]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ddg.c
ggcplug.c: Shuffle includes to include gcc-plugin.h earlier.
[thirdparty/gcc.git] / gcc / ddg.c
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "hashtab.h"
32 #include "hash-set.h"
33 #include "vec.h"
34 #include "machmode.h"
35 #include "input.h"
36 #include "function.h"
37 #include "flags.h"
38 #include "insn-config.h"
39 #include "insn-attr.h"
40 #include "except.h"
41 #include "recog.h"
42 #include "predict.h"
43 #include "basic-block.h"
44 #include "sched-int.h"
45 #include "target.h"
46 #include "cfgloop.h"
47 #include "sbitmap.h"
48 #include "expr.h"
49 #include "bitmap.h"
50 #include "df.h"
51 #include "ddg.h"
52 #include "rtl-iter.h"
53
54 #ifdef INSN_SCHEDULING
55
56 /* A flag indicating that a ddg edge belongs to an SCC or not. */
57 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
58
59 /* Forward declarations. */
60 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
61 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
62 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
63 static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr,
64 ddg_node_ptr, dep_t);
65 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
66 dep_type, dep_data_type, int);
67 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
68 dep_data_type, int, int);
69 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
70 \f
71 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
72 static bool mem_ref_p;
73
74 /* Auxiliary function for mem_read_insn_p. */
75 static void
76 mark_mem_use (rtx *x, void *)
77 {
78 subrtx_iterator::array_type array;
79 FOR_EACH_SUBRTX (iter, array, *x, NONCONST)
80 if (MEM_P (*x))
81 {
82 mem_ref_p = true;
83 break;
84 }
85 }
86
87 /* Returns nonzero if INSN reads from memory. */
88 static bool
89 mem_read_insn_p (rtx_insn *insn)
90 {
91 mem_ref_p = false;
92 note_uses (&PATTERN (insn), mark_mem_use, NULL);
93 return mem_ref_p;
94 }
95
96 static void
97 mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
98 {
99 if (MEM_P (loc))
100 mem_ref_p = true;
101 }
102
103 /* Returns nonzero if INSN writes to memory. */
104 static bool
105 mem_write_insn_p (rtx_insn *insn)
106 {
107 mem_ref_p = false;
108 note_stores (PATTERN (insn), mark_mem_store, NULL);
109 return mem_ref_p;
110 }
111
112 /* Returns nonzero if X has access to memory. */
113 static bool
114 rtx_mem_access_p (rtx x)
115 {
116 int i, j;
117 const char *fmt;
118 enum rtx_code code;
119
120 if (x == 0)
121 return false;
122
123 if (MEM_P (x))
124 return true;
125
126 code = GET_CODE (x);
127 fmt = GET_RTX_FORMAT (code);
128 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
129 {
130 if (fmt[i] == 'e')
131 {
132 if (rtx_mem_access_p (XEXP (x, i)))
133 return true;
134 }
135 else if (fmt[i] == 'E')
136 for (j = 0; j < XVECLEN (x, i); j++)
137 {
138 if (rtx_mem_access_p (XVECEXP (x, i, j)))
139 return true;
140 }
141 }
142 return false;
143 }
144
145 /* Returns nonzero if INSN reads to or writes from memory. */
146 static bool
147 mem_access_insn_p (rtx_insn *insn)
148 {
149 return rtx_mem_access_p (PATTERN (insn));
150 }
151
152 /* Return true if DEF_INSN contains address being auto-inc or auto-dec
153 which is used in USE_INSN. Otherwise return false. The result is
154 being used to decide whether to remove the edge between def_insn and
155 use_insn when -fmodulo-sched-allow-regmoves is set. This function
156 doesn't need to consider the specific address register; no reg_moves
157 will be allowed for any life range defined by def_insn and used
158 by use_insn, if use_insn uses an address register auto-inc'ed by
159 def_insn. */
160 bool
161 autoinc_var_is_used_p (rtx_insn *def_insn, rtx_insn *use_insn)
162 {
163 rtx note;
164
165 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
166 if (REG_NOTE_KIND (note) == REG_INC
167 && reg_referenced_p (XEXP (note, 0), PATTERN (use_insn)))
168 return true;
169
170 return false;
171 }
172
173 /* Return true if one of the definitions in INSN has MODE_CC. Otherwise
174 return false. */
175 static bool
176 def_has_ccmode_p (rtx_insn *insn)
177 {
178 df_ref def;
179
180 FOR_EACH_INSN_DEF (def, insn)
181 {
182 enum machine_mode mode = GET_MODE (DF_REF_REG (def));
183
184 if (GET_MODE_CLASS (mode) == MODE_CC)
185 return true;
186 }
187
188 return false;
189 }
190
191 /* Computes the dependence parameters (latency, distance etc.), creates
192 a ddg_edge and adds it to the given DDG. */
193 static void
194 create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node,
195 ddg_node_ptr dest_node, dep_t link)
196 {
197 ddg_edge_ptr e;
198 int latency, distance = 0;
199 dep_type t = TRUE_DEP;
200 dep_data_type dt = (mem_access_insn_p (src_node->insn)
201 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
202 : REG_DEP);
203 gcc_assert (src_node->cuid < dest_node->cuid);
204 gcc_assert (link);
205
206 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
207 if (DEP_TYPE (link) == REG_DEP_ANTI)
208 t = ANTI_DEP;
209 else if (DEP_TYPE (link) == REG_DEP_OUTPUT)
210 t = OUTPUT_DEP;
211
212 gcc_assert (!DEBUG_INSN_P (dest_node->insn) || t == ANTI_DEP);
213 gcc_assert (!DEBUG_INSN_P (src_node->insn) || t == ANTI_DEP);
214
215 /* We currently choose not to create certain anti-deps edges and
216 compensate for that by generating reg-moves based on the life-range
217 analysis. The anti-deps that will be deleted are the ones which
218 have true-deps edges in the opposite direction (in other words
219 the kernel has only one def of the relevant register).
