]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/cselib.c
Add a partial_subreg_p predicate
[thirdparty/gcc.git] / gcc / cselib.c
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "dumpfile.h"
33 #include "cselib.h"
34 #include "params.h"
35
36 /* A list of cselib_val structures. */
37 struct elt_list
38 {
39 struct elt_list *next;
40 cselib_val *elt;
41 };
42
43 static bool cselib_record_memory;
44 static bool cselib_preserve_constants;
45 static bool cselib_any_perm_equivs;
46 static inline void promote_debug_loc (struct elt_loc_list *l);
47 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
48 static void new_elt_loc_list (cselib_val *, rtx);
49 static void unchain_one_value (cselib_val *);
50 static void unchain_one_elt_list (struct elt_list **);
51 static void unchain_one_elt_loc_list (struct elt_loc_list **);
52 static void remove_useless_values (void);
53 static unsigned int cselib_hash_rtx (rtx, int, machine_mode);
54 static cselib_val *new_cselib_val (unsigned int, machine_mode, rtx);
55 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
56 static cselib_val *cselib_lookup_mem (rtx, int);
57 static void cselib_invalidate_regno (unsigned int, machine_mode);
58 static void cselib_invalidate_mem (rtx);
59 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
60 static void cselib_record_sets (rtx_insn *);
61
62 struct expand_value_data
63 {
64 bitmap regs_active;
65 cselib_expand_callback callback;
66 void *callback_arg;
67 bool dummy;
68 };
69
70 static rtx cselib_expand_value_rtx_1 (rtx, struct expand_value_data *, int);
71
72 /* There are three ways in which cselib can look up an rtx:
73 - for a REG, the reg_values table (which is indexed by regno) is used
74 - for a MEM, we recursively look up its address and then follow the
75 addr_list of that value
76 - for everything else, we compute a hash value and go through the hash
77 table. Since different rtx's can still have the same hash value,
78 this involves walking the table entries for a given value and comparing
79 the locations of the entries with the rtx we are looking up. */
80
81 struct cselib_hasher : nofree_ptr_hash <cselib_val>
82 {
83 struct key {
84 /* The rtx value and its mode (needed separately for constant
85 integers). */
86 machine_mode mode;
87 rtx x;
88 /* The mode of the contaning MEM, if any, otherwise VOIDmode. */
89 machine_mode memmode;
90 };
91 typedef key *compare_type;
92 static inline hashval_t hash (const cselib_val *);
93 static inline bool equal (const cselib_val *, const key *);
94 };
95
96 /* The hash function for our hash table. The value is always computed with
97 cselib_hash_rtx when adding an element; this function just extracts the
98 hash value from a cselib_val structure. */
99
100 inline hashval_t
101 cselib_hasher::hash (const cselib_val *v)
102 {
103 return v->hash;
104 }
105
106 /* The equality test for our hash table. The first argument V is a table
107 element (i.e. a cselib_val), while the second arg X is an rtx. We know
108 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
109 CONST of an appropriate mode. */
110
111 inline bool
112 cselib_hasher::equal (const cselib_val *v, const key *x_arg)
113 {
114 struct elt_loc_list *l;
115 rtx x = x_arg->x;
116 machine_mode mode = x_arg->mode;
117 machine_mode memmode = x_arg->memmode;
118
119 if (mode != GET_MODE (v->val_rtx))
120 return false;
121
122 if (GET_CODE (x) == VALUE)
123 return x == v->val_rtx;
124
125 /* We don't guarantee that distinct rtx's have different hash values,
126 so we need to do a comparison. */
127 for (l = v->locs; l; l = l->next)
128 if (rtx_equal_for_cselib_1 (l->loc, x, memmode, 0))
129 {
130 promote_debug_loc (l);
131 return true;
132 }
133
134 return false;
135 }
136
137 /* A table that enables us to look up elts by their value. */
138 static hash_table<cselib_hasher> *cselib_hash_table;
139
140 /* A table to hold preserved values. */
141 static hash_table<cselib_hasher> *cselib_preserved_hash_table;
142
143 /* This is a global so we don't have to pass this through every function.
144 It is used in new_elt_loc_list to set SETTING_INSN. */
145 static rtx_insn *cselib_current_insn;
146
147 /* The unique id that the next create value will take. */
148 static unsigned int next_uid;
149
150 /* The number of registers we had when the varrays were last resized. */
151 static unsigned int cselib_nregs;
152
153 /* Count values without known locations, or with only locations that
154 wouldn't have been known except for debug insns. Whenever this
155 grows too big, we remove these useless values from the table.
156
157 Counting values with only debug values is a bit tricky. We don't
158 want to increment n_useless_values when we create a value for a
159 debug insn, for this would get n_useless_values out of sync, but we
160 want increment it if all locs in the list that were ever referenced
161 in nondebug insns are removed from the list.
162
163 In the general case, once we do that, we'd have to stop accepting
164 nondebug expressions in the loc list, to avoid having two values
165 equivalent that, without debug insns, would have been made into
166 separate values. However, because debug insns never introduce
167 equivalences themselves (no assignments), the only means for
168 growing loc lists is through nondebug assignments. If the locs
169 also happen to be referenced in debug insns, it will work just fine.
170
171 A consequence of this is that there's at most one debug-only loc in
172 each loc list. If we keep it in the first entry, testing whether
173 we have a debug-only loc list takes O(1).
174
175 Furthermore, since any additional entry in a loc list containing a
176 debug loc would have to come from an assignment (nondebug) that
177 references both the initial debug loc and the newly-equivalent loc,
178 the initial debug loc would be promoted to a nondebug loc, and the
179 loc list would not contain debug locs any more.
180
181 So the only case we have to be careful with in order to keep
182 n_useless_values in sync between debug and nondebug compilations is
183 to avoid incrementing n_useless_values when removing the single loc
184 from a value that turns out to not appear outside debug values. We
185 increment n_useless_debug_values instead, and leave such values
186 alone until, for other reasons, we garbage-collect useless
187 values. */
188 static int n_useless_values;
189 static int n_useless_debug_values;
190
191 /* Count values whose locs have been taken exclusively from debug
192 insns for the entire life of the value. */
193 static int n_debug_values;
194
195 /* Number of useless values before we remove them from the hash table. */
196 #define MAX_USELESS_VALUES 32
197
198 /* This table maps from register number to values. It does not
199 contain pointers to cselib_val structures, but rather elt_lists.
200 The purpose is to be able to refer to the same register in
201 different modes. The first element of the list defines the mode in
202 which the register was set; if the mode is unknown or the value is
203 no longer valid in that mode, ELT will be NULL for the first
204 element. */
205 static struct elt_list **reg_values;
206 static unsigned int reg_values_size;
207 #define REG_VALUES(i) reg_values[i]
208
209 /* The largest number of hard regs used by any entry added to the
210 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
211 static unsigned int max_value_regs;
212
213 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
214 in cselib_clear_table() for fast emptying. */
215 static unsigned int *used_regs;
216 static unsigned int n_used_regs;
217
218 /* We pass this to cselib_invalidate_mem to invalidate all of
219 memory for a non-const call instruction. */
220 static GTY(()) rtx callmem;
221
222 /* Set by discard_useless_locs if it deleted the last location of any
223 value. */
224 static int values_became_useless;
225
226 /* Used as stop element of the containing_mem list so we can check
227 presence in the list by checking the next pointer. */
228 static cselib_val dummy_val;
229
230 /* If non-NULL, value of the eliminated arg_pointer_rtx or frame_pointer_rtx
231 that is constant through the whole function and should never be
232 eliminated. */
233 static cselib_val *cfa_base_preserved_val;
234 static unsigned int cfa_base_preserved_regno = INVALID_REGNUM;
235
236 /* Used to list all values that contain memory reference.
237 May or may not contain the useless values - the list is compacted
238 each time memory is invalidated. */
239 static cselib_val *first_containing_mem = &dummy_val;
240
241 static object_allocator<elt_list> elt_list_pool ("elt_list");
242 static object_allocator<elt_loc_list> elt_loc_list_pool ("elt_loc_list");
243 static object_allocator<cselib_val> cselib_val_pool ("cselib_val_list");
244
245 static pool_allocator value_pool ("value", RTX_CODE_SIZE (VALUE));
246
247 /* If nonnull, cselib will call this function before freeing useless
248 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
249 void (*cselib_discard_hook) (cselib_val *);
250
251 /* If nonnull, cselib will call this function before recording sets or
252 even clobbering outputs of INSN. All the recorded sets will be
253 represented in the array sets[n_sets]. new_val_min can be used to
254 tell whether values present in sets are introduced by this
255 instruction. */
256 void (*cselib_record_sets_hook) (rtx_insn *insn, struct cselib_set *sets,
257 int n_sets);
258
259 #define PRESERVED_VALUE_P(RTX) \
260 (RTL_FLAG_CHECK1 ("PRESERVED_VALUE_P", (RTX), VALUE)->unchanging)
261
262 #define SP_BASED_VALUE_P(RTX) \
263 (RTL_FLAG_CHECK1 ("SP_BASED_VALUE_P", (RTX), VALUE)->jump)
264
265 \f
266
267 /* Allocate a struct elt_list and fill in its two elements with the
268 arguments. */
269
270 static inline struct elt_list *
271 new_elt_list (struct elt_list *next, cselib_val *elt)
272 {
273 elt_list *el = elt_list_pool.allocate ();
274 el->next = next;
275 el->elt = elt;
276 return el;
277 }
278
279 /* Allocate a struct elt_loc_list with LOC and prepend it to VAL's loc
