]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ddg.c
builtins.c (expand_builtin_mathfn_3): Correct coding style.
[thirdparty/gcc.git] / gcc / ddg.c
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "sched-int.h"
40 #include "target.h"
41 #include "cfglayout.h"
42 #include "cfgloop.h"
43 #include "sbitmap.h"
44 #include "expr.h"
45 #include "bitmap.h"
46 #include "df.h"
47 #include "ddg.h"
48
49 /* A flag indicating that a ddg edge belongs to an SCC or not. */
50 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
51
52 /* Forward declarations. */
53 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
54 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
55 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
56 static void create_ddg_dependence (ddg_ptr, ddg_node_ptr, ddg_node_ptr, rtx);
57 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
58 dep_type, dep_data_type, int);
59 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
60 dep_data_type, int, int);
61 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
62 \f
63 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
64 static bool mem_ref_p;
65
66 /* Auxiliary function for mem_read_insn_p. */
67 static int
68 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
69 {
70 if (MEM_P (*x))
71 mem_ref_p = true;
72 return 0;
73 }
74
75 /* Auxiliary function for mem_read_insn_p. */
76 static void
77 mark_mem_use_1 (rtx *x, void *data)
78 {
79 for_each_rtx (x, mark_mem_use, data);
80 }
81
82 /* Returns nonzero if INSN reads from memory. */
83 static bool
84 mem_read_insn_p (rtx insn)
85 {
86 mem_ref_p = false;
87 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
88 return mem_ref_p;
89 }
90
91 static void
92 mark_mem_store (rtx loc, rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
93 {
94 if (MEM_P (loc))
95 mem_ref_p = true;
96 }
97
98 /* Returns nonzero if INSN writes to memory. */
99 static bool
100 mem_write_insn_p (rtx insn)
101 {
102 mem_ref_p = false;
103 note_stores (PATTERN (insn), mark_mem_store, NULL);
104 return mem_ref_p;
105 }
106
107 /* Returns nonzero if X has access to memory. */
108 static bool
109 rtx_mem_access_p (rtx x)
110 {
111 int i, j;
112 const char *fmt;
113 enum rtx_code code;
114
115 if (x == 0)
116 return false;
117
118 if (MEM_P (x))
119 return true;
120
121 code = GET_CODE (x);
122 fmt = GET_RTX_FORMAT (code);
123 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
124 {
125 if (fmt[i] == 'e')
126 {
127 if (rtx_mem_access_p (XEXP (x, i)))
128 return true;
129 }
130 else if (fmt[i] == 'E')
131 for (j = 0; j < XVECLEN (x, i); j++)
132 {
133 if (rtx_mem_access_p (XVECEXP (x, i, j)))
134 return true;
135 }
136 }
137 return false;
138 }
139
140 /* Returns nonzero if INSN reads to or writes from memory. */
141 static bool
142 mem_access_insn_p (rtx insn)
143 {
144 return rtx_mem_access_p (PATTERN (insn));
145 }
146
147 /* Computes the dependence parameters (latency, distance etc.), creates
148 a ddg_edge and adds it to the given DDG. */
149 static void
150 create_ddg_dependence (ddg_ptr g, ddg_node_ptr src_node,
151 ddg_node_ptr dest_node, rtx link)
152 {
153 ddg_edge_ptr e;
154 int latency, distance = 0;
155 int interloop = (src_node->cuid >= dest_node->cuid);
156 dep_type t = TRUE_DEP;
157 dep_data_type dt = (mem_access_insn_p (src_node->insn)
158 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
159 : REG_DEP);
160
161 /* For now we don't have an exact calculation of the distance,
162 so assume 1 conservatively. */
163 if (interloop)
164 distance = 1;
165
166 gcc_assert (link);
167
168 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
169 if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
170 t = ANTI_DEP;
171 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
172 t = OUTPUT_DEP;
173 latency = insn_cost (src_node->insn, link, dest_node->insn);
174
175 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
176
177 if (interloop)
178 {
179 /* Some interloop dependencies are relaxed:
180 1. Every insn is output dependent on itself; ignore such deps.
