]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dfp.c
genattrtab.c (write_header): Include hash-set.h...
[thirdparty/gcc.git] / gcc / dfp.c
1 /* Decimal floating point support.
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "hash-set.h"
25 #include "machmode.h"
26 #include "vec.h"
27 #include "double-int.h"
28 #include "input.h"
29 #include "alias.h"
30 #include "symtab.h"
31 #include "wide-int.h"
32 #include "inchash.h"
33 #include "real.h"
34 #include "tree.h"
35 #include "tm_p.h"
36 #include "dfp.h"
37 #include "wide-int.h"
38
39 /* The order of the following headers is important for making sure
40 decNumber structure is large enough to hold decimal128 digits. */
41
42 #include "decimal128.h"
43 #include "decimal128Local.h"
44 #include "decimal64.h"
45 #include "decimal32.h"
46 #include "decNumber.h"
47
48 #ifndef WORDS_BIGENDIAN
49 #define WORDS_BIGENDIAN 0
50 #endif
51
52 /* Initialize R (a real with the decimal flag set) from DN. Can
53 utilize status passed in via CONTEXT, if a previous operation had
54 interesting status. */
55
56 static void
57 decimal_from_decnumber (REAL_VALUE_TYPE *r, decNumber *dn, decContext *context)
58 {
59 memset (r, 0, sizeof (REAL_VALUE_TYPE));
60
61 r->cl = rvc_normal;
62 if (decNumberIsNaN (dn))
63 r->cl = rvc_nan;
64 if (decNumberIsInfinite (dn))
65 r->cl = rvc_inf;
66 if (context->status & DEC_Overflow)
67 r->cl = rvc_inf;
68 if (decNumberIsNegative (dn))
69 r->sign = 1;
70 r->decimal = 1;
71
72 if (r->cl != rvc_normal)
73 return;
74
75 decContextDefault (context, DEC_INIT_DECIMAL128);
76 context->traps = 0;
77
78 decimal128FromNumber ((decimal128 *) r->sig, dn, context);
79 }
80
81 /* Create decimal encoded R from string S. */
82
83 void
84 decimal_real_from_string (REAL_VALUE_TYPE *r, const char *s)
85 {
86 decNumber dn;
87 decContext set;
88 decContextDefault (&set, DEC_INIT_DECIMAL128);
89 set.traps = 0;
90
91 decNumberFromString (&dn, s, &set);
92
93 /* It would be more efficient to store directly in decNumber format,
94 but that is impractical from current data structure size.
95 Encoding as a decimal128 is much more compact. */
96 decimal_from_decnumber (r, &dn, &set);
97 }
98
99 /* Initialize a decNumber from a REAL_VALUE_TYPE. */
100
101 static void
102 decimal_to_decnumber (const REAL_VALUE_TYPE *r, decNumber *dn)
103 {
104 decContext set;
105 decContextDefault (&set, DEC_INIT_DECIMAL128);
106 set.traps = 0;
107
108 switch (r->cl)
109 {
110 case rvc_zero:
111 decNumberZero (dn);
112 break;
113 case rvc_inf:
114 decNumberFromString (dn, "Infinity", &set);
115 break;
116 case rvc_nan:
117 if (r->signalling)
118 decNumberFromString (dn, "snan", &set);
119 else
120 decNumberFromString (dn, "nan", &set);
121 break;
122 case rvc_normal:
123 if (!r->decimal)
124 {
125 /* dconst{1,2,m1,half} are used in various places in
126 the middle-end and optimizers, allow them here
127 as an exception by converting them to decimal. */
128 if (memcmp (r, &dconst1, sizeof (*r)) == 0)
129 {
130 decNumberFromString (dn, "1", &set);
131 break;
132 }
133 if (memcmp (r, &dconst2, sizeof (*r)) == 0)
134 {
135 decNumberFromString (dn, "2", &set);
136 break;
137 }
138 if (memcmp (r, &dconstm1, sizeof (*r)) == 0)
139 {
140 decNumberFromString (dn, "-1", &set);
141 break;
142 }
143 if (memcmp (r, &dconsthalf, sizeof (*r)) == 0)
