]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ddg.c
bitmap.h (EXECUTE_IF_SET_IN_BITMAP, [...]): Changed to iterator style.
[thirdparty/gcc.git] / gcc / ddg.c
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "regs.h"
34 #include "function.h"
35 #include "flags.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 #include "except.h"
39 #include "recog.h"
40 #include "sched-int.h"
41 #include "target.h"
42 #include "cfglayout.h"
43 #include "cfgloop.h"
44 #include "sbitmap.h"
45 #include "expr.h"
46 #include "bitmap.h"
47 #include "df.h"
48 #include "ddg.h"
49
50 /* A flag indicating that a ddg edge belongs to an SCC or not. */
51 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
52
53 /* Forward declarations. */
54 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
55 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
56 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
57 static void create_ddg_dependence (ddg_ptr, ddg_node_ptr, ddg_node_ptr, rtx);
58 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
59 dep_type, dep_data_type, int);
60 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
61 dep_data_type, int, int);
62 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
63 \f
64 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
65 static bool mem_ref_p;
66
67 /* Auxiliary function for mem_read_insn_p. */
68 static int
69 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
70 {
71 if (MEM_P (*x))
72 mem_ref_p = true;
73 return 0;
74 }
75
76 /* Auxiliary function for mem_read_insn_p. */
77 static void
78 mark_mem_use_1 (rtx *x, void *data)
79 {
80 for_each_rtx (x, mark_mem_use, data);
81 }
82
83 /* Returns nonzero if INSN reads from memory. */
84 static bool
85 mem_read_insn_p (rtx insn)
86 {
87 mem_ref_p = false;
88 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
89 return mem_ref_p;
90 }
91
92 static void
93 mark_mem_store (rtx loc, rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
94 {
95 if (MEM_P (loc))
96 mem_ref_p = true;
97 }
98
99 /* Returns nonzero if INSN writes to memory. */
100 static bool
101 mem_write_insn_p (rtx insn)
102 {
103 mem_ref_p = false;
104 note_stores (PATTERN (insn), mark_mem_store, NULL);
105 return mem_ref_p;
106 }
107
108 /* Returns nonzero if X has access to memory. */
109 static bool
110 rtx_mem_access_p (rtx x)
111 {
112 int i, j;
113 const char *fmt;
114 enum rtx_code code;
115
116 if (x == 0)
117 return false;
118
119 if (MEM_P (x))
120 return true;
121
122 code = GET_CODE (x);
123 fmt = GET_RTX_FORMAT (code);
124 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
125 {
126 if (fmt[i] == 'e')
127 {
128 if (rtx_mem_access_p (XEXP (x, i)))
129 return true;
130 }
131 else if (fmt[i] == 'E')
132 for (j = 0; j < XVECLEN (x, i); j++)
133 {
134 if (rtx_mem_access_p (XVECEXP (x, i, j)))
135 return true;
136 }
137 }
138 return false;
139 }
140
141 /* Returns nonzero if INSN reads to or writes from memory. */
142 static bool
143 mem_access_insn_p (rtx insn)
144 {
145 return rtx_mem_access_p (PATTERN (insn));
146 }
147
148 /* Computes the dependence parameters (latency, distance etc.), creates
149 a ddg_edge and adds it to the given DDG. */
150 static void
151 create_ddg_dependence (ddg_ptr g, ddg_node_ptr src_node,
152 ddg_node_ptr dest_node, rtx link)
153 {
154 ddg_edge_ptr e;
155 int latency, distance = 0;
156 int interloop = (src_node->cuid >= dest_node->cuid);
157 dep_type t = TRUE_DEP;
158 dep_data_type dt = (mem_access_insn_p (src_node->insn)
159 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
160 : REG_DEP);
161
162 /* For now we don't have an exact calculation of the distance,
163 so assume 1 conservatively. */
164 if (interloop)
165 distance = 1;
166
167 gcc_assert (link);
168
169 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
170 if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
171 t = ANTI_DEP;
172 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
173 t = OUTPUT_DEP;
174 latency = insn_cost (src_node->insn, link, dest_node->insn);
175
176 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
177
178 if (interloop)
179 {
180 /* Some interloop dependencies are relaxed:
181 1. Every insn is output dependent on itself; ignore such deps.
