an SI in one context
4679 where the extra bits are not being used, but cannot replace an SI
4680 in general. */
4681 if (paradoxical_subreg_p (src))
4682 sets[i].src_volatile = 1;
4683 #endif
4684
4685 /* Locate all possible equivalent forms for SRC. Try to replace
4686 SRC in the insn with each cheaper equivalent.
4687
4688 We have the following types of equivalents: SRC itself, a folded
4689 version, a value given in a REG_EQUAL note, or a value related
4690 to a constant.
4691
4692 Each of these equivalents may be part of an additional class
4693 of equivalents (if more than one is in the table, they must be in
4694 the same class; we check for this).
4695
4696 If the source is volatile, we don't do any table lookups.
4697
4698 We note any constant equivalent for possible later use in a
4699 REG_NOTE. */
4700
4701 if (!sets[i].src_volatile)
4702 elt = lookup (src, sets[i].src_hash, mode);
4703
4704 sets[i].src_elt = elt;
4705
4706 if (elt && src_eqv_here && src_eqv_elt)
4707 {
4708 if (elt->first_same_value != src_eqv_elt->first_same_value)
4709 {
4710 /* The REG_EQUAL is indicating that two formerly distinct
4711 classes are now equivalent. So merge them. */
4712 merge_equiv_classes (elt, src_eqv_elt);
4713 src_eqv_hash = HASH (src_eqv, elt->mode);
4714 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4715 }
4716
4717 src_eqv_here = 0;
4718 }
4719
4720 else if (src_eqv_elt)
4721 elt = src_eqv_elt;
4722
4723 /* Try to find a constant somewhere and record it in `src_const'.
4724 Record its table element, if any, in `src_const_elt'. Look in
4725 any known equivalences first. (If the constant is not in the
4726 table, also set `sets[i].src_const_hash'). */
4727 if (elt)
4728 for (p = elt->first_same_value; p; p = p->next_same_value)
4729 if (p->is_const)
4730 {
4731 src_const = p->exp;
4732 src_const_elt = elt;
4733 break;
4734 }
4735
4736 if (src_const == 0
4737 && (CONSTANT_P (src_folded)
4738 /* Consider (minus (label_ref L1) (label_ref L2)) as
4739 "constant" here so we will record it. This allows us
4740 to fold switch statements when an ADDR_DIFF_VEC is used. */
4741 || (GET_CODE (src_folded) == MINUS
4742 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4743 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4744 src_const = src_folded, src_const_elt = elt;
4745 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4746 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4747
4748 /* If we don't know if the constant is in the table, get its
4749 hash code and look it up. */
4750 if (src_const && src_const_elt == 0)
4751 {
4752 sets[i].src_const_hash = HASH (src_const, mode);
4753 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4754 }
4755
4756 sets[i].src_const = src_const;
4757 sets[i].src_const_elt = src_const_elt;
4758
4759 /* If the constant and our source are both in the table, mark them as
4760 equivalent. Otherwise, if a constant is in the table but the source
4761 isn't, set ELT to it. */
4762 if (src_const_elt && elt
4763 && src_const_elt->first_same_value != elt->first_same_value)
4764 merge_equiv_classes (elt, src_const_elt);
4765 else if (src_const_elt && elt == 0)
4766 elt = src_const_elt;
4767
4768 /* See if there is a register linearly related to a constant
4769 equivalent of SRC. */
4770 if (src_const
4771 && (GET_CODE (src_const) == CONST
4772 || (src_const_elt && src_const_elt->related_value != 0)))
4773 {
4774 src_related = use_related_value (src_const, src_const_elt);
4775 if (src_related)
4776 {
4777 struct table_elt *src_related_elt
4778 = lookup (src_related, HASH (src_related, mode), mode);
4779 if (src_related_elt && elt)
4780 {
4781 if (elt->first_same_value
4782 != src_related_elt->first_same_value)
4783 /* This can occur when we previously saw a CONST
4784 involving a SYMBOL_REF and then see the SYMBOL_REF
4785 twice. Merge the involved classes. */
4786 merge_equiv_classes (elt, src_related_elt);
4787
4788 src_related = 0;
4789 src_related_elt = 0;
4790 }
4791 else if (src_related_elt && elt == 0)
4792 elt = src_related_elt;
4793 }
4794 }
4795
4796 /* See if we have a CONST_INT that is already in a register in a
4797 wider mode. */
4798
4799 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4800 && GET_MODE_CLASS (mode) == MODE_INT
4801 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4802 {
4803 machine_mode wider_mode;
4804
4805 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4806 wider_mode != VOIDmode
4807 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4808 && src_related == 0;
4809 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4810 {
4811 struct table_elt *const_elt
4812 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4813
4814 if (const_elt == 0)
4815 continue;
4816
4817 for (const_elt = const_elt->first_same_value;
4818 const_elt; const_elt = const_elt->next_same_value)
4819 if (REG_P (const_elt->exp))
4820 {
4821 src_related = gen_lowpart (mode, const_elt->exp);
4822 break;
4823 }
4824 }
4825 }
4826
4827 /* Another possibility is that we have an AND with a constant in
4828 a mode narrower than a word. If so, it might have been generated
4829 as part of an "if" which would narrow the AND. If we already
4830 have done the AND in a wider mode, we can use a SUBREG of that
4831 value. */
4832
4833 if (flag_expensive_optimizations && ! src_related
4834 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4835 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4836 {
4837 machine_mode tmode;
4838 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4839
4840 for (tmode = GET_MODE_WIDER_MODE (mode);
4841 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4842 tmode = GET_MODE_WIDER_MODE (tmode))
4843 {
4844 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4845 struct table_elt *larger_elt;
4846
4847 if (inner)
4848 {
4849 PUT_MODE (new_and, tmode);
4850 XEXP (new_and, 0) = inner;
4851 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4852 if (larger_elt == 0)
4853 continue;
4854
4855 for (larger_elt = larger_elt->first_same_value;
4856 larger_elt; larger_elt = larger_elt->next_same_value)
4857 if (REG_P (larger_elt->exp))
4858 {
4859 src_related
4860 = gen_lowpart (mode, larger_elt->exp);
4861 break;
4862 }
4863
4864 if (src_related)
4865 break;
4866 }
4867 }
4868 }
4869
4870 #ifdef LOAD_EXTEND_OP
4871 /* See if a MEM has already been loaded with a widening operation;
4872 if it has, we can use a subreg of that. Many CISC machines
4873 also have such operations, but this is only likely to be
4874 beneficial on these machines. */
4875
4876 if (flag_expensive_optimizations && src_related == 0
4877 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4878 && GET_MODE_CLASS (mode) == MODE_INT
4879 && MEM_P (src) && ! do_not_record
4880 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4881 {
4882 struct rtx_def memory_extend_buf;
4883 rtx memory_extend_rtx = &memory_extend_buf;
4884 machine_mode tmode;
4885
4886 /* Set what we are trying to extend and the operation it might
4887 have been extended with. */
4888 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4889 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4890 XEXP (memory_extend_rtx, 0) = src;
4891
4892 for (tmode = GET_MODE_WIDER_MODE (mode);
4893 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4894 tmode = GET_MODE_WIDER_MODE (tmode))
4895 {
4896 struct table_elt *larger_elt;
4897
4898 PUT_MODE (memory_extend_rtx, tmode);
4899 larger_elt = lookup (memory_extend_rtx,
4900 HASH (memory_extend_rtx, tmode), tmode);
4901 if (larger_elt == 0)
4902 continue;
4903
4904 for (larger_elt = larger_elt->first_same_value;
4905 larger_elt; larger_elt = larger_elt->next_same_value)
4906 if (REG_P (larger_elt->exp))
4907 {
4908 src_related = gen_lowpart (mode, larger_elt->exp);
4909 break;
4910 }
4911
4912 if (src_related)
4913 break;
4914 }
4915 }
4916 #endif /* LOAD_EXTEND_OP */
4917
4918 /* Try to express the constant using a register+offset expression
4919 derived from a constant anchor. */
4920
4921 if (targetm.const_anchor
4922 && !src_related
4923 && src_const
4924 && GET_CODE (src_const) == CONST_INT)
4925 {
4926 src_related = try_const_anchors (src_const, mode);
4927 src_related_is_const_anchor = src_related != NULL_RTX;
4928 }
4929
4930
4931 if (src == src_folded)
4932 src_folded = 0;
4933
4934 /* At this point, ELT, if nonzero, points to a class of expressions
4935 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4936 and SRC_RELATED, if nonzero, each contain additional equivalent
4937 expressions. Prune these latter expressions by deleting expressions
4938 already in the equivalence class.
4939
4940 Check for an equivalent identical to the destination. If found,
4941 this is the preferred equivalent since it will likely lead to
4942 elimination of the insn. Indicate this by placing it in
4943 `src_related'. */
4944
4945 if (elt)
4946 elt = elt->first_same_value;
4947 for (p = elt; p; p = p->next_same_value)
4948 {
4949 enum rtx_code code = GET_CODE (p->exp);
4950
4951 /* If the expression is not valid, ignore it. Then we do not
4952 have to check for validity below. In most cases, we can use
4953 `rtx_equal_p', since canonicalization has already been done. */
4954 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4955 continue;
4956
4957 /* Also skip paradoxical subregs, unless that's what we're
4958 looking for. */
4959 if (paradoxical_subreg_p (p->exp)
4960 && ! (src != 0
4961 && GET_CODE (src) == SUBREG
4962 && GET_MODE (src) == GET_MODE (p->exp)
4963 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4964 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4965 continue;
4966
4967 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4968 src = 0;
4969 else if (src_folded && GET_CODE (src_folded) == code
4970 && rtx_equal_p (src_folded, p->exp))
4971 src_folded = 0;
4972 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4973 && rtx_equal_p (src_eqv_here, p->exp))
4974 src_eqv_here = 0;
4975 else if (src_related && GET_CODE (src_related) == code
4976 && rtx_equal_p (src_related, p->exp))
4977 src_related = 0;
4978
4979 /* This is the same as the destination of the insns, we want
4980 to prefer it. Copy it to src_related. The code below will
4981 then give it a negative cost. */
4982 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4983 src_related = dest;
4984 }
4985
4986 /* Find the cheapest valid equivalent, trying all the available
4987 possibilities. Prefer items not in the hash table to ones
4988 that are when they are equal cost. Note that we can never
4989 worsen an insn as the current contents will also succeed.