181 2. Every true/flow dependence is an anti dependence in the
182 opposite direction with distance 1; such register deps
183 will be removed by renaming if broken --- ignore them. */
184 if (!(t == OUTPUT_DEP && src_node == dest_node)
185 && !(t == ANTI_DEP && dt == REG_DEP))
186 add_backarc_to_ddg (g, e);
187 else
188 free (e);
189 }
190 else if (t == ANTI_DEP && dt == REG_DEP)
191 free (e); /* We can fix broken anti register deps using reg-moves. */
192 else
193 add_edge_to_ddg (g, e);
194 }
195
196 /* The same as the above function, but it doesn't require a link parameter. */
197 static void
198 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
199 dep_type d_t, dep_data_type d_dt, int distance)
200 {
201 ddg_edge_ptr e;
202 int l;
203 rtx link = alloc_INSN_LIST (to->insn, NULL_RTX);
204
205 if (d_t == ANTI_DEP)
206 PUT_REG_NOTE_KIND (link, REG_DEP_ANTI);
207 else if (d_t == OUTPUT_DEP)
208 PUT_REG_NOTE_KIND (link, REG_DEP_OUTPUT);
209
210 l = insn_cost (from->insn, link, to->insn);
211 free_INSN_LIST_node (link);
212
213 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
214 if (distance > 0)
215 add_backarc_to_ddg (g, e);
216 else
217 add_edge_to_ddg (g, e);
218 }
219
220 \f
221 /* Given a downwards exposed register def RD, add inter-loop true dependences
222 for all its uses in the next iteration, and an output dependence to the
223 first def of the next iteration. */
224 static void
225 add_deps_for_def (ddg_ptr g, struct df *df, struct df_ref *rd)
226 {
227 int regno = DF_REF_REGNO (rd);
228 struct df_ru_bb_info *bb_info = DF_RU_BB_INFO (df, g->bb);
229 struct df_link *r_use;
230 int use_before_def = false;
231 rtx def_insn = DF_REF_INSN (rd);
232 ddg_node_ptr src_node = get_node_of_insn (g, def_insn);
233
234 /* Create and inter-loop true dependence between RD and each of its uses
235 that is upwards exposed in RD's block. */
236 for (r_use = DF_REF_CHAIN (rd); r_use != NULL; r_use = r_use->next)
237 {
238 if (bitmap_bit_p (bb_info->gen, r_use->ref->id))
239 {
240 rtx use_insn = DF_REF_INSN (r_use->ref);
241 ddg_node_ptr dest_node = get_node_of_insn (g, use_insn);
242
243 gcc_assert (src_node && dest_node);
244
245 /* Any such upwards exposed use appears before the rd def. */
246 use_before_def = true;
247 create_ddg_dep_no_link (g, src_node, dest_node, TRUE_DEP,
248 REG_DEP, 1);
249 }
250 }
251
252 /* Create an inter-loop output dependence between RD (which is the
253 last def in its block, being downwards exposed) and the first def
254 in its block. Avoid creating a self output dependence. Avoid creating
255 an output dependence if there is a dependence path between the two defs
256 starting with a true dependence followed by an anti dependence (i.e. if
257 there is a use between the two defs. */
258 if (! use_before_def)
259 {
260 struct df_ref *def = df_bb_regno_first_def_find (df, g->bb, regno);
261 int i;
262 ddg_node_ptr dest_node;
263
264 if (!def || rd->id == def->id)
265 return;
266
267 /* Check if there are uses after RD. */
268 for (i = src_node->cuid + 1; i < g->num_nodes; i++)
269 if (df_find_use (df, g->nodes[i].insn, rd->reg))
270 return;
271
272 dest_node = get_node_of_insn (g, def->insn);
273 create_ddg_dep_no_link (g, src_node, dest_node, OUTPUT_DEP, REG_DEP, 1);
274 }
275 }
276
277 /* Given a register USE, add an inter-loop anti dependence to the first
278 (nearest BLOCK_BEGIN) def of the next iteration, unless USE is followed
279 by a def in the block. */
280 static void
281 add_deps_for_use (ddg_ptr g, struct df *df, struct df_ref *use)
282 {
283 int i;
284 int regno = DF_REF_REGNO (use);
285 struct df_ref *first_def = df_bb_regno_first_def_find (df, g->bb, regno);
286 ddg_node_ptr use_node;
287 ddg_node_ptr def_node;
288 struct df_rd_bb_info *bb_info;
289
290 bb_info = DF_RD_BB_INFO (df, g->bb);
291
292 if (!first_def)
293 return;
294
295 use_node = get_node_of_insn (g, use->insn);
296 def_node = get_node_of_insn (g, first_def->insn);
297
298 gcc_assert (use_node && def_node);
299
300 /* Make sure there are no defs after USE. */
