]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cse.c
target-insns.def (jump): New targetm instruction pattern.
[thirdparty/gcc.git] / gcc / cse.c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "predict.h"
29 #include "function.h"
30 #include "dominance.h"
31 #include "cfg.h"
32 #include "cfgrtl.h"
33 #include "cfganal.h"
34 #include "cfgcleanup.h"
35 #include "basic-block.h"
36 #include "flags.h"
37 #include "insn-config.h"
38 #include "recog.h"
39 #include "symtab.h"
40 #include "alias.h"
41 #include "tree.h"
42 #include "expmed.h"
43 #include "dojump.h"
44 #include "explow.h"
45 #include "calls.h"
46 #include "emit-rtl.h"
47 #include "varasm.h"
48 #include "stmt.h"
49 #include "expr.h"
50 #include "diagnostic-core.h"
51 #include "toplev.h"
52 #include "except.h"
53 #include "target.h"
54 #include "params.h"
55 #include "rtlhooks-def.h"
56 #include "tree-pass.h"
57 #include "df.h"
58 #include "dbgcnt.h"
59 #include "rtl-iter.h"
60
61 /* The basic idea of common subexpression elimination is to go
62 through the code, keeping a record of expressions that would
63 have the same value at the current scan point, and replacing
64 expressions encountered with the cheapest equivalent expression.
65
66 It is too complicated to keep track of the different possibilities
67 when control paths merge in this code; so, at each label, we forget all
68 that is known and start fresh. This can be described as processing each
69 extended basic block separately. We have a separate pass to perform
70 global CSE.
71
72 Note CSE can turn a conditional or computed jump into a nop or
73 an unconditional jump. When this occurs we arrange to run the jump
74 optimizer after CSE to delete the unreachable code.
75
76 We use two data structures to record the equivalent expressions:
77 a hash table for most expressions, and a vector of "quantity
78 numbers" to record equivalent (pseudo) registers.
79
80 The use of the special data structure for registers is desirable
81 because it is faster. It is possible because registers references
82 contain a fairly small number, the register number, taken from
83 a contiguously allocated series, and two register references are
84 identical if they have the same number. General expressions
85 do not have any such thing, so the only way to retrieve the
86 information recorded on an expression other than a register
87 is to keep it in a hash table.
88
89 Registers and "quantity numbers":
90
91 At the start of each basic block, all of the (hardware and pseudo)
92 registers used in the function are given distinct quantity
93 numbers to indicate their contents. During scan, when the code
94 copies one register into another, we copy the quantity number.
95 When a register is loaded in any other way, we allocate a new
96 quantity number to describe the value generated by this operation.
97 `REG_QTY (N)' records what quantity register N is currently thought
98 of as containing.
99
100 All real quantity numbers are greater than or equal to zero.
101 If register N has not been assigned a quantity, `REG_QTY (N)' will
102 equal -N - 1, which is always negative.
103
104 Quantity numbers below zero do not exist and none of the `qty_table'
105 entries should be referenced with a negative index.
106
107 We also maintain a bidirectional chain of registers for each
108 quantity number. The `qty_table` members `first_reg' and `last_reg',
109 and `reg_eqv_table' members `next' and `prev' hold these chains.
110
111 The first register in a chain is the one whose lifespan is least local.
112 Among equals, it is the one that was seen first.
113 We replace any equivalent register with that one.
114
115 If two registers have the same quantity number, it must be true that
116 REG expressions with qty_table `mode' must be in the hash table for both
117 registers and must be in the same class.
118
119 The converse is not true. Since hard registers may be referenced in
120 any mode, two REG expressions might be equivalent in the hash table
121 but not have the same quantity number if the quantity number of one
122 of the registers is not the same mode as those expressions.
123
124 Constants and quantity numbers
125
126 When a quantity has a known constant value, that value is stored
127 in the appropriate qty_table `const_rtx'. This is in addition to
128 putting the constant in the hash table as is usual for non-regs.
129
130 Whether a reg or a constant is preferred is determined by the configuration
131 macro CONST_COSTS and will often depend on the constant value. In any
132 event, expressions containing constants can be simplified, by fold_rtx.
133
134 When a quantity has a known nearly constant value (such as an address
135 of a stack slot), that value is stored in the appropriate qty_table
136 `const_rtx'.
137
138 Integer constants don't have a machine mode. However, cse
139 determines the intended machine mode from the destination
140 of the instruction that moves the constant. The machine mode
141 is recorded in the hash table along with the actual RTL
142 constant expression so that different modes are kept separate.
143
144 Other expressions:
145
146 To record known equivalences among expressions in general
147 we use a hash table called `table'. It has a fixed number of buckets
148 that contain chains of `struct table_elt' elements for expressions.
149 These chains connect the elements whose expressions have the same
150 hash codes.
151
152 Other chains through the same elements connect the elements which
153 currently have equivalent values.
154
155 Register references in an expression are canonicalized before hashing
156 the expression. This is done using `reg_qty' and qty_table `first_reg'.
157 The hash code of a register reference is computed using the quantity
158 number, not the register number.
159
160 When the value of an expression changes, it is necessary to remove from the
161 hash table not just that expression but all expressions whose values
162 could be different as a result.
163
164 1. If the value changing is in memory, except in special cases
165 ANYTHING referring to memory could be changed. That is because
166 nobody knows where a pointer does not point.
167 The function `invalidate_memory' removes what is necessary.
168
169 The special cases are when the address is constant or is
170 a constant plus a fixed register such as the frame pointer
171 or a static chain pointer. When such addresses are stored in,
172 we can tell exactly which other such addresses must be invalidated
173 due to overlap. `invalidate' does this.
174 All expressions that refer to non-constant
175 memory addresses are also invalidated. `invalidate_memory' does this.
176
177 2. If the value changing is a register, all expressions
178 containing references to that register, and only those,
179 must be removed.
180
181 Because searching the entire hash table for expressions that contain
182 a register is very slow, we try to figure out when it isn't necessary.
183 Precisely, this is necessary only when expressions have been
184 entered in the hash table using this register, and then the value has
185 changed, and then another expression wants to be added to refer to
186 the register's new value. This sequence of circumstances is rare
187 within any one basic block.
188
189 `REG_TICK' and `REG_IN_TABLE', accessors for members of
190 cse_reg_info, are used to detect this case. REG_TICK (i) is
191 incremented whenever a value is stored in register i.
192 REG_IN_TABLE (i) holds -1 if no references to register i have been
193 entered in the table; otherwise, it contains the value REG_TICK (i)
194 had when the references were entered. If we want to enter a
195 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
196 remove old references. Until we want to enter a new entry, the
197 mere fact that the two vectors don't match makes the entries be
198 ignored if anyone tries to match them.
199
200 Registers themselves are entered in the hash table as well as in
201 the equivalent-register chains. However, `REG_TICK' and
202 `REG_IN_TABLE' do not apply to expressions which are simple
203 register references. These expressions are removed from the table
204 immediately when they become invalid, and this can be done even if
205 we do not immediately search for all the expressions that refer to
206 the register.
207
208 A CLOBBER rtx in an instruction invalidates its operand for further
209 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
210 invalidates everything that resides in memory.
211
212 Related expressions:
213
214 Constant expressions that differ only by an additive integer
215 are called related. When a constant expression is put in
216 the table, the related expression with no constant term
217 is also entered. These are made to point at each other
218 so that it is possible to find out if there exists any
219 register equivalent to an expression related to a given expression. */
220
221 /* Length of qty_table vector. We know in advance we will not need
222 a quantity number this big. */
223
224 static int max_qty;
225
226 /* Next quantity number to be allocated.
227 This is 1 + the largest number needed so far. */
228
229 static int next_qty;
230
231 /* Per-qty information tracking.
232
233 `first_reg' and `last_reg' track the head and tail of the
234 chain of registers which currently contain this quantity.
235
236 `mode' contains the machine mode of this quantity.
237
238 `const_rtx' holds the rtx of the constant value of this
239 quantity, if known. A summations of the frame/arg pointer
240 and a constant can also be entered here. When this holds
241 a known value, `const_insn' is the insn which stored the
242 constant value.
243
244 `comparison_{code,const,qty}' are used to track when a
245 comparison between a quantity and some constant or register has
246 been passed. In such a case, we know the results of the comparison
247 in case we see it again. These members record a comparison that
248 is known to be true. `comparison_code' holds the rtx code of such
249 a comparison, else it is set to UNKNOWN and the other two
250 comparison members are undefined. `comparison_const' holds
251 the constant being compared against, or zero if the comparison
252 is not against a constant. `comparison_qty' holds the quantity
253 being compared against when the result is known. If the comparison
254 is not with a register, `comparison_qty' is -1. */
255
256 struct qty_table_elem
257 {
258 rtx const_rtx;
259 rtx_insn *const_insn;
260 rtx comparison_const;
261 int comparison_qty;
262 unsigned int first_reg, last_reg;
263 /* The sizes of these fields should match the sizes of the
264 code and mode fields of struct rtx_def (see rtl.h). */
265 ENUM_BITFIELD(rtx_code) comparison_code : 16;
266 ENUM_BITFIELD(machine_mode) mode : 8;
267 };
268
269 /* The table of all qtys, indexed by qty number. */
270 static struct qty_table_elem *qty_table;
271
272 /* For machines that have a CC0, we do not record its value in the hash
273 table since its use is guaranteed to be the insn immediately following
274 its definition and any other insn is presumed to invalidate it.
275
276 Instead, we store below the current and last value assigned to CC0.
277 If it should happen to be a constant, it is stored in preference
278 to the actual assigned value. In case it is a constant, we store
279 the mode in which the constant should be interpreted. */
280
281 static rtx this_insn_cc0, prev_insn_cc0;
282 static machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
283
284 /* Insn being scanned. */
285
286 static rtx_insn *this_insn;
287 static bool optimize_this_for_speed_p;
288
289 /* Index by register number, gives the number of the next (or
290 previous) register in the chain of registers sharing the same
291 value.
292
293 Or -1 if this register is at the end of the chain.
294
295 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
296
297 /* Per-register equivalence chain. */
298 struct reg_eqv_elem
299 {
300 int next, prev;
301 };
302
303 /* The table of all register equivalence chains. */
304 static struct reg_eqv_elem *reg_eqv_table;
305
306 struct cse_reg_info
307 {
308 /* The timestamp at which this register is initialized. */
309 unsigned int timestamp;
310
311 /* The quantity number of the register's current contents. */
312 int reg_qty;
313
314 /* The number of times the register has been altered in the current
315 basic block. */
316 int reg_tick;
317
318 /* The REG_TICK value at which rtx's containing this register are
319 valid in the hash table. If this does not equal the current
320 reg_tick value, such expressions existing in the hash table are
321 invalid. */
322 int reg_in_table;
323
324 /* The SUBREG that was set when REG_TICK was last incremented. Set
325 to -1 if the last store was to the whole register, not a subreg. */
326 unsigned int subreg_ticked;
327 };
328
329 /* A table of cse_reg_info indexed by register numbers. */
330 static struct cse_reg_info *cse_reg_info_table;
331
332 /* The size of the above table. */
333 static unsigned int cse_reg_info_table_size;
334
335 /* The index of the first entry that has not been initialized. */
336 static unsigned int cse_reg_info_table_first_uninitialized;
337
338 /* The timestamp at the beginning of the current run of
339 cse_extended_basic_block. We increment this variable at the beginning of
340 the current run of cse_extended_basic_block. The timestamp field of a
341 cse_reg_info entry matches the value of this variable if and only
342 if the entry has been initialized during the current run of
343 cse_extended_basic_block. */
344 static unsigned int cse_reg_info_timestamp;
345
346 /* A HARD_REG_SET containing all the hard registers for which there is
347 currently a REG expression in the hash table. Note the difference
348 from the above variables, which indicate if the REG is mentioned in some
349 expression in the table. */
350
351 static HARD_REG_SET hard_regs_in_table;
352
353 /* True if CSE has altered the CFG. */
354 static bool cse_cfg_altered;
355
356 /* True if CSE has altered conditional jump insns in such a way
357 that jump optimization should be redone. */
358 static bool cse_jumps_altered;
359
360 /* True if we put a LABEL_REF into the hash table for an INSN
361 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
362 to put in the note. */
363 static bool recorded_label_ref;
364
365 /* canon_hash stores 1 in do_not_record
366 if it notices a reference to CC0, PC, or some other volatile
367 subexpression. */
368
369 static int do_not_record;
370
371 /* canon_hash stores 1 in hash_arg_in_memory
372 if it notices a reference to memory within the expression being hashed. */
373
374 static int hash_arg_in_memory;
375
376 /* The hash table contains buckets which are chains of `struct table_elt's,
377 each recording one expression's information.
378 That expression is in the `exp' field.
379
380 The canon_exp field contains a canonical (from the point of view of
381 alias analysis) version of the `exp' field.
382
383 Those elements with the same hash code are chained in both directions
384 through the `next_same_hash' and `prev_same_hash' fields.
385
386 Each set of expressions with equivalent values
387 are on a two-way chain through the `next_same_value'
388 and `prev_same_value' fields, and all point with
389 the `first_same_value' field at the first element in
390 that chain. The chain is in order of increasing cost.
391 Each element's cost value is in its `cost' field.
392
393 The `in_memory' field is nonzero for elements that
394 involve any reference to memory. These elements are removed
395 whenever a write is done to an unidentified location in memory.
396 To be safe, we assume that a memory address is unidentified unless
397 the address is either a symbol constant or a constant plus
398 the frame pointer or argument pointer.
399
400 The `related_value' field is used to connect related expressions
401 (that differ by adding an integer).
402 The related expressions are chained in a circular fashion.
403 `related_value' is zero for expressions for which this
404 chain is not useful.
405
406 The `cost' field stores the cost of this element's expression.
407 The `regcost' field stores the value returned by approx_reg_cost for
408 this element's expression.
409
410 The `is_const' flag is set if the element is a constant (including
411 a fixed address).
412
413 The `flag' field is used as a temporary during some search routines.
414
415 The `mode' field is usually the same as GET_MODE (`exp'), but
416 if `exp' is a CONST_INT and has no machine mode then the `mode'
417 field is the mode it was being used as. Each constant is
418 recorded separately for each mode it is used with. */
419
420 struct table_elt
421 {
422 rtx exp;
423 rtx canon_exp;
424 struct table_elt *next_same_hash;
425 struct table_elt *prev_same_hash;
426 struct table_elt *next_same_value;
427 struct table_elt *prev_same_value;
428 struct table_elt *first_same_value;
429 struct table_elt *related_value;
430 int cost;
431 int regcost;
432 /* The size of this field should match the size
433 of the mode field of struct rtx_def (see rtl.h). */
434 ENUM_BITFIELD(machine_mode) mode : 8;
435 char in_memory;
436 char is_const;
437 char flag;
438 };
439
440 /* We don't want a lot of buckets, because we rarely have very many
441 things stored in the hash table, and a lot of buckets slows
442 down a lot of loops that happen frequently. */
443 #define HASH_SHIFT 5
444 #define HASH_SIZE (1 << HASH_SHIFT)
445 #define HASH_MASK (HASH_SIZE - 1)
446
447 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
448 register (hard registers may require `do_not_record' to be set). */
449
450 #define HASH(X, M) \
451 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
452 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
453 : canon_hash (X, M)) & HASH_MASK)
454
455 /* Like HASH, but without side-effects. */
456 #define SAFE_HASH(X, M) \
457 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
458 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
459 : safe_hash (X, M)) & HASH_MASK)
460
461 /* Determine whether register number N is considered a fixed register for the
462 purpose of approximating register costs.
463 It is desirable to replace other regs with fixed regs, to reduce need for
464 non-fixed hard regs.
465 A reg wins if it is either the frame pointer or designated as fixed. */
466 #define FIXED_REGNO_P(N) \
467 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
468 || fixed_regs[N] || global_regs[N])
469
470 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
471 hard registers and pointers into the frame are the cheapest with a cost
472 of 0. Next come pseudos with a cost of one and other hard registers with
473 a cost of 2. Aside from these special cases, call `rtx_cost'. */
474
475 #define CHEAP_REGNO(N) \
476 (REGNO_PTR_FRAME_P (N) \
477 || (HARD_REGISTER_NUM_P (N) \
478 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
479
480 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET, 1))
481 #define COST_IN(X, OUTER, OPNO) (REG_P (X) ? 0 : notreg_cost (X, OUTER, OPNO))
482
483 /* Get the number of times this register has been updated in this
484 basic block. */
485
486 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
487
488 /* Get the point at which REG was recorded in the table. */
489
490 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
491
492 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
493 SUBREG). */
494
495 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
496
497 /* Get the quantity number for REG. */
498
499 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
500
501 /* Determine if the quantity number for register X represents a valid index
502 into the qty_table. */
503
504 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
505
506 /* Compare table_elt X and Y and return true iff X is cheaper than Y. */
507
508 #define CHEAPER(X, Y) \
509 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
510
511 static struct table_elt *table[HASH_SIZE];
512
513 /* Chain of `struct table_elt's made so far for this function
514 but currently removed from the table. */
515
516 static struct table_elt *free_element_chain;
517
518 /* Set to the cost of a constant pool reference if one was found for a
519 symbolic constant. If this was found, it means we should try to
520 convert constants into constant pool entries if they don't fit in
521 the insn. */
522
523 static int constant_pool_entries_cost;
524 static int constant_pool_entries_regcost;
525
526 /* Trace a patch through the CFG. */
527
528 struct branch_path
529 {
530 /* The basic block for this path entry. */
531 basic_block bb;
532 };
533
534 /* This data describes a block that will be processed by
535 cse_extended_basic_block. */
536
537 struct cse_basic_block_data
538 {
539 /* Total number of SETs in block. */
540 int nsets;
541 /* Size of current branch path, if any. */
542 int path_size;
543 /* Current path, indicating which basic_blocks will be processed. */
544 struct branch_path *path;
545 };
546
547
548 /* Pointers to the live in/live out bitmaps for the boundaries of the
549 current EBB. */
550 static bitmap cse_ebb_live_in, cse_ebb_live_out;
551
552 /* A simple bitmap to track which basic blocks have been visited
553 already as part of an already processed extended basic block. */
554 static sbitmap cse_visited_basic_blocks;
555
556 static bool fixed_base_plus_p (rtx x);
557 static int notreg_cost (rtx, enum rtx_code, int);
558 static int preferable (int, int, int, int);
559 static void new_basic_block (void);
560 static void make_new_qty (unsigned int, machine_mode);
561 static void make_regs_eqv (unsigned int, unsigned int);
562 static void delete_reg_equiv (unsigned int);
563 static int mention_regs (rtx);
564 static int insert_regs (rtx, struct table_elt *, int);
565 static void remove_from_table (struct table_elt *, unsigned);
566 static void remove_pseudo_from_table (rtx, unsigned);
567 static struct table_elt *lookup (rtx, unsigned, machine_mode);
568 static struct table_elt *lookup_for_remove (rtx, unsigned, machine_mode);
569 static rtx lookup_as_function (rtx, enum rtx_code);
570 static struct table_elt *insert_with_costs (rtx, struct table_elt *, unsigned,
571 machine_mode, int, int);
572 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
573 machine_mode);
574 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
575 static void invalidate (rtx, machine_mode);
576 static void remove_invalid_refs (unsigned int);
577 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
578 machine_mode);
579 static void rehash_using_reg (rtx);
580 static void invalidate_memory (void);
581 static void invalidate_for_call (void);
582 static rtx use_related_value (rtx, struct table_elt *);
583
584 static inline unsigned canon_hash (rtx, machine_mode);
585 static inline unsigned safe_hash (rtx, machine_mode);
586 static inline unsigned hash_rtx_string (const char *);
587
588 static rtx canon_reg (rtx, rtx_insn *);
589 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
590 machine_mode *,
591 machine_mode *);
592 static rtx fold_rtx (rtx, rtx_insn *);
593 static rtx equiv_constant (rtx);
594 static void record_jump_equiv (rtx_insn *, bool);
595 static void record_jump_cond (enum rtx_code, machine_mode, rtx, rtx,
596 int);
597 static void cse_insn (rtx_insn *);
598 static void cse_prescan_path (struct cse_basic_block_data *);
599 static void invalidate_from_clobbers (rtx_insn *);
600 static void invalidate_from_sets_and_clobbers (rtx_insn *);
601 static rtx cse_process_notes (rtx, rtx, bool *);
602 static void cse_extended_basic_block (struct cse_basic_block_data *);
603 extern void dump_class (struct table_elt*);
604 static void get_cse_reg_info_1 (unsigned int regno);
605 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
606
607 static void flush_hash_table (void);
608 static bool insn_live_p (rtx_insn *, int *);
609 static bool set_live_p (rtx, rtx_insn *, int *);
610 static void cse_change_cc_mode_insn (rtx_insn *, rtx);
611 static void cse_change_cc_mode_insns (rtx_insn *, rtx_insn *, rtx);
612 static machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
613 bool);
614 \f
615
616 #undef RTL_HOOKS_GEN_LOWPART
617 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
618
619 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
620 \f
621 /* Nonzero if X has the form (PLUS frame-pointer integer). */
622
623 static bool
624 fixed_base_plus_p (rtx x)
625 {
626 switch (GET_CODE (x))
627 {
628 case REG:
629 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
630 return true;
631 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
632 return true;
633 return false;
634
635 case PLUS:
636 if (!CONST_INT_P (XEXP (x, 1)))
637 return false;
638 return fixed_base_plus_p (XEXP (x, 0));
639
640 default:
641 return false;
642 }
643 }
644
645 /* Dump the expressions in the equivalence class indicated by CLASSP.
646 This function is used only for debugging. */
647 DEBUG_FUNCTION void
648 dump_class (struct table_elt *classp)
649 {
650 struct table_elt *elt;
651
652 fprintf (stderr, "Equivalence chain for ");
653 print_rtl (stderr, classp->exp);
654 fprintf (stderr, ": \n");
655
656 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
657 {
658 print_rtl (stderr, elt->exp);
659 fprintf (stderr, "\n");
660 }
661 }
662
663 /* Return an estimate of the cost of the registers used in an rtx.
664 This is mostly the number of different REG expressions in the rtx;
665 however for some exceptions like fixed registers we use a cost of
666 0. If any other hard register reference occurs, return MAX_COST. */
667
668 static int
669 approx_reg_cost (const_rtx x)
670 {
671 int cost = 0;
672 subrtx_iterator::array_type array;
673 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
674 {
675 const_rtx x = *iter;
676 if (REG_P (x))
677 {
678 unsigned int regno = REGNO (x);
679 if (!CHEAP_REGNO (regno))
680 {
681 if (regno < FIRST_PSEUDO_REGISTER)
682 {
683 if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
684 return MAX_COST;
685 cost += 2;
686 }
687 else
688 cost += 1;
689 }
690 }
691 }
692 return cost;
693 }
694
695 /* Return a negative value if an rtx A, whose costs are given by COST_A
696 and REGCOST_A, is more desirable than an rtx B.
697 Return a positive value if A is less desirable, or 0 if the two are
698 equally good. */
699 static int
700 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
701 {
702 /* First, get rid of cases involving expressions that are entirely
703 unwanted. */
704 if (cost_a != cost_b)
705 {
706 if (cost_a == MAX_COST)
707 return 1;
708 if (cost_b == MAX_COST)
709 return -1;
710 }
711
712 /* Avoid extending lifetimes of hardregs. */
713 if (regcost_a != regcost_b)
714 {
715 if (regcost_a == MAX_COST)
716 return 1;
717 if (regcost_b == MAX_COST)
718 return -1;
719 }
720
721 /* Normal operation costs take precedence. */
722 if (cost_a != cost_b)
723 return cost_a - cost_b;
724 /* Only if these are identical consider effects on register pressure. */
725 if (regcost_a != regcost_b)
726 return regcost_a - regcost_b;
727 return 0;
728 }
729
730 /* Internal function, to compute cost when X is not a register; called
731 from COST macro to keep it simple. */
732
733 static int
734 notreg_cost (rtx x, enum rtx_code outer, int opno)
735 {
736 return ((GET_CODE (x) == SUBREG
737 && REG_P (SUBREG_REG (x))
738 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
739 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
740 && (GET_MODE_SIZE (GET_MODE (x))
741 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
742 && subreg_lowpart_p (x)
743 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (x),
744 GET_MODE (SUBREG_REG (x))))
745 ? 0
746 : rtx_cost (x, outer, opno, optimize_this_for_speed_p) * 2);
747 }
748
749 \f
750 /* Initialize CSE_REG_INFO_TABLE. */
751
752 static void
753 init_cse_reg_info (unsigned int nregs)
754 {
755 /* Do we need to grow the table? */
756 if (nregs > cse_reg_info_table_size)
757 {
758 unsigned int new_size;
759
760 if (cse_reg_info_table_size < 2048)
761 {
762 /* Compute a new size that is a power of 2 and no smaller
763 than the large of NREGS and 64. */
764 new_size = (cse_reg_info_table_size
765 ? cse_reg_info_table_size : 64);
766
767 while (new_size < nregs)
768 new_size *= 2;
769 }
770 else
771 {
772 /* If we need a big table, allocate just enough to hold
773 NREGS registers. */
774 new_size = nregs;
775 }
776
777 /* Reallocate the table with NEW_SIZE entries. */
778 free (cse_reg_info_table);
779 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
780 cse_reg_info_table_size = new_size;
781 cse_reg_info_table_first_uninitialized = 0;
782 }
783
784 /* Do we have all of the first NREGS entries initialized? */
785 if (cse_reg_info_table_first_uninitialized < nregs)
786 {
787 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
788 unsigned int i;
789
790 /* Put the old timestamp on newly allocated entries so that they
791 will all be considered out of date. We do not touch those
792 entries beyond the first NREGS entries to be nice to the
793 virtual memory. */
794 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
795 cse_reg_info_table[i].timestamp = old_timestamp;
796
797 cse_reg_info_table_first_uninitialized = nregs;
798 }
799 }
800
801 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
802
803 static void
804 get_cse_reg_info_1 (unsigned int regno)
805 {
806 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
807 entry will be considered to have been initialized. */
808 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
809
810 /* Initialize the rest of the entry. */
811 cse_reg_info_table[regno].reg_tick = 1;
812 cse_reg_info_table[regno].reg_in_table = -1;
813 cse_reg_info_table[regno].subreg_ticked = -1;
814 cse_reg_info_table[regno].reg_qty = -regno - 1;
815 }
816
817 /* Find a cse_reg_info entry for REGNO. */
818
819 static inline struct cse_reg_info *
820 get_cse_reg_info (unsigned int regno)
821 {
822 struct cse_reg_info *p = &cse_reg_info_table[regno];
823
824 /* If this entry has not been initialized, go ahead and initialize
825 it. */
826 if (p->timestamp != cse_reg_info_timestamp)
827 get_cse_reg_info_1 (regno);
828
829 return p;
830 }
831
832 /* Clear the hash table and initialize each register with its own quantity,
833 for a new basic block. */
834
835 static void
836 new_basic_block (void)
837 {
838 int i;
839
840 next_qty = 0;
841
842 /* Invalidate cse_reg_info_table. */
843 cse_reg_info_timestamp++;
844
845 /* Clear out hash table state for this pass. */
846 CLEAR_HARD_REG_SET (hard_regs_in_table);
847
848 /* The per-quantity values used to be initialized here, but it is
849 much faster to initialize each as it is made in `make_new_qty'. */
850
851 for (i = 0; i < HASH_SIZE; i++)
852 {
853 struct table_elt *first;
854
855 first = table[i];
856 if (first != NULL)
857 {
858 struct table_elt *last = first;
859
860 table[i] = NULL;
861
862 while (last->next_same_hash != NULL)
863 last = last->next_same_hash;
864
865 /* Now relink this hash entire chain into
866 the free element list. */
867
868 last->next_same_hash = free_element_chain;
869 free_element_chain = first;
870 }
871 }
872
873 prev_insn_cc0 = 0;
874 }
875
876 /* Say that register REG contains a quantity in mode MODE not in any
877 register before and initialize that quantity. */
878
879 static void
880 make_new_qty (unsigned int reg, machine_mode mode)
881 {
882 int q;
883 struct qty_table_elem *ent;
884 struct reg_eqv_elem *eqv;
885
886 gcc_assert (next_qty < max_qty);
887
888 q = REG_QTY (reg) = next_qty++;
889 ent = &qty_table[q];
890 ent->first_reg = reg;
891 ent->last_reg = reg;
892 ent->mode = mode;
893 ent->const_rtx = ent->const_insn = NULL;
894 ent->comparison_code = UNKNOWN;
895
896 eqv = &reg_eqv_table[reg];
897 eqv->next = eqv->prev = -1;
898 }
899
900 /* Make reg NEW equivalent to reg OLD.
901 OLD is not changing; NEW is. */
902
903 static void
904 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
905 {
906 unsigned int lastr, firstr;
907 int q = REG_QTY (old_reg);
908 struct qty_table_elem *ent;
909
910 ent = &qty_table[q];
911
912 /* Nothing should become eqv until it has a "non-invalid" qty number. */
913 gcc_assert (REGNO_QTY_VALID_P (old_reg));
914
915 REG_QTY (new_reg) = q;
916 firstr = ent->first_reg;
917 lastr = ent->last_reg;
918
919 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
920 hard regs. Among pseudos, if NEW will live longer than any other reg
921 of the same qty, and that is beyond the current basic block,
922 make it the new canonical replacement for this qty. */
923 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
924 /* Certain fixed registers might be of the class NO_REGS. This means
925 that not only can they not be allocated by the compiler, but
926 they cannot be used in substitutions or canonicalizations
927 either. */
928 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
929 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
930 || (new_reg >= FIRST_PSEUDO_REGISTER
931 && (firstr < FIRST_PSEUDO_REGISTER
932 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
933 && !bitmap_bit_p (cse_ebb_live_out, firstr))
934 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
935 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
936 {
937 reg_eqv_table[firstr].prev = new_reg;
938 reg_eqv_table[new_reg].next = firstr;
939 reg_eqv_table[new_reg].prev = -1;
940 ent->first_reg = new_reg;
941 }
942 else
943 {
944 /* If NEW is a hard reg (known to be non-fixed), insert at end.
945 Otherwise, insert before any non-fixed hard regs that are at the
946 end. Registers of class NO_REGS cannot be used as an
947 equivalent for anything. */
948 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
949 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
950 && new_reg >= FIRST_PSEUDO_REGISTER)
951 lastr = reg_eqv_table[lastr].prev;
952 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
953 if (reg_eqv_table[lastr].next >= 0)
954 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
955 else
956 qty_table[q].last_reg = new_reg;
957 reg_eqv_table[lastr].next = new_reg;
958 reg_eqv_table[new_reg].prev = lastr;
959 }
960 }
961
962 /* Remove REG from its equivalence class. */
963
964 static void
965 delete_reg_equiv (unsigned int reg)
966 {
967 struct qty_table_elem *ent;
968 int q = REG_QTY (reg);
969 int p, n;
970
971 /* If invalid, do nothing. */
972 if (! REGNO_QTY_VALID_P (reg))
973 return;
974
975 ent = &qty_table[q];
976
977 p = reg_eqv_table[reg].prev;
978 n = reg_eqv_table[reg].next;
979
980 if (n != -1)
981 reg_eqv_table[n].prev = p;
982 else
983 ent->last_reg = p;
984 if (p != -1)
985 reg_eqv_table[p].next = n;
986 else
987 ent->first_reg = n;
988
989 REG_QTY (reg) = -reg - 1;
990 }
991
992 /* Remove any invalid expressions from the hash table
993 that refer to any of the registers contained in expression X.