4990 If we find an equivalent identical to the destination, use it as best,
4991 since this insn will probably be eliminated in that case. */
4992 if (src)
4993 {
4994 if (rtx_equal_p (src, dest))
4995 src_cost = src_regcost = -1;
4996 else
4997 {
4998 src_cost = COST (src, mode);
4999 src_regcost = approx_reg_cost (src);
5000 }
5001 }
5002
5003 if (src_eqv_here)
5004 {
5005 if (rtx_equal_p (src_eqv_here, dest))
5006 src_eqv_cost = src_eqv_regcost = -1;
5007 else
5008 {
5009 src_eqv_cost = COST (src_eqv_here, mode);
5010 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5011 }
5012 }
5013
5014 if (src_folded)
5015 {
5016 if (rtx_equal_p (src_folded, dest))
5017 src_folded_cost = src_folded_regcost = -1;
5018 else
5019 {
5020 src_folded_cost = COST (src_folded, mode);
5021 src_folded_regcost = approx_reg_cost (src_folded);
5022 }
5023 }
5024
5025 if (src_related)
5026 {
5027 if (rtx_equal_p (src_related, dest))
5028 src_related_cost = src_related_regcost = -1;
5029 else
5030 {
5031 src_related_cost = COST (src_related, mode);
5032 src_related_regcost = approx_reg_cost (src_related);
5033
5034 /* If a const-anchor is used to synthesize a constant that
5035 normally requires multiple instructions then slightly prefer
5036 it over the original sequence. These instructions are likely
5037 to become redundant now. We can't compare against the cost
5038 of src_eqv_here because, on MIPS for example, multi-insn
5039 constants have zero cost; they are assumed to be hoisted from
5040 loops. */
5041 if (src_related_is_const_anchor
5042 && src_related_cost == src_cost
5043 && src_eqv_here)
5044 src_related_cost--;
5045 }
5046 }
5047
5048 /* If this was an indirect jump insn, a known label will really be
5049 cheaper even though it looks more expensive. */
5050 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5051 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5052
5053 /* Terminate loop when replacement made. This must terminate since
5054 the current contents will be tested and will always be valid. */
5055 while (1)
5056 {
5057 rtx trial;
5058
5059 /* Skip invalid entries. */
5060 while (elt && !REG_P (elt->exp)
5061 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5062 elt = elt->next_same_value;
5063
5064 /* A paradoxical subreg would be bad here: it'll be the right
5065 size, but later may be adjusted so that the upper bits aren't
5066 what we want. So reject it. */
5067 if (elt != 0
5068 && paradoxical_subreg_p (elt->exp)
5069 /* It is okay, though, if the rtx we're trying to match
5070 will ignore any of the bits we can't predict. */
5071 && ! (src != 0
5072 && GET_CODE (src) == SUBREG
5073 && GET_MODE (src) == GET_MODE (elt->exp)
5074 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5075 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5076 {
5077 elt = elt->next_same_value;
5078 continue;
5079 }
5080
5081 if (elt)
5082 {
5083 src_elt_cost = elt->cost;
5084 src_elt_regcost = elt->regcost;
5085 }
5086
5087 /* Find cheapest and skip it for the next time. For items
5088 of equal cost, use this order:
5089 src_folded, src, src_eqv, src_related and hash table entry. */
5090 if (src_folded
5091 && preferable (src_folded_cost, src_folded_regcost,
5092 src_cost, src_regcost) <= 0
5093 && preferable (src_folded_cost, src_folded_regcost,
5094 src_eqv_cost, src_eqv_regcost) <= 0
5095 && preferable (src_folded_cost, src_folded_regcost,
5096 src_related_cost, src_related_regcost) <= 0
5097 && preferable (src_folded_cost, src_folded_regcost,
5098 src_elt_cost, src_elt_regcost) <= 0)
5099 {
5100 trial = src_folded, src_folded_cost = MAX_COST;
5101 if (src_folded_force_flag)
5102 {
5103 rtx forced = force_const_mem (mode, trial);
5104 if (forced)
5105 trial = forced;
5106 }
5107 }
5108 else if (src
5109 && preferable (src_cost, src_regcost,
5110 src_eqv_cost, src_eqv_regcost) <= 0
5111 && preferable (src_cost, src_regcost,
5112 src_related_cost, src_related_regcost) <= 0
5113 && preferable (src_cost, src_regcost,
5114 src_elt_cost, src_elt_regcost) <= 0)
5115 trial = src, src_cost = MAX_COST;
5116 else if (src_eqv_here
5117 && preferable (src_eqv_cost, src_eqv_regcost,
5118 src_related_cost, src_related_regcost) <= 0
5119 && preferable (src_eqv_cost, src_eqv_regcost,
5120 src_elt_cost, src_elt_regcost) <= 0)
5121 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5122 else if (src_related
5123 && preferable (src_related_cost, src_related_regcost,
5124 src_elt_cost, src_elt_regcost) <= 0)
5125 trial = src_related, src_related_cost = MAX_COST;
5126 else
5127 {
5128 trial = elt->exp;
5129 elt = elt->next_same_value;
5130 src_elt_cost = MAX_COST;
5131 }
5132
5133 /* Avoid creation of overlapping memory moves. */
5134 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5135 {
5136 rtx src, dest;
5137
5138 /* BLKmode moves are not handled by cse anyway. */
5139 if (GET_MODE (trial) == BLKmode)
5140 break;
5141
5142 src = canon_rtx (trial);
5143 dest = canon_rtx (SET_DEST (sets[i].rtl));
5144
5145 if (!MEM_P (src) || !MEM_P (dest)
5146 || !nonoverlapping_memrefs_p (src, dest, false))
5147 break;
5148 }
5149
5150 /* Try to optimize
5151 (set (reg:M N) (const_int A))
5152 (set (reg:M2 O) (const_int B))
5153 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5154 (reg:M2 O)). */
5155 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5156 && CONST_INT_P (trial)
5157 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5158 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5159 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5160 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5161 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5162 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5163 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5164 <= HOST_BITS_PER_WIDE_INT))
5165 {
5166 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5167 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5168 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5169 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5170 struct table_elt *dest_elt
5171 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5172 rtx dest_cst = NULL;
5173
5174 if (dest_elt)
5175 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5176 if (p->is_const && CONST_INT_P (p->exp))
5177 {
5178 dest_cst = p->exp;
5179 break;
5180 }
5181 if (dest_cst)
5182 {
5183 HOST_WIDE_INT val = INTVAL (dest_cst);
5184 HOST_WIDE_INT mask;
5185 unsigned int shift;
5186 if (BITS_BIG_ENDIAN)
5187 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5188 - INTVAL (pos) - INTVAL (width);
5189 else
5190 shift = INTVAL (pos);
5191 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5192 mask = ~(HOST_WIDE_INT) 0;
5193 else
5194 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5195 val &= ~(mask << shift);
5196 val |= (INTVAL (trial) & mask) << shift;
5197 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5198 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5199 dest_reg, 1);
5200 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5201 GEN_INT (val), 1);
5202 if (apply_change_group ())
5203 {
5204 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5205 if (note)
5206 {
5207 remove_note (insn, note);
5208 df_notes_rescan (insn);
5209 }
5210 src_eqv = NULL_RTX;
5211 src_eqv_elt = NULL;
5212 src_eqv_volatile = 0;
5213 src_eqv_in_memory = 0;
5214 src_eqv_hash = 0;
5215 repeat = true;
5216 break;
5217 }
5218 }
5219 }
5220
5221 /* We don't normally have an insn matching (set (pc) (pc)), so
5222 check for this separately here. We will delete such an
5223 insn below.
5224
5225 For other cases such as a table jump or conditional jump
5226 where we know the ultimate target, go ahead and replace the
5227 operand. While that may not make a valid insn, we will
5228 reemit the jump below (and also insert any necessary
5229 barriers). */
5230 if (n_sets == 1 && dest == pc_rtx
5231 && (trial == pc_rtx
5232 || (GET_CODE (trial) == LABEL_REF
5233 && ! condjump_p (insn))))
5234 {
5235 /* Don't substitute non-local labels, this confuses CFG. */
5236 if (GET_CODE (trial) == LABEL_REF
5237 && LABEL_REF_NONLOCAL_P (trial))
5238 continue;
5239
5240 SET_SRC (sets[i].rtl) = trial;
5241 cse_jumps_altered = true;
5242 break;
5243 }
5244
5245 /* Reject certain invalid forms of CONST that we create. */
5246 else if (CONSTANT_P (trial)
5247 && GET_CODE (trial) == CONST
5248 /* Reject cases that will cause decode_rtx_const to
5249 die. On the alpha when simplifying a switch, we
5250 get (const (truncate (minus (label_ref)
5251 (label_ref)))). */
5252 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5253 /* Likewise on IA-64, except without the
5254 truncate. */
5255 || (GET_CODE (XEXP (trial, 0)) == MINUS
5256 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5257 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5258 /* Do nothing for this case. */
5259 ;
5260
5261 /* Look for a substitution that makes a valid insn. */
5262 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5263 trial, 0))
5264 {
5265 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5266
5267 /* The result of apply_change_group can be ignored; see
5268 canon_reg. */
5269
5270 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5271 apply_change_group ();
5272
5273 break;
5274 }
5275
5276 /* If we previously found constant pool entries for
5277 constants and this is a constant, try making a
5278 pool entry. Put it in src_folded unless we already have done
5279 this since that is where it likely came from. */
5280
5281 else if (constant_pool_entries_cost
5282 && CONSTANT_P (trial)
5283 && (src_folded == 0
5284 || (!MEM_P (src_folded)
5285 && ! src_folded_force_flag))
5286 && GET_MODE_CLASS (mode) != MODE_CC
5287 && mode != VOIDmode)
5288 {
5289 src_folded_force_flag = 1;
5290 src_folded = trial;
5291 src_folded_cost = constant_pool_entries_cost;
5292 src_folded_regcost = constant_pool_entries_regcost;
5293 }
5294 }
5295
5296 /* If we changed the insn too much, handle this set from scratch. */
5297 if (repeat)
5298 {
5299 i--;
5300 continue;
5301 }
5302
5303 src = SET_SRC (sets[i].rtl);
5304
5305 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5306 However, there is an important exception: If both are registers
5307 that are not the head of their equivalence class, replace SET_SRC
5308 with the head of the class. If we do not do this, we will have
5309 both registers live over a portion of the basic block. This way,
5310 their lifetimes will likely abut instead of overlapping. */
5311 if (REG_P (dest)
5312 && REGNO_QTY_VALID_P (REGNO (dest)))
5313 {
5314 int dest_q = REG_QTY (REGNO (dest));
5315 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5316
5317 if (dest_ent->mode == GET_MODE (dest)
5318 && dest_ent->first_reg != REGNO (dest)
5319 && REG_P (src) && REGNO (src) == REGNO (dest)
5320 /* Don't do this if the original insn had a hard reg as
5321 SET_SRC or SET_DEST. */
5322 && (!REG_P (sets[i].src)
5323 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5324 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5325 /* We can't call canon_reg here because it won't do anything if
5326 SRC is a hard register. */
5327 {
5328 int src_q = REG_QTY (REGNO (src));
5329 struct qty_table_elem *src_ent = &qty_table[src_q];
5330 int first = src_ent->first_reg;
5331 rtx new_src
5332 = (first >= FIRST_PSEUDO_REGISTER
5333 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5334
5335 /* We must use validate-change even for this, because this
5336 might be a special no-op instruction, suitable only to
5337 tag notes onto. */
5338 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5339 {
5340 src = new_src;
5341 /* If we had a constant that is cheaper than what we are now
5342 setting SRC to, use that constant. We ignored it when we
5343 thought we could make this into a no-op. */
5344 if (src_const && COST (src_const, mode) < COST (src, mode)
5345 && validate_change (insn, &SET_SRC (sets[i].rtl),
5346 src_const, 0))
5347 src = src_const;
5348 }
5349 }
5350 }
5351
5352 /* If we made a change, recompute SRC values. */
5353 if (src != sets[i].src)
5354 {
5355 do_not_record = 0;
5356 hash_arg_in_memory = 0;
5357 sets[i].src = src;
5358 sets[i].src_hash = HASH (src, mode);
5359 sets[i].src_volatile = do_not_record;
5360 sets[i].src_in_memory = hash_arg_in_memory;
5361 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5362 }
5363
5364 /* If this is a single SET, we are setting a register, and we have an
5365 equivalent constant, we want to add a REG_EQUAL note if the constant
5366 is different from the source. We don't want to do it for a constant
5367 pseudo since verifying that this pseudo hasn't been eliminated is a
5368 pain; moreover such a note won't help anything.