182 2. Every true/flow dependence is an anti dependence in the
183 opposite direction with distance 1; such register deps
184 will be removed by renaming if broken --- ignore them. */
185 if (!(t == OUTPUT_DEP && src_node == dest_node)
186 && !(t == ANTI_DEP && dt == REG_DEP))
187 add_backarc_to_ddg (g, e);
188 else
189 free (e);
190 }
191 else
192 add_edge_to_ddg (g, e);
193 }
194
195 /* The same as the above function, but it doesn't require a link parameter. */
196 static void
197 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
198 dep_type d_t, dep_data_type d_dt, int distance)
199 {
200 ddg_edge_ptr e;
201 int l;
202 rtx link = alloc_INSN_LIST (to->insn, NULL_RTX);
203
204 if (d_t == ANTI_DEP)
205 PUT_REG_NOTE_KIND (link, REG_DEP_ANTI);
206 else if (d_t == OUTPUT_DEP)
207 PUT_REG_NOTE_KIND (link, REG_DEP_OUTPUT);
208
209 l = insn_cost (from->insn, link, to->insn);
210 free_INSN_LIST_node (link);
211
212 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
213 if (distance > 0)
214 add_backarc_to_ddg (g, e);
215 else
216 add_edge_to_ddg (g, e);
217 }
218
219 \f
220 /* Given a downwards exposed register def RD, add inter-loop true dependences
221 for all its uses in the next iteration, and an output dependence to the
222 first def of the next iteration. */
223 static void
224 add_deps_for_def (ddg_ptr g, struct df *df, struct ref *rd)
225 {
226 int regno = DF_REF_REGNO (rd);
227 struct bb_info *bb_info = DF_BB_INFO (df, g->bb);
228 struct df_link *r_use;
229 int use_before_def = false;
230 rtx def_insn = DF_REF_INSN (rd);
231 ddg_node_ptr src_node = get_node_of_insn (g, def_insn);
232
233 /* Create and inter-loop true dependence between RD and each of its uses
234 that is upwards exposed in RD's block. */
235 for (r_use = DF_REF_CHAIN (rd); r_use != NULL; r_use = r_use->next)
236 {
237 if (bitmap_bit_p (bb_info->ru_gen, r_use->ref->id))
238 {
239 rtx use_insn = DF_REF_INSN (r_use->ref);
240 ddg_node_ptr dest_node = get_node_of_insn (g, use_insn);
241
242 gcc_assert (src_node && dest_node);
243
244 /* Any such upwards exposed use appears before the rd def. */
245 use_before_def = true;
246 create_ddg_dep_no_link (g, src_node, dest_node, TRUE_DEP,
247 REG_DEP, 1);
248 }
249 }
250
251 /* Create an inter-loop output dependence between RD (which is the
252 last def in its block, being downwards exposed) and the first def
253 in its block. Avoid creating a self output dependence. Avoid creating
254 an output dependence if there is a dependence path between the two defs
255 starting with a true dependence followed by an anti dependence (i.e. if
256 there is a use between the two defs. */
257 if (! use_before_def)
258 {
259 struct ref *def = df_bb_regno_first_def_find (df, g->bb, regno);
260 int i;
261 ddg_node_ptr dest_node;
262
263 if (!def || rd->id == def->id)
264 return;
265
266 /* Check if there are uses after RD. */
267 for (i = src_node->cuid + 1; i < g->num_nodes; i++)
268 if (df_reg_used (df, g->nodes[i].insn, rd->reg))
269 return;
270
271 dest_node = get_node_of_insn (g, def->insn);
272 create_ddg_dep_no_link (g, src_node, dest_node, OUTPUT_DEP, REG_DEP, 1);
273 }
274 }
275
276 /* Given a register USE, add an inter-loop anti dependence to the first
277 (nearest BLOCK_BEGIN) def of the next iteration, unless USE is followed
278 by a def in the block. */
279 static void
280 add_deps_for_use (ddg_ptr g, struct df *df, struct ref *use)
281 {
282 int i;
283 int regno = DF_REF_REGNO (use);
284 struct ref *first_def = df_bb_regno_first_def_find (df, g->bb, regno);
285 ddg_node_ptr use_node;
286 ddg_node_ptr def_node;
287 struct bb_info *bb_info;
288
289 bb_info = DF_BB_INFO (df, g->bb);
290
291 if (!first_def)
292 return;
293
294 use_node = get_node_of_insn (g, use->insn);
295 def_node = get_node_of_insn (g, first_def->insn);
296
297 gcc_assert (use_node && def_node);
298
299 /* Make sure there are no defs after USE. */
300 for (i = use_node->cuid + 1; i < g->num_nodes; i++)