301 for (i = use_node->cuid + 1; i < g->num_nodes; i++)
302 if (df_find_def (df, g->nodes[i].insn, use->reg))
303 return;
304 /* We must not add ANTI dep when there is an intra-loop TRUE dep in
305 the opposite direction. If the first_def reaches the USE then there is
306 such a dep. */
307 if (! bitmap_bit_p (bb_info->gen, first_def->id))
308 create_ddg_dep_no_link (g, use_node, def_node, ANTI_DEP, REG_DEP, 1);
309 }
310
311 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
312 static void
313 build_inter_loop_deps (ddg_ptr g, struct df *df)
314 {
315 unsigned rd_num, u_num;
316 struct df_rd_bb_info *rd_bb_info;
317 struct df_ru_bb_info *ru_bb_info;
318 bitmap_iterator bi;
319
320 rd_bb_info = DF_RD_BB_INFO (df, g->bb);
321
322 /* Find inter-loop output and true deps by connecting downward exposed defs
323 to the first def of the BB and to upwards exposed uses. */
324 EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi)
325 {
326 struct df_ref *rd = DF_DEFS_GET (df, rd_num);
327
328 add_deps_for_def (g, df, rd);
329 }
330
331 ru_bb_info = DF_RU_BB_INFO (df, g->bb);
332
333 /* Find inter-loop anti deps. We are interested in uses of the block that
334 appear below all defs; this implies that these uses are killed. */
335 EXECUTE_IF_SET_IN_BITMAP (ru_bb_info->kill, 0, u_num, bi)
336 {
337 struct df_ref *use = DF_USES_GET (df, u_num);
338
339 /* We are interested in uses of this BB. */
340 if (BLOCK_FOR_INSN (use->insn) == g->bb)
341 add_deps_for_use (g, df, use);
342 }
343 }
344
345 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
346 to ddg G. */
347 static void
348 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
349 {
350 if (mem_write_insn_p (from->insn))
351 {
352 if (mem_read_insn_p (to->insn))
353 create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
354 else if (from->cuid != to->cuid)
355 create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
356 }
357 else
358 {
359 if (mem_read_insn_p (to->insn))
360 return;
361 else if (from->cuid != to->cuid)
362 {
363 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
364 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
365 }
366 }
367
368 }
369
370 /* Perform intra-block Data Dependency analysis and connect the nodes in
371 the DDG. We assume the loop has a single basic block. */
372 static void
373 build_intra_loop_deps (ddg_ptr g)
374 {
375 int i;
376 /* Hold the dependency analysis state during dependency calculations. */
377 struct deps tmp_deps;
378 rtx head, tail, link;
379
380 /* Build the dependence information, using the sched_analyze function. */
381 init_deps_global ();
382 init_deps (&tmp_deps);
383
384 /* Do the intra-block data dependence analysis for the given block. */
385 get_ebb_head_tail (g->bb, g->bb, &head, &tail);
386 sched_analyze (&tmp_deps, head, tail);
387
388 /* Build intra-loop data dependencies using the scheduler dependency
389 analysis. */
390 for (i = 0; i < g->num_nodes; i++)
391 {
392 ddg_node_ptr dest_node = &g->nodes[i];
393
394 if (! INSN_P (dest_node->insn))
395 continue;
396
397 for (link = LOG_LINKS (dest_node->insn); link; link = XEXP (link, 1))
398 {
399 ddg_node_ptr src_node = get_node_of_insn (g, XEXP (link, 0));
400
401 if (!src_node)
402 continue;
403
404 add_forw_dep (dest_node->insn, link);
405 create_ddg_dependence (g, src_node, dest_node,
406 INSN_DEPEND (src_node->insn));
407 }
408
409 /* If this insn modifies memory, add an edge to all insns that access
410 memory. */
411 if (mem_access_insn_p (dest_node->insn))
412 {
413 int j;
414
415 for (j = 0; j <= i; j++)
416 {
417 ddg_node_ptr j_node = &g->nodes[j];
418 if (mem_access_insn_p (j_node->insn))
419 /* Don't bother calculating inter-loop dep if an intra-loop dep
420 already exists. */
421 if (! TEST_BIT (dest_node->successors, j))
422 add_inter_loop_mem_dep (g, dest_node, j_node);
423 }
424 }
425 }
426
427 /* Free the INSN_LISTs. */
428 finish_deps_global ();
429 free_deps (&tmp_deps);
430 }
431
432
433 /* Given a basic block, create its DDG and return a pointer to a variable
434 of ddg type that represents it.