280 list. */
281
282 static inline void
283 new_elt_loc_list (cselib_val *val, rtx loc)
284 {
285 struct elt_loc_list *el, *next = val->locs;
286
287 gcc_checking_assert (!next || !next->setting_insn
288 || !DEBUG_INSN_P (next->setting_insn)
289 || cselib_current_insn == next->setting_insn);
290
291 /* If we're creating the first loc in a debug insn context, we've
292 just created a debug value. Count it. */
293 if (!next && cselib_current_insn && DEBUG_INSN_P (cselib_current_insn))
294 n_debug_values++;
295
296 val = canonical_cselib_val (val);
297 next = val->locs;
298
299 if (GET_CODE (loc) == VALUE)
300 {
301 loc = canonical_cselib_val (CSELIB_VAL_PTR (loc))->val_rtx;
302
303 gcc_checking_assert (PRESERVED_VALUE_P (loc)
304 == PRESERVED_VALUE_P (val->val_rtx));
305
306 if (val->val_rtx == loc)
307 return;
308 else if (val->uid > CSELIB_VAL_PTR (loc)->uid)
309 {
310 /* Reverse the insertion. */
311 new_elt_loc_list (CSELIB_VAL_PTR (loc), val->val_rtx);
312 return;
313 }
314
315 gcc_checking_assert (val->uid < CSELIB_VAL_PTR (loc)->uid);
316
317 if (CSELIB_VAL_PTR (loc)->locs)
318 {
319 /* Bring all locs from LOC to VAL. */
320 for (el = CSELIB_VAL_PTR (loc)->locs; el->next; el = el->next)
321 {
322 /* Adjust values that have LOC as canonical so that VAL
323 becomes their canonical. */
324 if (el->loc && GET_CODE (el->loc) == VALUE)
325 {
326 gcc_checking_assert (CSELIB_VAL_PTR (el->loc)->locs->loc
327 == loc);
328 CSELIB_VAL_PTR (el->loc)->locs->loc = val->val_rtx;
329 }
330 }
331 el->next = val->locs;
332 next = val->locs = CSELIB_VAL_PTR (loc)->locs;
333 }
334
335 if (CSELIB_VAL_PTR (loc)->addr_list)
336 {
337 /* Bring in addr_list into canonical node. */
338 struct elt_list *last = CSELIB_VAL_PTR (loc)->addr_list;
339 while (last->next)
340 last = last->next;
341 last->next = val->addr_list;
342 val->addr_list = CSELIB_VAL_PTR (loc)->addr_list;
343 CSELIB_VAL_PTR (loc)->addr_list = NULL;
344 }
345
346 if (CSELIB_VAL_PTR (loc)->next_containing_mem != NULL
347 && val->next_containing_mem == NULL)
348 {
349 /* Add VAL to the containing_mem list after LOC. LOC will
350 be removed when we notice it doesn't contain any
351 MEMs. */
352 val->next_containing_mem = CSELIB_VAL_PTR (loc)->next_containing_mem;
353 CSELIB_VAL_PTR (loc)->next_containing_mem = val;
354 }
355
356 /* Chain LOC back to VAL. */
357 el = elt_loc_list_pool.allocate ();
358 el->loc = val->val_rtx;
359 el->setting_insn = cselib_current_insn;
360 el->next = NULL;
361 CSELIB_VAL_PTR (loc)->locs = el;
362 }
363
364 el = elt_loc_list_pool.allocate ();
365 el->loc = loc;
366 el->setting_insn = cselib_current_insn;
367 el->next = next;
368 val->locs = el;
369 }
370
371 /* Promote loc L to a nondebug cselib_current_insn if L is marked as
372 originating from a debug insn, maintaining the debug values
373 count. */
374
375 static inline void
376 promote_debug_loc (struct elt_loc_list *l)
377 {
378 if (l && l->setting_insn && DEBUG_INSN_P (l->setting_insn)
379 && (!cselib_current_insn || !DEBUG_INSN_P (cselib_current_insn)))
380 {
381 n_debug_values--;
382 l->setting_insn = cselib_current_insn;
383 if (cselib_preserve_constants && l->next)
384 {
385 gcc_assert (l->next->setting_insn
386 && DEBUG_INSN_P (l->next->setting_insn)
387 && !l->next->next);
388 l->next->setting_insn = cselib_current_insn;
389 }
390 else
391 gcc_assert (!l->next);
392 }
393 }
394
395 /* The elt_list at *PL is no longer needed. Unchain it and free its
396 storage. */
397
398 static inline void
399 unchain_one_elt_list (struct elt_list **pl)
400 {
401 struct elt_list *l = *pl;
402
403 *pl = l->next;
404 elt_list_pool.remove (l);
405 }
406
407 /* Likewise for elt_loc_lists. */
408
409 static void
410 unchain_one_elt_loc_list (struct elt_loc_list **pl)
411 {
412 struct elt_loc_list *l = *pl;
413
414 *pl = l->next;
415 elt_loc_list_pool.remove (l);
416 }
417
418 /* Likewise for cselib_vals. This also frees the addr_list associated with
419 V. */
420
421 static void
422 unchain_one_value (cselib_val *v)
423 {
424 while (v->addr_list)
425 unchain_one_elt_list (&v->addr_list);
426
427 cselib_val_pool.remove (v);
428 }
429
430 /* Remove all entries from the hash table. Also used during
431 initialization. */
432
433 void
434 cselib_clear_table (void)
435 {
436 cselib_reset_table (1);
437 }
438
439 /* Return TRUE if V is a constant, a function invariant or a VALUE
440 equivalence; FALSE otherwise. */
441
442 static bool
443 invariant_or_equiv_p (cselib_val *v)
444 {
445 struct elt_loc_list *l;
446
447 if (v == cfa_base_preserved_val)
448 return true;
449
450 /* Keep VALUE equivalences around. */
451 for (l = v->locs; l; l = l->next)
452 if (GET_CODE (l->loc) == VALUE)
453 return true;
454
455 if (v->locs != NULL
456 && v->locs->next == NULL)
457 {
458 if (CONSTANT_P (v->locs->loc)
459 && (GET_CODE (v->locs->loc) != CONST
460 || !references_value_p (v->locs->loc, 0)))
461 return true;
462 /* Although a debug expr may be bound to different expressions,
463 we can preserve it as if it was constant, to get unification
464 and proper merging within var-tracking. */
465 if (GET_CODE (v->locs->loc) == DEBUG_EXPR
466 || GET_CODE (v->locs->loc) == DEBUG_IMPLICIT_PTR
467 || GET_CODE (v->locs->loc) == ENTRY_VALUE
468 || GET_CODE (v->locs->loc) == DEBUG_PARAMETER_REF)
469 return true;
470
471 /* (plus (value V) (const_int C)) is invariant iff V is invariant. */
472 if (GET_CODE (v->locs->loc) == PLUS
473 && CONST_INT_P (XEXP (v->locs->loc, 1))
474 && GET_CODE (XEXP (v->locs->loc, 0)) == VALUE
475 && invariant_or_equiv_p (CSELIB_VAL_PTR (XEXP (v->locs->loc, 0))))
476 return true;
477 }
478
479 return false;
480 }
481
482 /* Remove from hash table all VALUEs except constants, function
483 invariants and VALUE equivalences. */
484
485 int
486 preserve_constants_and_equivs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
487 {
488 cselib_val *v = *x;
489
490 if (invariant_or_equiv_p (v))
491 {
492 cselib_hasher::key lookup = {
493 GET_MODE (v->val_rtx), v->val_rtx, VOIDmode
494 };
495 cselib_val **slot
496 = cselib_preserved_hash_table->find_slot_with_hash (&lookup,
497 v->hash, INSERT);
498 gcc_assert (!*slot);
499 *slot = v;
500 }
501
502 cselib_hash_table->clear_slot (x);
503
504 return 1;
505 }
506
507 /* Remove all entries from the hash table, arranging for the next
508 value to be numbered NUM. */
509
510 void
511 cselib_reset_table (unsigned int num)
512 {
513 unsigned int i;
514
515 max_value_regs = 0;
516
517 if (cfa_base_preserved_val)
518 {
519 unsigned int regno = cfa_base_preserved_regno;
520 unsigned int new_used_regs = 0;
521 for (i = 0; i < n_used_regs; i++)
522 if (used_regs[i] == regno)
523 {
524 new_used_regs = 1;
525 continue;
526 }
527 else
528 REG_VALUES (used_regs[i]) = 0;
529 gcc_assert (new_used_regs == 1);
530 n_used_regs = new_used_regs;
531 used_regs[0] = regno;
532 max_value_regs
533 = hard_regno_nregs[regno][GET_MODE (cfa_base_preserved_val->locs->loc)];
534 }
535 else
536 {
537 for (i = 0; i < n_used_regs; i++)
538 REG_VALUES (used_regs[i]) = 0;
539 n_used_regs = 0;
540 }
541
542 if (cselib_preserve_constants)
543 cselib_hash_table->traverse <void *, preserve_constants_and_equivs>
544 (NULL);
545 else
546 {
547 cselib_hash_table->empty ();
548 gcc_checking_assert (!cselib_any_perm_equivs);
549 }
550
551 n_useless_values = 0;
552 n_useless_debug_values = 0;
553 n_debug_values = 0;
554
555 next_uid = num;
556
557 first_containing_mem = &dummy_val;
558 }
559
560 /* Return the number of the next value that will be generated. */
561
562 unsigned int
563 cselib_get_next_uid (void)
564 {
565 return next_uid;
566 }
567
568 /* Search for X, whose hashcode is HASH, in CSELIB_HASH_TABLE,
569 INSERTing if requested. When X is part of the address of a MEM,
570 MEMMODE should specify the mode of the MEM. */
571
572 static cselib_val **
573 cselib_find_slot (machine_mode mode, rtx x, hashval_t hash,
574 enum insert_option insert, machine_mode memmode)
575 {
576 cselib_val **slot = NULL;
577 cselib_hasher::key lookup = { mode, x, memmode };
578 if (cselib_preserve_constants)
579 slot = cselib_preserved_hash_table->find_slot_with_hash (&lookup, hash,
580 NO_INSERT);
581 if (!slot)
582 slot = cselib_hash_table->find_slot_with_hash (&lookup, hash, insert);
583 return slot;
584 }
585
586 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
587 only return true for values which point to a cselib_val whose value
588 element has been set to zero, which implies the cselib_val will be
589 removed. */
590
591 int
592 references_value_p (const_rtx x, int only_useless)
593 {
594 const enum rtx_code code = GET_CODE (x);
595 const char *fmt = GET_RTX_FORMAT (code);
596 int i, j;
597
598 if (GET_CODE (x) == VALUE
599 && (! only_useless ||
600 (CSELIB_VAL_PTR (x)->locs == 0 && !PRESERVED_VALUE_P (x))))
601 return 1;
602
603 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
604 {
605 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
606 return 1;
607 else if (fmt[i] == 'E')
608 for (j = 0; j < XVECLEN (x, i); j++)
609 if (references_value_p (XVECEXP (x, i, j), only_useless))
610 return 1;
611 }
612
613 return 0;
614 }
615
616 /* For all locations found in X, delete locations that reference useless
617 values (i.e. values without any location). Called through
618 htab_traverse. */
619
620 int
621 discard_useless_locs (cselib_val **x, void *info ATTRIBUTE_UNUSED)
622 {
623 cselib_val *v = *x;
624 struct elt_loc_list **p = &v->locs;
625 bool had_locs = v->locs != NULL;
626 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
627
628 while (*p)
629 {
630 if (references_value_p ((*p)->loc, 1))
631 unchain_one_elt_loc_list (p);
632 else
633 p = &(*p)->next;
634 }
635
636 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
637 {
638 if (setting_insn && DEBUG_INSN_P (setting_insn))
639 n_useless_debug_values++;
640 else
641 n_useless_values++;
642 values_became_useless = 1;
643 }
644 return 1;
645 }
646
647 /* If X is a value with no locations, remove it from the hashtable. */
648
649 int
650 discard_useless_values (cselib_val **x, void *info ATTRIBUTE_UNUSED)