220 If the address that is being auto-inc or auto-dec in DEST_NODE
221 is used in SRC_NODE then do not remove the edge to make sure
222 reg-moves will not be created for this address.
223 TODO: support the removal of all anti-deps edges, i.e. including those
224 whose register has multiple defs in the loop. */
225 if (flag_modulo_sched_allow_regmoves
226 && (t == ANTI_DEP && dt == REG_DEP)
227 && !def_has_ccmode_p (dest_node->insn)
228 && !autoinc_var_is_used_p (dest_node->insn, src_node->insn))
229 {
230 rtx set;
231
232 set = single_set (dest_node->insn);
233 /* TODO: Handle registers that REG_P is not true for them, i.e.
234 subregs and special registers. */
235 if (set && REG_P (SET_DEST (set)))
236 {
237 int regno = REGNO (SET_DEST (set));
238 df_ref first_def;
239 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
240
241 first_def = df_bb_regno_first_def_find (g->bb, regno);
242 gcc_assert (first_def);
243
244 if (bitmap_bit_p (&bb_info->gen, DF_REF_ID (first_def)))
245 return;
246 }
247 }
248
249 latency = dep_cost (link);
250 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
251 add_edge_to_ddg (g, e);
252 }
253
254 /* The same as the above function, but it doesn't require a link parameter. */
255 static void
256 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
257 dep_type d_t, dep_data_type d_dt, int distance)
258 {
259 ddg_edge_ptr e;
260 int l;
261 enum reg_note dep_kind;
262 struct _dep _dep, *dep = &_dep;
263
264 gcc_assert (!DEBUG_INSN_P (to->insn) || d_t == ANTI_DEP);
265 gcc_assert (!DEBUG_INSN_P (from->insn) || d_t == ANTI_DEP);
266
267 if (d_t == ANTI_DEP)
268 dep_kind = REG_DEP_ANTI;
269 else if (d_t == OUTPUT_DEP)
270 dep_kind = REG_DEP_OUTPUT;
271 else
272 {
273 gcc_assert (d_t == TRUE_DEP);
274
275 dep_kind = REG_DEP_TRUE;
276 }
277
278 init_dep (dep, from->insn, to->insn, dep_kind);
279
280 l = dep_cost (dep);
281
282 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
283 if (distance > 0)
284 add_backarc_to_ddg (g, e);
285 else
286 add_edge_to_ddg (g, e);
287 }
288
289
290 /* Given a downwards exposed register def LAST_DEF (which is the last
291 definition of that register in the bb), add inter-loop true dependences
292 to all its uses in the next iteration, an output dependence to the
293 first def of the same register (possibly itself) in the next iteration
294 and anti-dependences from its uses in the current iteration to the
295 first definition in the next iteration. */
296 static void
297 add_cross_iteration_register_deps (ddg_ptr g, df_ref last_def)
298 {
299 int regno = DF_REF_REGNO (last_def);
300 struct df_link *r_use;
301 int has_use_in_bb_p = false;
302 rtx_insn *def_insn = DF_REF_INSN (last_def);
303 ddg_node_ptr last_def_node = get_node_of_insn (g, def_insn);
304 ddg_node_ptr use_node;
305 #ifdef ENABLE_CHECKING
306 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
307 #endif
308 df_ref first_def = df_bb_regno_first_def_find (g->bb, regno);
309
310 gcc_assert (last_def_node);
311 gcc_assert (first_def);
312
313 #ifdef ENABLE_CHECKING
314 if (DF_REF_ID (last_def) != DF_REF_ID (first_def))
315 gcc_assert (!bitmap_bit_p (&bb_info->gen,
316 DF_REF_ID (first_def)));
317 #endif
318
319 /* Create inter-loop true dependences and anti dependences. */
320 for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next)
321 {
322 rtx_insn *use_insn = DF_REF_INSN (r_use->ref);
323
324 if (BLOCK_FOR_INSN (use_insn) != g->bb)
325 continue;
326
327 /* ??? Do not handle uses with DF_REF_IN_NOTE notes. */
328 use_node = get_node_of_insn (g, use_insn);
329 gcc_assert (use_node);
330 has_use_in_bb_p = true;
331 if (use_node->cuid <= last_def_node->cuid)
332 {
333 /* Add true deps from last_def to it's uses in the next
334 iteration. Any such upwards exposed use appears before
335 the last_def def. */
336 create_ddg_dep_no_link (g, last_def_node, use_node,
337 DEBUG_INSN_P (use_insn) ? ANTI_DEP : TRUE_DEP,
338 REG_DEP, 1);
339 }
340 else if (!DEBUG_INSN_P (use_insn))
341 {
342 /* Add anti deps from last_def's uses in the current iteration
343 to the first def in the next iteration. We do not add ANTI
344 dep when there is an intra-loop TRUE dep in the opposite
345 direction, but use regmoves to fix such disregarded ANTI
346 deps when broken. If the first_def reaches the USE then
347 there is such a dep. */
348 ddg_node_ptr first_def_node = get_node_of_insn (g,
349 DF_REF_INSN (first_def));
350
351 gcc_assert (first_def_node);
352
353 /* Always create the edge if the use node is a branch in
354 order to prevent the creation of reg-moves.