5369
5370 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5371 which can be created for a reference to a compile time computable
5372 entry in a jump table. */
5373 if (n_sets == 1
5374 && REG_P (dest)
5375 && src_const
5376 && !REG_P (src_const)
5377 && !(GET_CODE (src_const) == SUBREG
5378 && REG_P (SUBREG_REG (src_const)))
5379 && !(GET_CODE (src_const) == CONST
5380 && GET_CODE (XEXP (src_const, 0)) == MINUS
5381 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5382 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5383 && !rtx_equal_p (src, src_const))
5384 {
5385 /* Make sure that the rtx is not shared. */
5386 src_const = copy_rtx (src_const);
5387
5388 /* Record the actual constant value in a REG_EQUAL note,
5389 making a new one if one does not already exist. */
5390 set_unique_reg_note (insn, REG_EQUAL, src_const);
5391 df_notes_rescan (insn);
5392 }
5393
5394 /* Now deal with the destination. */
5395 do_not_record = 0;
5396
5397 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5398 while (GET_CODE (dest) == SUBREG
5399 || GET_CODE (dest) == ZERO_EXTRACT
5400 || GET_CODE (dest) == STRICT_LOW_PART)
5401 dest = XEXP (dest, 0);
5402
5403 sets[i].inner_dest = dest;
5404
5405 if (MEM_P (dest))
5406 {
5407 #ifdef PUSH_ROUNDING
5408 /* Stack pushes invalidate the stack pointer. */
5409 rtx addr = XEXP (dest, 0);
5410 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5411 && XEXP (addr, 0) == stack_pointer_rtx)
5412 invalidate (stack_pointer_rtx, VOIDmode);
5413 #endif
5414 dest = fold_rtx (dest, insn);
5415 }
5416
5417 /* Compute the hash code of the destination now,
5418 before the effects of this instruction are recorded,
5419 since the register values used in the address computation
5420 are those before this instruction. */
5421 sets[i].dest_hash = HASH (dest, mode);
5422
5423 /* Don't enter a bit-field in the hash table
5424 because the value in it after the store
5425 may not equal what was stored, due to truncation. */
5426
5427 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5428 {
5429 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5430
5431 if (src_const != 0 && CONST_INT_P (src_const)
5432 && CONST_INT_P (width)
5433 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5434 && ! (INTVAL (src_const)
5435 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5436 /* Exception: if the value is constant,
5437 and it won't be truncated, record it. */
5438 ;
5439 else
5440 {
5441 /* This is chosen so that the destination will be invalidated
5442 but no new value will be recorded.
5443 We must invalidate because sometimes constant
5444 values can be recorded for bitfields. */
5445 sets[i].src_elt = 0;
5446 sets[i].src_volatile = 1;
5447 src_eqv = 0;
5448 src_eqv_elt = 0;
5449 }
5450 }
5451
5452 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5453 the insn. */
5454 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5455 {
5456 /* One less use of the label this insn used to jump to. */
5457 delete_insn_and_edges (insn);
5458 cse_jumps_altered = true;
5459 /* No more processing for this set. */
5460 sets[i].rtl = 0;
5461 }
5462
5463 /* If this SET is now setting PC to a label, we know it used to
5464 be a conditional or computed branch. */
5465 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5466 && !LABEL_REF_NONLOCAL_P (src))
5467 {
5468 /* We reemit the jump in as many cases as possible just in
5469 case the form of an unconditional jump is significantly
5470 different than a computed jump or conditional jump.
5471
5472 If this insn has multiple sets, then reemitting the
5473 jump is nontrivial. So instead we just force rerecognition
5474 and hope for the best. */
5475 if (n_sets == 1)
5476 {
5477 rtx_jump_insn *new_rtx;
5478 rtx note;
5479
5480 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5481 new_rtx = emit_jump_insn_before (seq, insn);
5482 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5483 LABEL_NUSES (XEXP (src, 0))++;
5484
5485 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5486 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5487 if (note)
5488 {
5489 XEXP (note, 1) = NULL_RTX;
5490 REG_NOTES (new_rtx) = note;
5491 }
5492
5493 delete_insn_and_edges (insn);
5494 insn = new_rtx;
5495 }
5496 else
5497 INSN_CODE (insn) = -1;
5498
5499 /* Do not bother deleting any unreachable code, let jump do it. */
5500 cse_jumps_altered = true;
5501 sets[i].rtl = 0;
5502 }
5503
5504 /* If destination is volatile, invalidate it and then do no further
5505 processing for this assignment. */
5506
5507 else if (do_not_record)
5508 {
5509 invalidate_dest (dest);
5510 sets[i].rtl = 0;
5511 }
5512
5513 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5514 {
5515 do_not_record = 0;
5516 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5517 if (do_not_record)
5518 {
5519 invalidate_dest (SET_DEST (sets[i].rtl));
5520 sets[i].rtl = 0;
5521 }
5522 }
5523
5524 /* If setting CC0, record what it was set to, or a constant, if it
5525 is equivalent to a constant. If it is being set to a floating-point
5526 value, make a COMPARE with the appropriate constant of 0. If we
5527 don't do this, later code can interpret this as a test against
5528 const0_rtx, which can cause problems if we try to put it into an
5529 insn as a floating-point operand. */
5530 if (dest == cc0_rtx)
5531 {
5532 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5533 this_insn_cc0_mode = mode;
5534 if (FLOAT_MODE_P (mode))
5535 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5536 CONST0_RTX (mode));
5537 }
5538 }
5539
5540 /* Now enter all non-volatile source expressions in the hash table
5541 if they are not already present.
5542 Record their equivalence classes in src_elt.
5543 This way we can insert the corresponding destinations into
5544 the same classes even if the actual sources are no longer in them
5545 (having been invalidated). */
5546
5547 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5548 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5549 {
5550 struct table_elt *elt;
5551 struct table_elt *classp = sets[0].src_elt;
5552 rtx dest = SET_DEST (sets[0].rtl);
5553 machine_mode eqvmode = GET_MODE (dest);
5554
5555 if (GET_CODE (dest) == STRICT_LOW_PART)
5556 {
5557 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5558 classp = 0;
5559 }
5560 if (insert_regs (src_eqv, classp, 0))
5561 {
5562 rehash_using_reg (src_eqv);
5563 src_eqv_hash = HASH (src_eqv, eqvmode);
5564 }
5565 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5566 elt->in_memory = src_eqv_in_memory;
5567 src_eqv_elt = elt;
5568
5569 /* Check to see if src_eqv_elt is the same as a set source which
5570 does not yet have an elt, and if so set the elt of the set source
5571 to src_eqv_elt. */
5572 for (i = 0; i < n_sets; i++)
5573 if (sets[i].rtl && sets[i].src_elt == 0
5574 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5575 sets[i].src_elt = src_eqv_elt;
5576 }
5577
5578 for (i = 0; i < n_sets; i++)
5579 if (sets[i].rtl && ! sets[i].src_volatile
5580 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5581 {
5582 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5583 {
5584 /* REG_EQUAL in setting a STRICT_LOW_PART
5585 gives an equivalent for the entire destination register,
5586 not just for the subreg being stored in now.
5587 This is a more interesting equivalence, so we arrange later
5588 to treat the entire reg as the destination. */
5589 sets[i].src_elt = src_eqv_elt;
5590 sets[i].src_hash = src_eqv_hash;
5591 }
5592 else
5593 {
5594 /* Insert source and constant equivalent into hash table, if not
5595 already present. */
5596 struct table_elt *classp = src_eqv_elt;
5597 rtx src = sets[i].src;
5598 rtx dest = SET_DEST (sets[i].rtl);
5599 machine_mode mode
5600 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5601
5602 /* It's possible that we have a source value known to be
5603 constant but don't have a REG_EQUAL note on the insn.
5604 Lack of a note will mean src_eqv_elt will be NULL. This
5605 can happen where we've generated a SUBREG to access a
5606 CONST_INT that is already in a register in a wider mode.
5607 Ensure that the source expression is put in the proper
5608 constant class. */
5609 if (!classp)
5610 classp = sets[i].src_const_elt;
5611
5612 if (sets[i].src_elt == 0)
5613 {
5614 struct table_elt *elt;
5615
5616 /* Note that these insert_regs calls cannot remove
5617 any of the src_elt's, because they would have failed to
5618 match if not still valid. */
5619 if (insert_regs (src, classp, 0))
5620 {
5621 rehash_using_reg (src);
5622 sets[i].src_hash = HASH (src, mode);
5623 }
5624 elt = insert (src, classp, sets[i].src_hash, mode);
5625 elt->in_memory = sets[i].src_in_memory;
5626 /* If inline asm has any clobbers, ensure we only reuse
5627 existing inline asms and never try to put the ASM_OPERANDS
5628 into an insn that isn't inline asm. */
5629 if (GET_CODE (src) == ASM_OPERANDS
5630 && GET_CODE (x) == PARALLEL)
5631 elt->cost = MAX_COST;
5632 sets[i].src_elt = classp = elt;
5633 }
5634 if (sets[i].src_const && sets[i].src_const_elt == 0
5635 && src != sets[i].src_const
5636 && ! rtx_equal_p (sets[i].src_const, src))
5637 sets[i].src_elt = insert (sets[i].src_const, classp,
5638 sets[i].src_const_hash, mode);
5639 }
5640 }
5641 else if (sets[i].src_elt == 0)
5642 /* If we did not insert the source into the hash table (e.g., it was
5643 volatile), note the equivalence class for the REG_EQUAL value, if any,
5644 so that the destination goes into that class. */
5645 sets[i].src_elt = src_eqv_elt;
5646
5647 /* Record destination addresses in the hash table. This allows us to
5648 check if they are invalidated by other sets. */
5649 for (i = 0; i < n_sets; i++)
5650 {
5651 if (sets[i].rtl)
5652 {
5653 rtx x = sets[i].inner_dest;
5654 struct table_elt *elt;
5655 machine_mode mode;
5656 unsigned hash;
5657
5658 if (MEM_P (x))
5659 {
5660 x = XEXP (x, 0);
5661 mode = GET_MODE (x);
5662 hash = HASH (x, mode);
5663 elt = lookup (x, hash, mode);
5664 if (!elt)
5665 {
5666 if (insert_regs (x, NULL, 0))
5667 {
5668 rtx dest = SET_DEST (sets[i].rtl);
5669
5670 rehash_using_reg (x);
5671 hash = HASH (x, mode);
5672 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5673 }
5674 elt = insert (x, NULL, hash, mode);
5675 }
5676
5677 sets[i].dest_addr_elt = elt;
5678 }
5679 else
5680 sets[i].dest_addr_elt = NULL;
5681 }
5682 }
5683
5684 invalidate_from_clobbers (insn);
5685
5686 /* Some registers are invalidated by subroutine calls. Memory is
5687 invalidated by non-constant calls. */
5688
5689 if (CALL_P (insn))
5690 {
5691 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5692 invalidate_memory ();
5693 invalidate_for_call ();
5694 }
5695
5696 /* Now invalidate everything set by this instruction.
5697 If a SUBREG or other funny destination is being set,
5698 sets[i].rtl is still nonzero, so here we invalidate the reg
5699 a part of which is being set. */
5700
5701 for (i = 0; i < n_sets; i++)
5702 if (sets[i].rtl)
5703 {
5704 /* We can't use the inner dest, because the mode associated with
5705 a ZERO_EXTRACT is significant. */
5706 rtx dest = SET_DEST (sets[i].rtl);
5707
5708 /* Needed for registers to remove the register from its
5709 previous quantity's chain.
5710 Needed for memory if this is a nonvarying address, unless
5711 we have just done an invalidate_memory that covers even those. */
5712 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5713 invalidate (dest, VOIDmode);
5714 else if (MEM_P (dest))
5715 invalidate (dest, VOIDmode);
5716 else if (GET_CODE (dest) == STRICT_LOW_PART
5717 || GET_CODE (dest) == ZERO_EXTRACT)
5718 invalidate (XEXP (dest, 0), GET_MODE (dest));
5719 }
5720
5721 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5722 the regs restored by the longjmp come from a later time
5723 than the setjmp. */
5724 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5725 {
5726 flush_hash_table ();
5727 goto done;
5728 }
5729
5730 /* Make sure registers mentioned in destinations
5731 are safe for use in an expression to be inserted.
5732 This removes from the hash table
5733 any invalid entry that refers to one of these registers.