994
995 Make sure that newly inserted references to those registers
996 as subexpressions will be considered valid.
997
998 mention_regs is not called when a register itself
999 is being stored in the table.
1000
1001 Return 1 if we have done something that may have changed the hash code
1002 of X. */
1003
1004 static int
1005 mention_regs (rtx x)
1006 {
1007 enum rtx_code code;
1008 int i, j;
1009 const char *fmt;
1010 int changed = 0;
1011
1012 if (x == 0)
1013 return 0;
1014
1015 code = GET_CODE (x);
1016 if (code == REG)
1017 {
1018 unsigned int regno = REGNO (x);
1019 unsigned int endregno = END_REGNO (x);
1020 unsigned int i;
1021
1022 for (i = regno; i < endregno; i++)
1023 {
1024 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1025 remove_invalid_refs (i);
1026
1027 REG_IN_TABLE (i) = REG_TICK (i);
1028 SUBREG_TICKED (i) = -1;
1029 }
1030
1031 return 0;
1032 }
1033
1034 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1035 pseudo if they don't use overlapping words. We handle only pseudos
1036 here for simplicity. */
1037 if (code == SUBREG && REG_P (SUBREG_REG (x))
1038 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1039 {
1040 unsigned int i = REGNO (SUBREG_REG (x));
1041
1042 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1043 {
1044 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1045 the last store to this register really stored into this
1046 subreg, then remove the memory of this subreg.
1047 Otherwise, remove any memory of the entire register and
1048 all its subregs from the table. */
1049 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1050 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1051 remove_invalid_refs (i);
1052 else
1053 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1054 }
1055
1056 REG_IN_TABLE (i) = REG_TICK (i);
1057 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1058 return 0;
1059 }
1060
1061 /* If X is a comparison or a COMPARE and either operand is a register
1062 that does not have a quantity, give it one. This is so that a later
1063 call to record_jump_equiv won't cause X to be assigned a different
1064 hash code and not found in the table after that call.
1065
1066 It is not necessary to do this here, since rehash_using_reg can
1067 fix up the table later, but doing this here eliminates the need to
1068 call that expensive function in the most common case where the only
1069 use of the register is in the comparison. */
1070
1071 if (code == COMPARE || COMPARISON_P (x))
1072 {
1073 if (REG_P (XEXP (x, 0))
1074 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1075 if (insert_regs (XEXP (x, 0), NULL, 0))
1076 {
1077 rehash_using_reg (XEXP (x, 0));
1078 changed = 1;
1079 }
1080
1081 if (REG_P (XEXP (x, 1))
1082 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1083 if (insert_regs (XEXP (x, 1), NULL, 0))
1084 {
1085 rehash_using_reg (XEXP (x, 1));
1086 changed = 1;
1087 }
1088 }
1089
1090 fmt = GET_RTX_FORMAT (code);
1091 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1092 if (fmt[i] == 'e')
1093 changed |= mention_regs (XEXP (x, i));
1094 else if (fmt[i] == 'E')
1095 for (j = 0; j < XVECLEN (x, i); j++)
1096 changed |= mention_regs (XVECEXP (x, i, j));
1097
1098 return changed;
1099 }
1100
1101 /* Update the register quantities for inserting X into the hash table
1102 with a value equivalent to CLASSP.
1103 (If the class does not contain a REG, it is irrelevant.)
1104 If MODIFIED is nonzero, X is a destination; it is being modified.
1105 Note that delete_reg_equiv should be called on a register
1106 before insert_regs is done on that register with MODIFIED != 0.
1107
1108 Nonzero value means that elements of reg_qty have changed
1109 so X's hash code may be different. */
1110
1111 static int
1112 insert_regs (rtx x, struct table_elt *classp, int modified)
1113 {
1114 if (REG_P (x))
1115 {
1116 unsigned int regno = REGNO (x);
1117 int qty_valid;
1118
1119 /* If REGNO is in the equivalence table already but is of the
1120 wrong mode for that equivalence, don't do anything here. */
1121
1122 qty_valid = REGNO_QTY_VALID_P (regno);
1123 if (qty_valid)
1124 {
1125 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1126
1127 if (ent->mode != GET_MODE (x))
1128 return 0;
1129 }
1130
1131 if (modified || ! qty_valid)
1132 {
1133 if (classp)
1134 for (classp = classp->first_same_value;
1135 classp != 0;
1136 classp = classp->next_same_value)
1137 if (REG_P (classp->exp)
1138 && GET_MODE (classp->exp) == GET_MODE (x))
1139 {
1140 unsigned c_regno = REGNO (classp->exp);
1141
1142 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1143
1144 /* Suppose that 5 is hard reg and 100 and 101 are
1145 pseudos. Consider
1146
1147 (set (reg:si 100) (reg:si 5))
1148 (set (reg:si 5) (reg:si 100))
1149 (set (reg:di 101) (reg:di 5))
1150
1151 We would now set REG_QTY (101) = REG_QTY (5), but the
1152 entry for 5 is in SImode. When we use this later in
1153 copy propagation, we get the register in wrong mode. */
1154 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1155 continue;
1156
1157 make_regs_eqv (regno, c_regno);
1158 return 1;
1159 }
1160
1161 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1162 than REG_IN_TABLE to find out if there was only a single preceding
1163 invalidation - for the SUBREG - or another one, which would be
1164 for the full register. However, if we find here that REG_TICK
1165 indicates that the register is invalid, it means that it has
1166 been invalidated in a separate operation. The SUBREG might be used
1167 now (then this is a recursive call), or we might use the full REG
1168 now and a SUBREG of it later. So bump up REG_TICK so that
1169 mention_regs will do the right thing. */
1170 if (! modified
1171 && REG_IN_TABLE (regno) >= 0
1172 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1173 REG_TICK (regno)++;
1174 make_new_qty (regno, GET_MODE (x));
1175 return 1;
1176 }
1177
1178 return 0;
1179 }
1180
1181 /* If X is a SUBREG, we will likely be inserting the inner register in the
1182 table. If that register doesn't have an assigned quantity number at
1183 this point but does later, the insertion that we will be doing now will
1184 not be accessible because its hash code will have changed. So assign
1185 a quantity number now. */
1186
1187 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1188 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1189 {
1190 insert_regs (SUBREG_REG (x), NULL, 0);
1191 mention_regs (x);
1192 return 1;
1193 }
1194 else
1195 return mention_regs (x);
1196 }
1197 \f
1198
1199 /* Compute upper and lower anchors for CST. Also compute the offset of CST
1200 from these anchors/bases such that *_BASE + *_OFFS = CST. Return false iff
1201 CST is equal to an anchor. */
1202
1203 static bool
1204 compute_const_anchors (rtx cst,
1205 HOST_WIDE_INT *lower_base, HOST_WIDE_INT *lower_offs,
1206 HOST_WIDE_INT *upper_base, HOST_WIDE_INT *upper_offs)
1207 {
1208 HOST_WIDE_INT n = INTVAL (cst);
1209
1210 *lower_base = n & ~(targetm.const_anchor - 1);
1211 if (*lower_base == n)
1212 return false;
1213
1214 *upper_base =
1215 (n + (targetm.const_anchor - 1)) & ~(targetm.const_anchor - 1);
1216 *upper_offs = n - *upper_base;
1217 *lower_offs = n - *lower_base;
1218 return true;
1219 }
1220
1221 /* Insert the equivalence between ANCHOR and (REG + OFF) in mode MODE. */
1222
1223 static void
1224 insert_const_anchor (HOST_WIDE_INT anchor, rtx reg, HOST_WIDE_INT offs,
1225 machine_mode mode)
1226 {
1227 struct table_elt *elt;
1228 unsigned hash;
1229 rtx anchor_exp;
1230 rtx exp;
1231
1232 anchor_exp = GEN_INT (anchor);
1233 hash = HASH (anchor_exp, mode);
1234 elt = lookup (anchor_exp, hash, mode);
1235 if (!elt)
1236 elt = insert (anchor_exp, NULL, hash, mode);
1237
1238 exp = plus_constant (mode, reg, offs);
1239 /* REG has just been inserted and the hash codes recomputed. */
1240 mention_regs (exp);
1241 hash = HASH (exp, mode);
1242
1243 /* Use the cost of the register rather than the whole expression. When
1244 looking up constant anchors we will further offset the corresponding
1245 expression therefore it does not make sense to prefer REGs over
1246 reg-immediate additions. Prefer instead the oldest expression. Also
1247 don't prefer pseudos over hard regs so that we derive constants in
1248 argument registers from other argument registers rather than from the
1249 original pseudo that was used to synthesize the constant. */
1250 insert_with_costs (exp, elt, hash, mode, COST (reg), 1);
1251 }
1252
1253 /* The constant CST is equivalent to the register REG. Create
1254 equivalences between the two anchors of CST and the corresponding
1255 register-offset expressions using REG. */
1256
1257 static void
1258 insert_const_anchors (rtx reg, rtx cst, machine_mode mode)
1259 {
1260 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1261
1262 if (!compute_const_anchors (cst, &lower_base, &lower_offs,
1263 &upper_base, &upper_offs))
1264 return;
1265
1266 /* Ignore anchors of value 0. Constants accessible from zero are
1267 simple. */
1268 if (lower_base != 0)
1269 insert_const_anchor (lower_base, reg, -lower_offs, mode);
1270
1271 if (upper_base != 0)
1272 insert_const_anchor (upper_base, reg, -upper_offs, mode);
1273 }
1274
1275 /* We need to express ANCHOR_ELT->exp + OFFS. Walk the equivalence list of
1276 ANCHOR_ELT and see if offsetting any of the entries by OFFS would create a
1277 valid expression. Return the cheapest and oldest of such expressions. In
1278 *OLD, return how old the resulting expression is compared to the other
1279 equivalent expressions. */
1280
1281 static rtx
1282 find_reg_offset_for_const (struct table_elt *anchor_elt, HOST_WIDE_INT offs,
1283 unsigned *old)
1284 {
1285 struct table_elt *elt;
1286 unsigned idx;
1287 struct table_elt *match_elt;
1288 rtx match;
1289
1290 /* Find the cheapest and *oldest* expression to maximize the chance of
1291 reusing the same pseudo. */
1292
1293 match_elt = NULL;
1294 match = NULL_RTX;
1295 for (elt = anchor_elt->first_same_value, idx = 0;
1296 elt;
1297 elt = elt->next_same_value, idx++)
1298 {
1299 if (match_elt && CHEAPER (match_elt, elt))
1300 return match;
1301
1302 if (REG_P (elt->exp)
1303 || (GET_CODE (elt->exp) == PLUS
1304 && REG_P (XEXP (elt->exp, 0))
1305 && GET_CODE (XEXP (elt->exp, 1)) == CONST_INT))
1306 {
1307 rtx x;
1308
1309 /* Ignore expressions that are no longer valid. */
1310 if (!REG_P (elt->exp) && !exp_equiv_p (elt->exp, elt->exp, 1, false))
1311 continue;
1312
1313 x = plus_constant (GET_MODE (elt->exp), elt->exp, offs);
1314 if (REG_P (x)
1315 || (GET_CODE (x) == PLUS
1316 && IN_RANGE (INTVAL (XEXP (x, 1)),
1317 -targetm.const_anchor,
1318 targetm.const_anchor - 1)))
1319 {
1320 match = x;
1321 match_elt = elt;
1322 *old = idx;
1323 }
1324 }
1325 }
1326
1327 return match;
1328 }
1329
1330 /* Try to express the constant SRC_CONST using a register+offset expression
1331 derived from a constant anchor. Return it if successful or NULL_RTX,
1332 otherwise. */
1333
1334 static rtx
1335 try_const_anchors (rtx src_const, machine_mode mode)
1336 {
1337 struct table_elt *lower_elt, *upper_elt;
1338 HOST_WIDE_INT lower_base, lower_offs, upper_base, upper_offs;
1339 rtx lower_anchor_rtx, upper_anchor_rtx;
1340 rtx lower_exp = NULL_RTX, upper_exp = NULL_RTX;
1341 unsigned lower_old, upper_old;
1342
1343 /* CONST_INT is used for CC modes, but we should leave those alone. */
1344 if (GET_MODE_CLASS (mode) == MODE_CC)
1345 return NULL_RTX;
1346
1347 gcc_assert (SCALAR_INT_MODE_P (mode));
1348 if (!compute_const_anchors (src_const, &lower_base, &lower_offs,
1349 &upper_base, &upper_offs))
1350 return NULL_RTX;
1351
1352 lower_anchor_rtx = GEN_INT (lower_base);
1353 upper_anchor_rtx = GEN_INT (upper_base);
1354 lower_elt = lookup (lower_anchor_rtx, HASH (lower_anchor_rtx, mode), mode);
1355 upper_elt = lookup (upper_anchor_rtx, HASH (upper_anchor_rtx, mode), mode);
1356
1357 if (lower_elt)
1358 lower_exp = find_reg_offset_for_const (lower_elt, lower_offs, &lower_old);
1359 if (upper_elt)
1360 upper_exp = find_reg_offset_for_const (upper_elt, upper_offs, &upper_old);
1361
1362 if (!lower_exp)
1363 return upper_exp;
1364 if (!upper_exp)
1365 return lower_exp;
1366
1367 /* Return the older expression. */
1368 return (upper_old > lower_old ? upper_exp : lower_exp);
1369 }
1370 \f
1371 /* Look in or update the hash table. */
1372
1373 /* Remove table element ELT from use in the table.
1374 HASH is its hash code, made using the HASH macro.
1375 It's an argument because often that is known in advance
1376 and we save much time not recomputing it. */
1377
1378 static void
1379 remove_from_table (struct table_elt *elt, unsigned int hash)
1380 {
1381 if (elt == 0)
1382 return;
1383
1384 /* Mark this element as removed. See cse_insn. */
1385 elt->first_same_value = 0;
1386
1387 /* Remove the table element from its equivalence class. */
1388
1389 {
1390 struct table_elt *prev = elt->prev_same_value;
1391 struct table_elt *next = elt->next_same_value;
1392
1393 if (next)
1394 next->prev_same_value = prev;
1395
1396 if (prev)
1397 prev->next_same_value = next;
1398 else
1399 {
1400 struct table_elt *newfirst = next;
1401 while (next)
1402 {
1403 next->first_same_value = newfirst;
1404 next = next->next_same_value;
1405 }
1406 }
1407 }
1408
1409 /* Remove the table element from its hash bucket. */
1410
1411 {
1412 struct table_elt *prev = elt->prev_same_hash;
1413 struct table_elt *next = elt->next_same_hash;
1414
1415 if (next)
1416 next->prev_same_hash = prev;
1417
1418 if (prev)
1419 prev->next_same_hash = next;
1420 else if (table[hash] == elt)
1421 table[hash] = next;
1422 else
1423 {
1424 /* This entry is not in the proper hash bucket. This can happen
1425 when two classes were merged by `merge_equiv_classes'. Search
1426 for the hash bucket that it heads. This happens only very
1427 rarely, so the cost is acceptable. */
1428 for (hash = 0; hash < HASH_SIZE; hash++)
1429 if (table[hash] == elt)
1430 table[hash] = next;
1431 }
1432 }
1433
1434 /* Remove the table element from its related-value circular chain. */
1435
1436 if (elt->related_value != 0 && elt->related_value != elt)
1437 {
1438 struct table_elt *p = elt->related_value;
1439
1440 while (p->related_value != elt)
1441 p = p->related_value;
1442 p->related_value = elt->related_value;
1443 if (p->related_value == p)
1444 p->related_value = 0;
1445 }
1446
1447 /* Now add it to the free element chain. */
1448 elt->next_same_hash = free_element_chain;
1449 free_element_chain = elt;
1450 }
1451
1452 /* Same as above, but X is a pseudo-register. */
1453
1454 static void
1455 remove_pseudo_from_table (rtx x, unsigned int hash)
1456 {
1457 struct table_elt *elt;
1458
1459 /* Because a pseudo-register can be referenced in more than one
1460 mode, we might have to remove more than one table entry. */
1461 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1462 remove_from_table (elt, hash);
1463 }
1464
1465 /* Look up X in the hash table and return its table element,
1466 or 0 if X is not in the table.
1467
1468 MODE is the machine-mode of X, or if X is an integer constant
1469 with VOIDmode then MODE is the mode with which X will be used.
1470
1471 Here we are satisfied to find an expression whose tree structure
1472 looks like X. */
1473
1474 static struct table_elt *
1475 lookup (rtx x, unsigned int hash, machine_mode mode)
1476 {
1477 struct table_elt *p;
1478
1479 for (p = table[hash]; p; p = p->next_same_hash)
1480 if (mode == p->mode && ((x == p->exp && REG_P (x))
1481 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1482 return p;
1483
1484 return 0;
1485 }
1486
1487 /* Like `lookup' but don't care whether the table element uses invalid regs.
1488 Also ignore discrepancies in the machine mode of a register. */
1489
1490 static struct table_elt *
1491 lookup_for_remove (rtx x, unsigned int hash, machine_mode mode)
1492 {
1493 struct table_elt *p;
1494
1495 if (REG_P (x))
1496 {
1497 unsigned int regno = REGNO (x);
1498
1499 /* Don't check the machine mode when comparing registers;
1500 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1501 for (p = table[hash]; p; p = p->next_same_hash)
1502 if (REG_P (p->exp)
1503 && REGNO (p->exp) == regno)
1504 return p;
1505 }
1506 else
1507 {
1508 for (p = table[hash]; p; p = p->next_same_hash)
1509 if (mode == p->mode
1510 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1511 return p;
1512 }
1513
1514 return 0;
1515 }
1516
1517 /* Look for an expression equivalent to X and with code CODE.
1518 If one is found, return that expression. */
1519
1520 static rtx
1521 lookup_as_function (rtx x, enum rtx_code code)
1522 {
1523 struct table_elt *p
1524 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1525
1526 if (p == 0)
1527 return 0;
1528
1529 for (p = p->first_same_value; p; p = p->next_same_value)
1530 if (GET_CODE (p->exp) == code
1531 /* Make sure this is a valid entry in the table. */
1532 && exp_equiv_p (p->exp, p->exp, 1, false))
1533 return p->exp;
1534
1535 return 0;
1536 }
1537
1538 /* Insert X in the hash table, assuming HASH is its hash code and
1539 CLASSP is an element of the class it should go in (or 0 if a new
1540 class should be made). COST is the code of X and reg_cost is the
1541 cost of registers in X. It is inserted at the proper position to
1542 keep the class in the order cheapest first.
1543
1544 MODE is the machine-mode of X, or if X is an integer constant
1545 with VOIDmode then MODE is the mode with which X will be used.
1546
1547 For elements of equal cheapness, the most recent one
1548 goes in front, except that the first element in the list
1549 remains first unless a cheaper element is added. The order of
1550 pseudo-registers does not matter, as canon_reg will be called to
1551 find the cheapest when a register is retrieved from the table.
1552
1553 The in_memory field in the hash table element is set to 0.
1554 The caller must set it nonzero if appropriate.
1555
1556 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1557 and if insert_regs returns a nonzero value
1558 you must then recompute its hash code before calling here.
1559
1560 If necessary, update table showing constant values of quantities. */
1561
1562 static struct table_elt *
1563 insert_with_costs (rtx x, struct table_elt *classp, unsigned int hash,
1564 machine_mode mode, int cost, int reg_cost)
1565 {
1566 struct table_elt *elt;
1567
1568 /* If X is a register and we haven't made a quantity for it,
1569 something is wrong. */
1570 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1571
1572 /* If X is a hard register, show it is being put in the table. */
1573 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1574 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1575
1576 /* Put an element for X into the right hash bucket. */
1577
1578 elt = free_element_chain;
1579 if (elt)
1580 free_element_chain = elt->next_same_hash;
1581 else
1582 elt = XNEW (struct table_elt);
1583
1584 elt->exp = x;
1585 elt->canon_exp = NULL_RTX;
1586 elt->cost = cost;
1587 elt->regcost = reg_cost;
1588 elt->next_same_value = 0;
1589 elt->prev_same_value = 0;
1590 elt->next_same_hash = table[hash];
1591 elt->prev_same_hash = 0;
1592 elt->related_value = 0;
1593 elt->in_memory = 0;
1594 elt->mode = mode;
1595 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1596
1597 if (table[hash])
1598 table[hash]->prev_same_hash = elt;
1599 table[hash] = elt;
1600
1601 /* Put it into the proper value-class. */
1602 if (classp)
1603 {
1604 classp = classp->first_same_value;
1605 if (CHEAPER (elt, classp))
1606 /* Insert at the head of the class. */
1607 {
1608 struct table_elt *p;
1609 elt->next_same_value = classp;
1610 classp->prev_same_value = elt;
1611 elt->first_same_value = elt;
1612
1613 for (p = classp; p; p = p->next_same_value)
1614 p->first_same_value = elt;
1615 }
1616 else
1617 {
1618 /* Insert not at head of the class. */
1619 /* Put it after the last element cheaper than X. */
1620 struct table_elt *p, *next;
1621
1622 for (p = classp;
1623 (next = p->next_same_value) && CHEAPER (next, elt);
1624 p = next)
1625 ;
1626
1627 /* Put it after P and before NEXT. */
1628 elt->next_same_value = next;
1629 if (next)
1630 next->prev_same_value = elt;
1631
1632 elt->prev_same_value = p;
1633 p->next_same_value = elt;
1634 elt->first_same_value = classp;
1635 }
1636 }
1637 else
1638 elt->first_same_value = elt;
1639
1640 /* If this is a constant being set equivalent to a register or a register
1641 being set equivalent to a constant, note the constant equivalence.
1642
1643 If this is a constant, it cannot be equivalent to a different constant,
1644 and a constant is the only thing that can be cheaper than a register. So
1645 we know the register is the head of the class (before the constant was
1646 inserted).
1647
1648 If this is a register that is not already known equivalent to a
1649 constant, we must check the entire class.
1650
1651 If this is a register that is already known equivalent to an insn,
1652 update the qtys `const_insn' to show that `this_insn' is the latest
1653 insn making that quantity equivalent to the constant. */
1654
1655 if (elt->is_const && classp && REG_P (classp->exp)
1656 && !REG_P (x))
1657 {
1658 int exp_q = REG_QTY (REGNO (classp->exp));
1659 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1660
1661 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1662 exp_ent->const_insn = this_insn;
1663 }
1664
1665 else if (REG_P (x)
1666 && classp
1667 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1668 && ! elt->is_const)
1669 {
1670 struct table_elt *p;
1671
1672 for (p = classp; p != 0; p = p->next_same_value)
1673 {
1674 if (p->is_const && !REG_P (p->exp))
1675 {
1676 int x_q = REG_QTY (REGNO (x));
1677 struct qty_table_elem *x_ent = &qty_table[x_q];
1678
1679 x_ent->const_rtx
1680 = gen_lowpart (GET_MODE (x), p->exp);
1681 x_ent->const_insn = this_insn;
1682 break;
1683 }
1684 }
1685 }
1686
1687 else if (REG_P (x)
1688 && qty_table[REG_QTY (REGNO (x))].const_rtx
1689 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1690 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1691
1692 /* If this is a constant with symbolic value,
1693 and it has a term with an explicit integer value,
1694 link it up with related expressions. */
1695 if (GET_CODE (x) == CONST)
1696 {
1697 rtx subexp = get_related_value (x);
1698 unsigned subhash;
1699 struct table_elt *subelt, *subelt_prev;
1700
1701 if (subexp != 0)
1702 {
1703 /* Get the integer-free subexpression in the hash table. */
1704 subhash = SAFE_HASH (subexp, mode);
1705 subelt = lookup (subexp, subhash, mode);
1706 if (subelt == 0)
1707 subelt = insert (subexp, NULL, subhash, mode);
1708 /* Initialize SUBELT's circular chain if it has none. */
1709 if (subelt->related_value == 0)
1710 subelt->related_value = subelt;
1711 /* Find the element in the circular chain that precedes SUBELT. */
1712 subelt_prev = subelt;
1713 while (subelt_prev->related_value != subelt)
1714 subelt_prev = subelt_prev->related_value;
1715 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1716 This way the element that follows SUBELT is the oldest one. */
1717 elt->related_value = subelt_prev->related_value;
1718 subelt_prev->related_value = elt;
1719 }
1720 }
1721
1722 return elt;
1723 }
1724
1725 /* Wrap insert_with_costs by passing the default costs. */
1726
1727 static struct table_elt *
1728 insert (rtx x, struct table_elt *classp, unsigned int hash,
1729 machine_mode mode)
1730 {
1731 return
1732 insert_with_costs (x, classp, hash, mode, COST (x), approx_reg_cost (x));
1733 }
1734
1735 \f
1736 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1737 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1738 the two classes equivalent.
1739
1740 CLASS1 will be the surviving class; CLASS2 should not be used after this
1741 call.
1742
1743 Any invalid entries in CLASS2 will not be copied. */
1744
1745 static void
1746 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1747 {
1748 struct table_elt *elt, *next, *new_elt;
1749
1750 /* Ensure we start with the head of the classes. */
1751 class1 = class1->first_same_value;
1752 class2 = class2->first_same_value;
1753
1754 /* If they were already equal, forget it. */
1755 if (class1 == class2)
1756 return;
1757
1758 for (elt = class2; elt; elt = next)
1759 {
1760 unsigned int hash;
1761 rtx exp = elt->exp;
1762 machine_mode mode = elt->mode;
1763
1764 next = elt->next_same_value;
1765
1766 /* Remove old entry, make a new one in CLASS1's class.
1767 Don't do this for invalid entries as we cannot find their
1768 hash code (it also isn't necessary). */
1769 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1770 {
1771 bool need_rehash = false;
1772
1773 hash_arg_in_memory = 0;
1774 hash = HASH (exp, mode);
1775
1776 if (REG_P (exp))
1777 {
1778 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1779 delete_reg_equiv (REGNO (exp));
1780 }
1781
1782 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1783 remove_pseudo_from_table (exp, hash);
1784 else
1785 remove_from_table (elt, hash);
1786
1787 if (insert_regs (exp, class1, 0) || need_rehash)
1788 {
1789 rehash_using_reg (exp);
1790 hash = HASH (exp, mode);
1791 }
1792 new_elt = insert (exp, class1, hash, mode);
1793 new_elt->in_memory = hash_arg_in_memory;
1794 if (GET_CODE (exp) == ASM_OPERANDS && elt->cost == MAX_COST)
1795 new_elt->cost = MAX_COST;
1796 }
1797 }
1798 }
1799 \f
1800 /* Flush the entire hash table. */
1801
1802 static void
1803 flush_hash_table (void)
1804 {
1805 int i;
1806 struct table_elt *p;
1807
1808 for (i = 0; i < HASH_SIZE; i++)
1809 for (p = table[i]; p; p = table[i])
1810 {
1811 /* Note that invalidate can remove elements
1812 after P in the current hash chain. */
1813 if (REG_P (p->exp))
1814 invalidate (p->exp, VOIDmode);
1815 else
1816 remove_from_table (p, i);
1817 }
1818 }
1819 \f
1820 /* Check whether an anti dependence exists between X and EXP. MODE and
1821 ADDR are as for canon_anti_dependence. */
1822
1823 static bool
1824 check_dependence (const_rtx x, rtx exp, machine_mode mode, rtx addr)
1825 {
1826 subrtx_iterator::array_type array;
1827 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1828 {
1829 const_rtx x = *iter;
1830 if (MEM_P (x) && canon_anti_dependence (x, true, exp, mode, addr))
1831 return true;
1832 }
1833 return false;
1834 }
1835 \f
1836 /* Remove from the hash table, or mark as invalid, all expressions whose
1837 values could be altered by storing in X. X is a register, a subreg, or
1838 a memory reference with nonvarying address (because, when a memory
1839 reference with a varying address is stored in, all memory references are
1840 removed by invalidate_memory so specific invalidation is superfluous).
1841 FULL_MODE, if not VOIDmode, indicates that this much should be
1842 invalidated instead of just the amount indicated by the mode of X. This
1843 is only used for bitfield stores into memory.
1844
1845 A nonvarying address may be just a register or just a symbol reference,
1846 or it may be either of those plus a numeric offset. */
1847
1848 static void
1849 invalidate (rtx x, machine_mode full_mode)
1850 {
1851 int i;
1852 struct table_elt *p;
1853 rtx addr;
1854
1855 switch (GET_CODE (x))
1856 {
1857 case REG:
1858 {
1859 /* If X is a register, dependencies on its contents are recorded
1860 through the qty number mechanism. Just change the qty number of
1861 the register, mark it as invalid for expressions that refer to it,
1862 and remove it itself. */
1863 unsigned int regno = REGNO (x);
1864 unsigned int hash = HASH (x, GET_MODE (x));
1865
1866 /* Remove REGNO from any quantity list it might be on and indicate
1867 that its value might have changed. If it is a pseudo, remove its
1868 entry from the hash table.