301 if (df_find_def (df, g->nodes[i].insn, use->reg))
302 return;
303 /* We must not add ANTI dep when there is an intra-loop TRUE dep in
304 the opozite direction. If the first_def reaches the USE then there is
305 such a dep. */
306 if (! bitmap_bit_p (bb_info->rd_gen, first_def->id))
307 create_ddg_dep_no_link (g, use_node, def_node, ANTI_DEP, REG_DEP, 1);
308 }
309
310 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
311 static void
312 build_inter_loop_deps (ddg_ptr g, struct df *df)
313 {
314 int rd_num, u_num;
315 struct bb_info *bb_info;
316 bitmap_iterator bi;
317
318 bb_info = DF_BB_INFO (df, g->bb);
319
320 /* Find inter-loop output and true deps by connecting downward exposed defs
321 to the first def of the BB and to upwards exposed uses. */
322 EXECUTE_IF_SET_IN_BITMAP (bb_info->rd_gen, 0, rd_num, bi)
323 {
324 struct ref *rd = df->defs[rd_num];
325
326 add_deps_for_def (g, df, rd);
327 }
328
329 /* Find inter-loop anti deps. We are interested in uses of the block that
330 appear below all defs; this implies that these uses are killed. */
331 EXECUTE_IF_SET_IN_BITMAP (bb_info->ru_kill, 0, u_num, bi)
332 {
333 struct ref *use = df->uses[u_num];
334
335 /* We are interested in uses of this BB. */
336 if (BLOCK_FOR_INSN (use->insn) == g->bb)
337 add_deps_for_use (g, df,use);
338 }
339 }
340
341 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
342 to ddg G. */
343 static void
344 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
345 {
346 if (mem_write_insn_p (from->insn))
347 {
348 if (mem_read_insn_p (to->insn))
349 create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
350 else if (from->cuid != to->cuid)
351 create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
352 }
353 else
354 {
355 if (mem_read_insn_p (to->insn))
356 return;
357 else if (from->cuid != to->cuid)
358 {
359 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
360 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
361 }
362 }
363
364 }
365
366 /* Perform intra-block Data Dependency analysis and connect the nodes in
367 the DDG. We assume the loop has a single basic block. */
368 static void
369 build_intra_loop_deps (ddg_ptr g)
370 {
371 int i;
372 /* Hold the dependency analysis state during dependency calculations. */
373 struct deps tmp_deps;
374 rtx head, tail, link;
375
376 /* Build the dependence information, using the sched_analyze function. */
377 init_deps_global ();
378 init_deps (&tmp_deps);
379
380 /* Do the intra-block data dependence analysis for the given block. */
381 get_block_head_tail (g->bb->index, &head, &tail);
382 sched_analyze (&tmp_deps, head, tail);
383
384 /* Build intra-loop data dependencies using the scheduler dependency
385 analysis. */
386 for (i = 0; i < g->num_nodes; i++)
387 {
388 ddg_node_ptr dest_node = &g->nodes[i];
389
390 if (! INSN_P (dest_node->insn))
391 continue;
392
393 for (link = LOG_LINKS (dest_node->insn); link; link = XEXP (link, 1))
394 {
395 ddg_node_ptr src_node = get_node_of_insn (g, XEXP (link, 0));
396
397 if (!src_node)
398 continue;
399
400 add_forward_dependence (XEXP (link, 0), dest_node->insn,
401 REG_NOTE_KIND (link));
402 create_ddg_dependence (g, src_node, dest_node,
403 INSN_DEPEND (src_node->insn));
404 }
405
406 /* If this insn modifies memory, add an edge to all insns that access
407 memory. */
408 if (mem_access_insn_p (dest_node->insn))
409 {
410 int j;
411
412 for (j = 0; j <= i; j++)
413 {
414 ddg_node_ptr j_node = &g->nodes[j];
415 if (mem_access_insn_p (j_node->insn))
416 /* Don't bother calculating inter-loop dep if an intra-loop dep
417 already exists. */
418 if (! TEST_BIT (dest_node->successors, j))
419 add_inter_loop_mem_dep (g, dest_node, j_node);
420 }
421 }
422 }
423
424 /* Free the INSN_LISTs. */
425 finish_deps_global ();
426 free_deps (&tmp_deps);
427 }
428
429
430 /* Given a basic block, create its DDG and return a pointer to a variable
431 of ddg type that represents it.