435 Initialize the ddg structure fields to the appropriate values. */
436 ddg_ptr
437 create_ddg (basic_block bb, struct df *df, int closing_branch_deps)
438 {
439 ddg_ptr g;
440 rtx insn, first_note;
441 int i;
442 int num_nodes = 0;
443
444 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
445
446 g->bb = bb;
447 g->closing_branch_deps = closing_branch_deps;
448
449 /* Count the number of insns in the BB. */
450 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
451 insn = NEXT_INSN (insn))
452 {
453 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
454 continue;
455
456 if (mem_read_insn_p (insn))
457 g->num_loads++;
458 if (mem_write_insn_p (insn))
459 g->num_stores++;
460 num_nodes++;
461 }
462
463 /* There is nothing to do for this BB. */
464 if (num_nodes <= 1)
465 {
466 free (g);
467 return NULL;
468 }
469
470 /* Allocate the nodes array, and initialize the nodes. */
471 g->num_nodes = num_nodes;
472 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
473 g->closing_branch = NULL;
474 i = 0;
475 first_note = NULL_RTX;
476 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
477 insn = NEXT_INSN (insn))
478 {
479 if (! INSN_P (insn))
480 {
481 if (! first_note && NOTE_P (insn)
482 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
483 first_note = insn;
484 continue;
485 }
486 if (JUMP_P (insn))
487 {
488 gcc_assert (!g->closing_branch);
489 g->closing_branch = &g->nodes[i];
490 }
491 else if (GET_CODE (PATTERN (insn)) == USE)
492 {
493 if (! first_note)
494 first_note = insn;
495 continue;
496 }
497
498 g->nodes[i].cuid = i;
499 g->nodes[i].successors = sbitmap_alloc (num_nodes);
500 sbitmap_zero (g->nodes[i].successors);
501 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
502 sbitmap_zero (g->nodes[i].predecessors);
503 g->nodes[i].first_note = (first_note ? first_note : insn);
504 g->nodes[i++].insn = insn;
505 first_note = NULL_RTX;
506 }
507
508 /* We must have found a branch in DDG. */
509 gcc_assert (g->closing_branch);
510
511
512 /* Build the data dependency graph. */
513 build_intra_loop_deps (g);
514 build_inter_loop_deps (g, df);
515 return g;
516 }
517
518 /* Free all the memory allocated for the DDG. */
519 void
520 free_ddg (ddg_ptr g)
521 {
522 int i;
523
524 if (!g)
525 return;
526
527 for (i = 0; i < g->num_nodes; i++)
528 {
529 ddg_edge_ptr e = g->nodes[i].out;
530
531 while (e)
532 {
533 ddg_edge_ptr next = e->next_out;
534
535 free (e);
536 e = next;
537 }
538 sbitmap_free (g->nodes[i].successors);
539 sbitmap_free (g->nodes[i].predecessors);
540 }
541 if (g->num_backarcs > 0)
542 free (g->backarcs);
543 free (g->nodes);
544 free (g);
545 }
546
547 void
548 print_ddg_edge (FILE *file, ddg_edge_ptr e)
549 {
550 char dep_c;
551
552 switch (e->type)
553 {
554 case OUTPUT_DEP :
555 dep_c = 'O';
556 break;
557 case ANTI_DEP :
558 dep_c = 'A';
559 break;
560 default:
561 dep_c = 'T';
562 }
563
564 fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
565 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
566 }
567
568 /* Print the DDG nodes with there in/out edges to the dump file. */
569 void
570 print_ddg (FILE *file, ddg_ptr g)
571 {
572 int i;
573
574 for (i = 0; i < g->num_nodes; i++)
575 {
576 ddg_edge_ptr e;
577
578 print_rtl_single (file, g->nodes[i].insn);
579 fprintf (file, "OUT ARCS: ");
580 for (e = g->nodes[i].out; e; e = e->next_out)
581 print_ddg_edge (file, e);
582
583 fprintf (file, "\nIN ARCS: ");
584 for (e = g->nodes[i].in; e; e = e->next_in)
585 print_ddg_edge (file, e);
586
587 fprintf (file, "\n");
588 }
589 }
590
591 /* Print the given DDG in VCG format. */
592 void
593 vcg_print_ddg (FILE *file, ddg_ptr g)
594 {
595 int src_cuid;
596
597 fprintf (file, "graph: {\n");
598 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
599 {
600 ddg_edge_ptr e;
601 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
602
603 fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
604 print_rtl_single (file, g->nodes[src_cuid].insn);
605 fprintf (file, "\"}\n");