651 {
652 cselib_val *v = *x;
653
654 if (v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
655 {
656 if (cselib_discard_hook)
657 cselib_discard_hook (v);
658
659 CSELIB_VAL_PTR (v->val_rtx) = NULL;
660 cselib_hash_table->clear_slot (x);
661 unchain_one_value (v);
662 n_useless_values--;
663 }
664
665 return 1;
666 }
667
668 /* Clean out useless values (i.e. those which no longer have locations
669 associated with them) from the hash table. */
670
671 static void
672 remove_useless_values (void)
673 {
674 cselib_val **p, *v;
675
676 /* First pass: eliminate locations that reference the value. That in
677 turn can make more values useless. */
678 do
679 {
680 values_became_useless = 0;
681 cselib_hash_table->traverse <void *, discard_useless_locs> (NULL);
682 }
683 while (values_became_useless);
684
685 /* Second pass: actually remove the values. */
686
687 p = &first_containing_mem;
688 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
689 if (v->locs && v == canonical_cselib_val (v))
690 {
691 *p = v;
692 p = &(*p)->next_containing_mem;
693 }
694 *p = &dummy_val;
695
696 n_useless_values += n_useless_debug_values;
697 n_debug_values -= n_useless_debug_values;
698 n_useless_debug_values = 0;
699
700 cselib_hash_table->traverse <void *, discard_useless_values> (NULL);
701
702 gcc_assert (!n_useless_values);
703 }
704
705 /* Arrange for a value to not be removed from the hash table even if
706 it becomes useless. */
707
708 void
709 cselib_preserve_value (cselib_val *v)
710 {
711 PRESERVED_VALUE_P (v->val_rtx) = 1;
712 }
713
714 /* Test whether a value is preserved. */
715
716 bool
717 cselib_preserved_value_p (cselib_val *v)
718 {
719 return PRESERVED_VALUE_P (v->val_rtx);
720 }
721
722 /* Arrange for a REG value to be assumed constant through the whole function,
723 never invalidated and preserved across cselib_reset_table calls. */
724
725 void
726 cselib_preserve_cfa_base_value (cselib_val *v, unsigned int regno)
727 {
728 if (cselib_preserve_constants
729 && v->locs
730 && REG_P (v->locs->loc))
731 {
732 cfa_base_preserved_val = v;
733 cfa_base_preserved_regno = regno;
734 }
735 }
736
737 /* Clean all non-constant expressions in the hash table, but retain
738 their values. */
739
740 void
741 cselib_preserve_only_values (void)
742 {
743 int i;
744
745 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
746 cselib_invalidate_regno (i, reg_raw_mode[i]);
747
748 cselib_invalidate_mem (callmem);
749
750 remove_useless_values ();
751
752 gcc_assert (first_containing_mem == &dummy_val);
753 }
754
755 /* Arrange for a value to be marked as based on stack pointer
756 for find_base_term purposes. */
757
758 void
759 cselib_set_value_sp_based (cselib_val *v)
760 {
761 SP_BASED_VALUE_P (v->val_rtx) = 1;
762 }
763
764 /* Test whether a value is based on stack pointer for
765 find_base_term purposes. */
766
767 bool
768 cselib_sp_based_value_p (cselib_val *v)
769 {
770 return SP_BASED_VALUE_P (v->val_rtx);
771 }
772
773 /* Return the mode in which a register was last set. If X is not a
774 register, return its mode. If the mode in which the register was
775 set is not known, or the value was already clobbered, return
776 VOIDmode. */
777
778 machine_mode
779 cselib_reg_set_mode (const_rtx x)
780 {
781 if (!REG_P (x))
782 return GET_MODE (x);
783
784 if (REG_VALUES (REGNO (x)) == NULL
785 || REG_VALUES (REGNO (x))->elt == NULL)
786 return VOIDmode;
787
788 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
789 }
790
791 /* If x is a PLUS or an autoinc operation, expand the operation,
792 storing the offset, if any, in *OFF. */
793
794 static rtx
795 autoinc_split (rtx x, rtx *off, machine_mode memmode)
796 {
797 switch (GET_CODE (x))
798 {
799 case PLUS:
800 *off = XEXP (x, 1);
801 return XEXP (x, 0);
802
803 case PRE_DEC:
804 if (memmode == VOIDmode)
805 return x;
806
807 *off = GEN_INT (-GET_MODE_SIZE (memmode));
808 return XEXP (x, 0);
809
810 case PRE_INC:
811 if (memmode == VOIDmode)
812 return x;
813
814 *off = GEN_INT (GET_MODE_SIZE (memmode));
815 return XEXP (x, 0);
816
817 case PRE_MODIFY:
818 return XEXP (x, 1);
819
820 case POST_DEC:
821 case POST_INC:
822 case POST_MODIFY:
823 return XEXP (x, 0);
824
825 default:
826 return x;
827 }
828 }
829
830 /* Return nonzero if we can prove that X and Y contain the same value,
831 taking our gathered information into account. MEMMODE holds the
832 mode of the enclosing MEM, if any, as required to deal with autoinc
833 addressing modes. If X and Y are not (known to be) part of
834 addresses, MEMMODE should be VOIDmode. */
835
836 int
837 rtx_equal_for_cselib_1 (rtx x, rtx y, machine_mode memmode, int depth)
838 {
839 enum rtx_code code;
840 const char *fmt;
841 int i;
842
843 if (REG_P (x) || MEM_P (x))
844 {
845 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0, memmode);
846
847 if (e)
848 x = e->val_rtx;
849 }
850
851 if (REG_P (y) || MEM_P (y))
852 {
853 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0, memmode);
854
855 if (e)
856 y = e->val_rtx;
857 }
858
859 if (x == y)
860 return 1;
861
862 if (GET_CODE (x) == VALUE)
863 {
864 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (x));
865 struct elt_loc_list *l;
866
867 if (GET_CODE (y) == VALUE)
868 return e == canonical_cselib_val (CSELIB_VAL_PTR (y));
869
870 if (depth == 128)
871 return 0;
872
873 for (l = e->locs; l; l = l->next)
874 {
875 rtx t = l->loc;
876
877 /* Avoid infinite recursion. We know we have the canonical
878 value, so we can just skip any values in the equivalence
879 list. */
880 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
881 continue;
882 else if (rtx_equal_for_cselib_1 (t, y, memmode, depth + 1))
883 return 1;
884 }
885
886 return 0;
887 }
888 else if (GET_CODE (y) == VALUE)
889 {
890 cselib_val *e = canonical_cselib_val (CSELIB_VAL_PTR (y));
891 struct elt_loc_list *l;
892
893 if (depth == 128)
894 return 0;
895
896 for (l = e->locs; l; l = l->next)
897 {
898 rtx t = l->loc;
899
900 if (REG_P (t) || MEM_P (t) || GET_CODE (t) == VALUE)
901 continue;
902 else if (rtx_equal_for_cselib_1 (x, t, memmode, depth + 1))
903 return 1;
904 }
905
906 return 0;
907 }
908
909 if (GET_MODE (x) != GET_MODE (y))
910 return 0;
911
912 if (GET_CODE (x) != GET_CODE (y))
913 {
914 rtx xorig = x, yorig = y;
915 rtx xoff = NULL, yoff = NULL;
916
917 x = autoinc_split (x, &xoff, memmode);
918 y = autoinc_split (y, &yoff, memmode);
919
920 if (!xoff != !yoff)
921 return 0;
922
923 if (xoff && !rtx_equal_for_cselib_1 (xoff, yoff, memmode, depth))
924 return 0;
925
926 /* Don't recurse if nothing changed. */
927 if (x != xorig || y != yorig)
928 return rtx_equal_for_cselib_1 (x, y, memmode, depth);
929
930 return 0;
931 }
932
933 /* These won't be handled correctly by the code below. */
934 switch (GET_CODE (x))
935 {
936 CASE_CONST_UNIQUE:
937 case DEBUG_EXPR:
938 return 0;
939
940 case DEBUG_IMPLICIT_PTR:
941 return DEBUG_IMPLICIT_PTR_DECL (x)
942 == DEBUG_IMPLICIT_PTR_DECL (y);
943
944 case DEBUG_PARAMETER_REF:
945 return DEBUG_PARAMETER_REF_DECL (x)
946 == DEBUG_PARAMETER_REF_DECL (y);
947
948 case ENTRY_VALUE:
949 /* ENTRY_VALUEs are function invariant, it is thus undesirable to
950 use rtx_equal_for_cselib_1 to compare the operands. */
951 return rtx_equal_p (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
952
953 case LABEL_REF:
954 return label_ref_label (x) == label_ref_label (y);
955
956 case REG:
957 return REGNO (x) == REGNO (y);
958
959 case MEM:
960 /* We have to compare any autoinc operations in the addresses
961 using this MEM's mode. */
962 return rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 0), GET_MODE (x),
963 depth);
964
965 default:
966 break;
967 }
968
969 code = GET_CODE (x);
970 fmt = GET_RTX_FORMAT (code);
971
972 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
973 {
974 int j;
975
976 switch (fmt[i])
977 {
978 case 'w':
979 if (XWINT (x, i) != XWINT (y, i))
980 return 0;
981 break;
982
983 case 'n':
984 case 'i':
985 if (XINT (x, i) != XINT (y, i))
986 return 0;
987 break;
988
989 case 'V':
990 case 'E':
991 /* Two vectors must have the same length. */
992 if (XVECLEN (x, i) != XVECLEN (y, i))
993 return 0;
994
995 /* And the corresponding elements must match. */
996 for (j = 0; j < XVECLEN (x, i); j++)
997 if (! rtx_equal_for_cselib_1 (XVECEXP (x, i, j),
998 XVECEXP (y, i, j), memmode, depth))
999 return 0;
1000 break;
1001
1002 case 'e':
1003 if (i == 1
1004 && targetm.commutative_p (x, UNKNOWN)
1005 && rtx_equal_for_cselib_1 (XEXP (x, 1), XEXP (y, 0), memmode,
1006 depth)
1007 && rtx_equal_for_cselib_1 (XEXP (x, 0), XEXP (y, 1), memmode,
1008 depth))
1009 return 1;
1010 if (! rtx_equal_for_cselib_1 (XEXP (x, i), XEXP (y, i), memmode,
1011 depth))
1012 return 0;
1013 break;
1014
1015 case 'S':
1016 case 's':
1017 if (strcmp (XSTR (x, i), XSTR (y, i)))
1018 return 0;
1019 break;
1020
1021 case 'u':
1022 /* These are just backpointers, so they don't matter. */
1023 break;
1024
1025 case '0':
1026 case 't':
1027 break;
1028
1029 /* It is believed that rtx's at this level will never
1030 contain anything but integers and other rtx's,
1031 except for within LABEL_REFs and SYMBOL_REFs. */
1032 default:
1033 gcc_unreachable ();
1034 }
1035 }
1036 return 1;
1037 }
1038
1039 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
1040 For registers and memory locations, we look up their cselib_val structure
1041 and return its VALUE element.
1042 Possible reasons for return 0 are: the object is volatile, or we couldn't
1043 find a register or memory location in the table and CREATE is zero. If
1044 CREATE is nonzero, table elts are created for regs and mem.
1045 N.B. this hash function returns the same hash value for RTXes that
1046 differ only in the order of operands, thus it is suitable for comparisons
1047 that take commutativity into account.
1048 If we wanted to also support associative rules, we'd have to use a different
1049 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
1050 MEMMODE indicates the mode of an enclosing MEM, and it's only
1051 used to compute autoinc values.