5734
5735 We don't care about the return value from mention_regs because
5736 we are going to hash the SET_DEST values unconditionally. */
5737
5738 for (i = 0; i < n_sets; i++)
5739 {
5740 if (sets[i].rtl)
5741 {
5742 rtx x = SET_DEST (sets[i].rtl);
5743
5744 if (!REG_P (x))
5745 mention_regs (x);
5746 else
5747 {
5748 /* We used to rely on all references to a register becoming
5749 inaccessible when a register changes to a new quantity,
5750 since that changes the hash code. However, that is not
5751 safe, since after HASH_SIZE new quantities we get a
5752 hash 'collision' of a register with its own invalid
5753 entries. And since SUBREGs have been changed not to
5754 change their hash code with the hash code of the register,
5755 it wouldn't work any longer at all. So we have to check
5756 for any invalid references lying around now.
5757 This code is similar to the REG case in mention_regs,
5758 but it knows that reg_tick has been incremented, and
5759 it leaves reg_in_table as -1 . */
5760 unsigned int regno = REGNO (x);
5761 unsigned int endregno = END_REGNO (x);
5762 unsigned int i;
5763
5764 for (i = regno; i < endregno; i++)
5765 {
5766 if (REG_IN_TABLE (i) >= 0)
5767 {
5768 remove_invalid_refs (i);
5769 REG_IN_TABLE (i) = -1;
5770 }
5771 }
5772 }
5773 }
5774 }
5775
5776 /* We may have just removed some of the src_elt's from the hash table.
5777 So replace each one with the current head of the same class.
5778 Also check if destination addresses have been removed. */
5779
5780 for (i = 0; i < n_sets; i++)
5781 if (sets[i].rtl)
5782 {
5783 if (sets[i].dest_addr_elt
5784 && sets[i].dest_addr_elt->first_same_value == 0)
5785 {
5786 /* The elt was removed, which means this destination is not
5787 valid after this instruction. */
5788 sets[i].rtl = NULL_RTX;
5789 }
5790 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5791 /* If elt was removed, find current head of same class,
5792 or 0 if nothing remains of that class. */
5793 {
5794 struct table_elt *elt = sets[i].src_elt;
5795
5796 while (elt && elt->prev_same_value)
5797 elt = elt->prev_same_value;
5798
5799 while (elt && elt->first_same_value == 0)
5800 elt = elt->next_same_value;
5801 sets[i].src_elt = elt ? elt->first_same_value : 0;
5802 }
5803 }
5804
5805 /* Now insert the destinations into their equivalence classes. */
5806
5807 for (i = 0; i < n_sets; i++)
5808 if (sets[i].rtl)
5809 {
5810 rtx dest = SET_DEST (sets[i].rtl);
5811 struct table_elt *elt;
5812
5813 /* Don't record value if we are not supposed to risk allocating
5814 floating-point values in registers that might be wider than
5815 memory. */
5816 if ((flag_float_store
5817 && MEM_P (dest)
5818 && FLOAT_MODE_P (GET_MODE (dest)))
5819 /* Don't record BLKmode values, because we don't know the
5820 size of it, and can't be sure that other BLKmode values
5821 have the same or smaller size. */
5822 || GET_MODE (dest) == BLKmode
5823 /* If we didn't put a REG_EQUAL value or a source into the hash
5824 table, there is no point is recording DEST. */
5825 || sets[i].src_elt == 0
5826 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5827 or SIGN_EXTEND, don't record DEST since it can cause
5828 some tracking to be wrong.
5829
5830 ??? Think about this more later. */
5831 || (paradoxical_subreg_p (dest)
5832 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5833 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5834 continue;
5835
5836 /* STRICT_LOW_PART isn't part of the value BEING set,
5837 and neither is the SUBREG inside it.
5838 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5839 if (GET_CODE (dest) == STRICT_LOW_PART)
5840 dest = SUBREG_REG (XEXP (dest, 0));
5841
5842 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5843 /* Registers must also be inserted into chains for quantities. */
5844 if (insert_regs (dest, sets[i].src_elt, 1))
5845 {
5846 /* If `insert_regs' changes something, the hash code must be
5847 recalculated. */
5848 rehash_using_reg (dest);
5849 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5850 }
5851
5852 elt = insert (dest, sets[i].src_elt,
5853 sets[i].dest_hash, GET_MODE (dest));
5854
5855 /* If this is a constant, insert the constant anchors with the
5856 equivalent register-offset expressions using register DEST. */
5857 if (targetm.const_anchor
5858 && REG_P (dest)
5859 && SCALAR_INT_MODE_P (GET_MODE (dest))
5860 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5861 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5862
5863 elt->in_memory = (MEM_P (sets[i].inner_dest)
5864 && !MEM_READONLY_P (sets[i].inner_dest));
5865
5866 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5867 narrower than M2, and both M1 and M2 are the same number of words,
5868 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5869 make that equivalence as well.
5870
5871 However, BAR may have equivalences for which gen_lowpart
5872 will produce a simpler value than gen_lowpart applied to
5873 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5874 BAR's equivalences. If we don't get a simplified form, make
5875 the SUBREG. It will not be used in an equivalence, but will
5876 cause two similar assignments to be detected.
5877
5878 Note the loop below will find SUBREG_REG (DEST) since we have
5879 already entered SRC and DEST of the SET in the table. */
5880
5881 if (GET_CODE (dest) == SUBREG
5882 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5883 / UNITS_PER_WORD)
5884 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5885 && (GET_MODE_SIZE (GET_MODE (dest))
5886 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5887 && sets[i].src_elt != 0)
5888 {
5889 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5890 struct table_elt *elt, *classp = 0;
5891
5892 for (elt = sets[i].src_elt->first_same_value; elt;
5893 elt = elt->next_same_value)
5894 {
5895 rtx new_src = 0;
5896 unsigned src_hash;
5897 struct table_elt *src_elt;
5898 int byte = 0;
5899
5900 /* Ignore invalid entries. */
5901 if (!REG_P (elt->exp)
5902 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5903 continue;
5904
5905 /* We may have already been playing subreg games. If the
5906 mode is already correct for the destination, use it. */
5907 if (GET_MODE (elt->exp) == new_mode)
5908 new_src = elt->exp;
5909 else
5910 {
5911 /* Calculate big endian correction for the SUBREG_BYTE.
5912 We have already checked that M1 (GET_MODE (dest))
5913 is not narrower than M2 (new_mode). */
5914 if (BYTES_BIG_ENDIAN)
5915 byte = (GET_MODE_SIZE (GET_MODE (dest))
5916 - GET_MODE_SIZE (new_mode));
5917
5918 new_src = simplify_gen_subreg (new_mode, elt->exp,
5919 GET_MODE (dest), byte);
5920 }
5921
5922 /* The call to simplify_gen_subreg fails if the value
5923 is VOIDmode, yet we can't do any simplification, e.g.
5924 for EXPR_LISTs denoting function call results.
5925 It is invalid to construct a SUBREG with a VOIDmode
5926 SUBREG_REG, hence a zero new_src means we can't do
5927 this substitution. */
5928 if (! new_src)
5929 continue;
5930
5931 src_hash = HASH (new_src, new_mode);
5932 src_elt = lookup (new_src, src_hash, new_mode);
5933
5934 /* Put the new source in the hash table is if isn't
5935 already. */
5936 if (src_elt == 0)
5937 {
5938 if (insert_regs (new_src, classp, 0))
5939 {
5940 rehash_using_reg (new_src);
5941 src_hash = HASH (new_src, new_mode);
5942 }
5943 src_elt = insert (new_src, classp, src_hash, new_mode);
5944 src_elt->in_memory = elt->in_memory;
5945 if (GET_CODE (new_src) == ASM_OPERANDS
5946 && elt->cost == MAX_COST)
5947 src_elt->cost = MAX_COST;
5948 }
5949 else if (classp && classp != src_elt->first_same_value)
5950 /* Show that two things that we've seen before are
5951 actually the same. */
5952 merge_equiv_classes (src_elt, classp);
5953
5954 classp = src_elt->first_same_value;
5955 /* Ignore invalid entries. */
5956 while (classp
5957 && !REG_P (classp->exp)
5958 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5959 classp = classp->next_same_value;
5960 }
5961 }
5962 }
5963
5964 /* Special handling for (set REG0 REG1) where REG0 is the
5965 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5966 be used in the sequel, so (if easily done) change this insn to
5967 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5968 that computed their value. Then REG1 will become a dead store
5969 and won't cloud the situation for later optimizations.
5970
5971 Do not make this change if REG1 is a hard register, because it will
5972 then be used in the sequel and we may be changing a two-operand insn
5973 into a three-operand insn.
5974
5975 Also do not do this if we are operating on a copy of INSN. */
5976
5977 if (n_sets == 1 && sets[0].rtl)
5978 try_back_substitute_reg (sets[0].rtl, insn);
5979
5980 done:;
5981 }
5982 \f
5983 /* Remove from the hash table all expressions that reference memory. */
5984
5985 static void
5986 invalidate_memory (void)
5987 {
5988 int i;
5989 struct table_elt *p, *next;
5990
5991 for (i = 0; i < HASH_SIZE; i++)
5992 for (p = table[i]; p; p = next)
5993 {
5994 next = p->next_same_hash;
5995 if (p->in_memory)
5996 remove_from_table (p, i);
5997 }
5998 }
5999
6000 /* Perform invalidation on the basis of everything about INSN,
6001 except for invalidating the actual places that are SET in it.
6002 This includes the places CLOBBERed, and anything that might
6003 alias with something that is SET or CLOBBERed. */
6004
6005 static void
6006 invalidate_from_clobbers (rtx_insn *insn)
6007 {
6008 rtx x = PATTERN (insn);
6009
6010 if (GET_CODE (x) == CLOBBER)
6011 {
6012 rtx ref = XEXP (x, 0);
6013 if (ref)
6014 {
6015 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6016 || MEM_P (ref))
6017 invalidate (ref, VOIDmode);
6018 else if (GET_CODE (ref) == STRICT_LOW_PART
6019 || GET_CODE (ref) == ZERO_EXTRACT)
6020 invalidate (XEXP (ref, 0), GET_MODE (ref));
6021 }
6022 }
6023 else if (GET_CODE (x) == PARALLEL)
6024 {
6025 int i;
6026 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6027 {
6028 rtx y = XVECEXP (x, 0, i);
6029 if (GET_CODE (y) == CLOBBER)
6030 {
6031 rtx ref = XEXP (y, 0);
6032 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6033 || MEM_P (ref))
6034 invalidate (ref, VOIDmode);
6035 else if (GET_CODE (ref) == STRICT_LOW_PART
6036 || GET_CODE (ref) == ZERO_EXTRACT)
6037 invalidate (XEXP (ref, 0), GET_MODE (ref));
6038 }
6039 }
6040 }
6041 }
6042 \f
6043 /* Perform invalidation on the basis of everything about INSN.
6044 This includes the places CLOBBERed, and anything that might
6045 alias with something that is SET or CLOBBERed. */
6046
6047 static void
6048 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6049 {
6050 rtx tem;
6051 rtx x = PATTERN (insn);
6052
6053 if (CALL_P (insn))
6054 {
6055 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6056 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6057 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6058 }
6059
6060 /* Ensure we invalidate the destination register of a CALL insn.
6061 This is necessary for machines where this register is a fixed_reg,
6062 because no other code would invalidate it. */
6063 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6064 invalidate (SET_DEST (x), VOIDmode);
6065
6066 else if (GET_CODE (x) == PARALLEL)
6067 {
6068 int i;
6069
6070 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6071 {
6072 rtx y = XVECEXP (x, 0, i);
6073 if (GET_CODE (y) == CLOBBER)
6074 {
6075 rtx clobbered = XEXP (y, 0);
6076
6077 if (REG_P (clobbered)
6078 || GET_CODE (clobbered) == SUBREG)
6079 invalidate (clobbered, VOIDmode);
6080 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6081 || GET_CODE (clobbered) == ZERO_EXTRACT)
6082 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6083 }
6084 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6085 invalidate (SET_DEST (y), VOIDmode);
6086 }
6087 }
6088 }
6089 \f
6090 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6091 and replace any registers in them with either an equivalent constant
6092 or the canonical form of the register. If we are inside an address,
6093 only do this if the address remains valid.