1869
1870 For a hard register, we do the first two actions above for any
1871 additional hard registers corresponding to X. Then, if any of these
1872 registers are in the table, we must remove any REG entries that
1873 overlap these registers. */
1874
1875 delete_reg_equiv (regno);
1876 REG_TICK (regno)++;
1877 SUBREG_TICKED (regno) = -1;
1878
1879 if (regno >= FIRST_PSEUDO_REGISTER)
1880 remove_pseudo_from_table (x, hash);
1881 else
1882 {
1883 HOST_WIDE_INT in_table
1884 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1885 unsigned int endregno = END_REGNO (x);
1886 unsigned int tregno, tendregno, rn;
1887 struct table_elt *p, *next;
1888
1889 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1890
1891 for (rn = regno + 1; rn < endregno; rn++)
1892 {
1893 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1894 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1895 delete_reg_equiv (rn);
1896 REG_TICK (rn)++;
1897 SUBREG_TICKED (rn) = -1;
1898 }
1899
1900 if (in_table)
1901 for (hash = 0; hash < HASH_SIZE; hash++)
1902 for (p = table[hash]; p; p = next)
1903 {
1904 next = p->next_same_hash;
1905
1906 if (!REG_P (p->exp)
1907 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1908 continue;
1909
1910 tregno = REGNO (p->exp);
1911 tendregno = END_REGNO (p->exp);
1912 if (tendregno > regno && tregno < endregno)
1913 remove_from_table (p, hash);
1914 }
1915 }
1916 }
1917 return;
1918
1919 case SUBREG:
1920 invalidate (SUBREG_REG (x), VOIDmode);
1921 return;
1922
1923 case PARALLEL:
1924 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1925 invalidate (XVECEXP (x, 0, i), VOIDmode);
1926 return;
1927
1928 case EXPR_LIST:
1929 /* This is part of a disjoint return value; extract the location in
1930 question ignoring the offset. */
1931 invalidate (XEXP (x, 0), VOIDmode);
1932 return;
1933
1934 case MEM:
1935 addr = canon_rtx (get_addr (XEXP (x, 0)));
1936 /* Calculate the canonical version of X here so that
1937 true_dependence doesn't generate new RTL for X on each call. */
1938 x = canon_rtx (x);
1939
1940 /* Remove all hash table elements that refer to overlapping pieces of
1941 memory. */
1942 if (full_mode == VOIDmode)
1943 full_mode = GET_MODE (x);
1944
1945 for (i = 0; i < HASH_SIZE; i++)
1946 {
1947 struct table_elt *next;
1948
1949 for (p = table[i]; p; p = next)
1950 {
1951 next = p->next_same_hash;
1952 if (p->in_memory)
1953 {
1954 /* Just canonicalize the expression once;
1955 otherwise each time we call invalidate
1956 true_dependence will canonicalize the
1957 expression again. */
1958 if (!p->canon_exp)
1959 p->canon_exp = canon_rtx (p->exp);
1960 if (check_dependence (p->canon_exp, x, full_mode, addr))
1961 remove_from_table (p, i);
1962 }
1963 }
1964 }
1965 return;
1966
1967 default:
1968 gcc_unreachable ();
1969 }
1970 }
1971
1972 /* Invalidate DEST. Used when DEST is not going to be added
1973 into the hash table for some reason, e.g. do_not_record
1974 flagged on it. */
1975
1976 static void
1977 invalidate_dest (rtx dest)
1978 {
1979 if (REG_P (dest)
1980 || GET_CODE (dest) == SUBREG
1981 || MEM_P (dest))
1982 invalidate (dest, VOIDmode);
1983 else if (GET_CODE (dest) == STRICT_LOW_PART
1984 || GET_CODE (dest) == ZERO_EXTRACT)
1985 invalidate (XEXP (dest, 0), GET_MODE (dest));
1986 }
1987 \f
1988 /* Remove all expressions that refer to register REGNO,
1989 since they are already invalid, and we are about to
1990 mark that register valid again and don't want the old
1991 expressions to reappear as valid. */
1992
1993 static void
1994 remove_invalid_refs (unsigned int regno)
1995 {
1996 unsigned int i;
1997 struct table_elt *p, *next;
1998
1999 for (i = 0; i < HASH_SIZE; i++)
2000 for (p = table[i]; p; p = next)
2001 {
2002 next = p->next_same_hash;
2003 if (!REG_P (p->exp) && refers_to_regno_p (regno, p->exp))
2004 remove_from_table (p, i);
2005 }
2006 }
2007
2008 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
2009 and mode MODE. */
2010 static void
2011 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
2012 machine_mode mode)
2013 {
2014 unsigned int i;
2015 struct table_elt *p, *next;
2016 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
2017
2018 for (i = 0; i < HASH_SIZE; i++)
2019 for (p = table[i]; p; p = next)
2020 {
2021 rtx exp = p->exp;
2022 next = p->next_same_hash;
2023
2024 if (!REG_P (exp)
2025 && (GET_CODE (exp) != SUBREG
2026 || !REG_P (SUBREG_REG (exp))
2027 || REGNO (SUBREG_REG (exp)) != regno
2028 || (((SUBREG_BYTE (exp)
2029 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
2030 && SUBREG_BYTE (exp) <= end))
2031 && refers_to_regno_p (regno, p->exp))
2032 remove_from_table (p, i);
2033 }
2034 }
2035 \f
2036 /* Recompute the hash codes of any valid entries in the hash table that
2037 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
2038
2039 This is called when we make a jump equivalence. */
2040
2041 static void
2042 rehash_using_reg (rtx x)
2043 {
2044 unsigned int i;
2045 struct table_elt *p, *next;
2046 unsigned hash;
2047
2048 if (GET_CODE (x) == SUBREG)
2049 x = SUBREG_REG (x);
2050
2051 /* If X is not a register or if the register is known not to be in any
2052 valid entries in the table, we have no work to do. */
2053
2054 if (!REG_P (x)
2055 || REG_IN_TABLE (REGNO (x)) < 0
2056 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
2057 return;
2058
2059 /* Scan all hash chains looking for valid entries that mention X.
2060 If we find one and it is in the wrong hash chain, move it. */
2061
2062 for (i = 0; i < HASH_SIZE; i++)
2063 for (p = table[i]; p; p = next)
2064 {
2065 next = p->next_same_hash;
2066 if (reg_mentioned_p (x, p->exp)
2067 && exp_equiv_p (p->exp, p->exp, 1, false)
2068 && i != (hash = SAFE_HASH (p->exp, p->mode)))
2069 {
2070 if (p->next_same_hash)
2071 p->next_same_hash->prev_same_hash = p->prev_same_hash;
2072
2073 if (p->prev_same_hash)
2074 p->prev_same_hash->next_same_hash = p->next_same_hash;
2075 else
2076 table[i] = p->next_same_hash;
2077
2078 p->next_same_hash = table[hash];
2079 p->prev_same_hash = 0;
2080 if (table[hash])
2081 table[hash]->prev_same_hash = p;
2082 table[hash] = p;
2083 }
2084 }
2085 }
2086 \f
2087 /* Remove from the hash table any expression that is a call-clobbered
2088 register. Also update their TICK values. */
2089
2090 static void
2091 invalidate_for_call (void)
2092 {
2093 unsigned int regno, endregno;
2094 unsigned int i;
2095 unsigned hash;
2096 struct table_elt *p, *next;
2097 int in_table = 0;
2098 hard_reg_set_iterator hrsi;
2099
2100 /* Go through all the hard registers. For each that is clobbered in
2101 a CALL_INSN, remove the register from quantity chains and update
2102 reg_tick if defined. Also see if any of these registers is currently
2103 in the table. */
2104 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, regno, hrsi)
2105 {
2106 delete_reg_equiv (regno);
2107 if (REG_TICK (regno) >= 0)
2108 {
2109 REG_TICK (regno)++;
2110 SUBREG_TICKED (regno) = -1;
2111 }
2112 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2113 }
2114
2115 /* In the case where we have no call-clobbered hard registers in the
2116 table, we are done. Otherwise, scan the table and remove any
2117 entry that overlaps a call-clobbered register. */
2118
2119 if (in_table)
2120 for (hash = 0; hash < HASH_SIZE; hash++)
2121 for (p = table[hash]; p; p = next)
2122 {
2123 next = p->next_same_hash;
2124
2125 if (!REG_P (p->exp)
2126 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2127 continue;
2128
2129 regno = REGNO (p->exp);
2130 endregno = END_REGNO (p->exp);
2131
2132 for (i = regno; i < endregno; i++)
2133 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2134 {
2135 remove_from_table (p, hash);
2136 break;
2137 }
2138 }
2139 }
2140 \f
2141 /* Given an expression X of type CONST,
2142 and ELT which is its table entry (or 0 if it
2143 is not in the hash table),
2144 return an alternate expression for X as a register plus integer.
2145 If none can be found, return 0. */
2146
2147 static rtx
2148 use_related_value (rtx x, struct table_elt *elt)
2149 {
2150 struct table_elt *relt = 0;
2151 struct table_elt *p, *q;
2152 HOST_WIDE_INT offset;
2153
2154 /* First, is there anything related known?
2155 If we have a table element, we can tell from that.
2156 Otherwise, must look it up. */
2157
2158 if (elt != 0 && elt->related_value != 0)
2159 relt = elt;
2160 else if (elt == 0 && GET_CODE (x) == CONST)
2161 {
2162 rtx subexp = get_related_value (x);
2163 if (subexp != 0)
2164 relt = lookup (subexp,
2165 SAFE_HASH (subexp, GET_MODE (subexp)),
2166 GET_MODE (subexp));
2167 }
2168
2169 if (relt == 0)
2170 return 0;
2171
2172 /* Search all related table entries for one that has an
2173 equivalent register. */
2174
2175 p = relt;
2176 while (1)
2177 {
2178 /* This loop is strange in that it is executed in two different cases.
2179 The first is when X is already in the table. Then it is searching
2180 the RELATED_VALUE list of X's class (RELT). The second case is when
2181 X is not in the table. Then RELT points to a class for the related
2182 value.
2183
2184 Ensure that, whatever case we are in, that we ignore classes that have
2185 the same value as X. */
2186
2187 if (rtx_equal_p (x, p->exp))
2188 q = 0;
2189 else
2190 for (q = p->first_same_value; q; q = q->next_same_value)
2191 if (REG_P (q->exp))
2192 break;
2193
2194 if (q)
2195 break;
2196
2197 p = p->related_value;
2198
2199 /* We went all the way around, so there is nothing to be found.
2200 Alternatively, perhaps RELT was in the table for some other reason
2201 and it has no related values recorded. */
2202 if (p == relt || p == 0)
2203 break;
2204 }
2205
2206 if (q == 0)
2207 return 0;
2208
2209 offset = (get_integer_term (x) - get_integer_term (p->exp));
2210 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2211 return plus_constant (q->mode, q->exp, offset);
2212 }
2213 \f
2214
2215 /* Hash a string. Just add its bytes up. */
2216 static inline unsigned
2217 hash_rtx_string (const char *ps)
2218 {
2219 unsigned hash = 0;
2220 const unsigned char *p = (const unsigned char *) ps;
2221
2222 if (p)
2223 while (*p)
2224 hash += *p++;
2225
2226 return hash;
2227 }
2228
2229 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2230 When the callback returns true, we continue with the new rtx. */
2231
2232 unsigned
2233 hash_rtx_cb (const_rtx x, machine_mode mode,
2234 int *do_not_record_p, int *hash_arg_in_memory_p,
2235 bool have_reg_qty, hash_rtx_callback_function cb)
2236 {
2237 int i, j;
2238 unsigned hash = 0;
2239 enum rtx_code code;
2240 const char *fmt;
2241 machine_mode newmode;
2242 rtx newx;
2243
2244 /* Used to turn recursion into iteration. We can't rely on GCC's
2245 tail-recursion elimination since we need to keep accumulating values
2246 in HASH. */
2247 repeat:
2248 if (x == 0)
2249 return hash;
2250
2251 /* Invoke the callback first. */
2252 if (cb != NULL
2253 && ((*cb) (x, mode, &newx, &newmode)))
2254 {
2255 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2256 hash_arg_in_memory_p, have_reg_qty, cb);
2257 return hash;
2258 }
2259
2260 code = GET_CODE (x);
2261 switch (code)
2262 {
2263 case REG:
2264 {
2265 unsigned int regno = REGNO (x);
2266
2267 if (do_not_record_p && !reload_completed)
2268 {
2269 /* On some machines, we can't record any non-fixed hard register,
2270 because extending its life will cause reload problems. We
2271 consider ap, fp, sp, gp to be fixed for this purpose.
2272
2273 We also consider CCmode registers to be fixed for this purpose;
2274 failure to do so leads to failure to simplify 0<100 type of
2275 conditionals.
2276
2277 On all machines, we can't record any global registers.
2278 Nor should we record any register that is in a small
2279 class, as defined by TARGET_CLASS_LIKELY_SPILLED_P. */
2280 bool record;
2281
2282 if (regno >= FIRST_PSEUDO_REGISTER)
2283 record = true;
2284 else if (x == frame_pointer_rtx
2285 || x == hard_frame_pointer_rtx
2286 || x == arg_pointer_rtx
2287 || x == stack_pointer_rtx
2288 || x == pic_offset_table_rtx)
2289 record = true;
2290 else if (global_regs[regno])
2291 record = false;
2292 else if (fixed_regs[regno])
2293 record = true;
2294 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2295 record = true;
2296 else if (targetm.small_register_classes_for_mode_p (GET_MODE (x)))
2297 record = false;
2298 else if (targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
2299 record = false;
2300 else
2301 record = true;
2302
2303 if (!record)
2304 {
2305 *do_not_record_p = 1;
2306 return 0;
2307 }
2308 }
2309
2310 hash += ((unsigned int) REG << 7);
2311 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2312 return hash;
2313 }
2314
2315 /* We handle SUBREG of a REG specially because the underlying
2316 reg changes its hash value with every value change; we don't
2317 want to have to forget unrelated subregs when one subreg changes. */
2318 case SUBREG:
2319 {
2320 if (REG_P (SUBREG_REG (x)))
2321 {
2322 hash += (((unsigned int) SUBREG << 7)
2323 + REGNO (SUBREG_REG (x))
2324 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2325 return hash;
2326 }
2327 break;
2328 }
2329
2330 case CONST_INT:
2331 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2332 + (unsigned int) INTVAL (x));
2333 return hash;
2334
2335 case CONST_WIDE_INT:
2336 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
2337 hash += CONST_WIDE_INT_ELT (x, i);
2338 return hash;
2339
2340 case CONST_DOUBLE:
2341 /* This is like the general case, except that it only counts
2342 the integers representing the constant. */
2343 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2344 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
2345 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2346 + (unsigned int) CONST_DOUBLE_HIGH (x));
2347 else
2348 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2349 return hash;
2350
2351 case CONST_FIXED:
2352 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2353 hash += fixed_hash (CONST_FIXED_VALUE (x));
2354 return hash;
2355
2356 case CONST_VECTOR:
2357 {
2358 int units;
2359 rtx elt;
2360
2361 units = CONST_VECTOR_NUNITS (x);
2362
2363 for (i = 0; i < units; ++i)
2364 {
2365 elt = CONST_VECTOR_ELT (x, i);
2366 hash += hash_rtx_cb (elt, GET_MODE (elt),
2367 do_not_record_p, hash_arg_in_memory_p,
2368 have_reg_qty, cb);
2369 }
2370
2371 return hash;
2372 }
2373
2374 /* Assume there is only one rtx object for any given label. */
2375 case LABEL_REF:
2376 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2377 differences and differences between each stage's debugging dumps. */
2378 hash += (((unsigned int) LABEL_REF << 7)
2379 + CODE_LABEL_NUMBER (LABEL_REF_LABEL (x)));
2380 return hash;
2381
2382 case SYMBOL_REF:
2383 {
2384 /* Don't hash on the symbol's address to avoid bootstrap differences.
2385 Different hash values may cause expressions to be recorded in
2386 different orders and thus different registers to be used in the
2387 final assembler. This also avoids differences in the dump files
2388 between various stages. */
2389 unsigned int h = 0;
2390 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2391
2392 while (*p)
2393 h += (h << 7) + *p++; /* ??? revisit */
2394
2395 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2396 return hash;
2397 }
2398
2399 case MEM:
2400 /* We don't record if marked volatile or if BLKmode since we don't
2401 know the size of the move. */
2402 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2403 {
2404 *do_not_record_p = 1;
2405 return 0;
2406 }
2407 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2408 *hash_arg_in_memory_p = 1;
2409
2410 /* Now that we have already found this special case,
2411 might as well speed it up as much as possible. */
2412 hash += (unsigned) MEM;
2413 x = XEXP (x, 0);
2414 goto repeat;
2415
2416 case USE:
2417 /* A USE that mentions non-volatile memory needs special
2418 handling since the MEM may be BLKmode which normally
2419 prevents an entry from being made. Pure calls are
2420 marked by a USE which mentions BLKmode memory.
2421 See calls.c:emit_call_1. */
2422 if (MEM_P (XEXP (x, 0))
2423 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2424 {
2425 hash += (unsigned) USE;
2426 x = XEXP (x, 0);
2427
2428 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2429 *hash_arg_in_memory_p = 1;
2430
2431 /* Now that we have already found this special case,
2432 might as well speed it up as much as possible. */
2433 hash += (unsigned) MEM;
2434 x = XEXP (x, 0);
2435 goto repeat;
2436 }
2437 break;
2438
2439 case PRE_DEC:
2440 case PRE_INC:
2441 case POST_DEC:
2442 case POST_INC:
2443 case PRE_MODIFY:
2444 case POST_MODIFY:
2445 case PC:
2446 case CC0:
2447 case CALL:
2448 case UNSPEC_VOLATILE:
2449 if (do_not_record_p) {
2450 *do_not_record_p = 1;
2451 return 0;
2452 }
2453 else
2454 return hash;
2455 break;
2456
2457 case ASM_OPERANDS:
2458 if (do_not_record_p && MEM_VOLATILE_P (x))
2459 {
2460 *do_not_record_p = 1;
2461 return 0;
2462 }
2463 else
2464 {
2465 /* We don't want to take the filename and line into account. */
2466 hash += (unsigned) code + (unsigned) GET_MODE (x)
2467 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2468 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2469 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2470
2471 if (ASM_OPERANDS_INPUT_LENGTH (x))
2472 {
2473 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2474 {
2475 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2476 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2477 do_not_record_p, hash_arg_in_memory_p,
2478 have_reg_qty, cb)
2479 + hash_rtx_string
2480 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2481 }
2482
2483 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2484 x = ASM_OPERANDS_INPUT (x, 0);
2485 mode = GET_MODE (x);
2486 goto repeat;
2487 }
2488
2489 return hash;
2490 }
2491 break;
2492
2493 default:
2494 break;
2495 }
2496
2497 i = GET_RTX_LENGTH (code) - 1;
2498 hash += (unsigned) code + (unsigned) GET_MODE (x);
2499 fmt = GET_RTX_FORMAT (code);
2500 for (; i >= 0; i--)
2501 {
2502 switch (fmt[i])
2503 {
2504 case 'e':
2505 /* If we are about to do the last recursive call
2506 needed at this level, change it into iteration.
2507 This function is called enough to be worth it. */
2508 if (i == 0)
2509 {
2510 x = XEXP (x, i);
2511 goto repeat;
2512 }
2513
2514 hash += hash_rtx_cb (XEXP (x, i), VOIDmode, do_not_record_p,
2515 hash_arg_in_memory_p,
2516 have_reg_qty, cb);
2517 break;
2518
2519 case 'E':
2520 for (j = 0; j < XVECLEN (x, i); j++)
2521 hash += hash_rtx_cb (XVECEXP (x, i, j), VOIDmode, do_not_record_p,
2522 hash_arg_in_memory_p,
2523 have_reg_qty, cb);
2524 break;
2525
2526 case 's':
2527 hash += hash_rtx_string (XSTR (x, i));
2528 break;
2529
2530 case 'i':
2531 hash += (unsigned int) XINT (x, i);
2532 break;
2533
2534 case '0': case 't':
2535 /* Unused. */
2536 break;
2537
2538 default:
2539 gcc_unreachable ();
2540 }
2541 }
2542
2543 return hash;
2544 }
2545
2546 /* Hash an rtx. We are careful to make sure the value is never negative.
2547 Equivalent registers hash identically.
2548 MODE is used in hashing for CONST_INTs only;
2549 otherwise the mode of X is used.
2550
2551 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2552
2553 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2554 a MEM rtx which does not have the MEM_READONLY_P flag set.
2555
2556 Note that cse_insn knows that the hash code of a MEM expression
2557 is just (int) MEM plus the hash code of the address. */
2558
2559 unsigned
2560 hash_rtx (const_rtx x, machine_mode mode, int *do_not_record_p,
2561 int *hash_arg_in_memory_p, bool have_reg_qty)
2562 {
2563 return hash_rtx_cb (x, mode, do_not_record_p,
2564 hash_arg_in_memory_p, have_reg_qty, NULL);
2565 }
2566
2567 /* Hash an rtx X for cse via hash_rtx.
2568 Stores 1 in do_not_record if any subexpression is volatile.
2569 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2570 does not have the MEM_READONLY_P flag set. */
2571
2572 static inline unsigned
2573 canon_hash (rtx x, machine_mode mode)
2574 {
2575 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2576 }
2577
2578 /* Like canon_hash but with no side effects, i.e. do_not_record
2579 and hash_arg_in_memory are not changed. */
2580
2581 static inline unsigned
2582 safe_hash (rtx x, machine_mode mode)
2583 {
2584 int dummy_do_not_record;
2585 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2586 }
2587 \f
2588 /* Return 1 iff X and Y would canonicalize into the same thing,
2589 without actually constructing the canonicalization of either one.
2590 If VALIDATE is nonzero,
2591 we assume X is an expression being processed from the rtl
2592 and Y was found in the hash table. We check register refs
2593 in Y for being marked as valid.
2594
2595 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2596
2597 int
2598 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2599 {
2600 int i, j;
2601 enum rtx_code code;
2602 const char *fmt;
2603
2604 /* Note: it is incorrect to assume an expression is equivalent to itself
2605 if VALIDATE is nonzero. */
2606 if (x == y && !validate)
2607 return 1;
2608
2609 if (x == 0 || y == 0)
2610 return x == y;
2611
2612 code = GET_CODE (x);
2613 if (code != GET_CODE (y))
2614 return 0;
2615
2616 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2617 if (GET_MODE (x) != GET_MODE (y))
2618 return 0;
2619
2620 /* MEMs referring to different address space are not equivalent. */
2621 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2622 return 0;
2623
2624 switch (code)
2625 {
2626 case PC:
2627 case CC0:
2628 CASE_CONST_UNIQUE:
2629 return x == y;
2630
2631 case LABEL_REF:
2632 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
2633
2634 case SYMBOL_REF:
2635 return XSTR (x, 0) == XSTR (y, 0);
2636
2637 case REG:
2638 if (for_gcse)
2639 return REGNO (x) == REGNO (y);
2640 else
2641 {
2642 unsigned int regno = REGNO (y);
2643 unsigned int i;
2644 unsigned int endregno = END_REGNO (y);
2645
2646 /* If the quantities are not the same, the expressions are not
2647 equivalent. If there are and we are not to validate, they
2648 are equivalent. Otherwise, ensure all regs are up-to-date. */
2649
2650 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2651 return 0;
2652
2653 if (! validate)
2654 return 1;
2655
2656 for (i = regno; i < endregno; i++)
2657 if (REG_IN_TABLE (i) != REG_TICK (i))
2658 return 0;
2659
2660 return 1;
2661 }
2662
2663 case MEM:
2664 if (for_gcse)
2665 {
2666 /* A volatile mem should not be considered equivalent to any
2667 other. */
2668 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2669 return 0;
2670
2671 /* Can't merge two expressions in different alias sets, since we
2672 can decide that the expression is transparent in a block when
2673 it isn't, due to it being set with the different alias set.
2674
2675 Also, can't merge two expressions with different MEM_ATTRS.
2676 They could e.g. be two different entities allocated into the
2677 same space on the stack (see e.g. PR25130). In that case, the
2678 MEM addresses can be the same, even though the two MEMs are
2679 absolutely not equivalent.
2680
2681 But because really all MEM attributes should be the same for
2682 equivalent MEMs, we just use the invariant that MEMs that have
2683 the same attributes share the same mem_attrs data structure. */
2684 if (!mem_attrs_eq_p (MEM_ATTRS (x), MEM_ATTRS (y)))
2685 return 0;
2686
2687 /* If we are handling exceptions, we cannot consider two expressions
2688 with different trapping status as equivalent, because simple_mem
2689 might accept one and reject the other. */
2690 if (cfun->can_throw_non_call_exceptions
2691 && (MEM_NOTRAP_P (x) != MEM_NOTRAP_P (y)))
2692 return 0;
2693 }
2694 break;
2695
2696 /* For commutative operations, check both orders. */
2697 case PLUS:
2698 case MULT:
2699 case AND:
2700 case IOR:
2701 case XOR:
2702 case NE:
2703 case EQ:
2704 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2705 validate, for_gcse)
2706 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2707 validate, for_gcse))
2708 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2709 validate, for_gcse)
2710 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2711 validate, for_gcse)));
2712
2713 case ASM_OPERANDS:
2714 /* We don't use the generic code below because we want to
2715 disregard filename and line numbers. */
2716
2717 /* A volatile asm isn't equivalent to any other. */
2718 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2719 return 0;
2720
2721 if (GET_MODE (x) != GET_MODE (y)
2722 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2723 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2724 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2725 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2726 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2727 return 0;
2728
2729 if (ASM_OPERANDS_INPUT_LENGTH (x))
2730 {
2731 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2732 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2733 ASM_OPERANDS_INPUT (y, i),
2734 validate, for_gcse)
2735 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2736 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2737 return 0;
2738 }
2739
2740 return 1;
2741
2742 default:
2743 break;
2744 }
2745
2746 /* Compare the elements. If any pair of corresponding elements
2747 fail to match, return 0 for the whole thing. */
2748
2749 fmt = GET_RTX_FORMAT (code);
2750 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2751 {
2752 switch (fmt[i])
2753 {
2754 case 'e':
2755 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2756 validate, for_gcse))
2757 return 0;
2758 break;
2759
2760 case 'E':
2761 if (XVECLEN (x, i) != XVECLEN (y, i))
2762 return 0;
2763 for (j = 0; j < XVECLEN (x, i); j++)
2764 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2765 validate, for_gcse))
2766 return 0;
2767 break;
2768
2769 case 's':
2770 if (strcmp (XSTR (x, i), XSTR (y, i)))
2771 return 0;
2772 break;
2773
2774 case 'i':
2775 if (XINT (x, i) != XINT (y, i))
2776 return 0;
2777 break;
2778
2779 case 'w':
2780 if (XWINT (x, i) != XWINT (y, i))
2781 return 0;
2782 break;
2783
2784 case '0':
2785 case 't':
2786 break;
2787
2788 default:
2789 gcc_unreachable ();
2790 }
2791 }
2792
2793 return 1;
2794 }
2795 \f
2796 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2797 the result if necessary. INSN is as for canon_reg. */
2798
2799 static void
2800 validate_canon_reg (rtx *xloc, rtx_insn *insn)
2801 {
2802 if (*xloc)
2803 {
2804 rtx new_rtx = canon_reg (*xloc, insn);
2805
2806 /* If replacing pseudo with hard reg or vice versa, ensure the
2807 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2808 gcc_assert (insn && new_rtx);
2809 validate_change (insn, xloc, new_rtx, 1);
2810 }
2811 }
2812
2813 /* Canonicalize an expression:
2814 replace each register reference inside it
2815 with the "oldest" equivalent register.
2816
2817 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2818 after we make our substitution. The calls are made with IN_GROUP nonzero
2819 so apply_change_group must be called upon the outermost return from this
2820 function (unless INSN is zero). The result of apply_change_group can
2821 generally be discarded since the changes we are making are optional. */
2822
2823 static rtx
2824 canon_reg (rtx x, rtx_insn *insn)
2825 {
2826 int i;
2827 enum rtx_code code;
2828 const char *fmt;
2829
2830 if (x == 0)
2831 return x;
2832
2833 code = GET_CODE (x);
2834 switch (code)
2835 {
2836 case PC:
2837 case CC0:
2838 case CONST:
2839 CASE_CONST_ANY:
2840 case SYMBOL_REF:
2841 case LABEL_REF:
2842 case ADDR_VEC:
2843 case ADDR_DIFF_VEC:
2844 return x;
2845
2846 case REG:
2847 {
2848 int first;
2849 int q;
2850 struct qty_table_elem *ent;
2851
2852 /* Never replace a hard reg, because hard regs can appear
2853 in more than one machine mode, and we must preserve the mode
2854 of each occurrence. Also, some hard regs appear in
2855 MEMs that are shared and mustn't be altered. Don't try to
2856 replace any reg that maps to a reg of class NO_REGS. */
2857 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2858 || ! REGNO_QTY_VALID_P (REGNO (x)))
2859 return x;
2860
2861 q = REG_QTY (REGNO (x));
2862 ent = &qty_table[q];
2863 first = ent->first_reg;
2864 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2865 : REGNO_REG_CLASS (first) == NO_REGS ? x
2866 : gen_rtx_REG (ent->mode, first));
2867 }
2868
2869 default:
2870 break;
2871 }
2872
2873 fmt = GET_RTX_FORMAT (code);
2874 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2875 {
2876 int j;
2877
2878 if (fmt[i] == 'e')
2879 validate_canon_reg (&XEXP (x, i), insn);
2880 else if (fmt[i] == 'E')
2881 for (j = 0; j < XVECLEN (x, i); j++)
2882 validate_canon_reg (&XVECEXP (x, i, j), insn);
2883 }
2884
2885 return x;
2886 }
2887 \f
2888 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2889 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2890 what values are being compared.
2891
2892 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2893 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2894 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2895 compared to produce cc0.
2896
2897 The return value is the comparison operator and is either the code of
2898 A or the code corresponding to the inverse of the comparison. */
2899
2900 static enum rtx_code
2901 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2902 machine_mode *pmode1, machine_mode *pmode2)
2903 {
2904 rtx arg1, arg2;
2905 hash_set<rtx> *visited = NULL;
2906 /* Set nonzero when we find something of interest. */
2907 rtx x = NULL;
2908
2909 arg1 = *parg1, arg2 = *parg2;
2910
2911 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2912
2913 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2914 {
2915 int reverse_code = 0;
2916 struct table_elt *p = 0;
2917
2918 /* Remember state from previous iteration. */
2919 if (x)
2920 {
2921 if (!visited)
2922 visited = new hash_set<rtx>;
2923 visited->add (x);
2924 x = 0;
2925 }
2926
2927 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2928 On machines with CC0, this is the only case that can occur, since
2929 fold_rtx will return the COMPARE or item being compared with zero
2930 when given CC0. */
2931
2932 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2933 x = arg1;
2934
2935 /* If ARG1 is a comparison operator and CODE is testing for
2936 STORE_FLAG_VALUE, get the inner arguments. */
2937
2938 else if (COMPARISON_P (arg1))
2939 {
2940 #ifdef FLOAT_STORE_FLAG_VALUE
2941 REAL_VALUE_TYPE fsfv;
2942 #endif
2943
2944 if (code == NE
2945 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2946 && code == LT && STORE_FLAG_VALUE == -1)
2947 #ifdef FLOAT_STORE_FLAG_VALUE
2948 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2949 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2950 REAL_VALUE_NEGATIVE (fsfv)))
2951 #endif
2952 )
2953 x = arg1;
2954 else if (code == EQ
2955 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2956 && code == GE && STORE_FLAG_VALUE == -1)
2957 #ifdef FLOAT_STORE_FLAG_VALUE
2958 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2959 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2960 REAL_VALUE_NEGATIVE (fsfv)))
2961 #endif
2962 )
2963 x = arg1, reverse_code = 1;
2964 }
2965
2966 /* ??? We could also check for
2967
2968 (ne (and (eq (...) (const_int 1))) (const_int 0))
2969
2970 and related forms, but let's wait until we see them occurring. */
2971
2972 if (x == 0)
2973 /* Look up ARG1 in the hash table and see if it has an equivalence
2974 that lets us see what is being compared. */
2975 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2976 if (p)
2977 {
2978 p = p->first_same_value;
2979
2980 /* If what we compare is already known to be constant, that is as
2981 good as it gets.