1052 We used to have a MODE argument for hashing for CONST_INTs, but that
1053 didn't make sense, since it caused spurious hash differences between
1054 (set (reg:SI 1) (const_int))
1055 (plus:SI (reg:SI 2) (reg:SI 1))
1056 and
1057 (plus:SI (reg:SI 2) (const_int))
1058 If the mode is important in any context, it must be checked specifically
1059 in a comparison anyway, since relying on hash differences is unsafe. */
1060
1061 static unsigned int
1062 cselib_hash_rtx (rtx x, int create, machine_mode memmode)
1063 {
1064 cselib_val *e;
1065 int i, j;
1066 enum rtx_code code;
1067 const char *fmt;
1068 unsigned int hash = 0;
1069
1070 code = GET_CODE (x);
1071 hash += (unsigned) code + (unsigned) GET_MODE (x);
1072
1073 switch (code)
1074 {
1075 case VALUE:
1076 e = CSELIB_VAL_PTR (x);
1077 return e->hash;
1078
1079 case MEM:
1080 case REG:
1081 e = cselib_lookup (x, GET_MODE (x), create, memmode);
1082 if (! e)
1083 return 0;
1084
1085 return e->hash;
1086
1087 case DEBUG_EXPR:
1088 hash += ((unsigned) DEBUG_EXPR << 7)
1089 + DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x));
1090 return hash ? hash : (unsigned int) DEBUG_EXPR;
1091
1092 case DEBUG_IMPLICIT_PTR:
1093 hash += ((unsigned) DEBUG_IMPLICIT_PTR << 7)
1094 + DECL_UID (DEBUG_IMPLICIT_PTR_DECL (x));
1095 return hash ? hash : (unsigned int) DEBUG_IMPLICIT_PTR;
1096
1097 case DEBUG_PARAMETER_REF:
1098 hash += ((unsigned) DEBUG_PARAMETER_REF << 7)
1099 + DECL_UID (DEBUG_PARAMETER_REF_DECL (x));
1100 return hash ? hash : (unsigned int) DEBUG_PARAMETER_REF;
1101
1102 case ENTRY_VALUE:
1103 /* ENTRY_VALUEs are function invariant, thus try to avoid
1104 recursing on argument if ENTRY_VALUE is one of the
1105 forms emitted by expand_debug_expr, otherwise
1106 ENTRY_VALUE hash would depend on the current value
1107 in some register or memory. */
1108 if (REG_P (ENTRY_VALUE_EXP (x)))
1109 hash += (unsigned int) REG
1110 + (unsigned int) GET_MODE (ENTRY_VALUE_EXP (x))
1111 + (unsigned int) REGNO (ENTRY_VALUE_EXP (x));
1112 else if (MEM_P (ENTRY_VALUE_EXP (x))
1113 && REG_P (XEXP (ENTRY_VALUE_EXP (x), 0)))
1114 hash += (unsigned int) MEM
1115 + (unsigned int) GET_MODE (XEXP (ENTRY_VALUE_EXP (x), 0))
1116 + (unsigned int) REGNO (XEXP (ENTRY_VALUE_EXP (x), 0));
1117 else
1118 hash += cselib_hash_rtx (ENTRY_VALUE_EXP (x), create, memmode);
1119 return hash ? hash : (unsigned int) ENTRY_VALUE;
1120
1121 case CONST_INT:
1122 hash += ((unsigned) CONST_INT << 7) + UINTVAL (x);
1123 return hash ? hash : (unsigned int) CONST_INT;
1124
1125 case CONST_WIDE_INT:
1126 for (i = 0; i < CONST_WIDE_INT_NUNITS (x); i++)
1127 hash += CONST_WIDE_INT_ELT (x, i);
1128 return hash;
1129
1130 case CONST_DOUBLE:
1131 /* This is like the general case, except that it only counts
1132 the integers representing the constant. */
1133 hash += (unsigned) code + (unsigned) GET_MODE (x);
1134 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
1135 hash += ((unsigned) CONST_DOUBLE_LOW (x)
1136 + (unsigned) CONST_DOUBLE_HIGH (x));
1137 else
1138 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
1139 return hash ? hash : (unsigned int) CONST_DOUBLE;
1140
1141 case CONST_FIXED:
1142 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
1143 hash += fixed_hash (CONST_FIXED_VALUE (x));
1144 return hash ? hash : (unsigned int) CONST_FIXED;
1145
1146 case CONST_VECTOR:
1147 {
1148 int units;
1149 rtx elt;
1150
1151 units = CONST_VECTOR_NUNITS (x);
1152
1153 for (i = 0; i < units; ++i)
1154 {
1155 elt = CONST_VECTOR_ELT (x, i);
1156 hash += cselib_hash_rtx (elt, 0, memmode);
1157 }
1158
1159 return hash;
1160 }
1161
1162 /* Assume there is only one rtx object for any given label. */
1163 case LABEL_REF:
1164 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1165 differences and differences between each stage's debugging dumps. */
1166 hash += (((unsigned int) LABEL_REF << 7)
1167 + CODE_LABEL_NUMBER (label_ref_label (x)));
1168 return hash ? hash : (unsigned int) LABEL_REF;
1169
1170 case SYMBOL_REF:
1171 {
1172 /* Don't hash on the symbol's address to avoid bootstrap differences.
1173 Different hash values may cause expressions to be recorded in
1174 different orders and thus different registers to be used in the
1175 final assembler. This also avoids differences in the dump files
1176 between various stages. */
1177 unsigned int h = 0;
1178 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
1179
1180 while (*p)
1181 h += (h << 7) + *p++; /* ??? revisit */
1182
1183 hash += ((unsigned int) SYMBOL_REF << 7) + h;
1184 return hash ? hash : (unsigned int) SYMBOL_REF;
1185 }
1186
1187 case PRE_DEC:
1188 case PRE_INC:
1189 /* We can't compute these without knowing the MEM mode. */
1190 gcc_assert (memmode != VOIDmode);
1191 i = GET_MODE_SIZE (memmode);
1192 if (code == PRE_DEC)
1193 i = -i;
1194 /* Adjust the hash so that (mem:MEMMODE (pre_* (reg))) hashes
1195 like (mem:MEMMODE (plus (reg) (const_int I))). */
1196 hash += (unsigned) PLUS - (unsigned)code
1197 + cselib_hash_rtx (XEXP (x, 0), create, memmode)
1198 + cselib_hash_rtx (GEN_INT (i), create, memmode);
1199 return hash ? hash : 1 + (unsigned) PLUS;
1200
1201 case PRE_MODIFY:
1202 gcc_assert (memmode != VOIDmode);
1203 return cselib_hash_rtx (XEXP (x, 1), create, memmode);
1204
1205 case POST_DEC:
1206 case POST_INC:
1207 case POST_MODIFY:
1208 gcc_assert (memmode != VOIDmode);
1209 return cselib_hash_rtx (XEXP (x, 0), create, memmode);
1210
1211 case PC:
1212 case CC0:
1213 case CALL:
1214 case UNSPEC_VOLATILE:
1215 return 0;
1216
1217 case ASM_OPERANDS:
1218 if (MEM_VOLATILE_P (x))
1219 return 0;
1220
1221 break;
1222
1223 default:
1224 break;
1225 }
1226
1227 i = GET_RTX_LENGTH (code) - 1;
1228 fmt = GET_RTX_FORMAT (code);
1229 for (; i >= 0; i--)
1230 {
1231 switch (fmt[i])
1232 {
1233 case 'e':
1234 {
1235 rtx tem = XEXP (x, i);
1236 unsigned int tem_hash = cselib_hash_rtx (tem, create, memmode);
1237
1238 if (tem_hash == 0)
1239 return 0;
1240
1241 hash += tem_hash;
1242 }
1243 break;
1244 case 'E':
1245 for (j = 0; j < XVECLEN (x, i); j++)
1246 {
1247 unsigned int tem_hash
1248 = cselib_hash_rtx (XVECEXP (x, i, j), create, memmode);
1249
1250 if (tem_hash == 0)
1251 return 0;
1252
1253 hash += tem_hash;
1254 }
1255 break;
1256
1257 case 's':
1258 {
1259 const unsigned char *p = (const unsigned char *) XSTR (x, i);
1260
1261 if (p)
1262 while (*p)
1263 hash += *p++;
1264 break;
1265 }
1266
1267 case 'i':
1268 hash += XINT (x, i);
1269 break;
1270
1271 case '0':
1272 case 't':
1273 /* unused */
1274 break;
1275
1276 default:
1277 gcc_unreachable ();
1278 }
1279 }
1280
1281 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
1282 }
1283
1284 /* Create a new value structure for VALUE and initialize it. The mode of the
1285 value is MODE. */
1286
1287 static inline cselib_val *
1288 new_cselib_val (unsigned int hash, machine_mode mode, rtx x)
1289 {
1290 cselib_val *e = cselib_val_pool.allocate ();
1291
1292 gcc_assert (hash);
1293 gcc_assert (next_uid);
1294
1295 e->hash = hash;
1296 e->uid = next_uid++;
1297 /* We use an alloc pool to allocate this RTL construct because it
1298 accounts for about 8% of the overall memory usage. We know
1299 precisely when we can have VALUE RTXen (when cselib is active)
1300 so we don't need to put them in garbage collected memory.
1301 ??? Why should a VALUE be an RTX in the first place? */
1302 e->val_rtx = (rtx_def*) value_pool.allocate ();
1303 memset (e->val_rtx, 0, RTX_HDR_SIZE);
1304 PUT_CODE (e->val_rtx, VALUE);
1305 PUT_MODE (e->val_rtx, mode);
1306 CSELIB_VAL_PTR (e->val_rtx) = e;
1307 e->addr_list = 0;
1308 e->locs = 0;
1309 e->next_containing_mem = 0;
1310
1311 if (dump_file && (dump_flags & TDF_CSELIB))
1312 {
1313 fprintf (dump_file, "cselib value %u:%u ", e->uid, hash);
1314 if (flag_dump_noaddr || flag_dump_unnumbered)
1315 fputs ("# ", dump_file);
1316 else
1317 fprintf (dump_file, "%p ", (void*)e);
1318 print_rtl_single (dump_file, x);
1319 fputc ('\n', dump_file);
1320 }
1321
1322 return e;
1323 }
1324
1325 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
1326 contains the data at this address. X is a MEM that represents the
1327 value. Update the two value structures to represent this situation. */
1328
1329 static void
1330 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
1331 {
1332 addr_elt = canonical_cselib_val (addr_elt);
1333 mem_elt = canonical_cselib_val (mem_elt);
1334
1335 /* Avoid duplicates. */
1336 addr_space_t as = MEM_ADDR_SPACE (x);
1337 for (elt_loc_list *l = mem_elt->locs; l; l = l->next)
1338 if (MEM_P (l->loc)
1339 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt
1340 && MEM_ADDR_SPACE (l->loc) == as)
1341 {
1342 promote_debug_loc (l);
1343 return;
1344 }
1345
1346 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
1347 new_elt_loc_list (mem_elt,
1348 replace_equiv_address_nv (x, addr_elt->val_rtx));
1349 if (mem_elt->next_containing_mem == NULL)
1350 {
1351 mem_elt->next_containing_mem = first_containing_mem;
1352 first_containing_mem = mem_elt;
1353 }
1354 }
1355
1356 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
1357 If CREATE, make a new one if we haven't seen it before. */
1358
1359 static cselib_val *
1360 cselib_lookup_mem (rtx x, int create)
1361 {
1362 machine_mode mode = GET_MODE (x);
1363 machine_mode addr_mode;
1364 cselib_val **slot;
1365 cselib_val *addr;
1366 cselib_val *mem_elt;
1367
1368 if (MEM_VOLATILE_P (x) || mode == BLKmode
1369 || !cselib_record_memory
1370 || (FLOAT_MODE_P (mode) && flag_float_store))
1371 return 0;
1372
1373 addr_mode = GET_MODE (XEXP (x, 0));
1374 if (addr_mode == VOIDmode)
1375 addr_mode = Pmode;
1376
1377 /* Look up the value for the address. */
1378 addr = cselib_lookup (XEXP (x, 0), addr_mode, create, mode);
1379 if (! addr)
1380 return 0;
1381 addr = canonical_cselib_val (addr);
1382
1383 /* Find a value that describes a value of our mode at that address. */
1384 addr_space_t as = MEM_ADDR_SPACE (x);
1385 for (elt_list *l = addr->addr_list; l; l = l->next)
1386 if (GET_MODE (l->elt->val_rtx) == mode)
1387 {
1388 for (elt_loc_list *l2 = l->elt->locs; l2; l2 = l2->next)
1389 if (MEM_P (l2->loc) && MEM_ADDR_SPACE (l2->loc) == as)
1390 {
1391 promote_debug_loc (l->elt->locs);
1392 return l->elt;
1393 }
1394 }
1395
1396 if (! create)
1397 return 0;
1398
1399 mem_elt = new_cselib_val (next_uid, mode, x);
1400 add_mem_for_addr (addr, mem_elt, x);
1401 slot = cselib_find_slot (mode, x, mem_elt->hash, INSERT, VOIDmode);
1402 *slot = mem_elt;
1403 return mem_elt;
1404 }
1405
1406 /* Search through the possible substitutions in P. We prefer a non reg
1407 substitution because this allows us to expand the tree further. If
1408 we find, just a reg, take the lowest regno. There may be several
1409 non-reg results, we just take the first one because they will all
1410 expand to the same place. */
1411
1412 static rtx
1413 expand_loc (struct elt_loc_list *p, struct expand_value_data *evd,
1414 int max_depth)
1415 {
1416 rtx reg_result = NULL;
1417 unsigned int regno = UINT_MAX;
1418 struct elt_loc_list *p_in = p;
1419
1420 for (; p; p = p->next)
1421 {
1422 /* Return these right away to avoid returning stack pointer based
1423 expressions for frame pointer and vice versa, which is something
1424 that would confuse DSE. See the comment in cselib_expand_value_rtx_1
1425 for more details. */
1426 if (REG_P (p->loc)
1427 && (REGNO (p->loc) == STACK_POINTER_REGNUM
1428 || REGNO (p->loc) == FRAME_POINTER_REGNUM
1429 || REGNO (p->loc) == HARD_FRAME_POINTER_REGNUM
1430 || REGNO (p->loc) == cfa_base_preserved_regno))
1431 return p->loc;
1432 /* Avoid infinite recursion trying to expand a reg into a
1433 the same reg. */
1434 if ((REG_P (p->loc))
1435 && (REGNO (p->loc) < regno)
1436 && !bitmap_bit_p (evd->regs_active, REGNO (p->loc)))
1437 {
1438 reg_result = p->loc;
1439 regno = REGNO (p->loc);
1440 }
1441 /* Avoid infinite recursion and do not try to expand the
1442 value. */
1443 else if (GET_CODE (p->loc) == VALUE
1444 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
1445 continue;
1446 else if (!REG_P (p->loc))
1447 {
1448 rtx result, note;
1449 if (dump_file && (dump_flags & TDF_CSELIB))
1450 {
1451 print_inline_rtx (dump_file, p->loc, 0);
1452 fprintf (dump_file, "\n");
1453 }
1454 if (GET_CODE (p->loc) == LO_SUM
1455 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
1456 && p->setting_insn
1457 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
1458 && XEXP (note, 0) == XEXP (p->loc, 1))
1459 return XEXP (p->loc, 1);
1460 result = cselib_expand_value_rtx_1 (p->loc, evd, max_depth - 1);
1461 if (result)
1462 return result;
1463 }
1464
1465 }
1466
1467 if (regno != UINT_MAX)
1468 {
1469 rtx result;
1470 if (dump_file && (dump_flags & TDF_CSELIB))
1471 fprintf (dump_file, "r%d\n", regno);
1472
1473 result = cselib_expand_value_rtx_1 (reg_result, evd, max_depth - 1);
1474 if (result)
1475 return result;
1476 }
1477
1478 if (dump_file && (dump_flags & TDF_CSELIB))
1479 {
1480 if (reg_result)
1481 {
1482 print_inline_rtx (dump_file, reg_result, 0);
1483 fprintf (dump_file, "\n");
1484 }
1485 else
1486 fprintf (dump_file, "NULL\n");
1487 }
1488 return reg_result;
1489 }
1490
1491
1492 /* Forward substitute and expand an expression out to its roots.