6094
6095 OBJECT is 0 except when within a MEM in which case it is the MEM.
6096
6097 Return the replacement for X. */
6098
6099 static rtx
6100 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6101 {
6102 enum rtx_code code = GET_CODE (x);
6103 const char *fmt = GET_RTX_FORMAT (code);
6104 int i;
6105
6106 switch (code)
6107 {
6108 case CONST:
6109 case SYMBOL_REF:
6110 case LABEL_REF:
6111 CASE_CONST_ANY:
6112 case PC:
6113 case CC0:
6114 case LO_SUM:
6115 return x;
6116
6117 case MEM:
6118 validate_change (x, &XEXP (x, 0),
6119 cse_process_notes (XEXP (x, 0), x, changed), 0);
6120 return x;
6121
6122 case EXPR_LIST:
6123 if (REG_NOTE_KIND (x) == REG_EQUAL)
6124 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6125 /* Fall through. */
6126
6127 case INSN_LIST:
6128 case INT_LIST:
6129 if (XEXP (x, 1))
6130 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6131 return x;
6132
6133 case SIGN_EXTEND:
6134 case ZERO_EXTEND:
6135 case SUBREG:
6136 {
6137 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6138 /* We don't substitute VOIDmode constants into these rtx,
6139 since they would impede folding. */
6140 if (GET_MODE (new_rtx) != VOIDmode)
6141 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6142 return x;
6143 }
6144
6145 case UNSIGNED_FLOAT:
6146 {
6147 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6148 /* We don't substitute negative VOIDmode constants into these rtx,
6149 since they would impede folding. */
6150 if (GET_MODE (new_rtx) != VOIDmode
6151 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6152 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6153 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6154 return x;
6155 }
6156
6157 case REG:
6158 i = REG_QTY (REGNO (x));
6159
6160 /* Return a constant or a constant register. */
6161 if (REGNO_QTY_VALID_P (REGNO (x)))
6162 {
6163 struct qty_table_elem *ent = &qty_table[i];
6164
6165 if (ent->const_rtx != NULL_RTX
6166 && (CONSTANT_P (ent->const_rtx)
6167 || REG_P (ent->const_rtx)))
6168 {
6169 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6170 if (new_rtx)
6171 return copy_rtx (new_rtx);
6172 }
6173 }
6174
6175 /* Otherwise, canonicalize this register. */
6176 return canon_reg (x, NULL);
6177
6178 default:
6179 break;
6180 }
6181
6182 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6183 if (fmt[i] == 'e')
6184 validate_change (object, &XEXP (x, i),
6185 cse_process_notes (XEXP (x, i), object, changed), 0);
6186
6187 return x;
6188 }
6189
6190 static rtx
6191 cse_process_notes (rtx x, rtx object, bool *changed)
6192 {
6193 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6194 if (new_rtx != x)
6195 *changed = true;
6196 return new_rtx;
6197 }
6198
6199 \f
6200 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6201
6202 DATA is a pointer to a struct cse_basic_block_data, that is used to
6203 describe the path.
6204 It is filled with a queue of basic blocks, starting with FIRST_BB
6205 and following a trace through the CFG.
6206
6207 If all paths starting at FIRST_BB have been followed, or no new path
6208 starting at FIRST_BB can be constructed, this function returns FALSE.
6209 Otherwise, DATA->path is filled and the function returns TRUE indicating
6210 that a path to follow was found.
6211
6212 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6213 block in the path will be FIRST_BB. */
6214
6215 static bool
6216 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6217 int follow_jumps)
6218 {
6219 basic_block bb;
6220 edge e;
6221 int path_size;
6222
6223 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6224
6225 /* See if there is a previous path. */
6226 path_size = data->path_size;
6227
6228 /* There is a previous path. Make sure it started with FIRST_BB. */
6229 if (path_size)
6230 gcc_assert (data->path[0].bb == first_bb);
6231
6232 /* There was only one basic block in the last path. Clear the path and
6233 return, so that paths starting at another basic block can be tried. */
6234 if (path_size == 1)
6235 {
6236 path_size = 0;
6237 goto done;
6238 }
6239
6240 /* If the path was empty from the beginning, construct a new path. */
6241 if (path_size == 0)
6242 data->path[path_size++].bb = first_bb;
6243 else
6244 {
6245 /* Otherwise, path_size must be equal to or greater than 2, because
6246 a previous path exists that is at least two basic blocks long.
6247
6248 Update the previous branch path, if any. If the last branch was
6249 previously along the branch edge, take the fallthrough edge now. */
6250 while (path_size >= 2)
6251 {
6252 basic_block last_bb_in_path, previous_bb_in_path;
6253 edge e;
6254
6255 --path_size;
6256 last_bb_in_path = data->path[path_size].bb;
6257 previous_bb_in_path = data->path[path_size - 1].bb;
6258
6259 /* If we previously followed a path along the branch edge, try
6260 the fallthru edge now. */
6261 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6262 && any_condjump_p (BB_END (previous_bb_in_path))
6263 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6264 && e == BRANCH_EDGE (previous_bb_in_path))
6265 {
6266 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6267 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6268 && single_pred_p (bb)
6269 /* We used to assert here that we would only see blocks
6270 that we have not visited yet. But we may end up
6271 visiting basic blocks twice if the CFG has changed
6272 in this run of cse_main, because when the CFG changes
6273 the topological sort of the CFG also changes. A basic
6274 blocks that previously had more than two predecessors
6275 may now have a single predecessor, and become part of
6276 a path that starts at another basic block.
6277
6278 We still want to visit each basic block only once, so
6279 halt the path here if we have already visited BB. */
6280 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6281 {
6282 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6283 data->path[path_size++].bb = bb;
6284 break;
6285 }
6286 }
6287
6288 data->path[path_size].bb = NULL;
6289 }
6290
6291 /* If only one block remains in the path, bail. */
6292 if (path_size == 1)
6293 {
6294 path_size = 0;
6295 goto done;
6296 }
6297 }
6298
6299 /* Extend the path if possible. */
6300 if (follow_jumps)
6301 {
6302 bb = data->path[path_size - 1].bb;
6303 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6304 {
6305 if (single_succ_p (bb))
6306 e = single_succ_edge (bb);
6307 else if (EDGE_COUNT (bb->succs) == 2
6308 && any_condjump_p (BB_END (bb)))
6309 {
6310 /* First try to follow the branch. If that doesn't lead
6311 to a useful path, follow the fallthru edge. */
6312 e = BRANCH_EDGE (bb);
6313 if (!single_pred_p (e->dest))
6314 e = FALLTHRU_EDGE (bb);
6315 }
6316 else
6317 e = NULL;
6318
6319 if (e
6320 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6321 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6322 && single_pred_p (e->dest)
6323 /* Avoid visiting basic blocks twice. The large comment
6324 above explains why this can happen. */
6325 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6326 {
6327 basic_block bb2 = e->dest;
6328 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6329 data->path[path_size++].bb = bb2;
6330 bb = bb2;
6331 }
6332 else
6333 bb = NULL;
6334 }
6335 }
6336
6337 done:
6338 data->path_size = path_size;
6339 return path_size != 0;
6340 }
6341 \f
6342 /* Dump the path in DATA to file F. NSETS is the number of sets
6343 in the path. */
6344
6345 static void
6346 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6347 {
6348 int path_entry;
6349
6350 fprintf (f, ";; Following path with %d sets: ", nsets);
6351 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6352 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6353 fputc ('\n', dump_file);
6354 fflush (f);
6355 }
6356
6357 \f
6358 /* Return true if BB has exception handling successor edges. */
6359
6360 static bool
6361 have_eh_succ_edges (basic_block bb)
6362 {
6363 edge e;
6364 edge_iterator ei;
6365
6366 FOR_EACH_EDGE (e, ei, bb->succs)
6367 if (e->flags & EDGE_EH)
6368 return true;
6369
6370 return false;
6371 }
6372
6373 \f
6374 /* Scan to the end of the path described by DATA. Return an estimate of
6375 the total number of SETs of all insns in the path. */
6376
6377 static void
6378 cse_prescan_path (struct cse_basic_block_data *data)
6379 {
6380 int nsets = 0;
6381 int path_size = data->path_size;
6382 int path_entry;
6383
6384 /* Scan to end of each basic block in the path. */
6385 for (path_entry = 0; path_entry < path_size; path_entry++)
6386 {
6387 basic_block bb;
6388 rtx_insn *insn;
6389
6390 bb = data->path[path_entry].bb;
6391
6392 FOR_BB_INSNS (bb, insn)
6393 {
6394 if (!INSN_P (insn))
6395 continue;
6396
6397 /* A PARALLEL can have lots of SETs in it,
6398 especially if it is really an ASM_OPERANDS. */
6399 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6400 nsets += XVECLEN (PATTERN (insn), 0);
6401 else
6402 nsets += 1;
6403 }
6404 }
6405
6406 data->nsets = nsets;
6407 }
6408 \f
6409 /* Return true if the pattern of INSN uses a LABEL_REF for which
6410 there isn't a REG_LABEL_OPERAND note. */
6411
6412 static bool
6413 check_for_label_ref (rtx_insn *insn)
6414 {
6415 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6416 note for it, we must rerun jump since it needs to place the note. If
6417 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6418 don't do this since no REG_LABEL_OPERAND will be added. */
6419 subrtx_iterator::array_type array;
6420 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6421 {
6422 const_rtx x = *iter;
6423 if (GET_CODE (x) == LABEL_REF
6424 && !LABEL_REF_NONLOCAL_P (x)
6425 && (!JUMP_P (insn)
6426 || !label_is_jump_target_p (LABEL_REF_LABEL (x), insn))
6427 && LABEL_P (LABEL_REF_LABEL (x))
6428 && INSN_UID (LABEL_REF_LABEL (x)) != 0
6429 && !find_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x)))
6430 return true;
6431 }
6432 return false;
6433 }
6434
6435 /* Process a single extended basic block described by EBB_DATA. */
6436
6437 static void
6438 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6439 {
6440 int path_size = ebb_data->path_size;
6441 int path_entry;
6442 int num_insns = 0;
6443
6444 /* Allocate the space needed by qty_table. */
6445 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6446
6447 new_basic_block ();
6448 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6449 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6450 for (path_entry = 0; path_entry < path_size; path_entry++)
6451 {
6452 basic_block bb;
6453 rtx_insn *insn;
6454
6455 bb = ebb_data->path[path_entry].bb;
6456
6457 /* Invalidate recorded information for eh regs if there is an EH
6458 edge pointing to that bb. */
6459 if (bb_has_eh_pred (bb))
6460 {
6461 df_ref def;
6462
6463 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6464 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6465 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6466 }
6467
6468 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6469 FOR_BB_INSNS (bb, insn)
6470 {
6471 /* If we have processed 1,000 insns, flush the hash table to
6472 avoid extreme quadratic behavior. We must not include NOTEs
6473 in the count since there may be more of them when generating
6474 debugging information. If we clear the table at different
6475 times, code generated with -g -O might be different than code
6476 generated with -O but not -g.