355 If the address that is being auto-inc or auto-dec in LAST_DEF
356 is used in USE_INSN then do not remove the edge to make sure
357 reg-moves will not be created for that address. */
358 if (DF_REF_ID (last_def) != DF_REF_ID (first_def)
359 || !flag_modulo_sched_allow_regmoves
360 || JUMP_P (use_node->insn)
361 || autoinc_var_is_used_p (DF_REF_INSN (last_def), use_insn)
362 || def_has_ccmode_p (DF_REF_INSN (last_def)))
363 create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP,
364 REG_DEP, 1);
365
366 }
367 }
368 /* Create an inter-loop output dependence between LAST_DEF (which is the
369 last def in its block, being downwards exposed) and the first def in
370 its block. Avoid creating a self output dependence. Avoid creating
371 an output dependence if there is a dependence path between the two
372 defs starting with a true dependence to a use which can be in the
373 next iteration; followed by an anti dependence of that use to the
374 first def (i.e. if there is a use between the two defs.) */
375 if (!has_use_in_bb_p)
376 {
377 ddg_node_ptr dest_node;
378
379 if (DF_REF_ID (last_def) == DF_REF_ID (first_def))
380 return;
381
382 dest_node = get_node_of_insn (g, DF_REF_INSN (first_def));
383 gcc_assert (dest_node);
384 create_ddg_dep_no_link (g, last_def_node, dest_node,
385 OUTPUT_DEP, REG_DEP, 1);
386 }
387 }
388 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
389 static void
390 build_inter_loop_deps (ddg_ptr g)
391 {
392 unsigned rd_num;
393 struct df_rd_bb_info *rd_bb_info;
394 bitmap_iterator bi;
395
396 rd_bb_info = DF_RD_BB_INFO (g->bb);
397
398 /* Find inter-loop register output, true and anti deps. */
399 EXECUTE_IF_SET_IN_BITMAP (&rd_bb_info->gen, 0, rd_num, bi)
400 {
401 df_ref rd = DF_DEFS_GET (rd_num);
402
403 add_cross_iteration_register_deps (g, rd);
404 }
405 }
406
407
408 /* Return true if two specified instructions have mem expr with conflict
409 alias sets. */
410 static bool
411 insns_may_alias_p (rtx_insn *insn1, rtx_insn *insn2)
412 {
413 subrtx_iterator::array_type array1;
414 subrtx_iterator::array_type array2;
415 FOR_EACH_SUBRTX (iter1, array1, PATTERN (insn1), NONCONST)
416 {
417 const_rtx x1 = *iter1;
418 if (MEM_P (x1))
419 FOR_EACH_SUBRTX (iter2, array2, PATTERN (insn2), NONCONST)
420 {
421 const_rtx x2 = *iter2;
422 if (MEM_P (x2) && may_alias_p (x2, x1))
423 return true;
424 }
425 }
426 return false;
427 }
428
429 /* Given two nodes, analyze their RTL insns and add intra-loop mem deps
430 to ddg G. */
431 static void
432 add_intra_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
433 {
434
435 if ((from->cuid == to->cuid)
436 || !insns_may_alias_p (from->insn, to->insn))
437 /* Do not create edge if memory references have disjoint alias sets
438 or 'to' and 'from' are the same instruction. */
439 return;
440
441 if (mem_write_insn_p (from->insn))
442 {
443 if (mem_read_insn_p (to->insn))
444 create_ddg_dep_no_link (g, from, to,
445 DEBUG_INSN_P (to->insn)
446 ? ANTI_DEP : TRUE_DEP, MEM_DEP, 0);
447 else
448 create_ddg_dep_no_link (g, from, to,
449 DEBUG_INSN_P (to->insn)
450 ? ANTI_DEP : OUTPUT_DEP, MEM_DEP, 0);
451 }
452 else if (!mem_read_insn_p (to->insn))
453 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 0);
454 }
455
456 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
457 to ddg G. */
458 static void
459 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
460 {
461 if (!insns_may_alias_p (from->insn, to->insn))
462 /* Do not create edge if memory references have disjoint alias sets. */
463 return;