1493 This is the opposite of common subexpression. Because local value
1494 numbering is such a weak optimization, the expanded expression is
1495 pretty much unique (not from a pointer equals point of view but
1496 from a tree shape point of view.
1497
1498 This function returns NULL if the expansion fails. The expansion
1499 will fail if there is no value number for one of the operands or if
1500 one of the operands has been overwritten between the current insn
1501 and the beginning of the basic block. For instance x has no
1502 expansion in:
1503
1504 r1 <- r1 + 3
1505 x <- r1 + 8
1506
1507 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
1508 It is clear on return. */
1509
1510 rtx
1511 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
1512 {
1513 struct expand_value_data evd;
1514
1515 evd.regs_active = regs_active;
1516 evd.callback = NULL;
1517 evd.callback_arg = NULL;
1518 evd.dummy = false;
1519
1520 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1521 }
1522
1523 /* Same as cselib_expand_value_rtx, but using a callback to try to
1524 resolve some expressions. The CB function should return ORIG if it
1525 can't or does not want to deal with a certain RTX. Any other
1526 return value, including NULL, will be used as the expansion for
1527 VALUE, without any further changes. */
1528
1529 rtx
1530 cselib_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1531 cselib_expand_callback cb, void *data)
1532 {
1533 struct expand_value_data evd;
1534
1535 evd.regs_active = regs_active;
1536 evd.callback = cb;
1537 evd.callback_arg = data;
1538 evd.dummy = false;
1539
1540 return cselib_expand_value_rtx_1 (orig, &evd, max_depth);
1541 }
1542
1543 /* Similar to cselib_expand_value_rtx_cb, but no rtxs are actually copied
1544 or simplified. Useful to find out whether cselib_expand_value_rtx_cb
1545 would return NULL or non-NULL, without allocating new rtx. */
1546
1547 bool
1548 cselib_dummy_expand_value_rtx_cb (rtx orig, bitmap regs_active, int max_depth,
1549 cselib_expand_callback cb, void *data)
1550 {
1551 struct expand_value_data evd;
1552
1553 evd.regs_active = regs_active;
1554 evd.callback = cb;
1555 evd.callback_arg = data;
1556 evd.dummy = true;
1557
1558 return cselib_expand_value_rtx_1 (orig, &evd, max_depth) != NULL;
1559 }
1560
1561 /* Internal implementation of cselib_expand_value_rtx and
1562 cselib_expand_value_rtx_cb. */
1563
1564 static rtx
1565 cselib_expand_value_rtx_1 (rtx orig, struct expand_value_data *evd,
1566 int max_depth)
1567 {
1568 rtx copy, scopy;
1569 int i, j;
1570 RTX_CODE code;
1571 const char *format_ptr;
1572 machine_mode mode;
1573
1574 code = GET_CODE (orig);
1575
1576 /* For the context of dse, if we end up expand into a huge tree, we
1577 will not have a useful address, so we might as well just give up
1578 quickly. */
1579 if (max_depth <= 0)
1580 return NULL;
1581
1582 switch (code)
1583 {
1584 case REG:
1585 {
1586 struct elt_list *l = REG_VALUES (REGNO (orig));
1587
1588 if (l && l->elt == NULL)
1589 l = l->next;
1590 for (; l; l = l->next)
1591 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
1592 {
1593 rtx result;
1594 unsigned regno = REGNO (orig);
1595
1596 /* The only thing that we are not willing to do (this
1597 is requirement of dse and if others potential uses
1598 need this function we should add a parm to control
1599 it) is that we will not substitute the
1600 STACK_POINTER_REGNUM, FRAME_POINTER or the
1601 HARD_FRAME_POINTER.
1602
1603 These expansions confuses the code that notices that
1604 stores into the frame go dead at the end of the
1605 function and that the frame is not effected by calls
1606 to subroutines. If you allow the
1607 STACK_POINTER_REGNUM substitution, then dse will
1608 think that parameter pushing also goes dead which is
1609 wrong. If you allow the FRAME_POINTER or the
1610 HARD_FRAME_POINTER then you lose the opportunity to
1611 make the frame assumptions. */
1612 if (regno == STACK_POINTER_REGNUM
1613 || regno == FRAME_POINTER_REGNUM
1614 || regno == HARD_FRAME_POINTER_REGNUM
1615 || regno == cfa_base_preserved_regno)
1616 return orig;
1617
1618 bitmap_set_bit (evd->regs_active, regno);
1619
1620 if (dump_file && (dump_flags & TDF_CSELIB))
1621 fprintf (dump_file, "expanding: r%d into: ", regno);
1622
1623 result = expand_loc (l->elt->locs, evd, max_depth);
1624 bitmap_clear_bit (evd->regs_active, regno);
1625
1626 if (result)
1627 return result;
1628 else
1629 return orig;
1630 }
1631 return orig;
1632 }
1633
1634 CASE_CONST_ANY:
1635 case SYMBOL_REF:
1636 case CODE_LABEL:
1637 case PC:
1638 case CC0:
1639 case SCRATCH:
1640 /* SCRATCH must be shared because they represent distinct values. */
1641 return orig;
1642 case CLOBBER:
1643 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1644 return orig;
1645 break;
1646
1647 case CONST:
1648 if (shared_const_p (orig))
1649 return orig;
1650 break;
1651
1652 case SUBREG:
1653 {
1654 rtx subreg;
1655
1656 if (evd->callback)
1657 {
1658 subreg = evd->callback (orig, evd->regs_active, max_depth,
1659 evd->callback_arg);
1660 if (subreg != orig)
1661 return subreg;
1662 }
1663
1664 subreg = cselib_expand_value_rtx_1 (SUBREG_REG (orig), evd,
1665 max_depth - 1);
1666 if (!subreg)
1667 return NULL;
1668 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1669 GET_MODE (SUBREG_REG (orig)),
1670 SUBREG_BYTE (orig));
1671 if (scopy == NULL
1672 || (GET_CODE (scopy) == SUBREG
1673 && !REG_P (SUBREG_REG (scopy))
1674 && !MEM_P (SUBREG_REG (scopy))))
1675 return NULL;
1676
1677 return scopy;
1678 }
1679
1680 case VALUE:
1681 {
1682 rtx result;
1683
1684 if (dump_file && (dump_flags & TDF_CSELIB))
1685 {
1686 fputs ("\nexpanding ", dump_file);
1687 print_rtl_single (dump_file, orig);
1688 fputs (" into...", dump_file);
1689 }
1690
1691 if (evd->callback)
1692 {
1693 result = evd->callback (orig, evd->regs_active, max_depth,
1694 evd->callback_arg);
1695
1696 if (result != orig)
1697 return result;
1698 }
1699
1700 result = expand_loc (CSELIB_VAL_PTR (orig)->locs, evd, max_depth);
1701 return result;
1702 }
1703
1704 case DEBUG_EXPR:
1705 if (evd->callback)
1706 return evd->callback (orig, evd->regs_active, max_depth,
1707 evd->callback_arg);
1708 return orig;
1709
1710 default:
1711 break;
1712 }
1713
1714 /* Copy the various flags, fields, and other information. We assume
1715 that all fields need copying, and then clear the fields that should
1716 not be copied. That is the sensible default behavior, and forces
1717 us to explicitly document why we are *not* copying a flag. */
1718 if (evd->dummy)
1719 copy = NULL;
1720 else
1721 copy = shallow_copy_rtx (orig);
1722
1723 format_ptr = GET_RTX_FORMAT (code);
1724
1725 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1726 switch (*format_ptr++)
1727 {
1728 case 'e':
1729 if (XEXP (orig, i) != NULL)
1730 {
1731 rtx result = cselib_expand_value_rtx_1 (XEXP (orig, i), evd,
1732 max_depth - 1);
1733 if (!result)
1734 return NULL;
1735 if (copy)
1736 XEXP (copy, i) = result;
1737 }
1738 break;
1739
1740 case 'E':
1741 case 'V':
1742 if (XVEC (orig, i) != NULL)
1743 {
1744 if (copy)
1745 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1746 for (j = 0; j < XVECLEN (orig, i); j++)
1747 {
1748 rtx result = cselib_expand_value_rtx_1 (XVECEXP (orig, i, j),
1749 evd, max_depth - 1);
1750 if (!result)
1751 return NULL;
1752 if (copy)
1753 XVECEXP (copy, i, j) = result;
1754 }
1755 }
1756 break;
1757
1758 case 't':
1759 case 'w':
1760 case 'i':
1761 case 's':
1762 case 'S':
1763 case 'T':
1764 case 'u':
1765 case 'B':
1766 case '0':
1767 /* These are left unchanged. */
1768 break;
1769
1770 default:
1771 gcc_unreachable ();
1772 }
1773
1774 if (evd->dummy)
1775 return orig;
1776
1777 mode = GET_MODE (copy);
1778 /* If an operand has been simplified into CONST_INT, which doesn't
1779 have a mode and the mode isn't derivable from whole rtx's mode,
1780 try simplify_*_operation first with mode from original's operand
1781 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1782 scopy = copy;
1783 switch (GET_RTX_CLASS (code))
1784 {
1785 case RTX_UNARY:
1786 if (CONST_INT_P (XEXP (copy, 0))
1787 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1788 {
1789 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1790 GET_MODE (XEXP (orig, 0)));
1791 if (scopy)
1792 return scopy;
1793 }
1794 break;
1795 case RTX_COMM_ARITH:
1796 case RTX_BIN_ARITH:
1797 /* These expressions can derive operand modes from the whole rtx's mode. */
1798 break;
1799 case RTX_TERNARY:
1800 case RTX_BITFIELD_OPS:
1801 if (CONST_INT_P (XEXP (copy, 0))
1802 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1803 {
1804 scopy = simplify_ternary_operation (code, mode,
1805 GET_MODE (XEXP (orig, 0)),
1806 XEXP (copy, 0), XEXP (copy, 1),
1807 XEXP (copy, 2));
1808 if (scopy)
1809 return scopy;
1810 }
1811 break;
1812 case RTX_COMPARE:
1813 case RTX_COMM_COMPARE:
1814 if (CONST_INT_P (XEXP (copy, 0))
1815 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1816 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1817 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1818 {
1819 scopy = simplify_relational_operation (code, mode,
1820 (GET_MODE (XEXP (orig, 0))
1821 != VOIDmode)
1822 ? GET_MODE (XEXP (orig, 0))
1823 : GET_MODE (XEXP (orig, 1)),
1824 XEXP (copy, 0),
1825 XEXP (copy, 1));
1826 if (scopy)
1827 return scopy;
1828 }
1829 break;
1830 default:
1831 break;
1832 }
1833 scopy = simplify_rtx (copy);
1834 if (scopy)
1835 return scopy;
1836 return copy;
1837 }
1838
1839 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1840 with VALUE expressions. This way, it becomes independent of changes
1841 to registers and memory.