144 {
145 decNumberFromString (dn, "0.5", &set);
146 break;
147 }
148 gcc_unreachable ();
149 }
150 decimal128ToNumber ((const decimal128 *) r->sig, dn);
151 break;
152 default:
153 gcc_unreachable ();
154 }
155
156 /* Fix up sign bit. */
157 if (r->sign != decNumberIsNegative (dn))
158 dn->bits ^= DECNEG;
159 }
160
161 /* Encode a real into an IEEE 754 decimal32 type. */
162
163 void
164 encode_decimal32 (const struct real_format *fmt ATTRIBUTE_UNUSED,
165 long *buf, const REAL_VALUE_TYPE *r)
166 {
167 decNumber dn;
168 decimal32 d32;
169 decContext set;
170 int32_t image;
171
172 decContextDefault (&set, DEC_INIT_DECIMAL128);
173 set.traps = 0;
174
175 decimal_to_decnumber (r, &dn);
176 decimal32FromNumber (&d32, &dn, &set);
177
178 memcpy (&image, d32.bytes, sizeof (int32_t));
179 buf[0] = image;
180 }
181
182 /* Decode an IEEE 754 decimal32 type into a real. */
183
184 void
185 decode_decimal32 (const struct real_format *fmt ATTRIBUTE_UNUSED,
186 REAL_VALUE_TYPE *r, const long *buf)
187 {
188 decNumber dn;
189 decimal32 d32;
190 decContext set;
191 int32_t image;
192
193 decContextDefault (&set, DEC_INIT_DECIMAL128);
194 set.traps = 0;
195
196 image = buf[0];
197 memcpy (&d32.bytes, &image, sizeof (int32_t));
198
199 decimal32ToNumber (&d32, &dn);
200 decimal_from_decnumber (r, &dn, &set);
201 }
202
203 /* Encode a real into an IEEE 754 decimal64 type. */
204
205 void
206 encode_decimal64 (const struct real_format *fmt ATTRIBUTE_UNUSED,
207 long *buf, const REAL_VALUE_TYPE *r)
208 {
209 decNumber dn;
210 decimal64 d64;
211 decContext set;
212 int32_t image;
213
214 decContextDefault (&set, DEC_INIT_DECIMAL128);
215 set.traps = 0;
216
217 decimal_to_decnumber (r, &dn);
218 decimal64FromNumber (&d64, &dn, &set);
219
220 if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
221 {
222 memcpy (&image, &d64.bytes[0], sizeof (int32_t));
223 buf[0] = image;
224 memcpy (&image, &d64.bytes[4], sizeof (int32_t));
225 buf[1] = image;
226 }
227 else
228 {
229 memcpy (&image, &d64.bytes[4], sizeof (int32_t));
230 buf[0] = image;
231 memcpy (&image, &d64.bytes[0], sizeof (int32_t));
232 buf[1] = image;
233 }
234 }
235
236 /* Decode an IEEE 754 decimal64 type into a real. */
237
238 void
239 decode_decimal64 (const struct real_format *fmt ATTRIBUTE_UNUSED,
240 REAL_VALUE_TYPE *r, const long *buf)
241 {
242 decNumber dn;
243 decimal64 d64;
244 decContext set;
245 int32_t image;
246
247 decContextDefault (&set, DEC_INIT_DECIMAL128);
248 set.traps = 0;
249
250 if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
251 {
252 image = buf[0];
253 memcpy (&d64.bytes[0], &image, sizeof (int32_t));
254 image = buf[1];
255 memcpy (&d64.bytes[4], &image, sizeof (int32_t));
256 }
257 else
258 {
259 image = buf[1];
260 memcpy (&d64.bytes[0], &image, sizeof (int32_t));
261 image = buf[0];
262 memcpy (&d64.bytes[4], &image, sizeof (int32_t));
263 }
264
265 decimal64ToNumber (&d64, &dn);
266 decimal_from_decnumber (r, &dn, &set);
267 }
268
269 /* Encode a real into an IEEE 754 decimal128 type. */
270
271 void
272 encode_decimal128 (const struct real_format *fmt ATTRIBUTE_UNUSED,
273 long *buf, const REAL_VALUE_TYPE *r)
274 {
275 decNumber dn;
276 decContext set;
277 decimal128 d128;
278 int32_t image;
279
280 decContextDefault (&set, DEC_INIT_DECIMAL128);
281 set.traps = 0;