606 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
607 {
608 int dst_uid = INSN_UID (e->dest->insn);
609 int dst_cuid = e->dest->cuid;
610
611 /* Give the backarcs a different color. */
612 if (e->distance > 0)
613 fprintf (file, "backedge: {color: red ");
614 else
615 fprintf (file, "edge: { ");
616
617 fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
618 fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
619 fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
620 }
621 }
622 fprintf (file, "}\n");
623 }
624
625 /* Create an edge and initialize it with given values. */
626 static ddg_edge_ptr
627 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
628 dep_type t, dep_data_type dt, int l, int d)
629 {
630 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
631
632 e->src = src;
633 e->dest = dest;
634 e->type = t;
635 e->data_type = dt;
636 e->latency = l;
637 e->distance = d;
638 e->next_in = e->next_out = NULL;
639 e->aux.info = 0;
640 return e;
641 }
642
643 /* Add the given edge to the in/out linked lists of the DDG nodes. */
644 static void
645 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
646 {
647 ddg_node_ptr src = e->src;
648 ddg_node_ptr dest = e->dest;
649
650 /* Should have allocated the sbitmaps. */
651 gcc_assert (src->successors && dest->predecessors);
652
653 SET_BIT (src->successors, dest->cuid);
654 SET_BIT (dest->predecessors, src->cuid);
655 e->next_in = dest->in;
656 dest->in = e;
657 e->next_out = src->out;
658 src->out = e;
659 }
660
661
662 \f
663 /* Algorithm for computing the recurrence_length of an scc. We assume at
664 for now that cycles in the data dependence graph contain a single backarc.
665 This simplifies the algorithm, and can be generalized later. */
666 static void
667 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
668 {
669 int j;
670 int result = -1;
671
672 for (j = 0; j < scc->num_backarcs; j++)
673 {
674 ddg_edge_ptr backarc = scc->backarcs[j];
675 int length;
676 int distance = backarc->distance;
677 ddg_node_ptr src = backarc->dest;
678 ddg_node_ptr dest = backarc->src;
679
680 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
681 if (length < 0 )
682 {
683 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
684 continue;
685 }
686 length += backarc->latency;
687 result = MAX (result, (length / distance));
688 }
689 scc->recurrence_length = result;
690 }
691
692 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
693 and mark edges that belong to this scc as IN_SCC. */
694 static ddg_scc_ptr
695 create_scc (ddg_ptr g, sbitmap nodes)
696 {
697 ddg_scc_ptr scc;
698 unsigned int u = 0;
699 sbitmap_iterator sbi;
700
701 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
702 scc->backarcs = NULL;
703 scc->num_backarcs = 0;
704 scc->nodes = sbitmap_alloc (g->num_nodes);
705 sbitmap_copy (scc->nodes, nodes);
706
707 /* Mark the backarcs that belong to this SCC. */
708 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
709 {
710 ddg_edge_ptr e;
711 ddg_node_ptr n = &g->nodes[u];
712
713 for (e = n->out; e; e = e->next_out)
714 if (TEST_BIT (nodes, e->dest->cuid))
715 {
716 e->aux.count = IN_SCC;
717 if (e->distance > 0)
718 add_backarc_to_scc (scc, e);
719 }
720 }
721
722 set_recurrence_length (scc, g);
723 return scc;
724 }
725
726 /* Cleans the memory allocation of a given SCC. */
727 static void
728 free_scc (ddg_scc_ptr scc)
729 {
730 if (!scc)
731 return;
732
733 sbitmap_free (scc->nodes);
734 if (scc->num_backarcs > 0)
735 free (scc->backarcs);
736 free (scc);
737 }
738
739
740 /* Add a given edge known to be a backarc to the given DDG. */
741 static void
742 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
743 {
744 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
745
746 add_edge_to_ddg (g, e);
747 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
748 g->backarcs[g->num_backarcs++] = e;
749 }
750
751 /* Add backarc to an SCC. */
752 static void
753 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
754 {