2982 We need to break the loop in this case, because otherwise we
2983 can have an infinite loop when looking at a reg that is known
2984 to be a constant which is the same as a comparison of a reg
2985 against zero which appears later in the insn stream, which in
2986 turn is constant and the same as the comparison of the first reg
2987 against zero... */
2988 if (p->is_const)
2989 break;
2990 }
2991
2992 for (; p; p = p->next_same_value)
2993 {
2994 machine_mode inner_mode = GET_MODE (p->exp);
2995 #ifdef FLOAT_STORE_FLAG_VALUE
2996 REAL_VALUE_TYPE fsfv;
2997 #endif
2998
2999 /* If the entry isn't valid, skip it. */
3000 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3001 continue;
3002
3003 /* If it's a comparison we've used before, skip it. */
3004 if (visited && visited->contains (p->exp))
3005 continue;
3006
3007 if (GET_CODE (p->exp) == COMPARE
3008 /* Another possibility is that this machine has a compare insn
3009 that includes the comparison code. In that case, ARG1 would
3010 be equivalent to a comparison operation that would set ARG1 to
3011 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3012 ORIG_CODE is the actual comparison being done; if it is an EQ,
3013 we must reverse ORIG_CODE. On machine with a negative value
3014 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3015 || ((code == NE
3016 || (code == LT
3017 && val_signbit_known_set_p (inner_mode,
3018 STORE_FLAG_VALUE))
3019 #ifdef FLOAT_STORE_FLAG_VALUE
3020 || (code == LT
3021 && SCALAR_FLOAT_MODE_P (inner_mode)
3022 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3023 REAL_VALUE_NEGATIVE (fsfv)))
3024 #endif
3025 )
3026 && COMPARISON_P (p->exp)))
3027 {
3028 x = p->exp;
3029 break;
3030 }
3031 else if ((code == EQ
3032 || (code == GE
3033 && val_signbit_known_set_p (inner_mode,
3034 STORE_FLAG_VALUE))
3035 #ifdef FLOAT_STORE_FLAG_VALUE
3036 || (code == GE
3037 && SCALAR_FLOAT_MODE_P (inner_mode)
3038 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3039 REAL_VALUE_NEGATIVE (fsfv)))
3040 #endif
3041 )
3042 && COMPARISON_P (p->exp))
3043 {
3044 reverse_code = 1;
3045 x = p->exp;
3046 break;
3047 }
3048
3049 /* If this non-trapping address, e.g. fp + constant, the
3050 equivalent is a better operand since it may let us predict
3051 the value of the comparison. */
3052 else if (!rtx_addr_can_trap_p (p->exp))
3053 {
3054 arg1 = p->exp;
3055 continue;
3056 }
3057 }
3058
3059 /* If we didn't find a useful equivalence for ARG1, we are done.
3060 Otherwise, set up for the next iteration. */
3061 if (x == 0)
3062 break;
3063
3064 /* If we need to reverse the comparison, make sure that that is
3065 possible -- we can't necessarily infer the value of GE from LT
3066 with floating-point operands. */
3067 if (reverse_code)
3068 {
3069 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3070 if (reversed == UNKNOWN)
3071 break;
3072 else
3073 code = reversed;
3074 }
3075 else if (COMPARISON_P (x))
3076 code = GET_CODE (x);
3077 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3078 }
3079
3080 /* Return our results. Return the modes from before fold_rtx
3081 because fold_rtx might produce const_int, and then it's too late. */
3082 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3083 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3084
3085 if (visited)
3086 delete visited;
3087 return code;
3088 }
3089 \f
3090 /* If X is a nontrivial arithmetic operation on an argument for which
3091 a constant value can be determined, return the result of operating
3092 on that value, as a constant. Otherwise, return X, possibly with
3093 one or more operands changed to a forward-propagated constant.
3094
3095 If X is a register whose contents are known, we do NOT return
3096 those contents here; equiv_constant is called to perform that task.
3097 For SUBREGs and MEMs, we do that both here and in equiv_constant.
3098
3099 INSN is the insn that we may be modifying. If it is 0, make a copy
3100 of X before modifying it. */
3101
3102 static rtx
3103 fold_rtx (rtx x, rtx_insn *insn)
3104 {
3105 enum rtx_code code;
3106 machine_mode mode;
3107 const char *fmt;
3108 int i;
3109 rtx new_rtx = 0;
3110 int changed = 0;
3111
3112 /* Operands of X. */
3113 /* Workaround -Wmaybe-uninitialized false positive during
3114 profiledbootstrap by initializing them. */
3115 rtx folded_arg0 = NULL_RTX;
3116 rtx folded_arg1 = NULL_RTX;
3117
3118 /* Constant equivalents of first three operands of X;
3119 0 when no such equivalent is known. */
3120 rtx const_arg0;
3121 rtx const_arg1;
3122 rtx const_arg2;
3123
3124 /* The mode of the first operand of X. We need this for sign and zero
3125 extends. */
3126 machine_mode mode_arg0;
3127
3128 if (x == 0)
3129 return x;
3130
3131 /* Try to perform some initial simplifications on X. */
3132 code = GET_CODE (x);
3133 switch (code)
3134 {
3135 case MEM:
3136 case SUBREG:
3137 /* The first operand of a SIGN/ZERO_EXTRACT has a different meaning
3138 than it would in other contexts. Basically its mode does not
3139 signify the size of the object read. That information is carried
3140 by size operand. If we happen to have a MEM of the appropriate
3141 mode in our tables with a constant value we could simplify the
3142 extraction incorrectly if we allowed substitution of that value
3143 for the MEM. */
3144 case ZERO_EXTRACT:
3145 case SIGN_EXTRACT:
3146 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3147 return new_rtx;
3148 return x;
3149
3150 case CONST:
3151 CASE_CONST_ANY:
3152 case SYMBOL_REF:
3153 case LABEL_REF:
3154 case REG:
3155 case PC:
3156 /* No use simplifying an EXPR_LIST
3157 since they are used only for lists of args
3158 in a function call's REG_EQUAL note. */
3159 case EXPR_LIST:
3160 return x;
3161
3162 case CC0:
3163 return prev_insn_cc0;
3164
3165 case ASM_OPERANDS:
3166 if (insn)
3167 {
3168 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3169 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3170 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3171 }
3172 return x;
3173
3174 case CALL:
3175 if (NO_FUNCTION_CSE && CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3176 return x;
3177 break;
3178
3179 /* Anything else goes through the loop below. */
3180 default:
3181 break;
3182 }
3183
3184 mode = GET_MODE (x);
3185 const_arg0 = 0;
3186 const_arg1 = 0;
3187 const_arg2 = 0;
3188 mode_arg0 = VOIDmode;
3189
3190 /* Try folding our operands.
3191 Then see which ones have constant values known. */
3192
3193 fmt = GET_RTX_FORMAT (code);
3194 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3195 if (fmt[i] == 'e')
3196 {
3197 rtx folded_arg = XEXP (x, i), const_arg;
3198 machine_mode mode_arg = GET_MODE (folded_arg);
3199
3200 switch (GET_CODE (folded_arg))
3201 {
3202 case MEM:
3203 case REG:
3204 case SUBREG:
3205 const_arg = equiv_constant (folded_arg);
3206 break;
3207
3208 case CONST:
3209 CASE_CONST_ANY:
3210 case SYMBOL_REF:
3211 case LABEL_REF:
3212 const_arg = folded_arg;
3213 break;
3214
3215 case CC0:
3216 /* The cc0-user and cc0-setter may be in different blocks if
3217 the cc0-setter potentially traps. In that case PREV_INSN_CC0
3218 will have been cleared as we exited the block with the
3219 setter.
3220
3221 While we could potentially track cc0 in this case, it just
3222 doesn't seem to be worth it given that cc0 targets are not
3223 terribly common or important these days and trapping math
3224 is rarely used. The combination of those two conditions
3225 necessary to trip this situation is exceedingly rare in the
3226 real world. */
3227 if (!prev_insn_cc0)
3228 {
3229 const_arg = NULL_RTX;
3230 }
3231 else
3232 {
3233 folded_arg = prev_insn_cc0;
3234 mode_arg = prev_insn_cc0_mode;
3235 const_arg = equiv_constant (folded_arg);
3236 }
3237 break;
3238
3239 default:
3240 folded_arg = fold_rtx (folded_arg, insn);
3241 const_arg = equiv_constant (folded_arg);
3242 break;
3243 }
3244
3245 /* For the first three operands, see if the operand
3246 is constant or equivalent to a constant. */
3247 switch (i)
3248 {
3249 case 0:
3250 folded_arg0 = folded_arg;
3251 const_arg0 = const_arg;
3252 mode_arg0 = mode_arg;
3253 break;
3254 case 1:
3255 folded_arg1 = folded_arg;
3256 const_arg1 = const_arg;
3257 break;
3258 case 2:
3259 const_arg2 = const_arg;
3260 break;
3261 }
3262
3263 /* Pick the least expensive of the argument and an equivalent constant
3264 argument. */
3265 if (const_arg != 0
3266 && const_arg != folded_arg
3267 && COST_IN (const_arg, code, i) <= COST_IN (folded_arg, code, i)
3268
3269 /* It's not safe to substitute the operand of a conversion
3270 operator with a constant, as the conversion's identity
3271 depends upon the mode of its operand. This optimization
3272 is handled by the call to simplify_unary_operation. */
3273 && (GET_RTX_CLASS (code) != RTX_UNARY
3274 || GET_MODE (const_arg) == mode_arg0
3275 || (code != ZERO_EXTEND
3276 && code != SIGN_EXTEND
3277 && code != TRUNCATE
3278 && code != FLOAT_TRUNCATE
3279 && code != FLOAT_EXTEND
3280 && code != FLOAT
3281 && code != FIX
3282 && code != UNSIGNED_FLOAT
3283 && code != UNSIGNED_FIX)))
3284 folded_arg = const_arg;
3285
3286 if (folded_arg == XEXP (x, i))
3287 continue;
3288
3289 if (insn == NULL_RTX && !changed)
3290 x = copy_rtx (x);
3291 changed = 1;
3292 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3293 }
3294
3295 if (changed)
3296 {
3297 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3298 consistent with the order in X. */
3299 if (canonicalize_change_group (insn, x))
3300 {
3301 rtx tem;
3302 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3303 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3304 }
3305
3306 apply_change_group ();
3307 }
3308
3309 /* If X is an arithmetic operation, see if we can simplify it. */
3310
3311 switch (GET_RTX_CLASS (code))
3312 {
3313 case RTX_UNARY:
3314 {
3315 /* We can't simplify extension ops unless we know the
3316 original mode. */
3317 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3318 && mode_arg0 == VOIDmode)
3319 break;
3320
3321 new_rtx = simplify_unary_operation (code, mode,
3322 const_arg0 ? const_arg0 : folded_arg0,
3323 mode_arg0);
3324 }
3325 break;
3326
3327 case RTX_COMPARE:
3328 case RTX_COMM_COMPARE:
3329 /* See what items are actually being compared and set FOLDED_ARG[01]
3330 to those values and CODE to the actual comparison code. If any are
3331 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3332 do anything if both operands are already known to be constant. */
3333
3334 /* ??? Vector mode comparisons are not supported yet. */
3335 if (VECTOR_MODE_P (mode))
3336 break;
3337
3338 if (const_arg0 == 0 || const_arg1 == 0)
3339 {
3340 struct table_elt *p0, *p1;
3341 rtx true_rtx, false_rtx;
3342 machine_mode mode_arg1;
3343
3344 if (SCALAR_FLOAT_MODE_P (mode))
3345 {
3346 #ifdef FLOAT_STORE_FLAG_VALUE
3347 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3348 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3349 #else
3350 true_rtx = NULL_RTX;
3351 #endif
3352 false_rtx = CONST0_RTX (mode);
3353 }
3354 else
3355 {
3356 true_rtx = const_true_rtx;
3357 false_rtx = const0_rtx;
3358 }
3359
3360 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3361 &mode_arg0, &mode_arg1);
3362
3363 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3364 what kinds of things are being compared, so we can't do
3365 anything with this comparison. */
3366
3367 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3368 break;
3369
3370 const_arg0 = equiv_constant (folded_arg0);
3371 const_arg1 = equiv_constant (folded_arg1);
3372
3373 /* If we do not now have two constants being compared, see
3374 if we can nevertheless deduce some things about the
3375 comparison. */
3376 if (const_arg0 == 0 || const_arg1 == 0)
3377 {
3378 if (const_arg1 != NULL)
3379 {
3380 rtx cheapest_simplification;
3381 int cheapest_cost;
3382 rtx simp_result;
3383 struct table_elt *p;
3384
3385 /* See if we can find an equivalent of folded_arg0
3386 that gets us a cheaper expression, possibly a
3387 constant through simplifications. */
3388 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3389 mode_arg0);
3390
3391 if (p != NULL)
3392 {
3393 cheapest_simplification = x;
3394 cheapest_cost = COST (x);
3395
3396 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3397 {
3398 int cost;
3399
3400 /* If the entry isn't valid, skip it. */
3401 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3402 continue;
3403
3404 /* Try to simplify using this equivalence. */
3405 simp_result
3406 = simplify_relational_operation (code, mode,
3407 mode_arg0,
3408 p->exp,
3409 const_arg1);
3410
3411 if (simp_result == NULL)
3412 continue;
3413
3414 cost = COST (simp_result);
3415 if (cost < cheapest_cost)
3416 {
3417 cheapest_cost = cost;
3418 cheapest_simplification = simp_result;
3419 }
3420 }
3421
3422 /* If we have a cheaper expression now, use that
3423 and try folding it further, from the top. */
3424 if (cheapest_simplification != x)
3425 return fold_rtx (copy_rtx (cheapest_simplification),
3426 insn);
3427 }
3428 }
3429
3430 /* See if the two operands are the same. */
3431
3432 if ((REG_P (folded_arg0)
3433 && REG_P (folded_arg1)
3434 && (REG_QTY (REGNO (folded_arg0))
3435 == REG_QTY (REGNO (folded_arg1))))
3436 || ((p0 = lookup (folded_arg0,
3437 SAFE_HASH (folded_arg0, mode_arg0),
3438 mode_arg0))
3439 && (p1 = lookup (folded_arg1,
3440 SAFE_HASH (folded_arg1, mode_arg0),
3441 mode_arg0))
3442 && p0->first_same_value == p1->first_same_value))
3443 folded_arg1 = folded_arg0;
3444
3445 /* If FOLDED_ARG0 is a register, see if the comparison we are
3446 doing now is either the same as we did before or the reverse
3447 (we only check the reverse if not floating-point). */
3448 else if (REG_P (folded_arg0))
3449 {
3450 int qty = REG_QTY (REGNO (folded_arg0));
3451
3452 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3453 {
3454 struct qty_table_elem *ent = &qty_table[qty];
3455
3456 if ((comparison_dominates_p (ent->comparison_code, code)
3457 || (! FLOAT_MODE_P (mode_arg0)
3458 && comparison_dominates_p (ent->comparison_code,
3459 reverse_condition (code))))
3460 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3461 || (const_arg1
3462 && rtx_equal_p (ent->comparison_const,
3463 const_arg1))
3464 || (REG_P (folded_arg1)
3465 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3466 {
3467 if (comparison_dominates_p (ent->comparison_code, code))
3468 {
3469 if (true_rtx)
3470 return true_rtx;
3471 else
3472 break;
3473 }
3474 else
3475 return false_rtx;
3476 }
3477 }
3478 }
3479 }
3480 }
3481
3482 /* If we are comparing against zero, see if the first operand is
3483 equivalent to an IOR with a constant. If so, we may be able to
3484 determine the result of this comparison. */
3485 if (const_arg1 == const0_rtx && !const_arg0)
3486 {
3487 rtx y = lookup_as_function (folded_arg0, IOR);
3488 rtx inner_const;
3489
3490 if (y != 0
3491 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3492 && CONST_INT_P (inner_const)
3493 && INTVAL (inner_const) != 0)
3494 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3495 }
3496
3497 {
3498 rtx op0 = const_arg0 ? const_arg0 : copy_rtx (folded_arg0);
3499 rtx op1 = const_arg1 ? const_arg1 : copy_rtx (folded_arg1);
3500 new_rtx = simplify_relational_operation (code, mode, mode_arg0,
3501 op0, op1);
3502 }
3503 break;
3504
3505 case RTX_BIN_ARITH:
3506 case RTX_COMM_ARITH:
3507 switch (code)
3508 {
3509 case PLUS:
3510 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3511 with that LABEL_REF as its second operand. If so, the result is
3512 the first operand of that MINUS. This handles switches with an
3513 ADDR_DIFF_VEC table. */
3514 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3515 {
3516 rtx y
3517 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3518 : lookup_as_function (folded_arg0, MINUS);
3519
3520 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3521 && LABEL_REF_LABEL (XEXP (y, 1)) == LABEL_REF_LABEL (const_arg1))
3522 return XEXP (y, 0);
3523
3524 /* Now try for a CONST of a MINUS like the above. */
3525 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3526 : lookup_as_function (folded_arg0, CONST))) != 0
3527 && GET_CODE (XEXP (y, 0)) == MINUS
3528 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3529 && LABEL_REF_LABEL (XEXP (XEXP (y, 0), 1)) == LABEL_REF_LABEL (const_arg1))
3530 return XEXP (XEXP (y, 0), 0);
3531 }
3532
3533 /* Likewise if the operands are in the other order. */
3534 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3535 {
3536 rtx y
3537 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3538 : lookup_as_function (folded_arg1, MINUS);
3539
3540 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3541 && LABEL_REF_LABEL (XEXP (y, 1)) == LABEL_REF_LABEL (const_arg0))
3542 return XEXP (y, 0);
3543
3544 /* Now try for a CONST of a MINUS like the above. */
3545 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3546 : lookup_as_function (folded_arg1, CONST))) != 0
3547 && GET_CODE (XEXP (y, 0)) == MINUS
3548 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3549 && LABEL_REF_LABEL (XEXP (XEXP (y, 0), 1)) == LABEL_REF_LABEL (const_arg0))
3550 return XEXP (XEXP (y, 0), 0);
3551 }
3552
3553 /* If second operand is a register equivalent to a negative
3554 CONST_INT, see if we can find a register equivalent to the
3555 positive constant. Make a MINUS if so. Don't do this for
3556 a non-negative constant since we might then alternate between
3557 choosing positive and negative constants. Having the positive
3558 constant previously-used is the more common case. Be sure
3559 the resulting constant is non-negative; if const_arg1 were
3560 the smallest negative number this would overflow: depending
3561 on the mode, this would either just be the same value (and
3562 hence not save anything) or be incorrect. */
3563 if (const_arg1 != 0 && CONST_INT_P (const_arg1)
3564 && INTVAL (const_arg1) < 0
3565 /* This used to test
3566
3567 -INTVAL (const_arg1) >= 0
3568
3569 But The Sun V5.0 compilers mis-compiled that test. So
3570 instead we test for the problematic value in a more direct
3571 manner and hope the Sun compilers get it correct. */
3572 && INTVAL (const_arg1) !=
3573 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3574 && REG_P (folded_arg1))
3575 {
3576 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3577 struct table_elt *p
3578 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3579
3580 if (p)
3581 for (p = p->first_same_value; p; p = p->next_same_value)
3582 if (REG_P (p->exp))
3583 return simplify_gen_binary (MINUS, mode, folded_arg0,
3584 canon_reg (p->exp, NULL));
3585 }
3586 goto from_plus;
3587
3588 case MINUS:
3589 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3590 If so, produce (PLUS Z C2-C). */
3591 if (const_arg1 != 0 && CONST_INT_P (const_arg1))
3592 {
3593 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3594 if (y && CONST_INT_P (XEXP (y, 1)))
3595 return fold_rtx (plus_constant (mode, copy_rtx (y),
3596 -INTVAL (const_arg1)),
3597 NULL);
3598 }
3599
3600 /* Fall through. */
3601
3602 from_plus:
3603 case SMIN: case SMAX: case UMIN: case UMAX:
3604 case IOR: case AND: case XOR:
3605 case MULT:
3606 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3607 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3608 is known to be of similar form, we may be able to replace the
3609 operation with a combined operation. This may eliminate the
3610 intermediate operation if every use is simplified in this way.
3611 Note that the similar optimization done by combine.c only works
3612 if the intermediate operation's result has only one reference. */
3613
3614 if (REG_P (folded_arg0)
3615 && const_arg1 && CONST_INT_P (const_arg1))
3616 {
3617 int is_shift
3618 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3619 rtx y, inner_const, new_const;
3620 rtx canon_const_arg1 = const_arg1;
3621 enum rtx_code associate_code;
3622
3623 if (is_shift
3624 && (INTVAL (const_arg1) >= GET_MODE_PRECISION (mode)
3625 || INTVAL (const_arg1) < 0))
3626 {
3627 if (SHIFT_COUNT_TRUNCATED)
3628 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3629 & (GET_MODE_BITSIZE (mode)
3630 - 1));
3631 else
3632 break;
3633 }
3634
3635 y = lookup_as_function (folded_arg0, code);
3636 if (y == 0)
3637 break;
3638
3639 /* If we have compiled a statement like
3640 "if (x == (x & mask1))", and now are looking at
3641 "x & mask2", we will have a case where the first operand
3642 of Y is the same as our first operand. Unless we detect
3643 this case, an infinite loop will result. */
3644 if (XEXP (y, 0) == folded_arg0)
3645 break;
3646
3647 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3648 if (!inner_const || !CONST_INT_P (inner_const))
3649 break;
3650
3651 /* Don't associate these operations if they are a PLUS with the
3652 same constant and it is a power of two. These might be doable
3653 with a pre- or post-increment. Similarly for two subtracts of
3654 identical powers of two with post decrement. */
3655
3656 if (code == PLUS && const_arg1 == inner_const
3657 && ((HAVE_PRE_INCREMENT
3658 && exact_log2 (INTVAL (const_arg1)) >= 0)
3659 || (HAVE_POST_INCREMENT
3660 && exact_log2 (INTVAL (const_arg1)) >= 0)
3661 || (HAVE_PRE_DECREMENT
3662 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3663 || (HAVE_POST_DECREMENT
3664 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3665 break;
3666
3667 /* ??? Vector mode shifts by scalar
3668 shift operand are not supported yet. */
3669 if (is_shift && VECTOR_MODE_P (mode))
3670 break;
3671
3672 if (is_shift
3673 && (INTVAL (inner_const) >= GET_MODE_PRECISION (mode)
3674 || INTVAL (inner_const) < 0))
3675 {
3676 if (SHIFT_COUNT_TRUNCATED)
3677 inner_const = GEN_INT (INTVAL (inner_const)
3678 & (GET_MODE_BITSIZE (mode) - 1));
3679 else
3680 break;
3681 }
3682
3683 /* Compute the code used to compose the constants. For example,
3684 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3685
3686 associate_code = (is_shift || code == MINUS ? PLUS : code);
3687
3688 new_const = simplify_binary_operation (associate_code, mode,
3689 canon_const_arg1,
3690 inner_const);
3691
3692 if (new_const == 0)
3693 break;
3694
3695 /* If we are associating shift operations, don't let this
3696 produce a shift of the size of the object or larger.
3697 This could occur when we follow a sign-extend by a right
3698 shift on a machine that does a sign-extend as a pair
3699 of shifts. */
3700
3701 if (is_shift
3702 && CONST_INT_P (new_const)
3703 && INTVAL (new_const) >= GET_MODE_PRECISION (mode))
3704 {
3705 /* As an exception, we can turn an ASHIFTRT of this
3706 form into a shift of the number of bits - 1. */
3707 if (code == ASHIFTRT)
3708 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3709 else if (!side_effects_p (XEXP (y, 0)))
3710 return CONST0_RTX (mode);
3711 else
3712 break;
3713 }
3714
3715 y = copy_rtx (XEXP (y, 0));
3716
3717 /* If Y contains our first operand (the most common way this
3718 can happen is if Y is a MEM), we would do into an infinite
3719 loop if we tried to fold it. So don't in that case. */
3720
3721 if (! reg_mentioned_p (folded_arg0, y))
3722 y = fold_rtx (y, insn);
3723
3724 return simplify_gen_binary (code, mode, y, new_const);
3725 }
3726 break;
3727
3728 case DIV: case UDIV:
3729 /* ??? The associative optimization performed immediately above is
3730 also possible for DIV and UDIV using associate_code of MULT.
3731 However, we would need extra code to verify that the
3732 multiplication does not overflow, that is, there is no overflow
3733 in the calculation of new_const. */
3734 break;
3735
3736 default:
3737 break;
3738 }
3739
3740 new_rtx = simplify_binary_operation (code, mode,
3741 const_arg0 ? const_arg0 : folded_arg0,
3742 const_arg1 ? const_arg1 : folded_arg1);
3743 break;
3744
3745 case RTX_OBJ:
3746 /* (lo_sum (high X) X) is simply X. */
3747 if (code == LO_SUM && const_arg0 != 0
3748 && GET_CODE (const_arg0) == HIGH
3749 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3750 return const_arg1;
3751 break;
3752
3753 case RTX_TERNARY:
3754 case RTX_BITFIELD_OPS:
3755 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3756 const_arg0 ? const_arg0 : folded_arg0,
3757 const_arg1 ? const_arg1 : folded_arg1,
3758 const_arg2 ? const_arg2 : XEXP (x, 2));
3759 break;
3760
3761 default:
3762 break;
3763 }
3764
3765 return new_rtx ? new_rtx : x;
3766 }
3767 \f
3768 /* Return a constant value currently equivalent to X.
3769 Return 0 if we don't know one. */
3770
3771 static rtx
3772 equiv_constant (rtx x)
3773 {
3774 if (REG_P (x)
3775 && REGNO_QTY_VALID_P (REGNO (x)))
3776 {
3777 int x_q = REG_QTY (REGNO (x));
3778 struct qty_table_elem *x_ent = &qty_table[x_q];
3779
3780 if (x_ent->const_rtx)
3781 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3782 }
3783
3784 if (x == 0 || CONSTANT_P (x))
3785 return x;
3786
3787 if (GET_CODE (x) == SUBREG)
3788 {
3789 machine_mode mode = GET_MODE (x);
3790 machine_mode imode = GET_MODE (SUBREG_REG (x));
3791 rtx new_rtx;
3792
3793 /* See if we previously assigned a constant value to this SUBREG. */
3794 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3795 || (new_rtx = lookup_as_function (x, CONST_WIDE_INT)) != 0
3796 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3797 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3798 return new_rtx;
3799
3800 /* If we didn't and if doing so makes sense, see if we previously
3801 assigned a constant value to the enclosing word mode SUBREG. */
3802 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3803 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3804 {
3805 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3806 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3807 {
3808 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3809 new_rtx = lookup_as_function (y, CONST_INT);
3810 if (new_rtx)
3811 return gen_lowpart (mode, new_rtx);
3812 }
3813 }
3814
3815 /* Otherwise see if we already have a constant for the inner REG,
3816 and if that is enough to calculate an equivalent constant for
3817 the subreg. Note that the upper bits of paradoxical subregs
3818 are undefined, so they cannot be said to equal anything. */
3819 if (REG_P (SUBREG_REG (x))
3820 && GET_MODE_SIZE (mode) <= GET_MODE_SIZE (imode)
3821 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3822 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3823
3824 return 0;
3825 }
3826
3827 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3828 the hash table in case its value was seen before. */
3829
3830 if (MEM_P (x))
3831 {
3832 struct table_elt *elt;
3833
3834 x = avoid_constant_pool_reference (x);
3835 if (CONSTANT_P (x))
3836 return x;
3837
3838 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3839 if (elt == 0)
3840 return 0;
3841
3842 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3843 if (elt->is_const && CONSTANT_P (elt->exp))
3844 return elt->exp;
3845 }
3846
3847 return 0;
3848 }
3849 \f
3850 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3851 "taken" branch.
3852
3853 In certain cases, this can cause us to add an equivalence. For example,
3854 if we are following the taken case of
3855 if (i == 2)
3856 we can add the fact that `i' and '2' are now equivalent.
3857
3858 In any case, we can record that this comparison was passed. If the same
3859 comparison is seen later, we will know its value. */
3860
3861 static void
3862 record_jump_equiv (rtx_insn *insn, bool taken)
3863 {
3864 int cond_known_true;
3865 rtx op0, op1;
3866 rtx set;
3867 machine_mode mode, mode0, mode1;
3868 int reversed_nonequality = 0;
3869 enum rtx_code code;
3870
3871 /* Ensure this is the right kind of insn. */
3872 gcc_assert (any_condjump_p (insn));
3873
3874 set = pc_set (insn);
3875
3876 /* See if this jump condition is known true or false. */
3877 if (taken)
3878 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3879 else
3880 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3881
3882 /* Get the type of comparison being done and the operands being compared.