1842 X isn't actually modified; if modifications are needed, new rtl is
1843 allocated. However, the return value can share rtl with X.
1844 If X is within a MEM, MEMMODE must be the mode of the MEM. */
1845
1846 rtx
1847 cselib_subst_to_values (rtx x, machine_mode memmode)
1848 {
1849 enum rtx_code code = GET_CODE (x);
1850 const char *fmt = GET_RTX_FORMAT (code);
1851 cselib_val *e;
1852 struct elt_list *l;
1853 rtx copy = x;
1854 int i;
1855
1856 switch (code)
1857 {
1858 case REG:
1859 l = REG_VALUES (REGNO (x));
1860 if (l && l->elt == NULL)
1861 l = l->next;
1862 for (; l; l = l->next)
1863 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1864 return l->elt->val_rtx;
1865
1866 gcc_unreachable ();
1867
1868 case MEM:
1869 e = cselib_lookup_mem (x, 0);
1870 /* This used to happen for autoincrements, but we deal with them
1871 properly now. Remove the if stmt for the next release. */
1872 if (! e)
1873 {
1874 /* Assign a value that doesn't match any other. */
1875 e = new_cselib_val (next_uid, GET_MODE (x), x);
1876 }
1877 return e->val_rtx;
1878
1879 case ENTRY_VALUE:
1880 e = cselib_lookup (x, GET_MODE (x), 0, memmode);
1881 if (! e)
1882 break;
1883 return e->val_rtx;
1884
1885 CASE_CONST_ANY:
1886 return x;
1887
1888 case PRE_DEC:
1889 case PRE_INC:
1890 gcc_assert (memmode != VOIDmode);
1891 i = GET_MODE_SIZE (memmode);
1892 if (code == PRE_DEC)
1893 i = -i;
1894 return cselib_subst_to_values (plus_constant (GET_MODE (x),
1895 XEXP (x, 0), i),
1896 memmode);
1897
1898 case PRE_MODIFY:
1899 gcc_assert (memmode != VOIDmode);
1900 return cselib_subst_to_values (XEXP (x, 1), memmode);
1901
1902 case POST_DEC:
1903 case POST_INC:
1904 case POST_MODIFY:
1905 gcc_assert (memmode != VOIDmode);
1906 return cselib_subst_to_values (XEXP (x, 0), memmode);
1907
1908 default:
1909 break;
1910 }
1911
1912 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1913 {
1914 if (fmt[i] == 'e')
1915 {
1916 rtx t = cselib_subst_to_values (XEXP (x, i), memmode);
1917
1918 if (t != XEXP (x, i))
1919 {
1920 if (x == copy)
1921 copy = shallow_copy_rtx (x);
1922 XEXP (copy, i) = t;
1923 }
1924 }
1925 else if (fmt[i] == 'E')
1926 {
1927 int j;
1928
1929 for (j = 0; j < XVECLEN (x, i); j++)
1930 {
1931 rtx t = cselib_subst_to_values (XVECEXP (x, i, j), memmode);
1932
1933 if (t != XVECEXP (x, i, j))
1934 {
1935 if (XVEC (x, i) == XVEC (copy, i))
1936 {
1937 if (x == copy)
1938 copy = shallow_copy_rtx (x);
1939 XVEC (copy, i) = shallow_copy_rtvec (XVEC (x, i));
1940 }
1941 XVECEXP (copy, i, j) = t;
1942 }
1943 }
1944 }
1945 }
1946
1947 return copy;
1948 }
1949
1950 /* Wrapper for cselib_subst_to_values, that indicates X is in INSN. */
1951
1952 rtx
1953 cselib_subst_to_values_from_insn (rtx x, machine_mode memmode, rtx_insn *insn)
1954 {
1955 rtx ret;
1956 gcc_assert (!cselib_current_insn);
1957 cselib_current_insn = insn;
1958 ret = cselib_subst_to_values (x, memmode);
1959 cselib_current_insn = NULL;
1960 return ret;
1961 }
1962
1963 /* Look up the rtl expression X in our tables and return the value it
1964 has. If CREATE is zero, we return NULL if we don't know the value.
1965 Otherwise, we create a new one if possible, using mode MODE if X
1966 doesn't have a mode (i.e. because it's a constant). When X is part
1967 of an address, MEMMODE should be the mode of the enclosing MEM if
1968 we're tracking autoinc expressions. */
1969
1970 static cselib_val *
1971 cselib_lookup_1 (rtx x, machine_mode mode,
1972 int create, machine_mode memmode)
1973 {
1974 cselib_val **slot;
1975 cselib_val *e;
1976 unsigned int hashval;
1977
1978 if (GET_MODE (x) != VOIDmode)
1979 mode = GET_MODE (x);
1980
1981 if (GET_CODE (x) == VALUE)
1982 return CSELIB_VAL_PTR (x);
1983
1984 if (REG_P (x))
1985 {
1986 struct elt_list *l;
1987 unsigned int i = REGNO (x);
1988
1989 l = REG_VALUES (i);
1990 if (l && l->elt == NULL)
1991 l = l->next;
1992 for (; l; l = l->next)
1993 if (mode == GET_MODE (l->elt->val_rtx))
1994 {
1995 promote_debug_loc (l->elt->locs);
1996 return l->elt;
1997 }
1998
1999 if (! create)
2000 return 0;
2001
2002 if (i < FIRST_PSEUDO_REGISTER)
2003 {
2004 unsigned int n = hard_regno_nregs[i][mode];
2005
2006 if (n > max_value_regs)
2007 max_value_regs = n;
2008 }
2009
2010 e = new_cselib_val (next_uid, GET_MODE (x), x);
2011 new_elt_loc_list (e, x);
2012
2013 scalar_int_mode int_mode;
2014 if (REG_VALUES (i) == 0)
2015 {
2016 /* Maintain the invariant that the first entry of
2017 REG_VALUES, if present, must be the value used to set the
2018 register, or NULL. */
2019 used_regs[n_used_regs++] = i;
2020 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
2021 }
2022 else if (cselib_preserve_constants
2023 && is_int_mode (mode, &int_mode))
2024 {
2025 /* During var-tracking, try harder to find equivalences
2026 for SUBREGs. If a setter sets say a DImode register
2027 and user uses that register only in SImode, add a lowpart
2028 subreg location. */
2029 struct elt_list *lwider = NULL;
2030 scalar_int_mode lmode;
2031 l = REG_VALUES (i);
2032 if (l && l->elt == NULL)
2033 l = l->next;
2034 for (; l; l = l->next)
2035 if (is_int_mode (GET_MODE (l->elt->val_rtx), &lmode)
2036 && GET_MODE_SIZE (lmode) > GET_MODE_SIZE (int_mode)
2037 && (lwider == NULL
2038 || partial_subreg_p (lmode,
2039 GET_MODE (lwider->elt->val_rtx))))
2040 {
2041 struct elt_loc_list *el;
2042 if (i < FIRST_PSEUDO_REGISTER
2043 && hard_regno_nregs[i][lmode] != 1)
2044 continue;
2045 for (el = l->elt->locs; el; el = el->next)
2046 if (!REG_P (el->loc))
2047 break;
2048 if (el)
2049 lwider = l;
2050 }
2051 if (lwider)
2052 {
2053 rtx sub = lowpart_subreg (int_mode, lwider->elt->val_rtx,
2054 GET_MODE (lwider->elt->val_rtx));
2055 if (sub)
2056 new_elt_loc_list (e, sub);
2057 }
2058 }
2059 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
2060 slot = cselib_find_slot (mode, x, e->hash, INSERT, memmode);
2061 *slot = e;
2062 return e;
2063 }
2064
2065 if (MEM_P (x))
2066 return cselib_lookup_mem (x, create);
2067
2068 hashval = cselib_hash_rtx (x, create, memmode);
2069 /* Can't even create if hashing is not possible. */
2070 if (! hashval)
2071 return 0;
2072
2073 slot = cselib_find_slot (mode, x, hashval,
2074 create ? INSERT : NO_INSERT, memmode);
2075 if (slot == 0)
2076 return 0;
2077
2078 e = (cselib_val *) *slot;
2079 if (e)
2080 return e;
2081
2082 e = new_cselib_val (hashval, mode, x);
2083
2084 /* We have to fill the slot before calling cselib_subst_to_values:
2085 the hash table is inconsistent until we do so, and
2086 cselib_subst_to_values will need to do lookups. */
2087 *slot = e;
2088 new_elt_loc_list (e, cselib_subst_to_values (x, memmode));
2089 return e;
2090 }
2091
2092 /* Wrapper for cselib_lookup, that indicates X is in INSN. */
2093
2094 cselib_val *
2095 cselib_lookup_from_insn (rtx x, machine_mode mode,
2096 int create, machine_mode memmode, rtx_insn *insn)
2097 {
2098 cselib_val *ret;
2099
2100 gcc_assert (!cselib_current_insn);
2101 cselib_current_insn = insn;
2102
2103 ret = cselib_lookup (x, mode, create, memmode);
2104
2105 cselib_current_insn = NULL;
2106
2107 return ret;
2108 }
2109
2110 /* Wrapper for cselib_lookup_1, that logs the lookup result and
2111 maintains invariants related with debug insns. */
2112
2113 cselib_val *
2114 cselib_lookup (rtx x, machine_mode mode,
2115 int create, machine_mode memmode)
2116 {
2117 cselib_val *ret = cselib_lookup_1 (x, mode, create, memmode);
2118
2119 /* ??? Should we return NULL if we're not to create an entry, the
2120 found loc is a debug loc and cselib_current_insn is not DEBUG?