6477
6478 FIXME: This is a real kludge and needs to be done some other
6479 way. */
6480 if (NONDEBUG_INSN_P (insn)
6481 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6482 {
6483 flush_hash_table ();
6484 num_insns = 0;
6485 }
6486
6487 if (INSN_P (insn))
6488 {
6489 /* Process notes first so we have all notes in canonical forms
6490 when looking for duplicate operations. */
6491 if (REG_NOTES (insn))
6492 {
6493 bool changed = false;
6494 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6495 NULL_RTX, &changed);
6496 if (changed)
6497 df_notes_rescan (insn);
6498 }
6499
6500 cse_insn (insn);
6501
6502 /* If we haven't already found an insn where we added a LABEL_REF,
6503 check this one. */
6504 if (INSN_P (insn) && !recorded_label_ref
6505 && check_for_label_ref (insn))
6506 recorded_label_ref = true;
6507
6508 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6509 {
6510 /* If the previous insn sets CC0 and this insn no
6511 longer references CC0, delete the previous insn.
6512 Here we use fact that nothing expects CC0 to be
6513 valid over an insn, which is true until the final
6514 pass. */
6515 rtx_insn *prev_insn;
6516 rtx tem;
6517
6518 prev_insn = prev_nonnote_nondebug_insn (insn);
6519 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6520 && (tem = single_set (prev_insn)) != NULL_RTX
6521 && SET_DEST (tem) == cc0_rtx
6522 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6523 delete_insn (prev_insn);
6524
6525 /* If this insn is not the last insn in the basic
6526 block, it will be PREV_INSN(insn) in the next
6527 iteration. If we recorded any CC0-related
6528 information for this insn, remember it. */
6529 if (insn != BB_END (bb))
6530 {
6531 prev_insn_cc0 = this_insn_cc0;
6532 prev_insn_cc0_mode = this_insn_cc0_mode;
6533 }
6534 }
6535 }
6536 }
6537
6538 /* With non-call exceptions, we are not always able to update
6539 the CFG properly inside cse_insn. So clean up possibly
6540 redundant EH edges here. */
6541 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6542 cse_cfg_altered |= purge_dead_edges (bb);
6543
6544 /* If we changed a conditional jump, we may have terminated
6545 the path we are following. Check that by verifying that
6546 the edge we would take still exists. If the edge does
6547 not exist anymore, purge the remainder of the path.
6548 Note that this will cause us to return to the caller. */
6549 if (path_entry < path_size - 1)
6550 {
6551 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6552 if (!find_edge (bb, next_bb))
6553 {
6554 do
6555 {
6556 path_size--;
6557
6558 /* If we truncate the path, we must also reset the
6559 visited bit on the remaining blocks in the path,
6560 or we will never visit them at all. */
6561 bitmap_clear_bit (cse_visited_basic_blocks,
6562 ebb_data->path[path_size].bb->index);
6563 ebb_data->path[path_size].bb = NULL;
6564 }
6565 while (path_size - 1 != path_entry);
6566 ebb_data->path_size = path_size;
6567 }
6568 }
6569
6570 /* If this is a conditional jump insn, record any known
6571 equivalences due to the condition being tested. */
6572 insn = BB_END (bb);
6573 if (path_entry < path_size - 1
6574 && JUMP_P (insn)
6575 && single_set (insn)
6576 && any_condjump_p (insn))
6577 {
6578 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6579 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6580 record_jump_equiv (insn, taken);
6581 }
6582
6583 /* Clear the CC0-tracking related insns, they can't provide
6584 useful information across basic block boundaries. */
6585 prev_insn_cc0 = 0;
6586 }
6587
6588 gcc_assert (next_qty <= max_qty);
6589
6590 free (qty_table);
6591 }
6592
6593 \f
6594 /* Perform cse on the instructions of a function.
6595 F is the first instruction.
6596 NREGS is one plus the highest pseudo-reg number used in the instruction.
6597
6598 Return 2 if jump optimizations should be redone due to simplifications
6599 in conditional jump instructions.
6600 Return 1 if the CFG should be cleaned up because it has been modified.
6601 Return 0 otherwise. */
6602
6603 static int
6604 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6605 {
6606 struct cse_basic_block_data ebb_data;
6607 basic_block bb;
6608 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6609 int i, n_blocks;
6610
6611 df_set_flags (DF_LR_RUN_DCE);
6612 df_note_add_problem ();
6613 df_analyze ();
6614 df_set_flags (DF_DEFER_INSN_RESCAN);
6615
6616 reg_scan (get_insns (), max_reg_num ());
6617 init_cse_reg_info (nregs);
6618
6619 ebb_data.path = XNEWVEC (struct branch_path,
6620 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6621
6622 cse_cfg_altered = false;
6623 cse_jumps_altered = false;
6624 recorded_label_ref = false;
6625 constant_pool_entries_cost = 0;
6626 constant_pool_entries_regcost = 0;
6627 ebb_data.path_size = 0;
6628 ebb_data.nsets = 0;
6629 rtl_hooks = cse_rtl_hooks;
6630
6631 init_recog ();
6632 init_alias_analysis ();
6633
6634 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6635
6636 /* Set up the table of already visited basic blocks. */
6637 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6638 bitmap_clear (cse_visited_basic_blocks);
6639
6640 /* Loop over basic blocks in reverse completion order (RPO),
6641 excluding the ENTRY and EXIT blocks. */
6642 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6643 i = 0;
6644 while (i < n_blocks)
6645 {
6646 /* Find the first block in the RPO queue that we have not yet
6647 processed before. */
6648 do
6649 {
6650 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6651 }
6652 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6653 && i < n_blocks);
6654
6655 /* Find all paths starting with BB, and process them. */
6656 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6657 {
6658 /* Pre-scan the path. */
6659 cse_prescan_path (&ebb_data);
6660
6661 /* If this basic block has no sets, skip it. */
6662 if (ebb_data.nsets == 0)
6663 continue;
6664
6665 /* Get a reasonable estimate for the maximum number of qty's
6666 needed for this path. For this, we take the number of sets
6667 and multiply that by MAX_RECOG_OPERANDS. */
6668 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6669
6670 /* Dump the path we're about to process. */
6671 if (dump_file)
6672 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6673
6674 cse_extended_basic_block (&ebb_data);
6675 }
6676 }
6677
6678 /* Clean up. */
6679 end_alias_analysis ();
6680 free (reg_eqv_table);
6681 free (ebb_data.path);
6682 sbitmap_free (cse_visited_basic_blocks);
6683 free (rc_order);
6684 rtl_hooks = general_rtl_hooks;
6685
6686 if (cse_jumps_altered || recorded_label_ref)
6687 return 2;
6688 else if (cse_cfg_altered)
6689 return 1;
6690 else
6691 return 0;
6692 }
6693 \f
6694 /* Count the number of times registers are used (not set) in X.
6695 COUNTS is an array in which we accumulate the count, INCR is how much
6696 we count each register usage.
6697
6698 Don't count a usage of DEST, which is the SET_DEST of a SET which
6699 contains X in its SET_SRC. This is because such a SET does not
6700 modify the liveness of DEST.
6701 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6702 We must then count uses of a SET_DEST regardless, because the insn can't be
6703 deleted here. */
6704
6705 static void
6706 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6707 {
6708 enum rtx_code code;
6709 rtx note;
6710 const char *fmt;
6711 int i, j;
6712
6713 if (x == 0)
6714 return;
6715
6716 switch (code = GET_CODE (x))
6717 {
6718 case REG:
6719 if (x != dest)
6720 counts[REGNO (x)] += incr;
6721 return;
6722
6723 case PC:
6724 case CC0:
6725 case CONST:
6726 CASE_CONST_ANY:
6727 case SYMBOL_REF:
6728 case LABEL_REF:
6729 return;
6730
6731 case CLOBBER:
6732 /* If we are clobbering a MEM, mark any registers inside the address
6733 as being used. */
6734 if (MEM_P (XEXP (x, 0)))
6735 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6736 return;
6737
6738 case SET:
6739 /* Unless we are setting a REG, count everything in SET_DEST. */
6740 if (!REG_P (SET_DEST (x)))
6741 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6742 count_reg_usage (SET_SRC (x), counts,
6743 dest ? dest : SET_DEST (x),
6744 incr);
6745 return;
6746
6747 case DEBUG_INSN:
6748 return;
6749
6750 case CALL_INSN:
6751 case INSN:
6752 case JUMP_INSN:
6753 /* We expect dest to be NULL_RTX here. If the insn may throw,
6754 or if it cannot be deleted due to side-effects, mark this fact
6755 by setting DEST to pc_rtx. */
6756 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6757 || side_effects_p (PATTERN (x)))
6758 dest = pc_rtx;
6759 if (code == CALL_INSN)
6760 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6761 count_reg_usage (PATTERN (x), counts, dest, incr);
6762
6763 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6764 use them. */
6765
6766 note = find_reg_equal_equiv_note (x);
6767 if (note)
6768 {
6769 rtx eqv = XEXP (note, 0);
6770
6771 if (GET_CODE (eqv) == EXPR_LIST)
6772 /* This REG_EQUAL note describes the result of a function call.
6773 Process all the arguments. */
6774 do
6775 {
6776 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6777 eqv = XEXP (eqv, 1);
6778 }
6779 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6780 else
6781 count_reg_usage (eqv, counts, dest, incr);
6782 }
6783 return;
6784
6785 case EXPR_LIST:
6786 if (REG_NOTE_KIND (x) == REG_EQUAL
6787 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6788 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6789 involving registers in the address. */
6790 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6791 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6792
6793 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6794 return;
6795
6796 case ASM_OPERANDS:
6797 /* Iterate over just the inputs, not the constraints as well. */
6798 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6799 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6800 return;
6801
6802 case INSN_LIST:
6803 case INT_LIST:
6804 gcc_unreachable ();
6805
6806 default:
6807 break;
6808 }
6809
6810 fmt = GET_RTX_FORMAT (code);
6811 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6812 {
6813 if (fmt[i] == 'e')
6814 count_reg_usage (XEXP (x, i), counts, dest, incr);
6815 else if (fmt[i] == 'E')
6816 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6817 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6818 }
6819 }
6820 \f
6821 /* Return true if X is a dead register. */
6822
6823 static inline int
6824 is_dead_reg (const_rtx x, int *counts)
6825 {
6826 return (REG_P (x)
6827 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6828 && counts[REGNO (x)] == 0);
6829 }
6830
6831 /* Return true if set is live. */
6832 static bool
6833 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6834 int *counts)
6835 {
6836 rtx_insn *tem;
6837
6838 if (set_noop_p (set))
6839 ;
6840
6841 else if (GET_CODE (SET_DEST (set)) == CC0
6842 && !side_effects_p (SET_SRC (set))
6843 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6844 || !INSN_P (tem)
6845 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6846 return false;
6847 else if (!is_dead_reg (SET_DEST (set), counts)
6848 || side_effects_p (SET_SRC (set)))
6849 return true;
6850 return false;
6851 }
6852
6853 /* Return true if insn is live. */
6854
6855 static bool
6856 insn_live_p (rtx_insn *insn, int *counts)
6857 {
6858 int i;
6859 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6860 return true;
6861 else if (GET_CODE (PATTERN (insn)) == SET)
6862 return set_live_p (PATTERN (insn), insn, counts);
6863 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6864 {
6865 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6866 {
6867 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6868
6869 if (GET_CODE (elt) == SET)
6870 {
6871 if (set_live_p (elt, insn, counts))
6872 return true;
6873 }
6874 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6875 return true;
6876 }
6877 return false;
6878 }
6879 else if (DEBUG_INSN_P (insn))
6880 {
6881 rtx_insn *next;
6882
6883 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6884 if (NOTE_P (next))
6885 continue;
6886 else if (!DEBUG_INSN_P (next))
6887 return true;
6888 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6889 return false;
6890
6891 return true;
6892 }
6893 else
6894 return true;
6895 }
6896
6897 /* Count the number of stores into pseudo. Callback for note_stores. */
6898
6899 static void
6900 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6901 {
6902 int *counts = (int *) data;
6903 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6904 counts[REGNO (x)]++;
6905 }
6906
6907 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
6908 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
6909 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
6910 Set *SEEN_REPL to true if we see a dead register that does have
6911 a replacement. */
6912
6913 static bool
6914 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
6915 bool *seen_repl)
6916 {
6917 subrtx_iterator::array_type array;
6918 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
6919 {
6920 const_rtx x = *iter;
6921 if (is_dead_reg (x, counts))
6922 {
6923 if (replacements && replacements[REGNO (x)] != NULL_RTX)
6924 *seen_repl = true;
6925 else
6926 return true;
6927 }
6928 }
6929 return false;
6930 }
6931
6932 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6933 Callback for simplify_replace_fn_rtx. */
6934
6935 static rtx
6936 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6937 {
6938 rtx *replacements = (rtx *) data;
6939
6940 if (REG_P (x)
6941 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6942 && replacements[REGNO (x)] != NULL_RTX)
6943 {
6944 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6945 return replacements[REGNO (x)];
6946 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6947 GET_MODE (replacements[REGNO (x)]));
6948 }
6949 return NULL_RTX;
6950 }
6951
6952 /* Scan all the insns and delete any that are dead; i.e., they store a register
6953 that is never used or they copy a register to itself.