3883 If we had to reverse a non-equality condition, record that fact so we
3884 know that it isn't valid for floating-point. */
3885 code = GET_CODE (XEXP (SET_SRC (set), 0));
3886 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3887 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3888
3889 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3890 if (! cond_known_true)
3891 {
3892 code = reversed_comparison_code_parts (code, op0, op1, insn);
3893
3894 /* Don't remember if we can't find the inverse. */
3895 if (code == UNKNOWN)
3896 return;
3897 }
3898
3899 /* The mode is the mode of the non-constant. */
3900 mode = mode0;
3901 if (mode1 != VOIDmode)
3902 mode = mode1;
3903
3904 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3905 }
3906
3907 /* Yet another form of subreg creation. In this case, we want something in
3908 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3909
3910 static rtx
3911 record_jump_cond_subreg (machine_mode mode, rtx op)
3912 {
3913 machine_mode op_mode = GET_MODE (op);
3914 if (op_mode == mode || op_mode == VOIDmode)
3915 return op;
3916 return lowpart_subreg (mode, op, op_mode);
3917 }
3918
3919 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3920 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3921 Make any useful entries we can with that information. Called from
3922 above function and called recursively. */
3923
3924 static void
3925 record_jump_cond (enum rtx_code code, machine_mode mode, rtx op0,
3926 rtx op1, int reversed_nonequality)
3927 {
3928 unsigned op0_hash, op1_hash;
3929 int op0_in_memory, op1_in_memory;
3930 struct table_elt *op0_elt, *op1_elt;
3931
3932 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3933 we know that they are also equal in the smaller mode (this is also
3934 true for all smaller modes whether or not there is a SUBREG, but
3935 is not worth testing for with no SUBREG). */
3936
3937 /* Note that GET_MODE (op0) may not equal MODE. */
3938 if (code == EQ && paradoxical_subreg_p (op0))
3939 {
3940 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3941 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3942 if (tem)
3943 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3944 reversed_nonequality);
3945 }
3946
3947 if (code == EQ && paradoxical_subreg_p (op1))
3948 {
3949 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3950 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3951 if (tem)
3952 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3953 reversed_nonequality);
3954 }
3955
3956 /* Similarly, if this is an NE comparison, and either is a SUBREG
3957 making a smaller mode, we know the whole thing is also NE. */
3958
3959 /* Note that GET_MODE (op0) may not equal MODE;
3960 if we test MODE instead, we can get an infinite recursion
3961 alternating between two modes each wider than MODE. */
3962
3963 if (code == NE && GET_CODE (op0) == SUBREG
3964 && subreg_lowpart_p (op0)
3965 && (GET_MODE_SIZE (GET_MODE (op0))
3966 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3967 {
3968 machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3969 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3970 if (tem)
3971 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3972 reversed_nonequality);
3973 }
3974
3975 if (code == NE && GET_CODE (op1) == SUBREG
3976 && subreg_lowpart_p (op1)
3977 && (GET_MODE_SIZE (GET_MODE (op1))
3978 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3979 {
3980 machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3981 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3982 if (tem)
3983 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3984 reversed_nonequality);
3985 }
3986
3987 /* Hash both operands. */
3988
3989 do_not_record = 0;
3990 hash_arg_in_memory = 0;
3991 op0_hash = HASH (op0, mode);
3992 op0_in_memory = hash_arg_in_memory;
3993
3994 if (do_not_record)
3995 return;
3996
3997 do_not_record = 0;
3998 hash_arg_in_memory = 0;
3999 op1_hash = HASH (op1, mode);
4000 op1_in_memory = hash_arg_in_memory;
4001
4002 if (do_not_record)
4003 return;
4004
4005 /* Look up both operands. */
4006 op0_elt = lookup (op0, op0_hash, mode);
4007 op1_elt = lookup (op1, op1_hash, mode);
4008
4009 /* If both operands are already equivalent or if they are not in the
4010 table but are identical, do nothing. */
4011 if ((op0_elt != 0 && op1_elt != 0
4012 && op0_elt->first_same_value == op1_elt->first_same_value)
4013 || op0 == op1 || rtx_equal_p (op0, op1))
4014 return;
4015
4016 /* If we aren't setting two things equal all we can do is save this
4017 comparison. Similarly if this is floating-point. In the latter
4018 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4019 If we record the equality, we might inadvertently delete code
4020 whose intent was to change -0 to +0. */
4021
4022 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4023 {
4024 struct qty_table_elem *ent;
4025 int qty;
4026
4027 /* If we reversed a floating-point comparison, if OP0 is not a
4028 register, or if OP1 is neither a register or constant, we can't
4029 do anything. */
4030
4031 if (!REG_P (op1))
4032 op1 = equiv_constant (op1);
4033
4034 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4035 || !REG_P (op0) || op1 == 0)
4036 return;
4037
4038 /* Put OP0 in the hash table if it isn't already. This gives it a
4039 new quantity number. */
4040 if (op0_elt == 0)
4041 {
4042 if (insert_regs (op0, NULL, 0))
4043 {
4044 rehash_using_reg (op0);
4045 op0_hash = HASH (op0, mode);
4046
4047 /* If OP0 is contained in OP1, this changes its hash code
4048 as well. Faster to rehash than to check, except
4049 for the simple case of a constant. */
4050 if (! CONSTANT_P (op1))
4051 op1_hash = HASH (op1,mode);
4052 }
4053
4054 op0_elt = insert (op0, NULL, op0_hash, mode);
4055 op0_elt->in_memory = op0_in_memory;
4056 }
4057
4058 qty = REG_QTY (REGNO (op0));
4059 ent = &qty_table[qty];
4060
4061 ent->comparison_code = code;
4062 if (REG_P (op1))
4063 {
4064 /* Look it up again--in case op0 and op1 are the same. */
4065 op1_elt = lookup (op1, op1_hash, mode);
4066
4067 /* Put OP1 in the hash table so it gets a new quantity number. */
4068 if (op1_elt == 0)
4069 {
4070 if (insert_regs (op1, NULL, 0))
4071 {
4072 rehash_using_reg (op1);
4073 op1_hash = HASH (op1, mode);
4074 }
4075
4076 op1_elt = insert (op1, NULL, op1_hash, mode);
4077 op1_elt->in_memory = op1_in_memory;
4078 }
4079
4080 ent->comparison_const = NULL_RTX;
4081 ent->comparison_qty = REG_QTY (REGNO (op1));
4082 }
4083 else
4084 {
4085 ent->comparison_const = op1;
4086 ent->comparison_qty = -1;
4087 }
4088
4089 return;
4090 }
4091
4092 /* If either side is still missing an equivalence, make it now,
4093 then merge the equivalences. */
4094
4095 if (op0_elt == 0)
4096 {
4097 if (insert_regs (op0, NULL, 0))
4098 {
4099 rehash_using_reg (op0);
4100 op0_hash = HASH (op0, mode);
4101 }
4102
4103 op0_elt = insert (op0, NULL, op0_hash, mode);
4104 op0_elt->in_memory = op0_in_memory;
4105 }
4106
4107 if (op1_elt == 0)
4108 {
4109 if (insert_regs (op1, NULL, 0))
4110 {
4111 rehash_using_reg (op1);
4112 op1_hash = HASH (op1, mode);
4113 }
4114
4115 op1_elt = insert (op1, NULL, op1_hash, mode);
4116 op1_elt->in_memory = op1_in_memory;
4117 }
4118
4119 merge_equiv_classes (op0_elt, op1_elt);
4120 }
4121 \f
4122 /* CSE processing for one instruction.
4123
4124 Most "true" common subexpressions are mostly optimized away in GIMPLE,
4125 but the few that "leak through" are cleaned up by cse_insn, and complex
4126 addressing modes are often formed here.
4127
4128 The main function is cse_insn, and between here and that function
4129 a couple of helper functions is defined to keep the size of cse_insn
4130 within reasonable proportions.
4131
4132 Data is shared between the main and helper functions via STRUCT SET,
4133 that contains all data related for every set in the instruction that
4134 is being processed.
4135
4136 Note that cse_main processes all sets in the instruction. Most
4137 passes in GCC only process simple SET insns or single_set insns, but
4138 CSE processes insns with multiple sets as well. */
4139
4140 /* Data on one SET contained in the instruction. */
4141
4142 struct set
4143 {
4144 /* The SET rtx itself. */
4145 rtx rtl;
4146 /* The SET_SRC of the rtx (the original value, if it is changing). */
4147 rtx src;
4148 /* The hash-table element for the SET_SRC of the SET. */
4149 struct table_elt *src_elt;
4150 /* Hash value for the SET_SRC. */
4151 unsigned src_hash;
4152 /* Hash value for the SET_DEST. */
4153 unsigned dest_hash;
4154 /* The SET_DEST, with SUBREG, etc., stripped. */
4155 rtx inner_dest;
4156 /* Nonzero if the SET_SRC is in memory. */
4157 char src_in_memory;
4158 /* Nonzero if the SET_SRC contains something
4159 whose value cannot be predicted and understood. */
4160 char src_volatile;
4161 /* Original machine mode, in case it becomes a CONST_INT.
4162 The size of this field should match the size of the mode
4163 field of struct rtx_def (see rtl.h). */
4164 ENUM_BITFIELD(machine_mode) mode : 8;
4165 /* A constant equivalent for SET_SRC, if any. */
4166 rtx src_const;
4167 /* Hash value of constant equivalent for SET_SRC. */
4168 unsigned src_const_hash;
4169 /* Table entry for constant equivalent for SET_SRC, if any. */
4170 struct table_elt *src_const_elt;
4171 /* Table entry for the destination address. */
4172 struct table_elt *dest_addr_elt;
4173 };
4174 \f
4175 /* Special handling for (set REG0 REG1) where REG0 is the
4176 "cheapest", cheaper than REG1. After cse, REG1 will probably not
4177 be used in the sequel, so (if easily done) change this insn to
4178 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
4179 that computed their value. Then REG1 will become a dead store
4180 and won't cloud the situation for later optimizations.
4181
4182 Do not make this change if REG1 is a hard register, because it will
4183 then be used in the sequel and we may be changing a two-operand insn
4184 into a three-operand insn.
4185
4186 This is the last transformation that cse_insn will try to do. */
4187
4188 static void
4189 try_back_substitute_reg (rtx set, rtx_insn *insn)
4190 {
4191 rtx dest = SET_DEST (set);
4192 rtx src = SET_SRC (set);
4193
4194 if (REG_P (dest)
4195 && REG_P (src) && ! HARD_REGISTER_P (src)
4196 && REGNO_QTY_VALID_P (REGNO (src)))
4197 {
4198 int src_q = REG_QTY (REGNO (src));
4199 struct qty_table_elem *src_ent = &qty_table[src_q];
4200
4201 if (src_ent->first_reg == REGNO (dest))
4202 {
4203 /* Scan for the previous nonnote insn, but stop at a basic
4204 block boundary. */
4205 rtx_insn *prev = insn;
4206 rtx_insn *bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
4207 do
4208 {
4209 prev = PREV_INSN (prev);
4210 }
4211 while (prev != bb_head && (NOTE_P (prev) || DEBUG_INSN_P (prev)));
4212
4213 /* Do not swap the registers around if the previous instruction
4214 attaches a REG_EQUIV note to REG1.
4215
4216 ??? It's not entirely clear whether we can transfer a REG_EQUIV
4217 from the pseudo that originally shadowed an incoming argument
4218 to another register. Some uses of REG_EQUIV might rely on it
4219 being attached to REG1 rather than REG2.
4220
4221 This section previously turned the REG_EQUIV into a REG_EQUAL
4222 note. We cannot do that because REG_EQUIV may provide an
4223 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
4224 if (NONJUMP_INSN_P (prev)
4225 && GET_CODE (PATTERN (prev)) == SET
4226 && SET_DEST (PATTERN (prev)) == src
4227 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
4228 {
4229 rtx note;
4230
4231 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
4232 validate_change (insn, &SET_DEST (set), src, 1);
4233 validate_change (insn, &SET_SRC (set), dest, 1);
4234 apply_change_group ();
4235
4236 /* If INSN has a REG_EQUAL note, and this note mentions
4237 REG0, then we must delete it, because the value in
4238 REG0 has changed. If the note's value is REG1, we must
4239 also delete it because that is now this insn's dest. */
4240 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4241 if (note != 0
4242 && (reg_mentioned_p (dest, XEXP (note, 0))
4243 || rtx_equal_p (src, XEXP (note, 0))))
4244 remove_note (insn, note);
4245 }
4246 }
4247 }
4248 }
4249 \f
4250 /* Record all the SETs in this instruction into SETS_PTR,
4251 and return the number of recorded sets. */
4252 static int
4253 find_sets_in_insn (rtx_insn *insn, struct set **psets)
4254 {
4255 struct set *sets = *psets;
4256 int n_sets = 0;
4257 rtx x = PATTERN (insn);
4258
4259 if (GET_CODE (x) == SET)
4260 {
4261 /* Ignore SETs that are unconditional jumps.
4262 They never need cse processing, so this does not hurt.
4263 The reason is not efficiency but rather
4264 so that we can test at the end for instructions
4265 that have been simplified to unconditional jumps
4266 and not be misled by unchanged instructions
4267 that were unconditional jumps to begin with. */
4268 if (SET_DEST (x) == pc_rtx
4269 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4270 ;
4271 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4272 The hard function value register is used only once, to copy to
4273 someplace else, so it isn't worth cse'ing. */
4274 else if (GET_CODE (SET_SRC (x)) == CALL)
4275 ;
4276 else
4277 sets[n_sets++].rtl = x;
4278 }
4279 else if (GET_CODE (x) == PARALLEL)
4280 {
4281 int i, lim = XVECLEN (x, 0);
4282
4283 /* Go over the expressions of the PARALLEL in forward order, to
4284 put them in the same order in the SETS array. */
4285 for (i = 0; i < lim; i++)
4286 {
4287 rtx y = XVECEXP (x, 0, i);
4288 if (GET_CODE (y) == SET)
4289 {
4290 /* As above, we ignore unconditional jumps and call-insns and
4291 ignore the result of apply_change_group. */
4292 if (SET_DEST (y) == pc_rtx
4293 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4294 ;
4295 else if (GET_CODE (SET_SRC (y)) == CALL)
4296 ;
4297 else
4298 sets[n_sets++].rtl = y;
4299 }
4300 }
4301 }
4302
4303 return n_sets;
4304 }
4305 \f
4306 /* Where possible, substitute every register reference in the N_SETS
4307 number of SETS in INSN with the the canonical register.
4308
4309 Register canonicalization propagatest the earliest register (i.e.
4310 one that is set before INSN) with the same value. This is a very
4311 useful, simple form of CSE, to clean up warts from expanding GIMPLE
4312 to RTL. For instance, a CONST for an address is usually expanded
4313 multiple times to loads into different registers, thus creating many
4314 subexpressions of the form:
4315
4316 (set (reg1) (some_const))
4317 (set (mem (... reg1 ...) (thing)))
4318 (set (reg2) (some_const))
4319 (set (mem (... reg2 ...) (thing)))
4320
4321 After canonicalizing, the code takes the following form:
4322
4323 (set (reg1) (some_const))
4324 (set (mem (... reg1 ...) (thing)))
4325 (set (reg2) (some_const))
4326 (set (mem (... reg1 ...) (thing)))
4327
4328 The set to reg2 is now trivially dead, and the memory reference (or
4329 address, or whatever) may be a candidate for further CSEing.
4330
4331 In this function, the result of apply_change_group can be ignored;
4332 see canon_reg. */
4333
4334 static void
4335 canonicalize_insn (rtx_insn *insn, struct set **psets, int n_sets)
4336 {
4337 struct set *sets = *psets;
4338 rtx tem;
4339 rtx x = PATTERN (insn);
4340 int i;
4341
4342 if (CALL_P (insn))
4343 {
4344 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4345 if (GET_CODE (XEXP (tem, 0)) != SET)
4346 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4347 }
4348
4349 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
4350 {
4351 canon_reg (SET_SRC (x), insn);
4352 apply_change_group ();
4353 fold_rtx (SET_SRC (x), insn);
4354 }
4355 else if (GET_CODE (x) == CLOBBER)
4356 {
4357 /* If we clobber memory, canon the address.
4358 This does nothing when a register is clobbered
4359 because we have already invalidated the reg. */
4360 if (MEM_P (XEXP (x, 0)))
4361 canon_reg (XEXP (x, 0), insn);
4362 }
4363 else if (GET_CODE (x) == USE
4364 && ! (REG_P (XEXP (x, 0))
4365 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4366 /* Canonicalize a USE of a pseudo register or memory location. */
4367 canon_reg (x, insn);
4368 else if (GET_CODE (x) == ASM_OPERANDS)
4369 {
4370 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
4371 {
4372 rtx input = ASM_OPERANDS_INPUT (x, i);
4373 if (!(REG_P (input) && REGNO (input) < FIRST_PSEUDO_REGISTER))
4374 {
4375 input = canon_reg (input, insn);
4376 validate_change (insn, &ASM_OPERANDS_INPUT (x, i), input, 1);
4377 }
4378 }
4379 }
4380 else if (GET_CODE (x) == CALL)
4381 {
4382 canon_reg (x, insn);
4383 apply_change_group ();
4384 fold_rtx (x, insn);
4385 }
4386 else if (DEBUG_INSN_P (insn))
4387 canon_reg (PATTERN (insn), insn);
4388 else if (GET_CODE (x) == PARALLEL)
4389 {
4390 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
4391 {
4392 rtx y = XVECEXP (x, 0, i);
4393 if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
4394 {
4395 canon_reg (SET_SRC (y), insn);
4396 apply_change_group ();
4397 fold_rtx (SET_SRC (y), insn);
4398 }
4399 else if (GET_CODE (y) == CLOBBER)
4400 {
4401 if (MEM_P (XEXP (y, 0)))
4402 canon_reg (XEXP (y, 0), insn);
4403 }
4404 else if (GET_CODE (y) == USE
4405 && ! (REG_P (XEXP (y, 0))
4406 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4407 canon_reg (y, insn);
4408 else if (GET_CODE (y) == CALL)
4409 {
4410 canon_reg (y, insn);
4411 apply_change_group ();
4412 fold_rtx (y, insn);
4413 }
4414 }
4415 }
4416
4417 if (n_sets == 1 && REG_NOTES (insn) != 0
4418 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0)
4419 {
4420 /* We potentially will process this insn many times. Therefore,
4421 drop the REG_EQUAL note if it is equal to the SET_SRC of the
4422 unique set in INSN.
4423
4424 Do not do so if the REG_EQUAL note is for a STRICT_LOW_PART,
4425 because cse_insn handles those specially. */
4426 if (GET_CODE (SET_DEST (sets[0].rtl)) != STRICT_LOW_PART
4427 && rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl)))
4428 remove_note (insn, tem);
4429 else
4430 {
4431 canon_reg (XEXP (tem, 0), insn);
4432 apply_change_group ();
4433 XEXP (tem, 0) = fold_rtx (XEXP (tem, 0), insn);
4434 df_notes_rescan (insn);
4435 }
4436 }
4437
4438 /* Canonicalize sources and addresses of destinations.
4439 We do this in a separate pass to avoid problems when a MATCH_DUP is
4440 present in the insn pattern. In that case, we want to ensure that
4441 we don't break the duplicate nature of the pattern. So we will replace
4442 both operands at the same time. Otherwise, we would fail to find an
4443 equivalent substitution in the loop calling validate_change below.
4444
4445 We used to suppress canonicalization of DEST if it appears in SRC,
4446 but we don't do this any more. */
4447
4448 for (i = 0; i < n_sets; i++)
4449 {
4450 rtx dest = SET_DEST (sets[i].rtl);
4451 rtx src = SET_SRC (sets[i].rtl);
4452 rtx new_rtx = canon_reg (src, insn);
4453
4454 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4455
4456 if (GET_CODE (dest) == ZERO_EXTRACT)
4457 {
4458 validate_change (insn, &XEXP (dest, 1),
4459 canon_reg (XEXP (dest, 1), insn), 1);
4460 validate_change (insn, &XEXP (dest, 2),
4461 canon_reg (XEXP (dest, 2), insn), 1);
4462 }
4463
4464 while (GET_CODE (dest) == SUBREG
4465 || GET_CODE (dest) == ZERO_EXTRACT
4466 || GET_CODE (dest) == STRICT_LOW_PART)
4467 dest = XEXP (dest, 0);
4468
4469 if (MEM_P (dest))
4470 canon_reg (dest, insn);
4471 }
4472
4473 /* Now that we have done all the replacements, we can apply the change
4474 group and see if they all work. Note that this will cause some
4475 canonicalizations that would have worked individually not to be applied
4476 because some other canonicalization didn't work, but this should not
4477 occur often.
4478
4479 The result of apply_change_group can be ignored; see canon_reg. */
4480
4481 apply_change_group ();
4482 }
4483 \f
4484 /* Main function of CSE.
4485 First simplify sources and addresses of all assignments
4486 in the instruction, using previously-computed equivalents values.
4487 Then install the new sources and destinations in the table
4488 of available values. */
4489
4490 static void
4491 cse_insn (rtx_insn *insn)
4492 {
4493 rtx x = PATTERN (insn);
4494 int i;
4495 rtx tem;
4496 int n_sets = 0;
4497
4498 rtx src_eqv = 0;
4499 struct table_elt *src_eqv_elt = 0;
4500 int src_eqv_volatile = 0;
4501 int src_eqv_in_memory = 0;
4502 unsigned src_eqv_hash = 0;
4503
4504 struct set *sets = (struct set *) 0;
4505
4506 if (GET_CODE (x) == SET)
4507 sets = XALLOCA (struct set);
4508 else if (GET_CODE (x) == PARALLEL)
4509 sets = XALLOCAVEC (struct set, XVECLEN (x, 0));
4510
4511 this_insn = insn;
4512 /* Records what this insn does to set CC0. */
4513 this_insn_cc0 = 0;
4514 this_insn_cc0_mode = VOIDmode;
4515
4516 /* Find all regs explicitly clobbered in this insn,
4517 to ensure they are not replaced with any other regs
4518 elsewhere in this insn. */
4519 invalidate_from_sets_and_clobbers (insn);
4520
4521 /* Record all the SETs in this instruction. */
4522 n_sets = find_sets_in_insn (insn, &sets);
4523
4524 /* Substitute the canonical register where possible. */
4525 canonicalize_insn (insn, &sets, n_sets);
4526
4527 /* If this insn has a REG_EQUAL note, store the equivalent value in SRC_EQV,
4528 if different, or if the DEST is a STRICT_LOW_PART. The latter condition
4529 is necessary because SRC_EQV is handled specially for this case, and if
4530 it isn't set, then there will be no equivalence for the destination. */
4531 if (n_sets == 1 && REG_NOTES (insn) != 0
4532 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4533 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4534 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4535 src_eqv = copy_rtx (XEXP (tem, 0));
4536
4537 /* Set sets[i].src_elt to the class each source belongs to.
4538 Detect assignments from or to volatile things
4539 and set set[i] to zero so they will be ignored
4540 in the rest of this function.
4541
4542 Nothing in this loop changes the hash table or the register chains. */
4543
4544 for (i = 0; i < n_sets; i++)
4545 {
4546 bool repeat = false;
4547 rtx src, dest;
4548 rtx src_folded;
4549 struct table_elt *elt = 0, *p;
4550 machine_mode mode;
4551 rtx src_eqv_here;
4552 rtx src_const = 0;
4553 rtx src_related = 0;
4554 bool src_related_is_const_anchor = false;
4555 struct table_elt *src_const_elt = 0;
4556 int src_cost = MAX_COST;
4557 int src_eqv_cost = MAX_COST;
4558 int src_folded_cost = MAX_COST;
4559 int src_related_cost = MAX_COST;
4560 int src_elt_cost = MAX_COST;
4561 int src_regcost = MAX_COST;
4562 int src_eqv_regcost = MAX_COST;
4563 int src_folded_regcost = MAX_COST;
4564 int src_related_regcost = MAX_COST;
4565 int src_elt_regcost = MAX_COST;
4566 /* Set nonzero if we need to call force_const_mem on with the
4567 contents of src_folded before using it. */
4568 int src_folded_force_flag = 0;
4569
4570 dest = SET_DEST (sets[i].rtl);
4571 src = SET_SRC (sets[i].rtl);
4572
4573 /* If SRC is a constant that has no machine mode,
4574 hash it with the destination's machine mode.
4575 This way we can keep different modes separate. */
4576
4577 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4578 sets[i].mode = mode;
4579
4580 if (src_eqv)
4581 {
4582 machine_mode eqvmode = mode;
4583 if (GET_CODE (dest) == STRICT_LOW_PART)
4584 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4585 do_not_record = 0;
4586 hash_arg_in_memory = 0;
4587 src_eqv_hash = HASH (src_eqv, eqvmode);
4588
4589 /* Find the equivalence class for the equivalent expression. */
4590
4591 if (!do_not_record)
4592 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4593
4594 src_eqv_volatile = do_not_record;
4595 src_eqv_in_memory = hash_arg_in_memory;
4596 }
4597
4598 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4599 value of the INNER register, not the destination. So it is not
4600 a valid substitution for the source. But save it for later. */
4601 if (GET_CODE (dest) == STRICT_LOW_PART)
4602 src_eqv_here = 0;
4603 else
4604 src_eqv_here = src_eqv;
4605
4606 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4607 simplified result, which may not necessarily be valid. */
4608 src_folded = fold_rtx (src, insn);
4609
4610 #if 0
4611 /* ??? This caused bad code to be generated for the m68k port with -O2.
4612 Suppose src is (CONST_INT -1), and that after truncation src_folded
4613 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4614 At the end we will add src and src_const to the same equivalence
4615 class. We now have 3 and -1 on the same equivalence class. This
4616 causes later instructions to be mis-optimized. */
4617 /* If storing a constant in a bitfield, pre-truncate the constant
4618 so we will be able to record it later. */
4619 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4620 {
4621 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4622
4623 if (CONST_INT_P (src)
4624 && CONST_INT_P (width)
4625 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4626 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4627 src_folded
4628 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4629 << INTVAL (width)) - 1));
4630 }
4631 #endif
4632
4633 /* Compute SRC's hash code, and also notice if it
4634 should not be recorded at all. In that case,
4635 prevent any further processing of this assignment. */
4636 do_not_record = 0;
4637 hash_arg_in_memory = 0;
4638
4639 sets[i].src = src;
4640 sets[i].src_hash = HASH (src, mode);
4641 sets[i].src_volatile = do_not_record;
4642 sets[i].src_in_memory = hash_arg_in_memory;
4643
4644 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4645 a pseudo, do not record SRC. Using SRC as a replacement for
4646 anything else will be incorrect in that situation. Note that
4647 this usually occurs only for stack slots, in which case all the
4648 RTL would be referring to SRC, so we don't lose any optimization
4649 opportunities by not having SRC in the hash table. */
4650
4651 if (MEM_P (src)
4652 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4653 && REG_P (dest)
4654 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4655 sets[i].src_volatile = 1;
4656
4657 else if (GET_CODE (src) == ASM_OPERANDS
4658 && GET_CODE (x) == PARALLEL)
4659 {
4660 /* Do not record result of a non-volatile inline asm with
4661 more than one result. */
4662 if (n_sets > 1)
4663 sets[i].src_volatile = 1;
4664
4665 int j, lim = XVECLEN (x, 0);
4666 for (j = 0; j < lim; j++)
4667 {
4668 rtx y = XVECEXP (x, 0, j);
4669 /* And do not record result of a non-volatile inline asm
4670 with "memory" clobber. */
4671 if (GET_CODE (y) == CLOBBER && MEM_P (XEXP (y, 0)))
4672 {
4673 sets[i].src_volatile = 1;
4674 break;
4675 }
4676 }
4677 }
4678
4679 #if 0
4680 /* It is no longer clear why we used to do this, but it doesn't
4681 appear to still be needed. So let's try without it since this
4682 code hurts cse'ing widened ops. */
4683 /* If source is a paradoxical subreg (such as QI treated as an SI),
4684 treat it as volatile. It may do the work of an SI in one context
4685 where the extra bits are not being used, but cannot replace an SI
4686 in general. */
4687 if (paradoxical_subreg_p (src))
4688 sets[i].src_volatile = 1;
4689 #endif
4690
4691 /* Locate all possible equivalent forms for SRC. Try to replace
4692 SRC in the insn with each cheaper equivalent.
4693
4694 We have the following types of equivalents: SRC itself, a folded
4695 version, a value given in a REG_EQUAL note, or a value related
4696 to a constant.
4697
4698 Each of these equivalents may be part of an additional class
4699 of equivalents (if more than one is in the table, they must be in
4700 the same class; we check for this).
4701
4702 If the source is volatile, we don't do any table lookups.
4703
4704 We note any constant equivalent for possible later use in a
4705 REG_NOTE. */
4706
4707 if (!sets[i].src_volatile)
4708 elt = lookup (src, sets[i].src_hash, mode);
4709
4710 sets[i].src_elt = elt;
4711
4712 if (elt && src_eqv_here && src_eqv_elt)
4713 {
4714 if (elt->first_same_value != src_eqv_elt->first_same_value)
4715 {
4716 /* The REG_EQUAL is indicating that two formerly distinct
4717 classes are now equivalent. So merge them. */
4718 merge_equiv_classes (elt, src_eqv_elt);
4719 src_eqv_hash = HASH (src_eqv, elt->mode);
4720 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4721 }
4722
4723 src_eqv_here = 0;
4724 }
4725
4726 else if (src_eqv_elt)
4727 elt = src_eqv_elt;
4728
4729 /* Try to find a constant somewhere and record it in `src_const'.
4730 Record its table element, if any, in `src_const_elt'. Look in
4731 any known equivalences first. (If the constant is not in the
4732 table, also set `sets[i].src_const_hash'). */
4733 if (elt)
4734 for (p = elt->first_same_value; p; p = p->next_same_value)
4735 if (p->is_const)
4736 {
4737 src_const = p->exp;
4738 src_const_elt = elt;
4739 break;
4740 }
4741
4742 if (src_const == 0
4743 && (CONSTANT_P (src_folded)
4744 /* Consider (minus (label_ref L1) (label_ref L2)) as
4745 "constant" here so we will record it. This allows us
4746 to fold switch statements when an ADDR_DIFF_VEC is used. */
4747 || (GET_CODE (src_folded) == MINUS
4748 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4749 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4750 src_const = src_folded, src_const_elt = elt;
4751 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4752 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4753
4754 /* If we don't know if the constant is in the table, get its
4755 hash code and look it up. */
4756 if (src_const && src_const_elt == 0)
4757 {
4758 sets[i].src_const_hash = HASH (src_const, mode);
4759 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4760 }
4761
4762 sets[i].src_const = src_const;
4763 sets[i].src_const_elt = src_const_elt;
4764
4765 /* If the constant and our source are both in the table, mark them as
4766 equivalent. Otherwise, if a constant is in the table but the source
4767 isn't, set ELT to it. */
4768 if (src_const_elt && elt
4769 && src_const_elt->first_same_value != elt->first_same_value)
4770 merge_equiv_classes (elt, src_const_elt);
4771 else if (src_const_elt && elt == 0)
4772 elt = src_const_elt;
4773
4774 /* See if there is a register linearly related to a constant
4775 equivalent of SRC. */
4776 if (src_const
4777 && (GET_CODE (src_const) == CONST
4778 || (src_const_elt && src_const_elt->related_value != 0)))
4779 {
4780 src_related = use_related_value (src_const, src_const_elt);
4781 if (src_related)
4782 {
4783 struct table_elt *src_related_elt
4784 = lookup (src_related, HASH (src_related, mode), mode);
4785 if (src_related_elt && elt)
4786 {
4787 if (elt->first_same_value
4788 != src_related_elt->first_same_value)
4789 /* This can occur when we previously saw a CONST
4790 involving a SYMBOL_REF and then see the SYMBOL_REF
4791 twice. Merge the involved classes. */
4792 merge_equiv_classes (elt, src_related_elt);
4793
4794 src_related = 0;
4795 src_related_elt = 0;
4796 }
4797 else if (src_related_elt && elt == 0)
4798 elt = src_related_elt;
4799 }
4800 }
4801
4802 /* See if we have a CONST_INT that is already in a register in a
4803 wider mode. */
4804
4805 if (src_const && src_related == 0 && CONST_INT_P (src_const)
4806 && GET_MODE_CLASS (mode) == MODE_INT
4807 && GET_MODE_PRECISION (mode) < BITS_PER_WORD)
4808 {
4809 machine_mode wider_mode;
4810
4811 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4812 wider_mode != VOIDmode
4813 && GET_MODE_PRECISION (wider_mode) <= BITS_PER_WORD
4814 && src_related == 0;
4815 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4816 {
4817 struct table_elt *const_elt
4818 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4819
4820 if (const_elt == 0)
4821 continue;
4822
4823 for (const_elt = const_elt->first_same_value;
4824 const_elt; const_elt = const_elt->next_same_value)
4825 if (REG_P (const_elt->exp))
4826 {
4827 src_related = gen_lowpart (mode, const_elt->exp);
4828 break;
4829 }
4830 }
4831 }
4832
4833 /* Another possibility is that we have an AND with a constant in
4834 a mode narrower than a word. If so, it might have been generated
4835 as part of an "if" which would narrow the AND. If we already
4836 have done the AND in a wider mode, we can use a SUBREG of that
4837 value. */
4838
4839 if (flag_expensive_optimizations && ! src_related
4840 && GET_CODE (src) == AND && CONST_INT_P (XEXP (src, 1))
4841 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4842 {
4843 machine_mode tmode;
4844 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4845
4846 for (tmode = GET_MODE_WIDER_MODE (mode);
4847 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4848 tmode = GET_MODE_WIDER_MODE (tmode))
4849 {
4850 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4851 struct table_elt *larger_elt;
4852
4853 if (inner)
4854 {
4855 PUT_MODE (new_and, tmode);
4856 XEXP (new_and, 0) = inner;
4857 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4858 if (larger_elt == 0)
4859 continue;
4860
4861 for (larger_elt = larger_elt->first_same_value;
4862 larger_elt; larger_elt = larger_elt->next_same_value)
4863 if (REG_P (larger_elt->exp))
4864 {
4865 src_related
4866 = gen_lowpart (mode, larger_elt->exp);
4867 break;
4868 }
4869
4870 if (src_related)
4871 break;
4872 }
4873 }
4874 }
4875
4876 #ifdef LOAD_EXTEND_OP
4877 /* See if a MEM has already been loaded with a widening operation;
4878 if it has, we can use a subreg of that. Many CISC machines
4879 also have such operations, but this is only likely to be
4880 beneficial on these machines. */
4881
4882 if (flag_expensive_optimizations && src_related == 0
4883 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4884 && GET_MODE_CLASS (mode) == MODE_INT
4885 && MEM_P (src) && ! do_not_record
4886 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4887 {
4888 struct rtx_def memory_extend_buf;
4889 rtx memory_extend_rtx = &memory_extend_buf;
4890 machine_mode tmode;
4891
4892 /* Set what we are trying to extend and the operation it might
4893 have been extended with. */
4894 memset (memory_extend_rtx, 0, sizeof (*memory_extend_rtx));
4895 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4896 XEXP (memory_extend_rtx, 0) = src;
4897
4898 for (tmode = GET_MODE_WIDER_MODE (mode);
4899 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4900 tmode = GET_MODE_WIDER_MODE (tmode))
4901 {
4902 struct table_elt *larger_elt;
4903
4904 PUT_MODE (memory_extend_rtx, tmode);
4905 larger_elt = lookup (memory_extend_rtx,
4906 HASH (memory_extend_rtx, tmode), tmode);
4907 if (larger_elt == 0)
4908 continue;
4909
4910 for (larger_elt = larger_elt->first_same_value;
4911 larger_elt; larger_elt = larger_elt->next_same_value)
4912 if (REG_P (larger_elt->exp))
4913 {
4914 src_related = gen_lowpart (mode, larger_elt->exp);
4915 break;
4916 }
4917
4918 if (src_related)
4919 break;
4920 }
4921 }
4922 #endif /* LOAD_EXTEND_OP */
4923
4924 /* Try to express the constant using a register+offset expression
4925 derived from a constant anchor. */
4926
4927 if (targetm.const_anchor
4928 && !src_related
4929 && src_const
4930 && GET_CODE (src_const) == CONST_INT)
4931 {
4932 src_related = try_const_anchors (src_const, mode);
4933 src_related_is_const_anchor = src_related != NULL_RTX;
4934 }
4935
4936
4937 if (src == src_folded)
4938 src_folded = 0;
4939
4940 /* At this point, ELT, if nonzero, points to a class of expressions
4941 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4942 and SRC_RELATED, if nonzero, each contain additional equivalent
4943 expressions. Prune these latter expressions by deleting expressions
4944 already in the equivalence class.