282
283 decimal_to_decnumber (r, &dn);
284 decimal128FromNumber (&d128, &dn, &set);
285
286 if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
287 {
288 memcpy (&image, &d128.bytes[0], sizeof (int32_t));
289 buf[0] = image;
290 memcpy (&image, &d128.bytes[4], sizeof (int32_t));
291 buf[1] = image;
292 memcpy (&image, &d128.bytes[8], sizeof (int32_t));
293 buf[2] = image;
294 memcpy (&image, &d128.bytes[12], sizeof (int32_t));
295 buf[3] = image;
296 }
297 else
298 {
299 memcpy (&image, &d128.bytes[12], sizeof (int32_t));
300 buf[0] = image;
301 memcpy (&image, &d128.bytes[8], sizeof (int32_t));
302 buf[1] = image;
303 memcpy (&image, &d128.bytes[4], sizeof (int32_t));
304 buf[2] = image;
305 memcpy (&image, &d128.bytes[0], sizeof (int32_t));
306 buf[3] = image;
307 }
308 }
309
310 /* Decode an IEEE 754 decimal128 type into a real. */
311
312 void
313 decode_decimal128 (const struct real_format *fmt ATTRIBUTE_UNUSED,
314 REAL_VALUE_TYPE *r, const long *buf)
315 {
316 decNumber dn;
317 decimal128 d128;
318 decContext set;
319 int32_t image;
320
321 decContextDefault (&set, DEC_INIT_DECIMAL128);
322 set.traps = 0;
323
324 if (WORDS_BIGENDIAN == FLOAT_WORDS_BIG_ENDIAN)
325 {
326 image = buf[0];
327 memcpy (&d128.bytes[0], &image, sizeof (int32_t));
328 image = buf[1];
329 memcpy (&d128.bytes[4], &image, sizeof (int32_t));
330 image = buf[2];
331 memcpy (&d128.bytes[8], &image, sizeof (int32_t));
332 image = buf[3];
333 memcpy (&d128.bytes[12], &image, sizeof (int32_t));
334 }
335 else
336 {
337 image = buf[3];
338 memcpy (&d128.bytes[0], &image, sizeof (int32_t));
339 image = buf[2];
340 memcpy (&d128.bytes[4], &image, sizeof (int32_t));
341 image = buf[1];
342 memcpy (&d128.bytes[8], &image, sizeof (int32_t));
343 image = buf[0];
344 memcpy (&d128.bytes[12], &image, sizeof (int32_t));
345 }
346
347 decimal128ToNumber (&d128, &dn);
348 decimal_from_decnumber (r, &dn, &set);
349 }
350
351 /* Helper function to convert from a binary real internal
352 representation. */
353
354 static void
355 decimal_to_binary (REAL_VALUE_TYPE *to, const REAL_VALUE_TYPE *from,
356 machine_mode mode)
357 {
358 char string[256];
359 const decimal128 *const d128 = (const decimal128 *) from->sig;
360
361 decimal128ToString (d128, string);
362 real_from_string3 (to, string, mode);
363 }
364
365
366 /* Helper function to convert from a binary real internal
367 representation. */
368
369 static void
370 decimal_from_binary (REAL_VALUE_TYPE *to, const REAL_VALUE_TYPE *from)
371 {
372 char string[256];
373
374 /* We convert to string, then to decNumber then to decimal128. */
375 real_to_decimal (string, from, sizeof (string), 0, 1);
376 decimal_real_from_string (to, string);
377 }
378
379 /* Helper function to real.c:do_compare() to handle decimal internal
380 representation including when one of the operands is still in the
381 binary internal representation. */
382
383 int
384 decimal_do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
385 int nan_result)
386 {
387 decContext set;
388 decNumber dn, dn2, dn3;
389 REAL_VALUE_TYPE a1, b1;
390
391 /* If either operand is non-decimal, create temporary versions. */
392 if (!a->decimal)
393 {
394 decimal_from_binary (&a1, a);
395 a = &a1;
396 }
397 if (!b->decimal)
398 {
399 decimal_from_binary (&b1, b);
400 b = &b1;
401 }
402