432 Initialize the ddg structure fields to the appropriate values. */
433 ddg_ptr
434 create_ddg (basic_block bb, struct df *df, int closing_branch_deps)
435 {
436 ddg_ptr g;
437 rtx insn, first_note;
438 int i;
439 int num_nodes = 0;
440
441 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
442
443 g->bb = bb;
444 g->closing_branch_deps = closing_branch_deps;
445
446 /* Count the number of insns in the BB. */
447 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
448 insn = NEXT_INSN (insn))
449 {
450 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
451 continue;
452
453 if (mem_read_insn_p (insn))
454 g->num_loads++;
455 if (mem_write_insn_p (insn))
456 g->num_stores++;
457 num_nodes++;
458 }
459
460 /* There is nothing to do for this BB. */
461 if (num_nodes <= 1)
462 {
463 free (g);
464 return NULL;
465 }
466
467 /* Allocate the nodes array, and initialize the nodes. */
468 g->num_nodes = num_nodes;
469 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
470 g->closing_branch = NULL;
471 i = 0;
472 first_note = NULL_RTX;
473 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
474 insn = NEXT_INSN (insn))
475 {
476 if (! INSN_P (insn))
477 {
478 if (! first_note && NOTE_P (insn)
479 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK)
480 first_note = insn;
481 continue;
482 }
483 if (JUMP_P (insn))
484 {
485 gcc_assert (!g->closing_branch);
486 g->closing_branch = &g->nodes[i];
487 }
488 else if (GET_CODE (PATTERN (insn)) == USE)
489 {
490 if (! first_note)
491 first_note = insn;
492 continue;
493 }
494
495 g->nodes[i].cuid = i;
496 g->nodes[i].successors = sbitmap_alloc (num_nodes);
497 sbitmap_zero (g->nodes[i].successors);
498 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
499 sbitmap_zero (g->nodes[i].predecessors);
500 g->nodes[i].first_note = (first_note ? first_note : insn);
501 g->nodes[i++].insn = insn;
502 first_note = NULL_RTX;
503 }
504
505 /* We must have found a branch in DDG. */
506 gcc_assert (g->closing_branch);
507
508
509 /* Build the data dependency graph. */
510 build_intra_loop_deps (g);
511 build_inter_loop_deps (g, df);
512 return g;
513 }
514
515 /* Free all the memory allocated for the DDG. */
516 void
517 free_ddg (ddg_ptr g)
518 {
519 int i;
520
521 if (!g)
522 return;
523
524 for (i = 0; i < g->num_nodes; i++)
525 {
526 ddg_edge_ptr e = g->nodes[i].out;
527
528 while (e)
529 {
530 ddg_edge_ptr next = e->next_out;
531
532 free (e);
533 e = next;
534 }
535 sbitmap_free (g->nodes[i].successors);
536 sbitmap_free (g->nodes[i].predecessors);
537 }
538 if (g->num_backarcs > 0)
539 free (g->backarcs);
540 free (g->nodes);
541 free (g);
542 }
543
544 void
545 print_ddg_edge (FILE *dump_file, ddg_edge_ptr e)
546 {
547 char dep_c;
548
549 switch (e->type) {
550 case OUTPUT_DEP :
551 dep_c = 'O';
552 break;
553 case ANTI_DEP :
554 dep_c = 'A';
555 break;
556 default:
557 dep_c = 'T';
558 }
559
560 fprintf (dump_file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
561 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
562 }
563
564 /* Print the DDG nodes with there in/out edges to the dump file. */
565 void
566 print_ddg (FILE *dump_file, ddg_ptr g)
567 {
568 int i;
569
570 for (i = 0; i < g->num_nodes; i++)
571 {
572 ddg_edge_ptr e;
573
574 print_rtl_single (dump_file, g->nodes[i].insn);
575 fprintf (dump_file, "OUT ARCS: ");
576 for (e = g->nodes[i].out; e; e = e->next_out)
577 print_ddg_edge (dump_file, e);
578
579 fprintf (dump_file, "\nIN ARCS: ");
580 for (e = g->nodes[i].in; e; e = e->next_in)
581 print_ddg_edge (dump_file, e);
582
583 fprintf (dump_file, "\n");
584 }
585 }
586
587 /* Print the given DDG in VCG format. */
588 void
589 vcg_print_ddg (FILE *dump_file, ddg_ptr g)
590 {
591 int src_cuid;
592
593 fprintf (dump_file, "graph: {\n");
594 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
595 {
596 ddg_edge_ptr e;
597 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
598
599 fprintf (dump_file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