4945
4946 Check for an equivalent identical to the destination. If found,
4947 this is the preferred equivalent since it will likely lead to
4948 elimination of the insn. Indicate this by placing it in
4949 `src_related'. */
4950
4951 if (elt)
4952 elt = elt->first_same_value;
4953 for (p = elt; p; p = p->next_same_value)
4954 {
4955 enum rtx_code code = GET_CODE (p->exp);
4956
4957 /* If the expression is not valid, ignore it. Then we do not
4958 have to check for validity below. In most cases, we can use
4959 `rtx_equal_p', since canonicalization has already been done. */
4960 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4961 continue;
4962
4963 /* Also skip paradoxical subregs, unless that's what we're
4964 looking for. */
4965 if (paradoxical_subreg_p (p->exp)
4966 && ! (src != 0
4967 && GET_CODE (src) == SUBREG
4968 && GET_MODE (src) == GET_MODE (p->exp)
4969 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4970 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4971 continue;
4972
4973 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4974 src = 0;
4975 else if (src_folded && GET_CODE (src_folded) == code
4976 && rtx_equal_p (src_folded, p->exp))
4977 src_folded = 0;
4978 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4979 && rtx_equal_p (src_eqv_here, p->exp))
4980 src_eqv_here = 0;
4981 else if (src_related && GET_CODE (src_related) == code
4982 && rtx_equal_p (src_related, p->exp))
4983 src_related = 0;
4984
4985 /* This is the same as the destination of the insns, we want
4986 to prefer it. Copy it to src_related. The code below will
4987 then give it a negative cost. */
4988 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4989 src_related = dest;
4990 }
4991
4992 /* Find the cheapest valid equivalent, trying all the available
4993 possibilities. Prefer items not in the hash table to ones
4994 that are when they are equal cost. Note that we can never
4995 worsen an insn as the current contents will also succeed.
4996 If we find an equivalent identical to the destination, use it as best,
4997 since this insn will probably be eliminated in that case. */
4998 if (src)
4999 {
5000 if (rtx_equal_p (src, dest))
5001 src_cost = src_regcost = -1;
5002 else
5003 {
5004 src_cost = COST (src);
5005 src_regcost = approx_reg_cost (src);
5006 }
5007 }
5008
5009 if (src_eqv_here)
5010 {
5011 if (rtx_equal_p (src_eqv_here, dest))
5012 src_eqv_cost = src_eqv_regcost = -1;
5013 else
5014 {
5015 src_eqv_cost = COST (src_eqv_here);
5016 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5017 }
5018 }
5019
5020 if (src_folded)
5021 {
5022 if (rtx_equal_p (src_folded, dest))
5023 src_folded_cost = src_folded_regcost = -1;
5024 else
5025 {
5026 src_folded_cost = COST (src_folded);
5027 src_folded_regcost = approx_reg_cost (src_folded);
5028 }
5029 }
5030
5031 if (src_related)
5032 {
5033 if (rtx_equal_p (src_related, dest))
5034 src_related_cost = src_related_regcost = -1;
5035 else
5036 {
5037 src_related_cost = COST (src_related);
5038 src_related_regcost = approx_reg_cost (src_related);
5039
5040 /* If a const-anchor is used to synthesize a constant that
5041 normally requires multiple instructions then slightly prefer
5042 it over the original sequence. These instructions are likely
5043 to become redundant now. We can't compare against the cost
5044 of src_eqv_here because, on MIPS for example, multi-insn
5045 constants have zero cost; they are assumed to be hoisted from
5046 loops. */
5047 if (src_related_is_const_anchor
5048 && src_related_cost == src_cost
5049 && src_eqv_here)
5050 src_related_cost--;
5051 }
5052 }
5053
5054 /* If this was an indirect jump insn, a known label will really be
5055 cheaper even though it looks more expensive. */
5056 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5057 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5058
5059 /* Terminate loop when replacement made. This must terminate since
5060 the current contents will be tested and will always be valid. */
5061 while (1)
5062 {
5063 rtx trial;
5064
5065 /* Skip invalid entries. */
5066 while (elt && !REG_P (elt->exp)
5067 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5068 elt = elt->next_same_value;
5069
5070 /* A paradoxical subreg would be bad here: it'll be the right
5071 size, but later may be adjusted so that the upper bits aren't
5072 what we want. So reject it. */
5073 if (elt != 0
5074 && paradoxical_subreg_p (elt->exp)
5075 /* It is okay, though, if the rtx we're trying to match
5076 will ignore any of the bits we can't predict. */
5077 && ! (src != 0
5078 && GET_CODE (src) == SUBREG
5079 && GET_MODE (src) == GET_MODE (elt->exp)
5080 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5081 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5082 {
5083 elt = elt->next_same_value;
5084 continue;
5085 }
5086
5087 if (elt)
5088 {
5089 src_elt_cost = elt->cost;
5090 src_elt_regcost = elt->regcost;
5091 }
5092
5093 /* Find cheapest and skip it for the next time. For items
5094 of equal cost, use this order:
5095 src_folded, src, src_eqv, src_related and hash table entry. */
5096 if (src_folded
5097 && preferable (src_folded_cost, src_folded_regcost,
5098 src_cost, src_regcost) <= 0
5099 && preferable (src_folded_cost, src_folded_regcost,
5100 src_eqv_cost, src_eqv_regcost) <= 0
5101 && preferable (src_folded_cost, src_folded_regcost,
5102 src_related_cost, src_related_regcost) <= 0
5103 && preferable (src_folded_cost, src_folded_regcost,
5104 src_elt_cost, src_elt_regcost) <= 0)
5105 {
5106 trial = src_folded, src_folded_cost = MAX_COST;
5107 if (src_folded_force_flag)
5108 {
5109 rtx forced = force_const_mem (mode, trial);
5110 if (forced)
5111 trial = forced;
5112 }
5113 }
5114 else if (src
5115 && preferable (src_cost, src_regcost,
5116 src_eqv_cost, src_eqv_regcost) <= 0
5117 && preferable (src_cost, src_regcost,
5118 src_related_cost, src_related_regcost) <= 0
5119 && preferable (src_cost, src_regcost,
5120 src_elt_cost, src_elt_regcost) <= 0)
5121 trial = src, src_cost = MAX_COST;
5122 else if (src_eqv_here
5123 && preferable (src_eqv_cost, src_eqv_regcost,
5124 src_related_cost, src_related_regcost) <= 0
5125 && preferable (src_eqv_cost, src_eqv_regcost,
5126 src_elt_cost, src_elt_regcost) <= 0)
5127 trial = src_eqv_here, src_eqv_cost = MAX_COST;
5128 else if (src_related
5129 && preferable (src_related_cost, src_related_regcost,
5130 src_elt_cost, src_elt_regcost) <= 0)
5131 trial = src_related, src_related_cost = MAX_COST;
5132 else
5133 {
5134 trial = elt->exp;
5135 elt = elt->next_same_value;
5136 src_elt_cost = MAX_COST;
5137 }
5138
5139 /* Avoid creation of overlapping memory moves. */
5140 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
5141 {
5142 rtx src, dest;
5143
5144 /* BLKmode moves are not handled by cse anyway. */
5145 if (GET_MODE (trial) == BLKmode)
5146 break;
5147
5148 src = canon_rtx (trial);
5149 dest = canon_rtx (SET_DEST (sets[i].rtl));
5150
5151 if (!MEM_P (src) || !MEM_P (dest)
5152 || !nonoverlapping_memrefs_p (src, dest, false))
5153 break;
5154 }
5155
5156 /* Try to optimize
5157 (set (reg:M N) (const_int A))
5158 (set (reg:M2 O) (const_int B))
5159 (set (zero_extract:M2 (reg:M N) (const_int C) (const_int D))
5160 (reg:M2 O)). */
5161 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
5162 && CONST_INT_P (trial)
5163 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 1))
5164 && CONST_INT_P (XEXP (SET_DEST (sets[i].rtl), 2))
5165 && REG_P (XEXP (SET_DEST (sets[i].rtl), 0))
5166 && (GET_MODE_PRECISION (GET_MODE (SET_DEST (sets[i].rtl)))
5167 >= INTVAL (XEXP (SET_DEST (sets[i].rtl), 1)))
5168 && ((unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 1))
5169 + (unsigned) INTVAL (XEXP (SET_DEST (sets[i].rtl), 2))
5170 <= HOST_BITS_PER_WIDE_INT))
5171 {
5172 rtx dest_reg = XEXP (SET_DEST (sets[i].rtl), 0);
5173 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5174 rtx pos = XEXP (SET_DEST (sets[i].rtl), 2);
5175 unsigned int dest_hash = HASH (dest_reg, GET_MODE (dest_reg));
5176 struct table_elt *dest_elt
5177 = lookup (dest_reg, dest_hash, GET_MODE (dest_reg));
5178 rtx dest_cst = NULL;
5179
5180 if (dest_elt)
5181 for (p = dest_elt->first_same_value; p; p = p->next_same_value)
5182 if (p->is_const && CONST_INT_P (p->exp))
5183 {
5184 dest_cst = p->exp;
5185 break;
5186 }
5187 if (dest_cst)
5188 {
5189 HOST_WIDE_INT val = INTVAL (dest_cst);
5190 HOST_WIDE_INT mask;
5191 unsigned int shift;
5192 if (BITS_BIG_ENDIAN)
5193 shift = GET_MODE_PRECISION (GET_MODE (dest_reg))
5194 - INTVAL (pos) - INTVAL (width);
5195 else
5196 shift = INTVAL (pos);
5197 if (INTVAL (width) == HOST_BITS_PER_WIDE_INT)
5198 mask = ~(HOST_WIDE_INT) 0;
5199 else
5200 mask = ((HOST_WIDE_INT) 1 << INTVAL (width)) - 1;
5201 val &= ~(mask << shift);
5202 val |= (INTVAL (trial) & mask) << shift;
5203 val = trunc_int_for_mode (val, GET_MODE (dest_reg));
5204 validate_unshare_change (insn, &SET_DEST (sets[i].rtl),
5205 dest_reg, 1);
5206 validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5207 GEN_INT (val), 1);
5208 if (apply_change_group ())
5209 {
5210 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5211 if (note)
5212 {
5213 remove_note (insn, note);
5214 df_notes_rescan (insn);
5215 }
5216 src_eqv = NULL_RTX;
5217 src_eqv_elt = NULL;
5218 src_eqv_volatile = 0;
5219 src_eqv_in_memory = 0;
5220 src_eqv_hash = 0;
5221 repeat = true;
5222 break;
5223 }
5224 }
5225 }
5226
5227 /* We don't normally have an insn matching (set (pc) (pc)), so
5228 check for this separately here. We will delete such an
5229 insn below.
5230
5231 For other cases such as a table jump or conditional jump
5232 where we know the ultimate target, go ahead and replace the
5233 operand. While that may not make a valid insn, we will
5234 reemit the jump below (and also insert any necessary
5235 barriers). */
5236 if (n_sets == 1 && dest == pc_rtx
5237 && (trial == pc_rtx
5238 || (GET_CODE (trial) == LABEL_REF
5239 && ! condjump_p (insn))))
5240 {
5241 /* Don't substitute non-local labels, this confuses CFG. */
5242 if (GET_CODE (trial) == LABEL_REF
5243 && LABEL_REF_NONLOCAL_P (trial))
5244 continue;
5245
5246 SET_SRC (sets[i].rtl) = trial;
5247 cse_jumps_altered = true;
5248 break;
5249 }
5250
5251 /* Reject certain invalid forms of CONST that we create. */
5252 else if (CONSTANT_P (trial)
5253 && GET_CODE (trial) == CONST
5254 /* Reject cases that will cause decode_rtx_const to
5255 die. On the alpha when simplifying a switch, we
5256 get (const (truncate (minus (label_ref)
5257 (label_ref)))). */
5258 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5259 /* Likewise on IA-64, except without the
5260 truncate. */
5261 || (GET_CODE (XEXP (trial, 0)) == MINUS
5262 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5263 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5264 /* Do nothing for this case. */
5265 ;
5266
5267 /* Look for a substitution that makes a valid insn. */
5268 else if (validate_unshare_change (insn, &SET_SRC (sets[i].rtl),
5269 trial, 0))
5270 {
5271 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
5272
5273 /* The result of apply_change_group can be ignored; see
5274 canon_reg. */
5275
5276 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
5277 apply_change_group ();
5278
5279 break;
5280 }
5281
5282 /* If we previously found constant pool entries for
5283 constants and this is a constant, try making a
5284 pool entry. Put it in src_folded unless we already have done
5285 this since that is where it likely came from. */
5286
5287 else if (constant_pool_entries_cost
5288 && CONSTANT_P (trial)
5289 && (src_folded == 0
5290 || (!MEM_P (src_folded)
5291 && ! src_folded_force_flag))
5292 && GET_MODE_CLASS (mode) != MODE_CC
5293 && mode != VOIDmode)
5294 {
5295 src_folded_force_flag = 1;
5296 src_folded = trial;
5297 src_folded_cost = constant_pool_entries_cost;
5298 src_folded_regcost = constant_pool_entries_regcost;
5299 }
5300 }
5301
5302 /* If we changed the insn too much, handle this set from scratch. */
5303 if (repeat)
5304 {
5305 i--;
5306 continue;
5307 }
5308
5309 src = SET_SRC (sets[i].rtl);
5310
5311 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5312 However, there is an important exception: If both are registers
5313 that are not the head of their equivalence class, replace SET_SRC
5314 with the head of the class. If we do not do this, we will have
5315 both registers live over a portion of the basic block. This way,
5316 their lifetimes will likely abut instead of overlapping. */
5317 if (REG_P (dest)
5318 && REGNO_QTY_VALID_P (REGNO (dest)))
5319 {
5320 int dest_q = REG_QTY (REGNO (dest));
5321 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5322
5323 if (dest_ent->mode == GET_MODE (dest)
5324 && dest_ent->first_reg != REGNO (dest)
5325 && REG_P (src) && REGNO (src) == REGNO (dest)
5326 /* Don't do this if the original insn had a hard reg as
5327 SET_SRC or SET_DEST. */
5328 && (!REG_P (sets[i].src)
5329 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5330 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5331 /* We can't call canon_reg here because it won't do anything if
5332 SRC is a hard register. */
5333 {
5334 int src_q = REG_QTY (REGNO (src));
5335 struct qty_table_elem *src_ent = &qty_table[src_q];
5336 int first = src_ent->first_reg;
5337 rtx new_src
5338 = (first >= FIRST_PSEUDO_REGISTER
5339 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5340
5341 /* We must use validate-change even for this, because this
5342 might be a special no-op instruction, suitable only to
5343 tag notes onto. */
5344 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5345 {
5346 src = new_src;
5347 /* If we had a constant that is cheaper than what we are now
5348 setting SRC to, use that constant. We ignored it when we
5349 thought we could make this into a no-op. */
5350 if (src_const && COST (src_const) < COST (src)
5351 && validate_change (insn, &SET_SRC (sets[i].rtl),
5352 src_const, 0))
5353 src = src_const;
5354 }
5355 }
5356 }
5357
5358 /* If we made a change, recompute SRC values. */
5359 if (src != sets[i].src)
5360 {
5361 do_not_record = 0;
5362 hash_arg_in_memory = 0;
5363 sets[i].src = src;
5364 sets[i].src_hash = HASH (src, mode);
5365 sets[i].src_volatile = do_not_record;
5366 sets[i].src_in_memory = hash_arg_in_memory;
5367 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5368 }
5369
5370 /* If this is a single SET, we are setting a register, and we have an
5371 equivalent constant, we want to add a REG_EQUAL note if the constant
5372 is different from the source. We don't want to do it for a constant
5373 pseudo since verifying that this pseudo hasn't been eliminated is a
5374 pain; moreover such a note won't help anything.
5375
5376 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5377 which can be created for a reference to a compile time computable
5378 entry in a jump table. */
5379 if (n_sets == 1
5380 && REG_P (dest)
5381 && src_const
5382 && !REG_P (src_const)
5383 && !(GET_CODE (src_const) == SUBREG
5384 && REG_P (SUBREG_REG (src_const)))
5385 && !(GET_CODE (src_const) == CONST
5386 && GET_CODE (XEXP (src_const, 0)) == MINUS
5387 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5388 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF)
5389 && !rtx_equal_p (src, src_const))
5390 {
5391 /* Make sure that the rtx is not shared. */
5392 src_const = copy_rtx (src_const);
5393
5394 /* Record the actual constant value in a REG_EQUAL note,
5395 making a new one if one does not already exist. */
5396 set_unique_reg_note (insn, REG_EQUAL, src_const);
5397 df_notes_rescan (insn);
5398 }
5399
5400 /* Now deal with the destination. */
5401 do_not_record = 0;
5402
5403 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5404 while (GET_CODE (dest) == SUBREG
5405 || GET_CODE (dest) == ZERO_EXTRACT
5406 || GET_CODE (dest) == STRICT_LOW_PART)
5407 dest = XEXP (dest, 0);
5408
5409 sets[i].inner_dest = dest;
5410
5411 if (MEM_P (dest))
5412 {
5413 #ifdef PUSH_ROUNDING
5414 /* Stack pushes invalidate the stack pointer. */
5415 rtx addr = XEXP (dest, 0);
5416 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5417 && XEXP (addr, 0) == stack_pointer_rtx)
5418 invalidate (stack_pointer_rtx, VOIDmode);
5419 #endif
5420 dest = fold_rtx (dest, insn);
5421 }
5422
5423 /* Compute the hash code of the destination now,
5424 before the effects of this instruction are recorded,
5425 since the register values used in the address computation
5426 are those before this instruction. */
5427 sets[i].dest_hash = HASH (dest, mode);
5428
5429 /* Don't enter a bit-field in the hash table
5430 because the value in it after the store
5431 may not equal what was stored, due to truncation. */
5432
5433 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5434 {
5435 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5436
5437 if (src_const != 0 && CONST_INT_P (src_const)
5438 && CONST_INT_P (width)
5439 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5440 && ! (INTVAL (src_const)
5441 & (HOST_WIDE_INT_M1U << INTVAL (width))))
5442 /* Exception: if the value is constant,
5443 and it won't be truncated, record it. */
5444 ;
5445 else
5446 {
5447 /* This is chosen so that the destination will be invalidated
5448 but no new value will be recorded.
5449 We must invalidate because sometimes constant
5450 values can be recorded for bitfields. */
5451 sets[i].src_elt = 0;
5452 sets[i].src_volatile = 1;
5453 src_eqv = 0;
5454 src_eqv_elt = 0;
5455 }
5456 }
5457
5458 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5459 the insn. */
5460 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5461 {
5462 /* One less use of the label this insn used to jump to. */
5463 delete_insn_and_edges (insn);
5464 cse_jumps_altered = true;
5465 /* No more processing for this set. */
5466 sets[i].rtl = 0;
5467 }
5468
5469 /* If this SET is now setting PC to a label, we know it used to
5470 be a conditional or computed branch. */
5471 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5472 && !LABEL_REF_NONLOCAL_P (src))
5473 {
5474 /* We reemit the jump in as many cases as possible just in
5475 case the form of an unconditional jump is significantly
5476 different than a computed jump or conditional jump.
5477
5478 If this insn has multiple sets, then reemitting the
5479 jump is nontrivial. So instead we just force rerecognition
5480 and hope for the best. */
5481 if (n_sets == 1)
5482 {
5483 rtx_jump_insn *new_rtx;
5484 rtx note;
5485
5486 rtx_insn *seq = targetm.gen_jump (XEXP (src, 0));
5487 new_rtx = emit_jump_insn_before (seq, insn);
5488 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5489 LABEL_NUSES (XEXP (src, 0))++;
5490
5491 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5492 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5493 if (note)
5494 {
5495 XEXP (note, 1) = NULL_RTX;
5496 REG_NOTES (new_rtx) = note;
5497 }
5498
5499 delete_insn_and_edges (insn);
5500 insn = new_rtx;
5501 }
5502 else
5503 INSN_CODE (insn) = -1;
5504
5505 /* Do not bother deleting any unreachable code, let jump do it. */
5506 cse_jumps_altered = true;
5507 sets[i].rtl = 0;
5508 }
5509
5510 /* If destination is volatile, invalidate it and then do no further
5511 processing for this assignment. */
5512
5513 else if (do_not_record)
5514 {
5515 invalidate_dest (dest);
5516 sets[i].rtl = 0;
5517 }
5518
5519 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5520 {
5521 do_not_record = 0;
5522 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5523 if (do_not_record)
5524 {
5525 invalidate_dest (SET_DEST (sets[i].rtl));
5526 sets[i].rtl = 0;
5527 }
5528 }
5529
5530 /* If setting CC0, record what it was set to, or a constant, if it
5531 is equivalent to a constant. If it is being set to a floating-point
5532 value, make a COMPARE with the appropriate constant of 0. If we
5533 don't do this, later code can interpret this as a test against
5534 const0_rtx, which can cause problems if we try to put it into an
5535 insn as a floating-point operand. */
5536 if (dest == cc0_rtx)
5537 {
5538 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5539 this_insn_cc0_mode = mode;
5540 if (FLOAT_MODE_P (mode))
5541 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5542 CONST0_RTX (mode));
5543 }
5544 }
5545
5546 /* Now enter all non-volatile source expressions in the hash table
5547 if they are not already present.
5548 Record their equivalence classes in src_elt.
5549 This way we can insert the corresponding destinations into
5550 the same classes even if the actual sources are no longer in them
5551 (having been invalidated). */
5552
5553 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5554 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5555 {
5556 struct table_elt *elt;
5557 struct table_elt *classp = sets[0].src_elt;
5558 rtx dest = SET_DEST (sets[0].rtl);
5559 machine_mode eqvmode = GET_MODE (dest);
5560
5561 if (GET_CODE (dest) == STRICT_LOW_PART)
5562 {
5563 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5564 classp = 0;
5565 }
5566 if (insert_regs (src_eqv, classp, 0))
5567 {
5568 rehash_using_reg (src_eqv);
5569 src_eqv_hash = HASH (src_eqv, eqvmode);
5570 }
5571 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5572 elt->in_memory = src_eqv_in_memory;
5573 src_eqv_elt = elt;
5574
5575 /* Check to see if src_eqv_elt is the same as a set source which
5576 does not yet have an elt, and if so set the elt of the set source
5577 to src_eqv_elt. */
5578 for (i = 0; i < n_sets; i++)
5579 if (sets[i].rtl && sets[i].src_elt == 0
5580 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5581 sets[i].src_elt = src_eqv_elt;
5582 }
5583
5584 for (i = 0; i < n_sets; i++)
5585 if (sets[i].rtl && ! sets[i].src_volatile
5586 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5587 {
5588 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5589 {
5590 /* REG_EQUAL in setting a STRICT_LOW_PART
5591 gives an equivalent for the entire destination register,
5592 not just for the subreg being stored in now.
5593 This is a more interesting equivalence, so we arrange later
5594 to treat the entire reg as the destination. */
5595 sets[i].src_elt = src_eqv_elt;
5596 sets[i].src_hash = src_eqv_hash;
5597 }
5598 else
5599 {
5600 /* Insert source and constant equivalent into hash table, if not
5601 already present. */
5602 struct table_elt *classp = src_eqv_elt;
5603 rtx src = sets[i].src;
5604 rtx dest = SET_DEST (sets[i].rtl);
5605 machine_mode mode
5606 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5607
5608 /* It's possible that we have a source value known to be
5609 constant but don't have a REG_EQUAL note on the insn.
5610 Lack of a note will mean src_eqv_elt will be NULL. This
5611 can happen where we've generated a SUBREG to access a
5612 CONST_INT that is already in a register in a wider mode.
5613 Ensure that the source expression is put in the proper
5614 constant class. */
5615 if (!classp)
5616 classp = sets[i].src_const_elt;
5617
5618 if (sets[i].src_elt == 0)
5619 {
5620 struct table_elt *elt;
5621
5622 /* Note that these insert_regs calls cannot remove
5623 any of the src_elt's, because they would have failed to
5624 match if not still valid. */
5625 if (insert_regs (src, classp, 0))
5626 {
5627 rehash_using_reg (src);
5628 sets[i].src_hash = HASH (src, mode);
5629 }
5630 elt = insert (src, classp, sets[i].src_hash, mode);
5631 elt->in_memory = sets[i].src_in_memory;
5632 /* If inline asm has any clobbers, ensure we only reuse
5633 existing inline asms and never try to put the ASM_OPERANDS
5634 into an insn that isn't inline asm. */
5635 if (GET_CODE (src) == ASM_OPERANDS
5636 && GET_CODE (x) == PARALLEL)
5637 elt->cost = MAX_COST;
5638 sets[i].src_elt = classp = elt;
5639 }
5640 if (sets[i].src_const && sets[i].src_const_elt == 0
5641 && src != sets[i].src_const
5642 && ! rtx_equal_p (sets[i].src_const, src))
5643 sets[i].src_elt = insert (sets[i].src_const, classp,
5644 sets[i].src_const_hash, mode);
5645 }
5646 }
5647 else if (sets[i].src_elt == 0)
5648 /* If we did not insert the source into the hash table (e.g., it was
5649 volatile), note the equivalence class for the REG_EQUAL value, if any,
5650 so that the destination goes into that class. */
5651 sets[i].src_elt = src_eqv_elt;
5652
5653 /* Record destination addresses in the hash table. This allows us to
5654 check if they are invalidated by other sets. */
5655 for (i = 0; i < n_sets; i++)
5656 {
5657 if (sets[i].rtl)
5658 {
5659 rtx x = sets[i].inner_dest;
5660 struct table_elt *elt;
5661 machine_mode mode;
5662 unsigned hash;
5663
5664 if (MEM_P (x))
5665 {
5666 x = XEXP (x, 0);
5667 mode = GET_MODE (x);
5668 hash = HASH (x, mode);
5669 elt = lookup (x, hash, mode);
5670 if (!elt)
5671 {
5672 if (insert_regs (x, NULL, 0))
5673 {
5674 rtx dest = SET_DEST (sets[i].rtl);
5675
5676 rehash_using_reg (x);
5677 hash = HASH (x, mode);
5678 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5679 }
5680 elt = insert (x, NULL, hash, mode);
5681 }
5682
5683 sets[i].dest_addr_elt = elt;
5684 }
5685 else
5686 sets[i].dest_addr_elt = NULL;
5687 }
5688 }
5689
5690 invalidate_from_clobbers (insn);
5691
5692 /* Some registers are invalidated by subroutine calls. Memory is
5693 invalidated by non-constant calls. */
5694
5695 if (CALL_P (insn))
5696 {
5697 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5698 invalidate_memory ();
5699 invalidate_for_call ();
5700 }
5701
5702 /* Now invalidate everything set by this instruction.
5703 If a SUBREG or other funny destination is being set,
5704 sets[i].rtl is still nonzero, so here we invalidate the reg
5705 a part of which is being set. */
5706
5707 for (i = 0; i < n_sets; i++)
5708 if (sets[i].rtl)
5709 {
5710 /* We can't use the inner dest, because the mode associated with
5711 a ZERO_EXTRACT is significant. */
5712 rtx dest = SET_DEST (sets[i].rtl);
5713
5714 /* Needed for registers to remove the register from its
5715 previous quantity's chain.
5716 Needed for memory if this is a nonvarying address, unless
5717 we have just done an invalidate_memory that covers even those. */
5718 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5719 invalidate (dest, VOIDmode);
5720 else if (MEM_P (dest))
5721 invalidate (dest, VOIDmode);
5722 else if (GET_CODE (dest) == STRICT_LOW_PART
5723 || GET_CODE (dest) == ZERO_EXTRACT)
5724 invalidate (XEXP (dest, 0), GET_MODE (dest));
5725 }
5726
5727 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5728 the regs restored by the longjmp come from a later time
5729 than the setjmp. */
5730 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5731 {
5732 flush_hash_table ();
5733 goto done;
5734 }
5735
5736 /* Make sure registers mentioned in destinations
5737 are safe for use in an expression to be inserted.
5738 This removes from the hash table
5739 any invalid entry that refers to one of these registers.
5740
5741 We don't care about the return value from mention_regs because
5742 we are going to hash the SET_DEST values unconditionally. */
5743
5744 for (i = 0; i < n_sets; i++)
5745 {
5746 if (sets[i].rtl)
5747 {
5748 rtx x = SET_DEST (sets[i].rtl);
5749
5750 if (!REG_P (x))
5751 mention_regs (x);
5752 else
5753 {
5754 /* We used to rely on all references to a register becoming
5755 inaccessible when a register changes to a new quantity,
5756 since that changes the hash code. However, that is not
5757 safe, since after HASH_SIZE new quantities we get a
5758 hash 'collision' of a register with its own invalid
5759 entries. And since SUBREGs have been changed not to
5760 change their hash code with the hash code of the register,
5761 it wouldn't work any longer at all. So we have to check
5762 for any invalid references lying around now.