2121 If so, we should also avoid converting val to non-DEBUG; probably
2122 easiest setting cselib_current_insn to NULL before the call
2123 above. */
2124
2125 if (dump_file && (dump_flags & TDF_CSELIB))
2126 {
2127 fputs ("cselib lookup ", dump_file);
2128 print_inline_rtx (dump_file, x, 2);
2129 fprintf (dump_file, " => %u:%u\n",
2130 ret ? ret->uid : 0,
2131 ret ? ret->hash : 0);
2132 }
2133
2134 return ret;
2135 }
2136
2137 /* Invalidate any entries in reg_values that overlap REGNO. This is called
2138 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
2139 is used to determine how many hard registers are being changed. If MODE
2140 is VOIDmode, then only REGNO is being changed; this is used when
2141 invalidating call clobbered registers across a call. */
2142
2143 static void
2144 cselib_invalidate_regno (unsigned int regno, machine_mode mode)
2145 {
2146 unsigned int endregno;
2147 unsigned int i;
2148
2149 /* If we see pseudos after reload, something is _wrong_. */
2150 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
2151 || reg_renumber[regno] < 0);
2152
2153 /* Determine the range of registers that must be invalidated. For
2154 pseudos, only REGNO is affected. For hard regs, we must take MODE
2155 into account, and we must also invalidate lower register numbers
2156 if they contain values that overlap REGNO. */
2157 if (regno < FIRST_PSEUDO_REGISTER)
2158 {
2159 gcc_assert (mode != VOIDmode);
2160
2161 if (regno < max_value_regs)
2162 i = 0;
2163 else
2164 i = regno - max_value_regs;
2165
2166 endregno = end_hard_regno (mode, regno);
2167 }
2168 else
2169 {
2170 i = regno;
2171 endregno = regno + 1;
2172 }
2173
2174 for (; i < endregno; i++)
2175 {
2176 struct elt_list **l = &REG_VALUES (i);
2177
2178 /* Go through all known values for this reg; if it overlaps the range
2179 we're invalidating, remove the value. */
2180 while (*l)
2181 {
2182 cselib_val *v = (*l)->elt;
2183 bool had_locs;
2184 rtx_insn *setting_insn;
2185 struct elt_loc_list **p;
2186 unsigned int this_last = i;
2187
2188 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
2189 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
2190
2191 if (this_last < regno || v == NULL
2192 || (v == cfa_base_preserved_val
2193 && i == cfa_base_preserved_regno))
2194 {
2195 l = &(*l)->next;
2196 continue;
2197 }
2198
2199 /* We have an overlap. */
2200 if (*l == REG_VALUES (i))
2201 {
2202 /* Maintain the invariant that the first entry of
2203 REG_VALUES, if present, must be the value used to set
2204 the register, or NULL. This is also nice because
2205 then we won't push the same regno onto user_regs
2206 multiple times. */
2207 (*l)->elt = NULL;
2208 l = &(*l)->next;
2209 }
2210 else
2211 unchain_one_elt_list (l);
2212
2213 v = canonical_cselib_val (v);
2214
2215 had_locs = v->locs != NULL;
2216 setting_insn = v->locs ? v->locs->setting_insn : NULL;
2217
2218 /* Now, we clear the mapping from value to reg. It must exist, so
2219 this code will crash intentionally if it doesn't. */
2220 for (p = &v->locs; ; p = &(*p)->next)
2221 {
2222 rtx x = (*p)->loc;
2223
2224 if (REG_P (x) && REGNO (x) == i)
2225 {
2226 unchain_one_elt_loc_list (p);
2227 break;
2228 }
2229 }
2230
2231 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2232 {
2233 if (setting_insn && DEBUG_INSN_P (setting_insn))
2234 n_useless_debug_values++;
2235 else
2236 n_useless_values++;
2237 }
2238 }
2239 }
2240 }
2241 \f
2242 /* Invalidate any locations in the table which are changed because of a
2243 store to MEM_RTX. If this is called because of a non-const call
2244 instruction, MEM_RTX is (mem:BLK const0_rtx). */
2245
2246 static void
2247 cselib_invalidate_mem (rtx mem_rtx)
2248 {
2249 cselib_val **vp, *v, *next;
2250 int num_mems = 0;
2251 rtx mem_addr;
2252
2253 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
2254 mem_rtx = canon_rtx (mem_rtx);
2255
2256 vp = &first_containing_mem;
2257 for (v = *vp; v != &dummy_val; v = next)
2258 {
2259 bool has_mem = false;
2260 struct elt_loc_list **p = &v->locs;
2261 bool had_locs = v->locs != NULL;
2262 rtx_insn *setting_insn = v->locs ? v->locs->setting_insn : NULL;
2263
2264 while (*p)
2265 {
2266 rtx x = (*p)->loc;
2267 cselib_val *addr;
2268 struct elt_list **mem_chain;
2269
2270 /* MEMs may occur in locations only at the top level; below
2271 that every MEM or REG is substituted by its VALUE. */
2272 if (!MEM_P (x))
2273 {
2274 p = &(*p)->next;
2275 continue;
2276 }
2277 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
2278 && ! canon_anti_dependence (x, false, mem_rtx,
2279 GET_MODE (mem_rtx), mem_addr))
2280 {
2281 has_mem = true;
2282 num_mems++;
2283 p = &(*p)->next;
2284 continue;
2285 }
2286
2287 /* This one overlaps. */
2288 /* We must have a mapping from this MEM's address to the
2289 value (E). Remove that, too. */
2290 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0, GET_MODE (x));
2291 addr = canonical_cselib_val (addr);
2292 gcc_checking_assert (v == canonical_cselib_val (v));
2293 mem_chain = &addr->addr_list;
2294 for (;;)
2295 {
2296 cselib_val *canon = canonical_cselib_val ((*mem_chain)->elt);
2297
2298 if (canon == v)
2299 {
2300 unchain_one_elt_list (mem_chain);
2301 break;
2302 }
2303
2304 /* Record canonicalized elt. */
2305 (*mem_chain)->elt = canon;
2306
2307 mem_chain = &(*mem_chain)->next;
2308 }
2309
2310 unchain_one_elt_loc_list (p);
2311 }
2312
2313 if (had_locs && v->locs == 0 && !PRESERVED_VALUE_P (v->val_rtx))
2314 {
2315 if (setting_insn && DEBUG_INSN_P (setting_insn))
2316 n_useless_debug_values++;
2317 else
2318 n_useless_values++;
2319 }
2320
2321 next = v->next_containing_mem;
2322 if (has_mem)
2323 {
2324 *vp = v;
2325 vp = &(*vp)->next_containing_mem;
2326 }
2327 else
2328 v->next_containing_mem = NULL;
2329 }
2330 *vp = &dummy_val;
2331 }
2332
2333 /* Invalidate DEST, which is being assigned to or clobbered. */
2334
2335 void
2336 cselib_invalidate_rtx (rtx dest)
2337 {
2338 while (GET_CODE (dest) == SUBREG
2339 || GET_CODE (dest) == ZERO_EXTRACT
2340 || GET_CODE (dest) == STRICT_LOW_PART)
2341 dest = XEXP (dest, 0);
2342
2343 if (REG_P (dest))
2344 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
2345 else if (MEM_P (dest))
2346 cselib_invalidate_mem (dest);
2347 }
2348
2349 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
2350
2351 static void
2352 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
2353 void *data ATTRIBUTE_UNUSED)
2354 {
2355 cselib_invalidate_rtx (dest);
2356 }
2357
2358 /* Record the result of a SET instruction. DEST is being set; the source
2359 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
2360 describes its address. */
2361
2362 static void
2363 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
2364 {
2365 if (src_elt == 0 || side_effects_p (dest))
2366 return;
2367
2368 if (REG_P (dest))
2369 {
2370 unsigned int dreg = REGNO (dest);
2371 if (dreg < FIRST_PSEUDO_REGISTER)
2372 {
2373 unsigned int n = REG_NREGS (dest);
2374
2375 if (n > max_value_regs)
2376 max_value_regs = n;
2377 }
2378
2379 if (REG_VALUES (dreg) == 0)
2380 {
2381 used_regs[n_used_regs++] = dreg;
2382 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
2383 }
2384 else
2385 {
2386 /* The register should have been invalidated. */
2387 gcc_assert (REG_VALUES (dreg)->elt == 0);
2388 REG_VALUES (dreg)->elt = src_elt;
2389 }
2390
2391 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2392 n_useless_values--;
2393 new_elt_loc_list (src_elt, dest);
2394 }
2395 else if (MEM_P (dest) && dest_addr_elt != 0
2396 && cselib_record_memory)
2397 {
2398 if (src_elt->locs == 0 && !PRESERVED_VALUE_P (src_elt->val_rtx))
2399 n_useless_values--;
2400 add_mem_for_addr (dest_addr_elt, src_elt, dest);
2401 }
2402 }
2403
2404 /* Make ELT and X's VALUE equivalent to each other at INSN. */
2405
2406 void
2407 cselib_add_permanent_equiv (cselib_val *elt, rtx x, rtx_insn *insn)
2408 {
2409 cselib_val *nelt;
2410 rtx_insn *save_cselib_current_insn = cselib_current_insn;
2411
2412 gcc_checking_assert (elt);
2413 gcc_checking_assert (PRESERVED_VALUE_P (elt->val_rtx));
2414 gcc_checking_assert (!side_effects_p (x));
2415
2416 cselib_current_insn = insn;
2417
2418 nelt = cselib_lookup (x, GET_MODE (elt->val_rtx), 1, VOIDmode);
2419
2420 if (nelt != elt)
2421 {
2422 cselib_any_perm_equivs = true;
2423
2424 if (!PRESERVED_VALUE_P (nelt->val_rtx))
2425 cselib_preserve_value (nelt);
2426
2427 new_elt_loc_list (nelt, elt->val_rtx);
2428 }
2429
2430 cselib_current_insn = save_cselib_current_insn;
2431 }
2432
2433 /* Return TRUE if any permanent equivalences have been recorded since
2434 the table was last initialized. */
2435 bool
2436 cselib_have_permanent_equivalences (void)
2437 {
2438 return cselib_any_perm_equivs;
2439 }
2440
2441 /* There is no good way to determine how many elements there can be
2442 in a PARALLEL. Since it's fairly cheap, use a really large number. */
2443 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
2444
2445 struct cselib_record_autoinc_data
2446 {
2447 struct cselib_set *sets;
2448 int n_sets;
2449 };
2450
2451 /* Callback for for_each_inc_dec. Records in ARG the SETs implied by
2452 autoinc RTXs: SRC plus SRCOFF if non-NULL is stored in DEST. */
2453
2454 static int
2455 cselib_record_autoinc_cb (rtx mem ATTRIBUTE_UNUSED, rtx op ATTRIBUTE_UNUSED,
2456 rtx dest, rtx src, rtx srcoff, void *arg)
2457 {
2458 struct cselib_record_autoinc_data *data;
2459 data = (struct cselib_record_autoinc_data *)arg;
2460
2461 data->sets[data->n_sets].dest = dest;
2462
2463 if (srcoff)
2464 data->sets[data->n_sets].src = gen_rtx_PLUS (GET_MODE (src), src, srcoff);
2465 else
2466 data->sets[data->n_sets].src = src;
2467
2468 data->n_sets++;
2469
2470 return 0;
2471 }
2472
2473 /* Record the effects of any sets and autoincs in INSN. */
2474 static void
2475 cselib_record_sets (rtx_insn *insn)
2476 {
2477 int n_sets = 0;
2478 int i;
2479 struct cselib_set sets[MAX_SETS];
2480 rtx body = PATTERN (insn);
2481 rtx cond = 0;
2482 int n_sets_before_autoinc;
2483 struct cselib_record_autoinc_data data;
2484
2485 body = PATTERN (insn);
2486 if (GET_CODE (body) == COND_EXEC)
2487 {
2488 cond = COND_EXEC_TEST (body);
2489 body = COND_EXEC_CODE (body);
2490 }
2491
2492 /* Find all sets. */
2493 if (GET_CODE (body) == SET)
2494 {
2495 sets[0].src = SET_SRC (body);
2496 sets[0].dest = SET_DEST (body);
2497 n_sets = 1;
2498 }
2499 else if (GET_CODE (body) == PARALLEL)
2500 {
2501 /* Look through the PARALLEL and record the values being
2502 set, if possible. Also handle any CLOBBERs. */
2503 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
2504 {
2505 rtx x = XVECEXP (body, 0, i);
2506
2507 if (GET_CODE (x) == SET)
2508 {
2509 sets[n_sets].src = SET_SRC (x);
2510 sets[n_sets].dest = SET_DEST (x);