600 print_rtl_single (dump_file, g->nodes[src_cuid].insn);
601 fprintf (dump_file, "\"}\n");
602 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
603 {
604 int dst_uid = INSN_UID (e->dest->insn);
605 int dst_cuid = e->dest->cuid;
606
607 /* Give the backarcs a different color. */
608 if (e->distance > 0)
609 fprintf (dump_file, "backedge: {color: red ");
610 else
611 fprintf (dump_file, "edge: { ");
612
613 fprintf (dump_file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
614 fprintf (dump_file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
615 fprintf (dump_file, "label: \"%d_%d\"}\n", e->latency, e->distance);
616 }
617 }
618 fprintf (dump_file, "}\n");
619 }
620
621 /* Create an edge and initialize it with given values. */
622 static ddg_edge_ptr
623 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
624 dep_type t, dep_data_type dt, int l, int d)
625 {
626 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
627
628 e->src = src;
629 e->dest = dest;
630 e->type = t;
631 e->data_type = dt;
632 e->latency = l;
633 e->distance = d;
634 e->next_in = e->next_out = NULL;
635 e->aux.info = 0;
636 return e;
637 }
638
639 /* Add the given edge to the in/out linked lists of the DDG nodes. */
640 static void
641 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
642 {
643 ddg_node_ptr src = e->src;
644 ddg_node_ptr dest = e->dest;
645
646 /* Should have allocated the sbitmaps. */
647 gcc_assert (src->successors && dest->predecessors);
648
649 SET_BIT (src->successors, dest->cuid);
650 SET_BIT (dest->predecessors, src->cuid);
651 e->next_in = dest->in;
652 dest->in = e;
653 e->next_out = src->out;
654 src->out = e;
655 }
656
657
658 \f
659 /* Algorithm for computing the recurrence_length of an scc. We assume at
660 for now that cycles in the data dependence graph contain a single backarc.
661 This simplifies the algorithm, and can be generalized later. */
662 static void
663 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
664 {
665 int j;
666 int result = -1;
667
668 for (j = 0; j < scc->num_backarcs; j++)
669 {
670 ddg_edge_ptr backarc = scc->backarcs[j];
671 int length;
672 int distance = backarc->distance;
673 ddg_node_ptr src = backarc->dest;
674 ddg_node_ptr dest = backarc->src;
675
676 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
677 if (length < 0 )
678 {
679 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
680 continue;
681 }
682 length += backarc->latency;
683 result = MAX (result, (length / distance));
684 }
685 scc->recurrence_length = result;
686 }
687
688 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
689 and mark edges that belong to this scc as IN_SCC. */
690 static ddg_scc_ptr
691 create_scc (ddg_ptr g, sbitmap nodes)
692 {
693 ddg_scc_ptr scc;
694 int u;
695
696 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
697 scc->backarcs = NULL;
698 scc->num_backarcs = 0;
699 scc->nodes = sbitmap_alloc (g->num_nodes);
700 sbitmap_copy (scc->nodes, nodes);
701
702 /* Mark the backarcs that belong to this SCC. */
703 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u,
704 {
705 ddg_edge_ptr e;
706 ddg_node_ptr n = &g->nodes[u];
707
708 for (e = n->out; e; e = e->next_out)
709 if (TEST_BIT (nodes, e->dest->cuid))
710 {
711 e->aux.count = IN_SCC;
712 if (e->distance > 0)
713 add_backarc_to_scc (scc, e);
714 }
715 });
716
717 set_recurrence_length (scc, g);
718 return scc;
719 }
720
721 /* Cleans the memory allocation of a given SCC. */
722 static void
723 free_scc (ddg_scc_ptr scc)
724 {
725 if (!scc)
726 return;
727
728 sbitmap_free (scc->nodes);
729 if (scc->num_backarcs > 0)
730 free (scc->backarcs);
731 free (scc);
732 }
733
734
735 /* Add a given edge known to be a backarc to the given DDG. */
736 static void
737 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
738 {
739 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
740
741 add_edge_to_ddg (g, e);
742 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
743 g->backarcs[g->num_backarcs++] = e;