464
465 if (mem_write_insn_p (from->insn))
466 {
467 if (mem_read_insn_p (to->insn))
468 create_ddg_dep_no_link (g, from, to,
469 DEBUG_INSN_P (to->insn)
470 ? ANTI_DEP : TRUE_DEP, MEM_DEP, 1);
471 else if (from->cuid != to->cuid)
472 create_ddg_dep_no_link (g, from, to,
473 DEBUG_INSN_P (to->insn)
474 ? ANTI_DEP : OUTPUT_DEP, MEM_DEP, 1);
475 }
476 else
477 {
478 if (mem_read_insn_p (to->insn))
479 return;
480 else if (from->cuid != to->cuid)
481 {
482 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
483 if (DEBUG_INSN_P (from->insn) || DEBUG_INSN_P (to->insn))
484 create_ddg_dep_no_link (g, to, from, ANTI_DEP, MEM_DEP, 1);
485 else
486 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
487 }
488 }
489
490 }
491
492 /* Perform intra-block Data Dependency analysis and connect the nodes in
493 the DDG. We assume the loop has a single basic block. */
494 static void
495 build_intra_loop_deps (ddg_ptr g)
496 {
497 int i;
498 /* Hold the dependency analysis state during dependency calculations. */
499 struct deps_desc tmp_deps;
500 rtx_insn *head, *tail;
501
502 /* Build the dependence information, using the sched_analyze function. */
503 init_deps_global ();
504 init_deps (&tmp_deps, false);
505
506 /* Do the intra-block data dependence analysis for the given block. */
507 get_ebb_head_tail (g->bb, g->bb, &head, &tail);
508 sched_analyze (&tmp_deps, head, tail);
509
510 /* Build intra-loop data dependencies using the scheduler dependency
511 analysis. */
512 for (i = 0; i < g->num_nodes; i++)
513 {
514 ddg_node_ptr dest_node = &g->nodes[i];
515 sd_iterator_def sd_it;
516 dep_t dep;
517
518 if (! INSN_P (dest_node->insn))
519 continue;
520
521 FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep)
522 {
523 rtx_insn *src_insn = DEP_PRO (dep);
524 ddg_node_ptr src_node;
525
526 /* Don't add dependencies on debug insns to non-debug insns
527 to avoid codegen differences between -g and -g0. */
528 if (DEBUG_INSN_P (src_insn) && !DEBUG_INSN_P (dest_node->insn))
529 continue;
530
531 src_node = get_node_of_insn (g, src_insn);
532
533 if (!src_node)
534 continue;
535
536 create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep);
537 }
538
539 /* If this insn modifies memory, add an edge to all insns that access
540 memory. */
541 if (mem_access_insn_p (dest_node->insn))
542 {
543 int j;
544
545 for (j = 0; j <= i; j++)
546 {
547 ddg_node_ptr j_node = &g->nodes[j];
548 if (DEBUG_INSN_P (j_node->insn))
549 continue;
550 if (mem_access_insn_p (j_node->insn))
551 {
552 /* Don't bother calculating inter-loop dep if an intra-loop dep
553 already exists. */
554 if (! bitmap_bit_p (dest_node->successors, j))
555 add_inter_loop_mem_dep (g, dest_node, j_node);
556 /* If -fmodulo-sched-allow-regmoves
557 is set certain anti-dep edges are not created.
558 It might be that these anti-dep edges are on the
559 path from one memory instruction to another such that
560 removing these edges could cause a violation of the
561 memory dependencies. Thus we add intra edges between
562 every two memory instructions in this case. */
563 if (flag_modulo_sched_allow_regmoves
564 && !bitmap_bit_p (dest_node->predecessors, j))
565 add_intra_loop_mem_dep (g, j_node, dest_node);
566 }
567 }
568 }
569 }
570
571 /* Free the INSN_LISTs. */
572 finish_deps_global ();
573 free_deps (&tmp_deps);
574
575 /* Free dependencies. */
576 sched_free_deps (head, tail, false);
577 }
578
579
580 /* Given a basic block, create its DDG and return a pointer to a variable
581 of ddg type that represents it.