403 /* Convert into decNumber form for comparison operation. */
404 decContextDefault (&set, DEC_INIT_DECIMAL128);
405 set.traps = 0;
406 decimal128ToNumber ((const decimal128 *) a->sig, &dn2);
407 decimal128ToNumber ((const decimal128 *) b->sig, &dn3);
408
409 /* Finally, do the comparison. */
410 decNumberCompare (&dn, &dn2, &dn3, &set);
411
412 /* Return the comparison result. */
413 if (decNumberIsNaN (&dn))
414 return nan_result;
415 else if (decNumberIsZero (&dn))
416 return 0;
417 else if (decNumberIsNegative (&dn))
418 return -1;
419 else
420 return 1;
421 }
422
423 /* Helper to round_for_format, handling decimal float types. */
424
425 void
426 decimal_round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
427 {
428 decNumber dn;
429 decContext set;
430
431 /* Real encoding occurs later. */
432 if (r->cl != rvc_normal)
433 return;
434
435 decContextDefault (&set, DEC_INIT_DECIMAL128);
436 set.traps = 0;
437 decimal128ToNumber ((decimal128 *) r->sig, &dn);
438
439 if (fmt == &decimal_quad_format)
440 {
441 /* The internal format is already in this format. */
442 return;
443 }
444 else if (fmt == &decimal_single_format)
445 {
446 decimal32 d32;
447 decContextDefault (&set, DEC_INIT_DECIMAL32);
448 set.traps = 0;
449
450 decimal32FromNumber (&d32, &dn, &set);
451 decimal32ToNumber (&d32, &dn);
452 }
453 else if (fmt == &decimal_double_format)
454 {
455 decimal64 d64;
456 decContextDefault (&set, DEC_INIT_DECIMAL64);
457 set.traps = 0;
458
459 decimal64FromNumber (&d64, &dn, &set);
460 decimal64ToNumber (&d64, &dn);
461 }
462 else
463 gcc_unreachable ();
464
465 decimal_from_decnumber (r, &dn, &set);
466 }
467
468 /* Extend or truncate to a new mode. Handles conversions between
469 binary and decimal types. */
470
471 void
472 decimal_real_convert (REAL_VALUE_TYPE *r, machine_mode mode,
473 const REAL_VALUE_TYPE *a)
474 {
475 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
476
477 if (a->decimal && fmt->b == 10)
478 return;
479 if (a->decimal)
480 decimal_to_binary (r, a, mode);
481 else
482 decimal_from_binary (r, a);
483 }
484
485 /* Render R_ORIG as a decimal floating point constant. Emit DIGITS
486 significant digits in the result, bounded by BUF_SIZE. If DIGITS
487 is 0, choose the maximum for the representation. If
488 CROP_TRAILING_ZEROS, strip trailing zeros. Currently, not honoring
489 DIGITS or CROP_TRAILING_ZEROS. */
490
491 void
492 decimal_real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig,
493 size_t buf_size,
494 size_t digits ATTRIBUTE_UNUSED,
495 int crop_trailing_zeros ATTRIBUTE_UNUSED)
496 {
497 const decimal128 *const d128 = (const decimal128*) r_orig->sig;
498
499 /* decimal128ToString requires space for at least 24 characters;
500 Require two more for suffix. */
501 gcc_assert (buf_size >= 24);
502 decimal128ToString (d128, str);
503 }
504
505 static bool
506 decimal_do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
507 const REAL_VALUE_TYPE *op1, int subtract_p)
508 {
509 decNumber dn;
510 decContext set;
511 decNumber dn2, dn3;
512
513 decimal_to_decnumber (op0, &dn2);
514 decimal_to_decnumber (op1, &dn3);
515
516 decContextDefault (&set, DEC_INIT_DECIMAL128);
517 set.traps = 0;
518
519 if (subtract_p)
520 decNumberSubtract (&dn, &dn2, &dn3, &set);
521 else
522 decNumberAdd (&dn, &dn2, &dn3, &set);
523