5763 This code is similar to the REG case in mention_regs,
5764 but it knows that reg_tick has been incremented, and
5765 it leaves reg_in_table as -1 . */
5766 unsigned int regno = REGNO (x);
5767 unsigned int endregno = END_REGNO (x);
5768 unsigned int i;
5769
5770 for (i = regno; i < endregno; i++)
5771 {
5772 if (REG_IN_TABLE (i) >= 0)
5773 {
5774 remove_invalid_refs (i);
5775 REG_IN_TABLE (i) = -1;
5776 }
5777 }
5778 }
5779 }
5780 }
5781
5782 /* We may have just removed some of the src_elt's from the hash table.
5783 So replace each one with the current head of the same class.
5784 Also check if destination addresses have been removed. */
5785
5786 for (i = 0; i < n_sets; i++)
5787 if (sets[i].rtl)
5788 {
5789 if (sets[i].dest_addr_elt
5790 && sets[i].dest_addr_elt->first_same_value == 0)
5791 {
5792 /* The elt was removed, which means this destination is not
5793 valid after this instruction. */
5794 sets[i].rtl = NULL_RTX;
5795 }
5796 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5797 /* If elt was removed, find current head of same class,
5798 or 0 if nothing remains of that class. */
5799 {
5800 struct table_elt *elt = sets[i].src_elt;
5801
5802 while (elt && elt->prev_same_value)
5803 elt = elt->prev_same_value;
5804
5805 while (elt && elt->first_same_value == 0)
5806 elt = elt->next_same_value;
5807 sets[i].src_elt = elt ? elt->first_same_value : 0;
5808 }
5809 }
5810
5811 /* Now insert the destinations into their equivalence classes. */
5812
5813 for (i = 0; i < n_sets; i++)
5814 if (sets[i].rtl)
5815 {
5816 rtx dest = SET_DEST (sets[i].rtl);
5817 struct table_elt *elt;
5818
5819 /* Don't record value if we are not supposed to risk allocating
5820 floating-point values in registers that might be wider than
5821 memory. */
5822 if ((flag_float_store
5823 && MEM_P (dest)
5824 && FLOAT_MODE_P (GET_MODE (dest)))
5825 /* Don't record BLKmode values, because we don't know the
5826 size of it, and can't be sure that other BLKmode values
5827 have the same or smaller size. */
5828 || GET_MODE (dest) == BLKmode
5829 /* If we didn't put a REG_EQUAL value or a source into the hash
5830 table, there is no point is recording DEST. */
5831 || sets[i].src_elt == 0
5832 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5833 or SIGN_EXTEND, don't record DEST since it can cause
5834 some tracking to be wrong.
5835
5836 ??? Think about this more later. */
5837 || (paradoxical_subreg_p (dest)
5838 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5839 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5840 continue;
5841
5842 /* STRICT_LOW_PART isn't part of the value BEING set,
5843 and neither is the SUBREG inside it.
5844 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5845 if (GET_CODE (dest) == STRICT_LOW_PART)
5846 dest = SUBREG_REG (XEXP (dest, 0));
5847
5848 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5849 /* Registers must also be inserted into chains for quantities. */
5850 if (insert_regs (dest, sets[i].src_elt, 1))
5851 {
5852 /* If `insert_regs' changes something, the hash code must be
5853 recalculated. */
5854 rehash_using_reg (dest);
5855 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5856 }
5857
5858 elt = insert (dest, sets[i].src_elt,
5859 sets[i].dest_hash, GET_MODE (dest));
5860
5861 /* If this is a constant, insert the constant anchors with the
5862 equivalent register-offset expressions using register DEST. */
5863 if (targetm.const_anchor
5864 && REG_P (dest)
5865 && SCALAR_INT_MODE_P (GET_MODE (dest))
5866 && GET_CODE (sets[i].src_elt->exp) == CONST_INT)
5867 insert_const_anchors (dest, sets[i].src_elt->exp, GET_MODE (dest));
5868
5869 elt->in_memory = (MEM_P (sets[i].inner_dest)
5870 && !MEM_READONLY_P (sets[i].inner_dest));
5871
5872 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5873 narrower than M2, and both M1 and M2 are the same number of words,
5874 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5875 make that equivalence as well.
5876
5877 However, BAR may have equivalences for which gen_lowpart
5878 will produce a simpler value than gen_lowpart applied to
5879 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5880 BAR's equivalences. If we don't get a simplified form, make
5881 the SUBREG. It will not be used in an equivalence, but will
5882 cause two similar assignments to be detected.
5883
5884 Note the loop below will find SUBREG_REG (DEST) since we have
5885 already entered SRC and DEST of the SET in the table. */
5886
5887 if (GET_CODE (dest) == SUBREG
5888 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5889 / UNITS_PER_WORD)
5890 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5891 && (GET_MODE_SIZE (GET_MODE (dest))
5892 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5893 && sets[i].src_elt != 0)
5894 {
5895 machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5896 struct table_elt *elt, *classp = 0;
5897
5898 for (elt = sets[i].src_elt->first_same_value; elt;
5899 elt = elt->next_same_value)
5900 {
5901 rtx new_src = 0;
5902 unsigned src_hash;
5903 struct table_elt *src_elt;
5904 int byte = 0;
5905
5906 /* Ignore invalid entries. */
5907 if (!REG_P (elt->exp)
5908 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5909 continue;
5910
5911 /* We may have already been playing subreg games. If the
5912 mode is already correct for the destination, use it. */
5913 if (GET_MODE (elt->exp) == new_mode)
5914 new_src = elt->exp;
5915 else
5916 {
5917 /* Calculate big endian correction for the SUBREG_BYTE.
5918 We have already checked that M1 (GET_MODE (dest))
5919 is not narrower than M2 (new_mode). */
5920 if (BYTES_BIG_ENDIAN)
5921 byte = (GET_MODE_SIZE (GET_MODE (dest))
5922 - GET_MODE_SIZE (new_mode));
5923
5924 new_src = simplify_gen_subreg (new_mode, elt->exp,
5925 GET_MODE (dest), byte);
5926 }
5927
5928 /* The call to simplify_gen_subreg fails if the value
5929 is VOIDmode, yet we can't do any simplification, e.g.
5930 for EXPR_LISTs denoting function call results.
5931 It is invalid to construct a SUBREG with a VOIDmode
5932 SUBREG_REG, hence a zero new_src means we can't do
5933 this substitution. */
5934 if (! new_src)
5935 continue;
5936
5937 src_hash = HASH (new_src, new_mode);
5938 src_elt = lookup (new_src, src_hash, new_mode);
5939
5940 /* Put the new source in the hash table is if isn't
5941 already. */
5942 if (src_elt == 0)
5943 {
5944 if (insert_regs (new_src, classp, 0))
5945 {
5946 rehash_using_reg (new_src);
5947 src_hash = HASH (new_src, new_mode);
5948 }
5949 src_elt = insert (new_src, classp, src_hash, new_mode);
5950 src_elt->in_memory = elt->in_memory;
5951 if (GET_CODE (new_src) == ASM_OPERANDS
5952 && elt->cost == MAX_COST)
5953 src_elt->cost = MAX_COST;
5954 }
5955 else if (classp && classp != src_elt->first_same_value)
5956 /* Show that two things that we've seen before are
5957 actually the same. */
5958 merge_equiv_classes (src_elt, classp);
5959
5960 classp = src_elt->first_same_value;
5961 /* Ignore invalid entries. */
5962 while (classp
5963 && !REG_P (classp->exp)
5964 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5965 classp = classp->next_same_value;
5966 }
5967 }
5968 }
5969
5970 /* Special handling for (set REG0 REG1) where REG0 is the
5971 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5972 be used in the sequel, so (if easily done) change this insn to
5973 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5974 that computed their value. Then REG1 will become a dead store
5975 and won't cloud the situation for later optimizations.
5976
5977 Do not make this change if REG1 is a hard register, because it will
5978 then be used in the sequel and we may be changing a two-operand insn
5979 into a three-operand insn.
5980
5981 Also do not do this if we are operating on a copy of INSN. */
5982
5983 if (n_sets == 1 && sets[0].rtl)
5984 try_back_substitute_reg (sets[0].rtl, insn);
5985
5986 done:;
5987 }
5988 \f
5989 /* Remove from the hash table all expressions that reference memory. */
5990
5991 static void
5992 invalidate_memory (void)
5993 {
5994 int i;
5995 struct table_elt *p, *next;
5996
5997 for (i = 0; i < HASH_SIZE; i++)
5998 for (p = table[i]; p; p = next)
5999 {
6000 next = p->next_same_hash;
6001 if (p->in_memory)
6002 remove_from_table (p, i);
6003 }
6004 }
6005
6006 /* Perform invalidation on the basis of everything about INSN,
6007 except for invalidating the actual places that are SET in it.
6008 This includes the places CLOBBERed, and anything that might
6009 alias with something that is SET or CLOBBERed. */
6010
6011 static void
6012 invalidate_from_clobbers (rtx_insn *insn)
6013 {
6014 rtx x = PATTERN (insn);
6015
6016 if (GET_CODE (x) == CLOBBER)
6017 {
6018 rtx ref = XEXP (x, 0);
6019 if (ref)
6020 {
6021 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6022 || MEM_P (ref))
6023 invalidate (ref, VOIDmode);
6024 else if (GET_CODE (ref) == STRICT_LOW_PART
6025 || GET_CODE (ref) == ZERO_EXTRACT)
6026 invalidate (XEXP (ref, 0), GET_MODE (ref));
6027 }
6028 }
6029 else if (GET_CODE (x) == PARALLEL)
6030 {
6031 int i;
6032 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6033 {
6034 rtx y = XVECEXP (x, 0, i);
6035 if (GET_CODE (y) == CLOBBER)
6036 {
6037 rtx ref = XEXP (y, 0);
6038 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6039 || MEM_P (ref))
6040 invalidate (ref, VOIDmode);
6041 else if (GET_CODE (ref) == STRICT_LOW_PART
6042 || GET_CODE (ref) == ZERO_EXTRACT)
6043 invalidate (XEXP (ref, 0), GET_MODE (ref));
6044 }
6045 }
6046 }
6047 }
6048 \f
6049 /* Perform invalidation on the basis of everything about INSN.
6050 This includes the places CLOBBERed, and anything that might
6051 alias with something that is SET or CLOBBERed. */
6052
6053 static void
6054 invalidate_from_sets_and_clobbers (rtx_insn *insn)
6055 {
6056 rtx tem;
6057 rtx x = PATTERN (insn);
6058
6059 if (CALL_P (insn))
6060 {
6061 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6062 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6063 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6064 }
6065
6066 /* Ensure we invalidate the destination register of a CALL insn.
6067 This is necessary for machines where this register is a fixed_reg,
6068 because no other code would invalidate it. */
6069 if (GET_CODE (x) == SET && GET_CODE (SET_SRC (x)) == CALL)
6070 invalidate (SET_DEST (x), VOIDmode);
6071
6072 else if (GET_CODE (x) == PARALLEL)
6073 {
6074 int i;
6075
6076 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6077 {
6078 rtx y = XVECEXP (x, 0, i);
6079 if (GET_CODE (y) == CLOBBER)
6080 {
6081 rtx clobbered = XEXP (y, 0);
6082
6083 if (REG_P (clobbered)
6084 || GET_CODE (clobbered) == SUBREG)
6085 invalidate (clobbered, VOIDmode);
6086 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6087 || GET_CODE (clobbered) == ZERO_EXTRACT)
6088 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6089 }
6090 else if (GET_CODE (y) == SET && GET_CODE (SET_SRC (y)) == CALL)
6091 invalidate (SET_DEST (y), VOIDmode);
6092 }
6093 }
6094 }
6095 \f
6096 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6097 and replace any registers in them with either an equivalent constant
6098 or the canonical form of the register. If we are inside an address,
6099 only do this if the address remains valid.
6100
6101 OBJECT is 0 except when within a MEM in which case it is the MEM.
6102
6103 Return the replacement for X. */
6104
6105 static rtx
6106 cse_process_notes_1 (rtx x, rtx object, bool *changed)
6107 {
6108 enum rtx_code code = GET_CODE (x);
6109 const char *fmt = GET_RTX_FORMAT (code);
6110 int i;
6111
6112 switch (code)
6113 {
6114 case CONST:
6115 case SYMBOL_REF:
6116 case LABEL_REF:
6117 CASE_CONST_ANY:
6118 case PC:
6119 case CC0:
6120 case LO_SUM:
6121 return x;
6122
6123 case MEM:
6124 validate_change (x, &XEXP (x, 0),
6125 cse_process_notes (XEXP (x, 0), x, changed), 0);
6126 return x;
6127
6128 case EXPR_LIST:
6129 if (REG_NOTE_KIND (x) == REG_EQUAL)
6130 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
6131 /* Fall through. */
6132
6133 case INSN_LIST:
6134 case INT_LIST:
6135 if (XEXP (x, 1))
6136 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
6137 return x;
6138
6139 case SIGN_EXTEND:
6140 case ZERO_EXTEND:
6141 case SUBREG:
6142 {
6143 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6144 /* We don't substitute VOIDmode constants into these rtx,
6145 since they would impede folding. */
6146 if (GET_MODE (new_rtx) != VOIDmode)
6147 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6148 return x;
6149 }
6150
6151 case UNSIGNED_FLOAT:
6152 {
6153 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
6154 /* We don't substitute negative VOIDmode constants into these rtx,
6155 since they would impede folding. */
6156 if (GET_MODE (new_rtx) != VOIDmode
6157 || (CONST_INT_P (new_rtx) && INTVAL (new_rtx) >= 0)
6158 || (CONST_DOUBLE_P (new_rtx) && CONST_DOUBLE_HIGH (new_rtx) >= 0))
6159 validate_change (object, &XEXP (x, 0), new_rtx, 0);
6160 return x;
6161 }
6162
6163 case REG:
6164 i = REG_QTY (REGNO (x));
6165
6166 /* Return a constant or a constant register. */
6167 if (REGNO_QTY_VALID_P (REGNO (x)))
6168 {
6169 struct qty_table_elem *ent = &qty_table[i];
6170
6171 if (ent->const_rtx != NULL_RTX
6172 && (CONSTANT_P (ent->const_rtx)
6173 || REG_P (ent->const_rtx)))
6174 {
6175 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
6176 if (new_rtx)
6177 return copy_rtx (new_rtx);
6178 }
6179 }
6180
6181 /* Otherwise, canonicalize this register. */
6182 return canon_reg (x, NULL);
6183
6184 default:
6185 break;
6186 }
6187
6188 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6189 if (fmt[i] == 'e')
6190 validate_change (object, &XEXP (x, i),
6191 cse_process_notes (XEXP (x, i), object, changed), 0);
6192
6193 return x;
6194 }
6195
6196 static rtx
6197 cse_process_notes (rtx x, rtx object, bool *changed)
6198 {
6199 rtx new_rtx = cse_process_notes_1 (x, object, changed);
6200 if (new_rtx != x)
6201 *changed = true;
6202 return new_rtx;
6203 }
6204
6205 \f
6206 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
6207
6208 DATA is a pointer to a struct cse_basic_block_data, that is used to
6209 describe the path.
6210 It is filled with a queue of basic blocks, starting with FIRST_BB
6211 and following a trace through the CFG.
6212
6213 If all paths starting at FIRST_BB have been followed, or no new path
6214 starting at FIRST_BB can be constructed, this function returns FALSE.
6215 Otherwise, DATA->path is filled and the function returns TRUE indicating
6216 that a path to follow was found.
6217
6218 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
6219 block in the path will be FIRST_BB. */
6220
6221 static bool
6222 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
6223 int follow_jumps)
6224 {
6225 basic_block bb;
6226 edge e;
6227 int path_size;
6228
6229 bitmap_set_bit (cse_visited_basic_blocks, first_bb->index);
6230
6231 /* See if there is a previous path. */
6232 path_size = data->path_size;
6233
6234 /* There is a previous path. Make sure it started with FIRST_BB. */
6235 if (path_size)
6236 gcc_assert (data->path[0].bb == first_bb);
6237
6238 /* There was only one basic block in the last path. Clear the path and
6239 return, so that paths starting at another basic block can be tried. */
6240 if (path_size == 1)
6241 {
6242 path_size = 0;
6243 goto done;
6244 }
6245
6246 /* If the path was empty from the beginning, construct a new path. */
6247 if (path_size == 0)
6248 data->path[path_size++].bb = first_bb;
6249 else
6250 {
6251 /* Otherwise, path_size must be equal to or greater than 2, because
6252 a previous path exists that is at least two basic blocks long.
6253
6254 Update the previous branch path, if any. If the last branch was
6255 previously along the branch edge, take the fallthrough edge now. */
6256 while (path_size >= 2)
6257 {
6258 basic_block last_bb_in_path, previous_bb_in_path;
6259 edge e;
6260
6261 --path_size;
6262 last_bb_in_path = data->path[path_size].bb;
6263 previous_bb_in_path = data->path[path_size - 1].bb;
6264
6265 /* If we previously followed a path along the branch edge, try
6266 the fallthru edge now. */
6267 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
6268 && any_condjump_p (BB_END (previous_bb_in_path))
6269 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
6270 && e == BRANCH_EDGE (previous_bb_in_path))
6271 {
6272 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
6273 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun)
6274 && single_pred_p (bb)
6275 /* We used to assert here that we would only see blocks
6276 that we have not visited yet. But we may end up
6277 visiting basic blocks twice if the CFG has changed
6278 in this run of cse_main, because when the CFG changes
6279 the topological sort of the CFG also changes. A basic
6280 blocks that previously had more than two predecessors
6281 may now have a single predecessor, and become part of
6282 a path that starts at another basic block.
6283
6284 We still want to visit each basic block only once, so
6285 halt the path here if we have already visited BB. */
6286 && !bitmap_bit_p (cse_visited_basic_blocks, bb->index))
6287 {
6288 bitmap_set_bit (cse_visited_basic_blocks, bb->index);
6289 data->path[path_size++].bb = bb;
6290 break;
6291 }
6292 }
6293
6294 data->path[path_size].bb = NULL;
6295 }
6296
6297 /* If only one block remains in the path, bail. */
6298 if (path_size == 1)
6299 {
6300 path_size = 0;
6301 goto done;
6302 }
6303 }
6304
6305 /* Extend the path if possible. */
6306 if (follow_jumps)
6307 {
6308 bb = data->path[path_size - 1].bb;
6309 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
6310 {
6311 if (single_succ_p (bb))
6312 e = single_succ_edge (bb);
6313 else if (EDGE_COUNT (bb->succs) == 2
6314 && any_condjump_p (BB_END (bb)))
6315 {
6316 /* First try to follow the branch. If that doesn't lead
6317 to a useful path, follow the fallthru edge. */
6318 e = BRANCH_EDGE (bb);
6319 if (!single_pred_p (e->dest))
6320 e = FALLTHRU_EDGE (bb);
6321 }
6322 else
6323 e = NULL;
6324
6325 if (e
6326 && !((e->flags & EDGE_ABNORMAL_CALL) && cfun->has_nonlocal_label)
6327 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
6328 && single_pred_p (e->dest)
6329 /* Avoid visiting basic blocks twice. The large comment
6330 above explains why this can happen. */
6331 && !bitmap_bit_p (cse_visited_basic_blocks, e->dest->index))
6332 {
6333 basic_block bb2 = e->dest;
6334 bitmap_set_bit (cse_visited_basic_blocks, bb2->index);
6335 data->path[path_size++].bb = bb2;
6336 bb = bb2;
6337 }
6338 else
6339 bb = NULL;
6340 }
6341 }
6342
6343 done:
6344 data->path_size = path_size;
6345 return path_size != 0;
6346 }
6347 \f
6348 /* Dump the path in DATA to file F. NSETS is the number of sets
6349 in the path. */
6350
6351 static void
6352 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
6353 {
6354 int path_entry;
6355
6356 fprintf (f, ";; Following path with %d sets: ", nsets);
6357 for (path_entry = 0; path_entry < data->path_size; path_entry++)
6358 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
6359 fputc ('\n', dump_file);
6360 fflush (f);
6361 }
6362
6363 \f
6364 /* Return true if BB has exception handling successor edges. */
6365
6366 static bool
6367 have_eh_succ_edges (basic_block bb)
6368 {
6369 edge e;
6370 edge_iterator ei;
6371
6372 FOR_EACH_EDGE (e, ei, bb->succs)
6373 if (e->flags & EDGE_EH)
6374 return true;
6375
6376 return false;
6377 }
6378
6379 \f
6380 /* Scan to the end of the path described by DATA. Return an estimate of
6381 the total number of SETs of all insns in the path. */
6382
6383 static void
6384 cse_prescan_path (struct cse_basic_block_data *data)
6385 {
6386 int nsets = 0;
6387 int path_size = data->path_size;
6388 int path_entry;
6389
6390 /* Scan to end of each basic block in the path. */
6391 for (path_entry = 0; path_entry < path_size; path_entry++)
6392 {
6393 basic_block bb;
6394 rtx_insn *insn;
6395
6396 bb = data->path[path_entry].bb;
6397
6398 FOR_BB_INSNS (bb, insn)
6399 {
6400 if (!INSN_P (insn))
6401 continue;
6402
6403 /* A PARALLEL can have lots of SETs in it,
6404 especially if it is really an ASM_OPERANDS. */
6405 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6406 nsets += XVECLEN (PATTERN (insn), 0);
6407 else
6408 nsets += 1;
6409 }
6410 }
6411
6412 data->nsets = nsets;
6413 }
6414 \f
6415 /* Return true if the pattern of INSN uses a LABEL_REF for which
6416 there isn't a REG_LABEL_OPERAND note. */
6417
6418 static bool
6419 check_for_label_ref (rtx_insn *insn)
6420 {
6421 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6422 note for it, we must rerun jump since it needs to place the note. If
6423 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6424 don't do this since no REG_LABEL_OPERAND will be added. */
6425 subrtx_iterator::array_type array;
6426 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
6427 {
6428 const_rtx x = *iter;
6429 if (GET_CODE (x) == LABEL_REF
6430 && !LABEL_REF_NONLOCAL_P (x)
6431 && (!JUMP_P (insn)
6432 || !label_is_jump_target_p (LABEL_REF_LABEL (x), insn))
6433 && LABEL_P (LABEL_REF_LABEL (x))
6434 && INSN_UID (LABEL_REF_LABEL (x)) != 0
6435 && !find_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x)))
6436 return true;
6437 }
6438 return false;
6439 }
6440
6441 /* Process a single extended basic block described by EBB_DATA. */
6442
6443 static void
6444 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6445 {
6446 int path_size = ebb_data->path_size;
6447 int path_entry;
6448 int num_insns = 0;
6449
6450 /* Allocate the space needed by qty_table. */
6451 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6452
6453 new_basic_block ();
6454 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6455 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6456 for (path_entry = 0; path_entry < path_size; path_entry++)
6457 {
6458 basic_block bb;
6459 rtx_insn *insn;
6460
6461 bb = ebb_data->path[path_entry].bb;
6462
6463 /* Invalidate recorded information for eh regs if there is an EH
6464 edge pointing to that bb. */
6465 if (bb_has_eh_pred (bb))
6466 {
6467 df_ref def;
6468
6469 FOR_EACH_ARTIFICIAL_DEF (def, bb->index)
6470 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6471 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6472 }
6473
6474 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6475 FOR_BB_INSNS (bb, insn)
6476 {
6477 /* If we have processed 1,000 insns, flush the hash table to
6478 avoid extreme quadratic behavior. We must not include NOTEs
6479 in the count since there may be more of them when generating
6480 debugging information. If we clear the table at different
6481 times, code generated with -g -O might be different than code
6482 generated with -O but not -g.
6483
6484 FIXME: This is a real kludge and needs to be done some other
6485 way. */
6486 if (NONDEBUG_INSN_P (insn)
6487 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6488 {
6489 flush_hash_table ();
6490 num_insns = 0;
6491 }
6492
6493 if (INSN_P (insn))
6494 {
6495 /* Process notes first so we have all notes in canonical forms
6496 when looking for duplicate operations. */
6497 if (REG_NOTES (insn))
6498 {
6499 bool changed = false;
6500 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6501 NULL_RTX, &changed);
6502 if (changed)
6503 df_notes_rescan (insn);
6504 }
6505
6506 cse_insn (insn);
6507
6508 /* If we haven't already found an insn where we added a LABEL_REF,
6509 check this one. */
6510 if (INSN_P (insn) && !recorded_label_ref
6511 && check_for_label_ref (insn))
6512 recorded_label_ref = true;
6513
6514 if (HAVE_cc0 && NONDEBUG_INSN_P (insn))
6515 {
6516 /* If the previous insn sets CC0 and this insn no
6517 longer references CC0, delete the previous insn.
6518 Here we use fact that nothing expects CC0 to be
6519 valid over an insn, which is true until the final
6520 pass. */
6521 rtx_insn *prev_insn;
6522 rtx tem;
6523
6524 prev_insn = prev_nonnote_nondebug_insn (insn);
6525 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6526 && (tem = single_set (prev_insn)) != NULL_RTX
6527 && SET_DEST (tem) == cc0_rtx
6528 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6529 delete_insn (prev_insn);
6530
6531 /* If this insn is not the last insn in the basic
6532 block, it will be PREV_INSN(insn) in the next
6533 iteration. If we recorded any CC0-related
6534 information for this insn, remember it. */
6535 if (insn != BB_END (bb))
6536 {
6537 prev_insn_cc0 = this_insn_cc0;
6538 prev_insn_cc0_mode = this_insn_cc0_mode;
6539 }
6540 }
6541 }
6542 }
6543
6544 /* With non-call exceptions, we are not always able to update
6545 the CFG properly inside cse_insn. So clean up possibly
6546 redundant EH edges here. */
6547 if (cfun->can_throw_non_call_exceptions && have_eh_succ_edges (bb))
6548 cse_cfg_altered |= purge_dead_edges (bb);
6549
6550 /* If we changed a conditional jump, we may have terminated
6551 the path we are following. Check that by verifying that
6552 the edge we would take still exists. If the edge does
6553 not exist anymore, purge the remainder of the path.
6554 Note that this will cause us to return to the caller. */
6555 if (path_entry < path_size - 1)
6556 {
6557 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6558 if (!find_edge (bb, next_bb))
6559 {
6560 do
6561 {
6562 path_size--;
6563
6564 /* If we truncate the path, we must also reset the
6565 visited bit on the remaining blocks in the path,
6566 or we will never visit them at all. */
6567 bitmap_clear_bit (cse_visited_basic_blocks,
6568 ebb_data->path[path_size].bb->index);
6569 ebb_data->path[path_size].bb = NULL;
6570 }
6571 while (path_size - 1 != path_entry);
6572 ebb_data->path_size = path_size;
6573 }
6574 }
6575
6576 /* If this is a conditional jump insn, record any known
6577 equivalences due to the condition being tested. */
6578 insn = BB_END (bb);
6579 if (path_entry < path_size - 1
6580 && JUMP_P (insn)
6581 && single_set (insn)
6582 && any_condjump_p (insn))
6583 {
6584 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6585 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6586 record_jump_equiv (insn, taken);
6587 }
6588
6589 /* Clear the CC0-tracking related insns, they can't provide
6590 useful information across basic block boundaries. */
6591 prev_insn_cc0 = 0;
6592 }
6593
6594 gcc_assert (next_qty <= max_qty);
6595
6596 free (qty_table);
6597 }
6598
6599 \f
6600 /* Perform cse on the instructions of a function.
6601 F is the first instruction.
6602 NREGS is one plus the highest pseudo-reg number used in the instruction.
6603
6604 Return 2 if jump optimizations should be redone due to simplifications
6605 in conditional jump instructions.
6606 Return 1 if the CFG should be cleaned up because it has been modified.
6607 Return 0 otherwise. */
6608
6609 static int
6610 cse_main (rtx_insn *f ATTRIBUTE_UNUSED, int nregs)
6611 {
6612 struct cse_basic_block_data ebb_data;
6613 basic_block bb;
6614 int *rc_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6615 int i, n_blocks;
6616
6617 df_set_flags (DF_LR_RUN_DCE);
6618 df_note_add_problem ();
6619 df_analyze ();
6620 df_set_flags (DF_DEFER_INSN_RESCAN);
6621
6622 reg_scan (get_insns (), max_reg_num ());
6623 init_cse_reg_info (nregs);
6624
6625 ebb_data.path = XNEWVEC (struct branch_path,
6626 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6627
6628 cse_cfg_altered = false;
6629 cse_jumps_altered = false;
6630 recorded_label_ref = false;
6631 constant_pool_entries_cost = 0;
6632 constant_pool_entries_regcost = 0;
6633 ebb_data.path_size = 0;
6634 ebb_data.nsets = 0;
6635 rtl_hooks = cse_rtl_hooks;
6636
6637 init_recog ();
6638 init_alias_analysis ();
6639
6640 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6641
6642 /* Set up the table of already visited basic blocks. */
6643 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6644 bitmap_clear (cse_visited_basic_blocks);
6645
6646 /* Loop over basic blocks in reverse completion order (RPO),
6647 excluding the ENTRY and EXIT blocks. */
6648 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6649 i = 0;
6650 while (i < n_blocks)
6651 {
6652 /* Find the first block in the RPO queue that we have not yet
6653 processed before. */
6654 do
6655 {
6656 bb = BASIC_BLOCK_FOR_FN (cfun, rc_order[i++]);
6657 }
6658 while (bitmap_bit_p (cse_visited_basic_blocks, bb->index)
6659 && i < n_blocks);
6660
6661 /* Find all paths starting with BB, and process them. */
6662 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6663 {
6664 /* Pre-scan the path. */
6665 cse_prescan_path (&ebb_data);
6666
6667 /* If this basic block has no sets, skip it. */
6668 if (ebb_data.nsets == 0)
6669 continue;
6670
6671 /* Get a reasonable estimate for the maximum number of qty's
6672 needed for this path. For this, we take the number of sets
6673 and multiply that by MAX_RECOG_OPERANDS. */
6674 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6675
6676 /* Dump the path we're about to process. */
6677 if (dump_file)
6678 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6679
6680 cse_extended_basic_block (&ebb_data);
6681 }
6682 }
6683
6684 /* Clean up. */
6685 end_alias_analysis ();
6686 free (reg_eqv_table);
6687 free (ebb_data.path);
6688 sbitmap_free (cse_visited_basic_blocks);
6689 free (rc_order);
6690 rtl_hooks = general_rtl_hooks;
6691
6692 if (cse_jumps_altered || recorded_label_ref)
6693 return 2;
6694 else if (cse_cfg_altered)
6695 return 1;
6696 else
6697 return 0;
6698 }
6699 \f
6700 /* Count the number of times registers are used (not set) in X.
6701 COUNTS is an array in which we accumulate the count, INCR is how much
6702 we count each register usage.
6703
6704 Don't count a usage of DEST, which is the SET_DEST of a SET which
6705 contains X in its SET_SRC. This is because such a SET does not
6706 modify the liveness of DEST.