582 Initialize the ddg structure fields to the appropriate values. */
583 ddg_ptr
584 create_ddg (basic_block bb, int closing_branch_deps)
585 {
586 ddg_ptr g;
587 rtx_insn *insn, *first_note;
588 int i;
589 int num_nodes = 0;
590
591 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
592
593 g->bb = bb;
594 g->closing_branch_deps = closing_branch_deps;
595
596 /* Count the number of insns in the BB. */
597 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
598 insn = NEXT_INSN (insn))
599 {
600 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
601 continue;
602
603 if (DEBUG_INSN_P (insn))
604 g->num_debug++;
605 else
606 {
607 if (mem_read_insn_p (insn))
608 g->num_loads++;
609 if (mem_write_insn_p (insn))
610 g->num_stores++;
611 }
612 num_nodes++;
613 }
614
615 /* There is nothing to do for this BB. */
616 if ((num_nodes - g->num_debug) <= 1)
617 {
618 free (g);
619 return NULL;
620 }
621
622 /* Allocate the nodes array, and initialize the nodes. */
623 g->num_nodes = num_nodes;
624 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
625 g->closing_branch = NULL;
626 i = 0;
627 first_note = NULL;
628 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
629 insn = NEXT_INSN (insn))
630 {
631 if (! INSN_P (insn))
632 {
633 if (! first_note && NOTE_P (insn)
634 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK)
635 first_note = insn;
636 continue;
637 }
638 if (JUMP_P (insn))
639 {
640 gcc_assert (!g->closing_branch);
641 g->closing_branch = &g->nodes[i];
642 }
643 else if (GET_CODE (PATTERN (insn)) == USE)
644 {
645 if (! first_note)
646 first_note = insn;
647 continue;
648 }
649
650 g->nodes[i].cuid = i;
651 g->nodes[i].successors = sbitmap_alloc (num_nodes);
652 bitmap_clear (g->nodes[i].successors);
653 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
654 bitmap_clear (g->nodes[i].predecessors);
655 g->nodes[i].first_note = (first_note ? first_note : insn);
656 g->nodes[i++].insn = insn;
657 first_note = NULL;
658 }
659
660 /* We must have found a branch in DDG. */
661 gcc_assert (g->closing_branch);
662
663
664 /* Build the data dependency graph. */
665 build_intra_loop_deps (g);
666 build_inter_loop_deps (g);
667 return g;
668 }
669
670 /* Free all the memory allocated for the DDG. */
671 void
672 free_ddg (ddg_ptr g)
673 {
674 int i;
675
676 if (!g)
677 return;
678
679 for (i = 0; i < g->num_nodes; i++)
680 {
681 ddg_edge_ptr e = g->nodes[i].out;
682
683 while (e)
684 {
685 ddg_edge_ptr next = e->next_out;
686
687 free (e);
688 e = next;
689 }
690 sbitmap_free (g->nodes[i].successors);
691 sbitmap_free (g->nodes[i].predecessors);
692 }
693 if (g->num_backarcs > 0)
694 free (g->backarcs);
695 free (g->nodes);
696 free (g);
697 }
698
699 void
700 print_ddg_edge (FILE *file, ddg_edge_ptr e)
701 {
702 char dep_c;
703
704 switch (e->type)
705 {
706 case OUTPUT_DEP :
707 dep_c = 'O';
708 break;
709 case ANTI_DEP :
710 dep_c = 'A';
711 break;
712 default:
713 dep_c = 'T';
714 }
715
716 fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
717 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
718 }
719
720 /* Print the DDG nodes with there in/out edges to the dump file. */
721 void
722 print_ddg (FILE *file, ddg_ptr g)
723 {
724 int i;
725
726 for (i = 0; i < g->num_nodes; i++)
727 {
728 ddg_edge_ptr e;
729
730 fprintf (file, "Node num: %d\n", g->nodes[i].cuid);
731 print_rtl_single (file, g->nodes[i].insn);
732 fprintf (file, "OUT ARCS: ");
733 for (e = g->nodes[i].out; e; e = e->next_out)
734 print_ddg_edge (file, e);
735
736 fprintf (file, "\nIN ARCS: ");
737 for (e = g->nodes[i].in; e; e = e->next_in)
738 print_ddg_edge (file, e);
739
740 fprintf (file, "\n");
741 }
742 }
743
744 /* Print the given DDG in VCG format. */
745 DEBUG_FUNCTION void
746 vcg_print_ddg (FILE *file, ddg_ptr g)
747 {
748 int src_cuid;
749
750 fprintf (file, "graph: {\n");
751 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
752 {
753 ddg_edge_ptr e;
754 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
755
756 fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
757 print_rtl_single (file, g->nodes[src_cuid].insn);
758 fprintf (file, "\"}\n");
759 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
760 {
761 int dst_uid = INSN_UID (e->dest->insn);
762 int dst_cuid = e->dest->cuid;
763
764 /* Give the backarcs a different color. */
765 if (e->distance > 0)
766 fprintf (file, "backedge: {color: red ");
767 else
768 fprintf (file, "edge: { ");
769