744 }
745
746 /* Add backarc to an SCC. */
747 static void
748 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
749 {
750 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
751
752 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
753 scc->backarcs[scc->num_backarcs++] = e;
754 }
755
756 /* Add the given SCC to the DDG. */
757 static void
758 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
759 {
760 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
761
762 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
763 g->sccs[g->num_sccs++] = scc;
764 }
765
766 /* Given the instruction INSN return the node that represents it. */
767 ddg_node_ptr
768 get_node_of_insn (ddg_ptr g, rtx insn)
769 {
770 int i;
771
772 for (i = 0; i < g->num_nodes; i++)
773 if (insn == g->nodes[i].insn)
774 return &g->nodes[i];
775 return NULL;
776 }
777
778 /* Given a set OPS of nodes in the DDG, find the set of their successors
779 which are not in OPS, and set their bits in SUCC. Bits corresponding to
780 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
781 void
782 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
783 {
784 int i;
785
786 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i,
787 {
788 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
789 sbitmap_a_or_b (succ, succ, node_succ);
790 });
791
792 /* We want those that are not in ops. */
793 sbitmap_difference (succ, succ, ops);
794 }
795
796 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
797 which are not in OPS, and set their bits in PREDS. Bits corresponding to
798 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
799 void
800 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
801 {
802 int i;
803
804 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i,
805 {
806 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
807 sbitmap_a_or_b (preds, preds, node_preds);
808 });
809
810 /* We want those that are not in ops. */
811 sbitmap_difference (preds, preds, ops);
812 }
813
814
815 /* Compare function to be passed to qsort to order the backarcs in descending
816 recMII order. */
817 static int
818 compare_sccs (const void *s1, const void *s2)
819 {
820 int rec_l1 = (*(ddg_scc_ptr *)s1)->recurrence_length;
821 int rec_l2 = (*(ddg_scc_ptr *)s2)->recurrence_length;
822 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
823
824 }
825
826 /* Order the backarcs in descending recMII order using compare_sccs. */
827 static void
828 order_sccs (ddg_all_sccs_ptr g)
829 {
830 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
831 (int (*) (const void *, const void *)) compare_sccs);
832 }
833
834 /* Perform the Strongly Connected Components decomposing algorithm on the
835 DDG and return DDG_ALL_SCCS structure that contains them. */
836 ddg_all_sccs_ptr
837 create_ddg_all_sccs (ddg_ptr g)
838 {
839 int i;
840 int num_nodes = g->num_nodes;
841 sbitmap from = sbitmap_alloc (num_nodes);
842 sbitmap to = sbitmap_alloc (num_nodes);
843 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
844 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
845 xmalloc (sizeof (struct ddg_all_sccs));
846
847 sccs->ddg = g;
848 sccs->sccs = NULL;
849 sccs->num_sccs = 0;
850
851 for (i = 0; i < g->num_backarcs; i++)
852 {
853 ddg_scc_ptr scc;
854 ddg_edge_ptr backarc = g->backarcs[i];
855 ddg_node_ptr src = backarc->src;
856 ddg_node_ptr dest = backarc->dest;
857
858 /* If the backarc already belongs to an SCC, continue. */
859 if (backarc->aux.count == IN_SCC)
860 continue;
861
862 sbitmap_zero (from);
863 sbitmap_zero (to);
864 SET_BIT (from, dest->cuid);
865 SET_BIT (to, src->cuid);
866
867 if (find_nodes_on_paths (scc_nodes, g, from, to))
868 {
869 scc = create_scc (g, scc_nodes);
870 add_scc_to_ddg (sccs, scc);
871 }
872 }
873 order_sccs (sccs);
874 sbitmap_free (from);
875 sbitmap_free (to);
876 sbitmap_free (scc_nodes);
877 return sccs;
878 }
879
880 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
881 void
882 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