524 decimal_from_decnumber (r, &dn, &set);
525
526 /* Return true, if inexact. */
527 return (set.status & DEC_Inexact);
528 }
529
530 /* Compute R = OP0 * OP1. */
531
532 static bool
533 decimal_do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
534 const REAL_VALUE_TYPE *op1)
535 {
536 decContext set;
537 decNumber dn, dn2, dn3;
538
539 decimal_to_decnumber (op0, &dn2);
540 decimal_to_decnumber (op1, &dn3);
541
542 decContextDefault (&set, DEC_INIT_DECIMAL128);
543 set.traps = 0;
544
545 decNumberMultiply (&dn, &dn2, &dn3, &set);
546 decimal_from_decnumber (r, &dn, &set);
547
548 /* Return true, if inexact. */
549 return (set.status & DEC_Inexact);
550 }
551
552 /* Compute R = OP0 / OP1. */
553
554 static bool
555 decimal_do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0,
556 const REAL_VALUE_TYPE *op1)
557 {
558 decContext set;
559 decNumber dn, dn2, dn3;
560
561 decimal_to_decnumber (op0, &dn2);
562 decimal_to_decnumber (op1, &dn3);
563
564 decContextDefault (&set, DEC_INIT_DECIMAL128);
565 set.traps = 0;
566
567 decNumberDivide (&dn, &dn2, &dn3, &set);
568 decimal_from_decnumber (r, &dn, &set);
569
570 /* Return true, if inexact. */
571 return (set.status & DEC_Inexact);
572 }
573
574 /* Set R to A truncated to an integral value toward zero (decimal
575 floating point). */
576
577 void
578 decimal_do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
579 {
580 decNumber dn, dn2;
581 decContext set;
582
583 decContextDefault (&set, DEC_INIT_DECIMAL128);
584 set.traps = 0;
585 set.round = DEC_ROUND_DOWN;
586 decimal128ToNumber ((const decimal128 *) a->sig, &dn2);
587
588 decNumberToIntegralValue (&dn, &dn2, &set);
589 decimal_from_decnumber (r, &dn, &set);
590 }
591
592 /* Render decimal float value R as an integer. */
593
594 HOST_WIDE_INT
595 decimal_real_to_integer (const REAL_VALUE_TYPE *r)
596 {
597 decContext set;
598 decNumber dn, dn2, dn3;
599 REAL_VALUE_TYPE to;
600 char string[256];
601
602 decContextDefault (&set, DEC_INIT_DECIMAL128);
603 set.traps = 0;
604 set.round = DEC_ROUND_DOWN;
605 decimal128ToNumber ((const decimal128 *) r->sig, &dn);
606
607 decNumberToIntegralValue (&dn2, &dn, &set);
608 decNumberZero (&dn3);
609 decNumberRescale (&dn, &dn2, &dn3, &set);
610
611 /* Convert to REAL_VALUE_TYPE and call appropriate conversion
612 function. */
613 decNumberToString (&dn, string);
614 real_from_string (&to, string);
615 return real_to_integer (&to);
616 }
617
618 /* Likewise, but returns a wide_int with PRECISION. *FAIL is set if the
619 value does not fit. */
620
621 wide_int
622 decimal_real_to_integer (const REAL_VALUE_TYPE *r, bool *fail, int precision)
623 {
624 decContext set;
625 decNumber dn, dn2, dn3;
626 REAL_VALUE_TYPE to;
627 char string[256];
628
629 decContextDefault (&set, DEC_INIT_DECIMAL128);
630 set.traps = 0;
631 set.round = DEC_ROUND_DOWN;
632 decimal128ToNumber ((const decimal128 *) r->sig, &dn);
633
634 decNumberToIntegralValue (&dn2, &dn, &set);
635 decNumberZero (&dn3);
636 decNumberRescale (&dn, &dn2, &dn3, &set);
637
638 /* Convert to REAL_VALUE_TYPE and call appropriate conversion
639 function. */
640 decNumberToString (&dn, string);
641 real_from_string (&to, string);
642 return real_to_integer (&to, fail, precision);
643 }
644
645 /* Perform the decimal floating point operation described by CODE.