770 fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
771 fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
772 fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
773 }
774 }
775 fprintf (file, "}\n");
776 }
777
778 /* Dump the sccs in SCCS. */
779 void
780 print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
781 {
782 unsigned int u = 0;
783 sbitmap_iterator sbi;
784 int i;
785
786 if (!file)
787 return;
788
789 fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
790 for (i = 0; i < sccs->num_sccs; i++)
791 {
792 fprintf (file, "SCC number: %d\n", i);
793 EXECUTE_IF_SET_IN_BITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
794 {
795 fprintf (file, "insn num %d\n", u);
796 print_rtl_single (file, g->nodes[u].insn);
797 }
798 }
799 fprintf (file, "\n");
800 }
801
802 /* Create an edge and initialize it with given values. */
803 static ddg_edge_ptr
804 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
805 dep_type t, dep_data_type dt, int l, int d)
806 {
807 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
808
809 e->src = src;
810 e->dest = dest;
811 e->type = t;
812 e->data_type = dt;
813 e->latency = l;
814 e->distance = d;
815 e->next_in = e->next_out = NULL;
816 e->aux.info = 0;
817 return e;
818 }
819
820 /* Add the given edge to the in/out linked lists of the DDG nodes. */
821 static void
822 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
823 {
824 ddg_node_ptr src = e->src;
825 ddg_node_ptr dest = e->dest;
826
827 /* Should have allocated the sbitmaps. */
828 gcc_assert (src->successors && dest->predecessors);
829
830 bitmap_set_bit (src->successors, dest->cuid);
831 bitmap_set_bit (dest->predecessors, src->cuid);
832 e->next_in = dest->in;
833 dest->in = e;
834 e->next_out = src->out;
835 src->out = e;
836 }
837
838
839 \f
840 /* Algorithm for computing the recurrence_length of an scc. We assume at
841 for now that cycles in the data dependence graph contain a single backarc.
842 This simplifies the algorithm, and can be generalized later. */
843 static void
844 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
845 {
846 int j;
847 int result = -1;
848
849 for (j = 0; j < scc->num_backarcs; j++)
850 {
851 ddg_edge_ptr backarc = scc->backarcs[j];
852 int length;
853 int distance = backarc->distance;
854 ddg_node_ptr src = backarc->dest;
855 ddg_node_ptr dest = backarc->src;
856
857 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
858 if (length < 0 )
859 {
860 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
861 continue;
862 }
863 length += backarc->latency;
864 result = MAX (result, (length / distance));
865 }
866 scc->recurrence_length = result;
867 }
868
869 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
870 and mark edges that belong to this scc as IN_SCC. */
871 static ddg_scc_ptr
872 create_scc (ddg_ptr g, sbitmap nodes)
873 {
874 ddg_scc_ptr scc;
875 unsigned int u = 0;
876 sbitmap_iterator sbi;
877
878 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
879 scc->backarcs = NULL;
880 scc->num_backarcs = 0;
881 scc->nodes = sbitmap_alloc (g->num_nodes);
882 bitmap_copy (scc->nodes, nodes);
883
884 /* Mark the backarcs that belong to this SCC. */
885 EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi)
886 {
887 ddg_edge_ptr e;
888 ddg_node_ptr n = &g->nodes[u];
889
890 for (e = n->out; e; e = e->next_out)
891 if (bitmap_bit_p (nodes, e->dest->cuid))
892 {
893 e->aux.count = IN_SCC;
894 if (e->distance > 0)
895 add_backarc_to_scc (scc, e);
896 }
897 }
898
899 set_recurrence_length (scc, g);
900 return scc;
901 }
902
903 /* Cleans the memory allocation of a given SCC. */
904 static void
905 free_scc (ddg_scc_ptr scc)
906 {
907 if (!scc)
908 return;
909
910 sbitmap_free (scc->nodes);
911 if (scc->num_backarcs > 0)
912 free (scc->backarcs);
913 free (scc);
914 }
915
916
917 /* Add a given edge known to be a backarc to the given DDG. */
918 static void
919 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
920 {
921 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
922
923 add_edge_to_ddg (g, e);
924 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
925 g->backarcs[g->num_backarcs++] = e;
926 }
927
928 /* Add backarc to an SCC. */
929 static void
930 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
931 {
932 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
933
934 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
935 scc->backarcs[scc->num_backarcs++] = e;
936 }
937
938 /* Add the given SCC to the DDG. */