755 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
756
757 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
758 scc->backarcs[scc->num_backarcs++] = e;
759 }
760
761 /* Add the given SCC to the DDG. */
762 static void
763 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
764 {
765 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
766
767 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
768 g->sccs[g->num_sccs++] = scc;
769 }
770
771 /* Given the instruction INSN return the node that represents it. */
772 ddg_node_ptr
773 get_node_of_insn (ddg_ptr g, rtx insn)
774 {
775 int i;
776
777 for (i = 0; i < g->num_nodes; i++)
778 if (insn == g->nodes[i].insn)
779 return &g->nodes[i];
780 return NULL;
781 }
782
783 /* Given a set OPS of nodes in the DDG, find the set of their successors
784 which are not in OPS, and set their bits in SUCC. Bits corresponding to
785 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
786 void
787 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
788 {
789 unsigned int i = 0;
790 sbitmap_iterator sbi;
791
792 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
793 {
794 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
795 sbitmap_a_or_b (succ, succ, node_succ);
796 };
797
798 /* We want those that are not in ops. */
799 sbitmap_difference (succ, succ, ops);
800 }
801
802 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
803 which are not in OPS, and set their bits in PREDS. Bits corresponding to
804 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
805 void
806 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
807 {
808 unsigned int i = 0;
809 sbitmap_iterator sbi;
810
811 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
812 {
813 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
814 sbitmap_a_or_b (preds, preds, node_preds);
815 };
816
817 /* We want those that are not in ops. */
818 sbitmap_difference (preds, preds, ops);
819 }
820
821
822 /* Compare function to be passed to qsort to order the backarcs in descending
823 recMII order. */
824 static int
825 compare_sccs (const void *s1, const void *s2)
826 {
827 int rec_l1 = (*(ddg_scc_ptr *)s1)->recurrence_length;
828 int rec_l2 = (*(ddg_scc_ptr *)s2)->recurrence_length;
829 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
830
831 }
832
833 /* Order the backarcs in descending recMII order using compare_sccs. */
834 static void
835 order_sccs (ddg_all_sccs_ptr g)
836 {
837 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
838 (int (*) (const void *, const void *)) compare_sccs);
839 }
840
841 /* Perform the Strongly Connected Components decomposing algorithm on the
842 DDG and return DDG_ALL_SCCS structure that contains them. */
843 ddg_all_sccs_ptr
844 create_ddg_all_sccs (ddg_ptr g)
845 {
846 int i;
847 int num_nodes = g->num_nodes;
848 sbitmap from = sbitmap_alloc (num_nodes);
849 sbitmap to = sbitmap_alloc (num_nodes);
850 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
851 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
852 xmalloc (sizeof (struct ddg_all_sccs));
853
854 sccs->ddg = g;
855 sccs->sccs = NULL;
856 sccs->num_sccs = 0;
857
858 for (i = 0; i < g->num_backarcs; i++)
859 {
860 ddg_scc_ptr scc;
861 ddg_edge_ptr backarc = g->backarcs[i];
862 ddg_node_ptr src = backarc->src;
863 ddg_node_ptr dest = backarc->dest;
864
865 /* If the backarc already belongs to an SCC, continue. */
866 if (backarc->aux.count == IN_SCC)
867 continue;
868
869 sbitmap_zero (from);
870 sbitmap_zero (to);
871 SET_BIT (from, dest->cuid);
872 SET_BIT (to, src->cuid);
873
874 if (find_nodes_on_paths (scc_nodes, g, from, to))
875 {
876 scc = create_scc (g, scc_nodes);
877 add_scc_to_ddg (sccs, scc);
878 }
879 }
880 order_sccs (sccs);
881 sbitmap_free (from);
882 sbitmap_free (to);
883 sbitmap_free (scc_nodes);
884 return sccs;
885 }
886
887 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
888 void
889 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
890 {
891 int i;
892
893 if (!all_sccs)
894 return;
895