2511 n_sets++;
2512 }
2513 }
2514 }
2515
2516 if (n_sets == 1
2517 && MEM_P (sets[0].src)
2518 && !cselib_record_memory
2519 && MEM_READONLY_P (sets[0].src))
2520 {
2521 rtx note = find_reg_equal_equiv_note (insn);
2522
2523 if (note && CONSTANT_P (XEXP (note, 0)))
2524 sets[0].src = XEXP (note, 0);
2525 }
2526
2527 data.sets = sets;
2528 data.n_sets = n_sets_before_autoinc = n_sets;
2529 for_each_inc_dec (PATTERN (insn), cselib_record_autoinc_cb, &data);
2530 n_sets = data.n_sets;
2531
2532 /* Look up the values that are read. Do this before invalidating the
2533 locations that are written. */
2534 for (i = 0; i < n_sets; i++)
2535 {
2536 rtx dest = sets[i].dest;
2537
2538 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
2539 the low part after invalidating any knowledge about larger modes. */
2540 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
2541 sets[i].dest = dest = XEXP (dest, 0);
2542
2543 /* We don't know how to record anything but REG or MEM. */
2544 if (REG_P (dest)
2545 || (MEM_P (dest) && cselib_record_memory))
2546 {
2547 rtx src = sets[i].src;
2548 if (cond)
2549 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
2550 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1, VOIDmode);
2551 if (MEM_P (dest))
2552 {
2553 machine_mode address_mode = get_address_mode (dest);
2554
2555 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0),
2556 address_mode, 1,
2557 GET_MODE (dest));
2558 }
2559 else
2560 sets[i].dest_addr_elt = 0;
2561 }
2562 }
2563
2564 if (cselib_record_sets_hook)
2565 cselib_record_sets_hook (insn, sets, n_sets);
2566
2567 /* Invalidate all locations written by this insn. Note that the elts we
2568 looked up in the previous loop aren't affected, just some of their
2569 locations may go away. */
2570 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
2571
2572 for (i = n_sets_before_autoinc; i < n_sets; i++)
2573 cselib_invalidate_rtx (sets[i].dest);
2574
2575 /* If this is an asm, look for duplicate sets. This can happen when the
2576 user uses the same value as an output multiple times. This is valid
2577 if the outputs are not actually used thereafter. Treat this case as
2578 if the value isn't actually set. We do this by smashing the destination
2579 to pc_rtx, so that we won't record the value later. */
2580 if (n_sets >= 2 && asm_noperands (body) >= 0)
2581 {
2582 for (i = 0; i < n_sets; i++)
2583 {
2584 rtx dest = sets[i].dest;
2585 if (REG_P (dest) || MEM_P (dest))
2586 {
2587 int j;
2588 for (j = i + 1; j < n_sets; j++)
2589 if (rtx_equal_p (dest, sets[j].dest))
2590 {
2591 sets[i].dest = pc_rtx;
2592 sets[j].dest = pc_rtx;
2593 }
2594 }
2595 }
2596 }
2597
2598 /* Now enter the equivalences in our tables. */
2599 for (i = 0; i < n_sets; i++)
2600 {
2601 rtx dest = sets[i].dest;
2602 if (REG_P (dest)
2603 || (MEM_P (dest) && cselib_record_memory))
2604 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
2605 }
2606 }
2607
2608 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
2609
2610 bool
2611 fp_setter_insn (rtx_insn *insn)
2612 {
2613 rtx expr, pat = NULL_RTX;
2614
2615 if (!RTX_FRAME_RELATED_P (insn))
2616 return false;
2617
2618 expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
2619 if (expr)
2620 pat = XEXP (expr, 0);
2621 if (!modified_in_p (hard_frame_pointer_rtx, pat ? pat : insn))
2622 return false;
2623
2624 /* Don't return true for frame pointer restores in the epilogue. */
2625 if (find_reg_note (insn, REG_CFA_RESTORE, hard_frame_pointer_rtx))
2626 return false;
2627 return true;
2628 }
2629
2630 /* Record the effects of INSN. */
2631
2632 void
2633 cselib_process_insn (rtx_insn *insn)
2634 {
2635 int i;
2636 rtx x;
2637
2638 cselib_current_insn = insn;
2639
2640 /* Forget everything at a CODE_LABEL or a setjmp. */
2641 if ((LABEL_P (insn)
2642 || (CALL_P (insn)
2643 && find_reg_note (insn, REG_SETJMP, NULL)))
2644 && !cselib_preserve_constants)
2645 {
2646 cselib_reset_table (next_uid);
2647 cselib_current_insn = NULL;
2648 return;
2649 }
2650
2651 if (! INSN_P (insn))
2652 {
2653 cselib_current_insn = NULL;
2654 return;
2655 }
2656
2657 /* If this is a call instruction, forget anything stored in a
2658 call clobbered register, or, if this is not a const call, in
2659 memory. */
2660 if (CALL_P (insn))
2661 {
2662 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2663 if (call_used_regs[i]
2664 || (REG_VALUES (i) && REG_VALUES (i)->elt
2665 && HARD_REGNO_CALL_PART_CLOBBERED (i,
2666 GET_MODE (REG_VALUES (i)->elt->val_rtx))))
2667 cselib_invalidate_regno (i, reg_raw_mode[i]);
2668
2669 /* Since it is not clear how cselib is going to be used, be
2670 conservative here and treat looping pure or const functions
2671 as if they were regular functions. */
2672 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
2673 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
2674 cselib_invalidate_mem (callmem);
2675 else
2676 /* For const/pure calls, invalidate any argument slots because
2677 they are owned by the callee. */
2678 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2679 if (GET_CODE (XEXP (x, 0)) == USE
2680 && MEM_P (XEXP (XEXP (x, 0), 0)))
2681 cselib_invalidate_mem (XEXP (XEXP (x, 0), 0));
2682 }
2683
2684 cselib_record_sets (insn);
2685
2686 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
2687 after we have processed the insn. */
2688 if (CALL_P (insn))
2689 {
2690 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
2691 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
2692 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
2693 /* Flush evertything on setjmp. */
2694 if (cselib_preserve_constants
2695 && find_reg_note (insn, REG_SETJMP, NULL))
2696 {
2697 cselib_preserve_only_values ();
2698 cselib_reset_table (next_uid);
2699 }
2700 }
2701
2702 /* On setter of the hard frame pointer if frame_pointer_needed,
2703 invalidate stack_pointer_rtx, so that sp and {,h}fp based
2704 VALUEs are distinct. */
2705 if (reload_completed
2706 && frame_pointer_needed
2707 && fp_setter_insn (insn))
2708 cselib_invalidate_rtx (stack_pointer_rtx);
2709
2710 cselib_current_insn = NULL;
2711
2712 if (n_useless_values > MAX_USELESS_VALUES
2713 /* remove_useless_values is linear in the hash table size. Avoid
2714 quadratic behavior for very large hashtables with very few
2715 useless elements. */
2716 && ((unsigned int)n_useless_values
2717 > (cselib_hash_table->elements () - n_debug_values) / 4))
2718 remove_useless_values ();
2719 }
2720
2721 /* Initialize cselib for one pass. The caller must also call
2722 init_alias_analysis. */
2723
2724 void
2725 cselib_init (int record_what)
2726 {
2727 cselib_record_memory = record_what & CSELIB_RECORD_MEMORY;
2728 cselib_preserve_constants = record_what & CSELIB_PRESERVE_CONSTANTS;
2729 cselib_any_perm_equivs = false;
2730
2731 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
2732 see canon_true_dependence. This is only created once. */
2733 if (! callmem)
2734 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
2735
2736 cselib_nregs = max_reg_num ();
2737
2738 /* We preserve reg_values to allow expensive clearing of the whole thing.
2739 Reallocate it however if it happens to be too large. */
2740 if (!reg_values || reg_values_size < cselib_nregs
2741 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
2742 {
2743 free (reg_values);
2744 /* Some space for newly emit instructions so we don't end up
2745 reallocating in between passes. */
2746 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
2747 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
2748 }
2749 used_regs = XNEWVEC (unsigned int, cselib_nregs);
2750 n_used_regs = 0;
2751 cselib_hash_table = new hash_table<cselib_hasher> (31);
2752 if (cselib_preserve_constants)
2753 cselib_preserved_hash_table = new hash_table<cselib_hasher> (31);
2754 next_uid = 1;
2755 }
2756
2757 /* Called when the current user is done with cselib. */
2758
2759 void
2760 cselib_finish (void)
2761 {
2762 bool preserved = cselib_preserve_constants;
2763 cselib_discard_hook = NULL;
2764 cselib_preserve_constants = false;
2765 cselib_any_perm_equivs = false;
2766 cfa_base_preserved_val = NULL;
2767 cfa_base_preserved_regno = INVALID_REGNUM;
2768 elt_list_pool.release ();
2769 elt_loc_list_pool.release ();
2770 cselib_val_pool.release ();
2771 value_pool.release ();
2772 cselib_clear_table ();
2773 delete cselib_hash_table;
2774 cselib_hash_table = NULL;
2775 if (preserved)
2776 delete cselib_preserved_hash_table;
2777 cselib_preserved_hash_table = NULL;
2778 free (used_regs);
2779 used_regs = 0;
2780 n_useless_values = 0;
2781 n_useless_debug_values = 0;
2782 n_debug_values = 0;
2783 next_uid = 0;
2784 }
2785
2786 /* Dump the cselib_val *X to FILE *OUT. */
2787
2788 int
2789 dump_cselib_val (cselib_val **x, FILE *out)
2790 {
2791 cselib_val *v = *x;
2792 bool need_lf = true;
2793
2794 print_inline_rtx (out, v->val_rtx, 0);
2795
2796 if (v->locs)
2797 {
2798 struct elt_loc_list *l = v->locs;
2799 if (need_lf)
2800 {
2801 fputc ('\n', out);
2802 need_lf = false;
2803 }
2804 fputs (" locs:", out);
2805 do
2806 {
2807 if (l->setting_insn)
2808 fprintf (out, "\n from insn %i ",
2809 INSN_UID (l->setting_insn));
2810 else
2811 fprintf (out, "\n ");
2812 print_inline_rtx (out, l->loc, 4);
2813 }
2814 while ((l = l->next));
2815 fputc ('\n', out);
2816 }
2817 else
2818 {
2819 fputs (" no locs", out);
2820 need_lf = true;
2821 }
2822
2823 if (v->addr_list)
2824 {
2825 struct elt_list *e = v->addr_list;
2826 if (need_lf)
2827 {
2828 fputc ('\n', out);
2829 need_lf = false;
2830 }
2831 fputs (" addr list:", out);
2832 do
2833 {
2834 fputs ("\n ", out);
2835 print_inline_rtx (out, e->elt->val_rtx, 2);
2836 }
2837 while ((e = e->next));
2838 fputc ('\n', out);
2839 }
2840 else
2841 {
2842 fputs (" no addrs", out);
2843 need_lf = true;
2844 }
2845
2846 if (v->next_containing_mem == &dummy_val)
2847 fputs (" last mem\n", out);
2848 else if (v->next_containing_mem)
2849 {
2850 fputs (" next mem ", out);
2851 print_inline_rtx (out, v->next_containing_mem->val_rtx, 2);
2852 fputc ('\n', out);
2853 }
2854 else if (need_lf)
2855 fputc ('\n', out);
2856
2857 return 1;
2858 }
2859
2860 /* Dump to OUT everything in the CSELIB table. */
2861
2862 void
2863 dump_cselib_table (FILE *out)
2864 {
2865 fprintf (out, "cselib hash table:\n");
2866 cselib_hash_table->traverse <FILE *, dump_cselib_val> (out);
2867 fprintf (out, "cselib preserved hash table:\n");
2868 cselib_preserved_hash_table->traverse <FILE *, dump_cselib_val> (out);
2869 if (first_containing_mem != &dummy_val)
2870 {
2871 fputs ("first mem ", out);
2872 print_inline_rtx (out, first_containing_mem->val_rtx, 2);
2873 fputc ('\n', out);
2874 }
2875 fprintf (out, "next uid %i\n", next_uid);
2876 }
2877
2878 #include "gt-cselib.h"