939 static void
940 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
941 {
942 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
943
944 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
945 g->sccs[g->num_sccs++] = scc;
946 }
947
948 /* Given the instruction INSN return the node that represents it. */
949 ddg_node_ptr
950 get_node_of_insn (ddg_ptr g, rtx_insn *insn)
951 {
952 int i;
953
954 for (i = 0; i < g->num_nodes; i++)
955 if (insn == g->nodes[i].insn)
956 return &g->nodes[i];
957 return NULL;
958 }
959
960 /* Given a set OPS of nodes in the DDG, find the set of their successors
961 which are not in OPS, and set their bits in SUCC. Bits corresponding to
962 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
963 void
964 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
965 {
966 unsigned int i = 0;
967 sbitmap_iterator sbi;
968
969 EXECUTE_IF_SET_IN_BITMAP (ops, 0, i, sbi)
970 {
971 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
972 bitmap_ior (succ, succ, node_succ);
973 };
974
975 /* We want those that are not in ops. */
976 bitmap_and_compl (succ, succ, ops);
977 }
978
979 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
980 which are not in OPS, and set their bits in PREDS. Bits corresponding to
981 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
982 void
983 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
984 {
985 unsigned int i = 0;
986 sbitmap_iterator sbi;
987
988 EXECUTE_IF_SET_IN_BITMAP (ops, 0, i, sbi)
989 {
990 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
991 bitmap_ior (preds, preds, node_preds);
992 };
993
994 /* We want those that are not in ops. */
995 bitmap_and_compl (preds, preds, ops);
996 }
997
998
999 /* Compare function to be passed to qsort to order the backarcs in descending
1000 recMII order. */
1001 static int
1002 compare_sccs (const void *s1, const void *s2)
1003 {
1004 const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
1005 const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length;
1006 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
1007
1008 }
1009
1010 /* Order the backarcs in descending recMII order using compare_sccs. */
1011 static void
1012 order_sccs (ddg_all_sccs_ptr g)
1013 {
1014 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
1015 (int (*) (const void *, const void *)) compare_sccs);
1016 }
1017
1018 #ifdef ENABLE_CHECKING
1019 /* Check that every node in SCCS belongs to exactly one strongly connected
1020 component and that no element of SCCS is empty. */
1021 static void
1022 check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
1023 {
1024 int i = 0;
1025 sbitmap tmp = sbitmap_alloc (num_nodes);
1026
1027 bitmap_clear (tmp);
1028 for (i = 0; i < sccs->num_sccs; i++)
1029 {
1030 gcc_assert (!bitmap_empty_p (sccs->sccs[i]->nodes));
1031 /* Verify that every node in sccs is in exactly one strongly
1032 connected component. */
1033 gcc_assert (!bitmap_intersect_p (tmp, sccs->sccs[i]->nodes));
1034 bitmap_ior (tmp, tmp, sccs->sccs[i]->nodes);
1035 }
1036 sbitmap_free (tmp);
1037 }
1038 #endif
1039
1040 /* Perform the Strongly Connected Components decomposing algorithm on the
1041 DDG and return DDG_ALL_SCCS structure that contains them. */
1042 ddg_all_sccs_ptr
1043 create_ddg_all_sccs (ddg_ptr g)
1044 {
1045 int i;
1046 int num_nodes = g->num_nodes;
1047 sbitmap from = sbitmap_alloc (num_nodes);
1048 sbitmap to = sbitmap_alloc (num_nodes);
1049 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
1050 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
1051 xmalloc (sizeof (struct ddg_all_sccs));
1052
1053 sccs->ddg = g;
1054 sccs->sccs = NULL;
1055 sccs->num_sccs = 0;
1056
1057 for (i = 0; i < g->num_backarcs; i++)
1058 {
1059 ddg_scc_ptr scc;
1060 ddg_edge_ptr backarc = g->backarcs[i];
1061 ddg_node_ptr src = backarc->src;
1062 ddg_node_ptr dest = backarc->dest;
1063
1064 /* If the backarc already belongs to an SCC, continue. */
1065 if (backarc->aux.count == IN_SCC)
1066 continue;
1067
1068 bitmap_clear (scc_nodes);
1069 bitmap_clear (from);
1070 bitmap_clear (to);
1071 bitmap_set_bit (from, dest->cuid);
1072 bitmap_set_bit (to, src->cuid);
1073
1074 if (find_nodes_on_paths (scc_nodes, g, from, to))
1075 {
1076 scc = create_scc (g, scc_nodes);
1077 add_scc_to_ddg (sccs, scc);
1078 }
1079 }
1080 order_sccs (sccs);
1081 sbitmap_free (from);
1082 sbitmap_free (to);
1083 sbitmap_free (scc_nodes);
1084 #ifdef ENABLE_CHECKING
1085 check_sccs (sccs, num_nodes);