6954
6955 This is used to remove insns made obviously dead by cse, loop or other
6956 optimizations. It improves the heuristics in loop since it won't try to
6957 move dead invariants out of loops or make givs for dead quantities. The
6958 remaining passes of the compilation are also sped up. */
6959
6960 int
6961 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
6962 {
6963 int *counts;
6964 rtx_insn *insn, *prev;
6965 rtx *replacements = NULL;
6966 int ndead = 0;
6967
6968 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6969 /* First count the number of times each register is used. */
6970 if (MAY_HAVE_DEBUG_INSNS)
6971 {
6972 counts = XCNEWVEC (int, nreg * 3);
6973 for (insn = insns; insn; insn = NEXT_INSN (insn))
6974 if (DEBUG_INSN_P (insn))
6975 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6976 NULL_RTX, 1);
6977 else if (INSN_P (insn))
6978 {
6979 count_reg_usage (insn, counts, NULL_RTX, 1);
6980 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6981 }
6982 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6983 First one counts how many times each pseudo is used outside
6984 of debug insns, second counts how many times each pseudo is
6985 used in debug insns and third counts how many times a pseudo
6986 is stored. */
6987 }
6988 else
6989 {
6990 counts = XCNEWVEC (int, nreg);
6991 for (insn = insns; insn; insn = NEXT_INSN (insn))
6992 if (INSN_P (insn))
6993 count_reg_usage (insn, counts, NULL_RTX, 1);
6994 /* If no debug insns can be present, COUNTS is just an array
6995 which counts how many times each pseudo is used. */
6996 }
6997 /* Pseudo PIC register should be considered as used due to possible
6998 new usages generated. */
6999 if (!reload_completed
7000 && pic_offset_table_rtx
7001 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7002 counts[REGNO (pic_offset_table_rtx)]++;
7003 /* Go from the last insn to the first and delete insns that only set unused
7004 registers or copy a register to itself. As we delete an insn, remove
7005 usage counts for registers it uses.
7006
7007 The first jump optimization pass may leave a real insn as the last
7008 insn in the function. We must not skip that insn or we may end
7009 up deleting code that is not really dead.
7010
7011 If some otherwise unused register is only used in DEBUG_INSNs,
7012 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7013 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7014 has been created for the unused register, replace it with
7015 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
7016 for (insn = get_last_insn (); insn; insn = prev)
7017 {
7018 int live_insn = 0;
7019
7020 prev = PREV_INSN (insn);
7021 if (!INSN_P (insn))
7022 continue;
7023
7024 live_insn = insn_live_p (insn, counts);
7025
7026 /* If this is a dead insn, delete it and show registers in it aren't
7027 being used. */
7028
7029 if (! live_insn && dbg_cnt (delete_trivial_dead))
7030 {
7031 if (DEBUG_INSN_P (insn))
7032 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7033 NULL_RTX, -1);
7034 else
7035 {
7036 rtx set;
7037 if (MAY_HAVE_DEBUG_INSNS
7038 && (set = single_set (insn)) != NULL_RTX
7039 && is_dead_reg (SET_DEST (set), counts)
7040 /* Used at least once in some DEBUG_INSN. */
7041 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7042 /* And set exactly once. */
7043 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7044 && !side_effects_p (SET_SRC (set))
7045 && asm_noperands (PATTERN (insn)) < 0)
7046 {
7047 rtx dval, bind_var_loc;
7048 rtx_insn *bind;
7049
7050 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7051 dval = make_debug_expr_from_rtl (SET_DEST (set));
7052
7053 /* Emit a debug bind insn before the insn in which
7054 reg dies. */
7055 bind_var_loc =
7056 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7057 DEBUG_EXPR_TREE_DECL (dval),
7058 SET_SRC (set),
7059 VAR_INIT_STATUS_INITIALIZED);
7060 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7061
7062 bind = emit_debug_insn_before (bind_var_loc, insn);
7063 df_insn_rescan (bind);
7064
7065 if (replacements == NULL)
7066 replacements = XCNEWVEC (rtx, nreg);
7067 replacements[REGNO (SET_DEST (set))] = dval;
7068 }
7069
7070 count_reg_usage (insn, counts, NULL_RTX, -1);
7071 ndead++;
7072 }
7073 delete_insn_and_edges (insn);
7074 }
7075 }
7076
7077 if (MAY_HAVE_DEBUG_INSNS)
7078 {
7079 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7080 if (DEBUG_INSN_P (insn))
7081 {
7082 /* If this debug insn references a dead register that wasn't replaced
7083 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7084 bool seen_repl = false;
7085 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7086 counts, replacements, &seen_repl))
7087 {
7088 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7089 df_insn_rescan (insn);
7090 }
7091 else if (seen_repl)
7092 {
7093 INSN_VAR_LOCATION_LOC (insn)
7094 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7095 NULL_RTX, replace_dead_reg,
7096 replacements);
7097 df_insn_rescan (insn);
7098 }
7099 }
7100 free (replacements);
7101 }
7102
7103 if (dump_file && ndead)
7104 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7105 ndead);
7106 /* Clean up. */
7107 free (counts);
7108 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7109 return ndead;
7110 }
7111
7112 /* If LOC contains references to NEWREG in a different mode, change them
7113 to use NEWREG instead. */
7114
7115 static void
7116 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7117 rtx *loc, rtx_insn *insn, rtx newreg)
7118 {
7119 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7120 {
7121 rtx *loc = *iter;
7122 rtx x = *loc;
7123 if (x
7124 && REG_P (x)
7125 && REGNO (x) == REGNO (newreg)
7126 && GET_MODE (x) != GET_MODE (newreg))
7127 {
7128 validate_change (insn, loc, newreg, 1);
7129 iter.skip_subrtxes ();
7130 }
7131 }
7132 }
7133
7134 /* Change the mode of any reference to the register REGNO (NEWREG) to
7135 GET_MODE (NEWREG) in INSN. */
7136
7137 static void
7138 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7139 {
7140 int success;
7141
7142 if (!INSN_P (insn))
7143 return;
7144
7145 subrtx_ptr_iterator::array_type array;
7146 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7147 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7148
7149 /* If the following assertion was triggered, there is most probably
7150 something wrong with the cc_modes_compatible back end function.
7151 CC modes only can be considered compatible if the insn - with the mode
7152 replaced by any of the compatible modes - can still be recognized. */
7153 success = apply_change_group ();
7154 gcc_assert (success);
7155 }
7156
7157 /* Change the mode of any reference to the register REGNO (NEWREG) to
7158 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7159 any instruction which modifies NEWREG. */
7160
7161 static void
7162 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7163 {
7164 rtx_insn *insn;
7165
7166 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7167 {
7168 if (! INSN_P (insn))
7169 continue;
7170
7171 if (reg_set_p (newreg, insn))
7172 return;
7173
7174 cse_change_cc_mode_insn (insn, newreg);
7175 }
7176 }
7177
7178 /* BB is a basic block which finishes with CC_REG as a condition code
7179 register which is set to CC_SRC. Look through the successors of BB
7180 to find blocks which have a single predecessor (i.e., this one),
7181 and look through those blocks for an assignment to CC_REG which is
7182 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7183 permitted to change the mode of CC_SRC to a compatible mode. This
7184 returns VOIDmode if no equivalent assignments were found.
7185 Otherwise it returns the mode which CC_SRC should wind up with.
7186 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7187 but is passed unmodified down to recursive calls in order to prevent
7188 endless recursion.