896 for (i = 0; i < all_sccs->num_sccs; i++)
897 free_scc (all_sccs->sccs[i]);
898
899 free (all_sccs);
900 }
901
902 \f
903 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
904 nodes - find all nodes that lie on paths from FROM to TO (not excluding
905 nodes from FROM and TO). Return nonzero if nodes exist. */
906 int
907 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
908 {
909 int answer;
910 int change;
911 unsigned int u = 0;
912 int num_nodes = g->num_nodes;
913 sbitmap_iterator sbi;
914
915 sbitmap workset = sbitmap_alloc (num_nodes);
916 sbitmap reachable_from = sbitmap_alloc (num_nodes);
917 sbitmap reach_to = sbitmap_alloc (num_nodes);
918 sbitmap tmp = sbitmap_alloc (num_nodes);
919
920 sbitmap_copy (reachable_from, from);
921 sbitmap_copy (tmp, from);
922
923 change = 1;
924 while (change)
925 {
926 change = 0;
927 sbitmap_copy (workset, tmp);
928 sbitmap_zero (tmp);
929 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
930 {
931 ddg_edge_ptr e;
932 ddg_node_ptr u_node = &g->nodes[u];
933
934 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
935 {
936 ddg_node_ptr v_node = e->dest;
937 int v = v_node->cuid;
938
939 if (!TEST_BIT (reachable_from, v))
940 {
941 SET_BIT (reachable_from, v);
942 SET_BIT (tmp, v);
943 change = 1;
944 }
945 }
946 }
947 }
948
949 sbitmap_copy (reach_to, to);
950 sbitmap_copy (tmp, to);
951
952 change = 1;
953 while (change)
954 {
955 change = 0;
956 sbitmap_copy (workset, tmp);
957 sbitmap_zero (tmp);
958 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
959 {
960 ddg_edge_ptr e;
961 ddg_node_ptr u_node = &g->nodes[u];
962
963 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
964 {
965 ddg_node_ptr v_node = e->src;
966 int v = v_node->cuid;
967
968 if (!TEST_BIT (reach_to, v))
969 {
970 SET_BIT (reach_to, v);
971 SET_BIT (tmp, v);
972 change = 1;
973 }
974 }
975 }
976 }
977
978 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
979 sbitmap_free (workset);
980 sbitmap_free (reachable_from);
981 sbitmap_free (reach_to);
982 sbitmap_free (tmp);
983 return answer;
984 }
985
986
987 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
988 at-least as large as the count of U_NODE plus the latency between them.
989 Sets a bit in TMP for each successor whose count was changed (increased).
990 Returns nonzero if any count was changed. */
991 static int
992 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
993 {
994 ddg_edge_ptr e;
995 int result = 0;
996
997 for (e = u_node->out; e; e = e->next_out)
998 {
999 ddg_node_ptr v_node = e->dest;
1000 int v = v_node->cuid;
1001
1002 if (TEST_BIT (nodes, v)
1003 && (e->distance == 0)
1004 && (v_node->aux.count < u_node->aux.count + e->latency))
1005 {
1006 v_node->aux.count = u_node->aux.count + e->latency;
1007 SET_BIT (tmp, v);
1008 result = 1;
1009 }
1010 }
1011 return result;
1012 }
1013
1014
1015 /* Find the length of a longest path from SRC to DEST in G,
1016 going only through NODES, and disregarding backarcs. */
1017 int
1018 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1019 {
1020 int i;
1021 unsigned int u = 0;
1022 int change = 1;
1023 int result;
1024 int num_nodes = g->num_nodes;
1025 sbitmap workset = sbitmap_alloc (num_nodes);
1026 sbitmap tmp = sbitmap_alloc (num_nodes);
1027
1028
1029 /* Data will hold the distance of the longest path found so far from
1030 src to each node. Initialize to -1 = less than minimum. */
1031 for (i = 0; i < g->num_nodes; i++)
1032 g->nodes[i].aux.count = -1;
1033 g->nodes[src].aux.count = 0;
1034
1035 sbitmap_zero (tmp);
1036 SET_BIT (tmp, src);
1037
1038 while (change)
1039 {
1040 sbitmap_iterator sbi;
1041
1042 change = 0;
1043 sbitmap_copy (workset, tmp);
1044 sbitmap_zero (tmp);
1045 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1046 {
1047 ddg_node_ptr u_node = &g->nodes[u];
1048
1049 change |= update_dist_to_successors (u_node, nodes, tmp);
1050 }
1051 }
1052 result = g->nodes[dest].aux.count;
1053 sbitmap_free (workset);
1054 sbitmap_free (tmp);
1055 return result;
1056 }