646 For a unary operation, OP1 will be NULL. This function returns
647 true if the result may be inexact due to loss of precision. */
648
649 bool
650 decimal_real_arithmetic (REAL_VALUE_TYPE *r, enum tree_code code,
651 const REAL_VALUE_TYPE *op0,
652 const REAL_VALUE_TYPE *op1)
653 {
654 REAL_VALUE_TYPE a, b;
655
656 /* If either operand is non-decimal, create temporaries. */
657 if (!op0->decimal)
658 {
659 decimal_from_binary (&a, op0);
660 op0 = &a;
661 }
662 if (op1 && !op1->decimal)
663 {
664 decimal_from_binary (&b, op1);
665 op1 = &b;
666 }
667
668 switch (code)
669 {
670 case PLUS_EXPR:
671 return decimal_do_add (r, op0, op1, 0);
672
673 case MINUS_EXPR:
674 return decimal_do_add (r, op0, op1, 1);
675
676 case MULT_EXPR:
677 return decimal_do_multiply (r, op0, op1);
678
679 case RDIV_EXPR:
680 return decimal_do_divide (r, op0, op1);
681
682 case MIN_EXPR:
683 if (op1->cl == rvc_nan)
684 *r = *op1;
685 else if (real_compare (UNLT_EXPR, op0, op1))
686 *r = *op0;
687 else
688 *r = *op1;
689 return false;
690
691 case MAX_EXPR:
692 if (op1->cl == rvc_nan)
693 *r = *op1;
694 else if (real_compare (LT_EXPR, op0, op1))
695 *r = *op1;
696 else
697 *r = *op0;
698 return false;
699
700 case NEGATE_EXPR:
701 {
702 *r = *op0;
703 /* Flip sign bit. */
704 decimal128FlipSign ((decimal128 *) r->sig);
705 /* Keep sign field in sync. */
706 r->sign ^= 1;
707 }
708 return false;
709
710 case ABS_EXPR:
711 {
712 *r = *op0;
713 /* Clear sign bit. */
714 decimal128ClearSign ((decimal128 *) r->sig);
715 /* Keep sign field in sync. */
716 r->sign = 0;
717 }
718 return false;
719
720 case FIX_TRUNC_EXPR:
721 decimal_do_fix_trunc (r, op0);
722 return false;
723
724 default:
725 gcc_unreachable ();
726 }
727 }
728
729 /* Fills R with the largest finite value representable in mode MODE.
730 If SIGN is nonzero, R is set to the most negative finite value. */
731
732 void
733 decimal_real_maxval (REAL_VALUE_TYPE *r, int sign, machine_mode mode)
734 {
735 const char *max;
736
737 switch (mode)
738 {
739 case SDmode:
740 max = "9.999999E96";
741 break;
742 case DDmode:
743 max = "9.999999999999999E384";
744 break;
745 case TDmode:
746 max = "9.999999999999999999999999999999999E6144";
747 break;
748 default:
749 gcc_unreachable ();
750 }
751
752 decimal_real_from_string (r, max);
753 if (sign)
754 decimal128SetSign ((decimal128 *) r->sig, 1);
755 }