1086 #endif
1087 return sccs;
1088 }
1089
1090 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
1091 void
1092 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
1093 {
1094 int i;
1095
1096 if (!all_sccs)
1097 return;
1098
1099 for (i = 0; i < all_sccs->num_sccs; i++)
1100 free_scc (all_sccs->sccs[i]);
1101
1102 free (all_sccs->sccs);
1103 free (all_sccs);
1104 }
1105
1106 \f
1107 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
1108 nodes - find all nodes that lie on paths from FROM to TO (not excluding
1109 nodes from FROM and TO). Return nonzero if nodes exist. */
1110 int
1111 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
1112 {
1113 int answer;
1114 int change;
1115 unsigned int u = 0;
1116 int num_nodes = g->num_nodes;
1117 sbitmap_iterator sbi;
1118
1119 sbitmap workset = sbitmap_alloc (num_nodes);
1120 sbitmap reachable_from = sbitmap_alloc (num_nodes);
1121 sbitmap reach_to = sbitmap_alloc (num_nodes);
1122 sbitmap tmp = sbitmap_alloc (num_nodes);
1123
1124 bitmap_copy (reachable_from, from);
1125 bitmap_copy (tmp, from);
1126
1127 change = 1;
1128 while (change)
1129 {
1130 change = 0;
1131 bitmap_copy (workset, tmp);
1132 bitmap_clear (tmp);
1133 EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
1134 {
1135 ddg_edge_ptr e;
1136 ddg_node_ptr u_node = &g->nodes[u];
1137
1138 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
1139 {
1140 ddg_node_ptr v_node = e->dest;
1141 int v = v_node->cuid;
1142
1143 if (!bitmap_bit_p (reachable_from, v))
1144 {
1145 bitmap_set_bit (reachable_from, v);
1146 bitmap_set_bit (tmp, v);
1147 change = 1;
1148 }
1149 }
1150 }
1151 }
1152
1153 bitmap_copy (reach_to, to);
1154 bitmap_copy (tmp, to);
1155
1156 change = 1;
1157 while (change)
1158 {
1159 change = 0;
1160 bitmap_copy (workset, tmp);
1161 bitmap_clear (tmp);
1162 EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
1163 {
1164 ddg_edge_ptr e;
1165 ddg_node_ptr u_node = &g->nodes[u];
1166
1167 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
1168 {
1169 ddg_node_ptr v_node = e->src;
1170 int v = v_node->cuid;
1171
1172 if (!bitmap_bit_p (reach_to, v))
1173 {
1174 bitmap_set_bit (reach_to, v);
1175 bitmap_set_bit (tmp, v);
1176 change = 1;
1177 }
1178 }
1179 }
1180 }
1181
1182 answer = bitmap_and (result, reachable_from, reach_to);
1183 sbitmap_free (workset);
1184 sbitmap_free (reachable_from);
1185 sbitmap_free (reach_to);
1186 sbitmap_free (tmp);
1187 return answer;
1188 }
1189
1190
1191 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
1192 at-least as large as the count of U_NODE plus the latency between them.
1193 Sets a bit in TMP for each successor whose count was changed (increased).
1194 Returns nonzero if any count was changed. */
1195 static int
1196 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
1197 {
1198 ddg_edge_ptr e;
1199 int result = 0;
1200
1201 for (e = u_node->out; e; e = e->next_out)
1202 {
1203 ddg_node_ptr v_node = e->dest;
1204 int v = v_node->cuid;
1205
1206 if (bitmap_bit_p (nodes, v)
1207 && (e->distance == 0)
1208 && (v_node->aux.count < u_node->aux.count + e->latency))
1209 {
1210 v_node->aux.count = u_node->aux.count + e->latency;
1211 bitmap_set_bit (tmp, v);
1212 result = 1;
1213 }
1214 }
1215 return result;
1216 }
1217
1218
1219 /* Find the length of a longest path from SRC to DEST in G,
1220 going only through NODES, and disregarding backarcs. */
1221 int
1222 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1223 {
1224 int i;
1225 unsigned int u = 0;
1226 int change = 1;
1227 int result;
1228 int num_nodes = g->num_nodes;
1229 sbitmap workset = sbitmap_alloc (num_nodes);
1230 sbitmap tmp = sbitmap_alloc (num_nodes);
1231
1232
1233 /* Data will hold the distance of the longest path found so far from
1234 src to each node. Initialize to -1 = less than minimum. */
1235 for (i = 0; i < g->num_nodes; i++)
1236 g->nodes[i].aux.count = -1;
1237 g->nodes[src].aux.count = 0;
1238
1239 bitmap_clear (tmp);
1240 bitmap_set_bit (tmp, src);
1241
1242 while (change)
1243 {
1244 sbitmap_iterator sbi;
1245
1246 change = 0;
1247 bitmap_copy (workset, tmp);
1248 bitmap_clear (tmp);
1249 EXECUTE_IF_SET_IN_BITMAP (workset, 0, u, sbi)
1250 {
1251 ddg_node_ptr u_node = &g->nodes[u];
1252
1253 change |= update_dist_to_successors (u_node, nodes, tmp);
1254 }
1255 }
1256 result = g->nodes[dest].aux.count;
1257 sbitmap_free (workset);
1258 sbitmap_free (tmp);
1259 return result;
1260 }
1261
1262 #endif /* INSN_SCHEDULING */