6707 DEST is set to pc_rtx for a trapping insn, or for an insn with side effects.
6708 We must then count uses of a SET_DEST regardless, because the insn can't be
6709 deleted here. */
6710
6711 static void
6712 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6713 {
6714 enum rtx_code code;
6715 rtx note;
6716 const char *fmt;
6717 int i, j;
6718
6719 if (x == 0)
6720 return;
6721
6722 switch (code = GET_CODE (x))
6723 {
6724 case REG:
6725 if (x != dest)
6726 counts[REGNO (x)] += incr;
6727 return;
6728
6729 case PC:
6730 case CC0:
6731 case CONST:
6732 CASE_CONST_ANY:
6733 case SYMBOL_REF:
6734 case LABEL_REF:
6735 return;
6736
6737 case CLOBBER:
6738 /* If we are clobbering a MEM, mark any registers inside the address
6739 as being used. */
6740 if (MEM_P (XEXP (x, 0)))
6741 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6742 return;
6743
6744 case SET:
6745 /* Unless we are setting a REG, count everything in SET_DEST. */
6746 if (!REG_P (SET_DEST (x)))
6747 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6748 count_reg_usage (SET_SRC (x), counts,
6749 dest ? dest : SET_DEST (x),
6750 incr);
6751 return;
6752
6753 case DEBUG_INSN:
6754 return;
6755
6756 case CALL_INSN:
6757 case INSN:
6758 case JUMP_INSN:
6759 /* We expect dest to be NULL_RTX here. If the insn may throw,
6760 or if it cannot be deleted due to side-effects, mark this fact
6761 by setting DEST to pc_rtx. */
6762 if ((!cfun->can_delete_dead_exceptions && !insn_nothrow_p (x))
6763 || side_effects_p (PATTERN (x)))
6764 dest = pc_rtx;
6765 if (code == CALL_INSN)
6766 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6767 count_reg_usage (PATTERN (x), counts, dest, incr);
6768
6769 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6770 use them. */
6771
6772 note = find_reg_equal_equiv_note (x);
6773 if (note)
6774 {
6775 rtx eqv = XEXP (note, 0);
6776
6777 if (GET_CODE (eqv) == EXPR_LIST)
6778 /* This REG_EQUAL note describes the result of a function call.
6779 Process all the arguments. */
6780 do
6781 {
6782 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6783 eqv = XEXP (eqv, 1);
6784 }
6785 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6786 else
6787 count_reg_usage (eqv, counts, dest, incr);
6788 }
6789 return;
6790
6791 case EXPR_LIST:
6792 if (REG_NOTE_KIND (x) == REG_EQUAL
6793 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6794 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6795 involving registers in the address. */
6796 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6797 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6798
6799 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6800 return;
6801
6802 case ASM_OPERANDS:
6803 /* Iterate over just the inputs, not the constraints as well. */
6804 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6805 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6806 return;
6807
6808 case INSN_LIST:
6809 case INT_LIST:
6810 gcc_unreachable ();
6811
6812 default:
6813 break;
6814 }
6815
6816 fmt = GET_RTX_FORMAT (code);
6817 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6818 {
6819 if (fmt[i] == 'e')
6820 count_reg_usage (XEXP (x, i), counts, dest, incr);
6821 else if (fmt[i] == 'E')
6822 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6823 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6824 }
6825 }
6826 \f
6827 /* Return true if X is a dead register. */
6828
6829 static inline int
6830 is_dead_reg (const_rtx x, int *counts)
6831 {
6832 return (REG_P (x)
6833 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6834 && counts[REGNO (x)] == 0);
6835 }
6836
6837 /* Return true if set is live. */
6838 static bool
6839 set_live_p (rtx set, rtx_insn *insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6840 int *counts)
6841 {
6842 rtx_insn *tem;
6843
6844 if (set_noop_p (set))
6845 ;
6846
6847 else if (GET_CODE (SET_DEST (set)) == CC0
6848 && !side_effects_p (SET_SRC (set))
6849 && ((tem = next_nonnote_nondebug_insn (insn)) == NULL_RTX
6850 || !INSN_P (tem)
6851 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6852 return false;
6853 else if (!is_dead_reg (SET_DEST (set), counts)
6854 || side_effects_p (SET_SRC (set)))
6855 return true;
6856 return false;
6857 }
6858
6859 /* Return true if insn is live. */
6860
6861 static bool
6862 insn_live_p (rtx_insn *insn, int *counts)
6863 {
6864 int i;
6865 if (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
6866 return true;
6867 else if (GET_CODE (PATTERN (insn)) == SET)
6868 return set_live_p (PATTERN (insn), insn, counts);
6869 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6870 {
6871 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6872 {
6873 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6874
6875 if (GET_CODE (elt) == SET)
6876 {
6877 if (set_live_p (elt, insn, counts))
6878 return true;
6879 }
6880 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6881 return true;
6882 }
6883 return false;
6884 }
6885 else if (DEBUG_INSN_P (insn))
6886 {
6887 rtx_insn *next;
6888
6889 for (next = NEXT_INSN (insn); next; next = NEXT_INSN (next))
6890 if (NOTE_P (next))
6891 continue;
6892 else if (!DEBUG_INSN_P (next))
6893 return true;
6894 else if (INSN_VAR_LOCATION_DECL (insn) == INSN_VAR_LOCATION_DECL (next))
6895 return false;
6896
6897 return true;
6898 }
6899 else
6900 return true;
6901 }
6902
6903 /* Count the number of stores into pseudo. Callback for note_stores. */
6904
6905 static void
6906 count_stores (rtx x, const_rtx set ATTRIBUTE_UNUSED, void *data)
6907 {
6908 int *counts = (int *) data;
6909 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
6910 counts[REGNO (x)]++;
6911 }
6912
6913 /* Return if DEBUG_INSN pattern PAT needs to be reset because some dead
6914 pseudo doesn't have a replacement. COUNTS[X] is zero if register X
6915 is dead and REPLACEMENTS[X] is null if it has no replacemenet.
6916 Set *SEEN_REPL to true if we see a dead register that does have
6917 a replacement. */
6918
6919 static bool
6920 is_dead_debug_insn (const_rtx pat, int *counts, rtx *replacements,
6921 bool *seen_repl)
6922 {
6923 subrtx_iterator::array_type array;
6924 FOR_EACH_SUBRTX (iter, array, pat, NONCONST)
6925 {
6926 const_rtx x = *iter;
6927 if (is_dead_reg (x, counts))
6928 {
6929 if (replacements && replacements[REGNO (x)] != NULL_RTX)
6930 *seen_repl = true;
6931 else
6932 return true;
6933 }
6934 }
6935 return false;
6936 }
6937
6938 /* Replace a dead pseudo in a DEBUG_INSN with replacement DEBUG_EXPR.
6939 Callback for simplify_replace_fn_rtx. */
6940
6941 static rtx
6942 replace_dead_reg (rtx x, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
6943 {
6944 rtx *replacements = (rtx *) data;
6945
6946 if (REG_P (x)
6947 && REGNO (x) >= FIRST_PSEUDO_REGISTER
6948 && replacements[REGNO (x)] != NULL_RTX)
6949 {
6950 if (GET_MODE (x) == GET_MODE (replacements[REGNO (x)]))
6951 return replacements[REGNO (x)];
6952 return lowpart_subreg (GET_MODE (x), replacements[REGNO (x)],
6953 GET_MODE (replacements[REGNO (x)]));
6954 }
6955 return NULL_RTX;
6956 }
6957
6958 /* Scan all the insns and delete any that are dead; i.e., they store a register
6959 that is never used or they copy a register to itself.
6960
6961 This is used to remove insns made obviously dead by cse, loop or other
6962 optimizations. It improves the heuristics in loop since it won't try to
6963 move dead invariants out of loops or make givs for dead quantities. The
6964 remaining passes of the compilation are also sped up. */
6965
6966 int
6967 delete_trivially_dead_insns (rtx_insn *insns, int nreg)
6968 {
6969 int *counts;
6970 rtx_insn *insn, *prev;
6971 rtx *replacements = NULL;
6972 int ndead = 0;
6973
6974 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6975 /* First count the number of times each register is used. */
6976 if (MAY_HAVE_DEBUG_INSNS)
6977 {
6978 counts = XCNEWVEC (int, nreg * 3);
6979 for (insn = insns; insn; insn = NEXT_INSN (insn))
6980 if (DEBUG_INSN_P (insn))
6981 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
6982 NULL_RTX, 1);
6983 else if (INSN_P (insn))
6984 {
6985 count_reg_usage (insn, counts, NULL_RTX, 1);
6986 note_stores (PATTERN (insn), count_stores, counts + nreg * 2);
6987 }
6988 /* If there can be debug insns, COUNTS are 3 consecutive arrays.
6989 First one counts how many times each pseudo is used outside
6990 of debug insns, second counts how many times each pseudo is
6991 used in debug insns and third counts how many times a pseudo
6992 is stored. */
6993 }
6994 else
6995 {
6996 counts = XCNEWVEC (int, nreg);
6997 for (insn = insns; insn; insn = NEXT_INSN (insn))
6998 if (INSN_P (insn))
6999 count_reg_usage (insn, counts, NULL_RTX, 1);
7000 /* If no debug insns can be present, COUNTS is just an array
7001 which counts how many times each pseudo is used. */
7002 }
7003 /* Pseudo PIC register should be considered as used due to possible
7004 new usages generated. */
7005 if (!reload_completed
7006 && pic_offset_table_rtx
7007 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
7008 counts[REGNO (pic_offset_table_rtx)]++;
7009 /* Go from the last insn to the first and delete insns that only set unused
7010 registers or copy a register to itself. As we delete an insn, remove
7011 usage counts for registers it uses.
7012
7013 The first jump optimization pass may leave a real insn as the last
7014 insn in the function. We must not skip that insn or we may end
7015 up deleting code that is not really dead.
7016
7017 If some otherwise unused register is only used in DEBUG_INSNs,
7018 try to create a DEBUG_EXPR temporary and emit a DEBUG_INSN before
7019 the setter. Then go through DEBUG_INSNs and if a DEBUG_EXPR
7020 has been created for the unused register, replace it with
7021 the DEBUG_EXPR, otherwise reset the DEBUG_INSN. */
7022 for (insn = get_last_insn (); insn; insn = prev)
7023 {
7024 int live_insn = 0;
7025
7026 prev = PREV_INSN (insn);
7027 if (!INSN_P (insn))
7028 continue;
7029
7030 live_insn = insn_live_p (insn, counts);
7031
7032 /* If this is a dead insn, delete it and show registers in it aren't
7033 being used. */
7034
7035 if (! live_insn && dbg_cnt (delete_trivial_dead))
7036 {
7037 if (DEBUG_INSN_P (insn))
7038 count_reg_usage (INSN_VAR_LOCATION_LOC (insn), counts + nreg,
7039 NULL_RTX, -1);
7040 else
7041 {
7042 rtx set;
7043 if (MAY_HAVE_DEBUG_INSNS
7044 && (set = single_set (insn)) != NULL_RTX
7045 && is_dead_reg (SET_DEST (set), counts)
7046 /* Used at least once in some DEBUG_INSN. */
7047 && counts[REGNO (SET_DEST (set)) + nreg] > 0
7048 /* And set exactly once. */
7049 && counts[REGNO (SET_DEST (set)) + nreg * 2] == 1
7050 && !side_effects_p (SET_SRC (set))
7051 && asm_noperands (PATTERN (insn)) < 0)
7052 {
7053 rtx dval, bind_var_loc;
7054 rtx_insn *bind;
7055
7056 /* Create DEBUG_EXPR (and DEBUG_EXPR_DECL). */
7057 dval = make_debug_expr_from_rtl (SET_DEST (set));
7058
7059 /* Emit a debug bind insn before the insn in which
7060 reg dies. */
7061 bind_var_loc =
7062 gen_rtx_VAR_LOCATION (GET_MODE (SET_DEST (set)),
7063 DEBUG_EXPR_TREE_DECL (dval),
7064 SET_SRC (set),
7065 VAR_INIT_STATUS_INITIALIZED);
7066 count_reg_usage (bind_var_loc, counts + nreg, NULL_RTX, 1);
7067
7068 bind = emit_debug_insn_before (bind_var_loc, insn);
7069 df_insn_rescan (bind);
7070
7071 if (replacements == NULL)
7072 replacements = XCNEWVEC (rtx, nreg);
7073 replacements[REGNO (SET_DEST (set))] = dval;
7074 }
7075
7076 count_reg_usage (insn, counts, NULL_RTX, -1);
7077 ndead++;
7078 }
7079 delete_insn_and_edges (insn);
7080 }
7081 }
7082
7083 if (MAY_HAVE_DEBUG_INSNS)
7084 {
7085 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7086 if (DEBUG_INSN_P (insn))
7087 {
7088 /* If this debug insn references a dead register that wasn't replaced
7089 with an DEBUG_EXPR, reset the DEBUG_INSN. */
7090 bool seen_repl = false;
7091 if (is_dead_debug_insn (INSN_VAR_LOCATION_LOC (insn),
7092 counts, replacements, &seen_repl))
7093 {
7094 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
7095 df_insn_rescan (insn);
7096 }
7097 else if (seen_repl)
7098 {
7099 INSN_VAR_LOCATION_LOC (insn)
7100 = simplify_replace_fn_rtx (INSN_VAR_LOCATION_LOC (insn),
7101 NULL_RTX, replace_dead_reg,
7102 replacements);
7103 df_insn_rescan (insn);
7104 }
7105 }
7106 free (replacements);
7107 }
7108
7109 if (dump_file && ndead)
7110 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7111 ndead);
7112 /* Clean up. */
7113 free (counts);
7114 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7115 return ndead;
7116 }
7117
7118 /* If LOC contains references to NEWREG in a different mode, change them
7119 to use NEWREG instead. */
7120
7121 static void
7122 cse_change_cc_mode (subrtx_ptr_iterator::array_type &array,
7123 rtx *loc, rtx_insn *insn, rtx newreg)
7124 {
7125 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
7126 {
7127 rtx *loc = *iter;
7128 rtx x = *loc;
7129 if (x
7130 && REG_P (x)
7131 && REGNO (x) == REGNO (newreg)
7132 && GET_MODE (x) != GET_MODE (newreg))
7133 {
7134 validate_change (insn, loc, newreg, 1);
7135 iter.skip_subrtxes ();
7136 }
7137 }
7138 }
7139
7140 /* Change the mode of any reference to the register REGNO (NEWREG) to
7141 GET_MODE (NEWREG) in INSN. */
7142
7143 static void
7144 cse_change_cc_mode_insn (rtx_insn *insn, rtx newreg)
7145 {
7146 int success;
7147
7148 if (!INSN_P (insn))
7149 return;
7150
7151 subrtx_ptr_iterator::array_type array;
7152 cse_change_cc_mode (array, &PATTERN (insn), insn, newreg);
7153 cse_change_cc_mode (array, &REG_NOTES (insn), insn, newreg);
7154
7155 /* If the following assertion was triggered, there is most probably
7156 something wrong with the cc_modes_compatible back end function.
7157 CC modes only can be considered compatible if the insn - with the mode
7158 replaced by any of the compatible modes - can still be recognized. */
7159 success = apply_change_group ();
7160 gcc_assert (success);
7161 }
7162
7163 /* Change the mode of any reference to the register REGNO (NEWREG) to
7164 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7165 any instruction which modifies NEWREG. */
7166
7167 static void
7168 cse_change_cc_mode_insns (rtx_insn *start, rtx_insn *end, rtx newreg)
7169 {
7170 rtx_insn *insn;
7171
7172 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7173 {
7174 if (! INSN_P (insn))
7175 continue;
7176
7177 if (reg_set_p (newreg, insn))
7178 return;
7179
7180 cse_change_cc_mode_insn (insn, newreg);
7181 }
7182 }
7183
7184 /* BB is a basic block which finishes with CC_REG as a condition code
7185 register which is set to CC_SRC. Look through the successors of BB
7186 to find blocks which have a single predecessor (i.e., this one),
7187 and look through those blocks for an assignment to CC_REG which is
7188 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7189 permitted to change the mode of CC_SRC to a compatible mode. This
7190 returns VOIDmode if no equivalent assignments were found.
7191 Otherwise it returns the mode which CC_SRC should wind up with.
7192 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
7193 but is passed unmodified down to recursive calls in order to prevent
7194 endless recursion.
7195
7196 The main complexity in this function is handling the mode issues.
7197 We may have more than one duplicate which we can eliminate, and we
7198 try to find a mode which will work for multiple duplicates. */
7199
7200 static machine_mode
7201 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
7202 bool can_change_mode)
7203 {
7204 bool found_equiv;
7205 machine_mode mode;
7206 unsigned int insn_count;
7207 edge e;
7208 rtx_insn *insns[2];
7209 machine_mode modes[2];
7210 rtx_insn *last_insns[2];
7211 unsigned int i;
7212 rtx newreg;
7213 edge_iterator ei;
7214
7215 /* We expect to have two successors. Look at both before picking
7216 the final mode for the comparison. If we have more successors
7217 (i.e., some sort of table jump, although that seems unlikely),
7218 then we require all beyond the first two to use the same
7219 mode. */
7220
7221 found_equiv = false;
7222 mode = GET_MODE (cc_src);
7223 insn_count = 0;
7224 FOR_EACH_EDGE (e, ei, bb->succs)
7225 {
7226 rtx_insn *insn;
7227 rtx_insn *end;
7228
7229 if (e->flags & EDGE_COMPLEX)
7230 continue;
7231
7232 if (EDGE_COUNT (e->dest->preds) != 1
7233 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
7234 /* Avoid endless recursion on unreachable blocks. */
7235 || e->dest == orig_bb)
7236 continue;
7237
7238 end = NEXT_INSN (BB_END (e->dest));
7239 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7240 {
7241 rtx set;
7242
7243 if (! INSN_P (insn))
7244 continue;
7245
7246 /* If CC_SRC is modified, we have to stop looking for
7247 something which uses it. */
7248 if (modified_in_p (cc_src, insn))
7249 break;
7250
7251 /* Check whether INSN sets CC_REG to CC_SRC. */
7252 set = single_set (insn);
7253 if (set
7254 && REG_P (SET_DEST (set))
7255 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7256 {
7257 bool found;
7258 machine_mode set_mode;
7259 machine_mode comp_mode;
7260
7261 found = false;
7262 set_mode = GET_MODE (SET_SRC (set));
7263 comp_mode = set_mode;
7264 if (rtx_equal_p (cc_src, SET_SRC (set)))
7265 found = true;
7266 else if (GET_CODE (cc_src) == COMPARE
7267 && GET_CODE (SET_SRC (set)) == COMPARE
7268 && mode != set_mode
7269 && rtx_equal_p (XEXP (cc_src, 0),
7270 XEXP (SET_SRC (set), 0))
7271 && rtx_equal_p (XEXP (cc_src, 1),
7272 XEXP (SET_SRC (set), 1)))
7273
7274 {
7275 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7276 if (comp_mode != VOIDmode
7277 && (can_change_mode || comp_mode == mode))
7278 found = true;
7279 }
7280
7281 if (found)
7282 {
7283 found_equiv = true;
7284 if (insn_count < ARRAY_SIZE (insns))
7285 {
7286 insns[insn_count] = insn;
7287 modes[insn_count] = set_mode;
7288 last_insns[insn_count] = end;
7289 ++insn_count;
7290
7291 if (mode != comp_mode)
7292 {
7293 gcc_assert (can_change_mode);
7294 mode = comp_mode;
7295
7296 /* The modified insn will be re-recognized later. */
7297 PUT_MODE (cc_src, mode);
7298 }
7299 }
7300 else
7301 {
7302 if (set_mode != mode)
7303 {
7304 /* We found a matching expression in the
7305 wrong mode, but we don't have room to
7306 store it in the array. Punt. This case
7307 should be rare. */
7308 break;
7309 }
7310 /* INSN sets CC_REG to a value equal to CC_SRC
7311 with the right mode. We can simply delete
7312 it. */
7313 delete_insn (insn);
7314 }
7315
7316 /* We found an instruction to delete. Keep looking,
7317 in the hopes of finding a three-way jump. */
7318 continue;
7319 }
7320
7321 /* We found an instruction which sets the condition
7322 code, so don't look any farther. */
7323 break;
7324 }
7325
7326 /* If INSN sets CC_REG in some other way, don't look any
7327 farther. */
7328 if (reg_set_p (cc_reg, insn))
7329 break;
7330 }
7331
7332 /* If we fell off the bottom of the block, we can keep looking
7333 through successors. We pass CAN_CHANGE_MODE as false because
7334 we aren't prepared to handle compatibility between the
7335 further blocks and this block. */
7336 if (insn == end)
7337 {
7338 machine_mode submode;
7339
7340 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
7341 if (submode != VOIDmode)
7342 {
7343 gcc_assert (submode == mode);
7344 found_equiv = true;
7345 can_change_mode = false;
7346 }
7347 }
7348 }
7349
7350 if (! found_equiv)
7351 return VOIDmode;
7352
7353 /* Now INSN_COUNT is the number of instructions we found which set
7354 CC_REG to a value equivalent to CC_SRC. The instructions are in
7355 INSNS. The modes used by those instructions are in MODES. */
7356
7357 newreg = NULL_RTX;
7358 for (i = 0; i < insn_count; ++i)
7359 {
7360 if (modes[i] != mode)
7361 {
7362 /* We need to change the mode of CC_REG in INSNS[i] and
7363 subsequent instructions. */
7364 if (! newreg)
7365 {
7366 if (GET_MODE (cc_reg) == mode)
7367 newreg = cc_reg;
7368 else
7369 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7370 }
7371 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7372 newreg);
7373 }
7374
7375 delete_insn_and_edges (insns[i]);
7376 }
7377
7378 return mode;
7379 }
7380
7381 /* If we have a fixed condition code register (or two), walk through
7382 the instructions and try to eliminate duplicate assignments. */
7383
7384 static void
7385 cse_condition_code_reg (void)
7386 {
7387 unsigned int cc_regno_1;
7388 unsigned int cc_regno_2;
7389 rtx cc_reg_1;
7390 rtx cc_reg_2;
7391 basic_block bb;
7392
7393 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7394 return;
7395
7396 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7397 if (cc_regno_2 != INVALID_REGNUM)
7398 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7399 else
7400 cc_reg_2 = NULL_RTX;
7401
7402 FOR_EACH_BB_FN (bb, cfun)
7403 {
7404 rtx_insn *last_insn;
7405 rtx cc_reg;
7406 rtx_insn *insn;
7407 rtx_insn *cc_src_insn;
7408 rtx cc_src;
7409 machine_mode mode;
7410 machine_mode orig_mode;
7411
7412 /* Look for blocks which end with a conditional jump based on a
7413 condition code register. Then look for the instruction which
7414 sets the condition code register. Then look through the
7415 successor blocks for instructions which set the condition
7416 code register to the same value. There are other possible
7417 uses of the condition code register, but these are by far the
7418 most common and the ones which we are most likely to be able
7419 to optimize. */
7420
7421 last_insn = BB_END (bb);
7422 if (!JUMP_P (last_insn))
7423 continue;
7424
7425 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7426 cc_reg = cc_reg_1;
7427 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7428 cc_reg = cc_reg_2;
7429 else
7430 continue;
7431
7432 cc_src_insn = NULL;
7433 cc_src = NULL_RTX;
7434 for (insn = PREV_INSN (last_insn);
7435 insn && insn != PREV_INSN (BB_HEAD (bb));
7436 insn = PREV_INSN (insn))
7437 {
7438 rtx set;
7439
7440 if (! INSN_P (insn))
7441 continue;
7442 set = single_set (insn);
7443 if (set
7444 && REG_P (SET_DEST (set))
7445 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7446 {
7447 cc_src_insn = insn;
7448 cc_src = SET_SRC (set);
7449 break;
7450 }
7451 else if (reg_set_p (cc_reg, insn))
7452 break;
7453 }
7454
7455 if (! cc_src_insn)
7456 continue;
7457
7458 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7459 continue;
7460
7461 /* Now CC_REG is a condition code register used for a
7462 conditional jump at the end of the block, and CC_SRC, in
7463 CC_SRC_INSN, is the value to which that condition code
7464 register is set, and CC_SRC is still meaningful at the end of
7465 the basic block. */
7466
7467 orig_mode = GET_MODE (cc_src);
7468 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
7469 if (mode != VOIDmode)
7470 {
7471 gcc_assert (mode == GET_MODE (cc_src));
7472 if (mode != orig_mode)
7473 {
7474 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7475
7476 cse_change_cc_mode_insn (cc_src_insn, newreg);
7477
7478 /* Do the same in the following insns that use the
7479 current value of CC_REG within BB. */
7480 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7481 NEXT_INSN (last_insn),
7482 newreg);
7483 }
7484 }
7485 }
7486 }
7487 \f
7488
7489 /* Perform common subexpression elimination. Nonzero value from
7490 `cse_main' means that jumps were simplified and some code may now
7491 be unreachable, so do jump optimization again. */
7492 static unsigned int
7493 rest_of_handle_cse (void)
7494 {
7495 int tem;
7496
7497 if (dump_file)
7498 dump_flow_info (dump_file, dump_flags);
7499
7500 tem = cse_main (get_insns (), max_reg_num ());
7501
7502 /* If we are not running more CSE passes, then we are no longer
7503 expecting CSE to be run. But always rerun it in a cheap mode. */
7504 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7505
7506 if (tem == 2)
7507 {
7508 timevar_push (TV_JUMP);
7509 rebuild_jump_labels (get_insns ());
7510 cleanup_cfg (CLEANUP_CFG_CHANGED);
7511 timevar_pop (TV_JUMP);
7512 }
7513 else if (tem == 1 || optimize > 1)
7514 cleanup_cfg (0);
7515
7516 return 0;
7517 }
7518
7519 namespace {
7520
7521 const pass_data pass_data_cse =
7522 {
7523 RTL_PASS, /* type */
7524 "cse1", /* name */
7525 OPTGROUP_NONE, /* optinfo_flags */
7526 TV_CSE, /* tv_id */
7527 0, /* properties_required */
7528 0, /* properties_provided */
7529 0, /* properties_destroyed */
7530 0, /* todo_flags_start */
7531 TODO_df_finish, /* todo_flags_finish */
7532 };
7533
7534 class pass_cse : public rtl_opt_pass
7535 {
7536 public:
7537 pass_cse (gcc::context *ctxt)
7538 : rtl_opt_pass (pass_data_cse, ctxt)
7539 {}
7540
7541 /* opt_pass methods: */
7542 virtual bool gate (function *) { return optimize > 0; }
7543 virtual unsigned int execute (function *) { return rest_of_handle_cse (); }
7544
7545 }; // class pass_cse
7546
7547 } // anon namespace
7548
7549 rtl_opt_pass *
7550 make_pass_cse (gcc::context *ctxt)
7551 {
7552 return new pass_cse (ctxt);
7553 }
7554
7555
7556 /* Run second CSE pass after loop optimizations. */
7557 static unsigned int
7558 rest_of_handle_cse2 (void)
7559 {
7560 int tem;
7561
7562 if (dump_file)
7563 dump_flow_info (dump_file, dump_flags);
7564
7565 tem = cse_main (get_insns (), max_reg_num ());
7566
7567 /* Run a pass to eliminate duplicated assignments to condition code
7568 registers. We have to run this after bypass_jumps, because it
7569 makes it harder for that pass to determine whether a jump can be
7570 bypassed safely. */
7571 cse_condition_code_reg ();
7572
7573 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7574
7575 if (tem == 2)
7576 {
7577 timevar_push (TV_JUMP);
7578 rebuild_jump_labels (get_insns ());
7579 cleanup_cfg (CLEANUP_CFG_CHANGED);
7580 timevar_pop (TV_JUMP);
7581 }
7582 else if (tem == 1)
7583 cleanup_cfg (0);
7584
7585 cse_not_expected = 1;
7586 return 0;
7587 }
7588
7589
7590 namespace {
7591
7592 const pass_data pass_data_cse2 =
7593 {
7594 RTL_PASS, /* type */
7595 "cse2", /* name */
7596 OPTGROUP_NONE, /* optinfo_flags */
7597 TV_CSE2, /* tv_id */
7598 0, /* properties_required */
7599 0, /* properties_provided */
7600 0, /* properties_destroyed */
7601 0, /* todo_flags_start */
7602 TODO_df_finish, /* todo_flags_finish */
7603 };
7604
7605 class pass_cse2 : public rtl_opt_pass
7606 {
7607 public:
7608 pass_cse2 (gcc::context *ctxt)
7609 : rtl_opt_pass (pass_data_cse2, ctxt)
7610 {}
7611
7612 /* opt_pass methods: */
7613 virtual bool gate (function *)
7614 {
7615 return optimize > 0 && flag_rerun_cse_after_loop;
7616 }
7617
7618 virtual unsigned int execute (function *) { return rest_of_handle_cse2 (); }
7619
7620 }; // class pass_cse2
7621
7622 } // anon namespace
7623
7624 rtl_opt_pass *
7625 make_pass_cse2 (gcc::context *ctxt)
7626 {
7627 return new pass_cse2 (ctxt);
7628 }
7629
7630 /* Run second CSE pass after loop optimizations. */
7631 static unsigned int
7632 rest_of_handle_cse_after_global_opts (void)
7633 {
7634 int save_cfj;
7635 int tem;
7636
7637 /* We only want to do local CSE, so don't follow jumps. */
7638 save_cfj = flag_cse_follow_jumps;
7639 flag_cse_follow_jumps = 0;
7640
7641 rebuild_jump_labels (get_insns ());
7642 tem = cse_main (get_insns (), max_reg_num ());
7643 purge_all_dead_edges ();
7644 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7645
7646 cse_not_expected = !flag_rerun_cse_after_loop;
7647
7648 /* If cse altered any jumps, rerun jump opts to clean things up. */
7649 if (tem == 2)
7650 {
7651 timevar_push (TV_JUMP);
7652 rebuild_jump_labels (get_insns ());
7653 cleanup_cfg (CLEANUP_CFG_CHANGED);
7654 timevar_pop (TV_JUMP);
7655 }
7656 else if (tem == 1)
7657 cleanup_cfg (0);
7658
7659 flag_cse_follow_jumps = save_cfj;
7660 return 0;
7661 }
7662
7663 namespace {
7664
7665 const pass_data pass_data_cse_after_global_opts =
7666 {
7667 RTL_PASS, /* type */
7668 "cse_local", /* name */
7669 OPTGROUP_NONE, /* optinfo_flags */
7670 TV_CSE, /* tv_id */
7671 0, /* properties_required */
7672 0, /* properties_provided */
7673 0, /* properties_destroyed */
7674 0, /* todo_flags_start */
7675 TODO_df_finish, /* todo_flags_finish */
7676 };
7677
7678 class pass_cse_after_global_opts : public rtl_opt_pass
7679 {
7680 public:
7681 pass_cse_after_global_opts (gcc::context *ctxt)
7682 : rtl_opt_pass (pass_data_cse_after_global_opts, ctxt)
7683 {}
7684
7685 /* opt_pass methods: */
7686 virtual bool gate (function *)
7687 {
7688 return optimize > 0 && flag_rerun_cse_after_global_opts;
7689 }
7690
7691 virtual unsigned int execute (function *)
7692 {
7693 return rest_of_handle_cse_after_global_opts ();
7694 }
7695
7696 }; // class pass_cse_after_global_opts
7697
7698 } // anon namespace
7699
7700 rtl_opt_pass *
7701 make_pass_cse_after_global_opts (gcc::context *ctxt)
7702 {
7703 return new pass_cse_after_global_opts (ctxt);
7704 }