7189
7190 The main complexity in this function is handling the mode issues.
7191 We may have more than one duplicate which we can eliminate, and we
7192 try to find a mode which will work for multiple duplicates. */
7193
7194 static machine_mode
7195 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7196 bool can_change_mode)
7197 {
7198 bool found_equiv;
7199 machine_mode mode;
7200 unsigned int insn_count;
7201 edge e;
7202 rtx_insn *insns[2];
7203 machine_mode modes[2];
7204 rtx_insn *last_insns[2];
7205 unsigned int i;
7206 rtx newreg;
7207 edge_iterator ei;
7208
7209 /* We expect to have two successors. Look at both before picking
7210 the final mode for the comparison. If we have more successors
7211 (i.e., some sort of table jump, although that seems unlikely),
7212 then we require all beyond the first two to use the same
7213 mode. */
7214
7215 found_equiv = false;
7216 mode = GET_MODE (cc_src);
7217 insn_count = 0;
7218 FOR_EACH_EDGE (e, ei, bb->succs)
7219 {
7220 rtx_insn *insn;
7221 rtx_insn *end;
7222
7223 if (e->flags & EDGE_COMPLEX)
7224 continue;
7225
7226 if (EDGE_COUNT (e->dest->preds) != 1
7227 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7228 /* Avoid endless recursion on unreachable blocks. */
7229 || e->dest == orig_bb)
7230 continue;
7231
7232 end = NEXT_INSN (BB_END (e->dest));
7233 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7234 {
7235 rtx set;
7236
7237 if (! INSN_P (insn))
7238 continue;
7239
7240 /* If CC_SRC is modified, we have to stop looking for
7241 something which uses it. */
7242 if (modified_in_p (cc_src, insn))
7243 break;
7244
7245 /* Check whether INSN sets CC_REG to CC_SRC. */
7246 set = single_set (insn);
7247 if (set
7248 && REG_P (SET_DEST (set))
7249 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7250 {
7251 bool found;
7252 machine_mode set_mode;
7253 machine_mode comp_mode;
7254
7255 found = false;
7256 set_mode = GET_MODE (SET_SRC (set));
7257 comp_mode = set_mode;
7258 if (rtx_equal_p (cc_src, SET_SRC (set)))
7259 found = true;
7260 else if (GET_CODE (cc_src) == COMPARE
7261 && GET_CODE (SET_SRC (set)) == COMPARE
7262 && mode != set_mode
7263 && rtx_equal_p (XEXP (cc_src, 0),
7264 XEXP (SET_SRC (set), 0))
7265 && rtx_equal_p (XEXP (cc_src, 1),
7266 XEXP (SET_SRC (set), 1)))
7267
7268 {
7269 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7270 if (comp_mode != VOIDmode
7271 && (can_change_mode || comp_mode == mode))
7272 found = true;
7273 }
7274
7275 if (found)
7276 {
7277 found_equiv = true;
7278 if (insn_count < ARRAY_SIZE (insns))
7279 {
7280 insns[insn_count] = insn;
7281 modes[insn_count] = set_mode;
7282 last_insns[insn_count] = end;
7283 ++insn_count;
7284
7285 if (mode != comp_mode)
7286 {
7287 gcc_assert (can_change_mode);
7288 mode = comp_mode;
7289
7290 /* The modified insn will be re-recognized later. */
7291 PUT_MODE (cc_src, mode);
7292 }
7293 }
7294 else
7295 {
7296 if (set_mode != mode)
7297 {
7298 /* We found a matching expression in the
7299 wrong mode, but we don't have room to
7300 store it in the array. Punt. This case
7301 should be rare. */
7302 break;
7303 }
7304 /* INSN sets CC_REG to a value equal to CC_SRC
7305 with the right mode. We can simply delete
7306 it. */
7307 delete_insn (insn);
7308 }
7309
7310 /* We found an instruction to delete. Keep looking,
7311 in the hopes of finding a three-way jump. */
7312 continue;
7313 }
7314
7315 /* We found an instruction which sets the condition
7316 code, so don't look any farther. */
7317 break;
7318 }
7319
7320 /* If INSN sets CC_REG in some other way, don't look any
7321 farther. */
7322 if (reg_set_p (cc_reg, insn))
7323 break;
7324 }
7325
7326 /* If we fell off the bottom of the block, we can keep looking
7327 through successors. We pass CAN_CHANGE_MODE as false because
7328 we aren't prepared to handle compatibility between the
7329 further blocks and this block. */
7330 if (insn == end)
7331 {
7332 machine_mode submode;
7333
7334 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7335 if (submode != VOIDmode)
7336 {
7337 gcc_assert (submode == mode);
7338 found_equiv = true;
7339 can_change_mode = false;
7340 }
7341 }
7342 }
7343
7344 if (! found_equiv)
7345 return VOIDmode;
7346
7347 /* Now INSN_COUNT is the number of instructions we found which set
7348 CC_REG to a value equivalent to CC_SRC. The instructions are in
7349 INSNS. The modes used by those instructions are in MODES. */
7350
7351 newreg = NULL_RTX;
7352 for (i = 0; i < insn_count; ++i)
7353 {
7354 if (modes[i] != mode)
7355 {
7356 /* We need to change the mode of CC_REG in INSNS[i] and
7357 subsequent instructions. */
7358 if (! newreg)
7359 {
7360 if (GET_MODE (cc_reg) == mode)
7361 newreg = cc_reg;
7362 else
7363 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7364 }
7365 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7366 newreg);
7367 }
7368
7369 delete_insn_and_edges (insns[i]);
7370 }
7371
7372 return mode;
7373 }
7374
7375 /* If we have a fixed condition code register (or two), walk through
7376 the instructions and try to eliminate duplicate assignments. */
7377
7378 static void
7379 cse_condition_code_reg (void)
7380 {
7381 unsigned int cc_regno_1;
7382 unsigned int cc_regno_2;
7383 rtx cc_reg_1;
7384 rtx cc_reg_2;
7385 basic_block bb;
7386
7387 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7388 return;
7389
7390 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7391 if (cc_regno_2 != INVALID_REGNUM)
7392 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7393 else
7394 cc_reg_2 = NULL_RTX;
7395
7396 FOR_EACH_BB_FN (bb, cfun)
7397 {
7398 rtx_insn *last_insn;
7399 rtx cc_reg;
7400 rtx_insn *insn;
7401 rtx_insn *cc_src_insn;
7402 rtx cc_src;
7403 machine_mode mode;
7404 machine_mode orig_mode;
7405
7406 /* Look for blocks which end with a conditional jump based on a
7407 condition code register. Then look for the instruction which
7408 sets the condition code register. Then look through the
7409 successor blocks for instructions which set the condition
7410 code register to the same value. There are other possible
7411 uses of the condition code register, but these are by far the
7412 most common and the ones which we are most likely to be able
7413 to optimize. */
7414
7415 last_insn = BB_END (bb);
7416 if (!JUMP_P (last_insn))
7417 continue;
7418
7419 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7420 cc_reg = cc_reg_1;
7421 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7422 cc_reg = cc_reg_2;
7423 else
7424 continue;
7425
7426 cc_src_insn = NULL;
7427 cc_src = NULL_RTX;
7428 for (insn = PREV_INSN (last_insn);
7429 insn && insn != PREV_INSN (BB_HEAD (bb));
7430 insn = PREV_INSN (insn))
7431 {
7432 rtx set;
7433
7434 if (! INSN_P (insn))
7435 continue;
7436 set = single_set (insn);
7437 if (set
7438 && REG_P (SET_DEST (set))
7439 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7440 {
7441 cc_src_insn = insn;
7442 cc_src = SET_SRC (set);
7443 break;
7444 }
7445 else if (reg_set_p (cc_reg, insn))
7446 break;
7447 }
7448
7449 if (! cc_src_insn)
7450 continue;
7451
7452 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7453 continue;
7454
7455 /* Now CC_REG is a condition code register used for a
7456 conditional jump at the end of the block, and CC_SRC, in
7457 CC_SRC_INSN, is the value to which that condition code
7458 register is set, and CC_SRC is still meaningful at the end of
7459 the basic block. */
7460
7461 orig_mode = GET_MODE (cc_src);
7462 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7463 if (mode != VOIDmode)
7464 {
7465 gcc_assert (mode == GET_MODE (cc_src));
7466 if (mode != orig_mode)
7467 {
7468 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7469
7470 cse_change_cc_mode_insn (cc_src_insn, newreg);
7471
7472 /* Do the same in the following insns that use the
7473 current value of CC_REG within BB. */
7474 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7475 NEXT_INSN (last_insn),
7476 newreg);
7477 }
7478 }
7479 }
7480 }
7481 \f
7482
7483 /* Perform common subexpression elimination. Nonzero value from
7484 `cse_main' means that jumps were simplified and some code may now
7485 be unreachable, so do jump optimization again. */
7486 static unsigned int
7487 rest_of_handle_cse (void)
7488 {
7489 int tem;
7490
7491 if (dump_file)
7492 dump_flow_info (dump_file, dump_flags);
7493
7494 tem = cse_main (get_insns (), max_reg_num ());
7495
7496 /* If we are not running more CSE passes, then we are no longer
7497 expecting CSE to be run. But always rerun it in a cheap mode. */
7498 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7499
7500 if (tem == 2)
7501 {
7502 timevar_push (TV_JUMP);
7503 rebuild_jump_labels (get_insns ());
7504 cleanup_cfg (CLEANUP_CFG_CHANGED);
7505 timevar_pop (TV_JUMP);
7506 }
7507 else if (tem == 1 || optimize > 1)
7508 cleanup_cfg (0);
7509
7510 return 0;
7511 }
7512
7513 namespace {
7514
7515 const pass_data pass_data_cse =
7516 {
7517 RTL_PASS, /* type */
7518 "cse1", /* name */
7519 OPTGROUP_NONE, /* optinfo_flags */
7520 TV_CSE, /* tv_id */
7521 0, /* properties_required */
7522 0, /* properties_provided */
7523 0, /* properties_destroyed */
7524 0, /* todo_flags_start */
7525 TODO_df_finish, /* todo_flags_finish */
7526 };
7527
7528 class pass_cse : public rtl_opt_pass
7529 {
7530 public:
7531 pass_cse (gcc::context *ctxt)
7532 : rtl_opt_pass (pass_data_cse, ctxt)
7533 {}
7534
7535 /* opt_pass methods: */
7536 virtual bool gate (function *) { return optimize > 0; }
7537 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7538
7539 }; // class pass_cse
7540
7541 } // anon namespace
7542
7543 rtl_opt_pass *
7544 make_pass_cse (gcc::context *ctxt)
7545 {
7546 return new pass_cse (ctxt);
7547 }
7548
7549
7550 /* Run second CSE pass after loop optimizations. */
7551 static unsigned int
7552 rest_of_handle_cse2 (void)
7553 {
7554 int tem;
7555
7556 if (dump_file)
7557 dump_flow_info (dump_file, dump_flags);
7558
7559 tem = cse_main (get_insns (), max_reg_num ());
7560
7561 /* Run a pass to eliminate duplicated assignments to condition code
7562 registers. We have to run this after bypass_jumps, because it
7563 makes it harder for that pass to determine whether a jump can be
7564 bypassed safely. */
7565 cse_condition_code_reg ();
7566
7567 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7568
7569 if (tem == 2)
7570 {
7571 timevar_push (TV_JUMP);
7572 rebuild_jump_labels (get_insns ());
7573 cleanup_cfg (CLEANUP_CFG_CHANGED);
7574 timevar_pop (TV_JUMP);
7575 }
7576 else if (tem == 1)
7577 cleanup_cfg (0);
7578
7579 cse_not_expected = 1;
7580 return 0;
7581 }
7582
7583
7584 namespace {
7585
7586 const pass_data pass_data_cse2 =
7587 {
7588 RTL_PASS, /* type */
7589 "cse2", /* name */
7590 OPTGROUP_NONE, /* optinfo_flags */
7591 TV_CSE2, /* tv_id */
7592 0, /* properties_required */
7593 0, /* properties_provided */
7594 0, /* properties_destroyed */
7595 0, /* todo_flags_start */
7596 TODO_df_finish, /* todo_flags_finish */
7597 };
7598
7599 class pass_cse2 : public rtl_opt_pass
7600 {
7601 public:
7602 pass_cse2 (gcc::context *ctxt)
7603 : rtl_opt_pass (pass_data_cse2, ctxt)
7604 {}
7605
7606 /* opt_pass methods: */
7607 virtual bool gate (function *)
7608 {
7609 return optimize > 0 && flag_rerun_cse_after_loop;
7610 }
7611
7612 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7613
7614 }; // class pass_cse2
7615
7616 } // anon namespace
7617
7618 rtl_opt_pass *
7619 make_pass_cse2 (gcc::context *ctxt)
7620 {
7621 return new pass_cse2 (ctxt);
7622 }
7623
7624 /* Run second CSE pass after loop optimizations. */
7625 static unsigned int
7626 rest_of_handle_cse_after_global_opts (void)
7627 {
7628 int save_cfj;
7629 int tem;
7630
7631 /* We only want to do local CSE, so don't follow jumps. */
7632 save_cfj = flag_cse_follow_jumps;
7633 flag_cse_follow_jumps = 0;
7634
7635 rebuild_jump_labels (get_insns ());
7636 tem = cse_main (get_insns (), max_reg_num ());
7637 purge_all_dead_edges ();
7638 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7639
7640 cse_not_expected = !flag_rerun_cse_after_loop;
7641
7642 /* If cse altered any jumps, rerun jump opts to clean things up. */
7643 if (tem == 2)
7644 {
7645 timevar_push (TV_JUMP);
7646 rebuild_jump_labels (get_insns ());
7647 cleanup_cfg (CLEANUP_CFG_CHANGED);
7648 timevar_pop (TV_JUMP);
7649 }
7650 else if (tem == 1)
7651 cleanup_cfg (0);
7652
7653 flag_cse_follow_jumps = save_cfj;
7654 return 0;
7655 }
7656
7657 namespace {
7658
7659 const pass_data pass_data_cse_after_global_opts =
7660 {
7661 RTL_PASS, /* type */
7662 "cse_local", /* name */
7663 OPTGROUP_NONE, /* optinfo_flags */
7664 TV_CSE, /* tv_id */
7665 0, /* properties_required */
7666 0, /* properties_provided */
7667 0, /* properties_destroyed */
7668 0, /* todo_flags_start */
7669 TODO_df_finish, /* todo_flags_finish */
7670 };
7671
7672 class pass_cse_after_global_opts : public rtl_opt_pass
7673 {
7674 public:
7675 pass_cse_after_global_opts (gcc::context *ctxt)
7676 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7677 {}
7678
7679 /* opt_pass methods: */
7680 virtual bool gate (function *)
7681 {
7682 return optimize > 0 && flag_rerun_cse_after_global_opts;
7683 }
7684
7685 virtual unsigned int execute (function *)
7686 {
7687 return rest_of_handle_cse_after_global_opts ();
7688 }
7689
7690 }; // class pass_cse_after_global_opts
7691
7692 } // anon namespace
7693
7694 rtl_opt_pass *
7695 make_pass_cse_after_global_opts (gcc::context *ctxt)
7696 {
7697 return new pass_cse_after_global_opts (ctxt);
7698 }