883 {
884 int i;
885
886 if (!all_sccs)
887 return;
888
889 for (i = 0; i < all_sccs->num_sccs; i++)
890 free_scc (all_sccs->sccs[i]);
891
892 free (all_sccs);
893 }
894
895 \f
896 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
897 nodes - find all nodes that lie on paths from FROM to TO (not excluding
898 nodes from FROM and TO). Return nonzero if nodes exist. */
899 int
900 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
901 {
902 int answer;
903 int change, u;
904 int num_nodes = g->num_nodes;
905 sbitmap workset = sbitmap_alloc (num_nodes);
906 sbitmap reachable_from = sbitmap_alloc (num_nodes);
907 sbitmap reach_to = sbitmap_alloc (num_nodes);
908 sbitmap tmp = sbitmap_alloc (num_nodes);
909
910 sbitmap_copy (reachable_from, from);
911 sbitmap_copy (tmp, from);
912
913 change = 1;
914 while (change)
915 {
916 change = 0;
917 sbitmap_copy (workset, tmp);
918 sbitmap_zero (tmp);
919 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
920 {
921 ddg_edge_ptr e;
922 ddg_node_ptr u_node = &g->nodes[u];
923
924 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
925 {
926 ddg_node_ptr v_node = e->dest;
927 int v = v_node->cuid;
928
929 if (!TEST_BIT (reachable_from, v))
930 {
931 SET_BIT (reachable_from, v);
932 SET_BIT (tmp, v);
933 change = 1;
934 }
935 }
936 });
937 }
938
939 sbitmap_copy (reach_to, to);
940 sbitmap_copy (tmp, to);
941
942 change = 1;
943 while (change)
944 {
945 change = 0;
946 sbitmap_copy (workset, tmp);
947 sbitmap_zero (tmp);
948 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
949 {
950 ddg_edge_ptr e;
951 ddg_node_ptr u_node = &g->nodes[u];
952
953 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
954 {
955 ddg_node_ptr v_node = e->src;
956 int v = v_node->cuid;
957
958 if (!TEST_BIT (reach_to, v))
959 {
960 SET_BIT (reach_to, v);
961 SET_BIT (tmp, v);
962 change = 1;
963 }
964 }
965 });
966 }
967
968 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
969 sbitmap_free (workset);
970 sbitmap_free (reachable_from);
971 sbitmap_free (reach_to);
972 sbitmap_free (tmp);
973 return answer;
974 }
975
976
977 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
978 at-least as large as the count of U_NODE plus the latency between them.
979 Sets a bit in TMP for each successor whose count was changed (increased).
980 Returns nonzero if any count was changed. */
981 static int
982 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
983 {
984 ddg_edge_ptr e;
985 int result = 0;
986
987 for (e = u_node->out; e; e = e->next_out)
988 {
989 ddg_node_ptr v_node = e->dest;
990 int v = v_node->cuid;
991
992 if (TEST_BIT (nodes, v)
993 && (e->distance == 0)
994 && (v_node->aux.count < u_node->aux.count + e->latency))
995 {
996 v_node->aux.count = u_node->aux.count + e->latency;
997 SET_BIT (tmp, v);
998 result = 1;
999 }
1000 }
1001 return result;
1002 }
1003
1004
1005 /* Find the length of a longest path from SRC to DEST in G,
1006 going only through NODES, and disregarding backarcs. */
1007 int
1008 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1009 {
1010 int i, u;
1011 int change = 1;
1012 int result;
1013 int num_nodes = g->num_nodes;
1014 sbitmap workset = sbitmap_alloc (num_nodes);
1015 sbitmap tmp = sbitmap_alloc (num_nodes);
1016
1017
1018 /* Data will hold the distance of the longest path found so far from
1019 src to each node. Initialize to -1 = less than minimum. */
1020 for (i = 0; i < g->num_nodes; i++)
1021 g->nodes[i].aux.count = -1;
1022 g->nodes[src].aux.count = 0;
1023
1024 sbitmap_zero (tmp);
1025 SET_BIT (tmp, src);
1026
1027 while (change)
1028 {
1029 change = 0;
1030 sbitmap_copy (workset, tmp);
1031 sbitmap_zero (tmp);
1032 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u,
1033 {
1034 ddg_node_ptr u_node = &g->nodes[u];
1035
1036 change |= update_dist_to_successors (u_node, nodes, tmp);
1037 });
1038 }
1039 result = g->nodes[dest].aux.count;
1040 sbitmap_free (workset);
1041 sbitmap_free (tmp);
1042 return result;
1043 }